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Abstract

COST-SENSITIVE BOOSTING:
A UNIFIED APPROACH

Nikolaos Nikolaou
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2016

In this thesis we provide a unifying framework for two decades of work in an
area of Machine Learning known as cost-sensitive Boosting algorithms. This area is
concerned with the fact that most real-world prediction problems are asymmetric, in
the sense that different types of errors incur different costs.

Adaptive Boosting (AdaBoost) is one of the most well-studied and utilised algo-
rithms in the field of Machine Learning, with a rich theoretical depth as well as prac-
tical uptake across numerous industries. However, its inability to handle asymmetric
tasks has been the subject of much criticism. As a result, numerous cost-sensitive
modifications of the original algorithm have been proposed. Each of these has its own
motivations, and its own claims to superiority.

With a thorough analysis of the literature 1997–2016, we find 15 distinct cost-
sensitive Boosting variants – discounting minor variations. We critique the literature
using four powerful theoretical frameworks: Bayesian decision theory, the functional

gradient descent view, margin theory, and probabilistic modelling.

From each framework, we derive a set of properties which must be obeyed by
boosting algorithms. We find that only 3 of the published Adaboost variants are con-
sistent with the rules of all the frameworks – and even they require their outputs to be
calibrated to achieve this.

Experiments on 18 datasets, across 21 degrees of cost asymmetry, all support the

12



hypothesis – showing that once calibrated, the three variants perform equivalently,
outperforming all others.

Our final recommendation – based on theoretical soundness, simplicity, flexibil-
ity and performance – is to use the original Adaboost algorithm albeit with a shifted
decision threshold and calibrated probability estimates. The conclusion is that novel
cost-sensitive boosting algorithms are unnecessary if proper calibration is applied to
the original.
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17



Chapter 1

Introduction

1.1 Motivation

1.1.1 A data-driven world

The last decades have witnessed a dramatic increase in the amount of data generated.
At the time of writing this thesis, it is estimated1 that “more than 90% of the data in the
world have been generated in but the last two years”. This includes information of any
kind: sensor measurements of all sorts, social media posts, web searches, transaction
records, music, videos, images, GPS signals from mobile devices, results of all kinds
of scientific experiments, news posts, to name but a few. We live in the era of big data.

The billions of stationary and portable devices connected to the internet constantly
generate new data. In the years to come this trend will without doubt continue at an ever
increasing rate, with smart devices entering every house and replacing conventional
appliances (giving rise to the so-called internet of things) and every aspect of civic life,
turning our cities into smart cities.

The large amount of available data has given rise to a multitude of data-driven

services including smart search engines, automatic translation and voice recognition.
The same algorithms used to power these applications are used in the domain of Ar-

tificial Intelligence, for instance to train self-driving cars and drones, soon to become
a common sight in our streets and skies. And the same algorithms have dramatically
accelerated the rate of new scientific discoveries, allowing us to sift through massive
amounts of scientific data to test hypotheses and uncover patterns.

Every field of computer science has undoubtedly played a role in facilitating these

1Source: IBM, url: http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
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data-driven breakthroughs. This includes advances in hardware, but also in algorith-
mic areas related to data collection, distribution and storage like signal processing,
networks and databases. But arguably the most instrumental role is played by machine

learning, ‘the study of algorithms that make sense of data’–to paraphrase the title of
one of the most recent books in the field [38]. It is to this field that the present thesis
contributes.

1.1.2 Making sense of data

This section is a brief introduction to the subject of machine learning. It provides a
bird’s-eye view of the field, abstracting the key notions that are most relevant to this
work and establishing some terminology that will follow us in the rest of this thesis. We
beg the reader’s indulgence if all this terminology is overwhelming. All concepts and
terms introduced in this chapter will become more concrete throughout the following
chapters once related to specific problems, methods and models.

Machine learning studies the principles and methods for automating statistical in-
ference. It allows us to learn from data, i.e. learn from past observations (also referred
to as examples or instances) and make predictions regarding new ones. The past ob-
servations – the ones used by the learning algorithm as examples to train a model –
constitute the training set, while the new ones –those used during deployment, to eval-
uate it – form the test set. Training translates to finding a mathematical model that

best describes the data. Using this model we can detect patterns or anomalies, make
predictions and ultimately make decisions based on said predictions.

As for the model2, it can be of many sorts: a tree or a graph, an algebraic equa-

tion, a logical rule or a probability distribution – and more often than not it can be
interpreted in many different ways, as we will see in the rest of this thesis.

Finding the best model (in a given family) is problem-dependent and usually in-
volves solving an optimization problem of some objective function w.r.t. the parame-

ters (the free variables) of the model. This means finding the values of the parameters
that e.g. minimize the discrepancy between its predictions and the truth, or minimize
the expected cost of the decisions, or maximize the likelihood of the data under the
model. Without loss of generality3, in this work we will be referring to the underlying

2Here it might be useful to disambiguate two different uses of the term model. It can be used to
refer to a family of models (hypothesis class), e.g. linear equations of the form y = ax+b, where a and
b are free parameters, or to a specific instance/realization (hypothesis) of that family e.g. y =−2x+3.
Throughout the thesis, it will be clear from the context to which of the two meanings we refer each time.

3Any maximization problem can be easily transformed to a minimization one.
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optimization problem as a minimization problem, and to the objective function as the
loss function.

Ultimately, how well the model fits the training data is of secondary importance.
A good model fits the training data well –if it doesn’t, we say it underfits the data,
meaning it fails to capture the underlying pattern in the data. But this is just part of
the picture. What really matters is the model’s ability to generalize, i.e. give good
predictions on previously unseen examples. This generalization performance is thus
estimated on the test set. To account for this, there usually exists some way of balanc-
ing the complexity of the model (e.g. as measured by the number of its free parameters
or degrees of freedom) and how well it fits the data during training, which leads to
good generalisation performance. The basic principle behind this is that a very com-
plex model might capture the noise in the training data as part of the pattern –in which
case it is said to overfit the data4. This means that the model is overly specific to the
training data to the extend that it fails to generalize to new instances. On the other hand,
a very simple model is prone to underfitting, again failing to give good predictions.

In this work we will be focusing on classification problems. Classification is per-
haps the most common type of machine learning tasks. As the name suggests, it is
concerned with assigning a new example to one of a discrete number of categories,
known as classes. It is supervised in the sense that the model is trained on data of
which the label (i.e. the true class, the true desired output) is known.

For ease of exposition and clarity, we will be focusing on binary classification,
where examples can belong to one of two possible classes, the positive and the neg-

ative one. For example, a bank system that decides whether to grant a loan or not
needs to solve a binary classification problem. Credit-worthy clients are the positive
examples and those that defaulted form the negative class. Despite our focus on binary
classification, our analysis can easily extend to the multi-class case e.g. by reduc-
ing the multiclass problem to multiple binary classification subproblems. Whenever
applicable, we will be providing the reader with pointers on how this is achieved.

4The principle of Occam’s Razor, ubiquitous in science, suggests that simpler models are to be
preferred over more complicated ones that have the same explanatory power. Limiting model complexity
to avoid overfitting can be viewed as an appeal to this principle. Machine learning is typically concerned
with inductive inference –generalizing from a set of examples. This is in general an ill-posed problem,
in the sense that more than one model can explain the examples. A general term to refer to any process
of introducing additional information (constraining the space of possible models) in order to solve an
ill-posed problem or to prevent overfitting, is ‘regularization’.
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1.1.3 Asymmetric learning

Most classification problems are asymmetric, in the sense that either the costs of dif-
ferent types of misclassifications are unequal, or the classes have different prior prob-

abilities – or both. Asymmetric prediction tasks are encountered everywhere, in real
life applications and scientific data analysis alike.

An astrophysicist trying to detect a rare astronomical phenomenon, like a super-
nova, is faced with an imbalanced class problem, since most of the available obser-
vations will be of the negative class, i.e. not involving the phenomenon. A doctor
testing a patient for a life-threatening disease, is faced with a cost-sensitive decision:
a false positive will lead to further tests which will eventually reveal the misdiagnosis,
while a false negative means that the disease is left undetected and thus untreated, with
potentially lethal results. The same is true for the credit card fraud detection system
of a bank: instances of illegal transactions are much rarer than legal ones, but a false
negative incurs a far higher cost than a false positive. Mildly annoying customers when
suspicious activity is detected in their accounts is preferable to them falling victims of
fraud.

In all these cases, it is not the number of correct classifications that matters, but
the overall cost our decisions incur. The goal is not to minimize the number of wrong
decisions, but to make decisions in such a way that their expected cost is minimized.
The primary aim of this work is to target this goal. And while our focus will be on
cost-sensitive learning, as we will see, there is a duality in the two types of asymmetric
learning problems that also allows imbalanced class tasks to be addressed using the
same approaches as cost-sensitive tasks and vice-versa.

1.1.4 Ensemble learning

Ensemble learning algorithms are equivalently ubiquitous in the Machine Learning lit-
erature. The term encompasses techniques to combine multiple predictors –known as
base learners– with the aim of producing a more powerful one. Ensemble algorithms
have been shown to outperform other approaches in multiple extensive studies in the
literature [13, 36]. Ensemble learning has also been a key principle in the winning en-
tries of every major machine learning competition; the most celebrated example being
the Netflix Challenge [119]. Its main branches –bagging, boosting and random forests–
have been used in a number of successful applications, including face recognition for
mobile phone cameras [123], the Microsoft Kinect motion sensing devices [50] and
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remote sensing [34, 90].

The Adaboost algorithm [42], a specific form of boosting, stands out in the field of
ensemble learning – named in a community survey as one of the top ten algorithms in
data mining [131], whilst also having a rich theoretical depth, winning the 2003 Gödel
prize for the authors. One of the often-cited weaknesses of AdaBoost is its inability
to handle cost-sensitivity [57, 112, 117]. It is no surprise therefore, that significant
international research effort has been dedicated to adapting Adaboost for cost-sensitive
tasks. At the time of writing this thesis at least 15 distinct variants –even more, if we
were to count slight variations thereof as separate algorithms– have been proposed in
a sequence of papers [33, 63, 64, 78, 79, 112, 113, 117, 123] published 1997-2016.
Each of these variants is derived from different underlying perspectives, principles or
assumptions –often heuristically– and each makes its own claim to superiority in some
sense, either empirically, theoretically, or practically.

But what is each of these variants actually doing? Are they appropriate for solving
our problem? Could it be that there is a simpler, more practical approach to minimize
the expected cost of the predictions of a boosting ensemble? Ultimately, do we need
all these variants or can the literature be simplified?

1.2 Research questions

This thesis aims to answer a series of questions regarding these cost-sensitive boosting
variants.

• What exactly does each variant achieve? As many of the variants were pro-
posed heuristically, the loss function they minimize is not explicit, but hidden
within the steps of the algorithm. Identifying this loss is the first step towards
understanding what the goal of each variant is.

• What are the desirable properties of a cost-sensitive boosting variant? Given the
cost-sensitive nature of the task and the way boosting operates, what properties
should a cost-sensitive boosting algorithm satisfy?

• What properties does each variant satisfy? Once its loss function is made ex-
plicit, we can start investigating whether it is a sensible choice under the proper-
ties we identified. We compile a list of all variants along with the properties they
satisfy.
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• Are there algorithms that satisfy all desirable properties? If not, can we grant

them a missing property? As we will see, all variants assume that their outputs
can be interpreted as probability estimates. We will see why this is not true and
how we can correct for it.

• Ultimately, do we need all these variants, or is there a simpler more principled

approach? To answer this question we will use arguments based on the theoret-
ical analysis outlined in the following section, practical considerations and the
empirical performance of the methods examined.

In the process of answering the above questions we will establish a unified treat-
ment of these techniques, simplifying the existing literature and uncovering the under-
lying loss function each method minimizes, along with the properties it satisfies. The
tools we use, along with the answers we will provide have the potential to offer insight
to other learning algorithms beyond boosting and open multiple directions for further
research.

1.3 Outline and contributions

In this work we analyse the literature, using tools from four theoretical frameworks:
decision theory, functional gradient descent, margin theory, and probabilistic mod-

elling. Each one of these will turn out to have its own advantages and perspective in
the analysis, and the work could not be complete without all four.

The functional gradient descent view ensures the steps of the algorithm are consis-
tent with greedy minimisation of a well defined loss function which is itself a function
of the margin5, thus ensuring an efficient path toward good generalisation properties.
Analysis of the loss functions from the perspective of margin theory ensures the gen-
eralisation behaviour is in line with the defined cost-sensitive problem. The decision
theoretic view ensures that the predictions generated by boosting are used in a way that
is consistent with the goal of minimizing the expected cost of future classifications. A
probabilistic analysis shows that the models generate uncalibrated outputs, which we
proceed to remedy; key to this argument is rephrasing Adaboost as a Product of Experts

(PoE). Different cost-sensitive boosting variants translate to different PoE models but

5For now it suffices to think of the margin of the classifier on a given example as the confidence of
the classifier in its prediction regarding that example. The concept of margin will be formally introduced
in Chapter 4 and analyzed extensively in Chapter 6.
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they all suffer from the same systematic distortion of the resulting probability estimates
due to their PoE nature.

Our main contributions are summarized below:

• We identify the loss function implicitly minimized by each variant. We simplify a

large body of literature under a common framework. (Chapter 4)

• We provide a more general formulation of an existing AdaBoost variant [117]

for assigning instances to the class with the minimum expected cost, which is

independent of the specific way probabilities are estimated. (Chapter 5)

• We identify the desirable properties of a cost-sensitive boosting variant and es-

tablish when an algorithm fails to satisfy them and how this will affect its be-

haviour. (Chapters 4 - 7)

• We identify the properties each variant satisfies. This allows us to see which

variants are closer to –theoretical– optimality than others. (Chapters 4 - 7)

• We determine that there are no algorithms that satisfy all desirable properties.

More specifically, we show that all variants fail to produce outputs that can be

interpreted as calibrated probability estimates. (Chapters 4 - 7)

• We propose the use of calibration to correct the algorithms for the missing prop-

erty of poor probability estimation. We conclude that three variants, once prop-

erly calibrated now satisfy all desirable properties. (Chapter 7)

• We conduct the most extensive empirical comparison of cost-sensitive boosting

algorithms in the literature. (Chapter 8)

• We conclude that existing cost-sensitive boosting algorithms are unnecessary if

proper calibration is applied. (Chapters 7 - 8)

• We provide theoreticians with a set of tools to examine existing and future boost-

ing variants, identifying directions for further exploration. (Chapters 4 - 7)

• We provide practitioners with a theoretically sound, fast, intuitive, simple and

practical alternative to modifying the original AdaBoost algorithm and show

that it matches or outperforms existing alternatives. (Chapters 7 - 8)
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To summarize our main result, we challenge the idea of modifying AdaBoost to ac-
count for asymmetries and propose instead handling such tasks by classic decision the-
oretic approaches after properly calibrating the scores of the original AdaBoost so that
they correspond to probability estimates. This approach is grounded on decision the-
ory, preserves the theoretical guarantees of AdaBoost, eschews the need of additional
hyperparameters and can easily account for changes in asymmetry during deployment,
without need for retraining. Extensive empirical comparisons of calibrated AdaBoost
against the existing cost-sensitive AdaBoost variants show that it achieves superior
performance. The conclusion is that existing cost-sensitive boosting algorithms are
unnecessary if proper calibration is applied.

1.4 Structure of this thesis

The thesis is structured as follows.

In Chapter 2 we introduce the problem of asymmetric learning. We will discuss in
depth the different flavours of asymmetric learning tasks, examine the duality between
cost sensitive and class imbalanced classification and how they can be formulated and
treated following the same principles. We will present different ways to evaluate asym-
metric classification systems and mention the various factors that can complicate learn-
ing in the asymmetric setting.

In Chapter 3 we will present the concept of hypothesis boosting and its most pop-
ular representative, the basic Adaboost algorithm. We will discuss its importance both
as a theoretical breakthrough and as a successful practical algorithm, but also its lim-
itations. We will outline the different perspectives by which it can be understood,
emphasizing the ones that we are going to be using throughout the rest of the the-
sis. Finally, we will analyse the multitude of cost sensitive boosting variants in the
literature, and consolidate them into a common notation and terminology.

Chapters 4 - 7 constitute our main theoretical contribution. Each of them examines
the cost-sensitive boosting algorithms from a different theoretical perspective, identi-
fies a desirable property, explains how to examine if a given algorithm satisfies it and
classifies the algorithms according to whether they do so or not.

More specifically, Chapter 4 uses the functional gradient descent view of boosting
to infer the loss function minimized by each variant, thus making the objective of each
algorithm explicit and allowing us to examine them all –even some previously regarded
as heuristics– under the same framework. We will see which algorithms are efficiently
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optimizing their loss function and which take suboptimal steps. Most importantly, the
loss function itself will play an important part for the three chapters to follow.

Chapter 5 examines the cost-sensitive boosting variants through the lens of decision
theory. It relates their underlying loss functions to clear decision rules and allows us to
determine whether these rules are the appropriate ones for making decisions in order
to minimize the expected cost of the classifications. In the process, we also provide a
more general formulation of an existing AdaBoost variant [117] aiming to do precisely
that: assign a new instance to the class that will incur the lowest expected cost. Our
new proposal, unlike the original [117] does not assume a specific way of estimating
the probability of the example belonging to the positive class.

In Chapter 6 we make use of margin theory to determine whether the loss function
is appropriate for training a boosting variant. This gives important insight into the gen-
eralization ability of each algorithm. We will see that certain families of loss functions
will eventually force the algorithm to invert the relative importance of the two classes
during training, leading to the classifier emphasizing the low-cost class more than the
high-cost one on the subsequent round, ultimately hurting generalization.

Chapter 7 examines boosting from a probabilistic modelling angle, identifying a
common issue in all boosting variants: their output (normalized to be a real num-
ber ∈ [0,1]) cannot be directly interpreted as a probability estimate. We show why
this is the case by demonstrating that the probability estimates generated by boosting
variants can be rephrased as Products of Experts, and as such are prone to systematic
forms of distortions. To correct for this, we propose the use of logistic calibration (Platt
scaling) [92] of probability estimates and provide a detailed pseudocode for its imple-
mentation. We summarize all variants and desirable properties in a complete table, the
calibrated variants now satisfying all properties.

Chapter 8 provides a large scale experimental study to test our hypotheses – 18
datasets, 15 variants of boosting, across 21 different degrees of class imbalance. It
constitutes the empirical part of our contributions and is supported by extensive analy-
sis and tests of statistical significance.

Finally, Chapter 9 draws together the conclusions of the thesis, identifying multiple
interesting directions for future work.
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Chapter 2

Asymmetric Learning

In this chapter we will present the basic principles and premises of asymmetric learn-
ing. We will introduce the notation and terminology that will be used throughout the
rest of the thesis. We will expose the duality between the two flavours of asymmet-
ric learning, cost-sensitive learning and learning under class imbalance, thus justifying
why we can focus on cost-sensitive problems without loss of generality. We will out-
line the established assumptions traditionally underlying the cost-sensitive learning lit-
erature and define the specific problem we will be addressing in the chapters to come.
We will analyze the primary evaluation tool we are going to be using to assess cost-
sensitive performance, namely the Brier curve [53]. Last but not least, we will present
an overview of the basic families of techniques for handling cost-sensitive learning.
Despite being beyond the scope of this work, for completeness, we will also present
alternative asymmetric problem settings, formulations and evaluation measures as well
as some interesting issues that may arise in the asymmetric learning setting and how
they can be dealt with.

2.1 Minimizing the risk

Throughout this work we will be focusing on binary classification, for ease of expo-
sition and clarity. Extension to the multiclass case is often handled by breaking down
the problem into multiple binary ones, so our analysis and its results can carry over to
the multiclass case1. In a binary classification task, an example can be either positive,
denoted by a label y = 1 or negative, denoted by y =−1. The classifier is trained on a

1Common ways to do this include one-vs-all and one-vs-one approaches, as well as error-correcting
output codes (ECOC). See [23, 97, 115] for an overview.

28
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dataset consisting of labelled training examples (xi,yi), where xi ∈ X , X being some
appropriate input space.

On a new unlabelled test example xi, the classifier makes predictions h(xi) ∈
{−1,1} and it incurs a loss when those predictions are wrong. In the most general
case, each classification, is associated with a distinct cost ci and the loss on the i-th
example is thus a function of that cost. But in the most common setting, the loss on
each example depends only on the combination of classifier output h(xi) and true label
yi, so we denote the loss on the i-th example with L(h(xi),yi). In binary classification,
we can have two types of correct classifications, true positives (TPs) –predicting a pos-
itive example as positive– and true negatives (TNs) –predicting a negative example as
negative. We can also have two types of misclassifications, false negatives (FNs) also
known as type I errors or misses –predicting a positive example as negative –and false

positives (FPs) also known as type II errors or false alarms– predicting a negative ex-
ample as positive. In our notation, the different outcomes of the classification of xi are
denoted as

• True Positive: h(xi) = 1∧ yi = 1.

• True Negative: h(xi) =−1∧ yi =−1.

• False Positive: h(xi) = 1∧ yi =−1.

• False Negative: h(xi) =−1∧ yi = 1.

The cost matrix of the problem shown in Table 2.1 is the structure that encodes the
information about the cost associated with each combination of classifier output and
true label. It is fixed, in the sense that for each example we use the same cost matrix to
determine the cost of its classification.

A thorough treatment of cost matrices in particular and, more generally, the subject
of cost-sensitive classification can be found in [32]. Elkan gives a set of conditions
regarding the entries of a cost matrix in order for the cost matrix, thus our problem, to
be reasonable. For the cost-matrix to be reasonable it must be the case thatcFP > cT N

cFN > cT P,
(2.1)

which simply ensures that misclassifying any instance incurs a larger cost than cor-
rectly classifying it –indeed, a reasonable requirement.



30 CHAPTER 2. ASYMMETRIC LEARNING

Table 2.1: General form of a fixed cost matrix in binary classification.

Predicted

Label h(xi)

1 −1

True 1 cT P cFN

Label yi −1 cFP cT N

Here we will be examining the most commonly studied case [24, 32], under which,
the cost of misclassifying the i-th example only depends on its class label yi – what
Landesa-Vázquez and Alba-Castro [65] refer to as class-level asymmetry. This re-
quires that correct classifications incur no cost, i.e. cT P = cT N = 0. So the binary
classification cost matrix is of the form shown in Table 2.2.

Therefore the conditions of Eq. (2.1) becomecFP > 0

cFN > 0.
(2.2)

Table 2.2: A cost matrix for a binary classification with cT P = cT N = 0.

Predicted

Label h(xi)

1 −1

True 1 0 cFN

Label yi −1 cFP 0

In all subsequent discussion, we will be assuming that the cost matrix is of the
form of Table 2.2. The reader might get the impression that we are constraining the
problem, however this is not the case. Any cost matrix of the form of Table 2.1 can
be transformed to an equivalent cost matrix of the form of Table 2.2, by elementary
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matrix operations, more specifically, by subtracting cT P from all entries of the first
column and cT N from all entries of the second column. For this reason, the entire cost-
sensitive literature referenced in this chapter and all cost-sensitive boosting variants we
will present in the next chapter, assume that the cost matrix is of the form of Table 2.2.
Thus, without loss of generality, the cost of the i-th example is simply a function of its
class label yi, and more specifically,

ci = c(yi) =

cFN , if yi = 1

cFP, if yi =−1.
(2.3)

Simply put, cFN , the cost of misclassifying a positive as a negative captures the impor-

tance of positive examples and cFP, the cost of misclassifying a negative as a positive
captures the importance of negative examples.

Before we move on, note that scaling (multiplying) by a positive constant and
shifting (adding a constant) the cost matrix does not affect the optimal solution of
the underlying decision problem2. So, if we divide the entries of the cost matrix of
Table 2.2 by cFP, we get the equivalent cost matrix of Table 2.3, where

cr =
cFN

cFP
, (2.4)

is the cost ratio, which captures the relative cost of positive examples over negatives.
Hence the cost matrix only has one degree of freedom.

The conditions of Eq. (2.2) in this case simplify to

0 < cr < ∞.

We will be exploiting the fact that the cost ratio cr uniquely defines the cost sensitive
problem, but to make the exposition clearer, we will be using the equivalent form of the
cost matrix of Table 2.2 in our subsequent analysis3. The special case where cFP = cFN

and thus cr = 1, is –of course– the traditional, cost-insensitive setting.

2This will become more clear, once we properly define our problem in terms of minimizing the
expected loss of the classifications. For now, the reader can think of such linear transformations of
the cost matrix as merely modifying the unit of measurement of the costs, which should not affect our
decisions.

3A common convention in the literature that goes hand in hand with the use of the cost matrix of
Table 2.3, is to assume –without loss of generality– that the important class (rare, high-cost, expensive)
is the positive one and that the unimportant one (frequent, low-cost, cheap) is the negative. Here we
forgo this convention for the sake of clarity.
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Table 2.3: An alternative cost matrix for a binary classification with cT P = cT N = 0,
with only one degree of freedom.

Predicted

Label h(xi)

1 −1

True 1 0 cr

Label yi −1 1 0

Cost-sensitivity is just one aspect of asymmetric learning. The ultimate goal of a
classifier is to minimize its risk (i.e. its expected cost or expected loss). In the binary
case, under the cost matrix of Table 2.2, the risk on an example (xi,yi) for a classifier
h can be written as

R(h(xi),yi) = Exi,yi{L(h(xi),yi)}

= cFN · p(h(xi) =−1,yi = 1)+ cFP · p(h(xi) = 1,yi =−1),
(2.5)

It is easy to see that Eq. (2.5) can be further analyzed into

R(h(xi),yi) = cFN ·π+ · p(h(xi) =−1|yi = 1)+ cFP ·π− · p(h(xi) = 1|yi =−1),

under the sensible assumption that p(yi = 1) = π+ and therefore also p(yi =−1) = π−,
for all i, where π+ and π− are the class priors4 of the positive and negative class,
respectively. The class priors, defined as π− = N−/N and π+ = N+/N, where N+

is the number of positive training examples, N− is the number of negative training
examples and N the size of the training set, capture the class imbalance.

There are thus two types of asymmetries that can occur in a binary classification
problem. If cFP 6= cFN , then we are facing a cost-sensitive learning problem [32]. If
π+ 6= π−, then we are dealing with an imbalanced class learning problem [16]. When

4Also known as ‘class ratios’ or ‘class proportions’ [53].
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at least one of these asymmetries is present in the problem, some authors [71] refer to
it as a non-standard case. In this thesis we chose to refer to non-standard problems
as asymmetric or as skewed following the terminology of [37] and to the methods that
deal with them as asymmetric or skew-sensitive.

2.2 Cost-sensitive & imbalanced-class learning duality

The reason for grouping these asymmetries (skewed class and skewed cost) under a
common term is that they can be formulated and treated in similar ways [24, 37, 74].

For example, suppose that the false positive cost cFP associated with misclassify-
ing negatives is twice the false negative cost cFN . This can be simulated by an adjusted
class prior which duplicates every negative, leading to π′−=

2·N−
N++2·N− =

(2/3)·N−
(1/3)·N++(2/3)·N−

and π′+ = N+
N++2·N− = (1/3)·N+

(1/3)·N++(2/3)·N− . More generally, if we define

c =
cFP

cFP + cFN
, (2.6)

then this can be simulated by an adjusted class distribution π′− = c·N−
(1−c)·N++c·N− and

π′+ = (1−c)·N+

(1−c)·N++c·N− .
Conversely, we can assign costs that are proportional to the rarity of the class of

each example, c′FP ∝
1

π−
and c′FN ∝

1
π+

, thus simulating an imbalanced class problem
as a cost-sensitive one. For example, suppose that the positive class is twice as rare
(i.e. half as frequent) as the negative one. This means that π− = 2π+. By assigning
the examples class rarity-proportional costs, we get a cost sensitive-problem where
c′FN = 2c′FP, i.e. positives are twice as important as negatives.

Finally, either approach can be used to address asymmetry due to both cost and
class imbalance, if we take either the priors or the costs to also subsume the cost
imbalance or the class imbalance respectively.

Hence we can focus on skewed cost problems in this thesis without loss of gener-
ality. Using the terminology of [28, 53], we shall refer to to c of Eq. ( 2.6) as the cost

skew and to
z =

π− · cFP

π− · cFP +π+ · cFN
∈ [0,1]. (2.7)

as the skew5 [28, 53]. The cost skew c accounts for the asymmetry due to the different

costs, the skew z to the combined asymmetry due to both different costs and different

5Often referred to as the probability cost function (pcf) [24, 28].
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class priors. If c = 0.5 then the problem is cost-insensitive and if z = 0.5 then the
problem is skew-insensitive or symmetric. For most of the subsequent analysis, such
a distinction between the different sources of asymmetry is not truly necessary6, for
the reasons we just explained. The reader can thus replace c in all equations found in
the rest of the thesis with z (or equivalently replace cFP with π− · cFP and cFN with
π+ · cFN) and these would still be valid. We shall only keep the distinction for clarity,
when appropriate, i.e. in Subsection 2.4.2 when discussing the evaluation measure we
will use and in Chapter 8 when discussing our experiments.

2.3 Problem definition & optimal decision rule

The aim of this thesis will be to solve skewed cost problems with a fixed cost matrix of
the form of Table 2.2, hence the cost of each example given by Eq. 3.3. Class priors are
assumed to be equal7. Our goal, motivated by Bayesian decision theory [4, 7, 30, 32]
is to minimize the expected cost (risk) of our classifications. Thus our desired solution
is a decision rule that minimizes the risk.

There exists an optimal solution to our problem. Given the probability of a test
example x belonging to the positive class, p(y = 1|x), we should classify it as positive
iff the risk of a positive prediction is lower than that of a negative prediction, i.e. iff

R(y,h(x) = 1)< R(y,h(x) =−1) ⇐⇒

Ex,y{L(y,h(x) = 1)}< Ex,y{L(y,h(x) =−1)} ⇐⇒

cT P · p(y = 1|x)+ cFP · p(y =−1|x)< cT N · p(y =−1|x)+ cFN · p(y = 1|x).

Under the cost matrix of Table 2.2, we have that cT P = cT N = 0, so we assign x to the
positive class iff:

p(y = 1|x) · cFN > p(y =−1|x) · cFP ⇐⇒

p(y = 1|x) · cFN > (1− p(y = 1|x)) · cFP ⇐⇒

p(y = 1|x) · (cFN + cFP)> cFP ⇐⇒

p(y = 1|x)> c,

(2.8)

where we made use of p(y = −1|x) = 1− p(y = 1|x) and Eq. (2.6). Otherwise, x is

6We will thus often be referring to c as simply the skew and to the case of c= 0.5 as skew-insensitive
or symmetric, assuming c = z, without loss of generality.

7This is only done for simplicity, as we said it does not preclude them being subsumed by the costs.
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assigned to the negative class. When cFP = cFN , this reduces to the familiar threshold
of 0.5. This all follows straightforwardly from Bayesian decision theory and simply
translates to shifting the threshold from 0.5 to c to account for the imbalance in costs.

The output of most learning algorithms –including that of boosting ensembles
which are the focus of the thesis– can be used to estimate the probability p(y = 1|x),
so the decision rule of Eq. (2.8) in practice uses estimates p̂(y = 1|x). A key point
here, which will play a major role in this work, is that ‘good’ probability estimates are
not always straightforward to obtain from a classifier, even if it has high classification
accuracy – such estimates are referred to as calibrated, and will be discussed in more
detail in Chapter 7.

2.4 Evaluation measures for asymmetric learning

Below we discuss the possible evaluation measures used in binary classification and
especially in asymmetric scenarios. We will see why the most commonly used mea-
sure of evaluating classifiers, accuracy, is inappropriate, and discuss alternatives cal-
culated from the contigency table (i.e. confusion matrix) of the classifier, explaining
why neither these are the most informative choices for the problem we defined in Sec-
tion 2.3. Finally, we will present the cost curve [28, 29] and the closely related Brier
curve [53] which will be the evaluation measure used in this work. For complete-
ness, we close the section with a brief discussion of an alternative question we could
be posing to a cost-sensitive classifier, whose answer falls under the Neyman-Pearson

detection framework.

2.4.1 Bad choices: accuracy & error rate

Perhaps the evaluation measures most associated with classification problems are

accuracy =
# correct classi f ications
# total classi f ications

,

and its complementary error rate = 1− accuracy. But it is clear that these are bad
choices for assessing the performance in asymmetric classification. They do not dif-

ferentiate between errors of the two different types, so they assume that we are dealing
with problems where cFP = cFN . In other words, the underlying misclassification loss
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they assume is the 0/1− loss,

L0/1(h(xi),yi) =

1, if h(xi) 6= yi

0, if h(xi) = yi.

rather than the cost-sensitive loss

LCS(h(xi),yi) =


cFP, if h(xi) = 1∧ yi =−1

cFN , if h(xi) =−1∧ yi = 1

0, if h(xi) = yi.

defined by the cost-matrix of Table 2.2. As we will see in more depth in later chapters,
the inability of the original AdaBoost algorithm to handle asymmetric classification,
stems from the fact that it is geared towards minimizing a bound to L0/1, rather than
LCS.

2.4.2 Good choices

Contigency table measures & ROC analysis

Numerous evaluation measures can be calculated from the four entries of the contin-
gency table of the classification, namely the numbers of true positives, true negatives,
false positives and false negatives, denoted with T P, T N, FP, FN respectively. De-
noting the total numbers of positive and negative examples with Pos = T P+FN and
Neg = T N +FP, respectively, we can define, among other measures:

• The recall or true positive rate (TPR) or sensitivity or detection rate is the frac-
tion of positives correctly classified

Rec = T PR =
T P
Pos

.

• The precision or positive predictive value (PPV) is the fraction of positive pre-
dictions that are correct

Prec =
T P

T P+FP
.
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• The true negative rate (TNR) or specificity is the fraction of negatives correctly
classified

T NR =
T N
Neg

.

• The false positive rate (FPR) or false alarm rate is the fraction of negatives
incorrectly classified

FPR =
FP
Neg

= 1−T NR.

• The false negative rate (FNR) is the fraction of positives incorrectly classified

FNR =
FN
Pos

= 1−T PR.

If only the performance of the positive class is of interest, the two measures that
are important are precision and recall. Still, precision or recall alone tell us little about
the performance of a classifier. A classifier can have a perfect precision (Prec = 1) and
a very poor recall and vice versa, just by assigning all examples to one of the classes.
It is the tradeoff between these two measures that matters. A measure that combines
both precision and recall into a single quantity is the harmonic mean of precision and
recall, the F1-measure [114] (often just referred to as F-measure)

F1−measure =
2 ·Rec ·Prec
Rec+Prec

.

The F1-measure is high when both precision and recall are high. Being their harmonic
mean, the F1-measure is closest to the smallest among precision and recall.

Note that the number of true negatives is ignored by both precision and recall, thus
also by the F1-measure. When performance in both classes is of importance, Kubat [61]
suggested the use of the G-measure

G−measure =
√

T PR ·T NR,

which is the geometric mean of the true positive rate and the true negative rate. The
G-measure is high when both T PR and T NR are high.

A generalization of the F1-measure that can account for different weight placed on
precision and recall is the Fβ-measure, defined as

Fβ−measure =
(1+β2) ·Rec ·Prec

β2Rec+Prec
,



38 CHAPTER 2. ASYMMETRIC LEARNING

where β corresponds to the relative importance of precision over recall. In the special
case of β = 1, the Fβ-measure reduces to the F1-measure.

Ideally we would like to compare classifiers across a wider range of values of skew
c. The Receiver Operating Characteristic (ROC) curve [35, 93], is a plot of the TPR

against the FPR. Each (FPR,T PR) point of the curve represents a binary classifier
that achieves a different tradeoff among the two measures. The ideal tradeoff depends
on the skew c, hence different values of that parameter lead to different models being
optimal for the task.

The ROC curves can be used to select the appropriate model (point on the curve)
given a particular value of the skew c. If we want a more quantitative measure of the
overall performance of different models across any value of c we can instead use the
area under the ROC curve (AUROC) as an evaluation measure8. A detailed analysis of
the interesting geometric properties of ROC curves and interpretations of the AUROC
can be found in [37] and [35].

All these measures are useful to assess the performance of classification under class
imbalance, but ultimately they address a different problem, be it ranking of examples
(ROC, AUROC) or the balance between precision and recall (Fβ-measure). In the
cost-sensitive setting we defined in Section 2.3, the cost skew c given in Eq. (2.6) is a
known problem characteristic and the goal of the classifier is to minimize the expected
misclassification cost. As we will see next, there exist more intuitive visualizations
for evaluating probabilistic classifiers with respect to the problem as we defined it in
Section 2.3.

Cost curves & Brier curves

Given the nature of our problem, minimizing the expected loss under a cost matrix of
Table 2.2, the expected loss itself –as estimated on the test set– is an obvious evaluation
measure for a cost-sensitive classifier. More specifically we can use the normalized

cost-sensitive loss Q(θ) [28, 53, 66], for a given decision threshold θ, averaged over
the test set. The loss is given by

Q(θ) = FNR(θ) · (1− z)+FPR(θ) · z ∈ [0,1],

8Properly normalized, the AUROC is equal to the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one, hence it is a good measure for
assessing the ranking performance of a classifier across a wide range of degrees of skew.
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where FNR(θ) is the false negative rate of the classifier at decision threshold θ, FPR(θ)

its false positive rate at that threshold and z the skew of Eq. (2.7).
Lower values of Q are desirable, regardless of the asymmetry. When false positives

and false negatives have equal costs, i.e. for cFN = cFP, the loss reduces to the expected
error rate as measured on the test set. It is normalized in the sense that Q ∈ [0,1], re-
gardless of the values of cFN and cFP. A skew z < 0.5 signifies that negative examples
are more important than positives, values z > 0.5 that positive examples are more im-
portant and z = 0.5 corresponds to the symmetric case of all examples being equally
important.

As the expected loss is not straightforward to obtain from an ROC curve, Drum-
mond and Holte [28] proposed cost curves for explicitly visualizing the risk of under
varying degrees of skew z.

Since a decision threshold θ that is optimal in training may not necessarily be opti-
mal on a test set, Q(θ) would constitute an optimistic assessment of the cost-sensitive
performance. To avoid this, we can follow the ‘probabilistic threshold choice’ practice
suggested by [53] and instead of cost curves [28, 29] (Q(θ) vs. z for optimal θ on
training set), produce Brier curves (Q(z) vs. z). That is, we set the threshold θ for
each classifier to be equal to the expected skew9 In practice, the expectation is taken
by generating the Brier curve under different skew values sampled over some range.
The primary benefit w.r.t. cost curves in our experiments will be to account for the
sampling effects of the different train/test splits on the class imbalance.

The area below the Brier curve is equal to the Brier Score (BS) [53]. The BS is a
common measure for assessing the quality of probability estimates, first proposed by
Brier [10]. It is defined as

BS =
1

Ntest

Ntest

∑
i=1

(p̂(y = 1|x)− y)2 ∈ [0,1],

i.e. the mean squared difference between the probability estimates and the actual class
labels of the test examples (if the negative class is denoted with ‘y = 0’), hence the
lower it is, the better the estimates of the model.

9We can even take this a step further to account for potential changes in skew between training
and deployment. We do so by setting the threshold to be equal to the expected change in skew from
training to deployment z′, which relates to the skew ratio during training ztr and the skew ratio during
deployment zdep via zdep = ztr ·z′

ztr ·z′+(1−ztr)·(1−z′) . This change can be interpretted as an instance of prior
probability shift, a special case of dataset shift which refers to changes in general between the joint
distribution p(x,y) during and after training. See [83, 95] for more details on the types of datashet shift.
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We thus chose to use Brier curves rather than ROC curves in our experiments in
Chapter 8 as they are more intuitive in the cost-sensitive setting (the x-axis represents
the degree of imbalance, the y-axis represents the (normalized) risk as estimated on
the test set). Furthermore and perhaps more importantly, they are more appropriate for
comparing probabilistic classifiers due to its aforementioned connection to the BS (on
the other hand ROC curves are more appropriate for comparing rankers, as mentioned
in Footnote 8). As we will see in later chapters, probability estimation will play an
important role in our analysis and Brier curves will allow us to draw important con-
clusions on the quality of probability estimates of different methods, both qualitatively
and quantitatively, via their corresponding BS.

2.4.3 Solving a different problem: Neyman-Pearson detection

Another basic measure of performance is the number of important class misclassifi-

cations. This translates into the number of rare class misclassifications when only
dealing with imbalanced classes or the number of expensive class misclassifications

when only dealing with asymmetric costs. In other words, counting the number of
false positives (if cFP > cFN) or of false negatives (if cFN > cFP).

Although this metric has been used in the literature [112, 117], it is easy to see
that a low number of expensive class misclassifications is not very indicative of a good
cost-sensitive classifier. Simply by assigning all examples to the expensive class, we
minimize the number of important class misclassifications. This is not a learned, but
rather a deterministic rule (constant classifier) and a very basic one for that matter.
Possibly we can do much better than that. A more desirable approach would be to
formulate the problem as a Neyman-Pearson detection problem.

The general premise is that there exists a maximum error rate of a given type that
we consider acceptable. By fixing the error rate of that type to that value, we then try
to find an appropriate classification threshold that minimizes the error of the other type.
More concretely, a common example is that of a detection problem. We want the TPR
to be at least α, which implies that the FNR must be at most 1−α. We fix the FNR
and choose the classification threshold θ via e.g. cross-validation for which the FPR is
minimized.

Note that the aim here is different from the one we identified as that of this the-
sis, namely minimizing the expected loss of our misclassifications under known costs.
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Neyman-Pearson detection would be more suited for solving novelty detection10 tasks:
identifying data that are in some sense different than the data used during training. This
is essentially a different problem to the one we are addressing, but we deem it prudent
to mention it for the sake of completeness. Examples of works in the cost-sensitive
boosting literature that are cast as detection problems can be found in [78, 101, 123].

2.5 Making learners asymmetric

There are various approaches to dealing with asymmetric problems. A comprehensive
analysis can be found in [52]. Below we discuss some general strategies. We will see
that cost-sensitive boosting variants can broadly be classified under the most popular
of these.

2.5.1 Shifting the decision threshold

We already discussed a strategy for making a learner asymmetric: shifting the decision

threshold of the classifier [30, 32, 71]. This approach, is only applicable when the
classifier returns a score11. In particular, if the scores can be viewed as probability

estimates, we use a threshold of c, i.e. equal to the the skew ratio, instead of the cost-
insensitive 0.5, as per Eq. (2.8). Boosting ensembles –as we will see– can produce
scores which can also be transformed to probability estimates. As a result they can
become cost-sensitive by threshold-shifting.

2.5.2 Manipulating the training data

Another commonly employed tactic for handling asymmetries is preprocessing the
training data before giving them as input to a skew-insensitive learner. One popu-
lar example is resampling the data. This can mean either oversampling the impor-

tant class (rare in imbalanced data, expensive in cost-sensitive), or undersampling the

unimportant class (common in imbalanced data, cheap in cost-sensitive), or generating

artificial data based on the original data, or a combination of these techniques.
Methods of this family can be used in conjunction with any classifier, since ef-

fectively what changes is the dataset we provide the algorithm and not the algorithm

10Also known as anomaly detection. For a comprehensive overview, see [76, 77, 91].
11The concept will be analyzed in more depth in Chapter 7. For now it suffices to think of the score

of a classifier on a given example as a measure of how positive the classifier deems the example.
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itself. The disadvantage of undersampling is that we do not get to use all the available
data, thus we lose information about the unimportant class. Oversampling on the other
hand can lead to overfitting the important class. These problems are more pronounced
when the distribution that generates the data is complex, in the sense that there are
distinct clusters (sub-populations) of examples within the classes. Ideally, sampling
requires knowing the optimal class distribution of the training set, which is generally
unknown. Even if we try to tackle these problems, e.g. by stratified sampling, we still
need additional processing time to analyze and process the data [112]. The same is true
for methods like SMOTE [15], which create synthetic samples from the minor class
instead of exact copies.

As shown empirically in [74], resampling (via oversampling the important class or
undersampling the unimportant one) and adjusting the decision threshold yield virtu-
ally identical results. Our results and theoretical analysis will also lend support to this
observation.

Another method of manipulating the training data, MetaCost, proposed by [25]
and refined in [75] consists of relabelling the training examples in such a way that the

relabelled dataset can be used to train a skew-insensitive algorithm. Again, Bayesian

decision theory is used to assign each example to its risk-minimizing class before using
the data as inputs to the cost-insensitive learner. As in the case of resampling, the
relabelled data can be used by any classifier, but it does require extra data preprocessing
time to reassign the labels.

2.5.3 Modifying the model

Another strategy is to modify the learning algorithm itself. This translates to impos-
ing an additional cost on the model for misclassifying examples of the important class
during training. This penalty can bias the model towards the important class. In prac-
tice, this translates to changing the underlying loss function minimized by the learning
algorithm and is thus specific to each learning algorithm.

2.5.4 Using an asymmetric meta-technique

Margineantu [75] considers the above as the three main methods for incorporating cost
sensitivity into learning. Another strategy is to use a skew-sensitive meta-technique.
This can then be applied to most classifiers, without the need to modify the algorithms
themselves (this includes threshold manipulation). Adaboost is a meta-technique that
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can be used with different base learners, but is not skew-sensitive. The focus of the
rest of this thesis will be to examine asymmetric versions of boosting, all of which
can be categorized under one of the three main strategies discussed in the previous
subsections.

2.6 Potential complications

A number of factors can complicate asymmetric learning tasks. For instance, a small

sample size can make an imbalanced data problem more difficult [112]. This agrees
with our general intuitions regarding generalizing from examples. In an imbalanced
dataset, the small sample size is especially detrimental to uncovering regularities in the
rare class, since the rare class examples will be too few to allow for reliable estimates.

The separability (complexity of the underlying learning concept, i.e. class bound-
ary) of the two classes is also an issue. Given linearly separable data, any degree of
skew does not seem to cause much problem based on empirical studies [5, 56]. But as
the degree of overlap among classes grows, the number of rare class misclassifications
will also grow significantly in an imbalanced dataset. This makes sense intuitively. The
relative importance of errors of different types starts mattering only when the classifier
is forced (by linear inseperability) to commit errors and the more errors it is forced to
commit (by increasing the class overlap) the more detrimental the effect of how poorly
it accounts for it.

Finally, there can also be within-class imbalances in the data [55, 112]. The classes
can contain within-class subconcepts (distinct clusters of examples), with different
numbers of examples each. The presence of such subpopulations within classes in-
creases the dataset’s underlying learning concept’s complexity and -to make matters
worse- it is usually not known explicitly (its very existence, let alone its exact nature).

Although all these nuances will not particularly concern us in this work, a review
of the asymmetric learning literature could not have been complete without them. This
concludes our introduction to asymmetric learning. We defined our problem as that
of assigning new instances to classes so that the expected risk of the classifications
is minimized. We discussed the duality between cost-sensitive and imbalanced class
learning, establishing why we can focus on the former case without loss of generality.
We presented the evaluation measure we will be using, the Brier curve and its proper-
ties and advantages over other evaluation criteria. In the next chapter we will cover the
theory and existing literature behind AdaBoost, discuss its importance, its limitations
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and its variants. Finally, we will connect it to the material covered in this chapter by
discussing existing ways to make AdaBoost cost-sensitive.



Chapter 3

Boosting and its interpretations

In this chapter we will present a brief history of the principle of hypothesis boost-

ing and its most representative algorithm, the celebrated AdaBoost. We will discuss
the success and rich theoretical depth of AdaBoost, focusing on the many different
perspectives by which it can be understood. We will make extensive use of many of
these interpretations in the next four chapters to shed light on different aspects of cost-
sensitive boosting algorithms. We will also discuss the limitations of AdaBoost, skew-
sensitivity being one among them. Finally, we review variants targeted to addressing
these limitations, with special emphasis given on cost-sensitive boosting algorithms.
We provide a critical overview of the cost-sensitive boosting literature, unifying all
existing approaches under a common notation. This will pave the way for a unified
theoretical treatment in the chapters to follow.

3.1 Hypothesis boosting

The history of boosting formally begins in 1988 with Kearns’ seminal paper [59].
However, we can see some of the ideas behind boosting in the optimization and statis-
tics literature as far back as, the Gauss-Southwell algorithm for solving linear systems
of equations (greedy coordinate descent) and Tukey’s method of “twicing”, also known
as running median smoothing [120] (repeated least squares fitting of residuals). A more
detailed explanation of these connections can be found in [11].

To understand the basic premise of boosting we need to define two concepts: A
weak learner1 is one that is marginally more accurate than random guessing and a
strong learner is one that achieves error rates arbitrarily close to the irreducible Bayes

1We will be using the terms learner, classifier, predictor, hypothesis and model interchangeably.

45
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error rate. In a seminal paper [59], Kearns formulates the hypothesis boosting problem:
Can we convert (i.e. “boost”) a weak learner into a strong learner?

The answer was given by Schapire in [102] and it was affirmative. The pro-
posed procedure is as follows: We start with a weak learner h1, the hypothesis we
wish to “boost”, trained on a sample of N datapoints. We then train two more mod-
els h2, h3 on “filtered” versions of the original data. More precisely, the dataset on
which we train h2 consists of a new sample of N datapoints, half of which are mis-
classified by h1 and a sample of N points on which h1 and h2 disagree are used to
train h3. The hypothesis described by the majority vote among the 3 hypotheses,
H(x) = Ma jority Vote(h1(x),h2(x),h3(x)) has improved performance over the origi-
nal hypothesis h1. We thus manage to “boost” the original hypothesis.

A next step was the celebrated adaptive boosting –or AdaBoost– algorithm of Fre-
und and Schapire, presented in [42]. It extends the original boosting idea from 3 to M

models built ‘adaptively’. The basic idea is to construct a (strong) model sequentially

by combining multiple (weak) models. It is ‘adaptive’ in the sense that each model
tries to ‘correct the mistakes’ of the previous one and it operates regardless of ‘how
weak’ the weak learner is or how many total rounds of boosting will be performed. It
achieves this by training each subsequent model on a new dataset in which the exam-
ples misclassified by the previous model are emphasized more and the ones that were
correctly classified are emphasized less. We will expand on how this is achieved in the
following subsection.

Finally, the AdaBoost algorithm took its popular form -the one we discuss in the
present thesis- in [107], by employing predictions that are weighted –more precisely
confidence-rated– combinations of the weak hypotheses instead of unweighted2 (ma-
jority voting). We shall now present and analyse the algorithm in detail.

3.2 The AdaBoost algorithm

AdaBoost3 is an ensemble learning technique which constructs a strong classifier H

from a weighted vote of multiple weak classifiers ht , t = 1, ...,M. The idea is to train
each subsequent model on a new dataset in which the weights of examples misclas-
sified by the previous model are increased and the weights of the correctly classified

2Technically, a more precise term than unweighted would be equally weighted with weights 1
M .

3Here we analyze the discrete AdaBoost algorithm, whose predictions on an instance x are binary,
i.e. ht(x) ∈ {−1,1}. As we will see, there also exists a version of AdaBoost whose predictions are
ht(x) ∈ [0,1], real AdaBoost.
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instances are decreased. This can be achieved either by reweighting or by resampling
the dataset on each round. In this work we followed the reweighting4 approach as
some evidence exists that it is more stable [44] and works better in practice [94]. We
use the version of AdaBoost that employs confidence-rated predictions [107], where
each base learner is assigned a confidence coefficient αt . The lower the weighted error
of the learner, the higher its αt and the larger its contribution to the final decision.

The algorithm is given N training examples of the form (xi,yi), where xi ∈ X and
yi ∈ {−1,+1} and a maximum number of rounds M. On the first round of AdaBoost,
all training examples are assigned equal weights D1

i =
1
N . On each round t, we learn a

model ht to minimize the weighted misclassification error εt = ∑i:ht(xi)6=yi Dt
i, and add

it to the ensemble, with a voting weight

αt =
1
2

log
(1− εt

εt

)
. (3.1)

The distribution Dt is then updated for timestep t +1 as

Dt+1
i = e−yiαtht(xi)×Dt

i, (3.2)

and normalised, each Dt+1
i divided by Zt = ∑

N
j=1 e−y jαtht(x j)Dt

j, to make {Dt+1
i |i =

1, . . . ,N} a valid distribution.
These will be the weights of each example on the next round5. The algorithm

terminates when the maximum number M of weak learners have been added to the
ensemble or when a base learner with εt < 1/2 cannot be found6. In the latter case,
ht violates the weak learning condition [42], i.e. is not a weak learner. As long as the
weak learning condition holds, it is guaranteed that αt > 0. The final prediction on a
test datapoint x is given by the sign of the sum of the weak learner predictions ht(x)

4Furthermore, the reweighting approach lends itself more naturally to theoretical analysis. Resam-
pling would involve working with expectations which would only complicate the exposition. Reweight-
ing requires that the weak learner be able to handle weighted instances, resampling can be more gener-
ally applicable but any results drawn from the former case, carry over –in expectation– to the latter.

5An interesting observation is that the weight update rule means that half of the mass of the weight
distribution of round t +1 is assigned to the misclassified examples of round t and half to the correctly
classified ones.

6Note that in the binary classification case, a hypothesis ht with error εt > 1/2 can be turned into
one with εt < 1/2 simply by flipping its predictions.
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weighted by their corresponding confidence coefficients

H(x) = sign

[
M

∑
t=1

αtht(x)

]
. (3.3)

The above are summarized in Algorithm 1.

Algorithm 1 The discrete AdaBoost algorithm.

Input: Training Data {(x1,y1), . . . ,(xN ,yN)}, Maximum number of rounds M.
Training:
D1

i =
1
N , for i = 1,2, . . . ,N.

for t = 1 to M do
Define εt = ∑i:ht(xi)6=yi Dt

i.
Obtain a hypothesis ht that minimizes εt and satisfies the condition εt <

1
2 .

αt =
1
2 log(1−εt

εt
).

Dt+1
i = e−yiht(xi)αt Dt

i.

Dt+1
i ← Dt+1

i

∑
N
j=1 Dt+1

j
.

end for
Prediction: H(x) = sign

[
∑

M
t=1 αtht(x)

]
.

3.2.1 AdaBoost as an ensemble method

AdaBoost is an ensemble method, as it aggregates multiple base learners (the weak
learners ht) into one combined classifier system H. As such, boosting is a meta-

algorithm which can be applied to any supervised base learner. The prediction of
the combined system is the weighted majority vote on the weak learners. In this sense
Boosting resembles bootstrap aggregating (bagging), where we train multiple models
on resampled versions of the original data and then combine them by e.g. majority
vote to obtain a prediction.

Upon closer inspection, however, we see that the two approaches are fundamentally
different. Bagging is a parallel model building technique that reduces the variance of
the base learner. The variance is the component of the model’s error that is due to
differences across datasets. By training multiple models on resampled versions of the
dataset, i.e. on new datasets with different distributions of data, when we average
their predictions, the errors that arise due to variations in the datasets are canceled out.
Boosting on the other hand is a sequential model building technique that also reduces
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bias. The bias is the component of the error that is due to systematic errors across
datasets. By building the model sequentially, on subsequent rounds we can focus more
on the examples –or rather, the regions of the input space– that the base learner fails to
classify correctly, thus correcting the systematic weakness (bias) of the model.

The above distinction between bagging and boosting is evident from the fact that
while bagging does not attain high performance with base learners that exhibit low
variance and high bias (e.g. decision stumps), boosting does. In fact the most com-
monly used base learners for AdaBoost are decision stumps (univariate linear models).
The resampling aspect of boosting appears to introduce some randomization, a tool
used –as we saw in the case of bagging– to reduce the variance component of the
model’s error, but as we said we can remove this randomization factor by reweighting
instead of resampling, in which case boosting actually becomes more stable according
to [44].

Compared to other ensemble methods, Breiman conjectures in [9] that AdaBoost
imitates the behavior of a random forest in its later stages. He recognizes the absence
of randomization on the part of boosting, but attributes to the dynamics of AdaBoost
any form of apparent random behaviour, while providing some empirical evidence to
support this claim.

3.2.2 The successes of AdaBoost

The popularity and resonance of the AdaBoost algorithm in the statistics, machine
learning and data mining community merits a special mention. In [131] it was praised
as “one of the most influential algorithms in the community”. For starters, AdaBoost
and its variants have been used in many successful applications including face detec-
tion in phone cameras [123] and the Yahoo search engine for ranking webpages [19].

AdaBoost has also been shown in extensive experimental comparisons spanning
multiple datasets, such as the ones conducted in [13, 36], to consistently perform well
compared to other learning algorithms. This is a pretty strong statement to make about
a learning algorithm, given the no-free-lunch (NFL) theorem [130] that suggests that
no single learning algorithm is guaranteed to exhibit a better than random performance
under all data distributions7. In addition to that, it usually requires minimal parameter

7Of course these theorems make the implicit assumption that the distribution of such distributions
is uniform, i.e. they are all equally likely. In practice we are usually looking for patterns in datasets
in which patterns do exist. Also, most –or even all– such patterns could conceivably have certain
underlying commonalities that constitute certain algorithms better at uncovering them than others. For
example, a recent paper by Lin & Tegmark [70] argues that the class of physics-based functions of
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tuning compared to other well-rounded models like deep neural networks and support

vector machines.
The recognition of AdaBoost as an influential algorithm both as a theoretical tool

and in terms of applications it generated even goes beyond the confines of our special-
ized community. Freund and Schapire were awarded the 2003 Gödel Prize, one of the
most prestigious awards in theoretical computer science, for their original AdaBoost
algorithm [42]. The same principles behind AdaBoost, a central one being its adaptive
multiplicative weight update rule, have been employed by various subfields of theo-
retical computer science, as summarized by [3]. As for its more ‘exotic’ applications,
it has been recently used to explain evolution in the presence of sexual recombina-
tion [14, 81].

3.2.3 Interpretations

Besides the many applications of boosting, an active subject of ongoing research is
its theoretical interpretation. In fact, there have been multiple interpretations of Ad-
aBoost and boosting in general. The various interpretations are –for the most part–
complementary, each explaining some aspects of why and how boosting works and on
that matter, why it works so well in practice. For example, it has been observed that
often adding new models after the training error reaches zero, continues to decrease
the test error, i.e. boosting continues to improve its generalization. How is AdaBoost
in that sense resistant to overfitting? This is but one of the questions the various inter-
pretations are called to answer. In addition to explaining its function and justifying its
positive properties, the different interpretations proposed can offer insights on how we
can improve the algorithm, or how we can adapt it to specific tasks.

Boosting was originally derived under the Probably Approximately Correct (PAC)

learning framework [102], and so was AdaBoost [42]. In each case, it was proved
that the algorithms can, with high probability (the “probably" part), have low general-

ization error (the “approximately correct" part), under any arbitrary choice of desired
error, probability of success, or distribution of the data. This directly translates to es-
tablishing theoretical generalization bounds. However, these bounds are too lose to
be practical since, paraphrazing [44], “boosting achieves results far more impressive
than these bounds would suggest”. So, this interpretation, despite its many merits, is
not fully satisfactory, as it doesn’t explain, for instance, why AdaBoost is resistant to

practical interest (i.e. functions we would like our learners to approximate) is relatively small, because
of properties like symmetry, locality, compositionality and polynomial log-probability.
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overfitting.
In [43], a game-theoretic view of boosting is established. Freund & Schapire define

a 2 player zero-sum game, the ‘boosting game’, with one player being the booster,
whose N pure strategies are the examples (xi,yi) and the other the weak learner, whose
M pure strategies are the weak hypotheses ht . The loss incurred by the booster is
defined as 1 if ht(xi) 6= yi and 0 otherwise. Applying the minmax theorem to solve
for the value (mixed Nash equilibrium) of the game and adhering to the weak learner
condition, the authors prove that there exists a weighted majority of hypotheses which
correctly classifies all examples. In other words we can achieve an arbitrarily high
accuracy. This is another explanation of why boosting works, which connects it to
linear programming (and convex optimization in general). This link has given rise
to new variants such as LP-boost [21]. This framework also demonstrates that the
choice of weights at AdaBoost assigns to the corresponding weak learners, since not
calculated jointly but rather sequentially (i.e. greedily), is sub-optimal.

A refinement of the PAC-theoretic interpretation of AdaBoost, based on the Vapnik

Chervonenkis (VC) theory is given in [42]. VC theory captures three conditions that
need to be met by a learner in order to be effective and accurate in its predictions: it
should be trained with ‘sufficient’ training examples, it should fit those training exam-

ples well (i.e. achieve low training error) and it should be ‘simple’8. In the case of
AdaBoost, the analysis proves that the training error of the final hypothesis reaches
zero in O(log(N)) rounds. New bounds on the generalization error can thus be derived
that also account for the complexity of the final hypothesis as captured by its VC-

dimension9 which, computed with the use of combinatorial arguments [1, 8], is shown
to increase roughly linearly with the number of boosting rounds M. These bounds
are again too loose to be of any practical importance. The theory captures the cases in
which AdaBoost does overfit, i.e. when the training set is not sufficiently large or when
the base learners are very complex, but also predicts (incorrectly) that AdaBoost will
always overfit i.e. as M grows. Despite factoring in the complexity of the final hypoth-
esis, we still have no explanation as to why AdaBoost exhibits overfitting resistance as
the number of learners increases.

An attempt to explain this property was given in [106] through margin theory. The
idea is that the training error alone only partially captures the quality of a learning

8This demand for low complexity is an application of the Occam’s razor principle, as explained in
the introduction of the thesis.

9In non-technical terms, the VC-dimension of a hypothesis family is the largest number of data-
points, that a hypothesis of that family can perfectly classify, irrespective of their (true) labels.
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algorithm. We also need to consider how confident the algorithm is in its predictions.
AdaBoost often continues to generalize even after all training examples are correctly
classified because the confidence by which it correctly classifies them increases with
additional rounds of boosting.

The hypothesis margin (a.k.a. the (voting) margin) is a combined measure of con-

fidence and correctness of the classification of a given training example. In its un-
normalized form the margin of a given training example (x,y) is simply the product
yFt(x), where Ft(x) = ∑

t
τ=1 ατhτ(x) is the output of the ensemble. Once properly

rescaled, this can be shown to be equal to the difference between the weighted fraction
of the weak classifiers predicting the correct label for that example and the weighted
fraction predicting the incorrect label. The higher this difference is, the more confident
the final hypothesis. Thus the magnitude of the margin measures the confidence of the
final hypothesis, and it is easy to see that its sign encodes whether the example was
correctly classified (positive) or misclassified (negative). This approach has also lead
to more refined generalization error bounds based on the margin. Initially [106], it
was proposed that AdaBoost maximizes the minimum margin. This explanation was
later shown to be flawed, after contradictory empirical evidence given in [8], where
an algorithm (arc-gv) was devised that could maximize the minimum margin over the
training set but still achieve higher generalization error. Although [96] proposed that
this behaviour could be attributed to the choice of weak learners used by arc-gv, serious
doubt was cast over the initial margin explanation.

So in the same paper [96], the fault of the initial interpretation was suggested to
be the fact that it does not take into account the entire margin distribution. This led
to generalization bounds based on the average margin. Since then, other bounds have
been established, like the Equilibrium margin (Emargin) [125], which also take into
account the entire margin distribution. More recently, both minimum margin bounds
and Emargin bounds have been shown to be special cases of the k-th margin bound,
and all the previous margin bounds are single margin bounds that are not really based
on the whole margin distribution [48]. In other words, margin theory has yet to give a
definitive answer as to which function of the margin distribution AdaBoost minimizes.
Attempts at devising variants of AdaBoost based on direct maximization of margins
have not been entirely successful [104]. Despite its own failings, this is the only ex-
planation for the aforementioned resistance to overfitting that AdaBoost exhibits after
the training error reaches zero. In Chapter 6, we will offer a more detailed treatment of



3.2. THE ADABOOST ALGORITHM 53

the concept of hypothesis margin. We will also be making extensive use of the connec-
tion between margins and generalization performance, relating it to properties of the
loss functions minimized by different cost-sensitive boosting variants and supporting
it with additional experimental results.

An information-theoretic perspective came from [60], who viewed boosting as an
entropy projection technique. In AdaBoost, the new distribution of weights over the
training examples is based on the old distribution of weights and the mistakes made
by the current weak learner. The authors show that AdaBoost’s choice of the new
distribution can be seen as an approximate solution to finding a new distribution that
is ‘closest’ to the old one (i.e. has minimal Kullback-Leibler divergence from the old
one) subject to the constraint that the new distribution is orthogonal to the vector of
mistakes of the current weak learner. In other words, AdaBoost approximately projects
the distribution vector onto a hyperplane defined by the mistake vector.

In [18], the authors treat both boosting and logistic regression in a unified way as
problems of minimizing Bregman divergences. Their framework can generate a large
family of sequential and parallel algorithms. A special case of the former kind is
AdaBoost.

In a seminal paper [44], Friedman et al. interpreted the original AdaBoost algo-
rithm as a procedure to minimize the expected exponential loss10:

LAda(Ft) = Ex,y{e−yFt(x)},

by iterative fitting of terms in the additive model Ft = ∑
t
τ=1 ατhτ(x).

Friedman et al. showed that if we minimize LAda(Ft) in a greedy stagewise manner
–i.e. if at stage t we choose the optimal ht and αt considering all hτ and ατ, for τ < t as
constants– we naturally derive the steps of AdaBoost described in Section 3.2. This is
known in the literature as the ‘statistical interpretation’ of boosting. Under this light,
boosting is just logistic regression where the features of the i-th example are the outputs
of the weak learners on that example hτ(xi),τ = 1, . . . , t, the coefficients of which are
fit by coordinate descent (first α1, then α2 and so on).

A closely related interpretation, given by Mason et al. [80] shows that functional

gradient descent to greedily fit an additive model Ft(x) = ∑
t
τ=1 ατhτ(x), derives the

10One motivation behind the use of the exponential loss is that it forms a differentiable upper bound
to the 0/1-loss [107] as we shall see in Figure 6.1. Also, minimizing E{e−yF(x)} is equivalent to 2nd
order to minimizing the negative expected conditional log-likelihood −E{log(P(y|x))} [44].
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same steps, allowing us to choose a different loss function11 if we wish as long as it is a
monotonically decreasing, differentiable, function of the margin. The idea is similar to
performing gradient descent in some parameter space. Only now, the ‘parameters’ are
base learners, i.e. functions ht ∈ H defined on the training points, H being a specific
family of models (e.g. decision stumps). The direction of the update (i.e. the specific
hτ to be added at round τ) is chosen to be the one in H that minimizes the loss12. For
certain special cases of loss functions, like that of AdaBoost, the size of the optimal
(greedy) step ατ can also be determined in closed form. This interpretation plays a
central role in this thesis. It will be discussed in a more technical light in Chapter 4.

A probabilistic interpretation is presented in [67], where it is shown that Ad-
aBoost’s solution of the minimization of exponential loss and the maximum likelihood
for exponential models differ only in the normalization factor employed by the latter
to derive a conditional distribution over labels which is absent from AdaBoost. Other
than that, both models minimize the same KL-divergence objective function subject to
the same feature constraints.

Another probabilistic view is that of boosting as a Product of Experts (PoE), in
which experts are incrementally added [31]. Starting with just 1 expert, we progres-
sively add more to the product. The (t +1)-th expert corresponds to the weak learner
added on the t-th round of boosting to the ensemble. The condition to add an expert is
that the conditional likelihood of the (t + 1)-th PoE be greater or equal to that of the
t-th PoE. Edakunni et al., determined that this requirement corresponds to the weak
learning condition and derived the AdaBoost algorithm as a special case under this
framework. In Chapter 7, we will expand upon this interpretation by giving exact PoE
models for the cost-sensitive variants covered in Section 3.3 and examining how their
probability estimates are systematically distorted and how to correct for this.

In [100], AdaBoost is studied in the context of dynamical systems. AdaBoost is
expressed as a nonlinear iterated map and the authors analyze the evolution of the
weight vectors. This perspective offers another understanding of AdaBoost’s conver-
gence properties and in the cases where stable cycles are observed in the evolution of
weights, we can explicitly solve for AdaBoost’s output. Furthermore, it is shown that
if AdaBoost cycles, it cycles among ‘support vectors’, i.e., examples that all achieve
the smallest margin. The framework shows that AdaBoost does not always converge

11Technically, a functional defined over some function space.
12To find the hτ that minimizes the loss, we compute the functional gradient of the loss functional

w.r.t. the hτ. We then pick the one hτ that is closest to the functional gradient by minimizing the inner
product between hτ and the gradient over the training examples.
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to a maximum margin combined classifier and that ‘non-optimal’ AdaBoost (where
the weak learning algorithm does not necessarily choose the best weak classifier at
each iteration) may fail to converge to a maximum margin classifier, even if ‘optimal’
AdaBoost produces a maximum margin. These findings appear to be suggesting that
the margin theory explanation of boosting is not the whole picture. Sure, when its
behaviour is cyclic AdaBoost maximizes the margin, but in practice the dynamics of
AdaBoost can be chaotic. How does it achieve its strong generalization performance,
then?

One explanation could be that AdaBoost minimizes a loss function (e.g. expo-
nential loss) but performs implicit regularization via early stopping [99, 134]. This
approach starts with a variant of AdaBoost in which the αt coefficients of the ensem-
ble are initially set to a small fixed constant α > 0. It can then be shown that running
M rounds of boosting is equivalent to applying `1-regularization to the loss function,
with the `1-norm of the weights of the weak hypotheses being bounded by a constant
equal to αM > 0. Therefore early stopping (running AdaBoost for a small number of
rounds) is equivalent to regularization. As we said, this interpretation technically does
not apply to AdaBoost but to a variant of it. Furthermore, for a large number of rounds,
i.e. as M→ ∞, the resulting regularization becomes vanishingly weak. In this extreme
scenario, it is shown in [99] that the resulting solutions asymptotically maximize the
margins of the training examples. In other words, we again reduce to a margin theory
explanation.

3.2.4 Limitations

Despite its success, AdaBoost has some important limitations. Perhaps the most glar-
ing is that it can be very sensitive to noisy data and outliers as demonstrated in [72].
Some examples are misclassified for good reason: they are anomalies with respect to
the underlying pattern. But AdaBoost will continue increasing their weights, no mat-
ter how few they are or how far from the current decision boundary or for how many
rounds they evade correct classification.

Another obvious limitation is that it is –by the definition of a strong learner– geared
towards maximizing accuracy (minimizing missclassification error). Therefore, to
adapt it to cost-sensitive applications or when applied to imbalanced-class scenarios,
where accuracy is not the desired evaluation measure, we need to modify the algorithm
–or how we use its output– appropriately. It has been shown [57] that the weak learner
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condition imposes no restriction on the precision and recall of the base learner, lead-
ing to ensembles of poor overall precision and recall. The same paper also shows that
even a cost-sensitive version of boosting, AdaCost [33] depends heavily on the base
learner’s balance of precision and recall to achieve a good overall performance. The
next section is dedicated to the extensive cost-sensitive boosting literature.

Finally, the basic algorithm can be applied only to binary classification. If we deal
with a multiclass problem, we will have to use a multiclass variant instead, such as
ECOC [103], AdaBoost.MH [107], SAMME [135], multi-class LogitBoost [44].

3.2.5 Variants of boosting

Besides those mentioned already, many more variants of boosting have been devel-
oped. We will briefly mention a few, just to demonstrate the flexibility of boosting, the
power that the various interpretations afford us and to illustrate how simple modifica-
tions can help alleviate some of the weaknesses of the original AdaBoost algorithm. If,
for example, we regard AdaBoost as a stagewise optimization of an exponential loss
function, then by changing the loss function, the optimization method or -of course-
aspects of the parameterization of the problem, we get a new boosting algorithm.

For instance, by changing a small aspect of the parameterization and allowing the
base learners to output real predictions ht(x) ∈ [0,1] instead of class labels ht(x) ∈
{0,1} (or {−1,1} to use our notation), we get Real AdaBoost, also known as Real-

Boost [44]. We can thus treat the real predictions as estimates of posterior probabilities

ht(x) = p̂(y = 1|x). The idea is that now we make use of this measure of how confident
the weak learner is in its prediction of each training instance. It is shown experimen-
tally that this algorithm can attain better performance than discrete AdaBoost.

If we substitute the exponential loss of the discrete AdaBoost with the binomial

log-likelihood and optimize it using Newton steps, we get LogitBoost [44]. This variant
can also attain better performance than discrete AdaBoost as demonstrated in the same
paper.

GentleBoost [44], is another variation of AdaBoost, which optimizes the exponen-
tial loss using Newton steps of bounded size, i.e. bounds αtht by y. This algorithm is
more stable than both RealBoost and LogitBoost. The reason is that while the latter
two can allow their αt to become infinite, Gentleboost, by its more conservative update
rule cannot. This prevents numerical instabilities and produces results comparable, or
often better to RealBoost and LogitBoost.

Another variant, LPBoost [21], is based on the connections of boosting to linear
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programming established by the game-theoretic interpretation. It optimizes a linear
loss function similar in spirit13 to the one that Support Vector Machines (SVMs) use in
that it combines maximizing the margin between the two classes and allowing some
slack (some tolerance to misclassified instances). This tradeoff is controlled by a pe-

nalization parameter as in the case of the SVMs. The motivation behind this approach
is to limit AdaBoost’s sensitivity to outliers and noise, by allowing a fraction of the
training examples to be misclassified.

BrownBoost [40] is another attempt to solve the problem of the susceptibility of
AdaBoost to noise. Unlike the variants we have been describing so far, it uses a non-
convex loss. BrownBoost ‘gives up’ on trying to correctly classify hard examples after
a number of efforts. It also needs an additional parameter (the training error to be
tolerated).

SmoothBoost [110] also attempts to make boosting more resistant to noise. This
variant however requires three hyperparameters to be specified by the user, the desired
error rate of the final hypothesis, the guaranteed edge (the advantage over a random
guess) of the hypothesis returned by the weak learner, and the desired margin of the
final hypothesis.

An algorithm inspired by the information-theoretic and margin-theoretic interpre-
tations of boosting, is TotalBoost [128]. The motivation stems from the entropy pro-
jection procedure that AdaBoost performs. AdaBoost is ‘corrective’ with respect to
the last hypothesis by constraining its edge to be at most γ = 0. TotalBoost takes this
idea one step further by being ‘totally corrective’, i.e. by constraining the edges of all
previous hypotheses to be at most γ. This γ value is in turn suitably adapted and as a
result the hypothesis margin is maximized.

Again, for purposes of countering the sensitivity to noise, a modification to Total-
Boost was proposed in the form of SoftBoost [127], with an extra ‘capping’ parameter

added that forces a soft margin upon the final hypothesis, much like the slack vari-
ables do in the SVM case. In the paper, the authors show that SoftBoost and LPBoost
converge faster and attain lower error rates than BrownBoost and SmoothBoost.

Floatboost [69] is a variant that generally uses a smaller number of weak learners
than AdaBoost. It does so by applying a backtrack step after each iteration of AdaBoost
in order to remove weak learners that hurt the overall accuracy. Floatboost achieves
better accuracy than AdaBoost, but at the cost of a longer training time.

13Optimizing the objective function of the SVMs is a quadratic programming (QP) problem, while
LPBoost is posed as a linear programming (LP) problem.
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We can also modify AdaBoost to perform regression instead of classification. One
such variant, which follows directly from the view of boosting as functional gradient
descent [80] (and the related statistical interpretation by Friedman et al. [44]), is Gra-

dient Boosting [45, 46]. In this case, the final prediction outputs a real number and is
built greedily as the weighted combination of base learners (restricted to be a function
from a given family) that also output real predictions, so as to minimize the average
value of some loss over the training set. The optimal weak learners are selected by per-
forming steepest descent in the space of the predictions on the individual examples of
the training set. The optimal weights are chosen by a line search. Of course this variant
can also be further adapted to solve ranking problems [12, 19, 47]. Since any regres-

sor can be turned into a classifier by appropriately thresholding its output, Gradient
Boosting can also be used to perform classification. We will not expand upon these
variations. Having established the importance, adaptability and theoretical richness
of the basic principle of boosting we will now move to the last part of our literature
review: cost-sensitive boosting.

3.3 Cost-sensitive boosting algorithms

In the introduction we mentioned that there exist a number of AdaBoost variants pro-
posed to handle cost-sensitive learning tasks [33, 58, 64, 78, 79, 113, 117, 123, 124].
Most of these methods are proposed heuristically, i.e. by introducing ad-hoc changes to
steps of the AdaBoost algorithm, rather than by starting from a cost-sensitive problem
formulation, e.g. by defining a different loss function in place of AdaBoost’s expo-
nential loss LAda = Ex,y{e−y∑t αtht(x)} and deriving the steps from it. Cost-sensitive
boosting methods can broadly be classified into three groups: those that introduce
modifications in the training phase of the original AdaBoost, either by modifying the
weight update rule of Eq. (3.2), or the calculation of the αt coefficients of Eq. (3.1),
those that modify the initial weights and those that modify the prediction rule Eq. (3.3).
The vast majority of approaches fall into the first category.

In this section we will perform a critical review of the cost sensitive Boosting
literature spanning 1997-2016, under a consistent and unified notation. Tables 3.1
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& 3.2 summarize the changes proposed by each variant14. Table 3.1 gives the pro-
posed weight update rule and the initial weight for each method and the corresponding
entry in Table 3.2 gives the proposed formula for αt for the same method.

As a reminder, we focus on cost-sensitive tasks under a constant cost matrix. The
cost of misclassifying the i-th example only depends on its class label yi and is given
by

c(yi) =

cFN , if yi = 1

cFP, if yi =−1.

All of the methods presented here, with the exception of CSB0, CSB1, AdaCost &
AdaCost(β2), reduce to the original AdaBoost when the task is symmetric, i.e. when
cFP = cFN = 1. For simplicity, we shall ignore the normalization step of the weight
distribution in the subsequent discussion, but we account for it in Table 3.1.

3.3.1 Modifying the training algorithm

CSB0, CSB1 & CSB2

Ting [117] proposed three different modifications of the weight update rule of Eq. (3.2)
of AdaBoost which leave the remaining steps of the algorithm intact. The first variant,
CSB0, changes the weight update rule to

Dt+1
i = γ

i
tD

t
i. (3.4)

CSB1 instead uses the following rule to update the weights

Dt+1
i = e−yiht(xi)γ

i
tD

t
i. (3.5)

Finally, CSB2 updates the weights according to the rule

Dt+1
i = e−yiht(xi)αt γ

i
tD

t
i. (3.6)

14Minor variations in e.g. the weight initialization of different approaches have also been exam-
ined [65, 117] further increasing the number of variants used in practice. These are excluded from
our analysis as, for reasons that will become clear in the subsequent chapters, these changes are not
sufficient to grant any of the favourable missing properties to a variant.
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In all of them, there is a ‘cost parameter’ γi
t , which assumes the values

γ
i
t =

c(yi), if ht(xi) 6= yi

1, if ht(xi) = yi.
(3.7)

Notice that in all three cases the weights of true positives and true negatives are pe-
nalized irrespective of their costs. Also note that CSB0 and CSB1 do not involve the
confidence coefficient αt in the weight update rule. Of the three approaches, only
CSB2 reduces to the original AdaBoost when cFP = cFN = 1.

Based on the results of comparative studies [78, 79, 112, 117], CSB1 has been
found to outperform CSB0 and both variants are typically dominated by CSB2.

Asymmetric-AdaBoost

Viola & Jones [123] proposed changing the weight update rule of AdaBoost to

Dt+1
i = e−yiht(xi)αt c(yi)

1/MDt
i (3.8)

and the calculation of αt to

αt =
1
2

log
∑i:ht(xi)=yi Dt

ic(yi)
1/M

∑i:ht(xi)6=yi Dt
ic(yi)1/M

. (3.9)

The rationale behind this approach –dubbed Asymmetric-AdaBoost, henceforth
AsymAda– is that rather than initializing the weights in a cost-proportional manner, it
“distributes the asymmetry evenly across the M weak learners”15.

Hence, this variant requires the final number of weak learners M to be fixed in
advance. This is somewhat limiting as the exact number of weak learners in all other
boosting variants is set dynamically, the optimal number varying from problem to prob-
lem.

15Viola & Jones [123] use a multiplicative factor
(

cFN
cFP

)yi/2M
in Eqs. ( 3.8- 3.9) rather than c(yi)

1/M

used here. But note that both cost setups translate to the same cost ratio (cost of a positive over cost of

a negative, Eq. (2.4)), cr =
(

cFN
cFP

)1/M
. Hence they both imply decision problems with equivalent cost

matrices, as explained in Chapter 2. We chose to use c(yi)
1/M for simplicity and consistency.



3.3. COST-SENSITIVE BOOSTING ALGORITHMS 61

AdaCost & Alternative AdaCost

Fan et al. [33] proposed the use of a ‘cost adjustment function’ βi
t in the weight update

rule
Dt+1

i = e−yiht(xi)αtβ
i
t Dt

i, (3.10)

and the calculation of the alpha coefficients16

αt =
1
2

log
1+∑i:ht(xi)=yi Dt

iβ
i
t−∑i:ht(xi)6=yi Dt

iβ
i
t

1−∑i:ht(xi)=yi Dt
iβ

i
t +∑i:ht(xi)6=yi Dt

iβ
i
t
. (3.11)

Fan et al. reasoned that the cost adjustment function must be non-decreasing with
respect to c(yi) when the i-th example is misclassified and non-increasing with respect
to c(yi) when the i-th example is classified correctly. Out of all possible functions, Fan
et al. [33] chose to use

β
i
t =

0.5(1− c(yi)), if ht(xi) = yi

0.5(1+ c(yi)), if ht(xi) 6= yi.
(3.12)

AdaCost does not reduce to AdaBoost when cFP = cFN . As for the choice of βi
t , it

makes sense for it to be non-decreasing with respect to c(yi) in case of misclassifica-
tion, so that the weights of misclassified examples of the expensive class are increased
more than those of the low-cost one. However, as pointed out by Ting [117], the
function being non-increasing with respect to c(yi) when the i-th example is classified
correctly is counter-intuitive. It means that, the weights of correctly classified exam-
ples of the expensive class are penalized more heavily than those of the cheaper one.
In Chapter 6 we will revisit this phenomenon and its implications as an instance of the
–undesirable– property of asymmetry swapping.

Fan et al. [33] also proposed another variant of AdaCost. It also uses Eq. (3.11) to
calculate the confidence coefficients, but its weight update rule instead of Eq. (3.10) is

Dt+1
i = e−yiht(xi)αt β

i
tD

t
i, (3.13)

In addition to the problems of the first variant, when c(yi) = 1 this algorithm sets the

16Alternatively, we could say it leaves the calculation of the αt coefficients the same as that of
AdaBoost, i.e. given by Eq. (3.1), but the calculation of the weighted error εt of AdaCost is changed

w.r.t. AdaBoost to εt =
1−∑i:ht (xi)=yi

βi
t D

t
i+∑i:ht (xi)6=yi

βi
t D

t
i

2 . In fact this is how Fan et al. [33] present the
algorithm. Here we chose to express the changes induced by all algorithms in the formula of αt , aiming
for consistency and ease of comparisons across methods.
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weights of correctly classified examples Dt+1
i to zero after the first iteration. This

variant is thus not examined in the literature and all references to AdaCost refer to the
first variant. We will also exclude it from further consideration.

AdaCost(β1) & AdaCost(β2)

The problems with AdaCost led Ting [117] to propose two variants of the algorithm.
The first, dubbed AdaCost(β1) replaces the weight update rule of AdaBoost with

Dt+1
i = e−yiht(xi)αtc(yi)Dt

i, (3.14)

and the calculation of αt with

αt =
1
2

log
1+∑i:ht(xi)=yi Dt

ic(yi)−∑i:ht(xi)6=yi Dt
ic(yi)

1−∑i:ht(xi)=yi Dt
ic(yi)+∑i:ht(xi)6=yi Dt

ic(yi)
(3.15)

The second variant, AdaCost(β2) also uses Eq. (3.14) to update the weights, but leaves
the calculation of the confidence coefficients the same as that of AdaBoost. Both vari-
ants reduce to AdaBoost when cFP = cFN = 1. Both of these, were found to outperform
the original AdaCost.

AdaC1, AdaC2 & AdaC3

Sun et al. [113], propose three variants of AdaBoost for cost-sensitive classification
that involve changes in both the weight update rule and the calculation of the confi-
dence coefficients (or equivalently the calculation of the weighted error). The first one,
AdaC1 substitutes the weight update rule of the original AdaBoost, given in Eq. (3.2),
by Eq. (3.14) and the calculation of the αt with Eq. (3.15). Hence it is the same algo-
rithm as AdaCost(β1).

The second variant, AdaC2 substitutes the weight update rule of the original Ad-
aBoost, given in Eq. (3.2), by

Dt+1
i = e−yiht(xi)αt c(yi)Dt

i, (3.16)

and the calculation of the αt coefficients to

αt =
1
2

log
∑i:ht(xi)=yi Dt

ic(yi)

∑i:ht(xi)6=yi Dt
ic(yi)

. (3.17)
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Finally, the third variant, AdaC3 substitutes the weight update rule of the original Ad-
aBoost, given in Eq. (3.2), by

Dt+1
i = e−yiht(xi)αtc(yi)c(yi)Dt

i, (3.18)

and the calculation of the αt coefficients to

αt =
1
2

log
∑

N
i=1 Dt

ic(yi)+∑i:ht(xi)=yi Dt
ic(yi)

2−∑i:ht(xi)6=yi Dt
ic(yi)

2

∑
N
i=1 Dt

ic(yi)−∑i:ht(xi)=yi Dt
ic(yi)2 +∑i:ht(xi)6=yi Dt

ic(yi)2
. (3.19)

All three variants reduce to AdaBoost when cFP = cFN = 1. Like the rest of the al-
gorithms discussed so far, AdaC1, AdaC2 & AdaC3 were also originally proposed
heuristically [113]. It was later claimed [112] that AdaC2 can be justified theoretically
as a stagewise minimization of a cost-weighted version of the expected exponential
loss, which for an ensemble of base learners ht has the form Ex,y{c′(y)e−y∑t αtht(x)},
for some cost parameter c′(y). While this is technically true, note that c′(y) is not
the actual cost c(y) of example (x,y). In Chapter 5 we will see what it is equal to
and how this deviates from a desirable property imposed by decision theory, making
AdaC2 suboptimal. In older empirical studies [78, 79, 113], AdaC2 has been shown to
outperform CSB2, AdaCost, AdaC1 and AdaC3.

CS-Ada & AdaDB

Mashnadi-Shirazi & Vasconselos [78, 79] proposed replacing the exponential loss
function Ex,y{e−y∑t αtht(x)}minimized by AdaBoost by Ex,y{e−yc(y)∑t αtht(x)}. In Chap-
ter 6 we will see that this loss function has an undesirable property.

The resulting algorithm, CS-AdaBoost, lacks a closed form solution for αt . It con-
sists of generating a pool of weak learners {hk : k = 1, . . . ,K}. Subsequently, for each
of these weak learners the algorithm calculates a corresponding optimal coefficient
αk

t by solving a hyperbolic equation for αk
t . Finally, the combination (αt , ht) that

minimizes the loss is selected to be added to the ensemble at round t. Thus, the op-
timization of the parameters of CS-AdaBoost relies heavily on the pool of the initial
weak learners and the hyperparameters of the numerical method involved to solve the
hyperbolic equation. It has therefore been characterized as computationally intensive
and imprecise [64, 65, 66, 126].

AdaBoostDB [64] is a reformulation of CS-AdaBoost. It optimizes the same loss
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function but follows an alternative optimization scheme. Again, a pool of weak learn-
ers {hk : k = 1, . . . ,K} is used but the hyperbolic equation, the solution of which is
the corresponding optimal coefficient αk

t is reformulated to a polynomial one which is
solved faster (again with the use of an appropriate numerical method). Both approaches
were found to perform equally well, subject to numerical errors. The optimization
scheme of AdaBoostDB was found to be considerably faster (about 200 times) than
that of CS-AdaBoost, but still very slow compared to the slowest of other approaches
discussed here (about 20 times), according to the creators of the method [65, 66].

3.3.2 Modifying the weight initialization

This work is not the first to question the need for cost-sensitive boosting variants.
Landesa-Vázquez & Alba-Castro have also criticized their heuristic nature, the fact
that they lack the theoretical guarantees of the original AdaBoost algorithm and that
many of them are prone to saturating (i.e. assigning all examples to the expensive
class) [63, 65, 66]. Their suggestion, which they consider ‘overlooked or undervalued
in the related literature’[65, page 17] is to change the weight initialization of the i-th
example from D1

i =
1
N to17

D1
i = c(yi) (3.20)

According to the authors, this approach, which they call ‘cost generalized AdaBoost’
– henceforth CGAda– provides superior empirical results to all approaches mentioned
in the last subsection while preserving the theoretical guarantees of AdaBoost. CGAda

will also be included in our comparisons.
As for the theoretical properties of CGAda, indeed it does not modify the training

algorithm, but note that it still suffers from the need to retrain the entire ensemble if the
cost imbalance changes between training and testing time, a weakness shared with all
other methods excluding AdaMEC, the method we will describe next. Moreover, like
all other methods examined here, CGAda treats the (normalized) AdaBoost predictions
as probability estimates. As we will see in Chapter 7, this approach is flawed.

17More precisely, Landesa-Vázquez & Alba-Castro [63, 65, 66] propose the following weight ini-

tialization: D1
i =

{
cFN

(cFP+cFN)·N+
= 1−c

N+
, if yi = 1

cFP
(cFP+cFN)·N− = c

N−
, if yi =−1.

, where N− is the number of negative training

examples and N+ the number of positive ones. Assuming that the costs cFP and cFN also absorb the
class imbalance –as we discussed in Chapter 2– this rule becomes D1

i =
c(yi)

cFP+cFN
. Ignoring the constant

scaling factor 1
cFP+cFN

, which –again as discussed in Chapter 2– being the same for all instances does
not change the cost-matrix of the problem, we end up with the simple rule we give in Eq. (3.20).
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3.3.3 Modifying the prediction rule

Ting [117] proposes an appealing alternative, to train with the original AdaBoost, but
modify the decision rule in a cost-respecting decision-theoretic manner. This is the
AdaBoost with Minimum Expected Cost (AdaMEC) rule:

HAdaMEC(x) = sign

[
∑

y∈{−1,1}
c(y) ∑

τ:hτ(x)=y
ατhτ(x)

]
. (3.21)

Eq. (3.21) reduces to the original AdaBoost decision rule of Eq. (3.3) when the task
is symmetric. AdaMEC exploits Bayesian decision theory – assuming the weighted
votes are proportional to class probabilities – that is, ∑τ:hτ(x)=1 ατ ∝ p(y = 1|x) and

∑τ:hτ(x)=−1 ατ ∝ p(y = −1|x). In Chapter 5 we are going to see that the decision rule
of AdaMEC as given by Ting [117] is but a special case of a more general one that
does not make the above assumption and allows for generic parametrization of the
class probabilities. In the subsequent analysis, we shall refer to this more general
approach as AdaMEC.

For now, we have completed our survey of the existing cost sensitive boosting
literature. Tables 3.1 & 3.2 summarize the changes to the original AdaBoost proposed
by each variant. The original AdaBoost is included for reference. AdaMEC does not
modify any of the training steps of AdaBoost, only its prediction rule (hence in both
tables it can be viewed as the same entry as AdaBoost). As for AdaCost(β1), it is the
exact same algorithm as AdaC1.

3.4 Preview of the rest of the thesis

In the next 4 chapters, we will use tools from four theoretical frameworks: decision
theory, functional gradient descent, margin theory, and probabilistic modelling to anal-
yse the variants presented here. Each one of these theoretical angles will turn out to
have its own advantages and perspective in the analysis, and the work could not be
complete without all four. This is useful to identify properties of the methods, as well
as interesting in its own right, since it reflects the diversity of positions from which
AdaBoost can be derived [105].

Each of the four perspectives will allow us to formulate a desirable property for a
cost-sensitive boosting algorithm. Based on these properties we can make predictions
regarding the behaviour and performance of each of the boosting variants under study,
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Table 3.1: A summary of cost-sensitive variants showing how they modify the weight
updates, along with the weight initialization. The definition of αt also varies across
methods and can be looked up in Table 3.2. The original AdaBoost is included for
reference. AdaMEC does not modify any of the training steps of AdaBoost, only its
prediction rule. AdaCost(β1) is the same algorithm as AdaC1.

Algorithm
Weight Update Rule Initial Weights D1

i &

Dt+1
i ∝ [...]×Dt

i Cost Adjustment Functions

AdaBoost [42] e−yiαt ht (xi) where D1
i =

1
N

CGAda [63] e−yiαt ht (xi) where D1
i = c(yi)

AdaC1 [112]

e−c(yi)yiαt ht (xi) where D1
i = c(yi)CSAda [78]

AdaDB [64]

AdaC2 [113] c(yi)e−yiαt ht (xi) where D1
i = c(yi)

AdaC3 [113] c(yi)e−c(yi)yiαt ht (xi) where D1
i = c(yi)

AsymAda [123] c(yi)
1/Me−yiαt ht (xi) where D1

i = c(yi)
1/M (fixed M)

CSB0 [117] γi
t where D1

i = c(yi)

CSB1 [117] γi
te
−yiht (xi)

and γi
t =

{
c(yi), if ht(xi) 6= yi

1, if ht(xi) = yiCSB2 [117] γi
te
−yiαt ht (xi)

AdaCost [33]
e−βi

t yiαt ht (xi)
where D1

i = c(yi)

AdaCost(β2) [117] and βi
t =

{
1+c(yi)

2 , if ht(xi) 6= yi
1−c(yi)

2 , if ht(xi) = yi

which we then verify experimentally in Chapter 8. As we will see in Chapter 7, in some
cases we can also correct an algorithm to grant it a missing property, thus improving
its performance.
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Table 3.2: A summary of cost-sensitive variants showing how they modify the base
learner weights αt . The weight initialization and weight update rule also vary across
methods and can be looked up in Table 3.1. The original AdaBoost is included for
reference. AdaMEC does not modify any of the training steps of AdaBoost, only its
prediction rule. AdaCost(β1) is the same algorithm as AdaC1.

Algorithm Base learner weight αt

AdaBoost [42]

αt =
1
2 log

∑i:ht (xi)=yi
Dt

i

∑i:ht (xi)6=yi
Dt

i

AdaCost(β2) [117]

CSB(0,1,2) [117]

CGAda [63]

AdaC1 [113] αt =
1
2 log

1+∑i:ht (xi)=yi
Dt

ic(yi)−∑i:ht (xi)6=yi
Dt

ic(yi)

1−∑i:ht (xi)=yi
Dt

ic(yi)+∑i:ht (xi)6=yi
Dt

ic(yi)

AdaC2 [113] αt =
1
2 log

∑i:ht (xi)=yi
Dt

ic(yi)

∑i:ht (xi)6=yi
Dt

ic(yi)

AdaC3 [113] αt =
1
2 log

∑
N
i=1 Dt

ic(yi)+∑i:ht (xi)=yi
Dt

ic(yi)
2−∑i:ht (xi)6=yi

Dt
ic(yi)

2

∑
N
i=1 Dt

ic(yi)−∑i:ht (xi)=yi
Dt

ic(yi)2+∑i:ht (xi)6=yi
Dt

ic(yi)2

AsymAda [123] αt =
1
2 log

∑i:ht (xi)=yi
Dt

ic(yi)
1/M

∑i:ht (xi)6=yi
Dt

ic(yi)1/M (fixed M)

AdaCost [33] αt =
1
2 log

1+∑i:ht (xi)=yi
Dt

iβ
i
t−∑i:ht (xi)6=yi

Dt
iβ

i
t

1−∑i:ht (xi)=yi
Dt

iβ
i
t+∑i:ht (xi)6=yi

Dt
iβ

i
t

See βi
t in Table 3.1.

CSAda [78] Numerical solution of hyperbolic equation. No closed form.

AdaDB [64] Numerical solution of polynomial equation. No closed form.



Chapter 4

The functional gradient descent view

We now begin our journey of examining the cost-sensitive boosting literature through
different theoretical perspectives. Each of these will provide a distinctive insight into
how different variants operate and each will define a desired property that some vari-
ants will satisfy and others will not. In this chapter we shall delve deeper into the
functional gradient descent view of boosting. We will use it to infer the loss function

minimized by each variant. This way, we make the objective function of each algo-
rithm explicit, which allows us to examine them all, even many previously regarded
as heuristics –which constitute the majority of the proposed methods– under the same
theoretical framework.

We will see which algorithms are efficiently optimizing their loss function and
which take suboptimal steps. This distinction allows us to divide the set of cost-
sensitive boosting methods into two groups: those that satisfy the property of being
consistent with the functional gradient descent and those that do not. We do make
a note though that this property, although desirable is not necessarily crucial for the
success of a cost sensitive algorithm and briefly mention how suboptimal steps can
actually lead to better generalization.

Most importantly, the loss function itself will play an integral role for the three
chapters to follow. It is the loss function each algorithm attempts to minimize that de-
fines the properties of each variant that we will introduce in these chapters. Ultimately
these will all be properties of the loss function we derive in the present chapter.

68
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4.1 Boosting as functional gradient descent

We shall follow the view of boosting as functional gradient descent (FGD) [44, 80],
adopting Mason et al’s formulation. This perspective views boosting as a procedure
that greedily fits an additive model Ft(x) = ∑

t
τ=1 ατhτ(x) by minimizing the empirical

risk (i.e the average loss on a training set),

J(Ft(x)) =
1
N

N

∑
i=1

L(yiFt(xi)), (4.1)

where L(yiFt(xi)) is a monotonically decreasing loss function1 of yiFt(xi), the margin

on the i-th example.
The FGD approach tells us to add the model ht+1 that most rapidly reduces Eq. (4.1).
This model turns out to be that which minimizes the weighted error for a new weight
distribution Dt+1, which can be written, as Mason et al. observed, in terms of the
functional derivative:

Dt+1
i =

∂

∂yiFt(xi)
J(Ft(x))

∑
N
j=1

∂

∂y jFt(x j)
J(Ft(x))

=

∂

∂yiFt(xi)
L(yiFt(xi))

∑
N
j=1

∂

∂y jFt(x j)
L(y jFt(x j))

. (4.2)

The voting weight αt is the step size in the direction of the new weak model ht .The
optimal step size is the one that minimizes the empirical risk on the training set, i.e.

α
∗
t = argmin

αt

[ 1
N

N

∑
i=1

L
(

yi(Ft−1(xi)+αtht(xi))
)]

. (4.3)

Under Eq. (4.2), a given loss function L(yiFt(xi)) implies a specific form of weight
updates

Dt+1
i ∝− ∂

∂yiFt(xi)
L(yiFt(xi)). (4.4)

Conversely, it will then be the case that the weight updates Dt+1
i imply a specific family

of equivalent loss functions via

L(yiFt(xi)) ∝

∫
−Dt+1

i d(yiFt(xi)). (4.5)

1To avoid confusion, when we refer to the loss (function), we will mean the loss function L(yiFt(xi))
minimized on the t-th round of boosting. In the next chapter we will briefly introduce another concept,
the global loss (function), which will be the loss function of which the final model built by the boosting
algorithm is a minimizer.
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Having made this observation we can now use Eq. (4.5) to derive the loss function of
any given boosting variant.

4.1.1 Example: AdaBoost

Let us now take a moment to give a concrete example of this two way connection
between loss functions and weight updates, for the special case of AdaBoost. In Ad-
aBoost the loss w.r.t. the margin of the i-th example is

LAda(yiFt(xi)) = e−yiFt(xi), (4.6)

so, by Eq. (4.4), the weight update rule will be

Dt+1
i =

e−yiht(xi)αt ×Dt
i

∑
N
j=1 e−y jht(x j)αt ×Dt

j
, (4.7)

which is indeed the familiar weight update rule of AdaBoost.

Following the inverse derivation, taking the weight update rule of Eq. (4.7) as given
and inferring the loss function via Eq. (4.5), we recover that any member of the family
of loss functions

L(yiFt(xi)) ∝ e−yiFt(xi)+K, (4.8)

where K is some constant w.r.t. the margin yiFt(xi), would lead to weights updated via
Eq. (4.7). Setting the integration constant to K = 0, we obtain the loss of Eq. (4.6),
scaled by some constant. The constant can also be ignored, giving us the familiar
exponential loss of AdaBoost. However, any function of the family defined by Eq.
(4.8) once minimized w.r.t. αt across the entire training set as per Eq. (4.3) will give
us the original αt from Adaboost, in Eq. (3.1).

4.1.2 Why a margin loss?

Mason et al’s functional gradient descent (FGD) framework requires that the loss func-
tion be a monotonically decreasing function of the margin yiFt(xi) [80]. Let us now
explain why this is a reasonable requirement, before we start investigating the loss
functions of the various cost-sensitive boosting variants.

First, we remind the reader that the (voting) margin is a combined measure of
confidence and correctness of the classification of the i-th training example. Its sign
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indicates the correctness of the classification (yiFt(xi)> 0 if the example has been clas-
sified correctly and yiFt(xi)< 0 if it has been misclassified). The magnitude of yiFt(xi)

represents the confidence of the model Ft in the classification of xi. If L(yiFt(xi)) is
monotonically decreasing, the more it deviates from 0 hence the higher the confidence
of the ensemble in its prediction is, the lower its loss will be if it classifies xi correctly
and –conversely– the higher its loss if xi is misclassified.

Thus it is sensible for the loss function to be a monotonically decreasing function
of the margin. Misclassifications are penalized more than correct classifications, high-
confidence misclassifications are penalized more than low-confidence ones and low-
confidence correct classifications are penalized more than high-confidence ones. We
can see that such a loss function will guide the ensemble towards high confidence
correct classifications.

4.2 Uncovering the hidden loss

Only a handful of the existing cost-sensitive boosting variants, namely CSAda [78, 79],
AdaDB [64], CGAda [63, 65] have been derived by first explicitly specifying a loss
function L and then following the steps of FGD. Hence the first step in our analysis
is to follow the inverse derivation for the remaining methods, taking their modified
weight update rule and inferring the loss function via Eq. (4.5). Once this is done, we
can study all methods under a common theoretical framework and compare them on
the basis of four properties that follow from their loss function.

In Table 4.1 we give the underlying loss function for each cost-sensitive boost-
ing variant. To get it, we first express Dt+1

i as a function of the margin yiFt(xi), by
recursively substituting Dt

i up to the initial weight D1
i . The equation for the weight

update Dt+1
i of each method and its weight initialization D1

i were given in Table 3.1.
We then use Eq. (4.5) to derive a loss function, itself being a function of the margin.
This approach works fine for all but the four methods we discuss separately in the next
subsection.

4.2.1 Methods that do not minimize a margin loss

Note that for CSB0, CSB1, AdaCost and AdaCost(β2) we cannot express the underly-
ing loss as a function of the margin yiFt(xi). This is because Dt+1

i itself is not a function
of the margin. In fact, in these four methods, Dt+1

i is not even a function of the additive
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model Ft(xi) = ∑
t
τ=1 ατhτ(xi) used in our classifications, but of some other function of

the weak learner outputs {hτ(xi)|τ = 1, . . . , t}. It is therefore not very surprising that,
as we discussed in Chapter 3, these four variants also happen to be the only methods
examined here that do not reduce to the original AdaBoost when the task is symmetric.
As we will see in Chapter 8, they are also found to be among the five worst-performing
variants in our empirical comparisons.

Bearing in mind that due to the heuristic nature of these methods we should not
expect them to necessarily neatly fit into any theoretical framework, we can still derive
a loss function for them, albeit not of the form L(yiFt(xi)). We do so as follows. Again
we recursively substitute Dt

i up to D1
i (again given in Table 3.1) so as to express Dt+1

i

as some function g of the true label yi and the individual weak learner predictions
{hτ(xi)|τ = 1, . . . , t}. We then choose a function L such that

L(g(yi,{hτ(xi)|τ = 1, . . . , t})) ∝

∫
−Dt+1

i d(g(yi,{hτ(xi)|τ = 1, . . . , t}))

as the underlying loss function.
Hence we can make our framework general enough to derive loss functions for

these methods as well. But not being monotonically decreasing functions of the mar-
gin –or even functions of the margin for that matter– these loss functions are not as
well-behaved as those addressed by other methods, as explained in Subsection 4.1.2.
Therefore, for all subsequent discussion it is sufficient2 to just note that their loss is not
a monotonically decreasing function of the margin.

4.3 FGD-consistency

The functional gradient descent view allows us to infer the loss function that each
method attempts to minimize through its weight update rule. We found that some
algorithms, namely CSB0, CSB1, AdaCost & AdaCost(β2) do not minimize a mono-
tonically decreasing function of the margin. These, of course, do not follow the FGD
framework of Mason et al.

2For the interested reader, the loss function of CSB0 is a function of the quantity c(y)q−1,
where q ≥ 0 is the number of models that misclassified example x. That of CSB1 is a function of
c(y)q−1e−y∑

t
τ=1 hτ(x). Finally, the loss of AdaCost & AdaCost(β2) is a function of e−y∑

t
τ=1 βτ(x)ατhτ(x),

where βτ(x) was given in Table 3.1.
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Table 4.1: Loss function L(yFt(x)) minimized by each cost-sensitive boosting variant.
To derive it, we used Eq. (4.5) and the weight update rule and initial weight of each
method given in Table 3.1.

Method
Loss Function

L(yFt(x))

Adaboost [42] e−yFt(x)

AdaMEC ”

CGAda [63, 65, 66] c(y)e−yFt(x)

AsymAda [123] c(y)t/Me−yFt(x)

CSAda [78, 79] e−c(y)yFt(x)

AdaDB [64] ”

AdaC1 [112, 113] ”

CSB2 [117]

c(y)q−1e−yFt(x),
where q models have

misclassified x.

AdaC2 [112, 113] c(y)te−yFt(x)

AdaC3 [112, 113] c(y)t−1e−c(y)yFt(x)

CSB0 [118] Cannot express
CSB1 [117] loss as a function

AdaCost(β2) [117] of yFt(x).
AdaCost [33]
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For the remaining algorithms, since modifying the weight updates implies a spe-
cific family of equivalent loss functions by Eq. (4.5), then any change in the distribu-
tion update should be reflected in the calculation of voting weights αt , according to
Eq. (4.3). Otherwise, the chosen αt are sub-optimal for the purpose of the stagewise
minimization of the loss.

Therefore, the FGD view divides the literature into two families – those which are
consistent with it and those that are not.

Definition: FGD-consistent A boosting method is functional gradient descent (FGD)-

consistent if it uses a distribution update rule and voting weights αt that are both con-

sequences of greedily optimising the same, monotonically decreasing, loss function of

the margin. Otherwise the method is FGD-inconsistent.

4.3.1 Checking for FGD-consistency

For generality and to avoid unnecessary repetition of what is effectively the same
thought process, we shall not present proofs for each method individually, but rather a
general scheme for checking any given boosting algorithm for FGD-consistency. This
has the added benefit to cover more variants than those studied in this thesis.

We start with Eq. (4.5), where Dt+1
i is the weight update rule of the given algo-

rithm. If its RHS is not a monotonically decreasing function of the margin yiFt(xi),
then neither is the loss L(yiFt(xi)) and the method is FGD-inconsistent under our defi-
nition. As we saw this is the case for CSB0, CSB1, AdaCost & AdaCost(β2).

For all other methods examined here, by recursively applying the weight update
given in Table 3.1 up to D1

i , it can be shown that Dt+1
i can be written as a monotonically

decreasing function of the margin. In all methods it is of the general form:

Dt+1
i ∝ K1(i)e−K2(i)yiFt(xi) (4.9)

where K1(i) and K2(i) are non-decreasing functions of c(yi), the cost of the i-th exam-
ple (e.g. K1(i) = 1 or K2(i) = 1 are also admissible).

Combining Eq. (4.5) and Eq. (4.9), we obtain

L(yiFt(xi)) ∝

∫
−K1(i)e−K2(i)yiFt(xi)d(yiFt(xi))

=
K1(i)
K2(i)

e−K2(i)yiFt(xi)+K,
(4.10)
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where K is constant w.r.t. the margin yiFt(xi).
Setting K = 0 and ignoring the scaling factor, we can limit ourselves for simplicity

to a single member of the family of functions L(yiFt(xi)) and use

L(yiFt(xi)) =
K1(i)
K2(i)

e−K2(i)yiFt(xi). (4.11)

The loss functions of this form are the ones we present in Table 4.1. This is of course
an optional step, as any loss of the form of Eq. (4.10) is equivalent for optimization
purposes, i.e. it is minimized by the same Ft(xi).

If the given form of the voting weight of the t-th base learner minimizes the empir-
ical risk under L(yiFt(xi)) on the training set, i.e. is the one given by Eq. (4.3), then
the method is by our definition FGD consistent. Otherwise it is FGD-inconsistent. The
results are shown below.

FGD-consistent FGD-inconsistent

Ada, AdaMEC, CGAda, AsymAda, CSB0, CSB1, CSB2, AdaC1,

AdaC2, CSAda3, AdaDB3 AdaC3, AdaCost, AdaCost(β2)

For the rest of the thesis, the treatment of FGD-consistency serves two purposes.
Firstly, to identify the precise loss function an algorithm is minimizing. Once this is
known, additional properties can be evaluated, revealing whether this loss is sensible
in a cost-sensitive scenario. Secondly, FGD-consistency is useful for knowing whether
the loss is being efficiently optimized.

4.3.2 When ‘suboptimal’ steps are better than ‘optimal’

Our initial hypothesis was that methods that are FGD-inconsistent will be outper-
formed by those that are FGD-consistent. However, as the empirical results of Chapter

3 CSAda & AdaDB are FGD-consistent under our definition. However, the αt under the loss func-
tion they minimize has no closed form and requires approximation. The two variants use different ap-
proximations; CSAda requires the solution of a hyperbolic equation, AdaDB that of a polynomial. This
makes both methods computationally intensive and subject to approximation error in the α coefficients.
Thus in practice they are not guaranteed to be FGD-consistent.
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8 will show, this only reveals part of the story. As the history of Machine Learning has
shown many times, an intuitive choice of a good heuristic can result in practical ad-
vances that outperform a sophisticated theory. We certainly do not regard the methods
we name above as ‘inconsistent’ as necessarily inferior to ‘consistent’ ones.

We already explained why minimizing a loss which is not a monotonically decreas-
ing function of the margin is not as sensible as minimizing one that is. CSB0, CSB1,
AdaCost and AdaCost(β2) are thus expected to not perform as well as the other meth-
ods. And indeed they do not. But the definition of FGD-consistency also classifies as
FGD-inconsistent methods like CSB2, AdaC1 and AdaC3 which do minimize a mar-
gin loss, albeit take suboptimal steps in the direction of minimizing it, in the sense that
the αt coefficients they use are not the ones that minimize said loss on the training set.
For methods of the latter category, claiming that they are necessarily inferior to the
ones that use optimal steps would be unjustified for two reasons.

The first reason is that the loss itself might not be a very good choice. As we will
see in the next chapters, some methods use loss functions that overemphasize the costs
or that swap class importance during training. In these situations, not optimizing an
objective function which is problematic might be a better choice than actually opti-
mizing it. This might explain –for instance– why AdaC1 tends to outperform CSAda
in our experiments presented in Chapter 8. Both methods employ the same loss for
the purpose of determining the weight updates. In Chapter 6 we will see that this loss
has a flaw which hurts generalization. While CSAda attempts to numerically estimate
optimal steps αt in the direction of minimizing said loss, AdaC1 doesn’t. And inter-
estingly, we see it tends to perform better.

The second reason why suboptimal step sizes might lead to better generalization
performance is related to regularization. Friedman [45] was the first to suggest rescal-
ing the optimal steps αt of Eq. (4.3) by a factor ν ∈ (0,1) which can be thought of as a
learning rate. The concept is known as shrinkage or regularization via rescaling, and
the idea is to take smaller gradient descent steps. As a result of scaling down the step
size, the ideal path4 towards the minimum is more finely approximated. The draw-
back, of course, is that as the steps are smaller, more of them are needed to reach the
minimum. This means more boosting rounds need to be performed hence additional
computational time both during training and during querying (deployment). All this is
very nicely summarized in Figure 4.1, taken from [116].

4We can think of the ideal path as the shortest path in the parameter space that connects the current
model to the minimum, if full knowledge of the parameter space is given and there is no restriction on
how we traverse it.
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Figure 4.1: Blue: the ideal path towards the minimum of the loss function. Green: path
followed by taking boosting steps of optimal size. Red: path followed by taking boost-
ing steps in which shrinkage is applied. The red path more finely approximates the
optimal one (blue), than the green one, but requires more steps to reach the minimum.
Image taken from [116].

We cannot directly relate this second situation to any of our empirical results. We
have not explored to what extend the suboptimal step sizes taken by FGD-inconsistent
methods can be viewed as applying shrinkage. This goes beyond the scope of this
thesis and is left as a subject for future work.

For now we can consider FGD-consistency a generally favourable property (given
a sensible loss function). If anything, once we do have the optimal step size, shrinkage
can be applied to it to explore its regularization effect. In the following chapters, we
will use the loss functions we derived in the previous section to examine three addi-
tional properties of the cost-sensitive boosting variants, further investigating if their
loss is indeed sensible in the context of cost sensitive boosting.



Chapter 5

The decision-theoretic view

In this chapter we will examine cost-sensitive boosting algorithms through the lens of
decision theory. Decision theory is the study of making decisions in the general case
where the costs and probabilities of different outcomes can vary. It gives us optimal
decision rules when these quantities –or reasonably good estimates thereof– are known.
We already saw the optimal decision rule for a given cost matrix when the goal is to
minimize the expected misclassification cost in Chapter 2.

The first step in our analysis from the decision-theoretic perspective is to observe
that each cost-sensitive boosting variant constructs (an approximation to) the mini-
mizer of the corresponding loss function we derived in Chapter 4 by applying the FGD
framework. After deriving the minimizer of said loss, we use it in conjunction with the
ensemble prediction rule to derive the decision rule the variant implements in terms
of the probability of a given example being positive and the misclassification costs.
As we will see, some of these decision rules do indeed correspond to the optimal de-
cision rule given the probability of a given example being of the positive class (or in
the absence of this, its estimate) and the costs, but others do not. Based on this we
can divide the literature into those algorithms that are consistent with minimizing the
expected cost of misclassifications given the cost matrix of the problem and those that
are inconsistent.

A byproduct of this analysis is a generalized version of AdaMEC, one that –unlike
the original one proposed by Ting [117]– does not assume a specific form of probability
estimates. To facilitate discussion, we will also introduce a new concept, that of the
global loss, to refer to the loss function of which the final model built by the boosting
algorithm is a minimizer (as opposed to the loss function minimized in each round). It
is actually this global loss that defines the final decision rule a variant implements.

78
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5.1 Loss minimizers

In the previous chapter, we investigated boosting variants from a functional gradient
descent viewpoint. In doing so, we uncovered the loss function each cost-sensitive
boosting variant attempts to minimize in a greedy way. This means that each vari-
ant is attempting to construct the model that minimizes its corresponding loss. The
minimizer each method is approximating via a greedily fitted additive model can be
inspected in Table 5.1.

Table 5.1: The population minimizer of the loss function of each method. This is
directly derived from the loss function of Table 5.2 and results to the decision rule
shown on the same table (after replacing true probabilities with estimates as is the case
in practice). We have made use of the fact that for AsymAda the final round of boosting
will be t = M. For AdaMEC the decision rule was defined as in Table 5.2 which in turn
specifies a loss whose minimizer is the one showed here.

Method Population Minimizer F∗(x) of Loss L(F)

Adaboost [42] 1
2 log p(y=1|x)

p(y=−1|x)

AdaMEC 1
2 log p(y=1|x)

p(y=−1|x) +
1
2 log cFN

cFP

CGAda [63, 65, 66] ”
AsymAda [123] ”

CSAda [78, 79] 1
cFN+cFP

log p(y=1|x)
p(y=−1|x) +

1
cFN+cFP

log cFN
cFP

AdaDB [64] ”
AdaC1 [112, 113] ”

CSB2 [117]
1
2 log p(y=1|x)

p(y=−1|x) +
q−1

2 log cFN
cFP

,
where q models have misclassified x.

AdaC2 [112, 113] 1
2 log p(y=1|x)

p(y=−1|x) +
t
2 log cFN

cFP
,

where t is the number of boosting rounds.

AdaC3 [112, 113] 1
cFN+cFP

log p(y=1|x)
p(y=−1|x) +

t
cFN+cFP

log cFN
cFP

,
where t is the number of boosting rounds.

CSB0 [118] Cannot express
CSB1 [117] population minimizer
AdaCost(β2) [117] as a function of cFP,
AdaCost [33] cFN & p(y = 1|x)
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5.1.1 Minimizer derivation

The minimizer shown in Table 5.1 is directly derived from the loss function of the
boosting variant in question, shown in Table 4.1 and repeated in Table 5.2 for ease of
reference. For most methods examined here, the minimizer F∗ of their expected loss
on the final round1 of boosting L(Ft(x)) can be written as a function Ψ of the true
conditional class probability p(y = 1|x) and the cost setup, i.e.

F∗(x) = argmin
Ft

Exy

{
L(Ft(x))

}
= Ψ(p(y = 1|x),cFN ,cFP).

The loss denoted by L(Ft(x)) is none other than the loss L(yFt(x)) we discussed in the
previous chapter. Here there is no need to write it as a function of the margin yFt(x), so
we only consider it a function of the output of the additive model constructed at round
t, Ft(x), for simplicity. Of course, the exact form of the population minimizer F∗(x)
of a given loss function L(Ft(x)) which is differentiable w.r.t. Ft(x) can be obtained by
simply setting,

∂L(Ft(x))
∂Ft(x)

= 0,

and solving for Ft(x).
A notable exception to the above pattern is AdaMEC –added in Table 5.1 for com-

pleteness. The decision rule of AdaMEC is defined as per Table 5.2, motivated by
decision theory, as we will explain in Section 5.3. Thus for AdaMEC, we follow an in-
verse reasoning to obtain the minimizer shown in Table 5.1, starting from the decision
rule, as will be explained in that section.

It should be noted here that all boosting methods greedily approximate the true
minimizer F∗ by an additive model Ft(x) = ∑

t
τ=1 ατhτ(x) estimated on a finite train-

ing set. So we replace true probabilities with estimates2, regardless of how they are
estimated:

F∗(x) = Ψ(p(y = 1|x),cFN ,cFP)≈ Ft(x) = Ψ(p̂(y = 1|x),cFN ,cFP). (5.1)

1For all methods but AsymAda, this means that the t-th round is the final boosting round, whether
it reached its maximal allowed number M or not. For AsymAda, this means that t = M.

2To examine a method for cost-consistency it would have sufficed to inspect the decision rule under
the optimal model F∗ shown in Table 5.1, i.e. a decision rule involving true probabilities rather than
estimates. We chose to use estimates for generality and notational consistency. It should be clear
though that cost-consistency is ultimately only due to the loss function L rather than the specific way
probabilities are estimated.
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In the rest of this chapter we will use the minimizers of Table 5.1 to examine
whether the decision rule implemented by each variant is optimal for the purpose of
minimizing the expected misclassification cost. But first, let us remind ourselves what
the optimal decision rule is.

5.2 Cost-consistency

Decision theory gives us straightforward and optimal rules for dealing with cost sensi-
tive binary problems [30, 32, 38]. We have reviewed this in Chapter 2, the result being
a simple rule: given the probability p(y = 1|x), or –in practice– a probability estimate
p̂(y = 1|x), we should make predictions using the rule:

p̂(y = 1|x)

> c, predict y =+1

< c, predict y =−1
, (5.2)

where c = cFP
cFP+cFN

is the threshold defined by the misclassification costs.
As mentioned earlier in this chapter, for generality, we shall give all the decision

rules in terms of probability estimates p̂(y = 1|x), as we did with Eq. (5.2). These
can be estimated in more than one ways, as we will see in Sections 5.3 and 7.3 . Of
course, if the decision maker (i.e. the classifier) has knowledge of the true probability
p(y = 1|x), then all rules presented here can be written in terms of p(y = 1|x).

The optimal decision rule for the purposes of minimizing the expected misclassifi-
cation cost under a given cost matrix, can be used to divide the cost-sensitive boosting
literature into two groups, those that implement it and those that do not. We can thus
define a new desirable property for a cost-sensitive boosting variant:

Definition: Cost-consistent A method is cost-consistent, if the prediction rule it con-

structs is equivalent to the rule of Eq. (5.2), for any given cost matrix of the form of

Table 2.2. Otherwise the method is cost-inconsistent.

Table 5.2, shows the decision rule implemented by each method in terms of prob-
ability estimates –as in practice we do not have access to true probabilities. We can
classify the methods as so3:

3Some methods in practice are used in conjunction with replacing cFP & cFN with hyperparameters
to be set via cross-validation. This has been criticized in e.g. [101] as heuristic. Our decision theoretic
analysis shows why they resort to this choice. Being cost-inconsistent their decision rule is not geared
towards minimizing the expected cost using cFP & cFN directly from the cost matrix, despite them being
fixed, known problem characteristics.
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Cost-consistent Cost-inconsistent

AdaMEC, CGAda, AsymAda, Ada, CSB0, CSB1, CSB2, AdaC2,

AdaC1, CSAda, AdaDB AdaC3, AdaCost, AdaCost(β2)

5.2.1 Checking for cost-consistency

Let us now present a general strategy for showing whether a given method is cost-
consistent or cost-inconsistent. As in the general scheme for checking for FGD-
consistency in Chapter 4, the same steps described here can be applied to check any
given algorithm for cost-consistency, despite the fact that we are going to be specifi-
cally focusing on the variants studied in the present thesis.

We shall assume that we know the loss function L(Ft(x)) that the algorithm mini-
mizes at stage t. Given only the weight update rule of a method, we saw how to derive
L(Ft(x)) in Chapter 4.

All methods –with the exception of AdaMEC, which will be discussed separately
in the next section– once the final ensemble Ft(x) is constructed, classify x according
to the decision rule:

H(x) = sign[Ft(x)]. (5.3)

As explained in Eq. (5.1), once we derive the minimizer of the loss L(Ft(x)), we can
express Ft(x) in terms of the probability estimates p̂(y = 1|x) and the costs cFN and
cFP, i.e. write the decision rule in the general form

H(x) = sign[Ψ(p̂(y = 1|x),cFN ,cFP)]. (5.4)

Simplifying Eq. (5.4), we derive the decision rules given in Table 5.2. If a method
implements a decision rule equivalent to that of Eq. (5.2) under any cost matrix C it is
cost-consistent. Otherwise it is not.

Finally, if L(Ft(x)) cannot be expressed as a function of Ft(x) = ∑
t
τ=1 ατhτ(x), i.e.

the output of the actual ensemble constructed, then we cannot derive a decision rule as
a function of p̂(y= 1|x), cFN & cFP. This is the case for some of the methods examined
here, namely CSB0, CSB1, AdaCost & AdaCost(β2). As explained in Chapter 4, the
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Table 5.2: A summary of the cost-sensitive variants showing the loss function mini-
mized w.r.t. the ensemble constructed on round t and the final decision rule, written
in terms of probability estimates and misclassification costs. In the second column,
we have made use of the fact that for AsymAda the final round of boosting will be
t = M. AdaMEC’s decision rule was defined as shown here. AdaBoost is included for
reference.

Method Loss Function Decision rule sign[p̂(y = 1|x)−θ],
L(Ft(x)) where θ = ...

Adaboost [42] e−yFt(x) 1
2

AdaMEC ” cFP
cFP+cFN

CGAda [63, 65, 66] c(y)e−yFt(x) ”

AsymAda [123] c(y)t/Me−yFt(x) ”

CSAda [78, 79] e−c(y)yFt(x) ”
AdaDB [64] ” ”
AdaC1 [112, 113] ” ”

CSB2 [117]
c(y)q−1e−yFt(x)

(cFP)
q−1

(cFP)q−1+(cFN)q−1where q models have
misclassified x.

AdaC2 [112, 113] c(y)te−yFt(x) (cFP)
t

(cFP)t+(cFN)t

AdaC3 [112, 113] c(y)t−1e−c(y)yFt(x) ”

CSB0 [118] Cannot express Cannot express
CSB1 [117] loss as a function decision rule as
AdaCost(β2) [117] of Ft(x) . a function of cFP,
AdaCost [33] cFN & p̂(y = 1|x)
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loss function of these four variants is not a function of the additive model Ft(x) itself,
but some other function of the weak learners. As there can be no guarantee that they
satisfy Eq. (5.2), the methods are classified as cost-inconsistent.

To dispel any confusion, ultimately, the argument about whether a method is cost-
consistent (or not) hinges on the form of the population minimizer of its loss function,
i.e. what the method is attempting to approximate. The loss function is either explicitly
specified by the authors (e.g. CSAda, CGAda) or we can infer it by the proposed
weight update rule via the FGD mechanism in Eq. (4.5). If we plug that population
minimizer in the decision rule of Eq. (5.3) and the rule can be rearranged into the form
of Eq. (5.2), then the method is cost consistent, otherwise it is not. Therefore, the
property of cost-consistency is a direct consequence of the underlying loss function.

To provide some concrete examples, the population minimizer of the loss of AdaC2
is F∗(x) = 1

2 log p(y=1|x)
p(y=−1|x) +

M
2 log cFN

cFP
, so it is cost-inconsistent. On the other hand, in

the case of CSAda it is F∗(x) = 1
cFP+cFN

log p(y=1|x)cFN
p(y=−1|x)cFP

, so it is cost-consistent.

5.3 A generalization of AdaMEC

We now present an interesting observation on the original AdaMEC procedure by
Ting [117]. Acknowledging that Eq. (5.2), is the optimal decision strategy for a given
probability estimate, we can reformulate AdaMEC’s Eq. (3.21) in a slightly different
way:

HAdaMEC(x) = sign [cFN× p̂(y = 1|x)− cFP× p̂(y =−1|x)] . (5.5)

where p̂(y = 1|x) = ∑τ:hτ(x)=1 ατ

∑
t
τ=1 ατ

. This highlights that Ting’s formulation of AdaMEC
makes optimal decisions, but only when estimates of probabilities are made in a very
specific way – which we are not necessarily constrained to. We can therefore define
a generalized form of AdaMEC, a special case of which is the version proposed by
Ting [117]. All this is captured by Theorem 1.

Theorem 1: The AdaMEC rule of Eq. (5.5) is a special case of the more general

HAdaMEC(x) = sign [p̂(y = 1|x)− c] , (5.6)

This generalised formulation of AdaMEC, Eq. (5.6), reduces to Eq. (3.21) when prob-

ability estimates are raw scores of the form p̂(y = 1|x) = ∑τ:hτ(x)=1 ατ

∑
t
τ=1 ατ

.

Proof: In Appendix A.
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This generalization of AdaMEC, true to its name, does indeed aim to minimize the
expected cost of misclassifications and is the one used throughout this thesis. By view-
ing AdaMEC in this form, we have separated the cost matrix C from the estimation of
the probabilities p̂(y = 1|x), whereas in Eq. (3.21) they are somewhat tangled. In this
way, we can choose how we estimate the probabilities from the base learner outputs.
One such way is to do exactly as Ting proposes and use the (normalized) weighted
vote to represent each class probability, but we are not restricted to this choice. This
will be discussed in more detail in Chapter 7.

5.3.1 Cost-consistency of AdaMEC and global loss

We can see from Theorem 1 that AdaMEC is by definition cost-consistent. The formu-
lation of the algorithm discussed in this paper specifically changes the decision rule of
AdaBoost into that of Eq. (5.2), regardless of how probability estimates are calculated.
In other words, AdaMEC constructs the same model [Ft(x)]AdaBoost as AdaBoost, but
appropriately shifts the decision threshold to account for the cost imbalance. That is,
it can be seen as using a prediction rule of the form

H(x) = sign
[
[Ft(x)]AdaBoost +

1
2

log
cFN

cFP

]
. (5.7)

An equivalent interpretation of AdaMEC is that it uses the prediction rule of Eq. (5.3)
as all other variants, but the additive model Ft(x) is replaced with

[Ft(x)]AdaBoost +
1
2

log
cFN

cFP
=

1
2

log
p̂(y = 1|x)

p̂(y =−1|x)
+

1
2

log
cFN

cFP
, (5.8)

i.e. its threshold-shifted counterpart, as Eq. (5.7) suggests.

Replacing the estimates in Eq. (5.8) with true probabilities and taking the resulting
expression to be the minimizer of some ‘global loss’, as we do so in Table 5.1, we find
that this global loss is

L(Ft(x)) = c(y)e−yFt(x), (5.9)

i.e. the same loss as that minimized by CGAda.

5.3.2 Loss at round t versus global loss

At this point it can be useful to make a distinction regarding the two different loss
functions characterizing each variant. The loss (function) minimized at round t is the
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one we have been referring to until now as the ‘loss (function)’. It is the one minimized
at each round of boosting to greedily fit the additive model Ft(x). The global loss

(function) is the function of which the final model constructed by the variant (i.e. the
one used inside Eq. (5.3)) is an approximate minimizer. The former is the loss function
greedily minimized during training and the latter is the loss function minimized when
making predictions. For most variants the two functions coincide so there is no need to
make this separation. The global loss is merely L(Ft(x)), where t is the final boosting

round. However in the case of AdaMEC and AsymAda this distinction is useful to
perform, for different reasons.

More concretely, in the case of AdaMEC the loss minimized at round t is L(Ft(x))=
e−yFt(x), just as AdaBoost, since the two variants train exactly the same model. But be-
cause of the threshold shifting applied after the full ensemble is constructed, the final
model constructed by AdaMEC (i.e the one used inside the prediction rule of Eq. (5.3))
can be seen as being 1

2 log p̂(y=1|x)
p̂(y=−1|x) +

1
2 log cFN

cFP
, hence as the (approximate) minimizer

of the global loss of Eq. (5.9). So its global loss is that of Eq. (5.9), the same (global)
loss as that minimized by CGAda. Note that the reason that the loss minimized at
round t and the global loss differ is that the prediction rule of AdaMEC –unlike all
other variants– does not use the minimizer of the former directly for predictions in
Eq. (5.3), but rather threshold-shifts it –i.e. accounts for the asymmetry post-training.

The reader might have also noticed that the form of the loss given in Table 5.2
for AsymAda does not agree with its minimizer given in Table 5.1 and the decision
rule given in Table 5.2. More precisely, the exponent t/M applied to the costs c(y)

in the former is missing from the latter two. To understand why this is the case, we
must examine the global loss. We remind the reader that AsymAda performs exactly

M boosting rounds. Therefore, the final model is constructed at round t = M, when
the factor t/M becomes equal to 1. In other words, since the loss minimized at round t

by AsymAda is c(y)t/Me−yFt(x), its global loss –the loss minimized by the final model
FM(x) it constructs at round t = M– is c(y)e−yFM(x), i.e. the same as CGAda and
AdaMEC. Note that here the global loss and the loss at round t do not actually disagree
in their functional form, but the global loss is the loss at the predetermined round t =M,
which simplifies the expression.

This discussion reveals that CGAda, AdaMEC and AsymAda are just different
procedures to minimize the same cost-sensitive global loss function on their predic-
tions. CGAda reweights/resamples the training examples in a cost-proportional way,
AdaMEC shifts the decision threshold after training to account for the cost imbalance
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and AsymAda modifies the training algorithm itself by evenly dividing the asymmetry
across all M rounds. Of course, being different procedures, their parameter estimates
–hence also their probability estimates– will differ in practice. But all three aim at ap-
proximating the same minimizer F∗(x) = 1

2 log p(y=1|x)
p(y=−1|x)+

1
2 log cFN

cFP
of the same global

loss function L(Ft(x)) = c(y)e−yFt(x), hence they all implement the same decision rule
H(x) = sign[p̂(y = 1|x)− c], albeit with different probability estimates in practice.
This rule happens to be the optimal one, so all three are cost-consistent.

Thus concludes our discussion of cost-sensitive boosting variants through a decision-
theoretic perspective. In the previous chapter we encountered the property of FGD-
consistency and noted that despite being desirable it is not necessarily crucial for the
success of a cost-sensitive boosting variant. The property we saw in this chapter, cost-
consistency, on the other hand, is. A cost-consistent algorithm always implements an
optimal decision rule, given its probability estimates and the cost matrix, while a cost
inconsistent one does not. In the next chapter, we will examine the effect of the loss
–i.e. the loss minimized at round t by each variant– on its training behaviour and gen-
eralization capacity, via the lens of margin theory. This will reveal another important
property that a cost-sensitive boosting algorithm should satisfy.



Chapter 6

The margin-theoretic view

In Chapter 4 we presented a mechanism for uncovering the loss function of all methods
examined in this thesis. We also divided the literature on the grounds of satisfying the
property of FGD-consistency, i.e. based on whether or not the methods can be viewed
as efficient greedy minimizers of that loss. In Chapter 5 we used this loss function
to characterize the methods with respect to the property of cost consistency, which
assesses whether the final decision rule implemented by the algorithm is optimal, given
the probability estimates and the costs.

In this chapter, a closer inspection of the same loss function from the viewpoint of
margin theory leads us to interesting observations regarding the training behaviour of
the method that minimizes it. This will result in different margin optimization prop-
erties. And since high margin values have been linked to good generalization perfor-
mance by Schapire et al. [42] and other authors [48, 125], as mentioned in Chapter 3,
we can ultimately link the loss function a method minimizes to its generalization ca-
pability.

To facilitate this, we will define a new desirable property for a cost-sensitive boost-
ing algorithm, that of asymmetry preservation. This property ensures that the exam-
ples of the costly class are always deemed more costly to misclassify than those of
the lower-cost class that produce the same margin value during training. Failure to do
so would lead to the phenomenon of asymmetry swapping, first observed in the case
of CSAda & AdaDB by Landesa-Vázquez & Alba-Castro [65, 66], which effectively
leads to training behaviour that goes contrary to the cost-sensitive nature of the task.

We will classify the boosting variants studied in this thesis with respect to the
property of asymmetry preservation. Furthermore, for methods that exhibit asymmetry
swapping we will give exact theoretical margin values for when the swapping occurs
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that can be visually verified in the figures provided.

Finally, we note that the training behaviour of asymmetry swapping methods will
tend to result in margin distributions concentrated around lower values than those of
asymmetry preserving methods. Leveraging the link between high margin values and
good generalization performance, we then argue that asymmetry swapping methods
will exhibit poorer generalization than asymmetry preserving ones. Empirical results
in support of this hypothesis are also provided.

6.1 Asymmetry-preservation

We shall begin by an interesting observation regarding the loss functions. We will
translate this to two different types of training behaviour, one that always puts more
emphasis on examples of the important class than those of the unimportant one with
the same margin value, and one that does not do so. We will then relate these two
strategies to the resulting margin distribution produced during training. Finally, we
will invoke the established margin theory [42, 48, 125] to connect the loss function to
the generalization error.

In Figures (6.1 & 6.2) we present loss functions of two different types versus the
margin yiFt(xi). Contrary to what we see in Figure 6.1, in Figure 6.2 we notice that the
lines indicating the loss on positive and negative examples cross. When this happens,
the emphasis placed on the two classes is reversed: the weights of correctly classified
examples of the expensive class are penalized more than those of correctly classified
examples of the low-cost class, contrary to the fact that the cost matrix dictates that
preserving the former is more important. This was first observed in the case of CSAda
& AdaDB by Landesa-Vázquez & Alba-Castro [65, 66] and motivates the following
definition:

Definition: Asymmetry-preserving A method is asymmetry-preserving if the ratio

rL(m) of the loss on an example of the important class over the loss on an example of

the unimportant one – given equal m = yFt(x)– remains greater or equal to 1 during

training. Otherwise the method is asymmetry-swapping.

The property of asymmetry preservation will again allow us to divide the methods
examined into two categories as follows:
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Asymmetry-preserving Asymmetry-swapping

Ada, AdaMEC, CGAda, AsymAda, AdaC1, CSAda, AdaDB,

AdaC2, CSB0, CSB1, CSB2 AdaC3, AdaCost, AdaCost(β2)

6.1.1 Checking for asymmetry-preservation

We now present a general scheme for checking a given boosting variant for asymmetry-
preservation. We will be making references to all the methods discussed in this thesis
but the same reasoning can be applied to any given boosting variant, similarly to the
schemes for checking for the other two properties presented so far.

Again, we shall assume that we know the loss function L(yFt(x),c(y)) that the
algorithm minimizes at stage t. Given only the weight update rule of a method, we
saw how to derive L(yFt(x),c(y)) in Chapter 4. Note that here we make explicit the
fact that L also generally depends on the cost of each example, unlike other parts of
the paper 1 where we simplified notation for clarity.

Based on the above definition, a method is asymmetry preserving if for any two
examples (xi,yi) and (x j,y j) such that c(yi) > c(y j) and yiFt(xi) = y jFt(x j) = m, its
loss function L satisfies the following property:

rL(m) =
L(yiFt(xi),c(yi))

L(y jFt(x j),c(y j))
=

L(m,c(yi))

L(m,c(y j))
≥ 1,∀m

Hence, variants that minimize a loss of the form K1(i)e−yiFt(xi), where K1(i) is
a non-decreasing function of c(yi) (i.e. AdaBoost, AdaMEC, CGAda, AsymAda,
AdaC2 & CSB2) are asymmetry preserving, as it is always the case that rL(m) =

K1(i)/K1( j)≥ 1, as shown in Figure 6.1.
More specifically, AdaBoost & AdaMEC ignore costs during training, thus are

asymmetry-preserving under our definition, since the ratio of the loss on a positive
example over the loss on a negative example which the model classifies with equal
confidence yFt(x), is fixed to 1. AdaMEC only takes costs into account during the

1More specifically, in Chapter 4 only the fact that that the loss L depended on yFt(x) was of impor-
tance and in Chapter 4 only that it depended on Ft(x) was.
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prediction phase.
As for CGAda, AsymAda, AdaC2 & CSB2, they are asymmetry-preserving as it is

always the case that the ratio of the loss on an example (xi,yi) of the expensive class
over that of an example (x j,y j) of the cheap class given that yiFt(xi) = y jFt(x j) will
be K(i)/K( j)> 1.

On the other hand, variants that minimize a loss of the form K1(i)e−K2(i)yiFt(xi),
where K1(i) and K2(i) are a non-decreasing and an increasing function of c(yi), re-
spectively (i.e. AdaC1, AdaC3, CSAda & AdaDB), have

rL(m) =
K1(i)e−K2(i)yiFt(xi)

K1( j)e−K2( j)y jFt(x j)
=

K1(i)
K1( j)

em(K2( j)−K2(i)).

In this case, it can be shown that ∃m : rL < 1. Specifically when

m >
1

K2(i)−K2( j)
log
(K1(i)

K1( j)

)
, (6.1)

the importance of the two classes is flipped. Hence such methods are asymmetry-
swapping, as can be demonstrated by Figure 6.2.

More specifically, AdaC1, CSAda & AdaDB will exhibit asymmetry swapping on
any training example with margin value m > 0, while AdaC3 will do so on any training
example with margin value

m >
t−1

cFN− cFP
log(

cFN

cFP
), (6.2)

as suggested by Eq. (6.1) and the form of their loss functions2.
Finally, of the methods whose loss function cannot be expressed in terms of yiFt(xi),

CSB0 & CSB1 are asymmetry-preserving as their weight updates can only increase
the relative importance of the important class over the unimportant one. On the other
hand AdaCost & AdaCost(β2) do not offer such a guarantee, hence are classified as
asymmetry-swapping.

2Inspecting the loss functions showed on Table 4.1, we can see that for AdaC1, CSAda & AdaDB,
we have K1(i) = K1( j) = 1, K2(i) = cFN and K2( j) = cFP, so Eq. (6.1) will give us m > 0 as the
logarithmic term becomes 0. Similarly, for AdaC3 we have K1(i) = ct−1

FN , K1( j) = ct−1
FP , K2(i) = cFN and

K2( j) = cFP, so Eq. (6.1) takes the form of Eq. (6.2).
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Figure 6.1: LEFT: The loss function used in AdaBoost. This illustrates the reason
why AdaBoost is seen as a margin-maximising method – the loss is non-zero even
when an example has been correctly classified (yiFt(xi) > 0). RIGHT: The loss for
CGAda in a 2 : 1 cost ratio – note that the same margin maximising properties hold,
and that examples of the positive (expensive) class always have a loss greater than that
of examples of the negative (cheap) class, given an equal yiFt(xi).
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Figure 6.2: LEFT: The loss of CSAda & AdaDB does not preserve the class asymmetry
leading to asymmetry swapping when yiFt(xi) > 0. Beyond that point, examples of
the positive (expensive) class have a lower loss than that of examples of the negative
(cheap) class, given an equal yiFt(xi). RIGHT: The loss of AdaC3, plotted here for
t = 3, also exhibits asymmetry swapping. More specifically it does so for margin values
yiFt(xi)> ((t−1)/(cFN− cFP)) log(cFN

cFP
), i.e. in this example, when yiFt(xi)> 2log2.
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6.2 Asymmetry swapping and poor generalization

Following the observation of Landesa-Vázquez & Alba-Castro [65, 66] that asymmetry
swapping behaviour has an adverse effect on the the generalization properties of the
final ensemble constructed, we will now investigate the effect of each loss function
from an empirical margin-theoretic perspective.

Given any cost-sensitive boosting variant, we shall call the minimal margin value

mswapping =
1

K2(i)−K2( j)
log
(K1(i)

K1( j)

)
,

for which asymmetry swapping will occur, its asymmetry swapping point. It is easy
to see that asymmetry preserving methods have an infinite asymmetry swapping point,
since for them it holds that K2(i) = K2( j) = 1.

Note that the training behaviour of asymmetry swapping methods forces them to ef-
fectively alternate between placing more emphasis on the important than the unimpor-
tant class and vice-versa, once the margin values cross the asymmetry swapping point.
This is expected to lead to margin distributions concentrated close to the asymmetry
swapping point, as given by Eq. (6.1). We can also expect AdaC1, CSAda & AdaDB
to suffer more from this issue than AdaC3, as the latter will only swap the asymme-
try of any training example with margin yiFt(xi)> ((t−1)/(cFN− cFP)) log(cFN

cFP
)> 0

while the former three variants will do so for any example with a positive margin value,
according to Eq. (6.1). In other words, AdaC3 has a higher asymmetry swapping point.

Normalizing the margin yiFt(xi) by dividing by the 1-norm of the vector α com-
prised of all confidence coefficients α1, . . . ,αt , we get

mi =
yiFt(xi)

||α||1
∈ [−1,1]

The effect that the different loss functions have on the resulting normalized margin

distribution {mi|i = 1, . . . ,N} is demonstrated by the results shown in Figure 6.3. The
figure shows the cumulative margin distributions3 produced by AdaBoost/AdaMEC,
CGAda, AsymAda, CSAda & AdaC3 for four different degrees of imbalance on the

3In Figure 6.3 we do not distinguish between the margin distributions of positive and negative exam-
ples. Considering an equal number of positives and negatives, the margin distribution produced by cost-
sensitive methods on high cost examples is on average higher than that of low cost examples, as a larger
number of low cost examples than high cost ones tend to be misclassified (hence have negative margin).
The effect is more pronounced as the skew ratio increases. AdaBoost/AdaMEC, being cost-insensitive
in its training phase, produces margin distributions for the two classes that are -in expectation- identical.
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Figure 6.3: Cumulative (normalized) margin distributions for AdaBoost/AdaMEC,
CGAda, AsymAda, CSAda & AdaC3 for degrees of imbalance cFN

cFP
= {1,2,5,10}.

When cFN
cFP

= 1 all methods reduce to the original AdaBoost and produce similar dis-
tributions, indicative of margin maximization. But when cFN

cFP
> 1, CSAda and AdaC3

produce margins closer to 0. This is a result of asymmetry swapping and margin theory
suggests it has a negative effect on generalization.

congress dataset.

The results demonstrate that CSAda & AdaC3 are generating lower average mar-
gins than the rest of the methods. This is attributed to the asymmetry swapping effect
we analyzed earlier. It also agrees with the observation of Landesa-Vázquez & Alba-
Castro that asymmetry swapping is having a detrimental effect on the generalization
behavior, the latter being dependent on the margin distribution.

As explained in Chapter 3, the established margin theoretic view of boosting has
related the margin distribution {mi|i = 1, . . . ,N} to the generalization error via sev-
eral proposed bounds, for example the minimum margin bound [42], the equilibrium

margin bound [125] and the k-th margin bound [48]. This area is still being actively
researched with the bounds being refined and tightened, but it is generally accepted
that all else being equal, a higher margin distribution leads to better generalization.

Summarizing the above insights, we can expect asymmetry preserving methods
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to exhibit better generalization than asymmetry swapping ones. We can also expect
an asymmetry swapping method with a higher asymmetry swapping point to achieve
better generalization than a method with a lower symmetry swapping point.

On the next chapter we will examine the cost sensitive boosting variants from a
fourth and final perspective: probabilistic modelling. We will define one more prop-
erty, that of producing calibrated probability estimates and show why all variants stud-
ied here fail to satisfy it. This will prompt us to correct for it by applying probability
calibration to the probability estimates of the boosting ensembles, a process that we
shall also describe in depth.



Chapter 7

The probabilistic view

Thus far, we have examined the cost-sensitive boosting variants from a perspective of
functional gradient descent (Chapter 4), decision theory (Chapter 5) and margin theory
(Chapter 6). The three perspectives have led us to define three desirable theoretical
properties for a cost-sensitive boosting algorithm: FGD-consistency, cost-consistency

and asymmetry-preservation, respectively. We saw that each property is only satisfied
by a different subset of the variants examined.

This chapter will examine the variants from a probabilistic perspective. It will in-
troduce a fourth and final desirable theoretical property –one that no existing variant

satisfies, unless special action is taken: the property of having calibrated probabil-

ity estimates. We will show that the probability estimates produced by boosting al-
gorithms are subject to a systematic form of distortion. Simply put, the normalized
outputs of the ensemble are ‘poor’ probability estimates and should best be treated
as raw scores, i.e. quantifications of ‘how positive’ (or negative) an example is that
do not necessarily satisfy the properties of probability. So when using them to make
cost-sensitive decisions under the decision rules derived in Chapter 5 –even when an
optimal decision rule is used– these decisions can be far from optimal as they assume
that the probability estimates are ‘good’.

To demonstrate this, we will first make use of the view of Adaboost as a Product of

Experts (PoE) [31]. We will then extend this view to cover other cost-sensitive variants
examined in this thesis. The probability estimates produced by boosting ensembles
can all be shown to be of the form of a PoE. But a PoE is subject to systematic biases,
related to the individual expert probabilities and the number of experts. Thus our first
conclusion is that the probability estimates produced by boosting ensembles are subject
to the same form of systematic distortion with respect to true probabilities. Fortunately,
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the distortion being systematic is amenable to a cure.

And here comes the concept of calibration, effectively the process of correcting the
biases of a set of raw scores so as to transform them to proper probability estimates.
We will discuss in detail the different ways of producing scores using the output of a
boosting ensemble as well as the different ways of calibrating them, their advantages
and disadvantages.

At the end of the chapter, before we move on to the empirical comparison of the
techniques covered in the thesis, we summarize the methods studied here and the set of
properties each satisfies in Table 7.1. We see that only three of the methods examined,
namely CGAda, AsymAda and AdaMEC satisfy all three properties proposed in the
previous three chapters.

We then propose also granting them the property of calibrated probability estimates
by appropriately calibrating the probability estimates they produce. The resulting cal-
ibrated versions of CGAda, AsymAda and AdaMEC now satisfy all four theoretical
properties as can be seen in Table 7.1. Pseudocode for the calibrated versions of these
three variants, along with details of the specific implementation used in our experi-
ments is also provided at the end of the chapter.

7.1 AdaBoost as a Product of Experts

We shall start with the case of the original AdaBoost algorithm. In Chapter 3 we saw
that Edakunni et al. [31] viewed Adaboost as an iterative process to construct a Product

of Experts (PoE). The PoE is a probabilistic model introduced by Hinton [54], under
which the probability of an outcome y is expressed as a normalized product of –not

necessarily normalized– probabilities of y as assigned by different experts (i.e. base
predictors).

To better understand the nature of the probability estimates generated by an Ad-
aBoost ensemble, we now follow the inverse process of [31]. Starting from the prob-
ability estimates themselves, we show, without introducing any assumptions, that they
correspond to a specific PoE model. As we will see in Section 7.2, the same reasoning
allows us to derive similar models for cost sensitive boosting variants thus extend-
ing [31] to cover these variants as well.

AdaBoost builds an additive model Ft(x) = ∑τ ατhτ(x) to approximate

F∗(x) = argmin
F(.)

Exy

{
e−yF(x)

}
=

1
2

log
p(y = 1|x)

p(y =−1|x)
.
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We can get an estimate of p(y = 1|x) using the AdaBoost outputs Ft(x)≈ F∗(x),

p̂(y = 1|x) = 1
1+ e−2Ft(x)

. (7.1)

This is the form of probability estimates proposed by Friedman et al. [44] and the most
popular choice in the boosting literature.

If we substitute Ft(x) = ∑τ ατhτ(x) into Eq. (7.1), we find that the conditional proba-
bility estimates under AdaBoost have the form of a PoE.

Theorem 2: The probability estimate of Eq. (7.1), assigned to class y = 1 by an

AdaBoost ensemble Ft on an example x has the form of a product of experts:

p̂(y = 1|x) =
∏

t
τ=1 p̂τ(y = 1|x)

∏
t
τ=1 p̂τ(y = 1|x)+∏

t
τ=1 p̂τ(y =−1|x)

,

with experts of the form

p̂τ(y = 1|x) =

ετ , if hτ(x) =−1

1− ετ, if hτ(x) = 1,

p̂τ(y =−1|x) =

1− ετ, if hτ(x) =−1

ετ , if hτ(x) = 1,

where ετ is the weighted error of the τ-th weak learner and hτ(x) ∈ {−1,1} its predic-

tion on example x.

Proof: In Appendix A.

Note that each expert can assign two distinct values to the probability estimate of a
given example x being positive:

p̂τ(y = 1|x) =

ετ , if hτ(x) =−1

1− ετ, if hτ(x) = 1,

i.e. its (weighted) error rate if it predicts that x is actually negative and its (weighted)
accuracy if it predicts that x is indeed positive.

The more experts added to the PoE (i.e. the more weak learners added to the Ad-
aBoost ensemble), the more fine-grained the resulting ensemble probability estimates
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p̂(y = 1|x) will be. The p̂(y = 1|x) of an ensemble consisting of a single expert –as we
saw– has only two possible values. That of an ensemble of M experts will have up to
2M distinct possible values. Thus a larger ensemble is able to capture an exponentially
richer set of conditional class probability distributions.

In the next section we will generalize Theorem 2 to the cost-sensitive boosting
variants examined here. For now, the case of AdaBoost can serve as a simple and
useful tool to demonstrate the systematic distortion biases that are inherent to a product
of experts model, hence also to the probability estimates of an AdaBoost ensemble.

7.1.1 A systematic distortion

Since typically ετ is only slightly smaller than 0.5 for weak learners (this is how a
weak learner is defined, as we saw in Chapter 3), Theorem 2 suggests that the overall
p̂(y = 1|x) remains close to 0.5, for reasonably small numbers of experts M. If on
the other hand the base learners ‘are powerful enough’ i.e. at least one ετ tends to 0,
then it dominates the PoE and the overall probability estimate tends to 0 or 1 (0 if the
corresponding hτ = −1 and 1 if it is hτ = 1). Moreover, we can expect the distortion
to be more pronounced as more experts are added to the ensemble, i.e. as M increases.
These are exactly the effects observed by Rosset et al. [99] and Caruana et al. [86]
regarding the probability estimates produced by AdaBoost ensembles.

In Figures 7.1 & 7.2 we visually demonstrate the systematic biases described above
with two simple examples. Figure 7.1 shows how a single expert can dominate the
ensemble as its corresponding probability tends to 0 or 1 even when the distribution
of the probabilities of the remaining experts is centred around the opposite side of the
0.5 threshold. Figure 7.2 shows the effect that the number of experts has on the overall
probability. For small numbers of experts M, the PoE probability remains close to 0.5
(as most experts will be producing values close to that in the case of boosting, being
weak learners), but as M increases, the PoE probability tends to either 0 or 1.

Finally, we should note that the more correlated the experts’ errors are, the greatest
the deviation of the PoE’s predictions w.r.t. the true class probabilities will be. Ad-
aBoost does decorrelate the errors of successive learners, but the more learners we add
to the ensemble, the more likely it is that we end up with experts producing correlated
errors.
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Figure 7.1: The effect of a single outlier expert probability on the overall probabil-
ity of the PoE, showing how a single high-confidence expert can dominate the PoE’s
prediction, leading it to the opposite direction of the rest of the ensemble. LEFT: The
PoE probability for a product of 10 experts. The first 9 experts have probabilities
pt(y = 1|x) ∼ N (0.53,0.01), i.e predominantly predict the positive class. The prob-
ability of the 10-th expert varies in the range p10(y = 1|x) ∈ (0,0.49), i.e. predicts
the negative class. As p10(y = 1|x) approaches 0 it tends to rapidly dominate the PoE
probability. RIGHT: Same as before, but now the first 9 experts have probabilities
pt(y = 1|x) ∼ N (0.47,0.01), i.e predominantly predict the negative class. The prob-
ability of the 10-th expert varies in p10(y = 1|x) ∈ (0.51,1), i.e. predicts the positive
class. As p10(y = 1|x) approaches 1 it tends to rapidly dominate the PoE probability.
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Figure 7.2: The effect of the size M of the PoE on the overall probability. LEFT:
The blue curve corresponds to a PoE whose expert probabilities pt(y = 1|x) follow
a Gaussian distribution with mean 0.53 and the green curve to a PoE whose expert
probabilities pt(y = 1|x) follow a Gaussian distribution with mean 0.47. In both cases
the standard deviation is 0.1. We can see that for small numbers of experts M, the PoE
probabilities remain close to 0.5. But as the number of experts M increases, the PoE
probability of the former PoE tends to 1 and that of the latter to 0. RIGHT: The same
experiment but the standard deviation of both Gaussians is now 0.01. The two PoE
probabilities converge to 1 and 0, respectively, much faster.
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7.2 Cost-sensitive boosting as a Product of Experts

Following the same reasoning behind Theorem 2, we can construct PoE models for the
probability estimates of other boosting variants, thus showing that they are also subject
to the same form of distortion.

7.2.1 A simple example

A straightforward example of this is the case of AdaMEC. As the model constructed
by AdaMEC is just a threshold-shifted version of the one built by AdaBoost, i.e.
Ft(x) = [Ft(x)]Ada+

1
2 log cFN

cFP
, substituting Ft(x) into Eq. (7.1), we get that the resulting

probability estimates have the form

p̂w(y = 1|x) =
cFN ·∏t

τ=1 p̂τ(y = 1|x)
cFN ·∏t

τ=1 p̂τ(y = 1|x)+ cFP ·∏t
τ=1 p̂τ(y =−1|x)

, (7.2)

with expert probabilities as given in Theorem 2.
Thus, an alternative view of AdaMEC is that it classifies examples as H(x) =

sign[p̂w(y = 1|x)− 0.5], as AdaBoost does, but changes the underlying probabilistic
model of the conditional probabilities for the positive class to that of Eq. (7.2)1. This
new model is a weighted version of the PoE of Theorem 2, where the probability of
each class is reinforced by a multiplicative factor equal to its relative importance. We
can think of this as adding an additional expert to the PoE that captures our prior

knowledge over the asymmetry. These factors cFP and cFN can of course be appropri-
ately renormalized to cFP

cFN+cFP
and cFN

cFN+cFP
, respectively, which can also be interpreted

as prior probabilities for the positive and negative class, respectively. This duality be-
tween cost and class imbalance was discussed extensively in Chapter 2. This model is
again a PoE, so subject to the same form of systematic distortions we explored in the
previous subsection.

7.2.2 Generalizing to other boosting variants

We can generalize these observations to most other boosting variants examined here.
In Chapter 5, we saw that for most methods, the minimizer F∗(x) of the loss L(F(x))

1In Chapter 5, we defined AdaMEC as the method that assigns x according to the decision rule
H(x) = sign[p̂(y = 1|x)−c]. In that case p̂(y = 1|x) was a non-prior-weighted probability estimate, and
more specifically, the same as that produced by AdaBoost (Theorem 2). Here p̂w(y = 1|x) is a prior-
weighted probability estimate. These are two different approaches to handling imbalance: either move
the decision threshold, or reweigh/resample the examples. More on this subject in Subsection 7.2.3.
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can be written as some function Ψ of the conditional probability p(y = 1|x) and the
misclassification costs cFN and cFP, i.e. F∗(x) = Ψ(p(y = 1|x),cFN ,cFP).

More specifically, inspecting Table 5.1, we can see that Ψ is of the general form

F∗(x) = Kp log
p(y = 1|x)

1− p(y = 1|x)
+Kc log

cFN

cFP
, (7.3)

where Kp and Kc are constants.

Eq. (7.3) relates the optimal model F∗(x) to the true probabilities p(y = 1|x). If we
solve this expression w.r.t. p(y = 1|x), we get that the true probability is a function of
the optimal model F∗(x),

p(y = 1|x) = 1

1+
(cFN

cFP

)Kc/Kpe−F∗(x)/Kp
.

Replacing the optimal model F∗(x) with the additive model Ft(x) = ∑τ ατhτ(x), con-
structed by the boosting variant to approximate it, we obtain an approximation of the
true probability, i.e. the estimate p̂(y = 1|x) as

p̂(y = 1|x) = 1

1+
(cFN

cFP

)Kc/Kpe−Ft(x)/Kp
. (7.4)

It can now be shown that Theorem 2 is but a special case of the more general
Theorem 3 given below.

Theorem 3: Let there be a boosting variant approximating

F∗(x) = Kp log
p(y = 1|x)

1− p(y = 1|x)
+Kc log

cFN

cFP
,

where Kp and Kc are constants, with an additive model Ft(x) = ∑τ ατhτ(x). The prob-

ability estimate assigned to class y = 1 by the ensemble Ft , on an example x has the

form of a product of experts:

p̂w(y = 1|x) =
p̂0(y = 1)∏

t
τ=1 p̂τ(y = 1|x)

p̂0(y = 1)∏
t
τ=1 p̂τ(y = 1|x)+ p̂0(y =−1)∏

t
τ=1 p̂τ(y =−1|x)

,

with experts of the form

p̂0(y = 1) =
1

1+
(cFN

cFP

)Kc/Kp
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p̂0(y =−1) =

(cFN
cFP

)Kc/Kp

1+
(cFN

cFP

)Kc/Kp

p̂τ(y = 1|x) = (1− ετ)
hτ(x)/2Kp

(1− ετ)hτ(x)/2Kp + ετ
hτ(x)/2Kp

p̂τ(y =−1|x) = ετ
hτ(x)/2Kp

(1− ετ)hτ(x)/2Kp + ετ
hτ(x)/2Kp

where ετ is the weighted error of the τ-th weak learner, whose definition is given in the

description of the algorithm, ατ =
1
2 log 1−ετ

ετ
the corresponding confidence coefficient

and hτ(x) ∈ {−1,1} its prediction on example x.

Proof: In Appendix A.

For example, for AdaBoost Kp = 1/2 and Kc = 0, so Theorem 3 reduces to the
special case of Theorem 2. For AdaMEC, CGAda and AsymAda Kp = 1/2 and Kc =

1/2. So the PoE takes the form of Eq. (7.2), but the probability estimates produced by
the individual experts differ as the definition of ετ is different for each variant.

7.2.3 Prior-weighted vs. non-prior-weighted PoE

Focusing on the cases of AdaMEC, CGAda and AsymAda, a clarification is in order. If
a prior-weighted probability estimate of the form of Eq. (7.2) is used for predictions, an
example x is classified according to the prediction rule H(x) = sign[p̂w(y= 1|x)−0.5].
This is one way to take costs into account, but as we described in Chapter 2, not the
only one. The prior-weighting can be replaced with threshold-shifting. Notice that

p̂w(y = 1|x) = (1− p̂0(y = 1))p̂(y = 1|x)
(1− p̂0(y = 1)p̂(y = 1|x))+ p̂0(y = 1)(1− p̂(y = 1|x))

, (7.5)

is the product of experts excluding the prior term (i.e. without factoring-in the costs).
It can be now be shown that p̂(y= 1|x)−c> 0 ⇐⇒ p̂w(y= 1|x)−0.5> 0. Therefore,
the prediction rule H(x) = sign[p̂w(y= 1|x)−0.5] is equivalent to the optimal decision
rule H(x) = sign[p̂(y = 1|x)− c] of Eq. (5.2), i.e. the methods are cost-consistent as
discussed in Chapter 5.

Whether the prior-weighted p̂w(y = 1|x) or non-prior-weighted p̂(y = 1|x) proba-
bility estimate is used is of minor importance in our discussion. It will only affect the
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threshold of the decision rule as described above. Most approaches (including CGAda
& AsymAda) inherently compute p̂w(y = 1|x) and do not apply threshold shifting,
while AdaMEC inherently computes p̂(y = 1|x) and then applies threshold shifting.
The important thing at this point is that in either case, the underlying probabilistic
model of a boosting algorithm satisfying the condition of Theorem 3 is of the form
of a PoE and thus distorted in a predictable, systematic way. The next step will be to
correct for that distortion and this will be the focus of Section 7.3.

7.2.4 Variants not covered by Theorem 3

Before we move on to discussing the calibration of probability estimates, let us make
a final side note of the algorithms that do not fit into Theorem 3. These are the usual
suspects: CSB0, CSB1, AdaCost and AdaCost(β2). We saw multiple times that these
four variants needed separate treatment under our framework. This is due to their
heuristic nature criticised in e.g. [65, 66, 101]. The main issue is that their weight
updates are not a function of the constructed additive model Ft(x) (let alone the margin
yFt(x)), but of some other function of its weak learner components. As a result, if we
were to use the form of the weight updates to derive the underlying loss function2, this
too will not be a function of the constructed additive model Ft(x). Thus it is difficult to
come up with a satisfactory probability estimate for the model constructed under these
variants. We could use e.g. Eq. (7.6) –which will describe shortly– as an estimate,
but as we will see, this is simply a raw score, subject to systematic biases and not a
calibrated probability estimate.

7.3 Calibration

7.3.1 Calibrated probability estimates versus raw scores

Probability estimates are not always straightforward to obtain from the outputs of a
classifier. The majority of classifiers allow for their output to be treated as a score for
each test example x that indicates ‘how positive’ x is. One choice for the score of an

2We remind the reader that these variants were proposed before 1999, i.e. before the view of
boosting algorithms as greedy stagewise minimizers of a well defined loss function was established by
Friedman et al. [44, 45] and Mason et al. [80].
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AdaBoost ensemble on a given instance x is

s(x) =
∑τ:hτ(x)=1 ατ

∑
t
τ=1 ατ

∈ [0,1], (7.6)

the weighed fraction of base learners voting for the positive class. Another is

s′(x) =
1

1+ e−2Ft(x)
∈ [0,1] (7.7)

which is the quantity we have been denoting with p̂(y = 1|x) and using as the estimate
of the probability3 of x belonging to the positive class throughout the previous sections,
following the framework of Friedman et al. [44] and a large body of the boosting
literature.

We already gave a generalization of scores of the form s′(x) for a more general
boosting algorithm in Eq. (7.4). Scores of the form s(x) are generalized directly by
Eq. (7.6), bearing in mind that these are prior weighted scores in all cases but that of
AdaMEC which –like AdaBoost– trains the model in a cost-insensitive way (ατ does
not factor-in the costs), so they are to be compared to a threshold of 0.5.

The act of converting raw scores to actual probability estimates is called calibra-

tion. Denoting with N the total number of examples, Ns the number of examples with
score s and N+,s the number of positives with score s, Zadrozny & Elkan [133] give
the following definition:

Definition: Calibrated classifier A classifier is said to be calibrated if the empirical

probability of an example with score s(x) = s belonging to the positive class, N+,s/Ns,

tends to the score value s, as N→ ∞, ∀s.

A raw score, be it of the form s(x) or s′(x), is not sufficient for making a cost-
sensitive decision regarding the instance x. What we need is a calibrated estimate of
p(y= 1|x), given which, classifying x according to the decision rule of Eq. (5.2) would
give us a Bayes-optimal decision.

We saw why scores of the form of s′(x) are not calibrated: namely due to their PoE
form. To see why scores of the form s(x) are not calibrated, let us remind ourselves that
boosting methods maximize the margin. In Chapter 6, we gave the normalized version

3The terms ‘score’ and ‘probability estimate’ are often conflated. A score needs not be normalized
within the range [0,1], but even if it is, it is not necessarily a good probability estimate –in terms of
satisfying the measure-theoretic properties of probability– even though it might often be used as such
in the literature. As we will see, we can convert raw scores to actual probability estimates by properly
calibrating them.
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of the margin of an example (x,y) under an additive model Ft(x) = ∑
t
τ=1 ατhτ(x) con-

structed by boosting as m = yFt(x)/∑
t
τ=1 ατ ∈ [−1,1]. Using this, we can re-express

Eq. (7.6) as

s(x) =
1
2
(
1+

m
yi

)
=

1
2(1+m) , if y = 1
1
2(1−m), if y =−1.

(7.8)

So the score of the form s(x) is just a rescaled version of the margin m. As boosting
aims to produce large margins m (at least on the training set), it tends to produce ‘over-
confident’ scores (i.e. close to 0 for negative examples and close to 1 for positives),
which require calibration. In that sense, maximum margin classification appears to be
at conflict with producing calibrated probability estimates.

7.3.2 Calibrating boosting

Niculescu-Mizil & Caruana [86] showed empirically that the scores produced by Ad-
aBoost exhibit a ‘sigmoid distortion’4 – which agrees with our aforementioned obser-
vations. The authors also showed that once properly calibrated, AdaBoost produced
superior probability estimates to any other model included in their study.

Niculescu-Mizil & Caruana produced probability estimates using three different
approaches. The first approach, which they dubbed logistic correction, was to use
scores of the form s′(x) as implied by the framework of Friedman et al. [44]. The
second method used scores of the form s(x) and calibrated them via Platt scaling [92],
a method originally used to map SVM outputs to conditional class probabilities. Platt
scaling consists of finding the parameters A and B for a sigmoid mapping of scores
to probability estimates, p̂(y = 1|x) = 1

1+eAs(x)+B , such that the likelihood of the data
is maximized. Fitting A and B requires the use of a separate validation set. The third
method, was to use again scores of the form s(x) and calibrate them via isotonic regres-

sion [98]. The latter is non-parametric and more general as it can be used to calibrate
scores which exhibit any form of monotonic distortion [132].

Among the three methods, Platt scaling produced the best probability estimates on
small sample sizes, closely followed by isotonic regression [86]. Due to its higher
complexity, isotonic regression is more prone to overfitting, but for the same reason it
can be a better choice than Platt scaling when sufficient data are available, as it is not
restricted to capturing only sigmoid score distortions, but non-decreasing distortions
of any kind.

4The scores produced by AdaBoost are a sigmoid transformation of actual probability estimates.
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7.4 Satisfying all desirable properties

Before we close this chapter, note that of all the methods proposed, as we can see in
Table 7.1, only three satisfy all three properties of FGD-consistency, cost-consistency
and asymmetry-preservation: CGAda, AsymAda & AdaMEC. Interestingly, each of
these is drawn from one of the three main approaches for making a learning algorithm
cost-sensitive: cost-proportional resampling/reweighting of the dataset, modifying the
training algorithm to take costs into account, and shifting the decision threshold to
account for the cost imbalance, respectively.

FGD-consistency ensures that the steps of the algorithm are coherent and geared
towards greedily minimizing a monotonically decreasing loss function of the margin.
Asymmetry-preservation grants them good generalization by connecting said loss to
margin maximization in a cost-sensitive setting. Cost-consistency ensures that the
probability estimates are used in a way that is consistent with the goal of minimiz-
ing the expected cost of future classifications. What remains is a reasonable guarantee
that said probability estimates are good approximations of the true underlying proba-
bilities. As we saw this can be achieved by calibration.

In this work we generate scores of the form s(x) under AdaMEC, CGAda & Asy-
mAda5. We then apply Platt scaling to calibrate them. We account for class imbal-
ance in the calibration set by the following correction detailed in [92]: if the cali-
bration set has N+ positive examples and N− negatives, Platt calibration uses values
N++1
N++2 and 1

N−+2 , rather than 1 and 0, for the target probability estimates of positive
and negative examples, respectively. Pseudocode for this full process is provided in
Algorithm 2 for AdaMEC (cost-insensitive training & threshold-shifting) and in Al-
gorithm 3 for CGAda, AsymAda and all other variants (cost-sensitive training & no
threshold-shifting).

With these final changes, the Platt-calibrated versions of the AdaMEC, CGAda &
AsymAda algorithms now satisfy all the properties shown on Table 7.1 – we proceed
to our experimental results chapter, where we compare these methods to all other vari-
ants discussed. As a closing remark, we should note that calibrating using isotonic
regression instead could improve performance, especially on larger datasets. However,
our experimental results show that the simpler Platt scaling is enough to showcase the
superior performance of calibrated AdaMEC, CGAda & AsymAda over the existing
variants and their calibrated counterparts.

5Calibrated versions of all other variants were also included in the study, for completeness.
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Table 7.1: Properties of cost-sensitive boosting algorithms and their calibrated coun-
terparts. AdaBoost added for completeness.

Method FGD- Cost- Asymmetry- Calibrated
consistent consistent preserving estimates

Ada [42] 3 3
AdaCost [33]
AdaCost(β2) [117]
CSB0 [118] 3
CSB1 [117] 3
CSB2 [117] 3
AdaC1 [112, 113] 3
AdaC2 [112, 113] 3 3
AdaC3 [112, 113]
CSAda [78, 79] 3 3
AdaDB [64] 3 3
AdaMEC [87, 117] 3 3 3
CGAda [63, 65, 66] 3 3 3
AsymAda [123] 3 3 3
Calibrated Ada 3 3 3
Calibrated AdaCost 3
Calibrated AdaCost(β2) 3
Calibrated CSB0 3 3
Calibrated CSB1 3 3
Calibrated CSB2 3 3
Calibrated AdaC1 3 3
Calibrated AdaC2 3 3 3
Calibrated AdaC3 3
Calibrated CSAda 3 3 3
Calibrated AdaDB 3 3 3

Calibrated AdaMEC 3 3 3 3
Calibrated CGAda 3 3 3 3
Calibrated AsymAda 3 3 3 3



7.4. SATISFYING ALL DESIRABLE PROPERTIES 109

Algorithm 2 Platt-Calibrated AdaMEC

Input: Number of weak learners M, data {(xi,yi)|i = 1, . . . ,N}, where yi ∈ {−1,1},
cost of false negatives cFN , cost of false positives cFP

Training Phase:
1. Split data into training Dtr & calibration set Dcal
2. On Dtr:

2.1. Train AdaBoost ensemble F(x) = ∑
M
t=1 αtht(x)

3. On Dcal:
3.1. Calculate scores s(xi) =

∑τ:hτ(xi)=1 αt

∑
t
τ=1 αt

∈ [0,1],∀xi ∈ Dcal

3.2. Calculate the number of positives N+ and negatives N− in Dcal
3.3. Find A,B s. t. ∑i∈Dcal

(p̂(y = 1|xi)− y′i)
2 is minimized,

where p̂(y = 1|x) = 1
1+eAs(x)+B and y′i =

{
N++1
N++2 , if yi = 1

1
N−+2 , if yi =−1

Prediction Phase:
4. On new example x:

4.1. Calculate non-prior-weighted score s(x) = ∑τ:hτ(x)=1 αt

∑
t
τ=1 αt

∈ [0,1]

4.2. Obtain non-prior-weighted probability estimate p̂(y = 1|x) = 1
1+eAs(x)+B

4.3. Predict class H(x) = sign
[

p̂(y = 1|x)> cFP
cFP+cFN

]
Implementation details: In the experiments of Chapter 8, a 50% / 50% split was
chosen for Step 1. Step 3.3 was performed using the matlab command nlinfit with a
tolerance of 10−10 and a maximum number of 600 iterations.
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Algorithm 3 Platt-Calibrated AsymAda / Platt-Calibrated CGAda

Input: Number of weak learners M, data {(xi,yi)|i = 1, . . . ,N}, where yi ∈ {−1,1},
cost of false negatives cFN , cost of false positives cFP

Training Phase:
1. Split data into training Dtr & calibration set Dcal
2. On Dtr:

2.1. Train AsymAda/CGAda ensemble F(x) = ∑
M
t=1 αtht(x)

3. On Dcal:
3.1. Calculate scores s(xi) =

∑τ:hτ(xi)=1 αt

∑
t
τ=1 αt

∈ [0,1],∀xi ∈ Dcal

3.2. Calculate the number of positives N+ and negatives N− in Dcal
3.3. Find A,B s. t. ∑i∈Dcal

(p̂(y = 1|xi)− y′i)
2 is minimized,

where p̂(y = 1|x) = 1
1+eAs(x)+B and y′i =

{
N++1
N++2 , if yi = 1

1
N−+2 , if yi =−1

Prediction Phase:
4. On new example x:

4.1. Calculate prior-weighted score s(x) = ∑τ:hτ(x)=1 αt

∑
t
τ=1 αt

∈ [0,1]

4.2. Obtain prior-weighted probability estimate p̂w(y = 1|x) = 1
1+eAs(x)+B

4.3. Predict class H(x) = sign
[
p̂w(y = 1|x)> 1

2

]
Implementation details: In the experiments of Chapter 8, a 50% / 50% split was
chosen for Step 1. Step 3.3 was performed using the matlab command nlinfit with a
tolerance of 10−10 and a maximum number of 600 iterations.



Chapter 8

Empirical comparison

8.1 Experimental setup

In our empirical analysis we compare the performance of all methods1 we discussed
to those of calibrated AdaMEC, AsymAda & CGAda under various degrees of cost
imbalance. Calibrated versions of all other variants are also included for completeness.
Univariate logistic regression models, trained with conjugate gradient descent, were
chosen as base learners. Their maximum number M was set to 100.

We used 18 datasets from the UCI repository. Multiclass problems were handled
with a one-vs-rest approach: one class was deemed as positive and all others formed
the negative one. Our goal is to compare the methods under 21 different cost setups,
namely cFN

cFP
∈ {100

1 , 50
1 ,

25
1 ,

20
1 ,

15
1 ,

10
1 ,

5
1 ,

2.5
1 , 2

1 ,
1.5
1 , 1

1 ,
1

1.5 ,
1
2 ,

1
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1
5 ,

1
10 ,

1
15 ,

1
20 ,

1
25 ,

1
50 ,

1
100}.

We selected an equal number of positive and negative examples, to suppress the ad-
ditional effects of class imbalance, the same approach followed by Landesa-Vázquez
and Alba-Castro [66]. This was achieved by uniformly undersampling the majority
class rather than by oversampling the minority class. Thus we avoid overfitting due to
duplicates in training/testing/validation sets. A summary of the datasets used can be
found in Appendix B.

We use a random 25% of the data for testing. The remaining 75% is used for train-
ing2. To perform calibration using Platt scaling, we needed to also reserve a separate

1As CSAda & AdaDB are equivalent within numerical precision [64], we only present results for
CSAda. The αt values were calculated using Newton steps and a tolerance of 10−6.

2This is sufficient for comparing the methods on a common ground and is common practice in the
literature. In practice, a 75% / 25% train/test split is usually unrealistic. In most real world situations
it is not the case that we have access to the majority of a population during the training phase. This
footnote serves as a reminder to the reader that practical deployment of machine learning results often
involves additional considerations to be made.
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validation set to fit the parameters of the sigmoid without overfitting. A third of the
training data was used to this end. For uncalibrated methods, the entire training set was
used to fit the models. After training the models (and calibrating on the validation set,
where applicable), we evaluated them on the test set. The entire procedure is repeated
30 times. For each method, we report average values and 95% confidence intervals.

To assess the performance of the different approaches, we use the Brier curves [53]
(loss Q(z) vs. z), for a given operating condition (i.e. skew in deployment phase)
zdep = z, computed over the test set. We remind the reader that the skew [28, 53] is a
combined measure of cost and class imbalance, defined as

z =
π− · cFP

π− · cFP +π+ · cFN
∈ [0,1].

A skew z < 0.5 signifies that negative examples are more important than positives,
values z > 0.5 that positive examples are more important and z = 0.5 corresponds to
the symmetric case of all examples being equally important, as discussed in Chapter 2.

We also presented the properties of Brier Curves in detail in Chapter 2. To recap
the most important ones, the area below the Brier curve is equal3 to the Brier Score

(BS). The lower the BS is, the better the estimates of the model. The BS has been
shown [84] to be decomposable into two components,

BS = calibration loss+ re f inement loss.

The calibration loss measures how close the probability estimates are to the true prob-
abilities given the class label and the refinement loss is the loss due to the same scores
being assigned to instances from different classes [62]. Thus the difference of the area
under the Brier curve of AdaMEC, AsymAda & CGAda and that of their calibrated
counterparts is due to the reduction of the calibration loss component of the BS. The
Q(z) = z diagonal of a Brier curve corresponds to the ‘all-negatives’ classifier, while
the Q(z) = 1− z diagonal to the ‘all-positives’.

3In our experiments we approximate the BS by generating the Brier curve with non-uniform skew
samples – the 21 values of cFN

cFP
examined.
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8.2 Analysis of experimental results

8.2.1 Overall trend

In total we examined 15×18×21 combinations4 of (method,dataset,skew ratio). For
clarity, we shall not present all results in the form of Brier curves. As an overall mea-
sure of the performance of each method across all degrees of imbalance, we calculate
the average area under the Brier curve it attains per dataset, which equals its expected
BS. The results are shown in Table 8.1. It should be noted for reference that the model
that assigns all examples to the expensive class has expected BS = 0.25 (the area be-
low the envelope defined by the two diagonals). In Figure 8.1 we rank all methods
according to their average area under the Brier curve, across all datasets –higher rank
meaning lower average area under the curve, i.e. better performance.

Overall, in Figure 8.1 we see that calibrated versions of AdaMEC, CGAda & Asy-
mAda outrank their uncalibrated counterparts. This can solely be attributed to the
decrease of the calibration loss component of the BS. These results agree with our
theoretical observations about the probability estimates of boosting variants being dis-
torted and requiring to be calibrated. Moreover, the uncalibrated versions of AdaMEC,
CGAda & AsymAda dominate the remaining variants. This is again in accordance with
our theoretical findings as these three methods are the only ones that satisfy all three
properties of FGD-consistency, cost-consistency and asymmetry-preservation.

After AdaMEC, CGAda & AsymAda, the best performing variants are CSB2 &
AdaC2. AdaC1 exhibits an erratic behaviour; on about half of the datasets examined
it ranks among the top-performing methods in terms of average BS, while in the rest
of them its performance is among the poorest. AdaCost, AdaCost(β2), CSAda and
on some datasets AdaC1, were found to yield the highest BS. What these methods
have in common is the asymmetry-swapping effect5. We also compared the statistical
significance of the difference in the average ranking of their Brier scores (low rank
indicating better performance) across all datasets. The resulting critical difference

4The combinations were actually 26×18×21 after the additional experiments including the original
AdaBoost and calibrated versions of all variants presented at the end of the Chapter.

5AdaCost & AdaC1 have been criticised in recent studies as ‘unstable, repeatedly producing mean-
ingless negative, or even imaginary, αt values’ [78, page 8]. AdaCost was found in [66] to exhibit a
similar ‘worse-than-baseline’ behaviour. The authors also attribute it to the αt coefficients not being
guaranteed to be positive reals. In our experiments we prevented this situation from occurring by forc-
ing the ensemble to terminate training if it cannot find a learner with a positive real αt . Rather than
adding ‘meaningless’ learners, our strategy led to ensembles consisting of few experts, as attested by
Figures (8.2 & 8.9), a potential reason for the poor performance of AdaCost, AdaCost(β2) and –on some
datasets– AdaC1.
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Table 8.1: Average area under the Brier curves produced by each of the 15 methods
examined for all 18 datasets. The area is equal to the average Brier score, so lower val-
ues are desirable. The lowest value per dataset is marked in bold. AsymAda, AdaMEC
& CGAda outperform the other approaches and are in turn outperformed by their cali-
brated versions. The best performing method overall is calibrated AsymAda.

Dataset CSB0 CSB1 CSB2 AdaC1 AdaC2 AdaC3 AdaCost AdaCost(β2)
survival 0.2335 0.2537 0.2326 0.3277 0.2342 0.2341 0.3773 0.3248

ionosphere 0.2292 0.2251 0.2215 0.2830 0.2159 0.2213 0.4272 0.2974
congress 0.1981 0.2131 0.1883 0.0349 0.2036 0.2044 0.2151 0.2222

liver 0.2481 0.2493 0.2448 0.2719 0.2407 0.2446 0.4696 0.3276
pima 0.2396 0.2512 0.2369 0.3129 0.2363 0.2370 0.4241 0.3034

parkinsons 0.2012 0.2332 0.2162 0.2359 0.2199 0.2207 0.4099 0.2799
landsat 0.2132 0.2472 0.2225 0.2131 0.2178 0.2357 0.3619 0.3079
krvskp 0.2265 0.2431 0.2036 0.1838 0.2060 0.2117 0.4175 0.2632
heart 0.2294 0.2435 0.2160 0.2887 0.2180 0.2177 0.3831 0.2836
wdbc 0.2012 0.2117 0.2002 0.1128 0.1993 0.2065 0.2696 0.2482
credit 0.2384 0.2529 0.2370 0.2766 0.2316 0.2321 0.4555 0.3064
sonar 0.2274 0.2290 0.2232 0.2944 0.2216 0.2215 0.4173 0.2953

semeion 0.2111 0.2131 0.1944 0.1431 0.2077 0.2133 0.3581 0.2442
splice 0.2078 0.2325 0.2017 0.1234 0.2073 0.2096 0.3217 0.2495

spambase 0.2279 0.2413 0.2145 0.2343 0.2090 0.2242 0.4109 0.2834
waveform 0.1786 0.2465 0.2103 0.1910 0.2116 0.2108 0.3984 0.2683

musk2 0.2322 0.2394 0.2237 0.2641 0.2186 0.2206 0.4504 0.3126
mushroom 0.2306 0.2350 0.2037 0.1743 0.1965 0.2123 0.4851 0.3205

Dataset CSAda AdaMEC AsymAda CGAda Calibrated Calibrated Calibrated
AdaMEC AsymAda CGAda

survival 0.3593 0.2623 0.2337 0.2260 0.2302 0.2334 0.2287
ionosphere 0.3157 0.2043 0.2016 0.2090 0.1642 0.1333 0.1814
congress 0.0665 0.0840 0.1040 0.0906 0.0336 0.0348 0.0336

liver 0.3024 0.2729 0.2378 0.2454 0.2485 0.2391 0.2491
pima 0.3383 0.2243 0.2261 0.2297 0.2234 0.2127 0.2263

parkinsons 0.2693 0.1727 0.1833 0.1725 0.1388 0.1378 0.1327
landsat 0.2452 0.3474 0.1656 0.2065 0.2150 0.1242 0.2004
krvskp 0.2143 0.1846 0.1727 0.1859 0.1009 0.0448 0.1062
heart 0.3177 0.1643 0.1858 0.1802 0.1471 0.1450 0.1532
wdbc 0.1418 0.1230 0.1409 0.1243 0.0537 0.0505 0.0579
credit 0.3083 0.2239 0.2202 0.2223 0.2131 0.2009 0.2157
sonar 0.3304 0.1969 0.2029 0.2005 0.1826 0.1823 0.1839

semeion 0.1788 0.1626 0.1413 0.1600 0.0890 0.0447 0.0895
splice 0.1556 0.1286 0.1546 0.1400 0.0683 0.0500 0.0622

spambase 0.2663 0.2218 0.1785 0.1981 0.1461 0.0682 0.1537
waveform 0.2171 0.1317 0.1380 0.1340 0.0695 0.0686 0.0696

musk2 0.2943 0.1963 0.2031 0.1970 0.1432 0.1225 0.1344
mushroom 0.2066 0.1686 0.0374 0.1039 0.1071 0.0353 0.1118

diagrams [22], showing when the differences in loss ranking are statistically significant
at the 0.05 level under a Nemenyi post-hoc test [85] are shown in Figure 8.6.

8.2.2 A deeper examination of AdaMEC, CGAda & AsymAda

Among AdaMEC, CGAda & AsymAda, the third variant outranks the other two. This
pattern carries over to the calibrated versions of the three algorithms. This might in-
dicate some benefit of making the training phase itself cost-sensitive, but there could
be a simpler explanation: AsymAda creates an ensemble of predefined size M = 100.
AdaMEC & CGAda typically use about 40 weak learners of the maximum M allowed.
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Table 8.2: Average area under the Brier curves produced by the calibrated versions of
AsymAda, AdaMEC & CGAda ensembles of equal ensemble size, for all 18 datasets.
The area is equal to the average Brier score, so lower values are desirable. The lowest
value per dataset is marked in bold. By constraining AsymAda to use as many weak
learners as AdaMEC & CGAda, it loses its advantage over the other two methods.
In Figure 8.7 we provide evidence that the three methods do not significantly differ in
performance.

Dataset Calibrated Calibrated Calibrated
AdaMEC AsymAda CGAda

survival 0.2337 0.2343 0.2328
ionosphere 0.1711 0.1994 0.1931
congress 0.0330 0.0358 0.0328

liver 0.2494 0.2622 0.2491
pima 0.2268 0.2338 0.2330

parkinsons 0.1431 0.1534 0.1474
landsat 0.2182 0.2421 0.2137
krvskp 0.0991 0.1405 0.1178
heart 0.1491 0.1522 0.1524
wdbc 0.0557 0.0626 0.0620
credit 0.2156 0.2260 0.2200
sonar 0.1828 0.1846 0.1829

semeion 0.0898 0.1341 0.1120
splice 0.0668 0.1049 0.0729

spambase 0.1421 0.2060 0.1699
waveform 0.0699 0.0688 0.0702

musk2 0.1397 0.1367 0.1408
mushroom 0.1051 0.1817 0.1281

This results in AsymAda producing higher margin distributions than the other two
methods, which leads to better generalization. Some evidence for this is provided in
Figures (8.2 & 8.9), where we have plotted both the average rank attained by each
method and the average ensemble size. As we can see calibrated AdaMEC and Asy-
mAda lie on the Pareto front of the two objectives: attaining a high rank while building
a parsimonious model.

To verify the above hypothesis we also included another set of experiments: we
fixed the ensemble size for the calibrated versions of AdaMEC, CGAda & AsymAda to
be equal for each run6. We then compared the statistical significance of the difference
in the average ranking of their Brier scores (low rank indicating better performance)
across all datasets. The resulting critical difference diagrams [22], showing when the
differences in loss ranking are statistically significant at the 0.01 level under a Nemenyi
post-hoc test are shown in Figure 8.7. The results suggest that there is no clearly
dominant method among these three7. Therefore, any performance benefit AsymAda

6AdaMEC & AsymAda were forced to use as many learners as CGAda, with a maximum of 100.
7This is not very surprising. As discussed in Chapter 5, all 3 approaches are approximating the

minimizer F∗(x) = 1
2 log p(y=1|x)

p(y=−1|x) +
1
2 log cFN

cFP
of the same global loss L(FM) =Ex,y[c(y)e−yFM(x)], albeit

in different ways: AdaMEC by shifting the decision threshold, CGAda by reweighting and AsymAda
by modifying the base algorithm to simulate splitting the asymmetry equally among all M rounds.
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had over the other two methods in our main results was due to its larger number of weak
learners. Table 8.2 shows the average Brier Score for each of these three methods once
we restrict M, for each dataset.

AdaMEC has been largely overlooked – its generalized form was first presented
in [88] in the context of this thesis– despite having some clear practical benefits. It
is more flexible than AsymAda, allowing us to e.g. grow the ensemble after the orig-
inal training if needed. It is faster than AsymAda, as fewer weak learners will be
added to the ensemble–weak learner optimization being the computational bottleneck
of training. Perhaps most importantly, unlike all other methods included in this study,
AdaMEC does not need to retrain the model if the cost ratio changes in deployment8.

Figure 8.1: All methods, across all datasets, ranked by their average area under the
Brier curve (BS) – higher rank (higher bar) is better. This illustrates the resilience
of each method to a spectrum of changing cost ratios. The highest ranked method is
AsymAda-Calibrated.

Finally, any modification of AsymAda w.r.t. AdaBoost specified by Eqs. (3.8 &
3.9) becomes vanishingly small as M → ∞, and AsymAda reduces to AdaBoost. In

8That said, we can generalize Eq. (7.5) by interpreting p̂0(y= 1) as capturing the required change in
skew from training to deployment z′, which relates to the skew ratio during training ztr and the skew ratio
during deployment zdep via zdep =

ztr ·z′
ztr ·z′+(1−ztr)·(1−z′) . This allows us to do a ‘post-training correction’ to

the probability estimate computed by AsymAda or CGAda,

p̂w′(y = 1|x) = (1− z′)p̂w(y = 1|x)
(1− z′)p̂w(y = 1|x)+ z′(1− p̂w(y = 1|x))

, (8.1)

to account for changes in the imbalance (i.e. for a prior probability shift [83, 95]). Still, this requires
knowledge of the skew-setup used in training ztr. Additionally, overfitting during training (building
an overconfident model that assigns probabilities close to 0 or 1 to the examples) will be impossible
to correct using Eq. (8.1). In Chapter 7 we saw that a single overconfident expert suffices for this to
happen.
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this case, it becomes necessary to use threshold shifting to make the decisions cost-
sensitive. In other words, we end up using AdaMEC. For these reasons, as a represen-
tative of this group of methods we pick AdaMEC in subsequent comparisons, including
both its calibrated and uncalibrated versions to showcase the benefits of calibration.

8.2.3 Examining individual Brier curves

The area under the Brier curve does not take into account the variance across runs,
neither does it allow us to observe the different behaviours exhibited by each method
under the different degrees of skew. To observe these effects we need to examine
the entire Brier curve. For clarity we will only compare some representative methods
against AdaMEC & calibrated AdaMEC. CSB2 is chosen for its relatively good perfor-
mance across datasets. AdaC1 is chosen despite its erratic behaviour, since, on some
datasets it ranks among the top-performing methods. The Brier curves for all datasets
can be found in Figure 8.3. Some additional comparisons of calibrated AdaMEC,
AdaMEC, CSB2 and AdaC2 under different evaluation measures can be found in [87].

Figure 8.2: Pareto plot showing the tradeoff between the size of the final ensemble and
the rank by average area under the Brier curve (BS). The dashed curve demarcates the
Pareto front. The plot shows that calibrated AdaMEC and calibrated AsymAda are
pareto-optimal, with the former to be preferred for parsimonious models.

CSB2 performs very poorly under low values of skew (0.3 < z < 0.7). This is
because of the saturation phenomenon, also observed by [66], i.e. the tendency of
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CSB2 to construct ‘all-positives’ or ‘all-negatives’ models. The eagerness of CSB2 to
classify examples to the costly class is explained by our theory by the fact that CSB2
overemphasises the costs as we saw in Table 5.2. This strategy starts paying off when
the degree of skew becomes very high (z≤ 0.1 or z≥ 0.9) when, it becomes one of the
dominant methods, second only to calibrated AdaMEC.
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Figure 8.3: Loss Q under various degrees of skew z for some characteristic datasets
included in the study. Lower values indicate better cost-sensitive classification perfor-
mance. The area under each (Brier) curve corresponds to the Brier Score of the final
model. The difference of the areas under the curve of AdaMEC and that of calibrated
AdaMEC is due to the reduction of the calibration loss component of the BS. The
Q(z) = z diagonal, corresponds to the ‘all-negatives’ classifier, while the Q(z) = 1− z
diagonal to the ‘all-positives’. CSB2 is prone to saturating leading to high loss when
the skew is high. AdaC1 is prone to ignoring the asymmetry, leading to high loss as
z moves away from 0.5. Calibrated AdaMEC, adopts in each case an asymmetric be-
haviour that leads to low loss. As a result it consistently attains the lowest –or tied for
lowest– loss.
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Figure 8.3, continued
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Figure 8.3, continued
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Figure 8.6: Comparison of the average Brier Score ranks across all datasets attained by
CSB2, AdaC1, AdaMEC & calibrated AdaMEC against each other under the Nemenyi
test, for every other skew ratio examined. Groups of methods that are not significantly
different at the 0.05 level are connected. We see that calibrated AdaMEC is consis-
tently ranked best or tied for best, often significantly better than the second best.
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Figure 8.7: Comparison of the average Brier Score ranks across all datasets attained by
AdaMEC, CGAda & AsymAda against each other under the Nemenyi test, for every
other skew ratio examined. All methods were calibrated and used the same ensemble
size on each run. Groups of methods that are not significantly different at the 0.01
level are connected. We see no evidence that any method clearly dominates the others.

On the other hand, AdaC1 exhibits particularly poor performance when the skew
ratio is high (z < 0.2 or z > 0.8). AdaMEC tends to perform well for low values of
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skew, but for higher degrees of imbalance (z≤ 0.3 or z≥ 0.7), it is outranked.

Calibrated AdaMEC sacrifices part of the dataset to solve the harder problem of
probability estimation. As a result, on average it is outranked by the other methods
when the task is skew-insensitive (z = 0.5). The effect is barely detectable on most
datasets as the confidence intervals overlap. A simple solution is the use of cross-

validation for calibration. But as the imbalance increases, the investment of calibrated
AdaMEC in estimating calibrated probabilities pays off and it clearly dominates all
other methods. On nearly all datasets and for all values of z examined, it ranks first or
tied for first among the 4 methods studied here.

A closer inspection of the individual datasets shows that calibrated AdaMEC is
most clearly outperforming the competitors on larger datasets, since a large training
set allows it to compute better probability estimates. This effect is more pronounced
in datasets which are also high-dimensional (splice, musk2, krvskp, waveform, spam-

base). In lower-dimensional datasets, like mushroom, the confidence intervals for most
methods tend to overlap as the problem is easier.

8.2.4 Calibrating all variants

In a final series of experiments, we included calibrated versions of all cost-sensitive
boosting variants covered in this study. For completeness, we also included the origi-
nal (i.e. cost-insensitive) AdaBoost and its calibrated version. This way, all 26 boost-
ing variants of Table 7.1 were compared against each other on all 18 datasets and 21
degrees of imbalance. The results are presented in Figures (8.8 & 8.9), which are the
expanded versions of Figures (8.1 & 8.2) respectively.

Figure 8.8 shows the average rank attained by each method across all datasets in
terms of average area under the Brier curve (BS). We can see that calibrated Asy-
mAda, AdaMEC & CGAda outperform their uncalibrated counterparts and they in
turn outrank all other variants. Note that again the ensemble size of AsymAda was not
restricted, i.e. it always added M = 100 learners to the ensemble. Therefore any advan-
tage of AsymAda w.r.t. AdaMEC & CGAda is solely attributed to its larger ensemble
size, as we saw in Subsection 8.2.2. Interestingly, the original (i.e. cost-insensitive)
AdaBoost and its calibrated version rank immediately after AsymAda, AdaMEC &
CGAda and outrank all remaining variants.

These results support our theoretical analysis. The three methods satisfying all
four properties of Table 7.1 (calibrated AsymAda, AdaMEC & CGAda) outrank all
others. The three methods satisfying fgd-consistency, cost-consistency & asymmetry
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preservation (AsymAda, AdaMEC & CGAda) outperform all those that lack one or
more of these properties –be they calibrated or not.

In other words, calibration alone cannot make up for the absence of one of the
other three properties. If the decision rule is not consistent with the costs (lack of
cost-consistency), then the classification threshold is poorly chosen. Calibrating the
estimates has no effect on the threshold and will not correct for this. If the steps of
the algorithm are not consistent with one another (lack of fgd-consistency) calibration
cannot correct for this either, as it is performed after the model is constructed. The
same is true when the emphasis on the two classes is flipped during training (lack of
asymmetry preservation). In the absence of one or more of these properties performing
calibration leads to worst performance for almost all methods. The reason for this is
the smaller training sample used to train the classifier.
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Figure 8.8: All boosting variants of Table 7.1, across all datasets, ranked by their aver-
age area under the Brier curve (BS) – higher rank (higher bar) is better. This illustrates
the resilience of each method to a spectrum of changing cost ratios. Calibrated Asy-
mAda, AdaMEC & CGAda outperform their uncalibrated counterparts and they in turn
outrank all other variants. Interestingly, the methods that rank immediately after Asy-
mAda, AdaMEC & CGAda are the original (i.e. cost-insensitive) AdaBoost and its
calibrated version outrank all remaining variants.
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Figure 8.9: Pareto plot showing the tradeoff between the size of the final ensemble
and the rank by average area under the Brier curve (BS) for all boosting variants of
Table 7.1.

Figure 8.9 shows the ranking of each method in terms of average area under the
Brier curve (BS) versus the average size of the final ensemble. Typically, calibrated
methods produce smaller ensembles, as they use a smaller dataset to train the additive
model. Again, calibrated AsymAda, AdaMEC & CGAda lie on the Pareto front of the
two objectives (low BS across all datasets and small average ensemble size).



Chapter 9

Conclusions and future directions

9.1 Conclusions

We analysed the cost sensitive boosting literature spanning the last two decades under a
variety of theoretical frameworks. We used tools from four different perspectives: de-
cision theory, functional gradient descent, margin theory, and probabilistic modelling.
Here we summarize the key findings and contributions of this work.

Main result:
Our conclusion is that cost-sensitive modifications seem unnecessary for AdaBoost,

if proper calibration is applied. This finding is supported by theoretical, empirical and
practical arguments analysed below.

Theoretical contributions:
We expanded upon the existing tools of understanding AdaBoost. The tools from the

different theory frameworks developed in this thesis are useful in their own right for
understanding boosting variants in general and developing new algorithms.

We provided a unified theoretical treatment of cost-sensitive boosting variants and

defined desirable theoretical properties for them to satisfy. Each framework we ex-
plored provides a different perspective and strengths for the analysis of cost-sensitive
boosting variants. Algorithms that do not fit the functional gradient descent frame-
work cannot be viewed as efficient procedures to greedily minimize a loss function
of the margin. The decision theoretic analysis shows that certain methods are not im-
plementing decision rules that align with the goal of minimizing the expected cost of

126
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future classifications. Margin theory predicts that methods that invert class importance
during their execution will exhibit poor generalization performance. Finally, from a
probabilistic perspective, the scores generated by boosting variants deviate from true
probabilities and need to be properly calibrated before they can be used as actual prob-
ability estimates.

We proposed a new, generalized version of an existing cost-sensitive boosting vari-

ant with numerous practical benefits. We showed that AdaMEC, as proposed in [117]
is a special case of the version given in Chapter 5. The generalized version we propose
–unlike the original– is not restricted in terms of the way probability estimates are gen-
erated and is thus more flexible and amenable to calibration. Like the original, it does
not modify the training algorithm w.r.t. AdaBoost, just the prediction rule. As a result,
it maintains all convergence properties of AdaBoost, eschews the need for additional
hyperparameters, does not require the ensemble size to be fixed in advance and can
be easily adapted to changes in asymmetry between training and deployment without
resorting to re-training the model.

We identified weaknesses in the design of existing cost-sensitive boosting variants.

Only three algorithms turn out to be consistent with the rules of the functional gradient
descent view of boosting, margin theory and decision theory – AdaMEC (special case
proposed in [117], generalized in this work), CGAda [63] & AsymAda [123]. How-
ever, in our final theory angle, we find they –along with all other variants examined–
share a common flaw: they assume that boosting ensembles produce well-calibrated
probability estimates. By reinterpreting boosting as a Product of Experts, extend-
ing [31], we showed that this assumption is violated and the estimates produced by
boosting variants deviate from true posterior probabilities in a predictable fashion.

We produced variants that satisfy all desirable properties. To correct for the sys-
tematic distortion of the probability estimates, we applied calibration using Platt scal-

ing [92] to AdaMEC, CGAda & AsymAda. The calibrated versions of these variants
satisfy all the desirable properties we identified.
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Empirical contributions:
We conducted the largest empirical comparison of cost-sensitive boosting variants

to date. Experiments on 18 datasets across 21 degrees of imbalance, backed by sta-
tistical hypothesis tests, support our theoretical results – showing that once calibrated,
AdaMEC, CGAda & AsymAda perform equivalently, and outperform all others.

Final recommendation to practitioners:
Based on simplicity, flexibility, theoretical soundness and performance, we recom-

mend the use of calibrated AdaMEC as a boosting solution to a cost-sensitive or im-

balanced class problem when the goal is to minimize the expected risk under known

misclassification costs. In other words, we recommend using the original Adaboost

algorithm with a shifted decision threshold, and calibrated probability estimates. A
detailed pseudocode for the implementation of AdaMEC calibrated via Platt scaling
has been provided in Chapter 71.

9.2 Future work

This work opens up multiple directions for future research. Here we summarize the
most important of those:

Refining probability estimation / calibration
First of all, we note that even though the calibrated algorithms examined match or

exceed the performance of other cost-sensitive approaches, there are various param-
eters of the calibration procedure we left unoptimized, suggesting room for improve-
ment. First and foremost is the choice of calibration method used. In our work we
used the logistic sigmoid calibration (also known as Platt-scaling) of raw scores of the
form of Eq. (7.6). As mentioned in Section 7.3, this is not the only choice we have, but
previous experiments by Niculescu-Mizil & Caruana [86] suggest that it is the overall
best in the case of boosting univariate linear base learners when the available data is
limited.

An obvious alternative is isotonic regression, also examined in [86]. This is more
general as it is able to capture any non-decreasing distortion of scores. Although there
is both practical [86, 99] and theoretical [99] –besides this work– evidence that the

1Matlab code can also be found in the link: http://www.cs.man.ac.uk/∼gbrown/software/ and the
original implementation in: http://www.cs.man.ac.uk/∼nikolaon/∼nikolaon_files/mlj2016code.zip.
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distortion of scores is roughly sigmoid, it is conceivable that in practice it is not as
smooth but rather ‘stepwise’ i.e. of an isotonic form that isotonic regression can cap-
ture. Having a more complex model, isotonic regression also requires more datapoints
than Platt-scaling as it is generally more prone to overfitting when the data is limited.

Another method to calibrate probabilities is quantile-based calibration [27], effec-
tively a binning (histogram-based) calibration approach [132] with some randomiza-
tion. This has been recently explored in the context of boosting and found to produce
better probability estimates than those of Eq. (7.1). In the same work it was also
compared against other techniques that employ randomization –like bagging multiple
estimates of the form of Eq. (7.1) or producing estimates of the form of Eq. (7.1) with
noise added– and outperformed them.

Finally the cumulative distribution function (CDF) of the Weibull distribution has
also been used to calibrate classifier scores [6], motivated by the extreme value the-

ory [108]. This CDF is also of sigmoid form, like the logistic of Platt-scaling, but the
idea is that only the tails of the score distribution (i.e. the scores close to the decision
boundary) are used for calibration, so it needs fewer data and is possibly more suitable
for large-margin classifiers like boosting. Based on this idea, it has been used before
in the context of another type of large-margin classifier, the SVM.

Optimizing the balance between model training and calibration
Another aspect of the calibration procedure left unoptimized was how the data was

split between training and calibration sets. The optimal ratio of the number of examples
used to train the model over that of those used to calibrate its probability estimates will
generally depend on the characteristics of the problem: number of examples, com-
plexity of weak learner, complexity of underlying concept to be learned, to name a
few. It will also be sensitive to the choice of calibration method. As mentioned above,
methods that allow a more complex mapping between scores and posterior probabili-
ties generally require more data to avoid overfitting. Conversely those that look for a
simpler mapping will not be much improved by being given more calibration data.

Another possibility to improve the performance of calibrated methods in practice is
the use of leave-one-out cross-validation for calibration, rather than splitting the data
into separate train and calibration sets. As mentioned in Chapter 8 this is expected to
reduce the performance loss of a calibrated method when the problem is symmetric.
An example on how to use cross-validation to calibrate the model is given in [82].
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An interesting theoretical direction would be relating the Brier score decomposi-
tion [62, 84] to the bias-variance decomposition of the mean squared error [26, 49].
After all, the Brier score is defined as a mean squared error and such a connection
would allow us to explore the train vs. calibrate tradeoff, while also accounting for the
complexity of the learning algorithm and the calibration method.

Directly constructing good probability estimates via boosting
In order to answer the asymmetric problem posed, our strategy was to effectively

phrase it as one of probability estimation. The specific approach taken to do so con-
sisted of two steps: (i) train a model and (ii) calibrate the scores produced by said
model to produce probability estimates.

An interesting research direction would be to investigate performing training and
calibration in a single step, i.e. choosing at each round of boosting the weak learner
so that the new ensemble produces calibrated probability estimates. A good starting
point would be to formulate this target as stagewise minimization of an appropriate loss
function on an additive model. This modification would then carry over to the steps of
the algorithm (weight update, calculation of α coefficients). The fact that scores and
margins are just rescaled versions of one another pointed out by Eq. (7.8) should also
be leveraged in such an investigation.

Extending analysis and methods to multiclass classification
In this work we were concerned with binary classification and only provided some

limited pointers on how to handle multiclass classification, mainly by suggesting split-
ting the problem into multiple binary ones taking the one-vs-one or the one-vs-all ap-
proach. Interestingly these two methodologies are often as good in terms of classifi-
cation performance as other approaches (e.g. error correcting codes (ECOC), single

machine methods2) despite their simplicity [97].
In the case of boosting there has been considerable research into producing variants

that handle multiple classes via any of the aforementioned approaches (see Chapter 3,
or [2] for more details). The same strategies can be used for extending calibration to
multiple class cases [133], but this is far from a solved problem [39]. By providing
these pointers, we effectively imply that the same 2-step procedure described above
(train, then calibrate) can be extended to the multiclass case. Of course, this is true.
But is it the optimal way to perform multiclass cost sensitive boosting?

2Methods solving a single optimization problem that trains many binary classifiers simultaneously.
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A very recent work by Appel et al. [2], takes a different approach. Again the goal
is the same as that of this thesis: to classify examples to the minimum risk class. But
Appel et al. are concerned with the multiclass case. They argue against calculating
scores for each class and then assigning to the minimum risk class by treating said
scores as probability estimates. In this thesis we also argued against doing that. What
Appel et al. propose as a solution is a single-step approach, dubbed REBEL, that
aims to minimize a multiclass loss function that factors costs into account, to directly
assign examples to the minimum risk class. Their approach is theoretically sound and
outperforms methods that treat raw scores as probability estimates. But we note that
the authors did not compare their approach to treating calibrated versions of the scores
as probability estimates. Such a comparison would be very interesting. It could show
that either calibration leads to better or at least comparable performance as the single
step approach even in multiclass boosting, or that a single-step approach can replace
the one we propose here – basically advancing towards a solution to the problem posed
in the previous future work direction. Either result would be of particular theoretical
and practical interest.

Extending analysis and methods to online learning
Another interesting research avenue is extending our analysis to online boosting.

The tools developed in this thesis can be applied to the online learning setting. The
online boosting algorithm proposed by Oza [89] is the most popular online boosting
variant. It can be expressed as the stagewise minimization of the same loss function
as AdaBoost but using stochastic gradient descent steps in a function space. All our
theoretical analysis (what are the desirable properties, which variants satisfy them, how
to derive variants that satisfy them) depends on deriving the underlying loss function,
so it can carry over straightforwardly to online boosting.

However in practice performing calibration in an online learning setting, where
examples arrive sequentially, is challenging, as splitting into separate training and cal-
ibration sets is impossible. A natural question in such a scenario is how should the
choice between each of the two actions (training the model or calibrating its probabil-
ity estimates) be made on a new data point.

Simple solutions would treat the ratio of the number of examples used to train the
model over that of those used to calibrate its probability estimates as a hyperparameter
to be optimized. More refined ones would make the decision on whether to train or to
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calibrate on a given example via reinforcement learning approaches like bandit opti-

mization [129], aiming to perform at each round the action with the highest expected
payoff.

Extending analysis and methods to other goals than minimum risk
In our work the goal was to minimize the risk of classifications, so a large part of it,

namely the property of cost-consistency is based on Bayesian decision theory. Had the
goal been different, this property would have to be traded with some new one. What
would this new property –and the resulting optimal algorithm(s)– be when faced with
a Neyman-Pearson problem (Chapter 2), instead of a minimum risk one? Answering
this would open new directions for adapting our methodologies to novelty detection
applications [76, 77, 91].

An alternative approach would be to change the way the classifier scores are cal-
ibrated. This translates to adopting a more general definition of calibration, under
which, ‘a well-calibrated classifier calculates the cost parameters under which the ex-

pected cost for the instance under consideration is the same regardless of the predicted

class’ [39]. In [62] and [39] we see how calibration needs to be adapted if the goal is
to optimize for the Fβ-measure, rather than the expected cost. It would be interesting
to see what effect such an approach would have in the case of boosting and how it
compares to changes the loss function as done e.g. in [111].

Examining analysis to other theory frameworks
In Chapter 3 we mentioned that AdaBoost has been interpreted under many dis-

tinct theoretical frameworks, each shedding light to different aspects of the algorithm.
Cost-sensitive boosting variants could also benefit from such a diverse theoretical ex-
amination; the current thesis is, after all, a testament to this. Extending our analysis
of cost-sensitive boosting to connect it to different mathematical domains could lead
to better understanding of the existing algorithms, to new variants or more efficient
implementations.

For instance, it should be easy to define cost-sensitive boosting in game theoretic

terms. This could be achieved by modifying the payoff matrix of [41] to be consistent
with the cost matrix of the problem. A direct consequence would be to obtain a cost-
sensitive extension of LP-boost [21]. Would this new variant coincide with LPUBoost

by Leskovec and Shawe-Taylor [68]? How would it compare to the ones studied here?

Borrowing ideas from information theory [20], we can examine AdaBoost from
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the perspective of optimal betting strategies [73]. The generalization of AdaBoost
presented in [73], AdaBoost-ρ, which incorporates knowledge about the likely winners

(here: correctly classified training examples) in its parameter ρ (ρ = 0.5 corresponds
to zero knowledge, i.e. the original Adaboost) can be used to assign non-equal weight
mass to correctly and incorrectly classified examples. This can potentially be leveraged
to perform cost-sensitive learning. Will then one (or more) of the existing cost-sensitive
boosting variants arise as a special case of AdaBoost-ρ?

Another future research direction could be to examine cost-sensitive boosting vari-
ants using tools from the domain of dynamical systems. Following the work of Rudin
et al. [100] on AdaBoost, we can leverage the iterative nature of the weight updates to
also express cost-sensitive boosting variants as non-linear iterated maps. Exploring the
dynamics of the evolution of the weights could e.g. point out interesting differences
among CGAda, AsymAda and AdaMEC in terms of convergence properties. The the-
oretical tools used in the present thesis show that these three variants are different
methods to approximate the same optimal model, but are not sufficient for identifying
potential differences in performance (speed or quality of approximation) among them.

Extending analysis and methods beyond boosting
Finally, our key findings have the potential to carry over to other learning algorithms

beyond Adaboost. It would be interesting to investigate in what situations calibrating
the scores produced by an algorithm and choosing an appropriate decision threshold
to assign to the minimum risk class outperforms modifications of the algorithm itself.
Doing this would mean reducing cost-sensitive learning to probability estimation, with
all the theoretical guarantees and practical advantages discussed in this thesis. A good
starting point would be the work of Dmochowski et al. [24]. It suggests that the opti-
mality of threshold-shifting will partially depend on the complexity of the learner, but
the theory needs to be extended to explicitly take calibration into account.

Asymptotically, calibration can only improve classification performance [17]. But
in practice, we have a finite sample which we need to split into a training and a calibra-
tion dataset –or to perform cross-validation. How can we predict in advance whether
calibrating the classifier’s scores is worth the potential sacrifice in model fitting –or the
extra computational cost of cross-validation? Such finite sample issues of calibration
need to be studied more extensively, potentially extanding traditional learning theory
to include bounds on the performance of scoring classifiers –accounting not only for
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the classification, but also the scores they produce, i.e. the confidence in their predic-
tions. We saw that these considerations fall within the domain of margin theory and
existing margin-based bounds are a subject of ongoing research. But interesting paral-
lels can also be drawn between this line of thinking about the confidence of a learner
in its predictions and Vapnik’s recent Learning Using Privileged Information (LUPI)

framework [121, 122].

9.3 Closing word: an argument for simplicity

As a closing word to this thesis, we should note that a key advantage of calibrated
AdaMEC is its simplicity. Simplicity is a multifaceted virtue. It can translate to ease
of conception, ease of implementation, ease of interpretation and ease of adaptation to
changing environments. In this case, calibrated AdaMEC satisfies all of these notions.
Moreover, compared to the other calibrated variants, it does not introduce any more
free parameters on top of those of the additive model constructed by AdaBoost and
those of the calibration function, so the model is also ‘simple’ in the statistical sense
we described in the Introduction.

Simplicity in this sense can be seen as robustness to overfitting, robustness to
changes between the training and testing conditions, between laboratory experimen-
tation and real world application with all its nuances. David Hand, in his influential
paper ‘Classifier technology and the illusion of progress’ [51] expands on these ideas
and argues that simpler methods typically yield performance comparable to that of
more sophisticated ones, ‘to the extend that the difference in performance may be
swamped by other sources of uncertainty that generally are not considered in the clas-
sical supervised learning paradigm’.

The results of this thesis lend additional support to the case for simpler learning
methods. Moreover, the analysis followed a similar reductionist approach by simpli-
fying the relevant literature, unifying it under a common theoretical framework and
identifying the key aspects in which the proposed cost-sensitive boosting variants dif-
fer. We already elaborated on the benefits of simpler methods. Simplicity on the level
of analysis of machine learning approaches can mean unifying seemingly distinct re-
search areas, thus facilitating the flow of understanding between them, or reducing
the various approaches to their key elements, making their similarities and differences
more explicit. This is particularly useful in machine learning, a field whose methods
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originate from such diverse areas as statistics, optimization, psychology, physics, ar-
tificial intelligence, to name but a few. It is the author’s hope that the present thesis,
besides the specific problem it addresses, also contributes useful arguments towards a
need for simplicity in both the methods themselves and their analysis.



Appendix A

Theorem Proofs

Proof of Theorem 1

Theorem 1: The generalised formulation of AdaMEC,

HAdaMEC(x) = sign [p̂(y = 1|x)− c] , (A.1)

reduces to

HAdaMEC(x) = sign

[
∑

y∈{−1,1}
c(y) ∑

τ:hτ(x)=y
ατhτ(x)

]
,

where

c(y) =

cFN , if y = 1

cFP, if y =−1
,

when probability estimates are raw scores of the form p̂(y = 1|x) = ∑τ:hτ(x)=1 ατ

∑
t
τ=1 ατ

.

Proof: Our generalized formulation of AdaMEC’s prediction rule is

HAdaMEC(x) = sign [p̂(y = 1|x)− c] ,

where p̂(y = 1|x) denotes the probability estimate the AdaBoost ensemble Ft assigns
to example x belonging to the positive class, regardless of how it is estimated.

Suppose we opt to use as probability estimates raw scores of the form

p̂(y = 1|x) = s(x) =
∑τ:hτ(x)=1 ατ

∑
t
τ=1 ατ

.
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Then Eq. (A.1) becomes

HAdaMEC(x) = sign [(1− c)p̂(y = 1|x)− c(1− p̂(y = 1|x))]

= sign
[

cFN

cFP + cFN

∑τ:hτ(x)=1 ατ

∑
t
τ=1 ατ

− cFP

cFP + cFN
(1−

∑τ:hτ(x)=1 ατ

∑
t
τ=1 ατ

)

]
.

Since cFP + cFN is bounded, constant and non-negative, this is equivalent to

HAdaMEC(x) = sign
[

cFN
∑τ:hτ(x)=1 ατ

∑
t
τ=1 ατ

+ cFP(1−
∑τ:hτ(x)=1 ατ

∑
t
τ=1 ατ

)

]
= sign

[
cFN

∑τ:hτ(x)=1 ατ

∑
t
τ=1 ατ

− cFP
∑τ:hτ(x)=−1 ατ

∑
t
τ=1 ατ

]
.

As ∑
t
τ=1 ατ is bounded1, constant and non-negative, we get the equivalent rule

HAdaMEC(x) = sign

[
cFN ∑

τ:hτ(x)=1
ατ− cFP ∑

τ:hτ(x)=−1
ατ

]
.

Rearranging gives us

HAdaMEC(x) = sign

[
∑

y∈{−1,1}
c(y) ∑

τ:hτ(x)=y
ατhτ(x)

]
,

where

c(y) =

cFN , if y = 1

cFP, if y =−1.

�

1If we had ∑
t
τ=1 ατ = ∞, this would mean that at least one of {ατ|τ = 1, . . . , t} is ∞, or equivalently

has an error ετ = 0. In that case we could discard the rest of the ensemble and use only (one of) the
weak learner(s) with ετ = 0 to make predictions, as such a weak learner alone perfectly classifies the
training data.
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Proof of Theorem 2

Theorem 2: The probability estimate assigned to class y = 1 by an AdaBoost ensem-

ble Ft on an example x constitutes a product of experts

p̂(y = 1|x) =
∏

t
τ=1 p̂τ(y = 1|x)

∏
t
τ=1 p̂τ(y = 1|x)+∏

t
τ=1 p̂τ(y =−1|x)

,

with experts of the form

p̂τ(y = 1|x) =

ετ , if hτ(x) =−1

1− ετ, if hτ(x) = 1,

p̂τ(y =−1|x) =

1− ετ, if hτ(x) =−1

ετ , if hτ(x) = 1,

where ετ is the weighted error of the τ-th weak learner and hτ(x) ∈ {−1,1} its predic-

tion on example x.

Proof: Assume an unknown distribution p(x,y). Define F∗(x) as the population min-
imiser of an exponential loss function:

F∗(x) = argmin
F

Exy

{
e−yF(x)

}
To find F∗(x), it is sufficient to minimize Ey|x

{
e−yF(x)

}
, for any x. Therefore,

∂Ey|x

{
e−yF(x)

}
∂F(x)

= 0 =⇒ ∂(p(y = 1|x)e−F(x)+ p(y =−1|x)eF(x))

∂F(x)
= 0 =⇒

− p(y = 1|x)e−F∗(x)+ p(y =−1|x)eF∗(x) = 0 =⇒

eF∗(x)

e−F∗(x) =
p(y = 1|x)

1− p(y = 1|x)
=⇒ F∗(x) =

1
2

log
p(y = 1|x)

1− p(y = 1|x)

which also implies that

p(y = 1|x) =
1

1+ e−2F∗(x)
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Now assume F∗(x) is approximated by an additive model:

F∗(x)≈ Ft(x) =
t

∑
τ=1

ατhτ(x)

where ∀τ, we have ατ ∈ R and hτ(x) ∈ {−1,+1}, then we have,

p(y = 1|x)≈ p̂(y = 1|x) =
1

1+ e−2∑
t
τ=1 ατhτ(x)

(A.2)

Adaboost minimises Exy

{
e−yF(x)

}
via a greedy stage-wise addition of terms to the

model Ft(x), using an empirical risk approximation:

Exy

{
e−yF(x)

}
≈ 1

N

N

∑
i=1

e−yi ∑
t
τ=1 ατhτ(xi) = JAda

Under the greedy optimization scheme, the optimal value for ατ is

∂JAda(ατ)

∂ατ

= 0 =⇒ ατ =
1
2

log
1− ετ

ετ

, (A.3)

where ετ =
∑i:hτ(xi)6=yi

Dτ
i

∑
N
i=1 Dτ

i
is the weighted error of the weak learner added on round τ.

Substituting ατ from Eq. (A.3) into Eq. (A.2) gives us that the probability estimate
assigned to class y = 1 by an AdaBoost ensemble on an example x is

p̂(y = 1|x) = 1

1+ e−2∑
t
τ=1

1
2 log 1−ετ

ετ
hτ(x)

which can be rearranged to

p̂(y = 1|x) =
1

1+∏
t
τ=1(

ετ

1−ετ
)hτ(x)

=
∏

t
τ=1(1− ετ)

hτ(x)

∏
t
τ=1(1− ετ)hτ(x)+∏

t
τ=1(ετ)hτ(x)

.

So the probability estimates of AdaBoost have the form for a product of (unnormalized)
experts

p̂(y = 1|x) =
∏

t
τ=1 φτ(y = 1|x)

∏
t
τ=1 φτ(y = 1|x)+∏

t
τ=1 φτ(y =−1|x)
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φτ(y = 1|x) = (1− ετ)
hτ(x)

φτ(y =−1|x) = ε
hτ(x)
τ ,

which can be normalised to give:

p̂τ(y = 1|x) =
(1− ετ)

hτ(x)

(1− ετ)hτ(x)+ ε
hτ(x)
τ

=

ετ , if hτ(x) =−1

1− ετ, if hτ(x) = 1,

p̂τ(y =−1|x) =
ε

hτ(x)
τ

(1− ετ)hτ(x)+ ε
hτ(x)
τ

=

1− ετ, if hτ(x) =−1

ετ , if hτ(x) = 1.

�
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Proof of Theorem 3

Theorem 3: Let there be a boosting variant approximating

F∗(x) = Kp log
p(y = 1|x)

1− p(y = 1|x)
+Kc log

cFN

cFP
, (A.4)

where Kp and Kc are constants, with an additive model Ft(x) = ∑τ ατhτ(x). The prob-

ability estimate assigned to class y = 1 by the ensemble Ft , on an example x has the

form of a product of experts:

p̂w(y = 1|x) =
p̂0(y = 1)∏

t
τ=1 p̂τ(y = 1|x)

p̂0(y = 1)∏
t
τ=1 p̂τ(y = 1|x)+ p̂0(y =−1)∏

t
τ=1 p̂τ(y =−1|x)

,

with experts of the form

p̂0(y = 1) =
1

1+
(cFN

cFP

)Kc/Kp

p̂0(y =−1) =

(cFN
cFP

)Kc/Kp

1+
(cFN

cFP

)Kc/Kp

p̂τ(y = 1|x) = (1− ετ)
hτ(x)/2Kp

(1− ετ)hτ(x)/2Kp + ετ
hτ(x)/2Kp

p̂τ(y =−1|x) = ετ
hτ(x)/2Kp

(1− ετ)hτ(x)/2Kp + ετ
hτ(x)/2Kp

where ετ is the weighted error of the τ-th weak learner, whose definition is given in the

description of the algorithm, ατ =
1
2 log 1−ετ

ετ
the corresponding confidence coefficient

and hτ(x) ∈ {−1,1} its prediction on example x.

Proof: Solving Eq. (A.4) w.r.t. the probability p(y = 1|x), we get that p(y = 1|x) is a
function of the true minimizer F∗(x),

p(y = 1|x) =
1

1+
(cFN

cFP

)Kc/Kpe−F∗(x)/Kp
(A.5)
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Now since F∗(x) is approximated by an additive model:

F∗(x)≈ Ft(x) =
t

∑
τ=1

ατhτ(x)

where ∀τ, we have ατ ∈ R and hτ(x) ∈ {−1,+1}, we can approximate the true proba-
bility of Eq. (A.5) by the estimate

p̂(y = 1|x) = 1

1+
(cFN

cFP

)Kc/Kpe−(∑
t
τ=1 ατhτ(x))/Kp

. (A.6)

In Table 3.2, we see that all boosting variants have the following general form for
the ατ coefficients:

ατ =
1
2

log
1− ετ

ετ

, (A.7)

where ετ is a measure of weighted error of the weak learner added on round τ, whose
definition differs across algorithms 2.

Substituting ατ from Eq. (A.7) into Eq. (A.6) gives us that the probability estimate
assigned to class y = 1 by an AdaBoost ensemble on an example x is

p̂(y = 1|x) = 1

1+
(cFN

cFP

)Kc/Kpe−(∑
t
τ=1 log 1−ετ

ετ
hτ(x))/2Kp

which can be rearranged to

p̂(y = 1|x) =
1

1+
(cFN

cFP

)Kc/Kp
∏

t
τ=1(

ετ

1−ετ
)hτ(x)/2K p

=
cFP

Kc/Kp ∏
t
τ=1(1− ετ)

hτ(x)/2K p

cFP
Kc/Kp ∏

t
τ=1(1− ετ)hτ(x)/2K p + cFN

Kc/Kp ∏
t
τ=1(ετ)hτ(x)/2K p

.

So the probability estimates of the boosting ensemble have the form for a prior-weighted
product of (unnormalized) experts

p̂w(y = 1|x) =
φ0(y = 1)∏

t
τ=1 φτ(y = 1|x)

φ0(y = 1)∏
t
τ=1 φτ(y = 1|x)+φ0(y =−1)∏

t
τ=1 φτ(y =−1|x)

,

2Table 3.2 mentions that CSAda & AdaDB do not have a closed-form solution for ατ. This fact
does not affect this proof. We can still express the numerical value of ατ these two algorithms calculate
in the form of Eq. (A.7) if we define ετ =

1
1+e2ατ

. It is the additive nature of Ft(x) and the exponential
form of p̂(y = 1|x) that result in the latter corresponding to a PoE.
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with experts

φ0(y = 1) = cFP
Kc/Kp

φ0(y =−1) = cFN
Kc/Kp

φτ(y = 1|x) = (1− ετ)
hτ(x)/2Kp

φτ(y =−1|x) = ε
hτ(x)/2Kp
τ ,

which can be normalised to give:

p̂0(y = 1) =
1

1+
(cFN

cFP

)Kc/Kp

p̂0(y =−1) =

(cFN
cFP

)Kc/Kp

1+
(cFN

cFP

)Kc/Kp

p̂τ(y = 1|x) = (1− ετ)
hτ(x)/2Kp

(1− ετ)hτ(x)/2Kp + ετ
hτ(x)/2Kp

p̂τ(y =−1|x) = ετ
hτ(x)/2Kp

(1− ετ)hτ(x)/2Kp + ετ
hτ(x)/2Kp

�



Appendix B

Datasets Used

Table B.1: Characteristics of the datasets used in our experiments; number of instances
used, number of features and number of classes. The class chosen as ‘positive’ was
the minority class in the original file. In multiclass datasets, we followed a 1-vs-all
approach, where the negative class consisted of uniformly sampled examples from the
remaining classes. All datasets are taken from the UCI repository and can be found in
the link: https://archive.ics.uci.edu/ml/datasets.html.

Dataset # # #
Instances Features Classes

parkinsons 96 22 2
survival 162 3 2
sonar 194 60 2
heart 240 13 2

ionosphere 252 34 2
liver 290 6 2

semeion 322 256 10
congress 336 16 2

wdbc 424 31 2
pima 576 8 2
credit 600 24 2

landsat 1252 36 6
splice 1524 60 3
musk2 2034 166 2
krvskp 3054 36 2

waveform 3306 40 3
spambase 3626 57 2
mushroom 7832 21 2
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