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Abstract

Capturing Temporal Aspects of Bio-Health Ontologies
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Extending Descriptions Logics (DLs) with a temporal dimension to aid in the
ability to model meaningful temporal information is an active and popular re-
search area that has gathered a lot of attention over recent years. DLs underpin
the Web Ontology Language (OWL) which offers a way to describe ontologies for
the semantic web. Representing temporal information in ontologies plays an im-
portant role, specifically for those ontologies where time information is inherently
embedded in the information they describe. This is very common for ontologies
in the bio-health domain, for example ontologies that describe the development
of anatomies of biological entities, stage based development, evolution of diseases
and so on. As expressive as DLs are, given that they are fragments of First Order
Logic, they are static in nature and are limited in what they can express from a
temporal view point, hence the surge in temporal extensions to DLs over recent
years.

In this thesis we investigate the use of temporal extensions of DLs as suitable
representations for the temporal information required for bio-health ontologies.
We first set out to find out exactly what types of temporal information need
to be modelled, before going on to evaluate current temporal extensions and
representations to determine their suitability. We then go on to introduce several
new temporal extensions to DLs and evaluate their suitability.
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Chapter 1

Introduction

1.1 Temporal Information in Ontologies

Description Logics (DLs) [BCM+03, BS01, KSH12] are a collection of knowl-
edge representation languages that can be used to express the knowledge of some
application domain in a precise and structured way. DLs are widely used in
ontological modelling and they provide the core formalisms and structure used
by OWL - the web ontology language, as standardised by the World Wide Web
Consortium (W3C). The DL SROIQ [HKS06], as the logical core for OWL 2
[GHM+08], is a widely used formalism for ontologies in the life sciences. Bio-
Portal [NSW+09] and the OBO Foundry [SAR+07] are two examples of ontology
corpora for the biomedical domain. They contain a variety of ontologies describ-
ing different types of biomedical domain knowledge, ranging from vocabularies
for clinical care and medical terminology systems such as National Cancer Insti-
tute Thesaurus (NCIT) [SdCH+07] and anatomy and stage based developmental
vocabularies such as the Drosophila Gross Anatomy Ontology [CRGOS13].

Different classes of temporal phenomena may generate different sorts of re-
quirements on extensions of SROIQ. As expressive as ontologies and their un-
derlying DLs are, there are still limiting factors over what they can and cannot
express. Many bio-health concepts involve temporal aspects. Consider an on-
tology describing the development of any biological entity. Any development
inherently involves time: statements made in the ontology could include (1) an
element developing from another, or (2) any entity taking place during a certain
stage, or (3) an event occurring before, after or during another event. All involve
specific types of temporal information. Take for example an ontology describing
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human fetal development. Statements could be made about specific embryonic
cells developing from other cells (1), organ development taking place in certain
trimesters (2), and certain gestational ages occurring during specific weeks in the
pregnancy (3). Each example clearly includes specific temporal information and
requires this information to faithfully represent what is intended. It would be
beneficial to have some sense of time encoded into the underlying logic, allowing
us to represent and query knowledge in the past or present or future. OWL 2 does
offer a way to encode some type of temporal information, through time stamping
(data types), but offers no way to describe any real type of change since it is still
a static logic, being a fragment of First Order Logic. The temporal information
that is present in these ontologies is usually based on concepts changing (devel-
oping) over time, or representations of sequences of stages, both against some
representation of time. Since DLs are static, they have no inherent concept of
properties changing over time, i.e formulae are evaluated within only a single fixed
world. Clearly if time information is needed but cannot be represented then it
may be the case that many of these ontologies are currently misrepresented, or at
least OWL does not have the required expressivity to meet the temporal require-
ments of these ontologies. It is not currently clear exactly what kind of temporal
expressivity is required of OWL to meet the temporal requirements of bio-health
ontologies, simply because the temporal requirements of these ontologies are not
yet known.

1.2 Temporal Extensions to DLs

Temporal extensions to DLs have been given a lot of attention in recent years.
Many proposals exist, ranging from taking classical temporal logics such as ltl,
ctl or ctl∗ and combining them with DLs such as EL or ALC [LWZ08, GJS15b]
where the result can be seen as a two dimensional Temporal Description Logic
(TDL). Alternatively, temporal information has been added via means of extend-
ing DLs with a concrete domain to act as a temporal referencing scheme [BH91],
or even internalising temporal information by embedding it into standard OWL
via means of temporal ontologies, for example representing Fluents via a Fluent
Ontology [WF06], or a dedicated Time Ontology [HP04].

Very few of these TDLs have been investigated for a specific application pur-
pose however. For example, in recent years, research on two dimensional TDLs
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has been mainly focussed on complexity results rather than any specific applica-
tion domain [LWZ08], similarly for DLs extended with concrete domain [Lut02].
We believe this is due to the fact that both have very interesting complexity
results [GJS15b, LWZ08, Lut02]: it is very easy for these logics to enter into
the undecidability realm, which is extremely undesirable for DLs and ontologies.
Decidability is a must - only decidable logics can be DLs, partly for historical
reasons. It can be argued that the reason for the success of OWL is due to effi-
ciency and decidability when it comes to reasoning i.e., inferring new information
from an ontology. If such extensions easily lead to undecidability, even in some
of the most simplest cases, it is definitely an interesting research area to con-
sider. One of the main culprits for undecidability in two-dimensional DLs are
rigid roles. On a high level, a role is simply a relation between two entities in
some domain of interest. A rigid role is one that remains constant throughout
time. For example, if the relation love was rigid, then if bob was to love mary
at some time point, then at any time point it would hold that bob loves mary.
Rigid roles seem crucial for biological domains. For example, if bob has a blood
type A RhD positive (A+), then it should be the case that bob always has this
blood type. It would not make sense for bob to not have the same blood type
at some other time point. What seems like a seemingly harmless extension is
what causes most of the two-dimensional TDL extensions to become undecidable
[GJS15a, LWZ08], which is a shame since these logics are the ones most promising
to describe concepts changing over time. DLs with concrete domains are useful
for capturing temporal notions such as durations and interval relations, but not
so much ideas such as rigidity and general change.

It may be the case that some of the proposed extensions may in fact be suitable
for modelling the temporal requirements of these ontologies (rigid roles may not
be as important as other temporal features). If the requirements were known,
we could evaluate the current proposals, to see which were most suited, and if
none were, we could set out to define a new logic based on these requirements to
attempt to solve this problem.

1.3 Research Goals

We know that there are cases where OWL is not sufficient to model some of the
necessary temporal information that may be required by ontologies but we do not
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know exactly what all or any of the temporal requirements are, how important
these requirements would be, what potential effect they could have on modelling,
and what benefits they could have in practice. We also do not know if any of the
temporal extensions that have been proposed are sufficient to faithfully model
the temporal nature of these ontologies and which ones would be better suited
for the task.

The goal of this thesis is to research exactly these problems. We wish to iden-
tify a suitable methodology to determine a clear set of Temporal Requirements
for modelling the temporal patterns in bio-health ontologies, which we can then
use to effectively evaluate and compare current temporal extensions to OWL, to
see which are most suited to act as a temporal representation. If no such exten-
sion is suitable, then if possible, we will either attempt to extend the best current
extension or create a new extension that will attempt to meet the requirements.

1.3.1 Research Questions

The research questions this thesis addresses are as follows:

1. What are the temporal requirements for modelling the temporal
features of Bio-Health ontologies in OWL?

2. Is there currently a suitable temporal extension for DLs that will
allow for a faithful representation of the Temporal Requirements?
And one that is decidable and of suitably low complexity?

3. How can we extend DLs to accommodate for the Temporal Re-
quirements?

1.4 Outline & Research Contributions

The following is a summary of our research contributions and a general outline
of the thesis structure:

• Background & Related Work (Chapter 2) In Chapter 2 we lay down
the foundations required to understand the research in this thesis. We
formally introduce several DLs, temporal logics, TDLs, and other logical
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representations. We also introduce several terminologies and provide a run-
ning example of how temporal information is currently modelled in OWL
and how it can be modelled in TDLs.

• Temporal Requirements Identification (Chapter 3) In Chapter 3
we perform a survey on the OBO Foundry and a temporal version of the
Relation Ontology [SCK+05] to determine a precise set of 15 Temporal
Requirements (TRs) of biomedical ontologies.

• Temporal Extensions & Representations Evaluation (Chapter 4)
In Chapter 4 we take the 15 TRs and thoroughly evaluate and compare 3
carefully selected temporal extensions and representations of OWL intro-
duced in Chapter 3.

• A new Family of Temporal Description Logics (Chapter 5) In Chap-
ter 5 we describe a new family of TDLs based on time point intervals and
tailored towards the TRs, and evaluate it against the TRs.

• Reasoning in New TDLs (Chapter 6) In Chapter 6 we describe various
new reasoning problems for our new TDL and prove various complexity
results for the new TDL.

• Reasoners (Chapter 7) In Chapter 7 we introduce two new OWL Reason-
ers for several of the new languages introduced in Chapter 5 and provide
experiments to show their practical capabilities and their benefits as to
modelling temporal information in OWL.



Chapter 2

Background & Related Work

In this chapter we introduce and discuss background knowledge and related work
associated with the research of this thesis. These include:

1. The basic concepts of Description Logics and their use as formalisms for
ontologies and OWL.

2. The introduction of Temporal Logics (TLs) and their use for representing
temporal information.

3. The introduction of several temporal extensions and representations of DLs.

4. The description and discussion of the common reasoning problems in DLs.

5. The description of several biological notions and terminologies in ontologies.

(1) outlines the core formalisms of two popular DLs, defining their syntax and
semantics, and how they can be used to build ontologies, fixing notions such as
axioms, TBoxes, ABoxes etc. (2) introduces several TLs, again defining their
syntax and semantics. (3) outlines several extensions to classical DLs, including
temporal extensions and combinations of DLs and those TLs seen in (2), as well
as other extensions and temporal representations, including Fluents and concrete
domains. (4) introduces the most common reasoning problems for description
logics and their temporal extensions outlined in (3) along with known complexity
results for their reasoning problems. (5) introduces several biological notions used
throughout bio-health ontologies. We discuss notions of identity, continuants and
occurrents.

22
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2.1 Description Logics

Our aim is not to provide an overview of the entirety of Description Logics (DLs),
or OWL, but merely to introduce the foundation of DLs necessary for the work
in this thesis. For this reason, we introduce two popular DLs, ALC and EL.

2.1.1 ALC

DLs [BCM+03, BS01, KSH12] are a collection of knowledge representation lan-
guages that can be used to express the knowledge of some application domain
in a precise and structured way. As their name suggests, DLs are logics, which
means they are supplied with a precise syntax and semantics, and come equipped
with the ability to reason with information in a meaningful way. One of the main
aspects of DLs is to (1) provide ways to model relationships between 3 kinds
of entities in a domain of interest, these being concept descriptions, roles and
individual names and (2) to make more expressive terms, usually called concept
expression, axioms, assertions and even ontologies. There are many varieties of
DLs and they differ by what constructors, axioms and operators are allowed (see
[BCM+03, KSH12] for more details). ALC (Attributive Logic with Complement)
[SSS91] is a simple yet expressive DL. Concept descriptions in ALC are built
according to the following definition:

Definition 1 (ALC Concept Descriptions)
Let Ncon, Nrole and Nind be countable infinite and disjoint sets of concept, role
and individual names respectively. Let A ∈ Ncon, R ∈ Nrole C, D be arbitrary
concept descriptions. Then concept descriptions can be formed in ALC according
to the following syntax rules:

C,D −→ A | > | ⊥ | ¬C | C u D | C t D | ∀R.C | ∃R.C

The operators {u , t , ¬ , ∀ , ∃ , > , ⊥} are called conjunction, disjunction,
negation, universal restriction, existential restriction, top concept and bottom con-
cept respectively. DLs are in fact a decidable fragment of first order logic (FOL),
so those familiar with FOL may wish to interpret concept, role and individuals
names as unary predicates, binary predicates and constants respectively.

When representing concept names, unless using specific names of things, we
will always use upper case letters to represent them, such as A, B, C,... possibly
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sub or superscripted with indexes, for example A1 or A′ etc. Concept names may
also be referred to as class names or even atomic classes (we may use these terms
synonymously throughout this thesis). We proceed similarly for role names. In
their representation we do our best to ensure the concept and roles names are
kept disjoint. We normally use R, S, P or Q to represent role names, if not using
specific names in the appropriate context. Individual names will always be shown
with lower case letters, for example, a, b, c, ....

Terminological axioms make statements about how concepts or roles are re-
lated to one another. They intend to constrain the domain of interest. The
axioms come in the form C v D or C ≡ D. The first is called a subclass of
axiom (or a subsumption) and reads “C is a subclass of D” or simply “C is a D”.
The second is called an equivalence axiom and reads “C is equivalent to D”.

Definition 2 (ALC Terminological Axioms & TBoxes)
Let C,D be arbitrary ALC concept descriptions. Terminological axioms are of the
form

C v D or C ≡ D (2.1)

An ALC TBox is a finite set of these axioms.

Assertions make statements between individuals and concept and roles, pro-
viding a mechanism to assert how to relate one to the others. Assertions are of
the form C(a) and R(a, b). The first is called a concept assertion and reads “a is
an instance of C”. The second is called a role assertion and reads “a is R related
to b” or “R relates a to b”.

Definition 3 (ALC Assertions & ABoxes)
Let C be an arbitrary ALC concept description, R ∈ Nrole and a, b ∈ Nind. Asser-
tional axioms are of the form

C(a) or R(a, b) (2.2)

An ALC ABox is a finite set of these axioms.

TBoxes are seen to capture knowledge on a conceptual level whereas ABoxes
capture knowledge on an individual level, using terms from the conceptual level.
A TBox and an ABox together form an ontology (or a knowledge base). In the
DL context, we use the term ontology to specifically refer to a set of axioms and
assertions.
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Name Syntax Semantics
Top > ∆I

Bottom ⊥ ∅
Atomic A AI ⊆ ∆I

Conjunction (C uD) CI ∩DI
Disjunction (C tD) CI ∪DI

Negation ¬C ∆I \ CI
Value (∀R.C) {x ∈ ∆I | ∀y : (x, y) ∈ RI → y ∈ CI}

Existential (∃R.C) {x ∈ ∆I | ∃y : (x, y) ∈ RI ∧ y ∈ CI}

Table 2.1: Semantics of Concept Descriptions in ALC

Definition 4 (ALC Ontology)
Let T be an ALC TBox, and A be an ALC ABox. An ALC ontology O is of the
form O = (T ,A). O can also be seen as the set O := T ∪ A

We will tend to use T to refer to a TBox, A for an ABox, and O for an
ontology.

DLs have a model theoretic semantics which is given in terms of an interpre-
tation I:

Definition 5 (Semantics of ALC: I)
An ALC interpretation I = (∆I , ·I) consists of a non-empty set ∆I its domain,
and a function ·I that maps each concept name A ∈ Ncon to a subset AI ⊆ ∆I,
each role name R ∈ Nrole to a subset RI ⊆ ∆I × ∆I and each individual name
a ∈ Nind to aI ∈ ∆I. The function ·I is inductively extended to arbitrary concept
descriptions shown in Table 2.1. Let C and D be arbitrary concept descriptions
and A, R and e, f be concept, role and individual names from Ncon, Nrole and
Nind respectively.

• C is satisfiable if there is an interpretation I where CI 6= ∅, in which case
I is called a model of C

• I satisfies a TBox axiom C v D if CI ⊆ DI

• I satisfies a TBox axiom C ≡ D if CI = DI

• I is a model of a TBox T if it satisfies every axiom in T

• I satisfies a concept assertion C(e) if eI ∈ CI

• I satisfies a concept assertion Rλ(e, f) if (eI , fI) ∈ RIλ
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• I is a model of an ABox A if it satisfies every axiom in A

• I is a model of an ontology O if it satisfies every axiom in O

2.1.2 EL

The DL EL [BBL05, Baa03], is a lightweight DL known for its limited avail-
able constructs against its impressive level of expressivity. EL only allows for
conjunction and existential restrictions and boasts polynomial time complexity.
Although only a few operators are available, it is sufficient for many applications,
particularly those in the bio-health domain. Very large and popular ontologies
such as SNOMED-CT [SCS11] describing over 300,000 concepts can be almost
completely represented in EL and many other bio-health ontologies (for example
many of those in the OBO Foundry) can be completely captured by EL. EL can
be seen as a strict fragment of ALC. The grammar of its syntax is defined as
follows:

Definition 6 (EL Concept Descriptions)
Let Ncon, Nrole and Nind be countable infinite and disjoint sets of concept, role
and individual names respectively. Let A ∈ Ncon, R ∈ Nrole C, D be arbitrary
concept descriptions. Then concept descriptions can be formed in EL according
to the following syntax rules:

C,D −→ > | A | C u D | ∃R.C

EL TBoxes, ABoxes and Ontologies are defined in the same way as in ALC,
with the obvious restrictions based on the allowed logical constructs. The same
goes for the semantics of EL.

2.1.3 Useful Terms

Signature Given an Ontology O, a TBox T and an ABox A, the signature of
each, denoted as Õ, T̃ , Ã respectively, is the set of all concept, role and individual
names occurring in each set.
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2.1.4 OWL & SROIQ(D)

The Web Ontology Language (OWL) is a collection of knowledge representation
languages designed for use in many applications to provide means to model in-
formation in a precise and structured way amongst the semantic web. OWL 2
[GHM+08] is the current iteration (and successor) of OWL, which has two levels
of expressivity, OWL 2 DL and OWL 2 Full. The former has a DL, SROIQ(D)

[HKS06], as a logical basis. SROIQ(D) can be seen as a logical extension to ALC.
Each letter in the name can be seen to roughly refer to a set of logical constructs
and axiom types:

• S = ALC extended with transitive roles.

• R = a set of role constraints including, role chains, inclusions, hierarchies,
role characteristics such as irreflexivity and reflexivity and role disjointness

• O = nominals

• I = inverse roles

• Q = qualified number restrictions

• D = data types

When we refer to OWL, we consider only OWL 2 DL and not OWL 2 Full.
Therefore, in this thesis whenever we use the term OWL, we really are referring
to OWL 2 DL.

2.2 Temporal Logics and other Temporal Repre-

sentations

2.2.1 ltl

Linear Temporal Logic (ltl) is a type of modal logic, first introduced by Pnueli
[Pnu77]. ltl was primarily intended to model formal systems during the specifi-
cation and verification phases of software building, but over the past decade its
use has spread to a wider range of applications [DGFvdH07, Fis11]. ltl is based
on propositional logic and uses operators from modal logic to model time, usually
along a discrete and linear timeline. Formulae in ltl are constructed from the
following definition:
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Definition 7
Let prop be a finite set of propositional symbols such as p, q, r. . . , {true, false,
∧,∨,¬,⇒} be the set of propositional connectives and {©,♦,�,U ,W} be the set
of temporal connectives.
The set of ltl well-formed-formulae (WFF) is defined as follows:

• prop ⊆ WFF

• {true, false} ⊆ WFF

• If ϕ and ψ are in WFF, then so are

– ¬ϕ

– ϕ ∨ ψ

– ϕ ∧ ψ

– ϕ⇒ ψ

– ♦ϕ

– ©ϕ

– �ϕ

– ϕUψ

– ϕWψ

The unary modal operators©,♦ and � are usually interpreted as “at the next
time point”, “sometime in the future” and “at all future moments”, respectively.
The binary modal operators U and W are usually interpreted as “until” and
“unless”’, respectively. Models of TLs are usually defined as a Kripke Structure
M = 〈S,R, π〉, where S is the set of moments in time, R is the (temporal)
accessibility relation on S and π is a propositional valuation function where π :

S → P(prop) which maps each moment (world) to a set of propositions that are
true in that moment (world). However, since we are concerned with LTLs, R is
seen as a linear and discrete relation which is usually isomorphic to N, so we can
reduce the structure toM = 〈N, π〉 where π : N→ P(prop). The semantics of a
temporal WFF is provided by the satisfaction relation

|=: (M× N×WFF ) −→ {true, false}

s.t. 〈M, i〉 |= ϕ is true if ϕ is satisfied at time point i in the structure M and
false otherwise. The semantics of the propositional operators is as expected:

〈M, i〉 |= ϕ ∧ ψ iff 〈M, i〉 |= ϕ and 〈M, i〉 |= ψ

〈M, i〉 |= ϕ ∨ ψ iff 〈M, i〉 |= ϕ or 〈M, i〉 |= ψ

〈M, i〉 |= ϕ⇒ ψ iff if 〈M, i〉 |= ϕ then 〈M, i〉 |= ψ

〈M, i〉 |= ¬ϕ iff 〈M, i〉 6|= ϕ



CHAPTER 2. BACKGROUND & RELATED WORK 29

The semantics of the temporal operators is defined as follows:

〈M, i〉 |=©ϕ iff 〈M, i+ 1〉 |= ϕ

〈M, i〉 |= ♦ϕ iff there exists j ≥ i s.t 〈M, j〉 |= ϕ

〈M, i〉 |= �ϕ iff for all j ≥ i then 〈M, j〉 |= ϕ

〈M, i〉 |= ϕUψ iff there exists j ≥ i s.t 〈M, j〉 |= ψ and for all k where
i ≤ k < j, 〈M, k〉 |= ϕ

〈M, i〉 |= ϕWψ iff 〈M, i〉 |= ϕUψ or 〈M, i〉 |= �ϕ

Given the semantics, the following abbreviations hold:

• ♦φ for trueUφ

• �φ for ¬♦¬φ

• φWψ for �φ ∨ (φUψ)

2.2.2 ctl

ctl (Computational Tree Logic) is a branching temporal logic first introduced by
Clarke and Emerson [CE82, CES86] in 1982. It is based on propositional logic,
similar to ltl but allows for a branching time line instead of the standard discrete
and linear time line found in ltl.

Definition 8
Let prop be a finite set of propositional symbols such as p, q... , {true, false,
∧,∨,¬,⇒} be the set of propositional connectives, {A,E} be the set of temporal
path quantifiers and {©,U} be the set of temporal connectives. The set of ctl

well-formed-formulae (WFF) is defined as follows:

• prop ⊆ WFF

• {true, false} ⊆ WFF

• If ϕ and ψ are in WFF, then so are

– ¬ϕ

– ϕ∨ψ

– ϕ ∧ ψ

– ϕ⇒ψ
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– A© ϕ

– E© ϕ

– A(ϕUψ)

– E(ϕUψ)

The temporal path quantifiers A and E are interpreted as “in all future paths"
and “in some future path" respectively. Again, the semantics of ctl is usually
defined using a Kripke structureM = 〈S,R, π〉, where S is the set of moments
in time, R is the temporal accessibility relation over S and π is a propositional
valuation function where π : S → P(prop) which maps each moment (world) to
a set of propositions that are true in that moment (world). The semantics of the
propositional operators is as for ltl. The semantics of the temporal connectives
and path quantifiers are as follows:

〈M, s〉 |= E© ϕ iff there exists a s′ ∈ S where (s, s′) ∈ R and 〈M, s′〉 |= ϕ

〈M, s〉 |= A© ϕ iff for all s′ ∈ S where (s, s′) ∈ R, 〈M, s′〉 |= ϕ

〈M, s〉 |= E(ϕUψ) iff there exists a sequence of time points s0, s1, ..., sn in S
where (si, si+1) ∈ R and for all 0 ≤ i < n with s0 = s, 〈M, sn〉 |= ψ and
〈M, si〉 |= ϕ

〈M, s〉 |= A(ϕUψ) iff for all sequences of time points s0, s1, ... in S where
(si, si+1) ∈ R for all 0 ≤ i with s0 = s, there exists an n > i s.t 〈M, sn〉 |= ψ

and 〈M, si〉 |= ϕ

Note that we can also utilize the ♦ and � operators in ctl formulae as the
following abbreviations:

• A♦ψ for A(trueUψ)

• E♦ψ for E(trueUψ)

• A�ψ for ¬E♦¬ψ

• E�ψ for ¬A♦¬ψ

2.2.3 Allens Interval Relations

Allen [All83] introduced an interval algebra for representing and reasoning with
relations between intervals. He describes 13 relations shown in Figure 2.1. To
illustrate the use of these relations, consider the following example: bob was not
in the room when alice turned on the light. Here, we have 3 events taking place
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Figure 2.1: Allens’s Interval Relations [All83]

• bob not being in the room (i)

• alice being in the room (ii)

• alice turning on the light (iii)

We can represent some of these events using Allen’s relations as follows:

• (i)[b,m,mi,bi](ii) : (i) happened before, met, was met by, or came after (ii)

• (iii)[d](ii) : (iii) happens during (ii)

2.3 Description Logics Extensions & Design Pat-

terns

Temporalising DLs is a popular and active research topic. DLs, being a subset of
FOL are modelled in a static environment, and adding a temporal dimension to
make the environment dynamic can come with many advantages, especially for
ontologies modelling dynamic knowledge.

Several approaches have been proposed to adding a temporal dimension to
DLs, and they differ in many ways. Whether it is the notion of time used: time
points [LWZ08, GJS15b, GJS15a] or intervals [HS91, Lut01a, Lut04, Sch90], the
way in which time is applied: at a concept level [LWZ08, Sch93] or axiom level
[WZ98b, LWZ08], what type of time is applied: qualitative time [LWZ08] or
quantitative time [LSP14], how it is applied: whether it is an extension to DLs
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[LWZ08, Lut02] or embedded inside DLs [WF06], and many more (see Surveys
[LWZ08, AF00, AF05] for more details).

Our research contributions focus mainly on 3 temporal representations. The
first includes two extensions that include a combination of the temporal logics
ltl and ctl with DLs to form ltlDL and ctlDL. Both are seen as extensions
to DLs since they extend the classic DL syntax and semantics by combining
both with additional operators and a temporal dimension from each respective
temporal logic. The second is also an extension to DLs by means of adding
a concrete domain to the standard DL structure, and then using the concrete
domain as a temporal structure. The third is seen as an “embedded” temporal
representation, as opposed to an explicit temporal extension. It uses the power of
the expressivity of OWL to create an ontology called the Fluent Ontology [WF06],
used to represent temporal information. We introduce each representation below.

2.3.1 ltlALC

An active and popular suggestion for temporal extensions to DLs involves com-
bining the well known TL ltl with DLs such as ALC, where we allow the tempo-
ral operators to be applied to concept descriptions (first introduced in [Sch93]),
which helps to reason over the evolution of concepts. Given the standard opera-
tors of ltl, we can encode ltlALC concept descriptions according to the following
definition:

Definition 9
In addition to the standard concept descriptions in ALC, the ltlALC concept de-
scriptions C and D can be built according to the following syntax rules:

C,D −→©C | CUD

The semantics of ltlALC is based on temporal interpretations. A temporal
interpretationM is a sequence 〈J0,J1,J2, . . .〉 where each Ji consists of a non-
empty domain ∆Ji and a function ·Ji , that maps concept names to subsets of
∆Ji , roles to subsets of ∆Ji × ∆Ji and named individuals to elements of ∆Ji

where i represents distinct time points. The notation x ∈ AJi states that in the
interpretation Ji, x is an instance of A at time point i. The semantics of ltlALC
concept descriptions can be seen in Table 2.2. For ease of representation, we can
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Name Syntax Semantics
Top > ∆Ji

Bottom ⊥ ∅
Atomic A AJi ⊆ ∆Ji

Conjunction (C uD) (CJi ∩DJi)
Disjunction (C tD) (CJi ∪DJi)

Negation ¬C (∆ \ CJi)
Value (∀R.C) {x ∈ ∆Ji | ∀x′ : (x, x′) ∈ R→ x′ ∈ CJi}

Existential (∃R.C) {x ∈ ∆Ji | ∃x′ : (x, x′) ∈ RJi ∧ x′ ∈ CJi}
Next (©C) {x ∈ ∆Ji | x ∈ CJi+1}
Until (CUD) {x ∈ ∆Ji | ∃j ≥ i s.t x ∈ DJj ∧ x ∈ CJk for i ≤ k < j)}

Table 2.2: Semantics of Temporal Concept Descriptions in ltlALC

view the semantics as a sequence of standard ALC interpretations isomorphic to
the temporal structure in ltl.

There are two kinds of restrictions that are often discussed in ltlDL, rigid
roles and various domain constraints. We introduce both below.

Rigid roles A rigid role is a role whose interpretation remains rigid throughout
the time line. Rigidity on roles is defined as a characteristic on roles. Formally,
a role R has a rigid interpretation in I if

(e, f) ∈ RIi ⇔ (e, f) ∈ RIj∀i, j ∈ N, e, f ∈ ∆I

Domain constraints Another constraint is the ability to vary the domain
of each possible world. There are four types of domain constraints available,
expanding, decreasing, constant and varying. The expanding domain constraint
enforces that domains (sequentially) can either expand or stay the same, but
not shrink: ∆I0 ⊆ ∆I1 ⊆ ∆I2 ⊆ . . .. Decreasing domains are the opposite:
∆I0 ⊇ ∆I1 ⊇ ∆I2 ⊇ . . .. Constant domains state that each domain must be
the same ∆I0 = ∆I1 = ∆I2 = . . .. Varying domains have no constraints on the
domains, i.e., they can either expand, decrease or remain constant.

2.3.2 Other ltlDL combinations

Given that EL is a restriction of ALC, we can define ltlEL as a strict sub language
of ltlALC, where we restrict the DL dimension to only allow the DL expressivity
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up to EL. The semantics is defined in the same way as for ltlALC, taking into
account the DL restriction.

It is also possible to further restrict ltlALC in the temporal dimension to form
expressively weaker variants. If X was a set of the temporal constructs from
standard ltl, then the logic ltlXALC would denote ltlALC with the restriction of
only allowing the X operators to be used in concept descriptions. For example,
the syntax of the logic ltl©ALC would be restricted to:

C,D −→©C

Past Operators

ltl only gives the option to represent information in the present and future.
This is made apparent both by the temporal operators and the time line used
(N), although it is possible to still model past information. It became necessary
in certain cases to combine statements about past and present in a natural way
in ltl. ltl when extended with past operators {©−,♦−,�−,S} which are inter-
preted as the previous time point, some time in the past, all previous time points
and since were shown to be useful in practice [LPZ85]. ltl with past opera-
tors does not increase the expressive power nor the complexity of ltl [GPSS80],
however it is exponentially more succinct [Mar03, LPZ85, LMS02].

With regard to ltlDL combinations and past operators, ltlALC does not offer
any past operators. Artale et al. [AFWZ02] introduce a TDL named DLRUS
that allows for both past and present temporal operators to be applied not only
to DL concepts, but roles (of arity n, instead of binary) and axioms too. Concept
descriptions in DLRUS are built according to the following rules:

C,D −→ > | A | ¬C | C uD | C tD | ∃≶k[Uj]R | ♦C |

♦−C | �C | �−C | ©C | ©−C | CUD | CSD

where R is a complex role built according to the following rules:

R −→ >R | R | ¬R | R1 uR2 | R1 tR2 | Ui/n : C |

♦R | ♦−R | �R | �−R | ©R | ©−R | R1UR2 | R1SR2

Terminological axioms are defined in the usual way, however roles can also be
included in axioms, for example, in the following form R1vR2 where each must
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have the same arity. And, if φ and ψ are axioms, then so are ¬φ, φ ∧ ψ, φUψ
and φSψ. TBoxes, ABoxes and ontologies are then defined in the obvious way.
The semantics is given in terms of a temporal interpretation I which can be seen
as a sequence of usual DL interpretations where the time line is isomorphic to
Z. Readers are directed towards [AFWZ02] for a full definition of the syntax
and semantics. DLRUS is more expressive than ltlALC, and more succinct: not
only do we have access to past operators, but we also have the capabilities to
temporalise roles too. We can extend ltlALC to also use past operators to form
ltl−ALC, in a similar way to DLRUS . We can also choose to keep the standard
ltl time line (isomorphic to N) or even choose to adopt the time line isomorphic
to Z, similar to that of DLRUS .

2.3.3 ctlALC

ctlALC is a result of the combination of ALC and ctl, where again, we allow the
combination of ALC concepts with the temporal path operators and connectives
from ctl. ctlALC concept descriptions are defined as follows.

Definition 10
In addition to the standard concept descriptions in ALC, the ctlALC concept
descriptions C and D can be built according to the following syntax rules:

C,D −→ E© C | A© C | E(CUD) | A(CUD)

The semantics of ctlALC concept descriptions is given in terms of a temporal
interpretation J = (S,R, I), where S is a set of moments in time, R is the
temporal accessibility relation over S, and I is a function that maps each s ∈ S
to a standard ALC interpretation I(s) = (∆I(s), ·I(s)). J maps each concept name
A to AJ = {(s, e) | s ∈ S and e ∈ AI(s)}, each role name R to RJ = {(s, e, f) |
s ∈ S and (e, f) ∈ RI(s)} and every individual name e to an element eJ . As
before, we assume a rigid interpretation of the individuals: for every individual a,
aI(s) = aI(s′) for any s, s′ ∈ S. J is inductively extended to concept descriptions
shown in Table 2.3.
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Name Semantics
Top >J :=

⋃
s∈S

∆I(s) where I(s) = (∆I(s), ·I(s))

Bottom ⊥J := ∅
Conjunction (C uD)J := (CJ ∩DJ )
Disjunction (C tD)J := (CJ ∪DJ )

Negation ¬CJ := (>J \ CJ )
Value (∀R.C)J := {(s, d) | ∀d1 where (s, d, d1) ∈ RJ → (s, d1) ∈ CJ }

Existential (∀R.C)J := {(s, d) | ∃d1 where (s, d, d1) ∈ RJ ∧ (s, d1) ∈ CJ }
Some Next (E©C)J := {(s, d) | ∃s1 ∈ S where (s, s1) ∈ R and (s1, d) ∈ CJ }

All Next (A© C)J := {(s, d) | ∀s1 ∈ S where (s, s1) ∈ R → (s1, d) ∈ CJ }
Some Until E(CUD) := {(s, d) | there exists s0, s1, ..., sn in S where (si, si+1) ∈

R for all 0 ≤ i < n with s0 = s s.t (sn, d) ∈ DJ and (si, d) ∈ CJ }
All Until A(CUD) := {(s, d) | for all s0, s1, ..., sn in S where (si, si+1) ∈ R

for all 0 ≤ i < n with s0 = s s.t (sn, d) ∈ DJ → (si, d) ∈ CJ }

Table 2.3: Semantics of Temporal Concept Descriptions in ctlALC

2.3.4 Other ctlDL combinations

As before, we can vary the DL component of ctlDL, for example to form the
logic ctlEL.

As before, it is also possible to further restrict ctlALC in the temporal di-
mension to form expressively weaker variants. Since we now have two kinds of
temporal operators, temporal path operators and standard temporal operators we
can make even more combinations. For example, the syntax of the logic ctlE©

ALC

would be restricted to:
C,D −→ E© C

2.3.5 The Fluent Ontology

Welty and Fikes [WF06] introduce a reusable ontology for representing and deal-
ing with fluents in OWL. They describe fluents as relations that hold within cer-
tain time intervals and not in others. Their motivation to creating the ontology
was due to the general problem for dealing with relations that require time in
standard OWL. Their ontology adopts the perdurantist1 four dimensional view.
In its most basic form, the perdurantist view says that everything is a perdu-
rant, i.e., everything has a temporal part. For example the sentence “bob sat on
the chair” should be interpreted logically as “the temporal part of bob sat on the

1Perdurants being events, as opposed to their counter part, endurants, being physical objects.
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temporal part of the chair”.
The fluent ontology is described as follows (presented in Manchester syntax):

Ontology: FluentOntology

Class: TimeInterval

DisjointWith: TemporalPart

Class: TemporalPart

DisjointWith: TimeInterval

ObjectProperty: temporalPartOf

Inverse: hasTemporalPart

Domain: TemporalPart

Range: not TimeInterval

Characteristics: Functional

ObjectProperty: hasTemporalPart

Inverse: temporalPartOf

Domain: not TimeInterval

Range: TemporalPart

ObjectProperty: fluentProperty

Domain: TemporalPart

Range: TemporalPart

ObjectProperty: temporalExtent

Domain: TemporalPart

Range: TimeInterval

Characteristics: Functional

According to Welty and Fikes [WF06], the usage of the ontology should be
as follows. Every instance of a standard OWL class should have at least one
hasTemporalPart relation to an instance of TemporalPart, which should be as-
sociated with exactly one instance of TimeInterval via temporalExtent. Using
the example above, consider its standard OWL Ontology:

Ontology: PersonChairOntology

Class: Person

DisjointWith: Chair

Class: Chair

DisjointWith: Person

ObjectProperty: satOn

Domain: Person

Range: Chair
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Figure 2.2: An example usage of the Fluent Ontology

Individual: bob

Types: Person

Facts: satOn chair

Individual: chair

Types: Chair

Importing the FluentOntology, the corresponding temporal fluent ontology is
constrained as follows:

Ontology: PersonChairFluentOntology

Import: FluentOntology f

Import PersonChairOntology pc

ObjectProperty: satOn

SubPropertyOf: f.fluentProperty

Domain: f.temporalPartOf only Person

Range: f.temporalPartOf only Chair

allowing us to represent the ontology depicted in Figure 2.2. The fluent approach
is mainly focussed on representing time at an ABox level, as opposed to the TBox
level. It is also important to note that this temporal approach is not an extension,
but merely a means to encode temporal knowledge by defining restrictions on
standard OWL concepts. The Fluent ontology imports its class of time intervals
from the OWL-Time ontology [HP04].
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2.3.6 Concrete Domains D

Concrete domains D were added to DLs to allow for the representation of concrete
qualities, first formally introduced by Baader et al. in [BH91], who proposed the
extension of concrete domains to ALC to form ALC(D) where the D represents
the concrete domain. A concrete domain D is usually represented as a pair
(∆D,ΦD), where ∆D is a set of concrete data values, such as N, and ΦD is a set
of predicate names, such as {<,>,=, ...}, where each predicate name p ∈ ΦD

is associated with arity n and a fixed interpretation pD ⊆ ∆n
D. To access the

concrete domain, we extend the standard DL with: abstract features which are
usual object properties interpreted as functional relations, concrete features that
act as a partial function linking elements from the DL domain to elements in the
concrete domain and finally, a new constructor allowing us to describe a concept’s
association with the concrete domain.

We now go on to define the syntax of semantics of ALC(D) by means of an
extension to ALC.

Definition 11
Let D = (∆D,ΦD) be a concrete domain, f and e be abstract features, g and h be
concrete features and p ∈ ΦD be a predicate of arity n. A concrete feature path µ
is of the form f1 · . . . · fm · g where m ≥ 0. To form ALC(D) concept descriptions,
ALC concept descriptions are extended by

C,D −→ . . . | ∃p(µ1, . . . , µn) | ∀p(µ1, . . . , µn)

where n > 0.

The standard ALC interpretation function is extended to account for the con-
crete domain by mapping each abstract feature f to a partial function fI : ∆I →
∆I , each concrete feature g to a partial function gI : ∆I → ∆D and each concrete
feature path µ = f1 · . . . · fm · g to the set µI = {(x1, y) ∈ ∆I ×∆D | ∃x2, ...xm ∈
∆I : fIi (xi) = (xi+1) ∧ 0 ≤ i < m ∧ gI(xm) = y} and we write µI(x) = y if
(x, y) ∈ µI . The interpretation function is extended to the additional concepts
shown in Table 2.4. A survey of concrete domains in DLs can be found at [Lut02].
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C Semantics
(∃(µ1, ..., µn).p)I {x ∈ ∆I | ∃q1, . . . , qn : µIi (x) = qi for 0 ≤

i ≤ n} ∧(q1, . . . , qn) ∈ pI
(∀(µ1, ..., µn).p)I {x ∈ ∆I | ∀q1, . . . , qn : µIi (x) = qi for 0 ≤

i ≤ n} → (q1, . . . , qn) ∈ pI

Table 2.4: Semantics of Concept Descriptions in ALC(D)

2.4 Reasoning in Description Logics and their Ex-

tensions

Due to their precise syntax and semantics, DLs come with the ability to infer new
information without having to explicitly state it. DL reasoners are computational
systems that compute and infer new information about DL knowledge bases.
Many reasoning services exist depending on what type of information is being
inferred. We introduce some of these reasoning services below.

Satisfiability Satisfiability is usually concerned with concept descriptions and
is defined as follows:

Definition 12 (Satisfiability of a concept C)
A concept description C is satisfiable if there exists a model I where CI is non
empty, i.e., CI 6= ∅.

Satisfiability is also defined for concept descriptions in the presence of ontolo-
gies, more specifically a TBox.

Definition 13 (Satisfiability of a concept C w.r.t a TBox T )
A concept C is satisfiable w.r.t a TBox T if there exists a model I of T where
CI is non empty.

Consistency Ontology consistency involves determining whether or not a given
ontology O = (T ,A) is consistent, i.e. determining whether there is exists a
model of O.

Definition 14 (Consistency of Ontologies)
An ontology O = (T ,A) is consistent if there exists a model I of both T and A.



CHAPTER 2. BACKGROUND & RELATED WORK 41

Subsumption Subsumption involves determining whether a concept descrip-
tion C is subsumed by another concept description D, w.r.t some ontology O,
where both C and D are built from the signature of O. Formally:

Definition 15 (Subsumption of Concept Descriptions)
Let O be an Ontology, and C and D be concept descriptions where C,D ∈ Õ. C
subsumes D, written, O |= C v D if CI ⊆ DI for all models I of O.

Instance Checking Instance checking determines whether or not an individual
is an instance of a concept description, w.r.t some ontology. Formally,

Definition 16 (Instance Checking)
Let O be an Ontology, C and D be concept descriptions where C,D ∈ Õ and a
be an individual where a ∈ Õ. a is an instance of C if aI ∈ CI for all models I
of O.

Classification Classification is usually defined as determining a partial order
of subsumption relations between concept names occurring in the signature of an
ontology.

Definition 17 (Classification of an Ontology)
Let O be an ontology. A classification of an ontology O is the set of all pairs
〈A,B〉 s.t. A,B are concept names in O and O |= A v B.

Many other reasoning services exist, such as realisation, querying, explana-
tion generation, module extraction, axiom pinpointing etc., but we focus only on
those relevant to this thesis (specifically those related to TBox reasoning). A DL
reasoner is a piece of software that implements solvers for one or many of these rea-
soning problems for particular DLs. For the first four reasoning tasks above, DL
reasoners would usually implement decision procedures for each task, since each
problem, when given the correct input has a yes or no answer. Classification on
the other hand is not a decision procedure, but a computation problem, since the
output of the relation is a partial order of subsumption relations between classes
(however, it can normally be reduced to a feasible number of subsumptions, i.e.,
decision problems). There exist many (sound, complete and terminating) deci-
sion problems for many DLs and their reasoning procedures, which we discuss in
more detail in the following section for the DLs and their extensions described
above.
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DL Problem Result
EL Subsumption PTime [BBL05, Bra04b]
ALC Concept Satisfiability (∗) PSpace-Complete [SSS91]
ALC Ontology Consistency ExpTime-Complete [Sch91]
SROIQ Ontology Consistency N2ExpTime-Complete [Kaz08]

Table 2.5: Known complexity results for DLs and their reasoning services.
∗= Empty Ontology. In ALC satisfiability, subsumption and consistency are
polynomial-time inter-reducible to one another [BCM+03]. So the results for
ALC hold for each reasoning problem.

2.5 Known Complexity Results

2.5.1 DLs

It can be argued that the success of DLs is primarily due to the fact that there
exist many efficient implementations of decision procedures for many of its rea-
soning problems, even for DLs extending the expressivity well beyond that of
ALC. Table 2.5 shows known complexity results for EL and ALC, along with their
reasoning problems, as well as for the DL SROIQ.

2.5.2 ltl & ctl

The main reasoning problem in ltl is model checking and satisfiability. The
satisfiability problem for ltl asks whether a given ltl formula is satisfiable.
Model checking is the problem of determining whether given an ltl model and
an ltl formula, whether or not the given formula holds for the model. Both of
which are known to be PSpace complete [SC85]. The same problems also apply for
ctl, where the complexity of model checking is PTime-complete [CES86] whilst
satisfiability is ExpTime-complete [EH85]. ltl with past operators is also known
to be PSpace-complete [LMS02] although exponentially more succinct than ltl

without past operators.

2.5.3 ltlDL & ctlDL

Various complexity results for ltlDL and ctlDL combinations have been proved
in recent years. When combining temporal logics with classical DLs such as ALC,
they are usually computationally well behaved [WZ98a], usually decidable and
not exceeding the complexity bounds of either of the original logics in restricted
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.
DL Problem Result

ltlALC ED Satisfiability PSpace-complete
ltlALC ED Satisfiability, TBoxes ExpTime-complete
ltlALC CD Satisfiability, TBoxes ExpTime-complete

ltlALC CD, RR Satisfiability, TBoxes Undecidable
ltlEL CD, RR Satisfiability, TBoxes Undecidable

ltlALC CD, 1-RR Satisfiability, Acyclic TBoxes Decidable (non-elementary)
ctlALC CD, Satisfiability, TBoxes ExpTime-complete

ctlALC CD, RR Satisfiability, TBoxes Undecidable

Table 2.6: Known Complexity Results for ltlDL and ctlDL combinations and
fragments. ED = Expanding domains, CD = constant domains, RR = rigid roles,
1-RR = 1 rigid role

circumstances (the restrictions usually being on the terminological aspects, such
as empty or acyclic terminologies). But when considering what are thought of as
being desired or even required features, such as rigid roles or general terminologies,
they often lead to undecidability. Table 2.6 shows some of the known results for
ltlDL and ctlDL combinations (for more results, including various fragments
of ctlDL combinations studied in recent years, we refer to [LWZ08, GJS15b,
GJS15b, GJL12]).

2.5.4 ALC(D)

Extending DLs with concrete domains usually preserves their decidability as long
as the concrete domain itself satisfies the property of being admissible and certain
restrictions hold on the DL’s terminology.

Definition 18 (Admissible Concrete Domains)
Let D be a concrete domain and V a set of variables. A D-conjunction is a
predicate of the form

c =
∧
i<k

(x
(i)
0 , . . . , x

(i)
ni

) : Pi,

where Pi is an ni-ary predicate for i < k and the x(i)j are variables from V . A
D-conjunction c is satisfiable iff there exists a function δ mapping the variables
in c to elements of ∆D such that (δ(x

(i)
0 ), . . . , δ(x

(i)
ni )) ∈ PDi for each i < k. Such a

function is called a solution for c. we say that the concrete domain D is admissible
iff
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1. its set of predicate names is closed under negation and contains a name >D
for ∆D

2. the satisfiability of D-conjunctions is decidable

In general, the reasoning problems associated with DLs extended with con-
crete domains are the same as with standard DLs; satisfiability, subsumption
etc. Regarding satisfiability and subsumption, given a concrete domain D, in
ALC(D), it usually holds that if D is admissible, then both concept satisfiability
and subsumption in ALC(D) remains decidable [BH91] (usually with empty or
non general TBoxes). When considering extensions of ALC(D), including more
modern areas of descriptions logics such as TBoxes and more specifically general
TBoxes, decidability can often easily be lost. Even with very simple concrete
domains, including general TBoxes can lead to undecidability. A large amount
of work went into ways to regain decidability, by either restricting the concrete
domain constructors available or restricting the allowed concrete domains. Exam-
ples include allowing path-free concrete constructors where only concrete features
chains of size 1 are allowed [HMW01] or allowing only unary domain predicates
[HS01].

Another interesting complexity result first proved in [Lut01b] shows that for
concrete domains D where (i) N ⊆ ∆D and (ii) ΦD provides a unary predicate
for equality with 0, a binary predicate for general equality and a binary predicate
for incrementation, ALC(D) concept satisfiability and subsumption w.r.t general
TBoxes are undecidable.

2.6 Biological Foundations in Ontologies

Ontologies are widely used for defining and controlling vocabularies in the bio-
health domain. Many bio-health ontologies exist for different purposes, ranging
from ontologies describing the development of biological entities, classification of
diseases, anatomy and development, life cycle stages and many more. We aim to
show an example of exactly how OWL and many of the extensions discussed above
can be used in practice, specifically with respect to biology and more specifically
bio-health ontologies. We take an active ontology in the area, and illustrate how
the knowledge can be captured in OWL, and how temporal information can be
captured.
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The Drosophila Gross Anatomy Ontology [CRGOS13] describes the anatomy
and developmental stages of the life cycle of the Drosophila Melanogaster2 (the
common fruit fly). We present a small fragment of the ontology describing the
development of the spermatid cell, a part of the male germline cell of the fly itself.
The fragment shows temporal patterns through two of its most used properties;
developsFrom and partOf and can be broken down between 4 stages shown in the
following axioms:

The resulting ontology can be represented in OWL as follows (DL Syntax):

AgglomerationSpermatid v ∃developsFrom.CoalescenceSpermatid

ClewSpermatid v ∃developsFrom.AgglomerationSpermatid

OnionSpermatid v ∃developsFrom.ClewSpermatid

LeafbladeSpermatid v ∃developsFrom.OnionSpermatid

LeafbladeSpermatid v Spermatid

OnionSpermatid v Spermatid

ClewSpermatid v Spermatid

AgglomerationSpermatid v Spermatid

CoalescenceSpermatid v Spermatid

Spermatid v ∃partOf.SpermatocyteCyst

The development pattern is shown in Figure 2.3. In this example, a single
Spermatid cell goes through 5 stages of development, whilst being part of a
Spermatophyte Cyst. It is clear here that temporal information is present. For
now we will assume that this is the entire developmental pattern and nothing
occurs before or after the first and last stage. The first point to make is that we
know when the developmental, or the first stage begins - with the Coalescence
Spermatid, and from here it develops into a Leafblade Spermatid, spanning over
5 stages, where each stage begins immediately after the last stage ends. We
can also assume that the identity of the cell remains the same - each Spermatid
is the same Spermatid after each development, so any properties or mutations
that hold during the original cell’s stage still show up in their later developments
(unless stated otherwise). Since each of the developing cells are all types of
Spermatid, and the Spermatocyte Cyst has this part during its entire lifetime,

2https://en.wikipedia.org/wiki/Drosophila_melanogaster
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Figure 2.3: A Spermatid cell transitioning through 5 stages of development, con-
tained entirely within a Spermatocyte Cyst, making use of the relations hasPart
and developsFrom

then the Spermatocyte Cyst should have the Spermatid as a part during these 5
stages, and if they are represented by the same element, it should have the same
element as a part for the 5 stages i.e. we want the role hasPart to have some
kind of rigidity for the 5 stages. Note that it may be the case that each of the 5
Spermatids would be preferably defined as 5 distinct elements - cells with different
morphologies and functions. However, in this example, and from the information
present in the ontology, this is not so clear cut. Change is continuously happening
in developing structures and it is difficult to categorise the exact developmental
process so both scenarios may be valid. For the purpose of this example we
assume each Spermatid has the same identity.

Since OWL is inherently a static logic, there is not much more we can say
from a temporal view point to enforce these temporal properties that we have
identified. We could of course use data properties (D) to time stamp certain
concept descriptions, use nominals or transitivity to try and enforce identity con-
straints (R and O), introduce roles to try and reify certain temporal constraints,
but being in a static environment severely limits our expressivity. We have only
a single world of evaluation. In this example, we are interested in modelling the
change of elements or concepts over time, and this is not something OWL can
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Figure 2.4: An example model view of the Spermatid cell development extracted
from the Drosophila Ontology modelled in ltlALC. Each Spermatid is repre-
sented by the same individual, similarly for the SpermatocyteCyst. CS = Coa-
lescenceSpermatid, AS = AgglomerationSpermatid, CS = ClewSpermatid, OS =
OnionSpermatid, LS = LeafbladeSpermatid.

easily offer.
This simple extraction shows that we are very limited in what we can and

cannot represent in current OWL, and to a certain extent we are not faithfully
representing the knowledge which may have been intended (more on this later).

Modelling Drosophila with ltlALC, ALC(D) and the Fluent Ontology We
now consider briefly how ltlALC, ALC(D) and the Fluent Ontology can be used
to model the Drosophila extraction above. We begin with ltlALC. Consider the
following axioms (a model of these axioms is shown in Figure 2.4):

CoalescenceSpermatid v ©AgglomerationSpermatid u Spermatid

AgglomerationSpermatid v ©ClewSpermatid u Spermatid

ClewSpermatid v ©OnionSpermatid u Spermatid

OnionSpermatid v ©LeafbladeSpermatid u Spermatid

Spermatid v ∃.partOf.SpermatocyteCyst

We abolish the developsFrom relation and rely on the possible world semantics
and the rigid interpretation of individuals to capture the identity constraints. For
example, we state that every CoalescenceSpermatid is at the next time an Ag-
glomerationSpermatid. If the identity constraint was not necessary, we could rein-
troduce the developsFrom relation and possibly use past operators combined with
developsFrom (for example AgglomerationSpermatid v ∃developsFrom. ©−
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CoalescenceSpermatid). For the rigid constraint, we could make the partOf re-
lation rigid, so we could ensure that the element representing the Spermatid, was
always related to the same SpermatocyteCyst element.

We now consider ALC(D). Suppose we wanted to use a concrete domain of
intervals, along with the predicates over Allen’s relations [All83]. We reduce the
example to only three stages. Consider the following axioms:

> v ∃stage

Spermatid v ∃hasPart1.CoalescenceSpermatid

Spermatid v ∃hasPart2.AgglomerationSpermatid

Spermatid v ∃hasPart3.ClewSpermatid

Spermatid v ∃meets(hasPart1 ◦ stage, hasPart2 ◦ stage)u

∃meets(hasPart2 ◦ stage, hasPart3 ◦ stage)

Spermatid v ∃during(hasPart1 ◦ stage, stage)u

∃during(hasPart2 ◦ stage, stage)u

∃during(hasPart3 ◦ stage, stage)

SpermatocyteCyst v ∃hasPart.Spermatid

SpermatocyteCyst v ∃during(hasPart ◦ stage, stage)

where stage is a concrete feature and hasPart and hasParti are abstract fea-
tures. ALC(D) offers a static environment so it is difficult to capture the identity
constraints and to effectively model change: note that for example, the Coales-
cenceSpermatid and the AgglomerationSpermatid are different elements, so any
mutations from the former would not be “handed over” to the latter during its
development. But it does give us a powerful mechanism to model temporal con-
straints on entities. An example model of these axioms can be seen in Figure 2.5.
The axioms state that every entity has a stage (in the concrete domain). Every
Spermatid has 3 parts, and every SpermatocyteCyst has a Spermatid part. We
then use feature chains and concrete features to ensure that the temporal con-
straints on these features all align correctly. For example, although we do not
state it, we know the entire developmental sequence of the 3 Spermatid parts
happen entirely during the stage of the Spermatocyte Cyst.
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Figure 2.5: An example model view of the Spermatid cell development extracted
from the Drosophila Ontology modelled in ALC(D). Only the first 3 stages are
used in this example. A set of intervals and Allen’s interval relations make up the
concrete domain. CS = CoalsecenceSpermatid, AS = AgglomerationSpermatid,
CS = ClewSpermatid.
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The Fluent Ontology Using the Fluent approach, we can represent the ex-
ample as follows (again we stick to only 3 stages):

CoalescenceSpermatid@t1 v ∃partOf.Spermatid@t1

AgglomerationSpermatid@t2 v ∃partOf.Spermatid@t2u

∃developsFrom.CoalescenceSpermatid@t1

ClewSpermatid@t3 v ∃partOf.Spermatid@t3u

∃developsFrom.AgglomerationSpermatid@t2

Spermatid@t4 v ∃partOf.SpermatocyteCyst@t4
CoalescenceSpermatid@t1 v ∃hasTemporalPart.t1u

∃temporalPartOf.CoalescenceSpermatid

AgglomerationSpermatid@t1 v ∃hasTemporalPart.t2u

∃temporalPartOf.AgglomerationSpermatid

ClewSpermatid@t1 v ∃hasTemporalPart.t3u

∃temporalPartOf.ClewSpermatid

Spermatid@t1 v ∃hasTemporalPart.t4u

∃temporalPartOf.Spermatid

SpermatocyteCyst@t1 v ∃hasTemporalPart.t4u

∃temporalPartOf.SpermatocyteCyst

Although the Fluent ontology focusses mainly on representing temporal as-
pects at an ABox level, our example shows how we can lift this to a terminological
level by applying the notions of temporalParts and temporalExtents directly to
classes themselves. Although we are again in a static environment, we can simu-
late some of the temporal features by considering that every temporal part of an
entity is a specific part of an entity in time and we can make statements about it
only at that time point. We can also go on to make constraints on the time inter-
vals used to attempt to order them in the correct way. Again, we cannot model
change: the CoalescenceSpermatid that is part of a Spermatid is not necessarily
the same as the one that an AgglomerationSpermatid developsFrom - so, like for
ALC(D), mutations are not “handed over”.

Each extension has its unique way of capturing different temporal aspects as
can be seen from this example.
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Bio-Health Ontologies There exist many large corpora of actively maintained
ontologies in the bio-health domain, currently attracting and aiding scientific re-
search, such as BioPortal [NSW+09] or the OBO Foundry [SAR+07], highlighting
their importance. Many of the ontologies in these corpora have biological enti-
ties in common with each other, sharing vocabularies such as the Gene Ontology
[ABB+00], an ontology of defined terms representing gene products and their
properties that covers three domains including cellular components, molecular
functions and biological processes. Focussing on the OBO (Open Biomedical On-
tologies) Foundry, successful attempts have been made to formalise many of the
biological terms used in these ontologies, to provide consistent and unambiguous
definitions. The result was in the form of an ontology, called the Relation Ontol-
ogy [SCK+05]. It provides a relational hierarchy including relations such as part
of (used in our example extracted from the Drosophila Ontology above), and
more biology specific relations such as develops from (also used above), each with
a rich formal definition, and is now host to over 400 relations3 being used across
the OBO foundry. As well as classifying relations, it also provides a hierarchy
for classes used widely amongst the foundry too. Amongst these classes are two
popular entities known widely in philosophy as Continuants and Occurrents. The
research in this thesis focuses heavily on these two types of entities so we proceed
to give definitions and examples of each of the two entities.

Continuants & Occurrents In the literature, continuants are described as
those entities that endure or continue to exist through time, whilst undergoing
different kinds of changes. Occurrents on the other hand are described as those
things that have only temporal parts, unable to undergo change, and unfold in
temporal phases. In philosophy, these terms are often referred to as endurants
and perdurants respectively. With regards to biology, continuants are those ob-
jects such as cells, organs, molecules and any other type of physical object that
exists in full at any time. In our example above, the Spermatid cells and Cysts
would indeed be continuants. Occurrents are those events, such as development,
cell division, life, transportation etc. In the example above, each process of the
Spermatid’s development is considered to be an occurrent.

The Relation Ontology uses definitions from the Basic Formal Ontology4

(BFO) for its definitions of continuants and occurrents. The formal definition
3http://www.obofoundry.org/ontology/ro.html
4http://www.obofoundry.org/ontology/bfo.html
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of a continuant is as follows:

“An entity that exists in full at any time in which it exists at all, per-
sists through time while maintaining its identity and has no temporal
parts”.

For an occurrent, its definition is:

“An entity that has temporal parts and that happens, unfolds or devel-
ops through time”.

Both include statements of time and can be considered to be temporal entities.

2.7 Summary

We have provided an introduction to the research we will carry out in this thesis
and introduced the terms and formalisms that we require to do so. We gave
a brief introduction to DLs and to OWL, focussing more on the DLs that we
will prominently use in this thesis, namely EL and ALC. We then introduced
several temporal logics, ltl and ctl, and their combinations with DLs, ltlDL
and ctlDL. We then gave a brief overview of concrete domains in DLs, specif-
ically ALC(D), and we introduced the Fluent ontology for representing Fluents
in OWL. We then gave an overview of the reasoning problems for each of these
representations, and also complexity results for these problems. With the use of
a running example (the Drosophila Development extraction), we showed briefly
how temporal information was present in OWL, and how it was currently being
modelled and under represented. We then showed very briefly how it could pos-
sibly be modelled in a few of the temporal extensions we introduced. Whilst it
could be argued that some of the modelling attempts were better than the orig-
inal OWL version, it would be difficult to compare each temporal version since
the requirements of that specific ontology are still unclear. From the definitions
given in the ontology alone, there is still room for open interpretation and am-
biguous understanding. These observations drive the research presented in this
thesis showing an obvious need for further investigation.



Chapter 3

Determining the Temporal
Requirements

What are the temporal requirements for modelling the temporal features
of Bio-Health ontologies in OWL?

To attempt to answer the first research question, we present a survey of The
Relation Ontology and The OBO Foundry to determine a set of Temporal Re-
quirements. Our goal is to first identify a suitable set of ontologies that are likely
to exhibit rich and clear temporal information that we can easily extract and
organise, and then go on to determine their importance in the ontologies to refine
into a set of requirements.

3.1 Materials: Corpus & Temporal Features

3.1.1 The OBO Foundry

The OBO (Open Biomedical Ontologies) foundry, first founded in 2007 [SAR+07]
contains a repository for ontologies in the biomedical domain. The repository be-
gan with only 16 ontologies and now contains more than 133 ontologies1. The
OBO Foundry is home to popular ontologies that range from describing devel-
opmental sequences of biological entities, such as the Drosophila Development
ontology [CRGOS13], to upper level ontologies that incorporate accurate rep-
resentations of biological phenomena, all containing different kinds of temporal

1As of November 2015
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information. We found this corpus most suitable as it is widely known and ac-
tively maintained.

We then needed to determine how to identify temporal patterns amongst the
ontologies. One option would be to simply iterate through each ontology in the
corpus, and search for temporal information, going through each axiom, class, re-
lation, annotation etc. in the ontology. However, given the number of ontologies
in the OBO foundry, it would not be ideal or appropriate to inspect every ontol-
ogy. The size of many ontologies preclude manual inspection, for example the GO
ontology has over 46,000 classes, and over 500,000 axioms [ABB+00], and having
to gather data manually from each would take a considerable amount of time.
Not only would time be an issue, but it would also be fair to assume that some of
the ontology developers would not have had an exact notion of time in mind or
a general temporal mindset when creating the ontologies (due to OWL’s lack of
temporal expressivity), so temporal modelling choices may have been ignored or
even overlooked. We would also need to solely rely on the developers including
clear definitions of each class, property or axiom explaining how they should be
temporally interpreted to avoid any ambiguity, to be exact in how they intended
for their entities to be temporally annotated. If this information was present,
then it would be theoretically possible to proceed in such a way. We inspected
a few of the ontologies to see if this level of detail was present but found noth-
ing near appropriate. To avoid manually inspecting each ontology individually
and possibly (in some cases definitely) having to contact the developers of the
ontologies to get a better understanding, we decided to search for a shared vocab-
ulary, or an upper level ontology that would be likely to be used by most of the
ontologies in the corpus, that would also likely contain good and clear temporal
information with clear definitions to avoid any ambiguous interpretations of any
temporal patterns used.

3.1.2 The Relation Ontology

The Relation Ontology (RO) [SCK+05] acts as a means for standardisation across
ontologies in the OBO Foundry and wider OBO library. Its main focus is the
classification of relations between classes that exist in the biomedical domain,
but more importantly, it covers relations used in OBO Foundry ontologies. First
introduced in 2007, the ontology was host to only 10 relations, including primitive
biological relations such as part of, derives from and preceded by, where each
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was equipped with a precise definition to avoid any ambiguity of their correct
usage, which fortunately, in some cases also contained temporal information. The
current version of RO is now host to 459 relations2, where similar levels of detail
are used in the definitions for a lot of the relations. As well as modelling relations,
it also provides a mildly complex class hierarchy that intends to classify the
domains and ranges of the relations, most importantly continuants and occurrents
(imported from the BFO ontology). These classes are also important to temporal
information, contain accurate and precise definitions and aid in the understanding
of the relations that use these classes as their domain and range types to further
enforce their own definitions. Since the RO is actively maintained and is used to
organise the majority of relations used throughout the OBO Foundry, this was
the obvious choice to act for our seed of temporal properties. This also aided
in our choice of using the OBO Foundry as our corpus. Since RO was created
to standardise the relations that ontologies use throughout the OBO Foundry, it
makes complete sense to use both together since they were created for this exact
purpose and they go hand in hand.

3.1.3 Temporal Features

Our next task is to categorise what we call temporal features that occur in RO.
Temporal features are specific types of temporal information that represent clear
temporal phenomena found in RO. Since the RO is of manageable size, we gath-
ered the temporal features by iterating through each relation, observing their
definitions, ontological constraints and annotations, and recorded all types of
temporal information we came across.

As an example, consider the relation part of. The following are statements
and definitions taken from the relation’s annotations (where the temporal con-
siderations are emboldened):

• “A core relation that holds between a part and its whole. Part-
hood requires the part and the whole to have compatible classes:
only an occurrent can be part of an occurrent; only a process
can be part of a process; only a continuant can be part of a
continuant; only an independent continuant can be part of an
independent continuant; only an immaterial entity can be part

2As of November 2015
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of an immaterial entity; only a specifically dependent continuant
can be part of a specifically dependent continuant; only a generi-
cally dependent continuant can be part of a generically dependent
continuant.”

• “Occurrents are not subject to change and so parthood between
occurrents holds for all the times that the part exists. Many
continuants are subject to change, so parthood between continu-
ants will only hold at certain times, but this is difficult to
specify in OWL...”

The first type of temporal information we observe is the domain and range con-
straints of the relation, namely continuants and occurrents. Both continuants and
occurrents are two types of distinct temporal entities that differ in nature. The
relation can only hold between either continuants or occurrents. So we imme-
diately identify two temporal features, which are two temporal types of domain
and range constraints. The second type of temporal information we encounter
is that the relation may only hold at certain times and not others. This is par-
ticularly interesting for the occurrent case, since the relation itself should hold
between two occurrents at the time they exist. The snippet of temporal infor-
mation we discover is that of duration. Since occurrents have limited phases of
existence, then relations such as part of may only hold during the times they
exist. Therefore relations should be able to have durations. The second piece of
information is that of an identity consideration - if the relation has a duration,
then it can be seen as spanning over multiple time points. And then it should
hold between the same elements over these time points (highlighting the notion
of diachronic identity in a consecutive manner). This type of consecutive relation
is sometimes referred to as type of rigid relation. We identify 2 temporal features
here. The first is the idea of a rigid relation, where the same individuals should
be related consecutively for some duration, the second is that the relations should
hold between the individuals at single time points. This is illustrated in Figure
3.1.

We now consider another type of relation, transformation of. The following
are definitions taken from annotations of the relation in RO:

• “x transformation of y if x is the immediate transformation of y,
or is linked to y through a chain of transformation relationships”
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Figure 3.1: An example of rigid relations. (1) shows an example of finite rigidity
between continuants, (2) shows an example of infinite rigidity between continu-
ants holding only at 3 consecutive time points, (3) shows an example of finite
rigidity between occurrents during the times they exist and (4) shows an example
of non rigidity between non identical continuants

Figure 3.2: Illustration of the relation transformation of where a single continuant
is related to itself at some earlier time point

• “Transformation, on the instance level is the relation of identity:
each adult is identical to some child existing at some earlier
time”

Transformation of is considered to be a temporal relation involving continuants
that share the same identity, related at different time points. Consider Figure 3.2.
The constraints on times t and t′ are that t′ > t. The temporal information that
we observe is that (1) the relation is between continuants, (2) the relation must
hold over two different time points (unlike part of ), (3) the relation must hold
between the same elements (again, unlike part of), and (4) the individual may be
subject to change, i.e., at time t′ the individual may have more or less properties
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than it did at time t, or at a class level, can even be a member of different classes at
each time. Identity (3) is an important notion in any type of biological modelling.
transformation of requires specific identity constraints since the domain of the
relation should be identical, or represented as the same individual as the range
from a modelling perspective. This type of identity is quite a simple one. Of
course, more complex forms exist, for example in cell division. When a cell goes
through division, the identity of an original single cell is split into two new cells.
So the issue of regarding the divided cells as the same cells as the original, or new
independent cells, or partially identical cells etc, is difficult to model, especially in
OWL. This can be seen in relations such as child nucleus of. We choose to ignore
this type of complex identity relation as it is not specific to temporal modelling
in itself, and refers more to the problem of modelling identity in ontologies in
the general case. However, in the transformation of case, the identity constraint
is simple enough and important to consider as a temporal feature. The new
temporal features we identify are a relation holding over different time points,
and a relation holding between identical elements over time.

After iterating through each relation in RO, we acquired 42 distinct temporal
features which we grouped into the following 6 categories:

1. Domain and Range

2. Identity

3. States

4. Time

5. Rigidity

6. Possible

Domain and Range contains all possible pairs of domain and range features
that occurred in the relations in RO. These consisted of continuant-continuant
(c-c), occurrent-occurrent (o-o), continuant-occurrent (c-o), occurrent-continuant
(o-c) and x-x, where the first element of the pair is the domain and the second
element is the range. x-x is a synonym for c-c OR o-o. The relation part-of
would belong to x-x for example, since the relation either relates continuants or
occurrents, where as the relation transformation of would belong to c-c.

Identity contains information on the identity of each individual in the relation.
Consisting of a single feature, same, indicating that the domain and range of the
relation should be the same individual, such as transformation of that maintains
its identity over time.
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States contains the different states that a relation’s corresponding entities may
go through during the relation. These include domain:birth, domain:death, do-
main:changed, range:birth, range:death and range:changed. domain:birth specifies
that the relation indicates that the domain element came into existence, i.e there
was some previous time point where it didn’t exist previously. domain:death is
the dual of domain:birth, i.e, the relation indicates that the domain element goes
out of existence. domain:changed indicates that the domain element goes through
some type of development or change during, such as transformation of. All are
defined similarly for the range case also. Some relations also specify that their
elements come in to and out of existence. We also included combinations of some
features in this set, for example domain:birth&death to reflect these.

Time contains all types of time relations used in RO. The first are standard
time point relations: same, past, future, past immediate, future immediate, and
the second are interval relations described as Allen’s relations : meets, meets′,
before, after, during, starts, ends. The time point relations are mainly used for
c-c relations, but also for c-o and o-c relations. The same feature indicates the
property relates entities at a single time point, such as the part of property.
past indicates that the relation relates entities at a present time point t and
a previous time point t′ where t′ < t, such as the relation transformation of.
past immediate indicates a past style relation with the added constraint that
t′ = t− 1, such as the relation immediate transformation of, which is a restricted
version of transformation of. future and future immediate are the duals of past
and past immediate respectively. Allen’s interval relations [All83] were used to
capture relations between occurrents. For example, consider the relation preceded
by which aims to capture one of Allen’s relations. The following is a definition
taken from one of preceded by ’s annotations:

x is preceded by y if and only if the time point at which y ends is before
or equivalent to the time point at which x starts. Formally: x preceded
by y iff φ(y) ≤ ψ(x), where φ is a function that maps a process to a
start point, and ψ is a function that maps a process to an end point.

In this case, the corresponding Allen’s interval relation is p after q. Finally, for
relations between continuants and occurrents (and occurrents and continuants),
the first set of time relations are preferred. For example, consider the relation
input of. This relation is intended to model a continuant being the input of a
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process (occurrent). For this relation we use the same feature. As in the States
case, combinations of features were also made to form new features when relations
indicated that multiple time relations were present.

Rigid consists of only one feature, rigid, which as explained in the description
of part of should indicate that two individuals are related consecutively during a
(usually finite) time period.

Possible consists of only one feature, possible which is intended to indicate that
a relation may hold somewhere in the future but is not necessary. For example,
consider the relation capable of regulating. Its definition is:

“Holds between c and p if and only if c is capable of some activity a,
and a regulates p”.

We believe this relation could indicate that there may be some future where c
regulates the process p, but is not necessary for this relation to hold.

3.1.4 TRO - Temporal Relation Ontology

After gathering and then categorising the temporal features as described above,
we developed a coding scheme to annotate the relations in RO with the temporal
features to form a temporally annotated version, named the Temporal Relation
Ontology (TRO). Relations were annotated according to the following definition:

Definition 19 (TRO Temporal Annotation)
Let P be a relation from RO, and Y ={Domain and Range, Identity, States,
Time Relations, Rigid, Possible} be the sets of temporal features described
above. A temporal annotation for P is a set A ⊂ ∪Y where A contains

• a single domain and range constraint of the form [domran:X] where X ∈
Domain and Range

• 0 or 1 identity constraints of the form [identity:X] where X ∈ Identity

• a single time relation constraint of the form [time:X] where X ∈ Time Relation

• 0 or 1 rigidity constraints of the form [rigid:X] where X ∈ Rigidity

• 0 or 1 possibility constraints of the form [possible:X] where X ∈ Possible
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We also reserved default TRO annotations for those properties with either no
definitions or insufficient data to conclude any meaningful information from the
relation. There were also several relations that were intended not to be used,
described as grouping relations used to better organise the hierarchy, as well as
several obsolete terms. We also created default annotations to annotate such
relations so we knew to avoid them. We left all these relations out of the study.

The following are examples of temporal annotations for the relations part of,
derives from, preceded by and input of :

1. part of : {[domran:x-x], [time:same], [rigid:rigid]}

2. derives from: {[domran:c-c], [domain:birth], [time:past]}

3. preceded by: {[domran:o-o], [time:after]}

4. input of : {[domran:c-o], [identity:same], [time:same]}

55 distinct temporal annotations cover the 459 object properties, where 18
were between continuants (c-c), 13 between occurrents (o-o), 11 between occur-
rents and continuants (o-c), 11 between continuants and occurrents (c-o) and 2
between either continuants or occurrents (x-x ).

With the RO temporally annotated as TRO, we now go on to discuss the
methodology behind how we discovered which of the temporal features were most
important, and how we determined the temporal requirements.

3.2 Methodology

Since we have now identified a corpus of ontologies and a set of temporal features
that will likely be used in the corpus, we now go on to describe the methodology
behind how we will identify the most important features in the corpus, keeping
the research questions in mind. Recall that we are interested in determining a
set of temporal requirements. We could just simply take the set of features and
annotations we have discovered and declare these to be our requirements. This
would not be wise since not all of the annotations or features may be used in the
corpus, or, certain ones may in fact be more important than others. Our aim is to
define the notion of importance and develop measures of importance to be able
to determine which types of relations we should consider based on their usage
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throughout the corpus, and then go on to define the requirements based on these
results.

When considering a feature or annotations usage throughout the corpus, we
shift our attention towards the terminological aspects of the ontologies in the
corpus. That is, we choose to investigate the explicitly asserted terminological
knowledge, specifically TBox axioms. Our notion of usage is defined as follows:

Definition 20 (Usage of an a TRO feature or TRO Annotation)
Let f be a TRO feature, F be a TRO annotation, P be a TRO relation, O be an
ontology occurring in the OBO Foundry and let α be a terminological axiom.

• F uses f if f ∈ F

• P uses F if P is annotated with F

• α uses P if P occurs in α

• O uses α if α occurs in the signature of O

where uses is transitive. If P uses F or f , then any equivalent relation or sub
relation P ′ of P also uses F or f .

We now propose 2 independent measures that will help to determine the
importance of an annotation or feature amongst the corpus of ontologies.

Definition 21 (Coverage and Impact of a TRO feature or annotation)
Let e be either a TRO feature or TRO annotation and C be the OBO Foundry of
ontologies.

coverage(e) =
#ontologies that use e

# ontologies in C
(4.1)

impact(e) =

∑
O∈C

(
#axioms in O that use e

#axioms in O

)
#ontologies that use e

(4.3)

The coverage measures how many ontologies each annotation is used in at least
once. The impact determines on average the percentage of axioms the annotation
occurs in per ontology. Notice that both measurements are calculated using
explicit axiom knowledge (TBox Axioms). The reason we opt for two individual
measures instead of just one is due to the possibility of variance between each
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Measure Corpus 1 Corpus 2
Coverage 90% 100%
Impact 48.75% 22.8%

Table 3.1: Coverage and impact over ontology corpora in Figure 3.3

measure and to strengthen any measure of importance. To illustrate this, consider
the examples in Figure 3.3. Both charts show the usage of a single entity (e) over
2 corpora, each containing 5 ontologies. In the first chart, each ontology has 100
logical axioms, indicated by the red coloured bar. The blue coloured bar indicates
how many of those axioms use e, which are 40, 5, 50, 0 and 100 respective to
ontologies O1, O2, O3, O4 and O5. The coverage of e over the 5 ontologies is
90% = 4

5
, since e is used in 4 out of the 5 ontologies. Although this gives us a

sense of usage over the whole corpus, it doesn’t tell us much about the importance
for each ontology that uses it, highlighting the need for more measures. Its impact
measures 48.75% = 195%

4
. This tells us that on average, roughly half of the axioms

in each ontology us the feature. Both together indicate that e is fairly important.
Consider the second chart. The first ontology has 1000 logical axioms, whilst
the rest only have 50 each. The coverage of e is 100%, since e is used in each
ontology at least once. This can be misleading since it has a higher coverage than
the previous corpus, but it is obvious that its usage within the ontologies varies
significantly more. The impact of e is only 22.8% = 114%

5
, informing us that the

average weight of axioms in ontologies that use e stands at 22.8%. So although
it has a very high coverage, the impact was particularly low, prompting further
investigation.

We aim to use both measures collectively to better describe the importance
of e. Those e’s with high coverages and impacts will be most important, whilst
those with low coverages and impacts are less important. Anything in between
requires further inspection. A summary of these results can be seen in Table 3.1.

3.3 Datasets & Implementation

Data The corpus of ontologies we used in the survey is a snapshot of OBO
Foundry taken in October 2015 from http://www.obofoundry.org. The version
of the relation ontology was taken from its homepage https://github.com/
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Figure 3.3: Example of coverage and impact measures for calculating importance
of an e of two corpora of 5 ontologies.

oborel/obo-relations, which contained 459 object properties. The temporally
annotated version (TRO) was created from this version.

Implementation We implemented the survey using the Java programming lan-
guage equipped with the OWL-API libraries [HB11] for parsing and manipulating
ontologies. Due to the nature of our implementation, we only accepted ontologies
compatible with the OWL-API (version 3.5.2), leaving a total of 116 ontologies.
Each ontology was exported into a common syntax, OWL/XML, before the survey
was conducted (imports merged).

In the previous section we discussed the notion of a relation being used in
an axiom (Definition 20). Ideally, to check for a relation’s usage in an axiom,
one should be able to simply search the axioms signature for an occurrence of
the relations IRI. However this relies heavily on ontology developers correctly
using terms from other vocabularies, i.e. importing vocabularies. This is often
not the case, since importing ontologies could result in negative side effects such
as size increase or a jump in complexity. Instead developers may just create
their own entity with a similar name. For this reason, we cannot simply rely on
checking for matching IRIs in an axioms signature. For this reason, we adopt a
smart matching approach, where we say a relation outside RO matches an RO
relation if either they share the same IRI, name (rdfs:label), alternative term
(IAO_0000118), OBO foundry unique label (IAO_0000589) or the same exact
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Figure 3.4: Histograms of RO relation usage across OBO Foundry ontologies.
Left: Proportion of axioms using RO or RO-like relations compared to the overall
number of axioms (in %). Right: Proportion of RO or RO-like relations used in
the ontology compared to the total number of RO relations (459).

synonym (hasExactSynonym) to avoid any potential misses.
All data was saved and output as Java Serialised files adopting a local format,

and also saved as CSV files, used later for data analysis3

3.4 Results

3.4.1 Ontology and Relation analysis

First we provide a short analysis of the relation usage across OBO Foundry on-
tologies. Out of the 116 ontologies in the corpus, 92 ontologies used relations
from RO (either exact matches or smart-matches according to the method dis-
cussed in the previous section). In the following analysis, we only consider the
92 ontologies that made use of RO or RO-like relations. Figure 3.4 shows two
histograms illustrating the prevalence and diversity of the relations used.

The left histogram (% used) shows the prevalence of axioms that make use
of RO/RO-like relations as the proportion of axioms that contain at least one
RO relation in their signature compared to the total number of axioms in the
ontology. For example, AERO, with 1,461 axioms in total, has 88 axioms that
make use of RO(-like) relations, resulting in a proportion of 88/1461 = 0.0602
or 6.02%. As can be seen, there are 2 ontologies that have RO(-like) relations
in around 100% of their axioms (EMAP, 21,721 axioms total and WBLS, 1,384

3available to view at http://www.cs.man.ac.uk/~leoj/thesis/
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axioms total). Most of the ontologies in the OBO foundry have RO relation
prevalence in the 0%-75% range, gradually declining towards the high-proportion
end. There is a large peak around the 0% region. The ontologies responsible for
this peak were those with large axiom counts where RO relations were used in a
low number of axioms relative to the ontology’s large size. Overall the prevalence
of RO(-like) relations is high. The right histogram illustrates the diversity of
RO relations as the proportion of RO relations that were used in an ontology
compared to the total number of RO relations (458). For example, AERO made
use of 12 RO relationships (for example part_of and preceded_by), which lead
to a proportion of 12/458 = 0.026 (2.6%). As can be seen, the vast majority of
ontologies made use of less than 5% of the available RO relations. This indicates
a relatively low diversity of used RO relations. At a closer look however, 182
distinct RO relations are used across the whole corpus (see Table 3.2). The high
diversity across the corpus and the comparatively low within-ontology diversity
can perhaps be easily explained by the purpose of the RO, as it manages all
relations in the OBO foundry corpus, regardless of any particular domain.

RO relation |O|
part_of 77
has_part 46
preceded_by 28
inheres_in 22
participates_in 22
has_participant 22
develops_from 21
has_role 20
bearer_of 19
ends_during 19

Table 3.2: Top 10 relations used across the OBO Foundry corpus. |O| is the
number of ontologies the relation is mentioned in.

3.4.2 Feature & annotation analysis

182 of the 459 temporally annotated object properties were used amongst these
92 ontologies. 106 were c-c relations, 19 were o-o, 19 were c-o, 10 were o-c and
14 were x-x. Out of the 55 distinct annotations that cover the relations, 42 were
used in the corpus where 13 were c-c annotations, 12 were o-o, 9 were c-o, 6
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Feature Coverage Impact
domran:cc 52.59 10.24
time:same 47.41 8.53
rigid 45.69 7.09
time:past 31.03 4.31
dom:changed 19.83 4.68
dom:birth 13.79 2.76
ran:death 13.79 2.76
time:future 11.21 0.55
ran:changed 10.34 0.56
time:past_imm 6.90 0.19
possible 3.45 0.41
identity:same 2.59 0.17

Table 3.3: Coverage and Impact results for c-c features used across the OBO
Foundry

were o-c and 2 were x-x. Out of the 42 distinct features, 35 were used. For each
data set we computed a Pearson correlation coefficient between the Coverage and
Impact measures for feature and annotation results which we use in our analysis.

3.4.3 c-c results

Relations between continuants were very popular amongst the corpus. Over-
all, continuant relations had a total coverage of 52.59% and an impact of 10.24%.
With regards to the individual features used in c-c relations, their coverage ranged
from 47.41% to 2.59% with an average of 21.55%, whilst their impact ranged from
8.53% to 0.17%, with an average of 3.52%. There was a high correlation of 0.96.
Out of the time relations features used, we can order them since there is a total
ordering > on their coverages and impacts: time:same > time:past > time:future
> time:past_imm. Although the last two features are used in a considerable
amount of ontologies, their impact in those ontologies is relatively low compared
to the first two features. time:same had the highest coverage and impact at
47.41% and 8.53% respectively. time:past also had a high coverage at 31.03%
but a slightly lower impact at just 4.31%. This was more predominant than its
inverse time:future which had a coverage of 11.21% and an impact of just 0.55%.
Domain constraints were more popular than range constraints in both coverage
and impact. The ordering is as follows: dom:changed > dom:birth = ran:death
> ran:changed(dom=domain and ran=range). The first 3 features are used in
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Annotation Coverage Impact
domran:cc, time:same, rigid 45.69 7.09
domran:cc, dom:changed, time:past 19.83 4.65
domran:cc, time:same 15.52 7.29
domran:cc, dom:birth, ran:death, time:past 13.79 2.76
domran:cc, ran:changed, time:future 10.34 0.43
domran:cc, dom:changed, time:past_imm 6.90 0.16
domran:cc, ran:changed, time:future, possible 3.45 0.41
domran:cc, dom:changed, time:same, rigid 3.45 0.08
domran:cc, identity:same, dom:changed, time:past_imm 2.59 0.11
domran:cc, identity:same, dom:changed, time:past 2.59 0.17
domran:cc, dom:changed, ran:changed, time:past 2.59 0.01
domran:cc, time:past 1.72 1.87
domran:cc, time:future 0.86 0.47

Table 3.4: Coverage and Impact results for c-c annotations used across the OBO
Foundry

a considerable amount of ontologies and their impacts are relatively high. The
last feature, although having a reasonably important coverage score, has a very
low impact. The features possible and identity:same are amongst those with the
lowest coverages and impacts. The possible feature had a low coverage of 3.45%
and a very low impact of only 0.41%. identity:same had a coverage of only 2.59%
and the lowest impact of all at 0.17%. rigid was one of the most important
features scoring third place for both impact and coverage at 45.69% and 7.09%
respectively. With regards to the c-c temporal annotations, their coverage ranged
from 45.69% to 0.86% and their impacts ranged from 7.09% to just 0.01% with
averages of 9.95% and 1.96% respectively. There was a high correlation of 0.82.
Ordered by their coverage, the first 4 annotations are amongst those with both
the highest coverage and impacts. The features used in the top annotations cor-
respond to the top features. We see time:same, rigid, time:past and dom:changed
occurring in the highest ranked annotations along with dom:birth and ran:death,
which also happen to be amongst the highest ranked features. The remaining
annotations all have very low impact scores, although collectively, some of the
features used are still considered to have high measures.
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Feature Coverage Impact
domran:oo 40.52 15.03
time:al-before-inverse 24.14 10.28
time:al-during 20.69 14.96
time:al-before 18.10 2.69
time:al-meets-inverse 12.93 15.31
time:al-meets 7.76 3.07
time:al-starts 5.17 0.04
time:al-before/al-during 4.31 0.12
time:al-finishes 4.31 0.01
time:al-starts-inverse 2.59 0.00
time:al-finishes-inverse 2.59 0.00
time:al-before/al-equalto 0.86 0.02
time:al-equalto 0.86 0.02

Table 3.5: Coverage and Impact results for o-o features used across the OBO
Foundry

Annotation Coverage Impact
domran:oo, time:al-before-inverse 24.14 10.28
domran:oo, time:al-during 20.69 14.96
domran:oo, time:al-before 18.10 2.69
domran:oo, time:al-meets-inverse 12.93 15.31
domran:oo, time:al-meets 7.76 3.07
domran:oo, time:al-starts 5.17 0.04
domran:oo, time:al-finishes 4.31 0.01
domran:oo, time:al-before/al-during 4.31 0.12
domran:oo, time:al-starts-inverse 2.59 0.00
domran:oo, time:al-finishes-inverse 2.59 0.00
domran:oo, time:al-equalto 0.86 0.02
domran:oo, time:al-before/al-equalto 0.86 0.02

Table 3.6: Coverage and Impact results for o-o annotations used across the OBO
Foundry
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Feature Coverage Impact
domran:co 31.90 6.11
time:same 31.90 6.11
rigid 23.28 4.98
possible 12.07 5.95
dom:birth 6.03 3.74
time:future/same 4.31 5.13
time:past/same 3.45 6.43
dom:death 3.45 6.47
dom:death&birth 2.59 0.04
time:past 1.72 0.19

Table 3.7: Coverage and Impact results for c-o features used across the OBO
Foundry

3.4.4 o-o relations

Due to the nature of occurrent relations, the annotations only differ by their time
features. We therefore only analyse the features themselves. o-o relations had a
coverage of 40.52% of and an impact of 15.03%. Out of the 12 o-o annotations in
TRO, the time features used were: [before′], [during], [before], [meets′], [meets],
[starts], [finishes], [before/during], [finishes′], [starts′], [before/equalto], [equalto]
that correspond to Allen’s relations ordered by their coverage in descending order.
Out of the 13 basic Allen relations, 10 were used. Their coverage ranged from
24.14% to 0.86% and their impact ranged from 15.03% to 0.001%, with averages of
11.14% and 4.73% respectively. The correlation between coverage and impact was
0.81. We can see from the data that those features with the highest coverage are
amongst those with the highest impacts, for example, annotations with impacts
higher than 1% are the top 5 coverage annotations. before’, during and meets’
are amongst those with the highest coverages and impacts, which are clearly the
most important. before also had a high coverage but the impact was lower than
the others at only 2.69%. meets was the last feature used that had an impact of
over 1% at 3.07% and a coverage of 7.76%. The remaining features impact’s all
fell below 1% and had coverages at only 5.17% or below.

3.4.5 c-o results

c-o relations had a total coverage of 31.90% and an overall impact of 6.11%.
The coverage of c-o features ranged from 31.90% to 1.72% with an average of
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Annotation Coverage Impact
domran:co, time:same, rigid 18.97 2.34
domran:co, time:same 18.10 1.99
domran:co, time:same, rigid, possible:possible 12.07 5.95
domran:co, dom:birth, time:same 4.31 5.16
domran:co, dom:birth, time:future/same 4.31 5.13
domran:co, dom:death, time:same 3.45 6.47
domran:co, dom:death, time:past/same 3.45 6.43
domran:co, dom:death&birth, time:same 2.59 0.04
domran:co, dom:birth, time:past 1.72 0.19

Table 3.8: Coverage and Impact results for c-o annotations used across the OBO
Foundry

12.07%, whilst their impact ranged from 6.47% to 0.04% with an average of
4.52%. The correlation between the two measures was considerably low at just
0.45. We see again that the features time:same and rigid are amongst those with
the highest coverages at 31.90% and 23.28%, and above average impacts at 6.11%.
The possible feature also had a high coverage and high impact, showing higher
importance in c-o relations than c-c relations. The time features time:past/same
and time:future/same (indicating a time relation of either the same time point or
over two time points), both had high impacts at 6.43% and 5.13% respectively,
but a lower coverages at only 3.45% and 4.31%. The remaining time feature
time:past had the lowest coverage at only 1.72% and one of the lowest impacts at
0.19%. Only domain constraint features were used in c-o relations. The coverage
of the domain constraint features used were all below average, although some
had a high impact, such as dom:death at 6.47%, which was the second highest
impact. The coverage of c-o annotations range from 18.97% to 1.72% with an
average of 7.66% and their impact ranged from 6.47% to 0.04% with an average
of 3.75%. The correlation between the two was -0.12. Overall the impact was low
compared to the o-o and c-c relations, but the coverages of the first 3 were still
relatively high. As with c-c relations, the annotations with the highest coverages
contain the time:same feature and in some cases, also the rigid feature and the
possible feature. Those annotations with the highest impacts had multiple time
features and domain constraints, but didn’t have the highest impacts, hence the
low correlation. The remaining annotations had both low coverage and impacts.
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Feature Coverage Impact
domran:oc 33.62 4.31
time:same 33.62 4.31
rigid 27.59 4.50
ran:birth 11.21 0.70
ran:changed 6.90 0.71
time:future 0.86 0.10

Table 3.9: Coverage and Impact results for o-c features used across the OBO
Foundry

Annotation Coverage Impact
domran:oc, time:same, rigid 27.59 4.50
domran:oc, time:same 14.66 0.67
domran:oc, ran:birth, time:same 11.21 0.70
domran:oc, ran:changed, time:same 6.03 0.80
domran:oc, ran:changed, time:future 0.86 0.10
domran:oc, ran:birth, time:future 0.86 0.10

Table 3.10: Coverage and Impact results for o-c annotations used across the OBO
Foundry

3.4.6 o-c results

o-c relations had a total coverage of 33.62% and an overall impact of 4.31%.
The coverage of o-c features ranged from 33.62% to 0.86% with an average of
18.97%, whilst their impact ranged from just 4.5% to 0.1% with an average of
2.44%. The correlation between the two measures was very high at 0.97. Again,
we see that the time:same and rigid are amongst those with the highest coverage
at 33.62% and 27.59%, and some of the highest impacts at 4.31%. The range
constraint features ran:birth and ran:changed had acceptably high coverages at
11.21% and 6.90%, but low impacts at only 0.70%. The only other feature used
was a time feature time:future, but was only used in one ontology and in that
ontology had an impact of only 0.1%. The o-c annotations had coverages ranging
from 27.59% to just 0.86% with an average of 10.2%, and impacts ranging from
4.5% to 0.1% with an average of 1.15%, again with a high correlation of 0.90.
The only annotation to have an impact measure over 1% involved the features
time:same and rigid. The remaining annotations had coverages below impacts
below 1%. There were 2 annotations with considerable coverage measures but
the impact was very low.
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Feature Coverage Impact
domran:xx 72.41 16.49
time:same 72.41 16.49
rigid 72.41 16.45
identity:same 3.45 0.78

Table 3.11: Coverage and Impact results for x-x features used across the OBO
Foundry

Annotation Coverage Impact
domran:xx, time:same, rigid 72.41 16.45
domran:xx, identity:same, time:same 3.45 0.78

Table 3.12: Coverage and Impact results for x-x annotations used across the OBO
Foundry

3.4.7 x-x results

x-x relations had a total coverage of 72.41% and an overall impact of 1.496%.
The coverage of x-x features ranged from 72.41% to just 3.45% with an average
of 55.17%, whilst their impact ranged from just 16.49% to 0.78% with an average
of 12.55%. The correlation between the two measures was very high at 0.99.
There were only 2 x-x relations, where the most important was the annotation
containing the rigid and same:time features. The coverage of this annotation
was also 72.41% with an impact of 16.45%. The remaining annotation, when
compared to the first was significantly unimportant, only being used in 3.45% of
the ontologies and a low impact measure of just 0.78%.

Feature Type Avg. Coverage Avg. Impact Cor. Cov-Imp
c-c 21.55 3.52 0.97
o-o 11.14 4.73 0.81
c-o 12.07 4.52 0.45
o-c 18.97 2.44 0.97
x-x 55.17 12.55 0.99

Table 3.13: Average Coverage and Impact scores for each feature type
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Annotation Type Avg. Coverage Avg. Impact Cor. Cov-Imp
c-c 9.95 1.96 0.82
o-o 8.69 3.88 0.78
c-o 7.66 3.75 -0.12
o-c 10.20 1.15 0.90
x-x 37.93 8.62 1.00

Table 3.14: Average Coverage and Impact scores for each annotation type

3.5 Identifying Requirements

We now go on to answer the first research question by defining the temporal
requirements based on the results of the data gathered from the survey. A total
of 14 requirements are defined based on these results. Each requirement contains
a general description, as well as a list of sub requirements, detailing specific parts
of the requirement as a whole, used to aid in our evaluation in the next chapter
to get a better understanding on how well certain logics perform in meeting the
requirements, and also to further describe the requirement.

The requirements are derived for each domain and range type separately for
three reasons. The first is due to the fact that different domain and range types
specify different types of temporal requirements, so it would make sense to par-
tition these into separate groups. The second reason is that due to the pure
dominance of x-x relations, evaluating important features as a whole would po-
tentially eliminate all features apart from those present in x-x relations due to
their high scoring measures of coverage and impact when compared to features
and annotations in other domain and range types. The third reason is that as can
be seen from the results in Tables 3.13 and 3.14, it is the case that some domain
and range types have higher average coverages than others, but lower average
impacts, whilst others have lower average coverages and higher average impacts.
It is not clear which would be deemed more important in such cases.

For each domain and range type, we consider the averages of coverage and
impact for both their features and annotations to filter out the important ones.
Those features or annotations that have measures above the average, or features
that occur in annotations that have measures above the average are considered
to be the important ones for the respective domain and range type.

We begin our requirement identification with x-x relations.
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3.5.1 x-x requirements

x-x relations are considered to be the most important relations. They have the
highest coverages for annotations and second highest impacts, and also the highest
feature coverages and impacts. Out of the two x-x relations that are used, one
is responsible for its dominance. The annotation on this relation includes the
features time:same and rigid. Since x-x is really a synonym for c-c/o-o we can
already see the need for the ability to model both continuants and occurrents
(which also becomes clearer later on). The only other feature to be used in x-x
relations was identity:same, but the coverage and impact was far too low to be
considered important. From the x-x results, it is clear that there are 3 important
features, and a single important annotation, leading to our first three Temporal
Requirements (TRs):

TR1 The ability to model continuants

TR1.1 Continuants must be traceable through time

TR1.2 Continuants must maintain their identity through time

TR1.3 Continuants must be able to undergo change

TR2 The ability to model occurrents

TR2.1 Occurrents can have limited phases of existence

TR2.2 Occurrents can have temporal parts

TR3 The ability to model same time rigid relations between occurrents
or continuants

TR3.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR3.2 The relation can have a duration specified

Each requirement is of the form TRX, TRX.1, . . . . TRX is the main require-
ment, and TRX.1 etc. are its sub requirements, created from general definitions
or the features or annotations the main requirement is based on.
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3.5.2 c-c requirements

c-c relations also had high measures of impact and coverage, although lower than
x-x relations, they were still relatively high enough to be considered important.
The features used in c-c relations followed a similar pattern to x-x relations.
time:same and rigid were those features with the highest impact and coverage
measures. Two of the annotations with the highest measures use these features,
where the more important of the two uses both, and the lesser uses only time:same
but still has high scores. This leads us to our next requirements:

TR4 The ability to model same time rigid relations between continu-
ants

TR4.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR4.2 The relation can have a duration specified

TR5 The ability to model same time relations between continuants

TR5.1 The relation must hold at a single time point (time:same)

The next feature with a very high coverage and impact was time:past. It
was used in many annotations, but had dominance in the annotation domran:cc,
dom:changed, time:past which had both a high impact and coverage. This brings
us to our next requirement:

TR6 The ability to model past time relations between continuants

TR6.1 The relation must hold between individuals at present and
past time points (time:past)

The three domain constraint features dom:changed, dom:birth and ran:death also
have high enough coverages to consider important and reasonable impacts. dom:changed
is the most prominent of the three, being used in a highly scoring annotation for
both coverage and impact. dom:birth and ran:death were used in annotations
with lower scores but were still high enough to be considered important. This
leads us to our next requirement:

TR7 The ability to model the changing states of continuants, specifi-
cally their birth, death and other general changing states
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TR7.1 Model a continuant coming into existence (birth)

TR7.2 Model a continuant going out of existence (death)

TR7.3 Model general changes of continuants (change)

The remaining features all had impacts to low to consider (<1%). For example
the feature time:future had a high coverage but very low impact, unlike its counter
part time:past. The remaining features had similar patterns so we conclude they
can be considered unimportant.

3.5.3 o-o requirements

o-o relations also had high measures of impact and coverage, although lower than
x-x relations, they were still high enough to be considered important. They had
lower coverages than c-c features but had higher impacts. We consider 5 of the o-
o features to be important. The first 5 features have the highest impacts (>2.5%)
and high coverages (> 7%). The time relations are before′, during, before, meets
and meets′, leading to our next requirement:

TR8 The ability to model the time constraints of the following Allen’s
interval relations between occurrents: before′, during, before, meets,
meets′

TR8.1 Capture the temporal constraints intended by Allen’s rela-
tions

The remaining features had very low impacts (<1%) and we conclude that they
are considered to be unimportant.

3.5.4 c-o requirements

c-o features had both smaller coverages and impacts than both c-c and o-o fea-
tures, but not so low to ignore. We consider c-o relations to be important due to
some of the measures of the features used, leading to our next requirement:

TR9 The ability to model relations between continuants and occurrents

TR9.1 Be able to make relations between the two types of distinct
elements
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The coverages of the features were particularly high, especially for the time:same
feature. In fact, this feature had the highest coverage and third highest im-
pact. The only other time features with high enough measures to consider were
time:past/same and time:future/same with the former having the highest impact
and the latter not so far off. These features were used together in annotations with
the features dom:birth and dom:death, which were amongst those annotations
with the highest impacts. With this in mind, we describe the next requirement:

TR10 The ability to model relations between continuants and occurrents
over past, future, and present time points, each including the
continuant’s state constraints

TR10.1 Relate the two individuals at a single time point (time:same)

TR10.2 Relate the two individuals at a present and past time point
(time:past)

TR10.3 Relate the two individuals at a present and future time point
(time:future)

TR10.4 Correctly model the continuant coming into and out of exis-
tence (birth, death)

The rigid feature shows up again as having some of the highest measures.
It is again used only with time:same feature in the annotation with the highest
coverage, although not the highest impact, but still notable, leading to our next
requirement:

TR11 The ability to model same time rigid relations between continu-
ants and occurrents

TR11.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR11.2 The relation can have a duration specified

For the first time, we also see the possible feature playing an important role.
It has both high coverage and impact and appears in an annotation with the
third highest coverage and impact scores, so we add this to the requirements:

TR12 The ability to allow for multiple future time lines where relations
may or may not hold
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TR12.1 The ability to express multiple futures where relations may
hold in one future and not in others

3.5.5 o-c requirements

o-c relations also have high enough measures to be also considered important.
There are only 2 features and one annotation however, with high enough measures
to be considered important. Unsurprisingly, the features are time:same and rigid,
which leads us to our final requirements:

TR13 The ability to model relations between occurrents and continuants

TR13.1 Be able to make relations between the two types of distinct
elements

TR14 The ability to model same time rigid relations between occurrents
and continuants

TR14.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR14.2 The relation can have a duration specified

The second research question is concerned with whether or not there is a suitable
extension that can handle the requirements identified above. This gives rise to
a 15th (non temporal) requirement. By suitable, we want the extension to be
realisable for OWL.

R15 Any extension should be decidable and of suitably low complexity,
have implementations or at least decision procedures for the most
common reasoning problems and be readily available for use

Tables 3.15 to 3.20 summarise which features and annotations were most impor-
tant in the selection of the requirements.

3.6 Temporal Requirements

The following are a list of requirements gathered in our survey responding to the
research questions, along with a list of sub requirements detailing the individ-
ual parts of each requirement: The Temporal Requirements (TR) and general
Requirements (R) are as follows:



CHAPTER 3. DETERMINING THE TEMPORAL REQUIREMENTS 80

TR1 The ability to model continuants

TR1.1 Continuants must be traceable through time

TR1.2 Continuants must maintain their identity through time

TR1.3 Continuants must be able to undergo change

TR2 The ability to model occurrents

TR2.1 Occurrents can have limited phases of existence

TR2.2 Occurrents can have temporal parts

TR3 The ability to model same time rigid relations between occurrents
or continuants

TR3.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR3.2 The relation can have a duration specified

TR4 The ability to model same time rigid relations between continu-
ants

TR4.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR4.2 The relation can have a duration specified

TR5 The ability to model same time relations between continuants

TR5.1 The relation must hold at a single time point (time:same)

TR6 The ability to model past time relations between continuants

TR6.1 The relation must hold between individuals at present and
past time points (time:past)

TR7 The ability to model the changing states of continuants, specifi-
cally their birth, death and other general changing states

TR7.1 Model a continuant coming into existence (birth)

TR7.2 Model a continuant going out of existence (death)

TR7.3 Model general changes of continuants (change)
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TR8 The ability to model the time constraints of the following Allen’s
interval relations between occurrents: before′, during, before, meets,
meets′

TR8.1 Capture the temporal constraints intended by Allen’s rela-
tions

TR9 The ability to model relations between continuants and occurrents

TR9.1 Be able to make relations between the two types of distinct
elements

TR10 The ability to model relations between continuants and occurrents
over past, future, and present time points, each including the
continuant’s state constraints

TR10.1 Relate the two individuals at a single time point (time:same)

TR10.2 Relate the two individuals at a present and past time point
(time:past)

TR10.3 Relate the two individuals at a present and future time point
(time:future)

TR10.4 Correctly model the continuant coming into and out of exis-
tence (birth, death)

TR11 The ability to model same time rigid relations between continu-
ants and occurrents

TR11.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR11.2 The relation can have a duration specified

TR12 The ability to allow for multiple future time lines where relations
may or may not hold

TR12.1 The ability to express multiple futures where relations may
hold in one future and not in others

TR13 The ability to model relations between occurrents and continuants
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TR13.1 Be able to make relations between the two types of distinct
elements

TR14 The ability to model same time rigid relations between occurrents
and continuants

TR14.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR14.2 The relation can have a duration specified

R15 Any extension should be decidable and of suitably low complexity,
have implementations or at least decision procedures for the most
common reasoning problems and be readily available for use

3.7 Validity of the Survey

3.7.1 Analysis of Importance

It may be argued that our measurements can be seen as too simple to determine
such a complex notion of importance. Indeed, our measurements are simple ones,
but we do believe that they are enough to at least provide a basis for a measure
of importance and enough to provide foundation to our requirements. We did
have a fair number of other calculations that we tinkered with. One example was
another measure that we originally included in our evaluation called the Weight
of an entity:

weight(e) =
#axioms in C that use e∑

O∈C
#axioms in O where O uses e

In addition to the Coverage and Impact, the Weight measured the direct amount
of axioms an entity occurred in over all ontologies that used the entity, instead
of an overall average as the Impact does. We decided not to include this in our
evaluation as it was very unfair since large ontologies with thousands of axioms
would provide misleading and biased results. The datasets available include these
metrics, but we left these out of our evaluation as no meaningful information could
be concluded from the data. The Impact and Coverage were the best measures
that we were left with and we do believe these are sufficient and adequate to
provide a strong enough basis of a measure of importance.
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We also went as far as to attempt to use Formal concept analysis (FCA)
[GSW05] in our evaluation. FCA provides a method of data analysis to describe
and categorise objects that have similar features. In its most basic form, the
input to FCA is a matrix of relationships between objects and their features.
The usual output to FCA is a concept semi lattice: a group of concepts which
represent sets of features organised into a hierarchical structure (sub concept,
super concept). Since our annotations were exactly sets of features (as they are
defined), we were interested in performing FCA on TRO itself. The objects would
be the relations from TRO and the features would be the temporal features they
were annotated with. This would allow us to categorise the concepts into groups
that have features in common, which we could then further analyse instead of
just analysing individual entities. The FCA procedure identifies concepts by
searching for maximal sets of features that are shared by one or more objects.
Our intention was to take the concepts produced by FCA, and plug them directly
into our evaluation system by computing the same measurements: impact and
coverage. In our first attempt, (also during our first annotation schema) the
FCA procedure produced a very large semi lattice with only a small number
of concepts having more than one feature involved. So we could not infer any
more meaningful information from the data sets that we couldn’t already get
simply from looking at the results from the features or annotations alone. This
was mostly due to problems with our initial annotation scheme. But it did help
us to correct our annotation scheme. After correcting this on several occasions,
we found that there was no benefit from using FCA. We managed to get the
annotation scheme to a concise representation, using only 42 features which was
manageable, and when we did our final FCA analysis, no new information could
be inferred after our normal analysis was conducted. The FCA results are still
available and included in the original data sets.

3.7.2 Annotations

Although the Relation Ontology is very rich in definitions, it is still in active
development, and there are some relations that do not have precise definitions or
in some cases, any annotations at all. This made it difficult to be able to directly
add the correct features to these relations without any uncertainty. In these few
cases, we did the best we could to annotate these relations as follows. When
the relation was a sub, equivalent or inverse relation of another relation that
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had a definition or a TRO annotation, we would use the information from that
relation to appropriately annotate the relation in question. This is sufficient due
to OWL’s precise semantics. When there were no annotations, but restrictions on
the domain and range, then we would rely on the relation’s name (rdfs:Label) and
common sense to infer what the correct annotation should be, if it was obvious.
For the cases where it was not directly obvious and not enough information was
present to conclude an annotation, we used the reserved default TRO annotation
to conclude it would not be used in the study as not enough information was
present.

3.7.3 Smart matching

In the previous section we defined the notion of smart matching. This was where
we stated that a relation local to an ontology was equivalent to a RO relation
when they looked equivalent, i.e., they had the same IRI, or they had the same
name, or the same label etc. The reason RO exists is that there needed to be
standardisation across the OBO library for relations used, to avoid any ambiguity
between similar relations used across different ontologies. Ideally, when an ontol-
ogy in OBO (or any ontology to that matter) intends to use a relation defined
by RO, it should, in theory, import the ontology into its signature. The problem
with this is that RO is a complex ontology. Its expressivity is very high due
to its complex modelling of relations (role hierarchies, role chains, size, etc) and
importing such a complex ontology (w.r.t the DL expressivity required) will most
likely have a direct negative effect on performance (reasoning time) of any other
ontology, if not increase the complexity of the original ontology. If not importing
the ontology, then at the least the same IRI of any relation used should be used
in order to indicate the intention that the relation is the same relation from RO.
Alas, this is not always the case, or so it seems, which is why we introduced the
notion of smart matching.

We provide some analysis on how many smart matches we found and how
many exact matches we found to show how valid our results are, and why we
chose to include smart matching.

For each ontology, we iterated through each logical axiom (terminological
axiom) and recorded whether or not the axiom contained an IRI match of an RO
relation, or otherwise a smart match of an RO relation. We repeated this for
every axiom in every ontology, for every relation in RO. When a relation matches
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Figure 3.5: A histogram showing the number of ontologies in the OBO Foundry
against the % of axioms in each ontology.

the IRI of a relation in RO, we call this an exact match. When it matches a
relation based on one of the annotations we defined previously, we call this a
smart match.

Out of the 116 ontologies, we found that only 61 ontologies had explicit
matches, whereas 72 ontologies had smart matches. 92 ontologies overall had
either smart or explicit matches. There were also a total of 31 ontologies with
smart matches and no exact matches. This is shown in the histogram in Figure
3.5. If we chose to ignore the smart matches then we would be ignoring a third
(33.69%) of the ontologies in the OBO Foundry that could be potentially using
RO relations. In terms of the axioms the relations are used in, if we were to ig-
nore axioms that had smart matches, we would be ignoring again roughly a third
(29.29%) of all axioms that have any kind of match in the OBO Foundry. If we
chose to ignore either the ontologies or the axioms, both are too large an impact
to set aside, which was our reason to include them. Of course, it could be the
case that all of the smart matches were incorrect matches, but we did investigate
some of the matches, and it seemed at least to us that the relations should have
been used correctly.
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Feature c-c Coverage Impact
time:same 47.41 8.53
rigid 45.69 7.09
time:past 31.03 4.31
dom:changed 19.83 4.68
dom:birth 13.79 2.76
ran:death 13.79 2.76

Table 3.15: Important c-c features used and selected in the temporal requirements
with their Coverage and Impact scores

Feature o-o Coverage Impact
time:al-before-inverse 24.14 10.28
time:al-during 20.69 14.96
time:al-before 18.10 2.69
time:al-meets-inverse 12.93 15.31
time:al-meets 7.76 3.07

Table 3.16: Important o-o features used and selected in the temporal require-
ments with their Coverage and Impact scores

Feature c-o Coverage Impact
time:same 31.90 6.11
rigid 23.28 4.98
possible 12.07 5.95
dom:birth 6.03 3.74
time:future/same 4.31 5.13
time:past/same 3.45 16.43
dom:death 3.45 6.47

Table 3.17: Important c-o features used and selected in the temporal requirements
with their Coverage and Impact scores

Feature o-c Coverage Impact
time:same 33.62 4.31
rigid 27.59 4.50

Table 3.18: Important o-c features used and selected in the temporal requirements
with their Coverage and Impact scores
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Feature x-x Coverage Impact
time:same 72.41 16.49
rigid 72.41 16.45

Table 3.19: Important x-x features used and selected in the temporal requirements
with their Coverage and Impact scores

Annotation Coverage Impact
domran:cc, time:same, rigid 45.69 7.09
domran:cc, dom:changed, time:past 19.83 4.65
domran:cc, time:same 15.52 7.29
domran:cc, dom:birth, time:past, ran:death 13.79 2.76
domran:oo, time:al-before-inverse 24.14 10.28
domran:oo, time:al-during 20.69 14.96
domran:oo, time:al-before 18.10 2.69
domran:oo, time:al-meets-inverse 12.93 15.31
domran:oo, time:al-meets 7.76 3.07
domran:co, time:same, rigid:rigid 18.97 2.34
domran:co, time:same 18.10 1.99
domran:co, time:same, rigid:rigid, possible:possible 12.07 5.95
domran:co, dom:birth, time:same 4.31 5.16
domran:co, dom:birth, time:future/same 4.31 5.13
domran:co, dom:death, time:same 3.45 6.47
domran:co, dom:death, time:past/same 3.45 6.43
domran:oc, time:same, rigid 27.59 4.50
domran:xx, time:same, rigid 72.41 16.45

Table 3.20: Important Annotations used and selected in the temporal require-
ments with their Coverage and Impact scores



Chapter 4

Evaluating Temporal Extensions &
Representations

Is there currently a suitable temporal extension for DLs that will allow
for a faithful representation of the Temporal Requirements? And one
that is decidable and of suitably low complexity?

As we have now identified a set of Temporal Requirements (TRs), we now
go on to evaluate current temporal extensions and representations against these
requirements. The extensions and representations we use for our evaluation are
those introduced in Chapter 2: combinations of the Temporal Logics (TLs) ltl

and ctl and Descriptions Logics (DLs) (ltlDL and ctlDL), the Fluent ontology
and extensions of DLs with concrete domains (ALC(D)).

In Chapter 3, we identified a set of the most important temporal features and
annotations from the Temporal Relation Ontology (TRO). TRO relations can be
described by their annotations and features so we can also find important relations
based on these results to use in our evaluation. Our evaluation involves choosing
the most used TRO relations based on the important features and annotations
identified, and we show how each relation chosen and its temporal features can
be modelled in each logic.

Each annotation and feature may correspond to many relations, but due to
space considerations we consider only a few per TR. The relations we use along
with their corresponding annotations and features can be seen in Table 4.1. For
each TR, and each relation corresponding to important features and annotations
of each requirement, we evaluate each TDL’s suitability by showing how well they
can model these relations. Each TDL will score a 3 for every sub requirement

88
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Important Annotation TRO Relation
domran:cc, time:same, rigid connected to
domran:cc, dom:changed, time:past develops from
domran:cc, time:same aligned with
domran:cc, dom:birth, time:past, ran:death child nucleus of
domran:oo, time:al-before-inverse causally downstream of
domran:oo, time:al-during happens during
domran:oo, time:al-before precedes
domran:oo, time:al-meets-inverse immediately preceded by
domran:oo, time:al-meets immediately causally upstream of
domran:co, time:same, rigid involved in
domran:co, time:same input of
domran:co, time:same, rigid, uncertain capable of
domran:co, dom:birth, time:same existence starts during
domran:co, dom:birth, time:future/same existence starts during or after
domran:co, dom:death, time:same existence ends at point
domran:co, dom:death, time:past/same existence ends during or before
domran:oc, time:same, rigid occurs in
domran:xx, time:same, rigid part of

Table 4.1: TRO important annotations with a corresponding TRO relation

that it meets faithfully, which together will act as a measure of how well it meets
the requirement as a whole. The requirement as a whole will also receive a
separate score of either 33, 3 or 7 where the first means the logic fully meets the
requirement, the second means it partially meets the requirement, and the third
means it does not meet the requirement at all or is unsuitable. This will help
to compare logics against each other and determine for each logic which specific
parts it performs well in and which parts it under-performs in.

For each evaluation, we opt to use ALC [SSS91] as the DL fragment for each
TDL. ALC is a popular logic that has been widely studied. It has a suitable level
of expressivity for what we need to express in our evaluation, and each TDL in
question has been widely studied at least up to their ALC combination, making
it a suitable choice.
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4.1 ltlALC & ctlALC Evaluation

We begin with the evaluation of both ltlALC and ctlALC. We will only use
ctlALC in our evaluation where ltlALC is not sufficient and could benefit from a
ctl extension. We begin by evaluating this logic against Temporal Requirement
1 (TR1).

TR1 The ability to model continuants

TR1.1 Continuants must be traceable through time

TR1.2 Continuants must maintain their identity through time

TR1.3 Continuants must be able to undergo change

In both ltlALC and ctlALC, as with standard OWL, we only have one type of
domain element, which we call individuals. We use concept descriptions, axioms
and assertions to enforce restrictions on the domain to describe particular things
that are of interest to us. Recall how we interpret continuants:

“An entity that exists in full at any time in which it exists at all, per-
sists through time while maintaining its identity and has no temporal
parts.”

Continuants will be represented in the only and obvious way; by elements in the
domain. Due to the semantics of ltlALC, we can view interpretations as sequences
of standard DL domains (over a discrete and linear time line, isomorphic to N)
which have a rigid interpretation over the individuals, i.e., we assume that aIi = aIj

for all indices i, j ∈ N. This bodes well for continuants since we are able to refer
to any element at multiple time points (in a constant domain environment),
ensuring that it is the same individual we refer to at each time point. Thus the
standard elements of the interpretation domain can easily and correctly stand in
as representations for continuants. We can simply introduce a class Continuant,
meant to represent all continuants in the domain. Consider Figure 4.1. Here we
have an interpretation with a single element a being a instance of class C1 at
time t, and an instance of class C2 at time t + 1. Although a is an instance of
different classes at different time points, it is the same element a due to the rigid
interpretation. The change of class membership highlights how we can consider
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Figure 4.1: An illustration of the rigid interpretation of elements in ltlALC, and
how they can be used for the effective modelling of Continuants and the modelling
of change.

the changes that continuants can go through. We can capture this type of change
in the axiom

C1 v ©C2

In this axiom we specify that any instance of C1 at any time point must be an
instance of C2 at the next time point. This corresponds to the example above
in Figure 4.1. This shows us how we can effectively trace an individual through
time, whilst maintaining its identity, and at the same time, capture some type
of change by signifying a change in class. Most of the success is due to the
rigid interpretation of the individuals and how we can interact with the elements
via the temporal operators on class expressions. What we cannot do however is
consider continuants at certain specific time points. For example, if we wanted
to consider a continuant C and make a statement about it at a time point, say
1, this cannot be done since we have no operators to quantify over each of the
time points individually. This is a downside to the logic which will continue to
show in later requirements. The logic adopts a qualitative approach to time as
opposed to a quantitative approach, meaning class expressions and axioms are
all interpreted globally, and nothing can be said about classes at specific time
points.

There are also other types of change that we need to consider for continuants
also regarding their changing states. We saw in our survey that some features
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include considering continuants coming into and out of existence. There may
be points along the time line where some entities should not exist, and others
where they do exist. Suppose a continuant c was to come into existence at a
time point t, i.e., it was non existent or present at any time point prior to t.
Then the c should surely not be a part of any domain prior to time point t.
Similarly, if the continuant was then to no longer exist after a time point t′, then
the element should no longer be in any domain after t′. To account for this type of
change, we believe we have two options. The first is to consider several restrictions
on the semantics, specifically on the interpretation domains. The second is to
introduce classes meant to stand in as representations of states of continuants
as they transition between possible states. Focussing on the first, these types of
constraints fall directly into the hands of domain constraints [WZ98a, LWZ08],
as introduced in Section 2.3.1. Varying domains seem the definite choice, since
elements should be able to come in to and out of existence - entities can indeed
be born and later die. To interact with the varying domain, we have to make use
of temporalising the > concept operator. For example, at any time point t, >
represents all the individuals currently existing, ¬©> represents all individuals
who will not be existing at the next moment in time and so on. The only downside
to this approach is that a non existent individual really is non existent. For want
of a better phrase, a non existent element really is a member of the empty set,
i.e, ⊥, so nothing can be said about such an element. In some cases this may
be a shortfall. For example, although an entity may be dead, or at least in an
inactive state, statements may still wish to be made, such as future statements
like the entity will eventually become active. This leads us to the second approach
of instead introducing classes to stand in for these states in a constant domain
environment.

We consider 3 states a continuant can be in, a Before state, representing
continuants before they become active and therefore non existent, an Active

state representing continuants whilst they are active and therefore existent, and
an After state representing continuants after they are active, and again, non
existent. By using classes we can also make constraints on them to specify how
continuants can be members of these classes. For example, if we know the order
of these classes are as follows Before < Active < After, and we assume that all
classes were disjoint from each other (no continuant can be active and inactive
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at the same time) then we can introduce axioms to constrain these as follows:

Continuant v Before t Active t After (4.1)

Before v (♦Active) u (�−Before) (4.2)

Active v (♦After) u (♦−Before) (4.3)

After v (�After) u (♦−Active) (4.4)

(4.1) enforces that every continuant must be in one of the three states. (4.2)-(4.4)
together with (4.1) enforce that every continuant must go through all the states in
order (here we use the inverse operators (past operators) ♦− and �− to illustrate
this - although not directly available in ltlALC, it saves us effort of having to
increase the size of axioms to account for the same meaning by using occurrences
of negations and until operators to achieve the same task. We can view this as the
ltl−ALC fragment of DLRUS if need be, but for now we will assume past operators
are available to us). Of course, sometimes this may not be the case and some
modelling choices may lead to only considering always Active continuants that do
not consider any other state for example (in which case constant domains alone
would be sufficient). Clearly we can generate more types of restrictions based on
certain requirements, but the axioms above capture our intention in the simple
case. It is important to note however that these classes are really just classes,
and they do not capture fully the essence of existence. If a continuant really was
non existent then it should not be able to be instances of other classes or have
relations on them for example, which is still possible in this case. If an element
was an instance of the Before class, it could still be a member of another class,
or even have relations to over individuals for example. To fully enforce this, one
would have to make the restriction that the Before and After state were disjoint
from every other class in the ontology. In later requirements that rely heavily on
these constraints, we will go on to show which is more beneficial.

For TR1, the scores are as follows. Clearly we are able to effectively trace
a continuant through time whilst maintaining its identity due to the rigid inter-
pretation of individuals and the temporal operators, so for TR1.1 and TR1.2, we
give both a score of 3. For TR1.3, we do not fully manage to capture the correct
type of significant change. Simple changes are possible, but changes in existence
are more difficult, therefore we give it a score of 7. Finally, for an overall score,
we give TR1 only a 3. This is due to the lack of quantification available, and the
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problems encountered with TR1.3.

TR2 The ability to model occurrents

TR2.1 Occurrents can have limited phases of existence

TR2.2 Occurrents can have temporal parts

Modelling occurrents is slightly more difficult than the continuant case. Recall
what is required for occurrents:

an entity that has temporal parts, unable to undergo change, and un-
fold in temporal phases

In biology, occurrents are those types of entities (often referred to as processes)
that only exist at certain times and have limited temporal phases of existence,
usually having different temporal parts. In the standard setting, the standard
interpretation domain elements exist at all time points, and since occurrents may
go through limited temporal phases of existence, there will definitely be points
along the time line where some occurrents will exist, and others where they
will not. Therefore we can see yet another use case for the issue of modelling
existence, either using varying domains, or the state classes introduced previously:
Before, Active and After. As an example, suppose we wanted to model an
Occurrent O that lasted 3 consecutive time points. In the varying domain option
we can model this according to the following axiom:

O v (¬(©−>) u©(O u©(O u ¬© (>)))) t

(©−(O u ¬©− (>)) u©(O u ¬© (>))) t

(©−(O u©−(O u ¬©− (>))) u ¬© (>))

(4.5)

In (4.5) we have to specify each of the possible temporal phases the occurrent
O can be in, in a lengthy and quite complex axiom. The first operand of the
disjunct specifies the case where O is in the first temporal phase (each temporal
phase being each distinct and sequential time point where O exists), where it has
two time points to go until its ceases to exist. The operand states that O was
at the previous moment in time non existent, and will remain and instance of O
for the next two time points (remaining existent) before no longer existing at the
third time point in the future. The remaining operands of the disjunct capture
the other cases where O is in the second of third temporal phase. The longer the
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duration of O, the longer and more complex the axiom gets. Even in the constant
domain case, where we use the state classes instead, we see similar results:

O u Act v (©−Bef u©(O u Act u©(O u Act u©Aft))) t

(©−(O u Act u©−Bef) u©(O u Act u©Aft)) t

(©−(O u Act u©−(O u Act u©−Bef)) u©Aft)

(4.6)

Here, due to the fact that the domain is constant, we have to specify the state
of O every time we mention it in the axiom to ensure the state of O is correct.
This axiom follows a similar pattern as the varying domain axiom. The only
real addition we get in the constant domain is that the entities exist at all time
points, allowing possible constraints to be made on entities in the inactive states.
It is difficult to say if this is a benefit or a drawback. It depends on what any
ontology author wishes to say. On the one hand it may seem unfaithful to have
non existing entities existing in the ontology, but on the other hand to be able
to make future statements about them may be an advantage. Either way, the
modelling seems very similar, and they both suffer from largely sized axioms to
model something quite simple.

In both examples, we can also see identity playing a role, although not directly
obvious. Although occurrents are not described as being able to endure through
time or even undergo change as continuants do, due to the semantics of ltlALC,
it seems these characteristics are undesirably inherited. The O being modelled in
each example is being represented by the same element through each temporal
phase. The problem lies not with the identity of the main occurrent enduring
through its existence, but more with the fact that it can technically undergo
change but should not be able to. This is difficult to constrain. What could it
mean for an occurrent O not to change? Maybe declaring it to be an instance of
O until it no longer exists would suffice, for example in the axiom:

O v OU¬©> (4.7)

but this axiom would only state that any member of the O class remains a member
of the O class, and not that it cannot be a member of any other class. For this
to be enforced, it would need to be disjoint from any other class. Other changes
could be changes in relations, for example, if O has a relation to a class X then
it should have the relation to the class X until it no longer exists (we focus on
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this problem in more detail in TR3).
Occurrents are also described as having temporal parts. The temporal parts

are also considered to be occurrents, and take place entirely within the occurrent
itself, usually related via common partonomy relation such as the relation part of
and its inverse has part. The temporal parts are often referred to as sub processes
in biology and often represented by separate individuals with different identities.
Using a similar example as above, suppose during O’s lifetime, it had 2 successive
temporal parts, the first, O1 lasting a single time point and occurring during the
first temporal phase of O, and the second, O2 lasting two time points occurring
during the last two temporal phases of O. We could represent such temporal parts
in the varying domain example as follows (we assume O1 and O2 are disjoint) :

hasPart = p

O v (∃p.(O1) u ¬(©−>) u©(O u ∃p.(O2) u©(O u ∃p.(O2) u ¬©>))) t

(∃p.(O2) u©−(O u ∃p.(O1) u ¬©− >) u©(O u ∃p.(O2) u ¬©>)) t

(∃p.(O2) u©−(O u ∃p.(O2) u©−(O u ∃p.(O1) u ¬©− >)) u ¬©>) (4.8)

O1 v ¬©>u ¬©− > (4.9)

O2 v (¬©− > u©(O2 u ¬©>) t (¬©> u©−(O2 u ¬©− >)) (4.10)

(4.8) is an extension of the original, where we also take into account the parts
O must have during each of its temporal phases. For example, the first operand
of the disjunct is the case where O is in the first temporal phase, and must
therefore have a part that is O1 at the current time point and O2 at the next two
time points. We also have to add two additional axioms that state the existent
constraints on both O1 and O2 in (4.9) and (4.10). A problem exists with the
identity of those temporal parts that span over a single time point. Since O2 lasts
two time points, the identity of this element should remain the same. In fact,
according to the third axiom, it should only last two time points. However, the
individual the O is related to for its last two time points need not be the same
element. It could in fact be represented by two distinct elements and therefore,
the preferred constraints on O2 existing only during the time of its parent O could
not be met. The problem lies with rigidity - we need to ensure the element it is
related to is the same element at both time points. We focus on this constraint in
more detail in the evaluation of TR3. It seems the only way to solve the problem
of the existence constraints would be to embed the third axiom into the first
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axiom, making it longer and more complex.
Again, each approach adopts a qualitative view, making it impossible for us to

make statements about the similar occurrents that may have different constraints
at different time points. We make global constraints about occurrents which can
in some cases be quite detrimental. Processes are known to span different dura-
tions at different points in time but in ltl we can only make general statements
about concepts making it difficult to model knowledge only at specific points in
time. Again this would be different in a quantitative environment, but this is not
something that can be captured in ltlALC.

It is clear that we can model occurrents in ltlALC, but we fail to capture the
most important aspects of them. The rigid interpretation of individuals bodes
well for occurrents again, but problems exist when attempting to capture the
temporal parts and duration of occurrents. For TR2.1, we give this a score of
7 since existence is crucial for occurrents and it is not something that can be
easily captured in ltlALC. We give 2.2, a score of 3 however. Since the rigid
interpretation again works well for identity and tracking occurrents through time,
they can have temporal parts, but any part spanning over multiple time points
is difficult to correctly enforce. We give 7 as an overall score for TR2. This is
due to the inability to capture important features such as duration or existence
faithfully which is again crucial for modelling occurrents.

TR3 The ability to model same time rigid relations between occurrents
or continuants

TR3.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR3.2 The relation can have a duration specified

The relation we use in our evaluation is part of (domran:xx, time:same, rigid).
Recall the definition for part of:

“A core relation that holds between a part and its whole. Part- hood
requires the part and the whole to have compatible classes: only an
occurrent can be part of an occurrent; only a process can be part of
a process; only a continuant can be part of a continuant; only an
independent continuant can be part of an independent continuant;
only an immaterial entity can be part of an immaterial entity; only a
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Figure 4.2: An illustration of the relation part of. In this example a continuant
C1 is part of a continuant C2 for 3 consecutive time points, starting at time t,
and then is no longer related to related to C2.

specifically dependent continuant can be part of a specifically depen-
dent continuant; only a generically dependent continuant can be part
of a generically dependent continuant. Occurrents are not subject to
change and so parthood between occurrents holds for all the times that
the part exists. Many continuants are subject to change, so parthood
between continuants will only hold at certain times, but this is difficult
to specify in OWL”.

We begin with the continuant part of continuant case. Our example is as
follows. Given two classes C1 and C2 representing continuants, suppose we wanted
to model that the C1 is part of C2 for a duration of 3 consecutive time points,
as shown in Figure 4.2. The standard OWL way to model this relation would be
the axiom:

C1 v ∃partOf.C2 (4.11)

Since axioms are globally interpreted in ltlALC, this enforces that any instance
of C1 at any time t must have a partOf relation to an instance of C2 at the same
time point t, by definition of the possible world semantics in ltlALC. However,
this is not even close to the temporal constraints we require. The duration of
3 time points is not captured, nor is the rigidity constraint. We first focus on
attempting to manage the duration:

C1 u©(C1 u©(C1)) v ∃partOf.C2 u©(∃partOf.C2 u©(∃partOf.C2))

(4.12)
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In (4.12) we state that any element that is a C1 for three consecutive time points,
must have a partOf relation to a C2 for the three same time points. This axiom at
least enforces some kind of duration of the partOf relation, however the rigidity
constraint is not yet satisfied. As the axiom currently stands, C1 could actually
be related to 3 different instances of C2 over the 3 consecutive time points.

Another possibility could be the axiom

C1 u©(C1 u©(C1)) v ∃partOf.(C2 u©(C2 u©C2)) (4.13)

which states that any instance of C1 for three consecutive time points must be
related to a single individual that is an instance of C2 for the same three time
points. Although now the individual is the same, there is now only one relation
that holds only in a single time point.

It seems the only way ltlALC can come close to a rigid relation is to allow the
rigid relation characteristic to be added to partOf. Recall from Chapter 2 that
a relation R is rigid if in all interpretations I, if there exists a pair (x, y) ∈ RIi

for some i ∈ N, then for all j ∈ N where j 6= i, (x, y) ∈ RIj . Therefore, if we
declare partOf as being rigid, then (4.11) seems correct, since any elements that
have the relation at any time will have the same relation at all times. A huge
modelling problem exists with this in that it is impossible to enforce that the
relation only holds during a finite duration, i.e. we cannot specify a duration
on the rigidity. Another problem lies with the fact that declaring a relation to
be rigid, declares a global constraint on the entire relation, which is not always
what we want, we cannot consider only contained or partial cases. We may only
want the relation to be rigid local to certain axioms, in this case local to C1

and C2 for this specific case. Declaring part of to be rigid would mean that
any other elements related by part of would also be related infinitely. Possibly
the most important downside to having rigid relations is the negative effects on
complexity (outlined in Chapter 2). Usually, declaring a single rigid role leads to
undecidability, even in lightweight ltlDL combinations unless several restrictions
are enforced on the knowledge base, such as acyclic or empty TBoxes. Another
problem easy to overlook is in relation to the qualitative nature of the way we
interact with the time line. Since the axioms are interpreted globally, along with
all concept descriptions, we cannot make any assertions about when the part of
relation should hold. For example we cannot express that the relation only holds
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between certain time points.
We run into similar problems when attempting to model partonomy between

occurrents, and any rigid relations in general. We saw an example of when rigid
relations are required for partonomy between occurrents in TR2. As the definition
suggests, partonomy can only exist between occurrents during the times they
exist. We run into not only the same problems as before, but we encounter more
here. Since each occurrent should not exist at all time points, it is crucial that
the relation should also not exist during all time points. How can it if certain
individuals may have the relation at one time point and then cease to exist at
another time point? Having rigid relations would go against this principle and
would therefore be an unfaithful modelling and possibly lead to an inconsistent
modelling. This may suggest that in some cases varying domains may not be
the ideal solution if rigid roles were required, and possibly the state constraints
would be better suited since they use constant domains, and therefore no existence
problems would exist in the case of rigid roles.

For TR3.1 we give ltlALC a score of 3. When introducing rigid relations,
the sub requirement holds - the same individuals are related at each consecutive
time point. We give TR3.2 a score of 7. There is no way to capture duration
of a relation without it becoming non rigid. For TR3 as a whole, we give it a
score of 7. This is because of the fact that durations cannot be captured which
is crucial for occurrents (since we do not want relations to hold when entities do
not exist) and declaring a relation to be rigid is an overstatement of what we
want. We would like a relation to be rigid only for certain axioms, and only for
certain durations, not a global constraint on an entire time line, which is what
rigid relations in ltlALC actually are.

TR4 The ability to model same time rigid relations between continu-
ants

TR4.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR4.2 The relation can have a duration specified

We give TR4 the same scores as TR3 due to their similarity. TR4 differs only
in that we are interested in the continuant case only, but the same problems still
hold.
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Figure 4.3: An illustration of the relation aligned with. In this example the
continuant A is aligned with the continuant B at a single time point t, and the
relation holds only at this single time point.

TR5 The ability to model same time relations between continuants

TR5.1 The relation must hold at a single time point (time:same)

TR5 is significantly easier to model than the rigid case in TR4. We use the
relation aligned with in our example. aligned with has a generally atemporal
annotation, i.e., apart from the fact that the relation relates continuants, there
is no other temporal information present other than that the relation must hold
at a single time point (the relation may be rigid, but it is not necessary). This
makes modelling the relation particularly easy in the sense that the general OWL
modelling applies. Consider Figure 4.3, showing how the relation may look along
the time line. A possible axiom could be:

A v ∃alignedWith.B (4.14)

Since we have a global evaluation of axioms, any instance of Amust have a aligned
with relation to some instance of B. This works well in a qualitative environment,
when the relation must hold at all times for any instance of A. For the times
when the relation may only hold for a single time point or only certain durations,
there is no easy way if at all to enforce this. Again this is related to the issue
of not being able to quantify over certain time points. We give TR5.1 a score of
3. We capture what is required; a relation holding in a single time point. We
give TR5 a score of 3. This is again due to the problem of quantification in a
qualitative environment.

TR6 The ability to model past time relations between continuants
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Figure 4.4: An illustration of the relation develops from. In this example, the
continuant A develops from the continuant B at times t and t′ respectively where
t > t′. The continuants may be identical, although this is not necessary.

TR6.1 The relation must hold between individuals at present and
past time points (time:past)

develops from is a relation that relates two individuals over a present and past
time point. It is a super relation to transformation of (see Chapter 3). Suppose
we wanted to express that A develops from B at time t and t′, shown in Figure
4.4. We could use the axiom:

A v ∃developsFrom.(♦−B) (4.15)

Here we state that any instance of A must have a develops from relation to an
individual that was a B at some previous time point. This would be sufficient if
the relation’s start time point was the present time point and the relations end
time point was time point referenced by ♦−. However this is not the case since due
to the restrictions on the semantics, all relations must hold between individuals
in a single time point, hence the relation itself holds only in the current time
point (relative to A). Although somewhat misleading, we believe the axiom to
be sufficient to represent the relationship. As there are no constraints on the
existence on each individual - we assume they exist at both time points - then
regardless of when the relation holds, it does relate the correct individuals. The
axiom does again however rely on past time relations, which are not available in
standard ltlALC but are available in any extension with inverse operators. In some
cases, development is often a relation involving identity, where the individuals in
question are identical to each other. In fact, the relation transformation of, which
is a sub relation of develops from is one of these relations, and is described as
a “relation of identity: each adult is identical to some child existing at some
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Figure 4.5: An illustration of the relation child nucleus of. In this example the
continuant C is a child nucleus of the continuantD which existed at some previous
time point t when D did not exist.

earlier time” In our example, A could be the same individual as B, just in a
newly developed form. We saw a similar example in Chapter 2 regarding the
Drosophila ontology [CRGOS13]. In this case, using existential operators to relate
the individuals is not a faithful representation since it does not restrict the filler
of the relation to the same individual. It is better to not use relations at all and
opt to simply use class restrictions as follows:

A v (♦−B) (4.16)

Here we specify that any instance of A was at some previous moment and in-
stance of B. This handles the identity case exactly and uses multiple time points
correctly. We give TR6.1 a score of 3. We believe our modelling attempt is
sufficient to simulate the relation holding over multiple time points, and when
identity is concerned, eliminating relations is sufficient. We give TR6 a score of
33.

TR7 The ability to model the changing states of continuants, specifi-
cally their birth, death and other general changing states

TR7.1 Model a continuant coming into existence (birth)

TR7.2 Model a continuant going out of existence (death)

TR7.3 Model general changes of continuants (change)

In this example we focus on the RO relations develops from and child nucleus of.
child nucleus of is defined as:

“c is a child nucleus of d if and only if c and d are both nuclei and
parts of cells c’ and d’, where c’ is derived from d’ by mitosis and the
genetic material in c is a copy of the generic material in d”.
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We stick to a simple interpretation of the identity of both c and d. We assume
that the nucleus c has a different identity to the nucleus d. Since d was split, it
effectively no longer exists, hence the use of the birth and death features in the
annotation. Suppose we wanted to represent C is a child nucleus of D at times t
and t′, as shown in Figure 4.5. We first show how we could represent this using
the state classes introduced above in a constant domain environment:

C u Active v ♦−(Beforeu

© (Active u ∃childNucleusOf.(After u©−(Active uD))))

We specify both the birth of C and the death of D using the state classes. We also
enforce that the time points are correct in the sense that the transitions between
the states are aligned - C becomes active after D dies. D must have existed in
the past but doesn’t exist now, and the opposite for C. Due to the global nature
of the axioms, we also have to include the state information of the continuants in
the axiom, since we would not want this axiom to hold for any active instance of
C. Again, the relation should cover multiple time points, similar to develops from
from TR6, but we believe our modelling suffices. One interesting aspect to point
out is that the relation holds between an active instance of C and an inactive
instance of D. This goes against the faithfulness of existence - if D really was in
the After state, then it should not surely have any incoming relations. However,
switching to the varying domain environment would not solve the problem here,
and would actually make matters worse:

C u ¬©− > v ∃childNucleusOf.(¬> u©−D) (4.17)

(4.17) can never be satisfied. Both entities need to exist at the same time for any
relation to hold between the two entities. As we saw in TR6, all relations have
to hold within a single world, but in this relation, the entities cannot exist in the
same world, at least not in a faithful representation anyway. The state classes
are better suited for this approach.

The annotation for develops from also contains the feature changed, indicating
the entity went through some kind of change (i.e., development). An example of
a possible development could be that it was a member of different classes before
and after the change. We saw an example in TR6 of how change can be captured
when the identity of the individuals being related are the same. We now show
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how this can be done when the identity is not the same. Consider the following
axiom

A v ∃developsFrom.(♦−B) u ♦−(A′) (4.18)

where A is the new class and A′ was the old class which it changed from. Since
we have a rigid interpretation of individuals, then we can be assured the same
element is and was a member of both of these classes at different time points.
A problem we face now is that we cannot enforce that the time point when the
relation held, is the same time point when the change occurred, since we now
have two ♦− operators. However, we can shift the focus of the ♦− operator to
form the axiom:

A v ♦−((∃developsFrom.B) u A′) (4.19)

which would align the two time points correctly, but the relation would no longer
hold in the present time point, but rather in the previous time point. We give
both TR7.1 and TR7.2 a score of 7 for the same reasons described in TR1. We
give TR7.3 a score of 3. Simple changes such as changes in classes can be easily
captured in ltlALC as shown above, even though the relation itself relies heavily
again on past operators. We give TR7 a score of 3. If we accept that the state
classes are the best we can do at modelling existence constraints, then the logic
may be suitable.

TR8 The ability to model the time constraints of the following Allen’s
interval relations between occurrents: before′, during, before, meets,
meets′

TR8.1 Capture the temporal constraints intended by Allen’s rela-
tions

We now go on to show how well ltlALC can capture Allen’s interval relations, seen
as time features between occurrents, using their corresponding TRO relations.
before′ - causally downstream of does not have a definition, but its inverse,
causally upstream of, does:

“p is causally upstream of q if and only if p precedes q and p and q
are linked in a causal chain.
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Figure 4.6: An illustration of the causally downstream of relation. In this example
the occurrent O1 appears causally downstream of the occurrent O2 simulating
Allen’s interval relation after

This definition also includes the relation precedes, which is defined as follows:

“x precedes y if and only if the time point at which x ends is before or
equivalent to the time point at which y starts. Formally x precedes y
iff ω(x) ≤ α(y), where α is a function that maps a process to a start
point, and ω is a function that maps a process to an end point”.

Consider Figure 4.6. Since we are focusing on the temporal aspects of the TRO
relations, we can view causally downstream of as being the temporal inverse of
precedes. If O1 causally downstream of O2, then the time point at which O1

starts must be equal to or after the time point in which O2 ends. We choose to
model these relations using the states classes in constant domains (due to needing
to model relations between non existent entities). We model these constraints as
follows:

O1 u Active v ♦−((Before u (∃X.(O2 u After)))t

(Active u©−(Before) u (∃X.(O2 u After u©−(Active))))) (4.20)

In (4.20), we enforce that any active instance of O1 either had an X relation to
an instance of O2 that was in the After state whilst itself was in the Before
state, or it has an X relation to an instance of O2 that has transitioned into the
After state at the current time point, which is the same time point in which
itself has transitioned into the Active state, from the Before state. The role
of the disjunct is to capture the or in the before or equal to. We make use of
the existential to enforce that there was at least one O2 for which O1 follows.
However, if the constraint was a global constraint, i.e., all O1s must come after
O2s, this cannot be captured. Notice that we also have to introduce an auxiliary
relation, X, which has no temporal meaning, but merely used to assist with the
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Figure 4.7: An illustration of the happens during relation. In this example the oc-
current O1 happens during the occurrent O2, simulating Allen’s interval relation
during.

constraints on the time points. We also are presented with the same problem as
before when considering what should and should not be allowed to be stated with
occurrents not in an active state. However, we know varying domains would not
be suitable here, so the state constraints are the best that we can achieve.

happens during is defined as:

“X happens during Y iff: (start(X) before or simultaneous with start(Y ))
AND (end(X) before or simultaneous with end(Y ))”.

Consider Figure 4.7. This is equivalent to Allen’s interval relation during, hence
the use of the time feature time:during. Using similar techniques as the previous
relation, we can model O1 happens during O2 as follows:

O1 u Active v ♦−((Before u©(Active u ∃X.(Active uO2)UAfter) (4.21)

(4.21) states that any Active O1 was sometime in the past in the Before state,
and at the time it became Active, it had an X relation to an Active instance of
O2 at every time point until it eventually becomes inactive. Again, we have to
introduce an auxiliary role to temporally relate the two occurrents in time. The
axiom itself is not truly faithful because of an issue with the X relation to O2.
Since we potentially have many existential relations between the two elements, it
is possible that a model of the axiom could relate the first X successor of O1 to
an element that is different to the second X successor at each time point. Using
rigid roles would be the obvious first thought to overcome this problem. If we
declare X to be rigid, then we can ensure that the successors would be the same
over all time points, but this is an over-enforcement. If the two individuals were
related at all time points then it defeats the purpose of the X relation. Ideally,
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Figure 4.8: An illustration of the precedes relation. In this example the occurrent
O1 precedes the occurrent O2, simulating Allen’s interval relation before.

they should only be related during the activity of O1 and not in any other time
points, as depicted in Figure 4.7.

precedes is a relation between two occurrents defined as

"x precedes y if and only if the time point at which x ends is before
or equivalent to the time point at which y starts".

Consider Figure 4.8. We first direct our attention towards the before case (the
equivalent case is seen later in immediately precedes). We can model the relation
O1 precedes O2 as follows:

O1 u Active v ♦(After u (∃X.(Before u ♦(Active uO2))) (4.22)

The axiom states that for any active O1 occurrent, eventually they will be in a
After state, and there will later be an O2 for which O1 is X-related, who will
be in a Before state but eventually Active. Again, we use the auxiliary role X
to make a connection between the two elements to enforce the temporal relation
between them.

immediately preceded by is similar to causally downstream of however the two
occurrents must meet. Consider the following definition:

“X immediately preceded by Y iff: start(X) simultaneous with end(Y )”.

In this case we need to ensure that the end time of X is the same as the start
time of Y . Consider Figure 4.9. We can model O1 immediately preceded by O2 as
follows:

O1 u Active v ♦−(Before u©(Active) u (∃X.(O2 u Active u©(After))))

(4.23)
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Figure 4.9: An illustration of the immediately preceded by relation. In this ex-
ample the occurrent O1 is immediately preceded by the occurrent O2, simulating
Allen’s interval relation meets′.

Figure 4.10: An illustration of the immediately causally upstream of relation. In
this example the occurrent O1 is immediately causally upstream of the occurrent
O2, simulating Allen’s interval relation meets.

(4.23) states that any Active O1, at the time point which it became Active, is X
related to an instance of O2 who has at the same time point transitioned into the
After state.

immediately causally upstream of is defined as:

“p is immediately causally upstream of q iff both (a) p immediately
precedes q and (b) p is causally upstream of q. In addition, the output
of p must be an input of q”

immediately precedes is defined as:

X immediately precedes Y iff: end(X) simultaneous with start(Y )

for which the relation is a sub property of. Consider Figure 4.10. We can model
O1 immediately causally upstream of O2 as follows:

O1 u Active v ♦(After u©−(Active) u (∃X.(O2 u Active u©−(Before)))

(4.24)
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Note that this axiom is really just the temporal opposite of immediately preceded
by, which is unsurprising since they are inverses of each other in RO.

With all the o-o relations involving Allen’s intervals, we observe that we are
not defining the time relations themselves, but merely attempting to enforce the
temporal constraints inside an axiom. None of the relations actually appear as
relations inside the axioms. It would be unwise to use the auxiliary relations as
the original relations as they do not represent them. Ideally, it would be better to
be able to constrain the temporal nature of the relation itself, as was the intention
of Allen’s relations. Consider again the relation precedes. Ideally, we would like
to have the subclass expression of the axiom to be something along the lines of
∃precedes.O2 v . . ., and then go on to constrain the temporal relation between
O1 and O2 in the superclass. However, such an axiom cannot exist. For example,
the following axiom

O1 u Active u ∃precedes.O2 v ♦(After u (∃X.(O2 uBefore u ♦(Active)))

(4.25)

tries to define the precedes relation by stating that if O1 has a precedes relation
to O2 then the O2 must start after the death of O1. However, the filler of the
precedes relation in the subclass expression does not necessarily have to be the
filler of the X relation in the superclass expression. We believe the first modelling
attempt is better suited.

We give both TR8.1 and TR8 a score of 3. We can model the constraints of
Allen’s relations, but only in a simple way. We cannot hope to gain any useful
entailments or use the relations in anyway other than what is specified in the
axioms.

TR9 The ability to model relations between continuants and occurrents

TR9.1 Be able to make relations between the two types of distinct
elements

As we have now seen how to model relations between continuants and occurrents
exclusively, we now move on to modelling relations between the two. Due to the
two types of entities being represented in roughly the same way (all are mapped
to standard DL domain elements), we can model relations between them in a
similar way as in each exclusive case. We use the relation input of to illustrate
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Figure 4.11: An illustration of the relation input of, showing a continuant C being
the input of an occurrent O at a single time point.

this. Unfortunately, this relation does not have a definition in TRO, therefore we
use the definition of its super property, participates in, to aid in the modelling:

a relation between a continuant and a process, in which the continuant
is somehow involved in the process.

Although the definition is not very detailed, we believe the involvement is that
the continuant is the input to the occurrent, upon the occurrent’s activation or
the start of its existence. Consider Figure 4.11. We attempt to represent C input
of O at t as follows:

C v ∃inputOf.(O u ¬©− >) (4.26)

The input of relation between the two entities should take place at a single time
point (time:same) and it would be fair to assume that in some cases it should
only hold at a certain time point. Looking again at Figure 4.11, it would not be
correct to assume that C was continuously the input of O at every time point
along the time line... The axiom is very similar to that expressed in TR5’s aligned
with example. It states that any instance of C must have an inputOf relation
to an instance of an O that was previously non existent. The problem we face
again is that of quantification. As it stands, any instance of C at any time point
would always have the relation. But this is not what may be needed. Ideally, we
would like to say something along the lines of C is the input of O at time t, and
only at time t. This is not always the case however, and this is just one of the
relations that hold this annotation. Others exist where this type of modelling is
perfectly suitable. We give TR9.1 a 3. Making relations between the two types
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of elements is as easy as each exclusive case - it is not more different than any
other type of relation. We give TR9 a score of 3 also since we can model relations
between the two types of elements, but not faithfully in some cases, due to the
qualitative nature of the logic.

TR10 The ability to model relations between continuants and occurrents
over past, future, and present time points, each including the
continuant’s state constraints

TR10.1 Relate the two individuals at a single time point (time:same)

TR10.2 Relate the two individuals at a present and past time point
(time:past)

TR10.3 Relate the two individuals at a present and future time point
(time:future)

TR10.4 Correctly model the continuant coming into and out of exis-
tence (birth, death)

We now move on to modelling relations between the two domain elements over
single and multiple time points, also showing their domain constraints. We use
the relations existence starts during, existence starts during or after, existence
ends at point and existence ends during or before. existence starts during is
defined as

“x existence starts during y if and only if the time point at which x
starts is after or equivalent to the time point at which y starts and
before or equivalent to the time point at which y ends. Formally:
x existence starts during y iff start(x) ≥ start(y) AND start(x) ≤
end(y)”.

Consider Figure 4.12. We can model C existence starts during O using the varying
domain approach as follows:

C v ♦−(∃X.(O) u ¬©− >) (4.27)

Here we specify that any instance of C at an earlier time point had an X relation
to an instance of O and at the previous time was non existent. The fact that
a relation exists between an C and O immediately when C came into existence
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Figure 4.12: An illustration of the relation existence starts during, showing a
continuant C’s existence starting during the life span of an occurrent O.

Figure 4.13: An illustration of the relation existence starts during or after, show-
ing two continuants C and C ′ whose existence starts during and after the life
span of an occurrent O respectively.

ensures that C started during O’s existence. We again have to specify another
auxiliary relation to align the time points correctly. The corresponding constant
domain approach could be the axiom:

C u Active u (©−Before) v ∃X.(O u Active) (4.28)

We can follow similar design patterns to model the relation existence starts
during or after, shown in Figure 4.13 and defined as:

“x existence starts during or after y if and only if the time point
at which x starts is after or equivalent to the time point at which y
starts. Formally: x existence starts during or after y iff start(x) >=
start(y).”.

However, we have to use the constant domain in this approach. If the existence
of C starts after O, then C and O will not exist at the same time, so no relations
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can be made between the two. We can represent C existence starts during or
after O as follows:

C u Active u©−(Before) v (∃X.(O u (Active t After)) (4.29)

This axiom states that any instance of C at the time point that it transitions
into the Active state must have an X relation to either an Active or After state
instance of O. The during or after is captured in the disjunct in this case.

existence ends at point, is defined as follows:

“x existence ends at point y if and only if the time point at which x
ends is equivalent to the time point at which y ends”.

An example of this relation is shown in Figure 4.14. We can model this as follows:

C v ♦(¬©> u ∃X.(O u ¬©>)) (4.30)

Here we enforce that when an instance of C eventually ceases to exists, at the
same time point it has a relation to an instance of O that also ceases to exist at
the same time point, aligned via the relation X.

Finally, existence ends during or before is defined as

“x existence ends during or before y if and only if the time point at
which x ends is before or equivalent to the time point at which y ends.”.
An example is shown in Figure 4.14 and represented in the following
axiom:

C u Active u (©After) v ∃X.(O1 u (Active t After)))) (4.31)

Interestingly, since each relation has domain and range constraints, we can
capture the time:future and time:past features by embedding them into the state
information, which proves to work quite well. We again see the need for the use of
past operators. We give TR10.1 a score of 3, TR10.2 a 3 TR10.3 a 3, and also
10.4 a 7. The 7 is due to the fact that in some cases we have to switch between
representations as one is not sufficient. TR10 as a whole receives a score of 3.

TR11 The ability to model same time rigid relations between continu-
ants and occurrents
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Figure 4.14: An illustration of relations existence ends during or before and exis-
tence ends at point. Both C and C ′’s existence end during or before O, whereas
only C’s existence ends at the point of O’s existence.

Figure 4.15: An illustration of the relation involved in, showing a continuant C
being involved in an occurrent O for multiple consecutive time points over a fixed
duration over the life span of O.

TR11.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR11.2 The relation can have a duration specified

involved in is defined as

“a relation between a continuant and a process, in which the continuant
is somehow involved in the process”

This relation is declared to be rigid since the occurrent may span over multiple
time points, or even have many temporal parts, in which the continuant should
be involved in. Unfortunately, we run into the same problems as in the continu-
ant case when wanting to enforce rigid relations. We fail to specify a duration in
where we want the rigid relation to hold, or even enforce that the two elements
are the same over multiple time points without introducing rigid roles, which are
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undesired. However in the continuant-occurrent case, there is also another possi-
bility to consider since an occurrent may have multiple temporal parts. Suppose
a continuant C is involved in an occurrent O, which has two temporal parts,
O1, O2, where each lasts a single time point and are in the order given: O1 < O2.
We can represent the temporal parts in the same way as we did in TR2. We see
only one way to model C involved in O1 and O2:

C v ∃involvedIn.O1 u©(∃involvedIn.O2) (4.32)

This seems adequate since we ensure that C is involved in each temporal part of
O in the correct order, but we cannot ensure that temporal part of O is part of the
same O. If O had no temporal parts, then we run into the same obvious problems
of rigidity, as in TR3 and TR4, where the only hope seems to be to introduce
rigid roles, which has negative effects with both varying domains and complexity.
As with TR3 and TR4, we give TR11.1 a score of 3, since when we do introduce
rigid roles, we can capture same time relations between the same individuals
consecutively, but TR11.2 receives a 7 since no duration can be captured with
the rigid relations. For the same reason we give TR11 a score of 7 as a whole.

TR12 The ability to allow for multiple future time lines where relations
may or may not hold

TR12.1 The ability to express multiple futures where relations may
hold in one future and not in others

Capable of is defined as

“A relation between a material entity (such as a cell) and a process,
in which the material entity has the ability to carry out the process”.

Notice that the relation that may or may not hold is the carrying out relation,
hence the reason for the possible feature. From the modelling and temporal per-
spective it may be interesting to know the consequences of the relation holding,
similarly for it not holding. For the first time we introduce ctlALC in our mod-
elling evaluation. We can model C capable of O as follows:

C v E© (♦(∃carriesOut(O))) u E�(¬(∃carriesOut.O) (4.33)
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Figure 4.16: An illustration of the relation carries out. In this example, there
exists a time line where the continuant C carries out the occurrent O and another
time line where this does not happen.

Here we specify the two possible futures in each of the super classes conjunct
operands. The first operand states that there is a future time line in which C

eventually caries out the process O. The second operand handles the case where C
never caries out the process, using the � operator and a negated role restriction.
The axiom seems to capture what we intended, we have two possible futures, one
where the relation holds, and one where it does not. We give TR12.1 a score of
3 and TR12 33 as we capture exactly what was intended.

TR13 The ability to model relations between occurrents and continuants

TR13.1 Be able to make relations between the two types of distinct
elements

Similarly to TR9, we can model relations between occurrents and continuants in
the same way. There is nothing special in the order of the domain and range
types, and therefore face the same problems as in the TR9 case. TR13.1 is given
3 and TR13 is given 3.

TR14 The ability to model same time rigid relations between occurrents
and continuants

TR14.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR14.2 The relation can have a duration specified
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Figure 4.17: An illustration of the relation occurs in. In this example, an occur-
rent O occurs in an continuant C during its entire life span.

TR14 is similar to TR11 - the domain and range order does not change what we
can express due to the fact that they are represented by the same type of elements.
We illustrate this with the relation occurs in show in Figure 4.17. occurs in is
defined as follows:

“a relation between a process and an independent continuant, in which
the process takes place entirely within the independent continuant”.

The main difference between the relations in TR11, is that here the occurrent
both starts and ends (comes into and out of existence) inside the continuant.
Without knowing the duration of O, we can only represent O occurs in C as
follows:

O v ∃occursIn.C (4.34)

without losing the identity of C. As we have seen many times before, this is not
an accurate representation - if O lasts more than one time point, the relation
will not be correctly rigid, having multiple existential restrictions will also result
in incorrect rigidity, and even declaring occurs in as having the rigid property
characteristic is too strong a statement. We give TR14.1 a score of 3, but TR14.2
receives a 7. As before, TR14 receives a score of 7 as a whole.

R15 Any extension should be decidable and of suitably low complexity,
have implementations or at least decision procedures for the most
common reasoning problems and be readily available for use

ltlDL and ctlDL combinations have had a lot of of attention in recent years,
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with research mostly going into the complexity theory area [LWZ08]. Most cur-
rent work has been spent on testing the bounds of the logic’s decidability limits
when certain desired features are included such as rigid roles [GJS15b, GJS15a].
Little to no work has gone into the practical side of things however, such as rea-
soner development or work similar to what has been presented so far in this thesis.
We first focus on the suitability of the logic with the expressivity required. From
Chapter 2, we know that when compared to either ALC or ltl, ltlALC is com-
putationally obedient. Its complexity of reasoning is no worse than either other
logic. There are three, for want of a better word, add-ons that would be required
of ltlALC in order to meet some of the requirements that we saw whilst evaluating
against TR1-TR14. These include, varying domains, past (or inverse) operators
and rigid roles. Firstly, it is known that there is an easy polynomial reduction
from varying, expanding and decreasing domains into constant domains for satis-
fiability in modal logics [WZ98a], so switching from constant to varying domains
will not have a negative effect on complexity. We also note that varying domains
require negation to interact with, and are beyond the scope of lightweight DLs
such as EL. So any complexity results for TLs combined with lightweight DLs
such as EL become irrelevant in this case.

Secondly, past operators were needed in almost all of the TRs. Adding past
operators usually do not increase the complexity of TLs and they are known to
usually increase succinctness [Mar03, LPZ85, LMS02]. Results are known for ltl,
and decidability results exist for the more expressive DLRUS [AFWZ02].

Rigid roles generally have a negative effect on complexity in TDLs unless
severe action is taken. It seems like this add-on has been given the most attention
in recent years. From Chapter 2 we see that adding rigid roles usually leads to
undecidability, even in fragments of ltlDL and ctlDL, unless restrictions are
made, usually on a TBox level. For example, empty TBoxes, or acyclic ones.
Restricting our knowledge bases in this way would be too much of a loss for the
ontologies in question and does not seem a viable option, and rigid roles seem
impossible to be incorporated.

From a practical viewpoint, no current work has gone into realising either
ltlDL or ctlDL as a next step for temporalising OWL. From our research, no
attempts have been made to create reasoners, or a language for ontology de-
velopers to use to start creating ontologies or and see how they could benefit
from a temporal extension. It seems everything has been focussed mainly on the
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theoretical aspect.
Although ltlALC and ctlALC have some features that are theoretically suit-

able, they have no practical solutions, and we therefore give R15 a score of 7.

4.1.1 Summary

We can see clearly that ltlALC and ctlALC work reasonably well with modelling
some of the temporal requirements of bio-health ontologies but are far from a
suitable representation. Only two TRs stood out as being closely faithful, TR1
and TR12. The reason ltlALC performed so well here was due to its possible
world semantics, and the rigid interpretation it has on its individuals. In fact,
many of the other requirements that scored well (3) was primarily due to this
feature. For example TR2, the modelling of occurrents was partially suitable, due
to the possible world semantics, but lost points on being able to specify duration
easily and other occurrent requirements. TR12 showed that ctlALC was sufficient
to model what was required w.r.t the possible futures, and we were not limited
in what we could express. Another useful feature was the option for varying
domains. In some cases it worked well, and was a suitable option, but more in
most cases it proved to be a problem, when relations needed to exist between
entities that could not exist at the same time.

As explained in R15, the logic easily becomes undecideable even in the most
simplest of cases when considering rigid roles. We also saw quite severe problems
when wanting to quantify over the time line, to be able to model relations only
happening at single time points.

By far the main problem that ltlALC suffered from was the inability to model
rigidity, or even finite rigidity. This requirement, and its corresponding features
are the most prevalent in the corpus, and ltlALC failed to capture what was re-
quired. This is also important to consider when thinking about designing another
logic or an extension of ltlDL to be able to handle this. There was also the prob-
lem of the large size of the axioms needed to specify quite simple properties, such
as a duration of an occurrent. We believe this is due to the qualitative nature of
the syntax, specifically the way in which we can interact with the time line using
the temporal operators. Also, in standard ltlALC (and ctlALC) past operators
are not present. Nearly all examples actually needed the use of both past time
operators and the usual future and present ones also. Although introducing past
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time operators does usually not have a negative effect on the complexity of rea-
soning, they are not available in the logic we were evaluating. Most of the current
work has gone only into ltlALC and not its inverse.

Clearly ltlALC and ctlALC are not suitable enough to model bio-health on-
tologies. We can however take away a positive point when possibly considering
an extension or new logic: having a possible world semantics along a time line
with rigid individuals captures some of the most important aspects of biological
entities and should definitely be considered.

4.2 ALC(D) Evaluation

Using concrete domains as an extension to DLs allows us to relate standard
DL elements of the concrete domain via concrete features. Recall from Chapter
2, a concrete feature is an abstract (and thus functional) relation that relates
DL elements to elements in a concrete domain. The intuition is that if we can
relate elements to a representation of a time point in the concrete domain, then
we should be able to effectively make statements about elements at particular
moments in time, as well as make other constraints on both the time points and
the elements, specific to the TRs. During this evaluation, we use Z with the
standard binary predicates {≥, >,=, <,≤} as our concrete domain D. In some
cases in our evaluation, we will also use the unary and binary predicate =n and
+n. =n is a unary predicate that holds true only on the input given if it equals
n. For example, =4 holds true only for 4. +n is a binary predicate that holds
true only if the second element is exactly n greater than the first. For example,
+4(5, 9) is true, whereas +4(5, 10) is false. We combine this concrete domain D
with the standard DL ALC, as in the ltl case, resulting in the logic ALC(D).

TR1 The ability to model continuants

TR1.1 Continuants must be traceable through time

TR1.2 Continuants must maintain their identity through time

TR1.3 Continuants must be able to undergo change

Unlike standard DLs, we now have two types of distinct domain elements; stan-
dard DL domain elements and also numbers in Z, for which we can relate the two
via means of new relations called concrete features. When modelling continuants,
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unlike in ltlALC where there are multiple rigid instances of an element indexed
by n ∈ N we still have only a static environment, even in the presence of the
concrete domain, hence we only ever have one instance of an element. However,
we can link elements (and their properties, explained later) to elements in the
concrete domain. As before, we create a class Continuant to stand as a repre-
sentation for all continuants in the DL domain. We consider first the three states
of continuants, Before, Active and After. Instead of defining classes for each,
we can introduce concrete features to account for when and how an individual
can transition between these states. Let startTime and endTime be two new
concrete features. We constrain the Continuant class as follows:

Continuant v ∃>(endT ime, startT ime) (4.35)

Here we enforce that any Continuant must have both a start and end time where
the end time must be greater than the start time, i.e., modelling some form of
its life span. Since they are concrete features, and therefore functional, we know
that each continuant can only have exactly one start and end time, avoiding
any potential conflicts, such as the problem of coming into and out of existence
multiple times. Even in the event where continuants may not have start and end
times, and may be considered always active, then we may prefer the universal
version of the axiom:

Continuant v ∀>(endT ime, startT ime) (4.36)

that states that, if a continuant has a start and end time, then the restriction
must hold. If we knew the exact time points in which a continuant (at a concept
level) C comes into and out of existence then we can specify this as follows:

C v ∃=i
(startT ime) u ∃=j

(endT ime) (4.37)

where i, j ∈ Z are the known start and end times respectively.
The notion of a continuant having a start and end time is difficult to relate to

the notion of existence in a static environment. Since there is only one world of
evaluation in which all entities exist in, then having a start and end time seems
to be a static approach as opposed to a dynamic approach. If we could add
constraints that relations and class membership can only be made during these
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Figure 4.18: An example of modelling continuants in ALC(D). An element a
being an instance of a continuant C is related to do different time points in the
first example. Then reification is used in the second example to show how it can
be split in to two temporal parts.

existence times, then it would make more sense, but we see later on that this is
difficult to capture.

We do however run into problems regarding the identity constraints of indi-
viduals. Continuants are defined as those things that endure through time, that
maintain their identity, have no temporal parts, whilst being subject to change.
Maintaining identity through time is difficult to envision in a static environment.
Because of the one single world of evaluation, of course all elements maintain
their identity. The problems arise when we consider referring to a continuant
at different time points. Suppose we wanted to model some type of change of
a continuant C, by making a particular statement about C at time point i and
another statement about C at time point j. Consider Figure 4.18. Distinguishing
between individual a (representing C) at time points i and j is impossible since
there is only one individual a - we cannot make statements about a at i without
also making the same statements for a at j. The identity of a at i should be
identified by the binary relation p(a, i), similarly for a at j by the binary rela-
tion q(a, j). But in OWL, we cannot make statements or constraints on binary
relations (ternary relations are not allowed). Instead we have to adopt the use
of reification, where we introduce new individuals to act as a representation of a
binary relation. This is represented in the same Figure 4.18. a′ is a representation
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of “a during i” and “a during j”, and is related to two reified individuals, i′ and j′,
which have the original concrete features related to them. Since they are now in-
dividuals, we can make statements about them, so i′ and j′ act as representations
of the original relations. Any changes that we wanted to model can be made on
the new individuals since they technically stand in place for different temporal
parts of the same individual. This is not a new approach1 [ASP09]. As can be
seen, we have lost the identity of the original elements and any direct entailments
on the element involving any change along the way.

When considering tracing continuants through time, if no reification is needed,
then since we are in a static environment, no tracing needs to be done. Other-
wise, many individuals may be representing the same continuant at different time
points, and the tracing in time will be trying to link together each individual in
a structured way that conforms to some representation of time line, for example
through concrete feature chains. In the example above, to trace the concept C
through time, then we need to be able to refer to each temporal part of C. We
could first represent the example in the following axiom:

C v ∃hasPart1.C1 u ∃hasPart2.C2 (4.38)

(4.38) states that C has two parts, C1 and C2. To then indicate that the C1

part comes before the C2 part, we can take advantage of the fact that each part
is a continuant and thus has start and end times. If we consider hasPart1 and
hasPart2 to both be abstract features (functional relations are allowed to be used
in feature chains) we can specify this as follows:

C v ∃≥(hasPart2 ◦ startT ime, hasPart1 ◦ endT ime) (4.39)

which states that its C1 successor must end before its C2 successor starts. We
can trace a continuant through time in this way, by using feature chains to link
together its temporal parts.

We give TR1.1 a score of 7. Although we can effectively trace continuants
through time, by introducing temporal parts as shown in the example above, it
is not ideal. We have to introduce a new abstract feature and a corresponding
feature chain. We also give TR1.2 a score of 7 since when introducing new
elements we immediately lose all and any identity constraints on the original

1http://www.w3.org/TR/swbp-n-aryRelations/
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element. Change can be captured if we accept the representation of the temporal
parts of a single element, and we therefore give TR1.3 a 3. Overall, we give
TR1 a 3. Although it fails to capture the essence of identity and endurance, we
can still model them in the usual OWL way, and for the first time we can model
continuants at real time points. Although the existence is somewhat tricky to
comprehend in a static environment, making correct constraints about their start
and end times is possible.

TR2 The ability to model occurrents

TR2.1 Occurrents can have limited phases of existence

TR2.2 Occurrents can have temporal parts

Recall that occurrents are described as having temporal parts, limited phases of
existence, and are unable to undergo change. The start and end time concrete
features introduced in TR1 play well for occurrents. As before we introduce a
class Occurrent to represent all occurrents in the DL domain, which is disjoint
with the Continuant class.

We first show how we can model duration. Specifying duration can be achieved
with the predicate +n. We can specify a duration of length 3 for an occurrent O
as follows:

O v ∃+2(endT ime, startT ime) (4.40)

This specifies that the end time of O must be exactly 2 larger than its start point,
capturing a duration of length 3.

Occurrents are also described as having temporal parts. Consider O having
two temporal parts O1, O2, where O1 lasts 1 time point and O2 lasts 2 time points,
spanning over the entire life span of O. To enforce the correct sequence along
with the correct alignment of O’s temporal phases, we are forced to introduce
several abstract features: hasTemporalPart1 and hasTemporalPart2 as we did in
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TR1:

O v∃hasTemporalPart1.O1 u hasTemporalPart2.O2 (4.41)

O v∃=(startT ime, hasTemporalPart1 ◦ startT ime)

u ∃=(endT ime, hasTemporalPart2 ◦ endT ime)

u ∃=(hasTemporalPart1 ◦ endT ime, hasTemporalPart2 ◦ startT ime)
(4.42)

O1 v∃=(endT ime, startT ime) (4.43)

O2 v∃+1(endT ime, startT ime) (4.44)

(4.42) specifies that O’s start time is equal to its first temporal part’s start time,
whose end time is equal O’s second temporal parts start time, whose end time is
equal to O’s end time. (4.43) and (4.44) specify the obvious constraints on both
O1 and O2. From these axioms we also implicitly constrain the correct duration
of O without explicitly stating it.

We have to introduce an abstract feature for each temporal part and we use
predicate = to align the temporal parts correctly. And of course, if specific time
points are known for any occurrent we can specify this with the =n predicate. If
the identity of each temporal part was required to remain the same, then we would
be faced with a similar situation as in the continuant case, where we would be
forced to reify. However, this may not always be an issue since an occurrent’s parts
can often be seen as sub processes which certainly don’t maintain the identity of
its parent.

A type of duration can be captured, relatively easily, so we give TR2.1 a score
of 3. Temporal parts of occurrents can also be easily captured so we give TR2.2
a 3 overall. Again, we can see that we can quantify real time points if we know
exactly when an occurrent takes place, so we give TR2 a score of 33 overall.

TR3 The ability to model same time rigid relations between occurrents
or continuants

TR3.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR3.2 The relation can have a duration specified

We use part of again for our evaluation, starting with the continuant case. Our
example is C1 part of C2 for 3 consecutive time points. Our best attempt involves
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using reification due to the issues on temporalising a binary relation discussed
above. The obvious axiom

C1 v ∃partOf.C2 (4.45)

does not suffice since we cannot link the ∃partOf.C2 (the relation in question)
to a duration, let alone individual time points. We reify as follows:

C1 v ∃hasRigidRelation.(∃partOf.C2

u ∃+2(endT ime, startT ime))
(4.46)

The axioms states that C1 has has a rigid relation (a new relation) to an element
(a new reified element) that has a part of relation to C2 with a duration of 3.
Since we cannot apply concrete features on the relation itself, we are forced to
use reification to introduce a new element standing in for the relation. Although
a duration seems to be captured correctly, the biggest issues lie within the rigid
constraint. Although we are in a static environment, and technically the same
elements are related for the desired duration, they are not the elements that
should be related. It should be the instances of C1 and C2, but rather the former
is is actually the reified element. Another problem lies with having multiple rigid
relations. Suppose we also wanted the states of each continuant to be aligned,
i.e., when the relation holds, both continuants would need to be in an Active

state. Consider the following axiom

C1 v ∃hasRigidRelation(∃partOf.(C2) u ∃+3(endT ime, startT ime))u (4.47)

∃≤(startT ime, hasRigidRelation ◦ startT ime)u (4.48)

∃≥(endT ime, hasRigidRelation ◦ endT ime)u (4.49)

∃≤(hasRigidRelation ◦ partOf ◦ startT ime, hasRigidRelation ◦ startT ime)u
(4.50)

∃≥(hasRigidRelation ◦ partOf ◦ endT ime, hasRigidRelation ◦ endT ime)
(4.51)

(4.47) is as before, simply reifying the part of relation between C1 and C2 and
capturing the duration of 3. (4.48) now specifies that the start time of C1 must be
before or equal to when the relation holds and (4.49) specifies that the end time
must be equal to or after the relation ends, indicating that C1 is active throughout
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the relation. (4.50) and (4.51) also encode the same activity constraints for C2.
Although this seems adequate for the relation, a problem lies with the fact that
hasRigidRelation would have to be abstract, and therefore functional. If C1 was
part of another continuant, say C3, then to capture something similar, we would
need to introduce another distinct hasRigidRelation.

The same results hold for the occurrent case. As they are represented by the
same types of elements, we also are forced to model them in the same way, leading
to the same problems.

We give TR3.1 a score of 7, because we have to introduce a new individual to
make the relation hold for more than one time point, so we lose the identity of the
original individual. Also there is only one relation, representing the whole rigidity,
going against TR3.1. We give TR3.2 a 3 however, since we can capture the
duration on the reified relation correctly, even though there is only one relation.
For TR3 as a whole we give this a score of 7. Even though we can encode duration
and specific time points which helps in the occurrent case, the relation is not rigid
and we lose the important identity constraints.

TR4 The ability to model same time rigid relations between continu-
ants

TR4.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR4.2 The relation can have a duration specified

As before we score the whole of TR4 the same as TR3. There is no difference in
the modelling of rigidity between occurrents and continuants in ALC(D).

TR5 The ability to model same time relations between continuants

TR5.1 The relation must hold at a single time point (time:same)

Modelling same time relations in ALC(D) can be done in one of two ways, with
reification and without. We use C1 aligned with C2 as our running example.
Without using reification, we can model this in the standard way as follows:

C v ∃alignedWith.B (4.52)
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Since we are in a static environment the time:same feature is captured trivially,
the relation holds in the only time point. Although the relation holds in a single
world, there is actually no temporal information regarding the relation. Ideally,
we should use reification to model the relation as in the other cases, using a new
abstract feature hasSameTimeRelation:

C1 v ∃sameT imeRelation.(∃alignedWith.C2 u ∃=(startT ime, endT ime))

(4.53)

Here we specify that C1 has a relation to a reified individual, that is aligned
with C2 and its start and end time are the same, signifying that the relation
holds in a single time point. Using this approach would also allow us to quantify
when the relation may also hold, which may be beneficial to ontologies with this
information present. Having to use reification for same time relations shows that
it is not only rigid relations that suffer with this problem, although it does allow
us to quantify over the relation quite easily which is a positive outcome. We
give TR5.1 a 3 since the sub requirement is met. We give TR5 a 3, since the
reification problem arises again and the relation itself is not between the correct
individuals.

TR6 The ability to model past time relations between continuants

TR6.1 The relation must hold between individuals at present and
past time points (time:past)

develops from is a relation involving two time points t > t′ due to the time:past
feature, and two continuants C1 and C2. Again we see that the temporal con-
straints are on the relation itself, rather than the individuals. Ideally the standard
reification technique would be the first option due to the nature of the constraint,
but differentiating between t and t′ proves to be difficult. developsFrom also has
the dom:changed feature present in its annotation, but we leave this for TR7, and
focus on the time relation here. We can represent C1 at t develops from C2 at t′
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as follows:

(hPR = hasPastRelation)

C1 v ∃hPR.(∃developsFrom.C2 u ∃>(startT ime, endT ime))u (4.54)

∃=(hPR ◦ startT ime, startT ime)u (4.55)

∃=(hPR ◦ endT ime, hPR ◦ developsFrom ◦ endT ime) (4.56)

where hasPastRelation is a new abstract feature used to relate C1 to the reified
individual representing the relation. (4.54) simply specifies that C1 is related
to a reified individual, standing in for the developsFrom relation to C2, and its
start point is before its end point. (4.55) specifies that the start time of the
relation must be equal to the start time of C1, to ensure the relation can only
hold during C1’s existence, and (4.56) specifies a similar constraint for the C2

individual. The modelling is very similar to that of a rigid relation. We identify
two major issues with this modelling. The first is that developsFrom has to be
an abstract feature and thus be functional. It is often the case that multiple
developsFrom relations occur in a developmental chain and at any point in the
chain, an individual has develops relations to more than one element, if not all of
its predecessors. This cannot be allowed since the relation is functional indicating
that further reification would be needed to capture this. The second is related
to the first in that hasPastRelation is also an abstract feature, and if C1 had n
developsFrom relations, we would need n new abstract features.

We give TR6.1 a 3. The modelling is complicated, having to introduce new
individuals and new abstract features just to model a past relation, but the time
constraint itself can be captured. We give TR6 a score of 7 as a whole, due to
the fact that the relations themselves have to be abstract to meet the temporal
constraints we have and maintaining identity is no longer possible.

TR7 The ability to model the changing states of continuants, specifi-
cally their birth, death and other general changing states

TR7.1 Model a continuant coming into existence (birth)

TR7.2 Model a continuant going out of existence (death)

TR7.3 Model general changes of continuants (change)

developsFrom also has the dom:change feature in its temporal annotation. Car-
rying on from the example in TR6, suppose the change was a simple change in
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class. The only way to represent this would be to introduce further reified indi-
viduals, as in the example in TR1. To consider the birth and death constraints,
we use the relation child nucleus of. This relation holds between two elements x
and y where x ceases to exist when y starts to exist. In this example we can get
away with not reifying since the time constraints can be captured solely on the
elements themselves. We can model C1 child nucleus of C2 as follows:

C1 v ∃childNucleusOf.C2u

∃=(startT ime, childNucleusOf ◦ endT ime)
(4.57)

In this axiom, childNucleusOf is an abstract feature, and we enforce that the
existence of C1 happens immediately when C2 ceases to exist. If we did want
to mention something about the relation itself, then we would be in a similar
position as with developsFrom, where we would need reify the relation again.
The features dom:birth and dom:death seem to be automatically captured by the
concrete features. We give both TR7.1 and TR7.2 a score of 3, since we are
easily capturing their constraints correctly. TR7.3 however would receive a score
of 7. This is due to reification needed to express such a simple change. We give
TR7 a score of 3 overall.

TR8 The ability to model the time constraints of the following Allen’s
interval relations between occurrents: before′, during, before, meets,
meets′

TR8.1 Capture the temporal constraints intended by Allen’s rela-
tions

Concrete domains give us a powerful mechanism to model some of the complex
features that occurrents require, particularly Allen’s interval relations. We begin
by explaining the relation causally downstream of which has the same time re-
lation as Allen’s before′ relation. If O1 causally downstream of O2 then O1 must
start after O2 ends. We can model this with the following axioms:

(causallyDownStreamOf = cDO)

∃cDO.Occurrent v ∃≥(startT ime, cDO ◦ endT ime) (4.58)

O1 v ∃cDO.O2 (4.59)



CHAPTER 4. TEMPORAL EXTENSIONS EVALUATION 132

The relation only contains the time:before′ feature, and the temporal constraints
are not specific to individual instances or classes. Therefore in (4.58) we provide
what can be seen as a definition for the causally downstream of relation. (4.58)
states that if you have a causallyDownstreamOf relation to any occurrent, then
your start time must come after that occurrent’s end time. Then in (4.59), we
simply state that O1 is causally downstream of O2. Since O2 is an occurrent,
we can be assured that the constraint between the two time points are met cor-
rectly. The only downside to this way of modelling is that causallyDownstreamOf
becomes an abstract feature. If we wanted or needed several of these relations,
we would have to introduce many distinct abstract features, or otherwise use
reification again.

The remaining relations, happens during (during), precedes (before), immedi-
ately preceded by (meets′) and immediately causally upstream of (meets) can be
defined as follows:

(happensDuring = hD)

(precedes = p)

(immediatelyPrecededBy = iPB)

(immediatelyCausallyUpstreamOf = iCUO)

∃hD.Occurrent v ∃≥(startT ime, hD ◦ startT ime)u

∃≤(endT ime, hD ◦ endT ime) (4.60)

∃p.Occurrent v ∃≤(endT ime, p ◦ startT ime) (4.61)

∃iPB.Occurrent v ∃=(startT ime, iPB ◦ endT ime) (4.62)

∃iCUO.Occurrent v ∃=(endT ime, iCUO ◦ startT ime) (4.63)

ALC(D) is suited very well for occurrent relations using Allen’s interval con-
straints, especially since we can somewhat define the relations themselves. We
give TR8.1 a score of 3. The only problem we face in all examples is that of the
functionality of abstract features. Therefore, we give TR8 the same score of 3.

TR9 The ability to model relations between continuants and occurrents

TR9.1 Be able to make relations between the two types of distinct
elements
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Relations between continuants and occurrents can be modelled similarly in the ex-
clusive cases described above. As it currently stands, the two classes Continuant
and Occurrent have similar restrictions imposed on them, making modelling rela-
tions between them no more difficult than in the cases above. We begin with the
relation input of, and move onto more complex relations in the next requirements.
input of is a same time relation between a continuant and an occurrent. The re-
lation should only hold at one time point. We also assume that both entities
must be active during the relation. We can represent C input of O as follows:

(hasSameTimeRelation = hSTR)

C v ∃hSTR.(∃inputOf.O)u (4.64)

∃=(hSTR ◦ startT ime, hSTR ◦ endT ime)u (4.65)

∃≤(startT ime, hSTR ◦ startT ime)u (4.66)

∃=(hSTR ◦ inputOf ◦ startT ime, hSTR ◦ startT ime) (4.67)

Again, we use reification (4.64) to specify that the relation last only a single time
point (4.65), and also specify that both entities must be active before or equal
to when the relation itself takes place (4.66, 4.67). Again we are even able to
quantify when the relation takes place if it is needed. We give both TR9.1 and
TR9 a score of 3, again losing points as a whole due to the use of reification and
the functional nature of input of.

TR10 The ability to model relations between continuants and occurrents
over past, future, and present time points, each including the
continuant’s state constraints

TR10.1 Relate the two individuals at a single time point (time:same)

TR10.2 Relate the two individuals at a present and past time point
(time:past)

TR10.3 Relate the two individuals at a present and future time point
(time:future)

TR10.4 Correctly model the continuant coming into and out of exis-
tence (birth, death)

We have seen in previous requirements how domain constraints can be modelled
on continuants. We now show how these can be modelled when the range of the
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relation is an occurrent. We begin with the relation C existence starts during O.
As within the o-o relations, existence starts during O is not specific to particular
pairs of continuants and occurrents, but merely a general relation specifying when
the existence of a continuant begins w.r.t an occurrent. Therefore we define the
relation as follows:

(existenceStartsDuring = eSD)

C v ∃≥(startT ime, eSD ◦ startT ime) u ∃≤(startT ime, eSD ◦ endT ime)
(4.68)

Here we specify that C has an existenceStartsDuring relation to an O, and its
startT ime must occur during O’s life time (assuming that O is the filler of the
eSD relation). Again, due to the fact that existenceStartsDuring is abstract,
we encounter the problem of having to declare multiple existenceStartsDuring
relations, if multiple statements are to be made. We can constrain the other 3
relations in a similar way. existence starts during or after, existence ends at point
andexistence ends during or before can be modelled as follows:

(existenceStartsDuringOrAfter = eSDOA)

(existenceEndsAtPoint = eEAP )

(existenceEndsDuringOrBefore = eEDOB)

C v ∃≥(startT ime, eSDOA ◦ startT ime)

C v ∃=(endT ime, eEAP ◦ endT ime)

C v ∃≤(endT ime, eSD ◦ endT ime)

(4.69)

Once again, the only problems we see are that the features themselves are func-
tional. Otherwise, the constraints we can enforce are very powerful and most of
all, correct. We give each sub requirement a score of 3. The time relations here
specify something different from the c-c case. The main temporal constraint is
to do with the existence in the relation themselves. We give TR10 a score of 3.
It loses points for the functional nature of its relations, and the obvious static
nature of the environment, but relations can be captured between the two, and
in this case, the relations were between the same correct individuals (reification
was not needed).
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TR11 The ability to model same time rigid relations between continu-
ants and occurrents

TR11.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR11.2 The relation can have a duration specified

Modelling rigid same time relations between continuants and occurrents is just
as difficult as in the c-c rigid case, especially if the occurrent has temporal parts.
When the occurrent does not have temporal parts, the relations can be modelled
in a similar way as we did previously by using reification. When they do have
temporal parts then the relations become even harder to model, since each tempo-
ral part is represented by its own individual. We illustrate this using the involved
in relation, where a continuant C is involved in an occurrent O, in particular in
each of its temporal parts O1, O2 and O3. Without considering the constraints
on how the temporal parts are ordered, we could represent this as follows:

C v ∃involvedIn.O1 u ∃involvedIn.O2 u ∃involvedIn.O3 u involvedIn.O
(4.70)

but we will not be able to use involvedIn as an abstract feature without all
successors being the same, and even if they were, the constraints on when the
relation should hold for each temporal part would be incorrect. Therefore, we
would need to reify each relation individually, since each temporal part would be
represented by a different individual, in the same way as in previous rigid cases.
We give TR11.1 a score of 7 for the same reasons as in each previous rigid case.
As is the same for TR11.2 receiving a 3. Overall TR11 receives a score of 7,
again for the same reasons.

TR12 The ability to allow for multiple future time lines where relations
may or may not hold

TR12.1 The ability to express multiple futures where relations may
hold in one future and not in others

Unfortunately in ALC(D), due to the static environment and linear nature of the
encoded time line, there is no possibility for having possible futures. It is difficult
to express that there are two futures, where in one future a relation holds and in
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another the relation does not. The best we can get inALC(D) is to use disjunction,
where we can say the relation holds or it does not. To express that C capable of
carrying out O, we can use the following axiom:

C v ∃carriesOut.O t ¬∃carriesOut.O (4.71)

where we can also use reification to say when the relation should hold (as in the
previous examples). This is of course not what is intended, and thus not a faithful
representation of possible futures (the axiom is in fact a tautology). We could
further reify and have two reified elements that represent each relation, where C
is related to both, but this again is not what needs to be modelled as it would be
impossible to differentiate between the two. For these reasons, we give TR12.1
and TR12 a score of 7.

TR13 The ability to model relations between occurrents and continuants

TR13.1 Be able to make relations between the two types of distinct
elements

Similarly to TR9, continuant to occurrent relations can be modelled in the same
way as occurrent to continuant relations as there is no special constraints in the
order of the elements in the relation. We give TR13 the same score as TR9.

TR14 The ability to model same time rigid relations between occurrents
and continuants

TR14.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR14.2 The relation can have a duration specified

As with TR13, the order in which we specify the domain and range of the relations
in question have no effect on the difficulty of modelling. Modelling rigid relations
is as difficult in the TR11 case, therefore we give TR14 the same scores as TR11.

R15 Any extension should be decidable and of suitably low complexity,
have implementations or at least decision procedures for the most
common reasoning problems and be readily available for use
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The concrete domainD uses the domain Z and predicates {≤, <,=,=n, >,≥,+n}.
Recall from Chapter 2, as a result from [Lut01b], it was shown that any concrete
domain whose domain contains N, has a binary predicate for equality, a unary
predicate for equality with zero, and a binary predicate for incrementation, in the
presence of general TBoxes is undecidable for satisfiability and subsumption. In
our concrete domain D, we meet all of these conditions. N is contained within Z,
= is our equality predicate, = n is our predicate for equality with 0 (substituting n
for 0) and +n is our predicate for incrementation (substituting n for 1). Therefore
our concrete domain can be seen to be arithmetic, meaning that in the presence
of general TBoxes, ALC(D) would be undecidable, making it unsuitable. Losing
any of the predicates would be a huge loss to the language. Dropping +n would
make it difficult to capture duration. Dropping =n would limit our quantitative
expressivity and dropping = would destroy our alignment of sequencing and same
time relations. Removing general TBoxes would be too much of a loss on the DL
expressivity.

With regards to their usability in practice, unlike the vast amount of work
gone into researching the theoretical side of concrete domains in DLs, not much
work has gone into bringing them into production. From our research, tOWL is
the most recent work that has brought concrete domains into practice. tOWL

[MFK12, FMK07] is an OWL based temporal formalism, designed as a set of
extensions built on top of OWL-DL, that enables representation and reasoning
with time and temporal aspects. It extends the standard OWL-DL language with
a concrete domain based on the set Q and a standard set of binary predicates: {<
,≤,=, 6=,≥, >}. The tOWL extension contains 3 layers: 1. The concrete domain
layer, 2. the temporal representation layer which includes time points, intervals
and Allen’s interval relations [All83] (captured through syntactic sugar using the
predicates described above), and 3. the timeslice/fluents layer (incorporating
the Fluent ontology we go on to evaluate in the next Chapter). In 2012 they
implemented an ExpTime-complete algorithm for the ALC(C) fragment, including
several well known optimisations including absorption, unfolding, backjumping
and more. Even so, the underlying logic itself is not sufficient for the task at
hand - more expressive predicates are needed which we know we cannot have.

For this reason we give R15 a score of 7.
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4.2.1 Summary

We see that ALC(D) fails to fulfil the TRs, and in terms of the scores given, is
worse off than the previous case involving ltlALC and ctlALC. It is fair to say that
there are two main problems that this logic suffers from, the first being the static
environment requiring reification and the second being the detrimental nature of
functional relations (both abstract and concrete features). The static environment
is a big downfall for the logic. In a static world each element only exists once,
unlike in ltlALC where we have several elements with rigid interpretations over the
time line, possibly with different properties, which is what we desire. Due to this
static nature, we immediately have to move to reification to be able to consider
elements at different time points. Reification has its advantages and works to
some extent, but when considering temporal phenomena in bio-health ontologies
it has detrimental effects, the most prominent being the issue of identity. As soon
as we start having to introduce new elements to act as temporal representations
of individuals or as binary relations, we lose the identity criteria of the original
elements in question. This has a knock on negative effect on other important
features such as rigidity and modelling occurrents and continuants.

The usefulness of the concrete domain acting as a temporal representation of
a time line is hindered by how we can interact with it. Abstract (and functional)
features are necessary for the logic to be able to relate elements of the DL domain
with elements in the concrete domain, but having such features is also bad for
biological relations. As we saw, having some of the relations as abstract, such as
developsFrom means that an element can only have one developsFrom relation to
another element. But it is often the case that many developsFrom relations can
hold between individuals so we either have to sacrifice the temporal constraints,
or again use reification further becoming more and more unfaithful. The concrete
domain does give the logic many advantages over ltlALC however, including the
strict constraints and definitions we can make on certain relations (such as Allen’s
relations) and also the possibility to use the concrete domain in a quantitative
environment. We take away four important points from this evaluation: a static
environment is not sufficient, reification is not a viable option, abstract features
although powerful are very limiting to our depth of modelling, and quantification
over the time line can be very useful.
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4.3 Fluents Evaluation

The fluent approach is a static approach to a temporal representation. The
approach adopts a perdurantist, or four-dimensional view, where every entity is
considered to be a perdurant. That is, every element in the ontology can be seen
as having temporal parts. This approach is not seen as an extension so to speak
as the fluent approach is really just a fluent ontology, represented in standard
OWL, and anyone wanting to adopt the approach just has to conform to the
constraints in the ontology. We chose this temporal representation for evaluation
because of the nature of what the ontology intends to capture. Being able to refer
to an object’s different temporal parts seems like a much needed feature and it
relates to our TRs directly.

TR1 The ability to model continuants

TR1.1 Continuants must be traceable through time

TR1.2 Continuants must maintain their identity through time

TR1.3 Continuants must be able to undergo change

Using the fluent approach, we represent continuants in a standard OWL way;
defining a class Continuant to constrain the domain. But, in addition to this,
we also have the notion of having temporal parts of an element, representing
different temporal parts of an element over multiple temporal extents. The Fluent
approach mainly focuses on representing the temporal parts of individuals (as seen
in Chapter 2). We can apply the same notion of temporal parts to the classes
themselves since we are mainly focused on representing the temporal patterns at
a terminological and class level. Time is presented by classes of Time Intervals
[HP04] for which each temporal part is associated with an interval via a relation
called temporalExtent.

Suppose we had a continuant C and three time intervals t1, t2, and t3, ordered
consecutively, for which we wanted to make statements about C for over these
time intervals. The fluent approach suggests to use the relations temporalPartOf
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and temporalExtent to relate temporal parts to standard OWL classes, and tem-
poral parts to their respective time intervals. Consider the following axioms.

C@t1 v ∃temporalPartOf.C

C@t2 v ∃temporalPartOf.C

C@t3 v ∃temporalPartOf.C

C@t1 v ∃temporalExtent.t1
C@t2 v ∃temporalExtent.t2
C@t3 v ∃temporalExtent.t3

(4.72)

Here we introduce three temporal parts, C@t1, C@t2 and C@t3, which are tem-
poral parts of C at the time intervals, t1, t2 and t3 respectively. The idea behind
what we want to represent is actually quite promising: each temporal part is
meant to represent a unique temporal slice of the global instance of C. This
enables us to make statements about each different part indivudally, for example,
C@t1 may be when C was inactive, C@t2 may be when C was active and C@t3

may be when C was inactive again. Of course we could represent this in the
following axioms:

C@t1 v Before

C@t2 v Active

C@t3 v After

(4.73)

where we reuse the state classes introduced previously (without the obvious tem-
poral constraints) to account for the activity. We could even capture more basic
types of change in a similar way by simply declaring each temporal part to be
members of different classes, or have relations to different objects. Of course,
since we are again in a static environment, we are forced to accept that the ex-
istence we model is really the best we can do since we only have one world of
evaluation in which all entities exist at the only time point.

Since the fluent ontology incorporates OWL-Time, there are also possibilities
to define the intervals t1, t2 and t3 in a structured way, for example to state that
t1 comes before t2 etc. OWL-Time contains a set of object properties intended to
simply model Allen’s interval relations between its interval classes it defines. It
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has relations such as intervalEquals, intervalBefore, intervalMeets etc., used to re-
late instances of intervals. For example, intervalEquals is defined as (Manchester
Syntax)

ObjectProperty: intervalEquals

Domain: ProperInterval

Range: ProperInterval

we could then go on to constrain the intervals t1, t2 and t3 as follows:

t1 v ∃intervalBefore.t2
t2 v ∃intervalBefore.t3

(4.74)

The Time-Ontology does not have the expressivity to fully capture Allen’s rela-
tions however. For example, it would be perfectly legal to also add that t2 comes
before t1, creating a contradiction according to Allen’s calculus, highlighting some
of the temporal inadequacies of this ontology.

Any change that could need to be captured could be simply stated by declaring
constraints on each temporal part. For example, declaring C@t1 and C@t2 to be
members of different classes could represent this type of change.

Other big problems lie with the semantics and the fact that we are simply
again using reification, but rather on a class level than a relation level. We are
introducing new elements for every temporal part of a class and we immediately
lose any identity of any continuant, and therefore cannot trace an individual
through time easily. This means that capturing change and so on is difficult to
faithfully model. We give TR1.1, TR1.2 and TR1.3 each of score of 7. We give
TR1 however a score of 3. This is because although the semantic nature fails
to capture the requirements of continuants, the syntax of the temporal classes
themselves were actually quite useful.

TR2 The ability to model occurrents

TR2.1 Occurrents can have limited phases of existence

TR2.2 Occurrents can have temporal parts

From a static viewpoint, using the fluent approach should work well when mod-
elling occurrents since occurrents are perdurants. Since each entity is seen to
have a temporal part, referenced by relations to time intervals, it becomes quite
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easy to model each temporal part and also some type of duration of an occurrent.
As in the continuant case, we can reuse the classes and make statements about
parts of an occurrent O to determine its state:

O@t1 v Before

O@t2 v Before

O@t3 v Active

O@t4 v Active

O@t5 v After

(4.75)

These states are crucial for occurrents as they are supposed to have limited phases
of existence. As before, it is difficult to specify the order of these states, for
example the following axioms are still valid even though the order of the occurrent
states are incorrect:

O@t1 v Active

O@t2 v Before
(4.76)

We can again use the relations that are available in OWL-Time that simulate
Allen’s interval relations to try to structure the intervals correctly, but this will
not prevent us from making incorrect statements, which shows the temporal weak-
ness of the logic. However we can capture some type of duration this way, but
this refers back to the OWL-Time ontology, where durations refer to date-times.
When considering temporal parts of an occurrent, we can get this for free as a
consequence of the hasTemporalPart relation, since it models exactly what we
need to capture directly. We give TR2.1 a score of 7 since we cannot fully con-
strain what it means for an entity to exist in a static world with nothing other
than class membership to state existence. We give TR2.2 a score of 3 however
since when identity is not a concern it is possible to capture what is intended.
We give TR2 a score of 7 overall.

TR3 The ability to model same time rigid relations between occurrents
or continuants

TR3.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR3.2 The relation can have a duration specified
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Suppose we want to model that a continuant C1 was part of another continuant C2

for 3 time intervals, t1, t2 and t3. When adopting the fluent approach, we should
be referring to each temporal part of the continuants and make the relations on
them as follows:

C1@t1 v ∃partOf.C2@t1

C1@t2 v ∃partOf.C2@t2

C1@t3 v ∃partOf.C2@t3

(4.77)

Here we are stating that each temporal part of C1 at the time points in question
are related the corresponding C2 temporal parts. It does model a type of rigidity,
if we accept that the reified elements (the temporal parts) are in fact simulating
the original individual. And we also manage to capture some type of duration
on the relation itself based on what we state explicitly, which is a positive sign.
The downsides are that we do not manage to faithfully capture what is intended
by rigidity - the same elements are not related, and the relations are in no way
consecutive in time - we rely on the ordering of the time intervals through standard
OWL relations to structure these. It is also important to note that the fluent
approach does not provide any insight behind the temporalisation of the relations
themselves. For example, what if part of was to be considered a perdurant, and
it too could have its own temporal parts, such as partOf@t1 standing in for the
part of relation at the time slice t1. This would not directly solve our problem
but would be interesting to consider since no other logic that we have evaluated
allows the temporalisation of relations. We see similar results for the occurrent
case also. We give TR3.1 a score a 7. We give TR3.2 a score of 3 however since
some kind of duration is possible when considering which time intervals we state
the relations hold for. But overall, we give TR3 a score of 7.

TR4 The ability to model same time rigid relations between continu-
ants

TR4.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR4.2 The relation can have a duration specified

As before we score the whole of TR4 the same as TR3. There is no difference
in between the modelling of rigidity between occurrents and continuants in the
fluent approach.
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TR5 The ability to model same time relations between continuants

TR5.1 The relation must hold at a single time point (time:same)

Same time relations are particularly easy to model using the fluent approach. If
we wanted to state that a continuant C1 was aligned with another continuant C2

at a single time point t1, then the following axiom would suffice:

C1@t1 v ∃alignedWith.C2@t1 (4.78)

We only need to ensure that the time interval t1 lasts a single time point, which
can be done quite easily since the OWL-Time ontology also has classes for this
such as Time Instances. The axiom can also be seen to state that the relation
holds only at a single time slice too, since the relation holds only between those
temporal parts. This may be important for when relations need to only hold in
certain time slices and not in others. For that reason, we give TR5.1 a score of
3, and TR5 a score of 33.

TR6 The ability to model past time relations between continuants

TR6.1 The relation must hold between individuals at present and
past time points (time:past)

Modelling relations seen to take place over multiple time points is easy to envision
using the fluent approach and is also quite easy to model. For representing C1

develops from C2 at time points t1 and t2 where t1 > t2, we can simply use the
following axiom:

C1@t1 v ∃developsFrom.C2@t2 (4.79)

Here we state the temporal part of C1 at t1 has a develops from relation to the
temporal part of C2 at t2. Although in a static environment, and the relation
itself being static, the relation can be seen to have different start and end points,
since the time slices t1 and t2 are different, and therefore, the individuals it relates
belong to different time slices. If all time intervals have been set up correctly in
the ontology, then it would also be possible to add a type of eventuality to, for
the cases when exact time intervals are unknown. As an example, consider the
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following axiom:

C1@t1 v ∃developsFrom.(∃temporalPartOf.C2u

∃hasTemporalExtent.(∃before.t1))
(4.80)

Here we state in the right hand side of the axiom that the developsfrom successor
has to be a temporal part of C2 and has a temporal extent that comes before t1.
Again, we rely fully on the intervals being structured correctly, but also on the
fact that the axiom is correct - one needs to ensure the correct interval is used
in the before successor, which should match the interval on the left hand side’s
temporal part.

The develops from relation also has a change feature present but we leave this
for TR7 which focuses more on the states of continuants. We give TR6.1 a score
of 3 and TR6 as a whole a score of 3 also. Although the idea behind the relation
seems plausible, and the syntax - specifically being able to simulate a relation
over multiple time points - seems ideal, there is still room for improvement.

TR7 The ability to model the changing states of continuants, specifi-
cally their birth, death and other general changing states

TR7.1 Model a continuant coming into existence (birth)

TR7.2 Model a continuant going out of existence (death)

TR7.3 Model general changes of continuants (change)

TR7 involves the relations child nucleus of and develops from, which includes the
features birth, death, time:past and changed. We saw in TR6 how the time:past
feature could be captured so we focus mainly on the state change features here.
Starting first with the simple change seen in develops from, suppose we use the
same example where C1@t1 develops from C2@t2. The development could have
been a simple change in class where C1 could have originally been a C3 at t2.
Development is usually a relation where the identity of the elements in the relation
are the same, although this is not always the case. To maintain identity, ideally
the class C1@t2 should be a temporal part of C3 at t2. If this was the case, then
this should be captured in the axiom

C1@t1 v ∃temporalPartOf.C3 (4.81)
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However, to correctly conform to the fluent ontology, C1@t1 should have the
temporal extent t2, but it has the temporal extent t1. This is obviously a problem,
and shows that it is impossible to maintain the identity when considering a change
of this nature. Instead, we are forced to further reify and introduce several new
individuals to account for simple types of change. Therefore the change can
simply be captured in the axiom:

C2@t2 v C3 (4.82)

child nucleus of holds two more serious types of change involving existence.
These are of particular importance as outlined in TR1 and TR2, but here they
are specific to the relation at hand. If we want to specify that C1@t1 was a child
nucleus of C2@t2 we could do so as follows:

C1@t1 v ∃childNucleusOf.C2@t2 (4.83)

C1@ti v Before (4.84)

C2@tj v After (4.85)

In (4.83) we state simply that the temporal part of C1 at the time interval t1 has
a child nucleus of relation to an instance of a temporal part of C2 at t2. (4.84)
holds for all time intervals ti that are declared to occur before t1 to capture that
no temporal part of C1 existed before t1 and (4.85) holds for all time intervals
tj that are declared to occur after t2 to capture that no temporal part of can
exist after the relation holds. Again, we rely on making sure the time intervals
are declared and structured correctly in order for this to work and it would still
be valid to make any statement about a class that is meant to be non existent.
This again highlights the weakness of the fluent approach. It is still legal to make
any statement about a class in the before or after state. We give TR7.1, TR7.2
and TR7.3 a score of 7, due to the problems with identity and existence. And
because of these reasons we give TR7 a score of 7.

TR8 The ability to model the time constraints of the following Allen’s
interval relations between occurrents: before′, during, before, meets,
meets′

TR8.1 Capture the temporal constraints intended by Allen’s rela-
tions
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Since the fluent ontology incorporates the OWL-Time ontology, which itself has
encodings of Allen’s relations as object properties, if we wanted to model axioms
using Allen’s relations we can do so quite easily. For example, suppose we had
two continuants, O1 and O2 where where O1 was present at the time intervals t1
and was immediately causally upstream of (meets) O2 which was present at the
time interval t2. The meets relation itself should hold on the time intervals, so
we declare the axiom:

t1 v ∃meets.t2 (4.86)

Then by declaring that O1@t1 as the temporal part of O1 and a temporal extent
of t1, (similarly for O2 and t2), the meets relation indirectly holds between the two
temporal parts. As before, there is nothing stopping us from making temporally
incorrect statements, for example declaring that t2 happens before t1, to try and
force a contradiction - the relations are just simple object properties and nothing
more, they contain no temporal information. And the actual relation does not
hold on the temporal parts themselves but on their temporal extents limiting the
use of standard OWL reasoning. We can model the other relations in a similar
way. We give TR8.1 and TR8 both a score of 7, due to their limitations in
temporal expressiveness.

TR9 The ability to model relations between continuants and occurrents

TR9.1 Be able to make relations between the two types of distinct
elements

Once again, continuants and occurrents are fundamentally the same type of ele-
ments when modelling using the fluent approach. They differ only in what class
they belong to. Therefore, modelling relations between the two should not be
more difficult as in either exclusive case. We show this using the relation input
of. input of is a same time relation that specifies that a continuant is the input of
some process. This is an example of a relation that should only hold at a single
time point and not in all time points. This works well with the fluents inter-
pretation of time, since we have already seen that making relations between the
temporal parts of classes can be interpreted as only holding at the times involved
in the temporal parts. Suppose we want to model that the continuant C at t1
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was the input of the occurrent O at t1. Then the axiom:

C@t1 v ∃inputOf.O@t1 (4.87)

Here we specify that the temporal part of C at t1 is a part of temporal part of O
at t1. Since we are referring to each class’s temporal part then we can view this
relation as only holding between each temporal part, and therefore only at the
time interval t1. And again, we can add constraints to ensure that t1 only lasts a
single time point. Since occurrents often span over multiple time points, then we
will again face problems with identity if we were relating a single continuant to
several parts of the same occurrent (as seen previously). We give TR9.1 a score
of 3 since relations between the two types of entities can obviously be captured,
and in some cases reasonably accurately. We give TR9 a score of 3 also, losing
points again with the issues of identity.

TR10 The ability to model relations between continuants and occurrents
over past, future, and present time points, each including the
continuant’s state constraints

TR10.1 Relate the two individuals at a single time point (time:same)

TR10.2 Relate the two individuals at a present and past time point
(time:past)

TR10.3 Relate the two individuals at a present and future time point
(time:future)

TR10.4 Correctly model the continuant coming into and out of exis-
tence (birth, death)

Due to the general simplicity of the fluent approach, the requirements for TR10
can be generalised over those we have seen in previous TRs, specifically, TR7,
TR6, TR2 and TR1. We therefore skip the detailed evaluation as it will be a
repeat of those already seen. We give TR10.1-10.4 each a score of 3 and TR10 a
score of 3 overall.

TR11 The ability to model same time rigid relations between continu-
ants and occurrents

TR11.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)
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TR11.2 The relation can have a duration specified

As in TR3 and TR4, rigid relations prove difficult to capture, even between
continuants and occurrents. The same problem exists - identity. Suppose we
wanted to model that a continuant C was involved in and occurrent O for its
entire life time of the three time intervals, t1, t2 and t3. The obvious axioms
would be as follows:

C@t1 v ∃involvedIn.O@t1

C@t2 v ∃involvedIn.O@t2

C@t3 v ∃involvedIn.O@t3

(4.88)

As mentioned above, the same problems exist involving the identity of the indi-
viduals that are being related (see TR3 for further explanation). We can capture
some type of duration, based on what we state in the axioms, but the duration
is not on the relation, but rather the axioms as a whole. It is possible to in-
troduce a new occurrent, say O@t′, where t′ can be seen as the time interval
totally covering t1, t2 and t3, i.e., t′ = t1 + t2 + t3. We could then state that
C@t′ v ∃involvedIn.O@t′t. We would then have use OWL-Time to relate each
interval in the right way. For the reasons outlined above, we give TR11.1 a score
a 7 and we give TR11.2 a score of 3. Overall, we give TR11 a score of 7.

TR12 The ability to allow for multiple future time lines where relations
may or may not hold

TR12.1 The ability to express multiple futures where relations may
hold in one future and not in others

As we are in a static environment, there is no option for having multiple future
time lines, since technically there is no time line to start with. The time line that
we consider is implied by the intervals declared, i.e., all subclasses of temporal
extents, which can be structured in some way that simulates a time line. But
in OWL-Time, there is only one of these time lines. There is nothing stopping
us from extending this however, to allow the possibility of having multiple time
lines, at least at a very high level. For example, we could declare sets of disjoint
intervals that are meant to represent different temporal structures to be used as
potentially different time lines. For example, the relation capable of is described
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as a relation between a continuant and an occurrent in which the continuant is
capable of carrying out the occurrent. Using carriesOut as a standard relation,
we could model this as follows:

C@t1 v ∃carriesOut.O@t1 (4.89)

C@t1
′ v ¬(∃carriesOut.O@t1

′) (4.90)

(4.89) refers to the temporal parts of both C and O at the time intervals t1 and
(4.90) refers to the time intervals t1′. The idea is that both t1 and t1′ represent the
same time interval, but in separate temporal structures, and therefore different
time lines. In the t time line, we declare that C@t1 has a carriesOut relation to
O@t1 and in the t′ time line, we state that no such relation exists between the
two classes. Our approach is clearly not entirely faithful or adequate - we will
eventually have to reproduce all time intervals for every separate time line we
need, along with their structures leading to a large increase in the ontology, but
it still captures some type of possible future. Therefore we score TR12.1 with 3,
but TR12 7.

TR13 The ability to model relations between occurrents and continuants

TR13.1 Be able to make relations between the two types of distinct
elements

Similarly to TR9, continuant to occurrent relations can be modelled in the same
way was occurrent to continuant relations as there is no special constraints in the
order of the elements in the relation. We give it the same score as TR9.

TR14 The ability to model same time rigid relations between occurrents
and continuants

TR14.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR14.2 The relation can have a duration specified

As with TR13 the order in which we specify the domain and range of the relations
in question have no positive change. Modelling rigid relations is as difficult in the
TR11 case, therefore we give TR14 the same scores.
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R15 Any extension should be decidable and of suitably low complexity,
have implementations or at least decision procedures for the most
common reasoning problems and be readily available for use

The fluent ontology is an OWL ontology. It is not an extension to OWL by
any means. This makes its suitability adequate. Its suitability is as good as the
suitability of OWL is for ontology languages in general. Since it is encoded in
OWL, there are many existing tools and support which are actively maintained
and readily available. Anyone wishing to use the ontology can simply just import
it and confine to its rules. We therefore give R15 a score of 33.

4.3.1 Summary

We see that this approach fails to meet most of the temporal requirements. The
only TR that the logic met completely was TR5, which was considered to be
the only TR that needed minimal temporal features to satisfy. This result was
not surprising however as we are still in OWL with no real temporal extension,
only an ontology that describes temporal patterns. The main issues the approach
suffered from was the problem of using reification to model temporal parts of an
entity. Introducing elements to account for temporal parts of a temporal entity
leads to several problems involving identity and existence, as was evident in the
majority of the temporal requirements that held these features. These issues were
also apparent in the original Fluent ontology paper [WF06] with regard to their
original use case, as what they describe as Redundant Objects, again referring to
the problem of reification leading to problems with identity conditions. When it
comes to some of the most important temporal features, such as rigidity, it was
clear that the approach was a good attempt to model what was needed, in terms
of the syntax and the intended meaning of the relations. Being able to refer to
the temporal part of an entity directly seems like a great idea, and it provides
a great insight into considering the possibility of the temporal parts of relations
also, but the problem lies with how the logic interprets those temporal parts and
the fact that reification was used, leading to an unfaithful representation of the
temporal features required. The underlying problem was that the environment
was wholly static. Every entity we could have would be entirely static, and there
was no way it could gain any temporal advantage when compared to previous
extensions, which had some type of dynamic or non static entities.
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ltlALC ALC(D) fl
TR1 3 3 3

TR1.1 3 7 7

TR1.2 3 7 7

TR1.3 7 3 7

Table 4.2: TR1 Scores evaluated against ltlALC, ALC(D) and fl

ltlALC ALC(D) fl
TR2 7 33 7

TR2.1 7 3 7

TR2.2 3 3 3

Table 4.3: TR2 Scores evaluated against ltlALC, ALC(D) and fl

The positive aspects we take away from this evaluation are that being able to
refer to an element’s temporal parts comes with many benefits towards meeting
the temporal requirements and the possibility of considering temporal parts of
relations could also be a positive outcome.

We present a list of tables, Tables 4.2-4.16, summarising the results of the
evaluation of ltlALC & ctlALC, ALC(D) and the Fluent ontology (fl) against
the TRs, as evaluated above. We will use these results as a means to guide the
design and investigation of a new TDL in the next chapter.

ltlALC ALC(D) fl
TR3 7 7 7

TR3.1 3 7 7

TR3.2 7 3 3

Table 4.4: TR3 Scores evaluated against ltlALC, ALC(D) and fl
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ltlALC ALC(D) fl
TR4 7 7 7

TR4.1 3 7 7

TR4.2 7 3 3

Table 4.5: TR4 Scores evaluated against ltlALC, ALC(D) and fl

ltlALC ALC(D) fl
TR5 3 7 33

TR5.1 3 3 3

Table 4.6: TR5 Scores evaluated against ltlALC, ALC(D) and fl

ltlALC ALC(D) fl
TR6 33 7 3

TR6.1 3 3 3

Table 4.7: TR6 Scores evaluated against ltlALC, ALC(D) and fl

ltlALC ALC(D) fl
TR7 3 3 7

TR7.1 7 3 7

TR7.2 7 3 7

TR7.3 3 7 7

Table 4.8: TR7 Scores evaluated against ltlALC, ALC(D) and fl

ltlALC ALC(D) fl
TR8 3 3 7

TR8.1 3 3 7

Table 4.9: TR8 Scores evaluated against ltlALC, ALC(D) and fl

ltlALC ALC(D) fl
TR9 3 3 3

TR9.1 3 3 3

Table 4.10: TR9 Scores evaluated against ltlALC, ALC(D) and fl

ltlALC ALC(D) fl
TR10 3 3 3

TR10.1 3 3 3

TR10.2 3 3 3

TR10.3 3 3 3

TR10.4 7 3 3

Table 4.11: TR10 Scores evaluated against ltlALC, ALC(D) and fl
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ltlALC ALC(D) fl
TR11 7 7 7

TR11.1 3 7 7

TR11.2 7 3 3

Table 4.12: TR11 Scores evaluated against ltlALC, ALC(D) and fl

ctlALC ALC(D) fl
TR12 33 7 7

TR12.1 3 7 3

Table 4.13: TR12 Scores evaluated against ctlALC, ALC(D) and fl

ltlALC ALC(D) fl
TR13 3 3 3

TR13.1 3 3 3

Table 4.14: TR13 Scores evaluated against ltlALC, ALC(D) and fl

ltlALC ALC(D) fl
TR14 7 7 7

TR14.1 3 7 7

TR14.2 7 3 3

Table 4.15: TR14 Scores evaluated against ltlALC, ALC(D) and fl

ltlALC ALC(D) fl
R15 7 7 33

Table 4.16: R15 Scores evaluated against ltlALC (and ctlALC), ALC(D) and fl



Chapter 5

[x]- A New Family of TDLs

How can we extend DLs to accommodate for the Temporal Require-
ments?

5.1 Introduction

As we saw in the previous Chapter, the three temporal extensions we evaluated,
ltlALC (and ctlALC), ALC(D) and the Fluent ontology, were not fully suitable
for modelling the temporal nature of bio-health ontologies, w.r.t the Temporal
Requirements (TRs) identified in Chapter 3, and some were even computationally
inadequate to do so. This leaves us with two options: to further develop one of
the current extensions to meet the TRs, or to design a new extension to meet the
TRs. Although an extension may seem easier and more sensible, we believe that
the second option is more suitable. The first thing to take into account is that the
evaluated extensions were not created or investigated specifically for this problem
at hand, and there is no guarantee that the logics can be extended at all. We
have already seen that some features, such as rigidity, immediately makes some
of the logics undecidable. Therefore, an extension could rather be seen as both
a restriction and an extension to attempt to make it more suitable. Instead, we
adopt a bottom up approach, by designing a new TDL based on what we learnt
in the previous evaluation section.

We proceed as follows. Whilst considering the TRs along with the scores each
logic received during the evaluation, we plan to pick and choose certain aspects
of each logic that gave it an advantage or performed well on certain TRs, whilst
at the same time, keeping the logic as simple as possible, trying not to push the

155
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boundaries on decidability. We will then go on to define the syntax and semantics
of the new logic. We will then attempt to show the suitability of the logic by
evaluating it against the TR1-TR14, as we did previously. For R15, we will show
decidability results and complexity analyses of the common reasoning problems
of the new logic in Chapter 6. We will then go on to design and implement
reasoners for the new logic to show its usability and practicality in Chapter 7.

5.2 Defining the Syntax

Based on the evaluation in the previous section, we saw that all logics have useful
features in their syntax. In ltlALC and ctlALC, using temporal operators on
class expressions proved useful in a qualitative environment, such as being able
to relate a class to points on a time line, such as the next moment in time (©)
or some time in the future (♦). However the logic lacked the ability to consider
specific time points along a time line. The problem was that there was no way to
consider class expressions or axioms to only hold at certain points in time. There
was also no possibility to use the temporal operators on the relations, which
were needed in some cases. ALC(D) also had a nice syntax w.r.t the predicates
available and how they interact with the concrete domain. Being able to relate
start and end times of elements to specific points on the time line was hugely
beneficial during its evaluation. The problems it faced were the functional nature
of the abstract and concrete features. The abstract features were both part of
the logic’s success and failure. Their functionality characteristics allowed us to
express powerful temporal constraints, but the fact that they were functional
limited exactly how much you could say for one given element. The other major
problem was again that relations themselves could not be temporalised, without
the use of reification. A type of duration could also be captured with the concrete
features and predicates given, which was also beneficial. The fluent approach had
a surprisingly good syntax. Being able to refer to a class at different time slices
(or intervals) was a good advantage. This approach could technically be applied
to roles themselves too. The problems it faced were not issues directly with the
syntax, but rather the semantics. A type of reification was again used, and we
needed many axioms to relate temporal parts of a class to the whole part itself.

In an ideal setting, we would like to easily be able to relate both classes and
roles (the building blocks of class expressions) to particular points or durations
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on a given time line, whether they be specific or equivocal ones. Our first choice
was to decide how to access points on a given time line. We decided to use time
point intervals, either of the form [i, j] or [i, j]x where i, j ∈ Z and i ≤ j and
x is a variable. The first interval is a quantitative interval where we consider
real time points. For example [0, 2] corresponds to the interval made up of the
sequence of three time points 0, 1 and 2. The second can be seen as a qualitative
interval, where the variable x is quantified over all time points in Z. The interval
[0, 2]x represents all sequences of consecutive time points of length three over Z:
{. . . , [−1, 0, 1], [0, 1, 2], [1, 2, 3], [2, 3, 4], . . .}.

Definition 22 (Interval)
An interval λ is of the form [i, j] where i, j ∈ Z and i ≤ j. We call i the start
point of λ and is denoted as λs. Similarly j is the end point of λ and is denoted
as λe.

A variable interval (v-interval) λx is of the form [i, j]x where i, j ∈ Z, i ≤ j

and x is a variable. We call i the start point of λx and is denoted as λsx and
similarly j is the end point of λx and is denoted as λex.

We use the notation [i] and [i]x as a syntactic sugar for an interval whose start
and end points are the same, i.e. [i, i] and [i, i]x.

The intuition behind the intervals is that classes and roles can be annotated
with intervals where one should be able to refer to that particular class or role at
different time points or durations on the time line, without the need for additional
properties. For example, the annotated class A[0,1] would refer to the class A
at time points 0 and 1. Similarly the annotated role R[0,2] would correspond
to the role R at time points 0, 1 and 2. In the class example, it looks very
similar to both the ALC(D) and Fluent approach. For example, the ALC(D)

class expression A u ∃=0(startT ime) u ∃=1(endT ime) could be seen as similar
to A[0,1], as well as the Fluent class A@t1 where t1 was the interval [0, 1] and
A@t1 was a temporal slice of another static class A. The differences will be that
we do not need additional relations to specify when the start or end points of
the class in question are, or that it is a temporal part of another more general
class (although this will be later explained in the semantics). ltlALC can not
capture anything like this due to its qualitative nature. The annotated role R[0,2]

has no counterpart in either logic without reification and even then does not
come close to a similar representation. For the v-interval examples, ALC(D) and
ltlALC have similar representations. The class A[0,1]x stands for the class A at any
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two consecutive time points along the time line. This is similar to the ALC(D)

class expression A u ∃+1(startT ime, endT ime). It is also more similar to the
ltlALC class expression A u ©A. Again, the role R[0,1]x can not be captured in
ltlALC (unless temporal constraints can be added on roles as studied in [LWZ08,
AFWZ02]), and not without reification in ALC(D). The intuition behind the
duration is that the intervals themselves encode a duration, seen as the count of
an interval’s time points. From a user perspective, this saves us having to create
large class expressions as we saw in ltlALC. It is also important to note at this
stage that the intervals are only applied to classes and roles, not any complex
class expression, as can be done elsewhere. We need to be careful in our extension
to avoid undesirable effects (such as undecidability), so we plan to keep the logic
as expressive as possible whilst being as simple as possible, limiting what we will
consider a requirement over a desire.

We now provide a definition of the syntax of the new temporal extension.
We combine the extension, which we denote as [x], with the standard DL ALC.
We use ALC to make the evaluation as fair as possible when comparing with the
previously evaluated logics, and also due to its popularity and its many known
complexity results. For now, we introduce two separate extensions. The first is
ALC[ ], which uses only the standard intervals in its syntax. The second, called
ALC[x] uses only the variable intervals. After defining the semantics, we will go
on to explain how the two can be combined in two distinct ways to form two
variants, ALC[ ][x] and ALC[x][ ].

We now go on to define the syntax of each extension.

5.2.1 ALC [ ] Syntax

The syntax of ALC[ ] concept descriptions are an extension of ALC concepts with
the addition of intervals occurring on concept and role names. In ALC, concept
descriptions are built from countably infinite sets Ncon and Nrole of concept and
roles names respectively. Since we now allow for intervals to appear on these
names, we define N [ ]

con and N [ ]
role to be countably infinite and mutually disjoint sets

of concept names and role names annotated with intervals respectively. Formally,
N

[ ]
con = Ncon × Λ and N [ ]

role = Nrole × Λ, where Λ is the set of all intervals.
Concept descriptions in ALC[ ] are inductively defined with the constructors

{u,t,∃,∀,⊥,>,¬} according to the following definition:
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Definition 23 (ALC[ ] Concept Descriptions)
Let Aλ ∈ N

[ ]
con be an annotated atomic concept, Rλ ∈ N

[ ]
role be an annotated

atomic role (role name), C, D be arbitrary concept descriptions and λ ∈ Λ be an
arbitrary interval. Then ALC[ ] concept descriptions can be formed according to
the following syntax rules:

C,D −→ >λ | ⊥λ | ¬C | Aλ | C uD | C tD | ∃Rλ.C | ∀Rλ.C

TBoxes in ALC[ ] are defined in the usual way:

Definition 24 (ALC[ ] Terminological Axioms & TBoxes)
Let C,D be arbitrary ALC[ ] concept descriptions. Terminological axioms are of
the form

C v D or C ≡ D (5.1)

An ALC[ ] TBox is a finite set of these axioms.

When considering ABoxes, since we want to keep a rigid interpretation of
individuals, there is no need to also annotate individuals with intervals as we did
with concept and role names. If we wanted to keep to standard then N

[ ]
ind =

Nind, where Nind is the standard countably infinite set of individual names, also
mutually disjoint with Ncon and Nrole.

Definition 25 (ALC[ ] Assertions & ABoxes)
Let C be an arbitrary ALC[ ] concept description, Rλ be a role name from N

[ ]
role

and a and b be individual names from N
[ ]
ind. Assertional axioms are of the form

C(a) or Rλ(a, b) (5.2)

An ALC[ ] ABox is a finite set of these axioms.

Definition 26 (ALC[ ] Ontology)
An ALC[ ] ontology (sometimes referred to as an ALC[ ] knowledge base K) O is a
pair (T ,A) where T is an ALC[ ] TBox and A is an ALC[ ] ABox.

Next, we introduce some notations for interval occurrence that will be useful
for defining several functions on ALC[ ] ontologies required later on in this chapter.

Definition 27 (Interval Occurrence)
Let λ be an interval. λ occurs in:
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• a concept description C if there is some annotated concept or role name for
which λ is the interval for

• a TBox T if λ occurs in some concept description C where C ∈ α and
α ∈ T

• a ABox A if λ occurs in some concept description C where C ∈ α and
α ∈ A

• an Ontology O = (T ,A) if λ occurs in T or A

Definition 28 (Minimum and Maximum points of a Concept Description, TBox,
ABox and Ontology)
Let min and max be functions that return the minimum and maximum time points
of intervals occurring in concept descriptions, TBoxes, ABoxes and Ontologies.
Let C be a concept description, T a TBox, A and ABox and O = (T ,A) and
Ontology. Let minimum and maximum be standard arithmetic functions of
arity n that return minimum and maximum integers from a list of n integers
respectively.

• min(C) = minimum{λs | for all λ that occur in C}

• max(C) = maximum{λe | for all λ that occur in C}

• min(T ) = minimum{min(C) | for all C that occur in T }

• max(T ) = maximum{max(C) | for all C that occur in T }

• min(A) = minimum{min(C) | for all C that occur in A}

• max(A) = maximum{max(C) | for all C that occur in A}

• min(O) = minimum{min(T ),min(A)}

• max(O) = maximum{max(T ),max(A)}

5.2.2 ALC [x] Syntax

The syntax of ALC[x] concept descriptions are defined in the same way as ALC[ ]
concept descriptions substituting the standard intervals for v-intervals. Therefore
we introduce the sets N [x]

con and N [x]
role to be countably infinite sets of class names
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annotated with variable intervals and role names annotated with variable intervals
respectively. Formally N [x]

con = Ncon × Λx and N [x]
role = Nrole × Λx where Λx is the

set of all variable intervals over the variable x.
Concept descriptions in ALC[x] are inductively defined with the constructors

{u,t,∃,∀,⊥,>,¬} according to the following definition:

Definition 29 (ALC[x] Concept Descriptions)
Let Aλx ∈ N

[x]
con be an annotated atomic concept, Rλx ∈ N

[x]
role be an annotated

atomic role (role name), Cx, Dx be arbitrary concept descriptions where all class
and role names use the same variable x and λx ∈ Λx be an arbitrary interval.
Then concept descriptions can be formed in ALC[x] according to the following
syntax rules:

Cx, Dx −→ >λx | ⊥λx | ¬Cx | Aλx | Cx uDx | Cx tDx | ∃Rλx .Cx | ∀Rλx .Cx

TBoxes in ALC[x] are defined in the usual way with the addition that every
v-interval used in a terminological axiom must use the same variable.

Definition 30 (ALC[x] Terminological Axioms & TBoxes)
Let Cx, Dx be arbitrary ALC[x] concept descriptions. Terminological axioms are of
the form

Cx v Dx or Cx ≡ Dx (5.3)

An ALC[x] TBox is a finite set of these axioms.

Assertions are also defined in the usual way, with the addition of indexes
appearing on each assertion.

Definition 31 (ALC[x] Assertions & ABoxes)
Let Cx be an arbitrary ALC[x] concept description, Rλx be a role name from N

[x]
role,

a and b be individual names from N
[x]
ind (defined in the obvious way) and i ∈ Z.

Assertional axioms are of the form

Cx(a)〈i〉 or Rλx(a, b)〈i〉 (5.4)

An ALC[x] ABox is a finite set of these axioms.
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Ontology

Definition 32 (ALC[x] Ontology)
An ALC[x] ontology O is a pair (T ,A) where T is a TBox and A is an ABox.

Other Definitions

min and max have slight changes in their definitions due to the indexes used in
an ABox. When defining min(A) and max(A), each index i of each assertion is
added to each λs and λe index in the assertion to account for the shift. Otherwise,
the min and max are defined as usual.

5.3 Defining the Semantics

So far we have introduced the syntax of the new extensions involving intervals
and v-intervals. We now go on to investigate and design the semantics of each
extension.

We discussed in the previous section using integers as the representation of
our time line, but not the precise way in which we intend to embed these into
the semantics. Our first decision was to choose the discrete and linear structure
of Z as our temporal dimension. Z, being discrete and unbounded in both direc-
tions, other than the issue of being non branching (for TR12), we believe would
be the best temporal structure, leaving us with no limitations on representing
information in the past or future. The intervals we defined previously are ex-
actly interpreted as sequences of time points. We found that in both ltlALC and
ALC(D) when we used N or Z respectively as our temporal dimension, we did not
encounter any problems specifically with each representation (although we did
encounter problems with wanting to discuss previous time points in ltlALC not
only with the time line but also the operators allowed). We opt to use Z to allow
us as much flexibility as possible, in both temporal directions.

ltlALC has the most beneficial semantics, specifically to do with their possible
world semantics. The semantics allows for the rigid interpretation of individuals
which proved very useful when considering notions such as identity and allowing
elements to undergo change, which is crucial in biological modelling. It also al-
lowed us to view rigidity on relations in almost the desired way, despite its infinite
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and often undecidable nature. The problems we encountered with this represen-
tation was that we couldn’t quantify the time line. The concrete domain approach
had a nice way to interact with the time points by means of the predicates we
defined but the failures of the logic were mainly related to its static environment.
Since we want to avoid the necessity for reification which was a consequence of
the static environment, and overcome the difficulties when it comes to modelling
features such as change, we choose to embed the time line into a possible world
semantics.

For the ALC[ ] case, the time line will be mapped to a subsequence of Z. In
the qualitative case, i.e. ALC[x], the time line will simply be isomorphic to Z. The
first thing we will ensure will be the rigid interpretation of individuals, similar to
what we saw in ltlALC. This will also aid in our design of capturing some kind
of rigid roles. We first begin with defining the semantics of annotated classes.
Recall that the class A[0,2] informally reads as

The class A at time points 0, 1 and 2

the keyword here being “and”. We plan to interpret the intervals with conjunctive
readings, i.e. elements belonging to this class should be instances of A at times
zero one and two. Or put another way, this class defines a set of all elements
that are instances of A at times zero, one and two. We plan to interpret roles the
same way. R[0,2] should be read as all pairs of elements that are R related at times
zero, one and two. If we were to also interpret this in a conjunctive reading then
this would really be all individuals who were consecutively related to the same
individual for the desired time. This in itself encodes a type of rigidity, which
we define as localised rigidity (which will become clearer later on) as the rigidity
is local to the interval itself. Before discussing this in more detail, we go on to
formally define semantics of both ALC[ ] and ALC[x].

5.3.1 ALC [ ] Semantics

The semantics of concept descriptions is defined in terms of a temporal interpre-
tation with possible worlds. The possible worlds can be seen as a finite sequence
of standard ALC interpretations.

Definition 33 (ALC[ ] Semantics)
An ALC[ ] interpretation I = ((∆Ii , ·Ii)i∈Z, ·I) consists of a sequence of non-empty
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domains ∆Ii and functions ·Ii that map each concept name A to a subset AIi ⊆
∆Ii, each role name R to a subset RIi ⊆ ∆Ii×∆Ii and each individual name a to
aIi ∈ ∆Ii where i is an index which represents a possible world. To ensure a rigid
interpretation of individuals, we require that aIi = aIj for any i, j ∈ Z. Therefore
we simply use aI to refer to the interpretation of the individual a at any time point.
We define ·I as a global function which maps each annotated concept name A[i,j]

to AI[i,j] =
⋂
i≤`≤j A

I` and each annotated role R[i,j] to RI[i,j] =
⋂
i≤`≤j R

I` for all
i, j, l ∈ Z. The function ·I is inductively extended to arbitrary concepts by setting

• ∆I :=
⋃
i∈Z

∆Ii

• >I[i,j] :=
⋂

i≤`≤j
∆I`

• ⊥I[i,j] := (¬>I[i,j])

• (¬C)I := ∆I \ CI

• (C uD)I := CI ∩DI

• (C tD)I := CI ∪DI

• (∃Rλ.C)I := {e ∈ ∆I | ∃f ∈ CI ∧ (e, f) ∈ RIλ}

• (∀Rλ.C)I := {e ∈ ∆I | ∃f : (e, f) ∈ RIλ → f ∈ CI}

C and D are arbitrary concept descriptions and Rλ is a role name from N
[ ]
role.

Definition 34 (ALC[ ] Satisfaction)
Let C and D be arbitrary concept descriptions and Aλ, Rλ and e, f be concept,
role and individual names from N

[ ]
con, N [ ]

role and N
[ ]
ind respectively.

• C is satisfiable if there is an interpretation I where CI 6= ∅

• I satisfies a TBox axiom C v D if CI ⊆ DI

• I satisfies a TBox axiom C ≡ D if CI = DI

• I is a model of a TBox T if it satisfies every axiom in T

• I satisfies a concept assertion C(e) if eI ∈ CI

• I satisfies a concept assertion Rλ(e, f) if (eI , fI) ∈ RIλ

• I is a model of an ABox A if it satisfies every axiom in A

• I is a model of an ontology O if it satisfies every axiom in O
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5.3.2 ALC [x] Semantics

Definition 35 (ALC[x] Semantics)
The semantics is given by means of a temporal interpretation I = ((∆Ii , ·Ii)i∈Z, ·I

k
)

where ∆Ii is a sequence of non empty domains and ·Ii is a sequence of functions
that map every concept name A ∈ Ncon to a subset AIi ⊆ ∆Ii, every role name
R ∈ Nrole to a subset RIi ⊆ ∆Ii ×∆Ii and every individual name a ∈ Nind to an
element aIi ∈ ∆Ii. Again, to ensure a rigid interpretation of individuals, it holds
that aIi = aIj for any i, j ∈ Z. Therefore we simply use aI to refer to the interpre-
tation of the individual a at any time point. ·Ik is a global function that for every
k ∈ Z, maps every annotated concept name A[i,j]x ∈ N

[x]
con to AI

k

[i,j]x
=

⋂
k+i≤l≤k+j

AIl,

every annotated role name R[i,j]x ∈ N
[x]
con to RIk[i,j]x =

⋂
k+i≤l≤k+j

RIl.

The function ·Ik is inductively extended to arbitrary concepts by setting

• ∆I :=
⋃
i∈Z

∆Ii

• >Ik[i,j]x :=
⋂

k+i≤`≤k+j
∆Il

• ⊥Ik[i,j]x := (¬>Ik[i,j]x)

• (¬C)I
k

:= ∆Ik \ CIk

• (C uD)I
k

:= CI
k ∩DIk

• (C tD)I
k

:= CI
k ∪DIk

• (∃Rλx .C)I
k

:= {e ∈ ∆Ik | ∃f ∈ CIk ∧ (e, f) ∈ RIkλx}

• (∀Rλx .C)I
k

:= {e ∈ ∆Ik | ∃f : (e, f) ∈ RIkλx → f ∈ CIk}

for all k ∈ N.

Definition 36 (ALC[x] Satisfaction)
Let Cx and Dx be arbitrary concept descriptions and Aλx, Rλx and e, f be concept,
role and individual names from N

[x]
con, N [x]

role and N
[x]
ind respectively.

• Cx is satisfiable if there is an interpretation I where CI0 6= ∅

• I satisfies a TBox axiom Cx v Dx if CIkx ⊆ DI
k

x for all k ∈ Z

• I satisfies a TBox axiom Cx ≡ Dx if CIkx = DI
k

x for all k ∈ Z
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• I is a model of a TBox T if it satisfies every axiom in T

• I satisfies a concept assertion Cx(e)〈i〉 if eI ∈ CI
i

x

• I satisfies a concept assertion Rλx(e, f)〈i〉 if (eI , fI) ∈ RIiλx

• I is a model of a ABox A if it satisfies every assertion in A

• I is a model of an ontology O if it satisfies every axiom in O.

5.3.3 A Brief Overview of the Semantics

The defined semantics give rise to powerful temporal features. We begin first
by explaining the relations between classes. Recall from the fluent approach
when we had two similar classes A@t1 and A@t2. Both were meant to represent
temporal parts of the same class A. However the only relation both classes have
to the class A is by means of a relation called temporalExtent. This in itself
lacks temporal information as we saw in its evaluation. For example suppose the
time slices t1 and t2 are intervals both lasting two time points, where the former
immediately precedes the latter (meets). Then any element who was an instance
of both A@t1 and A@t2 should in theory be an instance of A at 4 consecutive
time points, or at least an instance of A@t3 where t3 covered four time points that
strictly contained t1 and t2. Although each temporal extent had A in common,
they were not related to each other temporally in any way other than what the
user specified. Clearly this is temporal information that is needed but cannot be
modelled. The semantics of [x] solve this problem directly. A[0,1] and A[2,3] are
more than just distinct class names. Both of the As in each class are referring
to the same static A at multiple time points. Because of this, any instance that
belongs to both classes, by definition also belongs to the class A[0,3] solving the
problem and including the relevant temporal information. This also holds true
for the qualitative intervals. For example, consider the following axioms:

C[0] v A[0,1] u A[2,3] (5.5)

A[0,3] v B[0] (5.6)

C v A@t1 u A@t2 (5.7)

A@t3 v B (5.8)
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Figure 5.1: An example of localised rigidity in [x], showing an element A being
R related to an element B for 3 consecutive time points.

In the ALC[ ] axioms, it would follow that C[0,0] v B[0], but it would not follow
from the fluent example that C v B.

The semantics also works well for our localised rigidity. Suppose we had an
annotated relation such as R[0,1]. R[0,1] contains all pairs of individuals which
are R related for the consecutive time points 0 and 1. To illustrate this further,
consider the following axioms:

A[0,1] v ∃R[0,1].B[0,1] (ALC[ ]) (5.9)

A[0,1]x v ∃R[0,1]x .B[0,1]x (ALC[x]) (5.10)

(5.9) states that all instances of A at 0 and 1 must be R related for two
consecutive time points, also 0 and 1, to an individual that is an instance of B
at 0 and 1. (5.10) states that any individual who is an instance of A at any two
consecutive time points must have an R relation over the same two consecutive
time points to an instance of B, also at the same two time points. This clearly
defines a type of rigidity, local to the annotated role itself, hence the term localised
rigidity. An illustration of this relation can be seen in Figure 5.1.

We mentioned previously the possibility to combine the two logics as it may be
the case that in some ontologies both the qualitative and quantitative approach
may be necessary. Combining the two logics can be done in two different ways,
depending on which is the underlying logic. This is due to the different time
lines in each logic. ALC[ ][x] is the result of adding ALC[x] to ALC[ ], and ALC[x][ ] is
the result of adding ALC[ ] to ALC[x]. The difference between the two is in direct
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relation to the time line used. For the former, the time line used will still map
to a subsequence of Z, the addition is that qualitative axioms, specifically ALC[x]
terminological axioms, can be used in the finite subsequence to easily quantify
over all of the available time points. For the latter, the time line will remain
isomorphic to Z, however in addition, quantitative ALC[ ] axioms will be allowed.
The syntax in each logic is the same, which we will now go on to define.

5.3.4 ALC [ ][x] and ALC [x][ ] Syntax

The syntax of ALC[ ][x] and ALC[x][ ] are the same, and can be defined as combina-
tions of ALC[x] and ALC[ ]. Concept descriptions are simply built as the disjoint
union of ALC[ ] and ALC[x] concept descriptions.

As with concept descriptions, terminological axioms and TBoxes are simply
defined as the disjoint union of each previous one, and assertional axioms ABoxes
are also the same.

An ALC[ ][x] or ALC[x][ ] ontology O is a pair (T ,A) where T is a TBox and
A is an ABox. min and max are defined in the usual way, and are extended
to include both qualitative and quantitative input by combining both previous
definitions.

We now go on to define the semantics which differ slightly for each extension.

5.3.5 ALC [x][ ] Semantics

The semantics of ALC[x][ ] can be seen as an extension of ALC[x] to account for the
additional standard (non variable) intervals. We extend I to also include ·I .

Definition 37
Let T be an ALC[x][ ] TBox, A be an ALC[x][ ] ABox, O be an ALC[x][ ] Ontology,
C and D be arbitrary ALC[ ] concept descriptions, Cx and Dx be arbitrary ALC[x]
concept descriptions, α ∈ T be an ALC[ ] TBox axiom of the form C v D, αx ∈ T
be an ALC[x] TBox axiom of the form Cx v Dx, Rλ be a role name in N [ ]

role, Rλx

be a role name in N [x]
role and e, f be individuals.

• C is satisfiable if there is an interpretation I where CI 6= ∅

• Cx is satisfiable if there is an interpretation I where CI0x 6= ∅

• I satisfies α if CI ⊆ DI
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• I satisfies αx, if CI
k

x ⊆ DI
k

x for all k ∈ Z

• I is a model of T if it satisfies every axiom in T

• I satisfies an assertion C(e) if eI ∈ CI

• I satisfies an assertion Rλ(e, f) if (eI , fI) ∈ RIλ

• I is satisfies an assertion Cx(e)〈i〉 if eI ∈ CI
i

• I is satisfies an assertion Rλx(e, f)〈i〉 if (eI , fI) ∈ RIiλx

• I is a model of A if it satisfies every axiom in A

• I is a model of T if it is a model of every axiom in T

• I is a model of O if it models every axiom in O

5.3.6 ALC [ ][x] Semantics

The semantics of ALC[ ][x] can be seen as an extension of ALC[ ] to also account for
the additional v-interval usage. We extend I to also include ·Ik .

Definition 38
Let T be an ALC[ ][x] TBox, A be an ALC[ ][x] ABox, O be an ALC[ ][x] Ontology,
C and D be arbitrary ALC[ ] concept descriptions, Cx and Dx be arbitrary ALC[x]
concept descriptions, α ∈ T be an ALC[ ] TBox axiom of the form C v D, αx ∈ T
be an ALC[x] TBox axiom of the form Cx v Dx, Rλ be a role name in N [ ]

role, Rλx

be a role name in N [x]
role, e, f be individuals, and min and max be defined as usual.

• C is satisfiable if there is an interpretation I where CI 6= ∅

• Cx is satisfiable if there is an interpretation I where CI0x 6= ∅

• I satisfies α if CI ⊆ DI

• I satisfies αx if CIkx ⊆ DI
k

x for all k where min(T ) ≤ k ≤ max(T )

• I is a model of T if it satisfies every axiom in T

• I satisfies an assertion C(e) if eI ∈ CI

• I satisfies an assertion Rλ(e, f) if (eI , fI) ∈ RIλ
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• I is satisfies an assertion e : Cx〈i〉 if eI ∈ CI
i

x

• I is satisfies an assertion (e, f) : Rλx〈i〉 if (eI , fI) ∈ RIiλx

• I is a model of A if it satisfies every assertion in A

• I is a model of T if it is a model of every axiom in T

• I is a model of O if it models every axiom in O

In the quantitative environments, ALC[ ] and ALC[ ][x], min and max define the
bounds of the time line for an ontology. In the qualitative environments, the time
line remains unbounded, and potentially infinite in both directions.

5.3.7 Domain Constraints

In each extension, ∆ is indexed by each available time point in Z (for each pos-
sible world). This allows us to consider various domain constraints; expanding,
decreasing, constant or varying domains. These will be defined in the same way
as in the ltlALC case. Expanding domains are where ∆Ii can only ever grow or
remain unchanged as i increases. Decreasing domains are where ∆Ii can only ever
shrink or remain unchanged as i increases. Constant domains are where ∆Ii can
only remain unchanged as i increases and varying domains impose no constraints
on ∆Ii as i increases (the obvious constraints hold for decreasing values of i).

Definition 39 (Domain Constraints)
For all i ∈ Z

• Expanding Domains: . . . ⊆ ∆Ii ⊆ ∆Ii+1 ⊆ . . .

• Decreasing Domains: . . . ⊇ ∆Ii ⊇ ∆Ii+1 ⊇ . . .

• Constant Domains: . . . = ∆Ii = ∆Ii+1 = . . .

• Varying Domains: No constraints

5.3.8 [x]

We call the set containing each temporal extension the [x] family of Temporal
Description Logics, i.e., [x] = {[ ], [x], [ ][x], [x][ ]}.
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Important Annotation TRO Relation
domran:cc, time:same, rigid connected to
domran:cc, dom:changed, time:past develops from
domran:cc, time:same aligned with
domran:cc, dom:birth, time:past, ran:death child nucleus of
domran:oo, time:al-before-inverse causally downstream of
domran:oo, time:al-during happens during
domran:oo, time:al-before precedes
domran:oo, time:al-meets-inverse immediately preceded by
domran:oo, time:al-meets immediately causally upstream of
domran:co, time:same, rigid involved in
domran:co, time:same input of
domran:co, time:same, rigid, uncertain capable of
domran:co, dom:birth, time:same existence starts during
domran:co, dom:birth, time:future/same existence starts during or after
domran:co, dom:death, time:same existence ends at point
domran:co, dom:death, time:past/same existence ends during or before
domran:oc, time:same, rigid occurs in
domran:xx, time:same, rigid part of

Table 5.1: TRO important annotations with a corresponding TRO relation

5.4 Evaluation of [x]

We will now go on to evaluate [x]. We plan to evaluate [x] as a whole language and
when necessary discuss each individual extensions. We again evaluate against the
TRs, starting first with TR1-TR14. In addition, where possible, we also compare
and discuss entailment differences between each logic, as we saw briefly in Section
5.3.3.

The relations we use in our evaluation can be seen again in Table 5.1.

TR1 The ability to model continuants

TR1.1 Continuants must be traceable through time

TR1.2 Continuants must maintain their identity through time

TR1.3 Continuants must be able to undergo change

Continuants can be modelled fairly well in [x] and in most cases very similar to
ltlALC due to the similarities in their semantics. Each extension in [x] has a rigid
interpretation of individuals coinciding with each possible world along the time
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Figure 5.2: An illustration of the rigid interpretation of elements in [x], and how
they can be used for the effective modelling of Continuants and the modelling of
change.

line, so we can be assured that any element a at a certain time point is that same
a in any other time point where it exists. This can be seen in Figure 5.2, where
although the individual a in each world belongs to a different domain, it holds
true that they are interpreted the same. This bodes well for continuants since
the elements are effectively maintaining their identity through time (TR1.2). To
represent continuants, in the same way as before, we simply introduce a class
Continuantλ, for any interval λ when statements about continuants are needed.
Continuants may undergo change and in some cases this is quite difficult to
capture. Based on our survey results the changes needed include general changes
such as changes in classes, related to some type of development, or a more specific
type of change in the state of the continuant itself, for example a continuant
coming into and out of existence. For the first case, we can capture general
changes quite easily. For example suppose a continuant of type C at a time
period, say 0− 2, changed into a C ′ at time 3. Using ALC[ ], we can capture this
as follows:

C[0,2] v C ′[3] (5.11)

Here we state that any element which is an instance of C at times 0, 1 and 2
is a C ′ at time point 3. The identity of any continuant C at 0-2 maintains its
identity into C′ at 3, which is exactly what we need to capture. This is similar to
the Fluent approach but with a richer semantics. If C ′[3] was to go on to change
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again, for example, C ′[3] v C ′′[4], then an entailment would follow that C[0,2] v C ′′[4].
Such an entailment would not follow from either the fluent approach, nor the
ALC(D) approach, but it would follow from when modelling something similar in
ltlALC. This entailment follows directly from the possible world semantics and
the rigid interpretation of individuals. Notice as well that when compared to
ltlALC, we can talk about specific time points. This is very important since the
axioms are no longer global constraints, so the same axiom wouldn’t apply for an
instance of C at say times 2-4 (C[2,4]) even though the duration of the C remains
the same. Therefore it is possible in ltlALC to get additional entailments that
may sometimes not be wanted. This is an advantage when certain facts are only
supposed to hold only at certain times and not in others. Of course it also had
disadvantages, for example if the axiom was to hold true for any individual that
was an instance of C for two consecutive time points, in ALC[ ] we would have to
quantify over all the time points as follows

C[min,min+2] v C ′[min+3] (5.12)

C[min+1,min+3] v C ′[min+4] (5.13)

. . .

C[0,2] v C ′[3] (5.14)

C[0,2] v C ′[3] (5.15)

. . .

C[max−3,max−1] v C ′[max] (5.16)

(5.17)

which is obviously a problem especially considering the size increase of ontologies
that will happen when the time line becomes very large. Here min and max

would refer to the minimum and maximum points in the ontology which we can
use correctly in a quantitative environment, since a finite time line is implied. We
did anticipate this problem during the design of the new logics, which is why we
also introduced variable intervals, more specifically ALC[x]. To capture the same
axiom in ALC[x] we need only the axiom

C[0,2]x v C ′[3]x (5.18)

which states that any instance of C for two consecutive time points will be an
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instance of C ′ at the following time point. This is obviously very similar to ltlALC
but arguably more concise. Obviously this axiom is really the opposite of the first,
i.e. this is a global constraint, whereas the first was a local constraint. Depending
on what type of environment is needed, one can choose between the two extensions
or if necessary even combine then for example in ALC[ ][x] or ALC[x][ ].

The more specific type of change i.e. handling the changing states of continu-
ants are more tricky to capture. From the survey we found two particular states
of interest, existing and not existing, for the case where certain continuants may
come into and out of existence at certain time points. Because of our possible
world semantics with multiple domains, ideally we would like to be able to specify
that elements may occur in some domains and not in others, which seems to be
a perfect way to capture this situation. So we are left again with the same two
options. The first is to use constant domains and introduce concepts to model
the states continuants can go through and attempt to temporally constrain the
order of those classes. The second is to use a possibly more faithful approach by
adopting varying domains. For the constant domain case, we again introduce the
three classes Before, Active and After. In the ltlALC case, we can make global
constraints, such as anything Active will eventually become Inactive, for exam-
ple in the axiom Active v ♦After. This isn’t possible in ALC[ ] since we only
have access to time points and no qualitative information, and more specifically
we have no type of eventuality, hence we can only model specific information.
For example suppose a continuant C came into existence at time 2 and went out
of existence at time 4. The axiom

C[2,4] v Active[2,4] uBefore[min,1] u After[5,max] (5.19)

states that any instance of C at times 2, 3 and 4 is Active at those time points
and in the Before state in every time point before 2 and is in the After state
any time point after 4. This would have to be stated for every class, varying
depending on its interval. This is not so simple in the qualitative case. In the
quantitative case we have direct access to the minimum and maximum time points
as we used in the axiom to ensure that the correct constraints were captured. In
the qualitative case we do not have minimum and maximum time points since the
time line itself is potentially infinite. Therefore modelling the qualitative version
is slightly more tricky. Suppose we were in ALC[x][ ] and we wanted to capture the
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same constraints as above. We could do so in the following axioms:

C[2,4] v Active[2,4] uBefore[1] u After[5] (5.20)

Before[0]x v Before[−1]x (5.21)

After[0]x v After[1]x (5.22)

In (5.20) we specify the same constraints on the continuant C at times 2-4,
declaring it Active, and we also state that the continuant is in a Before state at
1 and then in an After state at 5. (5.21) and (5.22) state that any element in a
Before state must be in a before state at the previous moment in time (which
initiates an infinite descending sequence of Before states) and any element in the
After state will be in the After state at the next moment in time (initiating an
infinite ascending sequence of After states). Both axioms show similarities with
ltl’s � and �− operators. This shows the benefit of having both a qualitative
and quantitative approach combined.

Obviously a continuant or any entity for that matter should not be in two
states at the same time. Therefore we should make the three states disjoint.
However, simply stating that Active[2,4] is disjoint from Before[2,4] only makes
these specific two classes disjoint, and not other temporal forms of the classes for
example. We would therefore need to quantify over all of the time intervals and
make them all disjoint. This is another key example where the combination of
extensions becomes useful. For example as well as the axiom above we can also
state the following disjoint axioms:

Active[0]x v ¬Before[0]x (5.23)

Active[0]x v ¬After[0]x (5.24)

Before[0]x v ¬After[0]x (5.25)

that states that any element that is Active at any time point cannot be also
Before or After. Also in the qualitative environment, it is difficult to enforce
some of the possible constraints between the states. For example, suppose we
wanted to say any individual in the Before state would eventually be in an
Active state. The axiom:

Before[0]x v Active[0]y : y > x (5.26)
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would suffice but since all intervals in the axiom must be quantified over the
same variable it diminishes any possibility of eventuality. This is one of the main
reasons this logic differs from ltlALC. If we recall the constraints we made on
continuants in ltlALC, then declaring any class C to be a continuant, then we
immediately know certain entailments to follow such as C v ♦After or C v
ActiveUAfter. These are entailments that ALC[x] lacks the power to express. It
is even possible to get a somewhat equivalent entailment of eventuality inALC(D).
If we recall that we declared continuants to having an end time concrete feature,
then we know that any continuant C will have an end time which is larger than
its start time. Although static, we still get some type of eventuality.

When considering varying domains instead of constant domains, we can use
the > operator to interact directly with the domain. Using the same example,
suppose a continuant C came into existence at time 2 and came out of existence
at time 4. In ALC[ ] we could model this as follows:

C[2,4] v ¬>[1] u ¬>[5] (5.27)

Here we specify that any instance of C at times 2-4 was not present in the domain
at the previous and post time point before and after its existence. One has to
be careful however since this axiom applies to all elements that are instances of
C at 2-4. If there was a class C[2,5], it would also apply since CI[2,5] ⊆ CI[2,4] in
all models I. In a qualitative environment, since we can not consider exactly
when an element may have come into and out of existence, we have to model it
in a different way, similar to how we modelled existence in ltl. If we knew the
duration of any C was 3 time points, then this could be modelled as follows:

C[0]x v (¬>[−1]x u C[1]x u C[2]x u ¬>[3]x) t (5.28)

(C[−1]x u ¬>[−2]x u C[1]x u ¬>[2]x) t (5.29)

(C[−1]x u C[−2]x u ¬>[−3]x u ¬>[1]x) (5.30)

Here we again have to specify each of the possible phases C can be in during its
lifetime.

We give TR1.1 and TR1.2 a score of 3 due to the advantages of the rigid
interpretation of individuals. We give TR1.3 however a score of 7 due to the
weakness the logics has when it comes to modelling existence. We give TR1 a
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score of 3 overall.

TR2 The ability to model occurrents

TR2.1 Occurrents can have limited phases of existence

TR2.2 Occurrents can have temporal parts

Occurrents are modelled in a similar way to continuants. We can introduce a class
Occurrentλ to represent all occurrents at any interval λ. Occurrents are described
as having limited phases of existence, often durations and in some cases temporal
parts. Existence of occurrents is crucial to model, and can be modelled in a
similar way as in the continuant case, either using constant domains with state
constraints, or using varying domains.

Occurrents also are described as having temporal parts, which are also occur-
rents that are separate entities. Suppose an occurrent O whose life time lasted
3 time points, had two temporal parts, O1 and O2, whose life times last 1 time
point and 2 time points respectively, spanning the whole of O’s life time. InALC[ ],
suppose we know that O started at time 0. Then this could be represented using
the hasPart relation and varying domains:

hasPart = p

O[0,2] v ¬>[−1] u ∃p[0].O1[0] u ∃p[1,2].O2[1,2] u ¬>[3]

(5.31)

Here we state that any instance of O at times 0-2, must have a hasPart relation
at time 0 to an instance of O1, and must have a hasPart relation at times 1 and
2 to an instance of O2, and also due to the localised rigidity, we have no issue
ensuring that the instance of O2 is the same instance over the time points in
which the relation holds. In ALC[x], we follow a similar pattern to modelling in
ltlALC, but the localised rigidity still holds:

hasPart = p

O[0]x v (O[1,2]x u ∃p[0]x .O1[0]x u ∃p[1,2]x .O2[1,2]x u ¬>[−1]x u ¬>[3]x) t

(O[−1]x uO[1]x u ∃p[−1]x .O1[−1]x u ∃p[0,1]x .O2[0,1]x u ¬>[−2]x u ¬>[2]x) t

(O[−2,−1]x u ∃p[−2]x .O1[2]x u ∃p[−1,0]x .O2[−1,0]x u ¬>[−3]x u ¬>[1]x)

O1[0]x v ¬>[−1]x u ¬©− >[1]x

O2[0]x v (¬>[−1]x uO2[1]x u ¬>[2]x) t (¬>[1]x uO2[−1]x u ¬>[−2]x)

(5.32)
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The modelling resembles that which we saw in the ltlALC case. We use disjunc-
tions to take into account the possible temporal phases that O could be in but
the biggest difference is that when the temporal parts are concerned, specifically
those that span over multiple time points, the localised rigidity suffices to meet
the requirements.

Many ontologies in the OBO-Foundry, often those that discuss stage based
development, have large sequences of occurrents which they call stages, organised
in a sequential way that usually incorporate Allen’s relations in some way. This
is also very important for occurrents but focuses more on the relations between
them rather than the modelling of the occurrents themselves, so we save this
evaluation for TR5 and TR8.

We give TR2.1 a score of 7. We still suffer with problems involving existence.
Although duration is easy to capture in both quantitative environments, it is still
difficult in the qualitative one. We give TR2.2 a 3 since the ability to temporalise
roles helps to capture important temporal features, involving maintaining identity
with temporal parts. We give TR2 a score of 3 overall.

TR3 The ability to model same time rigid relations between occurrents
or continuants

TR3.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR3.2 The relation can have a duration specified

As we saw already in TR2, capturing rigid relations in [x] is now possible. The
relation we use in our example is in fact the most important relation that was
used across the OBO Foundry, part of. We begin first with the continuant case.
In a quantitative environment if we wanted to express that a continuant C1 was
part of another continuant C2 for the duration 0-3 we could model this in ALC[ ]
as follows:

C1[0,3] v ∃partOf[0,3].C2[0,3] (5.33)

Here we specify that any instance of C1 at time 0-3 must have a part of relation
also at time points 0-3 to an individual that is an instance of C2 at 0-3. This seems
to be as rigid as the definition requires. We can specify a fixed rigid duration in
which a relation should hold between the same elements. Even in a quantitative
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environment, if we wanted to state that the relation holds for all time points then
we could easily substitute the [0, 3] interval for the [min,max] interval. Clearly
we capture both cases of rigidity and meet the requirements. If either continuant
was to change i.e. become a member of a new class, the rigidity is actually local
to the relation itself and not the classes, so no matter what the constraints were
on the classes themselves the relation would still hold rigid between the same
elements. For example, the axiom

C1λ1 v ∃partOf[0,3].C2λ2
(5.34)

where λ1 and λ2 were any interval, the relation would still be rigid at time 0 to
3, leaving the option open to constrain the classes.

Even in a qualitative environment, if we knew the duration that the relation
should hold for, we can simply substitute the intervals for v-intervals as follows:

C1[0,3]x v ∃partOf[0,3]x .C2[0,3]x (5.35)

which states that any instance of C1 for four consecutive time points must have
a part of relation for the same four time points to an individual that is also a C2

for the same four time points. However what we cannot do now is declare the
relation to be globally rigid since we no longer have access to a min and max

in a qualitative environment and therefore an infinite time line. This is the only
downside to our form of rigidity but we know that having a global form of rigidity
easily leads to undecidability [LWZ08].

Obviously the most important aspect of the rigidity is that the relation holds
between the same elements. We saw in the ltlALC attempt, that using conjunc-
tions between existentials is not sufficient to ensure this. We now explain why
this is the case. Consider the following ALC[x] and ltlALC axioms:

C1 v ∃partOf.C2 u©∃partOf.C2 u©© ∃partOf.C2 u©©©∃partOf.C2

(5.36)

Now suppose in addition we had the following (equivalent) axioms also present:

C2[0]x v ¬C2[1]x (ALC[x])

C2 v ©¬C2 (ltlALC)
(5.37)
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In ALC[x] this would cause an inconsistency, but this would not be the case in
ALC[ ]. The same also holds for ALC(D) and the fluent case. In those examples,
reification is often used, and therefore different elements are related. In each case
we would have to impose more restrictions in order to catch the inconsistency,
highlighting the benefits of ALC[x].

We saw how to model rigid relations between occurrents in TR2 briefly. In
fact, we can model rigid relations between them in the same way as we did with
continuants above, since they are fundamentally the same type of elements in
[x]. Since we can capture both the duration of the rigidity and ensure that the
relations holds between the same elements we give TR3.1 and TR3.2 a score of
3, and we give TR3 a score of 33.

TR4 The ability to model same time rigid relations between continu-
ants

TR4.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR4.2 The relation can have a duration specified

We give TR4 the same scores as TR3 due to their similarity. TR4 differs only in
that we are interested in the continuant case only.

TR5 The ability to model same time relations between continuants

TR5.1 The relation must hold at a single time point (time:same)

Same time relations between continuants can be modelled fairly easily. To capture
the same time feature we need only specify that the relation lasts a single time
point, which we can do by annotating the desired relation within interval of
duration of size one. This can be done in both the quantitative and qualitative
environment very easily. We use the relation aligned with to aid our example In
ALC[ ], suppose we wanted to model that C1 was aligned with C2 at time i. We
can model this as follows:

C1[i] v ∃alignedWith[i].C2[i] (5.38)

Here we specify that any instance of C1 at time i must have an aligned with
relation at time i to an instance of C2, also at time i. The relation only holds at
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the desired time point and not anywhere else. From a qualitative viewpoint, in
ALC[x] we can do exactly the same thing where we simply replace each interval
with the variable interval [0]x:

C1[0]x v ∃alignedWith[0]x .C2[0]x (5.39)

Here we specify that any instance of C1 in any single time point must be aligned
with an instance of C2 also in the same time point as before. This is identical to
ltlALC version of the axiom. Obviously depending on the environment the user
wishes to be in, we can choose whether the qualitative or quantitative or even
both suffice. Again, as we saw in TR1, we can restrict our entailments to only
quantitative ones, which is something we cannot do in ltlALC. The requirement
is clearly captured, therefore we give TR5.1 a score of 3 and TR5 a score of 33.

TR6 The ability to model past time relations between continuants

TR6.1 The relation must hold between individuals at present and
past time points (time:past)

Modelling past time relations are more tricky than same time relations. The
time:past feature indicates that a relation starts at one time point and effectively
ends in another previous time point. In [x] all relations can only hold between
elements at single time points which makes this difficult to capture, and requires
a work around - the same work around we used in ltlALC. Our example includes
the relation develops from. Suppose we wanted to model that C1 at i develops
from C2 at j where i > j. If time points i and j are known then in ALC[ ] we can
model this as follows:

C1[i] v ∃developsFrom[i].C2[j] (5.40)

Here we specify that any instance of C1 at time i must have a developsFrom
relation at time i to some individual that was a C2 at j. The relation itself only
holds in the world i. Although this may seem misleading, consider the identity
of the filler C2. The rigid interpretation can ensure that the individual we relate
to was definitely the same individual that was a C2 at j, so although the relation
holds at i, it does relate to the correct individual.
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From a qualitative view point, the same relation can be captured when exact
time points are known, i.e we know the value of i-j. We could simply specify

C1[0]x v ∃developsFrom[0]x .C2[0−(i−j)]x (5.41)

that states that every instance of C1 must have a develops from relation to an
instance that was a C2, i− j time points ago. Notice that we need no additional
constructors to specify past time points, unlike in ltlALC where we need past
operators. If we did not know the exact values of i and j, then this relation can not
be captured. This again relates back to the problem of not being able to capture
any type of eventuality as we saw in TR1. The relation also contains a changed
feature, indicating that the domain goes through some kind of change. We discuss
this in more detail in TR7 which focusses more the the domain constraints rather
than the time constraints.

We give TR6.1 a score of 3. We believe our modelling is sufficient, as was the
case in ltlALC- although the relation holds in a single time point, it the constraints
on the individuals are correct for the past and present time points as they should
be. We give TR6 a score of 3 due to its lack of eventuality.

TR7 The ability to model the changing states of continuants, specifi-
cally their birth, death and other general changing states

TR7.1 Model a continuant coming into existence (birth)

TR7.2 Model a continuant going out of existence (death)

TR7.3 Model general changes of continuants (change)

We saw in TR1 that the states of continuants can be captured by introducing
classes in a constant domain environment, or by using varying domains. We begin
first with the easier type of change using the relation developsFrom, as used in
TR6. This relation has the feature dom:changed, since the domain went through
some change, such as a type of development. For example C1 may have been an
instance of another class C3 before the development into C1. We can capture this
as follows

C1[i] v ∃developsFrom[i].C2[i] u C3[j] (5.42)
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Here we specify that any instance of C1 at i has a develops from relation to an
instance of C2 at j, and at j, C1 was an instance of C3. Again because the rigid
interpretation of individuals we can be sure that the same instance of C1 was an
instance of C3 at the previous time point j. This can also be modelled in the
same way as in the qualitative version. But once again we do run into issues
when considering eventuality.

Relations like developsFrom, often but not always involve identity constraints.
As we saw before in our initial evaluation of TR7, transformationOf is a type of
developsFrom relation where identity is maintained between the elements involved
in the relation. In this case, it would be be better to instead eliminate the use of
a relation and just focus on class membership as follows:

C1[i] v C2[j] (5.43)

where we maintain the identity of the elements involved. We state that every C1

at time i was a C2 at time j. Of course, in the qualitative case, we will still need
some kind of eventuality if the distance between i and j is unknown.

The second type of change we wish to consider is when entities come into and
out of existence. The relation we use is child nucleus of which has the features
dom:birth and ran:death. We identified two ways to capture this by using the
state classes introduced in TR1. Suppose first we wanted to model C1 at i is
a child nucleus of C2 at j. C1’s existence should effectively start at i and C2’s
existence should end at j where i is one greater than j. As we saw in ltlALC,
due to the fact that relations can only hold between elements in single worlds,
then varying domains are not a viable option here, so we opt to use the constant
domain approach. In ALC[ ], since we have access to min and max, we can capture
this as follows:

C1[i] v Active[i] uBefore[min,j] u ∃childNucleusOf[i].(C2[j]) (5.44)

C2[j] v Active[j] u After[i,max] (5.45)

(5.44) states that any instance of C1 at time i is Active at time point i, was in
the Before state until time j and at time point i has a child nucleus of relation
to an instance of C2 that at j. (5.45) states that any instance of C2 at j was in
the After state from i until the end of the time line and was in an Active state
at j. Therefore the individual that C1 is related to will definitely be in the After
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state. Here we capture the birth and death constraints quite easily since we can
quantify over the time points. Of course we can still make statements about when
C2 transitioned into the active state as well. In ALC[x] we do not have access to
min and max, so the modelling changes slightly. Consider the following axiom:

C1[0]x u Active[0]x uBefore[−1]x v∃childNucleusOf[0]x .

(C2[−1]x u After[0]x u Active[−1]x)
(5.46)

(5.46) states that any instance of C1 that is Active and was previously in the
Before state (pinpointing the transition), must have a child nucleus of relation
to an instance of C2 at the previous time point that is now in the After state but
was previously Active. This is equivalent to how we modelled the same relation
in ltlALC. Here we can only specify the exact point C1 transitions since we don’t
have access to any kind of eventuality, but since we pinpoint when it transitions
all constraints seem to be met and no eventuality is needed. We again see that
modelling attempts are near identical to those of ltlALC, with only very slight
differences.

We give TR7.1 and TR7.2 a 7. The simple types of change are easier to
capture so TR7.3 receives a score of 3. We give TR7 a score a 3 overall.

TR8 The ability to model the time constraints of the following Allen’s
interval relations between occurrents: before′, during, before, meets,
meets′

TR8.1 Capture the temporal constraints intended by Allen’s rela-
tions

In a quantitative environment, we are given another way to model temporal
relations between occurrents. As we now have direct access to a time line we can
structure occurrents on the time line in the way they are constrained by Allen’s
relations. It is often the case that ontologies describing stage based development
have sequences of stages where durations and start and end points are known.
In Figure 5.3 we give an example of a sequence of stages. Since the exact time
points are known (or at least implied) then simply declaring the classes as follows

O1[1,2], O2[2,3], O3[0,4], O4[4,7], O5[5,6], O6[8,9], (5.47)
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Figure 5.3: A collection of six occurrents organised along a finite time line of ten
points

along with axioms describing their active and inactive states would be enough
to simulate the constraints on the occurrents themselves. This can be seen as a
way to capture the constraints of Allen’s relations, but this is certainly not a way
we could use the constraints to for example infer new information. For example
the is no entailment that states O1 is during O3. It would be possible to add in
the appropriate relations, for example to state that O1 happens during (during)
O3 and O1 immediately causally upstream of (meets) O2 we could do this in the
following axioms:

O1[1,2] v ∃happensDuring[1,2].O3[0,4] (5.48)

O1[1,2] v ∃immediatelyCausallyUpstreamOf[2,2].O2[2,3] (5.49)

In (5.48) we state that any instance of O1 at times 1 and 2 has a happens during
relation to an instance of O3 at times 1 and 2 (locally rigid) and in (5.49) we state
that it also has a immediately casually upstream of relation to an instance of O2

at 2 and 3. Even with these relations added, other than the temporal information
we capture, for example, the meets relation only holding at a certain time or the
during relation being rigid between time points 1 and 2, there is nothing more
we can get from Allen’s relations themselves including inferring new information.
Unlike ALC(D), we are not defining the relations, we are merely defining their
constraints inside an axiom, which goes against the nature of Allen’s relations.
This is further illustrated in the fact that we could even add inaccurate but legal
statements regarding Allen’s relations. For example, we can add the following
axiom

O1[1,2] v ∃happensDuring[1,2].O4[4,7] (5.50)
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which although is incorrect and invalid from the intended viewpoint of Allen’s
interval relations, it is perfectly legal to have in [x], again, the same as what we
saw in the Fluent approach.

In a qualitative environment, the modelling is again similar to the ltlALC
approach, but in most cases is actually more difficult to model due to the lack of
eventuality in [x]. Suppose we wanted to model that O1 happens during O2. O1’s
start time must be greater than or equal to O2’s start time, and its end time must
be less than or equal to O2’s end time. Without knowing the duration of either
occurrent, we cannot model this relation since there is no way of pinpointing
some previous time point when O1 came into existence, similarly for some future
time point when it will cease to exist. If the duration is known, then we have to
take each temporal phase into account similar to how we modelled the axioms in
TR2. Each relation suffers from this fact in the qualitative approach. We give
TR8 and TR8.1 both a score of 7.

TR9 The ability to model relations between continuants and occurrents

TR9.1 Be able to make relations between the two types of distinct
elements

The only difference between continuants and occurrents is simply just the classes
that they belong to when modelling them in [x]. Modelling relations between
the continuants and occurrents is just as easy as in either exclusive case as we
saw in every other evaluation. The example we use is the relation input of. This
relation uses the feature time:same. More specifically this is an example where
the relation should hold only at a specific time point. Suppose a continuant C1

was the input of an occurrent O at the time point i. We can capture this in the
following axiom:

C[i] v ∃inputOf[i].O[i] (5.51)

Here we state that any instance of the continuant C at time i must have an
input of relation to an occurrent O at the same time point. Once again the
quantification is an advantage here as it is possible that the relation may and in
some cases should only hold at one time point. Even if the relation was to be
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interpreted globally, then we could switch the axiom for the qualitative version:

C[0]x v ∃inputOf[0]x .O[0]x (5.52)

that states that any instance of C at any time point must have an input of
relation to an instance of O at the same time point. We can clearly model
relations between the two types of elements just as easy as we could in each
exclusive case. And in our example, we can can faithfully represent what was
temporally intended from the relation itself. Therefore, we give TR9.1 a score of
3 and TR9 a score of 33.

TR10 The ability to model relations between continuants and occurrents
over past, future, and present time points, each including the
continuant’s state constraints

TR10.1 Relate the two individuals at a single time point (time:same)

TR10.2 Relate the two individuals at a present and past time point
(time:past)

TR10.3 Relate the two individuals at a present and future time point
(time:future)

TR10.4 Correctly model the continuant coming into and out of exis-
tence (birth, death)

TR10 focuses on modelling relations between continuants and occurrents involv-
ing particular state constraints. The relations we use are existence starts during,
existence starts during or after, existence ends at point and existence ends during
or before.

In a quantitative environment, we are given another option to modelling at
least some of the relations above, which differ heavily from the qualitative ap-
proach. For existence starts during, suppose we wanted to model that C existence
starts during O in a quantitative environment where C was active over time points
0-2 and O was active from 0-3. Then the axioms:

C[0,2] v ¬>[−1] u ¬>[3] (5.53)

O[0,3] v ¬>[−1] u ¬>[4] (5.54)
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are sufficient to state the correct constraints on the existence the relation implies.
The problem lies in the fact that no relation between the two elements exist, so
any entailment we wish to gain between the two elements is lost. Of course we can
always add a relation between them, but as we have seen previously this would
not gain any advantage. This problem was also present in TR8 when attempting
to model Allen’s relations in this way.

From a qualitative view point, suppose we wanted to model C existence starts
during O without knowing the exact time points. Without knowing the duration
of each of the elements lifetime, we struggle again with the lack of eventuality.
Ideally, we would like to model something similar to the ltlALC case, where we
used the axiom C v ♦−(∃X.(O) u ¬©− >). But since we don’t have access to
something that resembles a ♦ operator, we have to change the way we model the
axiom:

C[0]x u ¬>[−1]x v ∃X[0]x .O[0]x (5.55)

Here we state than any instance of C that has just transitioned into the active
state, must have done so whilst being related to an instance of an active O, hence
it happened during O.

The remaining relations all suffer the same disadvantages as the first, and are
all modelled in a similar fashion to the first also, and similar to those seen in
ltlALC, so we leave them out of the evaluation. We give TR10.1-10.3 a score of
3, but TR10.4 a score of 7. We believe the problems lie mainly with the domain
constraints and the modelling on the elements themselves, rather than with the
way the time relations are modelled, since the time relations are embedded into
the domain constraints. We give TR10 a generous 3.

TR11 The ability to model same time rigid relations between continu-
ants and occurrents

TR11.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR11.2 The relation can have a duration specified

Rigid relations between continuants and occurrents are just as easy and effective
as in the exclusive case. involved in is the relation we use in our example. Suppose
we wanted to model that a continuant C was involved in an occurrent O for its
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duration of 4 time points. And suppose those 4 time points were 0-3. Without
considering the states of each entity (since we have already seen how to capture
these), consider the following axiom:

C[0,3] v ∃involvedIn[0,3].O[0,3] (5.56)

Here we state that the continuant C at times 0-3 must be involved in the occurrent
for those same time points. Once again the relation holds between the same
elements for a fixed duration. This also holds with the qualitative case to:

C[0,3]x v ∃involvedIn[0,3]x .O[0,3]x (5.57)

We run into the same problems as in the exclusive case, the only one being the
global rigidity, but this is only present in an infinite time line case. Therefore
we give TR11.1 and TR11.2 both a score of 3, since clearly the identity con-
straints can be captured and also duration of the rigidity which is important for
occurrents. We give TR11 a score of 33.

TR12 The ability to allow for multiple future time lines where relations
may or may not hold

TR12.1 The ability to express multiple futures where relations may
hold in one future and not in others

Unfortunately in any extension in [x] there is no possibility for multiple time lines
as each time line is discrete and linear (isomorphic to Z or strict subsets of Z).
This eliminates the possibility for a branching time line and possibility of captur-
ing those relations that may or may not hold. We are left only with the option to
use a disjunction as was the case in the ALC(D) evaluation. Unfortunately this
does not capture the requirements, proving to be insufficient. Therefore we give
TR12.1 and TR12 a score of 7.

TR13 The ability to model relations between occurrents and continuants

TR13.1 Be able to make relations between the two types of distinct
elements

Similarly to TR9 we can model relations between occurrents and continuants in
the same way. There is nothing specific in the order of the domain and range and
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TDL Problem Result
EL[ ],EL[ ][x] Subsumption PTime
EL[ ],EL[ ][x] Classification PTime
ALC[ ],ALC[x] Satisfiability ExpSpace
ALC[ ],ALC[ ][x] Ontology Consistency 2ExpSpace
EL[x] → Subsumption PTime
EL[x] → Classification PTime

Table 5.2: Complexity Results (membership only) for fragments of [x] with Con-
stant Domains and unary encodings of interval boundaries. (→=future only)

it actually proves to be as easy as in the exclusive case. We score TR13 the same
as TR9.

TR14 The ability to model same time rigid relations between occurrents
and continuants

TR14.1 Each relation must hold at a single time point between the
same individuals (time:same, rigid)

TR14.2 The relation can have a duration specified

Once again, capturing rigid relations between occurrents and continuants can be
done in the same way as the continuant case and of course, either exclusive case.
Therefore we score TR14 the same as TR11.

R15 Any extension should be decidable and of suitably low complexity,
have implementations or at least decision procedures for the most
common reasoning problems and be readily available for use

[x] is an entirely new logic and the entirety of its research is spread across this
thesis. In Chapter 6 we introduce several decision procedures for fragments of [x]
when combined with the DLs EL and ALC. Although these are only small subsets
of the DL underlying OWL (SROIQ (D)), the results we saw were positive, out-
lined in Table 5.2. We introduced extensions to the common reasoning problems,
such as temporal classifications and showed that they remain decidable, even with
localised rigidity and no restrictions on TBoxes. Although not all of the languages
in [x] were proved to be decidable, non were yet shown to be undecidable and
there was no obvious sign (as there is in the ltlALC cases) that suggests this. In
Chapter 7, we have designed two OWL Reasoners, called TempEL and TempALC,
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that implement decision procedures for the common reasoning problems for the
logics EL[ ] and ALC[ ], which are compatible with the OWL API [HB11], and are
able to solve classification, satisfiability, subsumptions and ontology consistency
for valid ontologies in either language. Both reasoners are readily available for
use. We have conducted experiments to prove their correctness, their practicality
and their benefit over standard OWL representations, each showing correct and
positive results.

Although [x] has only been applied to small DLs such as EL and ALC, they
do have positive results, mainly their decidability, and our results provide enough
insight into taking [x] further towards the expressivity of SROIQ(D). Our pre-
liminary results on our implementations show that they can be used effectively
in practice and to good use. Since this is ongoing work, we give R15 a score of
3.

5.4.1 Summary

The overall scores for the evaluation of [x] against the TRs can be seen in Tables
5.3-5.17. We can see from the evaluation that [x] has three strong points which
aids in its strong performance. The first is that its possible world semantics and
rigid interpretation helps with identity constraints and modelling change, the sec-
ond is that the ability to use global and specific time point intervals is a good
advantage and the third is the ability to temporalise relations, specifically the
localised rigidity we gain helps to capture the most important temporal features.
It also has some major downsides, the most prominent being the inability to cap-
ture any type of eventuality which makes it suffer heavily when this is needed, for
example when modelling Allen’s relations, as we saw in TR8 or the loss of entail-
ments regarding continuants or occurrents existence in qualitative environments,
as we saw in TR1 and TR2.

In terms of how it compared directly with the other logics we evaluated pre-
viously, we consider each TR individually.

TR1 It performed equally as well as ltlALC, out performing both ALC(D) and
fl. Its equal performance with ltlALC was not surprising since the logics
are closely related sharing a similar semantics. Where ltlALC failed with
quantification, [x] gained an advantage. Similarly, where [x] failed with
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eventuality, ltlALC gained an advantage. Both had advantages and dis-
advantages, but we believe they were roughly equal. Neither was perfect
however, but both shed lights on different aspects. The high scores were
mainly down to the possible world semantics and the rigid interpretation
of individuals, paying kindly to the requirements of continuants, which is
mainly why ALC(D) and fl did not score so highly.

TR2 It performed second best for TR2, being outscored by ALC(D). The reason
it performed better than ltlALC was solely because of its ability to better
capture the temporal parts, mainly due to its localised rigidity constraints.
It still lacked entailments involving eventuality that ltlALC does have, but
its ability to model temporal parts were seen to be far more important. It
lost to ALC(D) due to its inability to easily capture it existence, for which
was the reason ltlALC and fl also lost out to ALC(D).

TR3 It outperformed each other logic in TR3, getting a strong result directly
because of the localised rigidity being able to be captured in the logic. This
was arguably the most positive outcome of the logic since this requirement
held the most important temporal feature and temporal relation.

TR4 See TR3.

TR5 It outperformed both ltlALC and ALC(D), and performed equally as well as
fl. It outscored ltlALC due its ability for quantification and the additional
entailments it could gain when combining both the quantitative and quali-
tative environments, and outscored ALC(D) due to not needing to reify any
relations since we could directly temporalise a relation.

TR6 It came joint second, losing out to ltlALC, but out performing ALC(D). It
lost points primarily due it’s inability to represent any type of eventuality.
This was the only downside when compared to ltlALC, but it affected the
logic only in the qualitative environment. This was the only downside for
which the logic suffered when compared to ltlALC.

TR7 Overall, the logic came joint first with ALC(D), although more sub require-
ments were met in ALC(D) than in [x]. The reason it outperformed ltlALC
was primarily due to the fact that it was possible to consider quantification
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as well as a qualitative environment. Modelling changes was equally ex-
pressible in ltlALC and [x], but in ALC(D) they were far more manageable
which is why the sub requirements outperformed every other logic, but due
to the static nature it did not score full marks, which is why overall we gave
them equal marks.

TR8 It came joint last with fl. The problem here was the underlying prob-
lem of the difficulty of modelling existence which is present in every other
requirement and also the problem of eventuality. It could not match the
expressive power of ltlALC which had eventuality, let alone the expressive
power of ALC(D) which had the concrete features. Although in the quanti-
tative setting some of Allen’s relations could be simulated, we couldn’t see
any advantage over the modelling, such as generating new information from
our encoding which is why it scored so poorly.

TR9 It outperformed every other logic scoring the highest possible points. Every
other logic performed equally well. A combination of three things: the
possible world semantics, the ability for quantification and the ability to
temporalise relations, gave it an advantage over ever other logic.

TR10 It scored equally well with ltlALC, but when compared to the other logics,
ltlALC was better off. The quantitative approach could add a nice temporal
structure but it lacked in terms of what it could offer in terms of new inferred
information. Also, the lack of eventuality played another important role
here and it was needed in most scenarios yet again.

TR11 As with TR3 and TR4, it outperformed every other logic and scored full
points. This was solely because of the ability to capture localised rigidity,
the most important feature.

TR12 It came joint last but this time with ALC(D). The problem here was specif-
ically a direct problem with the semantics due to the fact that a branching
time line was simply not something that could be expressed, due to the fact
that the logic encoded a discrete linear time line in its semantics. It was
outperformed by ctlALC whose semantics allowed for this exact time line
structure so this result was unsurprising.

TR13 See TR9.
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TR14 See TR11.

R15 It came second, being outscored by fl. fl wins outright, since it will always
be as powerful as OWL since it is encoded in OWL as an ontology. Although
[x] has only been evaluated against certain fragments of OWL for which
good results have been proved, reasoners have been created which are in
active development and the rigidity is not immediately undecidable.

We believe the approach that we took in creating the logic also aided in its
success. By borrowing the concept of temporal parts of a single entity from
the fluent ontology, adopting the style of semantics from ltlALC and considering
the quantitative environment from ALC(D), we were able to capture most of
the positive aspects of each logic and combine them into one. By far the most
important aspect was that rigid relations could be captured, and more specifically
finite durations of rigid relations. Since the relations themselves could now be
annotated with intervals, then unlike other approaches we could make the rigidity
belong to the axiom in question and not the relation, which gave a lot more
flexibility but also controlled restrictions. Also, the idea to use intervals as a
representation of sequences of time points, helped to cut down on lengthy axioms
and also aided in the representation of durations. We also found that some
previously evaluated logics were useful in a qualitative environment and others
were useful in a quantitative environment, but there wasn’t any option for both
other than what we saw in ALC(D). We decided to include both in our logic as
we saw that this was needed and it proved to be very useful.

Unfortunately we did not manage to embed any eventuality into the logic
at this stage. We were more focused on solving the more important problem of
rigidity. Another place the logic suffered was with regards to Allen’s relations,
particularly with occurrents. ALC(D) was really the only approach that could
define the constraints of Allen’s relations correctly due to the power of concrete
domains and their predicates. But when considering the combination of a possible
world semantics and a concrete domain, it is difficult to comprehend how they
would work together since each temporal dimension is fundamentally different
and they do not easily coincide.

Although many issues arise, our goal was to try and keep the logic as simple as
possible, because we know that even some of the most simplest temporal features
can make a TDL immediately undecidable, and this is something which we are
desperately trying to avoid.
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ltlALC ALC(D) fl [x]
TR1 3 3 3 3

TR1.1 3 7 7 3

TR1.2 3 7 7 3

TR1.3 7 3 7 7

Table 5.3: TR1 Scores evaluated against ltlALC, ALC(D), fl and [x]

ltlALC ALC(D) fl [x]
TR2 7 33 7 3

TR2.1 7 3 7 7

TR2.2 3 3 3 3

Table 5.4: TR2 Scores evaluated against ltlALC, ALC(D), fl and [x]

Although [x] performs better overall than any other temporal extension w.r.t
the TRs, it is by no means considered the best TDL. It still suffers from severe
problems, that other logics easily solve, these being the lack of eventuality, the
difficulties in modelling existence, the inability to constrain Allen’s relations and
the unknown complexity results. They are not however, known unsolvable prob-
lems. We do intend to extend the [x] logics to attempt solve these problems, and
even extend the original survey to discover more requirements, pushing the limits
of [x] to see how expressive it can be whilst remaining decidable. We continue
this discussion in Chapter 9.

ltlALC ALC(D) fl [x]
TR3 7 7 7 33

TR3.1 3 7 7 3

TR3.2 7 3 3 3

Table 5.5: TR3 Scores evaluated against ltlALC, ALC(D), fl and [x]
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ltlALC ALC(D) fl [x]
TR4 7 7 7 33

TR4.1 3 7 7 3

TR4.2 7 3 3 3

Table 5.6: TR4 Scores evaluated against ltlALC, ALC(D), fl and [x]

ltlALC ALC(D) fl [x]
TR5 3 7 33 33

TR5.1 3 3 3 3

Table 5.7: TR5 Scores evaluated against ltlALC, ALC(D), fl and [x]

ltlALC ALC(D) fl [x]
TR6 33 7 3 3

TR6.1 3 3 3 3

Table 5.8: TR6 Scores evaluated against ltlALC, ALC(D), fl and [x]

ltlALC ALC(D) fl [x]
TR7 7 3 7 3

TR7.1 7 3 7 7

TR7.2 7 3 7 7

TR7.3 3 7 7 3

Table 5.9: TR7 Scores evaluated against ltlALC, ALC(D), fl and [x]

ltlALC ALC(D) fl [x]
TR8 3 3 7 7

TR8.1 3 3 7 7

Table 5.10: TR8 Scores evaluated against ltlALC, ALC(D), fl and [x]

ltlALC ALC(D) fl [x]
TR9 3 3 3 33

TR9.1 3 3 3 3

Table 5.11: TR9 Scores evaluated against ltlALC, ALC(D), fl and [x]

ltlALC ALC(D) fl [x]
TR10 3 3 3 3

TR10.1 3 3 3 3

TR10.2 3 3 3 3

TR10.3 3 3 3 3

TR10.4 7 3 3 3

Table 5.12: TR10 Scores evaluated against ltlALC, ALC(D), fl and [x]
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ltlALC ALC(D) fl [x]
TR11 7 7 7 33

TR11.1 3 7 7 3

TR11.2 7 3 3 3

Table 5.13: TR11 Scores evaluated against ltlALC, ALC(D), fl and [x]

ctlALC ALC(D) fl [x]
TR12 33 7 7 7

TR12.1 3 7 3 7

Table 5.14: TR12 Scores evaluated against ltlALC, ALC(D), fl and [x]

ltlALC ALC(D) fl [x]
TR13 3 3 3 33

TR13.1 3 3 3 3

Table 5.15: TR13 Scores evaluated against ltlALC, ALC(D), fl and [x]

ltlALC ALC(D) fl [x]
TR14 7 7 7 33

TR14.1 3 7 7 3

TR14.2 7 3 3 3

Table 5.16: TR14 Scores evaluated against ltlALC, ALC(D), fl and [x]

ltlALC ALC(D) fl [x]
R15 7 7 33 3

Table 5.17: R15 Scores evaluated against ltlALC, ALC(D), fl and [x]



Chapter 6

Reasoning in Fragments of [x]

In this chapter we discuss the reasoning problems and challenges we face in dif-
ferent fragments of [x]. We discuss how standard DL reasoning tasks can be
seen as insufficient for temporal reasoning in certain fragments in [x] and discuss
how new reasoning tasks are needed. We then go on to prove decidability and
complexity results for interesting fragments of [x].

6.1 Extending Classical DL Reasoning Tasks

The standard DL reasoning tasks are satisfiability testing, subsumption, classi-
fication and consistency checking [BCM+03]. Other reasoning task exists (for
example, query answering, realisation, data access, axiom pinpointing, explana-
tion generation etc), but we set these aside for now.

In standard DLs, ontologies are considered to be finite sets of axioms and as-
sertions, and thus there exist only finitely many concept descriptions, and atomic
concepts that occur in an ontology. This works well for reasoning procedures
such as classification, since their can only be finitely many pairs of atomic sub-
sumptions. A classification usually involves a finite number of entailment tests
and the inferred concept hierarchy can be represented as a directed acyclic graph.
For reasoning procedures such as satisfiability, there is a clear understanding over
what it means for a concept to be satisfiable, which happens to be inter-reducible
to many of the other reasoning procedures [BCM+03], further making it more
clear what the purpose of each task is. For some temporal logics this is not nec-
essarily the case. For example consider the class A[0]x from ALC[x]. If this class

198
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was considered to be satisfiable, since we now have an infinite amount of possi-
ble worlds, should satisfiability be interpreted as there being an interpretation I
where AIi[0]x is non empty for every i ∈ Z, or is it sufficient to quantify over just a
single i instead? We made the decision when defining the semantics by defining
satisfiability of concepts in the qualitative environments to be satisfiable if they
have a model at time 0. This was a very important decision to make and it was
based mostly on the results of the evaluation in Chapter 4. Generally, we believe
that a concept or class need not have a non empty interpretation in all worlds for
it to be considered satisfiable, especially in cases where we have entities coming
into and out of existence.

Classification of [x] ontologies causes the biggest problem in unbounded infi-
nite environments. In the bounded finite environments, such as ALC[ ], there are
again only finitely many atomic concepts that may occur inside a given ontology,
so in terms of a classification, the inferred concept hierarchy will always be of fi-
nite size since the number of atomic entailments are also of finite size. But when
we consider the unbounded infinite environments, such as ALC[x], a classification
is not so simple. We explain why with an example. Consider the following ALC[x]
ontology:

O1 :={A[0]x v B[1]x

{B[0]x v A[1]x}
(6.1)

The standard signature of O1 is simply the concept names that occur in O1,
{A[0]x , B[1]x , B[0]x , A[1]x}. Since classical classification is normally only concerned
with the concept names occurring directly in the knowledge base, then other
than the axioms that appear in O, there are not any extra entailments that
a classification could provide. However, if we direct our attention away from
the classical signature of O1, there is in fact a number of atomic entailments
when we focus on the temporal nature of the concepts that appear in O1. Con-
sidering the concept A[0]x . Its entailed super concepts would in fact include
{B[1]x , A[2]x , B[3]x , A[4]x , B[5]x , A[6]x ...}. Although the concept A[2]x does not ap-
pear in the ontology itself, the variable x quantifies over all time points in Z,
so it can be argued that it still should be considered in a classification since it
is a relevant temporal entailment of the ontology. It is clear that the standard
reasoning procedures are not sufficient for this level of temporal reasoning in [x].
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For this reason, we introduce several new notions to account for this added
temporal expressivity. We redefine what the signature of temporal ontologies is, as
well as introducing the notion of bounded classification for the unbounded infinite
fragments of [x], to ensure inferred concept hierarchies remain finite under the
notion of what we call a k-bound classification, where given each atomic concept
Aλx that occurs in an ontology, a k-bound classification would include all super
concepts of Aλx that were no more than a temporal distance of k away from Aλx .
In the example above, a 4-bound classification would restrict the super concepts
of A[0]x to be {B[1]x , A[2]x , B[3]x , A[4]x}. This would ensure that the inferred class
hierarchy of an ontology remains finite.

Before defining the signatures of languages of [x] and then the k-bound clas-
sification, we introduce the notion of a base version of a v-interval.

Definition 40 (V-Interval Base Versions)
Let λx be any interval in Λx. The interval [0, λex−λsx] is called the base version
of λx and is denoted as λ̇x.

The base version of a v-interval is the v-interval shifted to zero. For example,
the base version of the v-interval [2, 4]x is [0, 2]x, and the base version of [−2,−1]x

is [0, 1]x.
In most of our definitions, we use ALC as the base DL to aid our examples.

We also do not exceed the expressivity of ALC when we go on to prove certain
complexity results for [x]. We could replace ALC with another DL, but for the
purpose of this thesis, this is not necessary and ALC is most suitable.

Definition 41 (Signatures of languages of [x])
.ALC[ ] Given an ALC[ ] Ontology O, an ALC[ ] TBox T and an ALC[ ] ABox A, the

signature of each, denoted as Õ, T̃ , Ã respectively, is the set of all concept,
role and individual names occurring in each set.

ALC[x] Given an ALC[x] Ontology O, an ALC[x] TBox T and an ALC[x] ABox A, the
signature of each, denoted as Õ, T̃ , Ã respectively, is the set of all concept,
role and individual names occurring in each set, where for each concept and
role name, each v-interval is converted to its base version.

ALC[ ][x] Given an ALC[ ][x] Ontology O, an ALC[ ][x] TBox T and an ALC[ ][x] ABox
A, the signature of each, denoted as Õ, T̃ , Ã respectively, is the set of
all concept, role and individual names occurring in each set, where each
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variable concept and role name is quantified over each time point between
min(O) and max(O).

ALC[x][ ] Given an ALC[x][ ] Ontology O, an ALC[x][ ] TBox T and an ALC[x][ ] ABox
A, the signature of each, denoted as Õ, T̃ , Ã respectively, is the set of
all concept, role and individual names occurring in each set, where for each
variable concept and role name, each v-interval must be converted to its base
version.

As an example, the signature of O1 from above would be {A[0]x , B[0]x}
We now go on to define a k-bound classification.

Definition 42 (k-bound classification)
Let T be a TBox in a language of [x] with an infinite time line. A k−bound
classification of T is the set of all pairs 〈Aλ̇x , Bλ̇x+i

〉 s.t. Aλ̇x , Bλ̇x
are in T̃ and

T |= Aλ̇x v Bλ̇x+i
where −k ≤ i ≤ k.

We now go on to define several reasoning problems for each language of [x].

6.1.1 Reasoning problems in ALC [ ]
Definition 43 (Satisfiability)
Let C be an ALC[ ] concept, T an ALC[ ] TBox, A an ALC[ ] ABox and let O and
an ALC[ ] ontology of the form O = (T ,A).
C is satisfiable if there exists a model I where CI is non empty.
C is satisfiable w.r.t T if there exists a model I of T where CI is non empty.
C is satisfiable w.r.t O if there exists a model I of both T and A where CI is
non empty.

Definition 44 (Ontology Consistency)
An ALC[ ] ontology O = (T ,A) is consistent if there exists a model I of both T
and A.

Definition 45 (Subsumption)
Let T be an ALC[ ] TBox and C and D be ALC[ ] concept descriptions. C is
subsumed by D written T |= C v D if for all models I of T it holds that
CI ⊆ DI.

Definition 46 (Classification)
Let T be an ALC[ ] TBox. A classification of T is the set of all pairs 〈Aλ, Bλ〉 s.t.
Aλ, Bλ are in T̃ and T |= Aλ v Bλ.
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6.1.2 Reasoning problems in ALC [ ][x]
Definition 47 (Satisfiability)
Let C be an ALC[ ][x] concept involving intervals, Cx be an ALC[ ][x] concept in-
volving v-intervals, T be an ALC[ ][x] TBox, A an ALC[ ][x] ABox and let O be an
ALC[ ][x] ontology of the form O = (T ,A).
C is satisfiable if there exists a model I where CI is non empty.
Cx is satisfiable if there exists a model I where CI0x is non empty.
C is satisfiable w.r.t T if there exists a model I of T where CI is non empty.
Cx is satisfiable w.r.t T if there exists a model I of T where CI0x is non empty.
C is satisfiable w.r.t O if there exists a model I of both T and A where CI is
non empty.
C is satisfiable w.r.t O if there exists a model I of both T and A where CI0x is
non empty.

Definition 48 (Ontology Consistency)
An ALC[ ][x] ontology O = (T ,A) is consistent if there exists a model I of both T
and A.

Definition 49 (Subsumption)
Let T be an ALC[ ][x] TBox and C and D be ALC[ ] concept descriptions. C is
subsumed by D written T |= C v D if for all models I of T it holds that
CI ⊆ DI.

Definition 50 (Classification)
Let T be an ALC[ ][x] TBox. A classification of T is the set of all pairs 〈Aλ, Bλ〉
s.t. Aλ, Bλ are named classes over standard intervals in T̃ and T |= Aλ v Bλ.

6.1.3 Reasoning problems in ALC [x]
Definition 51 (Satisfiability)
Let C be an ALC[x] concept, T be an ALC[x] TBox, A an ALC[x] ABox and let O
be an ALC[x] ontology of the form O = (T ,A).
C is satisfiable if there exists a model I where CI is non empty.
C is satisfiable w.r.t T if there exists a model I of T where CI0 is non empty.
C is satisfiable w.r.t O if there exists a model I of both T and A where CI0 is
non empty.
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Definition 52 (Ontology Consistency)
An ALC[x] ontology O = (T ,A) is consistent if their exists a model I of both T
and A.

Definition 53 (Subsumption)
Let T be an ALC[x] TBox and Cx and Dx be ALC[x] concept descriptions. Cx is
subsumed by Dx written T |= Cx v Dx if for all models I of T , it holds that
CI

k ⊆ DI
k for all k ∈ Z.

Definition 54 (Classification)
Let T be an ALC[x] TBox and let k ≥ max(|min(T ) |, |max(T ) |). A k−bound
classification of T is the set of all pairs 〈Aλ̇x , Bλ̇x+i

〉 s.t. Aλ̇x , Bλ̇x
are in T̃ and

T |= Aλ̇x v Bλ̇x+i
where −k ≤ i ≤ k.

6.1.4 Reasoning problems in ALC [x][ ]
Definition 55 (Satisfiability)
Let C be an ALC[x][ ] concept involving standard intervals, Cx be an ALC[x][ ] concept
involved v-intervals, T be an ALC[x][ ] TBox, A an ALC[x][ ] ABox and let O be an
ALC[x][ ] ontology of the form O = (T ,A).
C is satisfiable if there exists a model I where CI is non empty.
Cx is satisfiable if there exists a model I where CI0x is non empty.
C is satisfiable w.r.t T if there exists a model I of T where CI is non empty.
Cx is satisfiable w.r.t T if there exists a model I of T where CI0x is non empty.
C is satisfiable w.r.t O if there exists a model I of both T and A where CI is
non empty.
C is satisfiable w.r.t O if there exists a model I of both T and A where CI0x is
non empty.

Definition 56 (Ontology Consistency)
An ALC[x][ ] ontology O = (T ,A) is consistent if there exists a model I of both T
and A.

Definition 57 (Subsumption)
Let T be an ALC[x][ ] TBox, Cx and Dx be ALC[x] concept descriptions and C and
D be ALC[ ] concept descriptions. Cx is subsumed by Dx written T |= Cx v Dx if
for all models I of T , it holds that CIk ⊆ DI

k for all k ∈ Z. C is subsumed by
D written T |= C v D if for all models I of T it holds that CI ⊆ DI.
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Definition 58 (Classification)
Let T be an ALC[x][ ] TBox and let k ≥ max(|min(T ) |, |max(T ) |). A k−bound
classification of T is the set of all pairs 〈Aλ̇x , Bλ̇x+i

〉 s.t. Aλ̇x , Bλ̇x
are in T̃ and

T |= Aλ̇x v Bλ̇x+i
where −k ≤ i ≤ k.

We now go on to show decidability and upper complexity bounds for various
of the reasoning problems introduced above for languages of [x] when combined
with the DLs EL and ALC. We show results for EL[ ], EL[ ][x], ALC[ ], ALC[x] ALC[ ][x]
and a restricted form of EL[x]. All decision procedures assume a constant domain
restriction. The decidability of the remaining languages remains unknown.

6.2 A Decision Procedure for Classification in EL[ ]

EL is a light weight DL, well known for its impressive expressiveness with its
few logics operators and polynomial time complexity [Bra04a, BBL05]. EL was
formally introduced in Chapter 2. We go on to define the syntax and semantics
of EL[ ] before describing a decision procedure for classification.

EL[ ] Syntax

EL[ ] concept descriptions are a restriction of ALC[ ] concept descriptions where we
only allow for the u,∃ logical operators.

Definition 59 (EL[ ] Concept Descriptions)
Let λ ∈ Λ be an arbitrary interval, Aλ ∈ N [ ]

con an atomic concept, Rλ ∈ N [ ]
role an

atomic role and C, D arbitrary concept descriptions. Then concept descriptions
are formed in EL[ ] according to the following syntax rule:

C,D −→ > | Aλ | C uD | ∃Rλ.C

EL[ ] Semantics

The semantics is defined in the usual way.

EL[ ] TBox, ABox & Ontology

TBoxes, ABoxes and Ontologies are defined in the usual way.
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Reasoning

In standard EL, the standard reasoning problem is classification, i.e. deciding for
a given ontology O, whether O |= A v B for all concept names A,B occurring in
O. Satisfiability and ontology consistency are trivial in EL and thus EL[ ] since EL
does not allow any negation, and also not ⊥. Therefore every concept in EL[ ] is
automatically satisfiable and every ontology is also automatically consistent since
one can easily find a trivial model by setting the interpretation of each concept
and role name to the full domain in every time point. So we focus only on the
reasoning problem of classification.

Before showing a decision procedure to compute a classification, we rely on
an EL[ ] TBox to be in normal form. We first show how this can be computed
in both polynomial time and space. This normal form is similar to those seen in
[BBL05, Bra04b].

Normalisation

Definition 60 (Normalised EL[ ] TBox)
Let T be an EL[ ] TBox over the set N

[ ]
con and N [ ]

role. T is normalised if T contains
only axioms of the form:

Aλ1 v Bλ2

Aλ1 u Bλ2 v Cλ3

Aλ1 v ∃Rλ2.Bλ3

∃Rλ1.Aλ2 v Bλ3

where Aλi , Bλi , Cλi are atomic concepts from N
[ ]
con and Rλi is a role name from

N
[ ]
role.

The following definition shows how any EL[ ] TBox can be transformed into a
normalised version using a set of normalisation rules.

Definition 61 (Normalisation Rules for an EL[ ] TBox)
Let T be an EL[ ] TBox over the set N [ ]

con and N [ ]
role. For any concept descriptions

C, D, E over N [ ]
con, any role Rλ2 over N [ ]

role and any complex concept descriptions
Ĉ and D̂ (that are not concept names) over N [ ]

con and N [ ]
role, the rules are defined

as follows:
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R G −→ G′

NF1 C ≡ D −→ {C v D,D v C}
NF2 Ĉ uD v E −→ { Ĉ v Aλ1 , Aλ1 uD v E }
NF3 C u D̂ v E −→ { D̂ v Aλ1 , Aλ1 u C v E }
NF4 ∃Rλ2 .Ĉ v D −→ { Ĉ v Aλ1 ,∃Rλ2 .Aλ1 v D }
NF5 Ĉ v D̂ −→ { Ĉ v Aλ1 , Aλ1 v D̂ }
NF6 C v ∃Rλ2 .Ĉ −→ {C v ∃Rλ2 .Aλ1 , Aλ1 v Ĉ }
NF7 C v D u E −→ {C v D,C v E}

where Aλ1 is a fresh concept name not occurring in T and λ1 = [0, 0]. Each
rule has the form R : G −→ G′, where R is the rule name, G (LHS) is the input
axiom and G′(RHS) are the resulting axioms.

When a rule R is applied to T , it is changed to T ′:= T \ {G} ∪ G′. The
normalised TBox NF(T ) is created by first exhaustively applying rules NF1 -
NF4 (Step 1) in ascending order to any GCI conforming to the structure of the
rule, and then applying rules NF5 - NF7 (Step 2) in a similar manner. It is
important to note that when moving from Step 1 to Step 2, no rules in Step 2
can generate new axioms that could be applicable to rules in the previous step.
This can easily be seen by observing the RHS of the rules.

Theorem 1 (Computing NF(T ) takes polynomial time)
Let T be an EL[ ] TBox. NF(T ) can be computed in polynomial time w.r.t the size
of T and NF(T ) is of polynomial size w.r.t the size of T .

Proof Consider the first step involving rules NF1 -NF4. Applying any of these
rules once to an appropriate axiom only increases the size of T linearly. Consider
NF1. The input axiom (LHS) has length

|C|+ |D|+ 1 (6.2)

where 1 represents the number of additional symbols needed to encode the rule,
i.e. {≡}. When the rule fires, the new axioms (RHS) have length

(2· |C|) + (2· |D|) + 2 (6.3)

showing that T is increased only linearly by single application of rule NF1. Notice
that this rule can not be triggered by a result of any other rule, as no other rule
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Rule LHS RHS Remarks
NF1 |C|+ |D|+ 1 (2· |C|) + (2· |D|) + 2 Linear
NF2 |Ĉ|+ |D|+ |E|+ 2 |Ĉ|+ |D|+ |E|+ 5 Constant
NF3 |D̂|+ |C|+ |E|+ 2 |D̂|+ |C|+ |E|+ 5 Constant
NF4 |Ĉ|+ |D|+ |Rλ2|+ 2 |Ĉ|+ |D|+ |Rλ2|+ 8 Constant
NF5 |Ĉ|+ |D̂|+ 1 |Ĉ|+ |D̂| + 4 Constant
NF6 |C|+ |Ĉ|+ |Rλ2|+ 3 |Ĉ|+ |C|+ |+ 8 Constant
NF7 |C|+ |D|+ |E|+ 2 (2· |C|) + |D| + |E| + 2 Constant

Table 6.1: Growth of an EL[ ] TBox after single application of normalisation rules

adds axioms of this form, hence NF1 can only be fired once per axiom in T , thus
exhaustive application of this rule only requires linear time. The affected size of
the TBox after application of the rules can be seen in Table 6.1. Consider NF2.
A single application of this rule only increases the size of the T by a constant (see
Table 6.1) and splits the input axiom G into two new axioms contained in G′,
which contains axioms of the form {Ĉ v A, A u D v E }. The first axiom may be
subject to another application of NF2 as it could have the form Ĉ u D v E, hence
the number of times NF2 is applicable as result of the rule firing is dependant
on the number of ‘us’ in the input axiom. The same reasoning applies to NF3,
and also NF4 where the number of times the rule is applicable is dependant on
number of ‘∃s’ in the input axiom. Exhaustive application of the rules from NF2
to NF4 only increases the size of the TBox by a constant and the number of times
these rules can fire is limited by the occurrence of specific constructs on the LHS
of these axioms, hence exhaustive application of the rules in Step 1 takes linear
time and requires linear space w.r.t to the size of the axioms, which is bounded
by the size of T . Consider the second step involving rules NF5 to NF7. A single
application of NF5 only increases the size of T by a constant (see Table 6.1)
and is applicable at most once per resulting axiom. A single application of rule
NF6 also increases the size of T by a constant and similar to NF4, the number
of times the rule is applicable is dependant on number of ‘∃’s in the input axiom.
A single application of rule NF7 also increases the size of T by a constant and
similar to NF2 and NF3, the number of times the rule is applicable is dependant
on number of ‘us in the input axiom. Exhaustive application of the rules from
NF5 to NF7 only increase the size of the TBox by a constant and the number
of times these rules can fire is limited by the occurrence of specific constructs on
the LHS of these axioms, hence exhaustive application of the rules in Step 2 also
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takes linear time and requires linear space w.r.t to the size of T .

Proposition 1
Let T be an EL[ ] TBox and let NF(T ) be its normalised version. Then

(i) T̃ ⊆ ÑF(T )

(ii) For any model I of NF(T ), I is a model of T

(iii) For any model I of T , there is a model I ′ of NF(T ) s.t. I ≡ I ′
/T̃

Proof (i) Trivial since no rule ever removes concept names - concept names
are only added and addition/removal of role names does not exist. By simple
inspection of the rules, one can see that for any axiom involving existential con-
structs, the role name including the construct is added back as a resulting GCI
without any change of the role name.

(ii) Suppose I is a model on NF(T ). Consider how NF(T ) was built. Every
complex concept description occurring in an axiom was replaced with a fresh
concept name, and the axiom was split into two. The fresh concept name acted
as a concept filler for the two new axioms, and because of the transitivity of
subsumption, no information was lost - it was only added. Since (i) holds, it also
holds that I is a model of T where we simply ignore the sets A′Iλ where A′λ is a
fresh concept.

(iii) Let I be a model of T . We can build a model I ′ for NF(T ) that is
equivalent to I when restricted to T̃ by setting ∆I = ∆I

′ , CI = CI
′ for all

C ∈ NTcon, and A′Iλ = CI where A′λ is a fresh concept occurring in NF(T ) and C
is the concept that was replaced in the original axiom by A′. By using similar
reasoning in (ii), as the subsumption relationships are preserved with the addition
of the fresh axioms, I ′ is a model of NF(T ), and is equivalent to I when restricted
over T̃ .

Corollary 1
NF(T ) is entailment preserving.

From this point onwards, we assume any EL[ ] TBox is in normal form.

Some Useful Definitions

Let λ1, λ2 be intervals.
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• λ1 is contained within λ2, written as λ1  c λ
2 if λ2s ≤ λ1s ≤ λ1e ≤ λ2e.

• λ1 touches λ2, written as λ1  t λ
2 if λ2s ≤ λ1s ≤ λ2e or λ2s ≤ λ1e ≤ λ2e or

λ2  c λ
1.

Note that λ1  c λ2 ⇒ λ1  t λ2 and λ1  t λ2 ⇒ λ2  t λ1.

D - Decision Procedure

Having shown that normalisation of any EL[ ] TBox can be computed in both
polynomial time and space, we now show how we can compute a classification for
an EL[ ] TBox. Using a similar approach to [Bra04b], we compute a classification
by building a set S∗(Aλ) (a subsumer set for Aλ) for every Aλ ∈ T̃ for some given
TBox T , for which each set contains all concept names in T̃ that are subsumers
of Aλ, i.e., the subsumer sets encode the classification. The subsumer sets are
defined as follows:

Definition 62 (Subsumer Sets S∗(Aλ))
Let T be an EL[ ]-TBox (normalized). For every Aλ ∈ T̃ , and every i ∈ N, the
subsumer set Si(Aλ) is defined inductively by first applying rule INIT0, then for
every i ≥ 0, Si+1(Aλ) is defined by extending Si(Aλ) by exhaustive application of
rules CR0-CR4. The subsumer set S∗(Aλ), is defined as the union of

⋃
i≥0

Si(Aλ).

St(·) is complete if no more rules are applicable for any subsumer set.

• INIT0 S0(Aλ1) := {>, Aλ1} for every Aλ1 ∈ T̃

• CR0 If Aλ3 ∈ Si(Cλ1) and Dλ2 ∈ Si(Aλ4) where λ4  c λ
3 and Dλ2 6∈ Si(Cλ1)

then Si+1(Cλ1) := Si(Cλ1) ∪ {Dλ2}

• CR1 If Aλ1 v Bλ2 ∈ T and Aλ1 ∈ Si(Cλ3) and Bλ2 /∈ Si(Cλ3) then
Si+1(Cλ3) := Si(Cλ3) ∪ {Bλ2}.

• CR2 If Aλ1 uBλ2 v Cλ3 ∈ T and Aλ1 , Bλ2 ∈ Si(Dλ4) and Cλ3 /∈ Si(Dλ4)

then Si+1(Dλ4) := Si(Dλ4) ∪ {Cλ3}.

• CR3 If Aλ1 ∈ Si(Bλ2) and Aλ1 v ∃Rλ3 .Cλ4 ∈ T and Dλ5 ∈ Si(Cλ4) and
∃Rλ6 .Dλ5 v Eλ7 ∈ T and λ6  c λ

3 and Eλ7 6∈ Si(Bλ2) then Si+1(Bλ2) :=

Si(Bλ2) ∪ {Eλ7}.
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• CR4 If Bλ1 ∈ Si(Cλ′) and Cλ3 ∈ Si(Aλ2), Cλ4 ∈ Si(Aλ2), ... , Cλn ∈ Si(Aλ2),
and λ3  t λ

4  t ...  t λ
n and λ′  c [λ3s, λ

n
e ] and Bλ1 6∈ Si(Aλ2) then

Si+1(Aλ2) = Si(Aλ2) ∪ {Bλ1}.

Theorem 2
Let T be an EL[ ] TBox (normalized). For every Fλ1 , Gλ2 ∈ T̃ , it holds that
Gλ2 ∈ S∗(Fλ1) iff T |= Fλ1 v Gλ2.

Proof We first show the ⇒ direction by induction on n over Sn.
Claim: Gλ2 ∈ S∗(Fλ1)⇒ T |= Fλ1 v Gλ2

n = 0:

• INIT0: If INIT0 added Gλ2 to Sn(Fλ1), then either Gλ2 = Fλ1 or Gλ2 = >.
Clearly, any TBox |= Aλ1 v > and |= Aλ1 v Aλ1 , proving the claim holds.

n > 0:

• CR0: If CR0 added Gλ2 to Sn(Fλ1) then there must exist a concept Aλ3 ∈
Sn−1(Fλ1) and Gλ2 ∈ Sn−1(Aλ4) where λ4  c λ

3 and Gλ2 6∈ (Fλ1). By
induction hypothesis it holds that T |= Fλ1 v Aλ3 and T |= Aλ4 v Gλ2 . By
definition of the semantics, we know that T |= Aλ3 v Aλ4 . By transitivity
of subsumption it holds that T |= Fλ1 v Gλ2 , proving the claim holds.

• CR1: If CR1 added Gλ2 to Sn(Fλ1), then there exists a concept name Aλ ∈
Sn−1(Fλ1), an axiom Aλ v Gλ2 ∈ T and Gλ2 /∈ Sn−1(Fλ1). By induction
hypothesis it holds that T |= Fλ1 v Aλ. By transitivity of subsumption it
holds that T |= Fλ1 v Gλ2 , proving the claim holds.

• CR2: If CR2 added Gλ2 to Sn(Fλ1), then there exists two concept names
{Aλ3 , Bλ4} ∈ Sn−1(Fλ1), a GCI axiom Aλ3 u Bλ4 v Gλ2 ∈ T and Gλ2 /∈
Sn−1(Fλ1). By induction hypothesis it holds that T |= Fλ1 v Aλ3 and T |=
Fλ1 v Bλ4 . By transitivity of subsumption it holds that T |= Fλ1 v Gλ2

proving the claim.

• CR3: If CR3 added Gλ2 to Sn(Fλ1), then there exists 2 concept names Aλ3 ∈
Sn−1(Fλ1) and Bλ5 ∈ Sn−1(Cλ4), two GCI axioms Aλ3 v ∃Rλ7 .Cλ4 ∈ T and
∃Rλ6 .Bλ5 v Gλ2 ∈ T and λ6  c λ

7 and finally Gλ2 /∈ Sn−1(Fλ1). By
definition of the semantics its holds that T |= Rλ7 v Rλ6 and by induction
hypothesis it holds that T |= Fλ1 v Aλ3 and T |= Cλ4 v Bλ5 . Since T |=
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Aλ3 v ∃Rλ7 .Cλ4 and T |= ∃Rλ6 .Bλ5 v Gλ2 , by transitivity of subsumption
(and abuse of notation) we have T |= Fλ1 v ∃Rλ6 .Bλ5 v Gλ2 , showing
T |= Fλ1 v Gλ2 , and proving the claim holds.

• CR4: If CR4 added Gλ2 to Sn(Fλ1) then there exists a concept Cλ′ where
Gλ2 ∈ Sn−1(Cλ′) and there exists concept Cλ3 , Cλ4 , ..., Cλn where λ3  t

λ4  t ...  t λ
n and λ′  c [λ3s, λ

n
e ] and Cλ3 ∈ Sn−1(Fλ1), Cλ4 ∈ Sn−1(Fλ1),

..., Cλn ∈ Sn−1(Fλ1). By IH, it holds that, T |= Cλ′ v Gλ2 , T |= Fλ1 v Cλ3 ,
T |= Fλ1 v Cλ4 , T |= Fλ1 v ..., T |= Fλ1 v Cλn . By definition of the
semantics it holds that T |= Cλ3 u Cλ4 u ... u Cλn v Cλ′ and thus by
transitivity of subsumption it holds that T |= Fλ1 v Gλ2 , proving the claim
holds.

Next, we show T |= Fλ1 v Gλ2 ⇒ Gλ2 ∈ S∗(Fλ1) by proving the contraposition:
Claim: Gλ2 /∈ S∗(Fλ1) ⇒ T 6|= Fλ1 v Gλ2 where we build a canonical model
I of T with a witness x ∈ F Iλ1 \ GIλ2 . We construct the canonical model I
according to the following definition: Let min(T ) and max(T ) be defined as
usual. Let I0 be ∆I

0
l = {aλ|Aλ ∈ T̃ } and AI

0
j = {aλ|λs ≤ j ≤ λe} for all l where

min(T ) ≤ l ≤ max(T ). For each i ∈ N, let I i+1 be the result of exhaustive
application of the following rules:

I1: If Aλ1 v Bλ2 ∈ T then for every individual x ∈ AIiλ1 where x /∈ BIiλ2 , add x
to BIi+1

λ2

I2: If Aλ1 u Bλ2 v Cλ3 ∈ T then for every individual x ∈ AI
i

λ1 ∩ BI
i

λ1 where
x /∈ CIiλ3 , add x to CIi+1

λ3

I3: If Aλ1 v ∃Rλ2 .Bλ3 ∈ T then for every individual x ∈ AIiλ1 where there is no
individual y ∈ BIiλ3 where (x, y) ∈ RIiλ2 , add (x, y) to RIi+1

λ2 where y ∈ BIiλ3 .

I4: If ∃Rλ1 .Aλ2 v Bλ3 ∈ T then for every individual x ∈ Rλ1 .A
Ii
λ2 where x /∈

BI
i

λ3 , add x to BIi+1

λ3 .

The rules are applied exhaustively . I is then defined as the infinite union of

each I i, i.e. I :=
∞⋃
i=0

I i. We first show that I is in fact a model of T . Since T

is normalised, it suffices to show that I is a model for each of the four possible
axioms in T .
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• If Aλ1 v Bλ2 ∈ T then AIλ1 ⊆ BIλ2 . Suppose x ∈ AI
m

λ1 and x 6∈ BInλ2 for some
0 ≤ m ≤ n− 1. By definition of I1, x ∈ BIm+1

λ2 , disproving the assumption,
and thus proving the claim holds.

• If Aλ1 u Bλ2 v Cλ3 ∈ T then AIλ1 ∩ BIλ2 ⊆ CIλ3 . Suppose x ∈ AI
m

λ1 and
x ∈ BI

m

λ2 and x 6∈ CI
n

λ3 for some 0 ≤ m ≤ n − 1. By definition of I2,
x ∈ CIm+1

λ3 , disproving the assumption, and thus proving the claim holds.

• If Aλ1 v ∃Rλ2 .Bλ3 ∈ T then AIλ1 ⊆ (∃Rλ2 .Bλ3)
I . Suppose x ∈ AI

m

λ1 and
there does not exist a y where (x, y) ∈ RI

n

λ2
and y ∈ BI

n

λ3 for some 0 ≤
m ≤ n− 1. By definition of I3 and initialisation of I, x ∈ (∃Rλ2 .Bλ3)

Im+1,
disproving the assumption, and thus proving the claim holds.

• If ∃Rλ1 .Aλ2 v Bλ3 then, (∃Rλ1 .Aλ2)
In ⊆ BI

n

λ3 . Suppose x ∈ (∃Rλ1 .Aλ2)
Im

and x 6∈ BI
n

λ3 for some 0 ≤ m ≤ n − 1. By definition of I3, x ∈ BI
m+1

λ3 ,
disproving the assumption, and thus proving the claim holds.

Having shown I to be a model of T , it remains to show that G 6∈ S∗(F ) →
F I 6⊆ GI . To this end we show that for every n ∈ N and every Aλ1 , Bλ2 ∈ T̃
where Aλ1 6= Bλ2 , ∀xλ ∈ AI

n

λ1 , if xλ was born for Aλ1 at t, i.e. xλ = aλ1 , and
xλ ∈ BI

n

λ2 then Bλ2 ∈ S∗(Aλ1). We show this by proof of induction over n− t.
n - t = 0:
Since Aλ1 6= Bλ2 then there are only two cases:

• Bλ2 = >: By non-applicability (NA) of the INIT0 rule, > ∈ S∗(Aλ1), proving
the claim holds.

• B = A where λ2  c λ1. By NA of INIT0 and CR0, it holds that B2
λ ∈

S∗(Aλ1), proving the claim holds.

n - t > 0:
Let xλ ∈ BI

n

λ2 \ BI
n−1

λ2 . Then one of the rules I1, I2 or I4 was responsible for
this:

• I1: Then there is a GCI of the form Cλ3 v Bλ4 where xλ ∈ CI
n−1

λ3 . By IH it
holds that Cλ3 ∈ S∗(Aλ1). By NA of CR1 it holds that Bλ4 ∈ S∗(Aλ1). xλ
is in BInλ2 by one of three scenarios:

i) Bλ4 = Bλ2 : then Bλ2 ∈ S∗(Aλ1), proving the claim holds.
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ii) λ2  c λ
4: then by NA of CR0, it holds that Bλ2 ∈ S∗(Bλ4), and by

NA of CR0, it holds that Bλ2 ∈ S∗(Aλ1), proving the claim holds.

iii) λ2  c [i, j]: where there exists Bλ′ , Bλ′′ , . . ., Bλ? and λ′  t λ
′′  t

. . . t λ
4  t . . . t λ

? and xλ ∈ BI
n−1

λ′ ∩BIn−1

λ′′ ∩ . . .∩BI
n

λ4 ∩ . . .∩BI
n−1

λ?

and i = λ′S and j = λ?e. By IH, Bλ′ ∈ S∗(Aλ1), Bλ′′ ∈ S∗(Aλ1), . . .,
Bλ? ∈ S∗(Aλ1). By NA of CR4, Bλ2 ∈ S∗(Aλ1), proving the claim
holds.

• I2: Then there exists an axiom of the form Cλ3 u Dλ5 v Bλ4 where xλ ∈
CI

n−1

λ3 and xλ ∈ BIn−1

λ5 . By IH it holds that Cλ3 ∈ S(Aλ1). By NA of CR2
it holds that Bλ4 ∈ S(Aλ1). xλ is in BInλ2 by one of three scenarios:

i) Bλ4 = Bλ2 : then Bλ2 ∈ S∗(Aλ1), proving the claim holds.

ii) λ2  c λ
4: then by NA of CR0, it holds that Bλ2 ∈ S∗(Bλ4), and by

NA of CR0, it holds that Bλ2 ∈ S∗(Aλ1), proving the claim holds.

iii) λ2  c [i, j]: where there exists Bλ′ , Bλ′′ , . . ., Bλ? and λ′  t λ
′′  t

. . . t λ
4  t . . . t λ

? and xλ ∈ BI
n−1

λ′ ∩BIn−1

λ′′ ∩ . . .∩BI
n

λ4 ∩ . . .∩BI
n−1

λ?

and i = λ′S and j = λ?e. By IH, Bλ′ ∈ S∗(Aλ1), Bλ′′ ∈ S∗(Aλ1), . . .,
Bλ? ∈ S∗(Aλ1). By NA of CR4, Bλ2 ∈ S∗(Aλ1), proving the claim
holds.

• I4: Then there exists an axiom of the form ∃Rλ3 .Cλ5 v Bλ4 where xλ ∈
(∃Rλ2 .Cλ5 v Bλ4)

In−1 . Then there exists a y where (x, y) ∈ RI
n−1

λ3 where
y ∈ CIn−1

λ5 . The only rule that ever adds pairs is I3, therefore there must be
an axiom of the form Eλ6 v ∃Rλ7 .Fλ8 where xλ ∈ EI

n−1−i

λ6 and y was born
for Fλ8 at t′ where n − 1 − i ≤ t′ ≤ n − 1 for some i ≥ 1. By IH it holds
that Eλ6 ∈ S∗(Aλ1) and Cλ5 ∈ S∗(Fλ8). If Rλ3 6= Rλ7 then the only way for
the same pair (x, y) to belong to two separate roles is for λ3  c λ

7. By NA
of CR3, Bλ4 ∈ S∗(Aλ1). xλ is in BInλ2 by one of three scenarios:

i) Bλ4 = Bλ2 : then Bλ2 ∈ S∗(Aλ1), proving the claim holds.

ii) λ2  c λ
4: then by NA of CR0, it holds that Bλ2 ∈ S∗(Bλ4), and by

NA of CR0, it holds that Bλ2 ∈ S∗(Aλ1), proving the claim holds.

iii) λ2  c [i, j]: where there exists Bλ′ , Bλ′′ , . . ., Bλ? and λ′  t λ
′′  t

. . . t λ
4  t . . . t λ

? and xλ ∈ BI
n−1

λ′ ∩BIn−1

λ′′ ∩ . . .∩BI
n

λ4 ∩ . . .∩BI
n−1

λ?

and i = λ′S and j = λ?e. By IH, Bλ′ ∈ S∗(Aλ1), Bλ′′ ∈ S∗(Aλ1), . . .,
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Bλ? ∈ S∗(Aλ1). By NA of CR4, Bλ2 ∈ S∗(Aλ1), proving the claim
holds.

Lemma 1
Given an EL[ ] TBox T , computing S∗(Aλ) for every Aλ ∈ T̃ using D terminates.

Termination

Termination is a consequence of the following observations:

• Monotonic: the rules work in a monotonic way; each rule only adds infor-
mation to subsumer sets. No information is ever removed.

• Size: the size of each subsumer set is limited by | T̃ |.

• Steps: the algorithm stops when no more information can be added, i.e.,
Sn(Aλ) = Sn−1(Aλ) for all Aλ ∈ T̃

Corollary 2
D is a decision procedure for classification of EL[ ] TBoxes.

Time and Space Complexity

Since we have shown the correctness and termination of the subsumer sets, we
now show that the classification produced by D can be computed in polynomial
time w.r.t the size of T and the number of concepts occurring in T̃ .
T can be normalised in polynomial time. It remains to show that sets S∗(A)

can be computed in polynomial time, w.r.t. the size of T . We assume a unary
encoding of the numbers in the intervals in T . Let n = |T | and m = |T̃ |. The
number of sets S is bounded by m, and the size of each set is also bounded by
m. Since each set relies only on previous versions, each of the ` possible rules can
only be applied m times to each set. The premises of rules INIT0− CR3 rely only
on TBox axioms and the current subsumer sets, both of which are bounded by n
and m respectively. Rule CR4 however includes a premise that must determine
whether a given set of intervals form a touching sequence ( t). Given a certain
set of intervals, there are an exponential number of possible sequences in which
they may be ordered. Under a naive implementation, searching through all of
these sequences to determine whether or not they touch in the correct way would
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result in an exponential time step. We present an algorithm GAP-ANALYSIS
(Algorithm 1) that applies CR4 to Cλ′ and all Bλ1 ∈ Si(Cλ′) in polynomial time.
The sequencing of intervals begins in CR4 on line 4. X represents the set of
intervals for which a touching sequence may be formed. We begin by ordering X
in the ORDER procedure by their intervals. Each concept is ordered by their
intervals start time in ascending order, and for those intervals whose start times
are equal, they are then ordered again in ascending order by their end times.
Any efficient ordering algorithm can be chosen. The algorithm illustrated uses a
well known bubble sort technique, known to require only polynomial time. After
the sorting is complete, concepts are then removed from X that will have no
effect on the eventual containment of Cλ′ , which is achieved in the REMOVAL
procedure. This procedure simply iterates over each (sorted) interval in X and
removes all concepts that end before Cλ′ starts and start after Cλ′ ends. This
effectively removes all redundant concepts from X that will not be required in
the final premise. This procedure takes only linear time. Finally a gap analysis
is performed that simply iterates through X and checks that there are no gaps
in the set by building an array bounded by the minimum and maximum time
points in the set and records whether or not all time points in this array have
been covered by the intervals. This uses the procedure NO-GAPS. Again, this
procedure takes only polynomial time. After checking for containment, only then
does the rule fire since all premises are now met. It is clear that this rule takes only
polynomial time, provided a sorting algorithm of no more than polynomial time
is chosen. Since m is bounded by n, all sets m can be computed in polynomial
time w.r.t. n.

Lemma 2
Given an EL[ ] TBox T , computing S∗(Aλ) using D can be done in polynomial
time.

6.3 A Decision Procedure for Computing Subsump-

tion in EL[ ]

The classification algorithm D presented above is used as a basis for comput-
ing subsumption relations between atomic concepts (class names, as opposed to
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Algorithm 1 GAP-ANALYSIS for CR4
1: CR4(Cλ′)
2: for Bλ1 ∈ Si(Cλ′) do
3: for Aλ2 do
4: X := {Cλi | Cλi ∈ Si(Aλ2)}
5: ORDER(X)
6: REMOV AL(X,Cλ′)
7: if NO−GAPS(X) then
8: n=|X|
9: if start(Cλ′) ≥ start(X[0]) and end(Cλ′) ≤ end(X[n− 1]) then

10: Si+1(Aλ2) := Si(Aλ2) ∪ {Bλ1}
11: end if
12: end if
13: end for
14: end for
1: ORDER(X)
2: swapped = true
3: n = |X|
4: while swapped do
5: swapped = false
6: for int i = 0 to n− 1 do
7: if start(X[i+1]) < start(X[i]) then
8: swap(X[i], X[i+ 1])
9: else if start(X[i+1]) == start(X[i])and end(X[i+1]) < end(X[i]) then

10: swap(X[i], X[i+ 1])
11: end if
12: end for
13: end while
1: REMOVAL(X,Cλ′)
2: n = |X|
3: for int i = 0 to n− 1 do
4: if end(X[i]) < start(Cλ′) or start(X[i]) > end(Cλ′) then
5: remove(X[i], X)
6: end if
7: end for
1: NO-GAPS(X)
2: n = |X|,min = start(X[0]),max = max(X), gaps[] = boolean
3: for int i = 0 to n− 1 do
4: for int j = start(X[i]) to end(X[i]) do
5: gaps[j] = true
6: end for
7: end for
8: for int i = min to max do
9: if gaps[i] ==false then

10: return false
11: end if
12: end for
13: return true
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complex expressions). We can utilise this decision procedure for computing sub-
sumption between complex expressions. Given two possibly complex EL[ ] class
expressions C and D, and a possibly empty EL[ ] TBox T , to decide whether
T |= C v D, we can simply introduce two new class names A1

[0] and A2
[0] not

already occurring in T̃ , and use them as definitions for C and D:

T := T ∪ {A1
[0] ≡ C,A2

[0] ≡ D}

We could then use D to see whether A2
[0] ∈ S∗(A

1
[0]) by checking the resulting

classification which would take only linear time using set operations. Adding two
classes to T ∪ C ∪ D only increases the size of T ∪ C ∪ D by a constant, and
will have no effect on the complexity of reasoning. The size of the intervals are
also the smallest they can be (zero intervals as they will be encoded), therefore
we achieve the following results:

Theorem 3
D can be used as a decision procedure for subsumption in EL[ ].

Theorem 4
Subsumption in EL[ ] can be computed in polynomial time.

6.4 A Decision Procedure For Concept Satisfiabil-

ity in ALC [ ]

We present a tableau algorithms for testing the satisfiability of an ALC[ ] concept
description C. We assume that C is in negation normal form (NNF), i.e, negation
appears only on atomic formulae. It is well know that any C can be converted
into NNF in linear time.

Definition 63 (Clash Free ABox)
An ALC[ ] ABox A is said to contain a clash if

• {a : A[i], a : ¬A[i]} ⊆ A for any individual a and any index i ∈ N

• {a : ⊥} ∈ A for any individual a.

Otherwise, A is said to be clash free.
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The general intuition behind the algorithm is to build a set of ABoxes based
on a concept description C using a set of completion rules which terminates when
no more rules are applicable. If the set of ABoxes contains an ABox that is clash
free then C is satisfiable, otherwise it is unsatisfiable. This is analogous to the
standard ALC tableau.

We begin with the case where there is no ontology present.

T1 - A Tableau Algorithm for the Satisfiability of ALC[ ] Concept De-
scriptions

The set of ABoxes is built according to the following tableau rules T1:

Definition 64 (T1)
Let S be a set of ALC[ ] ABoxes, initially empty and C be an ALC[ ] concept
description that will be tested for satisfiability.

Init • Set S := {A} where A := {a :C} and a is a fresh individual.

u • For any ABox A ∈ S, if a : C1 uC2 ∈ A and {a : C1, a : C2} 6⊆ A, then set
A := A ∪ {a : C1, a : C2}.

t • For any ABox A ∈ S, if a : C1 t C2 ∈ A and {a : C1, a : C2} ∩ A = ∅,
then create a new ABox A′ := A ∪ {a : C1}, set A := A ∪ {a : C2} and set
S := S ∪ A′.

∃ • For any ABox A ∈ S, if a : ∃Rλ.C1 ∈ A and there is no b where {(a, b) :

R[l], b : C1 | λs ≤ l ≤ λe} ⊆ A, then select a new individual c and update A
with A := A ∪ {(a, c) : R[l], c : C1 | λs ≤ l ≤ λe}.

∀ • For any ABox A ∈ S, if {a : ∀R[i,j].C1, } ∪ {(a, b) :R[`] | i ≤ ` ≤ j} ⊆ A
and b : C1 6∈ A, then update A with A := A ∪ {b : C1}.

A[ ] • For any ABox A ∈ S, if a : A[i,j] ∈ A and {a : A[`] | i ≤ ` ≤ j} 6⊆ A then
update A with A := A ∪ {a : A[`] | i ≤ ` ≤ j}.

¬A[ ] • For any ABox A ∈ S, if a : ¬A[i,j] ∈ A and {a : ¬A[`] | i ≤ ` ≤ j} ∩ A = ∅
then create new ABoxes Ak = A∪ {a : ¬A[k]} for i ≤ k ≤ j − 1 and update
A := A ∪ {a : ¬A[j]} and update S := S ∪ Ak for i ≤ k ≤ j − 1.

R[ ] • For any ABox A ∈ S, if (a, b) : R[i,j] ∈ A and {(a, b) : R[`] | i ≤ ` ≤ j} 6⊆ A
then update A with A := A ∪ {(a, b) : R[`] | i ≤ ` ≤ j}.
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Figure 6.1: An illustration of the tableau procedure for ALC[ ] using single ABoxes
and multiple sequences of ABoxes to maintain a tree structure.

An ABox A is said to be complete if no rules are applicable to A. The rules
are applied to each ABox A in S until A is complete or A contains a clash.

Termination of T1

Lemma 3
Let C be an ALC[ ] concept description. T1(C) terminates.

As in the usual ALC tableaux, we can view each ABox as a tree like structure
where individuals are nodes in the tree, and relations between individuals act as
edges between the nodes. As an observation of the tableau rules, there is only one
root node, which is the individual created upon initialisation, and there are no
cycles, conforming to the structure of a tree. However, since we now allow roles
to be labelled with intervals, it is possible that multiple edges may exist between
two individuals. Suppose we had an assertion a : ∃R[0,1].B[0]. An illustration of
the tableau rules is shown in Figure 6.1 (1). We can choose to represent this as
another dimension, also shown in Figure 6.1 (2), by introducing multiple ABoxes
for each index i in min(C) ≤ i ≤ max(C) that contains each single time point
assertion of the form a : A[i] and (a, b) : R[i], as well as the usual assertions. This
would maintain the tree structure. We can easily transform any ABox into a
sequence of these ABoxes.

Let m be the number of sub-concepts occurring in C and k = max(C) −
min(C). Termination of T1 is a consequence of the following observations:

1. The tableaux rules work in a monotonic way. Sub concepts are only ever
added to individuals a in A of the form a : D where D is a subconcept
of C. No assertions are ever removed. There is also obviously a limit on
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the number of sub concepts an individual can be asserted to, bounded by
m× k.

2. A new individual is added to A only when the ‘∃’ rule is applied to an
individual a that has an assertion of the form a : ∃R.D, and only one
individual is created when the rule is applied. Since the number of sub
concepts of any individual is bounded by m, the out degree any node (and
thus the amount of any edges to a sequence of ABoxes) is bounded again
by m× k.

3. Whenever a new individual is added, the number of sub concepts it can
have is dependent solely on its parent, specifically they can either come
directly from the D in ∃R.D from where the individual was created, or
from various ∀R.Ds. The only concepts passed down are Ds, which are
collectively strictly smaller than the concepts belonging to the parent. This
ensures that the depth of each the tree of each ABox does not exceed the
size of the length of C (m).

4. A new ABox is introduced for every individual containing a disjunction of
the form a : C tD, or a negated concept of the form a : ¬A[i,j]. For each
disjunction, only one new ABox is introduced and then the rule is no longer
applicable. Since, we know each ABox is of bounded size, then the number
of ABoxes is also bounded. For negated concepts, a number of new ABoxes
are introduced bounded by the size of the interval on the negated concept.
This is also of bounded size.

Together, these properties ensure that there is a bound on the size of each ABox,
and the number of ABoxes.

Lemma 4
Let C be an ALC[ ] concept description. T1(C) produces a complete and clash free
ABox iff C is satisfiable.

Proof We first show the ⇒ direction.

Suppose A is a complete and clash free ABox produced by T1(C). Our aim
is to build an interpretation I based on A and show that I is a witness model of
C by induction on the structure of concepts.

We build the interpretation according to the following rules
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Definition 65 • ∆Ii := {x | x is an individual name that occurs in A} for
each i ∈ Z

• aI = a for each a occurring in A

• AIi := {x | x : A[i] ∈ A}

• RIi := {(x, y) | (x, y) : R[i] ∈ A}

We now show by induction over the structure of concepts that I is a model
of C.
Claim (1) For any sub concept D of C, and any individual x that occurs in A,
if x : D ∈ A → x ∈ DI .

• Base case:

– Suppose D is of the form A[i,j] where i 6= j. Then (1) holds by NA of
the A[ ]-rule and definition of I.

– Suppose D is of the form A[i]. Then (1) holds by definition of I.

• For any complex concept D:

– Suppose D is of the form ¬A[i,j]. By NA of the ¬A[ ]-rule it holds that
x : ¬A[`] for some ` where i ≤ ` ≤ j. Since A is clash free, then it holds
that x : A[`] 6∈ A. By definition of I, x 6∈ AI` , therefore x ∈ (¬A[i,j])

I ,
proving (1) holds.

– Suppose D is of the form C1 u C2. By NA of the u-rule, it holds that
{x : C1, x : C2} ⊆ A. By IH it holds that x ∈ CI1 and x ∈ CI2 , and
therefore x ∈ (C1 u C2)

I , proving (1) holds.

– Suppose D is of the form C1 t C2. By NA of the t-rule, it holds that
{x :C1} ∈ A or {x :C2} ∈ A. By IH it holds that x ∈ CI1 or x ∈ CI2 ,
and therefore x ∈ (C1 t C2)

I , proving (1) holds.

– Suppose D is of the form ∃R[i,j].C1. By NA of the ∃-rule, there is some
y where {(x, y) : R[i,j], y : C1} ⊆ A. By IH it holds that y ∈ CI1 . By
NA of the R[ ]-rule it holds that {(x, y) :R[`] | i ≤ ` ≤ j} ⊆ A. By NA
of I2 it holds that (x, y) ∈ RI[i,j]. Therefore x ∈ (∃R[i,j].C1)

I , proving
(1) holds.
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– SupposeD is of the form ∀R[i,j].C1. Let y be any individual s.t. (x, y) ∈
RI[i,j]. By definition of I, it holds that {(x, y) :R[`] | i ≤ ` ≤ j} ∈ A.
By NA of the ∀-rule, y :C1 ∈ A. By IH it holds that y ∈ CI1 . Therefore
x ∈ (∀R[i,j].C1)

I , proving (1) holds.

It suffices to show the ⇐ direction. Note that C is satisfiable iff the ABox
{a : C} is consistent and then {a : C} is obviously clash free. We show that when
applying T1 to C, after each rule application there will be a consistent ABox in
S. Since a consistent ABox implies a clash free ABox, together with termination,
this proves completeness.

Claim(2) There is an ABox A′ resulting from a possible rule application of
T1 to a consistent ABox A, that is consistent.

We begin with the ‘Init′-rule which produces a single ABox A′:= {a : C}
from an empty ABox A. Since C is satisfiable, then the claim holds trivially.
If A′ is not complete, then one of the remaining rules will be fired. Since A′ is
consistent, let I be any model of A′.

‘u′-rule Let a : C1 uC2 ∈ A. Then aI ∈ (C1 uC2)
I and thus aI ∈ CI1 and aI ∈ CI2 .

When applying the rule to A′, A′′ is produced where A′′ = A′ ∪ {a : C1, a :

C2}. It holds that I is still a model of A′′, and thus A′′ is consistent, prov-
ing the claim holds.

‘t′-rule Let a : C1 t C2 ∈ A′. Then aI ∈ (C1 t C2)
I and thus either aI ∈ CI1 or

aI ∈ CI2 . When applying the rule to A′, A′′1 and A′′2 are produced where
A′′1 = A′∪{a : C1} and A′2 = A∪{a : C2}. It holds that I is either a model
of A′′1 or A′′2, and thus either A′′1 is consistent or A′′2 is consistent, proving
the claim holds.

‘∃′-rule Let a : ∃R[i,j].C1 ∈ A′. Then aI ∈ (∃R[i,j].C1)
I . By definition of the se-

mantics, there exists an individual b ∈ ∆I where b ∈ CI1 and (aI , b) ∈
RI[i,j]. When applying the rule to A′, A′′ is produced where A′′ = A′ ∪{
c : C1, (a, c) : R[`] | i ≤ ` ≤ j

}
. Since c is a new individual then we can set

b = cI and thus I is also a model of A′′, proving the claim holds.
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‘∀′-rule Let {a : ∀R[i,j].C1} ∪ {(a, b) :R[`]|i ≤ ` ≤ j} ⊆ A′. Then aI ∈ (∀R[i,j].C1)
I

and (aI , bI) ∈ RI[i,j]. By definition of I, bI ∈ CI1 . When applying the rule
to A′, A′′ is produced where A′′ = A′ ∪ {b : C1}. Then it holds that I is
still a model of A′′, proving the claim holds.

‘A′[ ]-rule Let a :A[i,j] ∈ A′. Then aI ∈ AI[i], ..., aI ∈ AI[j] (since AI[i] = AIi by definition
of I). Since A′ = A∪ {a : A[`] | i ≤ ` ≤ j}, I is still a model of A′′ proving
the claim holds.

‘R′[ ]-rule Let (a, b) :R[i,j] ∈ A′. Then (aI , bI) ∈ RI[i], ..., (aI , bI) ∈ RI[j]. Since A′′ =

A′ ∪ {(a, b) : R[`] | i ≤ ` ≤ j}, then I is still a model of A′′, proving the
claim holds.

‘¬A′[ ]-rule Let a :¬A[i,j] ∈ A′. Then aI ∈ ¬AI[i] or , ..., or aI ∈ ¬AI[j] (since AI[i] = AIi

by definition of I). When applying rule ‘¬A′[ ] there exists at least one
resulting ABox A′′ of the form A′′ := A′ ∪ {a : ¬A[`]} for some i ≤ ` ≤ j,
which I will be a model of, and thus A′′ is still consistent, proving the claim
holds.

Corollary 3
T1 is a decision procedure for concept satisfiability for ALC[ ].

Complexity

If we again assume a unary encoding on the numbers used in the intervals, then
the algorithm requires at most exponential space, w.r.t the size of a concept C.
The algorithm builds a set of ABoxes, each with a tree-like structure. Each tree
is bounded in depth by the size of C, in breadth by an exponential in the size
of C, and the size of the sequence of ABoxes is bounded by exactly min(C) and
max(C). For every interval that occurs on a concept name the algorithm can
create an ABox for every time point belonging to that interval, depending on the
usage of negations, resulting in a exponential blow up.

The algorithm itself is clearly non-optimal however. Consider the algorithm
running on the concept A[0,1] u B[0,100]. The number of ABoxes the algorithm
would create would be 101, (0-100), making an individual x (by initialisation)
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an instance of B[0], B[1], . . . , B[100],. Clearly the only ABoxes of interest would be
those at index 0, 1, and 2 since those are the only ones that have interactions with
multiple concepts. There is obviously a lot of redundancy by creating instances
of concepts that have no interaction with other concepts. Another point worth
noting is that if the concept would be instead A[0,1]u¬B0,100 , then not only would
we again have many redundant declarations, but we would now also introduce a
large amount of additional ABoxes (via disjunctions) due to the negated concept.

We leave the task of proving tighter complexity bounds for future work.

6.5 A Decision Procedure for ALC [ ] Ontology Con-

sistency

We now present a tableau algorithm for deciding ALC[ ] ontology consistency. The
intuition behind the algorithm is as before - to build a set of ABoxes using a set
of tableau rules and checking for a clash free ABox. However, since we now have
a TBox and an ABox, we add more rules to the tableau to handle the additions.
As usual, in the presence on a general TBox, to ensure termination, we define
the notion of blocking w.r.t the new tableau rules (again, analogous to the usual
ALC tableau algorithm for ontology consistency):

Definition 66 (Blocking in an ABox)
Given an ABox A, and individuals a, b ∈ A, a is blocked by b (or b blocks a) if

• a is younger than b and

• {C | a : C ∈ A} ⊆ {C | b : C ∈ A}

Given an ontology O = (T ,A), we assume that every concept occurring in O
is in NNF and A is non empty, and we use ¬̇C to denote the NNF of ¬C.

T2 - A Tableau Algorithm for ALC[ ] Ontology Consistency

The rules of the tableau T2 are defined as follows:

Definition 67 (T2)
Let O = (T ,A0) be an ontology to be checked for consistency. Let S be a set of
ABoxes, initially empty.

Init • Set S := {A0}.
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u • For any ABox A ∈ S, if a : C1 uC2 ∈ A, {a : C1, a : C2} 6⊆ A and a is not
blocked, then set A := A ∪ {a : C1, a : C2}.

t • For any ABox A ∈ S, if a : C1 t C2 ∈ A, {a : C1, a : C2} ∩ A = ∅
and a is not blocked, then create a new ABox A′ := A ∪ {a : C1}, set
A := A ∪ {a : C2} and set S := S ∪ A′.

∃ • For any ABox A ∈ S, if a : ∃Rλ.C1 ∈ A and there is no b where {(a, b) :

R[l], b : C1 | λs ≤ l ≤ λe} ⊆ A and a is not blocked, then select a new
individual c and update A with A := A∪ {(a, c) : R[l], c : C1 | λs ≤ l ≤ λe}.

∀ • For any ABox A ∈ S, if {a : ∀R[i,j].C1, } ∪ {(a, b) :R[`] | i ≤ ` ≤ j} ⊆ A,
b : C1 6∈ A and a is not blocked, then update A with A := A ∪ {b : C1}.

A[ ] • For any ABox A ∈ S, if a : A[i,j] ∈ A and {a : A[`] | i ≤ ` ≤ j} 6⊆ A then
update A with A := A ∪ {a : (¬)A[`] | i ≤ ` ≤ j}.

R[ ] • For any ABox A ∈ S, if (a, b) : R[i,j] ∈ A and {(a, b) : R[`] | i ≤ ` ≤ j} 6⊆ A
then update A with A := A ∪ {(a, b) : R[`] | i ≤ ` ≤ j}.

¬A[ ] • For any ABox A ∈ S, if a : ¬A[i,j] ∈ A and {a : ¬A[`] | i ≤ ` ≤ j} ∩ A = ∅
then create new ABoxes Ak = A∪ {a : ¬A[k]} for i ≤ k ≤ j − 1 and update
A := A ∪ {a : ¬A[j]} and update S := S ∪ Ak for i ≤ k ≤ j − 1.

v • For any ABox A ∈ S, if C v D ∈ T , b : (¬̇C tD) 6∈ A for any b ∈ A and
b is not blocked, then update A with A ∪ {b : (¬̇C tD)}.

As before, an ABox A is said to be complete if no rules are applicable to A.
The rules are applied to each ABox A in S until A is complete or A contains a
clash.

Termination of T2

Lemma 5
Let O be an ALC[ ] ontology. T2(O) terminates.

As before, we can still view any resulting ABox as a sequence of ABoxes each
with a tree like structure (See figure 6.1). Proof of termination is very similar to
that seen in Section 6.4. Let m be the number of sub concepts occurring in O
and k = max(O)−min(O). Termination of T2 is a consequence of the following
observations:
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1. The rules are again applied in a monotonic way and there can again be at
most only m× k rule applications for any individual

2. The out degree of any individual is still bounded by m× k

3. The number of sub concepts for any individual is bounded by m×k. In the
presence of TBox axioms, due to blocking the number of individuals can
not exceed 2m×k.

4. The number of ABoxes is again bounded by m and k.

Together with the arguments shown in Section 6.4, these four properties show
termination.

Theorem 5
Let O = (T ,A0) be a ALC[ ] ontology. T2(O) produces a complete and clash free
ABox iff O is consistent.

Proof We first show the ⇒ direction.

Suppose A′ is such a complete and clash free ABox. Our aim is to build
an interpretation I based on A′ and show that I is a witness model of O, by
induction on the structure of concepts by showing:
Claim(1)

(1.1) x :D ∈ A′ → x ∈ DI where x is not blocked.

(1.2) C v D ∈ T → CI ⊆ DI for any non blocked individuals

We build the interpretation according to the following rules

Definition 68
Let A be a complete and clash free ABox. Fix any mapping bl(·) that associates
with each blocked individual y′, a unique individual bl(y′) that blocks y′, and that
is not blocked itself.

• ∆Ii := {x | x occurs in A where x is not blocked} for each i ∈ Z

• aI = a for each a occurring in A where a is not blocked
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• AIi := {x | x : A[i] ∈ A} where x is not blocked

• RIi := {(x, y) | (x, y) : R[i] ∈ A where x and y are not blocked, or (x, y′) :

R[i] ∈ A and y = bl(y′)}.

As usual, we only build the model based on individuals that are not blocked.
We show (1.1) by induction on the structure of D.
Base case:

• Suppose D is of the form A[i,j] where i 6= j. (1.1) holds by NA of the
A[ ]-rule and definition of I.

• Suppose D is of the form A[i]. (1.1) holds by definition of I.

For any complex concept D:

• SupposeD is of the form ¬A[i,j]. By NA of the A[ ]-rule it holds that x : ¬A[`]

for some ` where i ≤ ` ≤ j. Since A is clash free, it holds that x : A[`] 6∈ A.
By definition of I, x 6∈ AI` , therefore x ∈ (¬A[i,j])

I , proving (1.1) holds.

• Suppose D is of the form C1 u C2. By NA of the u-rule, it holds that
{x : C1, x : C2} ⊆ A. By induction hypothesis (IH) it holds that x ∈ CI1
and x ∈ CI2 , and therefore x ∈ (C1 u C2)

I , proving (1.1) holds.

• Suppose D is of the form C1 t C2. By NA of the t-rule, it holds that
{x :C1} ∈ A or {x :C2} ∈ A. By IH it holds that x ∈ CI1 or x ∈ CI2 , and
therefore x ∈ (C1 t C2)

I , proving (1.1) holds.

• Suppose D is of the form ∃R[i,j].C1. By NA of the ∃-rule, there is some y
where {(x, y) : R[i,j], y : C1} ⊆ A. If y is not blocked then by IH it holds that
y ∈ CI1 . By NA of the R[ ]-rule it holds that {(x, y) :R[`] | i ≤ ` ≤ j} ⊆ A.
By definition of I it holds that (x, y) ∈ RI[i,j]. Therefore x ∈ (∃R[i,j].C1)

I ,
proving (1.1) holds. If y is blocked, then we know there is some individual y′

in A where y′ :C1 and y′ is not blocked. By NA of the R[ ]-rule it holds that
{(x, y) :R[`] | i ≤ ` ≤ j} ⊆ A. By definition of I it holds that (x, y′) ∈ RI[i,j].
Therefore x ∈ (∃R[i,j].C1)

I , proving (1.1) holds.
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• SupposeD is of the form ∀R[i,j].C1. Let y be any individual s.t (x, y) ∈ RI[i,j].
By definition of I, it holds that {(x, y) :R[`] | i ≤ ` ≤ j} ∈ A. By NA of the
∀-rule, y :C1 ∈ A. By IH it holds that y ∈ CI1 . Therefore x ∈ (∀R[i,j].C1)

I ,
proving (11.1) holds.

I satisfies all concept and role assertions in A′, and thus satisfies all assertions
in A. Thus A has a model and is therefore consistent.

Next we prove (1.2).
Since A′ is complete, the ‘v’ rule is no longer applicable for any individual in A′.
Therefore, for any TBox axiom C v D ∈ T , x : ¬̇C tD ∈ A′ for every individual
x that is not blocked. By (1.1) and definition of I, x ∈ (¬̇C tD)I , and thus for
every x ∈ CI , it holds that x ∈ DI .

It suffices to show the⇐ direction. Note thatO is consistent then by definition
A0 is clash free. To this end, we show that when applying T2 to O, after each
rule application there will be a consistent ABox in S. Since a consistent ABox
implies a clash free ABox, together with termination, completeness will hold.

Claim(2) There is an ABox A′ resulting from a possible rule application of
T2 when applied to an existing ABox A, that is consistent.

We begin with the ‘Init′-rule which produces a single ABox A′ = A0. Since
Ao is consistent, then the claim holds trivially. If A′ is not complete, then one of
the remaining rules will be fired. Since A′ is consistent, let I be any model of A′.

‘u′-rule Then a : C1 u C2 ∈ A′. Since A′ is consistent then aI ∈ (C1 u C2)
I and

thus aI ∈ CI1 and aI ∈ CI2 . When applying the rule to A′, A′′ is produced
where A′′ = A′ ∪{a : C1, a : C2}. It holds that I is still a model of A′′, and
thus A′′ is consistent, proving the claim holds.

‘t′-rule Then a : C1tC2 ∈ A′. Since A′ is consistent then aI ∈ (C1tC2)
I and thus

either aI ∈ CI1 or aI ∈ CI2 . When applying the rule to A′, A′′1 and A′′2 are
produced where A′′1 = A′ ∪ {a : C1} and A′′2 = A′ ∪ {a : C2}. It holds that
I is either a model of A′′1 or A′′2, and thus either A′′1 is consistent or A′′2 is
consistent, proving the claim holds.

‘∃′-rule Since A′ is consistent then a : ∃R[i,j].C1 ∈ A′. Since A′ is consistent then
aI ∈ (∃R[i,j].C1)

I . By definition of I, there exists an individual b ∈ ∆I
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where b ∈ CI1 and (aI , b) ∈ RI[i,j]. When applying the rule to A′, A′′ is
produced where A′′ = A′∪

{
c : C1, (a, c) : R[`] | i ≤ ` ≤ j

}
. Since c is a new

individual then we can set b = cI and thus I is also a model of A′′, which
is then consistent, proving the claim holds.

‘∀′-rule Then {a : ∀R[i,j].C1} ∪ {(a, b) :R`|i ≤ ` ≤ j} ⊆ A′. Since A′ is consistent
then aI ∈ (∀R[i,j].C1)

I and (aI , bI) ∈ RI[i,j]. By definition of I, bI ∈ CI1 .
When applying the rule to A′, A′′ is produced where A′′ = A′ ∪ {b : C1}.
Then it holds that I is still a model of A′′, and thus A′′ is consistent, prov-
ing the claim holds.

‘A′[ ]-rule Then a :A[i,j] ∈ A′. Since A′ is consistent then aI ∈ AI[i], ..., aI ∈ AI[j] (since
AI[i] = AIi by definition of I). Since A′′ = A′ ∪ {a : A[`] | i ≤ ` ≤ j}, then
I is still a model A′′ and thus A′′ is consistent, proving the claim holds.

‘R′[ ]-rule Then (a, b) :R[i,j] ∈ A. SinceA′ is consistent then (aI , bI) ∈ RI[i], ..., (aI , bI) ∈
RI[j]. Since A′′ = A′ ∪ {(a, b) : R[`] | i ≤ ` ≤ j}, then I is still a model A′′

and thus A′′ is consistent, proving the claim holds.

‘¬A′[ ]-rule Then a : ¬A[i,j] ∈ A′. Since A′ is consistent then aI ∈ ¬AI[i] or , ..., or
¬aI ∈ AI[j] (since AI[i] = AIi by definition of I). When applying rule ‘¬A′[ ]
there exists at least one resulting ABoxA′′ of the formA′′ := A′∪{a : ¬A[`]}
for some i ≤ ` ≤ j, for which I will be a model of, and thus A′′ is still
consistent, proving the claim holds.

‘ v′-rule Then there is an individual a ∈ A′ and a TBox axiom C v D. By
definition of I, if a ∈ CI then a ∈ DI . Since A′ is consistent then
a : C ∈ A′ → a : D ∈ A′. When applying the rule to A′, A′′ is pro-
duced where A′′ = A′ ∪ {a :¬C tD}. It holds that I is still a model of A′′,
and thus A′′ is consistent, proving the claim holds.

Theorem 6
T2 is a decision procedure for ALC[ ] ontology consistency.
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Complexity

Observations regarding the complexity follows a similar pattern to that seen in
Section 6.4. Like the naive ALC tableau algorithm for ontology consistency, the
algorithm requires at least exponential space w.r.t the size of the ontology. In
its current form the algorithm can run in double exponential space. Under the
naive implementation, the algorithm constructs a set of ABoxes, each of which
is of possibly exponential size, i.e., with at most exponentially many individuals,
w.r.t m and k (2m×k where m is the size of the ontology and k is the temporal
distance of the ontology seen in the termination proof). W.r.t. TBox axioms
and the exponential amount of individuals, the algorithm may generate double
exponentially many ABoxes, analogous to the standard naive ALC tableaux algo-
rithm for ontology consistency. The set of ABoxes can be generated/searched in
a non-deterministic fashion, but we leave this for future work.

The algorithm is again non optimal. For every TBox axiom Aλ1 v Bλ2 , the
algorithm introduces a disjunction for every individual in the TBox. This may
sometimes be unnecessary. For example, suppose if in an ABox a : Aλ1 , adding
a disjunction of the form a : ¬(Aλ1 t Bλ2) would be unnecessary, and a more
sensible action would be rather to simply make a an instance of Bλ2 . Again it is
clear that several optimisations can be made.

6.5.1 Other reasoning problems in ALC [ ]
In standard DLs, many reasoning problems are inter-reducible to one another.
Consider ALC. The reasoning problems of satisfiability and subsumption (and
thus classification) w.r.t an ontologyO, can be reduced to the problem of ontology
consistency [BCM+03]. Consider the following theorem:

Theorem 7
Let O be an ALC ontology and a an individual name not in O. Then

1. C is satisfiable w.r.t. O iff O ∪ {a : C} is consistent

2. O |= Aλ1 v Bλ2 iff O ∪ {a : (Aλ1 u ¬Bλ2)} is not consistent

The same also holds for ALC[ ] as can easily be seen by definition of the se-
mantics in Chapter 5. Therefore, we can use the tableau algorithm T2 to decide
both subsumption and a classification in ALC[ ].
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Theorem 8
T2 can be used as a decision procedure to decide subsumption and classification
in ALC[ ].

6.6 A Decision Procedure for Classification in EL[ ][x]

We present a decision procedure for a fragment of ALC[ ][x], EL[ ][x]. Since EL[ ][x]

is closely related to EL[ ], we utilise the decision procedure for EL[ ], by providing
a transformation from EL[ ][x] TBoxes into EL[ ] TBoxes, showing that we can use
the decision procedure for EL[ ] to classifying EL[ ][x] TBoxes.

EL[ ][x] Syntax and Semantics

EL[ ][x] can either be seen as a restriction of ALC[ ][x], where we restrict the available
DL logical operators to those allowed in EL, specifically, >,u and ∃, or even as
an extension to EL[ ], with the addition of [x] variables being allowed to be used
in axioms.

Normalisation

We begin again by transforming our knowledge base into the same normal form
seen in Section 6.2. We can use the same procedure as before. The only dif-
ference is that we now have to account for the axioms using variables intervals
also. Since the normalisation rules have no preference over what kind of intervals
are being used in the axiom, the procedure needs only minor changes for the
normalisation to work, and is still bounded by polynomial time. We also present
a normalisation procedure solely for EL[x] in Section 6.9. Both can easily turned
into a normalisation procedure for EL[ ][x].

Lemma 6
Let T be an EL[ ][x]-TBox. NF(T ) can be computed in polynomial time w.r.t the
size of T and NF(T ) is of polynomial size w.r.t the size of T .

All TBoxes mentioned hereinafter in this section are assumed to be in normal
form.
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Reduction

We provide a reduction d that takes any EL[ ][x] TBox T and transforms it into
an EL[ ] TBox T ′, such that T and T ′ are equivalent, i.e., they have the same
models. The method we use is a form of grounding.

d is defined as follows:

Definition 69 (d - Reducing EL[ ][x] TBoxes to EL[ ] TBoxes)
Let T be an EL[ ][x] TBox and Let i = min(T ) and j = max(T ). For each axiom
αx in T over v-intervals, replace αx ∈ T with α[x → `] for all ` : i ≤ ` ≤ j,
where no interval index in α[x→ `] exceeds i or j to form T ′. Then d(T ) = T ′.

The reductions works by unfolding the variable based axioms into their full
quantitative versions.

As an example consider the following EL[ ][x] TBox T :

T := {A[0]x
v B[1]x

C[0] v D[10]}

min(T ) = 0 and max(T ) = 10 Currently, the atomic entailments are as follows:
T |= {C[0]vD[10], A[0]xvB[1]x [x→ k]∀k : min(T ) ≤ k ≤ max(T )}.

After performing the reduction d on T , we are left with the following EL[ ]

TBox d(T ) := {C[0] v D[10], A[0] v B[1], A[1] v B[2], A[2] v B[3], A[3] v B[4], A[4] v
B[5], A[5]vB[6], A[6]vB[7], A[7]vB[8], A[8]vB[9], A[9]vB[10]}, which clearly has the
same interval entailments.

Lemma 7
d is entailment preserving.

We aim to show that d is entailment preserving, i.e., T |= α iff d(T ) |= α.
To this end, we show that for any model I of T , for all variable axioms αx ∈ T ,

I |= αx iff I |= d(αx)

We first show the ⇒ direction.
Let T be an EL[ ][x] TBox and let αx ∈ T . Suppose I is a model of αx. Then
by definition of I, it holds that I |= αx[x → k], for all k where min(T ) ≤ k ≤
max(T ). Since d adds each axiom within this bound, then clearly it holds that
I is a model of each axiom in αx, proving the claim holds.
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For the ⇐ case, suppose I is a model d(αx). Then I |= αx[x → k], for each
k where min(T ) ≤ k ≤ max(T ). Then I is a model of αx by definition of I,
proving the claim holds.

The reduction does not affect any non variable based interval axiom, thus
preserving all standard entailments, hence I |= α iff I |= d(α) holds trivially.

Complexity

Let n be the size of the time line encoded in a EL[ ][x] TBox T , i.e., n = max(T )−
min(T ). Let m be the number of axioms occurring in T . For each variable axiom
αx in T , we make at most n copies of αx and add them to T . The size increase
of T is bounded by n × m, and thus d(T ) takes only a polynomial number of
steps to compute, and thus can be computed in both polynomial time and space
with respect to the size of T and the intervals occurring in T (assuming a unary
encoding of the intervals).

Theorem 9
d(T ) can be computed in polynomial time.

D2 A Decision Procedure for Classification

We describe a decision procedure D2 which utilises the decision procedure D

from EL[ ] as follows. It takes as input a normalised EL[ ][x] TBox and performs
the d reduction to produce an equivalent EL[ ] TBox D(T ). Since D is a decision
procedure for EL[ ], then we simply use D to perform classification on d(T ), using
its output as the output for D2.

Theorem 10
Classification in EL[ ][x] is decidable.

Complexity

Since d(T ) can be computed in polynomial time and is of polynomial size, and D

can be decided in polynomial time, then D2 can also be computed in polynomial
time, if we again assume a unary encoding of numbers.

Theorem 11
Classification in EL[ ][x] can be computed in polynomial time.
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As with EL[ ], subsumption can easily be mapped into to classification (see
Section 6.3) in EL[ ][x].

Corollary 4
Subsumption in EL[ ][x] can be decided in polynomial time.

6.7 A Decision Procedure forALC [ ][x] Ontology Con-

sistency

We present a decision procedure for ALC[ ][x] ontology consistency. As in EL[ ][x],
we again utilise the decision procedures from ALC[ ] by providing a reduction from
ALC[ ][x] ontologies into ALC[ ] ontologies.

Reduction

We again provide a reduction d that takes any ALC[ ][x] ontology O and grounds
it into an ALC[ ] ontology O′, such that O and O′ are equivalent. In ALC[ ][x]
ontologies, variables only occur in TBox axioms, so the reduction remains the
same, accounting for the additional ABox:

Definition 70 (d - Reducing ALC[ ][x] Ontologies to ALC[ ] Ontologies)
Let O = (T ,A) be an ALC[ ][x] ontology and Let i = min(O) and j = max(O).
For each axiom αx in T over v-intervals, replace αx ∈ T with α[x → `] for all
` : i ≤ ` ≤ j, where no interval index in α[x → `] exceeds i or j, to form T ′.
Then d(O) = (T ′,A).

Lemma 8
Let O be an ALC[ ][x] ontology, and let O′ = d(O) be a ALC[ ] ontology. O and O′

are equivalent.

We aim to show O and d(O) are equivalent by showing that:

1. For any model I of O, I is also a model of O′

2. For any model I of O′, I is also a model of O

Let O be an ALC[ ][x] ontology and O′ = d(O) (1) Let I be a model of O.
I satisfies every axiom in both T and A. For every variable axiom αx ∈ T of
the form Cx v Dx, it holds that I |= CI

k

x ⊆ DI
k

x for all k where min(T ) ≤
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k ≤ max(T ), and therefore I |= αx[x → k]. O′ is created by replacing only the
variable axioms αx in T by their grounded versions α[x → k], thus I remains a
model of each α. Since I remains a model of every other axiom in O′, then I is
a model of O′.

(2) Let I be a model of O′. Then I satisfies every axiom α ∈ T ′ that was
introduced for a variable axiom αx ∈ T . By definition of I, I also satisfies αx.
Since I satisfies every other axiom in O′ and thus O, I is also a model of O.

Complexity

Theorem 12
Let O be an ALC[ ][x] ontology. d(O) can be computed in polynomial time.

The complexity of the reduction remains the same as in the EL[ ][x] case. Al-
though in addition we have a ABox in this case, our operations only work on
the TBox, and we are again bounded by the number of axioms in the TBox, and
the time line, and the intervals occurring in the TBox. d(O) can be computed
in polynomial time w.r.t the size of O and the intervals occurring in O, again
assuming a unary encoding of the intervals.

D3 - A Decision Procedure for Ontology Consistency in ALC[ ][x]

Since we have shown that we can reduce any ALC[ ][x] ontology into an equivalent
ALC[ ] ontology, we can utilize the decision procedure for ALC[ ] as a decision pro-
cedure for ALC[ ][x]. The following decision procedure, D3, which decides ontology
consistency for any ALC[ ][x] ontology: it takes as input a ALC[ ][x] ontology O, and
performs the reduction d to convert it into a ALC[ ] ontology O′. It then uses the
tableau algorithm T2 to decide ontology consistency of O′. Its output is then the
output of T2(O′).

Theorem 13
D3 is a decision procedure for ontology consistency in ALC[ ][x].

6.8 A Decision Procedure for Concept Satisfiabil-

ity in ALC [x]

The tableau algorithm T1 for concept satisfiability of ALC[ ] concept descriptions
w.r.t an empty ontology can also be applied to testing satisfiability of ALC[x]
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concept descriptions w.r.t an empty ontology. InALC[x], a concept Cx is satisfiable
if it is satisfiable at time 0, i.e. if there is some model I where CI0x 6= ∅ which is
equivalent to determining whether there is an ALC[ ] model I of the ALC[ ] concept
Cx[x→ 0] where CI 6= ∅. This reduction is possible since there is no TBox to take
into account. Therefore, as in the previous cases with EL[ ][x] and ALC[ ][x], we can
reduce the problem of concept satisfiability of ALC[x] concept descriptions w.r.t
the empty ontology into concept satisfiability of ALC[ ] concept descriptions w.r.t
an empty ontology. The reduction is simply to ground each variable occurring in
an interval on Cx with 0, which converts Cx into the equivalent ALC[ ] concept,
C0, and run the tableau algorithm T1 on the new concept C0. Let this reduction
be called d.

The reduction clearly can be done in linear time w.r.t the size of the concept,
and regardless on how the concept is encoded, the size of the output concept is
bounded by the size of the input concept.

Therefore we achieve the following results:

Theorem 14
d(Cx) can be computed in linear time w.r.t the size of Cx.

Theorem 15
T1 can be used as a decision procedure for satisfiability of ALC[x] concept descrip-
tion.

6.9 A Decision Procedure for Subsumption in Re-

stricted EL[x]

We present a decision procedure for testing subsumption between two named
atomic EL[x] concepts w.r.t. restricted version of EL[x] TBoxes, called future-only
TBoxes, which we will explain in more detail later on in this section.

EL[x] Syntax & Semantics

The syntax and semantics of EL[x] can be seen as a restriction of ALC[x], allowing
only for the logical operators >,u and ∃, and adjusting the semantics to account
for this. TBoxes, ABoxes and Ontologies are defines as usual.
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Since we are focussed on the v-intervals only, we assume all intervals in this
section are v-intervals, so we will often use λ as a representation for v-intervals
instead of the usual λx (similarly for axioms α).

Some Useful Definitions

Let λ1, λ2 be v-intervals and α be an EL[x] TBox axiom.

• _+_ : λ× Z −→ λ′ where [x+ i, x+ j] + n = [x+ i+ n, x+ j + n].

• base : α 7→ α′. Let λ1 be in α s.t there does not exist λ2 in α where
λs2 < λs1. For all λ′ in α, change λ′ to λ′′ = λ′ + (−λs1)

• shifti : α 7→ α′. shifti(α) = α′ is the result of adding i ∈ Z to each λ

occurring in α.

Future Only TBox

We introduce the notion of a future only TBox, to which we restrict our attention
in this section.

Definition 71 (Future Only EL[x] TBox)
A future only TBox axiom α(x) = Cx v Dx is an EL[x] TBox axiom with the
following restrictions:

1. for all concept descriptions ∃Rλ1 .E ∈ sub(Cx) ∪ sub(Dx), there is no λ2 in
E where λs2 < λs1

2. for all λ1 ∈ C, there is no λ2 ∈ D where λs2 < λs1

A future only TBox is a finite set of future only axioms.

The idea behind a future only TBox is that the TBox can only express future
information.

Before showing a decision procedure to compute subsumption between con-
cepts in an EL[x] future only TBox T , we rely on T to be in normal form so
we first show how this can be computed in polynomial time. We use a similar
approach as in Section 6.2 and [Bra04a].
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Normalisation

Definition 72 (Normal Form of EL[x] Future Only TBox)
Let T be a future only EL[x] TBox. T is normalised iff T contains only axioms
of the form:

Aλ̇1 v Bλ2

Aλ̇1 u Bλ2 v Cλ3

Aλ̇1 v ∃Rλ2.Bλ3

∃Rλ̇1
.Aλ2 v Bλ3

The following definition shows how any future only EL[x] TBox can be trans-
formed into a normalised version using a set of normalisation rules.

Definition 73 (Normalalisation rules of an EL[x] future only TBox)
Let T be a future only EL[x] TBox and G be an axiom in T . For any concept
descriptions C,D,E in T̃ , any role Rλ2 in T̃ and any non-atomic concept de-
scriptions Ĉ and D̂ in T̃ , the rules are defined as follows:

R G −→ G′

NFX C v D −→ base(C v D)

NF1 Ĉ uD v E −→ {Ĉ v A[y], A[y] uD v E} where
y = λs : λ is in Ĉ and 6 ∃λ1 in Ĉ s.t λs1 < λs

NF2 C u D̂ v E −→ {D̂ v A[y], A[y] u C v E} where
y = λs : λ is in D̂ and 6 ∃λ1 in D̂ s.t λs1 < λs

NF3 ∃Rλ1 .Ĉ v D −→ {Ĉ v A[y],∃Rλ1 .A[y] v D} where
y = λs : λ is in Ĉ and 6 ∃λ2 in Ĉ s.t λs2 < λs

NF4 Cλ1 uDλ2 v E −→ {Dλ2 u Cλ1 v E} where
λs2 < λs1

NF5 Ĉ v D̂ −→ {Ĉ v A[y], A[y] v D̂} where
y = λs : λ is in Ĉ and 6 ∃λ1 in Ĉ s.t λs1 < λs

NF6 C v ∃Rλ1 .D̂ −→ {C v ∃Rλ1 .A[y], A[y] v D̂} where
y = λs : λ is in D̂ and 6 ∃λ1 in D̂ s.t λs1 < λs

NF7 C v D u E −→ {C v D,C v E}

where A is a fresh concept name not occurring in T̃ .

The normalised TBox NF(T ) is created by first applying NFX to all axioms
in T , followed by exhaustive application of rulesNF1 -NF4 (Step 1) in ascending
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order to any axiom conforming to the structure of the rule, then applying rules
NF5 - NF7 (Step 2) in a similar manner and finally applying NFX exhaustively
to each axiom. After each application of rules NF1−NF7, NFX is applied to
the resulting axioms to ensure they are base-shifted.

Proof of complexity

Theorem 16
NF(T ) can be computed in polynomial time w.r.t the size of T .

The proof is similar to the one seen in Section 6.2, so we only sketch the
proof here. The number of possible rule applications is limited linearly in the
number of sub concepts in T . Each of the rules increases the size of T only by
a constant plus a bound on the original axiom size due to the introduction of a
new interval which is no larger than an interval occurring in the current axiom
each time, and since each rule can be only applied to a new axiom an amount of
times restricted to the size of T linearly, it is easy to see that normalisation is
bounded polynomially in time to the size of T .

Lemma 9
Let T be an EL[x]-TBox and let NF(T ) be its normalised version. Then

(i) T̃ ⊆ ÑF(T )

(ii) For any axiom G ∈ NF(T ), G is a future only axiom

(iii) For any model I of NF(T ), I is a model of T

(iv) For any model I of T , there is a model I ′ of NF(T ) s.t. I ≡ I ′
/
∼
T

The normalised TBox is entailment preserving. The normalisation procedure
works in the same way is in Section 6.2, only with extra massaging for future only
axioms and variable intervals. Therefore we show only (ii). Consider every axiom
G′ being added NF(T ). Every input axiom was already in correct syntactic form,
so violation can only occur when introducing new intervals into an axiom due to
the nature of the rules. We show an example for NF1, but the same reasoning
holds for every other rule that introduces new intervals. In NF1, two new axioms
are produced for an input axiom Ĉ u D v E, and a new concept name A[y] is
produced. y is the smallest start index of an interval occurring in Ĉ, so the first
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axiom Ĉ v A[y] does not violate either restriction of future only axioms. The
second axiom is of the form A[y] u D v E. y was the smallest start index, so
every start index in an interval in E must be greater than or equal to y. From
the original axiom this was already the case and therefore still holds, proving the
claim.

Corollary 5
NF(T ) is entailment preserving.

From this point onwards we assume that all EL[x] TBoxes are future only
TBoxes and in normal form.

A Decision Procedure for Atomic Subsumption in EL[x]

We now provide a decision procedure to compute atomic subsumption w.r.t a
future only EL[x] TBox T . We again assume we have a constant domain. Suppose
we have two concepts Fλ̇1 andGλ̇2

, an EL[x] TBox T , and we wish to know whether
T |= Fλ̇1 v Gλ̇2+ω

for some ω ∈ N. We do this by building a directed weighted
multi graph G = (V,E), where V is a set of nodes representing base versions of
atomic concepts occurring in T̃ , E is a set of weighted edges over V and N where
an edge between two concepts Fλ̇1 , Gλ̇2 with weight ω1 signifies the subsumption
relation Fλ̇1 v Gλ̇2+ω1

. We build the graph G(T , Fλ̇1 , Gλ̇2
, ω) according to the

following definition:

Definition 74 (G(T , Fλ̇1 , Gλ̇2
, ω))

Let T be an EL[x] TBox, Fλ̇1 and Gλ̇2
∈ T̃ , ω ∈ N, k ∈ N be the largest λe

occurring in T ∪ {λ̇1, λ̇2} and let k′ = k + ω. Initialise G with

• V = {>[0]} ∪ {Aλ̇ | Aλ ∈ T̃ }

• E = {(>[0],>[0], {0, 1})}

∪ {(Aλ̇, Aλ̇, 0), (Aλ̇,>[0], 0)}

∪ {(Aλ̇1 , Aλ̇2 , γ) | λ̇2  c λ̇1 ∧ 0 ≤ γ ≤ λ̇e1 − λ̇e2}

∪ {(Aλ̇1 , Bλ̇2
, γ) | Aλ̇1 v Bλ2 ∈ T ∧ γ = λ2s − λ1s}

Next apply the following rules R0−R3:

R0: E := E ∪ {(Aλ̇1 , Bλ̇2
, γ) | Cλ̇3 u Dλ4 v Bλ2 ∈ T ∧ ∃(Aλ1 , Cλ̇3 , γ1) ∈ E ∧

∃(Aλ̇1 , Dλ̇4
, γ2) ∈ E ∧ γ2 = γ1 + λs4 ∧ γ = γ1 + λs2 ∧ λ̇e2 + γ ≤ k′}
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R1: E := E ∪ {(Aλ̇1 , Bλ̇2
, γ) | Aλ̇1 v ∃Rλ3 .Cλ4 ∈ T ∧ ∃Rλ̇5

.Dλ6 v Bλ2 ∈ T ∧
λ̇5  c λ̇3 ∧ 0 ≤ γ1 ≤ λ̇e3 − λ̇e5 ∧ (Cλ̇4 , Dλ̇6

, λs6 − (λs4 − λs3) + γ1) ∈ E ∧ γ =

λs3 + λs2 + γ1 ∧ λ̇e2 + γ ≤ k′}

R2: E := E ∪ {(Aλ̇1 , Bλ̇2
, γ) | {(Aλ̇1 , Bλ̇3

, γ1) . . . (Aλ̇1 , Bλ̇3
, γn)} ⊆ E ∧ γ1 < γ2 <

. . . < γn−1 < γn∧λ̇3+γi  t λ̇3+γj ∀i, j ∈ {0, . . . , n} where j = i+1∧λ̇2  c

[0, γn + λ̇e3 − γ1] ∧ γ1 ≤ γ ≤ λ̇e3 + γn − λ̇e2 ∧ λ̇e2 + γ ≤ k′}

R3: E := E ∪ {(Aλ̇1 , Bλ̇2
, γ) | ∃(Aλ̇1 , Cλ̇3 , γ1) ∈ E ∧ ∃(Cλ̇3 , Bλ̇2

, γ2) ∈ E ∧ γ =

γ1 + γ2 ∧ γ + λ̇e2 ≤ k′}

Theorem 17
Let T be a EL[x] TBox, Fλ̇1 and Gλ̇2

∈ T̃ , (V,E) = G(T , Fλ̇1 , Gλ̇2
, ω) and let

ω ∈ N. Then e = (Fλ̇1 , Gλ̇2
, ω) ∈ E iff T |= Fλ̇1 v Gλ̇2+ω

.

Proof We first show ⇒ by proof of induction on the number of rule applica-
tions.
Claim e = (Fλ̇1 , Gλ̇2

, ω) ∈ E⇒ T |= Fλ̇1 v Gλ̇2+ω

n=0 Then according to the initialisation of G, there are 4 possible cases:

• A = B = >, ω = {0, 1} and λ̇1 = λ̇2 = [0]. If ω = 0 then it is trivial to
see that T |= >[0] v >[0], proving the claim holds. If ω = 1 then it is also
trivial to see that T |= >[0] v >[1], since we assume a constant domain.

• ω = 0 and either (1)B = A and λ̇1 = λ2 or (2)B = > and λ̇2 = [0]. If
(1) then it holds trivially that T |= Aλ̇1 v Aλ̇1+0. If (2) then it also holds
trivially that T |= Aλ̇1 v >λ̇2+0 where λ̇2 = [0].

• B = A, λ̇2  c λ̇1 and k′ ∈ {0, 1, ..., λ̇e1− λ̇e2}. For all models I of T , it holds
by definition of I that AI

λ̇1
⊆ AI

λ̇2+ω
since λ̇2+k′  c λ̇1, thus T |= Aλ̇1 v

Aλ̇2+ω.

• There exists an axiom αx = Aλ̇1 v Bλ2 ∈ T and ω = λs2 − λ̇s1. Since λ̇s1 = 0

then λ2 = λ̇2 + ω, therefore T |= Aλ̇1 v Bλ̇2+ω
.

n > 0

• Suppose R0 added e to E. There exists an axiom αx = Cλ̇3uDλ4 v Gλ2 ∈ T
and edges {(Fλ̇1 , Cλ̇3 , γ1), (Fλ̇1 , Dλ̇4 , γ2)} ∈ E where γ2 = γ1 + λs4 and ω =

γ1 + λs2.
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By IH, it holds that T |= Fλ̇1 v Cλ̇3+γ1 and T |= Fλ̇1 v Dλ̇4+γ2
. Therefore

T |= Fλ̇1 v Cλ̇3+γ1 uDλ̇4+γ2
.

Since γ2− γ1 = λs4− λ̇s3, it holds that T |= Fλ̇1 v Gλ2+γ1 . Since ω = λs2 + γ1

it holds that T |= Fλ̇1 v Gλ̇2+ω
.

• Suppose R1 added e to E. There exist axioms α1
x = Fλ̇1 v ∃Rλ3 .Cλ4 ∈ T

and α2
x = ∃Rλ̇5

.Dλ6 v Gλ2 ∈ T and an edge (Cλ̇4 , Dλ̇6 , λ
6
s−(λ4s−λ3s)+γ1) ∈ E

where λ̇5  c λ̇3 and 0 ≤ γ1 ≤ λ̇e3 − λ̇e5 and ω = λs3 + λs2 + γ1.
By IH it holds that T |= Cλ̇4 v Dλ̇6+(λs6−(λs4−λs3)+γ1)

and therefore T |=
Fλ̇1 v ∃Rλ3 .Dλ̇6+(λs6+λ

s
3+γ1)

.
Since λs6 − λ̇s5 + γ1 = (λ̇s6 + λs6 + λs3) − λs3 + γ1 it holds that T |= Fλ̇1 v
∃Rλ̇5+λs3+γ1

.Dλ6+λs3+γ1
. Finally, it holds that T |= Fλ̇1 v Gλ̇2+(λs2+λ

s
3+γ1)

.

• Suppose R2 added e to E. There exists edges
{(Fλ̇1 , Gλ̇3

, γ1) . . . (Fλ̇1 , Gλ̇3
, γn)} ⊆ E where γ1 < . . . < γn and λ̇3 + γi  t

λ̇3 + γj where i, j ∈ 0, . . . , n and j = i + 1 and λ̇2  c [0, γn + λ̇e3 − γ1] and
γ1 ≤ ω ≤ λ̇e3+γn−λ̇e2. By IH, it holds that T |= Fλ̇1 v Gλ̇3+γ1

u. . .uGλ̇3+γn
.

It holds by definition of the semantics of T that T |= Gλ̇3+γ1
u. . .uGλ̇3+ωn

v
Gλ̇2+γ′

where γ1 ≤ γ′ ≤ λ̇e3 + γn − λ̇e2. By transitivity of subsumption, it
holds that T |= Fλ̇1 v Gλ̇2+ω

.

• Suppose R3 added e to E. There exists edges {(Fλ̇1 , Cλ̇3 , γ1), (Cλ̇3 , Gλ̇2

, γ2)} ∈ E and ω = γ1 + γ2 By IH it holds that T |= Fλ̇1 v Cλ̇3+ω1

and T |= Cλ̇3 v Gλ̇2+γ2
. Then it holds that T |= Fλ̇1 v Gλ̇2+(γ1+γ2)

.

Since we have shown soundness, (⇒), it suffices to completeness, (⇐). We
approach this by proving the contraposition: Claim: e = (Fλ̇1 , Gλ̇2

, ω) 6∈ E ⇒
T 6|= Fλ̇1 v Gλ̇2+ω

. We build a canonical model I of T with a witness y, so that
there exists a j ∈ Z where y ∈ F I

λ̇1
[x→ j]\GI

λ̇2+ω
[x→ j]. This is similar as in the

case of EL[ ] 6.2. We construct the canonical model I according to the following
definition:

Definition 75 (Building a Model I of T )
Given an edge (Aλ̇1 , Bλ̇2

, ω) 6∈ G where ω ≤ k′, let I0 be ∆I
0

= {w} and AI0i =

{w} for 0 ≤ i ≤ λ̇1e, and for each i ∈ N, let I i+1 be the extension of I i obtained
by an application of one of the following rules:

I1: If Cλ3 v Dλ4 ∈ T then for all j ∈ N, for every individual x ∈ CIiλ3 [x → j]

where x /∈ DIiλ4 [x→ j], add x to DIi+1

λ4 [x→ j].
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I2: If Cλ3uDλ4 v Eλ5 ∈ T then for all j ∈ N, for every individual x ∈ CIiλ3 [x→
j] ∩DInλ4 [x→ j] where x /∈ EIiλ5 [x→ j], add x to EIi+1

λ5 [x→ j].

I3: If Cλ3 v ∃Rλ4 .Dλ5 ∈ T then for all j ∈ N, for every individual x ∈ CIiλ3 [x→
j] where there is no individual y ∈ DIiλ5 [x → j] where (x, y) ∈ RIiλ4 [x → j],
if y ∈ DIiλ5 then add (x, y) to RIi+1

λ4 [x→ j]. If such a y does not exist, then
create y, add y to DIi+1

λ5 [x→ j] and then add (x, y) to RIi+1

λ4 [x→ j]

I4: If ∃Rλ3 .Cλ4 v Dλ5 ∈ T then for all j ∈ N, for every individual x ∈
Rλ3 .C

Ii
λ4 [x→ j] where x /∈ DIiλ5 [x→ j], add x to DIi+1

λ5 [x→ j].

I is defined as : I :=
∞⋃
i=0

I i.

Lemma 10
I is a model of T

We first show that I is in fact a valid model of T . Since T is normalised, we
show that I is a model of each of the four possible axioms in T .

1. If α = Aλ̇1 v Bλ2 ∈ T , then for I to be a model of α, it has to be the case
that ∀j ∈ Z, AI

λ̇1
[x→ j] ⊆ BIλ2 [x→ j]. This holds by definition of I1.

2. If α = Aλ̇1 u Bλ2 v Cλ3 ∈ T , then for I to be a model of α, it has to be
the case that ∀j ∈ Z, AI

λ̇1
[x → j] ∩ BIλ2 [x → j] ⊆ CIλ3 [x → j]. This holds

by definition of I2.

3. If α = Aλ̇1 v ∃Rλ2 .Bλ3 , then for I to be a model of α, it has to be the case
that ∀j ∈ Z, AI

λ̇1
[x→ j] ⊆ (∃Rλ2 .Bλ3)

I [x→ j]. This holds by definition of
I3.

4. If α = ∃Rλ̇1 .Aλ2 v Bλ3 , then for I to be a model of α, it has to be the case
that, ∀j ∈ Z, (∃Rλ̇1 .Aλ2)

I [x→ j] ⊆ BIλ3 [x→ j]. This holds by definition of
I4.

We now show that, for every n ∈ N, for each Xλ̇1
, Yλ̇2 ∈ T̃ where Xλ̇1

6= Yλ̇2 , for
all y ∈ XIn

λ̇1
[x→ j] for all j ∈ N, if y was born for XIt

λ̇1
[x→ j] and y ∈ Y In

λ̇2
[x→ l]

where t ≤ n, l ≥ j and l − j ≤ k′ + λ̇e2, then (Xλ̇1
, Yλ̇2 , l − j) ∈ G. We show this

by proof of induction over n− t.
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• n − t = 0: Then y was born at t for XIt
λ̇1

[x → j]. If y ∈ Y It
λ̇2

[x → l] and
Xλ̇1
6= then only two cases can apply:

– Yλ̇2 = >[0] : By initialisation of G and non applicability (NA) of R3,
edges between all concepts and> exist with weights from 0−k′, proving
the claim holds.

– Y = X: Then by definition of I, λ̇2  c λ̇1 and l ≤ λ̇e1 − λ̇e2. By
initialisation of G, (Xλ̇1

, Yλ̇2 , l − j) ∈ G, proving the claim holds.

• n− t > 0: Suppose y ∈ Y In
λ̇2

[x→ l] and y 6∈ Y In−1

λ̇2
[x→ l]. In the definition

of I, 3 rules could added y to Y In
λ̇2

[x→ l]:

I1: Then there is an axiom of the form Cλ̇3 v Yλ̇4+γ and y ∈ C
In−1

λ̇3
[x→ γ′]

where j < γ′. y is in Y In
λ̇2

[x→ l] under 3 possible scenarios. The first
is a Direct case where y is added to the direct extension of Yλ̇2 . The
second is a Contained case where y is added to the extension of a Y
that contains Yλ̇2 , and by definition of I, ends up in the extension of
Yλ̇2 . The third is an Overlap case where y is added to the extension
of a Y that makes up a larger sequence of Y s, which then contains
Yλ̇2 , and by definition of I, ends up in ends up in the extension of Yλ̇2 ,
again similar to the results in Section 6.2.

1. Direct: Yλ̇2 = Yλ̇4 . By IH there is an edge (Xλ̇1
, Cλ̇3 , γ

′ − j) ∈ E

and by initialisation of G, there is an edge (Cλ̇3 , Yλ̇4 , γ) ∈ E. Then
l = γ + γ′ and by NA of R3, there is an edge (Xλ̇3

, Yλ̇2 , l− j) ∈ E,
proving the claim holds.

2. Contained: λ̇2  c λ̇4 and l = γ + γ′ + γ′′ for 0 ≤ γ′′ ≤ λ̇e4 − λ̇e2.
By IH, there is an edge (Xλ̇1

, Cλ̇3 , γ
′− j) ∈ E and by initialisation

of G, there is an edge (Cλ̇3 , Yλ̇4 , γ) ∈ E. By initialisation of G,
there is an edge (Yλ̇4 , Yλ̇2 , γ

′′) ∈ E. By NA of R3, there is an edge
(Xλ̇3

, Yλ̇2 , l − j), proving the claim holds.

3. Overlap Let λ̇∗ be the smallest interval occurring on a concept Y
occurring in T .
Then there is a sequence of Yλ̇∗ where
y ∈ Y In−1

λ̇∗
[x→ γ1] ∩ Y I

n−1

λ̇∗
[x→ γ2] ∩ . . . ∩ Y I

n−1

λ̇∗
[x→ γn] where

γ1 ≤ γ2 ≤ . . . ≤ γn and
λ̇4 + γ  t λ̇∗ + γi for some i ∈ {0, . . . , n} and
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j ≤ γ1 and
λ̇2  c λ̇0 where λ̇0 = [0,max(λ̇e∗ + γn, λ̇

e
4 + γ)].

Since λ̇∗ is minimal, then λ̇0 can be seen as a sequence of consec-
utive (possibly overlapping) λ̇∗ intervals.
Let γmin = min(γ1, γ) and γmax = max(γn + λ̇e∗, γ + λ̇e4).
Then γmin ≤ l ≤ γmax.
Since λ̇∗ is minimal, then λ̇0 can be reduced in size to that of λ̇2,
by NA of R2.
By IH there are edges {(Xλ̇1

, Yλ̇∗ , γ
′ + γ), . . . , ((Xλ̇1

, Yλ̇∗ , γ
′ + γ +

λ̇e4))} ⊆ E.
Then by NA of R2, there is an edge (Xλ̇1

, Yλ̇2 , l − j).

I2: Then there is an axiom of the form Cλ̇3 u Dλ̇4+γ1
v Yλ̇5+γ and y ∈

CI
n−1

λ̇3
[x → γ′] and y ∈ DI

n−1

λ̇4
[x → γ′ + γ1] where j < γ′. y is in

Y I
n

λ̇2
[x→ l] under 3 possible scenarios:

1. Direct: Yλ̇2 = Yλ̇5 . Then l = γ + γ′. By IH there are edges
{(Xλ̇1

, Cλ̇3 , γ
′− j), (Xλ̇1

, Dλ̇4
, γ′+ γ1− j)} v E. By NA of R0 and

R3 there is an edge (Xλ̇1
, Yλ̇2 , l − j), proving the claim holds.

2. Contained: λ̇2  c λ̇5 and l = γ+γ′+γ′′ for 0 ≤ γ′′ ≤ λ̇e5−λ̇e2. By
IH there are edges {(Xλ̇1

, Cλ̇3 , γ
′− j), (Xλ̇1

, Dλ̇4
, γ′+ γ1− j)} v E.

By initialisation of G, there is an edge (Yλ̇5 , Yλ̇2 , γ
′′) ∈ E. By NA

of R0 there is an edge (Xλ̇1
, Yλ̇2 , l − j), proving the claim holds.

3. Overlap Let λ̇∗ be the smallest interval occurring on a concept Y
occurring in T .
Then there is a sequence of Yλ̇∗ where
y ∈ Y In−1

λ̇∗
[x→ γ1] ∩ Y I

n−1

λ̇∗
[x→ γ2] ∩ . . . ∩ Y I

n−1

λ̇∗
[x→ γn] where

γ1 ≤ γ2 ≤ . . . ≤ γn and
λ̇5 + γ  t λ̇∗ + γi for some i ∈ {0, . . . , n} and
j ≤ γ1 and
λ̇2  c λ̇0 where λ̇0 = [0,max(λ̇e∗ + γn, λ̇

e
5 + γ)].

Since λ̇∗ is minimal, then λ̇0 can be seen as a sequence of consec-
utive (possibly overlapping) λ̇∗ intervals.
Let γmin = min(γ1, γ) and γmax = max(γn + λ̇e∗, γ + λ̇e5).
Then γmin ≤ l ≤ γmax.
Since λ̇∗ is minimal, then λ̇0 can be reduced in size to that of λ̇2,
by NA of R2.
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By IH there are edges {(Xλ̇1
, Yλ̇∗ , γ

′ + γ), . . . , ((Xλ̇1
, Yλ̇∗ , γ

′ + γ +

λ̇e5))} ⊆ E.
Then by NA of R2, there is an edge (Xλ̇1

, Yλ̇2 , l − j).

I4: There there is an axiom of the form ∃Rλ̇3
.Cλ̇4+γ1 v Yλ̇5+γ ∈ T where

y ∈ (∃Rλ̇3
.CI

n−1

λ̇4+γ1
[x→ γ′]. There must exist a z ∈ CIn−1

λ̇4+γ1
[x→ γ′ + γ1]

where (y, z) ∈ RI
n−1

λ̇3
[x → γ′]. By definition of I3, there exists an

axiom Dλ̇7
v ∃Rλ̇7+γ2

.Eλ̇8+γ3 and λ̇3  c λ̇
7, y ∈ DIn−1

λ̇6
[x → γ′′], z ∈

EI
n−1

λ̇8
[x→ γ′′+γ3] and (y, z) ∈ RIn−1

λ̇7
[x→ γ′′+γ2] where j ≤ γ′′ ≤ γ′.

Since λ̇3  c λ̇7 then γ′ = γ′′ + γ2 + γ′′′ where 0 ≤ γ′′′ ≤ λ̇e7 − λ̇e3. y is
in Y In

λ̇2
[x→ l] under 3 possible scenarios:

1. Direct: Yλ̇2 = Yλ̇5 . Then l = γ + γ′. By IH there are edges
{(Xλ̇1

, Dλ̇6
, γ′′ − j), (Eλ̇8 , Cλ̇4 , γ

′ + γ1 − (γ′′ + γ3) + γ′′′)} ⊆ E. By
NA of R1 there is an edge {(Dλ̇6

, Yλ̇2 , γ2 + γ + γ′′′) ∈ E. By
NA of R3 there is an edge {(Xλ̇1

, Yλ̇2 , l − j) ∈ E since l − j =

γ′′ − j + γ2 + γ + γ′′′, proving the claim holds.

2. Contained: λ̇2  c λ̇5 and l = γ+ γ′+ γ′′′′ for 0 ≤ γ′′′′ ≤ λ̇e5− λ̇e2.
By IH there are edges {(Xλ̇1

, Dλ̇6
, γ′′−j), (Eλ̇8 , Cλ̇4 , γ

′+γ1− (γ′′+

γ3) +γ′′′)} ⊆ E. By NA of R1 there is an edge {(Dλ̇6
, Yλ̇5 , γ2 +γ+

γ′′′) ∈ E. By initialisation of G, there is an edge (Yλ̇5 , Yλ̇2 , γ
′′′′) ∈ E.

By NA of R3 there is an edge {(Xλ̇1
, Yλ̇2 , l − j) ∈ E since l − j =

γ′′ − j + γ2 + γ + γ′′′, proving the claim holds.

3. Overlap Let λ̇∗ be the smallest interval occurring on a concept Y
occurring in T .
Then there is a sequence of Yλ̇∗ where
y ∈ Y In−1

λ̇∗
[x→ γ1] ∩ Y I

n−1

λ̇∗
[x→ γ2] ∩ . . . ∩ Y I

n−1

λ̇∗
[x→ γn] where

γ1 ≤ γ2 ≤ . . . ≤ γn and
λ̇5 + γ  t λ̇∗ + γi for some i ∈ {0, . . . , n} and
j ≤ γ1 and
λ̇2  c λ̇0 where λ̇0 = [0,max(λ̇e∗ + γn, λ̇

e
5 + γ)].

Since λ̇∗ is minimal, then λ̇0 can be seen as a sequence of consec-
utive (possibly overlapping) λ̇∗ intervals.
Let γmin = min(γ1, γ) and γmax = max(γn + λ̇e∗, γ + λ̇e5).
Then γmin ≤ l ≤ γmax.
Since λ̇∗ is minimal, then λ̇0 can be reduced in size to that of λ̇2,
by NA of R2.
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By IH there are edges {(Xλ̇1
, Yλ̇∗ , γ

′ + γ), . . . , ((Xλ̇1
, Yλ̇∗ , γ

′ + γ +

λ̇e5))} ⊆ E.
Then by NA of R2, there is an edge (Xλ̇1

, Yλ̇2 , l − j).

Termination

Lemma 11
Given an EL[x] TBox T , computing G(T , Fλ̇1 , Gλ̇2

, ω) terminates.

To show that G(T , Fλ̇1 , Gλ̇2
, ω) terminates, we have to show that (1) initial-

isation terminates and (2) exhaustive application of rules R0 − R3 terminates.
For (1), there are 5 steps where edges and vertices are added to G.

1. Step 1 involves adding all vertices to the graph. Vertices represent base
version of concepts occurring in T . Since there are only finitely many, this
step terminates after finitely many steps.

2. Step 2 involves adding two single edges between the top concept.

3. Step 3 adds edges a single self edge to every concept and a single edge to
every concept and the top concept, after which this step terminates.

4. Step 4 adds edges representing containment edges between concepts with
the same name. There are only finitely many containment edges that can
be added.

5. Step 5 adds edges based atomic subsumptions present in the TBox. Since
the TBox contains only finitely many axioms this is guaranteed to termi-
nate.

For (2), since k′ is the temporal bound for which we compute G(T , Fλ̇1 , Gλ̇2
, ω),

the number of possible edges between 2 nodes in G is limited by k′. Next, the
algorithm stops when no more rules are applicable, i.e either we have reached the
temporal bound for all possible edges or no more information can be inferred.
Note that the algorithm works in a monotonic way - information is always only
added and never removed.

Theorem 18
G(T , Fλ̇1 , Gλ̇2

, ω) is a decision procedure for subsumption in EL[x].
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Complexity

We assume a unary encoding of intervals. Let n be the number of distinct base
concepts names occurring in T . The number of nodes in G is at most n + 1,
and the number of possible edges between any 2 nodes is bounded by k′. Then
initialisation can add m edges where m < k′. Each rule application (R0 − R3)
can then add at most l < k′ −m edges and during each rule application we may
have to observe each edge in the current graph. As in the EL[ ] case, rule R2

(CR4 in EL[ ]) needs to be applied in a smart way as to avoid an exponential
number of tests for the touching sequence. We can reuse Algorithm 1 to achieve
an optimised rule application in polynomial time. It is clear that the number of
possible steps of creating G is bounded polynomially by k′ and n.

Theorem 19
Subsumption in EL[x] can be decided in polynomial time.

6.9.1 A Decision Procedure for Classification in Restricted

EL[x]

As is usually the case, we can utilise the decision procedure G(T , Fλ̇1 , Gλ̇2
, ω) for

other reasoning procedures, specifically for a k-bound classification in future only
EL[x] TBoxes. If ω was our temporal bound (k) for which we wished to compute
our classification, we could run G(T , Fλ̇1 , Gλ̇2

, ω) with the temporal bound ω for
each pair of base atomic concepts Fλ̇1 , Gλ̇2

occurring in a EL[x] TBox T , and use
the result to build a classification. Since the number of times we would need to
run G(T , Fλ̇1 , Gλ̇2

, ω) is only quadratic in the size of T , G(T , Fλ̇1 , Gλ̇2
, ω) can be

used as a decision procedure for classification for EL[x].

Theorem 20
Classification of future only EL[x] TBoxes can be decided in polynomial time.



Chapter 7

TempDL: A Reasoner for DL[ ]

In this chapter we present the design and implementation of two TDL reasoners,
TempEL and TempALC, and an OWL-based syntax for [x].

We then go on to evaluate the reasoners with respect to correctness and per-
formance.

7.1 Overview

TempEL and TempALC are both reasoners for sub languages of [x] implemented
using the OWL API [HB11] in the Java programming language. Both are reason-
ers that implement the decision procedures introduced in Chapter 6 for the logics
EL[ ] and ALC[ ]. TempEL computes a classification for EL[ ] TBoxes. ALC[ ] also
computes a classification as well as satisfiability testing for ALC[ ] concept expres-
sions and ALC[ ] ontology consistency. Both reasoners are meant to act only as
a proof of concept prototype implementation for each respective [x] fragment.
In the following we describe their implementations, including normalisation tech-
niques and their evaluation.

We first describe our representation of [x] knowledge bases in OWL using
annotation properties for encoding time intervals.

7.2 OWL[ ]- Representing [x] in OWL

OWL[ ] is a subset of OWL amended with predefined annotation properties acting
as a representation of [x] time intervals (as described in Chapter 5) occurring
on each OWLClass and OWLObjectProperty. Recall that any in sub language

249
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of [x], specifically in the [ ] fragments, Ncon and Nrole, are replaced with the
sets N [ ]

con and N
[ ]
role where N [ ]

con = Ncon × Λ and N
[ ]
role = Nrole × Λ, where Λ is

the set of all intervals. In order to represent the time intervals, we need three
annotation properties: one representing the start point of an interval, another
representing the end point of an interval, and for every class or role, one property
representing the fully qualified name. The latter is necessary because the same
non temporal entity (e.g. A) can exist in multiple temporal phases (e.g. A[0,1] and
A[2,3]). The annotation properties for representing the start and end points have
a range of xs:int. This ensures that the time points correspond directly to the
grammar presented in Chapter 5. Suppose we had the following three annotation
properties: hasStartIndex, hasEndIndex and hasName. The classes A[0,1] and
A[2,3] are represented as follows (using Manchester Syntax):

Class: A01

Annotations:

hasName "A",

hasStartIndex 0,

hasEndIndex 1

Class: A23

Annotations:

hasName "A",

hasStartIndex 2,

hasEndIndex 3

The following definition ensures that in a ‘legal’ OWL[ ] ontology, each class and
each object property value has suitable annotations - in particular that their
intervals are correct.

Definition 76
Given an OWL 2 DL ontology O, an annotation property as with range xs:int

called the startIndex, an annotation property ae with range xs:int called the
endIndex, an annotation property an with range rdfs:Literal called the base-
Name, an OWLClass or OWLObjectProperty X and an annotation assertion
a(X, v) annotating X with property a the value v, we say O is OWL[ ] legal if the
following holds: for every class or object property name X ∈ Õ, as(X, v1) ∈ O,
ae(X, v2) ∈ O and an(X, v) ∈ O and v2 ≥ v1.
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We have implemented an OWL[ ] validator which only accepts legal OWL[ ]

ontologies according to Definition 76. The TempEL validator accepts ontologies
that are both in EL and are legal OWL[ ]. TempALC accepts ontologies that are
both in ALC and are legal OWL[ ].

Implementation As mentioned previously, we have implemented an OWL[ ]

validator used by both TempEL and TempALC, configured to accept either EL[ ]

and ALC[ ] ontologies respectively.
The validator has three class methods to check for expressivity levels of given

ontologies and to check for OWL[ ] membership.

public class Validator {

public static boolean

isOntologyInALC(OWLOntology ontology)

public static boolean

isOntologyInEL(OWLOntology ontology)

public static boolean

isOntologyOWLCON(OWLOntology ontology,

OWLAnnotationProperty startIndex,

OWLAnnotationProperty endIndex,

OWLAnnotationProperty basename)

}

When checking for DL expressivity levels, each method contains a set of legal
axiom types (using the OWL API’s AxiomType) and legal class expression types
(using the OWL API’s ClassExpressionType), and then parses the ontology’s
signature, including all logical axioms to ensure that each entity and axiom in the
signature conforms to the requirements of each DL. The method returns true if
the ontology is legal, and false otherwise.

When checking for OWL[ ] membership, the method is configured with the
three annotation properties given by the user. It then proceeds to parse through
class and role names in the signature (excluding > and ⊥) and checks each entity
has the correct annotation assertion axioms. The method returns true if the
ontology is valid OWL[ ], and false otherwise.
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7.3 Implementation of TempEL & TempALC

We now go on to provide descriptions of the implementations of both reasoners1.
Both TempEL and TempALC are implemented in the Java programming language,
and make use of the OWL API [HB11]. Both reasoners partially implement the
OWLReasoner interface from the OWL API, allowing each of them to be used by
any application based on the OWL API. We begin with a system description of
TempEL.

7.3.1 TempEL System Description

TempEL implements the OWLReasoner interface. TempEL’s main function is to
compute a classification of a given EL[ ] ontology, and does not implement all
the methods given in the interface. We only implement those methods that are
directly relevant to the classification and the expressivity limits of EL[ ]. For
example, any method relating to data properties or ontology consistency are
irrelevant since both are outside the scope of EL[ ]. The functional methods it
does implement are as follows:

• public void precomputeInferences(InferenceType... arg0) : Asks
the reasoner to precompute certain types of inferences. This is the main
function of the reasoner, which is called to initially compute the classifica-
tion on a given EL[ ] ontology, stored in an internal data structure.

• public Set<InferenceType> getPreComputableInferenceTypes() : Re-
turns the set of InferenceTypes that are precomputable by reasoner. Since
classification is the only inference the reasoner performs, this returns a
singleton set, containing the InferenceType CLASS_HIERARCHY.

Other non functional methods are implemented, but are not relevant to the rea-
soning task (such as getReasonerName() etc).

Some methods are partially implemented such as

• public NodeSet<OWLClass> getSubClasses(OWLClassExpression arg0,

boolean direct) : Gets the set of named classes that are the strict (poten-
tially direct) subclasses of the specified class expression with respect to the
reasoner axioms.

1both are available to download at http://www.cs.man.ac.uk/~leoj/thesis/tempdl.jar



CHAPTER 7. TEMPDL: A REASONER FOR DL[ ] 253

They are partially implemented in the sense that they are constrained to specific
entities over the signature of the ontology. Specifically, the method works only
for public NodeSet<OWLClass> getSubClasses(OWLClass arg0) where arg0

is in the signature of the ontology. For example, calling getSubClasses on an
OWLClass present in the ontology would return the correct subClasses, but calling
the method with a complex class expression would return an empty Set.

Partially implemented methods include:

public NodeSet<OWLClass> getSubClasses

(OWLClassExpression arg0, boolean direct)

public NodeSet<OWLClass> getSuperClasses

(OWLClassExpression arg0, boolean direct)

public NodeSet<OWLClass> getEquivalentClasses

(OWLClassExpression arg0, boolean direct)

public NodeSet<OWLObjectPropertyExpression>

getSubObjectProperties

(OWLObjectPropertyExpression arg0,

boolean direct)

public NodeSet<OWLObjectPropertyExpression>

getSuperObjectProperties

(OWLObjectPropertyExpression arg0,

boolean direct)

Using TempEL

Setup - TempELReasonerFactory To set up an instance of the TempEL rea-
soner, we have implemented the OWLReasonerFactory interface available in the
OWLAPI. This is the default point of access for creating instances of OWLReasoner
objects. In the interface are instance methods for returning an instance of a rea-
soner. The class TempELReasonerFactory is described as follows:

public class TempELReasonerFactory implements OWLReasonerFactory {
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public TempELReasonerFactory(OWLAnnotationProperty startIndex,

OWLAnnotationProperty endIndex,

OWLAnnotationProperty basename,

String prefix) {...}

public OWLReasoner createReasoner(OWLOntology ontology) {...}

}

The constructor is passed in the four arguments that define the annotation prop-
erties used to encode the temporal information of the intervals in the desired
ontology, along with a String to act as a new entity namer when the reasoner
may wish to create new non conflicting entities (more on this later). The method
createReasoner returns an instance of a TempELReasoner passing in the three
annotation properties and the String prefix which are stored in the instance of
the reasoner.

The following is an example of how to return an instance of an TempELReasoner.

...

TempELReasonerFactory rf =

new TempELReasonerFactory(start,end,name,prefix);

TempELReasoner r = (TempELReasoner) rf.createReasoner(ont);

...

Initialisation - TempELReasoner Upon creation, the reasoner stores the three
annotation properties, the prefix and the ontology locally in its constructor method.
When the user wishes to perform classification a call to the precomputeInferences
method is considered the first point of access and is performed as follows:

...

r.precomputeInferences(InferenceType.CLASS\_HIERARCHY);

...

which is where the process of classification begins.

Validation The first step of the process is to determine whether or not the on-
tology is in fact in EL and valid OWL[ ]. It calls both methods in the Validator
class to ensure this is the case, throwing a custom exception, NONELCONOntology
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R G −→ G′

NF1 C ≡ D −→ {C v D,D v C}
NF2 Ĉ uD v E −→ { Ĉ v Aλ1 , Aλ1 uD v E }
NF3 C u D̂ v E −→ { D̂ v Aλ1 , Aλ1 u C v E }
NF4 ∃Rλ2 .Ĉ v D −→ { Ĉ v Aλ1 ,∃Rλ2 .Aλ1 v D }
NF5 Ĉ v D̂ −→ { Ĉ v Aλ1 , Aλ1 v D̂ }
NF6 C v ∃Rλ2 .Ĉ −→ {C v ∃Rλ2 .Aλ1 , Aλ1 v Ĉ }
NF7 C v D u E −→ {C v D,C v E}

Table 7.1: EL[ ] normalisation rules

Exception, if the ontology is not valid and terminates. Otherwise, at this point
the ontology is known to be in EL and correctly temporal (valid OWL[ ]), so it
passes through the validation step and proceeds onto the next step of normalisa-
tion.

Normalisation The intention of the normalisation step is to convert the on-
tology into a normal form, to aid in simplifying the reasoning steps. The normal
form is that presented in Chapter 6. Recall, an EL[ ] ontology is said to be in
normal form if its TBox contains only axioms of the form:

• Aλ1 v Bλ2

• Aλ1 uBλ2 v Cλ3

• Aλ1 v ∃Rλ2 .Bλ3

• ∃Rλ1 .Aλ2 v Bλ3

The normalisation phase takes the input ontology and returns a Set OWLAxioms
representing the original ontology in its normal form version. We have created a
bespoke class ELCONNormalizer, with a method getNormalFormELCONTBox that
takes in an EL[ ] ontology and returns a Set<OWLSubClassOfAxiom> object, repre-
senting the TBox of the ontology in its normal form. The class has several meth-
ods which implement the normalizer rules introduced in Chapter 6 and shown
again in Table 7.1, with slight variations based on helper methods in the OWL
API to optimise certain rules. As an example, consider the rule NF1. The left
hand side (LHS) of the rule states that if there is an axiom of the form C ≡ D,
then replace this axiom with two new axioms C v D and D v C. However,
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in the OWL API, equivalent class axioms are not restricted to be binary, and
are in fact n-ary. So the implementation of the rule is modified to take this into
account:

private void NF1(OWLEquivalentClassesAxiom ax) {

for (OWLClassExpression ce1 : ax.getClassExpressionsAsList()) {

for (OWLClassExpression ce2 : ax.getClassExpressionsAsList()) {

if (!ce1.equals(ce2)) {

OWLSubClassOfAxiom newAxiom1 = getOWLSubClassOfAxiom(ce1, ce2);

addNewAxiomToOntology(newAxiom1);

}}}}

The normalisation procedure may also need to introduce new class names into
the signature of the ontology. The prefix String passed into the constructor of
the reasoner acts as a new entity namer system to prevent any internal incon-
sistencies, for example to prevent reusing a class name already in the ontology.
The constraints on the prefix is that it should not already be used as the name
of an entity already in the core ontology, hence leaving this as a task for the
user to specify. The normaliser keeps an internal counter and constructs new
names based on this counter and the prefix for each new entity needed. After
the normalisation procedure is complete, the reasoner then proceeds on to the
classification phase.

Classification The classification is based on the subsumer set procedure for
classifying EL[ ] TBoxes introduced in Chapter 6. The reasoner maintains a
HashMap called hierarchy of the form HashMap<OWLClass,Set<OWLClass>> rep-
resenting the subsumer sets of the classes over the signature of the normalised EL[ ]

TBox. This acts as a representation the sets S∗(Aλ). Therefore, the value of each
OWLClass key is a set containing all subsumers of the OWLClass. The reasoner
implements methods for each of the rules in the algorithm, INIT0, CR0, CR1,
CR2, CR3 and CR4, where each rule updates 1 or more values in hierarchy, and
terminates when hierarchy remains unchanged. Upon completion, hierarchy
represents the completed class hierarchy of the original ontology. To access the
information, users can proceed to use the methods described above to extract
certain entailments such as

...



CHAPTER 7. TEMPDL: A REASONER FOR DL[ ] 257

r.getSubClasses(class, false)

...

7.3.2 TempALC System Description

TempALC is set up in a similar way to TempEL. It too implements the OWLReasoner
interface along with many and more of its methods to carry out reasoning tasks.
Along with computing classification of ALC[ ] ontologies, TempALC also comes
with the options to check for ontology consistency, and check for satisfiability
of ALC[ ] concept descriptions. Along with all methods that TempEL (partially)
implements, TempALC also implements:

• public boolean isConsistent() : Determines if the set of reasoner ax-
ioms is consistent. Returns true if the ontology has a model, and false

otherwise

• public isSatisfiable(OWLClassExpression classExpression) : A con-
venience method that determines if the specified class expression is satisfiable
with respect to the axioms in the ontology. Returns true if classExpression
is satisfiable w.r.t the ontology, and false otherwise.

Using TempALC

Setup - TempALCReasonerFactory As before we have implemented the OWL

ReasonerFactory interface to create a class TempALCReasonerFactory as follows:

public class TempALCReasonerFactory implements OWLReasonerFactory {

public TempALCReasonerFactory(OWLAnnotationProperty startIndex,

OWLAnnotationProperty endIndex,

OWLAnnotationProperty basename,

String prefix) {...}

public OWLReasoner createReasoner(OWLOntology ontology) {...}

}

The reasoner factory acts in the same way as before, taking in the 3 annotation
properties representing the interval and base name information, along with a
String prefix for new entity names.

Retrieving an instance of an TempALCReasoner is done in the same way:
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...

TempALCReasonerFactory rf =

new TempALCReasonerFactory(start,end,name,prefix);

TempALCReasoner r = (TempALCReasoner) rf.createReasoner(ont);

...

Initialisation - TempALCReasoner Upon creation, the reasoner stores the three
annotation properties, the new entity prefix and the ontology locally in its con-
structor method. When the user wishes to perform classification, satisfiability
or consistency, a call to the precomputeInferences(...) method must first be
performed as follows:

...

r.precomputeInferences(null);

...

Validation The first step of the process is to determine whether or not the on-
tology is in fact in ALC and valid OWL[ ]. It calls both methods in the Validator
class to ensure this is the case, throwing a custom exception, NONALCCONOntology
Exception, if the ontology is not legal and terminates the process. Otherwise, at
this point the ontology is known to be in ALC and correctly temporal, so it passes
through the validation step and proceeds onto the next step of normalisation.

Normalisation The normalisation procedure is simpler than the TempEL nor-
malisation procedure. The requirement is that the TBox needs only to be a set
of subclass axioms and that all concept expression be represented in negation
normal form (NNF). This can be done using standard methods available in the
OWL API. No new concept or role names are introduced during the normalisa-
tion phase. After this phase is complete, the reasoner then begins to check for
ontology consistency.

Ontology Consistency

The ontology consistency phase consists of a building an internal ABox represen-
tation of the ontology’s assertional axioms, and executing an implementation of
the tableau algorithm for ALC[ ] ontology consistency introduced in Chapter 6.
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ALCABox We have implemented a class ALCABox, to act as a representation of
an ALC[ ] ABox, compatible with the OWL API. The ALCABox contains 5 Maps,
storing mappings between individuals and five types of assertions:

1. Static class assertions of the form Ai(a) which reads as the individual a is
an instance of the class A in world i

2. Negative static class assertions of the form ¬Ai(a) which reads as the indi-
vidual a is not an instance of the class A in world i

3. Property assertions of the form R[i,j](a, b) which reads as the individual a is
R related to the individual b in worlds i to j

4. Static property assertions of the form Ri(a, b) which reads as the individual
a is R related to the individual b in world i

5. Class assertions of the form C(a) which reads as the individual a is an
instance of the class expression C

The ALCABox has methods to check for clashes, create new individuals and
check for blocking. A method public boolean isABoxClashFree() has been
implemented that checks the Maps above for individuals either having ⊥ in their
negative static class assertions, or the same classes in both their negative static
class assertions and static class assertions. A method has also been imple-
mented public boolean isIndividualBlocked(OWLNamedIndividual) which
determines whether an individual has been blocked according to the definition
outlined in the tableau definition. A method also exists to create new individuals
when necessary which uses the prefix String passed into the reasoner to ensure
internal consistencies between previously existing individuals.

When ontology consistency testing begins, the ALCABox is initialised with all
assertions in the ontology (converting to the internal format as necessary). If
no assertions exist in the ontology, then a new individual x is created, and an
assertion is added to the ABox of the form >(x). The tableau algorithm then
proceeds to execute on the ABox.

Tableau Algorithm The tableau algorithm is an exact implementation of the
decision procedure introduced in Chapter 6 for ALC[ ]. There exists implementa-
tions of each of the 8 tableau rules in TempALCReasoner class, which work on a
set of ALCABoxes, and expand and possibly introduce new ALCABoxes until com-
pleteness or a clash is found. At any stage during the procedure, if an ABox is
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found to be complete (no more rules are applicable) and it does not contain any
clash, then the algorithm terminates, and the ontology is deemed consistent since
a model has been found (represented in the clash free and complete ALCABox).
If such an ALCABox does not exist, then a InconsistentOntologyException is
thrown and the method precomputeInferences terminates without successful
completion.

If the ontology was consistent, then the method continues to perform the
classification.

Classification

After the ontology has been found consistent, the reasoner then proceeds to per-
form the classification on the ontology. Since subsumption w.r.t an ontology can
be reduced to ontology consistency, it reuses the tableau method used for con-
sistency with a slight tweak on how the initial ALCABox was constructed. The
algorithm parses through each pair of concept names C1, C2 occurring in the on-
tology and constructs a new ALCABox with the assertion C1 u ¬C2(x). It then
runs the algorithm on this ALCABox and checks for consistency. If there is no
resulting complete and clash free ALCABox, then C1 is a subclass of C2, and is
added to an internal representation of the class hierarchy, the same as that seen
in TempELReasoner. The algorithm terminates once all pairs have been checked.
A few optimisations are made, for example not checking entailments that are
asserted tautologies such as A[0,1] v A[0,0].

To access the information in the hierarchy, users can proceed to use the meth-
ods described above to extract certain entailments such as

...

r.getSubClasses(class, false)

...

Satisfiability As mentioned above, the reasoner also implements satisfiability
checking of class expressions via the method

...

r.isSatisfiable(OWLClassExpression ce)

...
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This method again reuses the tableau algorithm with another slight modification
on how the initial ALCABox is set up. The ALCABox is initialised with the TBox
axioms in the ontology along with a new individual being an instance of the class
expression given. After running the tableau algorithm on the ALCABox, if there
is a complete and clash free ALCABox present, then the method returns true,
otherwise it returns false.

7.4 Evaluation

7.4.1 Overview

The goal of the evaluation is to test the correctness of the implementation of
the classification algorithm, and, for TempEL, to provide an evaluation of its
performance w.r.t different temporal ontologies and to observe how the overlap
of intervals on entities affect the number of resulting inferred subsumptions. We
have conducted three experiments to perform these evaluations using temporal
versions of selected ontologies from the same snapshot of the OBO foundry used
in our survey from Chapter 3.

Both TempEL and TempALC are proof of concept implementations that aim
to demonstrate that temporal reasoning is possible, and show some of the ben-
efits specifically the difference in temporal entailments when using a Temporal
Description Logic (TDL) as a representation for bio-health ontologies compared
to the standard OWL 2 representation.

7.4.2 Experiment Design

The first experiment involves determining the correctness of both TempEL and
TempALC. The second involves evaluating the performance of TempEL and ob-
serving the effects that the temporal aspects of an ontology have on its reasoning
time, whilst the third involves observing the additional entailments of temporal
ontologies whilst varying temporal aspects.

Experiment 1. Correctness

We test the correctness of the reasoners in two different ways. Due to the fact
that [x] is a new TDL, there are no real ontologies that are encoded in [x],
let alone any existing reasoners for [x] that we can compare either TempEL or
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TempALC against. Therefore we are left with two options. The first is to create
new ontologies that meet the specification of EL[ ], ALC[ ] and OWL[ ], making
them suitable for TempEL and TempALC, manually verifying the ontology’s en-
tailments and compare them with results of each reasoner. The second is to
convert existing ontologies into temporal versions which could then be verified
manually or automatically, depending on how they were generated. In either
case, the manual verification would be human verification, and would prove to be
the biggest problem since this can take a considerable amount of time. In the first
case, the ontologies created would have to be considered complex enough to test
the reasoners’ correctness, pushing the limits of the temporal representations, but
at the same time be reasonably small in size to make it easy enough for human
verification. In the second case, if human verification was needed, the converted
ontologies would have to be small enough to reduce time spent manually inspect-
ing each ontology. If we could convert an ontology into a temporal one such that
it was entailment preserving, then the size of the ontology would not have an
effect on the difficulty of verification, since this would be an automatic process,
where we could use the OWL API to verify that they have the same entailments.

For TempEL, we aim to adopt both approaches to prove correctness. We aim
to perform classification on basic temporal versions of current EL ontologies that
would preserve the original entailments of the ontologies, and then go on to com-
pare the entailments that TempEL produces, with the entailments of the original
ontology against a current OWL reasoner. For this to be possible, an EL ontology
would need to be first converted into a temporal version, i.e., legal OWL[ ], whilst
at the same time somehow preserving atomic entailments. A straightforward way
to achieve this task is to give each OWLClass and OWLObjectProperty in the sig-
nature of an EL ontology a zero-interval of the form [0, 0] ([0]). As an example,
consider the following ontology O := {A v B,B v C}. As well as the entail-
ments already asserted, an inferred entailment holds: A v C. The zero-interval
version of O, written O[0], is of the form O[0] := {A[0] v B[0], B[0] v C[0]}. Clearly
the corresponding inferred entailment holds, A[0] v C[0]. As the only interval we
use in O[0] is [0], any model of the temporal version is in fact a model of the stan-
dard version since only one possible world is considered. Finally, since we embed
the intervals into the standard OWL syntax, by means of annotation properties,
determining correctness becomes trivial. We can simply create a zero-interval
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ontology from any EL ontology, and run both TempEL and a standard OWL rea-
soner, and compare their entailments. TempEL will be considered correct if a
standard OWL reasoner and TempEL produce the same atomic entailments for
every class in the signature of an ontology. The OWL reasoner we will use in
our evaluation is ELK [KKS12]. ELK is a specialized reasoner for the lightweight
ontology language OWL EL, which extends the DL EL. ELK is actively main-
tained and focuses on practical subsets of OWL. ELK was also the winner of the
ORE 2015 EL classification challenge [PMG+15], so it seemed to be an obvious
choice. The set of EL ontologies we use in our experiment are those ontologies in
the OBO foundry found to be in EL (the same snapshot as used in Chapter 3).
We reuse our Validator class to determine which of those ontologies are in fact
valid EL ontologies and go on to convert those into valid OWL[ ] ontologies with
[0] intervals on each concept and role name. The resulting ontologies, although
being valid OWL[ ], and thus members of the EL[ ] ontologies, do not carry any
temporal information (hence why they have the same entailments as the non tem-
poral versions). This experiment is only aimed at testing the basic correctness of
the reasoner. To extend the tested ontologies to also contain some with temporal
information, we also opt to include a bespoke set of small but difficult EL[ ] ontolo-
gies into our corpus and manually verify the entailments. These ontologies include
difficult temporal patterns including many overlapping intervals, many contained
intervals and many roles to test the localised rigidity. The ontologies are available
to view and download at http://www.cs.man.ac.uk/~leoj/thesis/. Human
verification will be carried out by three individuals, considered to be experts in
the field of DLs. Each individual will be presented with each ontology and asked
to compute any and all atomic entailments that they believe to hold. Their re-
sults will then be checked against the results of TempEL for the same ontologies
and the results recorded.

For TempALC, we test correctness only on a set of bespoke ALC[ ] ontologies.
Again, we use the same 3 individuals and method to determine the correctness.
As well as providing a classification, TempALC also provides satisfiability testing
and ontology consistency checking. We aim to incorporate these into our test suite
in a similar way. The participants will be presented with an ALC[ ] ontology and
asked whether certain classes are satisfiable or whether the ontology is consistent.
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Experiment 2. Performance of TempEL

We have found that in preliminary tests, TempEL performs reasonably well on
real ontologies (particularly those zero ontologies created in Experiment 1). We
intend to observe the effect that various kinds of temporal aspects of ontologies
have on reasoning time.

We take each zero-interval EL[ ] ontology from Experiment 1, and generate a
number of different temporal versions. We choose to vary each ontology depending
on what types of intervals are used in the ontology on each class and role name,
which will also define the time line the ontology has. We will then run TempEL on
each of these new ontologies and see how reasoning time is effected. For example,
given an ontology, it would be interesting to see if ontologies containing entities
with many overlapping intervals have a direct effect on reasoning time.

To generate varying temporal ontologies, we created several versions of each
ontology varying the time line of each with the following ranges: {0−20, 0−
30, 0− 40, 0− 50} and randomly varying the interval sizes for each class and
role name appearing in each axiom according to the following set of durations
{1, 2, 3, 4, 5, 10, 15, 20}. An interval would be chosen randomly for each concept
and role name occurring in each axiom in an ontology w.r.t those bounds. An
ontology is generated for each time line size and each interval size pair. For
each ontology, a total of 32 different temporal versions of the ontology are gen-
erated. These include ontologies with both small and large time lines with
many overlapping intervals, both small and large time lines with minimal over-
lapping intervals and ontologies with intervals spaced out along the time line,
amongst others. Reasoning time will be recorded using Java’s built in function
System.currentTimeMillis() which will be called before and after classifica-
tion. For each ontology we will run the reasoner three times and take an average
over the times recorded, unless there is a significant variation between their times,
in which case the experiment will be run again.

We intend to analyse the effect that varying temporal patterns have on rea-
soning time. For example, simple patterns such as whether increasing the time
line bounds have an effect on reasoning time, or on a more complex level, whether
or not having classes with many intervals that overlap will have an effect on rea-
soning time. An entity overlaps another if it has the same name and their time
points in their intervals intersect in some way (this is similar to the notions we
defined previously as interval touching and interval containment). We therefore
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introduce the notion of overlap density, which will provide an average measure of
how much of an ontology’s concepts and roles have overlapping intervals.

Two entities with the same name overlap if their intervals intersect. The
amount they overlap is the size of the intersection of the two intervals. For
example, given two classes A[0,3] and A[0,2], their overlap is 3 since 3 of their time
points intersect, the overlap of A[0,3] and A[2,4] would be 2, the overlap of A[0,3]

and A[3,3] is 1 and the overlap of A[0,3] and B[0,3] is 0 since they do not have the
same name. For each ontology we compute pairwise overlap between entities in
an ontology with the same name. We then take an average over each pairwise
overlap value and multiply the result by the number of times an entity with
the same name appears in axioms, to account for the uneven usage of entities
throughout an ontology. This gives overlap values for each name of an entity in
an ontology. We then take an average over these values to act as a measure for
the overlap density of an ontology. We expect that those ontologies with large
time lines and small interval sizes will have a generally small overlap density, and
those with small time lines but large intervals will have a large overlap density.
Overlap density will be used as the varying measure to observe the effect on
reasoning time for TempEL. It incorporates both the time line and the intervals
and provides us with an overall insight into the temporal nature of an ontology.

No performance evaluation is performed for TempALC. Upon preliminary test-
ing we found TempALC performed very slowly on real ontologies, often running
out of memory. As previously mentioned TempALC is only meant to act as a proof
of concept reasoner. No optimisations have been implemented, and therefore this
result is unsurprising.

Experiment 3. Additional Entailments of TempEL

We are also interested in seeing whether or not having temporal versions of ontolo-
gies actually results in additional information being entailed. With the temporal
ontologies generated in Experiment 2, we plan to compare the number of addi-
tional atomic entailments against their standard non temporal versions. We aim
to see which of the temporal versions, if any, offer more entailments and what
specific role the intervals and time line together play on the amount of entail-
ments inferred. We again plan to use the overall density as a measurement in
this experiment.
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7.4.3 Hypotheses

Hypothesis 1: TempEL and TempALC are correct implementations of
the reasoning problems for EL[ ] and ALC[ ] ontologies, specifically, clas-
sification for EL[ ], and classification, satisfiability and consistency for
ALC[ ]

Hypothesis 2: Average entity interval overlap density correlates pos-
itively with classification time of TempEL

Hypothesis 3: Average entity interval overlap density correlates pos-
itively with ontology entailment count

7.4.4 Experimental Setup

Each experiment was conducted on a single Linux based machine (64 bit) with
a 2.7 GHz i7 processor. Each experiment was given a dedicated 16GB of DDR3
RAM from an available 64GB. All experiments were run using the Java 8 virtual
machine with OWL API version 3.5.2.

7.4.5 Experiment 1 Results

EL Ontologies in The OBO Foundry We used the Validator class, specif-
ically the method boolean isOntologyEL(OWLOntology o) introduced previ-
ously to identify those ontologies in the OBO foundry snapshot that were inside
the DL EL. 22 were found to be inside EL.

Zero-Interval Ontologies We created a corpus of 22 valid OWL[ ] ontolo-
gies, by taking each of the 22 OBO Foundry ontologies and adding annotation
properties which encoded zero-intervals onto each class and role name. The
start index annotation and end index annotation properties have the follow-
ing IRIs respectively: <tempEL.startIndex>, <tempEL.endIndex>. For rep-
resenting the base name of each entity, the original IRI was used. This has
the annotation property with the following IRI: <tempEL.baseName>. We ver-
ified that each ontology was in fact valid OWL[ ] by using the Validator’s
method isOntologyCorrectlyTemporal(OWLOntology o, ...). All ontologies
were valid OWL[ ].
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Atomic Entailment Correctness: TempEL & ELK We ran classification
for both TempEL and ELK on each ontology inO0. For TempEL, we set a time out
of 60 minutes to classify each ontology. Out of 22 ontologies, only 13 successfully
finished within this time. For the 13 that did terminate within the time out
bound, all inferred atomic entailments that TempEL produced were also present
in ELK, and all inferred atomic entailments that ELK produced were also present
in TempEL, proving the correctness of standard entailments in TempEL.

Manual Verification of TempEL & TempALC 10 EL[ ] and 10ALC[ ] ontologies
were manually created. The following is an example of one of the EL[ ] ontologies
manually created and used in our experiment:

{A[3]vB[3,7], A[0,1]vB[0,3], A[0,1]v∃R[3,5].D[3,6],

D[3]vE[3], ∃R[4,5].(D[4,6] u E[3]) v B[4,7], B[2,6]vC[0]}

TempEL produced the following entailments (not involving >λ and tautologies
such as A v A)

D[3,6] v D[4,6], D[3,6] v E[3,3], D[3,6] v D[3,3],

B[2,6] v C[0,0], B[3,7] v B[4,7],

A[3] v B[3,7], A[3] v B[4,7], D[3] v E[3,3],

A[0,1] v B[2,6], A[0,1] v B[3,7], A[0,1] v B[0,3],

A[0,1] v B[4,7], A[0,1] v C[0,0]

Each of the three participants were fully briefed on both the syntax and semantics
of each EL[ ] and ALC[ ], and were shown examples of the features of each logic,
explaining important properties such as the possible world semantics, interval
overlapping properties and rigidity. Each participant was familiar and considered
to be well versed in DLs and understood advanced notions such as atomic entail-
ments, reasoning, classification, etc. They were then presented with each of the
sample ontologies and were asked to record any atomic subsumptions that they
thought the ontology entailed. For the EL case, all participants were in agreement
with the entailments of all ontologies. They also exactly matched the entailments
the reasoner produced. The same results held for the ALC case. All three partic-
ipants matched all atomic subsumption entailments that TempALC produced, all
participants matched satisfiability checks with TempALC. For consistency checks,
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again, all three participants matched TempALC’s output.
These results support Hypothesis 1.
All ontologies used in this experiment are available at http://www.cs.man.

ac.uk/~leoj/thesis/.

O O-CT CT-E O-E1 O-E2
aeo 0.96 0.85 0.89 0.87
apo 0.99 0.87 0.91 0.90
ddpheno 0.99 0.88 0.90 0.88
eo 0.99 0.92 0.89 0.89
fix 0.98 0.88 0.91 0.91
mmo 0.98 0.87 0.92 0.91
pw 0.91 0.95 0.92 0.92
rex 0.98 0.86 0.92 0.92
symp 0.99 0.93 0.92 0.90
taxrank 0.97 0.97 0.93 0.93
trans 0.77 0.52 0.79 0.67
uo 0.99 0.88 0.88 0.88
wbphenotype 0.99 0.89 0.91 0.91

Table 7.2: Correlation (Spearman Coefficient) Table for all ontologies. O: Ontol-
ogy, O-CT: Overlap/Classification Time, CT-E: Classification Time/Entailment
Count O-E1: Overlap/Entailment Count, O-E1: Overlap/Entailment Count with
Temporal Tautologies Removed,

7.4.6 Experiment 2 Results

The relationship of classification time to average interval overlap can be observed
in Figure 7.1. A Spearman coefficient was computed to assess the relationship.
For all ontologies, the relationship is positive: the higher the average overlap,
the longer it takes to classify the ontology. The slightly higher variance for the
TRANS ontology can be simply explained by measurement error, which is higher
for measurements in the sub second area. The correlation of the two metrics
ranges from 0.99 (nearly perfect correlation) to 0.77 for TRANS, which was also
the only ontology for which the correlation was less than 0.9. We can conclude
that Hypothesis 2 holds. A deeper analysis of the nature of the relationship is
beyond the scope of this thesis. For most of the ontologies, the effect appears to
be roughly linear. Some artefacts, most importantly the outliers in AEO, require
further investigation.
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Figure 7.1: Relationship between average interval overlap and classification time
in seconds.
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Figure 7.2: Relationship between average interval overlap and number of resulting
subsumptions.
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7.4.7 Experiment 3 Results

The relationship between the average overlap density and the number of resulting
entailments can be seen in Figure 7.2. The relationship appears very similar to the
one between overlap and classification time. This suggests that the computation
time needed to produce additional entailments has an effect on reasoning time.
Again, the TRANS ontology may be simply too small to yield any significant
insight. The correlation coefficient ranges from 0.79 (TRANS) to 0.93 (PW),
with most of the ontologies being around 0.9 (strong correlation). This means
that the higher the overlap density, the more atomic subsumptions are computed.
This follows from the fact that when the overlap density is high, then there are
more concepts and roles in the ontology with the same names with intervals that
are contained or overlap with each other and form more overlapping chains which
contain more concepts and roles. This implies that the underlying rules in the
algorithm will be fired more often than in the normal (zero-ontology) case, since
more entailments now follow. Of course, by simply creating a random interval
version of an ontology, we increase the signature size by introducing a new concept
and role for every entity in the signature of every logical axiom, which will increase
the size of a classification by default, making comparisons with the zero interval
ontologies and the random interval ontologies unfair. However the signature size
of every random interval ontology remains consistent so comparisons remain fair
between these.

It is also the case that many of the ontologies have additional entailments
of the form of temporal tautologies due to the way they were temporalised. A
temporal tautology is one of the form Aλ1vAλ2 where λ2 is contained within λ1.
If we temporalise an ontology with a large overlap density then we get many
entailments of this form. We decide to investigate this further to see exactly how
many temporal tautologies were responsible for the additional entailments. We
removed all atomic entailments from the datasets that had the same name (of
course this is slight overkill - an entailment of the form A[0]vA[1] is certainly not a
tautology but is still eliminated under this removal scheme). The resulting plots
can be seen in Figure 7.3 and the corresponding correlations are again shown in
Table 7.2. Compared to the original data sets including all entailments, there was
on average a loss of 39.98% of entailments. We are currently unsure how many
of these were tautologies as this would require further reasoning. However we
can see there is still an obvious growth in entailments when the overlap density
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Figure 7.3: Relationship between average interval overlap and number of resulting
subsumptions with tautologies removed.
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increases in each ontology, again with the exception of the TRANS ontology. As
can be seen comparing Figure 7.2 and 7.3 between the two data sets, the trend
lines appear roughly the same, with near exact correlations (Table 7.2). The
average number of entailments across all ontologies was 5,634 compared to 3,381
adopting the removal scheme. We confirm Hypothesis 3.

7.5 Summary

The experiments provide supporting evidence for our hypotheses. Both TempEL
and TempALC are correct proof of concept reasoners for EL[ ] and ALC[ ]. We can
see that, by adding a temporal dimension there can be an advantage gained in
terms of additional entailments from a temporal knowledge base when compared
to an atemporal (static) knowledge base, and overlap density is a key factor here,
although increasing reasoning time may likely play a crucial role. Of course,
not all temporal ontologies may have a dense overlap structure, in which case
the number of additional entailments may not have a significant impact - we
know that having a simple temporal dimension (zero-ontologies) has no effect of
additional entailments - but may simply gain an advantage in terms of a modelling
perspective. In the end, this will likely be solely dependent on the temporal
information present in ontologies, but it is clear that an advantage can be gained.



Chapter 8

Conclusion

We have investigated the requirements for temporal modelling of bio-health on-
tologies and introduced several new extensions of Description Logics (DLs) and
introduced implementations of OWL reasoners to capture the temporal aspects
that a collection of bio-health ontologies exhibit. More specifically:

• Amongst a vast set of temporal features we identified in a survey of the OBO
Foundry, there were clear distinctions between important and unimportant
features, the most important being the rigid feature.

• Out of the current temporal extensions and representations we evaluated
(ltlDL & ctlDL, ALC(D), fl) against the TRs we extracted, none were
sufficient, although ltlALC has a clear advantage although suffered greatly
when it came to modelling the most important feature (rigidity) and was
not suitable in practice.

• The new set of logics we created, [x], tailored to the TRs, were in some cases
better than all other logics evaluated, but did have some major drawbacks.
However it did succeed at meeting some of the most important temporal
features.

• The implementations of the Reasoners for [x] were shown to be at least
practical in the prototype phase and showed promising results for the ben-
efits of using a temporal logic for temporal modelling in ontologies.

The following is a summary of our research contributions:

• Temporal Requirements Identification (Chapter 3)
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– We temporally annotated the Relation Ontology [SCK+05], an up-
per level ontology of relations used amongst ontologies in the OBO
Foundry [SAR+07], by annotating all relations with their temporal
information which we called temporal features, in a precise and struc-
tured way, to form the Temporal Relation Ontology (TRO).

– We then developed an importance measuring scheme which used TRO
to parse the OBO Foundry to determine which temporal features were
most important, which temporal features were always used together,
which annotations were most important and so on. This allowed us
to develop 15 TRs to act as a basis for the evaluation of temporal
extensions to DLs to determine their suitability.

• Temporal Representations Evaluation (Chapter 4)

– We then evaluated 3 current Temporal Description Logics (TDLs),
ltlALC & ctlALC, ALC(D) and fl against the 15 TRs to see which
if any was most suited to modelling the temporal patters found in
bio-health ontologies. We made clear comparisons between each logic,
showing the advantages and disadvantages of each. When it was clear
that no logic was suited for the modelling, we set out to introduce a
new TDL.

• [x]- Defining a new TDL (Chapter 5)

– We then introduced 4 new TDLs, contained within [x], each allow-
ing for a different combination of syntax and semantics. The logics
were based on annotating standard DL concepts and roles with time
point intervals or variable based time point intervals. The logics were
tailored to the TRs, unlike each previous logic evaluated, and were
partially designed based on the positive aspects of each previously
evaluated logic where possible.

– We then went on to evaluate each new logic against the TRs, compar-
ing with each previously evaluated logic.

• [x] Reasoning problems (Chapter 6)

– We then went on to define several of the reasoning problems of the [x]
logics. Since classification relies on a fixed set of concept names which
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is not so easily defined in [x], we had to adapt classification (and other
reasoning problems) to the case on concepts involving intervals.

– We proved decidability results for fragments of [x], whilst leaving sev-
eral undecided.

– We showed that in several fragments, one of the most desired features,
rigidity, was still decidable, which was one of the most positive results.

• [x] Implementations of [x] Reasoners (Chapter 7)

– We then introduced two OWL Reasoners that we implemented, TempEL
and TempALC. Each reasoner implements all the reasoning procedures
for the TDLs of EL[ ] and ALC[ ], which are fragments of [x]. We intro-
duce them only as proof of concept reasoners, or prototypes, but also
show they have sufficient use in practice.

– We conducted several experiments to show their correctness, their use
in practice, and the benefits of their respective logics as substitutes for
standard DLs.



Chapter 9

Outlook

Although we have covered a wide range of concepts in this thesis, our research has
left a lot of open doors for further exploration. We give a summary of prospective
extensions of our work that we have considered which can be seen as next steps
to continue our research.

Extending the Temporal Requirements Our first point of interest would
be to extend the temporal requirements, or further constrain them to make them
more fine-grained, so to speak. Our first point of contact would be to solve the
issue of our smart matching problem we identified. This was the problem of
determining whether a relation being used in an ontology is in fact a relation
from the Relation Ontology (RO) if their IRIs did not match. This will enable
us to get more accurate results and give us clearer and more accurate temporal
requirements. It seems the most appropriate way to do this would be to contact
the ontology developers. Although this might be a difficult and time-consuming
task, there seems no other way to solve this problem. A single ontology does not
use many of the relations from RO, and a simple questionnaire sent out to the the
developers of the ontology asking them to verify if the relations being used were
meant to be interpreted as the relations from RO would certainly not be a difficult
task. However in the process of contacting the developers we could take this
opportunity to also conduct a survey where we could reaffirm our decision on the
annotating scheme of the Temporal RO (TRO) to see if the temporal features we
annotated the relations with were the correct ones or whether ontology developers
would have another opinion for example.

The next thing would be to consider a wider range of ontologies, for example
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using an additional corpus, such as BioPortal. BioPortal [NSW+09] is another
repository for ontologies in the biomedical domain, containing not only many of
the ontologies in the OBO Foundry, but many more. The more ontologies we use
in our survey, the more results we will have two base our requirements upon.

During our evaluation of not only our newly introduced logics but also the
three logics evaluated previously, we found that many ontologies had different
options for the temporal dimensions that they encoded (mainly deciding whether
to use quantitative vs qualitative time lines), and this is something that the
temporal requirements did not capture quite so easily. This was not the fault
of the requirements themselves or the way we derived requirements, but more
in relation to where we derived the requirements from. The relation ontology
did not encode this information since this type of information is specific to an
ontology itself. So it would be wise to check each individual ontology for this
information, which again could be done whilst contacting ontology developers.
This information could then be added as a separate requirement.

It is obvious that the more we investigate individual ontologies, the more fine
grained we can make our temporal requirements. This was not in our initial
plan, due not only to our time constraints but also to not knowing the amount
of variation in the ontologies we were inspecting. But with the survey we have
conducted, we have gathered enough information to be able to now make these
decisions and proceed further.

A Framework for Entity Importance Whilst extracting the temporal re-
quirements, we developed a simple scheme to measure the importance of both
temporal features and temporal annotations based on two metrics called cover-
age and impact. Together these two metrics formed a measure of importance.
Both the coverage and impact metrics were calculated using explicit information
in an ontology’s signature, specifically their usage in axioms. We developed this
novel approach since no research had gone into ways to measure the importance
of entities in ontology’s. It would certainly be interesting to see if this system
we developed could be used on a more general basis. Our importance measur-
ing system could easily be turned into a framework where instead of measuring
the importance of individual temporal features, we can easily measure the im-
portance of specific OWL entities, for example OWL classes or OWL relations
in an ontology or even entire corpus. As mentioned in Chapter 3, we also did
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attempt to use formal concept analysis (FCA) when measuring importance, but
it just so happened that in this particular survey it bore no particular benefit.
It may be the case that when using more ontologies or even a different use case,
for example, if we were to repeat the experiment with BioPortal, it could play a
more important role. Developing a framework that also incorporated FCA may
have huge benefits not only for this survey but for more general applications that
require entity importance in ontologies. This framework is certainly something
to be considered as it could not only have benefits in our applications but others
also.

Logical extensions and Similarities Unfortunately, we only managed to
prove certain decidability results for small fragments of [x]. Although these
results were positive, some of the more important fragments were particularly
difficult to solve. Our primary goal was only to prove decidability in the presence
of some form of rigidity without having severe restrictions in the DL expressive-
ness, which is what we achieved, to some extent. The first steps of pushing the
logic further would be to first prove the decidability or undecidability of the unre-
stricted version of EL[x], i.e. one without the “future only” restriction. We believe
that a result in this logic would enable us to immediately gain decidability (or
undecidability) results in the logics left unproven in this thesis, namely EL[x][ ],
ALC[x] and ALC[x][ ]. Depending on the result, if it was indeed decidable then there
are two steps we can take. We could either extend the logic in the DL dimension,
or in the temporal dimension. For the DL dimension, we would hope to get as
close to SROIQ as possible, or at least to an OWL profile, such as the OWL 2 EL
profile, whilst remaining decidable. We would first hope to see what effect adding
property characteristics to fragments of [x] would have on complexity. Many of
the relations we evaluate do indeed exhibit characteristics such as transitivity,
reflexivity, role chains etc, and this would be something immediately important
to further explore. For the temporal dimension, we could possibly try to add in
some of the features that were missing, such as eventuality. If the unrestricted
versions of the logic were indeed undecidable then our focus would be solely on
the quantitative versions, pushing more in the DL dimension than the temporal
dimensions. We believe that [x] is already a very simple TDL, restricting it fur-
ther to maintain decidability is not something we desire and we believe would
only detriment its performance w.r.t. the TRs.
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We have also only shown loose complexity bounds for each logic we have
proved so far. We plan to tighten these bounds and show complete complexity
class membership to shed more light on the true complexity of these logics and
their relationships to other logics.

During the evaluation we also found that the logic was very similar to the
logics of ltlDL combinations. This was unsurprising since the logic’s semantics
was built on the same structure, aided by the evaluation results. There is no
doubt that if we possibly extended the logics, for example by adding eventuality,
it may be possible that the logics will eventually be equivalent, or one being sub
languages of the other, most likely [x] being a sub language of ltlDL with role
conjunctions for example. There is also some speculation that the quantitative
versions of [x] may even be reducible to standard OWL. Of course these are
important issues that should certainly be looked in to.

Reasoner Optimisations and Extensions The reasoners we introduced in
Chapter 7 have been presented only as proof of concept, and they are there to act
only as prototypes to show that reasoning is possible in TDLs and benefits can be
gained by switching to a TDL. The reasoners can be used, are readily available
and from our experiment results we have shown they can actually be used with
numerous ontologies in the OBO Foundry, at least for the TempEL case. In terms
of next steps, our first point of contact would be to develop these reasoners enough
to the point where they would be comparable with current state-of-the-art OWL
reasoners. This would include implementing several optimisations to speed up the
reasoning time which currently is its only drawback. It would also be beneficial
to develop a plug-in for the Protégé ontology editor to support the annotation of
classes and properties with intervals. This would enable ontology developers to
interact directly with temporal ontologies through a dedicated interface, instead
of through means of annotations in a programming environment, as is currently
the case.

Since we have decidability results for other sub languages of [x], namely EL[ ][x],
ALC[ ][x], EL[x] and ALC[x], implementations of reasoning services for these logics
will also be made available (they are currently in development).
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