
A COMPONENT-BASED APPROACH

TO MODELLING SOFTWARE

PRODUCT FAMILIES WITH EXPLICIT

VARIATION POINTS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science & Engineering

2017

Simone Di Cola

School of Computer Science

Contents

Abstract 12

Declaration 13

Copyright Statement 14

List of Publications 16

1 Introduction 18

1.1 Research Problem . 20

1.2 Research Aim and Objectives . 24

1.3 Research Contributions . 25

1.4 Research Methodology . 26

1.5 Thesis Outline . 28

2 Software Product Lines Engineering 30

2.1 Introduction . 30

2.2 Domain Engineering . 32

2.2.1 Product management . 32

2.2.2 Domain requirement engineering 33

2.2.3 Domain design . 35

2.2.4 Domain realisation . 36

2.2.5 Domain testing . 37

2.3 Application Engineering . 38

2.3.1 Application requirements engineering 38

2.3.2 Application design . 38

2.3.3 Application realisation . 39

2

2.3.4 Application testing . 40

2.4 What Software Product Lines Are Not 40

2.4.1 Accidental reuse . 41

2.4.2 Single-system development with reuse 41

2.4.3 Configurable architecture . 41

2.4.4 Product releases . 42

2.4.5 Technical standard . 42

2.4.6 Component-based development 42

2.5 Summary . 43

3 Modelling Software Product Families 44

3.1 Introduction . 44

3.2 FODA . 45

3.3 Annotation-based SPLE . 50

3.4 Weaving-based SPLE . 53

3.5 Superimposition-based SPLE . 55

3.6 ∆-based SPLE . 57

3.7 ADL-based SPLE . 58

3.8 FX-MAN-based SPLE . 63

3.9 Summary . 65

4 Component-based Software Modelling 67

4.1 Introduction . 67

4.2 Software Component . 68

4.3 Component Model . 69

4.3.1 Models based on objects . 70

4.3.2 Models based on architectural units 71

4.3.3 Models based on encapsulated components 73

4.4 A taxonomy of current component-models 74

4.5 Summary . 79

5 A Component-based Approach to Modelling Software Product Fam-

ilies 80

3

5.1 Introduction . 80

5.2 X-MAN component model . 82

5.3 Variation generation . 84

5.4 Family composition . 87

5.4.1 Family filters . 89

5.5 Constructing a Product Family . 90

5.6 Summary . 93

6 Tool Support 94

6.1 Introduction . 94

6.2 Model Driven Engineering . 95

6.3 Technologies . 96

6.3.1 Eclipse Modelling Framework 97

6.3.2 XCore . 98

6.3.3 Graphiti . 98

6.3.4 Spray . 100

6.3.5 CDO . 101

6.3.6 Xtend . 102

6.4 X-MAN Tool . 103

6.4.1 Example . 106

6.5 Functional Model Tool . 107

6.5.1 Example . 107

6.6 FX-MAN Tool . 110

6.6.1 Pure::variants Plug-in Connector 112

6.6.2 Example . 113

6.7 Summary . 115

7 Use Case: External Front Car Light Family 116

7.1 Introduction . 116

7.2 Requirements . 117

7.3 Building the ECL Product Family . 119

7.3.1 Step 1 - Implement leaves features 119

7.3.2 Step 2 - Add Variation Operators 122

4

7.3.3 Step 3 - Compose X-MAN Sets 125

7.3.4 Step 4 - Extract variants . 126

7.4 Summary . 129

8 Evaluation 132

8.1 Introduction . 132

8.2 Evaluation Framework . 132

8.2.1 Maturity Level 1: Independent Development 134

8.2.2 Maturity Level 2: Standardises Infrastructure 134

8.2.3 Maturity Level 3: Software Platform 135

8.2.4 Maturity Level 4: Product Family 135

8.2.5 Maturity Level 5: Automated Product Derivation 136

8.3 Applying FEF-A to SPLE modelling approaches 136

8.4 Analysis of Results . 139

8.5 Summary . 143

9 Conclusions and Future Work 145

9.1 Achievements . 147

9.2 Future Work . 148

9.2.1 Support for extractive SPLE . 148

9.2.2 Support for load-time variability 148

9.2.3 Support for fine-grained variability 149

9.2.4 Support for versioning . 149

9.2.5 Support for non-functional features 150

9.2.6 Support for non functional artefacts 150

A Variability Mechanisms 174

A.1 Mechanisms based on adaptation . 175

A.1.1 Parameters . 175

A.1.2 Build systems . 176

A.1.3 Pre-processors . 176

A.1.4 Version control systems . 178

A.1.5 Design patterns . 180

5

A.2 Mechanisms based on extension . 181

A.2.1 Frameworks . 181

A.3 Mechanisms based on replacement . 182

A.3.1 Components . 182

A.4 Comparison . 183

B X-MAN Meta-model 188

C Functional Model Meta-model 194

C.1 Activity-chart Meta-model . 194

C.2 State-chart Meta-model . 196

D FX-MAN Meta-model 199

E Variation Operators Implementation 208

F Product Family Architecture Composer Implementation 215

G Family Filter Implementation 243

H Pure-variants Research License Agreement 245

I FX-MAN Tool on the UMIP platform Click2Go 252

Word count xxxxx

6

List of Tables

3.1 Comparison of approaches to modelling software product families. . . . 49

3.2 Product family modelling in annotation-based SPLE vs FODA. 52

3.3 Product family modelling in weaving-based SPLE vs FODA. 54

3.4 Product family modelling in ADL-based SPLE vs FODA. 64

4.1 Desiderata for component-based software development. 75

7.1 Implementation of leaves features as X-MAN components. 120

8.1 FEF architecture dimension maturity levels. 136

8.2 Variability representation in current SPLE modelling approaches. . . . 142

A.1 Classification of concrete variation mechanisms. 175

A.2 Comparison of concrete variation mechanisms. 187

7

List of Figures

1.1 Novatech’s latptop configurator. 20

1.2 Linux kernel configuration tool. 21

1.3 FODA models. 23

1.4 Variability in Linux kernel (adapted from [10]). 24

1.5 Research contribution. 26

1.6 Research methodology (adapted from [25]). 27

1.7 Thesis outline - absence of arrows indicates no preferred reading path. . 29

2.1 SPLE development life-cycles [4]. 31

2.2 Library product map. 32

2.3 Library SPL feature diagram. 34

2.4 Library SPL requirements. 35

2.5 Library SPL architecture/design. 36

2.6 Library SPL source code. 37

2.7 City library specifications. 39

2.8 City library architecture/design. 39

2.9 City library source code. 40

3.1 SPLE using FODA for modelling product families. 46

3.2 A generic DFD. 47

3.3 A generic activity chart. 47

3.4 A feature-oriented state-chart and its instances for the library SPL. . . 48

3.5 Overview of SPLE modelling approaches. 49

3.6 Variability in Linux kernel (adapted from [10]). 49

3.7 Software product family modelling in annotation-based SPLE. 51

3.8 Software product family modelling in weaving-based SPLE. 53

8

3.9 Software product family modelling in superimposition-based SPLE. . . 55

3.10 Product family modelling in superimposition-based SPLE vs FODA. . . 57

3.11 Software product family modelling in ∆-based SPLE. 58

3.12 Product family modelling in ∆-based SPLE vs FODA. 58

3.13 Software product family modelling in ADL-based SPLE. 59

3.14 SPLE using our approach to modelling software product families. . . . 64

3.15 Our-approach vs FODA. 65

4.1 Composing generic software components. 69

4.2 The three main types of components currently used in practice. 70

4.3 Exogenous composition in X-MAN. 74

4.4 An idealised component life cycle. 76

4.5 Category 1: design without repository. 76

4.6 Category 2: design with deposit-only repository. 77

4.7 Category 3: deployment with repository. 77

4.8 Category 4: design with repository. 77

4.9 Category 5: design and deployment with repository. 78

4.10 Categories based on composition [211]. 78

5.1 FX-MAN overview. 81

5.2 An atomic component and its functional model. 82

5.3 A composite component with sequencer and its functional model. . . . 83

5.4 A composite component with selector and its functional model. 83

5.5 A composite component with aggregator and its functional model. . . . 84

5.6 A component with loop and its functional model. 84

5.7 A component with guard and its functional model. 84

5.8 Example for ALT. 85

5.9 Example for OR. 85

5.10 Example for OPT. 85

5.11 Nesting OR inside ALT. 87

5.12 Nesting ALT inside OR. 87

5.13 Product family resulting from F -SEQ. 88

5.14 Product family resulting from F -LOOP 88

9

5.15 State charts created by F-SEQ. 89

5.16 Constructing a product family architecture from the feature model. . . 91

5.17 Detail of the FX-MAN meta-model to deal with shared resources. . . . 93

6.1 The modelling spectrum in software engineering. 95

6.2 FX-MANtool-set technology stack. 97

6.3 Graphiti architecture. 99

6.4 Link model architecture. 99

6.5 Example of code needed to draw a complex picture in Graphiti and Spray.101

6.6 CDO overview. 102

6.7 Eclipse workbench for component development. 104

6.8 Eclipse workbench for system development. 105

6.9 Example of a Vehicle Control System in X-MAN. 106

6.10 Execution of the VCS example in Fig. 6.9 107

6.11 Detail of the X-MAN menu. 108

6.12 Eclipse workbench for constructing an FX-MAN architecture. 111

6.13 Detail of the FX-MAN menu. 112

6.14 Pure::variants plug-in visual interface. 113

6.15 VCS feature model. 113

6.16 Product variant extraction. 114

7.1 An external car light system. 117

7.2 Automotive front light controller feature model 119

7.3 Architecture of DRL_LED component and relative functional model. . 121

7.4 Architecture of the HighBeamXenon component. 122

7.5 HighBeamXenon component corresponding functional model. 123

7.6 Families of X-MAN sets constructed during step 2. 124

7.7 ECL product family architecture (and its sub-families). 125

7.8 Family-filter dialogue. 126

7.9 Configuration of a basic ECL in pure::variants VDM and the resulted

product. 127

7.10 Details of the basic ECL generated code. 128

7.11 Generated activity-charts for the BasicECL product. 130

10

7.12 Generated state-charts for the BasicECL product. 131

8.1 The Family Evaluation Framework (based on [253]) 133

8.2 SPLE modelling approaches evaluation (based on FEF-A metrics). . . . 139

8.3 Impact of domain and application engineering in SPL costs [257]. . . . 140

8.4 Software product line configurator [257]. 141

A.1 Basic variability mechanisms. 174

A.2 Revision and variant in a product line of radio tuners 179

A.3 SPLE by merging per-feature branches 180

B.1 The X-MAN meta-model. 193

C.1 The X-MAN meta-model. 196

C.2 The state-chart meta-model. 198

D.1 The FX-MAN meta-model. 207

11

The University of Manchester
Simone Di Cola
Doctor of Philosophy
A Component-based Approach to Modelling Software Product Families
with Explicit Variation Points
January 20, 2017

Software Product Line Engineering (SPLE) concerns the engineering of a family
of software products in a given problem domain. Products in a family are variants
of one another; they contain different features but also share common ones. SPLE
consists of two phases: (a) domain engineering and (b) application engineering. In
domain engineering, domain requirements are analysed to create artefacts, or assets,
that can be harnessed to construct product variants. The key assets include: (i)
a variability model, which specifies commonality and variability within the product
family; (ii) a functional model, that specifies the behaviour of all product variants;
(iii) a product family architecture (PFA),that defines the architecture of the product
family and the architecture of each product therein; (iv) components, that can be
assembled into products as specified in the PFA. In application engineering, domain
engineering artefacts are harnessed to construct individual product variants.

Clearly, the quality of domain assets determines the effectiveness and efficiency of
application engineering. However, creating all the domain engineering assets is a chal-
lenging task in the first place. As a result, existing SPLE approaches do not create all
domain engineering assets, but use pragmatic substitutes instead. For example, most
SPLE approaches do not create a PFA, which is a key domain engineering asset, as it
defines an architectural template for all product variants. Instead, they either adopt a
programming approach for creating product variants directly or a meta-programming
approach for configuring product variants from coding templates. Another commonly
missing domain engineering asset is a functional model, which is essential for construct-
ing the PFA, as it specifies the behaviour of all product variants whose architectures
should be defined by the PFA. SPLE approaches that do not create a PFA also do not
create or use a functional model.

In this thesis, we address the issue of modelling software product families with
a view to modelling all domain engineering assets and thereby enabling application
engineering from a full set of such assets. Specifically, we present a component model
that is designed for modelling and constructing software product families by providing
facilities for defining and constructing a functional model and hence a PFA that is
based on a feature model, the most widely used kind of variability model, as well as
components that result from domain analysis.

12

Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

13

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any rele-

vant Thesis restriction declarations deposited in the University Library, The Univer-

sity Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regul-

ations) and in The University’s Policy on Presentation of Theses.

14

To my mum

15

List of Publications

[1] S. Di Cola, K.-K. Lau, C. Tran, C. Qian and M. Schulze. Modelling Software

Product Families with Explicit Variation Points. Manuscript submitted to the

International Journal on Software and Systems Modeling (SoSym). 2016.

[2] S. Di Cola, K.-K. Lau, C. Tran, C. Qian and M. Schulze. A Component Model

for Defining Software Product Families with Explicit Variation Points. In Proc. of

the 19th International ACM SIGSOFT Symposium on Component-Based Software

Engineering. ACM, 2016.

[3] C. Tran., K.-K Lau and S. Di Cola. SOA Real-time System Development: an

Automotive Case Study. In Proc. of EMC 2 Summit at CPS Week 2016. ERCIM,

2016.

[4] S. Di Cola, K.-K. Lau, C. Tran, C. Qian. Towards Defining Families of Systems

in IoT: Logical Architectures with Variation Points. In Proc. of the 1st EAI In-

ternational Conference on Cloud, Networking for IoT systems. Springer-Verlag,

2015.

[5] S. Di Cola, K.-K. Lau, C. Tran and C. Qian. An MDE Tool for Defining Software

Product Families with Explicit Variations Points. In Proc. of the 19th International

Software Product Line Conference. ACM, 2015.

[6] S. Di Cola, K.-K. Lau and C. Tran. A Graphical Tool for Model-Driven De-

velopment Using Components and Services. In Proc. of the 41th EUROMICRO

Conference on Software Engineering and Advanced Applications. IEEE, 2015.

[7] S. Di Cola, K.-K. Lau, C. Tran, A. Celesti, and M. Fazio. A Heterogeneous Ap-

proach for Developing Applications with Fiware GEs. In Proc. of the 4th European

Conference on Service-Oriented and Cloud Computing. Springer, 2015.

16

LIST OF PUBLICATIONS 17

[8] K.-K. Lau and S. Di Cola. (Reference) Architecture = Components + Composi-

tion (+ Variation Points). In Proc. of the 1st International Workshop on Explor-

ing Component-based Techniques for Constructing Reference Architectures. ACM,

2015.

Chapter 1

Introduction

“In a tailor-made service, you fit the cloth

according to the size and taste of the customer;

not just the taste and strength of the designer.”
— Dateme Tamuno

We live on a planet built on many products that are constantly changing and

evolving. As a result, many companies no longer focus on building single products;

they create a portfolio of related products treated as a single entity. In short, they

build product lines.

Prior the introduction of product lines items were hand-crafted for individual cus-

tomers. That is, no two goods were identical as each product was built from scratch.

After their adoption, product lines enabled mass production based on assembly

lines in which standardised components were produced individually and assembled to

create a finite product. Mass production significantly improved productivity compared

to hand-crafting, but at the expense of customisation possibilities. However, today’s

customers may not accept whatever is offered to them; they often demand tailored

solutions. Sure enough, nowadays the famous Henry Ford’s statement “any customer

can have a car painted any colour that he wants so long as it is black [1]” would not

be accepted.

Thus over the years, due to a rising demand for personalised products, industries

shifted from mass-production to mass-customization [2, 3]. For instance, PC man-

ufacturers as in Fig. 1.1 offer variations of the same laptop by combining different

reusable parts according to the customer’s specifications chosen among a predefined

18

19

set of possible options (e.g. memory size, processor and screen size).

A product line, therefore, amounts to a portfolio of related products built from

a set of reusable components that share important similarities [4]. The systematic

engineering1 of such a portfolio using a common platform is known as product line

engineering (PLE) [6].

The adoption of a common platform2 implies that the whole development process

must start with flexibility in mind, foreseeing all possible family members, identifying

and describing their differentiation points. Considering the example in Fig. 1.1, build-

ing those family of laptops requires the implementation of a shared platform, which

not only specifies its peculiarities but also must accommodate the customer’s wishes

for further customisations (e.g. screen coating).

Similarly to the hardware industry, the software one has witnessed a shift from

hand-crafted to standardised products. Initially, software was tailored for specific

hardware and often sold with it. Nevertheless, during the years as customers’ needs

increased, so did the software complexity. An increase in software complexity implies

an increase in the difficulty of its maintenance and evolution, with a high probability

that the same functionality is developed and repeated at different places.

As a consequence, the software industry adopted standard platforms to reuse exist-

ing artefacts. In line with the hardware industry, the adoption of standard platforms

resulted in mass production of standard one-size-fits-all products (e.g. Microsoft Of-

fice, Adobe PhotoShop) at the expense of customisation possibilities.

Overwhelmed with undesired features and tired of the lack of the desired ones,

today’s customer require software tailored to their needs [8]. Fitting our analogy with

the laptop configurator of Fig. 1.1, suppose one wants to illustrate the software he has

written to a potential customer. It is very unlikely that he will start by describing the

classes or packages composing his product; the potential customer is not interested in

that level of detail. More realistically, he will start off by describing the features the

software can offer. The potential client can then understand if and how the software

can satisfy her requirements. By the presence or absence of features, software, like any

1The term engineering comprises the activities involved in “planning, producing, delivering, de-
ploying, sustaining, and retiring [5]” products.

2Open platforms and ecosystems constitute the core strategy of corporations such as Google and
Apple, as they allow to expand their platforms outside their organisational boundaries [7].

20 CHAPTER 1. INTRODUCTION

Figure 1.1: Novatech’s latptop configurator.

other manufactured product, can come in different flavours. An entry level product,

for example, offers a minimal feature set, while the deluxe version offers the most.

1.1 Research Problem

In order to introduce the research problem, let us take as an example the Linux

kernel [9]. Able to run on different hardware platforms (from embedded systems

to mainframes) and serve the needs of heterogeneous applications, the Linux kernel

counts more than 10,000 features (v2.6.35 comprises 11,057 features [10]) configurable

by means of a tool called KConfig (Fig. 1.2).

In order to model such a product line one would expect the same paradigm used for

1.1. RESEARCH PROBLEM 21

Figure 1.2: Linux kernel configuration tool.

the hardware industry. Specifically, according to domain requirements, components

are constructed and assembled conforming to a product family architecture (PFA)3 in

agreement with a customer’s feature selection. Returning to our example of Fig. 1.1,

once a customer choose her laptop’s configuration, memory, CPU and other compo-

nents are harnessed to a motherboard, which constitutes the product family architec-

ture.

In fact, software product line engineering (SPLE) does distinguish between a phase

in which domain assets are constructed and a phase in which those assets are assembled

to build the desired product variants. In particular, SPLE distinguishes between a

domain engineering phase and an application engineering one.

In order to prepare a platform that can deal with variability required by the de-

fined product family, four key assets are constructed during the domain engineering

phase: (i) a variability model, which specifies commonalities and variabilities within

the product family; (ii) a functional model, which specifies the behaviour of all the fam-

ily members; (iii) a PFA, which defines a family-wide architecture4 and consequently

3Traditionally known as a reference architecture in structured analysis.
4While a variety of definitions of architecture have been suggested, this work will use the one of

22 CHAPTER 1. INTRODUCTION

the architecture of each product variant; (iv) components, which can be harnessed

according to the PFA to construct individual family members.

Clearly, the quality of domain assets determines the effectiveness and efficiency

of the construction of variants in application engineering. However, creating all the

domain engineering assets is a challenging task in the first place. As a consequence, ex-

isting SPLE approaches do not model all domain engineering assets, but use pragmatic

substitutes instead.

For example, most SPLE approaches do not create a PFA, which is a key domain

engineering asset, as it defines an architectural template for all product variants (and

indeed in more mature engineering domains such as automotives, the presence of a

PFA distinguishes a product line from the development of ad hoc systems). Instead,

they either adopt a programming approach for creating product variants directly or a

meta-programming approach for configuring product variants from coding templates.

Another commonly missing domain engineering asset is a functional model, which is

essential for constructing the PFA, as it specifies the behaviour of all product variants

whose architectures should be defined by the PFA. SPLE approaches that do not create

a PFA also do not create or use a functional model.

As discussed by Bosh et al. in [12], this results in two key issues: (i) lack of

first-class representation of variability; (ii) implicit dependencies between architectural

elements and features. Consequently, it is difficult to assess the impact of variability

at requirements and realisation level as it is often not clear the artefacts needed for a

specific variant.

The ability of adding and removing features implies that features are treated as

first-class citizens among a set of reusable parts. The most suitable and widely used

methodology to analyse a domain in terms of features is FODA [13–15], acronym of fea-

ture oriented domain analysis [16, 17]. FODA defines commonalities and variabilities

of a desired product family using several models. Among those the most important

ones are: (i) feature model; (ii) functional model; (iii) product family architecture

(Fig. 1.3).

A feature model is a hierarchical decomposition of features which establishes their

Bass et al [11]: ‘the structure or structures of the system, which comprise software elements, the
externally visible properties of those elements, and the relationships among them.’

1.1. RESEARCH PROBLEM 23

Figure 1.3: FODA models.

relationships and usage constraints, whereas a functional model specifies their be-

havioural aspects (in the notation of state-chart and activity-chart). Ideally, feature

and functional models should lead to the construction of a product family architec-

ture (PFA) and its constituent parts. A PFA determines the concepts, structure and

textures necessary to achieve the variability expressed in the feature model, as well as

the behaviour specified in the functional model, ensuring that the products share the

maximum amount of parts in the implementations.

However, since feature and functional models do not readily translate to elements

of a PFA [18, 19], its construction is not straightforward, and existing SPLE mod-

elling approaches do not fully support this crucial phase (see chapter 3). Indeed, the

construction of a PFA is still an outstanding engineering challenge [20].

A key challenge is the mapping between the feature model and the architecture

(and hence its parts). There are two main issues here: (i) structure (ii) variation

points. Firstly, if the structure of the architecture is not a tree, then it is not obvious

how to map it to the feature model. Secondly, if the architecture does not contain

explicit variation points, or if it does not include the full standard set of variation

points in feature models, then mapping to the feature model will also be problematic.

As a result, current SPLE modelling approaches either adopt a programming ap-

proach for creating product variants directly or a meta-programming approach for

configuring product variants from coding templates. Consequently, SPLE approaches

that do not create a PFA also do not create or use a functional model.

For instance, Fig. 1.4 depicts how variability in the Linux kernel is expressed and its

relation to (a simplified) feature model. In here, a code-base is annotated according to

the features name. In deriving a variant, code fragments relative to unselected features

are removed by the compiler.

24 CHAPTER 1. INTRODUCTION

Figure 1.4: Variability in Linux kernel (adapted from [10]).

To summarise, most of the existing SPLE approaches do not adopt the FODA

approach to modelling software product families; i.e. they do not model all domain

engineering assets, missing most notably a functional model and a PFA. The conse-

quence of missing domain engineering assets is that in application engineering, product

variants are not assembled according to an architecture, but instead have to be con-

figured one at a time as an instance of some template which does not capture the

architecture of the whole product family. Indeed,the lack of a PFA in domain engi-

neering results in the lack of a product variant architecture, as well as the incapability

of analysing a product family at design time.

1.2 Research Aim and Objectives

The primary aim of this research is to investigate the feasibility of establishing a

systematic approach for modelling scalable, maintainable and evolvable product family

architectures. This can be achieved by combining the complementary strengths of

component-based software engineering [21, 22] and software product line engineering in

the context of software reuse, as they tackle this problem within a different granularity

spectrum. Component-based engineering (reuse in the small) provides the flexibility

required for a product line (reuse in the large) for building robust component-based

product family architectures. Therefore, significant advantages are expected from their

integration.

The choice of the SPLE methodology is somewhat simplified by the fact that FODA

is the most widely used approach for SPLE. Despite its success, FODA mainly focuses

on providing a detailed analysis of characteristics and behaviour of a product family.

However, it is quite vague about the construction of a reference architecture.

As a component model, we have chosen X-MAN [23, 24], a component model

enforcing strict hierarchical and compositional construction, to yield a scalable method

1.3. RESEARCH CONTRIBUTIONS 25

for software product line engineering. The primary motivations behind this choice are

that X-MAN is strictly hierarchical as its composition is algebraical, and unlike other

component models [23], control and computation are separated, thus leading to a

highly factored system design. Furthermore, and even more interestingly, an X-MAN

architecture is executable, resulting in a deployable software product.

The aim is to combine FODA variability model, or in other words the feature

model, with a functional model specified in X-MAN in order to define a component-

model to systematically model PFAs. In order to achieve this aim, this work presents

the following objectives:

• analyse current SPLE modelling approaches and use this investigation as a back-

ground for current research;

• define the rules to enable the automatic translation of an X-MAN architecture to

its equivalent functional model;

• define a new component-model based on X-MAN to enable the systematic con-

struction of a PFA, which explicitly contains the variability contained in the

relative feature model. The new component model is called FX-MAN;

• implement a tool for FX-MAN to demonstrate the validity of the proposed solu-

tion;

• evaluate whether FX-MAN enables the systematic modelling of all the domain

assets as specified by FODA;

• evaluate with an industrial use case if FX-MAN realises an effective and efficient

SPLE modelling approach.

1.3 Research Contributions

This research led to the following contributions:

• the definition of systematic and structured framework for comparing software

product line modelling approaches from three perspective: (i) modelled domain

assets (table 3.1); (ii) engineering life-cycle (fig. 4.4); (iii) variability management

26 CHAPTER 1. INTRODUCTION

(table 8.1(b)). This framework has worked as a ‘red thread’ for the research

methodology to justify the need for complementing the existing product line

engineering methods and underlying models.

• the creation of FX-MAN, an algebraic component model that supports the mod-

elling of product families as hierarchical architectures with explicit variation

points like in feature models. As a result, our model construct a product family

as a tree which maps naturally to the corresponding feature model (Fig. 1.5).

• the denotation of an (automatic) mapping between FX-MAN architectures to

a state chart, alongside the associated activity chart. As a result, to define a

functional model, it is sufficient to construct an FX-MAN model of the product

family according to the feature model for the given domain.

Figure 1.5: Research contribution.

• the development of a tool-set for FX-MAN licensed and commercialised by the

University of Manchester Intellectual Property (UMIP) (see appendix I). It

is available on the Click2Go platform at the following address http://www.

click2go.umip.com/i/software/x_man.html.

• a research collaboration with pure::systems’ (see appendix H), maker of the most

used variability SPLE modelling tool, in order to integrate FX-MAN in a com-

plete SPLE modelling environment.

1.4 Research Methodology

The research methodology adopted for this work is depicted in Fig. 1.6. The approach

is a cross-road of research and software engineering as it is not only theoretical, but

also empirical. In the following sections we briefly describe the aim of each stage.

1.4. RESEARCH METHODOLOGY 27

Figure 1.6: Research methodology (adapted from [25]).

Identification the Research Problem

At this stage, the research problem and pertinent research questions are identified and

their significance justified. In addition to existing research artefacts, ideas from other

disciplines should be explored and eventually incorporated in the proposed solution.

Finally, the validity of proposed solution should be evaluated by means of a prototype.

Prototyping

At this stage, a software prototype is developed as a result of the following phases:

• Conceptual development - during this phase a conceptual framework is developed

to investigate the requirements of the prototype under development.

• Architecture development - during this phase both the prototype’s components

are defined and their relationships established.

• Analysis/Design - during this phase the design of data structures and the spec-

ification of functions is defined.

• Implementation - during this phase observations about the defined framework,

architecture and design are evaluated and used in re-designing the prototype.

Evaluation of the Results

At this stage, based on the conceptual framework and design specifications, the pro-

totype is evaluated to verify if it satisfies the research problem. If it does, the research

28 CHAPTER 1. INTRODUCTION

could yield several contributions. Otherwise, the cycle is repeated by either further

developing the prototype, or by revising the research problem until it is satisfied.

1.5 Thesis Outline

The rest of the thesis is structured as follows.

• Chapter 2 (Software Product Line Engineering) introduces the background needed

to understand the technical aspects involved in the development of a software

product line. It continues by discussing the peculiarities of this approach against

other software engineering techniques.

• Chapter 3 (Modelling Software Product Families) defines the research problem

by presenting a taxonomy of the related SPLE modelling approaches. For each

category of the taxonomy it describes its key characteristics, focusing on the do-

main artefacts modelled and evaluating it against the idealised SPLE modelling

approach defined by the feature oriented domain analysis (FODA). This eval-

uation motivates this research by identifying omissions in the state of the art.

The chapter concludes with the introduction of our component-based modelling

approach (FX-MAN) and its comparison to FODA.

• Chapter 4 (Component-based Software Modelling) introduces the two elements

forming the cornerstone of every component-based modelling approach: com-

ponents and component model, which defines what components are and their

composition mechanisms. Section 4.3 presents a taxonomy of current compo-

nent models and their evaluation against the component-based software engi-

neering (CBSE) desiderata. The evaluation results’ motivate the choice of the

component model used in this research.

• Chapter 5 (A Component-based Approach to Modelling Software Product Fam-

ilies) details the syntax and semantics of FX-MAN’ elements, their relations to

members of a functional model and how they participate in the modelling of a

product family.

1.5. THESIS OUTLINE 29

• Chapter 6 (Tool Support) gives an overview of the tool-set that supports the

modelling of product families with FX-MAN. It describes the technology stack at

its foundation, motivating its selection, and demonstrate its usage employing a

vehicle control system example. The meta-model for each member of the tool-set

is detailed in appendices B to D.

• Chapter 7 (Use Case: External Car Light Family) illustrates the use of our mod-

elling approach against an industrial use case provided by pure-systems GmbH,

maker of the market leader tool for variability management pure::variants (that

our tool integrates with). It details all the steps involved in the construction a

family of 28688 external car light controllers.

• Chapter 8 (Evaluation) assess against the family evaluation framework (FEF),

the potentials of our approach in enabling organisations to realise a software

product line. Precisely, it uses the architectural dimension of FEF, called FEF-

A, to evaluate the maturity level achieved by our approach compared to the

current SPLE modelling approaches analysed in Chapter 3.

• Chapter 9 (Conclusion and Future Work) ends the thesis by summarising the

contributions and challenges of this research. Moreover, it discusses the limita-

tions of the current work as well as directions for the future research.

Finally, Fig. 1.7 depicts the thesis’ outline and the recommended reading path.

Chapter 4
RW|MC

Chapter 3
RW|MC

Chapter 5
MC

Chapter 6
MC

Chapter 7
V

Chapter 8
EV

Chapter 2
B

Chapter 2
I

Chapter 4

Chapter 3

Chapter 9
C

I:Introduction B:Backgorund RW:Related Work MC:Main Contribution

V:Validation EV:Evaluation C:Conclusions Reading path

Figure 1.7: Thesis outline - absence of arrows indicates no preferred reading path.

Chapter 2

Software Product Lines

Engineering

Begin at the beginning, the King said gravely,

“and go on till you come to the end: then stop.”
—Lewis Carroll, Alice in Wonderland

2.1 Introduction

Since 1968, when McIlroy envisioned the possibility of establishing a software com-

ponent market [26] and even more in the 90’s mainly due to the feature-oriented

domain analysis (FODA) methodology introduced by Kang et al. [16], software prod-

uct lines (SPLs) have gained strength in the software industry. Indeed, over the years,

more and more industrial case studies [27–36] have shown that constructing families

of related products starting from pre-existing assets results in a considerable gain in

quality, scalability, developers productivity, time-to-market and costs compared to a

product-centric development.

In this chapter we introduce the background of software product line engineering

starting from the definition of a software product line. For Clements et al. [27], a

software product line (SPL) refers to: “a set of software-intensive systems sharing a

common, managed set of features that satisfy the specific needs of a particular market

segment or mission and that are developed from a common set of core assets in a

prescribed way.”

30

2.1. INTRODUCTION 31

Software product line engineering (SPLE) is then a paradigm to tailor software

products using platforms according to the requirements of individual customers [4].

Building products using a common platform means that reuse does not happen

accidentally, but it is planned and enforced during the whole development life-cycle. As

depicted in Fig. 2.1, a SPL is achieved by the exploitation of two distinct development

life-cycles: domain engineering (development for reuse) and application engineering

(development with reuse). In the ideal case, the two life cycles are loosely coupled and

synchronised by platform releases.

Figure 2.1: SPLE development life-cycles [4].

The activities within each development phase are described in the sections 2.2

and 2.3 using a family of library systems as an example (adapted from [37]). Finally,

since at first glance many approaches can be confused with a software product line

one, in section 2.4 we discuss what a SPL is not.

32 CHAPTER 2. SOFTWARE PRODUCT LINES ENGINEERING

2.2 Domain Engineering

Domain engineering is the process where both commonalities and variabilities of a

product family are identified and developed. Its aim is to establish the reusable plat-

form in which domain artefacts (i.e. requirements, architecture, software components

and tests)1 are developed and stored. The concept of platform results in a standardis-

ation process that affects all levels of an organisation. This explains why SPLE repre-

sents the first infra-organisational software reuse approach that has proven successful

[29, 30]. The domain engineering activities are described in the following subsections.

2.2.1 Product management

This activity aims at identifying the product family, the variability among its members

and their economic aspects. Its input is represented by the business objectives defined

by the top management, whereas its output is a product map. A product map sets the

products release dates, establishes their commonalities and variabilities and provides

a list of possible existing artefacts that can be reused for creating the product line

platform.

Figure 2.2: Library product map.

As an example, Fig. 2.2 depicts the (simplified) product map of a family of library

systems. It determines the characteristics of three types of products, namely a city

library, a research library and a university library. They all offer the capability for a

customer to manage his/her registration and book loans. However, only the research

1Also referred as core assets.

2.2. DOMAIN ENGINEERING 33

and the university library systems allow reserving an item that is not available. More-

over, the university library system supports the process of managing items suggested

by other library users. Finally, only the city library system enables the librarian to

collect fees from the library customers.

2.2.2 Domain requirement engineering

This activity focuses on requirements elicitation of the scoped product line. As input,

it takes the product map. As output, it produces the requirement specifications for

the product family, along with an initial variability model used in further development

steps.

During the years, several notations have been proposed to represent a variability

model (e.g. decision model [38], orthogonal variability model [4], common variabil-

ity language [39] and feature model [17]), each of which with slightly different focus

and goals2. However, they all share the notion of variation point, variant, variability

dependencies and constraint dependencies.

A variation point outlines a location at which the designed variation will occur,

enriched by contextual information [42].

A variant represent an instance of a variable item that can satisfy a variation point.

Variability dependencies are used to denote the relationships between different

variants that satisfy a variation point.

Finally, constraint dependencies denote relationships among variant selections (pos-

sibly belonging to different variation points). They can be of two types: requires and

excludes. The former specifies that a variant requires the selection of another variant,

whereas the latter indicates the opposite.

Feature diagrams [43, 44] (a graphical actualisation of FODA feature models) are

the de-facto standard notation to represented variability models in SPLE [13]. As

illustrated in Fig. 2.3, a feature diagram captures common and variable characteristics

(as well as their usage constraints) of a product family as nodes in a tree. Variability

is expressed by optional, alternative and or variation points.

A optional variation point defines a relationship in which a parent feature can be
2A comparison between variability models is beyond the scope of this thesis. See [40, 41] for more

details.

34 CHAPTER 2. SOFTWARE PRODUCT LINES ENGINEERING

chosen independently from its child, but the latter can be chosen only if its parent is

selected.

An alternative variation point denotes a one-out-of-many relationship between chil-

dren of a common parent: exactly one child must be selected when the parent is chosen.

On the contrary, an or defines a some-out-of-many relationship where at least

one child feature must be selected when its parent is chosen. Furthermore, cross-tree

constraints depict relationships (e.g. requires and excludes) between features belonging

to different sub-trees as direct arrows.3

Figure 2.3: Library SPL feature diagram.

In our example, the library feature diagram of Fig. 2.3 establishes the relationships

among mandatory and variable characteristics of the product family initially scoped

by the product plan of Fig. 2.2 and detailed by the requirements elicited during this

activity in Fig. 2.4. For instance, the requirement OPT-2 states that a library system

can optionally allow a customer to reserve a book, whereas ALT-2-1 and ALT-2-2

specifies that a customer can either pay a fee for this service or reserve a book for free.

This is captured in the library feature diagram by the optional sub-tree Reservation,

which contains two alternative nodes With Reservation Fee (which requires Billing)

and No Reservation Fee.

3In theory, any dependency among features can be expressed by cross-tree constraints over a set
of optional features. In reality, feature decomposition is preferred and cross-tree constraints are only
used to model feature relationships that do not fit into the hierarchy.

2.2. DOMAIN ENGINEERING 35

Figure 2.4: Library SPL requirements.

2.2.3 Domain design

This activity focuses on constructing the structural and behavioural domain design

models needed for the realisation of the product family architecture. Its input is

the variability model produced by the domain requirement engineering activity. The

output is a product line architecture4 (PLA) for the identified family.

In literature, the term PLA is often interchangeably used with the reference archi-

tecture (RA) one. However, from their definitions, two subtle but critical differences

between them exist [45].

Although contrasting opinions still exist [46, 47], there appears to be some agree-

ment that an RA refers to “a reference model mapped onto software elements (that

cooperatively implement the functionality defined in the reference model) and the data

flow between them [11]”.

On the other hand, Gomaa [48] defines a PLA as “ an architecture for a family of

products, which describes the kernel, optional, and variable components in the SPL,

and their interconnection.” Pohl et al. [4] complete this definition by specifying a

PLA as a “core architecture that captures the high-level design for the products of the

SPL, including the variation points and variants documented in the variability model.”

This definition entails that a PLA is one of the most important artefacts that form

the platform, as it provides a common, high-level structure for all possible products

of the product line.

According to those definitions, we can identify two main differences between an RA

4While a variety of definitions of architecture have been suggested, this work will use the one of
Bass et al [11]: ‘the structure or structures of the system, which comprise software elements, the
externally visible properties of those elements, and the relationships among them.’

36 CHAPTER 2. SOFTWARE PRODUCT LINES ENGINEERING

and a PLA. Firstly, while an RA provides standardised solutions for a broader domain,

a PLA is focused on a smaller family of related systems. Secondly, a PLA deals with

variabilities among products, while an RA does not. In order to avoid confusion, in

the rest of the thesis we will use the term product family architecture (PFA) instead

of product line architecture.

Figure 2.5: Library SPL architecture/design.

Fig. 2.5 depicts a portion of the library family architecture and its behavioural

model in the notation of a state-chart. In here, the classes Reservation and Reser-

vationManager are indicated as optional by means of the stereotypes «variant» and

«variant component» respectively. Similarly, the transition from the state checkAvail-

ability and the optional state registerReservation is guarded by the condition [RESER-

VATION], which indicates the presence of the reservation feature.

2.2.4 Domain realisation

This activity involves all the sub-activities required to design and implement the

reusable software components. As detailed and discussed in section 4.3, several defi-

nitions of software component exist. However, in this work the term component will

be used solely when referring to ‘a software element [with contractually specified in-

terfaces] that conforms to a component model and can be independently deployed and

composed without modification according to a composition standard [21].’

2.2. DOMAIN ENGINEERING 37

Figure 2.6: Library SPL source code.

The input of this activity consists of the PFA along with a list of software com-

ponents that need to be developed. The output amounts to a set of loosely coupled,

highly configurable software components and their detailed documentations. It is im-

portant to notice that the developed components are only stored within the repository

and not assembled to create a running application.

Returning to our example of a family of library systems, Fig. 2.6 depicts a detail

of the LoanManager implementation. According to the PFA, the presence or the

absence of the variant Reservation is managed using the pre-processor directive #ifdef

RESERVATION as variability mechanisms. In appendix A a taxonomy of the current

variability mechanisms is presented and discussed.

2.2.5 Domain testing

This activity deals with validation and verification of reusable components against their

specifications. The input for this activity comprises the PFA, its software components

and the domain requirements. The output amounts to a set of reusable test artefacts.

Whereas at this stage there is no a working application, there are several strategies

for testing integrated components [49–51]. For instance, it is possible to test a sample

product or just a part of it.

38 CHAPTER 2. SOFTWARE PRODUCT LINES ENGINEERING

2.3 Application Engineering

Application engineering is the process where products5 are concretely built by reusing

the artefacts forming the common product line platform. Its activities (as depicted in

Fig. 2.1) are described in the following subsections using as an example a city library

system (a family member identified in the product map of Fig. 2.2) as the variant to

be built.

2.3.1 Application requirements engineering

This activity aims at determining the requirements for an identified product variant,

taking into account the delta between what is required and what is available. Its

input consists of the domain requirements, the product map, the variability model

and any additional requirements not captured during the domain engineering phase.

The output consists of the requirements specification of the desired family member

along with a “resolved” variability model, in which a stakeholder has selected the

required features.

For instance, Fig. 2.7(a) depicts the list of requirements for the city library variant

and its resolved variability model (in the notation of a feature diagram). According

to the product map of Fig. 2.2, the city library allows accounting, therefore the op-

tional feature Billing is selected. However, it does not allow reservation for an item.

Therefore, the optional feature Reservation is not selected.

2.3.2 Application design

This activity derives an instance of the PFA (and related design models) according

to the requirements identified in the previous step. It basically selects and configures

the required characteristics from the product family architecture, taking into account

the application specific adaptations. Therefore, the input of this activity comprises

the PFA as well as the product requirement specifications. The output consists of the

application architecture and its related design models specific for the product at hand.

Since new requirements can be added, at this stage each ad-hoc structural change

must be evaluated and eventually rejected if too expensive.
5Also refereed to as family members, variants or product variants.

2.3. APPLICATION ENGINEERING 39

(a) City library require-
ments.

(b) City library feature diagram.

Figure 2.7: City library specifications.

Fig. 2.8 depicts the architecture and design of the city library specified in the pre-

vious step. According to its feature diagram, this variant does not offer the capability

to reserve a book. Therefore its architecture does not include the classes Reservation

and ReservationManager. Similarly, its state-chart does not include the variant state

registerReservation.

Figure 2.8: City library architecture/design.

2.3.3 Application realisation

This activity subtends the operations needed to select and configure the required

software components, along with the implementation of the application-specific ones.

40 CHAPTER 2. SOFTWARE PRODUCT LINES ENGINEERING

According to the PFA composition mechanism, components are assembled in order to

build the desired family member. The input of this activity includes the application

architecture and its design models, together with the components retrieved from the

domain artefacts. The output is represented by the working product and its documen-

tation.

Fig. 2.9 illustrates a detail of the class LoanManager for the city library in which

the compiler has removed the code fragments related to the Reservation feature.

Figure 2.9: City library source code.

It is important to remark the fact that, even though each system built in a software

product line is a system in its own right, it is built by taking applicable components

from a common repository. These components are then adapted through planned

variability mechanisms and then assembled according to the rules of a product family

architecture. Such variability mechanisms are presented and discussed in appendix A.

2.3.4 Application testing

This activity validates against the application requirements if the intended product

variant has been created. The input of this activity comprises the product requirements

and implementation along with the domain tests artefacts. The output amounts to a

report with the results of the performed tests along with a detailed description of any

problem discovered.

2.4 What Software Product Lines Are Not

At first glance, many approaches can be confused with a software product line. Let

us see which ones are not.

2.4. WHAT SOFTWARE PRODUCT LINES ARE NOT 41

2.4.1 Accidental reuse

For almost four decades, IT industries have tried to accelerate the software develop-

ment process by using pre-built software units. Even though component-based soft-

ware engineering is a reality (see section 4.3), true component-based reuse envisaged

by McIlroy [26] is still an exception rather than a rule. Historically, we can identify

three fundamental causes of this failure: lack of good components that live up to their

expectations; lack of easy and precise retrieval technologies; difficulty to verify a com-

ponent without a context. As a result, time saved through reusing needs to be spent

in searching, selecting and verifying the candidate components. Not surprisingly, or-

ganisations tend to build their own components from scratch. Unlike accidental reuse,

in a software product line reuse is envisaged, enabled and required at all levels of the

organisation.

2.4.2 Single-system development with reuse

In developing variations of an existing product, perhaps the simplest solution is the

so called clone-and-own [52]. In this approach, new products are built by creating,

and then modifying, an exact copy of an existing product. Since a new clone be-

gins a separate maintenance trajectory, this technique presents both advantages and

disadvantages. The clear advantage is that once cloned, the new project is developed

independently from the original one. Nevertheless, this initial advantage is hindered by

the lack of traceability between the shared functionalities. Indeed, as the two projects

may diverge further during the time, a bug fixed in the original project may not be

replicated to the clone, so the maintenance costs become unsustainable [53]. Com-

pared to clone-and-own, a product line differs mainly in two aspects. Firstly, software

product line assets are engineered for being reused. Secondly, a product line is seen as

a whole, not as many distinct products.

2.4.3 Configurable architecture

In any non-trivial system, the software architecture represents a pivotal part [11,

54]. In fact, it captures a system high-level design choices, including the composition

mechanism, as well as the directives for its maintenance and evolution. Due to its

42 CHAPTER 2. SOFTWARE PRODUCT LINES ENGINEERING

important role, realising a configurable architecture that can be reused in different

projects and reconfigured as necessary is a wise choice. However, in a software product

line, an architecture is just one artefact in the core assets repository.

2.4.4 Product releases

Any company, at intervals more or less established, releases new versions of its own

products. A new release is typically built by evolving previously built core assets. At

first glance, this is very similar to a software product line approach. However, in a

software product line the evolution of a single product must be contextualised with

the evolution of the product line as a whole. Moreover, an early release in a software

product line is nothing more than just an instantiation of the core assets. Therefore,

old releases are not discarded, but kept as a valuable part of the product family.

2.4.5 Technical standard

A technical standard is an established set of norms designed to promote interoperability

and lower the costs related with maintenance and support of a system. Certainly a

company that undertakes a product line approach must establish a technical standard,

but this is just a part of the product line, no more.

2.4.6 Component-based development

In mature industry domains such as automotive or electronic engineering, the term

component refers to a small standard and exchangeable part. In informatics, as in-

troduced in the previous section, a component is defined as “a software element that

conforms to a component model and can be independently deployed and composed

without modification according to a composition standard ” [21].

Software product lines do rely on component-based development, but it goes fur-

ther by introducing the concept of variability. That is, in component-based develop-

ment, whenever a variation is involved, it is usually maintained separately. Moreover,

component-based development fails to provide those technical and organisational man-

agement aspects crucial to the success of a software product line.

2.5. SUMMARY 43

2.5 Summary

Software Product Line Engineering (SPLE) has proven to be a successful approach

for the construction, maintenance and evolution of families of software products that

share commonalities and variabilities in terms of features.

Building families of related products using a common platform means that reuse

does not happen accidentally, but it is planned and enforced by the exploitation of

two distinct development life-cycles: domain engineering (development for reuse) and

application engineering (development with reuse).

This separation of concerns has the advantage of building a solid platform on the

one hand, and of building customer-tailored products on the other. Indeed, domain

engineering is in charge of assuring that the available variability is adequate for building

the identified product family, while a large part of application engineering exploits this

variability for binding artefacts according to a predetermined composition model.

Chapter 3

Modelling Software Product

Families

“A problem well put is half solved.”

—John Dewey

3.1 Introduction

Modelling a product family amounts to the development of its domain assets, or rather

(i) a variability model, which specifies commonalities and variabilities within the prod-

uct family; (ii) a functional model, which specifies the behaviour of all the family

members; (iii) a PFA, which defines a family-wide architecture4 and consequently

the architecture of each product variant; (iv) components, which can be harnessed

according to the PFA to construct individual family members.

In this chapter we define the research topic. We classify existing software product

family modelling approaches according to their underlying variability mechanisms into

5 categories. For each category, we analyse the modelled domain assets and their

use during product derivation. Finally, we compare this results against FODA,which

defines the idealised feature-oriented method for modelling such assets.

The resulting taxonomy, summarised in Table 3.1, shows that whereas the FODA

approach to modelling software product families creates all domain engineering assets,

most existing SPLE techniques do not.

44

3.2. FODA 45

Section 3.2 describes FODA and defines the comparison criteria. The 5 categories

forming the taxonomy are detailed in sections 3.3 to 3.7, whereas section 3.8 introduces

our approach, how it differs from existing modelling approaches and compares to

FODA.

3.2 FODA

In SPLE the notion of a feature represents a concern of primary interest as it expresses

concepts that span both problem space and solution space. In the problem space fea-

tures define characteristics of a product visible by non technical stakeholders (e.g. end

users), while in the solution space features guide the structure and implementation of

reusable artefacts (e.g. components and design models).

Consequently, in literature a feature has been defined in different ways. Kang et

al. [16] describe a feature as ‘a prominent or distinctive user-visible aspect, quality,

or characteristic of a software system or systems’. Similarly, [55–59] define a feature

as a means of communication used to identify the capabilities of family members in a

product line. On the contrary, [8, 60–62] treat a feature as ‘an optional or incremental

unit of functionality’, or rather as a concept to be used at design and implementation

level. To capture the essence of those definitions, we define a generic feature as a

distinguished capability visible to an end-user, implemented (where possible) as a unity

of functionality.

The most suitable and widely used methodology to analyse a domain in terms of

features is FODA [13–15], acronym of feature oriented domain analysis [16, 17]. With

respect to the SPLE development life-cycles of Fig. 2.1, Fig. 3.1 illustrates the artefact

constructed by FODA in order to model a product family.

In domain engineering problem space, domain knowledge is analysed and captured

by a set of requirements and a variability model. The latter, in the notation of a fea-

ture diagram, identifies a product family by modelling the relationships among its set

of features (e.g. the feature diagram for a family of library systems in Fig. 2.3). Con-

sequently, a valid sub-set of those features (i.e. valid with respect to the relationships

among them) identifies a family member (e.g. the city library variant in Fig. 2.7(b)).

Domain knowledge is then used in domain engineering solution space to determine

46 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

Figure 3.1: SPLE using FODA for modelling product families.

the constituent assets of the product family. From the feature model, FODA defines

a functional model parametrised on the features. It describes domain capabilities

from a structural and a behavioural perspective. The former details the functional

components and how data flows among them, whilst the latter specifies in terms of

states and transitions when, and under what circumstances, the functional components

are triggered. These can be expressed using different notations.

Structured analysis [63–65] defines a functional model as a hierarchical data flow

diagram (DFD) together with a state transition diagram (STD) for each of its levels.

A generic DFD is shown in Fig. 3.2. Within a DFD, activities are specified as data

transformations (DTs) interconnected by data flows. A DT is not fully specified until

decomposed into its primitive data transformations (PDTs). DTs are activated by

control transformations (CTs). A CT denotes a finite state machine, modelled by a

STD, where control flow input represents events, and control flow output represents

prompts (i.e. trigger event).

STATEMATE [66, 67] uses state-charts, an extension of STDs, for CTs, and activity

charts instead of DFDs (activities being DTs). As illustrated in Fig. 3.3, an activity-

chart (successively) decomposes activities into sub-activities, and identifies data flows

3.2. FODA 47

(PDT2, PDT3)

DFD121

CT2

(. . .)

DFD11

CT3 (PDT1, DT2)

DFD12

CT1

(..., DT1, ...) CT0

DFD0

. . .

. . .

.

. . .

data flow

control flow

prompt

Figure 3.2: A generic DFD.

A

I
A1

O

A3

A3a

b

c
d

e f

x

y

z

A

A2 A4 A5

Control Activity
External Activity Activity Data-flow

Control-flow

Figure 3.3: A generic activity chart.

between them (drawn as solid arrows). Each activity is controlled by at most one

control activity (cf. CT in DFD), specified in the language of state-charts. When an

activity requires no further decomposition and its behaviour can be described by a

state chart alone, then the control activity is its only sub-activity. Entities external to

the top level activity are referred to as external activities and depicted as dashed-line

boxes.

UML [68] defines functional models using an object-oriented adaptation of state-

charts and DFDs in terms of state machines and activity diagrams respectively.

Finally, Simulink [69] provides Stateflow [70] as an environment for modelling and

simulating functional models based on state machines and flow charts.

Whilst the above approaches are well established for defining functional models of

single products, a functional model for a family scoped by a feature diagram is defined

as a feature-oriented state-chart together with all the associated activity-charts.1 This

is illustrated in Fig. 3.4(a), where a feature-oriented sate-chart for the family of library

systems presented in the previous chapter contains mandatory states, corresponding

to mandatory features, and a variant state registerReservation, corresponding to the

optional feature Reservation.

Thus as shown in Fig. 3.4(b), this state-chart can be instantiated into two state-

charts according to the inclusion or exclusion of the feature Reservation.

From the feature and functional models, FODA suggests ways of constructing a

PFA [17, 52] (Fig. 3.5(a)). A PFA determines the concepts, structure and textures

necessary to achieve the variability expressed in the feature model, as well as the

behaviour specified in the functional model, ensuring that the products share the

maximum amount of parts in the implementations.

1A comprehensive example can be found in [16].

48 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

(a) State chart (b) Instances

Figure 3.4: A feature-oriented state-chart and its instances for the library SPL.

Precisely, FODA shows how the functional model can be used to identify applica-

tion processes and their constituent modules: it uses state charts to pinpoint appli-

cation processes, and decomposes each process into modules containing functions and

data objects specified in activity charts. However, it remains vague on how to map

these processes and modules to architectural elements (and hence its parts) [18, 19].

There are two main issues here: (i) structure (ii) variation points. Firstly, if the

structure of the architecture is not a tree, then it is not obvious how to map it to the

feature model. Secondly, if the architecture does not contain explicit variation points,

or if it does not include the full standard set of variation points in feature models,

then mapping to the feature model will also be problematic. As a consequence, the

construction of a PFA is still an outstanding engineering challenge [20]. Therefore, the

picture in Fig. 3.1 remains an idealised one.

Existing SPLE approaches do not model all domain engineering assets, missing

most notably a functional model and a PFA (Fig. 3.5(b)). Thus product variants

are not assembled according to an architecture, but configured one at time either

adopting a programming approach or a meta-programming approach for assembling

product variants as instance of coding templates, which do not capture the architecture

of the whole product family (Fig. 3.5(b)). Consequently, SPLE approaches that do

not create a PFA also do not create or use a functional model.

3.2. FODA 49

(a) FODA idealised modelling
approach.

(b) Current SPLE modelling approach.

Figure 3.5: Overview of SPLE modelling approaches.

For instance, Fig. 3.6 depicts how variability in the Linux kernel is expressed and

its relation to (a simplified) feature model.

Figure 3.6: Variability in Linux kernel (adapted from [10]).

The lack of a PFA in domain engineering results in the lack of a product variant

architecture, as well as the incapacity of analysing a product family at design time

(i.e. products need to be instantiated in order to be analysed).

This is summarised in Table 3.1, which shows for existing SPLE approaches (cat-

egorised according to their underlying variability mechanism) the domain engineering

assets they model. In the table, M stands for a model that has been constructed

Table 3.1: Comparison of approaches to modelling software product families.

50 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

during domain engineering (e.g. state-chart and activity-chart); whereas M stands for

a model that can be derived from an existing M. T stands for a coding template;

whereas T is an instance of an existing T. S stands for software constructed from

scratch, whereas S stands for software that is derived from an existing M or T.

In SPLE that adopts the FODA approach to modelling software product families,

a feature model, a functional model as well a PFA are constructed during domain

engineering. These are shown as M in Table 3.1, whereas components are shown as

S, as they are derived from the specification of functional components in a functional

model. In application engineering, the architecture for each product can be derived

from the PFA. Therefore, in Table 3.1 the product architecture is denoted by an

M. Similarly, software for a product variant (S in Table 3.1) is derived from domain

engineering assets .

As can be seen in Table 3.1, whereas the FODA approach to modelling software

product families creates all domain engineering assets, most existing SPLE techniques

do not. Details of the latter are provided in the following sections.

3.3 Annotation-based SPLE

Widely used in industry [13] as supported by leading tools like pure::variants [71]

and Gears [5], annotation-based SPLE approaches [55, 72] consider models, often

called 150% models [73, 74], as templates designed with built-in variation points to

represent the entire solution space of a product family (Fig. 3.7). As defined by

Coplien [75], such a modelling technique implements negative variability. Variant

annotations like conditional compilation [76] and UML stereotypes [48] identify parts of

the models that need to be removed in order to derive a product during the application

engineering phase. Each variation point is defined by naming the features under which

each configuration applies. In this way, the mapping between features and assets is

consistent and traceable across the full SPLE life-cycle.

Conditional compilation is the prevailing mechanism for modelling variability in a

code base [77] since it is natively supported by many programming languages. As an

example, the popular C pre-processor cpp,2 provides directives that allow inclusion of

2http://gcc.gnu.org/onlinedocs/cpp/

3.3. ANNOTATION-BASED SPLE 51

Problem Space Solution Space

D
o

m
a
in

E
n

g
in

e
e
ri

n
g

A
p

p
li

ca
ti

o
n

E
n

g
in

e
e
ri

n
g

Mandatory Optional Alternative Or

F0

F1 F3

F4 F5 F6 F7

F8 F9

F2

Domain Analysis Domain Implementation

Requirements

Mapping
Domain

Knowledge

Customer
Needs

Requirement Analysis

Features

Product Derivation

Features
Selection

Variability Model

Mandatory Optional Alternative Or

F0

F1 F3

F4 F5 F6 F7

F8 F9

F2

Artefacts

Functional ModelCode Base

Source
Code

Product

Source
Code

Glue
Code

Design Model

Design ModelImplementation

Figure 3.7: Software product family modelling in annotation-based SPLE.

header files (#include), line controls (#line), macros (#define), as well as conditional

compilations (#ifdef, #endif).

Pre-processor annotations can be uniformly extended to any kind of textual and

non-textual artefacts (e.g. design model). Indeed, approaches proposed in [78–80],

along with Eclipse projects like fmp2rsm3 and FeatureMapper4 allow annotations and

pre-processing static and behavioural models using UML stereotypes. Therefore, a

functional model can be modelled by a 150% UML model.

Despite their undoubted simplicity, artefacts annotation has been heavily criticised

[81–83] as its undisciplined use may compromise artefact quality and maintainability.

In fact, pre-processor directives are usually not confined by the mechanism of the host

language5 and they can be applied with any arbitrary level of granularity. This implies

that scattered annotations used in undisciplined ways may jeopardise separation of

concerns,i.e. encapsulation. As a consequence, code implementing a feature could be

disseminated across the code base and intermixed with other features’ code. Moreover,

3http://gp.uwaterloo.ca/fmp2rsm
4http://featuremapper.org/
5For instance, cpp works on the basis of directives that control syntactic program transformation.

Therefore it is not limited to C code.

52 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

Table 3.2: Product family modelling in annotation-based SPLE vs FODA.

as pre-processor annotations can be defined, and re-defined, in different places within

the code, even in the case of feature code partitioned into distinct files, it is hard to

understand when a determined code fragment will or will not be compiled. Although

disciplined annotation [84, 85] and tools support [86, 87] mitigate these weaknesses,

they do not solve all of them. Instead of integrating variability into existing artefacts,

Pohl et al. [4] propose an orthogonal variability model (OVM) in which variability is

documented using a dedicated model. Like feature models, OVM consists of variation

points, variants, and constraints. However, unlike them, OVM describes variability

using directed acyclic graphs, not trees.

Explicit links are drawn between variants and artefacts in domain engineering

solution space. According to customer needs, variants and their associated artefacts

are removed when not selected. However, the presence of a large number of features

and artefacts leads to an explosion on the number of links [88].

As shown in table 3.2, like FODA, annotation-based SPLE does construct a feature

model and a functional model (M). However, it does not construct a PFA, but just a

template (T), called family model in pure::variants,6 to organise the family solution

space. A family model describes the solution space in terms of components, parts and

source elements. A component is a named entity, which can be further decomposed

into sub-components or parts, that in turn are built from source elements (S) from

the code base. Thus, in application engineering only software for a product variant

can be derived (S), but not its architecture.

6Without loss of generality, we use pure::variants notation henceforth.

3.4. WEAVING-BASED SPLE 53

3.4 Weaving-based SPLE

In contrast to annotation-based SPLE approaches, weaving-based ones model product

families using positive variability: varying model parts are attached to a base model

based on the presence of features (Fig. 3.8). Here the ability to decompose domain

artefacts into manageable and comprehensive concerns7 is crucial for realising positive

variability. Aspect-oriented software development (AOSD) [89, 90] has been deployed

as a practice to cope with cross-cutting concerns (i.e. aspects of a program that affect

other concerns) which are difficult to model with traditional development approaches

such as the object-oriented ones. AOSD focuses on the modularisation of cross-cutting

concerns into separate functional units (aspects) along with their automated composi-

tion (weaving) into a working system. Aspect-oriented modelling (AOM) extends the

idea of separation of concerns to the level of software models [91]. It applies AOSD

concepts to automatically compose model parts into various base models. Many AOM

approaches [92–100] have been proposed for both static and behavioural models (de-

sign models). As for AOSD, they all revolve around the concepts of model-based

aspects and model weaving techniques.

Problem Space Solution Space

D
o

m
a
in

E
n

g
in

e
e
ri

n
g

A
p

p
li

ca
ti

o
n

E
n

g
in

e
e
ri

n
g

Mandatory Optional Alternative Or

F0

F1 F3

F4 F5 F6 F7

F8 F9

F2

Domain Analysis Domain Implementation

Requirements

Mapping
Domain

Knowledge

Customer
Needs

Requirement Analysis

Features

Features
Selection

Artefacts

Variability Model

Mandatory Optional Alternative Or

F0

F1 F3

F4 F5 F6 F7

F8 F9

F2

Base Model

Jointpoint

Aspect Model

Code Base

Source
Code

Code Base

Source
Code

Design Model

Aspect

Product Derivation

Woven Model

Code Base

Source
Code

Code Base

Source
Code

Design Model

Figure 3.8: Software product family modelling in weaving-based SPLE.

7A concern is an area of interest or focus in the system.

54 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

A model-based aspect defines pointcuts and advices to specify where and how it

affects the base model. A pointcut is an expression that matches several join-points

(specific locations in the base model) and associates them with one or more advices.

A common practice to specify model-based aspects is to use UML diagrams with wild-

cards (e.g. ‘*’ to match any sequence of characters or ‘?’ to match any sequence of

arguments) [100]. During the model-weaving process, a product is derived by weaving

advices into a base model each time a pointcut matches.

A model weaving approach allows a clear separation between mandatory and op-

tional domain artefacts.8 This improves traceability between artefacts in problem and

solution space. However, many semantic problems regarding the aspect weaving pro-

cess have been identified [102–105]. For instance, interference between aspects can

invalid both structure and behaviour of a derived product. Interferences between as-

pects happen when a woven aspect modifies the selection of join-points by previously

weaved aspects. This is usually due to aspects obliviousness. Indeed, if aspects are

developed acknowledging each other, one can expect alteration of a base model. On

the contrary, obliviousness between aspects invalidates their assumptions. As a result,

the derived product may not necessarily reflect the corresponding feature configuration

[106].

Table 3.3: Product family modelling in weaving-based SPLE vs FODA.

Compared to FODA, as depicted in table 3.3, weaving-based SPLE modelling ap-

proaches do not construct a PFA, nor a functional model. Indeed, base models and

aspect models do not describe the behavioural and structural views of a whole product

family. Aspect components (S) are woven only during product variant derivation (S)

in the application engineering phase.
8Mandatory features representing a homogeneous concern may be specified as aspects and woven

to a base model during the weaving process. A homogeneous cross-cutting concern applies the same
advice to several join-points. By contrast, a heterogeneous one adds different pieces of advice to
different join-points [101]. Homogeneous and heterogeneous optional features are always defined as
aspects in order to localise variability.

3.5. SUPERIMPOSITION-BASED SPLE 55

3.5 Superimposition-based SPLE

Similar to AOM, superimposition [107–110] is a simple and language independent ap-

proach for modelling product families in which features are decomposed into indepen-

dent artefact fragments and subsequently composed by merging their sub-structures

on demand according to the provided feature configuration (Fig. 3.9).

Figure 3.9: Software product family modelling in superimposition-based SPLE.

The internal structure of an artefact fragment is detailed by its relative feature

structure tree (FST). Nodes of an FST are detailed by name and type. Given two

FSTs, superimposition recursively merges nodes at the same level, having the same

name and type. The resulting node has the same name and type as the merged ones.

In case a node has no correspondent to be merged with, it is added as a child of the

composed parent node. In other words, superimposition composes artefact fragments

by merging their elements (via replacement or concatenation) on the basis of their

structural and nominal similarities. Many approaches to feature composition rely on

this technique [58, 108, 111, 112].

Jak, short for “Jakarta” [58], is a Java extension that enables superimposition by

introducing the concepts of layer and class refinement. A layer defines the features a

56 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

class belongs to, while a class refinement is a form of mixin-based inheritance [113,

114] that can be applied to different concrete super-classes. Each feature has its cor-

responding implementation directory, called feature module, which contains all classes

and refinements. The semantic of feature modules composition is as follows:

1. classes of any feature modules are put together in a single program;

2. each class is merged with its refinements;

3. in the case a refinement overrides a method, it can be called by the overriding

method via the keyword Super.

To generalise the idea of superimposition and to abstract implementation details,

several models have been developed. GenVoca [115, 116] is an example of such. Based

on stepwise refinement, GenVoca is an algebraical model that allows constructing

a product family by progressively adding details to base programs. Programs are

constants represented as a set of classes. Feature refinements are functions that take

in input a program and produce a feature-augmented one as return by adding or

overriding attributes and methods of the target class. Names given to programs and

feature refinements correspond to the features they implement. As a result, multi-

featured application amounts to a named expression.

ahead [58], acronyms of Algebraic Hierarchical Equations for Application Design,

and featurehouse [117] scale up the idea of stepwise refinement to arbitrary do-

main artefacts. For instance, Apel et al. in [118] analyse the use of featurehouse

regarding superimposition of UML structural and behavioural models.

Although superimposition has been successfully used to model product families

[99], its use is limited to particular scenarios. Indeed, artefact fragments are composed

according to their structural similarities. Therefore, the substructure of a fragment

modelling a feature must be a hierarchy of modules. Moreover, since superimposition

is not aware of the underlying artefacts’ semantics, in the case of name clashing it

cannot perform automatic renaming. It follows that scenarios such as black-box com-

position, or the integration of structurally incompatible components, are less suited for

superimposition and should be handled by alternative composition approaches such as

component composition.

3.6. ∆-BASED SPLE 57

Being similar to weaving implies that superimposition-based SPLE approaches

model the same domain engineering assets as in weaving-based SPLE. Therefore, its

comparison to FODA of fig. 3.10 is the same as that in table 3.3.

Figure 3.10: Product family modelling in superimposition-based SPLE vs FODA.

3.6 ∆-based SPLE

Weaving and superimposition, or in general SPLE modelling approaches based on step-

wise refinement are referred to as feature-oriented programming (FOP) approaches.

Delta-oriented programming (DOP)9 [120–122] is a relatively new paradigm for devel-

oping product families. Similar to FOP, DOP supports a modular implementation of

a product family by distinguishing between a base model and a set of delta models

(Fig. 3.11). However, a delta encapsulates all the changes a configuration of features

applies to a base model, including modification and removal of its parts (thus realis-

ing both positive and negative variability). Application conditions (i.e. propositional

formulas over feature names) contained in each delta determine under which feature

configurations the specified modifications have to be carried out.

Specifically, application conditions are Boolean constraints over features contained

in the feature model, hence building the mapping between problem and solution space.

This is in contrast to FOP where the mapping between the two spaces is relegated

to external tools (e.g. guidsl in AHEAD [61]). During application engineering, delta

models with valid application conditions are incrementally applied to the target core

models. To minimise conflicts between two deltas targeting the same parts, first all

additions, then all modifications and finally all removals are performed [119]. As

previously stated, delta modelling is a relatively new paradigm for developing SPLs.

9Like FOP, concepts of DOP can be applied to other programming or modelling languages. In
[119] a seamless delta-oriented model-driven development is proposed.

58 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

Figure 3.11: Software product family modelling in ∆-based SPLE.

Although this approach can model both positive and negative variability, its lack of

tool support and evaluation in industrial scenarios [123] limits its application in mod-

elling a functional model (e.g. 150% UML model) and a template for a product family.

Therefore, compared to FODA (Fig.3.12), ∆-based SPLE modelling approaches only

construct a feature model (M) and components as ∆-models (S), from which product

variants are derived (S) according to the selected features.

Figure 3.12: Product family modelling in ∆-based SPLE vs FODA.

3.7 ADL-based SPLE

Modelling approaches seen so far lack the construction of the key element of a product

family: its architecture. For instance, while annotation-based approaches construct

3.7. ADL-BASED SPLE 59

a 150% model, and weaving-based ones build a core model subsequently refined by

aspect components, they do not construct a PFA.

Architectural description languages (ADLs) [124, 125] are formal languages that

provide elements to represent the architecture of a software-intensive system in terms of

components, their external interfaces (ports) and communication connections between

them. As described in section 4.3, a software component is an encapsulated software

element (which may contain sub-components) with explicit provided and required

services (via interfaces) that can be independently deployed and composed without

modification (according to a composition standard) by binding provided services with

the matching required ones.

Of the many ADLs that have been developed [126–131] (see section 4.3.2 for details)

only a few are explicitly designed to model the variability required in a product family

(Fig. 3.13).

Figure 3.13: Software product family modelling in ADL-based SPLE.

In particular, we can distinguish between two categories of ADLs used in SPLE.

60 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

Firstly, there are ADLs that directly construct a PFA in solution space without map-

ping to elements in the variability model. Product variants are extracted from the

PFA by providing configuration parameters, used to solve variability at both architec-

tural and component level. Secondly, there are ADLs that construct a PFA and its

components considering the variability model in the solution space, thus providing a

mapping between the two spaces.

ADLs belonging to the first category are: Mae [132], xADL2 [133], MontiArcHV [134],

Com2 [135], Koala [136, 137] and Koalish [138].

Mae [132] models variability in an architecture by means of variant components.

A variant component is a component that encapsulates sets of alternative component

instances, one of which it is used at a time. An instance is selected according to a

property value associated with an instance. The variant component exposes the unique

interfaces of all its components. Selection of a particular component may result in an

illegal architectural configuration if another component uses interfaces that are not

exposed by the selected variant component.

xADL2 [133] models architectures as instances of predefined XML schemas. Schemas

capture basic architectural elements (i.e. component type, port type, connector type),

along with their variability in terms of optional elements, variant types, and optional

variant elements. Intuitively, an optional element is an element that may or may not

be instantiated during product derivation. A variant type relates to the possibility of

choosing one out of many element types. Optional elements and variant types can be

combined to realise optional variant elements. Whether or not an element is instan-

tiated depends on the satisfiability of its associated guard condition, which must be

mutually exclusive in the case of variant elements.

Based on a generic ADL called MontiArc [139] and its framework MontiCore [140],

MontiArcHV [134] models components’ variability via variation points. A component

containing variation points is indicated as variable component. Each variation point

specifies the set of possible variants (i.e. architectural elements) that realise it, along

with their cardinality. Variants do not contain variation points but may enclose vari-

able components. This allows encapsulating variability at any level of hierarchy (HV

stands for hierarchical variability). A configuration specifies the selection of variants

and the desired product’s set-up.

3.7. ADL-BASED SPLE 61

Com2 [135] expresses and handles variability both at architectural and at compo-

nent level. At architectural level, Com2 distinguishes between optional and alternative

components to be bound to an interface. The inclusion of an optional component or

selection of a variant one is evaluated upon a configurable variable. At component

level, internal variability resides in source code and/or build scripts and it is described

merely as configuration variables. During application engineering, features selection

determines the actual value to assign to each configuration variable.

Koala (one of the few ADLs conceived and applied in industry) presents a strict

separation between component development and configuration. Indeed, developers

make no assumptions about the environment in which components will be used. In

the same way, configurators are not allowed to modify the internals of a component

to accommodate their configuration. A configuration is an interface-less component

characterised by a set of parameters. A component may change its internal structure

(via cpp directives) according to parameters received from a special, yet standard,

kind of required interface called diversity interface. At architectural level, switches

use parameters to re-route connections between interfaces. Koala can automatically

remove unreachable components and implementation code therein.

Koalish extends Koala through a number of variability mechanisms stemming out

from the product configuration domain [141]. For contained components, a component

definition may include a number of parts, each defining a non-empty list of possible

component types and their cardinality. To restrict the set of valid individual systems,

Koalish allows the definition of constraints to express conditions that must hold for a

component to be instantiated.

ADLs belonging to the second category are: ∆-MontiArc [142], Kumbang [143],

LightPL-ACME [144], COSMOS*-VP [145], Plastic Partial Components [146] and

ADLARS [147].

Based on MontiArc, ∆-MontiArc applies the concepts of DOP to model architec-

tural variability. A core architecture developed using MontiCore is modified by delta

models. A delta may add, remove, rename and replace ports, components and param-

eters. Moreover, it may connect or disconnect interfaces as well as remove unreachable

ports and subcomponents. A feature is associated with one or more delta that realises

62 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

it. For a particular features selection, a product configuration containing the set of as-

sociated delta is derived and then applied to the core architecture to derive a concrete

product.

From the same authors of Koalish, Kumbang is a domain ontology that unifies

feature and the architectural modelling of a product family. Features are modelled

in Forfamel [148] (a feature modelling language), while architectures are expressed

in Koalish. Kumbang specifies features’ realisation by means of implementation con-

straints. Like any other constraint, an implementation constraint must hold for any

family member derived from a Kumbang model.

LightPL-ACME is an Acme10 [126] extension which introduces elements for SPL ar-

chitecture description. The productLine element represent the SPL. Within it, Feature

elements determine names and types (mandatory, optional etc.) of features composing

the SPL. Product element represents a variant by specifying the features it includes.

The mapping mechanism between architectural elements (built in ACME) and features

is specified in the System element using the keyword mappedTo. ArchSPL-MDD [149]

provides tool support to transform and refine models specified in LightPL-ACME, as

well as a source generator to derive the skeleton of specified variant.

COSMOS*-VP uses aspects to extend COSMOS*[150], a generic ADL. Base-level

components implemented as COSMOS* components are advised by aspect-level com-

ponents. However, in order to reduce coupling and maximise reusability, aspect-

level components do not specify which base-level component they advise. Binding

between the two levels is mediated and encapsulated into aspect-connectors called

Connector-VPs. According to features selection, Connector-VPs advise the

base model with the required aspect.

Plastic Partial Components supports variability within components using the in-

vasive software composition principles [151] as variability mechanism. As in AOP,

invasive composition adapts and extends components at hooks (i.e. variability points)

by transformation. A plastic partial component is a specialisation of component par-

tially defined in the core architecture as a fragment box that hooks a set of code frag-

ments, each implementing specific features. Cross-cutting features are implemented

as aspects, while non cross-cutting ones into separate entities called features. During

10A generic software architecture description language.

3.8. FX-MAN-BASED SPLE 63

application engineering, plastic partial components are completely defined by means

of selection of aspects and/or features for each variability point.

ADLARS models a PFA in terms of system, task and component types. Systems

are defined by a collection of task template instances. A task template is defined in

terms of input interfaces, internal component architectures, an enumeration of the

associated features along with their relationships to components. Instantiation of a

task template requires the provision of the actual feature sub-set that the instance is

required to support. The relationships captured within the task template definition

enable the internal structure of the instance to be derived. Component instances,

like task instances, are created by providing an actual feature sub-set. A component

template embodies a collection of possible configurations and directly relates these to

features in the feature model. In the application engineering phase, a system is de-

rived by instantiating templates according to the specified feature set for the intended

variant.

In ADLs, architectural units can be used to represent features and port connections

to represent variations points. However, due to the binary nature of port connection

(either connected, or disconnected), such mechanism can only represent optional and

alternative variation points as first-class entities, not or.11 For instance, Koala-based

approaches use switch to redirect port connection at architectural level, while Com2

uses optional components. The lack of the full set of explicit variation points implies

that existing ADLs can only define a PFA in a limited number of cases.

An architecture defined by the aforementioned ADLs is therefore a template that

has to be configured according to (i) the values of the provided parameters; and (ii)

the selected features. Therefore, as shown in table 3.4, the modelled template (T), and

its constituent components (S) are configured during production derivation to obtain

a product variant architecture (T) and its implementation (S).

3.8 FX-MAN-based SPLE

As we have seen, all the existing SPLE approaches do not model the PFA and hence

the architecture of an individual product variant (Fig. 3.1). Annotation-based SPLE
11Cardinality, aspects and deltas can model inclusive or, but cannot be considered first-class vari-

ability mechanisms as they participate at component level.

64 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

Table 3.4: Product family modelling in ADL-based SPLE vs FODA.

uses a coding template for the PFA from which the code for an individual product

can be derived, but the template is not an architecture. ADL-based SPLE defines

an architecture template for the PFA which can be instantiated into a template for

an individual product, but these architecture templates do not contain the full set

of standard variation points. Consequently, all these approaches do not fully link

variability to architecture. Apart from ADL-based SPLE, these approaches do not

even have a first-class representation of variability.

As discussed in [12], first-class representation of variability and explicit depen-

dencies between architectural elements and features are two key issues in modelling

product families. Illustrated in Fig. 3.14, the approach we present in this thesis seeks

to address both issues.

Figure 3.14: SPLE using our approach to modelling software product families.

Our proposal is based on a new component model, called FX-MAN [152], that can

be used to construct a product family from components (that represent features and

3.9. SUMMARY 65

product sub-families), a full set of explicit variation operators (that represent variation

points in a product family), and composition connectors that compose and coordinate

sub-families. An architecture created in our model contains a family of (sub-families

of) fully formed, executable products. A key property of our component model is that

any architecture it defines can be mapped (automatically) to a state chart, alongside

the associated activity chart. This means that to define a functional model, it is

sufficient to construct an FX-MAN model according to the feature model for the given

domain.

Figure 3.15: Our-approach vs FODA.

As shown in Fig. 3.15 where, compared to FODA, our approach constructs a model

and an implementation for the PFA (M+S) and for components (M+S), whilst a

functional model is (automatically) derived from the model for the PFA (M). During

application engineering, models and software for each product variant are derived from

the constructed PFA (M+S).

The significance of having a model, as opposed to a template, for the PFA is that

a model contains variability (as defined in the feature model), family and product

structure (composition), as well as behaviour (components), whereas a template is

just a structure of place-holders for components.

In the rest of the thesis we present the details of our approach.

3.9 Summary

The quality of domain assets determines the effectiveness and efficiency of the con-

struction of variants in application engineering. However, creating all the domain

assets is a challenging task in the first place. As a consequence, existing SPLE ap-

proaches do not model all domain engineering assets, but use pragmatic substitutes

instead.

66 CHAPTER 3. MODELLING SOFTWARE PRODUCT FAMILIES

Annotation-based approaches use 150% models as templates, where products are

configured by removing fragments that do not reflect feature selections. Despite its

simplicity, artefact annotation has been heavily criticised, as its undisciplined use may

compromise artefact quality and maintainability.

Feature-oriented modelling approaches gradually refine a base model with aspects

(as for weaving-based approaches) or similar (sub)structures of artefacts (as for super-

imposition-based approaches) corresponding to a particular features selection. Such

modelling approach allows a clear separation between mandatory and optional domain

artefacts, so to improve traceability between problem and solution space. However,

many semantics problems regarding the step-refinement process have been identified.

Similarly, ∆-based SPLE modelling approaches refine a base model (including mod-

ification and removal of its parts) by means of delta models according to the selected

features. Although this approach can model both positive and negative variability,

its lack of tool support and evaluation in industrial scenarios limits its application in

modelling a functional model and a template for a product family.

Finally, ADL-based SPLE modelling approaches use architectural units to rep-

resent features and port connections to represent variations points. They enable a

systematic way to build PFAs. However, due to the binary nature of port connection

(either connected, or disconnected), such mechanism can only represent optional and

alternative variation points as first-class entities, not the inclusive or.

In contrast, our proposal is based on a new component model, called FX-MAN,

that can be used to construct a product family from components (that represent fea-

tures and product sub-families), a full set of explicit variation operators (that represent

variation points in a product family as in the feature model), and composition connec-

tors that compose and coordinate sub-families. A PFA created in our model contains a

family of fully formed, executable products, with the key feature that each architecture

can be automatically translated to its equivalent functional model.

Chapter 4

Component-based Software

Modelling

“If you wish to make an apple pie from scratch,

you must first invent the universe.”
— Carl Sagan

4.1 Introduction

Component-based software modelling (CBD)1 [21, 153] aims to compose systems from

pre-built software units, or components. A system is developed not as a monolithic

entity, but as a composite of sub-parts that have already been built separately. Such

an approach reduces production cost by composing a system from pre-existing compo-

nents, instead of building it from scratch. It also enables software reuse, since compo-

nents can be reused in many systems. Thus CBD promises the benefits of: (i) reduced

production cost; (ii) reduced time-to-market; and (iii) increased software reuse. These

benefits have long been sought after by the software industry. This chapter firstly

introduces the foundations of CBD: software component in section 4.2 and component

model in section 4.3. Secondly, since a component model defines syntax and semantics

of components and their composition, in section 4.4 we provide a taxonomy of current

models to identify the most suitable one for this work by evaluating their compliance

to the idealised component life cycle’s engineering phases.
1Various abbreviations have been used, CBD and CBSE being the main ones. We choose CBD.

67

68 CHAPTER 4. COMPONENT-BASED SOFTWARE MODELLING

4.2 Software Component

In mature domains such as automotive or electronic engineering, the term component

refers to a small standard and exchangeable part. Transistors illustrate this point

clearly: they are designed to be used in numerous applications, and are composed by

plugging them into a circuit board. Moreover, a single transistor can be replaced by

a new one, as long as the latter satisfies the same requirements.

Informatics engineering tries to imitate this idea by introducing the concept of

software component. Although its general accepted definition is still lacking [23], the

most widely adopted one is provided by Szyperski et al. [153], which define a compo-

nent as ‘a unit of composition with contractually specified interface and explicit context

dependencies only. A software component can be deployed independently and is sub-

ject to composition by third parts.’ A component is then defined a unit of composition

with explicit interfaces. However, nothing is said about their composition mechanism.

Meyer et al. [154] specify a component as ‘a software element satisfying the following

conditions: it can be used by other software elements; it possesses an official usage

description, which is sufficient for a client author to use it; it is not tied to any fixed

set of clients.’ Here, a component is defined as a modular unit with a usage description

that serves as implicit interface. As in the previous definition, nothing is said about

their composition mechanism. Heineman et al. [21] fill this gap by describing a soft-

ware component as ‘a software element that conforms to a component model and can be

independently deployed and composed without modification according to a composition

standard.’ This definition relies on a component model to define both components and

composition. However, a component model is only implicitly specified as a composition

standard.

From the aforementioned component definitions (and others [155–158]), a generally

accepted view has emerged: a component is a software unit with provided services

(lollipops) and required services (sockets), which constitute its interfaces and the only

access point (left Fig. 4.1). Intuitively, provided services are operations performed

within a component, while the required ones determine the operations needed from

the environment, usually to yield the provided services.

4.3. COMPONENT MODEL 69

Figure 4.1: Composing generic software components.

Generic components (retrieved from a repository2 (centre Fig. 4.1)) can be com-

posed into a system by connecting provided services with matching required ones, and

vice versa (right Fig. 4.1). The interface of a system can be derived from the ones of

its sub-components.

Different types of components are defined as distinct instances of the generic com-

ponent, together with their corresponding composition mechanisms. As defined by

Heineman et al. [21], such definitions are provided by the component model, which

constitute the cornerstone of every component-based software engineering approach.

4.3 Component Model

The term ‘component model’ is used by Luer et al. [159] to refer to ‘a combination

of a component standard that governs how to construct individual components and a

composition standard that governs how to organize a set of components into an appli-

cation and how those components globally communicate and interact with each other.’

Therefore, a component model determines: (i) syntax and semantics of components,

or rather their definition, representation and construction; (ii) the composition mech-

anism for composing the defined components. It follows that being compliant to a

component model is one of the properties that distinguish components from other

forms of packaged software [160].

In the last twenty years, both academia and industry have developed a large number

of component models [22]. Nevertheless, based on component type, we can distinguish

between three categories of component models: models based on objects (Fig. 4.2(a)),

models based on architectural units (Fig.4.2(b)) and models based on encapsulated

2The use of a repository for building systems suggests that their construction is essentially bottom-
up (composition) rather than top-down (de-composition).

70 CHAPTER 4. COMPONENT-BASED SOFTWARE MODELLING

components (Fig. 4.2(c)).

Provided
method

(a) An object

in1
in2 out2

out1

(b) An architectural unit (c) An encapsulated component

Figure 4.2: The three main types of components currently used in practice.

4.3.1 Models based on objects

In a component model based on objects, an object resembles the generic component

(left Fig. 4.1) expect that it does not have, or show, any required services (hence the

blurred sockets in Fig. 4.2(a)). Objects compose by method delegation, i.e. direct

method calls, or direct message passing. Current models belonging to this category

are: JavaBeans [161–163], Enterprise JavaBeans (EJB) [164–167], COM [168–170],

CCM [171, 172], .NET [173, 174], Web-Services [175–177] and OSGi [178–180].

In JavaBeans a component is a bean, which is just any Java class that has methods,

properties and events hosted by a container such a BeanBox [181]. A bean ‘composes’

with another bean by sending a message through delegation of events. The bean con-

tainer automatically generates, compiles, and loads event adaptor classes for logistics

of events.

In EJB a component is a Java object hosted and managed by an EJB container

within a J2EE server [182]. For an EJB, its Java class defines the methods of the

bean, while its interface exposes bean capabilities for (remote) client applications to

access the bean (over a network). There are 3 kinds of EJBs: i) entity beans, which

model business data; ii) session beans, which model business processes; iii) message-

driven beans, which model message-related business processes. Enterprise beans are

composed (in the EJB container) by method and event delegation via interfaces.

In COM (Component Object Model) a component is a unit of compiled code on

Windows Registry. Services in a component are invoked via pointers to the functions

that implement them. For each service provided there is an interface (a COM compo-

nent can implement multiple interfaces), specified in Microsoft IDL. Every component

must implement an IUnknown interface, which relates to the COM component’s life

cycle. COM components are composed by method calls via interface pointers.

4.3. COMPONENT MODEL 71

In CCM (CORBA Component Model) a component is a CORBA meta-type hosted

by a CCM container on a CCM platform such as OpenCCM [183]. A CORBA meta-

type is an extension and specialisation of a CORBA Object [184]. Component inter-

faces are made up of ports: facets (provided services), receptacles (required services),

event sources and event sinks. CCM components are assembled by method and event

delegations in such a way that: (i) facets match receptacles; (ii) event sources match

event sinks.

In Microsoft .NET a component is a binary unit called assembly supported by a

Common Language Runtime (CLR). A .NET component is made up of metadata and

code specified in Intermediate Language (IL). The metadata contains the description

of assembly, types and attributes, while the IL code is compiled and executed by the

CLR. .NET components are composed by directly referencing other assemblies via

direct method calls within their IL code.

Web services are web application components that can be published, found, and

used on the Web. A web service contains: (i) an interface in WSDL (Web Service

Description Language), which describes the functionalities the web service provides;

(ii) a binary implementation (the service code). Web services composition is realised

by orchestration [185], or rather a coordination of their invocations through SOAP

(Simple Object Access Protocol) [186] or JSON (JavaScript Object Notation) [187,

188] messages.

In OSGi (Open Services Gateway Initiative) components are Plain Old Java Ob-

jects (POJOs) within bundles. A bundle is physically distributed as a JAR file, with

a manifest file containing its meta-information like imported and exported packages

(i.e. services). OSGi bundles do not compose, but POJOs within them do via direct

method invocation.

4.3.2 Models based on architectural units

In a component model based on architectural units, an architectural unit is a primary

unit of computation and/or data, which interacts with other components via a set of

ports. An architectural unit is just the same as a generic component, except that it uses

ports instead of services. A port is a feature of a component that specifies a distinct

interaction point between itself and its environment. Current models belonging to this

72 CHAPTER 4. COMPONENT-BASED SOFTWARE MODELLING

category are: Acme-like ADLs [189], UML 2.0 [190–192], SOFA 2 [193, 194], Kobra

[195, 196], Palladio [197, 198], PromoCom [199, 200], Fractal [201, 202].

Acme [126] is a prototype architecture description language (ADL). It typifies

first-generation ADLs, e.g. Darwin [203, 204], UniCon [205], Wright [127], SCA [206]

and ArchJava [207]. In Acme-like ADLs, a component is an architectural unit that

represents a primary computational element and data-store of a system. Interfaces

are defined by a set of ports. Each port identifies a point of interaction between the

component and its environment. A component may have multiple interfaces by using

different types of ports. In Acme-like ADLs, components are composed (into composite

components or systems) by connectors via port connection.

In UML 2.0, a component is an architectural unit with input ports (required ser-

vices) and output ports (provided services). Composition, via port connection, is

achieved within a component by using assembly connectors, whereas between compo-

nents by delegation connectors (which realise port forwarding).

In SOFA 2, a component is an architectural unit determined by its frame and

architecture. The frame defines provided and required interfaces, as well as properties

of the component. The architecture describes the component’s internal structure.

SOFA components are composed via connectors by using the following communication

styles: (i) remote procedure call; (ii) asynchronous message passing; (iii) streaming;

(iv) shared memory.

In KobrA, a component is defined by a set of UML diagrams, which describe its

specification and implementation. The former specifies what a component does (its

interfaces), while the latter how it does it. KobrA components are composed by direct

method calls.

In Palladio, a component can be just an abstract specification and does not nec-

essarily have an implementation. A component consists of an interface (service sig-

natures) and optional behavioural specifications. In ascending order of specifications

concreteness, Palladio defines three basic component types: (i) provided type; (ii) com-

plete type; (iii) implementation type. Composition is realised via connectors at ports

level.

ProCom is a two-layered component model. At the system layer, ProSys compo-

nents are subsystems, or rather active, distributed components composed via explicit

4.3. COMPONENT MODEL 73

(asynchronous) message channels. At the subsystem layer, Prosys components are

internally modelled by ProSave. A ProSave component is a unit of functionality, de-

signed to encapsulate low-level tasks. It exposes its functionality via services, each

consisting of: (i) an input group of ports, which contain the activation trigger and

required data; (ii) an output group of ports, which make available the data produced.

ProSave distinguishes between data and control flow. Therefore it uses several con-

nectors for more elaborate control: control fork, control join, control selection, control

or, data fork, and data or.

In Fractal, a component is a unit of encapsulation and behaviour. It consists of two

parts: (i) content, which is made up of a finite set of sub-components; (ii) membrane,

which encapsulates the content and contains both internal and external interfaces of

the component. Components are composed via port bindings. The latter can either

be primitive (if the bound interfaces are internal) or composite (if the bound interfaces

are external). Composite binding is embodied in a binding object which itself takes

the form of a Fractal component.

4.3.3 Models based on encapsulated components

In component models based on encapsulated components, components enclose the

computation of the services they provide, without external functional dependencies.

This is depicted in Fig. 4.2(c), where a component belonging to this category only

has a provide port (lollipop), which exposes the services it provides. As a direct

consequence, an encapsulated component, like a transistor, can be easily replaced

since it is not coupled, leading to a significant gain in reusability. Moreover, it can be

designed, implemented and verified independently by different teams. Encapsulated

components compose via exogenous connectors, which coordinate the control flow

between them.

The only component model belonging to this category is X-MAN [208, 209]. An X-

MAN component can be either atomic or composite. An atomic component (Fig. 4.3(a))

is a unit of composition and computation, which exposes a set of services. Its com-

putation unit (U) fully encapsulates the (functional) implementation of the services it

74 CHAPTER 4. COMPONENT-BASED SOFTWARE MODELLING

Invocation IU

U
connector

Computation
unit

(a) Atomic component
. . .

(b) Composition connec-
tor

IA IB
A B

(c) Composite component

Figure 4.3: Exogenous composition in X-MAN.

exposes via the invocation connector (IC). Atomic components are (recursively) com-

posed into composite ones by means of composition connectors (Fig. 4.3(b)). Composi-

tion connectors coordinate the execution of the components they compose: a sequencer

(SEQ) provides sequencing, while a selector (SEL) branching.

Single components in X-MAN can be adapted by adapters such as loop (L) and

guard.3 The former provides looping, while the latter gating. Invocation and composi-

tion connectors form a hierarchy where each composition preserves encapsulation; the

resulting composite component (Fig. 4.3(c)) behaves like an atomic one.

Input and output are both carried through data channels associated with each

component’s service. Data routeing can be horizontal (within a composite) and vertical

(among components). Furthermore, a data channel can be initialized with a default

value and has two possible read policies: destructive and non-destructive.

4.4 A taxonomy of current component-models

The cornerstone of any component-based development (CBD) approach is its under-

lying component model, which defines syntax and semantics of components and their

composition mechanism. Precisely, what components are and what desirable proper-

ties they should have has been discussed at length [21, 153, 154, 210] and summarised

in table 4.1.

Firstly, system development should start from pre-existing components stored (in

design phase) and subsequently retrieved (in deployment phase) from a shared repos-

itory.

Secondly, in order to safeguard reusability, components should be built and used

3By providing sequencing, branching and looping, X-MAN is Turing complete.

4.4. A TAXONOMY OF CURRENT COMPONENT-MODELS 75

Table 4.1: Desiderata for component-based software development.

by different parties. Therefore, during the design phase, components are built (using

a builder tool) and deposited in a repository. During the deployment phase, using an

assembler tool, a different party composes instances of components retrieved from the

repository.

Thirdly, it should be possible to copy (in design phase) and instantiate components

(in deployment phase), so to maximise their reuse.

Fourthly, it should be possible to build (in a systematic way) composite components

both in design and deployment phase. This requires that composite components can

also be deposited in and retrieved from a repository.

Lastly, it should be possible to perform composition in both design and deployment

phases. This implies the flexibility of realising composition entirely in one phase, or

partially in both.

An idealised component life cycle (depicted in Fig. 4.4), derived from the afore-

mentioned desiderata, has been proposed by Lau et al. [23].

In the design phase, by means of a builder tool, new components are constructed

and then deposited in a repository (e.g. A in Fig. 4.4). Such components can be re-

trieved from the repository, and further composed into well-defined composites (e.g. BC

in Fig. 4.4) using suitable composition operators, ideally supported by a composition

theory. Composites should be stored in, and retrieved from the repository in order to

be further composed like any other component.

In the deployment phase an assembler tool can be used to compile and assemble

components retrieved from the repository into a deployable system (e.g. A, B, D

and BC in Fig. 4.4). As in design-phase, composition should be carried out via

76 CHAPTER 4. COMPONENT-BASED SOFTWARE MODELLING

Design Phase Deployment Phase Run-time Phase

A A
A

B
B

B

C
C

D

BC

D

BC

InsA

InsB

InsD

InsBC

Component (source code) Component (binary) Component
 instanceDesign phase

composition operator
Deployment phase
composition operator

Builder Repository Assembler Run-time
Environment

Figure 4.4: An idealised component life cycle.

composition operators. Such operators should allow coordination between components

to fulfil application specific requirements. Resulting composite components should

have interfaces (generated during the composition process) that allow them to be

instantiated and executed in the run-time phase.

In the run-time phase an assembled system is deployed and managed in a run-

time environment (e.g. instances of A, B, D and BC in Fig. 4.4). Although there is

no further composition in this phase, it should be possible to perform some kind of

adaptation on component’s instances at run-time.

The idealised component life cycle provides the basis for comparing and classifying

composition support of existing component models. For instance, we can distinguish

between component models that do not have composition in the design phase and

those that have it in the deployment phase. Fig. 4.10 gives the five categories that

cover all the eighteen major existing component models previously described.

Figure 4.5: Category 1: design without repository.

In category 1 (design without repository – Fig. 4.5), the lack of a repository implies

lack of reuse. That is, components are constructed from scratch and composed only

4.4. A TAXONOMY OF CURRENT COMPONENT-MODELS 77

in the design phase. All simple Acme-like ADLs belong to this category, as do models

such as UML 2.0, PECOS, which are based on Acme-like ADLs.

Figure 4.6: Category 2: design with deposit-only repository.

In category 2 (design with deposit-only repository – Fig. 4.6), new components

constructed in design phase can be deposited in, but not retrieved from a repository.

This implies that a deposited component can only be referenced by a newly created one.

Therefore, composition is possible (only in the design phase), but composite cannot

be retrieved as they do not have their own identity. Component models belonging to

this category are EJB, COM, .NET, CCM and Web Services.

Figure 4.7: Category 3: deployment with repository.

In category 3 (deployment with repository – Fig. 4.7), new components can be

deposited in a repository, but cannot be retrieved from it. However, composition is

not possible in the design phase. Therefore, the repository can only contain atomic

components. In deployment phase, components are retrieved from the repository,

compiled and composed. The only model belonging to this category is JavaBeans.

Figure 4.8: Category 4: design with repository.

In category 4 (design with repository – Fig. 4.8), components constructed in design

phase can be deposited in and retrieved from a repository. Retrieved components

78 CHAPTER 4. COMPONENT-BASED SOFTWARE MODELLING

can be composed. Resulting composites can be deposited and further composed (only

in the design phase). SOFA 2, KobrA, Palladio, SCA and ProCom belong to this

category.

Figure 4.9: Category 5: design and deployment with repository.

In category 5 (design and deployment with repository – Fig. 4.9), components can

be retrieved, composed and deposited in a repository at design time. Moreover, com-

ponents can be further composed in the deployment phase. The only model belonging

to this category is X-MAN.

It is interesting to note that X-MAN meets all the requirements of the idealised life

cycle (Fig. 4.10), hence the CBD desiderata. Indeed, models in category 1 are focused

on designing components from scratch, rather than reusing existing ones. Models in

categories 2 and 3 use repositories, but they behave differently from those in category

4, in that the former stores binaries, whereas the latter stores units of design.

Moreover, X-MAN is the only model that uses encapsulated components and ex-

ogenous connectors as composition mechanism. Encapsulation facilitates reuse as it

removes coupling between components. Exogenous connectors enable systematic hier-

archical composition by preserving encapsulation.

Figure 4.10: Categories based on composition [211].

By contrast, models based on objects and architectural units are both lacking in

4.5. SUMMARY 79

encapsulation and compositionality. Objects encapsulate data, but not control or com-

putation. They are not compositional as the ‘composition’ of two objects by direct

message passing is not supported by a composition theory: the composition result is

not a single object, but just the two objects calling each other’s methods. Architec-

tural units are compositional and can encapsulate data, but they do not encapsulate

control or computation. Architectural units compose via their ports by indirect mes-

sage passing and have a simple composition theory, which does not support systematic

composition. In particular, it is usually defined at the level of ports and used for type

checking connected ports [212], rather than at the level of whole components. Message

passing relies on, and induces, close coupling between components. This hampers their

reuse, in particular the reuse of composite components.

Finally, encapsulation has the potential to counter complexity. In X-MAN encapsu-

lation occurs at every level of composition, implying that larger and larger composites

can be composed regardless of their size or complexity.

For those reasons and due to the high level of complexity and scalability required

by a software product line, X-MAN has been chosen as the candidate component model

in this research.

At its current stage, X-MAN does not include the concepts of variability, therefore

it can only deal with the construction of one system at the time. A component model

for product family based on X-MAN must therefore introduce such concept along with

new exogenous connectors to deal with it.

4.5 Summary

The cornerstone of any component-based software modelling approach is a compo-

nent model, as it defines syntax and semantics of components and their composition.

Current component can be categorised according to their compliance to the idealised

component life cycle [23].

The resulting taxonomy shows that X-MAN is the only component models that fully

satisfies the idealised component life cycle desiderata, and posses the characteristics

(encapsulation and exogenous composition) to potentially deal with the complexity

and scalability required when modelling a software product family.

Chapter 5

A Component-based Approach to

Modelling Software Product

Families

“Never think that lack of variability is stability.

Don’t confuse lack of volatility with stability,

ever.”
— Nassim Nicholas Taleb

5.1 Introduction

A component model for constructing product families must define a family of ar-

chitectures by incorporating variation points, as well as composition mechanisms for

combining (sub)families of architectures into larger ones. In this chapter we introduce

FX-MAN, a component model based on X-MAN to modelling software product families.

The basic idea of FX-MAN is that it defines: (i) basic component-based archi-

tectures that correspond to features; (ii) variations of sets of basic architectures; (iii)

composition of sets of basic architectures into a product family. This is illustrated by

the three levels in Fig. 5.1.

Section 5.2 describes X-MAN [208, 209], its new aggregator connector and how

it is used to construct basic component-based architectures, which are intended to

implement features in the final products.

80

5.1. INTRODUCTION 81

Figure 5.1: FX-MAN overview.

A set of X-MAN architectures is then a family of product parts. We call such a set

an X-MAN set. Variations of X-MAN sets are constructed by variation operators that

correspond to standard variation points in feature models, namely OPT (optional),

ALT (alternative, or exclusive or), and OR (inclusive or). Their semantics is defined

in section 5.3.

Tuples of X-MAN sets that represent variations generated by variation operators

can be composed into a product family by family connectors. As detailed in section 5.4,

such a family contains all the possible products, containing all possible variations as

defined in the feature model.

Finally, section 5.5 details how FX-MAN can be used to model product families ar-

chitectures, which are isomorphic to the related feature model, with explicit variability

and that can be recursively composed to model families of families.

A key property of FX-MAN is that any architecture it defines can be mapped

(automatically) to a state chart, alongside the associated activity chart. This means

82 CHAPTER 5. A COMPONENT-BASED APPROACH FOR SPLE

that to define a functional model, it is sufficient to construct an FX-MAN model of

the product family according to the feature model for the given domain. To show how

FX-MAN architectures define state and activity charts, each section also details how

the respective level in Fig. 5.1 defines these charts.

5.2 X-MAN component model

As introduced in section 4.3.3, an X-MAN component can be either atomic or compo-

site. An atomic component (A in Fig. 5.2) is a unit of composition and computation,

which exposes a set of services. Its computation unit (CU) fully encapsulates the

IC

CU

I oS1...Sm

Atomic Component A

Si

StateChart for A

A

data channel

...S1 Sm

A

I O

ActivityChart for A

A

invocation connectorIC computation unitCU S service
inputI outputO

Figure 5.2: An atomic component and its functional model.

(functional) implementation of the services (S1, . . . , Sm) it exposes via the invocation

connector (IC). Its behaviour can be specified in the language of state charts, as shown

in the state chart1 for A in Fig. 5.2: when a service Si|1≤i≤m is invoked, a transition

from the initial state to the one in which Si is computed takes place. Once computation

ends, the end state is reached. Data to and from the CU is provided and retrieved

via service parameters, as shown by the activity chart2 for A, where parameters are

represented as external activities, while services are represented as activities. The

state chart for A appears as a control activity for the activities in the activity chart

for A.

Atomic components are composed into composite components by means of compo-

sition connectors. Composition connectors coordinate the execution of the com-

ponents they compose: a sequencer (SEQ) provides sequencing, while a selector

(SEL) provides branching.
1We denote a state chart by a rounded box with a bold outline.
2We denote an activity chart by a box with a bold outline.

5.2. X-MAN COMPONENT MODEL 83

Figs. 5.3 and 5.4 show two composite components Q and B built using SEQ and

SEL respectively to compose n atomic components A1 . . . An. The state chart for

SEQ

I oS1...Sm

Composite SEQ State Chart

Q

...

I

O
Activity Chart

A1
A1

A1

An

...

...

I o

A1

... ...

An
An

QQ

...

u1 uj
u1...uj I

An
v1...vk o

v1 vk

0 n

Component Q for Q for Q

Figure 5.3: A composite component with sequencer and its functional model.

Q is composed from the state charts for A1 . . . An by sequencing them in the order

specified in SEQ. Similarly, the state chart for B is composed from the state charts

for A1 . . . An by branching according to the conditions in SEL.

The activity charts for Q and B are composed from those of A1 . . . An. Data flow

among activities mirrors the data flow among the corresponding services. The control

activity B receives a control flow input needed to perform branching decisions.

SEL

Composite SEL State Chart

B

...

I

O
Activity Chart

A1
A1A1 An

... ...

An
An

BBc

c=c1 c=cn

...

[c=c1][c=cn]
...

I oS1...Sm

...

I o

A1 ...
u1...uj I

An
v1...vk o

u1 uj v1 vk

Component B for B for B

Figure 5.4: A composite component with selector and its functional model.

In order to deal with the variability introduced by the OR operator at the variation

generation level (Fig. 5.1), we have defined an aggregator connector (AGG), which

aggregates in a new composite component the services exposed by its sub-components.

An aggregated component effectively provides a façade to the aggregated services.

In Fig. 5.5, the component G is built by aggregating the services exposed by com-

ponents A1 . . . An. Like B in Fig. 5.4, the state chart for G is composed by branching

among the state charts for A1 . . . An, but with a condition on the choice of service. Its

activity chart is composed from the activity charts for A1 . . . An.

Single components in X-MAN can be adapted by adapters such as loop (L) and

guard (G). The former provides looping, while the latter gating. Fig. 5.6 shows a

84 CHAPTER 5. A COMPONENT-BASED APPROACH FOR SPLE

AGG

Composite AGG State Chart

G

...

I

O
Activity Chart

A1
A1A1 An

... ...

An
An

GG

...

...c
[S=ui]

I oU1...Uj,...,V1...Vk

...

I o

A1 ...
u1...uj I

An
v1...vk o

u1 uj v1 vk

[S=vi]

Component G for G for G

Figure 5.5: A composite component with aggregator and its functional model.

I oS1...Sm

Adapted Component R StateChart for R

R

...S1 Sn

R

I O

ActivityChart for R

R
Lc

A
[c=c1]

[¬c=c1]c=c1

A
[¬c=c1] [c=c1]

Figure 5.6: A component with loop and its functional model.

component A adapted by L into R. The state chart for R is composed from the state

chart for A by looping the latter until condition c is verified; failing that, the end state

is reached. In its activity chart, the loop condition is shown as a control flow coming

from the external activity I.

I oS1...Sm

Adapted Component P StateChart for P

P

...S1 Sm

P

I O

ActivityChart for P

P
G

c

A
[c=c1]

[¬c=c1]

A

c=c1

Figure 5.7: A component with guard and its functional model.

Finally, Fig. 5.7 shows a component A adapted by G into P . As for R, the state

chart for P is composed by the state chart for A by entering its initial state only if

the condition c is satisfied; if not, the end state is reached. In its activity chart, the

guard condition is depicted as control data flow coming from the external activity I.

5.3 Variation generation

We can use X-MAN to build a set of X-MAN architectures (an X-MAN set), store it in

the repository of our tool and retrieve it whenever we need it. An X-MAN set is any

set of (well-formed) X-MAN architectures. More precisely, an X-MAN set F is such

5.3. VARIATION GENERATION 85

Figure 5.8: Example for
ALT.

Figure 5.9: Example for
OR.

Figure 5.10: Example for
OPT.

that:

F ∈ P(S)

where S is the set of all possible well-formed X-MAN architectures, and P(S) is the

power set of S. Note that because each element of an X-MAN set is an individual

X-MAN architecture, a set of X-MAN sets may not be well-formed: an X-MAN set

F inside another X-MAN set will define a valid X-MAN architecture only if F is a

singleton set. For this reason, we use tuples of X-MAN sets.

To generate variations of X-MAN sets, we have defined three variation operators

(middle level, Fig. 5.1), which are functions that apply the variability expressed in a

feature diagram to an input tuple of X-MAN sets (implementation in appendix E). In

terms of functional model, variation operators are applied to state charts corresponding

to non mandatory features to generate permutations, which are aggregated into a set

of state charts for their parent feature.

The language of our variation operators is defined by the context free grammar

G = (V,Σ, R, S):

V = {S,NVAR,UVAR,N,+, F}

Σ = {alt, or, opt, x}

S = {S}

R = {S → NVAR|UVAR NVAR→ N(〈T, T+〉)

UVAR→ opt(〈T 〉) N → alt|or

+→, T + |ε T → S|F

F → {xX} X →, xX|ε

}

where the terminal x is a single X-MAN architecture, {x1, . . . , xn} is an X-MAN set,

and the non-terminal T is either a single X-MAN set, or a recursive application of a

variation operator to an X-MAN set.

86 CHAPTER 5. A COMPONENT-BASED APPROACH FOR SPLE

An example of a sentence produced by this grammar is the following:

or(〈alt(〈opt(〈{x}〉), {x}〉), {x, x, x, x}〉)

showing the nesting of variation operators.

The ALT variation operator is a function that takes a tuple of at least two T ’s as

input, and returns each input set as a possible alternative. It is defined by:

ALT (〈T1, . . . , Tn〉) = 〈T1, . . . , Tn〉, for n ≥ 2

An instance of this is shown in Fig. 5.8, where T1 = {A}, T2 = {B} and A,B are single

X-MAN architectures.

The OR variation operator also takes as input a tuple of at least two T s, and returns

all possible combinations (without repetition) of its input. It is defined by:

OR(〈T1, . . . , Tn〉) = 〈T1, . . . , Tn, T1 ⊕ T2, . . . , T1 ⊕ Tn,...
Tn−1 ⊕ Tn,

T1 ⊕ T2 ⊕ T3, . . . , T1 ⊕ T2 ⊕ Tn,...
Tn−2 ⊕ Tn−1 ⊕ Tn,...
T1 ⊕ T2 ⊕ · · · ⊕ Tn〉, for n ≥ 2

where ⊕ is a combinator function for T ’s which (recursively) aggregates their ele-

ments. For example, for two X-MAN sets T1, and T2, OR(〈T1, T2〉) would be the tuple

〈T1, T2, T1 ⊕ T2〉. This is shown in Fig. 5.9, where T1 = {A}, T2 = {B} and A,B are

single X-MAN architectures.

The OPT operator makes a single T optional. It is defined in terms of ALT as

follows:

OPT (〈T 〉) = ALT (〈∅, T 〉) = 〈∅, T 〉

An example is shown in Fig. 5.10, where T = {A} and A is a single X-MAN architec-

ture.

Variation operators can be nested, since they all return tuples of X-MAN sets. This

is in keeping with the hierarchical nature of variation points in a feature model. ALT

and OR can be nested in any order. However, the order of nesting is significant, since

5.4. FAMILY COMPOSITION 87

they do not distribute over each other; so care is required when evaluating nested

ALT s and ORs.

Fig. 5.11 shows an example of nesting an OR inside an ALT, while Fig. 5.12 shows

an example of nesting an ALT inside an OR. These two examples show clearly how

the resulting X-MAN sets differ.

Figure 5.11: Nesting OR inside ALT. Figure 5.12: Nesting ALT inside OR.

5.4 Family composition

Once variations of X-MAN sets have been generated, the X-MAN architectures in

these sets can be composed together into a family of products, which is another tuple

of one X-MAN set. The composition of these sets can be defined in terms of X-MAN

composition connectors, since it is ultimately X-MAN architectures that are being

composed. However, for any set composition, there are many possible combinations

of the members of the input sets. In order not to lose any potential products (as

specified by the feature model), we need to keep all possible combinations, and so we

have defined family connectors accordingly (implementation in appendix F) to perform

these set compositions (top level Fig. 5.1).

A family connector is defined as an n-ary function that takes a tuple of at least two

X-MAN sets and returns a product family, which is a tuple of an X-MAN set. More

precisely, a family connector F -Conn is defined in terms of the corresponding X-MAN

composition connector Conn as follows:

F -Conn(〈F1, . . . , Fn〉)

= 〈{Conn(fi, . . . , fj)|(fi, . . . , fj) ∈ F1 × · · · × Fn}〉, for n ≥ 2

where F1, . . . , Fn are X-MAN sets, and 1 ≤ i, j ≤ n. The Cartesian product F1×· · ·×Fn

ensures that all combinations of X-MAN architectures in F1, . . . , Fn are kept.

The result of the composition performed by F -Conn is a family of fully formed,

executable products, each one in the form of an X-MAN architecture.

88 CHAPTER 5. A COMPONENT-BASED APPROACH FOR SPLE

The two F -Conn connectors are F -SEQ and F -SEL corresponding to the X-MAN

composition connectors SEQ and SEL respectively.

An example of F -Conn is shown in Fig. 5.13, where a F -SEQ is applied to two

tuples, each containing a set of single X-MAN architecture {A,B}, and {C,D} re-

spectively.

Figure 5.13: Product family resulting from F -SEQ.

As in X-MAN, our new component model FX-MAN also has adapters: F-Loop, and

F-Guard. An adapter in FX-MAN is a unary connector which applies the corresponding

X-MAN adapter (Guard, or Loop) to each member of the X-MAN set. Its behaviour

can be described as follows:

F -Adapter(〈F 〉)

= 〈{Adapter(f1) . . . , Adapter(fn)}〉|fi ∈ F, 1 ≤ i ≤ n}

An example of F -Adapter is depicted in Fig. 5.14, where a F -LOOP is applied to a

tuple containing a set of single X-MAN architecture {A,B}.

Figure 5.14: Product family resulting from F -LOOP

As for X-MAN architectures, well-formed FX-MAN ones can be deposited in the

repository of our tool and retrieved whenever needed. This allows an hierarchical

composition of families of families.

A family connector thus creates a family of products. It also creates a state chart

for each member of the family. Fig. 5.15 shows the state charts created by F-SEQ,

5.4. FAMILY COMPOSITION 89

Figure 5.15: State charts created by F-SEQ.

based on SEQ. Activity charts for the family members can also be generated (we omit

them here). Similarly, F-SEL, based on SEL, can produce a family and generate a

state chart and an activity chart for each member of the family. The same holds for

F-Adapters.

5.4.1 Family filters

So far we have described the ingredients necessary for defining a product family. How-

ever, we have not taken into account composition rules, or constraints, that may be

present in a feature model. Such rules disallow certain combinations of features, and

thereby reduce the total number of legitimate products in a family.

In order to handle these rules in the construction of product families in FX-MAN,

we define a family filter as an operator on components composed by a family connector.

A family filter removes products containing illegal combinations of components from

the family constructed by the family connector. The language of a family operator is

defined by the context free grammar G = (V,Σ, R, S):

V = {S,COMP,CONSTR,OP,AND}

Σ = {x, requires, excludes,&&}

S = {S}

R = {S → CONSTR

CONSTR→ COMP OP COMP AND

COMP → x OP → requires|excludes

AND → && CONSTR|ε

}

An example of sentence produced by this grammar is the following:

90 CHAPTER 5. A COMPONENT-BASED APPROACH FOR SPLE

xi requires xj && xk excludes xv && xn requires xm

where x is a single X-MAN architecture.

Listing 5.1 shows the filter function invoked to remove elements of a product family

in input according to the provided list of Constraint (more details in appendix G).

public static ProductFamily filterProducts (ProductFamily productFamily , EList <

Constraint > fullConstraint) {

for (Iterator <Product > iter = productFamily . getProducts (). iterator (); iter.

hasNext () ;) {

Product element = iter.next ();

if (! filterTranslator (element . toString () , fullConstraint)) iter. remove

();

}

return productFamily ;

}

Listing 5.1: Detail of the family filter implementation.

Note that this grammar not only can remove products with illegal combinations

of components, but it can also define filters for keeping only products with desired

components. This is a useful property as it allows us to construct only products with

desired features.

5.5 Constructing a Product Family

By itself, FX-MAN only provides the building blocks for constructing product families.

However, the nature of these building blocks leads itself to the construction of product

families architectures structurally isomorphic to a given feature diagram.

As Fig. 5.1 illustrates, composition of the building blocks is rigorously algebraical,

as the type system defined by FX-MAN allows the modelling process to flow both

vertically (from X-MAN component model to family composition) and horizontally

(at each level). Algebraic composition mechanisms are fundamental for hierarchical

composition (and therefore systematic construction), since each composition is carried

out in the same manner regardless of the level of the construction hierarchy.

As a direct consequence, in FX-MAN the architecture of any product family is a tree.

This means that a variant is an hierarchical composition of components. Therefore,

if we use components to implement features in a feature model and construct a PFA

5.5. CONSTRUCTING A PRODUCT FAMILY 91

Figure 5.16: Constructing a product family architecture from the feature model.

92 CHAPTER 5. A COMPONENT-BASED APPROACH FOR SPLE

from these components, the result is a family architecture structurally isomorphic to

the feature diagram with no variability mismatch and explicit variation points.

Moreover, the architecture of every product in FX-MAN (i.e.an X-MAN component,

atomic or composite) has a corresponding functional model, which can be automat-

ically generated. As a result, the functional model we define for a given domain is

realised by a set of state charts and activity charts. Since it is feature-oriented, it

is fully equivalent to a functional model defined in FODA. This is the basis of our

approach to constructing product families in FX-MAN.

We construct components to implement leaf features. As in [8], we distinguish be-

tween abstract and concrete features: abstract features are used for structuring, while

leaf features are bound to concrete implementation artefacts. Parent-child features re-

lationship is realised by either recursively applying variation operators as in the feature

model, or in the presence of mandatory features, by means of family connectors. The

latter ensures that the resulting permutation contains the components implementing

mandatory features.

Our approach is illustrated on a generic example in Figure 5.16. We start by

constructing components (atomic or composite) for each leaf feature (F4-F9). Com-

ponents corresponding to mandatory features (e.g. F6 and F7) are composed by con-

nectors into composite components (e.g. F2 composed from F6 and F7). Following

the feature model, variation operators are applied to components corresponding to

non-mandatory features in order to generate permutations which are aggregated into

a tuple of X-MAN sets for their parent feature. For example, for the optional features

F4 and F5, the permutations 〈{F4}, ∅〉 and 〈{F5}, ∅〉 respectively are generated, and

aggregated into the component for F1. As F1 is itself optional, the variant 〈F1, ∅〉 is

generated and aggregated (into F ′1). Finally, the tuples of X-MAN sets generated by

variation operators are composed by family connectors into a family. The top-level

family connector produces the family and all associated charts for F0.

Our 1-to-1 mapping between features and components is possible due to component

encapsulation, i.e. the absence of external functional dependencies in our components.

To be more precise, the mapping occurs between features and services exposed by

components. Therefore, in theory it would be possible to have a component exposing

more than one service, which maps to more than one feature. However, it could incur

5.6. SUMMARY 93

duplication and redundancy in component code as in the presence of cross-cutting

features. A log feature is a typical example of such.

Figure 5.17: Detail of the FX-MAN meta-model to deal with shared resources.

In order to avoid such redundancy, we have extended the FX-MAN meta-model

(described in appendix D) in order to manage shared resources. Fig. 5.17 shows the

main entities of such extension and their relationships. The computation unit of an

X-MAN component can refer to one or more Resources, which can be a Routine,

a DBConnector, or a Dataspace. In order to preserve composition encapsulation, we

require a resource to be self contained. Therefore, a hypothetical routine implementing

a log feature may not invoke other routines, and must return control flow as soon its

computation ends.

5.6 Summary

FX-MAN is a component model designed for modelling and constructing software prod-

uct families by providing facilities for defining and building a functional model, and

hence a PFA, based on a feature model (the most widely used kind of variability model)

as well as components that result from domain analysis. An innovative aspect of FX-

MAN is its algebraical type system, which allows to systematically compose families

into bigger ones. This is possible because variation operators and family connectors

can be applied at any level of composition on X-MAN sets, as every product family is

a tuple of an X-MAN set.

Chapter 6

Tool Support

“ I suppose it is tempting, if the only tool you

have is a hammer, to treat everything as if it

were a nail.”
— Abraham H. Maslow

6.1 Introduction

In order to experiment with the modelling of software families, we have implemented

a tool-set [213] , which is composed by the X-MAN tool, the functional model tool and

the FX-MAN tool. In this chapter we explain the implementation of the tool-set and

its usage in constructing a family of Vehicle Control Systems (VCSs).

The tool-set is based on Eclipse and it is implemented using a model driven devel-

opment approach, which is described in section 6.2.

Since FX-MAN relies on X-MAN as its underlying component model, and the ex-

isting X-MAN tool [214] was based on a discontinued platform, the implementation of

the FX-MAN tool-set has required a change in the underlying platform (section 6.3)

and therefore a complete re-implementation of the X-MAN tool (section 6.4).

The functional model tool and the FX-MAN tool are respectively illustrated in

sections 6.5 and 6.6

94

6.2. MODEL DRIVEN ENGINEERING 95

6.2 Model Driven Engineering

In software engineering, as in any traditional engineering discipline, modelling has a

rich tradition in designing complex systems [215, 216]. However, due to the intangible

nature of software and the relative ease of writing code, as depicted in Fig. 6.1 models’

role ranges from being secondary (code-only) to primary (model-only) [217].

A code-only approach is only suitable for small size projects [218]. Indeed, its

limitations are evident during the evolution and maintenance of a system due to an

increase in complexity, or to the inability to access the original designers.

A possible solution is to consider code as a model, and then provide its graphical

representation using tools (code visualisation [219, 220] in Fig. 6.1). Therefore, as

code is written, models are automatically synchronised. Nevertheless, inconsistencies

across models may occur when a piece of information, shared across several artefacts,

is deleted in just one of them and not consistently updated in the others.

To avoid such inconsistencies, tools can automate the model-to-code and code-to-

model transformation (round-trip engineering [221] in Fig. 6.1). This can be achieved

by adding meta-data in the source code in order to distinguish between generated, and

not generated code. However, without considerable discipline, models and implemen-

tation can quickly end up out of step.

Figure 6.1: The modelling spectrum in software engineering.

In a Model Driven Development (MDD) approach (model centric in [222–224]

Fig. 6.1), code is automatically generated from platform independent models. Mostly

used in highly specialised domains [225, 226], MDD is increasingly gaining attention

from both industry and academia [227, 228]. This is due to two main reasons: (i) the

96 CHAPTER 6. TOOL SUPPORT

necessary technologies have matured; (ii) industry-wide standards have emerged. In-

deed, the Object Management Group (OMG)1 is advocating a model-driven approach

through its Model Driven Architecture (MDA)2 initiative [218, 229, 230] and its sup-

porting standards, such as UML [231], Meta Object Facility (MOF) [232] and XML

Metadata Interchange (XMI) [233].

Finally, a model-only approach (right-hand-side, Fig. 6.1) is used in situations

where implementation may be disconnected from models. Perhaps, the most common

example is represented by the growing number of companies that, still remaining

in control of their overall enterprise architecture, outsource its implementation and

maintenance.

Existing implementation of the X-MAN tool [209] follows a MDD approach. In-

deed, it is based on GME [234], a configurable tool-set for the creation of generic

modelling environments. However, rather than conforming to standards such as MOF

and XMI, GME uses proprietary formats for meta-modelling (MetaGME, a graphical

UML-like meta-modelling language) and models exchange (UML Model Transformer).

Moreover, GME is currently discontinued and its lack of support makes it quite difficult

to extend.

The new tool-set is based on Eclipse and it is also implemented using a model

driven approach. The advantages of using this new platform are twofold: (i) Eclipse

uses the OMG MDA standards and technologies; tools created using this platform

can be easily transferred to any other platform that uses the same standards; (ii) the

Eclipse Modelling Project3 is quite mature, and well supported by a large community.

6.3 Technologies

As depicted in Fig. 6.2, the FX-MAN tool-set leverages a powerful stack of model

driven technologies such as EMF [235], Xcore [236], Graphiti [237], Spray [238], Xtend

[239] and CDO [240].

The tool-set meta-models (described in appendices B to D) are defined using EMF

and its extended syntax Xcore; the latter being designed to overcome the inability of
1http://www.omg.org/
2The term ‘architecture’ refers to the various standard technologies that constitute the MDA

foundation.
3https://eclipse.org/modeling/

6.3. TECHNOLOGIES 97

the EMF editor to implement behaviour and to deal with complex meta-models. Meta-

models instances are created and edited using Graphiti, a modelling infrastructure for

EMF. Due to its verbosity, Graphiti code was generated using Spray. A repository

for depositing and retrieving X-MAN components, X-MAN sets, and whole product

families is realised using CDO on a shared remote server. In addition, component

and product implementations are generated via a built-in code generator implemented

using Xtend. The following subsections give an overview of the aforementioned tech-

nologies.

Figure 6.2: FX-MANtool-set technology stack.

6.3.1 Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) is both a sophisticated modelling framework

and a code generator facility for Eclipse. Albeit it was released as an Eclipse public

sub-project only in 2003, EMF has a long heritage as a model-driven, meta-data

management engine in IBM Visual Age IDE [230].

EMF distinguishes between the concepts of meta-model and model: the former

represents a model structure, while the latter its instance. EMF itself is based on

two meta-models, called respectively Ecore and GenModel. Ecore contains data about

the defined classes and their relationships, whereas GenModel encompasses the data

needed for code-generation like control parameters and output paths. The generated

code, referred to as core model, can be used as the foundation for constructing the

modelled system.

98 CHAPTER 6. TOOL SUPPORT

6.3.2 XCore

EMF provides a basic tree editor to create Ecore meta-models. However, as the meta-

model increases in complexity, it becomes cumbersome to use. For example, tracing

relationships between classes it is not immediate. It follows that debugging an Ecore

meta-model requires a lot of effort.

To overcome this limitation, Eclipse Modelling Tools4 provides an Ecore Graphical

Modeller (EGM) tool that allows manipulating an Ecore meta-model in the form of a

UML class diagram. Nevertheless, despite being developed for several years, EGM still

presents several bugs (e.g. synchronisation between UML and Ecore models), making

it unusable when a meta-model increases in complexity.

A solution for these problems is represented by Xcore, a syntax for EMF that,

in combination with Xbase5, transforms it in a fully-fledged programming language

similar to Java. Xcore represents a single source of information, as it combines the

strength of modelling and programming.

6.3.3 Graphiti

Evolving around EMF, Graphiti is a modelling framework that enables rapid develop-

ment of diagram editors for EMF-based domain models. It represents a valid alterna-

tive to the well known, but also more complex, Eclipse Graphical Modelling Framework

(GMF)6. Indeed, it lowers the entry barriers as it hides underlying platform-specific

technologies such as GEF7 and Draw2D8. Moreover, unlike GMF that uses a generative

approach, Graphiti uses a run-time-oriented approach to adapt the editor behaviour.

A generative approach, or rather an approach where code is generated starting from

a meta-model, implies that any custom behaviour must be implemented by changing

the generated source code. This involves a variety of issues related to both evolution

and maintenance of the generated tool [241]. Using a run-time oriented approach,

or rather an approach where a programmer can adapt an editor by overriding/ex-

tending methods exposed by interfaces, guarantees that no generated code has to be

4http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/marsr
5http://wiki.eclipse.org/Xbase
6http://www.eclipse.org/gmf-tooling/
7https://eclipse.org/gef/
8https://www.eclipse.org/gef/draw2d/

6.3. TECHNOLOGIES 99

manipulated.

Fig. 6.3(a) illustrates the Graphiti architecture. An interception component cap-

tures users requests and forwards them to the diagram type agent component, which

architecture is detailed in Fig. 6.3(b). It consists of two main modules: a feature

provider and a diagram type provider. The feature provider supplies the needed fea-

tures according to the given context. Typical examples of Graphiti features are add,

create, remove, and delete. The diagram type provider supplies the needed tool spe-

cific requests to the interaction component. This implies, for example, the choice of a

suitable update strategy when the underlying domain model changes.

(a) Overall architecture (b) Detail of the diagram type agent.

Figure 6.3: Graphiti architecture.

The linkage between instantiated domain model objects and their relative graph-

ical representation in a Pictogram Model is maintained by the Link Model, which

architecture is illustrated in Fig. 6.4).

Figure 6.4: Link model architecture.

100 CHAPTER 6. TOOL SUPPORT

Finally, domain objects are rendered on the screen via the rendering engine (Fig.6.3(a)).

The latter, together with the interaction component, form the actual Graphiti run-time

based on GEF and Draw2D.

6.3.4 Spray

Programming a visual tool against Graphiti framework APIs is a fairly simple task.

However, it soon becomes repetitive and error prone. For instance, for each Ecore

class, one has to program at least four features: add, create, remove, and delete. In

terms of Graphiti, these features have the following behaviour.

• Add: attaches a graphical representation to an instantiated meta-model class

(referred as business object).

• Create: instantiates a business object and invokes the respective add feature to

generate its graphical representation.

• Remove: opposite to add, it removes the graphical representation of a business

object.

• Delete: opposite to create, it deletes a business object and invokes the relative

remove feature to eliminate its graphical representation.

Once implemented, these features need to be manually registered by the feature provider

(Fig. 6.3(b)), and then added to the configuration palette of the tool behaviour provider.

The repetitiveness of such approach does not scale to large Ecore meta-models.

Spray solves this problem by providing Domain Specific Languages (DSLs) to describe

visual DSL editors against the Graphiti runtime, along with a code generator to pro-

duce their boilerplate implementation code against the Graphiti APIs. It follows that

Spray provides a faster and more reliable way to create Graphiti editors.

6.3. TECHNOLOGIES 101

(a) Graphiti

(b) Spray

Figure 6.5: Example of code needed to draw a complex picture in Graphiti and Spray.

As an example, Fig. 6.5 shows the amount of code needed to create a quite complex

picture in Graphiti (Fig. 6.5(a)) and in Spray (Fig. 6.5(b)). It is easy to notice how

the use of a DSL to represent the shape of a graphical element drastically reduces the

amount of code needed and increases its expressiveness, making it easy to debug.

6.3.5 CDO

The Connected Data Objects (CDO) is a shared model framework for EMF-based

applications that works as a repository at development-time, and as a persistence

102 CHAPTER 6. TOOL SUPPORT

framework at run-time. In contrast to Teneo9, which allows several clients to access

a database (realizing in this way a client/server two-tier architecture), CDO presents

a three-tier architecture (Fig. 6.6) featuring a central model repository server. The

server architecture allows different types of pluggable data storage back-ends. Commu-

nication between clients and server is implemented using Net4j Signalling Platform10,

an extensible client/server communications framework. Moreover, CDO has a built-in

versioning facility, as well as pluggable security services to regulate access to shared

objects.

Figure 6.6: CDO overview.

6.3.6 Xtend

Xtend is a statically typed language that uses the Java type system to infer EMF

models in order to generate readable Java 5 compatible source code. Model-to-text

transformation, or rather the generation of textual artefacts from models (e.g. Ecore),

is a fundamental part of any MDD approach. Indeed, albeit it is possible to manually

transform models into code, the undeniable power of MDD comes from the automation

of this process. Such transformations accelerate the MDD process, and can enforce

the adoption of ‘best practises’ to improve code quality.

9https://wiki.eclipse.org/Teneo
10https://wiki.eclipse.org/Net4j

6.4. X-MAN TOOL 103

Xtend, in contrast to other model-to-text technologies such as Acceleo11 and JET12

relies on EMF to automatically create Abstract Syntax Trees (ASTs) to traverse model

structure. Once the AST is stored in memory, Xtend uses it to generate code without

the need of re-analysing the whole model. The compiled output is readable and pretty-

printed and tends to run as fast as the equivalent handwritten Java code [239].

6.4 X-MAN Tool

The X-MAN tool supports the component-based system development and its associated

life cycle [242] (described in section 4.4). The latter consists of: (i) a component

development phase; and (ii) a system development phase. In (i) components are

designed, built, and deposited in a repository. In (ii) components are retrieved and

deployed into the system under construction. Figs. 6.7 and 6.8 show our Eclipse

workbench for (i) and (ii) respectively.

For each development phase, the tool provides a canvas as a design space, as well

as a palette of pre-defined building blocks. Properties of each element, e.g. sequencing

order and branch conditions, are set by means of the Eclipse Property view. During

the whole design process the tool continuously validates the diagram, showing errors

both graphically in the canvas and textually in the Eclipse Problem view. Once val-

idated, component source code (that can be deployed as a stand-alone application)

can be generated. In particular, for atomic components, code skeleton of computation

units is generated. For composite components and systems, source code is entirely

generated including connector coordination logics, data passing logics, data initiali-

sation, as well as constituent component implementations. The latter makes use of

previously generated source code. It is worth noting that we currently support Java

and experimentally C on x86 PC platform.

This new implementation is based on an extended version of the X-MAN compo-

nent model [208]. Its meta-model, described in appendix B and depicted in Fig. B.1,

shows the relationships between the main entities of the X-MAN component model:

components, connectors, and services.

11https://eclipse.org/acceleo/
12https://eclipse.org/modeling/m2t/?project=jet

104 CHAPTER 6. TOOL SUPPORT

Figure 6.7: Eclipse workbench for component development.

Components

X-MAN has two types of components: atomic and composite. They are both fully

encapsulated, i.e. they have no external functional dependencies and contain only

provided services.13

An atomic component is a unit of computation. Its computation unit (CU) contains

the implementation of the services it exposes. As shown in Fig. 6.7, according to

the dragged service(s), the tool generates an interface and an empty implementation.

Therefore, in terms of object-oriented programming, a service is an interface, while

the CU is its implementation.

Valid components are deposited in a standalone or collaborative repository. In

our tool, a repository is displayed in the X-MAN Repository Explorer view, at the

bottom of Figures 6.7 and 6.8. From the X-MAN Repository Explorer view pre-

built components can be retrieved and their instances (represented as grey rectangles

in Fig. 6.8) can be composed into composite components by dragging and dropping

elements (e.g. composition connectors) from the palette on the right-hand-side panel.

13This is in sharp contrast to objects or architectural units, both of which have external
dependencies.

6.4. X-MAN TOOL 105

Figure 6.8: Eclipse workbench for system development.

Connectors

Composition connectors are (exogenous) control structures that coordinate the execu-

tion of the components they compose [243]. They are Sequencer and Selector, which

provide sequencing and branching respectively. In Fig. 6.8 a sequencer is shaped as

an ellipse and a selector as a rhombus.

In addition, adapter connectors such as Guard, and Loop provide gating, and loop-

ing respectively. In Fig. 6.8 a loop is shaped as a circle, whereas a guard as a triangle.

While connectors control execution among component instances, data between

components flows through data channels (dotted arrow in Fig. 6.8).

Finally, the new meta-model, and hence the tool, includes a new connector called

Aggregator, which aggregates in a composite component the services exposed by the

components it composes. Therefore, it provides a façade to their services.

Services

A service represents an operation exposed by a component. It contains two main

entities: parameters, and service references. Parameters are inputs and outputs, while

service references specify services in sub-components that contribute to the provided

operation. In Fig. 6.8, a service reference is represented as a square, while a parameter

106 CHAPTER 6. TOOL SUPPORT

as an ellipse.

6.4.1 Example

Fig. 6.9 shows the environment in which a Vehicle Control System (VCS) (adapted

from [65]) has been developed. A VCS is a real-time, on-board system for supervising

a vehicle. It manages several routine services and tasks, including:

• statistical data calculation, e.g. of fuel consumption and of average speed;

• observation or monitoring of the vehicle’s internal state, e.g. maintenance status;

• cruise control, i.e. automatically controlling the vehicle’s speed in such a way

that a steady (cruise) speed can be set (by the driver) and then maintained by

taking over control of the throttle whenever necessary;

• collision detection, which is useful in its own right to ensure safety, can enable

automatic driving (while cruising).

Figure 6.9: Example of a Vehicle Control System in X-MAN.

Our simplified VCS results from the composition of five component instances (i.e.

AverageMPH, AverageMPG, Monitoring, AutoCruiseControl and AllRoundDetection),

and it exposes the VCS service, which is composed from services exposed by the com-

ponent instances. The behaviour of the VCS in Fig. 6.9 can be described by its auto-

matically generated functional model in the notation of state chart and activity chart.

6.5. FUNCTIONAL MODEL TOOL 107

Moreover, as illustrated in Fig. 6.10, its generated implementation can be validated

by a set of JUnit tests.

Figure 6.10: Execution of the VCS example in Fig. 6.9

6.5 Functional Model Tool

The functional model tool, which meta-model is described in appendix C, allows the

automatic creation of functional and behavioural views of an X-MAN architecture (built

using the X-MAN tool) in the form of activity-chart and state-chart respectively. As

depicted in Fig. 6.11, this tool can be invoked within the context of an X-MAN envi-

ronment14. The tool automatically validates the currently open X-MAN architecture15

and provides details (in Problem View) in case validation fails. Following the hier-

archical structure of the current X-MAN architecture, the tool recursively generates

linked state-charts and activity-charts in separate folders. This implies that a user

can analyse a functional model by drilling down activities and states as well as by

checking for each control activity the corresponding state-chart.

6.5.1 Example

The generated functional model for the VCS in Fig. 6.9 is shown by the activity and

state charts of Figs. 6.12(a) and 6.12(b) respectively.
14The menu is dynamically enabled when suitable X-MAN artefacts are available and valid.
15This is achieved by invoking the validation routines provided by EMF.

108 CHAPTER 6. TOOL SUPPORT

Figure 6.11: Detail of the X-MAN menu.

In the activity chart of Fig. 6.12(a), the top activity is the service VCS that the

product exposes. Its sub-activities, AllRoundDetection, Monitoring, AverageMPH,

AutoCruiseControl and AverageMPG are linked to the activity charts generated for the

corresponding components. Data flowing between parameters are depicted as data flow

lines. Input and output parameters contained in the exposed service are represented

as data flow lines coming from, or going to the external activites Input_Parameters

and Output_Parameters. Reading from top to bottom, left to right, Selection,

Fuel, Data. Hours, Miles, Direction, and SelectedSpeed are data provided as

input; while Distance, Message, AverageMPH, ThrottlePosition, and AverageMPG

as output. The data element LoopData, which supplies condition data to the loop,

is represented as a data store with the same name. Indeed, semantically they both

define a temporary storage of data. Data supplied to the loop is depicted as a control

flow line going to the control activity Product_4,16 which behaviour is defined by the

state-chart in Fig. 6.12(b).

16The name is derived from the X-MAN architecture file-name

6.5. FUNCTIONAL MODEL TOOL 109

(a) Generated VCS activity-chart.

(b) Generated VCS state-chart.

According to the value provided by the data store LoopData, the machine de-

picted in Fig. 6.12(b) transits from the Start state directly to the End state if the

condition [c=VehicleON] is not met. Otherwise, it reaches an XOR (exclusive or)

110 CHAPTER 6. TOOL SUPPORT

connector, which leads to three states, namely AverageMPH, Monitoring, and Aver-

ageMPG, each containing the state chart generated for the corresponding component.

The machine transits from the only state (at the time) that meets the condition, to

the state AutoCruiseControl, which contains the state chart of the composite com-

ponent AutoCruiseControl. In here, a transition from the state AdaptSpeed to the

state CruiseControl takes place only if the condition [c > 50] is satisfied. On leav-

ing AutoCruiseControl, the machine transits to the state AllRoundDetection, which

consists of the state chart generated for the atomic component AllRoundDetection.

Finally, if the vehicle is switched off, the condition [¬ c=VehicleOn] becomes true and

consequently the machine reaches its End state. Alternatively, it will start again by

reaching the initial XOR connector.

6.6 FX-MAN Tool

Our FX-MAN tool, as described in chapter 5, supports the construction of software

product line architectures with explicit variability through three stages:17 (i) con-

structing components (based on the X-MAN component model and tool), (ii) adding

variability onto components to create variations, and (iii) composing variations into

one PFA capturing all possible variants. Moreover, as a result of an on-going collabora-

tion with pure-systems GmbH,18 our tool is interoperable with their tool pure::variants,

current market leader in SPLE tools [13] (see section 6.6.1).

The screenshot in Fig. 6.12 gives a view of the tool (in which the example of

section 6.6.2 was constructed). As for the X-MAN tool, the FX-MAN one provides a

canvas as a design space, as well as a palette of pre-defined design blocks. During

the whole design process, the tool continuously validates the diagram, showing errors

both graphically in the canvas and textually in the Eclipse Problem view. A diagram

context menu gives access to an additional set of features such as automatic layout

and diagram export; while the FX-MAN menu in the top bar allows product extraction

(from a product family that has been constructed).

17It is important to emphasize that FX-MAN is only a tool for constructing a product family once
it has been defined. Nevertheless, the compositional nature of FX-MAN does seem to suggest a
systematic way to define and construct a product family by following the structure of the feature
model, but we do not claim that we have a general methodology.

18https://www.pure-systems.com/

6.6. FX-MAN TOOL 111

In our tool, variation operators can be dragged from the palette, and connected

to instances of pre-built X-MAN components (in X-MAN sets) or to other variation

operators. The tool automatically checks the validity of every new dragged connection.

Fig. 6.12 shows two Alternative and two Optional operators connected to four X-MAN

components. It also shows an Or operator nested within an Alternative operator.

Figure 6.12: Eclipse workbench for constructing an FX-MAN architecture.

Variation generation results in sets of X-MAN architectures. Family connectors

compose X-MAN sets into a PFA, which is an architecture containing the architectures

of all the members. A product family can be adapted by a family adapter19. Family

connectors and adapters are implemented in a palette in our tool as shown in Fig. 6.12.

To apply a family connector we drag it onto the canvas and make connections from it to

X-MAN components (in X-MAN sets) or variation operators. In Fig. 6.12, the F-Selector

composes three sets of variations produced by the two Optional and the Alternative

variation operators into a single architecture. An F-Sequencer composes the previous

architecture with another set of variations created by the variation operator Or to

yield a larger architecture. Finally, a F-Loop is connected at the top.

Variability introduced by a variation operator, as well as the family constructed by

a family connector, can be analysed at design time by means of the Product Explorer

view (bottom, Fig. 6.12). Architectures of individual members (as well as the whole
19The family connectors and adapters specify coordination and adaptation applied to all variations.

112 CHAPTER 6. TOOL SUPPORT

product family) can be directly extracted and executed using the menu20 depicted in

Fig. 6.13. Moreover, the constructed PFA can be deposited in the repository, and

subsequently retrieved to be further composed.

Figure 6.13: Detail of the FX-MAN menu.

6.6.1 Pure::variants Plug-in Connector

By leveraging the modular architecture of tool, it can be extended with new function-

alities by means of plug-ins.

In particular, we have developed a plug-in (depicted in Fig. 6.14) that allows the

interoperability with pure::variants for variant derivation. In pure::variants, a stake-

holder can specify a (valid) feature configuration and generate a Variant Description

Model (VDM) [244]. The created variant model is then provided as an input into our

plug-in, which interprets and validates it against a chosen PFA to ascertain the product

variant exists.21 The validation makes use of the unique names of features in a VDM

model and matches them against component names in the PFA. If a match is found,

the plug-in extracts the desired product by traversing the PFA, retrieving components

from repository, replacing family connectors with their counterpart X-MAN ones and

constructing the product model as X-MAN architecture. Moreover, our plug-in also

offers a dialog to specify the name of the extracted product and its location on the file

system.

20Like the X-MAN menu, FX-MAN menu is also enabled only when suitable models are present and
valid.

21This is technically achieved by generating a family filter that reflects the selected features
relationships.

6.6. FX-MAN TOOL 113

Figure 6.14: Pure::variants plug-in visual interface.

6.6.2 Example

Returning to the example of section 6.4.1, let us consider a family of Vehicle Control

Systems (VCSs) as defined by the feature model in Fig. 6.15.

Figure 6.15: VCS feature model.

This describes 40 product variants which can:

• Optionally have the capability to calculate statistical data (Calculation) about

average speed (AverageMPH), or average fuel consumption (AverageMPG).

• Mandatorily observe the vehicle’s status (Observation) by signalling the need to

carry out ordinary maintenance (Maintenance), or by warning the driver about

internal malfunctions (Monitoring).

• Mandatorily provide a cruise management facility

(CruiseManagement) by providing AutoCruiseControl, CollisionDetection, or

both. AutoCruiseControl allows the vehicle to automatically adjust its speed

114 CHAPTER 6. TOOL SUPPORT

in accordance with the driver’s desired pace. CollisionDetection enables the sys-

tem to calculate and show the distance between the vehicle, and the nearest

objects in different directions. If present, it can either detect objects in front of

the vehicle (FrontDetection), or all-round it (All-roundDetection).

Our repository already contains five of the seven X-MAN components correspond-

ing to seven leaf features (implemented in section 6.4.1): AverageMPH, AverageMPG,

Monitoring, AutoCruiseControl and AllRoundDetection. Therefore, using the X-

MAN tool we build (and deposit) the remaining components FrontDetection and

Maintenance.

Subsequently, we retrieve those components using the Repository Explorer view

and apply them the variation operators as defined in the feature model. In Fig. 6.12,

we apply Optional to AverageMPH and AverageMPG; Alternative to Maintenance,

Monitoring, and to FrontDetection and AllRoundDetection; Or to the latter and

AutoCruiseControl.

(a) Built-in product extraction interface. (b) A pure::variants VDM.

Figure 6.16: Product variant extraction.

Finally, the tuples of X-MAN sets generated by all the variation operators are

composed by means of family connectors. In the VCS architecture in Fig. 6.12, the

family of 40 product variants specified by the feature model is modelled by composing

the tuples of X-MAN sets by means of two family connectors (F-Sequencer, F-Selector),

and then adapted by a F-loop. We use F-Sequencer to allow a driver to choose any

subset of the features Calculation and Observation; and F-Sequencer to combine the

driver’s choice with the Cruise Management feature. The pick of family connectors is

a design decision. However, it will not affect the total of number of products in the

6.7. SUMMARY 115

family. The resulting PFA contains a total of 40 products, which can be inspected

(using the Product Explorer view), and extracted either using the extraction dialogue

box in Fig. 6.16(a) or a pure::variants VDM as in Fig. 6.16(b).

Using the VDM in Fig. 6.16(b) we can extract the same VCS constructed in sec-

tion 6.4.122. It represents a premium version of VCS which is capable of displaying the

result calculated by AverageMPH, AverageMPG, or Monitoring (chosen by the user).

Then AutoCruiseControl is invoked with the aim of maintaining the speed (selected

by the user). Finally, the system shows the distance from the vehicle to the nearest

obstacle in a specified direction.

6.7 Summary

The implementation of the FX-MAN tool-set follows a model driven development ap-

proach and it is based on a powerful and mature stack of technologies such as EMF,

Xcore, Graphiti, Spray and CDO.

For each stage of a family modelling process, the tool-set provides a canvas as a

design space, as well as a palette of pre-defined design blocks. It also performs con-

tinuous validation, seamlessly integrates with pure::variants, and enables collaborative

modelling thanks to a shared repository.

Finally, the tool-set is available via the University of Manchester Intellectual Prop-

erty (UMIP) platform at http://www.click2go.umip.com/i/soft-ware/x_man.html.

22This implies that we can generate its functional model and deployable source code, which can be
tested as shown in Fig. 6.10

Chapter 7

Use Case: External Front Car

Light Family

“Claiming truth in the absence of evidence is

prejudice.”
— Joseph Rain

7.1 Introduction

The lighting system of a vehicle consists of lighting and signalling devices which allow

other drivers and pedestrians to see its presence, as well as its actual and intended

direction of travel. As depicted in Fig. fig. 7.1 forward illumination is provided by high

and low beam headlights, which may be augmented by auxiliary fog lamps, driving

lamps, or cornering lamps. A high beam headlight produces a centre-weighted, intense

distribution of luminosity with limited control of glare. Consequently, a high beam can

be used only when the road is empty, as the glare it produces may blind other drivers.

On the contrary, a low beam headlight produces a light distribution to permit an

adequate forward and lateral illumination without blinding other drivers with excessive

glare. Therefore, it can be used whenever other road users are present ahead.

In this industrial use case provided by pure::systems GmbH, maker of the market

leader tool for variability management pure::variants, we detail the construction of a

family of 28688 external front car light (ECL) systems in FX-MAN. Section 7.2 defines

the ECL family requirements, categorised in the feature model of Fig. 7.2, whereas

116

7.2. REQUIREMENTS 117

Figure 7.1: An external car light system.

section 7.3 details the steps involved in its modelling. Finally, section 7.4 summarises

the chapter and describes the challenges one would face if not adopting the FX-MAN

approach.

7.2 Requirements

The feature model in Fig. 7.2 contains 26 features distributed across 4 levels. Starting

from the children of the root node ‘External Car Lights’ we now details the require-

ments of each feature.

• Fog Lights produce a wide, bar-shaped beam of light with a sharp cut-off at the

top. They are manually activated by the driver.

• An ECL system must support Beam Configuration for both Low Beam and High

Beam. A beam can either be Xenon or Halogen and activated both manually

and automatically.

• A Daytime Running Light is an emitting light that is automatically switched

on when the vehicle is moving forward, thus to increase its conspicuity during

daylight conditions. It is realised by using either a (Reduced Low Beam) lamp

or a dedicated one. The latter can be either LED or a Standard Bulb.

• Driver Assistance are systems aimed at increasing driver safety. It is realised by

at least one (or any combination) of the following sub-systems: Automatic Light,

Automatic High/Low Beam Detection and Cornering Lights.

118 CHAPTER 7. USE CASE: EXTERNAL FRONT CAR LIGHT FAMILY

– Automatic Light makes use of an optical sensor positioned on the inside of

the vehicle’s windscreen to detect the environment light level. When the

light level drops to less than 1000 lux, the electronic control unit automat-

ically activates vehicle’s Low Beam and Cornering Lights. When the light

level returns to 3000 lux, the lights are automatically switched off.

– Automatic High/Low Beam supports driver by automatically switching head-

lights accordingly to ahead traffic conditions. A camera integrated in the

rear-view mirror monitors the headlights of approaching vehicles, as well

as the rear lights of vehicles ahead. The system automatically switches the

headlights from high beam to low beam, returning to high beam as soon as

other drivers are no longer in danger of being dazzled.

– Cornering Lights is realised by at least one (or any combination) of the

following sub-systems: Static Cornering Lights and Adaptive Forward Light.

∗ Static Cornering Light provide an extra light source behind the head-

light reflector. When the car is moving at a speed of at least 10 m/s

and the steering wheel is above 15 degree the system automatically

activates (if present) the daytime running lights. Furthermore, If the

steering wheel angle goes above 25 degrees it activates (if present) the

fog lights. As a result, driver gets a better view of potential hazards.

∗ Adaptive Forward Light allows to modify beam direction and shape

according to road geometry. In entering a corner, the system steers the

light cone inside the curve. This provides a better view into the corner,

allowing earlier identification of possible dangers ahead. It is activated

only when high or low beam is operating in full light mode.

It is important to notice that the ECL feature model in Fig. 7.2 expresses a ‘re-

quires’ constraint between the features Static Corner Lights and Fog Lights that re-

duces the number of valid ECL systems to 386. This is an important constraints that

needs to be taken into account when modelling the ECL family in FX-MANas avoiding

it would lead to the construction of invalid products.

7.3. BUILDING THE ECL PRODUCT FAMILY 119

Figure 7.2: Automotive front light controller feature model

7.3 Building the ECL Product Family

Starting from the four-levels feature model in Fig. 7.2, we describe the steps needed

to construct the ECL PFA.

7.3.1 Step 1 - Implement leaves features

The first step is to implement the leaves features (nodes at the lowest level of each

sub-tree) as X-MAN components. The ECL feature model has 14 leaf features, each of

which implemented by an encapsulated component as listed in Table 7.1. Features

whose behaviour is simple enough to not require further decomposition are realised as

atomic components. That is, behaviours such as toggling a bulb (features Reduced Low

Beam, LED and Standard Bulb), interrogating a sensor status (features Light Sensor,

Camera), or processing sensor data to control beams status (feature High/Low Beam

Controller), can be directly implemented inside computation units.

120 CHAPTER 7. USE CASE: EXTERNAL FRONT CAR LIGHT FAMILY

Feature Name Component Name Component Type
Fog Lights FogLights Composite
Xenon LowBeamXenon Composite
Halogen LowBeamHalogen Composite
Xenon HightBeamXenon Composite
Halogen HightBeamHalogen Composite
Reduced Low Beam DRL_LowBeam Atomic
LED DRL_LED Atomic
Standard Bulb DRL_Bulb Atomic
Adaptive Forward Light AdaptiveForwardLight Composite
Static Cornering Light StaticCornerLight Composite
Light Sensor LightSensor Atomic
Camera CameraFeed Atomic
High/Low Beam Controller HighLowBeamController Atomic

Table 7.1: Implementation of leaves features as X-MAN components.

Fig. 7.3(a) shows the architecture of the DRL_LED atomic component, which im-

plements the feature LED. DRL_LED provides a toggleLight service, which has two

(boolean) parameters, currentStatus in input and status in output, to keep track of

the bulb status (false off, true on). Fig. 7.3(b) shows the DRL_LED generated activity

chart, where the service toggleLight is represented as an activity, currentStatus

and status are represented as data flow coming from and to the external activities

Input Parameter and Output Parameter respectively. The toggleLight activity is

controlled by the control activity DRL_LED (rounded rectangle), which behaviour is

specified by the state chart in Fig. 7.3(c). From the initial state, the machine tran-

sits to the state Computing toggleLight in which the beam toggle is computed. Once

computation ends, the machine transits to the final state.

Behaviour of the remaining features listed in Table 7.1 are implemented by X-

MAN composite components. Xenon and Halogen features (children of the feature

Low Beam) are implemented by the components LowBeamXenon and LowBeamHalogen

respectively. Similarly, the behaviour of the features Xenon and Halogen (children

of the High Beam feature) is encapsulated by the components HighBeamHalogen and

HighBeamXenon respectively.

Fig. 7.4 depicts the architecture of the latter. As already described at the beginning

of this section, the high beam is activated when the high beam lever is pulled by the

7.3. BUILDING THE ECL PRODUCT FAMILY 121

driver and the light mode switch is set to full light mode. To realise such behaviour, a

sequencer firstly invokes the service CheckLightMode exposed by the component

LighModeSensor, secondly it invokes the service getLeverPosition provided by the

component LeverPositionSensor, thirdly it invokes a guard adapter, which checks

that the light mode status is equal to 1 (full mode). If so, the control goes to a second

guard which checks that the lever position is equal to 1 (high beam). If it evaluates

true, than the service toggleLight exposed by the component XenonActuator toggle

the light only if the bulb currentStatus is false (off).

The HighBeamXenon component generated functional model is depicted in Figs. 7.5.

The activity chart shows the activity toggleHighBeam containing three sub-activities

CheckLightMode, toogleLight, getLeverPosition corresponding to the aforementioned

services. The activity toggleLight receives an inbound data flow highBeamStatus,

and provides a status data flow as output. CheckLightMode and getLeverPosition

instead provide a control flow data (status and position) to the control activity High-

BeamXenon. Such data is then used by the state machine to evaluate the transition

to the composite state XenonActuator, which compute the beam activation.

The behaviour of the remaining leaf features, or rather, Standard Bulb, Adaptive

Forward Light and Static Corner Light has been implemented by the corresponding

X-MAN components DRL_Bulb, AdaptiveForwardLight and CornerStaticLights.

Their source code, along with their corresponding functional models can be down-

loaded at https://goo.gl/jY1lLA.

Figure 7.3: Architecture of DRL_LED component and relative functional model.

122 CHAPTER 7. USE CASE: EXTERNAL FRONT CAR LIGHT FAMILY

Figure 7.4: Architecture of the HighBeamXenon component.

7.3.2 Step 2 - Add Variation Operators

The second step is to add variation operators as defined by the ECL feature model

in Fig. 7.2. To this end, we retrieve the components created in Step 1 and apply the

specified operators to them. Fig. 7.6 illustrates the families of X-MAN sets constructed

in this phase.

An OPT operator applied to an instance of the FogLights components yields

the tuple F0 = 〈{FogLights}, ∅〉. A family of Low Beam is created by applying an

ALT operator to the components LowBeamXenon and LowBeamHalogen. The result

is the tuple F1 = 〈{LowBeamXenon}, {LowBeamHalogen}〉. Similarly, an ALT

operator applied to the components HighBeamXenon and HighBeamHalogen gives rise

to the tuple F2 = 〈{HighBeamXenon}, {HighBeamHalogen}〉. An additional ALT

operator applied to the components DRL_LED and DRL_Bulb realises the tuple F3 =

〈{DRL_LED}, {DRL_Bulb}〉.

As Fig. 7.2 illustrates, Automatic Light has a sub-feature Light Sensor, and it

demands features Low Beam and Cornering Lights as well. As sub-families for Low

Beam and Cornering Lights were already developed (and deposited in our tool repos-

itory), the only component that needs to be built is the one for Light Sensor, which

senses and calculates the external light condition. Since Automatic Light sub-feature

and demanded features are all mandatory, we need to compose them into a new tuple

7.3. BUILDING THE ECL PRODUCT FAMILY 123

Figure 7.5: HighBeamXenon component corresponding functional model.

by mean of family connectors. Fig. 7.7(a) shows the architecture of the Automatic

Light sub-family.1 A family sequencer F-SEQ firstly invokes LightSensor to process

the light conditions. Secondly, according to the calculated light conditions, it toggles

low beams and then the cornering lights. The 6 variants it realises are listed in the

product explorer view at the bottom of Fig. 7.7(a)). They are identified by the tuple

F4 = 〈{Sequencer(LightSensor, AutoLightController,HalogenLowBeam,Auto-

maticForwardLight), Sequencer(LightSensor, AutoLightController,HalogenLow-

Beam, StaticCornerLight), Sequencer(LightSensor, AutoLightController,Halogen-

LowBeam,Aggregator(AutomaticForwardLight, StaticCornerLight)), Sequencer(

LightSensor, AutoLightController,XenonLowBeam,AutomaticForwardLight),

Sequencer(LightSensor, AutoLightController,XenonLowBeam, StaticCornerLight),

Sequencer(LightSensor, AutoLightController,XenonLowBeam,Aggregator(Automa-

ticForwardLight, StaticCornerLight))}〉

In order to realise the refined Automatic High/Low Beam sub-family of Fig. 7.2, we

reuse the sub-family High Beam (realised by the alternative components XenonHighBeam

and HalogenHighBeam), and implement new components for CameraFeed and High-

/Low Beam Controller. Fig. 7.7(b) depicts the PFA of the new sub-family. A family

sequencer (F-SEQ) firstly invokes CemeraFeed to check the status of the incoming

traffic. Secondly, it invokes HighLowBeamController to process the camera data
1Dashed arrows represent data flow.

124 CHAPTER 7. USE CASE: EXTERNAL FRONT CAR LIGHT FAMILY

Figure 7.6: Families of X-MAN sets constructed during step 2.

and to evaluate the new beam status. Thirdly, F-SEQ invokes either XenonHigh-

Beam or HalogenHighBeam to (if required) toggle their status. The result is the tuple

of two variants F5 = 〈{Sequencer(CameraFeed,HighLowBeamController,Xenon-

HighBeam)}, {Sequencer(CameraFeed,HighLowBeamController,HalogenHigh-

Beam)}〉, as depicted by the product explorer view in (bottom of) Fig. 7.7(b).

An OR operator applied to the components AdaptiveForwardLight and Corner-

StaticLights yields the tuple F6 = 〈{AdaptiveForwardLight}, {CornerStaticLights},

{AdaptiveForwardLight⊕CornerStaticLights}〉, which realise the sub-family of Cor-

nering Lights.

The optional feature Daytime Running Light is realised by applying an ALT op-

erator to F3 and to the component DRL_LowBeam, which implements the leaf feature

Reduced Low Beam, and thereafter an OPT variation operator to the resulting tuple.

The result is the sub-family F8 = 〈F7, ∅〉, where F7 = 〈F3, {DRL_LowBeam}〉.

Finally, the variability defined by the optional feature Driver Assistance is ob-

tained by applying an OR operator to the tuples F4, F5, F6, and subsequently an

OPT operator to the produced tuple. The result is the tuple F10 = 〈F9, ∅〉, wherein

F9 = 〈{F4 ⊕ F5}, {F4 ⊕ F6}, {F5 ⊕ F6}〉.

7.3. BUILDING THE ECL PRODUCT FAMILY 125

Figure 7.7: ECL product family architecture (and its sub-families).

7.3.3 Step 3 - Compose X-MAN Sets

At this stage, variability expressed in the feature model of Fig. 7.2 has been captured

by tuples of X-MAN sets. It remains to compose them in order to model the ECL

product family. The choice of family connectors to adopt is a design decision guided

by requirements. However, it will not affect the total number of products in the family

as family-connectors always ensure that all combinations of X-MAN architectures are

kept (see section 5.4). We choose to compose the tuples F0, F1, F8 and F10 resulting

from the previous step, by means of a family sequencer F-SEQ, as we want to allow the

driver to choose any subset of the services provided by the ECL family components.

The resulting tuple F11 is further adapted by a family loop F-LOOP to ensure that

products will loop until the value of the parameter ign is evaluated true (i.e. ignition

126 CHAPTER 7. USE CASE: EXTERNAL FRONT CAR LIGHT FAMILY

Figure 7.8: Family-filter dialogue.

is on).

The resulting ECL PFA depicted in Fig. 7.7 models 28688 products, reduced to 386

by filtering out (during composition) products that contain StaticCornerLights but

not FogLights components. Fig. 7.8 shows the dialogue in which the aforementioned

constraint has been created in the tool.

It is important to highlight the fact that as for X-MAN architectures, an FX-MAN

one may contain exposed services and data-channels (for the sake of clarity they are

not shown in Fig. 7.7). During product extraction, they become part of the variant

architecture only if the following conditions are satisfied:

• all the services referenced by an exposed service are present;

• source and target parameters of a data-channel are present.

In case such conditions are not met, the extracted product needs to be manually

customised before its functional model and code can be automatically generated.

7.3.4 Step 4 - Extract variants

Finally, the complete product family, or a single variant can be extracted. In order

to decide which family member needs to be obtained, a feature configuration that

7.3. BUILDING THE ECL PRODUCT FAMILY 127

Figure 7.9: Configuration of a basic ECL in pure::variants VDM and the resulted
product.

fulfils the stakeholder’s needs has to be carried out. To do so, a pure::variants’ variant

description model (VDM) is created and the desired features are selected. Using this

VDM and our pure::variants plug-in (presented in section 6.6.1), a family filter is

generated allowing the extraction of the demanded product.

Fig. 7.9 shows VDM and architecture of one of the extracted products. It is a

basic ECL (BasicECL), which supports Halogen low beams, Xenon high beams and

Fog Lights. The X-MAN architecture on the right contains the components matching

the selected features. They are LowBeamHalogen, HighBeamXenon and FogLights,

coordinated by a sequencer SEQ, and adapted by a loop LOOP. Fig. 7.10 depicts a detail

of the code automatically generated for the derived product, in which components and

data channels are initialised.

Additionally, for each service the product variant exposes (i.e. CntLowBeam, CntHigh-

Beam and CntFogLights) the tool automatically generates its activity chart (Fig. 7.11)

and its relative state chart (Fig. 7.12).

CntLowBeam (top, Fig. 7.11) contains a sub-activity toogleLight (described by

the LowBeamHalogen’ activity chart). It receives two inbound data flows (currStatus

and reqPower) and provides a status data flow as output.

128 CHAPTER 7. USE CASE: EXTERNAL FRONT CAR LIGHT FAMILY

Figure 7.10: Details of the basic ECL generated code.

CntFogLight (middle, Fig. 7.11) contains the sub-activity toggleLights (described

by the FogLights’ activity chart), which computed data (status) is provided as output

parameter.

CntHighBeam (bottom, Fig. 7.11) contains the sub-activity toogleHighBeam (de-

scribed in Step 1 of this section), which receives the beam current status (currStatus)

as inbound data and returns the computed status as output parameter.

In all the three activity charts, the data store ingInit provides control flow to the

control activity BasicECL, whose behaviour is described by the generated state-chart in

Fig. 7.12. If the value of the provided is false [ign == false] the machine goes directly

to the end state. On the contrary, the machine transits to the states LowBeamHalogen,

HighBeamXenon and FogLights (all specified by the compound state-charts as in the

Figure) to return to the Xor connector.

7.4. SUMMARY 129

7.4 Summary

In this chapter we have detailed the modelling of a family of 28688 external car light

(ECL) systems. This industrial use case provided by pure::systems GmbH has demon-

strated the key features of FX-MAN described in chapter 4: (i) algebraical modelling;

(ii) design time evaluation; (iii) automatic functional model translation; (iv) complete

family extraction without configuration.

As illustrated by the comparison framework presented in chapter 3, current SPLE

modelling approaches construct a template that needs to be configured one at the

time according to the specific family member one wants to build. For instance in

annotation-based SPLE approaches such as pure::variants, family members are ob-

tained by removing parts of the ECL code base, whereas in weaving-based SPLE

approaches variants are derived by adding parts to a base-model. This implies that

evaluating the ECL family amounts to the configuration of all its members. This is

particularly true in absence of a functional model.

Moreover, the lack of algebraical composition operators does not allow current

SPLE modelling approaches to construct systems of systems in a systematic way.

This implies that constructing the ECL family using an ADL-based SPLE modelling

approach, would have scattered the instantiation of the same components in several

composite-components, with evident problems for features localisation and family evo-

lution.

As demonstrated in this use case, the nature of the FX-MAN building blocks lends

itself to the construction of product family architectures structurally isomorphic to

a given feature diagram. Indeed, in FX-MAN, composition of the building blocks

is strictly hierarchical, hence the architecture of any product family is a tree. This

means that a variant is a hierarchical composition of components. Therefore, we

use components to implement features in a feature model and construct a PFA from

these components. The result will be an architecture that naturally maps to a feature

diagram as there is no variability mismatch.

130 CHAPTER 7. USE CASE: EXTERNAL FRONT CAR LIGHT FAMILY

Figure 7.11: Generated activity-charts for the BasicECL product.

7.4. SUMMARY 131

Figure 7.12: Generated state-charts for the BasicECL product.

Chapter 8

Evaluation

“In chess, knowledge is a very transient thing.

It changes so fast that even a single mouse-slip

sometimes changes the evaluation.”
— Viswanathan Anand

8.1 Introduction

In order to gauge the potential of FX-MAN in enabling organisations to achieve the

execution of both domain and application engineering together with a comprehen-

sive variability’s management, we use the Family Evaluation Framework (FEF)[28] as

benchmark tool.

Section 8.2 introduces the evaluation framework, details its relevant part and jus-

tifies its relevance to the prosed modelling approach.

Section 8.3 applies the framework to the evaluate the maturity level of FX-MAN

against the product family modelling approaches analysed in chapter 3.

Finally, section 8.4 analyses the result of the evaluation from two aspects: (i)

execution of domain and application engineering; (ii) variability management.

8.2 Evaluation Framework

FEF is a consolidated result of three European co-operation projects (ESAPS [245,

246], CAFÉ [247] and FAMILIES [4]) with industry and academia, successfully applied

in many case studies [34, 248–250]. It is based on the best industrial practises [28]

132

8.2. EVALUATION FRAMEWORK 133

and well established capability models as the Capability Maturity Model Integration

(CMMI) [251], SEI Product Line Technical Probe (PLTP) [252] and BAPO [253].

Specifically, CMMI is used as basis for the process dimension within FEF; PLTP,

which is based on the SEI’s Framework for Software for Product Line Practice [254],

is used to examine an organisation’s compliance to adopt a software product family

approach; BAPO provides the four dimensions used by the FEF, or rather Business,

Architecture, Process and Organisation.

As depicted in Fig. 8.1, FEF evaluates each of the BAPO concerns independently,

each of which leads to its own evaluation value. Each dimension of the framework has

a collection of aspects that are to be considered in the evaluation. Dependent on the

evaluation of these aspects, a maturity level raging from 1 to 5 can be obtained. Busi-

ness, process and organisation dimensions consider the non-technical aspects related

to a product family such as the ability of an organisation to manage, predict and steer

its development costs and profitability.

Business

Project based

Aware

Managed

Measured

Optmising

C
om

m
er

ci
al

Fi
na

nc
ia

l
Vi

si
on

St
at

eg
ic

Architecture

 Indipendent
development

Standardised
infrastructure

Software
platform

Product
 Family

Automated
 prod. deriv.

R
eu

se

PF
A

Va
ria

bi
lit

y

Process

Initial

Managed

Defined

Quantitatively
 managed

Optimising

D
om

ai
n

Ap
pl

ic
at

io
n

C
ol

la
bo

ra
tio

n

Organisation

Project

Reuse

 Weakly
connected

Synchronised

Domain
oriented

Dimension

Aspects Ro
le

s
&

re
sp

on
sa

bi
lit

ie
s

St
ru

ct
ur

e

C
ol

la
bo

ra
tio

n

Maturity
 Level 1

Maturity
 Level 2

Maturity
 Level 3

Maturity
 Level 4

Maturity
 Level 5

Figure 8.1: The Family Evaluation Framework (based on [253])

Since FX-MAN leaves out these concerns while focusing on the technical aspects of

modelling a product family, we assess the potential of our approach using according

to the FEF architecture dimension (FEF-A).

Highlighted in Fig. 8.1, the architecture dimension relates to the technical reali-

sation of products in a scoped product family, with a focus on PFA. This dimension

134 CHAPTER 8. EVALUATION

mainly focuses on the relationships between PFA and variants architectures, taking

into account how variability is modelled in a PFA. The evaluation for this dimension

is categorised by five maturity levels across three aspects:

• PFA: the extent to which the product family architecture (in domain engineering)

determines variants architectures (in application engineering).

• Asset reuse level: the extent of the reuse of domain assets in application engi-

neering.

• Variability management: the explicit use of variation points and supporting

variability mechanisms.

In the following sections, each FEF-A maturity levels is discussed in detail.

8.2.1 Maturity Level 1: Independent Development

At this level, each product gets its own architecture as reuse is not visible at architec-

tural level, and variability is not managed. In terms of the FEF-A aspects, we have

the following situation:

• PFA: there is no available PFA.

• Asset reuse level: reuse is either not present or it is ad-hoc.

• Variability management: variability is unmanaged.

8.2.2 Maturity Level 2: Standardises Infrastructure

At this level, a common third-party software infrastructure is defined. There is no

formal reuse of domain-specific assets, and variability is determined by the third-party

infrastructure. Related to the FEF-A aspects, we have the following situation:

• PFA: there is a common third-party infrastructure (e.g. middleware) defined

and in use.

• Asset reuse level: reuse is ad-hoc, mainly based on the repository of the third-

party artefacts.

8.2. EVALUATION FRAMEWORK 135

• Variability management: variability is limited to the one offered by the stan-

dardised infrastructure and it is open to be determined by the application archi-

tecture.

8.2.3 Maturity Level 3: Software Platform

At this level, a configurable software platform, built as a collection of common assets

in a domain repository, captures domain commonalities. Reuse is determined by the

platform and there is no support for its configuration. In terms of FEF-A aspects, we

have the following situation:

• PFA: domain commonality is captured and implemented in a software platform

using proprietary components. It contains rules that determine its use in order

to evaluate the validity of a configuration.

• Asset reuse level: reuse is confined to the software platform and restricted by

architectural constraints.

• Variability management: explicit variation points determine where application-

specific variants may be bound. However, there is no variability support for

product derivation.

8.2.4 Maturity Level 4: Product Family

At this level, a PFA specifies the complete software product line. Variability is ex-

plicitly defined and managed by the PFA, and it also include support for variants

derivation.

• PFA: there is a family architecture that explicitly specifies domain commonality

and variability.

• Asset reuse level: reuse is systematic and based on an asset repository. Variabil-

ity is explicitly defined within the assets.

• Variability management: it is explicitly addressed in the PFA, which determines

rules that application-specific variants have to obey.

136 CHAPTER 8. EVALUATION

8.2.5 Maturity Level 5: Automated Product Derivation

At this level, the PFA is enforced and determines the application architectures com-

pletely, with automated configuration support to derive specific applications. This

implies that application engineering plays a marginal role.

• PFA: it is dominant and variants’ architecture divert only marginally from it.

• Asset reuse level: reuse is systematic and based on a shared repository.

• Variability management: variability is fully integrated into the architecture.

Variants are automatically derived.

8.3 Applying FEF-A to SPLE modelling approaches

To summarise the FEF architecture dimension, Table 8.1 illustrates that: (i) from an

initial level in which no PFA is established, this aspect grows to a PFA that governs the

whole product family; (ii) from an initial level of unsystematic or no reuse, this aspect

grows to a level in which reuse is systematically managed through explicit variation

points; (iii) from an initial level in which variability management is absent, this aspect

grows to a level where variability is fully-integrated in a PFA and product variants are

automatically derived.

Lv PFA Asset reuse level Variability management

1 not established no reuse / ad-hoc absent

2 third-party components ad-hoc limited

3 common platform limited to platform determined by platform

4 fully specified systematic determined by PFA

5 enforced systematic, self-configurable fully-integrated in PFA

Table 8.1: FEF architecture dimension maturity levels.

By assigning a level for each aspect in this dimension we evaluate our SPLE mod-

elling approach against the ones presented in chapter 3.

8.3. APPLYING FEF-A TO SPLE MODELLING APPROACHES 137

Annotation-based approach

• PFA: not established (maturity level 1).

• Asset reuse level: assets are systematically reused by removing unselected parts

from the domain artefacts (i.e. 150% models) (maturity level 4).

• Variability management: variability is expressed within domain artefacts by ex-

plicit variation points defined by naming the features under which each configu-

ration applies (maturity level 3).

Overall: maturity level 3.

Weaving-based approach

• PFA: not established (maturity level 1).

• Asset reuse level: as aspects apply advice at specific pointcuts, their reuse is

restricted to the target base model (maturity level 3).

• Variability management: pointcuts in the base model determines where variant-

specific aspects may be bound (maturity level 3).

Overall: level 2.

Superimposition-based approach

• PFA: not established (maturity level 1).

• Asset reuse level: reuse is limited by structural and nominal similarities between

artefact fragments (maturity level 3).

• Variability management: domain artefact fragments are composed by merging

their sub-structures on demand according to the provided feature configuration

(maturity level 3).

Overall: maturity level 2.

138 CHAPTER 8. EVALUATION

∆-based approach

• PFA: not established (maturity level 1).

• Asset reuse level: as for aspects, reuse of deltas is restricted by the target based

model (maturity level 3).

• Variability management: pointcuts in the base model determines where variant-

specific delta may be bound (maturity level 3).

Overall: maturity level 2.

ADL-based approach

• PFA: fully specified, but with limited explicit variability (maturity level 4).

• Asset reuse level: the composition mechanisms (i.e. port connection) allows a

systematic reuse of components within the PFA (maturity level 4).

• Variability management: the PFA determines the variation points as well as

their usage constraints (maturity level 4).

Overall: level 4.

Our approach

• PFA: fully specified, with automated configuration support to derive product

variants (maturity level 5).

• Asset reuse level: the exogenous composition mechanisms and the explicit vari-

ation points allow a systematic reuse of components within the PFA (maturity

level 4).

• Variability management: variability is fully integrated in the PFA by explicit

variation operators with fixed semantic. Variants are derived automatically

(maturity level 5).

Overall maturity level 5.

8.4. ANALYSIS OF RESULTS 139

Figure 8.2: SPLE modelling approaches evaluation (based on FEF-A metrics).

8.4 Analysis of Results

Fig. 8.2 depicts for each SPL modelling approach (described in chapter 3) the maturity

level reached in each FEF-A aspect along with their overall score (red dot). As the

Figure shows, ours is the only modelling approach that reaches an overall 5 maturity

level. This implies that FX-MAN enables automated product derivation by means of

a PFA with explicit variation points that determines the application architectures

completely, thus minimising the role played by the application engineering phase.

In general, the level of automation realised by SPLE modelling approaches with an

overall FEF-A maturity level of at least 4 characterises what is defined by Krueger et

al. [255, 256] as Second Generation Product Line Engineering (2GPLE) approaches.

1GPLE approaches, or rather SPLE modelling approaches with an overall FEF-A

maturity level 2 and 3, have never enforced the concept of automation. However, large-

scale software product lines are so complex that demand it. To give a yardstick, the

feature space of the industrial case presented by Flores et al. in [255] is so complex that

the number of possible variants exceeds the number of atoms in the visible universe.

1GPLE (depicted in Fig. 2.1) emphasise on a clear separation of the activities car-

ried out by the domain and application engineering phases: core assets developed dur-

ing the domain engineering phase are used in the application engineering one to create

products “with reuse”. Undeniably, this is the natural evolution from component-based

software reuse. For instance, in weaving-based SPLE modelling approaches, base and

aspect models constitute the core assets reused to derive product variants. At first

140 CHAPTER 8. EVALUATION

glance, everything seems to go smoothly. However, three problems arise once the SPL

is evolved and maintained over the time.

Firstly, during the application engineering phase, developers are focused on creating

product-specific configurations and “ variability” in each product. This results in

unique systems, that often require a dedicated team of engineers to produce them. By

increasing the number of products, the number of required engineers increases as a

consequence.

Secondly, each product has its own context in which core assets are reused. This

makes it difficult to enhance the core assets in a non-trivial way; changes that have

occurred in an SPL asset need to be merged into the specific product.

Thirdly, there could be conflicts between teams working in domain engineering

phase and application engineering one, leading to a culture of “us-against-them”.

As a result, 1GPLE approaches questioned about the right balance of effort that

should have been spent in domain and application engineering. Fig. 8.3 shows the

impact of these phases on a SPL costs. The Y-axis represents the accumulated overall

cost for developing six products, while the bar on the X-axis shows the Y-cost for any

given ratio of domain engineering and application engineering. It is possible to observe

that a pure domain engineering approach is far more advantageous.

Figure 8.3: Impact of domain and application engineering in SPL costs [257].

It follows that 2GPLE paradigms consider the application engineering phase as

harmful, therefore it shrinks to almost nothing [5]. Products are built via a product

configurator, which automatically composes core-assets accordingly to the required

8.4. ANALYSIS OF RESULTS 141

features (Fig. 8.4). As explained in chapter 3, this approach is widely used in industry

as supported by the market leader tools pure::variants and Gears. Due to the absence

of the application engineering phase, all developers and engineers are focused on de-

veloping core assets. This implies that personnel can be organised around core assets,

eliminating the need to add a development team each time a product is added. There-

fore, core assets and product variants evolution coincide: any change in an asset can

be followed by automated products re-instantiation without manual merging. Hence,

2GPLE approaches only manage core-asset versions.

Figure 8.4: Software product line configurator [257].

2GPLE approaches aim to deliver an essential mean for large-scale product lines

that was stated, but never achieved, by 1GPLE ones [5]. However, annotation-based

and ADL-based SPLE modelling approaches lack of compositional semantics. As a

consequence, they largely fail to manage both scalability and complexity even for

normal size SPLs [152]. On the contrary, our approach described in chapter 5 and

demonstrated in the industrial use case of chapter 7, delivers a systematic and strictly

hierarchical compositional approach that scales from systems-of-systems to families-

of-families. This has several advantages. The composition hierarchy is really a nested

product line hierarchy; each nested product line can be reused in different product

lines. Furthermore, decomposing a large product line into smaller product lines allows

allocating smaller development teams to each of them.

From the point of view of the variability management aspect, Table 8.2(a) shows

a comparison between FX-MAN and the component models presented in section 3.7.

Some of these models do not define variation points explicitly and express variability by

other means. For example, MontiArchHV uses presence conditions, ∆-MontiArc[142]

uses architectural deltas, while xADL2 [258] defines conditions in XML schemas. Other

component models do define some variation points explicitly. For example, Koala

142 CHAPTER 8. EVALUATION

defines the Alt variation point explicitly (as a switch between components), but not

Opt and Or (these can be simulated by parameters in the diversity interface of a

component to change its internal structure). By contrast, FX-MAN explicitly defines

the full standard set of variation points that appears in feature models: Opt, Alt and

Or. However, as previously mentioned, the key difference between FX-MAN and the

other component models in Table 8.2(a) is that in FX-MAN an architecture is defined

for a product family containing all the products, whereas in the other models individual

products have to be derived one at a time as instances of the templates. For example, in

Koala a parametrised architectural template includes a configurator (module), switch

connectors and diversity interfaces. For each setting of the configurator, the Koala

complier removes from the architectural template the undesired components, as well

as the unreachable code.

(a) Component models. (b) Variability handling approaches.

Table 8.2: Variability representation in current SPLE modelling approaches.

In a wider context, SPLE methods and tools that do not construct architectures (or

use a component model), rely on variability handling mechanisms. Table 8.2(b) shows

a comparison between FX-MAN and existing approaches to handle variability. There

are four main categories of such approaches: (i) annotation-based (section 3.3) (ii)

weaving-based (section 3.4) (iii) superimposition-based (section 3.5) (vi) delta-based

(section 3.6).

Annotation-based approaches are widely used in industry [13] as they are very

well supported through the commercial tools Gears [5] and pure::variants [71]. On

the low level side the c-preprocessor (cpp), or FArM [259] are examples of such ap-

proaches. Here, artefacts as fragments of a code-base are annotated with statements

like #ifdef. Product derivation is achieved by removing fragments that do not reflect

feature selection.

8.5. SUMMARY 143

Weaving-based approaches (e.g. XWeave [98] and AFM [113]) manage variability

by applying the principles of aspect-oriented programming [89] at the meta-level. Base

models are varied by pointcuts and advices: the former define where to affect the base

model, while the latter specify how to modify it. Product derivation is achieved by

weaving the set of aspect models corresponding to a particular feature configuration.

Superimposition is the process of composing fragments of software artefacts (e.g.

code, UML diagrams) by merging their corresponding substructures on the basis of

nominal and structural similarity. In approaches based on this technique (e.g Czar-

necki [109] and Apel [107]) products are derived by merging only the fragments that

satisfy their presence condition.

Delta-based approaches (e.g. Haber [260] and Behringer [261]) relies on the notion

of program deltas (introduced in [262]) to model variability. Delta modules specify

where to modify the core module (by adding, removing or modifying its parts) to

implement products.

Like the component models in Table 8.2(a), the key difference between all these

variability handling approaches and FX-MAN is that they define a template for a

product family, and not an architecture for a product family as in FX-MAN. Individual

products have to be configured one at a time using the template.

8.5 Summary

In order to evaluate the potential of our approach we have used the family evaluation

framework (FEF) as benchmark tool. Based on the best industrial practices and well

established capability models, FEF focuses on the two main aspects of modelling a

product family: (i) the execution of both domain and application engineering; (ii) the

comprehensive management of variability.

Compared to existing SPLE modelling approaches, ours is the only one that reaches

the maximum overall maturity level (automated product derivation). This implies that

the PFA is enforced and determines the application architectures completely, with

automated configuration support to derive specific family members. Consequently,

the application engineering phase plays a marginal role.

Moreover, reuse is systematic and based on a shared repository, with variability

144 CHAPTER 8. EVALUATION

management fully integrated in the architecture via explicit variation points with fixed

semantics. As a result, FX-MAN is the only modelling approach that instead of realising

a template (architecture with place-holders) models the complete family.

Chapter 9

Conclusions and Future Work

“The thing is, it’s very dangerous to have a

fixed idea. A person with a fixed idea will

always find some way of convincing himself in

the end that he is right.”
— Atle Selberg

The distinguishing characteristic of FX-MAN is its applicability to the construction

of the architecture of a complete family of executable software products, together with

the key advantage that variants can be analysed at design time without the need to

be extracted.

Indeed, where FX-MAN constructs a PFA, other approaches construct templates

of families, which have to be configured into products one at a time (table 8.2).

For instance, modelling the same ECL family in Koala would require constructing

a Koala architecture first, and then compiling it once for each family member. As

far as we know, variation operators and family connectors for sets of architectures do

not exist in other ADL. Annotation-based approaches use 150% models as templates,

where products are configured by removing fragments that do not reflect feature se-

lections. Feature-oriented modelling approaches gradually refine a base model with

aspects (as for weaving-based approaches) or similar (sub)structures of artefacts (as

for superimposition-based approaches) corresponding to a particular features selection.

Similarly, ∆-based SPLE modelling approaches refine a base model by means of delta

models according to the selected features.

145

146 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

However, enumerating a complete product family is an NP-hard problem: for large-

scale families with a high degree of variability, enumeration and extraction of a com-

plete family is costly both in terms of computation time and memory. As an example,

in a product line with 216 simple boolean features, the number of possible products is

comparable to the estimated 1065 numbers of atom in the entire visible universe. With

only 33 boolean features, the combinatorics is comparable to the human population

of our planet.

In order to limit the feature space and ensure efficiency of the modelling process,

a divide-and-conquer strategy might be necessary to handle a large product family

by decomposing it into sub-families. Happily, this is possible in FX-MAN thanks

to its compositional nature, and its associated algebraical type system. The latter

allows the modelling process to flow both vertically (from X-MAN component model to

family composition) and horizontally (at each level of Fig. 5.1). Algebraic composition

mechanisms are fundamental for systematic construction, since each composition is

carried out in the same manner regardless of the level of the construction hierarchy.

We have demonstrated this in the industrial use case presented in chapter 7, where

we have modelled a family of 28688 external car light systems by composing the two

sub-families AutomaticLight and for HighLowBeamDetection (Fig. 7.6) into a bigger

one.

Having the full set of variation points explicitly enables FX-MAN to be used to

define architectures structurally isomorphic to the feature model in all cases. As a

consequence, the mapping between artefacts in problem and solution space is facili-

tated: in our approach, one feature is instantiated by only one component (exposing

the service defined by the feature) without any interaction. In case of cross-cutting

features, they are encapsulated into shared resources invoked by the computation unit

of each component (section 5.5).

The challenge of mapping features to components is well known in the literature

[263]. It can be of two types: 1-to-1 and n-to-m.

Precondition of a 1-to-1 mapping is the presence of a feature model built in terms

of components, achievable either by design, or through iterative refinements. FArM

[259] and [264] are two methodologies, evaluated against real industrial case studies,

that realise such a mapping.

9.1. ACHIEVEMENTS 147

In FArM, a feature model is iteratively refined until it exclusively contains func-

tional features. Business logic of each feature is implemented by an architectural

component, whose interface reflects the feature relationships.

In [264], starting from the leafs of a feature model, core components are mapped

to mandatory features. Non-mandatory features are also implemented by single com-

ponents. The latter are composed in a derived product via interfaces required by

relationship components, also part of the core architecture.

While both approaches construct a product line architecture following the structure

of a feature model, they lack a strict hierarchical and compositional construction.

An n-to-m mapping makes no assumption on feature models. However, relation-

ships between features and artefacts have to be traced. In [265] the authors propose

an approach to map features to UML fragments. Each fragment is composed by parts,

and each part defines the precondition (i.e. the specification) a component must com-

ply in order to be in that part. A feature can then be linked to n fragments and m

fragments can be linked to a feature. In addition a feature can be directly linked to n

components, which in turn may be linked to a part (as long it is compliant with it).

Approaches based on n-to-m mapping do not scale as a large number of features and

components lead to an explosion on the number of traces.

Therefore, a strong link with features combined with an algebraical composition

mechanisms, allows FX-MAN to be an effective way to model product families; whereas,

its capability of saving on resources utilisation by reusing components as well as entire

families enables efficiency.

9.1 Achievements

This work has defined a new component-model called FX-MAN (chapter 5) that enables

the systematic modelling of product families as architectures with explicit variation

points.

We have developed a tool-set (chapter 6), and empirically evaluated our component-

model on an industrial use case (chapter 7).

Our work represents an initial attempt at providing a methodology and tool support

for product line engineering. In this regard, FX-MAN provides a good starting point,

148 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

since we have evidence that X-MAN can be used to define and construct functional

models (section 5.2), while FX-MAN can be used to construct and implement product

family architectures.

9.2 Future Work

At this stage, FX-MAN provides an efficient and effective component-model to mod-

elling product families. Moreover, it can provides the cornerstone for further work

that can expand its scope of application, thus overcome its limitations. In the fol-

lowing sections we describes such applications, detailing at which level the current

implementation of FX-MAN supports them.

9.2.1 Support for extractive SPLE

According to Krueger et al. [266], a company that wants to adopt a product line

approach can follow three possible techniques: proactive, reactive and extractive. A

proactive, or revolutionary, approach implies that a product line is modelled from

scratch by carefully applying analysis and design methods. On the contrary, a reactive

approach begins with a small, easy to handle product line, which is incrementally ex-

tended with new features and artefacts so as to expand its scope. Finally, an extractive

approach starts with a portfolio of existing products and gradually refractor them to

form a product line. At present, FX-MAN supports a proactive and (partially) a reac-

tive approach, but has no support for an extractive one. Reactive approach is partially

supported as the initial product either is constructed as an X-MAN architecture, or

it can be transformed into its X-MAN equivalent. In order to support an extractive

approach, we are currently working on a systematic way to model a family in FX-MAN

by mining components and their variability from a portfolio of related products.

9.2.2 Support for load-time variability

Variability offers choices. Indeed, in deriving a product a client decides which features

are included and which are not. It can be also said that a client binds a decision.

Binding can happen at different stages; in particular in our discussion we differen-

tiate between compile-time, and load-time variability. The former is resolved before

9.2. FUTURE WORK 149

a program starts (i.e. at compile-time), the latter while it is running (i.e. at load-

time). As usual, each binding time has its own pros and cons. Since variability is

resolved before a program starts, compile-time variability allows more room for op-

timization. That is, unused code can be removed from the final binaries, reducing

in this way the run-time overhead in terms of memory consumption and execution

time. As a consequence, once the program is generated and deployed is impossible

to change. Load-time variability fills this gap, but at the price of memory and per-

formance overhead, as all binaries are compiled and variability must be resolved and

checked at run-time. At present, FX-MAN offers no support for load-time variability.

Nevertheless, the FX-MAN meta-model can be extended to support run-time binding, a

late form of load-time variability, which allows dynamic reconfiguration of components

during system execution.

9.2.3 Support for fine-grained variability

Features are seldom implemented alone. Indeed, their value arise when they collab-

orate with each other to achieve the desired behaviour. A feature introduces then

a change in behaviour, and depending on the implementation technique, this change

can take place at different levels of granularity. Level of granularity here refers to

the hierarchical structure of artefact implementation. Changes at the top of hierar-

chy are called coarse-grained, while those at the lower levels are defined fine-grained.

Annotation-based approaches support more fine-grained changes than composition-

based approaches. Undoubtedly, annotations can be applied almost everywhere across

the common code-base, while composition-approaches rely on interfaces, typically de-

fined at classes or methods level. Although FX-MAN only supports coarse-grained

variability, its integration with pure::variants may allow to exploit fine-grained vari-

ability provided by annotation.

9.2.4 Support for versioning

In software engineering it is an undeniable fact that artefacts evolve over time. For

instance, a technological evolution subsumes an evolution of many artefacts. The pres-

ence of different versions of an artefact valid at different times is denoted as variability

150 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

in time. Complementarily, the presence of different shapes of an artefact at distinct

time, with the restriction that they pertain to the same variation point, is denoted

as variability in space. The composition mechanism of FX-MAN supports variability

in space, but at the moment FX-MAN has a limited support for variability in time.

Despite the fact that our tool uses CDO as a shared repository, which offers versioning

support out of the box, our repository explorer only shows for each artefact the last

deposited version. Up to today, one has to manually do that. A new release of our

tool, which will be based on Eclipse Sirius1 rather than on Graphiti, will deal with

these technical aspects.

9.2.5 Support for non-functional features

In SPLE, a non-functional feature is a characteristic that can be used to judge the

operation of a family member, not its behaviour. Currently FX-MAN does not offer any

support to model non-functional features (e.g. reliability, performance and response

time). Since in domains as cyber-physical-systems such features are as important as

the functional ones, we are planning to investigate this aspect. Thanks to its rigorous

algebraical type system and its strictly encapsulated components, FX-MAN should

allow the integration with a methodology developed by the University of Salento [267],

for managing Service Level Agreement (SLA) information hierarchically in service-

based environments.

9.2.6 Support for non functional artefacts

Although a PFA and its constituent components (along with their implementation and

functional specification) are the key artefact of a SPL, they are not the only ones. For

instance, tests and documentation are two important artefacts that we do not model in

our approach. However, being part of the pure::variants ecosystem allows FX-MAN to

leverage its interoperability with other tools (e.g. IBM Rational DOORS and Microsoft

Office). Indeed, pure::variants uses the variability mechanisms existing for the artefact

type/tool and controls the derivation process (transformation) of variants. That is,

pure::variants is a variability management tool that focuses on variability only, hence
1Unlike Graphiti which is still in incubation phase, Sirius in the last year has become more and

more mature as it is supported by Thales and Obeo.

9.2. FUTURE WORK 151

it is agnostic to the actual implementation of product families.

Bibliography

[1] H. Ford and S. Crowther. My life and work. Cosimo, Inc., 2005.

[2] M. Addis and M. B. Holbrook. “On the conceptual link between mass customisa-

tion and experiential consumption: an explosion of subjectivity”. Wiley Journal of

consumer behaviour 1.1 (2001).

[3] F. S. Fogliatto, G. J. da Silveira, and D. Borenstein. “The mass customization decade:

An updated review of the literature”. Elsevier International Journal of Production

Economics 138.1 (2012).

[4] K. Pohl, G. Böckle, and F. van Der Linden. Software product line engineering: foun-

dations, principles, and techniques. Springer, 2005.

[5] C. Krueger and P. Clements. “Systems and software product line engineering with

BigLever software Gears”. In: Proceedings of the 17th International Software Product

Line Conference co-located workshops. ACM. 2013.

[6] F. van der Linden, K. Schmid, and E. Rommes. “The product line engineering ap-

proach”. In: Software Product Lines in Action. Springer, 2007.

[7] J. Bosch. “From software product lines to software ecosystems”. In: Proceedings of

the 13th International Software Product Line Conference. ACM. 2009.

[8] S. Apel et al. Feature-oriented software product lines. Springer, 2013.

[9] R. Love. Linux Kernel Development. Novell Press, 2005.

[10] R. Tartler et al. “Feature consistency in compile-time-configurable system software:

facing the linux 10,000 feature problem”. In: Proceedings of the 6th Conference on

Computer Systems. ACM. 2011.

[11] L. Bass, P. Clements, and R. Kazman. Software architecture in practice. SEI Series

in Software Engineering. Addison-Wesley, 2012.

152

BIBLIOGRAPHY 153

[12] J. Bosch et al. “Variability issues in software product lines”. In: Proceedings of the

4th International Workshop on Software Product-Family Engineering. Springer. 2002.

[13] T. Berger et al. “A survey of variability modeling in industrial practice”. In: Proceed-

ings of the 7th International Workshop on Variability Modelling of Software-intensive

Systems. ACM. 2013.

[14] E. Alaña and A. Rodriguez. “Domain engineering methodologies survey”. GMV In-

ovvating Solutions (2007).

[15] L. Chen, M. Ali Babar, and N. Ali. “Variability management in software product lines:

a systematic review”. In: Proceedings of the 13th International Software Product Line

Conference. ACM. 2009.

[16] K. Kang et al. Feature-oriented domain analysis (FODA) feasibility study. Tech. rep.

CMU/SEI-90-TR-021. Software Engineering Institute, Carnegie-Mellon University,

1990.

[17] K. C. Kang, J. Lee, and P. Donohoe. “Feature-oriented product line engineering”.

IEEE Software 19.4 (2002).

[18] M. Svahnberg and J. Bosch. “Issues concerning variability in software product lines”.

In: Proceedings of the International Workshop on Software Architectures for Product

Families. Springer. 2000.

[19] A. Alayed et al. “Towards component-based domain engineering”. In: Proceedings of

the 39th Euromicro Conference on Software Engineering and Advanced Applications.

IEEE, 2013.

[20] I. Groher and R. Weinreich. “Integrating variability management and software archi-

tecture”. In: Proceedings of the 10th European Joint Working IEEE/IFIP Conference

on Software Architecture. IEEE. 2012.

[21] G. Heineman and W. T. Councill. Component-based software engineering: putting the

pieces together. Addison Wesley, 2001.

[22] T. Vale et al. “Twenty-eight years of component-based Software Engineering”. Elsevier

Journal of Systems and Software 111 (2016).

[23] K.-K. Lau and Z. Wang. “Software Component Models”. IEEE Transactions on Soft-

ware Engineering 33.10 (2007).

154 BIBLIOGRAPHY

[24] K.-K. Lau et al. “Incremental Construction of Component-based Systems”. In: Pro-

ceedings of the 15th International Symposium on Component-based Software Engi-

neering. ACM, 2012.

[25] S. Kumar and P. Phrommathed. Research methodology. Springer, 2005.

[26] M. D. McIlroy et al. “Mass-produced software components”. In: Proceedings of the

1st International Conference on Software Engineering. Springer-Verlag, 1968.

[27] P. Clements and L. Northrop. Software product lines: practices and patterns. Addison-

Wesley Reading, 2002.

[28] F. J. van der Linden, K. Schmid, and E. Rommes. Software product lines in action:

the best industrial practice in product line engineering. Springer Science & Business

Media, 2007.

[29] P. Donohoe. Software product lines: experience and research directions. Springer Sci-

ence & Business Media, 2012.

[30] L. M. Northrop. “SEI’s software product line tenets.” IEEE Software 19.4 (2002).

[31] A. Metzger and K. Pohl. “Software product line engineering and variability manage-

ment: achievements and challenges”. In: Proceedings of the Symposium on Future of

Software Engineering. ACM. 2014.

[32] P. Toft, D. Coleman, and J. Ohta. “A cooperative model for cross-divisional product

development for a software product line”. In: Software Product Lines. Springer, 2000.

[33] M. Coriat, J. Jourdan, and F. Boisbourdin. “The SPLIT method”. In: Software Prod-

uct Lines. Springer, 2000.

[34] P. America et al. “COPAM: a component-oriented platform architecting method fam-

ily for product family engineering”. In: Software Product Lines. Springer, 2000.

[35] D. C. Sharp. “Component based product line development of avionics software.”

Microprocessors and Microsystems - Embedded Hardware Design 23.7 (1999).

[36] S. Thiel and F. Peruzzi. “Starting a product line approach for an envisioned market”.

In: Software Product Lines. Springer, 2000.

[37] J. Bayer, D. Muthig, and B. Göpfert. “The library system product line - a Kobra

case study”. Fraunhofer Institute for Experimental Software Engineering, Tech. Rep.

IESE-Report No 24 (2001).

BIBLIOGRAPHY 155

[38] K. Schmid, R. Rabiser, and P. Grünbacher. “A comparison of decision modeling

approaches in product lines”. In: Proceedings of the 5th Workshop on Variability

Modeling of Software-Intensive Systems. ACM. 2011.

[39] Ø. Haugen. “CVL: common variability language or chaos, vanity and limitations?” In:

Proceedings of the 7th International Workshop on Variability Modelling of Software-

intensive Systems. ACM. 2013.

[40] K. Czarnecki et al. “Cool features and tough decisions: a comparison of variability

modeling approaches”. In: Proceedings of the 6th International workshop on variability

modeling of software-intensive systems. ACM. 2012.

[41] T. Berger et al. “What is a feature?: a qualitative study of features in industrial soft-

ware product lines”. In: Proceedings of the 19th International Conference on Software

Product Line. ACM. 2015.

[42] L. Geyer and M. Becker. “On the influence of variabilities on the application-engineering

process of a product family”. In: Software Product Lines. Springer, 2002.

[43] K. Czarnecki and A. Wasowski. “Feature diagrams and logics: there and back again”.

In: Proceedings of the 11th International Software Product Line Conference. IEEE.

2007.

[44] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. “Feature diagrams: a survey and a

formal semantics”. In: Proceedings of the 14th International Requirements Engineering

Conference. IEEE. 2006.

[45] E. Y. Nakagawa, P. O. Antonino, and M. Becker. “Reference architecture and product

line architecture: a subtle but critical difference”. In: Proceedings of the 9th European

Conference on Software Architecture. 2011.

[46] S. Angelov, P. Grefen, and D. Greefhorst. “A classification of software reference ar-

chitectures: analyzing their success and effectiveness”. In: Proceedings of the 3rd Eu-

ropean Joint Working IEEE/IFIP Conference on Software Architecture. IEEE. 2009.

[47] M. Galster. “Software reference architectures: related architectural concepts and chal-

lenges”. In: Proceedings of the 1st International Workshop on Exploring Component-

based Techniques for Constructing Reference Architectures. ACM. 2015.

[48] H. Gomaa. Designing software product lines with UML. IEEE, 2005.

[49] P. A. da Mota Silveira Neto et al. “Testing software product lines”. IEEE Transactions

on Software Engineering 28.5 (2011).

156 BIBLIOGRAPHY

[50] E. Engström and P. Runeson. “Software product line testing – a systematic mapping

study”. Information and Software Technology 53.1 (2011).

[51] K. Pohl and A. Metzger. “Software product line testing”. Communications of the

ACM 49.12 (2006).

[52] J. Bosch. Design and use of software architectures: adopting and evolving a product-

line approach. Pearson Education, 2000.

[53] M. Dalgarno, D. Beuche, et al. “Variant management”. In: Proceedings of the 3rd

British Computer Society Configuration Management Specialist Group Conference.

Vol. 1. 2007.

[54] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software architecture: foundations,

theory, and practice. Wiley Publishing, 2009.

[55] K. C. Kang et al. “FORM: a feature-oriented reuse method with domain-specific

reference architectures”. Annals of Software Engineering 5.1 (1998).

[56] K. Czarnecki and U. Eisenecker. Generative programming: methods, tools, and appli-

cations. ACM Press/Addison-Wesley Publishing Co., 2000.

[57] K. Chen et al. “An approach to constructing feature models based on requirements

clustering”. In: Proceedings of the 13th IEEE International Conference on Require-

ments Engineering. IEEE. 2005.

[58] D. Batory, J. Sarvela, and A. Rauschmayer. “Scaling step-wise refinement”. IEEE

Transactions on Software Engineering 30.6 (2004).

[59] A. Classen, P. Heymans, and P.-Y. Schobbens. “What’s in a feature: a require-

ments engineering perspective”. In: Fundamental Approaches to Software Engineering.

Springer, 2008.

[60] P. Zave. “An experiment in feature engineering”. In: Programming methodology. Springer,

2003.

[61] D. Batory. Feature models, grammars, and propositional formulas. Springer, 2005.

[62] S. Apel et al. “An algebra for features and feature composition”. In: Proceedings of

the 12th International Conference on Algebraic Methodology and Software Technology.

Springer. 2008.

[63] E. Yourdon. Modern structured analysis. Prentice Hall PTR, 2000.

[64] J. E. Cooling. Software engineering for real-time systems. Pearson Education, 2003.

BIBLIOGRAPHY 157

[65] D. Hatley and I. Pirbhai. Strategies for real-time system specification. Addison-Wesley,

2013.

[66] D. Harel and M. Politi. Modeling reactive systems with statecharts: the STATEMATE

approach. McGraw-Hill, Inc., 1998.

[67] D. Harel et al. “Statemate: a working environment for the development of complex

reactive systems”. IEEE Transactions on Software Engineering 16.4 (1990).

[68] J. Rumbaugh, I. Jacobson, and G. Booch. Unified modeling language reference man-

ual. Pearson Higher Education, 2004.

[69] A. K. Tyagi. MATLAB and SIMULINK for engineers. Oxford University Press, 2012.

[70] A. Angermann et al. MATLAB-Simulink-Stateflow. 2008.

[71] D. Beuche. “Modeling and building software product lines with pure::variants”. In:

Proceedings of the 16th International Software Product Line Conference-Volume 2.

ACM. 2012.

[72] K. Czarnecki, S. Helsen, and U. Eisenecker. “Staged configuration using feature mod-

els”. In: Proceedings of the 3rd International Conference on Software Product Lines.

Springer. 2004.

[73] A. Polzer et al. “Managing complexity and variability of a model-based embedded

software product line”. Innovations in Systems and Software Engineering 8.1 (2012).

[74] H. Gronninger et al. “Modeling variants of automotive systems using views”. arXiv

(2014).

[75] J. O. Coplien. “Multiparadigm design and implementation in C++”. In: Proceedings

of the Technology of Object-Oriented Languages and Systems. IEEE. 1999.

[76] J. Liebig et al. “An analysis of the variability in forty preprocessor-based software

product lines”. In: Proceedings of the 32nd International Conference on Software

Engineering. Vol. 1. IEEE. 2010.

[77] S. Apel et al. “Classic, tool-driven variability mechanisms”. In: Feature-Oriented Soft-

ware Product Lines. Springer, 2013.

[78] D. Muthig and C. Atkinson. “Model-driven product line architectures”. In: Proceed-

ings of the 2nd International Conference on Software Product Lines. Springer-Verlag,

2002.

158 BIBLIOGRAPHY

[79] T. Ziadi, L. Hélouët, and J.-M. Jézéquel. “Towards a UML profile for software product

lines”. In: Software Product-Family Engineering. Springer, 2004.

[80] S. Salicki and N. Farcet. “Expression and usage of the variability in the software

product lines”. In: Software Product-Family Engineering. Springer, 2002.

[81] H. Spencer and G. Collyer. “# ifdef considered harmful, or portability experience

with C News”. USENIX (1992).

[82] D. Lohmann et al. “A quantitative analysis of aspects in the eCos kernel”. In: Pro-

ceedings of the 1st European Conference on Computer Systems. ACM. 2006.

[83] D. Le, E. Walkingshaw, and M. Erwig. “# ifdef confirmed harmful: promoting under-

standable software variation”. In: Proceedings of the Symposium on Visual Languages

and Human-Centric Computing. IEEE. 2011.

[84] C. Kästner and S. Apel. “Virtual separation of concerns-a second chance for prepro-

cessors”. Journal of Object Technology 8.6 (2009).

[85] C. Kastner et al. “Type checking annotation-based product lines”. ACM Transactions

on Software Engineering and Methodology 21.3 (2012).

[86] J. Meinicke et al. “FeatureIDE: taming the preprocessor wilderness”. In: Proceedings

of the 38th International Conference on Software Engineering Companion. ACM.

2016.

[87] J. Bosch, S. Deelstra, and M. Sinnema. “COVAMOF”. In: Systems and Software

Variability Management. Springer, 2013.

[88] L. Moonen. “Towards evidence-based recommendations to guide the evolution of

component-based product families”. Elsevier Science of Computer Programming 97

(2015).

[89] S. Clarke and E. Baniassad. Aspect-oriented analysis and design. Addison-Wesley

Professional, 2005.

[90] G. Kiczales et al. “Aspect-oriented programming”. In: Proceedings of the 11th Euro-

pean Conference on Object-Oriented Programming. Springer Berlin Heidelberg. 1997.

[91] M. Voelter and I. Groher. “Product line implementation using aspect-oriented and

model-driven software development”. In: Proceedings of the 11th International Soft-

ware Product Line Conference. IEEE. 2007.

BIBLIOGRAPHY 159

[92] J. Klein, L. Hélouët, and J.-M. Jézéquel. “Semantic-based weaving of scenarios”. In:

Proceedings of the 5th International Conference on Aspect-oriented software develop-

ment. ACM. 2006.

[93] P. Jayaraman et al. “Model composition in product lines and feature interaction detec-

tion using critical pair analysis”. In: Proceedings of the 10th International Conference

on Model Driven Engineering Languages and Systems. Springer, 2007.

[94] P. Lahire et al. “Introducing variability into aspect-oriented modeling approaches”.

In: Proceedings of the 10th International Conference on Model Driven Engineering

Languages and Systems. Springer, 2007.

[95] Y. R. Reddy et al. “Directives for composing aspect-oriented design class models”.

In: Transactions on Aspect-Oriented Software Development. Springer, 2006.

[96] T. J. Brown et al. “Weaving behavior into feature models for embedded system fam-

ilies”. In: Proceedings of the 10th International Software Product Line Conference.

IEEE. 2006.

[97] G. Perrouin et al. “Weaving variability into domain metamodels”. Software & Systems

Modeling 11.3 (2012).

[98] I. Groher and M. Voelter. “XWeave: models and aspects in concert”. In: Proceedings

of the 10th International Workshop on Aspect-oriented Modeling. ACM. 2007.

[99] S. Apel, T. Leich, and G. Saake. “Aspectual feature modules”. IEEE Transactions

on Software Engineering 34.2 (2008).

[100] L. Fuentes and P. Sánchez. “Designing and weaving aspect-oriented executable UML

models.” Journal of Object Technology 6.7 (2007).

[101] A. Colyer, A. Rashid, and G. Blair. On the separation of concerns in program families.

Tech. rep. Lancaster University, 2004.

[102] C. Koppen and M. Störzer. “PCDiff: attacking the fragile pointcut problem”. In:

Proceedings of the 3rd European Interactive Workshop on Aspects in Software. Vol. 7.

IEEE. 2004.

[103] G. Kniesel. “Detection and resolution of weaving interactions”. In: Transactions on

Aspect-Oriented Software Development. Springer, 2009.

[104] W. Havinga, I. Nagy, and L. Bergmans. “An analysis of aspect composition problems”

(2006).

160 BIBLIOGRAPHY

[105] M. Störzer, F. Forster, and R. Sterr. “Detecting precedence-related advice interfer-

ence”. In: ASE. Vol. 6. 2006.

[106] K. Tian, K. Cooper, and K. Zhang. “A framework based approach for unified detection

of Aspect Weaving Problems”. In: Proceedings of the 11th International Conference

on Information Reuse and Integration. IEEE. 2010.

[107] S. Apel et al. “Model superimposition in software product lines”. In: Theory and

Practice of Model Transformations. Springer, 2009.

[108] S. Apel and C. Lengauer. “Superimposition: a language-independent approach to soft-

ware composition”. In: Proceedings of the 7th International Conference on Software

Composition. Springer. 2008.

[109] K. Czarnecki and M. Antkiewicz. “Mapping features to models: a template approach

based on superimposed variants”. In: Proceedings of the 4th International Conference

on Generative Programming and Component Engineering. Springer. 2005.

[110] J. Bosch. “Superimposition: a component adaptation technique”. Elsevier Informa-

tion and Software Technology 41.5 (1999).

[111] S. Apel et al. “FeatureC++: on the symbiosis of feature-oriented and aspect-oriented

programming”. In: Proceedings of the 4th International Conference on Generative

Programming and Component Engineering. Springer. 2005.

[112] M. Mezini and K. Ostermann. “Variability management with feature-oriented pro-

gramming and aspects”. In: ACM SIGSOFT Software Engineering Notes. Vol. 29. 6.

ACM. 2004.

[113] S. Apel, T. Leich, and G. Saake. “Aspectual mixin layers: aspects and features in con-

cert”. In: Proceedings of the 28th International Conference on Software Engineering.

ACM. 2006.

[114] G. Bracha and W. Cook. “Mixin-based inheritance”. ACM Sigplan Notices 25.10

(1990).

[115] D. Batory et al. “The GenVoca model of software-system generators”. IEEE Software

11.5 (1994).

[116] D. Batory et al. “Design wizards and visual programming environments for GenVoca

generators”. IEEE Transactions on Software Engineering 26.5 (2000).

BIBLIOGRAPHY 161

[117] S. Apel, C. Kastner, and C. Lengauer. “FEATUREHOUSE: language-independent,

automated software composition”. In: Proceedings of the 31st International Confer-

ence on Software Engineering. IEEE. 2009.

[118] S. Apel, C. Kästner, and C. Lengauer. “Language-independent and automated soft-

ware composition: the FeatureHouse experience”. IEEE Transactions on Software

Engineering 39.1 (2013).

[119] I. Schaefer, A. Worret, and A. Poetzsch-Heffter. “A model-based framework for au-

tomated product derivation”. In: Proceedings of the 1st International Workshop on

Model-Driven Approaches in Software Product Line Engineering. ACM. 2009.

[120] I. Schaefer et al. “Delta-oriented programming of software product lines”. In: Software

Product Lines: Going Beyond. Springer, 2010.

[121] H. Sabouri and R. Khosravi. “Delta modeling and model checking of product fami-

lies”. In: Fundamentals of software engineering. Springer, 2013.

[122] I. Schaefer and F. Damiani. “Pure delta-oriented programming”. In: Proceedings of

the 2nd International Workshop on Feature-Oriented Software Development. ACM.

2010.

[123] M. Helvensteijn, R. Muschevici, and P. Y. Wong. “Delta modeling in practice: a Fred-

hopper case study”. In: Proceedings of the 6th International Workshop on Variability

Modeling of Software-Intensive Systems. ACM. 2012.

[124] P. C. Clements. “A survey of architecture description languages”. In: Proceedings of

the 8th International Workshop on Software Specification and Design. IEEE. 1996.

[125] N. Medvidovic and R. N. Taylor. “A classification and comparison framework for

software architecture description languages”. IEEE Transactions on Software Engi-

neering 26.1 (2000).

[126] D. Garlan, R. Monroe, and D. Wile. “Acme: an architecture description interchange

language”. In: CASCON First Decade High Impact Papers. IBM Corp. 2010.

[127] R. Allen and D. Garlan. “Formalizing architectural connection”. In: Proceedings of

the 16th International Conference on Software Engineering. IEEE. 1994.

[128] D. Garlan, R. Allen, and J. Ockerbloom. “Exploiting style in architectural design

environments”. ACM SIGSOFT Software Engineering Notes 19.5 (1994).

[129] N. Medvidovic et al. “Using object-oriented typing to support architectural design in

the C2 style”. ACM SIGSOFT Software Engineering Notes 21.6 (1996).

162 BIBLIOGRAPHY

[130] D. C. Luckham et al. “Specification and analysis of system architecture using Rapide”.

IEEE Transactions on Software Engineering 21.4 (1995).

[131] M. Moriconi, X. Qian, and R. A. Riemenschneider. “Correct architecture refinement”.

IEEE Transactions on Software Engineering 21.4 (1995).

[132] R. Roshandel et al. “Mae-a system model and environment for managing architectural

evolution”. ACM Transactions on Software Engineering and Methodology 13.2 (2004).

[133] E. Dashofy, A. van der Hoek, and R. Taylor. “A highly-extensible, XML-based archi-

tecture description language”. In: Proceedings of the European Joint Working IEEE/I-

FIP Conference on Software Architecture. IEEE, 2001.

[134] D. Gurov, B. M. Østvold, and I. Schaefer. “A hierarchical variability model for soft-

ware product lines”. In: Leveraging Applications of Formal Methods, Verification, and

Validation. Springer, 2012.

[135] C.-M. Park et al. “A component model supporting decomposition and composition of

consumer electronics software product lines”. In: Proceedings of the 11th International

Software Product Line Conference. IEEE. 2007.

[136] R. van Ommering et al. “The Koala component model for consumer electronics soft-

ware”. IEEE Transactions on Software Engineering 33.3 (2000).

[137] F. van der Linden, K. Schmid, and E. Rommes. “Philips consumer electronics software

for televisions”. In: Software Product Lines in Action. Springer, 2007.

[138] T. Asikainen, T. Soininen, and T. Männistö. “A Koala-based approach for modelling

and deploying configurable software product families”. In: Software Product-Family

Engineering. Springer, 2003.

[139] A. Haber, J. O. Ringert, and B. Rumpe. “Montiarc-architectural modeling of inter-

active distributed and cyber-physical systems”. arXiv (2014).

[140] H. Krahn, B. Rumpe, and S. Völkel. “MontiCore: a framework for compositional de-

velopment of domain specific languages”. Springer International Journal on Software

Tools for Technology Transfer 12.5 (2010).

[141] D. Sabin and R. Weigel. “Product configuration frameworks-a survey”. IEEE Intel-

ligent Systems 13.4 (1998).

[142] A. Haber et al. “Delta-oriented architectural variability using MontiCore”. In: Pro-

ceedings of the 5th European Conference on Software Architecture: Companion Vol-

ume. ACM. 2011.

BIBLIOGRAPHY 163

[143] T. Asikainen, T. Männistö, and T. Soininen. “Kumbang: a domain ontology for mod-

elling variability in software product families”. Elsevier Advanced Engineering Infor-

matics 21.1 (2007).

[144] E. Silva et al. “A lightweight language for software product lines architecture descrip-

tion”. In: Software Architecture. Springer, 2013.

[145] M. O. Dias et al. “Leveraging aspect-connectors to improve stability of product-line

variabilities”. In: Proceedings of the 4th International Conference on Performance

Engineering. Springer. 2010.

[146] J. Pérez et al. “Plastic partial components: a solution to support variability in archi-

tectural components”. In: Proceedings of the 3rd Joint Working IEEE/IFIP European

Conference on Software Architecture. IEEE. 2009.

[147] R. Bashroush et al. “Adlars: an architecture description language for software product

lines”. In: Proceedings of the 29th annual IEEE/NASA Software Engineering work-

shop. IEEE. 2005.

[148] T. Asikainen, T. Mannisto, and T. Soininen. “A unified conceptual foundation for

feature modelling”. In: Proceedings of the 10th International Software Product Line

Conference. IEEE. 2006.

[149] A. L. Medeiros et al. “ArchSPL-MDD: An ADL-based Model-Driven Strategy for Au-

tomatic Variability Management”. In: Components, Architectures and Reuse Software

(SBCARS), 2015 IX Brazilian Symposium on. IEEE. 2015.

[150] L. A. Gayard, C. M. F. Rubira, and P. A. de Castro Guerra. “Cosmos*: a compo-

nent system model for software architectures”. Institute of Computing, University of

Campinas, Tech. Rep. IC-08-04 (2008).

[151] U. Aßmann. Invasive software composition. Springer, 2003.

[152] S. Di Cola et al. “A component model for defining software product families with

explicit variation points”. In: Proceedings of the 19th International symposium on

component-based Software Engineering. ACM, 2016.

[153] C. Szyperski, D. Gruntz, and S. Murer. Component software: beyond object-oriented

programming. 2nd. Addison-Wesley, 2002.

[154] B. Meyer. “The grand challenge of trusted components”. In: Proceedings of the 25th

International Conference on Software Engineering. IEEE. 2003.

164 BIBLIOGRAPHY

[155] G. Coulson et al. “A generic component model for building systems software”. ACM

Transactions on Computer Systems 26.1 (2008).

[156] B. Ding et al. “Component model supporting trustworthiness-oriented software evo-

lution”. Journal of Software 22.1 (2011).

[157] R. K. Keller and R. Schauer. “Design components: toward software composition at

the design level”. In: Proceedings of the 20th International Conference on Software

Engineering. IEEE. 1998.

[158] I. Crnkovic et al. “A classification framework for software component models”. IEEE

Transactions on Software Engineering 37.5 (2011).

[159] C. Lüer and A. Hoek. Composition environments for deployable software components

– Tech. Rep. UCI-ICS-02-18. University of California, Irvine, 2002.

[160] F. Bachmann et al. Technical concepts of component-based software engineering. Tech.

Rep. CMU/SEI-2000-TR-008. Carnegie Melon Software Engineering Institute, 2000.

[161] R. Englander. Developing Java Beans. O’Reilly & Associates, 1997.

[162] B. Burke and R. Monson-Haefel. Enterprise JavaBeans 3.0. " O’Reilly Media, Inc.",

2006.

[163] S. Weerawarana et al. “Bean markup language: a composition language for JavaBeans

components”. In: Proceedings of the 6th Conference on Object-Oriented Technologies

and Systems. USENIX Association, 2001.

[164] E. Roman, R. P. Sriganesh, and G. Brose. Mastering enterprise JavaBeans. John

Wiley & Sons, 2005.

[165] V. Matena, B. Stearns, and L. Demichiel. Applying enterprise JavaBeans: component-

based development for the J2EE platform. Pearson Education, 2003.

[166] S. Goebel and M. Nestler. “Composite component support for EJB”. In: Proceedings

of the Winter International Symposium on Information and Communication Tech-

nologies. Trinity College Dublin. 2004.

[167] R. Haefel. Enterprise Java Beans. 4th. O’Reilly, 2004.

[168] D. Box. Essential COM. Addison-Wesley, 1998.

[169] A. Major. COM IDL and Interface Design. John Wiley & Sons, 1999.

[170] T. Pattison. Programming distributed applications with COM+ and Microsoft Visual

Basic 6.0. Microsoft Press, 2000.

BIBLIOGRAPHY 165

[171] J. Siegel. CORBA 3 fundamentals and programming. Vol. 2. John Wiley & Sons New

York, 2000.

[172] N. Wang, D. C. Schmidt, and C. O’Ryan. “Overview of the CORBA component

model”. In: Proceedings of the 4th International Conference on Component-Based

Software Engineering. Addison-Wesley Longman Publishing Co., Inc. 2001.

[173] A. Wigley et al. Microsoft .NET compact framework (Core Reference). Microsoft

Press, 2003.

[174] D. S. Platt. Introducing Microsoft .NET. 3rd. Microsoft Press, 2003.

[175] G. Alonso et al. Web Services: concepts, architectures and applications. Springer-

Verlag, 2004.

[176] D. K. Barry. Web services, service-oriented architectures, and cloud computing. Mor-

gan Kaufmann, 2012.

[177] C. Peltz. “Web services orchestration and choreography”. IEEE 36.10 (2003).

[178] O. Alliance. “Osgi service platform, core specification, release 4, version 4.1”. OSGi

Specification (2007).

[179] T. Gu, H. K. Pung, and D. Q. Zhang. “Toward an OSGi-based infrastructure for

context-aware applications”. IEEE Pervasive Computing 3.4 (2004).

[180] R. Hall et al. OSGi in action: creating modular applications in Java. Manning Pub-

lications Co., 2011.

[181] D. H. Lorenz and P. Petkovic. “Design-time assembly of runtime containment compo-

nents”. In: Proceedings of the 34th International Conference on Technology of Object-

Oriented Languages and Systems. IEEE. 2000.

[182] R. G. Cattell and J. Inscore. J2EE in practice: building business applications with the

Java 2 Platform Enterprise. Addison-Wesley Longman Publishing Co., Inc., 2001.

[183] R. Marvie and P. Merle. “CORBA component model: discussion and use with OpenCCM”

(2001).

[184] K. P. Birman. “Corba: The common object request broker architecture”. In: Guide

to Reliable Distributed Systems. Springer, 2012.

[185] A. L. Lemos, F. Daniel, and B. Benatallah. “Web service composition: a survey of

techniques and tools”. ACM Computing Surveys (CSUR) 48.3 (2016).

166 BIBLIOGRAPHY

[186] S. Weerawarana et al. Web services platform architecture: SOAP, WSDL, WS-policy,

WS-addressing, WS-BPEL, WS-reliable messaging and more. Prentice Hall PTR,

2005.

[187] L. Richardson and S. Ruby. RESTful web services. O’Reilly Media, Inc., 2008.

[188] T. Bray. “The javascript object notation (JSon) data interchange format”. IETF

(2014).

[189] D. Garlan, R. Monroe, and D. Wile. “Acme: architectural description of component-

based systems”. In: Foundations of Component-Based Systems. Cambridge University

Press, 2000.

[190] J. Ivers et al. Documenting component and connector views with UML 2.0. Tech. rep.

CMU/SEI-2004-TR-008. The Software Engineering Institute, 2004.

[191] OMG. UML 2.0 superstructure specification. Tech. rep. ptc/04-10-02. Object Man-

agement Group, 2004.

[192] S. Roh, K. Kim, and T. Jeon. “Architecture modeling language based on UML 2.0”.

In: Proceedings od the 11th International Conference on Software Engineering. IEEE.

2004.

[193] F. Plášil, D. Bálek, and R. Janeček. “SOFA/DCUP: architecture for component trad-

ing and dynamic updating”. In: Proceedings of the 4th International Conference on

Configurable Distributed Systems. IEEE, 1998.

[194] T. Bures, P. Hnetynka, and F. Plasil. “Sofa 2.0: Balancing Advanced Features in a

Hierarchical Component Model”. In: Proceedings of the 4th International Conference

on Software Engineering Research, Management and Applications. IEEE. 2006.

[195] C. Atkinson et al. Component-based product line engineering with UML. Addison-

Wesley, 2001.

[196] C. Atkinson et al. “Modeling components and component-based systems in KobrA”.

In: The Common Component Modeling Example. Springer, 2008.

[197] S. Becker, H. Koziolek, and R. Reussner. “The Palladio component model for model-

driven performance prediction”. Elsevier Journal of Systems and Software 82.1 (2009).

[198] F. Brosch et al. “Architecture-based reliability prediction with the palladio component

model”. IEEE Transactions on Software Engineering 38.6 (2012).

[199] T. Bures et al. ProCom – the progress component model. Malardalen University.

Vasteras, Sweden, 2010.

BIBLIOGRAPHY 167

[200] S. Sentilles et al. “A component model for control-intensive distributed embedded

systems”. In: Proceedings of the 11th International Symposium on Component-Based

Software Engineering. Springer. 2008.

[201] E. Bruneton et al. “An open component model and its support in Java”. In: Proceed-

ings of the 7th International Symposium on Component-based Software Engineering.

Springer, 2004.

[202] E. Bruneton et al. “The fractal component model and its support in Java”. Wiley &

Sons, Software: Practice and Experience 36.11-12 (2006).

[203] H. Gomaa and G. Farrukh. “Composition of software architectures from reusable

architecture patterns”. In: Proceedings of the 3rd International Workshop on Software

Architecture. ACM. 1998.

[204] I. Georgiadis, J. Magee, and J. Kramer. “Self-organising software architectures for

distributed systems”. In: Proceedings of the 1st Workshop on Self-healing Systems.

ACM. 2002.

[205] M. Shaw et al. “Abstractions for software architecture and tools to support them”.

IEEE Transactions on Software Engineering 21.4 (1995).

[206] J. Marino and M. Rowley. Understanding SCA (service component architecture). Pear-

son Education, 2009.

[207] M. Abi-Antoun et al. “Modeling and implementing software architecture with Acme

and ArchJava”. In: Proceedings of the 27th International Conference on Software

Engineering. ACM. 2005.

[208] N. He et al. “Component-based design and verification in X-MAN”. In: Proceedings

of the 4th European Congress on Embedded Real Time Software and Systems. ACM.

2012.

[209] K.-K. Lau and C. Tran. “X-MAN: an MDE tool for component-based system devel-

opment”. In: Proceedings of the 38th Euromicro Conference on Software Engineering

and Advanced Applications. IEEE, 2012.

[210] M. Broy et al. “What characterizes a (software) component?” Springer, Software-

Concepts & Tools 19.1 (1998).

[211] K.-K. Lau and Z. Wang. “A Taxonomy of software component models”. In: Pro-

ceedings of the 31st Euromicro Conference on Software Engineering and Advanced

Applications. IEEE, 2005.

168 BIBLIOGRAPHY

[212] J. Aldrich, C. Chambers, and D. Notkin. “Architectural reasoning in ArchJava”.

In: Proceedings of the 16th European Conference on Object-Oriented Programming.

Springer-Verlag, 2002.

[213] S. Di Cola et al. “An MDE tool for defining software product families with explicit

variation points”. In: Proceedings of the 19th International Conference on Software

Product Line. ACM. 2015.

[214] S. D. Cola, C. Tran, and K.-K. Lau. “A Graphical tool for model-driven development

using components and services”. In: Proceedings of 41st Euromicro Conference on

Software Engineering and Advanced Applications. 2015.

[215] M. Torchiano et al. “Relevance, benefits, and problems of software modelling and

model driven techniques - a survey in the Italian industry”. Journal of Systems and

Software 86.8 (2013).

[216] R. F. Paige, N. Matragkas, and L. M. Rose. “Evolving models in model-driven en-

gineering: State-of-the-art and future challenges”. Elsevier, Journal of Systems and

Software 111 (2016).

[217] J. Whittle, J. Hutchinson, and M. Rouncefield. “The state of practice in model-driven

engineering”. IEEE, Software 31.3 (2014).

[218] A. W. Brown. “Model driven architecture: principles and practice”. Springer Software

and Systems Modeling 3.4 (2004).

[219] J. Sorva, V. Karavirta, and L. Malmi. “A review of generic program visualization

systems for introductory programming education”. ACM Transactions on Computing

Education 13.4 (2013).

[220] B. A. Price, R. M. Baecker, and I. S. Small. “A principled taxonomy of software

visualization”. Elsevier Journal of Visual Languages & Computing 4.3 (1993).

[221] A. Henriksson and H. Larsson. “A definition of round-trip engineering”. University

of Linköping, Sweden (2003).

[222] C. Atkinson and T. Kuhne. “Model-driven development: a metamodeling foundation”.

IEEE Software 20.5 (2003).

[223] D. C. Schmidt. “Model-driven engineering”. IEEE Transactions on Software Engi-

neering 39.2 (2006).

[224] B. Selic. “The pragmatics of model-driven development”. IEEE Software 20.5 (2003).

BIBLIOGRAPHY 169

[225] J. Hutchinson, M. Rouncefield, and J. Whittle. “Model-driven engineering practices

in industry”. In: Proceedings of the 33rd International Conference on Software Engi-

neering. ACM. 2011.

[226] J. Hutchinson et al. “Empirical assessment of MDE in industry”. In: Proceedings of

the 33rd International Conference on Software Engineering. ACM. 2011.

[227] B. Schatz. “10 years model-driven–What did we achieve?” In: Proceedings of the 2nd

European Regional Conference on the Engineering of Computer Based Systems. IEEE.

2011.

[228] J. Hutchinson, J. Whittle, and M. Rouncefield. “Model-driven engineering practices in

industry: social, organizational and managerial factors that lead to success or failure”.

Elsevier Science of Computer Programming 89 (2014).

[229] D. S. Frankel. Model driven architecture applying MDA. John Wiley & Sons, 2003.

[230] L. Zhu. “Model-driven architecture”. In: Essential software architecture. Springer,

2011.

[231] A. Dennis, B. H. Wixom, and D. Tegarden. Systems analysis and design: an object-

oriented approach with UML. John Wiley & Sons, 2015.

[232] W. Tang. “Meta object facility”. In: Encyclopedia of database systems. Springer, 2009.

[233] M.Weiss. “Xml metadata interchange”. In: Encyclopedia of Database Systems. Springer,

2009.

[234] J. Davis. “GME: the generic modeling environment”. In: Companion of the 18th

Conference on Object-oriented Programming, Systems, Languages, and Applications.

ACM. 2003.

[235] D. Steinberg et al. EMF: Eclipse modeling framework. 2nd ed. Pearson Education,

2009.

[236] The Eclipse Foundation. Xcore. https : / / wiki . eclipse . org / Xcore. Accessed:

26-04-2015.

[237] The Eclipse Foundation. Graphiti. https://www.eclipse.org/graphiti/. Accessed:

12-03-2015.

[238] J. R. Jos W. Karsten T. Spray - A quick way of creating Graphiti. http://goo.gl/

qULZny. Accessed: 08-05-2015.

170 BIBLIOGRAPHY

[239] L. Bettini. Implementing domain-specific languages with Xtext and Xtend. Packt Pub-

lishing Ltd, 2013.

[240] E. Stepper. CDO model repository. https://eclipse.org/cdo/. Accessed: 16-06-

2015. 2016.

[241] D. S. Kolovos et al. “Taming EMF and GMF using model transformation”. In: Pro-

ceedings of the 13th International Conference on Model Driven Engineering Languages

and Systems. Springer. 2010.

[242] K.-K. Lau, F. Taweel, and C. Tran. “The W Model for component-based software

development”. In: Proceedings of the 37th Euromicro Conference on Software Engi-

neering and Advanced Applications. IEEE, 2011.

[243] K.-K. Lau, L. Ling, and Z. Wang. “Composing components in design phase using

exogenous connectors”. In: Proceedings of the 32nd Euromicro Conference on Software

Engineering and Advanced Applications. IEEE, 2006.

[244] D. Beuche and M. Dalgarno. “Software product line engineering with feature models”.

ACCU Overload Journal 78 (2007).

[245] F. van der Linden and H. Obbink. “ESAPS–Engineering Software Architectures, Pro-

cesses and Platforms for System Families”. In: Software Architectures for Product

Families. Springer, 2000.

[246] M. Jazayeri, A. Ran, and F. van Der Linden. Software architecture for product fami-

lies: principles and practice. Addison-Wesley Longman Publishing Co., Inc., 2000.

[247] F. van der Linden. “Software product families in Europe: the Esaps & Cafe projects”.

IEEE Software 19.4 (2002).

[248] H. Obbink et al. “COPA: a component-oriented platform architecting method for fam-

ilies of software-intensive electronic products”. In: Proceedings of the 1st Conference

on Software Product Line Engineering. 2000.

[249] J. G. Wijnstra. “Critical factors for a successful platform-based product family ap-

proach”. In: Software Product Lines. Springer, 2002.

[250] D. Oliveira and N. Rosa. “Evaluating product line architecture for grid computing

middleware systems: Ubá experience”. In: Proceedings of the 24th International Con-

ference on Advanced Information Networking and Applications Workshops. IEEE.

2010.

BIBLIOGRAPHY 171

[251] C. P. Team. “CMMI R© for development, version 1.3, improving processes for devel-

oping better products and services”. Software Engineering Institute (2010).

[252] L. Northrop, L. Jones, and P. Donohoe. Examining product line readiness: experiences

with the SEI product line technical probe. Carnegie Mellon University. 2005.

[253] F. van Der Linden et al. “Software product family evaluation”. In: Software Product

Lines. Springer, 2004.

[254] L. Northrop et al. “A framework for software product line practice, version 5.0”. SEI

Interactive (2007).

[255] R. Flores, C. Krueger, and P. Clements. “Mega-scale product line engineering at

General Motors”. In: Proceedings of the 16th International Software Product Line

Conference-Volume 1. ACM. 2012.

[256] J. Lanman et al. “Employing the second generation software product-line for live

training transformation”. In: Proceedings of the 16th Interservice/Industry Training,

Simulation, and Education Conference. NTSA. 2011.

[257] C. W. Krueger. “New methods in software product line practice”. ACM Communi-

cations 49.12 (2006).

[258] E. M. Dashofy, A. v. d. Hoek, and R. N. Taylor. “A comprehensive approach for the

development of modular software architecture description languages”. ACM Trans-

actions on Software Engineering and Methodology 14.2 (2005).

[259] P. Sochos, M. Riebisch, and I. Philippow. “The feature-architecture mapping (FArM)

method for feature-oriented development of software product lines”. In: Proceedings of

the 13th International Symposium and Workshop on Engineering of Computer Based

Systems. IEEE. 2006.

[260] A. Haber et al. “Hierarchical variability modeling for software architectures”. In:

Proceedings of the 15th International Conference on Software Product Line. IEEE.

2011.

[261] B. Behringer and S. Rothkugel. “Integrating feature-based implementation approaches

using a common graph-based representation”. In: Proceedings of the 31st Annual Sym-

posium on Applied Computing. ACM. 2016.

[262] R. E. Lopez-Herrejon, D. Batory, and W. Cook. “Evaluating support for features in

advanced modularization technologies”. In: Proceedings of the 20th European Confer-

ence on Object-Oriented Programming. Springer. 2005.

172 BIBLIOGRAPHY

[263] K. Berg, J. Bishop, and D. Muthig. “Tracing software product line variability: from

problem to solution space”. In: Proceedings of the 2nd Annual Research Conference on

IT Research in Developing Countries. South African Institute for Computer Scientists

and Information Technologists. 2005.

[264] P. Trinidad et al. “Mapping feature models onto component models to build dynamic

software product lines.” In: Proceedings of the International Workshop on Dynamic

Software Product Lines. IEEE. 2007.

[265] M. Korner, S. Herold, and A. Rausch. “Composition of applications based on soft-

ware product lines using architecture fragments and component sets”. In: Companion

Volume of the 11th Working IEEE/IFIP Conference on Software Architecture. ACM,

2014.

[266] C. Krueger. “Easing the transition to software mass customization”. In: Software

Product-Family Engineering. Springer, 2002.

[267] A. Longo, M. Zappatore, and M. A. Bochicchio. “Service and contract composition: a

model and a tool”. In: Proceedings of the 14th International Symposium on Integrated

Network Management. IEEE. 2015.

[268] T. Berger et al. “Variability mechanisms in software ecosystems”. Elsevier Informa-

tion and Software Technology 56.11 (2014).

[269] F. P. Miller, A. F. Vandome, and J. McBrewster. Apache Maven. Alpha Press, 2010.

[270] R. Mecklenburg. Managing projects with GNU make. "O’Reilly Media, Inc.", 2004.

[271] B. Muschko. Gradle in action. Manning, 2014.

[272] Y. Brun et al. “Early detection of collaboration conflicts and risks”. IEEE Transac-

tions on Software Engineering 39.10 (2013).

[273] E. Gamma et al. “Design patterns: abstraction and reuse of object-oriented design”.

In: Software pioneers. Springer, 2002.

[274] M. Shaw and D. Garlan. Software architecture: perspectives on an emerging discipline.

Vol. 1. Prentice Hall Englewood Cliffs, 1996.

[275] M. Fowler. “Inversion of control containers and the dependency injection pattern”

(2004).

[276] E. Ernst. “Separation of concerns”. In: Proceedings of the 5th Workshop on Software-

Engineering Properties of Languages for Aspect Technologies. ACM. 2003.

BIBLIOGRAPHY 173

[277] K. Sullivan et al. “Information Hiding Interfaces for Aspect-oriented Design”. In:

Proceedings of the 10th European Software Engineering Conference Held Jointly with

13th International Symposium on Foundations of Software Engineering. ACM, 2005.

[278] S. Apel and C. Kästner. “An overview of feature-oriented software development”.

Journal of Object Technology 8.5 (2009).

[279] E. Gamma et al.Design patterns – elements of reusable object-oriented design. Addison-

Wesley, 1995.

Appendix A

Variability Mechanisms

Building for mass customization implies the idea of managed variability. As software

can be easily adapted to suit new purposes, managed variability has a great impact

on how software is developed, maintained and extended.

The great variety of techniques for adapting a piece of software can be classified

according to the underling variability mechanism . As depicted in Fig. A.1, three basic

mechanisms may be used: adaptation, replacement and extension [268].

Figure A.1: Basic variability mechanisms.

Adaptation mechanisms allow adapting the behaviour of a component by exploiting

its interfaces. Parameters and configurator represent two of the most used variability

mechanisms belonging to this category.

Replacement mechanisms allow the presence of several implementations of a com-

ponent. As the provided interfaces fully specify the required behaviour, components

differ from each other only in how this behaviour is implemented. Based on the re-

quested features, during the application engineering phase one component is chosen,

and integrated with the rest of the architecture. Two concrete mechanisms of replace-

ment are code generators and components replacement.

Extension mechanisms provide interfaces that allow components to be connected

174

A.1. MECHANISMS BASED ON ADAPTATION 175

Variability mechanism Concrete techniques
Adaptation Parameters, Build systems, Pre-processors, Design patterns
Replacement Components
Extensions Frameworks

Table A.1: Classification of concrete variation mechanisms.

with the rest of the architecture. As architecture requirements are less stringent than

in a replacement mechanism, different type of components can be added to an archi-

tecture; this implies that a component may not be product-specific.

In the next sub-sections, the concrete variability mechanisms in Table A.1 are

explained in more details.

A.1 Mechanisms based on adaptation

A.1.1 Parameters

Parameters embody the simplest, yet the most widely used mechanism for imple-

menting variability. Indeed, parametrisation represents a flexible and fine-grained tool

for adapting a system’s behaviour at run-time. For instance, different configuration

parameters lead to different configurations of the same product.

Nevertheless, unless a compiler performs optimisations, a deployed product con-

tains all functionalities, even though it is known a priori that some of them will be

never used. This entails a series of problems in terms of performance, security and

resources consumption.

Moreover, dependencies between features are hardly systematically checked, as pa-

rameters make it quite difficult to guarantee that at run-time two alternative features

are not active. In fact, the use of parameters often leads to poor code quality. On the

one hand, global parameters reduce modularity as they violate the principles of sep-

aration of concerns and information-hiding. On the other hand, propagating method

arguments introduce scattering and tangling of configuration knowledge. Undoubtedly,

due to the scattering and lack of cohesion, features code is disseminated across several

files and modules. Therefore, it is difficult to trace a feature to all code fragments

implementing it.

In conclusion, unless specific conventions are in place, this variability mechanism

176 APPENDIX A. VARIABILITY MECHANISMS

leads to an undisciplined ad-hoc implementation that is difficult to analyse, maintain

and evolve.

A.1.2 Build systems

Build systems (e.g Apache Maven [269], GNU Make [270] and Gradle [271]) automate

software building related tasks. Such tasks vary from compiling, assembling and testing

source files, to creating and copying deliverable units. Therefore, build systems are

convenient to manage variability at files level.

As an example, the Linux kernel is built using Kbuild1. Linux is probably the only

operative system that has a unified code base used for a very broad range of computing

systems, ranging from supercomputers to very tiny embedded devices. According to

the selected features, Kbuild determines which of the several thousand of C files should

be compiled and linked together when building a Linux kernel.

As long as features can be linked to files, build systems are well-suited for feature-

oriented product lines. Indeed, being language-agnostic allows building systems to

consistently manage variability for both code and non-code artefacts.

Nonetheless, this granularity can be problematic. Firstly, there is no notion of

modularity. Secondly, in the case of small changes, one needs to replicate the whole

files. In order to solve the last problem, build systems typically orchestrate other

variability mechanisms, like pre-processor, version control systems or parametrisation.

Build systems resolve variability at compile time. This implies that, as for param-

eters, static analysis tasks are undecidable since a build system may execute arbitrary

shell scripts. It follows that rigorous and exhaustive analysis is achievable only for

restricted languages, or for specific patterns.

A.1.3 Pre-processors

A pre-processor is a tool that, invoked by the compiler as the first part of the trans-

lation, shapes source code before being compiled. As an example, the popular C

pre-processor cpp 2, provides directives that allow inclusion of header files (#include),

1http://kbuild.sourceforge.net/
2http://gcc.gnu.org/onlinedocs/cpp/

A.1. MECHANISMS BASED ON ADAPTATION 177

line controls (#line), macros (#define), as well as conditional compilations (#ifdef,

#endif).

Conditional compilation is the prevailing mechanism for modelling variability in

product lines [77] since it is natively supported by many programming languages.

Indeed, as in Listing A.1, a strategy is to annotate a code fragment with a feature

name and conditionally add or remove it before compilation, according to its selection.

This strategy makes quite easy to identify files, or code fragments, belonging to a

particular feature.

#ifdef Feature_Name // conditional group begins

define Feature_Name // controlled source code

#endif // conditional group ends

Listing A.1: An example of a conditional compilation macro

Pre-processor annotations can be uniformly used to any kind of textual and non-

textual artefacts. Indeed, approaches like [78–80] and Eclipse projects like fmp2rsm3

and FeatureMapper4 allow annotations and pre-processing of static and behavioural

models using UML stereotypes.

Despite their undoubted simplicity, the use of pre-processor annotation has been

heavily criticised [81–83] as its undisciplined use may compromise artefact quality and

maintainability. In fact, pre-processor directives are usually not confined by mech-

anisms of the host language5 and they can be applied with any arbitrary level of

granularity. This is especially true when directives are applied at a fine grain level. In-

deed, as Listing A.2 shows, scattered annotations used in undisciplined ways make the

code difficult to follow. Moreover, considering that many pre-processors lack of proper

diagnostic tools [83], pre-processor directives can easily introduce errors difficult to

detect.

3http://gp.uwaterloo.ca/fmp2rsm
4http://featuremapper.org/
5For instance, cpp works on the basis of directives that control syntactic program transformation.

Therefore it is not limited to C code.

178 APPENDIX A. VARIABILITY MECHANISMS

class Stack

{

void push(Object o

#ifdef SECURE

,Hash sha1

#endif

)

{

if (o == null

#ifdef SECURE

|| sha1 == null

#endif

)

[...]

}

[...]

}

Listing A.2: An example of cpp directives in a Java class.

Scattered annotations used in undisciplined ways may jeopardise separation of

concerns, i.e. encapsulation. As a consequence, code implementing a feature could

be disseminated across the code base, and intermixed with the code of other features.

Moreover, as pre-processor annotations can be defined, and redefined, in different

places within the code, even in the case of feature code partitioned into distinct files, it

is hard to understand when a determined code fragment will or will not be compiled.

Although disciplined annotation [84, 85] and tools support [86, 87] mitigate these

weaknesses, they do not solve all of them.

On the whole, pre-processors are a simple, but insidious, means to implement

variability. Judging their advantages and weakness depends considerably on their

usage.

A.1.4 Version control systems

Version control systems trace changes in both code and non-code artefacts to ease

collaborative development. In particular, a version control system allows to manage

A.1. MECHANISMS BASED ON ADAPTATION 179

variation in time (revisions) and variation in space (variants). As depicted in Figure

A.2, revisions represent ordered variations over time. A selected set of revisions is

called release. A release, which typically has a name or a number6 , may refer to specific

or to all variants. A variant express intended variations that co-exist in parallel. In

our example, different variants of radio can co-exist as they are intentionally developed

in different branches. The concept of version embraces both revision and variant.

Figure A.2: Revision and variant in a product line of radio tuners

It is certainly appealing to implement a software product line via multiple branches

in a version control system. A simple approach would be to develop each feature in a

separate branch, and create a product by merging the corresponding feature branches.

Figure A.3 shows an example of this process. Note that each branch does not only

contain the code concerning the implemented feature but the entire code-base. It is

clear that the link between features and relative implementation it is not so obvious

once the final product is created.

Version control systems can be applied uniformly to all artefacts, and changes can

be applied at an arbitrary level of granularity. This allows developers to easily manage

cross-cutting features, as they can simply change any code fragment without upfront

pre-planning. Especially at the beginning of a project, developers can quick respond

to a particular customer request, by simply creating a branch and implementing the

required feature. Nevertheless, as the product line evolves, problems start to arise.

Indeed, using a version control system for feature variability has more disadvantages

than advantages.

6For example V 2.0 in Figure A.2.

180 APPENDIX A. VARIABILITY MECHANISMS

Figure A.3: SPLE by merging per-feature branches

Firstly version control systems encourage development of variants, not features.

Secondly, many customer-specific variants, or many unrelated features branches,

make a product family difficult to evolve. In effect, branching does not provide support

for modularity, as branches are essentially copies. This implies that even a simple bug

fixing in one branch must be merged into all relevant branches. Since it is quite easy

to forget such merges, the delta between branches increases more than expected.

Finally, since each branch contains the entire code-base, it is not trivial to solve

conflicts while merging branches. Conflicts are usually text-based and are reported

by tools as differences between lines of text. Solving conflicts is an error-prone task

as usually developers have little or no support from tools. Moreover, considering

that merge tools are based on heuristics[272], they may miss conflicts and assemble

unreliable code.

A.1.5 Design patterns

By definition, design patterns offer general solutions to recurring design problems [273,

274]. As implementing variability is a recurring problem, design patterns provide the

building blocks for realizing it. Observer, template, strategy, and decorator are design

patterns that can be used in order to decouple and encapsulate variability.

In the observer pattern an entity, called subject, notifies registered observers when

a relevant event has occurred. Assuming that an optional feature can be implemented

as an observer, variability is then achieved by its registration or de-registration.

The template pattern defines the structure of an algorithm as an abstract class,

which will be further specialised by its subclasses. Therefore, alternative implementa-

tions of an abstract feature can be realised by different subclasses. However, due to the

A.2. MECHANISMS BASED ON EXTENSION 181

limitations of inheritance, this pattern is not suited for combining multiple features

(inclusive OR).

The strategy pattern enables an algorithm’s behaviour to be selected at runtime

using delegation instead of inheritance. That is, instead of an abstract class, a devel-

oper specifies a strategy interface, which is implemented by its clients. As a variability

mechanism, this pattern is well suited for alternative and optional features, as different

clients implement different features.

The decorator pattern specifies a delegation-based mechanism to expand the be-

haviour of an object at run-time, elegantly solving some composition problems faced

with interfaces. This pattern is well-suited to implement multiple and optional fea-

tures.

Design patterns and parameters share the same advantages and drawbacks. How-

ever, design patterns represent a well established, good-practice guidelines for a dis-

ciplined implementation of variability. Indeed, in contrast with parameters, design

patterns enable separation of concern and information hiding. Moreover, they allow

a non-invasive extension, providing a clear separation between base code and features

implementation. Therefore, the tracing between features and their implementation

code is more explicit.

A.2 Mechanisms based on extension

A.2.1 Frameworks

According to the definition provided by Apel et al. [77], a framework is a set of

collaboration classes that embodies an abstract solution for a specific problem. It is

open for extensions at well-defined points called hot spots, thus supporting reuse at

a larger granularity than classes. Likewise the strategy and template design patterns,

frameworks use the inversion of control technique [275] to manage the control flow and

ask extensions for specialised behaviour at run-time.

We can distinguish between two kinds of frameworks: white-box and black-box.

The former consists of a set of concrete and abstract classes, overridden or expanded

in order to achieve the desired behaviour. The latter separate framework code and its

extensions, typically referred as plug-ins, via interfaces.

182 APPENDIX A. VARIABILITY MECHANISMS

White-box frameworks are well suited for implementing alternative features and

optional features. Nevertheless, combining multiple features can be problematic due

the limitations of sub-classing. On the contrary, in black-box frameworks features

are usually implemented as plug-ins composed both at design and run-time. Ideally,

this allows a 1-to-1 mapping between features and plug-ins which greatly facilitates

traceability and product derivation.

As long they adhere to the common interfaces, both frameworks and plug-ins can be

changed independently. However, once defined, hot-spots and interfaces are quite hard

to evolve without implying a deep and complex code re-factoring. In fact, plug-ins can

be reused only within the context of the framework they have been developed for. Sure

enough, due to the fact that every framework encodes specific design, architectural

structure and implementation details, it is quite improbable that a plug-in can be

shared between several frameworks without being modified.

Although frameworks provide reuse of design, they induce both development and

run-time overhead. For example, even if a hot-spot is not used, it will be deployed

along with the rest of the code. This results in an increase of system binary size, and

eventually a degradation in performance.

Overall, frameworks are best suited for coarse extensions. Conversely, they are

unsuited for fine-grained and cross-cutting features. Indeed, fine-grained and cross-

cutting features require many hot-spots, greatly increasing the complexity of the final

system.

A.3 Mechanisms based on replacement

A.3.1 Components

Components and plug-ins are similar in many respects. Both of them are modular,

use interfaces as means to provide access to their encapsulated implementation, and

both require a certain amount of pre-planning effort.

By contrast, they differ on reuse beyond product-lines and on their automation

potential. While plug-ins are built to fit a particular framework, components are built

to fit a particular composition model. Moreover, plug-ins can be loaded automatically,

while composing components usually require additional glue-code.

A.4. COMPARISON 183

Components and plug-ins share similar advantages and limitations. Both allow

compile-time product derivation, deploying only the required (selected) features. At

the same time, both share the same limitation for fine-grained and cross-cutting ex-

tensions.

A.4 Comparison

The variation mechanisms presented so far can be analysed taking into account the

criteria summarised in Table A.2.

Variation mechanisms diverge in how they represent variability in the code base,

and the way they generate products from user’s features selection. In particular,

we can distinguish between annotation-based and composition-based mechanisms. In

annotation-based mechanisms (i.e. parameters, build systems and pre-processors),

features implementations are merged in a common code-base; code belonging to a

specific feature, or to a combination of them, is annotated accordingly. Therefore,

annotation can be thought as a function that maps code to the features it belongs to.

During product derivation, deselected, or invalid features combinations are removed

at compile-time, or ignored at run-time. Composition-based mechanisms (i.e. version

control systems, design patterns, frameworks and components) do not share a com-

mon code-base, but rather implement features in dedicated, composable units. During

product derivation, units corresponding to a valid selection of features are composed

to construct the desired variant. Another way to look at the differences between

annotation-based and composition-based mechanisms is that the former supports neg-

ative variability, while the latter supports positive variability. Negative variability

implies that code is removed on demand, while positive variability implies the oppo-

site.

Features are seldom implemented alone. Indeed, their value arises when they

collaborate with other features to achieve the desired behaviour. A feature intro-

duces then a change in behaviour, and depending on the implementation technique,

this change can take place at a different level of granularity. The Level of granular-

ity here refers to the hierarchical structure of artefact implementation. Changes at

184 APPENDIX A. VARIABILITY MECHANISMS

the top of hierarchy are called coarse-grained, while those at the lower levels are de-

fined fine-grained. Annotation-based mechanisms support fine-grained changes than

composition-based ones. Undoubtedly, annotations can be applied almost everywhere

across the common code-base, while composition-approaches rely on interfaces, typ-

ically defined at classes or methods level. It is interesting to note that due to their

nature, version control systems and pre-processors allow an arbitrary level of granu-

larity.

Variability always involves a certain amount of pre-planning effort. As not all

variations are predictable, we can distinguish between variability mechanisms that

facilitate or impede this task. As shown in Table A.2, composition-based mechanisms

(excluding version control systems) require a high pre-planning effort compared to

the annotation-based one. For instance, a framework needs to foresee all the possible

hot spots in order to provide the variability needed. On the contrary, pre-processor

directives can be applied any time variability is required.

Feature-oriented product derivation depends on the capability of establishing and

managing a link between features and the relative core-assets. Variability mechanisms

support different levels of feature traceability. Due to their granularity, annotation-

based mechanisms allow a lower level of feature traceability when compared to component-

based ones. Indeed, while annotation-based mechanisms realise a n-to-m mapping be-

tween features and their implementation, component-based ones enable an ideal 1-to-1

mapping.

Two fundamental principles of software engineering are separation of concerns[276]

and information hiding[277]. Separation of concerns is a design principle for dividing

a program into modules so that each module addresses a separate concern. A concern

is an area of interest of a system, and features are the primary concern in SPLE. Many

approaches, such as procedures and classes, have been developed to implement this

design principle. However, during the 90’s [90], a particular class of concerns, denom-

inated cross-cutting concerns, started to emerge. Cross-cutting concerns are aspects

of a system that affect other concerns. These concerns are often hard to decompose

[90], resulting in either scattering7, tangling8, or both. As features are sometimes

7Code duplication.
8Significant dependencies between part of a system.

A.4. COMPARISON 185

cross-cutting concerns, the capability of a variation mechanism to manage them into

a cohesive implementation is an important criterion to consider. Separation of con-

cerns alone is not enough. Indeed, other design principles are needed to guarantee

an appropriate level of abstraction. Information hiding allows a dichotomy between

interface and implementation, or rather between external (visible), and internal (hid-

den) parts. In so doing, developers can reason about a module without the burden of

understanding its implementation. This implies that a module implementation can be

freely changed, so long as it preserves the behaviour specified in the interface. Infor-

mation hiding is an important quality criterion in software product lines [278], because

once features are separated into high cohesive units, we would like to hide their in-

ternal implementations, and at the same time make all their communications explicit

through interfaces. Doing this, teams can be allocated to single modules, rather than

to single products. As depicted in Table A.2, component-based mechanisms are char-

acterised by a high level of separation of concerns and information hiding, but they

are not suited to realise cross-cutting features due to their coarse granularity. On the

contrary, annotation-based mechanisms are suited to realise cross-cutting features but

are characterised by a low level of separation of concerns and information hiding.

Variability offers choices. Indeed, in deriving a product a stakeholder decides which

features are included and which are not. It can be also said that a stakeholder binds

a decision. Binding can happen at different stages; in particular in our discussion

we differentiate between compile-time, and load-time variability. The former is de-

cided before a program starts, while the latter after its compilation when it is actually

started. Since variability is resolved before a program starts, compile-time variability

allows more room for optimisation. That is, unused code can be removed from the

final binaries, reducing the run-time overhead in terms of memory consumption and

execution time. As a consequence, once a deployed program is impossible to change.

Load-time variability fills this gap, but at the price of memory and performance over-

head, as all binaries are compiled and variability must be resolved and checked at

run-time. Parameters and frameworks realise binding at loading time, while build sys-

tems, version control systems and pre-processors at compile time. Components and

design patterns however, can realise both types of binding.

A product family includes code and non-code artefacts. The principle of uniformity

186 APPENDIX A. VARIABILITY MECHANISMS

[58], states that “features are implemented by a diverse selection of software artefacts

and any kind of software artefacts can be subject to subsequent changes and exten-

sions. Conceptually, all artefacts (annotated or composed) should be encoded and

synthesised in a similar manner.” This principle denotes an important characteristic

that a variation mechanism should hold, or rather it should uniformly scale to any

kind of assets. Indeed, such a mechanism is far more desirable than many variability

mechanisms specific to the languages in which artefacts are created. Build systems,

version control systems and pre-processors fully support uniformity, while the other

mechanisms are restricted to code-only artefacts.

Finally, composition mechanisms can be compared in the way they support adop-

tion of a product line approach. According to Krueger et al. [266] such adoption can

follow a proactive, reactive and extractive approach. A proactive, or revolutionary,

approach implies that a product line is developed from scratch by carefully applying

analysis and design methods. In the opposite way, a reactive approach begins with a

small, easy to handle product line which is incrementally extended with new features

and artefacts, so as to expand its scope. Finally, an extractive approach starts with a

portfolio of existing products and gradually refactor them to form a product line. As

described in Table A.2, composition-based mechanisms, due to their high pre-planning

effort, are suitable for a proactive approach. Whereas, parameters and version con-

trol systems are suitable to realise a reactive approach. In the presence of existing

artefacts, pre-processors and building systems are mechanisms perfectly suitable to

support an extractive approach.

A.4. COMPARISON 187

V
ar
ia
bi
lit
y
M
ec
ha

ni
sm

R
ep

re
s.

G
ra
nu

la
ri
ty

P
re
-

pl
an

ni
ng

eff
or
t

Fe
at
ur
e

T
ra
ce
ab

ili
ty

Se
pa

ra
ti
on

of
C
on

ce
rn
sIn

fo
rm

at
io
n

H
id
in
g

C
ro
ss
-

cu
tt
in
g

Fe
at
ur
es

B
in
di
ng

-
ti
m
e

U
ni
fo
rm

it
yA

do
pt
io
n

A
pp

ro
ac
h

Pa
ra
m
et
er
s

A
nn

ot
at
io
n

Fi
ne

-g
ra
in
ed

Lo
w

Lo
w

Lo
w

Lo
w

Su
ite

d
Lo

ad
-t
im

e
C
od

e-
on

ly
R
ea
ct
iv
e

B
ui
ld

Sy
st
em

s
A
nn

ot
at
io
n

C
oa

rs
e-

gr
ai
ne

da
Lo

w
Lo

w
Lo

w
Lo

w
U
ns
ui
te
d

C
om

pi
le
-t
im

e
Fu

ll
Ex

tr
ac
tiv

e

Ve
rs
io
n
co
nt
ro
ls

ys
te
m
s

C
om

po
sit

io
n

A
rb
itr

ar
y

Lo
w

Lo
w

Lo
w

Lo
w

Su
ite

d
C
om

pi
le
-t
im

e
Fu

ll
R
ea
ct
iv
e

Pr
e-
pr
oc
es
so
rs

A
nn

ot
at
io
n

A
rb
itr

ar
y

Lo
w

Lo
w

Lo
w

Lo
w

U
ns
ui
te
d

C
om

pi
le
-t
im

e
Fu

ll
Ex

tr
ac
tiv

e

D
es
ig
n-
pa

tt
er
ns

C
om

po
sit

io
n

Fi
ne

-g
ra
in
ed

H
ig
h

H
ig
h

H
ig
h

H
ig
h

U
ns
ui
te
d

C
om

pi
le
-t
im

e
-

Lo
ad

-t
im

e
C
od

e-
on

ly
Pr

oa
ct
iv
e

Fr
am

ew
or
ks

C
om

po
sit

io
n

C
oa

rs
e-

gr
ai
ne

d
H
ig
h

H
ig
h

H
ig
h

H
ig
h

U
ns
ui
te
d

Lo
ad

-t
im

e
C
od

e-
on

ly
Pr

oa
ct
iv
e

C
om

po
ne

nt
s

C
om

po
sit

io
n

C
oa

rs
e-

gr
ai
ne

d
H
ig
h

H
ig
h

H
ig
h

H
ig
h

U
ns
ui
te
d

C
om

pi
le
-t
im

e
-

Lo
ad

-t
im

e
C
od

e-
on

ly
Pr

oa
ct
iv
e

Ta
bl
e
A
.2
:
C
om

pa
ris

on
of

co
nc
re
te

va
ria

tio
n
m
ec
ha

ni
sm

s.
a F

ile
le
ve
l

Appendix B

X-MAN Meta-model

Listed in E.1 and depicted in Fig. B.1, the new X-MAN meta-model blends component

and system development processes [242] into one model. This is in contrast with the

previous version of X-MAN [209] where the two processes, although sharing a lot of

concepts, were specified by two distinct meta-models.

The component development process is abstracted by the interfaces1 Component,

Connector, Connection and Data. Taken together, they form the backbone of the

X-MAN meta-model as they protect it from future extensions, thus enhancing its

maintainability.

The Component interface abstracts the concept of encapsulated components. As

described in section 4.3.3, an encapsulated component can either be atomic or com-

posite and can only provide services without requiring any. Hence, Component is in-

herited by the classes AtomicComponent and CompositeComponent, whereas through

the interface Provider, it contains one or more Service and zero or more DataElement.

AtomicComponent has one ComputationUnit, which in turn contains one or more ob-

jects of type Method and can invoke zero or more Resource, or rather DBConnector,

Routine and DataSpace. CompositeComponent inherits from the interface Composable

in order to contain one or more Composable and Connection, as well as zero or more

DataChannel.

Connector abstracts the concept of exogenous connectors. Therefore, it is inherited

by the classes CompositeConnector and AdapterConnector. CompositeConnector it is
1Xcore makes no distinction between interfaces and abstract classes: any interface in Xcore is

translated to an abstract class once code is generated. Therefore, in this context we can use the two
terms interchangeably.

188

189

specialised by the classes Sequencer, Selector and Aggregator, while AdapterConnector

by the classes Loop and Guard.

In X-MAN control and data flow are separated. Control flow is abstracted by

the interface Connection, which is extended by the class CoordinationConnection that

refers to a Connector as source and to a Composable as connection target. Similarly,

data flow is abstracted by the interface Data, which is extended by the classes Dat-

aChannel and Parameter. Data flowing among Input and Output parameters is carried

by data channels (DataChannel), which implements two ChannelPolicy: cache-less or

cache-full. A cache-less policy determines a channel that implements a “destructive”

read and write. A destructive read means that data is destroyed once read. Similarly,

a destructive write entails that a data channel will have its content overwritten when

its source produces data items. In contrast, a cache-full data channel implements a

non-destructive read, but still implements a destructive write in order to privilege

updated data.

Finally, the interface Composable provides the link between component and system

development processes as it abstracts reuse and composition of pre-built components

since it is inherited by Connector and ComponentInstance. The former models a

Component (along with its selected services via the class ServiceReference) retrieved,

and subsequently deployed, from the X-MAN repository.

package uk.xman. xcore

enum ChannelPolicy {

DESTRUCTIVE_READ = 0

NONE_DESTRUCTIVE_READ = 1

}

enum Language {

Java = 0

CPlusPlus = 1

}

enum DataType {

Integer = 0

Float = 1

String = 2

Boolean = 3

List = 4

Set = 5

Map = 6

IntegerList = 7

190 APPENDIX B. X-MAN META-MODEL

IntegerSet = 8

FloatList = 9

FloatSet = 10

StringList = 11

StringSet = 12

BooleanList = 13

BooleanSet = 14

}

enum LoopType {

DoWhile = 0

WhileDo = 1

}

interface Composable {

String name = ""

}

interface Connector extends Composable {

String showedName

}

abstract class CompositionConnector extends Connector {

refers Connection [2..*] connections

}

class Aggregator extends CompositionConnector {

}

class Sequencer extends CompositionConnector {

}

class Selector extends CompositionConnector {

contains Input [1..*] input

}

abstract class AdapterConnector extends Connector {

contains Input [1..*] input

refers Connection [1..1] connection

}

class Loop extends AdapterConnector {

LoopType loopType

}

class Guard extends AdapterConnector {

}

interface Connection {

}

class CoordinationConnection extends Connection {

String condition = ""

refers Connector source

refers Composable target

}

abstract class Component extends Provider {

String name = " ComponentName "

String author = " Unspecified "

String comment = ""

Boolean verified = " false "

191

Boolean valid = " false "

}

class AtomicComponent extends Component {

contains ComputationUnit [1..1] computationUnit opposite atomicComponent

}

@Ecore (constraints =" MustContainAtLeastOneMethod ")

class ComputationUnit {

Language implementationLanguage

String packageName = ""

String interfaceCode = ""

String sourceCode = ""

contains Method [1..*] methods

container AtomicComponent [1] atomicComponent opposite computationUnit

}

class Method {

String name = " MethodName "

String comment

contains Parameter [1..*] parameters

}

class CompositeComponent extends Component , Composite {

boolean isSystem = " false "

op void addAll (Composable [] data) {

composables . addAll (data)

}

}

interface Data{

String name = " paramName "

DataType dataType

refers DataChannel [0..*] dataChannels

}

@Ecore (constraints = " OrderMustBeSpecified ")

abstract class Parameter extends Data{

int order = " -1"

container Service service opposite parameters

}

class Input extends Parameter {

}

abstract class Resource {}

class Output extends Parameter {

}

@Ecore (constraints = " ValueCannotBeNull NameConnotBeNull DefaultValueConnotBeNull ")

class DataElement extends Data{

String range = ""

String value = ""

Object oValue

container Provider component opposite dataElements

}

class DataChannel {

ChannelPolicy policy

192 APPENDIX B. X-MAN META-MODEL

refers Data source

refers Data target

}

class ServiceReference {

String name = " Notset "

refers Service service

}

class Service {

String name = " ServiceName "

String comment = ""

contains Parameter [0..*] parameters opposite service

contains Contract [0..*] contracts

contains ServiceReference [0..*] serviceReferences

}

class Contract {

String name = " ContractName "

String preCondition = ""

String postCondition = ""

}

class ComponentInstance extends Composable {

String componentType = " ComponentType "

contains Service [1..*] selectedServices

contains DataElement [0..*] dataElements

contains Component [1..1] componentReference

}

abstract class Provider {

contains Service [1..*] services

contains DataElement [0..*] dataElements opposite component

}

abstract class Composite {

contains Composable [1..*] composables

contains Connection [1..*] connections

contains DataChannel [0..*] dataChannels

}

Listing B.1: Xcore implementation of the X-MAN meta-model.

193

Figure B.1: The X-MAN meta-model.

Appendix C

Functional Model Meta-model

Functional analysis aims at identifying operative commonalities and variabilities among

applications in a defined domain. A functional model resulting from this analysis de-

scribes domain capabilities from a structural and a behavioural perspective. A struc-

tural perspective (captured by the meta-model in appendix C.1) details functional

components, or activities, and how data flows among them. Complementary to this

perspective, the behavioural one (captured by the meta-model in appendix C.2) details

in terms of states and transitions between them when, and under what circumstances,

functional components are triggered.

C.1 Activity-chart Meta-model

Depicted in Fig. C.1, the main elements of the activity-chart meta-model (listed in G.1)

are abstracted by the interfaces IActivity, IFlowLine and IConnector (contained by

the ActivityChart class).

IActivity abstracts the concept of activity. It is therefore extended by the classes

External, DataStoreActivity, ControlActivity and Activity. The hierarchical structure

of an Activity is constructed adopting the composition design pattern [279].

IFlowLine abstracts the flow of information among activities. Since two types

of flow-lines are allowed in an activity-chart, IFlowline is inherited by the classes

DataFlowLine and ControlFlowLine. The single information element carried by a

flow-line is modelled by the class Element. It can refer to a Condition, an Event, a

DataItem or a group of them. A flow-line originates from the source activity (Vertex)

194

C.1. ACTIVITY-CHART META-MODEL 195

that produces the information elements and it leads to its target activity (Vertex) that

consumes them.

In order to economise in the number of arrows, flow-lines can be combined using

various types of connectors. Such connectors, abstracted by the interface IConnec-

tor, are modelled by the classes JunctionConnector and JointConnector. The former

models a flow-lines merger, while the latter a flow-line multiplier.

package xman. xcore . activitychart

class ActivityChart {

String chartName

contains IActivity [2..*] activities

contains IFlowLine [1..*] flowlines

contains IConnector [0..*] connectors

}

interface Vertex {

}

interface IActivity extends Vertex {

String name

}

interface IConnector extends Vertex {

String name

}

interface IFlowLine {

String expression

refers Element [1..1] element

refers Vertex [1..1] source

refers Vertex [1..1] target

}

class Activity extends IActivity {

contains IActivity [0..*] activities

}

class DataStoreActivity extends IActivity {

}

class ControlActivity extends IActivity {

}

class External extends IActivity {

}

class DataFlowLine extends IFlowLine {

}

class ControlFlowLine extends IFlowLine {

}

class JunctionConnector extends IConnector {

}

class JointConnector extends IConnector {

}

196 APPENDIX C. FUNCTIONAL MODEL META-MODEL

class Element {

refers DataItem [0..*] dataItems

refers Condition [0..*] conditions

refers Event [0..*] events

}

class DataItem {

}

class Condition {

}

class Event {

}

Listing C.1: Xcore implementation of the activity-chart meta-model

Figure C.1: The X-MAN meta-model.

C.2 State-chart Meta-model

The behavioural description of a system is modelled by the meta-model illustrated in

Fig. C.2, which Xcore implementation is listed in Lis. C.2. Its main elements, contained

by the class StateChart, are abstracted by the interfaces IState and IConnector, as well

as by the class Transition.

IState abstracts the concept of state, which can be a MandatoryState (i.e. Start

and End), or a concrete State which can contain zero or more sub-states.

Transition models the change of state triggered by an event. The trigger of a

transition may be an expression that, in a form of a triple (Triple), can combine

events (Event), trigger conditions (Condition) and actions (Action). Source and target

states of a transition are defined by the direct associations from and to with the Vertex

C.2. STATE-CHART META-MODEL 197

interface, which in turn is inherited by IState.

Finally, IConnector abstract the concept of condition connectors, known as Xor

connectors, which model transition branching according to a mutual exclusive condi-

tion.

package uk. xcore . statechart

class StateChart {

contains IState [2..*] states

contains IConnector [0..*] connector

contains Transition [1..*] transition

}

interface IState extends Vertex {

}

interface MandatoryState extends IState {

}

class End extends MandatoryState {

}

class Start extends MandatoryState {

}

class State extends IState {

String name

refers State [0..*] states

}

interface Vertex {

}

interface IConnector extends Vertex {

}

class Xor extends IConnector {

String name

}

class Transition {

String expression

refers Triple triple

refers Vertex [1..1] to

refers Vertex [1..1] from

}

class Triple {

refers Event [0..*] events

refers Condition [0..*] conditions

refers Action [0..*] actions

}

class Event {

String name

}

class Condition {

198 APPENDIX C. FUNCTIONAL MODEL META-MODEL

String conditionCase

}

class Action {

String name

}

Listing C.2: Xcore implementation of the state-chart meta-model

Figure C.2: The state-chart meta-model.

Appendix D

FX-MAN Meta-model

As discussed in chapter 5 and depicted in Fig. 5.1, FX-MAN can be seen a lay-

ered component-model. Consequently, its meta-model depicted in Fig. D.11 (listed

in Lis. D.1) can be described accordingly.

At the lowest level, the class XMANArchitecture models instances of X-MAN archi-

tectures (retrieved from the shared repository) contained in a FXMANArchitecture.

Variability is abstracted by the interface VariationPoint and inherited by the

classes Or, Alternative (both extending NaryVariationPoint) and Optional (which ex-

tends UnaryVariationPoint). Resulting variability is abstracted by the interface Vari-

ant and modelled in terms of tuple of X-MAN sets (TupleXMANSet) and its related

X-MAN sets (XMANSet). The latter may contain aggregations of X-MAN architecture

(Aggregation) resulting from the application of an Or variation point.

The interface FamilyConnector abstracts the family connectors needed to compose

tuples of X-MAN sets. As in X-MAN meta-model, we use two abstract classes to dis-

tinguish between FamilyComposer and FamilyAdapter. The former is extended by the

classes FamilySequencer, FamilyAggregator and FamilySelector ; the latter is extended

by the classes FamilyGuard and FamilyLoop. In order to filter out unwanted prod-

ucts (or not valid according to the feature model), a FamilyComposer can optionally

contain a FamilyFilter, which semantics is defined by one or more objects of type Con-

straint. The resulting products (Product) are referred by a ProductFamily contained

by an FXMANArchitecture.

1In order to simplify the diagram, references to the X-MAN meta-models are not shown.

199

200 APPENDIX D. FX-MAN META-MODEL

package uk. fxman

import org. eclipse .emf. common .util. BasicEList

import uk.xman. xcore . CoordinationConnection

import uk.xman. xcore . Connection

import uk.xman. xcore . DataChannel

import uk.xman. xcore . Service

import uk.xman. xcore . ServiceReference

import uk.xman. xcore . DataElement

import uk.xman. xcore . Composable

import uk.xman. xcore . Connector

import uk.xman. xcore . Input

import uk.xman. xcore . ComponentInstance

enum FamilyLoopType {

DoWhile = 0

WhileDo = 1

}

enum ConstraintType {

Requires = 0

Excludes = 1

}

class FXMANArchitecture {

contains FamilyConnector [0..*] familyConnector

contains XMANArchitecture [1..*] xmanArchitectures

contains FXMANArchitectureInstance [0..*] fxManArchitectures

contains DataChannel [1..*] dataChannels

contains Connection [1..*] connections

contains Service [1..*] services

contains VariationPoint [0..*] variationPoint

contains ProductFamily [0..1] productFamily

String name = ""

String author = ""

String description = ""

}

interface IComponent {

String name = ""

}

class ProductFamily {

refers unordered Product [1..*] products

op void add(Product product) {

products .add(product)

}

op void remove (Product product) {

products . remove (product)

}

op boolean contain (Product product) {

for (Product p : products) {

if (p. equals (product))

201

return true

}

return false

}

op String toString () {

return products . toString ()

}

}

interface Variant {}

class TupleXMANSet extends Variant {

refers XMANSet [1..*] sets

op void add(XMANSet element) {

sets.add(element)

}

op String toString () {

var s = ’<’

for (m: sets) {

s = s + m + if (m != sets.last) ’,’ else ’’

}

s = s + ’>’

return s

}

}

class XMANSet extends Variant {

refers XMANArchitecture [0..*] members

op void add(XMANArchitecture member) {

members .add(member)

}

op String toString () {

var s = ’’

if (members .size > 0) {

s = s + ’{’

for (m: members) {

s = s + m + if (m != members .last) ’,’ else ’’

}

s = s + ’}’

}

else {

s = s + ’\ u2205 ’

}

return s

}

op boolean isEmpty () {

return members .size === 0

}

}

class Aggregation extends XMANArchitecture {

refers XMANArchitecture [2..*] members

refers Service [1..*] services

202 APPENDIX D. FX-MAN META-MODEL

op void add(XMANArchitecture member) {

members .add(member)

}

op String toString () {

var s = ’’

for (m: members) {

s = s + m + if (m != members .last) ’|’ else ’’

}

s = s + ’’

return s

}

}

@Ecore (constraints = " NameCannotBeNull ")

class Product {

String name

refers unordered ComponentInstance [0..*] xmanArchitectures

refers Service [1..*] selectedServices

refers DataElement [0..*] dataElements

refers Composable [1..*] composables

refers Connection [1..*] connections

refers DataChannel [0..*] dataChannels

op boolean isEmpty () {

xmanArchitectures . empty

}

op void add(ComponentInstance xman) {

xmanArchitectures .add(xman)

sort ()

}

op void addAll (ComponentInstance [] xman) {

xmanArchitectures . addAll (xman)

sort ()

}

op void remove (ComponentInstance xman) {

xmanArchitectures . remove (xman)

sort ()

}

op void sort () {

xmanArchitectures . sortInplaceBy [ComponentInstance xman1 | xman1 . hashCode]

}

op Composable [] getConnectedEntities (Connector conn) {

var vals = new BasicEList < Composable >

var coords = connections . filter (CoordinationConnection). filter (coord | coord .

source === conn)

for (coord : coords){

vals.add(coord . target)

}

return vals. toEList

}

203

op Composable getRoot () {

for(composable : composables) {

var coords = connections . filter (CoordinationConnection). filter (coord | coord .

target === composable)

if (coords .size == 0)

return composable

}

return null;

}

op String toString () {

var s = ’[’

if (getRoot != null)

s = s + visit (getRoot)

else if (xmanArchitectures .size > 0) {

for(xa : xmanArchitectures) {

s = s + xa.name

s = s + if (xa != xmanArchitectures .last) ’,’ else ’’

}

}

else

s = s + ’empty ’

s = s + ’]’

return s

}

op String visit (Composable composable) {

var s = ’’

if (composable instanceof Connector) {

s = s + composable . class . simpleName . replace ("Impl","") + ’(’

val conns = connections . filter (CoordinationConnection). filter (

connection | connection . source === composable)

for (conn : conns) {

if (conn. target instanceof Connector)

s = s + visit (conn. target)

else

s = s + (conn. target as XMANArchitecture).name

s = s + if (conn != conns .last) ’,’ else ’’

}

s = s + ’)’

}

return s

}

op int hashCode () {

this. xmanArchitectures . hashCode ()

}

op boolean equals (Object object) {

if (object instanceof Product) {

(object as Product). xmanArchitectures . equals (this. xmanArchitectures)

}

else {

204 APPENDIX D. FX-MAN META-MODEL

false

}

}

}

interface FamilyComposable {

}

class FamilyFilter {

contains Constraint [1..*] constraints

op void removeConstraint (String op1 , String op2 , ConstraintType cons) {

for(c : constraints){

if(c. firstOperand . equals (op1) && c. secondOperand . equals (op2) && c. constraint .

equals (cons)) {

constraints . remove (c)

return

}

}

}

}

class Constraint {

String firstOperand

String secondOperand

ConstraintType constraint

op String toString () {

if(constraint . equals (ConstraintType . REQUIRES)){

return firstOperand +" Requires "+ secondOperand ;

}

else return firstOperand +" Excludes "+ secondOperand ;

}

}

@Ecore (constraints = " TerminalCannotBeNull ")

interface FamilyConnector extends FamilyConnectorTerminal {

String name

refers FamilyConnector parent

refers FamilyConnectorTerminal [2..*] productFamilies

}

abstract class FamilyComposer extends FamilyConnector {

refers FamilyConnection [2..*] connections

contains FamilyFilter [0..1] filter

}

@Ecore (constraints = " NameCannotBeNull ")

class FamilySequencer extends FamilyComposer {

}

class FamilyAggregator extends FamilyComposer {

}

@Ecore (constraints = " InputCannotBeNull ")

class FamilySelector extends FamilyComposer {

contains Input [1..*] input

}

abstract class FamilyAdapter extends FamilyConnector {

205

contains Input [1..*] input

refers FamilyConnection [1..1] connection

}

@Ecore (constraints = " ConnectionCannotBeNull InputCannotBeNull ")

class FamilyGuard extends FamilyAdapter {

}

@Ecore (constraints = " ConnectionCannotBeNull InputCannotBeNull ")

class FamilyLoop extends FamilyAdapter {

FamilyLoopType loopType

}

interface VariationPoint extends FamilyConnectorTerminal , VariationPointTerminal {

}

interface NaryVariationPoint {

refers VariationPointTerminal [2..*] familyMembers

}

interface UnaryVariationPoint {

refers VariationPointTerminal [1..1] familyMember

}

@Ecore (constraints = " VariationTerminalCannotBeNull ")

class Alternative extends VariationPoint , NaryVariationPoint {

}

@Ecore (constraints = " VariationTerminalCannotBeNull ")

class Or extends VariationPoint , NaryVariationPoint {

}

@Ecore (constraints = " VariationTerminalCannotBeNull ")

class Optional extends VariationPoint , UnaryVariationPoint {

}

interface ConnectionTerminal {

}

interface FamilyConnectorTerminal extends ConnectionTerminal {

}

interface VariationPointTerminal extends ConnectionTerminal {

}

class XMANArchitecture extends FamilyConnectorTerminal , VariationPointTerminal ,

FamilyComposable , ComponentInstance {

op boolean isEmpty () {

return componentReference != null

}

op String toString () {

return name

}

}

class FamilyConnection extends Connection {

refers FamilyConnector [1..1] source

refers FamilyConnectorTerminal [1..1] target

String condition = ""

}

class VariantConnection extends Connection {

refers VariationPoint [1..1] source

206 APPENDIX D. FX-MAN META-MODEL

refers VariationPointTerminal [1..1] target

}

class FXMANArchitectureInstance extends FamilyConnectorTerminal ,

VariationPointTerminal , FamilyComposable {

String name = ""

contains Service [1..*] services

contains FXMANArchitecture refFXMANArchitecture

}

Listing D.1: Xcore implementation of the X-MAN meta-model

207

Figure D.1: The FX-MAN meta-model.

Appendix E

Variation Operators

Implementation

package fxman . metamodel . helper ;

import java.util. ArrayList ;

import java.util.List;

import java.util.Set;

import org. paukov . combinatorics . Factory ;

import org. paukov . combinatorics . Generator ;

import org. paukov . combinatorics . ICombinatoricsVector ;

import uk. fxman . Aggregation ;

import uk. fxman . FxmanFactory ;

import uk. fxman . TupleXMANSet ;

import uk. fxman . Variant ;

import uk. fxman . XMANArchitecture ;

import uk. fxman . XMANSet ;

import com. google . common . collect . ImmutableList ;

import com. google . common . collect . ImmutableSet ;

import com. google . common . collect .Sets;

public class VariationGenerator {

public static List <List <XMANSet >> distribute (List <List <XMANSet >> input) {

List <List <XMANSet >> res = new ArrayList <List <XMANSet > >();

ImmutableList .Builder < ImmutableSet <XMANSet >> listBuilder =

new ImmutableList .Builder < ImmutableSet <XMANSet > >();

for (List <XMANSet > lxset : input) {

ImmutableSet <XMANSet > isxset = ImmutableSet . copyOf (lxset);

208

209

listBuilder .add(isxset);

}

// generate list of set of XMANSet

final ImmutableList < ImmutableSet <XMANSet >> listOfSetOfXMANSets =

listBuilder . build ();

// perform cartesian products on this list

Set <List <XMANSet >> products = Sets. cartesianProduct (

listOfSetOfXMANSets);

res. addAll (products);

return res;

}

public static TupleXMANSet GenericOR (List <Variant > variants) {

TupleXMANSet xmanSetTuple = FxmanFactory . eINSTANCE . createTupleXMANSet

();

// Create the initial vector

ICombinatoricsVector <Variant > inputTuple =

Factory . createVector (variants . toArray (new Variant [0]));

// create a subsets generator

Generator <Variant > generator = Factory . createSubSetGenerator (

inputTuple);

List < ICombinatoricsVector <Variant >> combis = generator .

generateAllObjects ();

for (ICombinatoricsVector <Variant > combination : combis) {

// work around to filter out the empty family set returned

automatically

// by the combinatoric library

if (combination . getSize () == 0)

continue ;

// add straight away into X- MAN Set combination of 1 element

if (combination . getSize () == 1) {

Variant var = combination . getValue (0);

if (var instanceof XMANSet)

xmanSetTuple .add ((XMANSet) var);

else {

for (XMANSet set : ((TupleXMANSet)var).

getSets ()) {

xmanSetTuple .add(set);

}

}

}

210 APPENDIX E. VARIATION OPERATORS IMPLEMENTATION

else {

ImmutableList .Builder < ImmutableSet <XMANSet >>

listBuilder =

new ImmutableList .Builder < ImmutableSet <XMANSet > >();

// populate list builder with elements from

combination

for(Variant variant : combination) {

if (variant instanceof XMANSet) {

ImmutableSet <XMANSet > setOfXMANSet =

ImmutableSet .of ((XMANSet) variant)

;

listBuilder .add(setOfXMANSet);

}

else {

ImmutableSet <XMANSet > setOfXMANSet =

ImmutableSet . copyOf (((

TupleXMANSet) variant). getSets ());

listBuilder .add(setOfXMANSet);

}

}

// generate list of sets of XMANSet

final ImmutableList < ImmutableSet <XMANSet >>

listOfSetOfXMANSets = listBuilder . build ();

// perform cartesian products on this list

Set <List <XMANSet >> products = Sets. cartesianProduct (

listOfSetOfXMANSets);

// go through the products and perform 2nd cartesian

product

for (List <XMANSet > listOfXMANSet : products) {

ImmutableList .Builder < ImmutableSet <

XMANArchitecture >> listBuilder1 =

new ImmutableList .Builder < ImmutableSet <

XMANArchitecture > >();

// populate list builder with elements from

combination

for (XMANSet set: listOfXMANSet) {

ImmutableSet < XMANArchitecture >

setOfXMANArchitecture =

ImmutableSet . copyOf (set.

getMembers ());

listBuilder1 .add(

setOfXMANArchitecture);

}

// generate list of XMANSet

211

final ImmutableList < ImmutableSet <

XMANArchitecture >> listOfXMANSets =

listBuilder1 . build ();

// create an XMANSet

XMANSet set1 = FxmanFactory . eINSTANCE .

createXMANSet ();

// perform aggregation composition on

cartesian products on this list

Set <List < XMANArchitecture >> products1 = Sets.

cartesianProduct (listOfXMANSets);

for (List < XMANArchitecture > product :

products1) {

// create an Aggregation set per

combination with 2 or more

elements

Aggregation aggr = FxmanFactory .

eINSTANCE . createAggregation ();

for (XMANArchitecture arch : product)

aggr.add(arch);

set1.add(aggr);

}

xmanSetTuple .add(set1);

}

}

}

return xmanSetTuple ;

}

public static TupleXMANSet GenericOR (TupleXMANSet sets) {

TupleXMANSet xmanSetTuple = FxmanFactory . eINSTANCE . createTupleXMANSet

();

// Create the initial vector

ICombinatoricsVector <XMANSet > inputTuple =

Factory . createVector (sets. getSets (). toArray (new XMANSet [0]));

// create a subsets generator

Generator <XMANSet > generator = Factory . createSubSetGenerator (

inputTuple);

List < ICombinatoricsVector <XMANSet >> combis = generator .

generateAllObjects ();

for (ICombinatoricsVector <XMANSet > combi : combis) {

212 APPENDIX E. VARIATION OPERATORS IMPLEMENTATION

// work around to filter out the empty family set returned

automatically

// by the combinatoric library

if (combi . getSize () == 0)

continue ;

// add straight away into X- MAN Set combination of 1 element

if (combi . getSize () == 1)

xmanSetTuple .add(combi . getValue (0));

else {

ImmutableList .Builder < ImmutableSet < XMANArchitecture >>

listBuilder =

new ImmutableList .Builder < ImmutableSet <

XMANArchitecture > >();

// populate list builder with elements from

combination

for(XMANSet set: combi) {

ImmutableSet < XMANArchitecture >

setOfXMANArchitecture = ImmutableSet .

copyOf (set. getMembers ());

listBuilder .add(setOfXMANArchitecture);

}

// generate list of XMANSet

final ImmutableList < ImmutableSet < XMANArchitecture >>

listOfXMANSets = listBuilder . build ();

// create an XMANSet

XMANSet set = FxmanFactory . eINSTANCE . createXMANSet ();

// perform aggregation composition on cartesian

products on this list

Set <List < XMANArchitecture >> products = Sets.

cartesianProduct (listOfXMANSets);

for (List < XMANArchitecture > product : products) {

// create an Aggregation set per combination

with 2 or more elements

Aggregation aggr = FxmanFactory . eINSTANCE .

createAggregation ();

for (XMANArchitecture arch : product)

aggr.add(arch);

set.add(aggr);

}

// then add the X- MANSet into the resulted tuple

xmanSetTuple .add(set);

}

}

213

return xmanSetTuple ;

}

public static TupleXMANSet GenericALT (List <Variant > sets) {

TupleXMANSet tuple = FxmanFactory . eINSTANCE . createTupleXMANSet ();

for (Variant set : sets) {

if (set instanceof XMANSet)

tuple .add ((XMANSet) set);

else if (set instanceof TupleXMANSet) {

for (XMANSet subset : ((TupleXMANSet) set). getSets ())

tuple .add(subset);

}

}

return tuple ;

}

public static TupleXMANSet OPT(XMANSet set) {

TupleXMANSet xmanSetTuple = FxmanFactory . eINSTANCE . createTupleXMANSet

();

xmanSetTuple .add(set);

// create an empty family set

XMANSet empty = FxmanFactory . eINSTANCE . createXMANSet ();

xmanSetTuple .add(empty);

return xmanSetTuple ;

}

public static TupleXMANSet OPT(TupleXMANSet sets) {

// check if there is no empty set yet

if (! Util. containsEmptyXMANSet (sets)) {

// create an empty tuple

XMANSet empty = FxmanFactory . eINSTANCE . createXMANSet ();

// add it

sets.add(empty);

}

return sets;

}

public static TupleXMANSet GenericOPT (Variant variant) {

if (variant instanceof XMANSet)

return OPT ((XMANSet) variant);

else

214 APPENDIX E. VARIATION OPERATORS IMPLEMENTATION

return OPT ((TupleXMANSet) variant);

}

}

Listing E.1: Xcore implementation of the X-MAN meta-model.

Appendix F

Product Family Architecture

Composer Implementation

package fxman . spray . architecture . compiler ;

[...]

public final class ArchitectureComposer {

private static final int UNARY = 1;

private static final int BINARY = 2;

private int level = 0;

private List <String > pfList = new ArrayList < >();

private Logger LOGGER = Logger . getLogger (ArchitectureComposer . class);

private FXMANArchitecture fxmanArch ;

public ArchitectureComposer (FXMANArchitecture arch) {

this. fxmanArch = arch;

}

/**

* Quietly generate products (product families)

*/

public void doGenerate () {

doGenerate (false , false);

}

public void doGenerate (ProductFamily pf , Product prd , String name) {

addExposedServices (pf);

addDataChannels (pf);

for (final Product p : pf. getProducts ()) {

215

216APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

if (prd == p) {

p. setName (name);

// Create a new diagram

final IDiagramContainer diagramContainer = GraphitiUtils .

createDiagram (GraphitiConstants . REFERENCE_DESIGN , p.

getName ());

final IFeatureProvider fp = diagramContainer .

getDiagramTypeProvider (). getFeatureProvider ();

final TransactionalEditingDomain editingDomain =

diagramContainer . getDiagramBehavior ().

getEditingDomain ();

editingDomain . getCommandStack (). execute (new

RecordingCommand (editingDomain) {

@Override

protected void doExecute () {

Map <EObject , EObject > componentInstancesMap

= createAllComponentInstances (fp , p.

getXmanArchitectures ());

Map <EObject , EObject > servicesMap =

createAllExposedService (fp , p.

getSelectedServices ());

Map <EObject , EObject > connectorsMap =

createAllConnectors (fp , p.

getComposables ());

createAllCoordinationConnections (fp , Util.

getCoordConnections (p),

componentInstancesMap , connectorsMap);

createAllDataChannels (fp , p, p.

getDataChannels () ,

componentInstancesMap , servicesMap ,

connectorsMap);

createAllServiceReferences (fp , p, p.

getDataChannels () ,

componentInstancesMap , servicesMap);

}

});

break ;

}

}

}

/**

* Generate products and product model files

*

* @param debug

* print out more details

* @param createFile

* create product model files

217

*/

public void doGenerate (boolean debug , boolean createFile) {

int counter = 0;

FamilyConnector rootFConnector = (FamilyConnector) Util. getRoot (

fxmanArch);

if (rootFConnector != null) {

ProductFamily pFamily ;

try {

pFamily = (ProductFamily) composeArchitecture (

rootFConnector);

addExposedServices (pFamily);

addDataChannels (pFamily);

if (debug) {

for (int i = pfList .size () - 1; i >= 0; i--) {

ConsoleManager . println (pfList .get(i));

}

}

if (createFile) {

for (final Product p : pFamily . getProducts ()) {

p. setName (" Product_ " + ++ counter);

// Create a new diagram

final IDiagramContainer diagramContainer =

GraphitiUtils . createDiagram (

GraphitiConstants . REFERENCE_DESIGN , p.

getName ());

final IFeatureProvider fp =

diagramContainer . getDiagramTypeProvider

(). getFeatureProvider ();

final TransactionalEditingDomain

editingDomain = diagramContainer .

getDiagramBehavior (). getEditingDomain ()

;

editingDomain . getCommandStack (). execute (new

RecordingCommand (editingDomain) {

@Override

protected void doExecute () {

Map <EObject , EObject >

componentInstancesMap =

createAllComponentInstances

(fp , p.

getXmanArchitectures ());

Map <EObject , EObject >

servicesMap =

createAllExposedService (

fp , p. getSelectedServices

());

218APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

Map <EObject , EObject >

connectorsMap =

createAllConnectors (fp , p

. getComposables ());

createAllCoordinationConnections

(fp , Util.

getCoordConnections (p),

componentInstancesMap ,

connectorsMap);

createAllDataChannels (fp , p,

p. getDataChannels () ,

componentInstancesMap ,

servicesMap ,

connectorsMap);

createAllServiceReferences (fp

, p, p. getDataChannels () ,

componentInstancesMap ,

servicesMap);

}

});

}

}

} catch (Exception e) {

LOGGER . error (" Error while creating the product family .", e);

}

}

}

/**

* Create model and diagram for a list of Products

*

* @param products

*/

public static void createModelAndDiagram (final List <Product > products) {

int counter = 0;

for (final Product p : products) {

p. setName (" Product_ " + ++ counter);

// Create a new diagram

final IDiagramContainer diagramContainer = GraphitiUtils . createDiagram (

GraphitiConstants . REFERENCE_DESIGN , p. getName ());

final IFeatureProvider fp = diagramContainer . getDiagramTypeProvider ().

getFeatureProvider ();

final TransactionalEditingDomain editingDomain = diagramContainer .

getDiagramBehavior (). getEditingDomain ();

219

editingDomain . getCommandStack (). execute (new RecordingCommand (

editingDomain) {

@Override

protected void doExecute () {

Map <EObject , EObject > componentInstancesMap =

createAllComponentInstances (fp , p.

getXmanArchitectures ());

Map <EObject , EObject > connectorsMap = createAllConnectors

(fp , p. getComposables ());

Map <EObject , EObject > servicesMap =

createAllExposedService (fp , p. getSelectedServices ());

createAllDataChannels (fp , p, p. getDataChannels () ,

componentInstancesMap , servicesMap , connectorsMap);

}

});

}

}

private void createAllCoordinationConnections (IFeatureProvider fp , Iterable <

CoordinationConnection > connections , Map <EObject , EObject > componentInstancesMap ,

Map <EObject , EObject > connectorsMap) {

Validate . noNullElements (new Object [] { fp , connections , componentInstancesMap ,

connectorsMap });

ICreateConnectionFeature createConnectionFeature = null;

CreateConnectionContext createConnectionContext = new CreateConnectionContext

();

Diagram currentDiagram = fp. getDiagramTypeProvider (). getDiagram ();

for (CoordinationConnection connection : connections) {

createConnectionFeature = GraphitiUtils . getCreateConnectionFeauture (fp.

getCreateConnectionFeatures () , " Coordination ");

// Set the connection SOURCE

EObject bo = connectorsMap .get(connection . getSource ());

PictogramElement sourcePe = Graphiti . getLinkService ().

getPictogramElements (currentDiagram , bo).get(GraphitiConstants .

FIRST_ELEMENT);

createConnectionContext . setSourcePictogramElement (sourcePe);

// Set the connection TARGET

bo = getRightMap (connection , componentInstancesMap , connectorsMap).get(

connection . getTarget ());

PictogramElement targetPe = Graphiti . getLinkService ().

getPictogramElements (currentDiagram , bo).get(GraphitiConstants .

FIRST_ELEMENT);

createConnectionContext . setTargetPictogramElement (targetPe);

220APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

org. eclipse . graphiti .mm. pictograms . Connection c =

createConnectionFeature . create (createConnectionContext);

PictogramElement pe = c;

Object a = Graphiti . getLinkService ().

getBusinessObjectForLinkedPictogramElement (pe);

CoordinationConnection res = (CoordinationConnection) a;

if (connection . getCondition () != null) res. setCondition (setCondition (

connection , fxmanArch));

}

}

private static Map <EObject , EObject > getRightMap (CoordinationConnection connection ,

Map <EObject , EObject > componentInstancesMap , Map <EObject , EObject > connectorMap)

{

return (connection . getTarget () instanceof Connector) ? connectorMap :

componentInstancesMap ;

}

private static Map <EObject , EObject > createAllConnectors (IFeatureProvider fp , EList <

Composable > composables) {

Validate . noNullElements (new Object [] { fp , composables });

Map <EObject , EObject > ret = new HashMap <EObject , EObject >();

ICreateFeature createFeature = null;

CreateContext createContext = new CreateContext ();

createContext . setTargetContainer (fp. getDiagramTypeProvider (). getDiagram ());

createContext . setLocation (0, 0);

for (Composable composable : composables) {

int i = 0;

String createFeatureName = getComposableCreateFeatureName (composable);

createFeature = GraphitiUtils . getCreateFeature (fp. getCreateFeatures () ,

createFeatureName);

Connector newConnector = (Connector) createFeature . create (createContext

)[0];

newConnector . setName (getComposableName (composable , i++));

newConnector . setShowedName (newConnector . getName ());

List <Input > listOfInputs = new ArrayList <Input >();

if (newConnector instanceof Selector) {

listOfInputs = ((Selector) composable). getInput ();

updateDefaultInput (((Selector) composable). getInput ().get (0) , ((

Selector) newConnector). getInput ().get (0) , fp);

}

else if (newConnector instanceof Loop) {

listOfInputs = ((Loop) composable). getInput ();

updateDefaultInput (((Loop) composable). getInput ().get (0) , ((Loop

) newConnector). getInput ().get (0) , fp);

221

}

else if (newConnector instanceof Guard) {

listOfInputs = ((Guard) composable). getInput ();

updateDefaultInput (((Guard) composable). getInput ().get (0) , ((

Guard) newConnector). getInput ().get (0) , fp);

}

createInputs (listOfInputs , newConnector , fp);

ret.put(composable , newConnector);

}

return ret;

}

private static void updateDefaultInput (Input inputReference , Input inputTarget ,

IFeatureProvider fp) {

inputTarget . setName (inputReference . getName ());

inputTarget . setDataType (inputReference . getDataType ());

inputTarget . setOrder (inputReference . getOrder ());

}

private static void createInputs (List <Input > listOfInputs , Connector connector ,

IFeatureProvider fp) {

int order = 0;

// Create inputs

for (Input inp : listOfInputs) {

if (order == 0) {

if (connector instanceof Selector) {

updateDefaultInput (inp , ((Selector) connector). getInput ()

.get (0) , fp);

}

else if (connector instanceof Loop) {

updateDefaultInput (inp , ((Loop) connector). getInput ().get

(0) , fp);

}

else if (connector instanceof Guard) {

updateDefaultInput (inp , ((Guard) connector). getInput ().

get (0) , fp);

}

order ++;

continue ;

}

Point inputPosition = new Point (GraphitiConstants . INITIAL_X_PARAMETER ,

GraphitiConstants . INITIAL_Y_PARAMETER);

ContainerShape selectorContainerShape = GraphitiUtils .

getTargetContainerShape (fp. getDiagramTypeProvider (). getDiagram () ,

connector);

ContainerShape inputContainerShape = null;

for (PictogramElement shape : selectorContainerShape . getChildren ()) {

222APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

if (! shape . getGraphicsAlgorithm (). getLineVisible ()) {

inputContainerShape = (ContainerShape) shape ;

break ;

}

}

CreateContext createParameterContext = new CreateContext ();

createParameterContext . setTargetContainer (inputContainerShape);

createParameterContext . setLocation (inputPosition .x, inputPosition .y);

ICreateFeature iCreateFeature = GraphitiUtils . getCreateFeature (fp.

getCreateFeatures () , " Input ");

Input createdInput = (Input) iCreateFeature . create (

createParameterContext)[GraphitiConstants . FIRST];

createdInput . setName (inp. getName ());

createdInput . setDataType (inp. getDataType ());

createdInput . setOrder (inp. getOrder ());

order ++;

inputPosition .y += GraphitiConstants . SPACING_PARAMETER ;

}

}

private static String getComposableCreateFeatureName (Composable composable) {

String composableSimpleName = composable . getClass (). getSimpleName ();

return StringUtils . removeEnd (composableSimpleName , "Impl");

}

private static Map <EObject , EObject > createAllComponentInstances (IFeatureProvider fp ,

EList < ComponentInstance > xmanArchitectures) {

Validate . noNullElements (new Object [] { fp , xmanArchitectures });

Map <EObject , EObject > ret = new HashMap <EObject , EObject >();

for (ComponentInstance xmanArch : xmanArchitectures) {

ICreateFeature createComponentInstance = GraphitiUtils . getCreateFeature

(fp. getCreateFeatures () , " ComponentInstance ");

CreateContext createContext = new CreateContext ();

createContext . setTargetContainer (fp. getDiagramTypeProvider (). getDiagram

());

createContext . setLocation (0, 0);

ComponentInstance newComponentInstance = (ComponentInstance)

createComponentInstance . create (createContext)[0];

newComponentInstance . setName (xmanArch . getName ());

newComponentInstance . setComponentReference (xmanArch .

getComponentReference ());

for (Service service : xmanArch . getSelectedServices ()) {

223

GraphitiUtils . createServiceWithParameters (GraphitiUtils .

getTargetContainerShape (fp. getDiagramTypeProvider ().

getDiagram () , newComponentInstance), fp , service);

}

ret.put(xmanArch , newComponentInstance);

}

return ret;

}

public Object composeArchitecture (ConnectionTerminal node) throws Exception {

level ++;

LOGGER . debug (" Compiling FX -MAN archictecture level " + level + ".");

Object ret = null;

if (node instanceof FamilyConnector) {

ret = FxmanFactory . eINSTANCE . createProductFamily ();

// container for variants at level below

EList <Object > variants = new BasicEList <Object >();

// recursively go to the next level and calculate variants from level

// below

// they can be either variation operators or other family connectors

for (ConnectionTerminal child : Util. getConnectedEntities ((

FamilyConnector) node , fxmanArch)) {

variants .add(composeArchitecture (child));

}

// process composition of variants into product family at the current

// level

// only two kinds of composition : unary or n-ary

if (node instanceof FamilySequencer && variants .size () >= BINARY) {

Connector newConnector = XcoreFactory . eINSTANCE . createSequencer

();

newConnector . setName (((FamilyConnector) node). getName ());

ret = naryFamilyComposer (variants , newConnector);

}

else if (node instanceof FamilySelector && variants .size () >= BINARY) {

Connector newConnector = XcoreFactory . eINSTANCE . createSelector ()

;

newConnector . setName (((FamilyConnector) node). getName ());

addInputToConnector (((FamilySelector) node). getInput () ,

newConnector);

ret = naryFamilyComposer (variants , newConnector);

}

else if (node instanceof FamilyAggregator && variants .size () >= BINARY)

{

224APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

Connector newConnector = XcoreFactory . eINSTANCE . createAggregator

();

newConnector . setName (((FamilyConnector) node). getName ());

ret = naryFamilyComposer (variants , newConnector);

}

else if (node instanceof FamilyLoop && variants .size () == UNARY) {

AdapterConnector newConnector = XcoreFactory . eINSTANCE .

createLoop ();

newConnector . setName (((FamilyConnector) node). getName ());

addInputToConnector (((FamilyLoop) node). getInput () , newConnector

);

ret = unaryFamilyComposer (variants .get (0) , newConnector);

}

else if (node instanceof FamilyGuard && variants .size () == UNARY) {

AdapterConnector newConnector = XcoreFactory . eINSTANCE .

createGuard ();

newConnector . setName (((FamilyConnector) node). getName ());

addInputToConnector (((FamilyGuard) node). getInput () ,

newConnector);

ret = unaryFamilyComposer (variants .get (0) , newConnector);

}

// apply the filter

if (node instanceof FamilyComposer) {

if (ret != null && ((FamilyComposer) node). getFilter () != null

&& !((FamilyComposer) node). getFilter (). getConstraints ().

isEmpty ()) {

ret = filterProducts ((ProductFamily) ret , ((

FamilyComposer) node). getFilter ().gets ());

}

}

}

else if (node instanceof VariationPoint) {

// container for variants

List <Variant > variants = new ArrayList <Variant >();

// recursively go down and calculate the variants at the lower level

List < VariationPointTerminal > objects = Util. getConnectedEntities ((

VariationPoint) node , fxmanArch);

for (VariationPointTerminal object : objects) {

Object obj = composeArchitecture (object);

// if the calculation indeed returns variants and store them

if (obj instanceof Variant)

variants .add ((Variant) obj);

else ConsoleManager . println (" Variation operator " + node.

getClass (). getCanonicalName () + " encounters unsupported

type.");

225

}

if (variants .size () == 0) { throw new Exception (" Empty set of variants

encountered ."); }

// process the variation operation to generate more variants at the

// current level

if (node instanceof Optional)

ret = VariationGenerator . GenericOPT (variants .get (0));

else if (node instanceof Alternative)

ret = VariationGenerator . GenericALT (variants);

else ret = VariationGenerator . GenericOR (variants);

}

else if (node instanceof XMANArchitecture) {

ret = FxmanFactory . eINSTANCE . createXMANSet ();

((XMANSet) ret). getMembers ().add ((XMANArchitecture) node);

}

else if (node instanceof FXMANArchitectureInstance) {

FXMANArchitectureInstance familyInstance = (FXMANArchitectureInstance)

node;

ret = new ArchitectureComposer (familyInstance . getRefFXMANArchitecture ()

). composeArchitecture (Util. getRoot (familyInstance .

getRefFXMANArchitecture ()));

}

LOGGER . debug (" Complete FX -MAN archictecture level " + level + ".");

level --;

return ret;

}

public Object composeArchitectureForProductExplorer (ConnectionTerminal node) throws

Exception {

level ++;

LOGGER . debug (" Compiling FX -MAN archictecture level " + level + ".");

Object ret = null;

if (node instanceof FamilyConnector) {

ret = FxmanFactory . eINSTANCE . createProductFamily ();

// container for variants at level below

EList <Object > variants = new BasicEList <Object >();

// recursively go to the next level and calculate variants from level

// below

// they can be either variation operators or other family connectors

226APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

for (ConnectionTerminal child : Util. getConnectedEntities ((

FamilyConnector) node , fxmanArch)) {

variants .add(composeArchitectureForProductExplorer (child));

}

// process composition of variants into product family at the current

// level

// only two kinds of composition : unary or n-ary

if (node instanceof FamilySequencer && variants .size () >= BINARY) {

Connector newConnector = XcoreFactory . eINSTANCE . createSequencer

();

newConnector . setName (((FamilyConnector) node). getName ());

ret = naryFamilyComposer (variants , newConnector);

}

else if (node instanceof FamilySelector && variants .size () >= BINARY) {

Connector newConnector = XcoreFactory . eINSTANCE . createSelector ()

;

newConnector . setName (((FamilyConnector) node). getName ());

ret = naryFamilyComposer (variants , newConnector);

}

else if (node instanceof FamilyAggregator && variants .size () >= BINARY)

{

Connector newConnector = XcoreFactory . eINSTANCE . createAggregator

();

newConnector . setName (((FamilyConnector) node). getName ());

ret = naryFamilyComposer (variants , newConnector);

}

else if (node instanceof FamilyLoop && variants .size () == UNARY) {

AdapterConnector newConnector = XcoreFactory . eINSTANCE .

createLoop ();

newConnector . setName (((FamilyConnector) node). getName ());

ret = unaryFamilyComposer (variants .get (0) , newConnector);

}

else if (node instanceof FamilyGuard && variants .size () == UNARY) {

AdapterConnector newConnector = XcoreFactory . eINSTANCE .

createGuard ();

newConnector . setName (((FamilyConnector) node). getName ());

ret = unaryFamilyComposer (variants .get (0) , newConnector);

}

// apply the filter

if (node instanceof FamilyComposer) {

if (ret != null && ((FamilyComposer) node). getFilter () != null

&& !((FamilyComposer) node). getFilter (). getConstraints ().

isEmpty ()) {

ret = filterProducts ((ProductFamily) ret , ((

FamilyComposer) node). getFilter (). getConstraints ());

}

227

}

}

else if (node instanceof VariationPoint) {

// container for variants

List <Variant > variants = new ArrayList <Variant >();

// recursively go down and calculate the variants at the lower level

List < VariationPointTerminal > objects = Util. getConnectedEntities ((

VariationPoint) node , fxmanArch);

for (VariationPointTerminal object : objects) {

Object obj = composeArchitectureForProductExplorer (object);

// if the calculation indeed returns variants and store them

if (obj instanceof Variant)

variants .add ((Variant) obj);

else ConsoleManager . println (" Variation operator " + node.

getClass (). getCanonicalName () + " encounters unsupported

type.");

}

if (variants .size () == 0) { throw new Exception (" Empty set of variants

encountered ."); }

// process the variation operation to generate more variants at the

// current level

if (node instanceof Optional)

ret = VariationGenerator . GenericOPT (variants .get (0));

else if (node instanceof Alternative)

ret = VariationGenerator . GenericALT (variants);

else ret = VariationGenerator . GenericOR (variants);

}

else if (node instanceof XMANArchitecture) {

ret = FxmanFactory . eINSTANCE . createXMANSet ();

((XMANSet) ret). getMembers ().add ((XMANArchitecture) node);

}

else if (node instanceof FXMANArchitectureInstance) {

FXMANArchitectureInstance familyInstance = (FXMANArchitectureInstance)

node;

ret = new ArchitectureComposer (familyInstance . getRefFXMANArchitecture ()

). composeArchitecture (Util. getRoot (familyInstance .

getRefFXMANArchitecture ()));

}

LOGGER . debug (" Complete FX -MAN archictecture level " + level + ".");

level --;

return ret;

}

228APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

private Object unaryFamilyComposer (Object variant , AdapterConnector connector) {

ProductFamily retPf = FxmanFactory . eINSTANCE . createProductFamily ();

EList < ProductFamily > pfs = new BasicEList < ProductFamily >();

convert (pfs , variant);

// call the family connectors to perform composition

retPf = unaryFamilyComposer (pfs.get (0) , connector);

return retPf ;

}

/**

* Compose variants into product family

*

* @param variants

* @param connector

* @return

*/

private ProductFamily naryFamilyComposer (EList <Object > variants , Connector connector)

{

ProductFamily retPf = FxmanFactory . eINSTANCE . createProductFamily ();

// convert list of variants into list of product family in order to be

// composable

// by the existing implementation

EList < ProductFamily > pfs = new BasicEList < ProductFamily >();

for (Object variant : variants) {

convert (pfs , variant);

}

// call the family connectors to perform composition

retPf = naryFamilyComposer (pfs , connector);

return retPf ;

}

/**

* @param pfs

* @param variant

*/

public void convert (EList < ProductFamily > pfs , Object variant) {

if (variant instanceof ProductFamily)

pfs.add ((ProductFamily) variant);

else if (variant instanceof TupleXMANSet) {

ProductFamily pf = FxmanFactory . eINSTANCE . createProductFamily ();

// flatten all the XMANSet in the tuple

229

for (XMANSet xmanSet : ((TupleXMANSet) variant). getSets ()) {

if (xmanSet . isEmpty ()) {

Product p = FxmanFactory . eINSTANCE . createProduct ();

pf.add(p);

}

else {

// create a product for each XMANArchitecture in the

XMANSet

for (XMANArchitecture arch : xmanSet . getMembers ()) {

// create a product and populate it with

Aggregator

Product p = FxmanFactory . eINSTANCE . createProduct ()

;

if (arch instanceof Aggregation) {

p. setName ("Agg");

// add the Aggregator connector

Aggregator aggr = XcoreFactory . eINSTANCE .

createAggregator ();

p. getComposables ().add(aggr);

for (XMANArchitecture childArch : ((

Aggregation) arch). getMembers ()) {

// add the XMAN architecture

p.add(childArch);

// create a coordination connection

linking Aggregator and the

// architecture

CoordinationConnection coord =

XcoreFactory . eINSTANCE .

createCoordinationConnection ();

coord . setSource (aggr);

coord . setTarget (childArch);

aggr. getConnections ().add(coord);

// add the coordination connection

p. getConnections ().add(coord);

}

}

else {

p. setName (arch. getName ());

p.add(arch);

}

// add the product into the product family

pf.add(p);

}

}

}

pfs.add(pf);

230APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

}

else if (variant instanceof XMANSet) {

ProductFamily pf = FxmanFactory . eINSTANCE . createProductFamily ();

XMANSet xmanSet = ((XMANSet) variant);

// if the XMANSet is empty - as generated from Optional operator

// create a respective Product

if (xmanSet . isEmpty ()) {

Product p = FxmanFactory . eINSTANCE . createProduct ();

// add the product into the product family

pf.add(p);

}

// otherwise create a Product per XMANArchitecture in non empty XMANSet

else {

// create a product for each XMANArchitecture in the XMANSet

for (XMANArchitecture arch : xmanSet . getMembers ()) {

// create a product and populate it with Aggregator

Product p = FxmanFactory . eINSTANCE . createProduct ();

if (arch instanceof Aggregation) {

p. setName ("Agg");

Aggregator aggr = XcoreFactory . eINSTANCE .

createAggregator ();

// add the Aggregator connector

p. getComposables ().add(aggr);

for (XMANArchitecture childArch : ((Aggregation)

arch). getMembers ()) {

// add the XMAN architecture

p.add(childArch);

// create a coordination connection linking

Aggregator and the

// architecture

CoordinationConnection coord = XcoreFactory

. eINSTANCE . createCoordinationConnection

();

coord . setSource (aggr);

coord . setTarget (childArch);

aggr. getConnections ().add(coord);

// add the coordination connection

p. getConnections ().add(coord);

}

}

else {

p. setName (arch. getName ());

p.add(arch);

}

// add the product into the product family

pf.add(p);

}

231

}

pfs.add(pf);

}

}

private ProductFamily unaryFamilyComposer (ProductFamily pf , AdapterConnector adapter)

{

ProductFamily pFamily = FxmanFactory . eINSTANCE . createProductFamily ();

for (Product product : pf. getProducts ()) {

Connector rootConnector = Util. getRoot (product);

if (rootConnector != null) {

createConnection (product , adapter , rootConnector);

}

else {

createConnection (product , adapter , product . getXmanArchitectures

().get (0));

}

product . getComposables ().add(adapter);

pFamily .add(product);

}

return pFamily ;

}

/**

* Generate many products using a specified connector

*

* @param pflist

* list of product families to be composed

* @param connector

* X- MAN connector to be used for all products

* @return product family

*/

private ProductFamily naryFamilyComposer (List < ProductFamily > pflist , Connector

connector) {

ProductFamily res = binaryFamilyComposer (pflist .get (0) , pflist .get (1) ,

connector);

for (int i = 2; i < pflist .size (); i++) {

res = binaryFamilyComposer (res , pflist .get(i), connector);

}

return res;

}

/**

232APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

* Compose product family 1 and 2 using a connector

*

* @param productFamily1

* @param productFamily2

* @param conn

* @return the combined product family

*/

private ProductFamily binaryFamilyComposer (ProductFamily productFamily1 ,

ProductFamily productFamily2 , Connector conn) {

ProductFamily pFamily = FxmanFactory . eINSTANCE . createProductFamily ();

for (Product product1 : productFamily1 . getProducts ()) {

for (Product product2 : productFamily2 . getProducts ()) {

Product newProduct ;

if (product1 . isEmpty () || product2 . isEmpty ()) {

newProduct = product1 . isEmpty () ? product2 : product1 ;

}

else {

newProduct = FxmanFactory . eINSTANCE . createProduct ();

Connector rootConnector1 = Util. getRoot (product1);

if (rootConnector1 == null) {

for (ComponentInstance xmanArch : product1 .

getXmanArchitectures ()) {

newProduct .add(xmanArch);

createConnection (newProduct , conn , xmanArch

);

}

}

else {

combineProducts (newProduct , product1);

if (conn != rootConnector1) createConnection (

newProduct , conn , rootConnector1);

}

Connector rootConnector2 = Util. getRoot (product2);

if (Util. getRoot (product2) == null) {

for (ComponentInstance xmanArch : product2 .

getXmanArchitectures ()) {

newProduct .add(xmanArch);

createConnection (newProduct , conn , xmanArch

);

}

}

else {

combineProducts (newProduct , product2);

if (conn != rootConnector2) createConnection (

newProduct , conn , rootConnector2);

}

233

if (! newProduct . getComposables (). contains (conn))

newProduct . getComposables ().add(conn);

}

pFamily .add(newProduct);

}

}

return pFamily ;

}

/**

* Combines the old product into the new product

*

* @param newProduct

* @param oldProduct

*/

private void combineProducts (Product newProduct , final Product oldProduct) {

newProduct . addAll (oldProduct . getXmanArchitectures ());

newProduct . getComposables (). addAll (oldProduct . getComposables ());

newProduct . getConnections (). addAll (oldProduct . getConnections ());

newProduct . getDataChannels (). addAll (oldProduct . getDataChannels ());

newProduct . getDataElements (). addAll (oldProduct . getDataElements ());

newProduct . getSelectedServices (). addAll (oldProduct . getSelectedServices ());

}

private void createConnection (Product newProduct , Connector src , Composable trg) {

CoordinationConnection coordinationConnection = XcoreFactory . eINSTANCE .

createCoordinationConnection ();

coordinationConnection . setSource (src);

coordinationConnection . setTarget (trg);

newProduct . getConnections ().add(coordinationConnection);

}

private static String getComposableName (Composable composable , int index) {

return composable . getName (). isEmpty () ? composable . getClass (). getSimpleName ().

replaceAll ("Impl", "") + index : composable . getName ();

}

private void addDataChannels (ProductFamily pf) {

for (Product product : pf. getProducts ()) {

for (DataChannel dataChannel : fxmanArch . getDataChannels ()) {

Data source = dataChannel . getSource ();

Data target = dataChannel . getTarget ();

if (source != null && target != null) {

product . getDataChannels ().add(dataChannel);

}

}

}

234APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

}

public void addExposedServices (ProductFamily pf) {

for (Product product : pf. getProducts ()) {

for (Service service : fxmanArch . getServices ()) {

if (isReferencedServiceExist (product , service)) {

product . getSelectedServices ().add(service);

}

}

}

}

private boolean isReferencedServiceExist (Product product , Service service) {

for (ServiceReference serviceReference : service . getServiceReferences ()) {

boolean flag = false ;

for (ComponentInstance component : product . getXmanArchitectures ()) {

for (Service serviceIns : component . getSelectedServices ()) {

String check = component . getName () + "." + serviceIns .

getName ();

if (check . equals (serviceReference . getName ())) {

flag = true;

break ;

}

}

if (flag == true) break ;

}

if (flag == false) return false ;

}

return true;

}

private static boolean isReferencedServiceExist (Service service , String

serviceReferenceName) {

for (ServiceReference serviceReference : service . getServiceReferences ()) {

if (serviceReference . getName (). equals (serviceReferenceName)) return

true;

}

return false ;

}

private static ComponentInstance findComponentStatic (Data param , Product product) {

// service

for (ComponentInstance xman : product . getXmanArchitectures ()) {

for (Service service : xman. getSelectedServices ()) {

for (Parameter parameter : service . getParameters ()) {

if (param . equals (parameter)) return xman;

}

}

235

}

return null;

}

private static Service findServiceStatic (Data param , Product product) { // service

for (Service service : product . getSelectedServices ()) {

for (Parameter parameter : service . getParameters ()) {

if (param . equals (parameter)) return service ;

}

}

return null;

}

private static EObject findParameterStatic (Data param , Map <EObject , EObject > values ,

ComponentInstance compName) { // service

ComponentInstance comp = (ComponentInstance) values .get(compName);

if (comp != null) {

for (Service service : comp. getSelectedServices ()) {

for (Parameter parameter : service . getParameters ()) {

if (param . getName (). equals (parameter . getName ())) return

parameter ;

}

}

}

return null;

}

private static Composable findComponentConnectorStatic (Data param , Product product) {

// service

for (Composable composable : product . getComposables ()) {

List <Input > listOfInputs = new ArrayList <Input >();

if (composable instanceof Selector) {

listOfInputs = ((Selector) composable). getInput ();

}

else if (composable instanceof Loop) {

listOfInputs = ((Loop) composable). getInput ();

}

else if (composable instanceof Guard) {

listOfInputs = ((Guard) composable). getInput ();

}

for (Input input : listOfInputs) {

if (param . equals (input)) return composable ;

}

}

return null;

236APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

}

private static EObject findParameterServiceStatic (Data param , Map <EObject , EObject >

values , Service serviceName) { // service

Service service = (Service) values .get(serviceName);

if (service != null) {

for (Parameter parameter : service . getParameters ()) {

if (param . getName (). equals (parameter . getName ())) return

parameter ;

}

}

return null;

}

private static EObject findParameterConnectorStatic (Data param , Map <EObject , EObject >

values , Composable composable) { // service

Composable comp = (Composable) values .get(composable);

List <Input > listOfInputs = new ArrayList <Input >();

if (comp instanceof Selector) {

listOfInputs = ((Selector) comp). getInput ();

}

else if (comp instanceof Loop) {

listOfInputs = ((Loop) comp). getInput ();

}

else if (comp instanceof Guard) {

listOfInputs = ((Guard) comp). getInput ();

}

if (comp != null) {

for (Parameter parameter : listOfInputs) {

if (param . getName (). equals (parameter . getName ())) return

parameter ;

}

}

return null;

}

private static void createAllDataChannels (IFeatureProvider fp , Product product , EList

< DataChannel > dataChannels , Map <EObject , EObject > componentInstancesMap , Map <

EObject , EObject > servicesMap , Map <EObject , EObject > connectorsMap) {

ICreateConnectionFeature createConnectionFeature = null;

CreateConnectionContext createConnectionContext = new CreateConnectionContext

();

Diagram currentDiagram = fp. getDiagramTypeProvider (). getDiagram ();

for (DataChannel dataChannel : dataChannels) {

237

createConnectionFeature = GraphitiUtils . getCreateConnectionFeauture (fp.

getCreateConnectionFeatures () , "Data Channel ");

// Set the connection SOURCE

ComponentInstance compSource = findComponentStatic (dataChannel .

getSource () , product);

EObject source = null;

if (compSource == null) {

Service serviceSource = findServiceStatic (dataChannel . getSource

() , product);

source = findParameterServiceStatic (dataChannel . getSource () ,

servicesMap , serviceSource);

}

else {

source = findParameterStatic (dataChannel . getSource () ,

componentInstancesMap , compSource);

}

// Set the connection TARGET

ComponentInstance compTarget = findComponentStatic (dataChannel .

getTarget () , product);

EObject target = null;

if (compTarget == null) {

Composable composableTarget = findComponentConnectorStatic (

dataChannel . getTarget () , product);

target = findParameterConnectorStatic (dataChannel . getTarget () ,

connectorsMap , composableTarget);

}

else {

target = findParameterStatic (dataChannel . getTarget () ,

componentInstancesMap , compTarget);

}

if (target == null) {

Service serviceTarget = findServiceStatic (dataChannel . getTarget

() , product);

target = findParameterServiceStatic (dataChannel . getTarget () ,

servicesMap , serviceTarget);

}

EObject bo = source ;

EObject bo2 = target ;

if (bo != null && bo2 != null) {

PictogramElement sourcePe = Graphiti . getLinkService ().

getPictogramElements (currentDiagram , bo).get(

GraphitiConstants . FIRST_ELEMENT);

createConnectionContext . setSourcePictogramElement (sourcePe);

PictogramElement targetPe = Graphiti . getLinkService ().

getPictogramElements (currentDiagram , bo2).get(

GraphitiConstants . FIRST_ELEMENT);

238APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

createConnectionContext . setTargetPictogramElement (targetPe);

createConnectionFeature . create (createConnectionContext);

}

}

}

private static void createAllServiceReferences (IFeatureProvider fp , Product product ,

EList < DataChannel > dataChannels , Map <EObject , EObject > componentInstancesMap , Map

<EObject , EObject > servicesMap) {

for (Map.Entry <EObject , EObject > entryService : servicesMap . entrySet ()) {

Service service = (Service) entryService . getKey ();

for (Map.Entry <EObject , EObject > entryComponent : componentInstancesMap

. entrySet ()) {

ComponentInstance compIns = (ComponentInstance) entryComponent .

getValue ();

for (Service serv : compIns . getSelectedServices ()) {

if (isReferencedServiceExist (service , compIns . getName () +

"." + serv. getName ())) {

CreateContext createContext = new CreateContext ();

createContext . setTargetContainer (GraphitiUtils .

getTargetContainerShape (fp.

getDiagramTypeProvider (). getDiagram () ,

entryService . getValue ()));

createContext . setLocation (GraphitiConstants .

INITIAL_X_PARAMETER , GraphitiConstants .

INITIAL_Y_PARAMETER);

ServiceReference newServiceReference = (

ServiceReference) GraphitiUtils .

getCreateFeature (fp. getCreateFeatures () , "

Service Reference "). create (createContext)[0];

// Set its properties

newServiceReference . setName (compIns . getName () + ".

" + serv. getName ());

newServiceReference . setService (serv);

}

}

}

}

// Create the context

}

239

private static Map <EObject , EObject > createAllExposedService (IFeatureProvider fp ,

EList <Service > services) {

Map <EObject , EObject > ret = new HashMap <EObject , EObject >();

for (Service service : services) {

Service newService = GraphitiUtils . createServiceWithParameters (fp.

getDiagramTypeProvider (). getDiagram () , fp , service);

ret.put(service , newService);

}

return ret;

}

private static String setCondition (CoordinationConnection connection ,

FXMANArchitecture fxmanArc) {

List < Connection > connections = fxmanArc . getConnections ();

for (Connection conn : connections) {

if (conn instanceof FamilyConnection) {

if (((FamilyConnection) conn). getSource (). getName (). equals (

connection . getSource (). getName ())) {

if (traverseTree (fxmanArc , ((FamilyConnection) conn).

getTarget () , connection)) { return ((FamilyConnection

) conn). getCondition (); }

}

}

}

return "";

}

public void addInputToConnector (List <Input > inputs , Connector connector) {

if (connector instanceof Selector) {

((Selector) connector). getInput (). addAll (EcoreUtil . copyAll (inputs));

}

else if (connector instanceof Loop) {

((Loop) connector). getInput (). addAll (EcoreUtil . copyAll (inputs));

}

else if (connector instanceof Guard) {

((Guard) connector). getInput (). addAll (EcoreUtil . copyAll (inputs));

}

}

public static boolean traverseTree (FXMANArchitecture fxman , ConnectionTerminal

current , CoordinationConnection connectionTarget) {

if (current instanceof FamilySequencer) {

if (((FamilySequencer) current). getName (). equals (connectionTarget .

getTarget (). getName ())) {

return true;

}

else {

EList < FamilyConnection > listOfConnection = ((FamilySequencer)

current). getConnections ();

240APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

for (FamilyConnection con : listOfConnection) {

boolean res = traverseTree (fxman , con. getTarget () ,

connectionTarget);

if (res) return true;

}

}

}

else if (current instanceof FamilySelector) {

if (((FamilySelector) current). getName (). equals (connectionTarget .

getTarget (). getName ())) {

return true;

}

else {

EList < FamilyConnection > listOfConnection = ((FamilySelector)

current). getConnections ();

for (FamilyConnection con : listOfConnection) {

boolean res = traverseTree (fxman , con. getTarget () ,

connectionTarget);

if (res) return true;

}

}

}

else if (current instanceof FamilyAggregator) {

if (((FamilyAggregator) current). getName (). equals (connectionTarget .

getTarget (). getName ())) {

return true;

}

else {

EList < FamilyConnection > listOfConnection = ((FamilyAggregator)

current). getConnections ();

for (FamilyConnection con : listOfConnection) {

boolean res = traverseTree (fxman , con. getTarget () ,

connectionTarget);

if (res) return true;

}

}

}

else if (current instanceof FamilyLoop) {

if (((FamilyLoop) current). getName (). equals (connectionTarget . getTarget

(). getName ())) {

return true;

}

else {

FamilyConnection connection = ((FamilyLoop) current).

getConnection ();

241

boolean res = traverseTree (fxman , connection . getTarget () ,

connectionTarget);

if (res) return true;

}

}

else if (current instanceof FamilyGuard) {

if (((FamilyGuard) current). getName (). equals (connectionTarget . getTarget

(). getName ())) {

return true;

}

else {

FamilyConnection connection = ((FamilyGuard) current).

getConnection ();

boolean res = traverseTree (fxman , connection . getTarget () ,

connectionTarget);

if (res) return true;

}

}

else if (current instanceof Optional) {

if (((Optional) current). getFamilyMember () instanceof XMANArchitecture)

{

XMANArchitecture optTarget = (XMANArchitecture) ((Optional)

current). getFamilyMember ();

if (optTarget . equals (connectionTarget . getTarget ())) { return

true; }

}

}

else if (current instanceof Alternative) {

if (((Alternative) current). getFamilyMembers (). contains (

connectionTarget . getTarget ())) return true;

}

else if (current instanceof Or) {

boolean orChecker = true;

boolean aggChecker = false ;

for (VariationPointTerminal vpt : ((Or) current). getFamilyMembers ()) {

if (vpt instanceof XMANArchitecture) {

XMANArchitecture orTarget = (XMANArchitecture) vpt;

if (orTarget . equals (connectionTarget . getTarget ())) {

return true;

}

else if (connectionTarget . getTarget () instanceof

Aggregator) {

Aggregator agg = (Aggregator) connectionTarget .

getTarget ();

List < Connection > aggCon = agg. getConnections ();

aggChecker = false ;

for (Connection ac : aggCon) {

242APPENDIX F. PRODUCT FAMILY ARCHITECTURE COMPOSER IMPLEMENTATION

if (!((CoordinationConnection) ac).

getTarget (). equals (vpt)) {

aggChecker = true;

}

}

if (aggChecker == false) orChecker = false ;

}

}

}

if (orChecker == true) return true;

}

else if (current instanceof XMANArchitecture) {

if (((XMANArchitecture) current). equals (connectionTarget . getTarget ()))

{ return true; }

}

else if (current instanceof FXMANArchitectureInstance) {

if (((FXMANArchitectureInstance) current). equals (connectionTarget .

getTarget ())) { return true; }

}

return false ;

}

}

Listing F.1: Xcore implementation of the activity-chart meta-model

Appendix G

Family Filter Implementation

private static boolean requiresMatcher (String source , String subItem1 , String

subItem2) {

if (source . matches (".*\\b" + subItem1 + "\\b.*") && source . matches (".*\\b" +

subItem2 + "\\b.*"))

return true;

else if (! source . matches (".*\\b" + subItem1 + "\\b.*")) return true;

return false ;

}

private static boolean excludesMatcher (String source , String subItem1 , String

subItem2) {

if (source . matches (".*\\b" + subItem1 + "\\b.*") && ! source . matches (".*\\b" +

subItem2 + "\\b.*")) return true;

if (! source . matches (".*\\b" + subItem1 + "\\b.*")) return true;

return false ;

}

private static boolean filterTranslator (String source , EList < Constraint >

fullConstraint) {

boolean result = true;

for (Constraint constraint : fullConstraint) {

if (constraint . getConstraint (). equals (ConstraintType . REQUIRES)) {

result &= requiresMatcher (source . toString () , constraint .

getFirstOperand () , constraint . getSecondOperand ());

}

else {

result &= excludesMatcher (source , constraint . getFirstOperand () ,

constraint . getSecondOperand ());

243

244 APPENDIX G. FAMILY FILTER IMPLEMENTATION

}

}

return result ;

}

public static ProductFamily filterProducts (ProductFamily productFamily , EList <

Constraint > fullConstraint) {

for (Iterator <Product > iter = productFamily . getProducts (). iterator (); iter.

hasNext () ;) {

Product element = iter.next ();

if (! filterTranslator (element . toString () , fullConstraint)) iter. remove

();

}

return productFamily ;

}

Listing G.1: Implementation detail of the family filter.

Appendix H

Pure-variants Research License

Agreement

245

aaaa
aaaa pure-systems
aaaa

pure::variants Research License
Terms And Conditions Agreement

Customer:

Customer:

Street

ZIP and City:

Country:

Phone:

Fax:

between

pure-systems GmbH

Otto-von-G uericke-Str. 28

39104 Magdeburg

Germany

Phone: +49 391 5445690

Fax: +49 391 54456990

Email: sales@pure-systems.com

(pure-systems)

and

The University of Manchester

Oxford Road

Manchester

England

0161 275 8261

Email: luke.a.kiernan@manchester.ac.u . ..,._ ______ _

(biG9A&99)

pure-systems GmbH pure::variants Research License Terms And Conditions Agreement

1. License Usage Restrictions

Research Licenses provided to the Licensee under the conditions of this agreement may be used for research

and educational purposes in educational and academic organisations. Development of OpenSource

applications by these organisations using pure::variants are treated as research activities.

2. License Transfer

The Licensee must not give other persons or organisations access to the Licenses without written approval by

pure-systems. Persons in offical academic courses which are held by the Licensee are entitled to use

pure::variants for the duration of the course.

3. License Renewal Requirements

pure-systems requires Licensee to provide a short report about the use of pure::variants in the organization

and may publicize all or parts of this report on its web site or other media. All references to the report will

mention the Licensee as source. Reports are requested at most twice in a 12 months period.

4. Termination

If the Licensee does not follow rules set out in this agreement, pure-systems may terminate the license

agreement immediately.

This agreement is valid for 12 month and may be renewed by request of the Licensee. If it is not renewed, it

terminates withoutfurther notices. There is no obligation of pure-systems to renew the license even if the

Licensee fulfills the requirements defined in 3.

5. Other Tenns

In addition to the terms set out above, the terms of the normal End User License agreement provided with

pure::variants apply, unless they are in direct conflict with the terms set out above.

For pure-systems

(date, stamp and signature)

pure-systems GmbH

For Licensee

(date, stamp and signature)

Lisa Murphy
Solicitor

Head of Contracts
II !Mca-hu Zo tS

pure::variants Research license Terms And Conditions Agreement 2

Notice to User: This End User License Agreement (EULA) is a
CONTRACT between you (either an individual or a single entity) and
pure-systems GmbH ("pure-systems") which covers your use of

pure: :variants

and related software components, which may include associated
media, printed materials, and "online" or electronic documentation. All
such software and materials are referred to here as the "Software
Product." If you do not agree to the terms of this EULA, then do not
install or use the Software Product. By explicitly accepting this EULA,
however, or by installing, copying, downloading, accessing or otherwise
using the Software Product, you are acknowledging and agreeing to be
bound by the following terms:

1. WARNING -- (for Evaluation Licenses only)

This Software Product can be used in conjunction with a free
evaluation license. If you are using such an evaluation license,
you may not use this Software Product in a live operating
environment. Evaluation licenses have an expiration date, after
which you understand and agree that you must stop using the
Software Product. pure-systems bears no liability for any
damages resulting from use or attempted use of the Software
Product, and no duty to provide any support, after the
expiration date.

2. Grant of Non-Exclusive License

pure-systems grants you the right to install and use a single
copy of the Software Product only on your computer. You may
make copies of the Software Product as needed for backup and
archival purposes.

3. Intellectual Property Rights Reserved by pure-systems

The Software Product is protected by german and international
copyright laws and treaties, as well as other intellectual
property laws and treaties. You must not remove or alter any
copyright notices on any copies of the Software Product. This
Software Product is licensed, not sold. Furthermore, this EULA
does not grant you any rights in connection with any
trademarks or service marks of pure-systems. pure-systems
reserves all intellectual property rights, including copyrights and
trademark rights.

4. No Right To Transfer

You may not rent, lease, lend or in any way distribute copies of
or transfer any rights in the Software Product to third parties
without pure-systems's written approval and subject to approval
by the recipient of the terms of this EULA.

5. Prohibition on Reverse Engineering, Decompilation, and
Disassembly

You may not reverse engineer, decompile, or disassemble the
Software Product, except and only to the extent that such
activity is expressly permitted by applicable law notwithstanding
this limitation.

6. Third Party Rights

Any software provided along with the Software Product that is
associated with a separate license agreement is licensed to
you under the terms of that license agreement.

7. Support Services

pure-systems may provide you with support services related to
the Software Product. Use of any such support services is
governed by the pure-systems polices and programs described
in "on line" documentation and/or other pure-systems-provided
materials. Any supplemental software code that pure-systems
provides to you as part of the support services is to be
considered part of the Software Product and is subject to the
terms and conditions of this EULA. With respect to any
technical information you provide to pure-systems as part of the
support services, pure-systems may use such information for
its business purposes, including for product support and
development. pure-systems will not use such technical
information in a form that personally identifies you.

8. Compliance with Applicable Laws

You must comply with all applicable laws regarding use of the
Software Product.

9. Termination

Without prejudice to any other rights, pure-systems may
terminate this EULA if you fail to comply with the terms and
conditions of this EULA. In such event, you must destroy all
copies of the Software Product.

10. NO WARRANTIES

YOU ACCEPT THE SOFTWARE PRODUCT "AS IS" AND
PURE-SYSTEMS MAKES NO WARRANTY AS TO ITS USE
OR PERFORMANCE. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, PURE-SYSTEMS
DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE AND NON-INFRINGEMENT, WITH
REGARD TO THE SOFTWARE PRODUCT, AND THE

info@pure-systems.com.

PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES. THIS LIMITED WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS,
WHICH VARY FROM STATE/JURISDICTION TO
STATE/JURISDICTION. THE ENTIRE RISK ARISING OUT OF
USE OR PERFORMANCE OF THE SOFTWARE PRODUCT
REMAINS WITH YOU.

11. LIMITATION OF LIABILITY

THE LIMITATION OF LIABILITY IS TO THE MAXIMUM
EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT
SHALL PURE-SYSTEMS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE
USE OF OR INABILITY TO USE THE SOFTWARE PRODUCT
OR THE FAILURE TO PROVIDE SUPPORT SERVICES,
EVEN IF PURE-SYSTEMS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, PURE
SYSTEMS'S ENTIRE LIABILITY UNDER ANY PROVISION OF
THIS EULA SHALL BE LIMITED TO THE GREATER OF THE
AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE
PRODUCT OR U.S.$5.00; PROVIDED, HOWEVER, THAT IF
YOU HAVE ENTERED INTO A PURE-SYSTEMS SUPPORT
SERVICES AGREEMENT, PURE-SYSTEMS'S ENTIRE
LIABILITY REGARDING SUPPORT SERVICES SHALL BE
GOVERNED BY THE TERMS OF THAT AGREEMENT.
BECAUSE SOME STATES/JURISDICTIONS DO NOT ALLOW
THE EXCLUSION OR LIMITATION OF LIABILITY, THE
ABOVE LIMITATION MAY NOT APPLY TO YOU.

12. Governing Law

This Agreement constitutes the complete agreement between
the parties with respect to the Programs and is governed by the
laws of the Federal Republic of Germany (other than its conflict
of law provisions).

13. Contact Info

If you have any questions about this EULA, or if you want to
contact pure-systems for any reason, please contact pure
systems:

pure-systems
Agnetenstr.
39106
Germany

or email

GmbH
14

Magdeburg

Appendix I

FX-MAN Tool on the UMIP

platform Click2Go

252

DESCRIPTION FILES (1) REFERENCES (0) SUPPORT

INTRODUCTION

X-MAN II toolset is developed by the Component-based Software
Development group at the University of Manchester.

X-MAN II toolset consists of the X-MAN IDE and its extension FX-MAN. The
X-MAN IDE provides a set of functionalities for component-based software
development. It supports the W process which captures both component and
system life cycles. The extension FX-MAN provides the capability of modelling
variability in order to support constructing product families.

X-MAN II toolset is developed using Eclipse model-driven engineering.
Essentially, it is EMF framework instantiated with meta-models of X-MAN
component model and its extensions. Included plugins provide complete
semantics of the X-MAN component model and component-based software
development paradigm.

X-MAN II tool development is supported by the European
funded EMC2 project and the Centre for Doctoral Training (CDT) programme
at the University of Manchester.

This new tool will replace the old X-MAN tool (based on GME) here.

FEATURES

The W model for component-based software development should be one in
the below figure. The model was defined in our publication back in 2011.

Essentially, the W model comprises of two life cycles:

Component life cycle: identify components, construct components and
build (domain specific) component repository.
System life cycle: select components, instantiate (and adapt)
components and construct systems.

Home » Software » Computer Science Software » X-MAN II

X-MAN II
Component-based Software
Development Toolkit

Tweet 0

PROVIDING SCIENTIST/AUTHOR(s)
Dr Cuong Tran
Dr Simone Di Cola

OPTIONS
Please check carefully that the terms you select
correspond to your intended use of the product.

MAN_002-3494548-v2-UMIP Annual
Research Licence C2G final 1.00

Annual Research Licence

View Terms

Further details
Term: 12 months
Seats: 1 seat(s)

Price excl. VAT: Free of charge

ADD TO BASKET

My basket (no items)You are not signed in.Search here...

Home My
basket

Create account Contact us F.A.Q.

Sign-in

0LikeLike ShareShare

