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4.2 bootstrapping domain-specific rules . . . . . . . . . . . . . . . . . . . 130

4.3 Feedback synthesis procedure . . . . . . . . . . . . . . . . . . . . . . 135

5.1 Merge entity types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2 Merge properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3 Merge individual entities . . . . . . . . . . . . . . . . . . . . . . . . . 167

10



Abstract

Integrating Linked Data Search Results
Using Statistical Relational Learning Approaches

Duhai Alshukaili
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2016

Linked Data (LD) follows the web in providing low barriers to publication, and
in deploying web-scale keyword search as a central way of identifying relevant data.
As in the web, searches initially identify results in broadly the form in which they
were published, and the published form may be provided to the user as the result
of a search. This will be satisfactory in some cases, but the diversity of publishers
means that the results of the search may be obtained from many different sources,
and described in many different ways. As such, there seems to be an opportunity
to add value to search results by providing users with an integrated representation
that brings together features from different sources. This involves an on-the-fly and
automated data integration process being applied to search results, which raises
the question as to what technologies might be most suitable for supporting the
integration of LD search results.

In this thesis we take the view that the problem of integrating LD search results
is best approached by assimilating different forms of evidence that support the in-
tegration process. In particular, this dissertation shows how Statistical Relational
Learning (SRL) formalisms (viz., Markov Logic Networks (MLN) and Probabilistic
Soft Logic (PSL)) can be exploited to assimilate different sources of evidence in a
principled way and to beneficial effect for users. Specifically, in this dissertation
we consider syntactic evidence derived from LD search results and from matching
algorithms, semantic evidence derived from LD vocabularies, and user evidence, in
the form of feedback.

This dissertation makes the following key contributions: (i) a characterisation
of key features of LD search results that are relevant to their integration, and a
description of some initial experiences in the use of MLN for interpreting search
results; (ii) a PSL rule-base that models the uniform assimilation of diverse kinds
of evidence; (iii) an empirical evaluation of how the contributed MLN and PSL
approaches perform in terms of their ability to infer a structure for integrating LD
search results; and (iv) concrete examples of how populating such inferred structures
for presentation to the end user is beneficial, as well as guiding the collection of
feedback whose assimilation further improves search results presentation.
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Chapter 1

Introduction

The Web of Data (WoD) is an extension of the Web of documents. While the

Web of documents consists of a set of hyperlinked documents, the WoD is com-

posed of a set of interlinked datasets. The aim of the WoD is to give a well-defined

meaning to information items so that they can be processed by machines [Berners-

Lee et al., 2001]. Semantic Web (SW) standards such as the Resource Descrip-

tion Framework (RDF) [Cyganiak et al., 2014] and the Web Ontology Language

(OWL) [McGuinness and Van Harmelen, 2004] allow independent publishers to cre-

ate machine-processable data sources. The foundations for the WoD have been laid

out by these technologies that characterize the Web: HyperText Transfer Protocol

(HTTP) and Uniform Resource Identifiers (URIs). HTTP provides a decentralized

mechanism by which resources are shared over the Web. Instead of HTML pages,

the resources — anything with an identity — in the WoD are descriptions encoded

as subject-predicate-object triples using the RDF model. Resources are identified by

URIs, which enable a the assignment of unique names to resources. For example, the

URI http://www.wikidata.org/entity/Q41163 identifies the American stage ac-

tor and director whose common name is Al Pacino. Using URIs to name resources

in the WoD also provides a uniform way to access the information that describes

the identified resource.

17



18 CHAPTER 1. INTRODUCTION

2007-05-01

2007-11-10

2008-02-28

2008-09-18

2009-03-05

2009-07-14

2010-09-22

2011-09-19

2014-08-30

0

100

200

300

400

500

600
#

 D
at

as
et

s
Published Datasets in the LOD cloud

Figure 1.1: Growth in the number of datasets published on the WoD under the LOD
project2

With community efforts such as W3C’s Linking Open Data (LOD) project1,

the amount of Linked Data (LD) on the Web has been growing steadily. This

W3C project began in 2007, with the aim to seed the WoD by converting existing

datasets to RDF and make them available on the Web. Figure 1.1 shows how the

number of datasets published on the Web has grown since the LOD project has

began. A May 2016 estimate of the amount of LD on the Web suggests that there

are more than 2800 datasets containing about 190 billion triples of data, of which

about 5% are accessible by remote querying3. In addition to publishing datasets,

there is an increasing trend towards the adoption of embedded metadata within web

documents [Guha et al., 2016]. Such a trend is expected to further increase as more

1esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
2Based on data from the state of the LOD cloud website (lod-cloud.net/)
3stats.lod2.eu/

esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
lod-cloud.net/
stats.lod2.eu/
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film

lmdb:director/8405
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tit le d a t e

rdf:type

director

ac to r ac to r

The Godfather 1 7 5 6
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rdf:type rdf:type rdf:type producer

director
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Actor Person Q215627 dbr:United_States

dbr:Robert_Duvall

g ivenName su r n ame bi r thDate wikiPageID

rdf:type rdf:type rdf:type birthPlace

Talia Shire 1946 -04 -25 2 2 5 5 4 1

Actor Person Q215627 dbr:David_Shire
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givenName su r n ame bi r thDate wikiPageID
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film
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lmdb:actor /45671 lmdb:country/IN
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tit le

rdf:type

ac tor

ac to r count ry

Vinod Khanna 4 1 5 4 0

ac tor Person lmdb:performance/102956

lmdb:performance/110906

lmdb:actor /41540

ac to r_name actor_actorid

rdf:type rdf:type performance

performance

Figure 1.2: Example LD search results for the term "Godfather actors"

tools become available that support semantic annotations of Web content.

As LD publishing grew in popularity, tools that facilitate access to the WoD

began to emerge. Among these tools are LD search engines. LD search engines,

such as Sindice [Oren et al., 2008] and Falcons [Cheng and Qu, 2009], crawl and

index RDF data on the Web in order to provide keyword-search capabilities to end

users (including software agents). LD search engines are useful, but their results,

which take the form of a collection of RDF resources, present to the user the data

as published. For a human user, such data can be time-consuming and cumbersome

to explore.

In essence, LD search engines tackle the question What resources are out there

that match the search?, and not so much the question of What data out there match

the search?. For example, a search for Godfather actors returns results (as shown

in Figure 1.2), among others, that are about two distinct films whose name contain
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the string Godfather, as well as about actors that have appeared in those films.

Assuming for the moment that the user is looking for data about actors in the 1972

US film named The Godfather4, integrating the results in different tables, as shown

in Figure 1.3, would be desirable since it distinguishes between films and actors and

provides a structure to the presentation of the data from the underlying resources.

This dissertation, explores the opportunity to complement the work to date on search

engines for LD by devising techniques that enable the integration of search results

through structure inference, thereby enabling the generation of tabular reports of

the results. The reason we target tabular report is that they provide an intuitive

view of data for users who are used to tables such as spreadsheets and Web tables.

We know of one previous proposal that address this problem, namely

Sig.ma [Tummarello et al., 2010]. Sig.ma aimed to generate a report that integrated

the top search results from the Sindice search engine. In Sig.ma, several steps were

followed to integrate the data by using syntactic matchers, as discussed more fully

in Chapter 2. The overall approach assumed that the results describe a single en-

tity. Relying on syntactic matchers to integrate data results effects the resulting

integration. For example, if a user is interested in information about Manchester

University, Sig.ma combines data about a university, a grammar school, and a rail-

way station. This is because the term Manchester gives a rise for descriptions about

entities which belong to heterogeneous data types. Relying on syntactic matchers

only causes Sig.ma to include data values from heterogeneous descriptions. Sig.ma

allows the users to interact with the resulting integration with a view to choosing

the resources that best describe the entity being searched. However, such feedback

does not affect future searches.

Our approach is distinct from Sig.ma in a number ways. As we will describe

in Chapters 3 and 4, we use a knowledge based uncertainty reasoning rather than

4en.wikipedia.org/wiki/The_Godfather

en.wikipedia.org/wiki/The_Godfather
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heuristics to represent the integration of LD search results. In doing so, we acknowl-

edge that the results from LD search span different types and potentially describe

different real world entities. Thus, it is not sufficient to present the user with a

single entity description. In our approach, we represent user feedback as a first class

citizen in our model, thus facilitating the capture and reuse of feedback.

Movie
name date director budget runtime

The Godfather 1972 Francis Ford Coppola 6 172

Actor
givenName surname birthDate birthPlace spouse
Robert Duvall 1931-01-05 United States null
Talia Shire 1946-04-25 null David Shire

Figure 1.3: Results in Fig. 1.2 integrated and reported as tables

1.1 LD Integration Challenges

The Semantic Web standards provide a basis for publishing interoperable data on

the Web. The widely agreed-upon LD principles proposed by Berners-Lee [2006]

advocate the use of a uniform model for publishing data in the form of subject-

predicate-object triples. Under this model, real-world entities are given unique URIs

to enable global identification of these entities. Dereferencing these URIs allows one

to discover more information about the classes or properties (i.e. schema level

information) of the underlying entities. Ideally, using consistent naming across all

datasets paves the way for more accurate alignment and integration of resources

found in different LD datasets. However, achieving consensus on how things are

named and identified in the WoD is infeasible in practice, therefore the goal of

integrating LD search results can only be reached if the challenges that arise from

this lack of consensus are successfully addressed.

Although the problem in hand can be viewed as a data integration problem, it

is quite unlike classical data integration, in which typically there is a known tar-

get (or global) schema to which the source data should be mapped [Doan et al.,
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2012]. The absence of such a target rules out the use of standard mapping gen-

eration algorithms for this task. Another difficulty stems from the fact that LD

exhibits two types of heterogeneities: instance-level and terminological-level hetero-

geneities [Christodoulou, 2015].

Instance-level heterogeneities are manifested through disagreement as to what

identifies resources in the WoD. This disagreement sometimes leads to frag-

mented and contradictory descriptions of the underlying entities. Instance-level

heterogeneities complicate the task of integrating fragments of relevant data

from multiple resources to populate a single row in the tabular representa-

tion we are using as our desired target formalism. To see this, consider Fig-

ure 1.4 which depicts the resources http://dbpedia.org/resource/Berlin and

http://sws.geonames.org/2950159/ returned for the search term Berlin, both

of which describe the same entity (i.e., Berlin, Germany). To align these re-

sources, one needs to recognise that both resources describe entities which that

are instances of the same real-world entity type (i.e., city). However, the infor-

mation provided by http://sws.geonames.org/2950159/ does not explicitly allow

one to do so. Second, it is necessary to align predicates in both resources which is

not straightforward because of the inconsistencies that occur at the syntactic level

(e.g. dbp:populationTotal and geonames:population).

In addition to instance-level heterogeneities, LD consumers need to deal with

terminological heterogeneities as well. Heterogeneities at the terminology level arise

because publishers either reuse different existing ontologies or invent their own. In

the running example, the predicates dbo:country and geonames:parentCountry

are both being used to assert the name of the country where an entity (e.g., Berlin)

is located. This becomes an impediment for applications that aim to consume LD,

as they have to match against various ontologies before they can obtain a better

integrated view.

Another challenge in integrating LD search results is discerning user intent from
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3562166^ ^x s d : i n t e g e r Berlin 52 . 5167^^x sd : f l o a t

13 . 3833^^x sd : f l o a t umbelrc:City dbo:Place dbpedia:Germany

http://dbpedia.org/resource/Berlin

dbo:populationTotal dbo :name geo: la t

geo:long rdf:type rdf:type dbo:country

Berlin 5 2 . 5 2 4 3 7 1 3 . 4 1 0 5 3 3 4 2 6 3 5 4

geonames :Fea tu re  h t tp : / / sws .geonames .org /2921044/

h t tp : / / sws .geonames .org /2950159/

geonames :name  geo: la t geo:long geonames:popula t ion

rdf:type geonames :pa ren tCoun t ry

Figure 1.4: Some of the search results returned for the term "Berlin"

keyword searches. It is inherently difficult to determine user intention due to am-

biguity in search terms [Baeza-Yates et al., 2006]. For example, a user might type

the search term Casablanca when looking for information about the 1942 US film5,

whereas the system returns resources about the city of Casablanca6 instead. While

there are automated methods for classifying user intent in keyword search, these

often require access to search logs [Jansen et al., 2008], which is an assumption

that cannot be made in our setting because we aim not to be tightly coupled to any

particular search engine.

1.2 Hypothesis

The challenges described in Section 1.1 are not unique to our problem as they have

been addressed by the Semantic Web and the database communities for years, but

in different settings than ours. One approach to integrate datasets in the absence

of a global schema is to utilize existing domain vocabularies as a mediator between

5en.wikipedia.org/wiki/Casablanca_(film)
6en.wikipedia.org/wiki/Casablanca

en.wikipedia.org/wiki/Casablanca_(film)
en.wikipedia.org/wiki/Casablanca
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the underlying datasets (e.g. Giunchiglia et al. [2005]; Huhns et al. [1993]). Also,

there has been an acknowledgment by the LD community of the challenges raised

by heterogeneities in WoD resources. Based on envisioning the WoD as a web-scale

database [Heath and Bizer, 2011], an ongoing incremental effort is under-way to

reduce the effects of heterogeneity at different levels. At the instance level, a num-

ber of approaches [Isele and Bizer, 2013; Hu et al., 2011; Ngomo and Auer, 2011]

have been proposed to interlink co-referent resources, i.e., resources that represent

the same real world entity. This often requires the use of de-duplication techniques,

which in the WoD often results in new owl:sameAs relationships between resources.

Similarly, there have been numerous efforts to infer semantic correspondences be-

tween the vocabularies. This is evident from the plethora of approaches to ontology

matching (see [Ferrara et al., 2011] for a comprehensive survey and [Euzenat and

Shvaiko, 2013] for a recent book on the problem). Although the heterogeneity issues

are far from being resolved due to the continued evolution of the WoD, existing

approaches provide useful, albeit partial, evidence about relationships between re-

sources. This evidence can be useful to support the decisions made by automated

algorithms that target the integration of LD search results.

Furthermore, one can capitalize on feedback obtained from the user, as is of-

ten done pay-as-you-go systems [Hedeler et al., 2010] in order to address one or

more of the challenges described in Section 1.1. For example, user feedback is uti-

lized by ontology alignment systems such as CrowdMap Sarasua et al. [2012] and

ZenCrowd Demartini et al. [2012] in order achieve better results over automatic

alignment methods. Also, in LD context, Sig.ma [Tummarello et al., 2010], which

also addressed the problem of integrating LD search results (see Chapter2), uses

feedback from the user to identify sources of relevant data to the search term pro-

vided by the user. Additionally, in traditional information retrieval (IR) approaches,

eye-tracking (e.g., [Umemoto et al., 2012]) and click-through (e.g., [Dou et al., 2008])

data are examples of feedback evidence used to discern the user intent behind the
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provided search term.

Based on the above observations of how the challenges of integrating LD search

results are addressed in other settings, our hypothesis is as follows.

LD search results can be integrated to yield a higher-level structured

representation by

1. combining different sources of evidence that inform the integration

process;

2. systematically managing the uncertainty associated with these

sources; and

3. making use of feedback.

The central research question that is addressed in this dissertation is: What kind

of approaches can usually be adopted for systematically incorporating different kinds

of evidence in the integration of LD search results?

To address this question, this thesis investigates the application of a Statistical

Relational Learning (SRL) approach which we now briefly introduce.

1.3 Statistical Relational Learning: A framework

for managing evidence

In many machine learning domains, the assumption that data is composed of iden-

tically structured objects cannot be made [Getoor and Taskar, 2007; Domingos and

Lowd, 2009a]. Examples of such domains include social networks, the Web, natural

language, and so on. To model such domains, it is necessary to capture not only

the structure (in the form of attributes) of individual objects, but also the relation-

ships between them. For example, to accurately model a social network, one needs

to capture the dependencies induced by relationships (e.g., friendship) between the
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individuals in the network. Using relational data in such domains leads to more

accurate results from traditional machine learning tasks such as classification and

predication [Sen et al., 2008]. For example, individuals in a social network are likely

to have similar interests depending on whether they are friends or not. Statisti-

cal Relational Learning (SRL) is a subfield of machine learning that seeks to build

probabilistic models of relational data, i.e., data that capture not just objects but

also relationships between objects [Getoor and Taskar, 2007].

SRL approaches can be categorized by their choice of representation, and by the

probabilistic semantics for dealing with uncertainty. Representation is often done

through either logic (e.g., first-order-logic) or frame-based (e.g., entity-relationship

models). Most SRL approaches are based on probabilistic graphical models (PGMs).

Two common types of graphical models used in SRL are Bayesian networks and

Markov Networks [Pearl, 1988].

SRL approaches that combine first-order-logic (FOL) and PGMs are suitable for

reasoning with uncertainty in relational domains using multiple sources of evidence.

In such approaches, weighted FOL rules are defined that model a domain of interest

to the modeler. The model is expressed in terms of first-order predicates and func-

tions. Given some input data, which have been pre-processed as groundevidence

predicates, the weighted FOL rules then are grounded into a PGM. This grounded

PGM provides the probabilistic semantics of the domain and can be used to perform

inference over so called query predicates. In this thesis, we show how SRL can be

used to assimilate different sources of evidence in a principled way. Different forms

of evidence can be expressed as logical predicates defined over the input data. The

dependencies induced by the different kinds of evidence are encoded as FOL rules.

The uncertainty associated with the combination of different forms of evidence is

captured as parameters of the PGM that results from grounding the FOL rules.

The combination of FOL and PGMs allows for the joint inference, i.e., probabilistic

inference in the presence of different sorts of evidence, of claims about objects in



1.4. AIM, OBJECTIVES AND RESEARCH CONTRIBUTIONS 27

the domain.

SRL approaches such as Markov Logic Networks (MLN) [Domingos and Lowd,

2009a] and Probabilistic Soft Logic (PSL) [Bach et al., 2015] have been used to

model domains that (i) exhibit relational dependencies, (ii) require the integration

of facts from multiple sources of evidence, and (iii) require principled treatment of

the uncertainty that arises from the use of multiple sources of evidence. For exam-

ple the authors of Elementary [Niu et al., 2012] and DeepDive [Shin et al., 2015]

use MLN to build structured knowledge bases from text in Web pages. In their

approach, they supplement domain specific rules (e.g., about marriage relationship)

with facts derived from syntactic matches and existing knowledge bases such as

Freebase [Bollacker et al., 2008] in order to extract relationships about entity men-

tions in the textual data sources. Similarly, Pujara et al. [2013] used PSL to infer

a knowledge graph [Singhal, 2012] from triples of data produced by web extractors

such as NELL [Mitchell et al., 2015]. To achieve this, they utilized PSL to model

three canonical SRL tasks: entity resolution, collective classification and link pre-

diction. They used evidence extracted from ontologies to enforce global constraints

on the inferred knowledge graph. Although a direct comparison to these approaches

is not applicable to our proposed methodology, given that our emphasis is on the

integration of LD search, these approaches demonstrate how SRL representations

are useful in problem domains where reasoning with multiple sources of evidence is

required.

1.4 Aim, Objectives and Research Contributions

In this dissertation, we explore the application of SRL techniques to infer a structure

that enable us to construct tabular reports (as shown in Figure 1.3) from LD search

results. We develop a meta-model that characterizes the tabular reports shown in

Figure 1.3. The semantics of instantiating this meta-model from LD search results is
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captured by a set of weighted rules which infer constituents of such tabular reports.

We evaluate an MLN based approach that utilizes only syntactic evidence from

triples. Then we explore the application of PSL to define a rule-base that utilizes

three types of evidence: syntactic matches, domain ontologies, and user feedback.

In combining different sources of evidence, we aim at addressing the ensuing

challenges of the task at hand as follows.

Challenge I: Lack of global schema Our approach assimilates exiting domain

ontologies as a source of evidence. We use ontologies to provide explicit description

of the resources in the search results. We adopt a multiple ontologies approach where

data in the matched resources are potentially described by one or more ontologies.

The reason for adopting such an approach is because a single domain ontologies is

unlikely to provide sufficient coverage, as discussed in Section 4.2.3, for the results

of a LD search.

Challenge II: Heterogeneities To address the heterogeneities of LD search re-

sults, we use SRL approaches to include rules that incorporate different matching

functions to align between the matched resources. For example, as illustrated in

Chapter 4, we defined rules, among others, that match between two RDF class

labels based on the similarity of string the labels.

Challenge III: Determining User Intent To address the ambiguity of the

search terms, our approach assimilate domain ontologies which provides background

knowledge on the intended domain. Additionally, our approach includes user pro-

vides feedback as evidence for inferring the target tabular structure, which helps in

resolving the ambiguity of the results.

The aim of the research presented in this dissertation is to devise and evaluate

approaches and techniques to integrate LD search results. Our aim is to integrate
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the results stemming from a LD search by structuring RDF data in a tabular rep-

resentation. The reason we target tabular reports is that they provide an intuitive

view for users, who are used to tables., e.g., Web tables [Wang et al., 2012] and

spreadsheets [Dix et al., 2016]. We also aimed at exploring the hypothesis that in-

ferring a tabular structure that can be populated using LD search can be addressed

by assimilating different sources of evidence. Specifically, we propose a model based

on SRL approaches that assimilate syntactic evidence derived from matching algo-

rithms, semantic evidence from ontologies, and evidence from users in the form of

feedback.

To achieve the above aim, the following objectives are pursued:

O1 To identify, describe and evaluate approaches that allow us to infer, with

uncertainty, a structure for LD search results.

The research contribution resulting from this objective is the characterization

of the LD search integration task as a SRL problem. More specifically, we

instantiate this characterization using MLN and PSL.

O2 To extend the approaches in O1 to take advantage of the knowledge encoded

by the domain ontologies that are used to describe LD sources with a view to

improving the structure inferred in O1.

O3 To explore the impact of incorporating user feedback as an additional source

of evidence to the approaches explored in O1 and O2.

The contributions stemming from objectives O2 and O3 are:

• A methodology for incorporating evidence extracted from domain ontolo-

gies, in the case of O2, and obtained through interaction with the end

user, in the case of O3.

• An empirical evaluation of this evidence-based approach, in which it is
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shown how the principled, uniform use of different types of evidence im-

proves the integration quality for the end user.

O4 To investigate how the results from O1 to O3 can be used to underpin a user

interface to LD search that helps users identify the data that is most relevant

to them.

The main contribution resulting from this objective is a proposal for a user

interface that is driven by inference results from our PSL model. The inter-

face provides the means by which a user can provide feedback that improves

integration quality in a pay-as-you-go style.

The reason for choosing MLN and PSL for the sought objectives is twofold. First,

MLN and PSL are applied, among others, to data integration problems such as entity

resolution (e.g., [Singla and Domingos, 2006; Xu et al., 2013]), ontology matching

(e.g, [Niepert et al., 2011; Bröcheler et al., 2010]) data extraction (e.g., [Satpal

et al., 2011; Niu et al., 2012]) and data cleaning (e.g., [Pujara et al., 2013]). Second,

compared to other SRL approaches, e.g., Relational Markov Networks [Getoor and

Taskar, 2007], MLN and PSL are supported by mature implementations7 8 which

makes them readily accessible when compared to other SRL approaches.

1.5 Published Work

The work presented in this thesis is supported by two workshop and conference

publications:

Chapter 3: An MLN for interpreting LD search results.

• [Alshukaili et al., 2015] Alshukaili, D., Fernandes, A. A. A., and Paton, N.

W. (2015). Interpreting linked data search results using markov logic. In Fis-

cher, P. M., Alonso, G., Arenas, M., and Geerts, F., editors, Proceedings of

7MLN is implemented by Alchemy system: alchemy.cs.washington.edu/
8PSL implementation is found at psl.umiacs.umd.edu/

alchemy.cs.washington.edu/
psl.umiacs.umd.edu/
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the Workshops of the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT),

Brussels, Belgium, March 27th, 2015., volume 1330 of CEUR Workshop Pro-

ceedings, pages 221228. CEUR-WS.org.

Chapters 4-5: Structuring LD search results using PSL.

• [Alshukaili et al., 2016] Alshukaili, D., Fernandes, A. A. A., and Paton, N. W.

(2016). Structuring linked data search results using probabilistic soft logic. In

Groth, P. T., Simperl, E., Gray, A. J. G., Sabou, M., Krötzsch, M., Lécué,

F., Flöck, F., and Gil, Y., editors, The Semantic Web - ISWC 2016 - 15th

International Semantic Web Conference, Kobe, Japan, October 17-21, 2016,

Proceedings, Part I, volume 9981 of Lecture Notes in Computer Science, pages

319.

1.6 Thesis Structure

The remainder of this thesis is structured as follows. In Chapter 2 we introduce

preliminary concepts that pertain to Semantic Web technologies and PSL. In this

chapter, we also survey a number of LD search engines that have been developed by

the research community. The aim of this chapter is to provide a general background

for the research described in this thesis. In Chapter 3, we introduce our MLN

approach for inferring a structure from LD search results. We present a baseline

model that infer elements of the sought tabular reports using syntactic evidence

alone. Additionally, we present a set of experiments that show how the parameters

of the model are learned and evaluate the model on a dataset that were obtained

from LD searches. In Chapter 4, we extend our baseline model from Chapter 3

and adopt PSL as an SRL approach to incorporate evidence from ontologies and

from user feedback. We then present an experimental evaluation where the results

show that a principled approach to assimilating different types of evidence leads to

improved integration quality. In Chapter 5, we present a prototype user interface
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that uses the inference results of the PSL model to provide useful results for the

user. In this chapter, we also discuss various interaction scenarios as to how the

different kinds of evidence are obtained and they are used to produce data tables

without the redundancies one would normally expect in search results. Finally, in

Chapter 6, we review the contributions of the research and discuss research issues

that might be addressed in future work.



Chapter 2

Technical Context

In this chapter, we present the technical context and background required to under-

stand the contributions presented in the thesis. First, Section 2.1 introduces terms

and concepts relating to some of the core Semantic Web (SW) technologies that

underpin the WoD. In Section 2.2, we survey approaches to LD search that return a

list of ranked results where a given search term occurs. The work presented in this

thesis aims to create tabular reports where content comes from results returned by

LD search engines. We leave the introduction of the SRL approaches that we use in

the inference of the target tabular structures to subsequent chapters.

2.1 Semantic Web Concepts

The Web was envisaged, from the start, as a decentralized platform for publishing

and consuming information. The Web as proposed by Berners-Lee and Cailliau

[1990] provided the infrastructure that allowed for sharing and linking of Web doc-

uments over the Internet. A document in the Web is assigned a unique identifier, a

Uniform Resource Locator (URL), that provides the means of locating it. Accessing

a document in the Web is done via the HyperText Transfer Protocol (HTTP). Tra-

ditionally, a document in the Web is encoded in the HyperText Markup Language

(HTML). An HTML document consists of natural language, embedded images, and

33
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instructions for rendering it by a browser. One important feature of Web docu-

ments is that they contain hyperlinks to other documents that enable navigation

to and discovery of additional related Web content. The Web allows for anyone to

contribute content, which includes, e.g., data generated from relational databases

through the use of server-side scripting languages (e.g., PHP). However, taking ad-

vantage of such data to provide answers to complex user questions can’t be done

easily in the Web.

To understand this shortcoming of the Web, consider finding an answer to the

question Who are the actors in The Godfather who were born in New York? To

answer this question on the Web, one would need to find sites with data about

The Godfather actors. The most commonly used tool for this purpose would be a

search engine. A typical search engine allows users to provide keyword terms in their

underlying question and, in response, returns a list of links to documents that contain

these terms. Even if we assume that the resulting links contain consistently relevant

information, the data is likely to lack a consistent structure. Manual cleaning and

structuring of the data is likely to be needed by the requester if the obtained data

is to be consumed by down stream applications. Fundamentally, addressing such a

question is likely to require significant effort by the requester, either a human user

or an application.

Automating this data integration process is a hard problem. Much of the content

on the Web is meant to be consumed by humans rather than software applications.

This is because HTML was designed to provide rendering instructions but not se-

mantic annotations of the content. Despite advances in natural language processing,

machine learning and information retrieval (IR) techniques, and in spite of the vol-

ume of data available, it remains difficult for applications to make effective use of

heterogeneous knowledge sources in the Web.

This is, in part, because most of the existing Web content is unstructured and/or

heterogeneous in terms of format. In order to enable applications to integrate (i.e.,
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semantically reconcile) heterogeneous data sources, two basic requirements need to

be met: (i) data should be represented in a format that is amenable to process-

ing, (ii) means should exist for resolving resource identity, so that referencing and

dereferencing allows relationships between data to be represented and explored.

The Semantic Web envisions an ecosystem where data rather than documents,

are considered as first-class citizens [Berners-Lee et al., 2001]. To facilitate the reali-

sation of this vision, the World Wide Web Consortium (W3C) has published a num-

ber of standards. Among these standards are the Resource Description Framework

(RDF) [Cyganiak et al., 2014], a data model for representing structured machine-

processable data in the Web, RDF Schema (RDFS) [Guha and Brickley, 2014], and

the Web Ontology Language (OWL) [McGuinness and Van Harmelen, 2004; Her-

man et al., 2004], a formal knowledge representation languages that can be used to

provide a conceptual description of data. The sections that follow introduce these

standards.

2.1.1 Resource Description Framework

The Resource Description Framework (RDF) is a standard for modelling and shar-

ing data on the Web [Manola et al., 2004], i.e., a general framework for representing

information in and about distributed data resources. RDF is one of the foundational

technologies underpinning the WoD. One of its main goals was to be flexible enough

to represent data originally represented in other data models (e.g. relational). As

such, RDF fosters interoperability among applications with respect to data model

diversity. In theory, RDF makes it easier to integrate data from multiple sources. In

this section, we introduce RDF, and in Section 2.1.2 we discuss how RDF Schema

and OWL are used to extend RDF with ontological modelling constructs. To facili-

tate the presentation, we use the running example in Figure 2.1. The example show

a few RDF resources found in the results of a search for the terms Godfather and

actors. The rounded boxes with a continuous border illustrate RDF instance-level
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Figure 2.1: A RDF Sub-graph for some of the results returned for the search terms Godfather actors
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data, which is obtained by dereferencing the URIs returned in the search results.

The rounded boxes with a dotted border are terminological-level resources that de-

fine the terms used at the instance-level. In this example, we only show the subset

of these resources required for the following discussion.

RDF Terms

In RDF, resources are described using RDF terms, as formalized in Definition 1.

Definition 1. The set of RDF terms is the union of the set of all URIs (denoted

by U), the set of all literals (denoted by L), and the set of all blank nodes (denoted

by B), where U ∩ L ∩ B = ∅.

URIs. A URI is a unique global identifier to a resource in the WoD. For

example, the URI http://data.linkedmdb.org/resource/film/43338 identi-

fies the 1972 American film called The Godfather in LMDB1 (an online RDF

database extracted from IMDB2). For convenience, URIs are sometimes abbre-

viated using Compact URIs syntax (CURIE)3. For example, if PREFIX lmdb:

<http://data.linkedmdb.org/resource>, is a prefix for resources in the LMDB

dataset, then the above URI can be written as lmdb:/film/43338, as shown in

Figure 2.1. In addition to serving as identifiers for resources in the WoD, it is con-

sidered good practice to respond with RDF data when a URI is dereferenced using

the HTTP protocol, so that links to related concepts or entities can be looked up.

For example, dereferencing lmdb:/film/43338 returns references to resources de-

scribing the type, the director, the cast of and the sequel to this film. Although it

is recommended, as per the LD principles [Berners-Lee, 2006], that URIs should be

dereferenceable using the HTTP protocol, URIs are not always dereferenceable. One

study [Hogan et al., 2010] has shown that over 8% of URIs cannot be dereferenced,

1data.linkedmdb.org/
2http://www.imdb.com/
3www.w3.org/TR/curie/
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whereas, according to the same study, 34.8% of URIs do not return RDF data when

dereferenced. Also, as common in Web environments [Madhavan et al., 2007], there

are no grantees over the content of the RDF graph provided by Web servers. So a

Web server may not return the same RDF graph in response to a requested resource.

Literals. The set L, is the set of literals that are RDF terms. Literals are terms

that are represented as a sequence of characters (i.e. strings). Literals can be either

plain or typed. Plain literals are strings, such as "The Godfather", potentially

annotated with a language tag such as "The Godfather"@en. Typed literals are

strings annotated with a datatype. For example, in Figure 2.1, the actor identified

by the URI dbr:Robert Duvall was born on "1931-01-05"^^xsd:date. Data-

types themselves are identified by URIs. In this case, xsd:date is a data type

whose elements denote dates, as defined in XML Schema W3C standard.

Blank Nodes. The set B, denotes blank nodes (or bnodes). A Blank node is an

identifier with local scope, i.e., one restricted to the RDF document in which it

occurs. Thus, a blank node cannot be referenced from outside that document. In

practice, blank nodes are used to model composite attributes of a resource, or for

defining a new resource without creating a global identifier for that same purpose.

However, as argued by Heath and Bizer [2011], the use of blank nodes is not rec-

ommended in the context of LD. In fact, in the search results that we used in our

experiments in Chapters 3 and 4, less than 7% of the resources are blank nodes.

RDF Triples and Graphs

An RDF model contains assertions about the properties of resources. A resource is

anything we want to express some knowledge about (e.g., a Web resource, a real-

world entity, an abstract concept, etc.). In RDF, data about resources is modelled

in relation with other resources. These relations form triples. A triple is a statement

consisting of: a subject, a predicate, and an object, as formalized in Definition 2. An
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# prefix declaration

@prefix dbr: <http :// dbpedia.org/resource/>.

@prefix dbo: <http :// dbpedia.org/ontology/>.

@prefix foaf: <http :// xmlns.com/foaf /0.1/ >.

@prefix wd: <http :// www.wikidata.org/entity/>.

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>.

# triples

dbr:The_Godfather rdf:type dbo:Film ,

dbo:Work , wd:Q386724 .

dbr:The_Godfather foaf:name "The Godfather" .

dbr:The_Godfather dbo:budget "6.0"^^ dbt:usDollar .

dbr:The_Godfather dbo:producer dbr:Albert_S._Ruddy

dbr:The_Godfather dbo:director dbr:Francis_Ford_Coppola .

Listing 2.1: Triples describing the resource dbr:The Godfather. These are depicted
as a directed graph in Fig. 2.1

RDF triple takes on value from three disjoint sets U , B and L.

Definition 2. An RDF triple t is given by a 3-tuple relation t = (s, p, o) where

s ∈ U ∪ B is called the subject, p ∈ U is called the predicate, and o ∈ U ∪ B ∪ L is

called the object.

Generally, a subject denotes the entity of interest that is being described, a

predicate denotes a property chosen to describe that entity, with the value of that

property being denoted by the object. For example, the statement “The Godfather

director is Francis Ford Coppola” is represented with the last triple in Listing 2.1.

A set of RDF triples G is known formally as an RDF graph such that G ⊂

(UB × U × UBL). By convention, URIs are depicted as ellipses and literals are as

rectangles. It is common to conceptualize a set of triples as a direct labeled graph

where the vertices represent subjects and objects, and the labeled edges represent

predicates. Listing 2.1 shows a set of RDF statements that describe the resource

dbr:The Godfather. These statements are depicted as the graph in Figure 2.1.

There are several serialization formats that support the publication of RDF graphs,

including, RDF/XML [Gandon and Schreiber, 2014], Turtle [Beckett et al., 2014],

and JSON-LD [Sporny et al., 2014]. In this dissertation, listings of RDF graphs are

encoded using the Turtle notation.
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2.1.2 Vocabularies

The notions of RDF triples and RDF graphs are core for the creation of instance-

level Web resources, through the assertion of facts about URI-identified resources.

In addition, the core RDF namespace4 provides a set of vocabulary terms with

standards-defined semantics that are used to describe predicates and assign resources

to domain-specific classes.

The most popular term in the standard RDF vocabulary is rdf:type, which can

be used to assert the membership of a resource to one or more classes. For example,

in Figure 2.1, the resource dbr:The Godfather is asserted to be a member of the

of the classes dbo:Film and dbo:Work, i.e., film and creative work as defined in

the DBpedia ontology5. At the vocabulary level, both dbo:Film and dbo:Work are

defined to be instances of owl:Class, the class of all OWL classes.

Furthermore, the standard RDF vocabulary includes rdf:Property, an RDF

class that is used to represent the set of all properties (i.e., URI terms that appear

in the predicate position). To provide an example, as shown in Figure 2.1, the

predicate foaf:surname is defined as a property in the FOAF6 vocabulary.

The semantics of classes and properties can be defined in ontologies. Ontologies

are computational artefacts that characterize partial knowledge about the world. An

ontology describes a domain in terms of classes (denoting concepts) and properties

of classes (denoting relations) in the domain. Ontologies are useful, among other

things, in data integration systems [Haase et al., 2013], improving Web search [Sieg

et al., 2007] and enhancing linking and navigation of the Web [Bechhofer et al.,

2008]. In the WoD, ontologies are used to define shared vocabularies that describe

the various domains for which data is published. For example, the FOAF ontology

describes persons and their activities in relation to other people and objects; the

4www.w3.org/1999/02/22-rdf-syntax-ns
5dbpedia.org/ontology/
6xmlns.com/foaf/0.1/
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SWRC7 ontology models relationships between entities found in research communi-

ties, such as people, organizations and publications.

Given that the standard RDF vocabulary is not expressive enough to define the

semantics of classes and properties, two separate standards are used to add semanti-

cally annotated RDF terms: RDF Schema (RDFS) [Cyganiak et al., 2014] and Web

Ontology Language (OWL) [Herman et al., 2004; McGuinness and Van Harmelen,

2004]. The following sub-sections provide a brief overview of these standards, for

which Definitions 3 to 5, below, are needed.

Definition 3 (RDF Class). Given a triple t = (s, p, o), we refer to an RDF class

as a term that appears either in the o position of t when p is rdf:type, or in the s

position of t when p is rdf:type and o is rdfs:Class or owl:Class.

Definition 4 (RDF Property). Given a triple t = (s, p, o), we refer to an RDF

property as a term that appears either in the p position of t, or in the in the s position

of t when p is rdf:type and o is either rdf:Property or one of its subproperties

(e.g. owl:ObjectProperty, or owl:DatatypeProperty).

Definition 5 (Meta Class). A meta-class is an RDF class whose members are

themselves are either classes or properties. These classes are defined in the RDFS

and OWL standards. Example of such classes include rdfs:Class, owl:Class,

rdf:Property, rdf:ObjectProperty, etc.

RDFS

As mentioned earlier, the standard RDF vocabulary can express class membership

of data resources. However, it lacks the means for expressing the semantics of the

terms used in describing the resources. RDFS allows the creation of new classes

through the instantiation of the rdfs:Class meta-class. Also, RDFS extends RDF

with terms that allow the specification of relationships between classes and prop-

erties. The constructs rdfs:subClassOf and rdfs:subPropertyOf are used to

7ontoware.org/swrc/
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model class and property hierarchies. Furthermore, RDFS provides the means to

associate a class to a property via rdfs:domain and rdfs:range constructs. With

rdfs:domain, one can state that the subject of the relation for a given property

is a member of a specific class. Analogously, rdfs:range states that the object

of the relation for a given property is a member of a specific class. To exemplify,

the domain of foaf:surname is the RDF class foaf:Person (see Figure 2.1). Thus,

according to the RDF semantics [J. Hayes and F. Patel-Schneider, 2014], this entails

that the subject of a triple that contains foaf:surname as predicate is a member of

the class foaf:Person. This is an example of the notion of entailments that follow

from an RDF graph. In particular, entailments are conclusions that can be deduced

as logical consequences based on assertions in a given RDF graph. In the Semantic

Web, further enable applications to make use of knowledge in the Web by provide

the foundation of machine readable knowledge.

OWL

The expressiveness of RDFS is deliberately limited to defining classes and assert-

ing basic relations between classes and properties. OWL extends RDFS with more

expressive means to allow for the assertion of relations. with more complex seman-

tics. For example, OWL allows for expressing semantic equivalence. At the in-

stance level, semantic equivalence between resources is modelled by the owl:sameAs

construct; at the vocabulary level is it is modelled by owl:equivalentClass

construct for classes and by the owl:equivalentProperty construct for prop-

erties. OWL further allows for asserting that two classes have no individu-

als in common using the owl:disjointWith construct (e.g. foaf:Person and

foaf:Organization in Fig. 2.1), and for the specialization of RDF properties using

the owl:ObjectProperty and owl:DatatypeProperty meta-classes. An instance

of owl:ObjectProperty is a property that relates an individual to another indi-

vidual where both individuals are resources. On the other hand, an instance of



2.1. SEMANTIC WEB CONCEPTS 43

owl:DatatypeProperty is a property that relates an individual to a literal. OWL

comes with a set of profiles that differ in terms of expressiveness. The differences in

expressiveness give the domain modeller the choice of balancing between usability

and the computational efficiency with which reasoning tasks can be carried out over

ontologies. A full account of OWL, OWL profiles and features is beyond the scope

of this thesis. The interested reader is refereed to [Herman et al., 2004; McGuinness

and Van Harmelen, 2004].

2.1.3 RDF Publishing and Linked Data

The previous sections in this chapter have described the W3C standards that enable

stake holders to represent data and knowledge in the Web. These standards neither

mandate nor induce any principles to govern the publication of data. In this respect

we note cases such as those of OpenCyc8, UniProt9 and WordNet RDF10 in which

large amounts of RDF data gave a rise to data silos in spite of their adoption of

these standards [Hogan, 2014]. This is was, in part, due to the lack of interlinking

between datasets and to the sometimes unwieldy nature of the resource formats used

(e.g., compressed dumps). Such features in such initial efforts hindered the desired

cost-effectiveness of access to early RDF data resources.

Berners-Lee [2006] proposed a set of principles for publishing data in the Web.

Specifically, these principles advocate the use of dereferenceable HTTP URIs for

naming things, and encourage the inclusion of external URIs in descriptions of data

in order to foster interoperability with existing data on the Web. These principles

were formulated as follows [Berners-Lee, 2006]:

• Use URIs to identify things in the Web.

• Use dereferenceable URIs so things can be looked up using HTTP.

8sw.opencyc.org/
9www.uniprot.org/

10http://xmlns.com/2001/08/wordnet/
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• When a URI is looked up, return useful information using standards, and RDF

in particular.

• Include links to other resources so that new information can be obtained by

further dereferencing.

Adoption of these principles gave rise to a community initiative to seed the Web

of Data called the Linking Open Data (LOD) project. The goals of the project

were (i) to identify open licensed data sets, and (ii) to publish these datasets using

the above principles. This effort was mainly led by researchers and developers in

university labs. Soon after, media corporations (e.g. BBC11), governments (e.g.

US12 and UK13) and other organizations across diverse domains started to publish

LD.

The adoption of LD by major Web service providers such as Google and Facebook

has given importance to the initiative. Google, for example, imports LD embedded

in authoritative14 web sites into its Knowledge Graph15, and uses the data to pro-

vide exact answers to user searches. The Facebook like button16, which allows a

Facebook user to express interest on an item is powered by RDFa17. RDFa is an

RDF serialization format that allows for embedding structured data on Web pages.

RDFa, HMTL microdata18 and microformats are some of the technologies available

with which websites with can be enriched with LD. The practice of embedding LD

in HTML Web pages has been growing, as a recent study suggests [Guha et al.,

2016]. The key drivers for such adoption are: firstly, the increasing interest from

major Web search tools in exploiting embedded LD to improve indexing and re-

trieval algorithms [Baeza-Yates and Raghavan, 2010], and secondly, the increased

11www.bbc.co.uk/programmes
12www.data.gov
13www.data.gov.uk
14Authoritative in the sense that it can be trusted on providing information about a particular

topic. Each search engine has different criteria for classifying a site as Authoritative
15http://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
16https://developers.facebook.com/docs/plugins/like-button
17www.w3.org/TR/xhtml-rdfa-primer/
18www.w3.org/TR/microdata/
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support by Web authoring tools (such as Wordpress19 and Durpal20) for the use of

semantic annotations in HTML. In essence, LD lowers barriers to the publication

of data in the Web. It allows publishers to release data that live in proprietary

containers, such as relational databases and spreadsheets. However, LD, in itself,

does not provide an answer to the data quality issues faced by distributed data man-

agement systems. The fact that the LD initiative fosters a bottom-up approach for

building a Web-scale database makes LD more prone to suffering from data qual-

ity issues such as accuracy, heterogeneity, and lack of schema-level definitions. An

example of accuracy issues exhibited in the WoD can be seen in the descriptions

of the 1942 US-produced film Casablanca shown in Figure 2.2. In here, accuracy

http://data.linkedmdb.org/resource/film/81 http://dbpedia.org/resource/Casablanca_(film)

lmdb:film/81

lmdb:writer/186

lmdb:director/8650
1942-11-26 1942-11-26 

CasablancaCasablanca

movie:film lmdb:actor/29725

rdf:type
movie:actor

movie:writer

movie:director
movie:initia

l_release_d
ate

dc:title
dbr:Casablanca_(film)

dbr:Michael_Curtizdbr:United_States

wd:Q11424 62026202

CasablancaCasablanca

dbo:country
dbo:director

runtime

foaf:name

rdf:type

owl:sameAs

dbo:Film dbo:Work

rdf
:ty
pe rdf:type

102102
runtime

Figure 2.2: Two descriptions of the 1942 US-produced film Casablanca

conflicts are evident in the differences in the values of the runtime attributes of

the two resources. In one resource (lmdb:film/81), the value of runtime is given

in minutes (i.e., 102), whereas, in the other, i.e., dbr:Casablanca (film), it is

given in seconds (i.e., 6202). Aligning these resources based on the values runtime

attribute requires the reconciliation of the difference in expressing the unit of val-

ues. LD heterogeneity arises because of the diversity of publishers and the lack of

coordination in choosing (a) identifiers for objects, and (b) schema-level concepts

for describing the data [Hogan et al., 2010]. Furthermore, while it is recommended

for data publishers to publish the ontologies that define the terms used in their

RDF datasets, neither the LD principles nor the standards make it mandatory. One

study has revealed that 15% of triples use undefined properties, and about 9% of

19wordpress.com/
20www.drupal.org/
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rdf:type triples mention undefined classes [Hogan et al., 2010]. For example, in

Figure 2.1, the class movie:film and the property movie:actor are not explicitly

defined in any ontology. In addition to that, LD datasets need not to conform to

the constraints in an ontology. For example, while dbo:producer is defined as a

property of dbo:Work, as shown in Figure 2.1, there is nothing to prevent a data

publisher from publishing a resource of the dbo:Work type that does not use the

dbo:producer property. Indeed, publishers have the flexibility to choose terms

from any set of vocabularies for their modelling task. Chapters 3 and 4 describe

our approach to mitigate heterogeneity and the schema-less nature of LD resources

through incremental systematic assimilation of evidence targeted at the integration

of LD search results.

2.2 LD Search

As was mentioned in Chapter 1, this thesis investigates the application of SRL

techniques for integrating results returned by LD searches. To provide the reader

with an overview of the various LD search approaches, this section surveys LD

search engines. First, we describe a classification framework. We then describe

some of the existing search engines as instances of this framework resulting in the

characterization displayed in Table 2.1.

2.2.1 Classification Framework

As the number of LD sources published in the Web grew in size and number, a

clear need arose for developing LD search engines that crawl and index LD sources

in order to provide search capabilities over the LD cloud. Figure 2.3 shows the

general architecture of LD search engines. As with their Web counterparts, LD

search engines have an indexing component and a query component. The indexing

process builds the structures that enable the search, and the query process uses those
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Dimension Swoogle [Ding et al., 2004] Watson [D’Aquin and Motta, 2011] Falcons [Cheng and Qu, 2009] Sindice [Oren et al., 2008] SWSE [Harth et al., 2012]
Data Acuisition

Seed list input
Manual
Web search

Manual
User Submitted
Web and WoD search

Manual
User Submitted
Web and WoD search

Manual
User Submitted

Manual

Source type RDF RDF RDF
RDF
SPARQL endpoints
embedded semantic markup

RDF

Transformation

type of terms
class URIs
literal words

class URIs
literal words
instance URIs
property labels

class URIs
literal words
instance URIs

class URIs
literal words
instance URIs
property labels
property-value pairs

literal words
triples

term mapping term-document term-document term-entity term-document term-entity
flow direct direct indirect direct

reasoning - - class inclusion
inverse function property
based on OWL ’ter Horst’
fragment [Kiryakov et al., 2005]

rule based
approach over OWL
fragment [Hogan et al., 2009]

Indexing

structure inverted index inverted index inverted index
an inverted index
for each type of terms

inverted index
sparse index

methods proprietary
third party (Apache
Lucene)

third party (Apache
Lucene)

third party (Apache
Lucene)

third party (Apache
Lucene)

User Interaction

query interface keywords
keywords
URIs

keyword
URIs

keywords
URIs
structured

keywords
structured

query refinment -
filters on literals,
class labels,
and property terms

class inclusion
hierarchy

filters on class labels,
properties, type of
source, and PLD

class inclusion
hierarchy

user type
human
applications via APIs

human
applications via APIs

human
human
applications via APIs

human

Ranking

metrics OntoRank relevance based
combined relevance
and popularity metric

PageRank for LD source and resource ranks

Table 2.1: A classification of LD search approaches based on LD search engines’ functional components
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Seed 
URIs

Data 
Acquisition

Transformation Reasoning Indexing Index

User 
Interaction

Ranking

Indexing Process

Query Process

Figure 2.3: A general architecture for LD search engines (adopted from Croft et al.
[2009])

structures to provide the user with a ranked list of search results. The classification

framework presented here is based on the process illustrated in Figure 2.3.

Data Acquisition LD search engines implement various source identification

methods to seed the crawling process by means of which RDF documents are re-

trieved for the purpose of building an index. The initial set of sources to be indexed

can be obtained from different inputs, e.g., by manual curation of seed URIs, by

using the results of existing LD and Web search engines, or using user-submitted

URIs. There are also various sources from which data can be acquired, e.g., RDF

dumps of datasets, or SPARQL endpoints, or semantic markup (e.g., JSON-LD,

Microdata, and RDFa) embedded in HTML.

Transformation The transformation component (see Figure 2.4 for examples of

common transformations used by LD search engines) derives search terms from sets

of triples. The simplest index terms used are words mentioned in literal values.

Literal values are often preprocessed using techniques such as case normalization,

stemming and stop-words removal [Ding et al., 2004; Cheng and Qu, 2009; Harth

et al., 2012]. Vocabulary terms (i.e., RDF predicates and classes) are often re-

placed by their labels in ontologies if one exists (e.g., as done is SWSE [Harth
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@prefix rdf: <http://www.w3.org/1999/02/22-...> .
@prefix dc: <http://purl.org/dc/elements/1.1/...> .
@prefix lmdb: <http://data.linkedmdb.org/resource/> .
@prefix movie: <http://data.linkedmdb.org/resource/movie/> .

 lmdb:film/43338
    rdf:type movie:film ;
    dc:title "The Godfather" ;
    dc:date "1972" ;
    movie:actor lmdb:actor/30559, 
                       lmdb:actor/31134 ;
    movie:director lmdb:director/8405 .

lmdb:film/38370
    movie:prequel lmdb:film/4338 .

http://data.linkedmdb.org/resource/film/43338

@prefix rdf: <http://www.w3.org/1999/02...> .
@prefix dbo: <http://dbpedia.org/ontology/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix dbr: <http://dbpedia.org/resource/>.
@prefix wd: <http://www.wikidata.org/entity/>.

dbr:The_Godfather
   rdf:type dbo:Film, dbo:Work, wd:Q386724 ;
   foaf:name "The Godfather" ;
   dbo:budget "6.0"^^dbt:usDollar ;
   dbo:director dbr:Francis_Ford_Coppola ;
   dbo:starring dbr:Robert_Duvall ;
   dbo:producer dbr:Albert_S._Ruddy .

http://dbpedia.org/resource/The_Godfather

@prefix rdf: <http://www.w3.org/1999/02...> .
@prefix dbo: <http://dbpedia.org/ontology/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix dbr: <http://dbpedia.org/resource/>.
@prefix wd: <http://www.wikidata.org/entity/>.
@prefix umbel-rc: <umbel.org/umbel/rc/>.

dbr:Robert_Duvall
   rdf:type foaf:Person, umbel-rc:Actor, wd:Q215627 ;
   foaf:givenName "Robert" ;
   foaf:surname "Duvall" ;
   dbo:birthDate “1931-01-05”^^xsd:date ;
   dbo:birthPlace dbr:United_States .

http://dbpedia.org/resource/Robert_Duvall

R
a
w
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n

p
u

t

robert duvall type person
robert duvall type actor
robert duval given name robert
robert duvall surname duvall
robert duvall birth date 1931-01-05
robert duvall birth place united states
the godfather starring robert duvall
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a

l 
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u
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ts the godfather type film
the godfather type work
the godfather name the godfather
the godfather budget 6.0
the godfather director francis ford coppola
the godfather starring robert duvall
the godfather produer albert s ruddy

the godfather type film
the godfather title the godfather
the godfather date 1972
the godfather actor robert duvall (Actor)
the godfather actor talia shire (Actor)
the godfather director francis ford coppola 
the godfather part ii  prequel the godfather

godfather lmdb:film/43338,dbr:The_Godfather, dbr:Robert_Duvall  

film lmdb:film/43338,dbr:The_Godfather  

duvall lmdb:film/43338,dbr:The_Godfather, dbr:Robert_Duvall  

coppola lmdb:film/43338,dbr:The_Godfather

actor lmdb:film/43338, dbr:Robert_Duvall  
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Figure 2.4: Transforming LD documents to index terms and the inverted index of selected terms.
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et al., 2012]). The terms that are indexed vary depending on the type of index

to be created. Recall that a resource URI is an identifier for a real-world entity

that is described using RDF, whereas, a document URL is the address where the

RDF triples are found. The most common types of indexes used are literal indexes

and URI indexes. A literal index contains an entry for each term and lists the

document URLs where the term occurs. A URI index contains an entry for each

resource URI and lists the document URLs where the resource URI occurs. For

example, in Sindice Oren et al. [2008], both URI and literal indexes, among other

indexes, are constructed to support the search tasks. For example, in Figure 2.1,

the document URL http://data.linkedmdb.org/resource/film/43338 contains

RDF triples where the resource URIs lmdb:film/38370 and lmdb:film/4338 oc-

cur in the subject position. Thus a URI index of this document will contain the

entries lmdb:film/38370 and lmdb:film/4338, each of which list the document

URL http://data.linkedmdb.org/resource/film/43338. Entity-centric search

engines, such as SWSE [Harth et al., 2012] and Falcons [Cheng and Qu, 2009], map

a term to a resource URI. On the other hand, document-centric search engines, such

as Swoogle [Ding et al., 2004] and Sindice [Oren et al., 2008], map a term to a docu-

ment URL. The transformation of a document into index terms can be either direct

or indirect. In direct transformation, index terms are extracted from the retrieved

documents and passed on to the indexing component. In indirect transformation,

an intermediate representation is created from which terms are extracted. This in-

determinate representation (e.g., a virtual document, as illustrated in Figure 2.4)

often includes terms that do not directly occur in the source resource. Rather, they

are obtained by dereferencing resources that occur in the object position of triples

occurring in the indexed resource.
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(:x rdf:type :C) ← (:P rdfs:domain :C) ∧ (:x :P :y)

(:y rdf:type :C) ← (:P rdfs:range :C) ∧ (:x :P :y)

(:y owl:sameAs :z) ← (:x :P :y) ∧ (:x :P :z)

∧ (:P rdf:type owl:FunctionalProperty)

(:y owl:sameAs :x) ← (:x owl:sameAs :y)

(:C owl:equivalentClass :D) ← (:C rdfs:subClassOf :D)

∧ (:D rdfs:subClassOf :C)

Listing 2.2: A example of ter-Horst rules using within reasoning component of some
LD search engines

Reasoning Some LD search engines apply an additional reasoning step before

indexing a given resource. The reasoning component allows for the consolida-

tion of triples from external resources as well as the discovery of implicit knowl-

edge about the indexed resource. OWL semantics can be used to automatically

union triples found in different resources using, for example, owl:sameAs and the

owl:InverseFunctionalProperty to identify URIs that potentially describe the

same underlying real-world entity. For example, the SWSE [Harth et al., 2012]

search engine uses owl:sameAs to consolidate instance-level resources. In this case,

the resources dbr:Robert Duvall and lmdb:actor/30559 in our running exam-

ple would both be assigned a canonical identifier before they are indexed. The

owl:InverseFunctionalProperty (IFP) construct is capable of uniquely identify-

ing resources. For example, if two resources :x1 and :x2 have the same value for a

property :P, and :P is defined as an inverse functional property, then :x1 and :x2

are the same. More generally, RDFS and OWL descriptions can be used to infer im-

plicit knowledge of LD resources, by the means of inference rules that match parts

of the given RDF graph and imply conclusions that are logical consequences of the

explicitly annotated knowledge. The set of rules most often used by LD search en-

gines that implement a reasoning component are presented in [ter Horst, 2005a,b],

which are based on RDFS and a fragment of the OWL semantics. Listing 2.2 shows

a few examples of such rules.
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Indexing The underlying index of the search engine can vary in terms of the

structure used (e.g. inverted index, sparse index) and the methods and algorithms

used to create the index (e.g. proprietary, third-party tools). Inverted indexes are

used to support lookups based on RDF literals or URIs. On the other hand, sparse

index structures are used to provide pattern based lookup such as property-value

pairs and triple lookups [Harth et al., 2007].

User Interaction LD search tools often employ different query interfaces that

allow the user to pose different types of queries. Different search engines allow the

user to provide keyword, URI, or structured search terms. URI search terms allow

the user to search for resources containing specific identifiers. For example, a user

might express an interest in resources related to The Godfather film by using the

URI dbr:The Godfather in search engines that use URI indexing and lookup, such

as Sindice [Oren et al., 2008]. Structured search terms allow the user to search us-

ing patterns. For example, the structured search term (predicate=foaf:name,

value="Godfather") can be used to look up resources containing the keyword

Godfather in the value of the RDF predicate foaf:name. LD search engines also

provide different methods to allow the end user to refine the search results, e.g., fil-

tering for more specific search results, or class hierarchies that enable the exploration

based on specific RDF types. In addition to providing interfaces for human users,

some LD search engines, such as Swoogle, also provide APIs through which LD ap-

plications can discover RDF documents that reference a certain URI or contain a

certain keyword. These interfaces often provide the results in a machine-processable

format (e.g., RDF).

Ranking The ranking component of an LD search engine provides a ranked list

of candidate results for the user query. There are different metrics used by LD

search engines to rank the results, such as relevance-based and popularity-based.

Often, the relevance of a resource is computed from the similarity between the
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search term and the indexed resource. A commonly-used information retrieval (IR)

similarity metric is the cosine similarity, which is often computed based on the term

frequency–inverse document frequency (TF-IDF) weighting scheme [Manning et al.,

2008]. Popularity-based metrics use variants of the PageRank [Page et al., 1999]

algorithm. The general idea of these metrics is to consider incoming and outgoing

links to compute the probability of someone stumbling on a given RDF resource.

The higher the probability, the more popular the resource. Some LD search engines

which rely on third-party tools (i.e., Apache Lucene21) for index creation often use

the ranking metrics already employed by such tools.

2.2.2 LD Search Engines

We describe five LD search engines based on the framework introduced in Section

2.2.1. These were included because they are sufficiently well described and widely

cited in the literature.

Swoogle [Ding et al., 2004] is one of the first LD search engines. It support

keyword-based search over RDF-represented resources by means of inverted indexes.

Swoogle is primarily focused on searching ontologies. Given search terms, Swoogle

returns ontologies that mention the given terms. Swoogle ranks documents using

OntoRank, which iteratively computes the ranking of a document based on refer-

ences to class and property terms defined in other documents. As such, Swoogle

adopts a document-centric approach for indexing RDFS and OWL vocabularies.

Unlike Swoogle, Falcons [Cheng and Qu, 2009] focuses on searching instance-level

RDF data using an entity-centric search approach. Falcons uses crawling, parsing,

organizing, ranking, and sorting as prior steps to providing its search capabilities. In

order to extract terms from RDF documents, Falcons employs the notion of virtual

documents. It essentially converts the triples in a given resource into a document

comprising literals before indexing the virtual document to give rise to an inverted

21lucene.apache.org/



54 CHAPTER 2. TECHNICAL CONTEXT

index. Falcons also includes a reasoning component focused on class inclusion and

instance checking. The inferred class hierarchies are provided to users for filtering

the search results based on type information. Falcons uses two metrics to rank

matched documents. The first is a relevance-based metric, viz., the cosine similarity

between the vector representing the search term and the vector representing the

virtual document derived from the resource. The second is a popularity-based metric

that ranks the importance of resource based on the logarithm of the number of RDF

documents in which the resource is mentioned.

Watson [D’Aquin et al., 2007; Sabou et al., 2007; D’Aquin and Motta, 2011]

is a document-centric search engine that provides search facilities over instance-

level and ontology-level RDF documents. It is mainly focused on providing APIs

to expose search services to software applications. Its capabilities include keyword

search over RDF, searching for entities (i.e., classes, properties, and individuals),

and searching for RDF documents containing a matching keyword in the literals.

Watson employs a relevance-based metric that enables the ranking of documents

containing the search terms.

Sindice is a LD search engine that acquires data not only through crawling the

WoD, but also through SPARQL endpoints (i.e., a remote query interface to RDF

datasets). Sindice has similar capabilities to Watson, with a focus on providing

APIs for finding instance-level RDF documents based on the lookup of literals, URIs,

and IFP-value pairs. Each type of lookup is supported by a separate inverted index.

For building the IFP-value pair index, Sindice uses both explicitly-defined IFPs as

well as RDFS and OWL reasoning over the ter Horst rules for discovering implicit

IFPs based on sub-property relations and cardinality restrictions.

SWSE takes an entity-centric approach to LD search. It reconciles resources that

describe the same real-world entity using owl:sameAs and IFP reasoning. In doing

so, it creates a canonical URI to represent the reconciled resource. The canonical

URI is chosen by ranking the merged resources using an approach that takes into
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consideration the popularity of the dataset where the resource resides. To enable the

discovery of implicit information, it uses rule-based reasoning based on the ter-Horst

rules. The SWSE user interface offers a number of facets that enable the user to

filter the search results by type, as well as browsing capabilities over the results of

the search.

In addition to LD search engines, Web search engines, such as Google and Bing,

also index RDF data. The earliest type of semi-structured data to be exploited by

Web search engines was HTML metatags, which allowed Web authors to provide

natural language statements to specify descriptions, keywords, authorship, and other

metadata about an HTML page. Since metatags failed to standardize the provision

of metadata, other methods were developed to augment Web pages with structured

data, such as microdata, microformats, and RDFa. These methods were used to

publish metadata about people, products, events, organisations, recipes, events,

etc. Initially, such metadata was used for ranking search results. Later, Web search

engines used to augment the search results with mini-summaries. To give Web

authors a wider selection of vocabularies, Microsoft, Google, Yahoo!, and Yandex

championed the schema.org22, which provides a collection of vocabularies that are

supported by their search engines.

Although most of the LD search engines were developed as prototypes to ad-

dress the intricacies of providing keyword searches over LD, the adoption of LD by

mainstream search engines is testimony to its importance as a source of data that

can potentially address complex information retrieval needs.

2.3 Summary and Discussion

This chapter has introduced some of the basic concepts related to the Semantic

Web technologies used in publishing data on the Web. We have highlighted the

LD principles, which advocate the adoption of Semantic Web standards as well as

22schema.org/
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making the published data reusable by both human and software applications. LD

advocacy has successfully elicited large amounts of data expressed in RDF formats

from by public sector as well as private sources. We have also surveyed a number

of LD search engines that were developed to address the need to provide users with

access to this sort of data.

LD principles seek to do for data what the Web did for documents. In essence,

they provide a guideline for publishing and consuming data in the Web using the

RDF data model. However, LD does not address long-standing data management

problems such as heterogeneity. Worse, it introduces new problems, such as the

need to assign URIs to data in formats that are not easily consumable by humans.

While LD search engines relieve the user from interacting with LD sources

through complex queries by providing a keyword search interface to the WoD, their

results do not insulate the user from the inherent heterogeneities of the WoD. LD

search engines allow the user to find RDF resources by matching search terms against

indexes. In doing so, they only provide the user with a list of potentially relevant

resources. A more appealing alternative would be to retrieve relevant data about

the resources in the result, and provide the user with an integrated view of the

underlying resources. Sig.ma [Tummarello et al., 2010] recognized this opportunity

by providing a layer of processes that, given LD search results, constructs a report

assuming that the results can be used to describe a single entity (see Chapter 3 for

more details on Sig.ma). However, such an assumption does not always hold because

a search for entity may well return other related entities too or a search may be for

a collection of things, such as London Hotels. We saw in Chapter 1 that a search

for the film called The Godfather also returns results about the cast involved in

the film. Thus, the generated report must grapple with the fact that many entities

of many types maybe described in a resource and hence can be can be returned as

legitimate search results.

In Chapters 3 and 4 we describe our approach to integrating search results by
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inferring a structure that recognises the diversity and heterogeneity of LD search

results using SRL techniques.



Chapter 3

Interpreting LD search results

using MLNs

The adoption of LD principles by the Web community has resulted in the generation

of large volumes of semantically-annotated RDF data. One of the challenges posed

by such an amount of data is how to find and explore relevant information in the

WoD. This an important requirement for facilitating the uptake of LD by applica-

tions that support both non-experts and expert users [Heath and Bizer, 2011]. LD

search engines play an important role in providing access to data in this WoD. As

briefly described in Chapter 2, Falcons [Cheng and Qu, 2009] and Sindice [Oren

et al., 2008] are examples of search engines that use information retrieval (IR) tech-

niques to provide users with a ranked list of results given search terms. However, to

a greater extent than is the case for the Web, consuming LD can be time-consuming

and cumbersome for ordinary users. While documents in the Web are often designed

for human eyes, searching the WoD returns URIs for RDF resources and this makes

them more difficult for humans explore. The difficulty stems from the fact that

RDF was designed to represent the Web meta-data for algorithmic treatment inside

software applications. In addition to this, as is the case in the Web, LD search en-

gines only provide a best effort match to a search term. This often leads to results
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The Godfather 1 9 7 2

film

lmdb:director/8405

lmdb:actor /30973 lmdb:actor /31134

lmdb:/film/43338

tit le d a t e

rdf:type

director

ac to r ac to r

The Godfather 1 7 5 6

Movie Work Q 3 8 6 7 2 4 dbr:Albert_S._Ruddy

dbr:Francis_Ford_Coppola

dbr:The_Godfather

n a m e Work/runt ime b u d g e t

rdf:type rdf:type rdf:type producer

director

Robert Duvall 1931 -01 -05 1 6 1 2 6 6

Actor Person Q215627 dbr:United_States

dbr:Robert_Duvall

g ivenName su r n ame bi r thDate wikiPageID

rdf:type rdf:type rdf:type birthPlace

Talia Shire 1946 -04 -25 2 2 5 5 4 1

Actor Person Q215627 dbr:David_Shire

dbr:Talia_Shire

givenName su r n ame bi r thDate wikiPageID

rdf:type rdf:type rdf:type spouse

Mumbai Godfather 

film

lmdb:actor /10785

lmdb:actor /45671 lmdb:country/IN

lmdb:/film/12057

tit le

rdf:type

ac tor

ac to r count ry

Vinod Khanna 4 1 5 4 0

ac tor Person lmdb:performance/102956

lmdb:performance/110906

lmdb:actor /41540

ac to r_name actor_actorid

rdf:type rdf:type performance

performance

Figure 3.1: Example LD search results for the term "Godfather actors"

Movie
name date director budget runtime

The Godfather 1972 Francis Ford Coppola 6 172

Actor
givenName surname birthDate birthPlace spouse
Robert Duvall 1931-01-05 United States null
Talia Shire 1946-04-25 null David Shire

Figure 3.2: Results in Figure 3.1 integrated and reported as tables

that include many heterogeneous types. Furthermore, the results of a search may

involve value of different types, which are interleaved in the results. Consider again

the example we presented in Chapter 1. A search for Godfather actors using the

Sindice search engine [Oren et al., 2008] returns results (as shown in Figure 3.1)

that represent several distinct films as well as well as actors in those films. A man-

ually created report (e.g., the one shown in Figure 3.2) over such a search might

pull together the properties of the film name The Godfather from several resources

into a heading and a list of properties, then might provide separate tables for the
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collections of the actors in this film about which information was retrieved.

Could such a report be generated automatically? The creation of such a report

requires, at a minimum, identifying (i) the (real-world) entity types that occur in the

results, (ii) the instances of the latter that occur in the results, (iii) the properties

of each entity type, and (iv) the values assigned to the properties for every entity

that occurs in the results.

Although this is a data integration problem, it is quite unlike classical data

integration, in which typically there is a known target (or global) schema to which

source data should be mapped, and there is some level of human engagement in the

data integration. This raises the question as to approaches that might be suitable

for interpreting and integrating search results.

In this Chapter we discuss an approach based on Markov Logic Networks (MLNs)

in which we: (i) postulate a preliminary set of rules that capture relationships that

exist within search results, which are expressed using logic; (ii) learn weights for

these rules that represent their strengths as constraints; and (iii) use the resulting

weighted rules over search results to infer (with uncertainty) the entity types and

instances that are represented in the results. We are motivated to use Markov Logic

as it provides a well founded approach to integrating evidence of different types to

support conclusions that can inform data integration.

Markov logic has been applied to a range of tasks of relevance to data integration,

including classification, entity resolution and knowledge-base construction, as we

discuss in Section 3.1. In Section 3.2 we briefly introduce the relevant background

on MLNs. Section 3.3 describes our approach to applying MLNs for the inference of

tabular structures from LD search results, and presents an experimental evaluation

of the approach. In Section 3.4, we draw some conclusions based on the results

obtained in our experiment.
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3.1 Related Work

In this section we discuss work that is relevant to the integration of LD search

results, and specifically, by reviewing results on LD search, on data integration for

LD and on Markov logic for data integration.

3.1.1 Linked Data Search

As previously noted, the increase in the amount of RDF data published in the Web

has given rise to a number of proposals for performing keyword search over LD. Some

of these, e.g., Swoogle [Ding et al., 2004], are designed to search at the vocabulary-

level of the WoD. Others, e.g., Sindice [Oren et al., 2008] and Falcons [Cheng and

Qu, 2009], focus on crawling, indexing, and ranking the instance-level of the WoD.

Our approach is complementary to LD search engines insofar as we aim to build a

coherent view of returned results.

We saw in Chapter 2 that instance-level LD search engines can be classified, in

terms of how resources are indexed, as either entity-centric or document-centric. The

difference between the two approaches is that a term is mapped to resource URIs

in the former and to document URLs containing the RDF triples in the latter. In

practice, irrespective of the adopted approach, performing a search essentially leads

to results that often return heterogeneous resources of different types. Our proposed

method is therefore agnostic with respect to the underlying indexing approach used

by LD search engines, because our focus is on the inference of a tabular structure

that integrates the results of the search.

Chapter 2 noted how limited forms of data consolidation are employed by LD

search engines. For example, Falcons consolidates data about a resource by map-

ping it to a virtual document. This consolidation is based on a resource being men-

tioned in different data sources. For example, the resources URI dbr:United States

is mentioned as a property value of the resources dbr:Robert Duvall and
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dbr:Talia Shire. When the latter resources are converted into virtual document

and an inverted index is created based on their content, the terms united and

states both will map to these resources. Thus a search using the above terms

is likely to return the resources dbr:Robert Duvall and dbr:Talia Shire. Some

search engines, such as SWSE [Harth et al., 2012] and Sindice, consolidate resources

using reasoning over owl:sameAs and owl:InverseFunctionalProperty proper-

ties, as these assert distinct URIs that potentially describe the same underlying

real-world entity. However, such forms of consolidation fall short of a comprehen-

sive approach to result integration. This is because consolidation approaches are

often tailored towards improving the index construction as opposed to producing an

integrated set of results.

Sig.ma [Tummarello et al., 2010] does address result integration in a more com-

prehensive manner. Sig.ma uses results returned by Sindice to build an aggregated

view of the results in the form of an entity profile. Sig.ma uses a recursive approach

to collect RDF data which refer to resource identifiers that match a search term.

The first step collects the document URLs that contain the search terms. Subse-

quent steps search for sources containing resource URIs found in the results of the

proceeding step. The collected RDF data is decomposed into chunks (called resource

descriptions) that describe distinct entities and the former are ranked against the

search term. Sig.ma collects additional data when it encounters an owl:sameAs

predicate. The resulting resource descriptions are consolidated by combining the

values of lexically-similar attributes. Hand-crafted rules, such as the removal of

“has” from hasTitle or replacement of attributes that may share similar values

such as “web page” and “homepage” with the term “Web page”, are applied in the

consolidation step. In addition, Sig.ma allows users to interact with the resulting

entity profiles, either through navigating to other sources of information, or by re-

fining the results in a coarse-grained manner: capabilities only allow users to reject

or accept the sources that contribute data to the generated entity profiles. Sig.ma
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does not provide any means for resolving semantic heterogeneities in the data before

attempting to construct the integrated view. For example, if a user is interested in

information about Manchester University, Sig.ma combines data on the university,

on Manchester Grammar School, and on a railway station. While it brings together

lots of correct information, a great deal of incorrect data is often included. In this

dissertation, we have developed a more principled approach with a view to resolv-

ing such heterogeneities through the identification of entities and their types using

Statistical Relational Learning approaches.

3.1.2 Data Integration for Linked Data

Low barriers to publication, as well as a diversity of publishers without central

coordination, can lead to LD being published with inconsistencies both at the con-

ceptual and at the instance levels. At the conceptual level, this comes in the form

of different conceptualizations of the same domain, inconsistencies in the structural

representation of concepts in LD terminologies, etc. At the instance level, there

may be many different resources that describe the same real-world entities, redun-

dant information, and contradictory attribute values. There are many approaches

to the problem of matching RDF sources. These can be divided into two broad

categories: ontology matching and instance matching [Castano et al., 2011]. The

goal of ontology matching is to align schema-level elements of RDF sources using

information from the schema level, the instance level, or both [Euzenat and Shvaiko,

2013]. On the other hand, instance-level approaches try to reconcile the multiple

of data resources that may describe a single real-world entity [Ferrara et al., 2011].

RDF instance matching tools such as Silk [Volz et al., 2009; Isele and Bizer, 2013],

ObjectCoref [Hu et al., 2011], and LIMES [Ngomo and Auer, 2011] aim to generate

links (e.g., owl:sameAs links) between instance level LD resources. In both ontol-

ogy and instance matching every resource is considered to be a valid entity. This

assumption cannot be made in our setting because of the underlying uncertainty as
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to whether a resource might contribute relevant data to the target tabular structure,

and if so, precisely how. Ontology matching approaches do not take into account

this uncertainty, in a systematic and principled way, therefore, one of our motiva-

tions for using an SRL approach is that SRL methods inherently do so through

probabilistic reasoning.

Our work aims at creating a populated schema from LD search results. To

achieve this, we have assumed a meta-structure to underlie the search results.

In this regard, there have been various proposal for structure inference of RDF

sources [Christodoulou et al., 2015b; Zhu et al., 2013; Zong et al., 2012; Völker and

Niepert, 2011]. Such approaches take as an input a data graph and produce a struc-

tural summary that is homomorphic to the original data graph using techniques such

as hierarchical clustering [Christodoulou et al., 2015b; Zong et al., 2012], association

rule mining [Völker and Niepert, 2011], and inference using Bayesian Networks [Zhu

et al., 2013]. However, these approaches are often evaluated on a specific dataset

(e.g., Magnatune or DBpedia). This is different from inferring a structure for search

results because the relevant sources in the results often vary in terms of the datasets

they originate from. For example, searching for a film titled Godfather on Sindice

would return results from at least three datasets, viz., DBpedia1, YAGO2, and

LMDB3. This makes the structure inference problem harder as mappings between

the datasets need to be inferred or incorporated as evidence.

In addition to research on linking RDF at the conceptual and instance levels,

there has been research on mapping properties across RDF sources [Fu et al., 2012;

Zhang et al., 2013; Gunaratna et al., 2013]. The aim of such approaches is to find

similar [Fu et al., 2012] or equivalent [Zhang et al., 2013; Gunaratna et al., 2013]

properties using statistical measures based on subject and object overlap. These

approaches, as well as approaches that map between ontology concepts and instances

1dbpedia.org
2yago-knowledge.org
3data.linkedmdb.org/
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across datasets, can be used as sources of evidence in our approach (see Chapter 4).

3.1.3 Markov Logic Networks for Data Integration

MLNs have been applied to data integration tasks such as entity resolution [Singla

and Domingos, 2006], knowledge base construction [Niu et al., 2012] and ontology

matching [Niepert et al., 2011]. Our approach complements these approaches by

applying MLNs to the problem of inferring a structure from LD search results.

Singla and Domingos [2006] described a domain specific MLN that performs entity

resolutions on bibliographic entries. They used an MLN to encode rules that infer

the similarity of publications based on the similarity of venues, authors and titles.

In contrast with this approach, the rules we use in our model encode a domain-

independent model.

One of the motivations for using MLNs for the task in hand is that we can use

MLNs to encode different sources of evidence to fuse data coming from multiple (and

possibly heterogeneous) sources, as done in Elementary [Niu et al., 2012]. Elemen-

tary builds a knowledge base about entities from semi-structured Web sources. It

uses MLNs to discover co-referent entities using different kinds of evidence, such as

evidence from named entity recognition (NER) tools, from domain knowledge, and

from syntactic matching tools. In the context of LD, Niepert et al. [2011] exploited

MLNs to match between concepts encoded in domain ontologies. Their approach

combined evidence from input ontologies and lexical similarities in order to map

between concepts in the ontologies. The input ontologies were encoded as hard con-

straints. Prior similarities between concept features, e.g., labels, were computed and

used as evidence for concept similarities. The values of the final similarities between

concepts were returned though an optimization procedure that corresponds to the

MLN inference.
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3.2 Background: Markov Logic Networks

The goal of machine learning is to develop algorithms that allow systems to acquire

knowledge and improve their performance automatically from experience [Mitchell,

1997]. In classical machine learning settings, a typical assumption made is that

entities in the data represent independent and identically distributed (i.i.d.) set of

instances. In such settings, data is represented by a single table of feature vectors,

one vector for each entity in the data.

In contrast, SRL focuses on inference and learning algorithms for modelling and

reasoning in uncertain multi-relational domains. Multi-relational domains can be

seen as consisting of tables that describe feature vectors of entities in the domain

and tables that assert relationships among the entities. Thus, the i.i.d assumption

is dropped in SRL approaches. Figure 3.3 shows a small example of multi-relational

data describing voting behaviour. A typical feature of multi-relational domains is

that they often exhibit a degree of uncertainty as to the existence of a relationship

among entities.

SRL approaches address the challenge of learning from multi-relational data

by combining ideas from two areas. First, some SRL approaches use expressive

formalisms, such as first-order logic (FOL), to represent the domain structure,

thereby capturing the dependencies among entities in the domain. Second, most

SRL approaches adopt ideas from probabilistic graphical models, such as Bayesian

or Markov networks, to deal with uncertainty

MLNs are an SRL approach that combines FOL and Markov networks to give

rise to a unified representation for defining of probabilistic models. In what follows,

we briefly introduce MLNs. We refer the reader to [Domingos and Lowd, 2009a] for

further details.
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Person
id gunControl gayRights votesFor
p1 no yes I
p2 no no R
p3 yes yes D
p4 yes yes D
p5 no no I

Spouse
id1 id2
p1 p4
p5 p3

Friend
id1 id2
p3 p4
p3 p1
p2 p1
p5 p2

Figure 3.3: Example database describing voting behaviour, with a table for per-
sons and two relationships connecting persons, where I, D, and R stands for, rep.,
Independent, Democrat, and Republican

3.2.1 Representation

Definition 6. A Markov Logic Network is a set of pairs (Fi, wi), where Fi is a

first-order logic formula and wi is a real value representing its weight. Given a set

of constants in some domain, an MLN induces a ground Markov network where the

nodes correspond to the ground atoms in formulae and an edge exists between two

ground atoms if they appear together in at least one ground formula.

In an MLN, dependencies among relations are expressed using FOL formulae.

An MLN formula expresses a rule of thumb that guides the inference process but

it does not have to be true in all possible worlds. The weight attached to each

rule is relative to the weights of other rules and correlates to the number of possible

worlds in which a rule is satisfied. In other words, the weight determines the relative

importance of the rule in the overall model. In an MLN, a formula with a negative

weight w can be replaced with its negated formula with a weight of −w. A formula

can also be assigned an infinite weight to indicate a constraint that should not be

violated. Listing 3.1 shows an example MLN (adopted from [Kimmig et al., 2012])

that models the database shown in Figure 3.3. This MLN states that, given any

individuals a, b and p, instantiating (respectively) the variables A,B and P , a claim

is made that if b is either a friend or a spouse of a, and a votes for party p, then,

with some likelihood, b votes for p. The respective weights assert that the influence

of spouses on what party b votes for is larger than that of friends.
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0.3: votesFor(B,P) ← friend(B,A) ∧ votesFor(A,P)

0.8: votesFor(B,P) ← spouse(B,A) ∧ votesFor(A,P)

Listing 3.1: A weighted MLN describing voting behaviour

An MLN is defined over a set of predicates. The predicates are categorized into

evidence and query predicates. An evidence predicate is a predicate whose ground

atoms have known truth values by observation. A query predicate is a predicate

where one or more of its ground atoms have unknown truth values. In the above

example, friend and spouse are evidence predicates whereas votesFor is the query

predicate.

An MLN F that models some domain and with a set of finite constants C defines a

Markov network MF ,C that models the joint distribution of a set of random variables

X = (X1, X2, .., Xn) ∈ X . Each variable of X is a ground atom and X is the set of

possible worlds, that is the set of all possible truth value assignments of n binary

variables.

The network MF ,C is constructed by adding a binary node for each ground atom

given the set of rules F and constants C. An edge is created between two nodes if the

corresponding ground atoms appear together in at least one rule in F . Figure 3.4

shows the structure of the Markov network induced by the MLN in Listing 3.1

and the constants a, b and p, where a and b represent persons, and p represent a

party. Note, that the reason for showing the graph is to illustrate how the Markov

network is induced from a rule-base given some constants. We intend to illustrate

te outcome of the learning and inference algorithms not through this graph, but

though subsequent examples.

Let fi ∈ F be formula in the MLN associated with the weight wi. Let G be the

set of all ground rules created by grounding formulas in F using constants C. Also,

let Gfi be the set of all possible grounding for formula fi ∈ F with constants in the
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votesFor(a, p)

votesFor(b, p)

friend(a, b)friend(a, b) spouse(a, b) spouse(a, b)

friend(a, a) spouse(a, a)

friend(b, b) spouse(b, b)

Figure 3.4: Example of Markov network. The network is obtained by grounding the
formulas in our running example with constants a, b and p

domain. The probability of X taking value x ∈ X is given by:

P (X = x) =
1

Z
exp

( G∑
i

wini(x)
)

(3.1)

where ni(x) is the number of true groundings of a formula fi in a state x, wi is the

formula’s corresponding weight, and Z is a normalizing factor that sums over all

possible states.

3.2.2 Tasks with MLNs

Given a domain of interest, the modeller must define or learn the structure of the

MLN and the weights for each formula. Once this is done, inference can be per-

formed. One can use learning to obtain the structure or one can assert it. Likewise,

weights can be learned or asserted. An overview of the learning and inference tasks

now follows.
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Structure Learning

Given a set of predicates and example data for the domain of interest, the MLN

structure learning process learns first-order logic formulae that define the relation-

ships between the given predicates using a sample of data in the domain. The

structure learning process uses either a beam search or a shortest-path search strat-

egy to find the best clauses to add to the MLN [Domingos and Lowd, 2009b]. In

theory, structure learning avoids reliance on domain experts to write down the rules

that capture the semantics of the domain. However, the structure learning process

is known to be unscalable for large datasets [Khosravi and Bina, 2010]. Given this,

we have not performed structure learning and hence do not report any results in

this respect.

Weight Learning

Given a set of rules F and a database of evidence from the domain of interest,

the weights of the rules can be learned. In this process, one or more predicates

whose truth values are unknown are designated as query predicates. Predicates of

which atoms are assumed to be known are designated as evidence predicate. Let

Y = (Y1, Y2, ..., Yn) ∈ Y where each variable in Y is a ground atom encoded by a

query predicate. Let Y be the set of all possible truth value assignments of n binary

query predicates. Similarly, let X = (X1, X2, .., Xm) ∈ X . Each variable in X is a

ground atom encoded by an evidence predicate and X is the set of all possible truth

value assignments of m binary evidence predicates. The conditional likelihood of

query predicates given the evidence is computed by

P (Y = y | X = x) =
1

Zx

exp
( G∑

i

wini(y, x)
)

(3.2)

where G is the set of ground formulas in the Markov network. Note that the nor-

malizing constant Zx is computed over possible worlds consistent with x.
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The goal of learning procedure requires fixing the assignments of both Y and X

(i.e., both evidence and query predicate need to be supplied in the training data). It

finds weight which maximizes the above likelihood of query predicates assignment

Y given the evidence predicate assignment X. There are number of algorithms

which can be used for learning the weight of an MLN given a dataset (e.g., Voted-

perceptron-like [Singla and Domingos, 2005] and MC-SAT [Lowd and Domingos,

2007]). The details of such algorithms is beyond the scope of this thesis since we

use default learning algorithms that comes with the Alchemy toolkit4.

The weights produced for each rule can be positive, negative or zero. A positive

weight is an indication that the corresponding rule is supported in the domain

given the evidence. On the other hand, a negative weight is an indication that the

corresponding rule is not supported, and, in fact, its negation is supported with

the corresponding negative weight. Finally, a weight of 0 indicates that there is no

evidence (either for or against) in the domain for the corresponding rule.

Example 1 (Weight learning in action). Assume that we have the rules in Listing 3.2

which capture one of the propositional features (i.e., support for gun control) of the

person table in the dataset shown by Figure 3.3. The rules state that if a person

w1: votesFor(A,"D") ← SupGunControl(A)

w2: votesFor(A,"R") ← SupGunControl(A)

w3: votesFor(A,"I") ← SupGunControl(A)

Listing 3.2: Un-weighted that capture propositional features of Figure 3.3

p supports a gun control policy, then there is some likelihood that the person will

vote for a certain party. Running a weight learning algorithm on the above set of

rules using the dataset in Figure 3.3 produces the weighted rules in Listing 3.3.

So the hypothesis that a person who supports gun control tends to vote for the

D party is supported by the dataset used, and the rule that encodes this hypothesis

4Alchemy(alchemy.cs.washington.edu/) is an implementation of MLNs. Its default learning
method is the MC-SAT algorithm.

alchemy.cs.washington.edu/
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1.85: votesFor(A,"D") ← SupGunControl(A)

-1.15: votesFor(A,"R") ← SupGunControl(A)

-1.14: votesFor(A,"I") ← SupGunControl(A)

Listing 3.3: Weights learned for the rules that capture propositional features of
Figure 3.3

receives a relative weight of 1.85. On the other hand, the hypotheses encoded by

the alternative rules are not supported by the given dataset.

Inference

A basic inference task that is performed in MLNs is finding the most probable

assignments of truth values Y given the evidence X. This done my maximizing the

conditional likelihood given by equation 3.3. Thus this inference can be defined by

the following formula:

argmax
y

P (y | x) = argmax
y

1

Zx

exp
( G∑

i

wini(y, x)
)

(3.3)

As shown by Domingos and Lowd [2009c], equation 3.3 can be reduced to

argmax
y

P (y | x) = argmax
y

G∑
i

wini(y, x)) (3.4)

This entails that inference can be computed by finding the assignment of truth

values y that maximizes the sum of the satisfied ground rules. As is the case for

most graphical models, full inference in MLNs is intractable[Domingos and Lowd,

2009c]. The basic reason behind this is that enumerating all possible assignments

of truth value for large MLN is infeasible. In response, one technique that can be

used to perform inference over a ground MLN is to used a sampling based approach.

The sampling approach begins by assigning random truth values to a ground query

atoms. It then computes the cost of unsatisfied clauses by summing the weights of

such clauses. It then proceeds to iteratively re-sample the values of query atoms
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with the goal of minimizing the cost of unsatisfied clauses.

Example 2 (Inference in action). The MLN inference process takes as input a

weighted MLN and set of constants. Given the rules in Listing 3.1 and the datasets

in Figure 3.3, the values in Listing 3.4 are produced by MAP inference. The values

VotesFor(P3,I) 0.609989

VotesFor(P3,R) 0.592991

VotesFor(P5,R) 0.568993

VotesFor(P2,I) 0.564994

VotesFor(P5,D) 0.542996

VotesFor(P2,D) 0.489001

VotesFor(P1,R) 0.471003

VotesFor(P4,I) 0.469003

VotesFor(P4,R) 0.467003

VotesFor(P1,D) 0.438006

Listing 3.4: The conditional probabilities produced by inference using the rules in
Listing 3.1

produced are interpreted as the conditional probability of the corresponding atom

being true given the evidence and the MLN. In our case, we use such the resulting

probabilities to rank the results produced by the inference process in a way that

informs user interaction with the results (see Chapter 5).

3.3 Interpreting LD search results using Markov

Logic

The key idea of our approach is to use probabilistic inference over the search results

to populate the meta-model in Figure 3.5. This meta-model characterizes the tabular

structure that we aim to use to present the search results. Such an instantiation of

the meta-model is a tabular representation of the search results and we refer to it as

a report. Thus, given the search result, our goal is to infer that some resources are

entity types and some are entities (i.e., elements in the extent of the inferred entity

types), some other resources are properties of some inferred entity type and some

are property values (i.e., elements in the domain of the inferred property).
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PropertyValue PropertyIsTupleOf

EntityType

Entity
HasProperty

HasType

1

n

m

nn

n

1

Figure 3.5: The meta-model for population with LD search results.

Identifying which entities, entity types, properties and property values are rele-

vant from the user’s point of view is a task with uncertain outcomes. One source of

uncertainty is the search itself (i.e., its associated precision and recall). For example,

the RDF individual dbr:Raja Casablanca is returned in the search results for the

search term Casablanca (see Figure 3.6) but should not be listed in a table describ-

ing the 1942 US-produced film Casablanca. Another source of uncertainty is that

not every RDF predicate or RDF type can be considered a suitable representation

for a user-level property or type. For example, the RDF type wd:Q11424 may not

be useful to denote an entity type from a users point of view, and is therefore not

suitable to be reported as a table to the end user.

A key advantage of an SRL approach, such as MLNs, for this task is that it

provides an opportunity for incorporating different forms of evidence to strengthen

the inference decisions that populate the target meta-model. In Chapter 4, we

extend the work presented in this chapter to include evidence from domain ontologies

and user provided feedback in the construction of the tabular reports. We first

describe the MLN for probabilistic inference of instantiations of our meta-model

from LD search results. We also describe the learning and inference processes.

Finally, we present and discuss the experimental results of our initial investigation.

The discussion will motivate the investigation reported in Chapter 4.
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dbo:director
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Figure 3.6: A RDF Sub-graph for some of the results for the term Casablanca
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3.3.1 An MLN for LD search results

Our approach follows the direction of other applications of MLNs to specific prob-

lems, (e.g., [Niu et al., 2012] and [Singla and Domingos, 2006]): we modeled the

structure of the MLN by defining rules that relates RDF annotations of resources to

instantiations of a meta-model that characterizes our target report. Our goal is to

capture the uncertainty of mapping from RDF to our meta-model constructs using

the MLN rules. We used the weight learning process provided by an MLN imple-

mentation5 to learn the uncertainty of rule these rules. The approach is comparable

to that often used in probabilistic graphical models literature, where dependencies

among variables are manually specified and then the parameters that specify the

probability distributions are learned from data. One advantage of using the MLNs

approach is that it comes with general-purpose learning and inference algorithms.

Thus one does need to implement specialized techniques for each problem.

We now describe the MLN in Listings 3.5 and 3.6, which we use to interpret

RDF search results. Recall that evidence predicates characterize ground atoms with

known truth values. Here, the evidence predicates represent observed triple patterns

in the search results. These predicates are defined over the uri and literal do-

mains. To enable a simpler and more direct way of writing rule bodies, we partition

the space of triples. As such, we use Triple1 to represent RDF triples with URIs in

the object position and Triple2 to represent RDF triples that have literals in the

object position. Without such a partition, rule R1 in our MLN would be expressed

as:

EntityType(o) ← IsURI(s) ∧

Triple(s,"rdf:type",o)

Besides notational convenience, we note that the additional IsURI predicate would

result in additional nodes in the ground Markov network, and hence in a less efficient

5alchemy.cs.washington.edu/

alchemy.cs.washington.edu/
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// Evidence Predicates

Triple1(uri , uri , uri)

Triple2(uri , uri , lit)

// Query Predicates

Entity(uri)

EntityType(uri)

Property(uri)

PropertyValue(uri)

LnkPropertyValue(uri)

HasProperty(uri ,uri)

HasType(uri ,uri)

Listing 3.5: The predicates used to define the rules in Listing 3.6

MLN.

Figure 3.5 show the meta-model which characterizes that structure of the target

reports. Each node in the meta-model (expect for IsTupleOf) represent a query

predicate in our MLN model. Each instances of these query predicates represents

an instance of a corresponding meta-model construct. The Entity, EntityType and

Property predicates model whether a given URI represents an entity, an entity type

or a property in our report. For example, given the results in Figure 3.1 and the

report shown in Figure 3.2, the following instantiations of query predicate are true:

Entity(dbr:The_Godfather)

EntityType(dbo:Film)

Property(movie:director)

Conversely, the following are false:

Entity(lmdb:/film /12057)

EntityType(wd:Q215627)

This is because our search was for the “Godfather actors” and the results above are

irrelevant to the search term for considering that we are seeking a report about a

particular film in this case.

We also define predicates for HasProperty and HasType. HasProperty models

a relationship between two URIs where the first is an entity type and the second is

an attribute of that type. HasType models a relationship between two URIs where
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R1: EntityType(o) ← Triple(s,"rdf:type",o)

R2: Entity(s) ← Triple1(s,"rdf:type",o) ∧
EntityType(o)

R3: Attribute(p) ← Triple2(s,p,o) ∧
Entity(s) ∧
AttributeValue(o)

R4: Attribute(p) ← Triple1(s,p,o) ∧
Entity(s) ∧
LnkAttributeValue(o)

R5: LnkAttributeValue(o) ← Triple1(s,p,o) ∧
Entity(s) ∧
Attribute(p)

R6: AttributeValue(o) ← Triple2(s,p,o) ∧
Entity(s) ∧
Attribute(p)

R7: HasType(s,o) ← Triple1(s,"rdf:type",o) ∧
EntityType(o)

R8: HasProperty(t,p) ← Triple1(s,"rdf:type",t) ∧
Triple2(s,p,o) ∧
EntityType(type) ∧
Attribute(p) ∧
AttributeValue(o)

R9: HasProperty(t,p) ← Triple1(s,"rdf:type",t) ∧
Triple1(s,p,o) ∧
EntityType(t) ∧
Attribute(p) ∧
LnkAttributeValue(o)

Listing 3.6: An MLN rule set that uses RDF triples to infer a structure from LD
search results
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the first is an entity, the second is an entity type, and the first is an instance of the

second. Examples from Figure 3.6 are:

HasProperty(dbo:Film ,dbo:director)

HasType(lmdb:film/81, movie:film)

Finally, we use two predicates to interpret values in the object position of RDF

triples, viz., AttributeValue and LnkAttributeValue.

In addition to the described predicates, the MLN contains rules that encode

relationships between RDF triples returned in the results and the query predi-

cates. Rules R1, R2 and R7 use the rdf:type construct for the inference of Entity,

EntityType and HasType. The idea here is that RDF types that occur frequently in

the results are likely to be instances of the EntityType meta-type. For example, in

Figure 3.6, Film is more probably an entity type given that it appears as the type

for three resources, as opposed to SoccerClub which only appears for one. Some

of the rule heads may appear in rule bodies of other rules as derived evidence. For

example, in rule R2, a returned RDF triple (s, "rdf:type", o) where o is inferred

to be an entity type, counts as evidence that s is an entity. This is possible because

the MLN inference algorithm iteratively updates the state of satisfied clauses based

on the results of previous inferences [Domingos and Lowd, 2009c]. Unlike rules

R1-R7, which only use a single triple for making inferences, rules R8 and R9 uti-

lize two triple patterns as evidence for making an inference about the HasProperty

relation. The intuition here is that if an RDF type and an RDF predicate often

share resources, then it is likely that they are related by the HasProperty relation.

Consider again the example search results in Figure 3.6. Given rules R8 and R9,

if the rules have positive weights, HasProperty(Film, director) is more proba-

ble than HasProperty(Film, writer) because writer is a predicate that holds for

fewer resources than director does.
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3.3.2 Experimental Evaluation

We now present an empirical evaluation of our MLN-based approach to infer a tabu-

lar structure from LD search results. The goal of this experiment is to measure how

effectively the MLN based approach ranks the instances of meta-model instantia-

tions given the evidence in the search results. Our goal in here is limited to showing

the idea of using an MLN approach in representing the uncertainty of mapping

RDF triples into instances of our meta-model. The uncertainty captured through

the weight learning procedure over training data. Subsequently, we measure the

precision and recall of the MLN-based inference over LD search results using the

learned weighted MLN model. Note that we are not evaluating the correctness of

the rules presented in Section 3.3.1. This is because, as mentioned earlier, an MLN

formula expresses a rule of thumb, i.e. it is a claim on the training data with like-

lihood. The likelihood of the rule translates into a weight. So by definition, a rule

in an MLN never 100% correct. Given that this a modeling exercise, there could be

other ways to model the problem at hand.

Dataset

To our knowledge, there is no publicly available standard dataset that allows us to

evaluate our approach. In order to learn the weights for the MLN described in Sec-

tion 3.3, we chose four domains and conducted ten searches using the Sindice [Oren

et al., 2008] and the Falcons [Cheng and Qu, 2009] search engines. From each search

engine, we collected the top 20 results for each search term. Table 3.1 shows the

terms we have used. Table 3.2 provides further details about the size and com-

position of the datasets for each domain. The most common datasets from which

triples appear in the results are DBpedia, semanticWeb.org6, Linked Movie Database

(LMDB), and MusicBrainz. While DBpedia is a general knowledge base, the other

6data.semanticweb.org
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Table 3.1: Search terms used in constructing the evaluation dataset

Domain Search Terms
Cities Berlin,Manchester
Films Godfather,Casablanca, Godfather actors
Organizations Apple Inc., Microsoft, UK universities
People Tim Berners-Lee, Chris Bizer

sources are domain-specific. SemanticWeb.org captures information about the Se-

mantic Web community, LMDB is an online RDF database extracted from IMDB,

and MusicBrainz provides information about artists, releases, tracks, and the re-

lationships between them. Note that while the most intuitive domain for terms

Berlin and Manchester is cities, many of the returned results for these terms are

not from this domain. This suggests that terms that would not be often thought of

as ambiguous, often become so in search results because of the diversity of resources

in the WoD. Also, note that the number of typed individuals in each domain is

greater than 40, i.e., it is greater than the number of RDF results collected, be-

cause, often, a single result contains descriptions about more than one individual.

For example, the RDF description of artist Melissa Manchester in MusicBrainz,

which is returned as a result of search of the term Manchester, includes descriptions

about albums and singles by the artist. For this reason, the number of instances

for some of the common types has turned to be more that the number of hits we

obtained from each LD search engine.

Search results in this dataset were preprocessed to remove triples containing

RDF types that belong to the yago and dbyago name-spaces. The reason is that

such types (e.g, yago:GangsterFilms and yago:AmericanEpicFilms) are used in

site-specific ways to categorize resources, as opposed to assigning real-world entity

types to resources. Also, triples that contain domain-independent RDF predicates

and have literal objects were removed: dct:abstract, rdfs:comment, rdfs:label,

skos:prefLabel, skos:altLabel, skos:note and dce:description.
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Domain
# of

Triples
Distinct
Types

Distinct
Properties

Typed
Individuals

Common
Types

Common
Data sources

Type # of Instances

People 2488 42 160 70
swrc:InProceedings 30

semanticweb.org
dblp.l3s.de

foaf:Document 30
swrc:Article 9

Organizations 12874 41 142 99
sl:Tag 30

dbpedia.org semanticweb.orgfoaf:Person 21
dbo:Organisation 16

Films 8328 112 213 86
foaf:Person 45

linkedmdb.org
dbpedia.org

movie:actor 33
dbo:Agent 15

Cities 16318 114 310 155
schema:MusicAlbum 53

musicbrainz.org
dbpedia.org

schema:Person 19
pos:SpatialThing 18

Table 3.2: Statistical information of the evaluation dataset

Ground-Truth Definition

To conduct our experimental evaluation on the collected dataset, we annotated it

with the ground truth. The annotation of all the domains in the dataset was done

by a single person, i.e., the author of this thesis. To exemplify the reasoning be-

hind this procedure, we provide an example of the ground truth for some of the

results of the search term Casablanca, shown in Figure 3.6. While annotating the

dataset, we took into account the relevant domain of the term. For example, in the

films domain we considered, among others, the types Film, Actor, Producer and

Director as true instances of EntityType. Conversely, the types SoccerClub and

Organisation are not true instances of EntityType in the films domain. Similarly,

the individuals dbr:Ingrid Bergman and lmdb:film/63103 (i.e., Casablanca Ex-

press) are instances of the meta type Entity, unlike dbr:Raja Casablanca. In order

to define EntityType instances, we used schema.org as a reference schema for the

ground-truth annotation of Property and HasProperty. For example, given Fig-

ure 3.6, and with reference to schema.org, the properties of the EntityType Film

are actor, director, runtime, starring, country and genre. Similarly, the prop-

erties of Actor are givenName, surname, birthPlace and birthDate. Note that

the properties of Actor in this case are also properties of the super-type Person. In

the ground truth, subtypes inherit all the properties of the supertypes. The ground

truth for the RDF graph in Figure 3.6 is shown in Figure 3.7.
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/* HasType GT*/

HasType(lmdb:film/81, Film)

HasType(lmdb:film /63103 , Film)

HasType(dbr:Casablanca_(film), Film)

HasType(dbr:Ingrid_Bergman , Actor)

/* EntityType GT */

EntityType(Work)

EntityType(Film)

EntityType(Person)

EntityType(Actor)

/* Entity GT */

Entity(lmdb:film /81)

Entity(lmdb:film /63103)

Entity(dbr:Casablanca_(film))

Entity(dbr:Ingrid_Bergman)

/* Property GT*/

Property(initial_release_date)

Property(actor)

Property(director)

Property(writer)

Property(starring)

Property(country)

Property(runtime)

Property(genre)

Property(performance)

Property(birthPlace)

Property(birthDate)

Property(givenName)

Property(surname)

/* HasProperty GT */

HasProperty(Work , runtime)

HasProperty(Work , author)

HasProperty(Film , actor)

HasProperty(Film , starring)

HasProperty(Film , director)

HasProperty(Film , genre)

HasProperty(Film , country)

HasProperty(Film ,

initial_release_date)

HasProperty(Film , performance)

HasProperty(Person , birthDate)

HasProperty(Person , birthPlace)

HasProperty(Person , givenName)

HasProperty(Person , surname)

Figure 3.7: The ground truth annotation for the RDF in Fig. 3.6

Methodology and Results

To evaluate our approach, we used a five-fold cross-validation procedure [Re-

faeilzadeh et al., 2009] on the annotated dataset. In each iteration of the procedure,

we split the dataset into training and test sets. We ran the weight learning process

of the training subset and the inference process on the test subset. To ensure that

the weights are not skewed towards a particular domain of search, we randomized

the search results to ensure that every split contained search results from every one

of the domains shown in Table 3.1. Given this randomization step, the inference

process was ran on data that contained a mix from all domains. Thus our results

in Table 3.4 are computed over all the domains at once and individually. Table 3.3

shows the average weights learned for the MLN rules. One observation is that the
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Rule ID Average Weight
1 43.161 ± 64.782
2 3.227 ± 0.709
3 4.051 ± 0.435
4 4.161 ± 0.399
5 2.903 ± 0.888
6 2.491 ± 0.537
7 1.807 ± 0.307
8 1.140 ± 1.279
9 1.229 ± 0.890

Table 3.3: Average weights learned for each rule

weight of R1 is about ten times higher than the weight of the other rules. The rea-

son for this is that rdf:type provides the most direct signal for the inference in R1,

i.e., that a URI in the object position of an rdf:type triple denotes an entity type.

This is because the majority of the types of in RDF results returned by underlying

search engines tend to be relevant to the domain of the search (except for the cities

domain). So in this case, the majority of RDF types in the results match the ex-

pectation of the true (according to the ground truth) entity types. The strength of

the signal for the other query predicates in the MLN is less direct, and hence much

weaker.

To evaluate our approach, we have compared the results of the MLN with the

results of a random classifier. The random classifier simply assigns a random number

in the range [0, 1] to each instance of each query predicate. The results are evaluated

by computing the area under the precision-recall curve (AUC) (see Appendix A for

an example on AUC computation). To compute the AUC, the precision-recall (PR)

curve is generated first. The precision and recall are computed according to the

following [Fawcett, 2006]:

Precision =
Number of propositions correctly predicted as positives

Number of propositions predicted as positives
(3.5)
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Predicate Random MLN
Entity 0.03 ± 0.00 0.608 ± 0.19
EntityType 0.02 ± 0.00 0.742 ± 0.07
Property 0.04 ± 0.00 0.190 ± 0.05
HasProperty 0.01 ± 0.00 0.058 ± 0.018
HasType 0.01 ± 0.00 0.760 ± 0.09

Table 3.4: AUC PR for the inference results of the experiment

Recall =
Number of propositions correctly predicted as positives

Number of positive propositions in the data
(3.6)

A PR curve is produced by plotting a point for the precision and recall obtained

at given threshold values. The AUC is a single scalar value that summarises the area

under the PR curve. This summary is often used to evaluate the performance of

machine learning systems that produce continuous outputs (e.g., probability scores)

instead of binary ones [Boyd et al., 2013]. As mentioned earlier, the goal of our

experiment is to measure the effectiveness of our MLN approach in ranking instances

of the inferred structure. A significant property of the AUC is that it is equivalent to

the probability that the classifier will rank randomly selected positive propositions

higher than randomly selected negative ones [Fawcett, 2006]. Thus, the higher the

AUC for a query predicate the more effective our MLN approach in ranking instance

of that query predicates.

Note that in this experiment the F-measure would be inadequate, simply because

it combines the precision and recall calculated at a specific threshold value, whereas,

our goal is to evaluate the proposed approach without predefining a threshold for

the inferred probability values of query predicates. This is because the distributions

of the inferred probability values might vary across different query predicates. So,

for example, a threshold of 0.5 might be adequate for computing the F-measure of

some query predicates (e.g., Entity) but not others (e.g., HasProperty).

Table 3.4 shows the AUC scores obtained for every query predicate averaged over

five folds of the cross-validation procedure.
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In general, the MLN performs better than the random classifier. It performs

particularly well on Entity, EntityType, and HasType. Explicit assertions of the

types in RDF seems to provide compelling evidence for the inference of the HasType

relation, thus leading to a relatively high AUC score. Although the MLN out-

performs the random classifier in the case of the Entity and EntityType query

predicates, the average AUC for these query predicates is slightly lower than the

AUC for the HasType. This can be attributed to the ambiguity in some of the

search results. The MLN infers that the resource dbr:Berlin (which describes the

German city) is an Entity in our meta-model with a probability of 0.995. How-

ever, it also infers that resource dbr:Brock Berlin is an Entity with the same

probability, but this is a false positive. The reason for this is that our model does

not include domain-specific rules and, therefore, strong signals for resources from

different domains (and hence ambiguous) are treated equally. For EntityType,

the most probable instances according to our MLN are EntityType(foaf:Person),

EntityType(schema:Organization) each with a probability score of 0.995. The

reason for this is that these two types are common in search results regardless of

the domain. We observed that some of the RDF types that are irrelevant to the

domain have higher probabilities than relevant ones. For example, in the films

domain the probability of EntityType(schema:MusicAlbum) is 0.89, whereas the

probability of EntityType(movie:actor) is 0.77. This is because the RDF type

schema:MusicAlbum is more common than the RDF type movie:actor.

In comparison to Entity, EntityType and HasType, the MLN does not preform

well on Property and HasProperty. This can be attributed to two reasons. The first

is that RDF properties that are related to the internal structure of the data source

and carry no useful information to the user occur frequently in resources, and inferred

with relatively high probability (e.g., Prob(Property(dbo:wikiPageID))=0.987).

The second reason is attributed to the sampling approach used by the MLN infer-

ence procedure. In MLN, by default all ground atoms have probability 0.5. MLN
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generates the full ground network, then run inference on top of that. So in the ab-

sence of any evidence, the default probability for ground atoms is 0.5. We observed

that various Property instances that involve URIs that do not occur in the predicate

position of triples were inferred with an average probability of 0.499. Examples of

such results include Property(dbo:Company) and Property(dbr:NeXT Computer).

The URI dbo:Company is in fact an RDF type, whereas dbr:NeXT Computer is a

URI for a resource that occurs in the object position of a triple. Note also that most

query predicates are defined over the set of observed URIs. Given that rule bodies

for Property and HasProperty have chains of inference (i.e., bodies are defined

using other query predicates), the MLN inference procedure has a larger space to

sample from, which reduces the likelihood of finding the correct answer for the query

predicate. Note, also, that Property and HasProperty atoms correspond to schema

elements with weak signal from the data (e.g., not a direct one-step, inference from

rdf:type as with rule R1). Previous research has shown that schema inference

from instance data is challenging [Christodoulou et al., 2015b]. In LD search, this

problem is even harder because of the variability in the data resources in terms of

the descriptions they use. In Section 3.4 we discuss proposals for improving the

performance of the MLN-based approach.

Note, finally, that frequency of occurrence does determine to some extent the

inferences made by the model. For example, RDF types which occur frequently

in the results are likely to be inferred as instances of EntityType. However, the

frequency of occurrence is not the only factor. The inferences made by the rules is

determined also by their learned weights; and the weight of a rule is determined by

the training data. In order not to over-fit the learned weights, i.e., to reduce the

effect of frequency of occurrence during the weight learning process, we used a 5

fold cross validation process where we randomized the search results in each fold.

So, not only the frequency of occurrence in the data determine inference results, but

also the weight learned for each of the rule in our MLN. Given that the approach in
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this chapter is a preliminary one, the search results may have a much bigger impact

on the inferences made, more than one would want to. In Chapter 4, we amend

this by introducing rules that bring other types of evidence to subdue the effect of

frequency of occurrence in the search results.

3.4 Summary and Conclusions

LD search engines are useful for providing non-experts with access to a great va-

riety of RDF datasets. WoD search results consist of a collection of triples, and

contain RDF resources that may or may not describe real-world entities. Typi-

cally, the resulting resources may contain duplicates and/or fragments of what a

user expects as an answer to the search terms given. In addition, the resources

returned in the results of LD search can sometimes be semantically ambiguous, and

may have resulted from heterogeneous vocabularies. These features and more mean

that LD search results return complex data set that may be difficult to interpret

automatically.

In order to deal with this complexity, we have described an approach based on

using an MLN to model the uncertainty associated with inferring types, individuals,

attributes, and attribute values that would allow one to integrate these constructs

into a tabular structure characterizing real-world entities in the search results. This

was done by using an MLN to express various hypotheses encoded as rules that

capture the relationships between triples in the search results and the roles that the

URIs and literals in those triples may play in terms of a target relational structure.

We have evaluated the approach, and while there is evidence of efficacy, this was

not universally so. The approach led to good results in inferring entity types and

instance-of relationships from the search results. On the other hand, entity instances

and attributes were not identified accurately by the MLN. There may be different

reasons for this (e.g., the rules for identifying such features could be improved upon),
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but our preferred interpretation is that the rules capture relevant signal but that

the signal was sometimes not strong enough, i.e., that more, and more kinds of,

evidence was needed.

In this context, evidence may be lacking for two reasons. First, different publish-

ers publish data in different ways. In general, datasets in the WoD can be classified as

either vertical or horizontal in the following senses. Vertical datasets (e.g., LMDB7)

provide descriptions for entities in specific domain (e.g., films), whereas entities in

horizontal datasets (e.g., DBpedia8) span many domains. In the dataset collected

for our experiment, our observation is that sources in vertical datasets often have

with few RDF types (on average, two per resource) and their features are described

using a small set of RDF properties (a maximum of nine properties). On the other

hand, horizontal datasets use more types (on average five per resource) and proper-

ties (a maximum of 16 properties). Thus, inferring a structure from such datasets

is more challenging because, for example, noise is more likely in the possible ways

in which a property can be assigned to an entity type is high. Also, a fraction of

the retrieved data is not directly informative in terms of the structure of the data

in the domain. For example, resources are often described with RDF properties

(e.g., dbo:wikiPageRedirects) that carry no relevant information to the end user.

Similarly, an RDF type SoccerClub found in the search results may not be useful

for a user looking for information about films. Dealing with such properties and

types requires the integration of other sources of knowledge (e.g., ontologies) that

can help in defining the semantics of the domain.

The problem of inferring domain knowledge from LD search results is a difficult

one. Using an SRL approach for this problem is motivated by the perception that

this is an evidence-rich problem. This suggests that the search results can be com-

bined with additional information to enable well-founded inferences to be drawn.

Some examples of sources of evidence are:

7data.linkedmdb.org
8dbpedia.org/
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• Additional generic integration rules. Our rules have focused on the identifi-

cation of elements in our target meta-model using the data from the search

result. However, it would be possible to write additional generic rules. For

example, none of the current rules attempt to identify duplicates across the

resources retrieved by the search.

• Incorporating domain knowldege. In the WoD, there are many domain vocabu-

laries in the form of ontologies that are used to define common understanding

of the structure of information, some of which are shared across datasets.

These vocabularies characterize semantic relations (e.g., the HasProperty re-

lation) among concepts and properties in a domain. Thus, incorporating such

ontologies could be useful.

• Integration of feedback. In Sig.ma [Tummarello et al., 2010], users are able

to refine the returned reports by ruling in/out specific sources of data. In

our problem, feedback of different forms could be provided in a pay-as-you-go

manner, for example, on the correctness or relevance of specific results. Such

feedback could be used as evidence by our model to inform the inference of

results for different query predicates.

• Domain-specific integration rules. Successful applications of MLNs (for exam-

ple, in entity resolution or knowledge base construction) have often made use

of domain-specific rules. As such, although searches are generic, it would be

possible to write rules that know about certain domains, and the widely used

terminologies in such domains. For example, rules could be written that are

informed by common searches in search logs, or that cover terminologies that

are widely used in practice [Hogan et al., 2012].

• Integration of results of other analyses. The current rules act directly on the

search results. However, it would be possible to run additional analyses on

these search results, which in turn could be reflected in rules. For example,



3.4. SUMMARY AND CONCLUSIONS 91

analyses could carry out ontology alignment between search results, or could

cluster triples based on attribute values. The results of such analyses could

then be used as evidence predicates, and included in additional generic or

domain-specific integration rules.

In this chapter our aim was to model the uncertainty of identifying which enti-

ties, entity types, properties, and property values are relevant from the user’s

point-of-view using Markov logic. The choice of MLNs was due to evidence

in the literature that our initial model can be extended later to include other

forms of evidence. However, the lessons we learned from using Markov logic,

and in particular the one about the lack of direct way of encoding similarities

the issues regarding the scalability of the sampling based inference approach,

have motivated us to investigate an alternative approach, namely PSL.

In the next chapter, we respond to some of the shortcomings of our MLN

approach-based approach and a different, more expressive and more efficient

SRL formalism, viz., PSL. This allows us to expand the scope of our instan-

tiations by bringing additional sources of evidence to the problem. We show

this by incorporating evidence from ontologies and from user feedback.



Chapter 4

An evidence-based approach for

integrating LD search results

using PSL

Chapter 3 contributed an MLN approach to address the schema-less nature of LD

search results. It described a method for automatically inferring a structural sum-

mary (i.e., tabular reports) of LD search results. Having such tabular reports will

improve the visual presentation of LD search results. However, we saw that relying

on syntactic evidence drawn from triples in the results alone does not yield suffi-

cient precision and recall in some cases. More specifically, inference of Property

and HasProperty relationships is affected by noise in search results that arises be-

cause of the heterogeneity of entity types. Also, many of the false positives in

the inference of Entity and EntityType relationships can be attributed to the

lack of context. For example, our MLN model infers that the non-relevant RDF

type schema:MusicAlbum is an instance of EntityType with high probability (i.e.,

0.89), whereas the relevant RDF type movie:actor is inferred to be an instance

of EntityType with a probability of 0.77. One way to deal with such issues is the

inclusion of evidence about the context of the search in the form of ontologies that

92
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characterize the domain of the search results. Furthermore, deriving the desired

tabular representation requires the resolving the duplicates of data in the resources

in the search results. Resolving duplicate instances of data requires the integration

of matches of individuals, entity types, properties, and property values as evidence

to decide on the similarity between resources.

Solutions to the problem of integrating heterogeneous LD sources benefit from

the assimilation of different sorts of evidence. While the majority of integration

systems rely on syntactic matches in order to align constructs (e.g., [Volz et al.,

2009; Hu et al., 2011; Ngomo and Auer, 2011]), there are also systems that have

utilized evidence encoded in linguistic resources (such as WordNet [Miller, 1995])

and LD vocabularies to support the integration process (e.g., [Nikolov et al., 2012;

Säıs et al., 2009; Scharffe et al., 2009]). Additionally, there has been an interest in

utilizing user feedback to learn models that enable the improvement of integration

decisions made by automated techniques (e.g., [Tummarello et al., 2010; Demartini

et al., 2013; Isele and Bizer, 2013; Kejriwal and Miranker, 2015]).

Thus, having a uniform, well-founded approach to the assimilation of different

sources of evidence to address the challenges of integrating LD search results seems to

be a promising direction of research in this area. In this regard, SRL techniques are

appealing. First, LD is inherently relational insofar as LD expresses how individuals,

RDF types, RDF properties and domain knowledge relate to each other in a variety

of ways. For example, two RDF types might be related to each other by virtue of

being in the domain of a similar set of RDF properties or by having a similar set

of individuals in their extent. SRL techniques allow us to encode rules that express

such relations. Second, LD coming form different sources is likely to be noisy.

For example, noise might stem from reliance on matching algorithms to reduce the

multiplicity in search results. In fact, matching is error prone, which cause decisions

to be uncertain [Gal, 2006]. SRL models allow for probabilistic inference which is

helpful when reasoning with noisy data.
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In this chapter, we exploit an SRL technique, viz., Probabilistic Soft Logic (PSL),

to assimilate different kinds of evidence with a view to generating tabular summaries

of search results stemming from multiple heterogeneous LD resources. PSL is a

recent SRL approach that unifies logic and probability. PSL provides a language for

encoding expressive domain knowledge through FOL formulae, while handling the

uncertainty that arises from combining different types of evidence through graphical

models, viz., Markov networks. Reasons for adopting PSL in our approach are

twofold. One, a number of studies [Bach et al., 2013a; Beltagy et al., 2014] suggest

that PSL scales better than MLNs in terms of learning and inference, as the structure

of the rule base becomes more complex. This allows us to extend our model with

more predicates and rules that handle the additional types of evidence. Second,

a key distinguishing feature of PSL is that ground atoms have soft, continuous,

truth values in the interval [0, 1] rather than the binary truth values used in MLNs.

This enables reasoning with evidence derived from similarity values (e.g., syntactic

matches), and reasoning with set similarity, which can be useful in the inference of

relationships in our meta-model.

In this chapter, we present a PSL rule-base that combines three sources of evi-

dence, viz., syntactic matching, domain ontologies and user feedback. As we discuss

later, the techniques we contribute in this chapter are generic and can be applied

to search terms in any domain. The remainder of this chapter is structured as fol-

lows. In Section 4.1, we introduce PSL in terms its of syntax, semantics, and its

accompanying learning and inference procedures. Section 4.2 describes our proposed

approach for using PSL to combine different kinds of evidence with the goal of inte-

grating LD search results. In Section 4.3, we provide an empirical evaluation of our

approach where we show how principled, uniform use of different types of evidence

improves the integration quality for the end user. In Section 4.4, we discuss the re-

lated work. Finally, Section 4.5 concludes with an overall discussion of the proposed

approach.
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4.1 PSL

In this chapter, the formalism used to infer an integrated structure over returned

LD search results is PSL [Bach et al., 2015].

As in the MLN approach in Chapter 3, here too we contribute a set of PSL

rules, over an extended version of the target meta-model used there. The rules

express probabilistic relationships between triples in the search results. After the

rules have been converted into a PSL program, the PSL implementation uses the

returned results to instantiate the target meta-model, thereby yielding an integrated,

structured view over the results. As with Markov Logic, PSL combines a first-order

logic syntax for rules with Markov networks to yield a unifying formalism where

logical predicates are grounded into nodes in an undirected graphical model. In

contrast with MLNs, logical predicates in PSL take soft truth values from the interval

[0, 1], rather than 0 or 1 values only. This enables the introduction of similarity

functions as a modelling construct. In what follows, we briefly introduce PSL by

describing its syntax, semantics, learning, and inference tasks. We provide examples

for making inferences over the database shown in Figure 4.1, which describes a small

part of the publication domain.

Document
DocumentID Title

d1 t1
d2 t2
d3 t3
d4 t4

Author
DocumentID Author

d1 a1
d1 a2
d2 a3
d3 a4
d4 a1
d4 a2

Figure 4.1: Example database describing few publications, with attribute table for
documents (Document) and table describing the authorship relation (Author)
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4.1.1 PSL Syntax

We start with a number of basic definitions.

Definition 7. A PSL program is a set of weighted first-order logic formulae of

the form w : A← B, where w is a non-negative weight, B is a conjunction of literals

and A is a single literal. If the weight w is a very large number that tends to ∞,

then the rule is called a constraint and is denoted by the prefix c.

Definition 8. A term is either a constant or a variable. A constant is denoted by

a quoted string, e.g., "child", whereas a variable is denoted by an identifier which

begins with a capital case letter followed by zero or more letters, e.g., Author.

Definition 9. A predicate is a relation between terms given by a unique identifier

and terms it accepts as arguments. For example, SameDocument(A,B) defines a

predicate named SameDocument which accepts two arguments given by the variables

A and B.

Definition 10. An atom is a predicate with zero or more arguments. If there are

no variables in the arguments of the atom, then it is called a ground atom.

Definition 11. A literal is an atom or its negation.

A PSL program is similar to an MLN in the sense that it uses weighted first-order-

logic rules to define models. However, unlike an MLN, only universally quantified

predicates are allowed in PSL. Furthermore, in contrast to an MLN, weights in

PSL cannot be negative. Also, whereas MLNs defined over Boolean variables, a

PSL program is defined over continuous variables that take on values in the interval

[0, 1].

To define a program, PSL uses a syntax that has features of classical first-order

logic and of object-oriented languages. Consider the example PSL program in List-

ing 4.1
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// rules

3.5: SameDocument(A,B) ←̃ SimTitle(A.Title , B.Title) ∧̃
{A.Author} SimSetEq[SimAuthor] {B.Author}

c : SameDocument(A,C) ←̃ SameDocument(A,B) ∧̃
SameDocument(B,C)

// prior

0.1: ¬̃ SameDocument(B,C)

Listing 4.1: A PSL program describing the publication database in Fig. 4.1

The semantics, including the tilde-capped connectives, is explained below but,

intuitively, this PSL program states that, given any individuals a and b (specific

documents in the case of this example) instantiating the variables A and B, the rules

make a claim that a and b are similar if they have similar titles and similar sets of

authors. The above rules assume that the predicates Title(D, T) and Author(D,

A) are defined to capture the relationships shown in Figure 4.1. In Listing 4.1,

A.Title is a variable that denotes the range of the Title relationship for a given

A. If we wanted to denote the domain of the Title relationship, then we would

write A.Title(inv). For instance, given the example in Figure 4.1, if A = d1, then

A.Title = t1, and if A = t1, then A.Title(inv) = d1. Variables can also be used

to denote sets of individuals. For instance, in Listing 4.1, {A.Author} denotes the

set of authors related to a document in our running example. Thus, if A = d4, then

{A.Author} = {a1,a2}.

Atoms in PSL can be user-defined. Thus, a binary predicate SimTitle can

denote a user-defined similarity function that returns truth values in [0, 1]. Atoms

in PSL can also capture relationships between sets of individuals. For example, the

truth value of {A.Author} SimSetEq[SimAuthor] {B.Author} is the similarity of

the respective sets of individuals {A.Author} and {B.Author} as a function of, and

parametrized by, the user defined predicate SimAuthor and computed as follows:

SimSetEq[SimAuthor] =

∑
i∈{A.Author}

∑
j∈{B.Author} SimAuthor(i, j)

|{A.Author}|+ |{B.Author}|
(4.1)
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The value of SimAuthor can either be observed, i.e., given as evidence, or inferred

through other rules.

PSL allows to define a prior over query predicates. A prior is a weighted rule,

which has a negative literal as a head and an empty body, and it is often assigned

a small weight. Priors ensure that the most probable value for any given ground

query atom is 0 unless there is evidence that suggests otherwise. In Listing 4.1 a

prior is defined for the SameDocument(B,C) query predicate which ensure that no

two documents are the same unless there is evidence, which is assimilated by other

rules, that suggests the two documents are probably the same.

Weighted rules in PSL define uncertain relationships that may hold. On the other

hand, a constraint defines a rule that must not be violated. The example shown in

Listing 4.1 defines a transitivity constraint that must hold for the SameDocument

relationship.

4.1.2 PSL Semantics

Definition 12. An evidence predicate is a predicate that ground atoms of which

are completely observed, i.e., the soft truth values of the ground atoms are observed.

If the soft truth values of a ground evidence predicate is not observed, then it is

assumed to be 0.

Definition 13. A query predicate is a predicate that ground atoms of which are

unobserved, i.e., the soft truth values are of the ground atoms are unknown.

As in MLNs, a PSL program is grounded in a Markov network given some input.

The input to a PSL program (in inference and learning tasks) consists of a speci-

fication of both evidence (e.g, Title and Author) and query (e.g., SameDocument)

predicates, and input data that is pre-processed in the form of ground atoms that

are expressed in terms of the specified predicates. For the evidence predicates, the

value of the ground atoms are completely observed, i.e., all evidence atoms are as-

signed a soft truth value in [0, 1]. For query predicates, the value of the ground
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SameDocument(d1,d2) SimTitle(d1.Title,d2.Title)

SimSetEq({d1.Author},{d2.Author})

SameDocument(d1,d1) SimTitle(d1.Title,d1.Title)

SimSetEq({d1.Author},{d1.Author})

SameDocument(d2,d2) SimTitle(d2.Title,d2.Title)

SimSetEq({d2.Author},{d2.Author})

SameDocument(d2,d1) SimTitle(d2.Title,d1.Title)

SimSetEq({d2.Author},{d1.Author})

Figure 4.2: The Markov network created by grounding the first rule in Listing 4.1
using two individuals

atoms is unobserved. Note that if a ground atom does not have a specified value,

i.e., unobserved, it will have a default value of 0 if its predicate is an evidence pred-

icate or it will remain unobserved if the predicate is a query predicate. Similar to

MLNs, the rules are grounded in a Markov network where nodes in the network

correspond to ground atoms in the input, and edges are created between two nodes

if the corresponding ground atoms occur in a ground rule. Figure 4.2 illustrates the

ground network created for the rules in Listing 4.1 given the two documents d1 and

d2 in Figure 4.1.

The main difference between PSL and Markov logic is that the ground nodes take

values in the interval [0, 1]. To perform inference, the degree to which a ground rules

is satisfied from its constituent atoms requires relaxing (with respect to the Boolean

definitions) the semantics of the logical connectives. PSL uses the  Lukasiewicz t-

norm and its corresponding co-norm to relax the logic AND and OR, respectively.

The relaxation is exact for the extremes, i.e. 0 and 1, and provide a consistent

mapping for all other values.

To distinguish them from their the Boolean operators, the relaxed connectives
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notated with a capping tilde are defined as follows:

a ∧̃ b = max{0, a + b− 1} (4.2)

a ∨̃ b = min{a + b, 1} (4.3)

¬̃ a = 1− a (4.4)

Then, A ←̃B ≡ ¬̃B ∨̃A. For example, if the values of the ground atoms a and b

are 0.7 and 0.5, respectively, then based on equations 4.2 and 4.3 the value of a ∧̃ b

is 0.2 and the value of a ∨̃ b is 1.

In order to perform inference over a ground network, the following probabilistic

distribution is assumed over the network:

P (Y|X) =
1

Z
exp

[
−
∑
r∈R

wrdr

(
I(yr, xr)

)p ]
(4.5)

Where Y is the set of query ground atoms, X is the set of evidence atoms, Z is

a normalizing constant that integrates over all possible assignments, R is a set of

ground rules , wr is the weight corresponding to the ground rule r ∈ R, xr is the

evidence ground atoms in r, and yr is the query ground atoms in r. Given a set

of ground atoms A = {a1, . . . , an} and a set of ground rules R = {r1, . . . , rn}, an

interpretation function I assigns truth values to atoms in A and rules in R. Note

that the interpretation of a ground rule is computed using formulas 4.2 – 4.4. Given

a ground rule r and its interpretation I(r), the function dr defines the distance-to-

satisfaction for the given ground rule as follows:

dr = 1− I(r) (4.6)

For example, if SimTitle(d1.Title, d2.Title) is 0.7, the truth

value of {d1.Author} SimSetEq[SimAuthor] {d2.Author} is 1.0, and

SameDocument(d1,d2) is assigned the value 0.4, then the truth value of the
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Algorithm 4.1 MAP inference in PSL (as quoted from [Bröcheler et al., 2010])

1: I0(Y)← init. unknown to zeros
2: R← intital ground rules obtained byI(X) ∪ I0(Y)
3: while R has been updated do
4: i← current iteration
5: O ← generateOptimizationProb(R)
6: Ii ← optimize(O)
7: for y ∈ Y do
8: if Ii(y) > 0.01 then
9: Ry ← ground rules containing y

10: R← R ∪Ry

11: end if
12: end for
13: end while

first rule in Listing 4.1 (i.e., the truth value assigned by the interpretation function

I) is min{max{0, 0.7 + 1.0 − 1} + 0.4, 1} = 0.7, and the distance-to-satisfaction

is 0.3. Note, that a rule is satisfied if the distance to satisfaction is 0. Finally, p,

in the above probabilistic distribution, takes a value in [1, 2]. It defines a penalty

for not satisfying a rule. In most SRL approaches the penalty for not satisfying

ground a ground rule is linear (i.e., p = 1) [Bröcheler et al., 2010]. A squared

penalty, however, provides a better trade-off between different forms of potentially

conflicting forms evidence [Bach et al., 2015], which is our desired goal in using

PSL, so we adopt it.

4.1.3 PSL Inference

The inference process in PSL takes as input a PSL program, a specification of both

query and evidence predicates and observed truth values of ground evidence atoms.

The output of the inference process is the inferred probabilities of ground query

atoms.

The inference process in PSL is a type of maximum a posteriori (MAP) inference,

where the goal is to find a joint assignment of truth values to a set of query predicates,

given the observed values of the evidence predicates. For instance, in our running
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example, we would like to predict which documents are the same given the titles and

the authors of each document. In PSL, inference is tantamount to finding the truth

values of ground query atoms that minimize the distance-to-satisfaction of ground

rules. This is formulated as the following optimization problem:

arg max
y

P (Y|X) = arg max
y∈[0,1]

[
−
∑
r∈R

wrdr

(
I(yr, xr)

)p]

= arg min
y∈[0,1]

[∑
r∈R

wrdr

(
I(yr, xr)

)p] (4.7)

The ground network is transformed into a convex optimization problem whose

solution provides the truth assignment of the ground query atoms. In contrast with

the sampling inference approach that is implemented over MLNs, PSL’s optimization

approach to inference does not require the full ground network to be constructed

at once [Bach et al., 2015; Bröcheler et al., 2010]. PSL’s optimization approach

makes an implicit assumption that, by default, all ground atoms have zero value,

unless there is evidence which suggests otherwise. It then performs a lazy grounding

technique that grounds atoms that have non-zero values. Adopting this technique

mitigates the problem of memory footprint, which is one of the reasons for the more

efficient inference in PSL compared to Markov logic, in which, by default, all ground

atoms have probability 0.5. MLNs inference first generates the full ground network,

then adjusts the initial probability as more evidence is provided. Sampling over a

full ground MLN is less efficient than using PSL’s optimization approach [Beltagy

et al., 2014]. Having an efficient inference process is, of course, a desirable property

because it allows us to scale the rule base with additional rules and types of evidence

compared to what would be possible with MLNs.

PSL’s inference procedure is summarized in Algorithm 4.1. To illustrate how the

inference procedure works, assume the PSL program given in Listing 4.2. Assume the

set {X(a) = 1, X(b) = 0.8, Z(a,b) = 1.0} as evidence, and the query predicate

is Q(a,b). The changes in the ground network as the inference proceeds are shown
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(a) Round 0

X(a)  =  1 X(b)  = 0 .8

Y(a,b)

Z(a ,b)  =  1 Q(a,b)

(b) Round 1

X(a)  =  1 X(b)  = 0 .8

Y(a,b)  = 0.8

Z(a ,b)  =  1 Q(a,b)

(c) Round 2

X(a)  =  1 X(b)  = 0 .8

Y(a,b)  = 0.8

Z(a ,b)  =  1 Q(a ,b)  =  0 .8

inac t ive  ne twork observed variables query variables

Figure 4.3: An example of PSL’s iterative inference process

w1: Y(A,B) ←̃ X(A) ∧̃ X(B)

w2: Q(A,B) ←̃ Y(A,B) ∧̃ Z(A,B)

C : ¬̃Y(A,A) ←̃ X(A)

Listing 4.2: A simple PSL program used for illustrating PSL inference algorithm

in Figure 4.3. As per Algorithm 4.1, the initial ground network (round 0 in Fig. 4.3)

contains single activated ground rule, i.e, the first rule in Listing 4.2. The unknown

variable in this rule is Y(a,b). After running the optimization step, Line 6 in

Algorithm 4.1, which infers that Y(a,b) = 0.8, the second rule gets activated and

the ground network now contains two ground nodes that corresponds to both rules

in Listing 4.2. Given the change to the ground network, the optimization step is

executed again, this time inferring a value of 0.8 for the query node Q(a,b). Since

the second execution of the optimization step does not activate any new rules, the

algorithm terminates with the assignments shown in Round 2 in Figure 4.3.

4.1.4 PSL Weight Learning

The PSL weight learning takes as input a training dataset and an unweighted PSL

program and it computes the optimal weights of the PSL rules by maximizing the

likelihood of the training data. As in the inference process, the weight learning task

takes as input a specification of both evidence and query predicates. The difference
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is that the query ground atoms should be instantiated.

The goal of the weight learning task in PSL is to assign weights to each rule

in the rule base so as to maximize the probability of the training data, i.e., the

probability of ground query predicates given the evidence. In PSL, this requires

finding the partial derivative of the log-likelihood of the training data with respect

to the weights, as follows:

∂

∂Wr

logP (Y|X) = EW

[
Φ(Y|X)

]
− Φ(Y|X) (4.8)

where

Φ(Y|X) =
∑
r∈R

wrdr

(
I(yr, xr)

)p
(4.9)

and EW is the expectation of the distance-to-satisfaction according to the current

estimate of parameters W . Since computing the expectation is intractable in gen-

eral [Kimmig et al., 2015], PSL’s maximum pseudo-likelihood estimation (MPLE)

learning method approximates the expectation by computing the pseudo-likelihood

through conditioning the values of query predicates Y on their immediate neigh-

bours, i.e., values of X which appear in the same ground rule [Bach et al., 2015].

Another style of learning that is supported by PSL is called Large-Margin Estima-

tion (LME). This style of learning drops the probabilistic interpretation of the PSL

model and views inference as a prediction problem. The learning task focuses on

finding weights Wr that produce highly accurate predictions given the training data.

This learning approach is useful, as shown in Section 4.3.4, for learning weights that

enable accurate classification of resources based on their RDF annotations. PSL

also supports an expectation maximization (EM) style of learning. EM is a stan-

dard learning method where the data is not fully observed [A. P. Dempster, 1977]. In

PSL, expectation maximization alternates between running inference on the query

predicates and updating the weights of the rules. As we will see in Section 4.3,



4.2. INTEGRATING LD SEARCH RESULTS USING PSL 105

we use the EM learning style to learn the weights of feedback rules. The reason

for adopting EM for learning the weights of feedback rules is because we make an

assumption that feedback is obtained on a sample of the inferred results. Thus, the

values of the feedback predicates (see Section 4.2.3) are not fully observed. Hence

the use of EM learning in this case.

4.2 Integrating LD search results using PSL

We now describe our PSL-based approach for integrating LD search results. To

guide the discussion that follows, we will use the RDF from of the search results

shown in Figure 4.5.

Our approach can be summarized as follows. Firstly, as in our MLN approach, we

define a meta-model (shown in Figure 4.4) that characterizes the inferred structure

of the target reports. The main types in our meta-model are Entity, EntityType,

Property, and PropertyValue. The main difference between this an the previous

model (in Figure 3.5) is that it reflects the PSL capability of defining similarity

relationships over soft truth values that Markov logic lacks. It extends the pre-

vious meta-model with similarity relationships (i.e., SimEntity, SimEntityType,

SimProperty and SimPropertyValue) between instances of the meta-types in order

to identify duplications in the results. Similar to the meta-model shown in Fig-

ure 3.5, this meta-model defines a HasType relationship, which relates individuals

in the extent of the tabular report to their inferred entity types. We have also

defined a HasProperty relationship, which relates the properties of individuals to

their inferred types. In addition, we define the HasDomain and HasPropertyValue

relationships. The HasDomain relationship relates a property value (either a URI

or a literal) to a property (a URI), where the first is a value and the second is

a property that characterises the domain of the value. The HasPropertyValue

relationship relates a value to an entity. The last two relationships are useful in
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dbr:Talia_Shire
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ShireShire

foaf:Person

wd:Q215627

umbel-rc:Actor

foaf:givenName
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Figure 4.5: A RDF Sub-graph for some of the results returned for the search terms Godfather actors
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modelling the similarity between instances of Entity and Property, as explained

later in Section 4.2.1.

Figure 4.4: The meta-model for population with LD search results.

Next, we express the semantics of the meta-model using unweighted PSL rules.

We define a set of rules that build on syntactic evidence alone. We refer to this

set of rules as the baseline model, denoted by B. In order to assimilate semantic

evidence, we add rules to B that build on additional ontological evidence extracted

from LD vocabularies. We refer to this model as the semantic model, denoted by S,

where S ⊃ B. Using the dataset compiled from LD search results (see Section 3.3.2)

and a set of ontologies, we use a PSL implementation1 to learn the weights of the

rules in S and obtain the corresponding PSL program PSL(S) This also yields

PSL(B), i.e., the subset of PSL(S) which contains only those rules in B. Then,

given the returns of an LD search and domain ontologies, we use PSL inference

from PSL(S) to populate a meta-model with the most probable characterization of

the returned results. In order to assimilate evidence from user feedback, we have

defined a separate set of rules, which we refer to as the feedback model, denoted by

PSL(F). In order to obtain weights for rules in PSL(F), we generated synthetic

feedback based on the results of PSL(S) and used the same PSL implementation.

The PSL program obtained by PSL(S) ∪ PSL(F), simply referred to as PSL(F),

integrates LD search results given syntactic, semantic and feedback evidence.

1github.com/linqs/psl

github.com/linqs/psl
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/* Pre -processing RDF triples into mapped evidence predicates */

C1 : RDFSubject(S) ←̃ Triple1(S,P,O)

C2 : RDFSubject(S) ←̃ Triple2(S,P,O)

C3 : RDFPredicate(P) ←̃ Triple1(S,P,O)

C4 : RDFPredicate(P) ←̃ Triple2(S,P,O)

C5 : RDFType(T) ←̃ Triple1(S,"rdf:type",T)

C6 : RDFIsInstOf(S,T) ←̃ Triple1(S,"rdf:type",T)

C7 : RDFSubjPredicate(S,P) ←̃ Triple1(S,P,O)

C8 : RDFSubjPredicate(S,P) ←̃ Triple2(S,P,O)

C9 : Label(S,O) ←̃ Triple1(S,P,O) ∧̃
IsLabel(P)

C10: Label(S,O) ←̃ Triple2(S,P,O) ∧̃
IsLabel(P)

C11: Name(S,O) ←̃ Triple1(S,P,O) ∧̃
IsName(P)

C12: Name(S,O) ←̃ Triple2(S,P,O) ∧̃
IsName(P)

Listing 4.3: Pre-processing constraints

4.2.1 The Baseline Model: Assimilating Syntactic Evidence

The key ethos of our approach is that we postulate uncertain relationships between

RDF triples returned by the search results and instantiations of our meta-model

using PSL rules. Correspondingly, the first step in the construction of a baseline

model is to map, using syntactic evidence, RDF triples onto predicates that assert

membership of meta-model constructs. To achieve this mapping, we employ three

types of rules in the baseline model. First, we define a number of pre-processing

rules as hard constraints to instantiate a mapped form of RDF triples. Second, we

use RDF triples in their raw and mapped forms as evidence to define membership

rules that infer meta-model predicates. Last, we define a number of similarity rules

that enables de-duplicating of instances in our target meta-model.

Pre-processing Constraints

Raw RDF triples in the search results are represented using the evidence predicates

Triple1 and Triple2. This allows us to distinguish between triples that contain a

URI from triples that contain a literal in the object position without the need to

adding additional predicates that distinguish between values in the object position as
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/* Property rule using pre -processed triple predicates */

R1: Property(P) ←̃ RDFSubjPredicate(S,P) ∧̃ RDFIsInstanceOf(S,T)

/* Property rule using raw triple predicates */

R2: Property(P) ←̃ Triple1(S, P, O) ∧̃ Triple1(S,"rdf:type",T)

Listing 4.4: Rules for inferring Property using triple and pre-processed relations

discussed in Section 3.3.1 . We further pre-process Triple1 and Triple2 predicates

using the PSL constraints shown in Listing 4.3 to infer a mapped form of triples. For

example, rule C6 concludes that two URIs S and T are related by RDFIsInstOf based

on the evidence of an RDF triple of the form S rdf:type T. Rules C9 to C12 utilize

user-defined functions (i.e, IsName and IsLabel) to populate the Name and Label

relations. These functions return 1.0 if the local name of the RDF property contains

the keyword label or name. Examples of RDF properties that are matched using

C9 to C12 rules in Figure 4.5 include: rdfs:label, foaf:name, movie:actor name,

and geonames:name. Their values often contain human-readable descriptions of

RDF resources which are useful in finding descriptions of similar entities. In our

experimental dataset, 92% of the resources are annotated with an RDF predicate

that contains the label keyword, and 100% are annotated with an RDF predicate

that contains the keyword name. Note that, by definition, PSL constraints are

certain, hence the uncertainty described earlier is not addressed using the rules in

Listing 4.3. We address the uncertainty of relationships between the RDF triples

and instantiations of our meta-model using the rules in subsequent listings.

Pre-processing triples in this a way allows us to write shorter forms of subsequent

rules, which leads to a smaller ground network, which makes the learning and infer-

ence processes more efficient. For example, Figure 4.6 shows the difference in the

growth of the number of ground rules created for the rules in Listing 4.4 as the num-

ber of input triples increases. As shown in Figure 4.6, the footprint of the ground

network in memory for a rule-base that uses Triple relations grows much faster

than the rule-base which uses a pre-processed form of triples, which makes learning
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Figure 4.6: The effect of using pre-processed relations in the size of the ground
network

an inference less efficient if we were to use triple relations only in our prospective

rule-base.

In addition, pre-processing triples into binary relations between the constituents

of RDF triples allows us to write rules that take advantage of PSL set aggregation.

In PSL, using rules that aggregate over sets generates a ground Markov network

with fewer nodes when compared to writing rules over elements of sets.

Membership Rules

The second type of rule in our baseline model is membership rules. As the name

suggests, these rules express membership in some construct in the meta-model in

Figure 4.4. Unlike pre-processing rules, membership rules are uncertain. The uncer-

tainly is reflected in rule weights that are learned from sample data, as described in

Section 4.3. As mentioned in Chapter 3, there is uncertainty because mapping RDF

triples onto constructs in our meta-model only holds with some likelihood, and this,

in turn, is because of non-uniform publication practices for LD resources and the

uncertainty associated with the qualities of search results. An additional amount of
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/* Inference of meta -model instantiations */

R1: EntityType(T) ←̃ RDFSubject(S) ∧̃
RDFIsInstOf(S,T)

R2: EntityType(T) ←̃ RDFSubject(S) ∧̃
RDFIsInstOf(S,T) ∧̃
IsDictWord(T)

R3: Entity(S) ←̃ RDFIsInstOf(S,T) ∧̃
EntityType(T)

R4: Property(P) ←̃ RDFSubjPred(S,P) ∧̃
Entity(S)

R5: PropertyValue(O) ←̃ Triple1(S,P,O) ∧̃
Entity(S) ∧̃
Property(P)

R6: PropertyValue(O) ←̃ Triple2(S,P,O) ∧̃
Entity(S) ∧̃
Property(P)

R7: HasPropertyValue(S,O) ←̃ Triple1(S,P,O) ∧̃
Entity(S) ∧̃
Property(P)

R8: HasPropertyValue(S,O) ←̃ Triple2(S,P,O) ∧̃
Entity(S) ∧̃
Property(P)

R9: HasDomain(O,P) ←̃ Triple1(S,P,O) ∧̃
Entity(S) ∧̃
Property(P)

R10: HasDomain(O,P) ←̃ Triple2(S,P,O) ∧̃
Entity(S) ∧̃
Property(P)

R11: HasType(S,T) ←̃ RDFIsInstOf(S,T) ∧̃
EntityType(T)

R12: HasProperty(T,P) ←̃ RDFPredicate(P) ∧̃
RDFType(T) ∧̃
{P.RDFSubjPred(inv)} SimSetEq[URI]
{T.RDFIsInstOf(inv)}

Listing 4.5: Membership rules

uncertainty stems from using syntactic matchers to infer similarity between instances

of constructs in our meta-model.

The bodies of the rules in Listing 4.5 show how RDF triples in their raw

form (e.g., R5 using a Triple1 predicate) or in mapped form (e.g., R2 using an

RDFIsInstOf predicate) provide evidence for meta-model membership predicates.

For example in Rule R1, a returned RDF triple S rdf:type T counts as evidence

that T is an entity type. In the baseline model, as in our MLN approach, atoms that

appear in the head (and, hence, are inferred) may appear in rule bodies as further

evidence. This allows us to propagate uncertain inferences using the structure of the
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rule base. User-defined functions also count as evidence in our model. For example,

in Rule R2, the function IsDictWord provides additional evidence that supports the

inference of entity types. Consider again the example search results in Figure 4.5.

Given the membership rules of the baseline model, and assuming that the rules

have equal weights, EntityType(Movie) would be inferred with more probability

than EntityType(Q386724) because the former satisfies Rules R1 and R2, whereas,

Property(birthDate) would be more probable than Property(spouse) because

the latter is a predicate of fewer resources.

To infer the HasProperty relationship between RDF types and predicates,

R12 utilizes PSL set similarity (i.e., using SimSetEq[URI]) constructs. Fig-

ure 4.7 illustrates the intuition behind the HasProperty rule. The idea is that

a HasProperty relationship is more likely when RDF types and predicates co-

occur in a given set of resources. This co-occurrence in RDF resources is com-

puted using set similarity constructs in PSL. Based on our running example, the

probability of HasProperty(Person, surname) is greater than the probability of

HasProperty(Person, spouse) because surname is a predicate of more resources

than spouse.

In the problem at hand, note that the inference of the HasProperty relation-

ship is akin to inferring OWL domain restriction axioms from LD search results. In

here, we use the co-occurrence between candidate properties and types as a heuris-

tic for the inference of this relation. The intuition behind using co-occurrence to

infer the HasPropoerty relationship is illustrated in the following example based

on the DBpedia ontology. In DBpedia, the RDF properties dbo:academyAward

and dbo:birthDate both co-occur with the RDF type dbo:Person in a number of

resources. The property dbo:academyAward co-occurs with the type dbo:Person

only in 48 resources, whereas dbo:birthDate co-occurs with the same RDF type in

87, 872 resources. This indicates that the type dbo:Person is a more suitable do-

main restriction to the property dbo:birthDate than dbo:academyAward. In fact
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Figure 4.7: An illustration of the intuition of using set similarity to infer the
HasProperty relation.

the DBpedia ontology explicitly restricts the domain of dbo:birthDate to by the

type dbo:Person, whereas the domain of the property dbo:academyAward is the

RDF type dbo:Artist.

Last, we define a prior rules for each query predicate in our PSL model to indicate

lower prevalence of meta-model constructs to URIs and literals in the absence of

evidence. As additional evidence is assimilated, the prior will have less effect in the

prediction of the meta-model construct.

Similarity Rules

In order to identify semantic correspondences between the instances of the meta-

types (i.e., Entity, EntityType, Property and PropertyValue), we define rules to

infer similarity relationships. The bodies of the rules in Listing 4.6 show how the

similarity relationships can be inferred from user-defined predicates (such as LexSim

in, among others, Rule R13) and from user-provided definitions of set similarity (such

as SimSetEq[] in, among others, Rule R13). These rules assimilate evidence obtained

from syntactic similarity scores to derive the probability of similarity relationships.

The advantage of using a declarative approach to infer similarity is that it allows

us to incorporate different matching functions. In our model, we compute a value

for LexSim using cosine similarity for strings with length greater than fifty and
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R13: SimPropertyValue(V1 ,V2) ←̃ PropertyValue(V1) ∧̃
PropertyValue(V2) ∧̃
LexSim(V1 ,V2)

R14: SimEntityType(T1 ,T2) ←̃ EntityType(T1) ∧̃
EntityType(T2) ∧̃
LexSim(T1 ,T2)

R15: SimEntityType(T1 ,T2) ←̃ EntityType(T1) ∧̃
EntityType(T2) ∧̃
{T1.HasProperty}

SimSetEq[SimProperty]
{T2.HasProperty}

R16: SimEntity(E1 ,E2) ←̃ Entity(E1) ∧̃
Entity(E2) ∧̃
Label(E1 ,L1) ∧̃
Label(E2 ,L2) ∧̃
LexSim(L1 ,L2)

R17: ¬̃SimEntity(E1,E2) ←̃ Entity(E1) ∧̃
Entity(E2) ∧̃
Label(E1 ,L1) ∧̃
Label(E2 ,L2) ∧̃
¬̃LexSim(L1 ,L2)

R18: SimEntity(E1 ,E2) ←̃ Entity(E1) ∧̃
Entity(E2) ∧̃
Name(E1,N1) ∧̃
Name(E2,N2) ∧̃
LexSim(N1 ,N2)

R19: ¬̃SimEntity(E1,E2) ←̃ Entity(E1) ∧̃
Entity(E2) ∧̃
Name(E1,N1) ∧̃
Name(E2,N2) ∧̃
¬̃LexSim(N1 ,N2)

R20: SimEntity(E1 ,E2) ←̃ Entity(E1) ∧̃
Entity(E2) ∧̃
{E1.HasPropertyValue}

SimSetEq[SimPropertyValue]
{E2.HasPropertyValue}

R21: SimProperty(P1 ,P2) ←̃ Property(P1) ∧̃
Property(P2) ∧̃
LexSim(P1 ,P2)

R22: SimProperty(P1 ,P2) ←̃ Property(P1) ∧̃
Property(P2) ∧̃
{P1.HasDomain(inv)}

SimSetEq[SimPropertyValue]
{P2.HasDomain(inv)}

Listing 4.6: Similarity rules

Levenshtein (or edit) distance otherwise.

Given that resources that occur in search results are often described using dif-

ferent heterogeneous vocabularies, traditional entity resolution techniques cannot
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lmdb:film/81 102102
movie:runtime

dbr:Casablanca_(film) 102102
dbo:Work.runtime

Sample Triples

Property Value Set Overlap

102

175
162

132
82

200

41.37

movie:runtime.HasDomain(inv) dbo:Work/runtime.HasDomain(inv)

Figure 4.8: Property matching using overlapping sets of object values.

be used because they assume aligned vocabulary elements (i.e., types and proper-

ties) [Elmagarmid et al., 2007]. We do not have prior evidence of alignment between

vocabulary elements (except for a few cases as discussed in Section 4.2.3). Thus,

Rules R16-R19 use the Name and Label attributes as evidence of similarity. Rule R20

treats an entity as a set of property values, and infers similarity between entities

from the overlap of property value sets. Rule R22 uses object overlap (a metric

that is commonly used to align properties [Zapilko and Mathiak, 2014; Gunaratna

et al., 2013]) to infer similarity of properties. In the case of SimProperty, the set

similarity predicate (i.e., SimSetEq[]) is parametrized by the values in the domain

of the HasDomain relation, as illustrated in Figure 4.8

4.2.2 The Semantic Model: Adding Ontological Evidence

The baseline model only assimilates syntactic evidence. We can extend it with rules

that assimilate evidence from ontologies to yield the model we call semantic. Ontolo-

gies are computational artefacts that formally describe concepts and relationships
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Ontological Statement PSL Predicate

T rdfs:label L Label(T,L)

P rdfs:label L Label(P,L)

T rdf:type rdfs:Class OntType(T)

T rdf:type owl:Class

P rdf:type rdf:Property OntProperty(P)

P rdf:type owl:DatatypeProperty

P rdf:type owl:ObjectProperty

T1 owl:equivalentClass T2 OntEqType(T1,T2)

P1 owl:equivalentProperty P2 OntEqProperty(P1,P2)

T1 owl:disjointWith T2 OntDisjointType(T1,T2)

T1 owl:complementOf T2

P rdfs:domain T OntHasProperty(T,P)

Table 4.1: Mapping ontological statements into PSL predicates

in a given domain. Thus, in terms of the meta-model we target, they describe en-

tity types and their properties and provide evidence that complements the baseline

model described above. Our approach is to make use of statements in ontologies

about types and properties. This is then used to ground predicates that represent

ontological evidence. Ontological evidence from LD vocabularies can be classified

as: (i) syntactic knowledge in the form of text that is used to annotate an ontology

construct, such as labels (e.g., rdfs:label) and comments (e.g, rdfs:comment);

and (ii) semantic knowledge in the form of relationships between ontological con-

structs such as RDF class subsumption (e.g., rdfs:subClassOf) and equivalence

(e.g., owl:equivalentClass). Table 4.1 shows the different kinds of evidence we

extract from ontologies and how it is mapped into PSL predicates.

As we have done in the baseline model, we define a number of PSL constraints,

i.e., rules that are assigned infinite weights during inference, (see Listing 4.8) that

populate PSL predicates representing ontological evidence from triples found in LD

vocabularies. Some of these constraints (e.g., rules C30-C38) are inspired by the ter

Horst RDFS/OWL entailment rules [ter Horst, 2005a]. These constraints allows us

to infer ontological evidence beyond what is explicitly defined by the vocabularies. In

other words, we use these rules to instantiate a number of unary (e.g., OntType) and

binary (e.g., OntEqType) predicates which are used in subsequent rules to assimilate

ontological evidence. For example, if the triples in the Listing 4.7 are defined in an

input vocabulary, in addition to evidence drawn from explicit relations given by the
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triples, Rule C37 in Listing 4.8 adds, among others, OntDisjointTypes(dbo:Film,

dbo:Actor) to the pool of ontological evidence.

dbo:Film rdfs:subClassOf dbo:CreativeWork .

dbo:Actor rdfs:subClassOf dbo:Person .

dbo:CreativeWork owl:disjointWith dbo:Person

Listing 4.7: An example of ontological triples

C13: Label(T,L) ←̃ OntTriple(T,"rdfs:label",L) ∧̃
OntType(T)

C14: Label(P,L) ←̃ OntTriple(P,"rdfs:label",L) ∧̃
OntProperty(P)

C15: OntType(T) ←̃ OntTriple(T,"rdf:type","rdfs:Class")

C16: OntType(T) ←̃ OntTriple(T,"rdf:type","owl:Class")

C17: OntProperty(P) ←̃ OntTriple(P,"rdf:type","rdf:Property ")

C18: OntProperty(P) ←̃ OntTriple(P,"rdf:type","owl:DatatypeProperty ")

C19: OntProperty(P) ←̃ OntTriple(P,"rdf:type","owl:ObjectProperty ")

C20: OntAnnotProperty(AP) ←̃ OntTriple(AP ,"rdf:type","owl:AnnotationProperty ")

C21: OntHasProperty(T,P) ←̃ OntTriple(P,"rdfs:domain",T)

C22: OntHasProperty(T,P) ←̃ OntTriple(P,"rdfs:domain",ListID) ∧̃
InList(ListID ,T)

C23: OntEqType(C1,C2) ←̃ OntTriple(C1 ,"owl:equivalentClass",C2)

C24: OntEqProp(P1,P2) ←̃ OntTriple(P1 ,"owl:equivalentProperty",P2)

C25: OntSubType(C1 ,C2) ←̃ OntTriple(C1 ,"rdfs:subClassOf",C2)

C26: OntSubProperty(P1,P2) ←̃ OntTriple(P1 ,"rdfs:subPropertyOf",P2)

C27: OntDisjointTypes(C1 ,C2) ←̃ OntTriple(C1 ,"owl:disjointWith",C2)

C28: OntDisjointTypes(C1 ,C2) ←̃ OntTriple(C1 ,"owl:complementOf",C2)

C29: OntDisjointProps(C1 ,C2) ←̃ OntTriple(C1 ,"owl:propertyDisjointWith",C2)

C30: OntDisjointTypes(B,A) ←̃ OntDisjointTypes(A,B)

C31: OntEqType(B,A) ←̃ OntEqTypes(A,B)

C32: OntDisjointTypes(A2 ,B2) ←̃ OntEqType(A1,A2) ∧̃
OntEqType(B1,B2) ∧̃
OntDisjointType(A1,B1)

C33: OntDisjointType(B,C) ←̃ OntEqType(A,B) ∧̃
OntDisjointType(A,C)

C34: OntSubType(A1 ,A3) ←̃ OntSubType(A1,A2) ∧̃
OntSubType(A2,A3)

C35: OntEqType(A,B) ←̃ OntSubType(A,B) ∧̃
OntSubType(B,A)

C36: OntEqProp(A,B) ←̃ OntSubProperty(A,B) ∧̃
OntSubProperty(B,A)

C37: OntDisjointTypes(AS ,BS) ←̃ OntSubType(AS,A) ∧̃
OntSubType(BS,B) ∧̃
OntDisjointTypes(A,B)

C38: OntDisjointProps(AS ,BS) ←̃ OntSubProperty(AS ,A) ∧̃
OntSubProperty(BS ,B) ∧̃
OntDisjointTypes(A,B)

Listing 4.8: Ontology pre-processing constraints

In addition to constraints that populate PSL ontological predicates, we define a

set of rules that assimilate ontological evidence. The main idea is that being defined

as a concept or a property in some pertinent ontology counts as additional evidence

that the returned result (e.g, resource URI) is an entity or property, respectively, in
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R23: Entity(S) ←̃ RDFIsInstanceOf(S,OT) ∧̃
OntType(OT)

R24: Entity(S) ←̃ RDFIsInstanceOf(S,T) ∧̃
OntType(OT) ∧̃
LexSim(T,OT)

R25: Entity(S) ←̃ RDFIsInstanceOf(S,T) ∧̃
OntEqTypes(T,OT)

R26: Property(OP) ←̃ Entity(S) ∧̃
RDFSubjPredicate(S,OP) ∧̃
OntProperty(OP)

R27: Property(P) ←̃ Entity(S) ∧̃
RDFSubjPredicate(S,P) ∧̃
OntProperty(OP) ∧̃
LexSim(P,OP)

R28: Property(P) ←̃ Entity(S) ∧̃
RDFSubjPredicate(S,P) ∧̃
OntEqProps(P,OP)

R29: EntityType(OT) ←̃ RDFIsInstanceOf(S,OT) ∧̃
OntType(OT)

R30: EntityType(T) ←̃ RDFIsInstanceOf(S,T) ∧̃
OntType(OT) ∧̃
LexSim(T,OT)

R31: EntityType(T) ←̃ RDFIsInstanceOf(S,T) ∧̃
OntEqTypes(T,OT)

R32: HasProperty(OT ,OP) ←̃ RDFSubjPredicate(S,OP) ∧̃
RDFIsInstanceOf(S,OT) ∧̃
OntHasProperty(OT ,OP)

R33: HasProperty(T,OP) ←̃ RDFSubjPredicate(S,OP) ∧̃
RDFIsInstanceOf(S,T) ∧̃
OntHasProperty(OT ,OP) ∧̃
LexSim(T,OT)

R34: HasProperty(OT ,P) ←̃ RDFSubjPredicate(S,P) ∧̃
RDFIsInstanceOf(S,OT) ∧̃
OntHasProperty(OT ,OP) ∧̃
LexSim(P,OP)

R35: HasProperty(T,P) ←̃ RDFSubjPredicate(S,P) ∧̃
RDFIsInstanceOf(S,T) ∧̃
OntHasProperty(OT ,OP) ∧̃
LexSim(P,OP) ∧̃
LexSim(T,OT)

R36: HasType(S,OT) ←̃ RDFIsInstanceOf(S,OT) ∧̃
OntType(OT)

R37: HasType(S,T) ←̃ RDFIsInstanceOf(S,T) ∧̃
OntType(OT) ∧̃
LexSim(T,OT)

R38: HasType(S,T) ←̃ RDFIsInstanceOf(S,T) ∧̃
OntEqTypes(T,OT)

R39: SimProperty(P1 ,P2) ←̃ Property(P1) ∧̃
Property(P2) ∧̃
OntEqProps(P1,P2)

R40: SimProperty(P1 ,P2) ←̃ Property(P1) ∧̃
Property(P2) ∧̃
OntEqProps(OP1 ,OP2) ∧̃
OntSimURI(P1,OP1) ∧̃
OntSimURI(P2,OP2)

R41: SimProperty(P1 ,P2) ←̃ Property(P1) ∧̃
Property(P2) ∧̃
OntProperty(OP) ∧̃
OntSimURI(P1,OP) ∧̃
OntSimURI(P2,OP)

R42: SimEntityType(T1,T2) ←̃ EntityType(T1) ∧̃
EntityType(T2) ∧̃
OntEqType(T1,T2)

R43: SimEntityType(T1,T2) ←̃ EntityType(T1) ∧̃
EntityType(T2) ∧̃
OntType(OT) ∧̃
LexSim(T1,OT) ∧̃
LexSim(T2,OT)

R44: SimEntityType(T1,T2) ←̃ EntityType(T1) ∧̃
EntityType(T2) ∧̃
OntType(OT) ∧̃
{T1.HasProperty} SimSetEq[SimProperty]

{OT.OntHasProperty} ∧̃
{T2.HasProperty} SimSetEq[SimProperty]

{OT.OntHasProperty}

Listing 4.9: Rules the adds ontological evidence to our model
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C39: ¬̃SimEntityType(T1,T2) ←̃ EntityType(T1) ∧̃
EntityType(T2) ∧̃
OntDisjointTypes(T1 ,T2)

C40: ¬̃SimEntityType(T1,T2) ←̃ EntityType(T1) ∧̃
EntityType(T2) ∧̃
OntDisjointTypes(OT1 ,OT2) ∧̃
OntSimURI(T1,OT1) ∧̃
OntSimURI(T2,OT2)

C41: ¬̃SimEntity(E1,E2) ←̃ Entity(E1) ∧̃
Entity(E2) ∧̃
HasType(E1 ,T1) ∧̃
HasType(E2 ,T2) ∧̃
OntDisjointTypes(T1 ,T2)

C42: ¬̃SimEntity(E1,E2) ←̃ Entity(E1) ∧̃
Entity(E2) ∧̃
HasType(E1 ,T1) ∧̃
HasType(E2 ,T2) ∧̃
OntDisjointTypes(OT1 ,OT2) ∧̃
OntSimURI(T1,OT1) ∧̃
OntSimURI(T2,OT2)

Listing 4.10: Additional constraints which the assimilates ontological evidence to
our model

terms of our meta-model. Thus, we use the PSL predicates in Table 4.1 to construct

the rules in Listing 4.9 and the constraints in Listing 4.10. For example, if "The

Godfather" appears in a triple in the returned results as an instance of Movie, where

Movie is asserted to be a concept(e.g., in Movie Ontology2) this adds strength to

the belief that "The Godfather" is an instance of Entity in our meta-model (see

rule R23 in Listing 4.9). We also use ontological statements to supplement evidence

for similarity relationships (rules R39-R44).

Rule R42 exemplifies the direct use of ontological evidence. Rule R43 exemplifies

the direct use of ontological evidence mediated by lexical similarity. Rule R44 ex-

emplifies the use of set-similarity predicates where one of the sets contain elements

from ontological statements. In this case, ontological statements help reconcile the

heterogeneity in the returned results.

Finally, we define a number of constraints (C39-C42) that enforce any type

disjointness defined in pertinent ontologies by negating candidate SimEntity and

2www.movieontology.org/

www.movieontology.org/
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SimEntityType relations.

Subsuming the baseline model, the semantic model contains syntactic rules R1-

R22, rules R23-R44 that assimilate additional evidence to the predicates in the base-

line model, and the constraints C39-C42.

4.2.3 The Feedback Model: Assimilating User-Provided Ev-

idence

The semantic model assimilates syntactic and semantic evidence. We now extend it

with rules that assimilate user-provided evidence in the form of feedback.

There has been a growing interest in assimilating user feedback in data integra-

tion (see [Belhajjame et al., 2011] for a general proposal, and [Paton et al., 2016] for

a general methodology and recent work in the area). The use of feedback in data

integration arose because of the inadequacy of classical approaches to address the

integration of highly dynamic sources (e.g., Web resources), i.e., those that evolve

rapidly [Paton et al., 2012]. Classical data integration approaches are often charac-

terized as labour-intensive approaches, as they are heavily dependent on intensive

expert manual effort, aimed at the construction of high-quality semantic mappings

between data sources. Such approaches are effective but have proved to be too costly

in Web environments [Halevy et al., 2006]. The pay-as-you-go approach has emerged

as an attempt to achieve high-quality integration results at a reduced up-front cost.

This approach involves the use of automated techniques to discover mappings be-

tween data sources followed by improvement that requires user feedback. The idea

here is that the results of such automated techniques are sufficiently good to motivate

users make use of the resulting integration without any initial up-front investment.

The hope is that, through further interaction with the bootstrapped artefact, cost-

effective feedback can be procured that enables the incremental improvement of the

initial integration outcome. With recent advances in crowdsourcing systems [Doan

et al., 2011], feedback for solving complex data integration tasks can be obtained
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more cost-effectively.

Another reason for assimilating user-provided feedback as evidence in the context

of this dissertation is the intuition that combining ontological evidence and syntactic

evidence may not be sufficient to provide for robust accurate inference of instances

of our meta-model. For example, in our experiment, existing LOD vocabularies

(i) seldom use expressive meta-vocabulary constructs, and (ii) seldom use cross-

ontology links.

We surveyed 338 vocabularies (see Appendix B for detail on the survey methodol-

ogy) obtained from the Linked Open Vocabularies3 repository. Figure 4.10 provides

an overview on the meta RDF terms used in the surveyed vocabularies. The x-

axis gives a count of the distinct subject URIs for each RDF term shown in the

y-axis. It suggests that the construct most used in LOD vocabularies is rdf:type.

At the vocabulary-level, this construct is used to assert that an RDF term (i.e.,

RDF class or property) is a member of meta-classes defined by RDFS/OWL (e.g.,

owl:Class and rdf:Property). Vocabulary features, which our semantic evidence

rules rely upon, such as domain restriction (i.e., rdfs:domain), equivalence relations

(e.g, owl:equivalentClass) and disjointness axioms (e.g., owl:disjointWith) are

much less frequent. The less expressive a vocabulary, the less likely it will contribute

semantic evidence for the inference of instances of the target structure.

Our survey also shows a lack of reuse of ontologically defined terms. The total

number of ontological statements in these vocabularies was about 200K. Only 8.5%

of the statements are defined across ontologies (i.e, the subject and object of the

statement belong to different namespaces). Figure 4.9 shows the meta-vocabulary

features that are used to refer to external constructs. The y-axis shows the number

of distinct triples for each meta-predicate shown in the x-axis. The figure compares

the number of statements that are defined across (grey bars) versus the number of

statements that are defined within (dark bars) ontologies. As shown in Figure 4.9,

3lov.okfn.org/dataset/lov/
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Figure 4.10: Vocabulary predicates in the surveyed ontologies
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some features that we use to extract evidence from ontologies (e.g., rdfs:domain and

owl:disjointWith) are often only defined between resources in the same names-

pace. As the search results comes for different datasets, existing ontological evidence

may not be sufficient to align the RDF terms that occur in search results.

Figure 4.9: Meta-vocabulary predicates which are often used to link define cross-
ontology links.

Given the above, we use feedback to supplement the syntactic and ontological

evidence. In our approach we use feedback in two ways. The first is to take advantage

of accumulated, user-provided feedback to improve the inference results before a

report is produced. In this case, feedback on inference results is another type of

evidence that can be assimilated. In our approach, we assume that the user knows

the domain of the search term and is motivated by obtaining high quality results

from the search, which we believe to be reasonable in the context of search results

personalization. The second is to refine the report presented to the user. When

the returned results have been structured and integrated using PSL, a report is

presented to the user (as described in Chapter 5). Feedback can be provided that

triggers the refinement of the report. For example, a prior state of the report shown

in Figure 1.3 could have contained another row in the Movie table referring to

the Mumbai Godfather film which the user rules out as a false positive. In this

case, feedback on inference results underpins a form of filtering (i.e., data cleaning),
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PSL Feedback Predicate Example
EntityTypeFB(uri,term) EntityTypeFB(Q11424,no)

HasTypeFB(uri,uri,term) HasType(dbr:The Godfather,CreativeWork, yes)

HasPropertyFB(uri,uri,term) HasPropertyFB(CreativeWork, author, yes)

SimEntityTypeFB(uri,uri,term) SimEntityType(Film, Movie, yes)

SimPropertyFB(uri,uri,term) SimPropertyFB(duration, runtime, yes)

SimEntityFB(uri,uri,term) SimEntityFB(dbr:The Godfather, lmdbr:film/43338, yes)

Table 4.2: PSL predicates used to gather user feedback (with examples)

generating an incentive for the user to provide feedback in the first place.

Table 4.2 shows the feedback predicates used in our model. The feedback we

consider here is simply a testimony from a user on the correctness of the inferred

query atom. We use the PSL predicates in Table 4.2 to construct the PSL rules

shown in Listing 4.11. For example, Rules R45-R48 assimilate user-provided feedback

as evidence that a given resource S is, or is not, an entity. For example, if "War and

Peace" appears in a triple in the returned results as an instance of Movie, where

Movie is confirmed by feedback to be an entity type, this adds strength to the belief

that "War and Peace" is an instance of Entity in our meta-model. Given that

the PSL program PSL(F) subsumes the rules in the semantic model S, inference

made through the feedback rules is propagated to the semantic model rule-base.

For example, inference from rules R54 and R55 is propagated to the set-similarity

rule R15, given that the latter is parametrized by the HasProperty predicate. This

creates a knock-on effect of the provided feedback that, in principle, makes it more

cost-effective to collect.

Another use of feedback that could be considered, is the application of active

learning techniques by presenting the inference results of query predicates to an ex-

pert for manual labeling. Then, feedback can be collected and used to do the weight-

ing of rules. For example consider the rule-base in Listing 4.12. In this rule-base,

one could solicit for feedback on the inferences of SimPropertyValue. Instances of

such feedback can be captured using the evidence predicate SimPropertyValueFB.

Using instances of this evidence predicate, we can relearn the weights of the second

rule in Listing 4.12.
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/* Rules R45 -63: Extending inference with feedback evidence */

R45: Entity(S) ←̃ RDFIsInstanceOf(S,T) ∧̃
EntityTypeFB(T,UID ,"yes")

R46: ¬̃Entity(S) ←̃ RDFIsInstanceOf(S,T) ∧̃
EntityTypeFB(T,UID ,"no")

R47: Entity(S) ←̃ RDFIsInstanceOf(S,T) ∧̃
HasTypeFB(S,T,UID ,"yes")

R48: ¬̃Entity(S) ←̃ RDFIsInstanceOf(S,T) ∧̃
HasTypeFB(S,T,UID ,"no")

R49: EntityType(T) ←̃ EntityTypeFB(T,UID ,"yes")

R50: ¬̃EntityType(T) ←̃ EntityTypeFB(T,UID ,"no")

R51: HasType(S,T) ←̃ HasTypeFB(S,T,UID , "yes")

R52: ¬̃HasType(S,T) ←̃ HasTypeFB(S,T,UID , "no")

R53: Property(P) ←̃ HasPropertyFB(T,P,UID ,"yes")

R54: ¬̃Property(P) ←̃ HasPropertyFB(T,P,UID ,"no")

R55: HasProperty(T,P) ←̃ HasPropertyFB(T,P,UID ,"yes")

R56: ¬̃HasProperty(T,P) ←̃ HasPropertyFB(T,P,UID ,"no")

R57: SimProperty(P1 ,P2) ←̃ SimPropertyFB(P1,P2,UID ,"yes")

R58: ¬̃SimProperty(P1,P2) ←̃ SimPropertyFB(P1,P2,UID ,"no")

R60: SimEntityType(T1 ,T2) ←̃ SimEntityTypeFB(T1,T2,UID ,"yes")

R61: ¬̃SimEntityType(T1,T2) ←̃ SimEntityTypeFB(T1,T2,UID ,"no")

R62: SimEntity(E1 ,E2) ←̃ SimEntityFB(E1,E2,UID ,"yes")

R63: ¬̃SimEntity(E1,E2) ←̃ SimEntityFB(E1,E2,UID ,"no")

Listing 4.11: A rule-base that assimilates user feedback

W1: SimPropertyValue(V1 ,V2) ←̃ PropertyValue(V1) ∧̃
PropertyValue(v2) ∧̃
LexSimPropertyValue(V1 ,V2)

W2: SimEntity(E1 ,E2) ←̃ Entity(E1) ∧̃
Entity(E2) ∧̃
HasPropertyValue(E1 ,V1) ∧̃
HasPropertyValue(E2 ,V2) ∧̃
SimPropertyValueFB(V1,V2)

Listing 4.12: A rule-base for demonstrating active learning in PSL
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A different method of applying active learning in SRL is presented by Fisher

et al. [2016]. In their approach they have used an active learning technique for

generating training examples for an entity resolution problem. Their method also

allowed domain experts to add new rules to an MLN based on feedback collected on

the results of matching records. The new training examples as well new rules were

used to modify the weights of an initial MLN.

4.2.4 Extending The Baseline Model With Domain Specific

Rules

Successful applications of SRL approaches have made use of domain-specific knowl-

edge to encode predicates and relations in a given model. Singla and Domingos

[2006] used knowledge about the relationships between authors and papers in the

publication domain to write rules that infer the equivalent entities in that domain

using MLNs. Their approach used predicates that are based on specific attributes

(e.g., HasAuthor and HasVenue) of publications. These predicates were then used

to define rules that encoded knowledge about the relations between attributes to

de-duplicate entities as exemplified in the rule shown in Listing 4.13.

w: SameAuthor(y3,y4) ← HasAuthor(x1, y1) ∧
HasAuthor(x2, y2) ∧
HasAuthor(x1, y3) ∧
HasAuthor(x2, y4) ∧
SamePaper(x1, x2) ∧
SameAuthor(y1, y2)

Listing 4.13: A rule that encodes domain-specific knowledge, adopted from [Singla
and Domingos, 2006]

Similarly, Niu et al. [2012] used domain-specific knowledge rules to populate a

relational database from uncertain natural language extraction process. They used

Markov logic rules to encode relations between sequences of word mentions and

the output of named entity recognition (NER) tools to infer relationships between

mentions as shown for example in Listing 4.14.
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wpat: KnownBirthPlace(per ,loc) ← WordSequence(s,m1 ,m2 ,pat) ∧
MentionPerson(per , m1) ∧
MentionLocation(loc , m2)

Listing 4.14: An example domain-specific rule used in Elementary [Niu et al., 2012]

Tim Berners-Lee foaf:Agent

dblpauthor:Tim_Berners-Lee

foaf:name rdf:type

http: / /www.w3.org/People/Berners-Lee/

foaf:homepage

dblpconf:www/2009ldow

swrc:edi tor

dblpjournals:cn/Berners-LeeCG92

foaf:maker

Figure 4.11: An RDF description of Tim Berners-lee in the DBLP dataset. The re-
source is annotated with foaf:Agent type. A fine-grained data-type could possibly
be assigned based on the given description.

So far, our application of PSL has relied on domain-independent rules to su-

perimpose a structure on the returned search results. However, our model can be

extended with domain-specific rules. In particular, we introduce rules that are useful

at identifying fine-grained entity types (see Definition 14) for a returned resource

based on the RDF properties used to annotate the property values of the resource.

This can be useful, for example, in resolving co-referent descriptions of entities in a

heterogeneous dataset. For example, identifying that the resource depicted in Fig-

ure 4.11, which describes a person, belongs to the entity type scientist, in addition to

being an instance of foaf:Agent, can facilitate merging this resource with other re-

sources of a similar type (e.g., its DBpedia equivalent, i.e., dbr:Tim Berners-Lee).

To extend the baseline model with fine-grained type identification capabilities, we

use a knowledge base for bootstrapping a set of rules that associate RDF properties

with domain-specific entity types.

Definition 14 (Fine-grained Entity Type). Given a triple t = (s,rdf:type, c) and

an RDF graph D containing t, the RDF class c is said to be a fine-grained entity

type if it has no subtypes that are used in the graph D, i.e., the RDF class c has no

subclasses.
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wt1: HasType(S, type) ←̃ RDFSubjPred(S, pred)

wt2: HasType(S, type) ←̃ RDFPredObj(pred , S)

Listing 4.15: Rule template used for bootstrapping domain-specific PSL rule-base

Example 3 (Fine-grained entity types). Typically, resources in the WoD are anno-

tated with more than one RDF class. For example, the resource dbr:The Godfather

is annotated (among others) with the classes owl:Thing, dbo:Work, dbo:Film. A

fine-grained entity type for this resource is film. Note that a resource could have

more than one fine-grained entity type. For example, the resource dbr:Al Pacino

describes a person who is both an actor and a director.

In our experiment, we have used the DBpedia dataset to bootstrap the rules.

However, our approach is flexible enough to work with any well-defined knowledge

base. The bootstrap rules instantiate the rule templates in Listing 4.15. The rule

template wt1 associates an outgoing RDF property with an RDF resource type,

whereas the template wt2 associates an incoming RDF property with an RDF re-

source type. Algorithm 4.2 shows the bootstrapping procedure of the rules from

the templates shown in Listing 4.15. The process take as an input an RDF graph

D. For each typed individual in the input graph, the process find the sets of type,

incoming property, and outgoing property labels associated with an individual. For

each (type, property) pair, it generates a rule based on one of the above templates

depending on whether the property is an incoming or an outgoing property. For

example, for the RDF graph shown in Figure 4.11 it will generate the rules in List-

ing 4.16.

Note that the bootstrap rules are unweighted rules. We then use the weight

learning process in PSL to learn how discriminating an RDF property is for a given

type. Figure 4.12 shows the overall process used to learn domain-specific rules from

an RDF dataset. The first step in the process bootstraps a rule-base, as explained

earlier. In the second step, we use the weight learning process to learn the weight

of each RDF property found in the RDF graph. For example, in Figure 4.12, based
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dbr:Al_Pacino

Person
Actor

FilmDirector

...…..

typetype

type

starringdirector

Pacino

...

surname

spouse

dbr:Diane_Keaton

Person
Actor

...…..

type
type

starringproducer

Keaton
su

rn
am

e

Producer

type

dbr:Robert_Duvall

Person
Actor

...…..

type
type

starringdirector

Duvall

su
rn

am
e

FilmDirector

type

R1: HasType(e, Person) 
      <= RDFSubjPred(e, surname)

R2: HasType(e, Person) 
      <= RDFSubjPred(e, spouse)

R3: HasType(e, Person) 
      <= RDFPredObj(starring, e)

R4: HasType(e, Person) 
      <= RDFPredObj(director, e)

R5: HasType(e, Actor) 
      <= RDFSubjPred(e, surname)

R6: HasType(e, Actor) 
      <= RDFSubjPred(e, spouse)

R7: HasType(e, Actor) 
      <= RDFPredObj(starring, e)

R8: HasType(e, Actor) 
      <= RDFPredObj(director, e)

R9: HasType(e, FilmDirector) 
      <= RDFSubjPred(e, surname)

R10: HasType(e, FilmDirector) 
      <= RDFSubjPred(e, spouse)

R11: HasType(e, FilmDirector) 
      <= RDFPredObj(starring, e)

………..

R12: HasType(e, FilmDirector) 
      <= RDFPredObj(director, e)

0.97: HasType(e, Person) 
      <= RDFSubjPred(e, surname)

0.32: HasType(e, Person) 
      <= RDFSubjPred(e, spouse)

0.97: HasType(e, Person) 
      <= RDFPredObj(starring, e)

0.63: HasType(e, Person) 
      <= RDFPredObj(director, e)

0.63: HasType(e, Actor) 
      <= RDFSubjPred(e, surname)

0.32 HasType(e, Actor) 
      <= RDFSubjPred(e, spouse)

0.97: HasType(e, Actor) 
      <= RDFPredObj(starring, e)

0.63: HasType(e, Actor) 
      <= RDFPredObj(director, e)

0.99: HasType(e, FilmDirector) 
      <= RDFSubjPred(e, surname)

0.34: HasType(e, FilmDirector) 
      <= RDFSubjPred(e, spouse)

0.63: HasType(e, FilmDirector) 
      <= RDFPredObj(starring, e)

………..

0.99: HasType(e, FilmDirector) 
      <= RDFPredObj(director, e)

Setp 1: 
Bootstrapping

Setp 2: 
Weight Learning

Figure 4.12: The process of learning domain-specific rules. The first step bootstraps a rule base from an RDF graph. In the second
step we use PSL weight learning process to learn the discriminability of RDF predicates
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w1: HasType(S, "Agent") ←̃ RDFSubjPred(S, "name")

w2: HasType(S, "Agent") ←̃ RDFSubjPred(S, "homepage ")

w3: HasType(S, "Agent") ←̃ RDFPredObj ("maker", S)

w4: HasType(S, "Agent") ←̃ RDFPredObj (" editor", S)

Listing 4.16: Bootstrap rule-base for the RDF graph shown in Figure 4.11

on the learned weights, the RDF property surname is more indicative of the type

Person than of the type Actor.

Algorithm 4.2 bootstrapping domain-specific rules

1: function Bootstrap(D)
2: I ← TypedIndividuals(D) . Returns a set
3: R← ∅ . Set of bootstrap rules
4: for i ∈ I do
5: T ← Types(i) . Returns a set of type labels of the individual i

6:
−→
P ← OutProperties(i) . Returns a set of outgoing property labels

7:
←−
P ← InProperties(i) . Returns a set of incoming property labels

8: for t ∈ T do
9: for p ∈

−→
P do . Add rules according to rule template wt1

10: rule := HasType(S, t) ←̃ RDFSubjPred(S, p)

11: R← R ∪ rule . Add rule to the set R
12: end for
13: for p ∈

←−
P do . Add rules according to rule template wt2

14: rule := HasType(S, t) ←̃ RDFPredObj(p, S)

15: R← R ∪ rule . Add rule to the set R
16: end for
17: end for
18: end for
19: return R . Returns the set of bootstrap rules
20: end function

4.3 Experimental Evaluation

This section presents our experimental studies to evaluate the effectiveness of the

PSL approach to assimilating different types of evidence, as described above, for

inferring a tabular structure from LD search results by instantiating the adopted

meta-model. The goal of these experimental studies is to measure the quality of

the integration results obtained by different PSL programs, as additional types of
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Figure 4.13: A flow digram of the experimental procedure
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evidence are incrementally taken into account. Figure 4.13 summarizes the overall

experimental process used in this evaluation.

4.3.1 Weight Learning for PSL Program Generation

We generated PSL programs PSL(S) and PSL(F) by learning weights for the rules

in S and F, respectively. As mentioned earlier, the semantic model subsumes the

baseline model, i.e., B ⊂ S, and F is created by adding feedback rules to S. Recall

from Chapter 3 that our dataset consists of RDF resources collected by conducting

a number of searches using Sindice [Oren et al., 2008] and Falcons [Cheng and Qu,

2009] LD search engines. For each search engine, the top 20 results were collected

for each search term. The main reason for limiting ourselves to the top 20 is because

of a limitation in the underlying SRL approaches used. As reported by Khosravi

and Bina [2010], one of the main limitations of SRL approaches is the computational

complexity of learning and inference. This is because the size of the ground Markov

network is proportional to number of rules and predicates used in the model. This

limits the capability of the proposed model to handle increasing amounts of evidence.

To counter this, we limit our investigation on the top 20 results for each search.

Note that all the experiments are executed on the following machine: Linux Ubuntu

14.04.2 LTS (64 bit), Intel Core i5-3470 3.20 GHz, 8 GB RAM.

We extended the dataset described in Section 3.3.2 by adding relevant ontolo-

gies. The vocabularies used were: for the Films domain, the DBpedia4 and Movie5

ontologies; for the Cities domain, the GeoFeatures6 and GeoNames7 ontologies; for

the People domain, the FOAF and SWRC8 ontologies. We chose these ontologies

for the task in hand because they provide reasonable ontological coverage for the

dataset used in the experiments. Ontological coverage is a metric that is often used

4We used a subset that is relevant to the films domain
5movieontology.org
6www.mindswap.org/2003/owl/geo/
7www.geonames.org/
8ontoware.org/swrc
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when ascertaining the quality of an ontology for a particular task [Brewster et al.,

2004]. Given an annotated database (e.g., RDF data), the coverage measures the

extent to which the database uses concepts and properties from a given ontology.

Here, concept coverage is the fraction of RDF classes occurring in the dataset that

are defined by the given ontology. Precisely, concept coverage is defined by

ConceptCoverage(O,D) =

∑
oc∈CO

∑
dc∈CD

I(oc, dc)

|CD|
(4.10)

where O is an ontology, D is a dataset, CO is the set of RDF classes defined by

O, CD is the set of RDF classes used in D, and I(oc, dc) is function that returns 1

if the local names of oc and dc are equivalent and 0 otherwise. Likewise, property

coverage is defined by

PropertyCoverage(O,D) =

∑
op∈PO

∑
dp∈PD

I(op, dp)

|PD|
(4.11)

Table 4.3 provides key statistics as well as coverage metrics of the vocabularies used

in our experiments. In addition to concept and property coverage metrics, Table 4.3

shows counts of the following axioms. Note in each case we only consider the axioms

where either property or a class label is an exact match to a property or a class in

the collected search results.

• Property Domain Axioms (i.e., p rdfs:domain c).

• Concept Equality Axioms (i.e., c1 owl:equivalentClass c2).

• Property Equality Axioms (i.e., p1 owl:equivalentProperty p2).

• Disjoint Type Axioms (i.e., c1 owl:disjointWith c2 and c1

owl:complementOf c2).

• Disjoint Property Axioms (i.e., p1 owl:propertyDisjointWith p2).
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Domain Ontology
Concept
Coverage

Property
Coverage

Property
Domain
Axioms

Concept
Eq.
Axioms

Property
Eq.
Axioms

Disjoint
Type
Axioms

Disjoint
Property
Axioms

Films
DBpedia 12% 30% 25 9 4 2 0
Movies 11% 0% 0 0 0 0 0

People
FOAF 22% 16% 10 4 1 4 0
SWRC 24% 16% 1 0 0 0 0

Cities
GeoNames 2% 1% 9 1 0 0 0
GeoFeatures 11% 2% 2 0 0 0 0

Table 4.3: Concept and property coverage and key statistics of ontologies used in
our experiment

Note that most of these counts, except for property domain and concept equality,

are 0. This is consistent with our previous observations based on the results of the

survey presented in Section 4.2.3. The above vocabulary features are seldom used,

hence the observed counts.

Given the sample data from search results and vocabularies, we used PSL to learn

the weights for the rules in the semantic model and yield the PSL(S) program. We

learned the weights discriminatively using maximum pseudo-likelihood. To reduce

overfitting, we used 5-fold cross validation and we averaged the weights of each rule.

To learn the weights of the feedback model F and yield the PSL program PSL(F),

we proceeded as follows. As often done in evaluating dataspace approaches (e.g.,

[Belhajjame et al., 2013; Kot and Koch, 2009]), and in the absence of crowdsourced

sample feedback instances, we simulated feedback acquisition to give a rise to a

synthetic sample. The synthesis procedure we used is shown in Algorithm, 4.3. It can

be described, intuitively, as follows. We take as input a random sample of inferences

returned by PSL(S) and fix a number of hypothetical users providing feedback (100,

in this experiment). For each worker, we randomly generate 50 feedback instances,

where a feedback instance is a true/false annotation on the inference returned for a

query predicate. In our experiments we assume that feedback is reliable. However,

introducing a per-user degree of unreliability only requires a simple change.
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Algorithm 4.3 Feedback synthesis procedure

rl← reliability level a user
u← number of users
c← feedback instances per user
Feedback ← ∅
CR← candidate results returned byPSL(S) inference
while size(Feedback) ≤ u× c do

t← Uniformly assign a feedback target

. Choose a feedback candidate for target t from CR at random
fbi← Choose(CR, t)

. With probablity determined by 1-rl make feedback instance
inconsistent with the ground truth

fbi← MakeInconsistent(1− rl, fbi)

Feedback ← Feedback ∪ fbi
end while

4.3.2 Experiment 1: Inference with Syntactic and Semantic

Evidence

Goal and Method

The goal of Experiment 1 is to measure the quality of PSL(B), where only syntactic

evidence is assimilated, and then measure the quality of PSL(S), where semantic

evidence is also assimilated, thereby allowing us to measure the impact of using

ontologies on the quality. As in Chapter 3, we measure the quality of the outcome

using the area under the precision-recall curve (AUC) for each query predicate in

our PSL model. Recall that the precision/recall curve is computed by varying the

probability threshold above which a query atom is predicted to be true. This means

that the measurement does not depend on setting any threshold.

We first performed PSL inference on PSL(B) on the search results, for each of

the three domains in turn. We denote the measured quality as AUC(B) with some

abuse of notation. We then added semantic evidence extracted from the relevant

vocabularies to the search results and performed inference on PSL(S). We denote
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Query Predicate AUC(B) AUC(S) ∆ AUC(S ∪ F) ∆′

Entity .726 .736 .010 .827 .091
EntityType .749 .812 .063 .954 .142
HasProperty .512 .578 .057 .614 .036
HasType .554 .604 .050 .709 .105
Property .774 .774 .000 .779 .005
SimEntity .083 .108 .025 .322 .214
SimEntityType .320 .351 .030 .517 .166
SimProperty .159 .184 .025 .621 .437

(a) Films
Query Predicate AUC(B) AUC(S) ∆ AUC(S ∪ F) ∆′

Entity .645 .751 .105 .789 .039
EntityType .828 .844 .017 .844 .000
HasProperty .457 .511 .054 .559 .048
HasType .557 .731 .174 .732 .000
Property .683 .683 .000 .685 .001
SimEntity .086 .583 .497 .612 .030
SimEntityType .869 .891 .022 .891 .000
SimProperty .257 .230 -.027 .537 .307

(b) People
Query Predicate AUC(B) AUC(S) ∆ AUC(S ∪ F) ∆′

Entity .525 .651 .126 .882 .231
EntityType .776 .793 .017 .793 .000
HasProperty .470 .485 .015 .541 .056
HasType .631 .668 .037 .820 .152
Property .774 .780 .006 .794 .014
SimEntity .082 .344 .261 .411 .068
SimEntityType .648 .662 .014 .662 .000
SimProperty .484 .386 -.098 .687 .302

(c) Cities

Table 4.4: AUC results for our PSL models with datasets in the test collection

the measured quality by AUC(S). We then calculated the quality impact of using

semantic evidence as ∆ = AUC(S)−AUC(B). Columns 2, 3 and 4 in each subtable

in Table 4.4 list all the measurements obtained in Experiment 1 for the corresponding

domain.

Results & Discussion

As measured in terms of the AUC, across the domains, the quality of PSL(B) is

good on average (around 0.65) if we discount the similarity relationships (except

for SimEntityType) which are inherently dependent on semantic evidence. For

example, we observed an average AUC of 0.7 on Entity and EntityType on the

films and people domains. The results of the baseline model can be attributed to
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the amount of relevant results provided by the underlying search engines. However,

these results are not without variations, in terms of the AUC, across the domains.

One of the reasons of such variations can be attributed to the ambiguity of the

search results. For example, the AUC(B) of Entity in the cities domain is not as

good as the corresponding results in the films and people domains because of the

ambiguities in the individuals described in the results of the cities searches. Recall

from Section 3.3.2, search of the cities domain, i.e., using the terms Manchester

and Berlin, returns descriptions of (among others) artists, albums, and songs. The

effect of ambiguity can be also observed in the result of EntityType. The AUC(B)

of EntityType in films domain is less than of that people domain. This is because

the results in films contain more irrelevant types (e.g., as Organization, City, and

RailWayLine) when compared, for example, with the results in the people domain.

For similarity predicates, we observed low AUC(B) for SimEntity. This

is because inference of SimEntity is dependent, given the structure of our

rule-base, on inference of Entity. The lack of context information lead

to low probability scores of instances of Entity in the baseline. For ex-

ample, the inferred probability of Entity(dbr:The Godfather) is 0.43 and

Entity(lmdb:/film/4338) is 0.18 which leads to a probability score close to 0

for SimEntity(dbr:The Godfather,lmdb:/film/4338). This is observed for most

instances of SimEntity. Thus, the value of AUC for SimEntity query predicate is

low.

Assimilating ontological evidence indeed leads to improvement in the AUC,

particularly w.r.t. similarity relationships, with a knock-on positive effect on the

quality of the tabular representation. Thus, the corresponding average AUC(S)

increases to close to 0.7. The degree of improvement varies across domains de-

pending on the coverage of the ontologies used. For example, the B-probability of

HasProperty(dbo:Person, dbo:spouse) is 0.04, whereas its S-probability is much

higher, at 0.80, as the DBpedia ontology explicitly defines this relationship. In this



138 CHAPTER 4. INTEGRATING LD SEARCH RESULTS USING PSL

case the inferred probability due to the additional ontological evidence is less than

1 because our semantic rule base is uncertain, i.e., weighted. The additional evi-

dence about the domain restriction relation between dbo:spouse and dbo:Person

triggers rules R32-R35. The weighted distances to satisfaction of these rules is ag-

gregated with the weighted distance to satisfaction of ruleR12 which results in a

probability score of 0.80. In other cases, explicit assertion of type disjointness has

a significant effect too. Thus, the B-probability of SimEntity(dbr:Casablanca,

dbr:Casablanca (film)) is 0.55, whereas its S-probability is much lower, at

0.01, as a consequence of constraint rules C41 and C42, because dbo:Work and

dbo:wgs84 pos:SpatialThing are disjoint in the DBpedia ontology. In the case

of Entity, the assertion of a type by an ontology acts as a reliable anchor for

individuals returned in the search results. For example, the B-probability of

Entity(lmdb:film/43338) is 0.22, whereas its S-probability is higher, at 0.38, be-

cause its type, lmdb:film, matches the type dbo:Film, in the MO. As hinted above,

improvements in the inference of metatypes (e.g., Entity) has a knock-on effect on

the corresponding set-similarity relationship (SimEntity in this example). In the

case of SimEntity, the improvement is more significant in the People and Cities

domain than for Films domain because of inherent type ambiguity. For example,

searching with "Casablanca" returns films, organizations, and a city. Type ambi-

guity is perhaps best solved with user feedback, as the next experiment shows.

4.3.3 Experiment 2: Inference Using Feedback

Goal and Method

The goal of Experiment 2 is to measure the quality of PSL(S ∪ F), where feedback

evidence is also assimilated, thereby allowing us to measure the impact of using

feedback on the quality. As humans are highly unlikely to provide feedback on all

candidate instantiations of the meta-model, we simulated the feedback evidence as
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being provided for the top 5% of the inference results produced by semantic model

PSL(S for each feedback target. This assumes a strategy in which feedback is

targeted at removing false positives that occur in the top 5% likely candidates. We

denote the measured quality by AUC(S∪ F). We then calculate the quality impact

of using semantic evidence as ∆′ = AUC(S ∪ F) − AUC(S). Columns 5 and 6 in

each subtable in Table 4.4 list all the measurements obtained in Experiment 2 for

the corresponding domain.

Results & Discussion

As measured in terms of the AUC, across the domains, the quality of PSL(S∪F) is

quite good on average (around 0.7) even if we include the similarity relationships. In

other words, user feedback seems to address some of the ambiguity issues that caused

the quality of PSL(S) to be lower for similarity relationships. Thus, although the

impact of feedback is not uniformly high, it seems complementary and corrective,

i.e., it improves the most where the most improvement is needed, viz., the similarity

relationships, where we can observe AUC improvements that can reach 80%, 130%,

up to almost 240%. This, the highest improvement, was observed for SimProperty in

the Films domain. The reason for this is that PSL(S) produces many false positives

for SimProperty. One possible reason is that property names (e.g., name) are often

reused without qualification for very different concepts. Combining syntactic and

ontological evidence seems insufficient in that case.

4.3.4 Experiment 3: Using Domain Specific Rules

Goal and Method

The goal of Experiment 3 is to build a model that is capable of identifying fine-

grained entity types by learning weights that establish which property assertions

provide best evidence for type assertions. Our approach is predicated on using
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instances from an existing knowledge base to bootstrap a PSL model that associates

RDF properties to the RDF types used in the description of these instances. We use

the PSL weight learning processes to learn the degree to which a certain property

is indicative of a given type. This, in turn, becomes a supervised classification

approach where features are local names of RDF properties used to describe the

input instances, and the output is the likely entity type, given those features.

We evaluated our approach using 1,000 instances from the Films domain sampled

from the DBpedia dataset. We used a 5-fold cross validation process for training and

testing the models used in this experiment. We randomly sampled an almost equal

number of instances that belong to the entity types Actor, Director, Producer,

Composer, Editor, Writer, Film and Work. Given that each instance is often an-

notated with more than one entity type, the total number of entity types in the

resulting dataset is 97. We then used this dataset to bootstrap a rule-base using the

templates described in Section 4.2.4 and Algorithm 4.2. The bootstrapping phase

generated 35, 819 rules which is almost equivalent to the product of the number

distinct types (i.e., 97) and number of distinct properties (i.e., 1068) divided by 3.

Note that most of properties appear with only a third of the types in the dataset.

In this experiment, the large margin estimation (LME) learning method that is

provided by the PSL implementation was chosen. As mentioned previously, LME is

a PSL weight learning method which drops the probabilistic interpretation of a PSL

program and focuses the learning task at finding rule weights which provide accurate

predication [Bach et al., 2015]. Models which are learned using the LME method

can produce more accurate predications when compared to other learning approach

such as the maximum pseudo-likelihood estimation (MPLE) in some structured

predication problem such as collective classification and collaborative filtering [Bach

et al., 2013b].

After running the weight learning stage on each fold, the weight for some rules

was small. In the inference process, we eliminated rules with weight less than or
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/* outgoing properties */

1.16: HasType(S, "Editor ") ←̃ RDFSubjPred(S, "surname ")

1.16: HasType(S, "Editor ") ←̃ RDFSubjPred(S, "givenName ")

0.81: HasType(S, "Editor ") ←̃ RDFSubjPred(S, "award ")

0.60: HasType(S, "Editor ") ←̃ RDFSubjPred(S, "child ")

0.58: HasType(S, "Editor ") ←̃ RDFSubjPred(S, "awards ")

/* incoming properties */

4.06: HasType(S, "Editor ") ←̃ RDFPredObj (" editing", S)

1.26: HasType(S, "Editor ") ←̃ RDFPredObj ("award", S)

0.52: HasType(S, "Editor ") ←̃ RDFPredObj (" editor", S)

0.26: HasType(S, "Editor ") ←̃ RDFPredObj (" producer", S)

0.18: HasType(S, "Editor ") ←̃ RDFPredObj (" spouse", S)

Listing 4.17: A sample of learned weights for rules in our domain specific model

equal to 0.01. The total number of rules which received a weight higher than 0.01

was 5, 517 (15.4%) out of the original 35, 819 (100%) rules. Listing 4.17 shows a

sample of learned weights for some of the rules for Editor.

To establish a baseline, we compared the results of our approach to the results of

two well-known ensemble learning approaches: Random Forest [Geurts et al., 2006]

and AdaBoost [Freund and Schapire, 1997]. These approaches are capable of han-

dling multi-class classification problems as opposed to binary ones only. AdaBoost

is a technique where a group of classifiers is trained in an iterative process. In each

iteration, a basic learning model is employed to train a weak classifier. At the end

of each round, mis-classified examples are identified and emphasis is given to them

in a new training set that is then fed back for training a new model. The idea is

that the new model should be able to correct the mis-classifications of the earlier

model. Random forest is a learning method that trains several decision trees. Each

tree is trained on new training set that is chosen at random from training data.

The classification results of the random forest are the result of voting from each of

these trees. In this experiment, we used the Python Scikit 9 API implementation

of AdaBoost and random forest classifiers. The number of underlying decision trees

classifiers that were used for each of the two learning methods was 50.

9http://scikit-learn.org
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Classifier AdaBoost RandomForest PSL (LME)
Accuracy 0.33 ± .05 0.49 ± .05 0.88 ± .03

Table 4.5: Cross-validated accuracy results for the classifiers used in Experiment 3
± the standard deviation across different folds

We used standard machine learning metrics to evaluate our approach. To com-

pare the performance of the different classifiers we used the classification accuracy

defined as follows:

accuracy =
Number of correct predictions

Number of all predictions
(4.12)

To evaluate the classification of individual types, we used the precision, recall and

F-measure metrics. We took the true positives to be the count of correctly classified

instances, the false positives to be the a count of incorrectly classified instances,

and the false negatives to be a count of correct predictions that were missed by the

classifier.

Precision =
TruePositives

TruePositives + FalsePositives
(4.13)

Recall =
TruePositives

TruePositives + FalseNegatives
(4.14)

F −measure =
2× Precision×Recall

Precision + Recall
(4.15)

In the case of our PSL model, we rounded the output probability for each query

proposition to the nearest integer (i.e., either 0 or 1).

Results & Discussion

Table 4.5 shows the accuracy for the classifiers averaged over the different folds in

our experiment. The predictions of the PSL approach are at least 30% more accurate
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than the predictions of the other classification approaches (i.e., random forest and

AdaBoost). Figure 4.15 shows the confusion matrices for a number of selected entity

types for each of the classifiers used in the experiment. A confusion matrix is a two-

dimensional matrix indexed by one dimension by the true type of the individual

and by the type that the classifier assigns in the other. It is used to visualize the

performance of a classifier with respect to some testing dataset. Elements in the

diagonal represent number of instances for which the predicted entity type is equal

to the true entity type. The propositional classifiers tend to incorrectly predict (as

shown in Figure 4.15) the types of instances that belong to the same subsumption

subtree (e.g., Director, Editor). Although the propositional classifiers achieve at

least 50% precision on most of the target types (see Figure 4.14), their recall tends to

be lower than the recall of the PSL approach. For example, for the Film entity type,

while the AdaBoost classifier achieves a precision score of 0.98, the recall, at 0.56,

is lower than that of the PSL approach. The reason for this is that the AdaBoost

classifier often assigns instances of Film to the entity type Work only. Furthermore,

the predictions made by the propositional classifiers (in this case, AdaBoost) for

the entity types Editor and Composer tend to be imprecise because there are very

few properties which can signal such entity types (editing for Editor, and music

for Composer). For example, the property that distinguished between entity type

Editor, on the one hand, and entity types Actor and Director on the other, is

the incoming property editing. Given that the entity types Actor and Director

share many properties with Editor (they are all subclasses of Person) instances

of Actor and Director are also classified as Editor. The advantage of using an

SRL approach such as PSL in this case is that the properties which are likely to

distinguish certain entity types are learned with higher weights (see Listing 4.17 for

an example), which leads to better predictions.

Finally, we used the domain-specific model for the Films domain in the inference

of the meta-model constructs from LD searches. We added these rules to the baseline
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Figure 4.14: Precision, Recall, and F-measure score for a number of entity types
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Figure 4.15: Confusion matrices for the classifiers used in exp. 3
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PSL program PSL(B) to give a rise to the new PSL program PSL(B ∪ DS) and

ran the inference procedure on the search results from the Films domain. We then

measured the quality of the inferred results, which we denote by AUC(B∪DS). We

then calculated the impact of using these rules as ∆′′ = AUC(B)− AUC(B ∪ DS).

Table 4.6 shows the impact of using domain-specific rules in the quality of infer-

ence results. As measured in terms of AUC, using such rules improves the inference

of instances of HasType. The additional rules improve in the inferred probability for

individuals originating from the DBpedia dataset, which is to be expected, since the

domain-specific model was trained on examples from the DBpedia dataset. For ex-

ample, the B-probability for HasType(dbr:Diane Keaton, Actor) is 0.46, whereas

its B ∪ DS-probability is at 0.95.

There is the potential for such improvements to be obtained for individuals found

in other datasets. However, this requires mapping RDF types and properties found

in other datasets to the RDF types and properties in the bootstrapped model. While

PSL facilitates such mappings, investigating the impact on quality of their use is

left for future work

Query Predicate AUC(B) AUC(B ∪ DS) ∆′′

Entity .726 .726 .000
EntityType .749 .749 .000
HasProperty .512 .513 .001
HasType .554 .732 .178
Property .774 .774 .000
SimEntity .083 .083 .000
SimEntityType .320 .319 -.001
SimProperty .159 .159 .000

Table 4.6: AUC results showing the impact of using domain specific rules in the
Films domain

4.4 Related Work

This chapter took the view that the integration of LD search results is better ad-

dressed by seeking to combine multiple sources of evidence. Proposals for inferring
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semantic correspondences in LD integration tasks often derive their results by com-

bining together different pieces of evidence. One source of evidence that is often

utilized by ontology matching approaches is existing background knowledge in the

form of LOD vocabularies. Approaches such as SMatch [Giunchiglia et al., 2005]

and Carnot [Huhns et al., 1993] use generic upper vocabularies to match terms that

refer to concepts. The authors of SMatch use WordNet to match concept labels

from two XML schemas, whereas the Carnot system utilizes the Cyc knowledge

base for inferring semantic correspondences between relational database schemas.

Although such sources of evidence are useful for generic concept matching tasks,

they may not provide expressive background knowledge for inferring semantic cor-

respondences between properties, or between concepts and properties as required in

our settings.

Such knowledge is found in domain vocabularies, which describe concepts and

properties which pertain to specific domains. For example, the DICE ontology was

used by Aleksovski et al. [2006] to match two semi-structured medical vocabularies.

This approach used the DICE ontology as an integration schema by aligning the

matched vocabularies to the DICE ontology. Then the ontological axioms in the

DICE ontology were used to find semantic relations between the concepts in the in-

put vocabularies. In contrast, our approach can use multiple vocabularies to provide

evidence for our target structure. Furthermore, given that an evidence vocabulary

might express relationships that are irrelevant to the searches, we treat ontological

evidence as uncertain, and we use PSL’s supervised weight learning processes to

capture the uncertainty of the rules which utilize such evidence.

The idea of using multiple vocabularies as evidence in a data integration task

was explored in Scarlet [Sabou et al., 2008]. Scarlet works by relating ontologies to

be matched with ontologies found in the WoD. The basic idea in Scarlet is that the

use of more than one ontology improves the matching results. However, Scarlet is

limited to finding similarity relations between concepts in the matched ontologies.
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In contrast, our approach seeks to infer a richer set of semantic relations between

concepts, properties and individuals.

Combining multiple sources of evidence in data integration tasks requires han-

dling the inherent uncertainty stemming from using different sources of evidence.

Probabilistic approaches are often used to model uncertainty in such tasks. As dis-

cussed in Chapter 3, our use of a SRL approach to combine different sources of

evidence, as also presented in this chapter, is motivated by previous applications of

SRL approaches to data integration tasks (e.g., [Niu et al., 2012] and [Niepert et al.,

2011]). The use of PSL in this chapter was motivated by its support for reasoning

with similarities and with sets, which is important when dealing with heterogeneous

data. Other probabilistic methods that are used to assimilate different pieces of

evidence include Bayesian updating (e.g., [Christodoulou et al., 2015a]). The idea

of Bayesian updating [Spragins, 1965] is based on the iterative use of Bayes’ rule

to revise the probabilities in the light of new evidence. In matching tasks Bayes’

rules is used to compute the posterior probability of a match giving different forms

of evidence (e.g., semantic and syntactic evidences). To enable the iterative appli-

cation of Bayes’ rule, this approach requires the derivation of a likelihood function

for each type of evidence involved. The limitation of this approach is that it is

unclear how adaptable is the process of training probabilistic distribution functions

for when there are complex dependencies to be modelled between the evidences and

queries. Our approach avoids this by using PSL’s declarative approach to introduce

new forms of evidence, which allows us to propagate new evidence in the induced

ground network.

Our use of feedback as a source of evidence is motivated by a growing body of

literature where feedback is used for solving data integration problems (e.g., [Bel-

hajjame et al., 2011; Sarasua et al., 2012; Isele and Bizer, 2013]). A number of

ontology matching systems, e.g. [Shi et al., 2009; Cruz et al., 2012; Duan et al.,
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2010], also adopt a strategy where feedback is obtained from a single user. For exam-

ple, Shi et al. [2009] implemented a matching system that interactively seeks user

feedback to: correct the matching mistakes and propagate the feedback informa-

tion to update the threshold used for selecting matched candidates. Our approach

is different because our feedback model can be trained on feedback obtained from

multiple users. In adapting a multi-user feedback strategy, our approach is similar

to CrowdMap [Sarasua et al., 2012], where crowdsourcing is used to improve the

precision of ontology alignment tasks, and ZenCrowd [Demartini et al., 2012], which

combines human feedback with automatic integration for linking entity extractions

from web pages to instances in the WoD. The limitation of our approach in com-

parison to these approach is that we do not account for per-user reliability in our

feedback rules. Handling unreliable users in our approach requires the addition of

rules that are corrected based on the reliability of users, or per-user sets of feedback

rules and learning weights that capture the reliability of each individual user in a

manner which is similar to the application of domain specific rules presented in Sec-

tion 4.2.4. As such, in line with the goal pioneered by Sig.ma, our approach is more

suitable for a setting in which the paramount need is for personalization of search

results.

4.5 Summary and Conclusions

Integration of LD search results in the form of a tabular structure is challenging

because it requires automating a number of complex subtasks, such as structure

inference, and matching concepts and instances, each of which gives rise to uncertain

outcomes. Such uncertainty cannot be avoided given the heterogeneous nature of the

WoD. In this chapter, we provided experimentally-derived backing for the hypothesis

that assimilating different sources of evidence is effective in inferring a good quality

structure over LD search results. We have extended the approach described in
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Chapter 3 by incorporating additional types of evidence. We have described how

a PSL program has been constructed with which different sources of evidence can

be assimilated in a principled and uniform way, where such sources are syntactic

matching, domain ontologies, and user feedback. To do so, we have defined a meta-

model that defines the structure to be inferred, and used PSL to express rules for

populating this meta-model. The advantage of using PSL for such a task is that

it allows us easily to encode the dependencies between different sources of evidence

and the meta-model constructs, using a syntax that is based on first-order-logic.

This allows us easily to add and remove dependencies that improve the quality of

our model. We have demonstrated this approach through the use of PSL to build a

rule base that enables the propagation of evidence even when it is scarce (e.g., in the

case of ontological evidence). Another advantage of PSL is that it does not require

specialized inference and learning algorithms other than those already assigned to

PSL and available in its implementation.

Two main results have been obtained: SRL methods such as PSL can be used

for the assimilation of different kinds of evidence in relation to the integration of LD

search results, and when semantic and feedback evidences are present the quality of

integrated results is improved, thereby backing our working hypothesis.

In Chapter 5, we show how the results of the PSL program presented in this

chapter can be used to power a user interface by means of which a user can provide

feedback that improves future quality, in a pay-as-you-go style.



Chapter 5

An Interface for Integrating LD

Search Results

RDF data are becoming pervasive in the Web, as is evident in the growth of pub-

lished LD sources. As the size of the WoD continues to grow, better tools are needed

that more effectively support user access to this source of information.

As we saw in Chapter 2, RDF data in the Web can be characterized as data

that tends to be large, highly heterogeneous, and not adhering to a specific schema.

Effective user access to the WoD need to address the ensuing challenges. Many

methods have been proposed for providing users access to RDF data in the Web.

In general these methods can be classified into: (i) RDF querying (e.g., [Quilitz

and Leser, 2008]), i.e. using SPARQL, (ii) keyword searches (e.g. Sindice [Oren

et al., 2008]), (iii) graph visualization (e.g., [Frasincar et al., 2006]) and (iv) faceted

navigation (e.g., [Oren et al., 2006]). Individually, none of these methods is sufficient

to support all the information seeking tasks one can envisage as being appropriate

in the context of the WoD.

RDF querying requires a user to have technical knowledge about the query lan-

guage and to know the schemas, if any, in the underlying datasets. Studies conducted

on relational databases suggest that formulating a query to an unknown dataset is

151
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a challenging task for a user [Jagadish et al., 2007; Nandi and Jagadish, 2011]. In

the WoD, this problem is even more difficult as there is no distinction between in-

stances and schemas and usually meta-data is missing. This also makes traditional

non-expert query specification approaches (e.g., query-by-example) infeasible.

An alternative approach to RDF querying is keyword searching, which has proved

to be an easy and intuitive way of interacting with the Web. As described in

Chapter 2, there are two broad categories of keyword searching over RDF data.

The first uses information retrieval techniques to index the RDF documents, thereby

enabling the use of search terms as keywords to identify relevant documents. The

second category matches search terms against elements of an RDF graph. In these

approaches, only the sub-graphs containing the search term are returned, as a ranked

list. In neither category is there any attempt to integrate the results into a structure

that corresponds to the search terms provided.

RDF graph visualization techniques do not yet scale for large datasets [Frasincar

et al., 2006]. Additionally, a graph may not be the best method for visualizing RDF

data. Dense RDF graphs might be problematic regarding usability. As more data

is depicted in the graph, the gist (i.e., a particular real-world entity) of what the

graph is depicting often gets lost [Schraefel and Karger, 2006], which results in a

failure to communicate the crucial information about the underlying entities.

Faceted interfaces offer yet another approach for exploring RDF datasets, espe-

cially when coupled with automatic means for generating facets. A facet is an user

interface element that allows the user to quickly find information in an unknown

dataset [Tunkelang, 2009]. With facets, results are partitioned into orthogonal cat-

egories, possibly organized into a hierarchy. Predominantly, facets are created man-

ually [Croft et al., 2009]. The problem with manually-created facets is that they are

static and domain-specific. Automatic approaches to creating facets are predicated

on using features of the underlying resources, such as types and property names,

to group similar resources together [Oren et al., 2006; Harth, 2010; Dachselt et al.,
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2008; Wang et al., 2009]. Given the heterogeneity of the WoD, it can be difficult to

produce useful facets with such approaches [Erling and Mikhailov, 2009; Shangguan

and McGuinness, 2010; Teevan et al., 2008].

In this chapter, we present an interface that is designed to enable non-expert

end-users to retrieve integrated LD search results in the WoD. The interface builds

upon RDF search while providing faceted navigation of the results to facilitate user

exploration. It makes intensive use of the inference results obtained using the PSL

program presented in Chapter 4. Starting with the RDF results returned by a search

term, the PSL program populates a tabular structure that characterizes the result

that we want to present to the end user. The inference decisions made by the PSL

program are used to derive a user interface, thereby allowing the user to iteratively

and interactively correct and refine the results.

Using this interface, we can populate tabular reports that describe the individ-

uals that are returned by the given search term. The main reason for targeting

tabular reports is that they provide a useful view for user, who are used to tables

from spreadsheets, Web tables, etc. Such tabular structures can be easily imported

into a relational database, which enables efficient querying and processing by down-

stream applications. For example, one could easily imagine a case where a table

that was constructed for the results of the search terms Godfather Actors is then

exported for use in an application that makes, for example, movie recommendations.

In addition, a data table is a structure that can more effectively present complex

data when compared to raw RDF triples. Such tables are likely to facilitate user

navigation and interaction with the underlying data.

The main advantages of the proposed user interface, therefore, are (i) a simple

way for finding relevant data from multiple sources, (ii) the integration of the re-

trieved results into tables that represent entity types that underpin the results and

(iii) the possibility of correcting the integrated results and iterating the process.
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In the following, we first describe a case study for the use of the proposed inter-

face (Section 5.1). We then provide a general description of tool that provides the

proposed interface (Section 5.2).

5.1 A Case Study

Assume that user gives "Godfather actors" as the search term. Relevant returned

results come predominantly from the Linked Movie Database and DBpedia. A few,

less relevant, results come from Linked WordNet, BookMashup, and MusicBrainz.

The PSL program uses the results to make inferences as to how to instantiate the

target metamodel in a way that integrates the returned results into a tabular report.

As depicted in Figure 5.1, our PSL-driven user interface then provides the user

with a list of postulated entity types for the given search term. The PSL query

predicate behind Figure 5.1 is HasType, with rows ordered by EntityType proba-

bility. The inference in Figures 5.1 and 5.2 are made based on evidences from the

search results of search term "Godfather actors", DBpedia and Movie ontologies.

The types shown in Figure 5.1 are based on rdf:type assertions found in triples

of the search results. However, given evidences in the search results and the input

ontologies, the most likely entity types, as infered by the semantic model, are Film,

actor, Person, Agent, and Athlete. The second column in Figure 5.1 is the count

of instances for each candidate entity type in the results. This count is based on

inferences of the HasType query predicate. At this point, the user can express an

interest in one of the listed types by pressing on Show More, which would then list

the inferred properties of the selected type, as shown in Figure 5.2 for the postulated

entity type Film. The PSL query predicate behind Figure 5.2 is HasProperty, with

rows ordered by Property probability. The properties shown in Figure 5.2 are based

on RDF property assertions found in the search results. For example, director is
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Figure 5.1: Type selection

a property of the resource lmdb:/film/43338. However, in RDF there is no di-

rect correspondence between type and property assertions, as publishers are not

required to adhere to any specific schema. Our PSL model infers this relation, i.e.,

HasProperty, based on evidence using set-similarity functions as well as evidence

based on domain restriction axioms defined by the input ontologies.

At this point, the user can tick which properties to include in the final tabular

representation. Clicking on Show Table causes it to be shown as seen in Figure. 5.3

for the entity type Film after the properties prequel, director and producer have

been selected. Some properties shown (e.g., producer) are candidates for fusion and

some entities (e.g., The Godfather) are candidates for deduplication.

As the user interacts with the tool, click-throughs are considered as an implicit

feedback on the inference results of the PSL model. For example, in the type selec-

tion screen, i.e., Figure 5.1, clicking on the Show More link corresponding to the sec-

ond entry, i.e., actor, generates the feedback instance EntityTypeFB(actor,yes)
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Figure 5.2: Property selection

Figure 5.3: Data table
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Figure 5.4: Explicit feedback on HasProperty results

which can be then used as positive evidence that supports the proposition that

actor is an entity type. Similarly, selecting properties to include in the tabular rep-

resentation, as done in Figure 5.2, implicitly generates instances of HasPropertyFB,

such as HasPropertyFB(Film, director, yes).

At each stage in this process, the user can intervene by clicking on the Feedback

button to contribute explicit feedback, which becomes evidence for use in future

searches. For example clicking on the Feedback button on the property selection

screen shown in Figure 5.2, causes the screen in Figure 5.4 which prompts the user

to provide feedback. Explicit feedback from the user is a comment from a user on

the correctness of the inferred query predicate. In this specific case it is a testimony

on the correctness of the results of HasProperty. Explicit feedback is collected and

used to any future search thus allowing the personalization of the search results

based on the provided feedback.

To exemplify the effect of providing explicit feedback on the inference results,

consider an example where a user provides the search term Manchester. The most

likely entity type based on the inference results of the baseline model described in

Chapter 4 is Organization (see Figure 5.5). This is because the results for the
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Figure 5.5: Inferred instances of EntityType for the search term Manchester

search term Manchester contains results about record label companies that are an-

notated with entity type Organization. If the user provides feedback (by clicking

on the Feedback button on the screen in Figure 5.5) that the expected type for this

search term is Place and not Organization (as shown in Figure 5.6). The feedback

instances that are generated based on the user action shown in Figure 5.6, among

others, are EntityType(Place, yes) and EntityType(Orgranizaton, no). If the

user then proceeds with the search term Casablanca with the above feedback in-

stances, the PSL program which assimilates feedback evidence produces the results

shown in Figure 5.7, where Place is among the highest likely types for the search

term Casablanca. Without the above feedback, Place does not rank highly among

the likely type of the search term Casablanca (see Figure 5.8).

Note, therefore, that the use of a probabilistic framework allows us not only to

structure and integrate the results but also to improve presentation (e.g., by ordering

rows by likelihood) and to obtain targeted feedback. Note also that since the under-

lying PSL program models similarity relationships, the interface can make princi-

pled, uniform choices regarding deduplication (using SimEntity and SimProperty)

and data fusion (using SimProperty and SimPropertyValue). In the example
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Figure 5.6: Explicit feedback on the instances of EntityType for the results of search
term Manchester

Figure 5.7: Inferred instances of EntityType for the search term Casablanca with
feedback
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Figure 5.8: Inferred instances of EntityType for the search term Casablanca with-
out feedback

screenshots, some candidate properties and entity types (e.g., resp., director and

Film) have been fused on the basis of , resp., SimProperty and SimEntity. Without

this, the final table might be more heavily polluted by the natural redundancy one

expects in search results.

5.2 A Tool For Integrating LD Search Results

We now describe a tool which provides the user interface that we illustrated in

Section 5.1. The tool takes as input a search term and, optionally, a number of on-

tologies that underpin the domain of the search. It generates a tabular structure that

instantiates the metamodel described in Chapter 4. Figure 5.9 shows the data flow

of the tool, where components process the inferred results of the PSL model. Each

query predicate in the metamodel is mapped onto a relational table in a database

that underpins the tool. The main components are the LD Search Interface, the



5.2. A TOOL FOR INTEGRATING LD SEARCH RESULTS 161

LD 
Search

Interface

WoD/
LD Search

Vocabulary
Manager

PSL
Inference

Triple
Store

Ontology 
Data

User
Feedback

Tool
DB

Data
Integrator

Facet
Generator

User 
Interface
Module

PSL components

Tool components

Submit-term

Select Vocab.

Pre-process

Pre-process

Load Load

Load

Save 
Feedback

Update

Construct 
Interface

Duplicate 
Data

Integrated 
Data

Interact
With

Figure 5.9: Dataflow the underpins the tool for integrating LD search results

Vocabulary Manager, the PSL Inference, the Data Integrator, the Facet Generator,

and the User Interface Module. The following sections describe them in details.

5.2.1 LD Search Interface

The LD Search Interface component takes as input one or more search terms, and

passes them to search engines which retrieves a list of resource URIs. As mentioned

in Chapter 3, we use the Falcons [Cheng and Qu, 2009] and Sindice [Oren et al.,

2008] search engines, both of which provide APIs to expose services to software

applications. These APIs return a list of resources the match the search terms. The

LD Search Interface component dereferences the returned resources to obtain the

RDF of each resources. As discussed in Chapter 3, we obtain the RDF for the top 20

hits from each search engine. The obtained RDF is the pre-processed into Triple1

and Triple2 constructs to enable the use of the RDF data in our PSL program.
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5.2.2 Vocabulary Manager

The Vocabulary Manager component takes as input one or more URIs of LD vo-

cabularies (e.g., http://xmlns.com/foaf/0.1/). It dereferences the given URIs in

order to obtain the RDF of the given vocabulary. In this component, we use the

Jena API1 to handle HTTP content negotiation [Fielding et al., 1999]. Note that

content negotiation is often implemented by vocabulary publishers to provide both

human and machine-processable content via the same URI [Heath and Bizer, 2011].

The RDF of the obtained vocabularies is pre-processed into OntTriple construct

which is used by our PSL program to obtain ontological evidence as discussed in

Chapter 4.

5.2.3 PSL Inference

The PSL Inference component implements the PSL program PSL(S ∪ F). Recall

from Chapter 4 that this PSL program assimilates syntactic evidence from LD search

results, semantic evidence obtained from vocabularies and user provided feedback

evidence. As such, this component takes as input data pertaining to each type of

evidence included. We use the PSL implementation2 to run the inference process

using the available evidence which instantiate the query predicates of our target

metamodel. The results of the inference is then loaded in a relational database that

underpins the tool being described here. For example, the results of HasProperty

query predicate is loaded in the relational table HasProperty(E,P,S). In this table

the E attribute corresponds to the domain of the HasProperty relation (i.e., an

inferred entity type, e.g., Film), P attribute corresponds to the range of the of the

HasProperty relation (i.e., an inferred property, e.g., runtime) and the S attribute

corresponds to the inferred probability score of the query atom.

1jena.apache.org
2github.com/linqs/psl

jena.apache.org
github.com/linqs/psl
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Algorithm 5.1 Merge entity types

1: function MergeEntityTypes(threshold)
2: typeList← SelectTypes() . Returns a list
3: clusters← ClusterTypes(typeList, threshold)
4: types← ∅ . initialize to an empty list
5: for (k,c) ∈ clusters do
6: types← types ∪ ChooseCandidateType(c)
7: end for
8: return types . Returns a list of candidate entity types
9: end function

5.2.4 Data Integrator

The Data Integrator comprises the PSL-driven integration algorithms that aim

to improve presentation of the results. It receives as input instantiations of the

metatypes Property, EntityType and Entity, as well as instantiations of the cor-

responding similarity relations (i.e., SimProperty, SimEntityType and SimEntity).

It then uses these results to underpin the algorithms that merge tables columns, and

tuples according to the identified correspondences between instances of metatypes.

The data fusion procedures described by Algorithms 5.1 and 5.2, are used, re-

spectively, to merge the inferred entity types and properties. Both algorithms use

clustering procedures that employs the Union-Find (UF) [Kozen, 1992] data struc-

ture for finding groups of similar properties/types. The UF data structure offers an

efficient way for grouping a set of elements into a number of disjoint subsets. In

our case we use the UF data structure to group properties/types into disjoint sets

using the inferred similarity between pairs of properties/types. This data structure

places a pair of properties or types in the same group if the value of SimProperty

or SimEntityType is greater than or equal a given threshold. The reason for using

clustering instead of just comparing pairs is because there are often cases where

more than two instances of EntityType or Property match (see Figures 5.1 and 5.2

for examples).
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Algorithm 5.1 starts be instantiating a list of candidate entity types. The pro-

cedure SelectTypes in Line 2 returns a list of 2-tuples where the first item in the

tuple is a candidate entity type and the second is its inferred probability. Consider-

ing the example shown in Figure 5.1, the SelectTypes procedure returns the type

list shown in Listing 5.1.

typeList = [

(movie:actor , 0.97) , (foaf:Person , 0.97) ,

(dbo:Film , 0.96) , (schema:Person , 0.95) ,

(dbo:Person ,0.95) , (dbo:Agent , 0.94) ,

(dul:Agent , 0.94) , (schema:Movie , 0.89) ,

(movie:film , 0.86) , (umbelrc:Actor , 0.83) ,

(dbo:Athlete , 0.63) , (dbo:Wikidata:Q11424 , 0.22)]

Listing 5.1: The type list that underpins Figure 5.1

In Line 3 of Algorithm 5.1, the procedure ClusterTypes groups elements of

the returned typeList into disjoint subsets using a UF data structure. The

ClusterTypes procedure takes as input a list of candidate types and a threshold

to determine which elements of the typeList to be clustered. Assuming that the

threshold is 0.5, still considering the example in Figure 5.1, the pairs of candidate

types which have an inferred similarity that is greater than on equal 0.5 are shown

in Listing 5.2.

SimEntityType = [

(foaf:Person , schema:Person , 0.78) ,

(foaf:Person , dbo:Person , 0.78) ,

(dul:Agent , dbo:Agent , 0.78) ,

(schema:Movie , dbo:Film , 0.65) ,

(umbelrc:Actor , movie:actor , 0.61) ,

(dbo:Film , movie:Film , 0.56) ,

(dbo:Wikidata:Q11424 , dbo:Film , 0.53)]

Listing 5.2: Inferred probabilities of SimEntityType for the results in Figure 5.1

Given the above similarities the clustering procedure produces the 5 clusters

shown in Listing 5.3.
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clusters = {

1: [(movie:actor , 0.97), (umbelrc:Actor , 0.83)],

2: [(foaf:Person , 0.97), (schema:Person , 0.95),

(dbo:Person ,0.95)],

3: [(dbo:Film , 0.96), (schema:Movie , 0.89), (movie:film , 0.86),

(dbo:Wikidata:Q11424 , 0.22)],

4: [(dbo:Agent , 0.94), (dul:Agent , 0.94)],

5: [(dbo:Athlete , 0.63)]}

Listing 5.3: The clusters produced which underpins the results in Figure 5.1

Algorithm 5.2 Merge properties

1: function MergeProperties(type, threshold)
2: propertyList← SelectProperties(type)
3: clusters← ClusterProperties(propertyList, threshold)
4: properties← ∅
5: for (k,c) ∈ clusters do
6: properties← properties ∪ ChooseCandidateProperty(c)
7: end for
8: return properties . Returns a list of candidate properties
9: end function

For each cluster produced, a single candidate type is chosen in order to generate

a label for the corresponding cluster. The label is simply the local name of the

resource URI representing the candidate entity type. The ChooseCandidateType

procedure in Line 6 takes as input a cluster and chooses a candidate type to

represent the cluster. This done by choosing a candidate entity with the high-

est inferred probability (i.e., using the inferred probabilities of EntityType query

predicate). For example, as shown in Figure 5.1,the selected candidate type for

the cluster {(dbo:Film, 0.96), (schema:Movie, 0.89), (movie:film, 0.86),

(dbo:Wikidata:Q11424, 0.22)} is dbo:Film, and the label generated for the clus-

ter is Film.

Algorithm 5.2 used to merge inferred properties is similar to Algorithm 5.1 in the

sense that it executes a similar set of procedures. However, Algorithm 5.2 is different

from Algorithm 5.1 because it takes as input a selected type stemming from interac-

tion with the screen in Figure 5.1. For example, if the user chooses to drill down on



166 CHAPTER 5. UI FOR INTEGRATING LD SEARCH RESULTS

the Film entity type, the producer SelectProperties in Line 2 of Algorithm 5.2 re-

turns a list of inferred properties for the entity type Film. The query predicate which

underpins this procedure is HasProperty. For example, for the Film entity type,

the property list returned by the producer SelectProperties includes, among oth-

ers, [(dbo:director, 0.41), (dbo:producer, 0.40), (dbo:runtime, 0.46),

(movie:story contributor, 0.37)], where the value of the probability is ob-

tained through the HasProperty query predicate. For instance, in this example,

HasProperty(dbo:Film, dbo:director) = 0.41 and HasProperty(movie:film,

movie:story contributor) = 0.37. The ClusterProperties procedure groups

the properties into disjoint subsets. It uses the inferred probabilities of SimProperty

and a given threshold to cluster similar properties. For cluster for properties pro-

duced by ClusterProperties procedure, a candidate property is selected based on

the inferred probability of Property query predicate in our PSL model.

Before generating the data table (e.g., Figure 5.3), tuples that potentially de-

scribe the same entity are merged. This is described in Algorithm 5.3. The algorithm

takes as an input a selected type and a set of selected properties (i.e., stemming

from interaction with the screens in Figures 5.1 and 5.2). In Algorithm 5.3, similar

individuals are clustered using the inferred SimEntity similarity scores. Each can-

didate entity is assigned a property values, one for each of the selected properties.

The property value that is assigned is determined by the function BestValue, which

selects the most likely property value using the inference results of PropertyValue.

5.2.5 Facet Generator

The Facet Generator is responsible for constructing the user interface in response

to user actions. It creates user interface elements that allow the user to explore the

search results. The tool has two kinds of facets type facets and property facets. Type

facets allow the user to filter the results through the set of inferred type. Property
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Algorithm 5.3 Merge individual entities

1: function MergeIndividuals(type, properties, threshold)
2: individualList← SelectIndividuals(type)
3: clusters← ClusterIndividuals(individualList, threshold)
4: individuals← ∅
5: for (k,c) ∈ clusters do
6: entity ← ChooseCandidateIndividual(c)
7: for property ∈ properties do
8: entity.propertyMap[property]← BestValue(entity, property)
9: end for

10: individuals← individuals ∪ entity
11: end for
12: return individuals . Returns a list of candidate individuals
13: end function

facets allow the user to filter properties of a given entity types. As shown in Sec-

tion 5.1, these facets are generated using the underlying instantiations of the query

predicates of the PSL model. One important aspect of automatic facet generation

is ranking the facets so as to determine which ones are more useful [Arenas et al.,

2014; Tunkelang, 2009]. A probabilistic framework such as PSL makes it possible

to use inferred probabilities for ranking, i.e., this makes it easier for downstream

applications, such as the tool presented in here, to decide on usefulness of facets.

5.2.6 User Interface Module

The user interface module interacts with user with a view to obtaining results that

satisfy the user’s search intention. Through the interaction with the interface, im-

plicit feedback is collected to allow for better inference for future search terms (e.g.,

as in, property selection screen, Figure 5.2). Further, the user can provide explicit

feedback on the results of the search by clicking on the Feedback button. Explicit

feedback is prompted through a simple yes/no question, as shown in Figure 5.4. The

Feedback obtained by the user is fed to the facet generator component for immediate

update of the results in addition to being saved for future inferences.
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5.3 Summary and Conclusions

This chapter presented an interface that builds on the inference results of the PSL

model presented in the previous chapter. The interface allows users to (i) choose

between different types represented in the search result, (ii) refine the properties

of the types, (iii) merge both properties and types, and; (iv) fuse instances. All of

these activities are informed by the probabilities inferred by the PSL program over

the search results. Not only this, but the inferred probabilities allows us to rank

the user interface elements in a way that is beneficial to the end user. It was shown

how the PSL program can drive a user interface by means of which the user can

provide feedback that improves future quality, in a pay-as-you-go style. Moreover,

the expressiveness of PSL allows the program to express similarity relationships from

which, as shown, it is possible to perform immediate duplicate detection and data

fusion prior to showing cleaner results to the user.
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Conclusions

This chapter summarises the major research contributions presented in this disser-

tation in Section 6.1. In Section 6.2 we discuss some limitations and possible future

work in this context.

6.1 Summary of Results and Contributions

The number of RDF documents has grown rapidly in the past decade giving rise to

the WoD. To address this growth, a number of LD search engines were developed

to allow non-expert users to access this source of data. One limitation of LD search

engines is that their main focus is in finding resources relevant to a search term

given by the user. The search approach does not address the problem of integrating

the heterogeneous results of the search. Aimed at providing an improved visual

representation of the search results, Sig.ma [Tummarello et al., 2010], addresses the

problem of integrating LD search results on individual entities by building a property

graph of the results. However, Sig.ma uses heuristics whose only input is syntactic

evidence, and accumulates information about a candidate entity from different LD

resources without using a principled evidence-assimilation technique. Furthermore,

it assumes that the search term describe a single real-world entity, not a collection of

different individual entities. The work presented in this dissertation was motivated

169
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by the opportunity to complement the work to date on search engines for LD by

devising a technique to infer a structure over the returned resources. Specifically, we

have adopted SRL approaches to assimilate different kinds of evidence in a principled

manner to produce an integrated representation of the results.

This has motivated Objective O1: To identify, describe and evaluate approaches

that allow us to infer, with uncertainty, a structure for LD search results. The

contribution associated with this objective provided a characterization of LD search

integration as an SRL problem. More specifically, we have described two rule-bases

using MLNs (Chapter 3) and PSL (Chapter 4) which instantiate a meta-model of

our target structure. To capture the uncertainty of these rules, we have learned the

weights of the rules using a sample of searches and used the learned models to infer

(with uncertainty) the entity types, instances, properties in search results.

One question that this dissertation has addressed is how to incorporate addi-

tional sources of evidence, along with syntactic evidence, into the task of integrating

LD search results? Data integration techniques have taken advantage of evidence

that is encoded in domain ontologies and conceptual hierarchies [Hu et al., 2011;

Nikolov et al., 2012; Säıs et al., 2009; Scharffe et al., 2009]. Furthermore, several

approaches have been proposed to use human feedback to train models that improve

data integration quality over approaches that use syntactic means only [Demartini

et al., 2013; Isele and Bizer, 2013; Kejriwal and Miranker, 2015]. This has led us

to Objective O2: To extend the approaches in O1 to take advantage of the knowl-

edge encoded by the domain ontologies that are used to describe LD sources with a

view to improving the structure inferred in O1 and Objective O3: To explore the

impact of incorporating user feedback as an additional source of evidence to the ap-

proaches explored in O1. The resulting contribution is the extension of a baseline

PSL rule-base with a set of rules that assimilate evidence extracted from domain

ontologies and from user feedback. Chapter 4 described an empirical evaluation of

this evidence-based approach, in which it is shown how the principled, uniform use
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of different types of evidence improves integration quality.

The significance of the contributions resulting from Objectives O1 to O3 stems

from the novelty of adapting SRL approaches for the task of integrating LD search

results. In doing so, we have

• used a domain-independent metamodel that characterizes the inferred struc-

ture of the results;

• proposed a set of rules that systematically reconciles different types of evi-

dence with the aim of identifying relevant entities, entity types, attributes and

attribute values from the results; and

• indicated how it is possible to extend our approach with domain-specific rules,

which have the potential of further improving the integration of LD search

results if needed.

One question that arises from theses results is how to use the instantiated meta-

model to present the results to the end user? To address this question, in Chapter 5

we discussed how we have met Objective O4: To investigate how the results from O1

to O3 can be used to underpin a user interface to LD search that helps users identify

the data that is most relevant to them. This has resulted in an implementation of a

prototype user interface that is driven by the inference results of the PSL model we

described in Chapter 4. We showed how the use of a probabilistic framework such as

PSL allows us not only to structure the results but also to improve the presentation

through principled generation of facets that enable the user to navigate the relevant

results. The significance of this contribution stems from the opportunities arising

from combining the results of keyword search with automatic means for generating

facets using PSL in order to provide an improved report of results. This approach

opens up opportunities for principled assimilation of existing ontologies as well as

user feedback in relation to LD search results personalization.
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In this thesis, we presented two rule-bases that rely on SRL approaches for inter-

preting and integrating LD search results. The PSL rule-base assimilates different

sorts of evidence to inform how to structure search results according to a defined

meta-model. Our approach demonstrates the feasibility of SRL based methods in

the integration problem that require the principled management of different kinds

of uncertain evidence. Our approach is domain generic so the rule-bases can be ap-

plied to LD search results which stem from different domains. However, the quality

of the inference results obtained by such rule-bases may vary across domains. The

kind of weights learned is dependent on the data in the weight learning process. Us-

ing a different dataset from the one we presented will most likely produce different

weights and thus will produce different inference results from the ones observed in

our experiments. Also, quality of the generated reports from the instantiation of our

meta-model constructs is dependent on the quality of the input search results of the

LD search engine. If some LD search engine produces predominately irrelevant re-

sult to the search terms used, this will effect the generated reports. Nonetheless, the

SRL approach can be used to assimilate user feedback in a way that incrementally

refines the obtained results as demonstrated in our experiments.

6.2 Limitations and Future Work

6.2.1 Application of Feedback

A key strategy in dataspaces is the reliance on user feedback for improving the

quality of integrations resulting from a bootstrapping phase based on automated

techniques. LD is viewed by many as a large dataspace, where datasets are published

by various publishers [Heath and Bizer, 2011; Umbrich et al., 2012; Christodoulou,

2015], and the integration is carried out incrementally through later linkage.

SRL approaches, as demonstrated in this dissertation, are useful for, among

other things, assimilation of different sources of evidence. Essentially, our approach
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of acquiring evidence, including feedback, on the inference results of the our PSL

model can, in principle, be used to improve the results of automated LD linkage

tasks. For example, feedback on the results of HasProperty and SimProperty can

be used to generate concept-level linkage in heterogeneous datasets. This feedback

is needed because, as we have explained in our empirical study in Section 4.2.3,

there is a lack of cross-ontology links.

To successfully deal with feedback coming from different user communities, our

approach needs to be extended to handle variable quality feedback. The experiment

in Section 4.3.3, assumed that feedback on inference results has been obtained from

a single user with expertise on the domain of the search. To learn from feedback

stemming various of users with possibly conflicting points of view, the rules need

to encode features such as the reliability of each type/class of user. In other words,

rules need to be specialized to take into account the user that is providing feedback

on candidate results. This can be achieved by introducing rule templates for different

user class/type and generating rules based on such templates in a similar manner

to what was demonstrated in the experiment in Section 4.3.4.

In addition, further work could investigate the impact of certain kinds of feedback

on the overall integration quality of search results. As shown, in Section 4.3.3,

we obtain feedback on the candidates of various query predicates in our model.

However, one should explore the focussed application of feedback on ,e.g., a subset of

query predicates, such as the results of SimEntity, and the propagate this feedback

for making inferences about a different set of query predicates. The expressivity

of MLNs and PSL syntax enables us to easily specify how feedback is propagated.

This could be beneficial because certain types of feedback could be easier obtain

than others, for reasons that include, for example, the lack of expertise. Thus, one

could reap greater benefits from feedback that is less expensive to obtain.
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6.2.2 User Interface Evaluation

In Chapter 5, we presented an interface to provide the user with an integrated view

of the search results based on inferences generated by the PSL program. The key

idea was to use the instantiated meta-model to generate facets that enable easy

navigation of the search results. Also, inference over similarity relationships was

used to merge tables, columns and individuals in the resulting tables. The purpose

of the interface was to demonstrate how the inference results could be used to derive

a user interface. One possible piece of future work is to carry out a formal evaluation

of the proposed interface with real users. An evaluation of the interface could be

obtained through a usability study that measured the extent to which the interface

facilitates finding cogent, concise and relevant information in the WoD. The baseline

for the study could be one of the LD search methods, discussed in Chapter 2. The

study could consider subjective aspects (e.g., in terms of presentation style and

functionality) of interacting with interface to understand the experience of the end

user. The interface could be evaluated along a number of dimensions that could

include the time to find relevant answers and the suitability of reported results.

6.2.3 Inference of an Extended Metamodel

The PSL model introduced in Chapter 4 infers various similarity relationships be-

tween the instances of the target metamodel. These inferred similarities are mainly

used to reduce duplication in the results that are presented to the end user. However,

different types of relations are typically involved, e.g., equivalence and subsumption.

When we generated the tabular reports, we only considered the former and ignored

the latter. Future work could consider extending the expressiveness of the target

metamodel by inferring subsumption relationships. This would allow, e.g., improve-

ment in the visual presentation of the results by building hierarchies over the inferred

types.
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Finally, our generated tabular reports only include single-valued attributes of

entities. This is because we do not attempt to infer relationships between candidate

entity types, such as the starring relationship between the entity types movie and

actor. A possible future direction might consider the inference of relationships

between the inferred entity types. This would enable the generation of tabular

reports that cater for multivalued attributes.
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Bröcheler, M., Mihalkova, L., and Getoor, L. (2010). Probabilistic similarity logic.

In UAI 2010, Proceedings of the Twenty-Sixth Conference on Uncertainty in Ar-

tificial Intelligence, Catalina Island, CA, USA, July 8-11, 2010, pages 73–82.

Castano, S., Ferrara, A., Montanelli, S., and Varese, G. (2011). Ontology and

instance matching. In Knowledge-Driven Multimedia Information Extraction and

Ontology Evolution - Bridging the Semantic Gap, pages 167–195.

Cheng, G. and Qu, Y. (2009). Searching linked objects with falcons: Approach,

implementation and evaluation. Int. J. Semantic Web Inf. Syst., 5(3):49–70.

Christodoulou, K. (2015). On techniques for pay-as-you-go data integration of linked

data. PhD thesis, School of Computer Science, The University of Manchester.

Christodoulou, K., Fernandes, A. A. A., and Paton, N. W. (2015a). Web Information

Systems Engineering – WISE 2015: 16th International Conference, Miami, FL,

USA, November 1-3, 2015, Proceedings, Part I, chapter Combining Syntactic and

Semantic Evidence for Improving Matching over Linked Data Sources, pages 200–

215. Springer International Publishing, Cham.

Christodoulou, K., Paton, N. W., and Fernandes, A. A. A. (2015b). Structure

inference for linked data sources using clustering. Trans. Large-Scale Data- &

Knowledge-Centered Sys., 19:1–25.

Croft, W. B., Metzler, D., and Strohman, T. (2009). Search Engines - Information

Retrieval in Practice. Pearson Education.



180 BIBLIOGRAPHY

Cruz, I. F., Stroe, C., and Palmonari, M. (2012). Interactive user feedback in

ontology matching using signature vectors. In Data Engineering (ICDE), 2012

IEEE 28th International Conference on, pages 1321–1324. IEEE.

Cyganiak, R., Wood, D., and Wood, M. (2014). RDF 1.1 Concepts and Abstract

Syntax. https://www.w3.org/TR/rdf11-concepts/. Accessed: 2015-09-30.

Dachselt, R., Frisch, M., and Weiland, M. (2008). Facetzoom: a continuous multi-

scale widget for navigating hierarchical metadata. In Proceedings of the 2008

Conference on Human Factors in Computing Systems, CHI 2008, 2008, Florence,

Italy, April 5-10, 2008, pages 1353–1356.

D’Aquin, M., Baldassarre, C., Gridinoc, L., Sabou, M., Angeletou, S., and Motta,

E. (2007). Watson: supporting next generation semantic web applications.

D’Aquin, M. and Motta, E. (2011). Watson, more than a semantic web search

engine. Semantic Web, 2(1):55–63.

Davis, J. and Goadrich, M. (2006). The relationship between precision-recall and

ROC curves. In Machine Learning, Proceedings of the Twenty-Third Interna-

tional Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29,

2006, pages 233–240.

Demartini, G., Difallah, D. E., and Cudré-Mauroux, P. (2012). Zencrowd: leveraging
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Demartini, G., Difallah, D. E., and Cudré-Mauroux, P. (2013). Large-scale linked

data integration using probabilistic reasoning and crowdsourcing. VLDB J.,

22(5):665–687.

https://www.w3.org/TR/rdf11-concepts/


BIBLIOGRAPHY 181

Ding, L., Finin, T. W., Joshi, A., Pan, R., Cost, R. S., Peng, Y., Reddivari, P.,

Doshi, V., and Sachs, J. (2004). Swoogle: a search and metadata engine for the

semantic web. In Proceedings of the 2004 ACM CIKM International Conference

on Information and Knowledge Management, Washington, DC, USA, November

8-13, 2004, pages 652–659.

Dix, A., Cowgill, R., Bashford, C., McVeigh, S., and Ridgewell, R. (2016). Spread-

sheets as user interfaces. In Proceedings of the International Working Conference

on Advanced Visual Interfaces, AVI 2016, Bari, Italy, June 7-10, 2016, pages

192–195.

Doan, A., Halevy, A. Y., and Ives, Z. G. (2012). Principles of Data Integration.

Morgan Kaufmann.

Doan, A., Ramakrishnan, R., and Halevy, A. Y. (2011). Crowdsourcing systems on

the world-wide web. Commun. ACM, 54(4):86–96.

Domingos, P. M. and Lowd, D. (2009a). Markov Logic: An Interface Layer for

Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and Machine

Learning. Morgan & Claypool Publishers.

Domingos, P. M. and Lowd, D. (2009b). Markov Logic: An Interface Layer for Arti-

ficial Intelligence, chapter 4 Learning. Synthesis Lectures on Artificial Intelligence

and Machine Learning. Morgan & Claypool Publishers.

Domingos, P. M. and Lowd, D. (2009c). Markov Logic: An Interface Layer for Arti-

ficial Intelligence, chapter 3 Inference. Synthesis Lectures on Artificial Intelligence

and Machine Learning. Morgan & Claypool Publishers.

Dou, Z., Song, R., Yuan, X., and Wen, J.-R. (2008). Are click-through data adequate

for learning web search rankings? In Proceedings of the 17th ACM Conference

on Information and Knowledge Management, CIKM ’08, pages 73–82, New York,

NY, USA. ACM.



182 BIBLIOGRAPHY

Duan, S., Fokoue, A., and Srinivas, K. (2010). One size does not fit all: Customizing

ontology alignment using user feedback. In The Semantic Web–ISWC 2010, pages

177–192. Springer.

Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S. (2007). Duplicate record

detection: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16.

Erling, O. and Mikhailov, I. (2009). Faceted views over large-scale linked data. In

Proceedings of the WWW2009 Workshop on Linked Data on the Web, LDOW

2009, Madrid, Spain, April 20, 2009.

Euzenat, J. and Shvaiko, P. (2013). Ontology Matching, Second Edition. Springer.

Fakhraei, S., Foulds, J. R., Shashanka, M. V. S., and Getoor, L. (2015). Collective

spammer detection in evolving multi-relational social networks. In Proceedings of

the 21th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Sydney, NSW, Australia, August 10-13, 2015, pages 1769–1778.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,

27(8):861–874.

Ferrara, A., Nikolov, A., and Scharffe, F. (2011). Data linking for the semantic web.

Int. J. Semantic Web Inf. Syst., 7(3):46–76.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-

Lee, T. (1999). Hypertext transfer protocol–http/1.1. Request for Comments:

2616.

Fisher, J., Christen, P., and Wang, Q. (2016). Active learning based entity resolution

using markov logic. In Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J. Z.,

and Wang, R., editors, Advances in Knowledge Discovery and Data Mining - 20th

Pacific-Asia Conference, PAKDD 2016, Auckland, New Zealand, April 19-22,



BIBLIOGRAPHY 183

2016, Proceedings, Part II, volume 9652 of Lecture Notes in Computer Science,

pages 338–349. Springer.

Frasincar, F., Telea, A., and Houben, G.-J. (2006). Adapting Graph Visualization

Techniques for the Visualization of RDF Data, pages 154–171. Springer London,

London.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line

learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139.

Fu, L., Wang, H., Jin, W., and Yu, Y. (2012). Towards better understanding and

utilizing relations in dbpedia. Web Intelligence and Agent Systems, 10(3):291–303.

Gal, A. (2006). Why is schema matching tough and what can we do about it?

SIGMOD Record, 35(4):2–5.

Gandon, F. and Schreiber, G. (2014). RDF 1.1 XML Syntax. https://www.w3.

org/TR/rdf-syntax-grammar/. Accessed: 2015-09-30.

Getoor, L. and Taskar, B. (2007). Introduction to statistical relational learning. MIT

press.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Ma-

chine Learning, 63(1):3–42.

Giunchiglia, F., Shvaiko, P., and Yatskevich, M. (2005). On the Move to Meaningful

Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM Confederated Inter-

national Conferences, CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus,

October 31 - November 4, 2005, Proceedings, Part I, chapter Semantic Schema

Matching, pages 347–365. Springer Berlin Heidelberg, Berlin, Heidelberg.

Guha, R., Brickley, D., and Macbeth, S. (2016). Schema. org: Evolution of struc-

tured data on the web. Communications of the ACM, 59(2):44–51.

https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/


184 BIBLIOGRAPHY

Guha, R. V. and Brickley, D. (2014). RDF Schema 1.1. https://www.w3.org/TR/

rdf-schema/. Accessed: 2015-09-30.

Gunaratna, K., Thirunarayan, K., Jain, P., Sheth, A., and Wijeratne, S. (2013). A

statistical and schema independent approach to identify equivalent properties on

linked data. In Proc. 9th Int. Conf. Semantic Systems, pages 33–40. ACM.

Haase, P., Horrocks, I., Hovland, D., Hubauer, T., Jimenez-Ruiz, E., Kharlamov, E.,

Pinkel, J. K. C., Rosati, R., Santarelli, V., Soylu, A., and Others (2013). Optique

System: Towards Ontology and Mapping Management in OBDA Solutions. In

Second International Workshop on Debugging Ontologies and Ontology Mappings-

WoDOOM13, page 21.

Halevy, A. Y., Franklin, M. J., and Maier, D. (2006). Principles of dataspace sys-

tems. In Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, June 26-28, 2006, Chicago, Illinois,

USA, pages 1–9.

Harth, A. (2010). Visinav: A system for visual search and navigation on web data.

J. Web Sem., 8(4):348–354.

Harth, A., Hogan, A., Umbrich, J., Kinsella, S., Polleres, A., and Decker, S. (2012).

Searching and browsing linked data with SWSE. In Semantic Search over the

Web, pages 361–414.

Harth, A., Umbrich, J., Hogan, A., and Decker, S. (2007). YARS2: A federated

repository for querying graph structured data from the web. In The Seman-

tic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web

Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007.,

pages 211–224.

Heath, T. and Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data

Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers.

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/


BIBLIOGRAPHY 185

Hedeler, C., Belhajjame, K., Paton, N. W., Campi, A., Fernandes, A. A. A., and

Embury, S. M. (2010). Dataspaces. In Search Computing, pages 114–134. Springer.

Herman, I., Herman, I., and Patel-Schneider, P. F. (2004). OWL 2 Web Ontol-

ogy Language Document Overview. https://www.w3.org/TR/owl2-overview/.

Accessed: 2015-09-30.

Hogan, A. (2014). Linked Data Management, chapter Linked data and the Semantic

Web standards. CRC Press.

Hogan, A., Harth, A., Passant, A., Decker, S., and Polleres, A. (2010). Weaving the

pedantic web. In Proceedings of the WWW2010 Workshop on Linked Data on the

Web, LDOW 2010, Raleigh, USA, April 27, 2010.

Hogan, A., Harth, A., and Polleres, A. (2009). Scalable authoritative OWL reasoning

for the web. International Journal on Semantic Web and Information Systems

(IJSWIS), 5(2):49–90.

Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., and Decker, S. (2012).

An empirical survey of linked data conformance. J. Web Sem., 14:14–44.

Hu, W., Chen, J., and Qu, Y. (2011). A self-training approach for resolving object

coreference on the semantic web. In Proceedings of the 20th International Con-

ference on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April

1, 2011, pages 87–96.

Huhns, M. N., Jacobs, N., Ksiezyk, T., Shen, W.-M., Singh, M. P., and Cannata,

P. E. (1993). Integrating enterprise information models in carnot. In Intelligent

and Cooperative Information Systems, 1993., Proceedings of International Con-

ference on, pages 32–42.

Isele, R. and Bizer, C. (2013). Active learning of expressive linkage rules using

genetic programming. J. Web Sem., 23:2–15.

https://www.w3.org/TR/owl2-overview/


186 BIBLIOGRAPHY

Isele, R., Umbrich, J., Bizer, C., and Harth, A. (2010). Ldspider: An open-source

crawling framework for the web of linked data. In Proceedings of the ISWC 2010

Posters & Demonstrations Track: Collected Abstracts, Shanghai, China, Novem-

ber 9, 2010.

J. Hayes, P. and F. Patel-Schneider, P. (2014). RDF 1.1 Semantics. https://www.

w3.org/TR/rdf11-mt/. Accessed: 2015-09-30.

Jagadish, H. V., Chapman, A., Elkiss, A., Jayapandian, M., Li, Y., Nandi, A.,

and Yu, C. (2007). Making database systems usable. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, Beijing, China, June

12-14, 2007, pages 13–24.

Jansen, B. J., Booth, D. L., and Spink, A. (2008). Determining the informational,

navigational, and transactional intent of web queries. Information Processing &

Management, 44(3):1251–1266.

Kejriwal, M. and Miranker, D. P. (2015). Semi-supervised instance matching using

boosted classifiers. In The Semantic Web. Latest Advances and New Domains -

12th European Semantic Web Conference, ESWC 2015, Portoroz, Slovenia, May

31 - June 4, 2015. Proceedings, pages 388–402.

Khosravi, H. and Bina, B. (2010). A survey on statistical relational learning. In

Advances in Artificial Intelligence, pages 256–268. Springer.

Kimmig, A., Bach, S., Broecheler, M., Huang, B., and Getoor, L. (2012). A short

introduction to probabilistic soft logic. In Proceedings of the NIPS Workshop on

Probabilistic Programming: Foundations and Applications, pages 1–4.

Kimmig, A., Mihalkova, L., and Getoor, L. (2015). Lifted graphical models: a

survey. Machine Learning, 99(1):1–45.

https://www.w3.org/TR/rdf11-mt/
https://www.w3.org/TR/rdf11-mt/


BIBLIOGRAPHY 187

Kiryakov, A., Ognyanov, D., and Manov, D. (2005). OWLIM–a pragmatic seman-

tic repository for OWL. In Web Information Systems Engineering–WISE 2005

Workshops, pages 182–192. Springer.

Kot, L. and Koch, C. (2009). Cooperative update exchange in the youtopia system.

PVLDB, 2(1):193–204.

Kozen, D. C. (1992). The Design and Analysis of Algorithms, chapter Union-Find,

pages 48–51. Springer New York, New York, NY.

Lowd, D. and Domingos, P. M. (2007). Efficient weight learning for markov logic

networks. In Kok, J. N., Koronacki, J., de Mántaras, R. L., Matwin, S., Mladenic,
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Appendix A

Computing Area Under

Precision-Recall Curve

In the work presented in this thesis, we use the area under precision-recall (AUC)

curve to evaluate the performance of our MLNs and PSL models. AUC PR is a sum-

mary measure that computed on the basis of two information retrieval (IR) metrics:

precision and recall. Precision is a measure of result relevancy, while recall is mea-

sure of many truly relevant results are retuned. The AUC is common evaluation

metric that is used by the SRL community (e.g., employed by [Singla and Domin-

gos, 2006; Poon and Domingos, 2006; Bach et al., 2013a; Neville and Jensen, 2007;

Fakhraei et al., 2015; Pujara et al., 2013]. The AUC is a single point summary of

resulting curve. In machine learning, the AUC us used as a heuristic for optimizing

machine learning algorithms and for comparing between the performance of different

classifiers [Davis and Goadrich, 2006]. The use of AUC is common in settings the

involve highly skewed datasets where the number of false positives is exceeds the

number of true positives. For example, in our problem there are more things that

not similar (e.g., via SimEntity) than things that are similar.

To compute the AUC, the PR curve need to be plotted first. This is done by

varying the probability thresholds of precision and recall of a probabilistic classifier.

195



196 APPENDIX A. COMPUTING AUC PR

Query Predicate Probabiliy Ground Truth
HasProperty(Person, birthYear) 0.973 1
HasProperty(Person, birthDate) 0.973 1
HasProperty(Work,runtime) 0.967 1
HasProperty(Work, musicComposer) 0.811 0
HasProperty(SpatialThing, lat) 0.645 1
HasProperty(Q728937, numberOfStations) 0.645 0
HasProperty(SportsTeam, manager) 0.645 1
HasProperty(Film, producer) 0.583 1
HasProperty(Film, director) 0.573 1
HasProperty(Person, abstract) 0.44 0
HasProperty(Work, distributor) 0.368 0
HasProperty(MusicalWork, previousWork) 0.335 1
HasProperty(Location, populationMetro) 0.322 0
HasProperty(Organization, season) 0.322 0
HasProperty(Place, speedLimit) 0.322 0
HasProperty(SoccerPlayer, surname) 0.071 1

Table A.1: An excerpt of HasProperty results.

The threshold (t) determines which propositions in the inference results are labelled

positive and which negative. The ones whose probability of being greater than or

equal the threshold are positive and the rest are negative. The precision (P ) and

recall (R) are computing using the standard IR formulas as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + Fn

where TP is the number of true positives, FP is the number of false positives, and

Fn is the number of false negatives.

Example 4 (Computing AUC PR). To illustrate how the AUC is computed, con-

sider the results shown in Table A.1 which shows the some of the results produced

by our PSL model for the HasProperty query predicate. Given that the distribution

of probability scores varies greatly among different query predicates in the interval

[0, 1], the thresholds for computing the AUC are determined by the positive atoms

of a query predicate. For instance, in this example, the thresholds for which the



197

Threshold 0.071 0.335 0.573 0.583 0.645 0.967 0.973 1.0
Precision 0.562 0.667 0.778 0.750 0.714 1.0 1.0 1.0
Recall 1.0 0.889 0.778 0.667 0.556 0.333 0.222 0.0

Table A.2: Obtained PR scores for the results shown in Table A.1
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Figure A.1: PR curve for the scores in Table A.2

precision and recall are computed are 0.071, 0.335, 0.573, 0.583, 0.645, 0.967 and

0.973. At t = 0.071, TP = 9, FP = 7, Fn = 0, thus P = 0.562 and R = 1. Similarly,

At t = 0.335, TP = 8, FP = 4, Fn = 1, so we get for P = 0.667 and for R = 0.889.

Repeating this calculation for the remaining thresholds we obtain the scores shown

in Table A.2. These obtained scores produce the curve shown in Figure A.1. The

area under a curve between the upper-left and lower-right points can be found by

estimating a definite integral between the two points. We use scikit-learn 1 tool kit

to estimate the find the value of the area.

1scikit-learn.org/



Appendix B

A Methodology for Empirical

Study on LD Vocabularies

In Chapter 4 we presented the results of survey for a number of LD vocabularies

which showed exiting LOD vocabularies lack the use of expressive meta-vocabulary

constructs (such as disjointness, e.g., owl:disjointWith, and equivalence, e.g.,

owl:equivalentClass axioms). In here we present the methodology used in our

survey of the vocabulary. Note that this methodology is an adaptation of similar

method presented in [Christodoulou, 2015].

To conduct the survey, we used LDSpider [Isele et al., 2010], an open-source

crawling framework designed for LD. The crawler was seeded with a list of 338

vocabularies that was fetched the Linked Open Vocabularies1 repository.

The crawler was configured as follows:

• Syntax: The crawling was restricted to consider vocabularies that were seri-

alised RDF/XML or Turtle syntax due to the widespread use of these seriali-

sations.

• Link filter: Since the goal was to survey the conceptual level of the WoD,

the crawler was restricted to follow the T-Box links which ensures that the

1lov.okfn.org/dataset/lov/
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crawler remains at the conceptual level.

• Load-balancing: To ensure that the fetched URIs are distributed across

domains, the crawler was configured to fetch 500K URIs from the seed list.

• Output: The out of the crawler were stored in a triple store. The Jean TDB 2

store was used in our case.

We ran the crawler with the above configurations for 1 week, in May 2016. The

crawling process resulted in retrieving about 200K N-Quads representing ontological

statements in the WoD

2jena.apache.org/documentation/tdb/
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