
	 1	

 

 

 

 

Biomedical Image Computing:   
the development and application of 

mathematical and computational models 
 

 

 

 

 

A thesis submitted to the University of Manchester for the degree of 
Doctor of Science in the Faculty of Medical and Human Sciences 

 
	

	

	

	

	

	

James Graham BSc, PhD 
 

2016 

 
  



	 2	

	

Dedicated	to	the	memory	of	Thomas	Graham,	who	started	my	

educational	journey,	but	didn’t	see	where	it	took	me.	



	 3	

Table of contents 

Abstract	....................................................................................................................	5	

Declaration	...............................................................................................................	6	

Contribution	to	Publications	..............................................................................................................................	6	
Image	Analysis	Software	Architecture	..........................................................................................................	6	
Chromosome	Analysis	and	Neural	Network	Models	...............................................................................	7	
Statistical	Models	of	Shape	and	Appearance	.............................................................................................	8	
Applications	of	Image	Analysis:	Proteomics	...............................................................................................	9	
Applications	of	Image	Analysis:	Assessing	Bone	Quality	.....................................................................	10	
Applications	of	Image	Analysis:	Segmentation	of	the	Prostate	.......................................................	10	
Applications	of	Image	Analysis:	Diabetic	Neuropathy	.........................................................................	11	
Applications	of	Image	Analysis:	Carpal	Kinematics	..............................................................................	12	

Copyright	Statement	...............................................................................................	13	

Statement	...............................................................................................................	14	

The	Candidate	........................................................................................................................................................	14	
List	of	Publications	..............................................................................................................................................	16	
Image	Analysis	Software	Architecture	........................................................................................................	16	
Chromosome	Analysis	and	Neural	Network	Models	.............................................................................	16	
Statistical	Models	of	Shape	and	Appearance	...........................................................................................	17	
Applications	of	Image	Analysis:	Proteomics	.............................................................................................	18	
Applications	of	Image	Analysis:	Assessing	Bone	Quality	.....................................................................	19	
Applications	of	Image	Analysis:	Segmentation	of	the	Prostate	.......................................................	19	
Applications	of	Image	Analysis:	Diabetic	Neuropathy	.........................................................................	20	
Applications	of	Image	Analysis:	Carpal	Kinematics	..............................................................................	21	

Summary	statement	............................................................................................................................................	22	
Introduction	............................................................................................................................................................	22	
Image	Analysis	Software	Architecture.	.......................................................................................................	22	
Chromosome	Analysis	and	Neural	Network	Models	.............................................................................	25	
Statistical	Models	of	Shape	and	Appearance	...........................................................................................	29	
Applications	of	Image	Analysis	.......................................................................................................................	33	
Proteomics	...............................................................................................................................................................	33	
Assessing	bone	quality	........................................................................................................................................	35	
Segmentation	of	the	prostate	..........................................................................................................................	38	
Diabetic	neuropathy	...........................................................................................................................................	40	
Carpal	kinematics	................................................................................................................................................	41	
References	................................................................................................................................................................	43	



	 4	

Reproduction	of	Publications.	.................................................................................	51	

Image	Analysis	Software	Architecture	.......................................................................................................	51	
Chromosome	Analysis	and	Neural	Network	Models	............................................................................	57	
Statistical	Models	of	Shape	and	Appearance	............................................................................................	71	
Applications	of	Image	Analysis:	Proteomics	............................................................................................	82	
Applications	of	Image	Analysis:	Assessing	Bone	Quality	....................................................................	87	
Applications	of	Image	Analysis:	Segmentation	of	the	Prostate	........................................................	95	
Applications	of	Image	Analysis:	Diabetic	Neuropathy	......................................................................	100	
Applications	of	Image	Analysis:	Carpal	Kinematics	...........................................................................	107	

 



	 5	

Abstract 

Title:	Biomedical	Image	Computing:		the	development	and	application	of	
mathematical	and	computational	models		

Submitted	to:	The	University	of	Manchester	
by	James	Graham	

for	the	degree	of	Doctor	of	Science	
June	2016	

	
Biomedical	images	contain	a	great	deal	of	information	that	is	useful	and	a	great	
deal	that	is	not.		Computational	analysis	and	interpretation	of	biomedical	images	
involves	extraction	of	some	or	all	of	the	useful	information.		The	useless	
information	can	take	the	form	of	unwanted	clutter	or	noise	that	can	obscure	the	
useful	information	or	inhibit	the	interpretation.		Various	mathematical	and	
computational	processes	may	be	applied	to	reduce	the	effects	of	noise	and	
distracting	content.		The	most	successful	approaches	involve	the	use	of	
mathematical	or	computational	models	that	express	the	properties	of	the	required	
information.		Interpretation	of	images	involves	finding	objects	or	structures	in	the	
image	that	match	the	properties	of	the	model.		

This	dissertation	describes	the	development	and	application	of	different	models	
required	for	the	interpretation	of	a	variety	of	different	image	types	arising	from	
clinical	medicine	or	biomedical	research.		These	include:	

• neural	network	models,		
• Point	Distribution	Models,	and	the	associated	Active	Shape	Models,	which	

have	become	part	of	the	research	toolkit	of	many	academic	and	commercial	
organisations,		

• models	of	the	appearance	of	nerve	fibres	in	noisy	confocal	microscope	
images,	

• models	of	pose	changes	in	carpal	bones	during	wrist	motion,	
		A	number	of	different	application	problem	are	described,	in	which	variants	of	
these	methods	have	been	developed	and	used:		

• cytogenetics,		
• proteomics,		
• assessing	bone	quality,		
• segmentation	of	magnetic	resonance	images,		
• measuring	nerve	fibres		
• inferring	3D	motion	from	2D	cinefluoroscopy	sequences.	

The	methods	and	applications	represented	here	encompass	the	progression	of	
biomedical	image	analysis	from	early	developments,	where	computational	power	
became	adequate	to	the	challenges	posed	by	biomedical	image	data,	to	recent,	
highly	computationally-intensive	methods.		 	
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The	University	of	Manchester	Higher	Doctorate	Candidate	Declaration	

Candidate	Name:	James	Graham	

Faculty:	Medical	and	Human	Sciences	
Higher	Doctorate	title:	Doctor	of	Science	

Contribution to Publications 
The	following	is	a	brief	description	of	my	contribution,	and	that	of	other	co-
authors,	to	each	of	the	publications	listed	on	pages	following	page	16.	 	

Image	Analysis	Software	Architecture	

1. An	architecture	for	integrating	symbolic	and	numeric	image	processing.		
C.J.		Taylor,	R.N.	Dixon,	P.J.	Gregory	and	J.	Graham	(1986).			
Taylor	led	the	development	of	“Magiscan”	hardware	and	software.		Dixon	
contributed	to	both	hardware	and	system	software	development.		My	
contribution	was	in	designing	the	practical	application	and	contributing	to	the	
design	of	the	data	structures	and	processes	that	formed	the	interface	between	
high-level	software	and	machine	code.		Gregory	was	the	engineer	at	Joyce-Loebl	
responsible	for	the	commercial	development	of	the	instrument	and	contributed	
to	the	hardware	design.	

2. A	compact	set	of	image	processing	primitives	and	their	role	in	a	
successful	application	program.		J.	Graham,	C.J.	Taylor,	D.H.	Cooper	and	R.N.	
Dixon	(1986).	
Similar	to	reference	1,	concentrating	on	the	software	architecture.		Cooper	was	a	
software	engineer	employed	at	Joyce-Loebl,	who	contributed	to	the	
implementation	of	the	overall	software	architecture.	 	

3. System	architectures	for	interactive	knowledge-based	image	
interpretation.		C.J.	Taylor,	J.	Graham	and	D.	Cooper	(1988).			

Similar	to	references	1	and	2,	this,	paper	emphasises	the	requirement	for	
software	support	for	user	interaction	in	biomedical	image	analysis	applications.	

4. Boundary	cue	operators	for	model-based	image	processing.		J.	Graham	
and	C.J.	Taylor	(1988).	

Taylor	was	PI	on	the	overall	project	designing	model-based	approaches	to	
biomedical	image	analysis	of	which	this	work	formed	a	part	(also	references	5).		
The	reported	research	was	entirely	my	own.	

5. DEMOB:	an	object	oriented	application	generator	for	image	processing.		
N.	Bryson,	D.	Cooper,	J.	Graham,	D.	Pycock,	C.J.	Taylor	and	P.W.	Woods	(1988).	

Part	of	the	same	project	as	4.		Bryson	and	Cooper	developed	the	object-oriented	
programming	environment.		Pycock,	Woods	and	I	contributed	equally	to	the	
system	implementation	(authors	presented	in	alphabetical	order).	
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6. User	Programmable	Visual	Inspection.		J.	J.	Hunter,	J.	Graham	and	C.	J.	
Taylor	(1995).	

I	was	PI	on	this	project,	which	built	on	the	use	of	models	to	design	a	framework	
for	building	image	analysis	applications	without	the	necessity	for	writing	and	
compiling	code.		I	supervised	Hunter’s	research,	with	additional	input	from	
Taylor.		References	21	to	26	also	arose	from	this	project.	

Chromosome	Analysis	and	Neural	Network	Models	

7. Automation	of	routine	clinical	chromosome	analysis	I.	Karyotyping	by	
machine.		J.		Graham	(1987).	
This	was	my	own	research.	

8. Automation	of	routine	clinical	chromosome	analysis	II:	Metaphase	
finding.			J.		Graham	and	D.	Pycock	(1987).	

As	reference	7.		Pycock	assisted	in	coding	and	performance	testing.	

9. The	transportation	algorithm	as	an	aid	to	chromosome	classification.		
MKS	Tso	and		J.	Graham	(1983).	

This	was	part	of	my	development	of	a	chromosome	analysis	system.		Tso	had	
expertise	in	operations	research.	Approximately	equal	intellectual	contributions	
from	Tso	and	myself	to	the	algorithm	development.	

10. An	efficient	transportation	algorithm	for	automatic	chromosome	
karyotyping.			M.	Tso,	P.	Kleinschmidt,	I.	Mitterreiter	and	J.	Graham	(1991).	

Kleinschmidt	had	developed	an	efficient	solution	to	the	bipartite	matching	
problem.		Mitterreiter	adapted	this	code	to	the	chromosome	classification	
problem	under	my	direction,	with	input	from	Tso.	

11. Resolution	of	composites	in	interactive	karyotyping.		J.	Graham	(1989).	
My	own	research.	 	

12. Automatic	karyotype	analysis.		J	Graham	and	J	Piper	(1994).		

Joint	review	with	Piper	(equal	contributions)	of	the	methods	applied	in	
automated	karyotype	analysis.		Piper	was	a	member	of	another	research	group	
working	in	this	field.	

13. A	neural	network	approach	to	automatic	chromosome	classification.	A.M.	
Jennings	and	J.		Graham	(1993).	

Supervised	research,	contributing	to	Jennings’	dissertation	for	the	MSc	by	
research.	

14. Application	of	artificial	neural	networks	to	chromosome	classification.				
P.A.	Errington	and	J.	Graham	(1993).	
Supervised	research,	contributing	to	Errington’s	PhD	dissertation.	

15. Classification	of	chromosomes	using	a	combination	of	neural	networks.		
P.	A.	Errington	and	J.	Graham	(1993).		

As	reference	14.	
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16. Classification	of	Chromosomes:	A	comparative	study	of	neural	network	
and	statistical	approaches.		J	Graham	and	P.A.	Errington	(2000).		

As	references	14	and	15.		
17. A	Neural	Network	Classifier	for	Chromosome	Analysis.		J.	Graham	(1996).	

Invited	contribution	to	the	Handbook	on	Neural	Computing.				

18. Trainable	Grey-Level	Models	for	Disentangling	Overlapping	
Chromosomes.		G.C.	Charters	and	J.	Graham	(1999).	

Supervised	research,	contributing	to	Charters’	PhD	dissertation.	

19. Disentangling	Chromosome	Overlaps	by	Combining	Trainable	Shape	
Models	with	Classification	Evidence.		G.C.	Charters	and	J.	Graham	(2002).	
As	reference	18.	

20. The	application	of	artificial	neural	networks	to	Doppler	ultrasound	
waveforms	for	the	classification	of	arterial	disease.		J.	H.	Smith,	J.	Graham	
and	R.	J.	Taylor	(1996).	

Supervised	research,	contributing	to	Smith’s	MSc	dissertation.		Taylor	provided	
clinical	data	and	input.	
Statistical	Models	of	Shape	and	Appearance	

Statistical	Models	of	Shape	and	Appearance	

21. Locating	overlapping	flexible	shapes	using	geometric	constraints.		D.H.	
Cooper,	C.J.	Taylor,	J.	Graham	and	T.F.	Cootes	(1991).			

I	was	PI	on	this	project	(as	references	6,	22	–	26),	supervising	research.		Cooper	
conducted	the	study	with	input	from	Taylor	and	Cootes.	

22. Trainable	method	of	parametric	shape	description.			T.F.	Cootes,	D.H.	
Cooper,	C.J.	Taylor	and	J.	Graham	(1992).		
As	reference	21.		Cootes	conducted	the	study	with	input	from	Taylor	and	Cooper.	

23. Training	models	of	shape	from	sets	of	examples.		T.F.	Cootes,	C.J.	Taylor	,	
D.H.	Cooper	and	J.	Graham	(1992).	
As	reference	22.			

24. Active	Shape	Models	-	Their	training	and	application.		T.F.	Cootes	,	D.H.	
Cooper,	C.J.	Taylor	and	J.	Graham	(1995).	 	
As	references	22	and	23.	

25. Building	and	using	flexible	models	incorporating	grey	level	information.		
T.F.	Cootes,	C.J.	Taylor,	A.	Lanitis,	D.H.	Cooper	and	J.	Graham	(1993).				

As	references	22,	23	and	24.		Additional	input	from	Lanitis	on	face	analysis.		

26. Image	search	using	trained	flexible	shape	models.	T.F.	Cootes,	D.H.Cooper,	
C.J.	Taylor	and	J.	Graham	(1994).	

As	references	22,	23	and	24.			
27. Structured	point	distribution	models:	modelling	intermittently	present	

features.	M.	Rogers	and	J.		Graham	(2001).			

Supervised	research,	contributing	to	Rogers’	PhD	dissertation.	
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28. Robust	Active	Shape	Model	search.		M.	Rogers	and	J.	Graham	(2002).		

As	reference	27.	

29. Detecting	asymmetries	in	hippocampal	shape	and	receptor	distribution	
using	statistical	appearance	models	and	linear	discriminant	analysis.				
D.	Poxton,	J.	Graham	and	J.F.W.	Deakin,	1998.	
Supervised	Research.		Poxton	was	a	PhD	student	under	my	supervision.		Deakin	
provided	clinical	data	and	input.	

30. An	Investigation	of	morphometric	changes	in	the	lateral	ventricles	of		
schizophrenic	subjects.		K.O.	Babalola,	J.		Graham,	W.	Honer,	L.	Kopala,	D.	
Lang		and	R.	Vandorpe	(2003.)		
Supervised	research,	contributing	to	Babalola’s	PhD	dissertation.		Honer,	Kopala,	
Lang	and	Vandorpe	provided	clinical	input.	

31. Lateral	asymmetry	in	the	shape	of	brain	ventricles	in	control	and	
schizophrenia	groups.		J.		Graham,	K.O.	Babalola,	W.	Honer,	L.	Kopala,	D.	Lang		
and	R.	Vandorpe	(2006).		

As	reference	30.	

Applications	of	Image	Analysis:	Proteomics	

32. Statistical	models	of	shape	for	the	analysis	of	protein	spots	in	2-D	
electrophoresis	gel	images.		M.D.	Rogers,	J.	Graham	and	R.P.	Tonge	(2003).	
Supervised	research.		Rogers	was	a	postdoctoral	researcher	who	conducted	the	
study.		Tonge	provided	input	on	Gel	Electrophoresis.	

33. Automatic	construction	of	statistical	shape	models	for	protein	spot	
analysis	in	electrophoresis	gels.		M.	Rogers,	J.		Graham	and	R.P.	Tonge	
(2003).			
As	reference	32.	

34. Using	statistical	image	models	for	objective	evaluation	of	2D	gel	image	
analysis.		M.D.	Rogers,	J.	Graham	and	R.P.	Tonge	(2003).	
As	references	32	and	33. 

35. Robust	and	accurate	registration	of	2-D	electrophoresis	gels	using	point	
matching.		M.	Rogers	and	J.	Graham	(2007).	 
Supervised	research.		Rogers	was	a	postdoctoral	researcher	who	conducted	the	
study	under	my	supervision. 

36. A new paradigm for clinical biomarker discovery and screening with mass 
spectroscopy through biomedical image analysis principles.  H Liao, E.	
Moschidis,	I	Riba-Garcia,	Y	Zhang,	R.D.	Unwin,	J.S.	Morris,	J.	Graham	and	A.W.	
Dowsey	(2014).	
Contribution to multi-disciplinary research.  Moschidis conducted the image 
analysis development under my supervision.  Liao, Riba-Carcia, Zhang, Unwin and 
Dowsey provided input on liquid chromatography/mass spectrometry.  Morris 
provided input on machine learning. 
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Applications	of	Image	Analysis:	Assessing	Bone	Quality	

37. Detecting	reduced	bone	mineral	density	from	dental	panoramic	
radiographs	using	statistical	shape	models.	P.D.	Allen,	J.	Graham,	D.J.J.	
Farnell,	E.	Harrison,	R.	Jacobs,	K.	Karayianni,	C.	Lindh,	P.F.	van	der	Stelt,	K.	
Horner	and	H.	Devlin	(2007).	 

Supervised	research. Allen	and	Farnell	were	postdoctoral	researchers	who	
contributed	components	of	the	study.		Other	authors	contributed	clinical	input.	

38. Automated	osteoporosis	risk	assessment	by	dentists:	a	new	pathway	to	
diagnosis.	H.	Devlin,	P.D.	Allen,	J.	Graham,	R.	Jacobs,	K.	Karayianni,	C.	Lindh,	
P.F.	van	der	Stelt,	E.	Harrison,	J.E.	Adams,	S.	Pavitt	and	K.	Horner	(2007). 

As	reference	37.		Pavitt’s	contribution	was	largely	organisational 

39. The	role	of	the	dental	surgeon	in	detecting	osteoporosis:	the	Osteodent	
study. H.	Devln,	P.D.	Allen,	J.	Graham,	R.	Jacobs,	K.	Karayianni,	C.	Lindh,	E.	
Marjanovic,	P.F.	van	der	Stelt,	J.E	Adams,	S.	Pavitt	and	K.	Horner	(2008). 	
As	reference	38.    	 				

40. The	relationship	between	the	OSTEODENT	index	and	hip	fracture	risk	
assessment	using	FRAX. K.	Horner,	P.	Allen,	J.	Graham,	R.	Jacobs,	S.	Boonen,	S.	
Pavit,	O.	Naeckerts,	E.	Marjanovic,	J.E	Adams,	K.	Karayianni,	C.	Lindh,	P.	van	
der	Stelt	and	H.	Devlin (2010). 		
As	references	38,	and	39.	

41. Improving	the	detection	of	osteoporosis	from	dental	radiographs	using	
active	appearance	models.		M.G.	Roberts,	J.	Graham	and	H.	Devlin	(2010).		

Supervised	research. Roberts	was	a	postdoctoral	researcher	who	conducted	
the	study	under	my	supervision.		Devlin	contributed	clinical	input.	

42. Changes	in	mandibular	cortical	width	measurements	with	age	in	men	
and	women.		M.	Roberts,	J.	Yuan,	J.	Graham,	R.	Jacobs	and	H.	Devlin	(2011).	 
As	reference	41.		Jacobs	provided	Image	data.		Yuan	contributed	statistical	
analysis.	

43. Image	texture	in	dental	panoramic	radiographs	as	a	potential	biomarker	
of	osteoporosis.		M.G.	Roberts,	J.	Graham,	H.	Devlin	(2013).		

As	reference	41.	

44. Multi-scale	rigid	registration	to	detect	damage	in	micro-CT	images	of	
progressively	loaded	bones.		R.	Green,	J.	Graham	and	H.	Devlin	(2011).		

Supervised	research,	contributing	to	Green’s	PhD	dissertation.		Devlin	provided	
clinical	input.	

Applications	of	Image	Analysis:	Segmentation	of	the	Prostate	

45. Differential	segmentation	of	the	prostate	in	MR	images	using	tissue	
modelling	and	3D	Active	Shape	Models.	P.D.	Allen,	D.	Williamson,	J.		
Graham,	and	C.E.	Hutchinson	(2006).		

Supervised	research. Allen	and	Williamson	were	postdoctoral	researchers	who	
contributed	components	of	the	study;	Hutchinson	contributed	clinical	input.	
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46. Automatic differential segmentation of the prostate in 3-D MRI using random 
forest classification and graph-cuts optimisation.  E.	Moschidis	and	J.	Graham	
(2012).		

Supervised	research,	contributing	to	Moschidis’	PhD	dissertation.	
47. The accuracy of prostate volume measurement from ultrasound images: A 

quasi-Monte Carlo simulation study using magnetic resonance imaging. D.-O. 
Azulay, P. Murphy and J. Graham (2013). 

Supervised research.  Azulay conducted the study under my supervision.  Murphy 
contributed to writing the manuscript.  

48. A	systematic	performance	evaluation	of	interactive	image	segmentation	
methods	based	on	simulated	user	interaction.		E.	Moschidis	and	J.	Graham	
(2010).		

Supervised	research,	contributing	to	Moschidis’	PhD	dissertation.	
49. Propagating	segmentation	of	a	single	example	to	similar	images:	

Differential	segmentation	of	the	prostate	in	3D	MRI.	E.	Moschidis	and	J.	
Graham	(2013).	

As	reference	48.	

Applications	of	Image	Analysis:	Diabetic	Neuropathy	

50. Application	of	model	based	image	interpretation	methods	to	diabetic	
neuropathy.		M.	J.	Byrne	and	J.	Graham	(1996).	

Supervised	research,	contributing	to	Byrne’s	PhD	dissertation.	 	

51. Exploiting	weak	shape	constraints	to	segment	capillary	images	in	
microangiopathy.		M.	Rogers,	J.	Graham	and	R.A.	Malik	(2000).		

Supervised	research,	contributing	to	Rogers’	PhD	dissertation	(as	references	27	
and	28).		Malik	provided	clinical	input.	

52. Dual-model	detection	of	nerve	fibres	in	corneal	confocal	microscopy	
images.		M.A.	Dabbah,	J.	Graham,	I	Petropoulos,	M.	Tavakoli	and	R.A.	Malik	
(2010).	

Supervised	research.		Dabbah	was	a	postdoctoral	researcher	who	conducted	the	
study.		Petropoulos,	Tavakoli	and	Malik	provided	clinical	input.		

53. Automatic analysis of diabetic peripheral neuropathy using multi-scale 
quantitative morphology of nerve fibres in corneal confocal microscopy 
imaging. M.A. Dabbah, J. Graham, I.N. Petropoulos, M. Tavakoli, R.A. Malik 
(2011).  

As reference 52. 

54. An	automatic	tool	for	quantification	of	nerve	fibres	in	corneal	confocal	
microscopy	images.	X.	Chen,	J	Graham,	M.A.	Dabbah,	I.N.	Petropoulos,	M.	
Tavokoli,	R.A.	Malik	(2016). 
Supervised	research.	Chen	and	Dabbah	were	postdoctoral	researchers	who	
developed	image	analysis	methods	under	my	supervision.		Other	authors	
provided	clinical	data	and	input.	
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55. Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo 
corneal confocal microscopy. I.N. Petropoulos, U. Alam, H. Fadavi, A. Marshall, 
O. Asghar, M.A. Dabbah, X. Chen, J. Graham, G. Ponikaris, A.J.M. Boulton, M. 
Tavakol1, R,A, Malik (2014).  

Supervised	research.		Chen	and	Dabbah	were	postdoctoral	researchers	who	
contributed	software	under	my	supervision	for	this	clinical	study.			Other	authors	
provided	clinical	data	and	input.	

56. Small	nerve	fiber	quantification	in	the	diagnosis	of	sensorimotor	
polyneuropathy:	comparing	corneal	confocal	microscopy		with	
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1978	 following	work	 at	 the	MRC	Laboratory	 of	Molecular	Biology	 on	 the	 crystal	

structure	of	Tobacco	Mosaic	Virus	protein.	
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software	development	was	based	on	a	 specific	hardware	architecture	 (known	as	
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and	analysis	methods	at	 the	pixel	 level.	 	My	 role	 in	 this	was	 the	development	of	

image	analysis	software	for	clinical	cytogenetics.	This	was	one	of	several	software	
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data	 structures	 and	 algorithms)	 that	 was	 part	 of	 the	 core	 technology	 of	 the	

Magiscan	 instrument.	 	 Commercial	 income	 from	 the	 clinical	 cytogenetics	
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resolution	 of	 clusters	 of	 touching	 or	 overlapping	 chromosomes.	 I	 was	 PI	 on	 a	
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requirement	for	application	generation	was	an	intuitive	method	for	modelling	the	

shape	of	 objects	 to	be	 recognised,	 segmented	 and	measured.	 	 It	was	 required	 to	

model	not	only	the	shape,	but	also	the	variation	in	shape	observed	across	example	

images.	 	 The	 method	 that	 arose	 from	 this	 became	 known	 as	 Active	 Shape	

Modelling	 (ASM).	 	 This	method	 proved	 to	 be	 extremely	 useful	 in	 describing	 the	

shapes	 and	 variations	 in	 shapes	 of	 components	 of	 biomedical	 images,	 and	 the	

method	has	been	used	and	developed	in	a	number	of	directions	by	my	colleagues	
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developing	 and	 applying	 the	 statistical	 shape	 modelling	 method	 behind	 ASM,	

where	 appropriate	 and	 adopting	 appropriate	machine	 learning	methods.	 	 In	 the	

list	of	publications	that	forms	the	basis	of	this	thesis,	these	applications	are	divided	

into	 groups:	 Proteomics,	 Assessing	 Bone	 Quality,	 Segmentation	 of	 the	 Prostate,	

Diabetic	Neuropathy	and	Carpal	Kinematics.	

I	was	appointed	Senior	Lecturer	in	1992	and	Reader	in	2011.	
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Summary statement 

Introduction	

The	 publications	 listed	 in	 this	 dissertation	 are	 contributions	 to	 research	 in	 the	

application	 of	 computational	 image	 analysis	 in	 a	 number	 of	 areas	 of	 clinical	

medicine	and	biology,	with	emphasis	on	the	development	and	use	of	mathematical	

or	computational	models.	Among	these	methods	are	statistically	based	models	of	

shape	 and	 appearance,	 now	 widely	 used	 both	 in	 academic	 research	 and	

commercial	 product	 development.	 The	 listed	 publications	 represent	 a	 selection	

from	 my	 full	 publication	 list,	 intended	 to	 present	 a	 coherent	 body	 of	 work,	

notwithstanding	the	fact	that	a	diverse	set	of	application	areas	are	addressed.			

A	 few	papers	are	 invited	contributions	 in	edited	volumes;	otherwise,	all	 items	 in	

the	list	have	appeared	in	peer-reviewed	outlets:	journals	or	published	proceedings	

of	major	international	conferences.	The	conference	outlets	include	Medical	Image	

Computing	 and	 Computer-Assisted	 Intervention	 (MICCAI),	 International	

Conference	on	Computer	Vision	(ICCV),	European	Conference	on	Computer	Vision	

(ECCV),	 the	 IEEE	 International	 Symposium	 on	 Medical	 Imaging	 (ISBI)	 and	 the	

British	Machine	Vision	Conference	(BMVC).		The	last	conference	began	in	1989	to	

support	a	growing	activity	 in	computer	vision	 in	 the	UK.	 	Acceptance	has	always	

been	 competitive	 and	 the	 conference	 attracted	 an	 increasing	 international	

attendance,	achieving	a	status	similar	to	ECCV.	

The	 papers	 are	 grouped	 according	 to	 methodology	 and	 application	 area,	 while	

following	 a	 roughly	 identifiable	 chronology.	 There	 is	 considerable	 crossover	

between	methodology	and	application,	and	it	would	have	been	possible	to	divide	

the	 list	 differently.	 	 To	 provide	 an	 indication	 of	 the	 reception	 of	 these	 papers,	

citation	 counts	 have	 been	 given	 based	 on	 Google	 Scholar.	 	 Taking	 the	 Google	

Scholar	“i10	index”	as	a	precedent,	citation	counts	greater	than	10	are	noted.		

Citations	 of	 papers	 forming	 part	 of	 this	 dissertation	 (listed	 above)	 are	 cited	

numerically	(e.g.	[1]).		Citations	of	other	work	are	cited	as	Author	(date).	

Image	Analysis	Software	Architecture.	

These	 papers	 present	 my	 contribution	 to	 the	 early	 work	 as	 a	 member	 of	 the	

Wolfson	 Image	Analysis	Unit	 (WIAU)	 in	 the	department	of	Medical	Biophysics	at	

Manchester.	 	 The	 objective	 of	 the	 WIAU	 was	 to	 be	 self-funding	 by	 developing	
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commercially	 viable	 software	 to	 address	 challenging	 image	 analysis	 problems	 in	

biomedicine.	 	 At	 the	 time	 (late	 1970s,	 early	 1980s),	 image	 analysis	 applied	 to	

practical	problems	in	biomedicine,	and	in	other	fields,	generally	came	in	the	form	

of	instruments	such	as	the	Quantimet	series	from	Cambridge	Instruments	(Pingel	

and	 Jenkinson	 (2016)),	 where	 the	 image	 processing	 and	 analysis	 were	

implemented	as	hardware	modules.		Image	analysis	software	running	on	general-

purpose	hardware	was	a	relatively	new	notion.		While	there	was	an	early	body	of	

research	in	Pattern	Recognition	applied	to	several	fields	(e.g.	Ledley	et	al.	(1965),	

Rutovitz	 (1966),	Mayall	 (1974))	 the	 limitations	 of	 computer	 systems	meant	 that	

none	of	these	was	close	to	providing	practical	contributions	to	clinical,	laboratory	

or	 industrial	 procedures.	WIAU	 research,	 led	 by	 C.J.	 Taylor,	 sought	 to	 develop	 a	

computer	 platform	 supporting	 a	 flexible	 software	 architecture,	 within	 which	 a	

range	of	specific	application	solutions	could	be	programmed	to	run	with	sufficient	

efficiency	to	be	realistically	useable	in	a	clinical	or	research	environment.		The	first	

hardware	 design	 (which	 became	 –	 accidentally	 –	 known	 as	 the	 “Magiscan”)	was	

based	around	a	minicomputer	with	a	small,	dedicated	image	memory.		The	second	

generation	 (Magiscan	 2)	 was	 microprocessor-based,	 providing	 a	 more	 realistic	

vehicle	 for	 implementing	computationally	 intensive	 image	processing	operations.		

The	 software	 architecture	 was	 designed	 to	 allow	 challenging	 application	

programmes,	such	as	the	analysis	of	microscope	images	of	chromosomes,	coded	in	

high-level	 computer	 language,	 to	 have	 efficient	 access	 to	 low-level	 image	

processing	operations.	 	Papers	 [1-3]	represent	collaborative	work	exploring	how	

the	 requirements	 of	 efficient	 application	 software	 influence	 generic	 software	

architecture.	 	The	overall	hardware	and	software	architecture	is	described	in	[1],	

while	[2]	describes	the	intermediate	level	data	structures	and	processes,	 forming	

the	 interface	 between	 high-level	 (application)	 and	 low-level	 (pixel)	 processing.		

User	interaction	is	an	important	requirement	in	practical	image	analysis	systems,	

and	 [3]	 considers	 the	 architectural	 issues	 of	 combining	 user	 interaction	 with	

application	knowledge	(in	the	form	of	high-level	programmes).		Papers	[2]	and	[3]	,	

addressing	a	fairly	narrow	topic,	have	10	citations	each.	

The	commercial	aims	of	the	WIAU	were	conducted	via	a	collaboration	with	Joyce-

Loebl	 Ltd	 (JL),	 who	 became	 the	 vehicle	 for	 marketing	 the	 hardware	 and	 image	

analysis	software.		One	such	development	was	the	installation	of	a	brake	assembly	

inspection	 system	 for	 Volkswagen	 AG	 (unpublished,	 though	 some	 aspects	 are	
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described	in	Woods	et	al.	(1987).		Development	of	this	system	highlighted	the	need	

for	explicit	representation	of	domain	knowledge	in	the	form	of	mathematical	and	

computational	 models.	 	 The	 remaining	 papers	 in	 this	 section	 relate	 to	

investigations	 of	 how	 far	 the	 use	 of	 explicit	models,	 encapsulating	 the	 expected	

spatial	relationships	between	image	components,	can	be	used	to	build	application	

solutions	without	the	need	for	writing	and	compiling	code	in	high-level	computer	

languages.	 	 The	 prototype	 system	 described	 in	 [5]	 was	 an	 experimental	

demonstrator	using	Object-Oriented	Programming	(OOP),	which	was	attractive	for	

image	 analysis	 because	 of	 the	 facility	 in	 representing	 and	 displaying	 image	

components,	particularly	for	interaction.		OOP,	although	discussed	in	the	Artificial	

Intelligence	 community	 since	 the	 1960s,	 became	 more	 widely	 known	 as	 a	

programming	methodology	in	the	1980s.		Language	support	for	OOP	was	not	well	

developed	and	 the	object-oriented	 language	used	 in	 [5]	was	developed	 in-house,	

based	on	C.	

Image	analysis	often	requires	the	location	of	edges	or	boundaries	between	objects,	

which	was	(and	still	is)	usually	achieved	by	the	use	of	linear	differential	operators	

(e.g.	 Canny	 (1986)).	 	 The	 use	 of	 specific	 models	 of	 geometrical	 relationships	

provides	the	ability	to	use	spatially	targeted	non-linear	operators	as	described	in	

[4],	which	was	shown	to	be	significantly	more	sensitive	than	Canny	edge	detection.		

A	further	development	of	the	application	generator	is	described	in	[6].	 	Here	C++	

replaced	 the	 in-house	 language	of	 [5].	 	The	paper	demonstrates	 that	a	high-level	

description	 of	 a	 complex	 application	 can	 be	 achieved	 using	 generic	 models	

(described	 later	 in	 [22-26])	 and	 a	 small	 set	 of	 geometric	 data	 structures	 and	

processes.				

Papers	 [4]	 and	 [5]	were	published	 in	 the	proceedings	of	 the	 fourth	Alvey	Vision	

Conference.	 	 These	 conferences	 were	 precursors	 of	 the	 British	 Machine	 Vision	

Conference	(BMVC),	which	became	an	important	international	conference	rivalling	

more	clearly	established	events	such	as	the	European	Computer	Vision	Conference	

(ECCV).	 	A	number	of	 later	papers	were	published	 in	BMVC	proceedings.	 	Papers	

[4]	and	[6]	have	respectively	15	and	10	citations.	

The	technology	transfer	process	between	WIAU	and	JL	was	used	as	a	case	study	by	

Benneworth	 (2001),	 exploring	 the	 nature	 of	 academic	 “commercialisation”	

activities.	 	While	containing	some	errors	of	detail,	this	analysis	captures	the	main	

issues	 regarding	 the	 technology	 transfer	 relationship.	 	 It	 notes	 that	 during	 the	
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collaboration	 Joyce-Loebl	 moved	 from	 being	 a	 company	 focussed	 on	 analog	

instrumentation	to	being	an	entirely	digital	organisation.	 	 JL	was	 later	purchased	

on	 the	 basis	 mainly	 of	 the	 chromosome	 analysis	 application,	 along	 with	 a	

competitor,	 Image	 Recognition	 Systems,	 by	 Applied	 Imaging	 International	 of	

Sunderland	 (see	 below,	 under	 Chromosome	 Analysis).	 	 Subsequently	 the	 digital	

technology	transferred	to	JL	formed	the	basis	of	several	new	digital	companies	in	

the	North	East	of	England.	

Chromosome	Analysis	and	Neural	Network	Models	

Analysis	of	chromosomes,	which	become	visible	in	high	magnification	microscope	

images	of	cells	at	metaphase	or	prophase,	is	important	in	a	number	of	clinical	and	

research	 areas.	 	 The	 most	 widely	 known	 task	 is	 karyotyping,	 in	 which	 certain	

genetic	disorders	can	be	identified	by	visual	inspection	of	the	chromosomes.		Such	

disorders	may	be	manifest	as	an	abnormal	number	of	chromosomes,	or	insertions	

or	 deletions	 of	 genetic	 material	 from	 specific	 chromosomes.	 	 The	 46	 human	

chromosomes	can	be	assigned	to	22	homologous	pairs	plus	the	sex	chromosomes:	

XX	 (female),	 XY	 (male).	 Chromosomes	 are	 made	 visible	 by	 staining.	 	 With	

appropriate	 pre-treatment	 the	 stain	 can	 produce	 a	 sequence	 of	 dark	 and	 light	

bands	along	the	chromosome,	which,	together	with	the	size	and	the	position	of	the	

centromere	(a	characteristic	constriction	in	the	chromosome’s	width),	allows	each	

of	the	24	classes	of	chromosomes	to	be	identified.		Prior	to	the	advent	of	banding	

the	 size	 and	 centromere	 position	 could	 be	 used	 to	 assign	 the	 chromosomes	 to	

seven	 groups	 (A-G)	 with	 different	 numbers	 of	 chromosomes	 (defined	 by	 the	

Denver	 Conference	 	 (1960).	 	 The	 classification	 rules	 for	 identifying	 banded	

chromosomes	were	specified	in	the	Paris	conference		(1975).		

Karyotyping	for	pre-natal	genetic	screening	requires	metaphase	cells	to	be	found	

in	 amniotic	 fluid	 samples.	 	Other	 application	 areas	 are	 in	post-natal	 diagnosis	 of	

genetic	 disorders,	 cancer	 diagnosis	 and	 aberration	 scoring,	 where	 chromosomal	

structural	 and	 numerical	 abnormalities	 are	 used	 to	 quantify	 radiation	 exposure.		

Most	cells	at	metaphase	are	not	suitable	for	visual	analysis	due	to	poor	separation	

of	 chromosomes,	 poor	 staining,	 or	 other	 difficulties.	 In	 all	 of	 these	 applications	

there	 is	a	requirement	 for	metaphase	 finding:	 location	of	 the	position	of	dividing	

(metaphase	 or	 prophase)	 cells	 for	 analysis.	 In	 amniotic	 fluid	 samples,	 cells	 of	

analysable	quality	are	sparse;	 	 this	 is	even	more	 the	case	 in	 tumour	samples.	 	 In	
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aberration	 scoring,	 sufficient	 numbers	 of	 cells	 are	 required	 for	 appropriate	

statistical	analysis.	

Automation	of	chromosome	analysis	became	a	challenging	target	application	of	the	

growing	field	of	Pattern	Recognition	in	the	1970s	(Ledley	et	al.	(1972),	Castleman	

et	 al.	 (1976),	 Granlund	 et	 al.	 (1976),	 Brenner	 et	 al.	 (1976)).	 	 Early	 work	 by	

Castleman	and	his	colleagues	at	NASA’s	Jet	Propulsion	Laboratory	(Castleman	and	

Melnyck	 (1976))	 sought	 to	develop	 a	practical	 system	 for	pre-natal	 karyotyping.		

In	addition,	automated	metaphase	finding	was	seen	as	an	important	requirement	

(e.g.	 Johnson	 and	 Goforth	 (1974),	Wald	 et	al.	 (1976),	 Schoevaert-Brossault	 et	al.	

(1983),	Shippey	et	al.	(1986)).		The	early	developments	did	not	result	in	practical	

instantiations	of	 the	proposed	systems.	 	The	available	 technology	did	not	permit	

sufficiently	flexible	algorithms	to	be	applied	or	to	cope	with	the	image	digitisation,	

storage	and	display	requirements.		Automated	karyotyping	became	one	of	the	first	

target	applications	of	the	WIAU,	and	was	my	responsibility.			

The	early	papers	 in	this	section	[7,	8]	describe	the	components	of	the	automated	

chromosome	analysis	system	(karyotyping	and	metaphase	 finding)	developed	by	

me	 as	 a	 commercial	 product	 for	 routine	 use	 in	 a	 clinical	 laboratory.	 	 The	 first	

installation	 of	 the	 system	 was	 in	 Rigshospitalet,	 Copenhagen.	 	 While	 the	

installation	was	a	commercial	contract	with	our	partners,	 JL,	 the	working	system	

resulted	from	my	close	collaboration	with	clinicians	 in	that	group,	who	had	been	

interested	in	automation	of	chromosome	analysis	for	some	time	(Lundsteen	et	al.	

(1976)).	 	 This	 involved	 the	 development	 of	 appropriate	modes	 of	 interaction	 to	

enable	 efficient	 resolution	 of	 segmentation	 and	 classification	 problems	 in	 the	

system,	and	adaptation	of	 laboratory	routines	to	make	best	use	of	the	automated	

analysis.			

The	key	 components	 in	 the	 analysis	 of	 chromosome	 images	 are	 segmentation	of	

individual	chromosomes,	representation	of	the	banding	pattern	and	other	features,	

and	classification.		The	details	of	these	components	are	outlined	in	some	detail	in	

[12],	which	was	written	for	the	education	of	clinical	cytogeneticists,	as	automated	

systems	were	becoming	available,	though	not	yet	widely	used,	at	the	time.			Papers	

[7],	[8]	appeared	in	Analytical	and	Quantitative	Cytology	and	Histology,	which	was	

one	 of	 the	main	 outlets	 for	 image	 analysis	 applied	 to	microscope	 images	 at	 the	

time.	 	 They	 have	 respectively	 42	 and	 16	 citations.	 	 Paper	 [12]	 was	 an	 invited	

contribution	to	an	edited	book	and	has	41	citations.			
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The	 segmentation	 of	 chromosomes	 is	made	 challenging	 in	 the	 case	 of	 G-banded	

chromosomes,	as	 the	 local	contrast	between	chromosome	pixels	and	background	

pixels	 can	 be	 very	 low	 or	 vanish	 completely.	 	 	 Chromosomes	 can	 also	 touch	 or	

overlap,	and	some	form	of	user	interaction	is	ultimately	required	to	resolve	some	

situations.	 	 Several	 authors	 proposed	 methods	 for	 separating	 touching	

chromosomes	 based	 on	 outline	 curvature	 (Vossepoel	 (1989),	 Wu	 et	 al.	 (1989),	

Agam	and	Dinstein	(1997)).		An	efficient	method	for	resolving	groups	of	touching	

chromosomes,	 based	 on	 region	 growing	 following	 a	 minimal	 and	 natural	 user	

interaction	is	described	in	[11]	(10	citations).			

Analysis	of	chromosomes	at	prometaphase	or	prophase	has	the	advantage	that	the	

chromosomes	are	longer	and	the	banding	pattern	provides	much	higher	resolution	

detail.		However	chromosome	overlaps	occur	more	frequently.		Ji	(1989)	described	

a	 heuristic	 contour	 analysis	method	 that	 sought	 to	 separate	 overlaps	 as	well	 as	

touching	 chromosomes.	 	 A	 model-based	 approach	 to	 resolving	 clusters	 of	

overlapping	 chromosomes	 is	 described	 in	 [18	 and	 19],	 developed	 from	 the	

statistical	 shape	models	described	below	 [22-26].	 	The	 shape	descriptors	 in	 [19]	

model	the	shape	of	the	chromosome	centre	lines,	rather	than	object	boundaries,	as	

in	[22-26].		Similar	models	of	partial	chromosome	density	profiles,	inspired	by	the	

notion	of	“unique	band	sequences”	(Lockwood	et	al.	(1988)),	were	used	to	provide	

classification	 evidence	 for	 disambiguating	 the	 components	 of	 an	 overlapping	

cluster	in	[18].		Papers	[18]	and	[19]	have	30	and	26	citations	respectively.	

The	 features	 used	 for	 classification	 are,	 for	 “Denver”	 classification,	 the	

chromosome	 length	 and	 centromeric	 index	 (the	 fractional	 distance	 along	 the	

chromosome	 of	 the	 centromere	 position),	 and	 the	 banding	 pattern	 for	 “Paris”	

classification.		The	representation	of	the	banding	pattern	is	an	important	issue	and	

a	number	of	proposals	were	made	for	this	(e.g.	Groen	et	al.	(1989),	Granum	(1982),	

Granlund	 (1976),	 Habbema	 (1979),	 Lundsteen	 and	 Granum	 (1979)	 and	 others,	

reviewed	by	Carothers	and	Piper	(1994)).			

A	useful	contextual	constraint	on	the	assignment	of	chromosomes	to	classes	arises	

from	the	predetermined	class	sizes	(between	two	and	twelve	in	the	A-G	“Denver”	

groups	and	pairs,	with	the	exception	of	the	male	sex	chromosomes,	in	the	“Paris”	

classification).	 	 Piper	 (1986)	 evaluated	 several	 variants	 of	 a	 heuristic	method	 of	

applying	this	constraint,	originally	proposed	by	Rutovitz	(1977),	later	developing	a	

method	using	a	genetic	algorithm	(Piper	(1995)).		In	[9]	it	is	shown	that	a	globally	
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optimum	classification	subject	to	the	constraint	can	be	found	directly	by	casting	it	

as	 a	 “transportation”	 problem,	 for	 which	 a	 solution	 is	 known	 in	 Operations	

Research.	 This	 was	 applied	 in	 [9]	 to	 unbanded	 (“Denver”)	 classification.	 	 In	 the	

case	of	banded	 chromosomes,	where	 the	 group	 size	 is	 at	most	 two,	 the	problem	

can	 be	 expressed	 as	 an	 “assignment”	 problem.	 	 Kleinschmidt	 et	 al.	 (1987)	 had	

developed	 an	 efficient	 solution	 to	 this	 problem,	 which	 is	 applied	 to	 banded	

chromosome	classification	in	[10].		(Papers	[9]	and	[10]	have	respectively	28	and	

40	citations).	 	 	This	method	was	 later	used	 for	matching	points	on	the	surface	of	

brain	ventricles	[30].	

Artificial	Neural	Network	(ANN)	models	were	adopted	in	a	number	of	applications	

in	 the	 late	 1980s	 and	 early	 1990s.	 	 A	 preliminary	 study	 [13]	 explored	 the	

classification	of	 the	chromosome	banding	pattern	using	a	multi-layer	perceptron	

(MLP)	and	a	Kohonen	self-organising	map.		Useful	classification	using	an	MLP	led	

to	 a	 more	 extensive	 study	 [14],	 which	 also	 proposed	 a	 decomposition	 of	 the	

network	 that	 allowed	 fusion	 of	 the	 different	 feature	 types	 (banding	 density	

features	and	morphology	features).		A	further	development	introduced	a	network	

model	 to	 implement	 the	 class	 size	 constraint	 to	 achieve	 improved	 performance	

[15].		In	[16]	the	performance	of	the	MLP	classifiers	is	compared	directly	with	the	

maximum	likelihood	classifier,	and	shown	to	deliver	some	real	improvement.		The	

availability	 in	 this	 study	 of	 a	 very	 large	 set	 of	 banding	 data	 (collected	 in	

Copenhagen	 using	 the	 automated	 karyotyping	 system	 installed	 there)	 allowed	 a	

further	 experiment	 exploring	 the	 effect	 of	 training	 and	 test	 set	 size	 on	 classifier	

performance.	 Piper	 (1992)	 also	 used	 this	 data	 in	 a	 study	 of	 classifier	 bias.	 	 A	

summary	description	of	the	MLP	approach	was	invited	to	appear	in	the	Handbook	

of	 Neural	 Networks	 [17],	 which	 surveyed	 a	 wide	 range	 of	 techniques	 and	

applications.		Papers	[13],	[14]	and	[15]	have	respectively	20,	52	and	16	citations.	

The	 installation	 by	 JL	 of	 automated	 karyotyping	 and	 metaphase	 finding	 at	

Righospitalet,	 Copenhagen,	 was	 the	 first	 such	 system	 to	 be	 used	 routinely	 in	 a	

clinical	 laboratory.	 Reports	 on	 the	 clinical	 experience	 of	 its	 use	 in	 two	 early	

installations	 in	Copenhagen	and	Chicago,	can	be	 found	in	Lundsteen	et	al.	 (1987)	

and	 Lundsteen	 and	 Martin	 (1989),	 including	 considerations	 of	 the	 economic	

benefit	of	the	automated	system.		Subsequently	other	companies	provided	systems	

for	 installation	 in	 cytogenetic	 laboratories,	 making	 use	 of	 the	 increasing	

computational	 capacity	of	desktop	 computers.	 	These	often	arose	 from	academic	
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research,	 such	 as	 Image	 Recognition	 Systems	 from	 the	 work	 at	 the	 Medical	

Research	 Council,	 led	 by	D.	 Rutovitz,	 and	 Perceptive	 Systems	 International	 from	

the	 early	 work	 of	 Castleman	 at	 NASA’s	 Jet	 Propulsion	 Laboratory.	 	 The	 Athena	

system	 (van	 Vliet	 et	al.	 (1990)	Mayall	 et	al.	 (1990))	was	 based	 on	 the	 relatively	

new	 Macintosh	 computer	 and	 later	 commercialised	 by	 Amoco.	 	 Joce-Loebl	 and	

Image	 Recognition	 Systems	were	 both	 bought	 be	 Applied	 Imaging	 International,	

who	 produced	 a	 PC-based	 karyotyping	 system.	 	 While	 desktop	 computers	 had	

sufficient	 power,	 particularly	 in	 image	 display,	 for	 the	 karyotyping	 task,	 the	

intensive	 processing	 necessary	 for	 efficient	 metaphase	 finding	 was	 more	

problematic,	and	this	was	not	 initially	offered.	 	 I	witnessed	the	original	Magiscan	

metaphase	 finder	 working	 alongside	 Applied	 Imaging’s	 PC-based	 karyotyping	

system	 in	 Copenhagen	 in	 2002,	 twenty	 years	 after	 its	 initial	 installation.		

Automated	 interactive	 karyotyping	 systems	 (and	 metaphase	 finders)	 are	 now	

provided	 as	 standard	 components	 of	 cytogenetics	 imaging	 systems	 provided	 by	

several	suppliers,	along	with	imaging	support	for	more	recent	staining	techniques	

based	on	DNA	hybridisation.	

Classification	 of	 chromosomes	 and	 separation	 of	 clusters	 of	 overlapping	 banded	

chromosomes	 continued,	 and	 continues,	 to	 be	 a	 challenging	 pattern	 recognition	

problem.	 	 Lerner	 et	al.	 (1995)	 also	 described	 an	MLP	 network	 for	 classification,	

subsequently	 proposing	 a	 neural	 network	 approach	 to	 segmentation	 as	 well	

(Lerner	(1998)).		A	number	of	recent	publications	address	these	areas	(e.g.	Moradi	

and	Setarehdan	(2006),	Kao	et	al.	 (2008),	Wang	et	al.	 (2009),	Vaidyanathan	et	al.	

(2009)).		Indeed	some	of	the	images	from	my	original	publications	in	this	area	[18,	

19]	still	appear	among	this	literature!	

Apart	 from	 the	 chromosome	 classification	 problem,	 the	 MLP	 model	 was	 also	

applied	to	classification	of	Doppler	ultrasound	signals	[20]	(29	citations).	 	Neural	

network	models	 also	 appear	 in	 later	 publications	 in	 a	 different	 application	 area	

[52-54].	

Statistical	Models	of	Shape	and	Appearance	

The	 use	 of	 geometric	 models	 for	 identification	 of	 rigid	 objects	 in	 predictable	

locations	 had	 been	well	 recognised	 (e.g.	 Chin	 and	Dyer	 (1986)).	 	 Even	 for	man-

made	 objects,	 appearance	 and	 location	 are	 subject	 to	 some	 variability,	 and	

robustness	can	be	enhanced	by	 incorporating	statistics	of	 the	observed	variation	
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among	 examples	 (Woods	 et	 al.	 (1987)).	 	 Paper	 [6]	 showed	 that,	 for	 highly	

geometrically	constrained	systems,	such	as	mechanical	assemblies,	it	was	possible	

to	 describe	 complex	 inspection	 tasks	 using	 a	 very	 high	 level	 syntax	 and	 a	 fairly	

limited	number	of	 image	processing	and	analysis	 routines	under	 the	guidance	of	

overall	geometric	models.	 	I	was	Principal	Investigator	on	a	project	to	investigate	

the	 modelling	 and	 syntax	 required	 of	 such	 a	 system	 in	 the	 field	 of	 industrial	

inspection.		Paper	[6]	was	an	output	of	this	project.		Since	even	man-made	objects	

exhibit	 variation	 in	 shape	 and	 appearance,	 a	 key	 requirement	 was	 flexible	

statistical	geometric	modelling.		A	number	of	approaches	to	flexible	modelling	had	

been	described	(e.g.	Bookstein	(1989),	Kass	et	al.	(1987),	Yuille	et	al.	(1992),	Staib	

and	Duncan	 (1992);	 for	 a	 comprehensive	 review	at	 the	 time,	 see	McInerney	and	

Terzopoulos	 (1996)).	These	approaches	allowed	 flexibility,	but	did	not	allow	 the	

deformations	 to	be	made	specific	 to	a	particular	class	of	objects.	 	Papers	 [21-26]	

show	how	 this	was	 achieved	 by	making	 the	 representation	 trainable	 on	 a	 set	 of	

example	 images,	 resulting	 in	 the	 Point	 Distribution	Model	 (PDM),	which	 formed	

the	 basis	 of	 an	 image	 segmentation	 technique	 known	 as	Active	 Shape	Modelling	

(ASM).	 	 	 Paper	 [21]	 describes	 how	 a	 precursor	 to	 the	 PDM	 –	 the	 Chord	 Length	

Distribution	could	be	used	for	locating	trained	shapes	in	a	cluttered	environment,	

including	overlapping	instances.		This	method	involved	finding	a	maximum	overall	

probability	of	a	 set	of	boundary	points	 subject	 to	a	distribution	of	 the	 lengths	of	

chords	 joining	 these	 points	 observed	 during	 training.	 	 	 Though	 computationally	

highly	 expensive,	 this	 approach	 indicated	 the	 representational	 power	 of	 a	 set	 of	

boundary	points	and	the	statistics	of	their	relative	positions	in	describing	flexible	

shapes.	 In	 [22]	 a	much	more	 compact	description	of	 shape	was	described,	 using	

principal	 component	 analysis	 (PCA)	 of	 the	 covariance	 matrix	 relating	 pairs	 of	

chords.		Due	to	non-linear	correlations	among	the	chords,	the	method	was	capable	

of	 generating	 unrealistic	 shapes,	 and	 the	 computational	 complexity	 of	 the	 shape	

reconstruction	 was	 still	 O(n2),	 n	 being	 the	 number	 of	 points	 on	 the	 boundary.		

Point	Distribution	Models	were	 first	described	 in	 [23],	where	 the	 representation	

was	 changed	 to	 the	 positions	 of	 the	 points	 themselves,	 rather	 than	 the	 chords	

joining	 them.	 	 This	 had	 the	 effect	 of	 reducing	 the	 complexity	 to	 O(n),	 and	 also	

provided	a	much	more	direct	 representation	of	 the	 shape.	 	The	covariances	now	

represented	 the	 variations	 in	 the	 relative	 positions	 of	 individual	 points	 and	 the	

“modes	 of	 variation”,	 represented	 by	 the	 eigenvectors	 of	 the	 covariance	matrix,	

conformed	much	more	 to	 the	 requirement	 of	 being	 independent.	 The	 examples	
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used	 in	 [23]	 reflect	 the	 overall	 context	 to	 the	 development	 of	 these	 models	 in	

industrial	 inspection.	 Training	 of	 PDMs,	 along	 with	 the	 limitations	 of	 the	 linear	

modelling	 framework	 are	 described	 in	 detail	 in	 [24],	 which	 also	 introduces	 the	

idea	 of	 using	 the	model	 to	 conduct	 image	 search	 for	 the	 boundary	 of	 modelled	

objects	 in	unseen	images.	 	As	described	in	this	paper,	 the	search	algorithm	seeks	

local	points	of	high	image	gradient.		The	final	shape	is	constrained	to	lie	within	the	

distribution	 of	 shapes	 seen	 in	 the	 original	 data	 set,	 reducing	 the	 chance	 of	 poor	

segmentations	 due	 to	 finding	 spurious	 high-gradient	 points.	 	 The	 term	 “Active	

Shape	Model”	 (ASM)	 for	 the	 use	 of	 PDMs	 in	 image	 search	 is	 introduced	 in	 [24]	

expressing	the	similarity	to	the	“Active	Contour	Models”	of	Kass	et	al.	(1987).		The	

only	 shape	 constraint	 in	 this	 latter	 technique	 is	 an	 “internal	 energy”	 term,	

optimised	 alongside	 the	 image	 gradient	 on	 the	 boundary	 to	 encourage	 local	

boundary	smoothness.		

In	 [25],	 and	 more	 fully	 in	 [26],	 the	 eigenvector-based	 modelling	 technique	 was	

extended	 to	 include	 local	 grey-level	 descriptions.	 	 These	 took	 the	 form	 of	 one-

dimensional	 profiles	 of	 grey-level	 derivatives	 at	 each	 point,	 normal	 to	 the	 local	

boundary.	The	local	search	now	found	the	position	where	the	observed	profile	in	

the	image	best	matched	the	stored	local	model.		A	more	careful	search	strategy	was	

also	introduced,	in	which	large	movements	at	each	iteration	were	penalised.		Three	

components	of	 the	ASM	made	 it,	by	design,	more	robust	 than	the	Active	Contour	

Model,	i.e.	less	likely	to	be	trapped	on	incorrect	shapes	because	of	locally	confusing	

image	evidence.		These	were:	an	explicit	grey	level	model	of	the	local	image	region	

to	 be	 identified;	 disallowing	 excessively	 large	 movements	 in	 the	 direction	

proposed	by	the	profile	search;	and	having	a	highly	constrained	shape	description	

that	 prevents	 poor	 local	 fits	 from	 generating	 badly	 distorted	 shapes.	 	 Active	

Contour	Models	were	often	referred	to	as	“snakes”.	The	fact	that	the	ASM	acted	in	a	

similar	way,	but	constrained	to	produce	appropriate	shapes	led	us	(with	perhaps	a	

touch	of	hubris)	to	refer	to	ASMs	as	“smart	snakes”.			

The	 remaining	 papers	 in	 this	 section	 represent	 developments	 of	 the	 PDM/ASM	

method	in	response	to	the	requirements	of	specific	problems	in	biomedical	image	

analysis.	 	Paper	[27]	arises	from	issues	in	the	analysis	of	electron	micrographs	of	

capillaries	 in	peripheral	nerves.	 	Further	discussion	of	 this	particular	application	

can	be	found	below,	referring	to	papers	[50]	and	[51].		In	brief	the	requirement	is	

to	 segment	 images	 of	 the	 cross-section	 of	 the	 capillaries	 into	 three	 regions:	 the	
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basement	membrane,	the	endothelial	cell	layer	and	the	lumen,	through	which	the	

blood	passes.	 	 In	 cases	of	 interest,	 the	 lumen	becomes	 constricted	 and	 can	 close	

completely.		To	deal	with	the	problem	of	image	components	that	may	be	absent	in	

some	instances,	a	modification	of	the	shape	modelling	procedure	was	proposed	in	

[27]	 to	 include	a	binary	present/not	present	 condition,	 extending	 the	method	 to	

other	 examples.	 	 It	 was	 also	 important	 for	 some	 applications	 to	 make	 the	 ASM	

search	 more	 robust.	 	 The	 implicit	 assumption	 in	 “standard”	 ASM	 fitting	 that	

residuals	follow	a	Gaussian	distribution	is	only	at	best	approximately	true.		In	[28]	

we	investigated	the	use	of	robust	fitting	methods,	including	RANSAC	(Fischler	and	

Bolles	 (1981))	 and	 M-estimators	 (Huber	 (1981)),	 which	 showed	 improved	

accuracy	and	robustness	in	several	image	segmentation	problems	(though	not,	as	

it	happened,	in	the	capillary	images).	

Point	 Distribution	models	 are	 built	 by	manual	 annotation	 of	 a	 consistent	 set	 of	

points	 around	 the	 boundaries	 of	 the	 objects	 to	 be	modelled	 in	 a	 training	 set	 of	

images.	 It	 is	 important	 to	 maintain	 correspondence	 between	 equivalent	 points	

across	the	training	set.	 	The	ordering	constraint	on	points	around	a	2D	boundary	

makes	 correspondence	 between	 points	 straightforward.	 	 In	 principle,	 the	 shape	

modelling	and	search	algorithms	developed	on	2D	images	in	papers	[22-26]	can	be	

applied,	more	or	 less	unaltered,	 to	 images	of	higher	dimension.	 	However,	 in	3D	

shapes,	 the	 annotation	 problem	 is	 significantly	 more	 challenging	 because	

important	“landmark”	points	are	much	more	difficult	to	locate	accurately	and	the	

ordering	constraint	no	 longer	applies.	 	Papers	[30,	31]	describe	an	application	 in	

using	 the	 parameters	 of	 the	 trained	 shape	 model	 as	 shape	 descriptors	 to	

investigate	possible	changes	in	the	shape	of	brain	ventricles	between	control	and	

schizophrenia	 groups.	 	 This	 was	 an	 early	 application	 of	 shape	 modelling	 in	 3D	

structures,	and	it	was	necessary	to	solve	the	annotation/correspondence	problem,	

as	 manually	 annotating	 the	 ventricle	 surface	 on	 the	 69	 3D	Magnetic	 Resonance	

images	 was	 an	 impossible	 task.	 	 We	 made	 use	 of	 the	 fact	 that	 a	 number	 of	

consistent	 ridges	 occur	 on	 the	 ventricle	 surface.	 	 The	 correspondence	 between	

equivalent	 points	 on	 these	 ridges	 was	 established	 by	 expressing	 the	 spatial	

correspondence	 as	 a	 bipartite	 graph-matching	 problem,	making	 use	 of	 the	 same	

matching	 algorithm	 that	 had	 been	 used	 in	 the	 chromosome-matching	 problem	

[10].		The	shape	parameters	derived	from	the	resulting	PDMs	were	used	to	define	

a	 discriminating	 shape	 vector	 in	 the	 space	 of	 the	 shape	 parameters	 and	 hence	
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identify	 and	 quantify	 the	 shape	 differences	 between	 the	 groups	 [30].	 	 In	 [31]	 a	

similar	 analysis	 was	 used	 to	 measure	 lateral	 differences	 between	 right	 and	 left	

ventricles	in	male	and	female	subgroups.		Subsequently,	a	more	generic	approach	

to	 the	 problem	 of	 finding	 point	 correspondences	 by	 global	 optimisation	 was	

proposed,	 initially	 in	 Davies	 et	 al.	 (2003)	 and	 later	 more	 fully	 in	 Davies	 et	 al.	

(2010).			

Paper	 [29]	 is	 another	 example	 of	 using	 the	 model	 parameters	 as	 features	 for	

discriminating	 between	 groups.	 	 In	 this	 case	 the	 images	 were	 2D	 images:	

autoradiographs	of	 radiolabelled	 sections	 of	 hippocampal	 tissue.	 	 The	 study	was	

intended	 to	 identify	 differences	 in	 both	 shape	 and	 the	 spatial	 distribution	 of	 5-

HT1A	 receptors	 between	 right	 and	 left	 hippocampi.	 	 The	 2D	 shape	 parameters	

were	used	in	the	same	way	as	the	3D	parameters	in	the	brain	ventricle	study.		By	

warping	all	of	the	shapes	onto	a	mean	shape	to	achieve	correspondence	between	

pixels	 in	 different	 images,	 the	 spatial	 distribution	 of	 grey-levels,	 and	 hence	

receptors,	could	be	modelled	using	PCA.		The	use	of	PCA	on	grey-level	distributions	

was	 taken	 further	 by	 Cootes	 et	 al.	 (2001),	 where	 a	 further	 PCA	 of	 a	 combined	

shape	and	grey-level	vector	was	used	as	the	basis	for	Active	Appearance	Models:	a	

segmentation	 technique	 similar	 to	 ASM	 search,	 making	 use	 of	 the	 much	 richer	

image	description	in	the	complete	grey-level	model.		

ASMs,	 with	 a	 variety	 of	 modifications	 have	 been	 used	 in	 many	 applications	 of	

biomedical	 image	 analysis.	 	 (For	 a	 review	 of	 3D	 applications,	 see	 Heimann	 and	

Meinzer	(2009).)	 	Paper	 [24]	 is	among	the	most	highly	cited	papers	 in	computer	

vision	 (6900),	 [22],	 [23]	and	 [25]	also	have	high	citation	counts	 (227,	620,	148).		

[26]	 has	 a	 more	 modest	 citation	 count	 of	 21,	 despite	 being	 the	 most	 complete	

description	of	the	ASM	method,	while		[28]	has	149.		

Applications	of	Image	Analysis	

The	 following	 sections	 describe	 a	 number	 of	 image	 analysis	 application	 areas	 in	

which	 I	 have	 applied	 statistical	 and	 computational	 models,	 including	 ASM	 and	

variants,	neural	network	models	and	more	recent	machine	learning	methods,	such	

as	random	forests	(Breiman	(2001)).			

Proteomics	

Papers	[32-36]	are	related	mainly	to	the	analysis	of	2D	electrophoresis	gels,	which	
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have	been	a	standard	tool	in	proteomics	for	many	years.		In	this	method	proteins	

or	peptides	in	a	mixture	are	separated	according	to	their	molecular	weight	in	one	

dimension	and	surface	charge	on	the	other	 to	 form	“spots”	of	varying	density	on	

the	gel,	 visualised	using	either	 radioactive	or	 fluorescent	 ligands.	 Software	 tools,	

developed	by	academic	groups	or	commercial	organisations,	were	widely	used	for	

measurement	 of	 the	 positions	 and	 intensities	 of	 spots.	 	 These	methods	 involved	

data-driven	 segmentation	 techniques	 (e.g.	 Lemkin	 and	 Lipkin	 (1981),	 Garrels	

(1989),	 Smilansky	 (2001))	 or	 modelling	 individual	 protein	 spots	 as	 bivariate	

Gaussian	 density	 distributions	 (Garrels	 (1989),	 Anderson	 et	 al.	 (1981)).	 	 Spot	

segmentation	often	results	in	missing,	or	failing	to	separate,	faint	spots.		Paper	[32]	

approached	 the	 spot	 description	 and	measurement	 problem	 using	 a	 PDM-based	

shape	 descriptor	 to	 take	 account	 of	 the	 fact	 that	 non-elliptical	 spots	 with	 non-

Gaussian	density	profiles	can	occur.	

A	 method	 for	 automatically	 generating	 the	 PDMs	 from	 the	 hundreds	 (or	

thousands)	 of	 protein	 spots	 present	 on	 a	 gel	 is	 described	 in	 [33],	 involving	 an	

automatic	 segmentation	 of	 spots	 in	 training	 images,	 using	 robust	 PCA	 to	 reject	

unrealistic	spot	shapes	resulting	from	mis-segmentations.	

Quantitative	 analysis	 and	 comparison	 of	 tools	 for	 analysing	 electrophoresis	 gels	

requires	 reliable	 “ground-truth”	 against	 which	 their	 measurements	 could	 be	

assessed.		While	it	is	possible	to	produce	synthetic	gel	images	with	known	density	

distributions,	 these	 do	 not	 exhibit	 the	 complexity	 of	 overlapping	 spots	 and	

distorted	 spot	 shapes	 that	 arise	 in	 real	 gels.	 	The	 spot	modelling	method	of	 [32]	

allowed	generation	of	spots	from	a	distribution	of	spot	parameters,	placing	these	

at	 positions	 determined	 from	 real	 gels	 to	 generate	 synthetic	 gels	with	 precisely	

known	 characteristics	 [34].	 	 By	 varying	parameters	 such	 as	 noise	 level	 and	 spot	

overlap	 the	 properties	 of	 gel	 analysis	 software	 packages	 could	 be	 investigated.		

Papers	[32]	and	[34],	appearing	 in	Proteomics,	one	of	 the	major	 journals	dealing	

with	gel	electrophoresis,	have	63	and	52	citations	respectively.	

Gel	analysis	often	consists	of	comparison	of	the	protein	compositions	of	different	

sample	 groups.	 	 Typically	 several	 gels	 would	 be	 run	 in	 each	 group	 and	 specific	

spots	 identified	 and	 compared	 within	 and	 between	 groups.	 	 This	 process	 of	

identifying	 corresponding	 spots	 between	 gels	 is	 a	 registration	 problem,	 made	

difficult	 by	 sometimes	 severe	 spatial	 distortions	 introduced	 during	 the	

electrophoresis	 process.	 	 Such	 “non-rigid”	 registration	 is	 a	 problem	 commonly	
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addressed	in	medical	image	analysis	(see	review	by	Maintz	and	Viergever	(1998)).			

The	gel	registration	problem	has	its	own	challenges	that	are	different	from	those	in	

the	medical	image	registration	case.	There	are	many	potential	individual	matches;	

the	 geometric	 distortions	 between	 gels	 can	 be	 rather	 large;	 there	may	 be	many	

tens	of	 images	 to	be	 registered	as	a	group;	 there	are	many	 “unmatchable”	 spots,	

which	may	appear	 in	some	images	and	not	 in	others,	either	because	the	proteins	

they	 represent	 are	 reduced	 or	 absent	 in	 some	 samples,	 or	 because	 they	 are	 not	

detected	at	the	segmentation	stage.		The	method	described	in	[35]	is	based	on	the	

Iterated	 Closest	 Point	 (ICP)	 algorithm	 (Besl	 and	 Mckay	 (1992)),	 an	 algorithm	

widely	 reviled	 because	 of	 its	 lack	 of	 theoretical	 foundation,	 and	 widely	 used	

because	of	its	reliable	convergence	properties	in	many	cases.		In	this	case	ICP	was	

augmented	by	a	non-Euclidean	distance	metric	and	robust	estimation	of	transform	

parameters	 to	 produce	 very	 reliable	 and	 accurate	 registration.	 Evaluation	 in	 the	

presence	of	increasing	levels	of	distortion	and	noise	showed	that	the	method	was	

highly	 robust	 and	 outperformed	 other,	 well-regarded	 point-matching	 methods	

such	as	SoftAssign	(Chui	et	al.	(2004)).	 	Appearing	in	IEEE	Transactions	on	Image	

Processing,	[35]	has	49	citations.	

One	of	the	scientific	drawbacks	of	2D	gel	analysis	is	 limited	sensitivity.	 	Recently,	

more	 sensitive	 methods,	 for	 detection	 of	 small	 peptide	 changes	 have	 become	

increasingly	used.		Liquid	Chromatography	Mass	Spectrometry	(LCMS)	is	one	such	

method.		The	output	has	similarities	to	gel	electrophoresis:	a	two-dimensional	data	

distribution	with	a	requirement	for	non-rigid	registration	between	the	very	large	

data	sets	produced.		Paper	[36]	gives	an	initial	description	of	the	application	of	the	

registration	method	in	[35]	applied	within	a	system	for	detection	and	recognition	

of	peptide	fragments	within	an	LCMS	analysis.	

Assessing	bone	quality	

Osteoporosis	 is	 a	 condition	 of	 reduced	 bone	 mass	 and	 microarchitectural	

deterioration	 of	 the	 bone,	 leading	 to	 increased	 fragility	 and	 fracture	 risk.	 	 The	

standard	method	for	assessment	of	bone	mineral	density	(BMD)	is	by	dual	energy	

X-ray	 absorptiometry	 (DXA),	 which	 provides	 an	 absolute	 measurement	 of	 bone	

mineral	density.		It	is	usually	measured	at	the	neck	of	femur,	pelvis,	wrist	or	spine,	

where	 there	 is	 the	 greatest	 risk	 of	 fracture	 due	 to	 reduced	 bone	 strength.	

Screening	for	osteoporosis	is	not	considered	cost	effective,	despite	it	representing	
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a	 large	 healthcare	 burden,	 with	 significant	 associated	 morbidity	 and	 mortality	

(Johnell	 (1996)).	 	 A	 number	 of	 factors	 may	 be	 used	 as	 predictors	 of	 risk	 of	

developing	 osteoporosis.	 	 These	 include	 age,	 body	 mass	 index,	 treatment	 with	

hormone	replacement	therapy	and	family	history	of	osteoporosis.		Several	clinical	

indices	have	been	proposed	composed	of	differing	weighted	combinations	of	these	

factors,	e.g.	Sedrine	et	al.	(2002),	Cadarette	et	al.	(1999).		

Panoramic	dental	radiographs	are	 tomographic	 images	of	 the	 total	mandible	and	

maxilla	(see	images	in	papers	[37	–	41]),	which	are	taken	for	several	purposes	in	

dental	care.	 	In	addition	to	the	teeth	and	trabecular	bone,	the	images	also	show	a	

region	 of	 denser	 cortical	 bone	 at	 the	 lower	 border	 of	 the	mandible	 (the	 inferior	

mandibular	cortex).	 	Several	authors	had	observed	that	the	apparent	thickness	of	

this	cortical	bone	is	related	to	BMD,	not	only	in	the	mandible	but	also	at	the	other	

BMD	measurement	sites,	e.g.	Taguchi	et	al.	(1996),	Taguchi	et	al.	(2006),	Klemetti	

and	Kolmakow	(1997),	Horner	and	Devlin	(1998),	White	et	al.	 (2005),	 leading	 to	

the	 suggestion	 that	making	 this	measurement	 on	 dental	 panoramic	 radiographs	

could	be	an	opportunistic	way	of	 identifying	individuals	at	risk	of	fracture	due	to	

reduced	 BMD.	 	 Making	 this	measurement	manually	 would	 be	 impractical;	 to	 be	

useful,	it	would	be	necessary	to	implement	an	automatic	method		

Papers	 [37-40]	 arose	 from	 a	 large	 European	 collaborative	 study,	 called	

OSTEODENT,	to	investigate	the	potential	for	using	cortical	width	measurement	as	

a	case-finding	mechanism	for	osteoporosis.	 	 Images	and	clinical	 input	came	 from	

partners	in	Stockholm,	Leuven,	Amsterdam	and	Athens	as	well	as	Manchester.		The	

automatic	system	for	measuring	cortical	width	is	described	in	[37].		The	key	point	

is	 the	 reliable	 location	 of	 the	 lower	 and	 upper	 boundaries	 of	 the	 inferior	

mandibular	 cortex,	 which	 is	 achieved	 by	 ASM	 search,	 allowing	 the	 cortical	

thickness	 to	 be	 measured	 at	 appropriate	 locations.	 The	 OSTEODENT	 study	

collected	a	very	large	set	of	evaluation	images	(separate	from	the	training	images	

used	in	[37])	from	670	female	patients	between	45	and	75	years	of	age,	each	with	

ground-truth	measurements	of	BMD	taken	at	the	femoral	neck,	hip	and	spine.	The	

analysis	 demonstrating	 the	 effectiveness	 of	 cortical	 width	 measurement	 in	

identifying	osteoporosis	is	presented	in	[38],	concluding	that	automatic	analysis	of	

dental	 panoramic	 radiographs	 could	 be	 used	 as	 a	 suitable	 triage	 method	 for	

identifying	patients	who	should	be	referred	for	further	DXA	investigation.	

In	paper	[39],	the	effectiveness	of	the	radiographic	measurement	is	compared	with	
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one	 of	 the	 risk	 indices	 (OSIRIS,	 Sedrine	 et	 al.	 (2002)).	 The	 paper	 observes	 that	

combing	 the	 radiographic	 index	with	OSIRIS	using	 logistic	 regression	 resulted	 in	

improved	 prediction	 of	 osteoporosis	 over	 either	 method	 alone.	 	 The	 combined	

index	came	to	be	called	the	“Osteodent	index”.			

The	 diagnosis	 of	 osteoporosis	 is	 entirely	 based	 on	 BMD.	 	 However,	 the	 clinical	

burden	arises	from	fractures	due	to	weakened	bones.		More	recently	the	FRAX	tool	

(Kanis	et	al.	(2008))	has	been	developed	specifically	for	the	prediction	of	10-year	

fracture	risk.	 	 In	 [40]	 the	Osteodent	 index	 is	 compared	with	FRAX	as	a	means	of	

recommending	patients	for	further	investigation	by	DXA.	 	The	two	methods	were	

found	to	be	equivalent.	

Papers	[37	–	40]	have	citation	counts	of	44,	68,	34	and	24	respectively.	

In	[41]	some	aspects	of	the	ASM	search	on	the	cortex	were	improved	by	including	

a	 larger	 number	 of	 image	 features	 in	 the	model,	 described	 as	 a	 hybrid	 of	Active	

Shape	and	Active	Appearance	modelling,	increasing	the	reliability	of	the	fit.	

This	 improved	 search	 was	 used	 in	 [42]	 to	 examine	 the	 relationship	 between	

measured	cortical	width	and	age	in	both	men	and	women.		This	study	made	use	of	

a	 very	 large	 (close	 to	 5000)	 set	 of	 images	 supplied	 by	 one	 of	 the	 OSTEODENT	

collaborators,	 representing	 patients	 between	 15	 and	 94	 years	 old.	 The	 final	

association	between	cortical	width	and	age	was	very	similar	to	that	between	BMD	

and	age.			

It	 is	well	known	that	reduced	bone	quality	can	be	assessed	by	the	appearance	of	

the	 bone	 observed	 in	 panoramic	 radiographs.	 A	 semi-quantitative	 index,	 the	

Mandibular	Cortical	Index,	has	been	developed	to	allow	radiologists	to	report	the	

appearance	of	“holes”	and	“residues”	in	the	cortical	and	trabecular	bone	(Klemetti	

et	 al.	 (1994)).	 	 A	 number	 of	 authors	 had	 reported	 associations	 between	 texture	

measures	 (principally	 fractal	 dimension),	 applied	 to	 the	 cortical	 and	 trabecular	

bone	 in	 the	mandible,	 and	BMD	(e.g.	Ruttimann	et	al.	 (1992),	Yasar	and	Akgunlu	

(2006),	Geraets	and	van	der	Stelt	(2000)).		It	seems	likely	that	“fractal	dimension”	

is	 applied	 here	 as	 a	 generalised	 “roughness”	measure.	 	 In	 [43]	 we	 tried	 to	 deal	

systematically	with	 the	 issue	of	 relating	radiographic	 texture	 to	BMD.	 	There	are	

many	 texture	measures	 that	 can	 be	 applied	 to	 image	 regions	 (see,	 for	 example,	

Petrou	 and	 Carcia	 Sevilla	 (2006)).	 	 We	 chose	 to	 make	 use	 of	 the	 classic	 co-

occurrence	 matrices	 (Haralick	 (1973)),	 because	 a	 large	 number	 of	 features,	
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corresponding	to	a	range	of	texture	appearance,	can	be	calculated	in	a	single	set	of	

image	measurements.		We	selected	a	number	of	co-occurrence	features,	combined	

in	a	Random	Forest	classifier	Breiman	(2001).		As	fractal	dimension	had	appeared	

in	 several	places	 in	 the	 literature	we	 included	an	appropriate	measure	of	 fractal	

dimension.	 	 Texture	measured	 in	 the	 cortical	 bone	was	 shown	 to	 have	 a	 similar	

association	with	BMD	 as	 cortical	width	 and	 that	 the	 combination	 of	 texture	 and	

cortical	width	provided	better	association	than	either	alone.		Fractal	dimension	did	

not	perform	as	well	as	some	other	texture	methods.		Papers	[41	–	43]	have	14,	28	

and	11	citations	respectively.	

Paper	 [44]	 reports	 part	 of	 a	 related	 study	 that	 sought	 to	 determine	 trabecular	

features	related	to	bone	strength.		Using	micro-CT	images	of	progressively	loaded	

rat	vertebrae,	sites	of	damage	are	 located	by	registration	of	successive	 images	at	

different	scales.		Small-scale	damage	can	result	in	large-scale	changes	in	the	shape	

of	 the	 vertebrae.	 	 The	 successive	 registration	 allows	 the	 damage	 sites	 to	 be	

identified	by	measurement	of	unregistered	voxels.	 	The	sensitivity	and	specificity	

of	damage	detection	could	be	estimated	using	synthesized	damage	in	real	images.			

Segmentation	of	the	prostate	

Papers	[45-46]	are	concerned	with	differential	segmentation	of	the	prostate	gland	

in	magnetic	resonance	(MR)	images.		The	clinical	context	is	the	diagnosis	of	benign	

prostatic	 hyperplasia	 (BPH).	 	 Clinical	 investigation	 of	 the	 prostate	 is	 usually	

conducted	 using	 trans-rectal	 ultrasound	 (TRUS).	 Knoll	 et	 al.	 (1999)	 described	

segmentation	of	 the	outer	boundary	 in	CT	and	TRUS	 images	using	a	 constrained	

Active	Contour	model.	 	However	 in	BPH	diagnosis	 it	 is	 important	 to	 identify	 the	

main	anatomical	zones	of	 the	gland:	central	zone,	 transition	zone	and	peripheral	

zone	(Tewari	et	al.	(1995)),	which	do	not	show	clearly	in	TRUS	or	CT	images.		The	

central	 and	 transitional	 zones	 are	 often	 combined	 to	 form	 the	 “central	 gland”.		

Zwiggelaar	et	al.	(2003)	described	segmentation	of	the	outer	prostate	boundary	in	

MR	images	in	the	context	of	prostate	cancer,	but	did	not	address	the	differentiation	

of	zones.		Challenges	in	segmentation	of	the	MR	images	arise	from	the	similarity	in	

appearance	of	the	different	zones,	with	no	clear	boundary	between	them,	and	the	

presence	of	nearby	anatomical	structures,	mainly	the	bladder	and	seminal	vesicles.	

In	 [45]	 a	 3D	 PDM	 was	 used	 to	 describe	 the	 shapes	 of	 the	 central	 gland	 and	

peripheral	zone.	 	Since	boundaries	between	zones	are	not	distinct,	standard	ASM	
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search	was	not	appropriate.		A	Gaussian	mixture	model	was	used	to	perform	voxel	

classification,	 while	 the	 PDM	 applied	 shape	 constraints	 in	 a	 genetic	 algorithm	

optimisation.	 In	 [46]	 a	 similar	 approach	 was	 taken,	 using	 random	 forest	

classification	to	classify	voxels	followed	by	graph-cut	optimisation.		Paper	[45]	has	

26	citations.	

The	trained	prostate	shape	models	used	in	[45],	provided	the	basis	for	the	study	in	

[47]	examining	 the	accuracy	and	reliability	of	measuring	prostate	volumes	using	

TRUS.	 	 The	usual	procedure	 in	 estimating	prostate	 volume	 in	ultrasound	 images	

involves	measuring	 the	prostate	diameter	 in	approximately	orthogonal	2D	views	

and	 calculating	 the	 volume	 based	 on	 an	 assumption	 of	 ellipsoidal	 shape.	 	 The	

annotated	shapes	used	 to	build	 the	models	 in	 [45]	provided	ground	truth,	which	

was	used	to	quantify	errors	in	the	ellipsoidal	volume	estimation	process,	based	on	

a	quasi	Monte	Carlo	analysis	 (quasi	Monte	Carlo	because	 the	synthesised	 images	

did	not	come	from	a	truly	random	distribution).		The	study	was	able	to	propose	a	

linear	 regression	 model,	 based	 on	 measured	 prostate	 diameters,	 that	 is	 more	

accurate	than	using	directly	calculated	ellipsoidal	volumes.	

The	prostate	images	were	used	as	one	of	three	challenging	segmentation	problems	

in	 a	 study	 to	 examine	 suitable	 algorithms	 to	 form	 the	 basis	 of	 interactive	

segmentation	 for	 3D	 PDM	 model	 building.	 	 Image	 segmentation	 is	 a	 necessary	

prior	 step	 to	 creating	 sets	 of	 corresponding	 surface	 points,	 using	 the	method	 in	

[29]	or	the	more	generic	method	of	Davies	et	al.	(2010).		This	segmentation	would	

normally	be	 interactive,	resulting	 in	a	potentially	 long	and	tedious	task	 involving	

multiple	images.		The	study	sought	to	determine	methods	for	approaching	this	task	

efficiently.	 	Paper	 [48]	compared	the	use	of	 three	algorithms	that	had	previously	

been	proposed	for	interactive	segmentation:	graph-cut	(Boykov	and	Jolly	(2001)),	

grow-cut	 (Vezhnevets	 and	 Konouchine	 (2005))	 and	 random-walker	 (Grady	

(2006)),	using	a	 simulated	 interaction	 framework	 to	 segment	prostate	and	brain	

images.	 	Graph-cut	 came	out	best	 from	 the	 comparison,	 and	was	used	 in	 further	

studies,	 including	 propagation	 of	 segmentation	 results	 from	 one	 image	 onto	

further	 examples	 [49].	 	 The	 automated	 prostate	 segmentation	 method	 in	 [46]	

arose	from	this	study.	

An	overview	of	 subsequent	 research	 in	 image	analysis	of	 the	prostate	 in	MR,	CT	

and	ultrasound	images	in	the	context	of	diagnosis	and	treatment	of	prostate	cancer	

can	be	found	in	Madabhushi	et	al.	(2011)	and	Ghose	et	al.	(2012).	
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Diabetic	neuropathy	

Peripheral	neuropathy	is	a	serious	and	widespread	complication	of	diabetes	(and	

some	other	conditions)	with	potentially	severe	clinical	consequences.		Papers	[50-

56]	 represent	 different	 studies	 involving	 images	 related	 to	 investigation	 of,	 or	

diagnosis	 of,	 peripheral	 neuropathy.	 	 Paper	 [50]	 describes	 the	 analysis	 of	 light	

microscope	 images	 of	 cross-sections	 of	 fibre	 bundles	 and	 electron	 microscope	

images	 of	 capillary	 vessels	 associated	with	 nerve	 fibres.	 	 The	 constriction	 of	 the	

capillaries	 in	 diabetes	 causes	 a	 condition	 called	 microangiopathy.	 	 The	

segmentation	in	these	two	image	types	made	use	of	active	contour	models	(Kass	et	

al.	 (1987)).	 	The	electron	microscope	 images	of	capillaries	are	also	the	subject	of	

[51].	 	 In	 this	 case	 the	 segmentation	 uses	 a	 genetic	 algorithm	 optimisation	 of	 an	

ASM.	 	One	of	 the	 identifiable	regions	of	 the	capillary	 is	 the	 lumen	through	which	

the	blood	cells	pass.		This	space	may	be	entirely	closed	in	microangiopathy,	and	the	

complete	 analysis	 required	 the	 development	 of	 an	 extension	 to	 the	 ASM	 that	

allowed	 for	 the	 inclusion	 of	 binary	 presence/absence	 of	 specific	 features	 (see	

discussion	of	[27],	on	page	32).		

Later	work	 concentrated	on	measurement	of	 nerve	 fibres	 in	 images	obtained	by	

corneal	 confocal	 microscopy	 (CCM).	 	 This	 in-vivo	 microscopic	 technique	 allows	

nerves	at	a	particular	layer	in	the	cornea	to	be	visualised	and	measured.	 	Several	

authors	had	proposed	that	measurement	of	length	and	density	of	the	nerve	fibres	

was	related	to	neuropathy	(e..g.	Hossain	et	al.	(2005),	Malik	et	al.	(2002),	Mehra	et	

al.	 (2007),	 Hertz	 et	 al.	 (2011)),	 and	 might	 form	 a	 new	 biomarker.	 	 Manual	 or	

interactive	measurement	of	 the	 image	 features	was	sufficient	 to	demonstrate	 the	

association,	 but	 suffered	 from	 the	 usual	 problems	 of	 being	 lengthy,	 tedious	 and	

subjective.	 Development	 and	 evaluation	 of	methods	 for	 conducting	 this	 analysis	

automatically	are	the	subjects	of	papers	[52-56].		In	[52]	a	method	for	detection	of	

the	nerve	fibres	is	described	which	deals	with	the	often	low	contrast	to	noise	ratio	

of	 the	 CCM	 images.	 	 Detection	 of	 the	 linear	 nerve	 structures	 has	 something	 in	

common	 with	 other	 applications,	 such	 as	 analysis	 of	 retinal	 images	 and	

mammograms	(for	example).			Previous	approaches	to	the	problem	include	Scarpa	

et	al.	(2008),	who	described	a	heuristic	method	of	analysing	CCM	images	adapted	

from	 the	 analysis	 of	 retinal	 images	 and	 Holmes	 et	 al.	 (2010),	 who	 based	 the	

detection	of	nerve	 fibres	on	 ridge	points.	 	 In	 [52]	a	model	of	 fibre	appearance	 is	

developed,	 based	 on	 a	 Gabor	 function	 representing	 the	 fibres	 and	 a	 Gaussian	
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background	 model.	 	 This	 “dual	 model”	 was	 compared	 with	 several	 other	

algorithms	 designed	 to	 detect	 linear	 structures	 and	 found	 to	 perform	 well	 in	

comparison	in	this	application.		In	[53]	the	analysis	is	extended	to	multiple	scales.		

Pixel	 classification	 as	 fibre/non-fibre	 on	 the	 basis	 of	 the	 dual	model	 output	was	

achieved	 using	 an	 MLP	 neural	 network	 (shown	 to	 slightly	 outperform	 random	

forest	classification	in	this	application).		A	complete	system	for	measurement	of	a	

number	 of	 CCM	 features	 is	 described	 in	 [54],	 which	 also	 includes	 a	 technical	

evaluation,	 while	 [55]	 presents	 a	 clinical	 evaluation	 and	 comparison	 between	

manual	and	automatic	analysis.	

An	 advantage	 of	 CCM	 analysis	 over	 other	 clinical	 methods	 for	 diagnosing	

peripheral	 neuropathy,	 such	 as	 electrophysiology,	 is	 that	 the	 latter	 focuses	 on	

large-fibre	deficits,	whereas	CCM	imaging	assesses	small	fibres,	where	the	earliest	

signs	of	neuropathy	occur	(Dyck	et	al.	(1993)).		Intra-epidermal	nerve	fibre	density	

(IENFD)	by	microscopic	analysis	of	skin	biopsy	samples	is	the	only	other	technique	

that	seeks	to	quantify	the	morphology	of	small	nerve	fibres.		It	is	clearly	invasive,	

but	constitutes	 the	current	 “gold	standard”	 in	definitive	diagnosis	of	neuropathy.		

Paper	 [56]	 is	 a	 direct	 comparison	 of	 automatic	 CCM	 image	 analysis	 and	 IENFD,	

showing	 that	 the	 two	methods	 are	 equivalent	 in	 determining	 neuropathy,	while	

CCM	analysis	is	totally	non-invasive	and	automatic.	

Paper	 [52]	 was	 accepted	 as	 an	 oral	 presentation	 at	 MICCAI	 2010.	 	 The	 paper	

acceptance	 rate	 at	 MICCAI	 is	 low,	 and	 oral	 presentations	 are	 only	 a	 small	

proportion	 of	 accepted	 papers.	 	 This	 paper	 was	 among	 10	 invited	 to	 submit	

expanded	versions	 for	 inclusion	 in	Medical	 Image	Analysis,	 itself	one	of	 the	most	

selective	journals	in	the	field.	 	The	expanded	version	is	[53]	(29	and	58	citations,	

respectively).	 	 Paper	 [54]	 is	 in	 press	 in	 IEEE	 Transactions	 on	 Biomedical	

Engineering,	 the	 version	 included	 here	 appearing	 as	 a	 preprint	 on	 the	 IEEE	

Explore	website.	 	The	clinical	evaluation	 [55]	has	44	citations.	 	While	paper	 [56]	

was	published	recently	(2015),	it	now	has	15	citations.		The	software	described	in	

[54]	 is	 available	 on	 free	 licence	 and	 has	 been	 licensed	 to	 70	 research	 groups	

internationally	at	the	time	of	writing.	

Carpal	kinematics	

There	has	been	an	increasing	recent	interest	in	modelling	the	movement	of	bones	

in	articulated	joints	(e.g.	Baka	et	al.	(2012),	van	de	Giessen	et	al.	(2012),	Abu	Anas	
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et	al.	(2014)),	usually	for	the	purpose	of	measuring	abnormal	movement.	 	Papers	

[57	–	60]	 investigate	 the	 computational	 approach	necessary	 for	 inferring	 the	3D	

motion	 of	 the	 carpal	 bones	 during	wrist	movement	 from	 a	 single	 2D	 projection	

cine-fluoroscopy	 sequence.	 	 Such	 sequences	 are	 used	 by	 clinical	 experts	 in	

assessing	different	types	of	wrist	disorder.			

The	 papers	 explore	 several	 challenges.	 	 First	 is	 the	 reconstruction	 from	 a	 2D	

projection	video	sequence	of	3D	shape	and	3D	pose	(position	and	orientation)	of	

bones	that	move	in	a	complex,	articulated	fashion.		This	is	similar	to	the	problem	of	

2D-3D	 projection,	 often	 used	 in	 aligning	 pre-operative	 images	 to	 intra-operative	

images	 in	 image-guided	 surgery.	 	 In	 this	 case,	 however,	 the	 2D	 image	 is	 of	 an	

individual	and	the	3D	counterpart	consists	of	a	model	of	3D	shape	and	pose	of	ten	

bones	as	they	follow	a	complex	3D	trajectory.		Registration	of	a	3D	model	to	a	2D	

image	is	also	addressed	by	Baka	et	al.	(2011)	in	the	case	of	the	femur,	using	stereo	

X-ray	images.		

The	second	challenge	is	the	segmentation	of	a	large	number	of	3D	images	to	act	as	

the	basis	for	the	model.	In	this	case	the	surfaces	of	ten	separate	objects	(the	eight	

carpal	bones	and	the	ends	of	the	radius	and	ulna)	need	to	be	determined	in	several	

poses.	 	 The	 approach	 to	 conducting	 this	 segmentation	 and	 model	 building	 are	

described	initially	in	[58]	and	in	more	detail	in	[60].		The	method	is	similar	to	that	

developed	 in	 [48-49]	 (see	 page	 39),	 making	 use	 of	 the	 grow-cut	 algorithm	

(Vezhnevets	 and	 Konouchine	 (2005))	 in	 this	 case	 as	 multiple	 labels	 need	 to	 be	

assigned	to	voxels.	 	The	third	challenge	is	the	form	of	the	pose	model	and	how	it	

can	be	invoked	for	inference.		This	is	described	in	[57]	and	in	more	detail	in	[59],	

where	an	example	is	given	of	diagnosis	of	a	specific	wrist	pathology.		Similar	pose	

models	are	used	by	van	de	Giessen	et	al.	 (2009)	and	van	de	Giessen	et	al.	(2012)	

for	segmentation	of	wrist	bones	and	measuring	kinematics.		However,	their	study	

made	use	of	4D	CT	image	sets,	rather	than	the	2D	fluoroscopy	sequences	used	in	

[59].		

Paper	 [57]	was	 an	 oral	 presentation	 at	MICCAI	 2011.	 	 The	 expanded	paper	 [59]	

and	paper	[60]	appear	in	IEEE	Transactions	on	Medical	Imaging,	one	of	the	most	

selective	outlets	in	the	field.			
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Boundary Cue Operators for Model Based Image Processing

J. Graham and C.J. Taylor
Wolfson Image Analysis Unit

Department of Medical Biophysics
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An efficient method of using explicit shape models of
objects in boundary instantiation is to apply one
dimensional edge searches in locations where
boundaries are likely to occur. In many important
cases, linear edge operators produce at best only
weak responses. We investigate here the use of three
different statistical measures applied over a sliding
'dipole' as candidates for detecting weak boundaries.
Their performance is compared with an
implementation of the Canny operator as a benchmark
on synthetic images of step edges in random noise
and on certain difficult real images. In the former case
their performance compares favourably with the Canny
operator, while in the latter case they can produce
significant responses where the Canny operator
detects only weakly or not at all.

INTRODUCTION

In most applications of computer vision and image
processing, the correct location of the boundaries,
between different objects, or between object and
background is of central importance in achieving a
correct image interpretation. The literature abounds
with methods for detecting these boundaries, which
make use either of the different properties of the
regions on either side of the boundary, or the fact
that the boundary is characterised by a pronounced
grey-level discontinuity or edge.

The edge based approach is much favoured in
interpretation of unconstrained three dimensional
scenes, where the properties of regions may not
easily be predicted. Region based approaches are
often used in cases when the image is more
constrained, and may be considered to be two
dimensional, e.g. in remote sensing or microscopy.
Both approaches are based on models of the world
which are acknowledged to be flawed. Region
properties tend to be less well-defined near the very
boundaries they are used to detect, and edges are
often weaker on true boundaries than at other,
semantically irrelevant, points. Both region and
boundary methods tend to be applied without
reference to high level knowledge concerning the
likely location and properties of boundaries.

Recent experience in our group has shown that
considerable improvements in boundary detection
can be made by directed, one-dimensional edge
detection. The direction comes from a model of
what is expected in the image, providing a prediction
of the positions and orientations of expected
boundaries. The exact boundary locations are
determined by one dimensional edge searches
across the predicted boundary. The confidence in a
detected edge point can be assessed by reference to
local and global models of the expected edge. This
approach has produced very encouraging results in
application fields as disparate as industrial
inspection1 and histology of muscle sections2 . In
order to make this type of analysis applicable to a
wide range of applications, we require a robust
boundary cue locator which operates by one
dimensional search, avoids the problem of ill defined
edges and which does not depend critically on the
nature of the boundary. In this paper we describe
some operators which approach this requirement by
measuring properties of the distribution of image
values on either side of the boundary. We show that
using this approach, boundary detection performance
can be as good as or better than optimal methods of
edge primitive detection in terms of sensitivity and
accuracy, while allowing the flexibility of being
adapted to local models of the image.

BOUNDARY DETECTION OPERATORS

Given a prediction of where to look for a boundary, its
correct position is located by searching along a line
perpendicular to its putative orientation. To increase
signal to noise ratio, it is best to integrate the
response across some width perpendicular to this
line. The search therefore takes place within an
elongated rectangle, and we are seeking a partition of
the rectangle along its length which produces the two
most distinct distributions of image values. In order to
make appropriate comparison of the distributions of
image values on either side of the boundary, it is
important that equivalent areas are sampled. It is
also necessary to avoid confusion due to the
inclusion in the sampling of nearby boundaries with
other regions. The detector we have used is a
"dipole" consisting of a rectangular box partitioned
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into two poles, whose length and width can be varied
according to the grey level and geometrical model of
the expected edge. This dipole is scanned across the
edge; at each point on the scan the distributions in
either pole are sampled and compared in ways
described below.

Three different statistics have been implemented for
the comparison of the two poles: the entropy, the
standard deviation and the mean of the distributions.

Figure 1. The entropy dipole response to a perfect
step edge. The dipole (in this case of half length 10
pixels) is scanned across the window at the top (width
30 pixels). The mark at the top of the window
indicates the true edge position ("best"), and that at
the bottom the edge position located by the dipole
("found"). The entropy value in pole A (EA) as it
crosses the edge is shown in trace a, that of pole B
(EB) in trace b, and that of the whole dipole (Et ) in
trace c. Trace d shows the response of the operator
measure 2 xEt - (EA+EB).

Entropy

The entropy of a probability density function is given

by E = - 2 pi In (pi) where pi is the probability of
occurrence of state i. It has frequently been used as
a threshold selection measure in region-based
segmentation, where its usefulness lies in the fact
that it acts as a measure of "peakiness" or
compactness of a distribution. A very narrow
distribution of states gives a low value for E, whereas
as broad distribution of roughly equally populated
states gives a high value. When a distribution is being
divided into two distributions on either side of a
threshold, for example, the division which minimises
the sum of the two entropies produces the intuitively
optimal result. In our case we are dividing a
distribution not by a threshold, but by spatially

partitioning the area from which it is sampled.
However, the principle of producing the most
compact distributions from the region on either side
of the partition is still a useful one.

Figure 1 shows the behaviour of E, , EA and EB as the
dipole is scanned across a simple step edge, where
EA and EB are the entropies in poles A and B, and
Et is the total entropy in the window. Fortunately,
entropy is a self-normalising measure. The entropies
in each of the poles rises as that pole crosses the
edge; that is EA has a maximum on the right hand
side of the edge, EB has a maximum on the left hand
side of the edge. Both have low values (0 in this
ideal case) when the partition is on the edge. Et on
the other hand has a maximum when the partition is
on the edge. We calculate the signal 2 xE t - (EA +
EB ) which rises sharply to a maximum on the edge.
Figure 2a shows the response of the entropy dipole
to a noisy edge

Figure 2. The response of the three dipole operators to
a step edge in gaussian noise. The edge amplitude is
1 grey level and the noise standard deviation is 7 grey
levels. Trace a is the entropy response, trace b is the
SD, and trace c the significance of means. Trace d is
a density profile along the window integrated across its
width.

Standard Deviation

The entropy measure responds to the shape of the
distribution but is costly to calculate. A cheap
alternative, which also responds to the shape of the
distribution and which is also self normalising, is the
standard deviation. In similar vein to the entropy, the
measure is 2 x SDt-(SDA+ SDB) and has a similar
response.
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Mean

One way of looking at our approach is to say that we
are examining two distributions to determine whether
they appear significantly different. A straightforward
method of doing this is to examine the significance of
the difference in means given by

l

z=

Figure 2 shows the responses of each of these three
operators in locating a step edge with superimposed
noise in a case where the image signal to noise ratio
is low (0.14). All of these operators show the
capability of locating step edges in noise.

PERFORMANCE

To determine which of these operators has the best
properties of sensitivity and accuracy, we have
undertaken a systematic test of their responses to a
step edge in noise, varying the step size, noise
standard deviation and dipole width and length. As a
benchmark by which the responses could be
measured we included the response of the Canny
edge detector in the test.

The Canny Operator

The edge operator due to Canny3 is widely regarded
as the best compromise between sensitivity and
accuracy in the detection of edge primitives. Indeed
it was designed to provide the optimum response to
a step edge amongst gaussian noise. It consists in
essence of a one dimensional gaussian smoothing of
the raw image in the direction parallel to the edge,
followed by a one dimensional derivative of gaussian
convolution across the edge. The widths of the
gaussians in the two directions are typically equal,
and the edge response is integrated across some
sampling width. Canny's implementation provides for
detection of edges at different scales and
combination of the responses at different scales to
produce an edge map. Our requirement is not for an
edge primitive detector, but an edge locator. The
different scales at which the Canny operator can be
applied correspond roughly to the varying dipole size
of our detectors. We do not need to track the
response to the edge through scale space, we are
merely interested in the sensitivity and localisation
accuracy at a particular scale.

The Test

The images used consisted of 256 x 256 pixels with a
single vertical step edge extending the height of the
image, on which had been superimposed gaussian
random noise. The signal to noise ratio (edge
amplitude divided by the noise standard deviation)

was varied from 0.14 to 1.33. The dipole widths and
(half) lengths were varied from 10 to 50 pixels in
steps of 10. In the case of the Canny operator
gaussian smoothing of standard deviation 1, 3, 5, 7
and 9 pixels was applied.

For each point in parameter space 10 measurements
of edge position were made at completely separate
positions along the edge. (Thus for some of the
broader supports more than one noise image was
required.) The measurement consisted of scanning
the dipole across the whole width of the image and
measuring the responses of the dipole and Canny
operators. In the case of the Canny operator the
output of the smoothed one dimensional derivative
was integrated along the edge direction. In all
cases, the detected edge position was taken to be
the position of absolute maximum response.

The measurements made on each scan were:

The distance of the located edge from the true
edge.
The response at the position of the true edge.
The response at positions distant from the true
edge.

From these measures at each point in parameter
space we have:

A (sparse) histogram of localisation error.
A distribution of response signal.
A distribution of response noise.

From which we derive :

Sensitivity : (signal mean - noise mean)/(noise
standard deviation)

Localisation accuracy : The mean localisation
error

Localisation precision : The standard deviation of
the localisation error.

Results

Derived performance values were obtained over a
range of dipole widths and half-lengths. In each case
the Canny smoothing standard deviation used as an
equivalent to the detector length is such that two
s.d.'s is about equal to the dipole half-length. The
two cases are not directly comparable in terms of the
contributions of their support regions, and the
decision to adopt a particular combination of support
sizes as being equivalent is a fairly subjective one.
The two standard deviation cut off was selected,
since the gaussian weighting is certainly significant
within this boundary, and indeed for some distance
beyond it. The Canny results are included to give
some idea of the scale of values.

Figures 3 to 5 show examples of some results at a
particular scale. They show how the derived values
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vary with the signal to noise ratio of the image using a

dipole width of 30 pixels and a half length of 20. An

s.d. of 9 was used for the corresponding Canny

operator.
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Figure 3. Sensitivity of the dipole operators compared

with the Canny operator as a function of the image

signal to noise ratio (edge amplitude divided by noise

s.d.). The dipole width and edge integration width is

30, the dipole half length is 20 and the s.d. of the

smoothing gaussian in the Canny case is 9.

Figure 3 shows the variation in sensitivity of the

different operators. Not surprisingly, the sensitivity of

all the operators increases steadily with the signal to

noise ratio of the image. Against the Canny

benchmark, the performance of the entropy dipole is

poor, particularly at low signal to noise values. The

significance of means dipole is better at low signal to

noise, having about 60% of the Canny response. The

SD dipole has very similar sensitivity to Canny at very

low signal to noise ratios, becoming increasingly

better as the signal to noise ratio increases above

0.25.
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Figure 4. Edge localisation accuracy (mean error) for
the 30 x 20 (9) support. (See figure 3).Off scale
values at low image signal to noise are not shown.
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Figure 5. Edge localisation precision (standard
deviation of the error) for the 30 x 20 (9) support. (See
figure 3).Off scale values at low image signal to noise
are not shown.
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Figures 4 and 5 show the variation of localisation
accuracy and precision using the 20 x 30 pixel
support. Both accuracy and precision give a
measure of how reliably the edge is located, and the
graphs show similar behaviour. Both give good
values (< 1 pixel), down to some signal to noise
threshold at which the localisation becomes quickly
unreliable. In the case of the entropy dipole, the
threshold is rather higher than for Canny. SD and
significance of means dipoles have slightly higher
thresholds than Canny. Notice that this threshold can
occur at values of sensitivity which appear fairly high.

With smaller support sizes, similar behaviour is
observed. All the sensitivities are reduced, of course,
and the threshold at which localisation accuracy
becomes unreliable is higher. The sensitivity of the
SD dipole at a signal to noise ratio in the image of
unity, using a 10 x 10 pixel support, is about twice that
of the Canny operator, compared to about five times
as in figure 3.

Real Images

Experiments with test images provide confidence that
the dipole operators are likely to be reasonable
candidates for providing boundary cues. The model
of a step edge among random noise, however, is not
an ideal one for the cases in which we would like to
apply these operators, namely to diffuse or weak
edges among structured noise. Experiments with a
number of images, particularly of biological material,
indicate that one or other of the dipole operators can
give a strong response at faint or noisy boundaries
where the Canny operator responds only weakly or
not at all. Obviously cases can be found in which
these operators fail to detect a boundary, but in such
cases the Canny operator also fails. There is no
clearly best candidate among the three dipole
operators. The significance of means response is
consistently similar to that of the SD operator, and
consistently more noisy, making it clearly the worst.
Whether the best results are obtained by the entropy
or SD operator depends on the image in question,
notwithstanding the poor showing of the former on
the noise images. The difficulty in modeling real
cases means that it is difficult to make an objective
assessment of performance or to demonstrate
power in boundary location. Further study may allow
us to find methods of determining the most
appropriate operator for particular cases. For
illustrative purposes we present some examples of
edge responses.

Figure 6. Detection of a weak edge in a chromosome
image. The search region is indicated by the bracketed
window.
a - Entropy dipole response
b - SD dipole response
c - Significance of means dipole response
d - Canny response
e - Projected density profile along the search line
The arrow indicates the edge position determined from
a. The dipole width is 7 pixels and half length is 10
pixels. The corresponding standard deviation for the
Canny operator is 5.

Figure 6 shows a search for a difficult edge in a
chromosome image. A shape model predicts the
existence of a boundary in a certain direction. The
search is confused by the existence of strong edges
in addition to the weak true edge. The responses of
all four operators under test are shown. The dipole
operators, including the entropy dipole give significant
responses while the Canny operator produces no
response. Figure 7 is part of a radiograph of a hip
prosthesis. The required boundary is that between the
bone and the retaining cement. The edge in this case
can be very indistinct, but dipole search with a large
support can provide important cues to its position. No
case has been observed in which a boundary which
can be detected by the Canny operator cannot be
detected by one or more of the dipole operators.
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Figure 7. Part of a radiograph of a hip prosthesis. The
required boundary is that between the bone and the
cement holding the prosthesis in place. Indicated
responses etc. as for fig.6.

It is important to notice that the image signal to noise
ratio at the edge is quite high in both of these cases :
about 2.3 for the chromosome image and about 1.9
for the radiograph. Even if we choose to model the
boundary detection using a step edge amongst noise,
our working region in real images is likely to be well to
the right of, or beyond, the scale of figures 3, 4 and
5.

DISCUSSION

The approach taken in designing the dipole operators
described here is that something is known about the
location and orientation of a boundary between two
regions and that its true position can be determined
by measuring some statistic of the distribution of
image values on either side of the edge. De Sousa4

has described a similar application of sliding statistical
tests to radiographs and natural texture images. One
of his measures was identical to the significance of
means dipole described here, which has consistently
shown behaviour similar to that of the SD dipole, but

more noisy. Several authors 5' 6 have considered
using a comparison of medians or other order
statistics to detect edges. These methods are all
used in the context of edge preserving smoothing to

reduce impulse noise. We did not consider this to be
an appropriate model for the type of boundary
detection we wish to achieve.

Three statistics whose properties seem reasonable
for the task have been implemented and tested
systematically on an artificial image, with the Canny
operator acting as a benchmark. This test of
sensitivity and accuracy was an exacting one since
the Canny operator is optimised in one sense for the
detection of step edges among gaussian noise. The
performance of the entropy dipole was disappointing,
but that of the significance of means dipole was
better. The SD dipole gave encouraging results,
being about as accurate as the Canny operator and in
many cases much more sensitive.

The application of the dipole detectors to difficult
real-world images has shown that one or more of
them can provide useful boundary cues in cases
where linear edge detection fails - the very cases in
which model based instantiation is most necessary.
Despite its poor showing in detecting model step
edges, the entropy dipole appears to retain some
promise as a boundary cue operator in real-world
images.
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This paper describes an Object Oriented program
generator for image processing applications. Control
is represented by a dataflow graph and interaction by
"view" objects which update displays and modify
domain objects. Progress so far also indicates that
Object Oriented Programming for user-defined image
processing requires a rich programming support
environment.

Many groups have developed libraries of image
processing (IP) modules for applications in the
medical and industrial fields. The use of these
libraries requires considerable programming effort
and expert knowledge, which limits the economic
viability of the technology. To develop an application,
the user must not only have expert knowledge of
image processing algorithms, but must also contend
with the messy details of programming. Because of
the commercial pressure to quickly demonstrate the
feasibility of program designs, there is a need for an
application generator. This paper describes our
attempts to develop such a tool (DEMOB). The
primary aim of this tool is not to help with the "art" of
image processing, but to help make the construction
of an application as direct as possible.

Objectives of DEMOB

One of the objectives in designing DEMOB was to
investigate the problems involved in designing an
application generator. Prototyping tools implemented
using conventional structured programming suffer
from having the structure of domain objects,
interactions, and control programmed in. For
example the implicit control structure may be a
pipeline, along which a work image flows, with the
user being offered (via menus) a choice of the
operations to be performed on the image.
Interactions occur in a pre-programmed manner,

This work is supported by an SERC grant and is
part of ALVEYproject MMI-093: "Techniques for
User Programmable Image Processing (TUPIP)"

and tedious re-coding is required when new
operations are added.

Our design goals included the requirement that
control be separated out explicitly from the operation
of the tool and from the domain objects. Interactions
should also be factored out, so that interactive tools
for different domains could be rapidly built from a set
of building blocks. The program generator should be
open, so that further domain objects and interactions
could be added easily. The user should not be
constrained to follow a particular design cycle, but
instead should be able to interact with
subcomponents of the problem in a relatively
unstructured way. The Object Oriented Programming
(OOP) technique1, with its desirable properties of
information hiding and run-time binding seemed to
offer a viable approach to implementing such a tool.
One of the aims of the project was to explore the
uses of OOP for IP. Because of the nature of IP, with
the need to display and interact with raw and
processed images, the tool should have a mouse -
driven, window based graphical interface. A brief
description of the OOP paradigm is given below. For
a fuller description, the reader is referred to
reference 2.

APPLICATION REPRESENTATION

Separation of Control

A prototype application is represented internally by a
dataflow graph3. This representation was chosen
because the explicit recording of dependencies
between data items provides the potential for
automated reasoning about applications. A simple
graph, representing "blob" extraction from an
image, is shown in figure 1. The dataflow graph
consists of: nodes, representing actions applied to
data objects; tokens, representing references to data
objects; and directed arcs, which transfer references
to tokens between nodes.

A node is ready to fire when it has received all its
tokens from its input arcs. New tokens are created by
the node, and are transferred to further nodes via the
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output arcs, making them ready to fire. After
execution only the "dangling" output arcs of the
graph contain references to tokens, all intermediate
data objects (and their tokens) having been
consumed. Each token contains a counter for
references to the data object. When references to
tokens are created or consumed, the counter is
incremented or decremented, respectively. When
the counter reaches zero, the data object, and
token, can be deleted.

1 Define datal I Define datal I Define datal
^Maaaa^^^B—^nMaaHHaM ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^^^m^^m^m^m^^m^^^^m^^

I Define Data!
f
Value_range 1

List of blobs

Figure 1. Graph representing blob extraction.

new nodes, and adding them to the graph. Graphs
and objects can also be saved and retrieved from
disc file.

IMPLEMENTATION

The Object Oriented Programming
Environment

The key features of OOP are data encapsulation and
inheritance. The OOP technique consists of
identifying objects which are to be manipulated in an
application, and in defining the data structures and
operations needed for each object. The private
data structure representing the object is protected
from direct manipulation by the user, and operations
on it may only be carried out by sending a message
to the object, which uses it to select an appropriate
operation. It is important to note that the message
only conveys "what" the programmer wants done,
but the object itself decides "how" it is done. For
example the message AREA sent to a shape object
may cause different operations to be carried out,
depending on whether the shape is a circle,
rectangle, etc. Because the internal representation is
hidden, it can be changed without affecting the user,
who need only know the messages to which the
object responds.

The User Model

DEMOB is designed to present the application and
data objects graphically to the user. The user may
select any action or data object in his application by
selecting the appropriate node or arc of the graph,
which will respond by offering an interacton with the
appropriate object. Each interaction takes place
within a window, which contains a menu, a display of
the object, and a prompt line. Selection within the
window leads to a more specialised interaction with
the object, or an interaction with a new object. Initially
the user is offered a general interaction with an
empty list object. Typically the user then chooses to
load a graph from a disc file, or to create a new
example. An interaction with the new graph is entered
and the user is presented with a diagram such as that
shown in figure 1, and a menu of available
interactions. For example, if the user selects a
dangling output arc he will enter an interaction with
the data object on the arc. The arc itself can be
selected, and modified so that, during execution, it
will display the data objects passing through it.

During execution the arcs and nodes are highlighted
as they become active, and windows open on the
screen to show data objects as they are created. The
user modifies his program by cutting arcs, creating

Heap
(Objects)

Static data segment
(Classes)

Text Segment
(Methods)

Superclass : Null
Name : Object

Class variables

Class method table

NEW : newObjeotQ

Instance method table

PRINT : printObjectQ

Name : Tom
Class : Cat Q

Instance
variables

Superclass : Object
Name : Mammal

Class variables

Class method table >

NEW : newMammal

Instance method table
3RINT : printMammal

0

Superclass: Mammal
Name : Cat

Class variables

Class method table

NEW : newCat

Instance method tabl<

PRINT

i I

Figure 2. Schematic memory map of OOP
system

An individual object is regarded as an instance of a
particular class e.g. Tom is an instance of the class
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Cat. The class definition defines the data structure
("instance variables") of its instances and the
messages (with corresponding operations or
"methods") to which it will respond, in the form of a
lookup table, indexed by the message selectors.
Each object contains a pointer to its class, which is
itself an object, with corresponding class methods
and "class variables". In particular, each class can
respond to the message NEW by returning a new
instance (by invoking the newCat method). Figure 2
shows a schematic memory map showing the
relationship between objects, classes and methods.

The use of encapsulation helps to protect code from
the effects of changes. The use of inheritance allows
code to be re-used. The classes are arranged in an
inheritance hierarchy, with more general operations
and instance variables being defined in classes high
in the hierarchy. For simplicity, each class can
inherit from one "superclass" only, although in other
implementations, multiple inheritance is a useful
feature. Each class contains a pointer to its
superclass (except for Object, the class at the root of
the hierarchy). Methods high in the hierarchy may
only manipulate instance variables defined at that
level or higher in the hierarchy.

We have developed an OOP environment in-house in
which to implement DEMOB. This consists of C with
some preprocessor tools. The programmer causes
messages to be sent to objects by inserting code of
the form:-

Tom = NEW$(Cat);
PRINT$(Tom);

where Tom is of type "ob_ptr" i.e. a pointer to an
object. A special global object pointer, "self",
represents the receiver of the current message, and
is used within methods to access the instance
variables of the object. A preprocessor tool checks
that the message selector is represented in a file of
valid messages, and then converts this string into a
call to a message handling routine:

Tom = msg(NEW.Cat);
msg(PRINT.Tom);

The message handling routine expects the message
selector and the receiver of the message as the first
two parameters. Upon execution, the message
handling routine searches the method lookup table
of the class of the object for the corresponding
method (it recognises a class by the fact that its
class pointer instance variable is null). The stack is
adjusted to simulate a standard C procedure call, and
control is passed to the method.

The programmer may also specify that the search for
a method should begin in the superclass, rather than
in the class, by writing:-

PRINT$super(Tom);

This powerful facility allows the chaining together of
methods. For example, the PRINT message causes
the printing of the values of all instance variables of
the object, and is implemented at each level of the
class hierarchy by methods of the form:-

PRINT$super(self);
printf("Instance variables at this level");

This causes the instance variables, starting at the
root of the hierarchy, to be printed.

The low level image processing routines of our
system are microcoded to make use of particular
data structures, optimised for IP operations and
executed on a slave co-processor. Since a large
effort had already been expended in developing
existing software and hardware,we were constrained
to include these existing data structures in DEMOB.
One of the objectives in developing DEMOB was to
investigate the effective use of mixed typed data
structures and objects.

Image Processing Objects

I Laplaclan]

Figure 3. Image Processing Objects
Class Hierarchy

Since we wish to be able to add new classes and
modify existing classes without too much disturbance
to the rest of the system, DEMOB makes no
assumptions about the domain classes, other than
that they will respond to a limited set of messages,
which provide the interface between these classes
and DEMOB. These messages allow DEMOB to
ascertain the default method of interaction and the
operations available for the domain object. Besides
general purpose objects such as integers, reals,
booleans, lists, etc., a variety of data objects specific
to IP are also required. These include images,
cameras, pointsets, value ranges, and image
transform specifiers4. A class hierarchy of these
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objects is shown in figure 3.
Associated with each object is a set of messages
which are used to process the data e.g. a Camera
object responds to the PHOTO message by producing
an Image object. The processing steps in the
application are built up using these messages, which
are inserted into the graph as described below. Also
associated with each object is a set of interactions
e.g. the Real number object has a set of interactions
allowing the number to be modified in a variety of
ways. These interactions can be inserted into the
graph as described below.

Graph Nodes

The structure of the dataflow graph allows control
over the order in which operations are carried out.
Further control is provided by supplying specialised
nodes which implement further control structures.
The class hierarchy of the objects used in
constructing graphs is shown in figure 4. The Node
class provides the functionality common to all nodes
e.g. the ability to receive and transmit tokens.
Further, more specialised functionality is provided by
the subclasses of Node.

Figure 4 . Inheritance hierarchy of
graph objects

One such class is the "Data Definition" class, whose
instances act as sources of data for the dataflow
graph. When the node is created the user is asked to
define the data object, and on subsequent execution
a token representing the data object is output by the
source node. In the example graph shown in figure 1,
four data objects are needed : a camera, a mask
image, a pointset (defining the region over which the
operation is done) and a value range (which defines
the thresholds for the slice operation).

Multiple references to data objects are frequently
required, so a "copy" node class is provided. These
work by incrementing the reference counter of the
input token, and passing out multiple references to it
via the output arcs.

A "graph" node, like any other, can receive tokens
from its input arcs, and passes tokens to its output
arcs. Internally its execution is represented by a
collection of nodes and arcs i.e. a sub-graph. A
graph can thus have a layered structure, with a
"root" graph node controlling the execution of its
sub-graph, which itself can contain graph nodes.

Iterative execution is implemented by providing a
variety of "iteration" node classes. For example, a
specialised type of graph node, the "while-do" node
controls the execution of a condition graph and an
action graph. During execution the set of input tokens
is passed to the condition graph, which executes and
returns a boolean object. If it is "true" the set of input
tokens is passed to the action graph, which returns a
new set of tokens, and the cycle is repeated. If the
boolean is "false", the tokens are passed out as
output.

Conditional execution is implemented by providing an
"if-then-else" node class. This node controls a
condition graph, a "true" graph and a "false" graph.
The execution cycle is similar to that of the
"while-do" graph i.e. the input tokens are passed to
the condition graph, and a boolean object is
returned. Depending on its value, the input tokens
are passed to the "true" or "false" graph.

These nodes introduced so far provide the control
structures of conventional structured programming (a
subroutining facility could easily be added). A further
class of node, the "personalised" node, is included
to allow user selected actions on data objects.
Actions are carried out by sending a message to an
object e.g. to add two numbers together the
message is : -

C = ADD$(A,B);

where A, B,C are references to the number objects,
ADD is the message, and A is the receiver of the
message. The personalised node has instance
variables allowing it to store this message. The
convention adopted is that the message is sent to the
data object input via the first input arc, with the data
objects from the other input arcs as parameters. The
returned object from the message is assumed to be
a list of output data objects, which are transferred to
the output arcs. In this case a single object, C, is
returned. During the creation of a personalised node,
the user is prompted to define a receiver, which then
offers for selection all the available messages for that
class of object.
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Part of the user's application may involve run-time
interaction with the data objects, and a special
"interaction node" class is provided to allow this.
When creating this node, the user will be prompted to
define the class of input, and will be asked to select
from all available interactions with this class. An
instance of this interaction (see below) will be
created and placed in the interaction node. When the
data object arrives along the input arc, the interaction
will take place, and the modified data object will be
output along the output arc.

The Interaction Model

The programming of interaction required a large part
of the effort in developing DEMOB. A graphics
sub-system was developed, which implements a
GKS5 model of graphics i.e. overlapping rectangular
regions of the display device, called "viewports",
display "icons" in "worlds" through "windows"
opening on the worlds. Viewports are grouped
together in frames. These components were
implemented by defining classes of objects, with all
device-dependent code being confined to the Screen
class.

Class 2

| Default 1 |

•

" \ ~ ~ ~ - —

Interaction 2

SkelV 2

I Default 2 1 Interaction 3

Figure 5. The View Class Hierarchy

Rather than have each domain object controlling its
interactions, we decided that each interaction should
be defined by a separate class, to increase
modularity and to save memory space. When an
interaction with an object is required, an instance of
the relevant class, known as a "view", is created and
is put in control of the object. The view object would

inherit the instance variables and most of the
methods needed to represent and manage the
display from its superclasses, and need only provide
locally the code needed to determine the course of
this particular interaction.

We thus define a class hierarchy of views to
accompany the hierarchy of domain objects, as
shown in figure 5 . This view hierarchy contains
"skeleton" classes which provide all the instance
variables and methods common to interactions, and
"view" classes which define particular interactions.
Each object has a default view class, which
implements the most general interaction possible i.e.
to display the object and to offer all interactions
available for it. It also allows the user to select
sub-components of the object for further interaction.
When a new domain class is added a corresponding
skeleton class with default view and any further view
classes are also added.

RESULTS

A basic version of DEMOB has been implemented on
a CVAS 3000 (Visual Machines Ltd.) system. Images
of the screen, showing a sample graph during and
after execution, are shown in figures 6 and 7. These
show a graph interaction window, with associated
menu, and displays of a source image and a sliced
image.

Figure 6. Sample graph during execution
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Figure 7 - Sample graph after execution

DISCUSSION

Limitations of the OOP Environment

Designing with objects proceeds by identifying the
instance variables and methods of classes. As the
design proceeds, the programmer identifies ways in
which code can be reused, usually by spotting ways
of adding new classes and by splitting or moving
methods and instance variables around in the class
hierarchy. The final system contains a large number
of classes, each with a relatively small number of
methods, each containing a small number of lines of
code. It is easy for the programmer to lose track of
such a system, and it can be difficult for a new
programmer to add new functionality to the system,
since in order to do so, he must understand what he
is inheriting. We thus need tools to allow the
programmer to browse around the source code in a
structured manner such as are supplied in Smalltalk6.

In our OOP environment, all class and method
definitions are compiled. While this increases
run-time efficiency, it also means that the definition
of an object is fixed. Further, although the code is
compiled, no static type-checking is done.

Design Issues Raised in OOP

Initially, design concentrated on using the
"information hiding" aspect of OOP, but as we
gained experience, inheritance gained in importance.
The derivation of a class hierarchy can be difficult, in
part because the only relationships provided are the

"is-a" and "is-an-instance-of" relations. These do
not, however, describe the relationship between say,
views and their objects. For these objects the
"information hiding" aspect of OOP is a
disadvantage, since the views need to have access
to the instance variables of their objects. This
problem arises because it is difficult to decompose IP
applications into independent static classes of
objects i.e. where information can be encapsulated
permanently into objects. In practice we wish to be
able to merge the information from several classes of
object e.g. in applying an operation over a pointset in
an image. Where a static encapsulation of
information suffices(e.g. the dataflow graph) the
model works well. The frame paradigm 7 presents a
richer environment for the representation of domain
knowledge,allowing object decomposition as well as
more complex relationships between objects.

Our experience has shown that the use of mixed
typed and object variables reduces the advantages of
using OOP, since much code had to be handcrafted
to deal with the typed variables. Of course, these are
needed to map onto the IP software and hardware.
The correct way to deal with them is to implement a
basic set as objects, with methods handcoded to
implement the functionality provided automatically for
other objects. It is instructive to compare our
approach with the Eiffel OOP language 8 . This
language has a compiler which recognises the use of
a limited set of simple types, but any complex data
structure must be represented as an object.

Design Issues in the User Interface

The user interface is crucial to the success of a tool
such as DEMOB. Users are sensitive to features
which appear relatively trivial, such as the particular
style of interactions, or the wording of prompts.
There are a variety of ways in which an interaction,
such as modifying an integer, can be implemented.
One solution is to recognise that these interactions
have much in common, and thus could be
represented by an appropriate view class hierarchy.

Instead of being presented with the dataflow graph,
some users felt that it would be better for this to be
hidden, and instead to present only the data objects.
Design would proceed by creating and selecting
objects for processing. The user would then selects
an appropriate operation which could take these
objects as inputs. The selected action would be
invoked, causing new objects to be created.

CONCLUSIONS

The dataflow graph is adequate for representing an
application. However the need to fully specify the
dataflow is tedious for programmers, since the
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normal constructs of conventional programming
languages correspond to a lot of dataflow, which the
programmer does not normally need to specify
explicitly.

While OOP greatly increases the robustness and
reuseability of code, and provides a useful paradigm
for the development of complex software systems,
the behaviour and relationships between the complex
data structures used in IP are not adequately
modelled by message passing objects arranged in a
single inheritance class hierarchy. To use OOP the
development environment should be fully integrated
with the language to allow rapid modification of an
evolving system. A clean interface between typeless
data structures (objects) and typed data structures
should be maintained. The dataflow graph provides a
viable means of representing procedural knowledge,
but needs careful design of the user interface in
order to gain user acceptability.

REFERENCES
1. ACM SIGPLAN Notices, Vol. 21, No. 10, Oct.

1986
2. Brad C. Cox, "Object Oriented Programming -

An Evolutionary Approach", Addison - Wesley,
1986

3. /£££ Computer, Special Issue on Dataflow
Systems, Vol. 15, No. 2, Feb. 1982

4. Graham J., Taylor C.J., Dixon R.N., "A
compact set of image processing primitives
and their role in a successful application
program", Patt. Recog. Lett., ±, 325 - 333,

1987
5. Hopgood F.R.A., Duce D.A., Gallop

J.R., Sutcliffe D.C.," introduction to the
Graphics Kernel System (GKS)" A.P.I.C.
Studies in Data Processing No. 19,
Academic Press, 1983

6. Goldberg A., Robson D., " Smalltalk - 80 The
Language and its Implementation", Addison -

Wesley Series in Computer Science, 1983
7. Wood P.W., Pycock D.P., Taylor C.J, "A

Frame-based System for Modelling and
Executing Visual Tasks", Alvey Conference
1988.

8. Meyer B., "Eiffel: Programming for Reusability
and Extendability", SIGPLAN Notices
Vol. 22., No. 2, Feb. 1987

43



	 56	

	

6. User	Programmable	Visual	Inspection.		J.	J.	Hunter,	J.	Graham	and	C.	J.	
Taylor,	Image	and	Vision	Computing,	13:	623-628,	1995.		
doi:10.1016/0262-8856(95)97287-V	

	 	















	 57	

	

Chromosome Analysis and Neural Network Models 
	

7. Automation	of	routine	clinical	chromosome	analysis	I.	Karyotyping	by	
machine.		J.		Graham,	Analyt.	Quant.	Cytol.	Histol.,	9:	383	-	390,	1987.	
	 	



















	 58	

	

8. Automation	of	routine	clinical	chromosome	analysis	II:	Metaphase	
finding.			J.		Graham	and	D.	Pycock,		Analyt.	Quant.	Cytol.	Histol.,	9:	391	-	397,	
1987.	

	 	

















	 59	

	

9. The	transportation	algorithm	as	an	aid	to	chromosome	classification.		
MKS	Tso	and		J.	Graham,	Patt.	Recog.	Lett.,	1:	489	-	496,	1983.	
doi:10.1016/0167-8655(83)90091-0	

	 	



Pattern Recognition Letters 1 (1983) 489-496 July 1983 

North-Holland 

The transportation algorithm 
chromosome classification 

as an aid to 

M . K . S .  T S O  
Department of Mathematics, UMIST, P.O. Box 88, Manchester, M60 9PT, U.K. 

J. G R A H A M  
Department of Medical Biophysics, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, 
U.K. 

Received 7 April 1983 

Abstract: An algorithm is presented which obtains a constrained maximum likelihood classification of homogeneously stained 
chromosomes. Significantly improved results over both a context-free and a plausible context-driven classification are obtained. 
Extension to banded chromosomes and abnormal cells are discussed. 
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1. Introduction 

Much of  the effort  in the analysis of  chromo- 
somes is directed towards producing a karyogram 
in which the 46 chromosomes of  a (normal) human 
cell are displayed in their correct groups. A trained 
human operator can achieve this classification with 
an extremely low error rate (Lundsteen et al. 
(1976)). However it is a painstaking task and there 
is still considerable interest in developing an 
automated system having a comparable level of  
accuracy (see Piper et al. (1980)). 

Rutovitz (1977) and Piper et al. (1980) have ob- 
served that the task of identifying the correct group- 
ing of chromosomes is a 'context-conditioned' 
operation when performed by a human operator.  
That  is, all the chromosomes in a cell are taken 
into account by the operator in making individual 
assignments. In particular the operator knows at 
the outset how many chromosomes in total should 
be assigned to each group. Previous attempts at 
automatic classification have tended therefore to 
include a final rearrangement algorithm that takes 

a 'context-free' allocation and iterates to one satis- 
fying the group total constraint. Rutovitz (1977) 
has described such an algorithm that operates 
through a sequence of 'cascade' transfers between 
groups but no analysis of  the optimality of  this 
algorithm is given. 

We propose in this paper a new formulation of  
the allocation problem which adopts a maximum- 
likelihood approach, but which allows an optimal 
allocation to be determined by an algorithm for 
solving the ' t ransportation'  problem of  linear pro- 
gramming also known as the 'Hitchcock'  problem 
(Hitchcock (1941)). We give the results of a study 
involving 110 homogeneously stained human 
metaphase cells showing that significantly im- 
proved classifications can be expected using this 
algorithm. 

2. Mathematical  formulat ion 

We have divided the chromosomes of a normal 
cell into ten groups, approximating the 'Denver'  
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classification (Denver conference (1960)). These 
classes and the number of  chromosomes they con- 
tain are shown in Table 1. The ambiguity in the 
totals for groups 5 and 10 arises from the fact that 
the sex chromosomes, the X and the Y, respec- 
tively, belong in these groups. We have given the 
correct totals for a male (XY) cell in parentheses. 

We shall assume for the moment  that the sex of  
the cell is known and that a complete set of  
chromosomes is present. Let I and J denote the 
index sets I = { I  . . . . .  10} and J = { 1  . . . . .  46}. The 
chromosomes to be classified are arbitrarily 
ordered and p measurements are made on each by 
an image analysis system. The resulting set of  46 p- 
vectors ej, j~J ,  belong" to a p-dimensional 
feature space. We shall assume that chromosomes 
from the i-th group have a probability density 
function j~(~) defined over the feature space. The 
maximum-likelihood discriminant rule (see e.g. 
Mardia (1979), p. 300) allocates the j - th  chromo- 
some to the group k satisfying 

Lr(~j)= mjax {Li(~j) } 

where Li(~) is the likelihood function (Li(Oo¢ 
fi(~)). However, this results in a context indepen- 
dent classification of individual chromosomes. We 
require a context dependent classification that pro- 
vides the correct group totals. We may formulate 
this latter problem as the constrained optimisation 

Maximise log L = ~ log Li(~ j )X  U (1) 
iEl 
jEJ 

where x U = 0 or 1 and satisfy the constraints 

xo.=ni, i~1, (2) 
jEJ 

and 

x~j= 1, j e J .  (3) 
iEl 

X=(xU) is an 'allocation matrix'  of  indicator 
variables such that x0=  1 if chromosome j is 
allocated to group i. The constraints (3) specify 
that X is a valid allocation matrix with a single ' 1' 
in each column, while the constraints (2) specify 
the total number of  chromosomes allocated to 
each group. The maximand in (1) is the log of  the 
joint  likelihood function of  the total allocation 

Table l 
The ten classification groups, their expected populations and 
their relation to the Denver classification 

Denver Class n i 
Notation (i) 

1 1 2 

2 2 2 
3 3 2 
4-5 4 4 
6-12, X 5 16(15) 
13-15 6 6 
16 7 2 
17-18 8 4 
19-20 9 4 
20-21, Y 10 4(5) 

assuming independence of  the distributions fi(~), 
i e L  

It is not difficult to see that this problem in 0-1  
variables can be solved by the transportation 
algorithm. The transportation analogy arises as 
follows. Regard the assignment of  a chromosome 
j to a group i as a movement along a route j - i  
giving rise to an additive cost cij. If  we define 

¢ij = - 2  log Li(~j) 

then c,j _> 0 and the problem of  finding an optimal 
assignment maximising (1) becomes that of  mini- 
mising the transportation cost function 

~ CijXij 
i,j 

finishing with a prespecified total number o f  
chromosomes in each group. I f  we introduce the 
non-negativity constraints xij >- O, i ~ I, j ~ J, the 
0 -1  constraints on x/j become superfluous. (Since 
the right-hand sides of  (2) and (3) are integers, any 
optimal solution to the transportation problem 
produced by the algorithm must be integer 
(Trustrum (1971), p. 36). Hence (3) and the non- 
negativity conditions force xij to be 0 or 1, i ~ / ,  
j ~ J ,  in the optimal solution). 

This formulation possesses a number of  striking 
advantages, namely the following: 

(1) Optimality: A solution algorithm is available 
which is known to terminate at an optimal solu- 
tion. The solution reached will be globally optimal, 
thus providing the overall maximum-likelihood 
allocation subject to the group total constraints. 
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(2) Sexual attraction: If the sex of  a cell is not 
known in advance it may be left unspecified, and 
determined by the algorithm. In this case we set the 
group totals at their maximum value viz. n 5 = 16, 
n~o=5, and take up the 'slack' in the allocations 
by creating a 'fictitious' 47th column for the X- 
matrix and forcing either X5,47 = 1 or x10,47= 1. 
We ensure that these variables contribute nothing 
to the cost function by defining their associated 
cost coefficients to be zero. Forcing the slack 
allocation into one of groups 5 and 10 is achieved 
by assigning a large negative value to the coeffi- 
cients of xi,47 (i~:5, 10) in (1). The algorithm will 
then be attracted to the 'most likely' choice of  sex. 

(3) Missing chromosomes: Whilst in the study 
presented in Section 3 we have used cells with the 
correct chromosome complement, this is not a re- 

quirement of the algorithm. If one or more 
chromosomes are missing, the deficient groups 
may be readily identified. The final column(s) of  
the X-matrix are regarded as fictitious 'slack' col- 
umns in much the same spirit as (2) above. The 
corresponding cost coefficients in the objective 
function are set to zero and the final allocation of  
these columns enables the deficient groups to be 
identified. 

(4) Extra chromosomes: Extra chromosomes 
are assigned to a 'surplus' l l th group by the 
algorithm, the complement of this group being 
determined by counting. Chromosomes assigned 
to this group may subsequently be identified by 
context independent assignment to one of  the 10 
groups using a maximum likelihood rule. 

C e n t v o m e r i c  Index  
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3. Results o f  analysis on 110 cells 

One hundred and ten homogeneously stained 
metaphase cells from peripheral blood were 
selected from a routine clinical population. 
Roughly equal numbers of  male and female ceils 
were used in varying states of  contraction and stain 
density and each containing the full complement of  
46 chromosomes. Chromosome lengths, areas and 
the corresponding centromeric indices were meas- 
ured using a television based image analyser 
(Magiscan-2, Joyce Loebl), running specially 
designed chromosome analysis software (JG, in 
preparation). Length and area measurements are 
highly correlated, and for this study, the classifica- 
tion features used were area and area centromeric 
index only. 

Each cell was independently classified by an ex- 
perienced human operator.  It was decided to fit a 
4-parameter bivariate normal distribution to the 
measurements f rom each chromosome group. (The 
errors in the determination of  area and of  area cen- 
tromeric index were assumed to be uncorrelated.) 
Chromosomes from 20 cells were used to fit the 
distributions. These were divided into the ten 
groups and gave rise to the parameter estimates 
given in Table 2. Each determination was based on 
a minimum sample size of  40 chromosomes. 

Let a, be the mean vector of  measurements on 
area and centromeric index for chromosomes of  
the i-th group. Let A i be the covariance matrix of  
these measurements (which we shall assume to be 

diagonal). The assumption of  a normal distribu- 
tion gives rise to the cost penalty 

Cij = l o g  IAi] + (~j--lzi)TATI(~j --],li) (4)  

for  assigning ~j to group i. 
A total of  90 cells were classified by solving 

(1)-(3) using the transportation algorithm with 
cost matrix defined by (4). The results are shown 
in Table 3. The first three columns of  this table 
represent respectively the 'one at a time' context- 
independent classification, the results obtained 
using a 'benchmark'  allocation procedure and 
those obtained using the transportation algorithm. 

The benchmark allocation procedure was to 
assign chromosomes to groups sequentially start- 
ing with the highest likelihood assignment, but not 
allocating chromosomes to full groups. Trying to 
assign a chromosome to a full group implies that 
chromosomes already assigned to that group have 
a higher likelihood of  belonging there. The re- 
jected chromosome must later be assigned to 
another (unfilled) group with lower likelihood. 
Thus a high likelihood solution is obtained, but 
global optimality is not guaranteed. 

Use of  the transportation algorithm resulted in 
an overall misclassification rate of  3.3°70 which is 
a clear improvement on the 5.2070 achieved by the 
benchmark algorithm. The 'one at a time' ap- 
proach achieved a rather higher misclassification 
rate of  6.4070. On a cell by cell basis the transporta- 
tion algorithm was able to classify almost 50070 of  
ceils without error. 

Table 2 

Group parameters based on a 'training' set of 20 cells. A = Area 

normalised to mean 20, CI = Centromeric index by area 

A CI 

Group mean s.d. mean s.d. 

1 35.3 2.5 47.3 1.9 

2 34.4 2.5 40.1 3.0 

3 28.7 2.2 47.0 2.0 

4 26.3 1.7 28.7 3.4 

5 21.5 2.3 36.6 5.0 
6 16.8 1.4 18.1 5.8 
7 15.5 1.6 42.4 4.1 

8 14.5 1.2 32.3 5.9 
9 12.3 1.1 44.1 4.2 

10 10.5 1.6 26.5 7.3 

Table 3 
Comparison of allocation procedures on an independent set of  

90 cells 

Allocation 

One at Bench- Trans- True 

a time mark portation 

No. of chromosomes 
misallocated 265 214 135 - -  

070 of total 6.4 5.2 3.3 - -  

°70 of  cells 

correctly allocated 10 33 46 - -  

Mean value of 

- 2  log Lma x 0 24.7 6.7 12.5 
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The final row in Table 3 further confirms the im- 
provement  in classification accuracy obtained by 
the algorithm. This row contains the mean values 
of  the objective function, - 2  log L, for the final 
classification determined by each algorithm. This 
quanti ty was also calculated for the ' t rue '  
classification of  each cell determined by human 
operator .  (These values have been shifted by sub- 
tracting the column minimum from each column 
of  the cost matrix, so that - 2 1 o g L - - 0  cor- 
responds to the overall 'one at a t ime'  opt imal  
allocation. Since this assignment is unconstrained, 
it represents the absolute maximum global 
likelihood. The difference between the calculated 
cost function and zero is a measure of  how much 
likelihood we are ' losing'  in conforming to the 
constraints.) 

The distribution of  the number  of  misclassifica- 
tions per cell can be seen in Figure 2. These 
histograms confirm what is to be expected, that 
whilst the distribution has a recognisably smooth 
fo rm using the 'one at a t ime'  approach,  it 
becomes quite distinctive if group total constraints 
are employed. For example, the possibility of  a 
single misaUocated chromosome in a cell only 
arises because the sex of  the cell is initially 
unknown.  In fact the sex was determined correctly 
by the algorithm in all but four cases and therefore 
a single misallocation had only a remote chance of  
occurrence. Similarly it is less usual to observe 
three misallocations than four. We are currently 
studying the nature of  these distributions. 

Further insight into the pattern of  misclassifica- 
tions can be obtained by examining the misclassi- 
fication matrix shown in Table 4. A similar table 
was produced by Paton (1969) in early work 
embodying a maximum-likelihood approach.  
However  the results given there apply to context 
independent classification on a rather smaller set 
o f  carefully selected chromosomes.  Table 4 shows 
for example that the pairs of  groups most likely to 
be confused with each other are groups 4 and 5, 
and groups 7 and 8 (this latter result is not unex- 
pected as our groups 7 and 8 correspond to a single 
group in the 'Denver '  classification). A more 
detailed analysis of  the ' lack of fit '  of  our model 
can be made on the basis of  this table but will not 
be at tempted here. 

Table 4 

Misclassification matrix for 90 cells. Diagonal elements, cor- 

responding to correct allocations, have been omitted for clarity 

Assigned True Group 

Group 
2 3 4 5 6 7 8 9 10 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

* 2 7 

3 * 

6 1 * 

1 

* 16 

16 * 2 2 

* 1 3 

, 16  7 

1 12  • 7 6 

9 5 * 3 

1 4 3 • 

Totals 180 180 180 360 1395 540 180 360 360 405 

4. Mathematical  details 

The purpose of  our study at this stage was to 
confirm that formulat ion as a t ransportat ion pro- 
blem would lead to improved cell classifications. 
For this purpose an algorithm was developed for 
the general t ransportat ion problem. This used the 
predecessor index method of  Glover and Klingman 
(1970) to locate the so called 0-circuit through the 
tableau. The programs were written in FORTRAN 
and developed on SERC's  Prime 750 at UMIST.  
The initial allocation provided by the 'benchmark '  
algorithm was used as an initial basic feasible solu- 
tion for the t ransportat ion algorithm, which in fact 
corresponds to using the matrix minimum method 
of  initialisation mentioned in Trus t rum (1971, p. 
38). As a t ransportat ion problem, the classification 
problem is degenerate and the e-method (see e.g. 
Trust rum (1971, p. 40)) was employed to forestall 
possible problems arising through the degeneracy. 

The assumption that chromosomes f rom a single 
group are distributed normally in the feature space 
is made merely for convenience. One has only to 
observe that centrometric index is constrained to 
lie between 0 and 0.5 (prior to scaling) to see the 
weakness of  such an assumption,  yet the classifica- 
tions achieved based on a normal  premise were 
remarkably  good in practice. It is quite possible, 
however, that an improved classification can be 
obtained using empirical density functions en- 
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NUMBER OF CELLS OBSERVED 

NUMBER MISCLASSIFIED 

NUMBER OF CELLS OBSERVED 

NUMBER MISCLASSIFIED 

El 

9 16 21 16 9 7 6 2 2 0 1 0 1 

0 1 2 3 4 5 6 7 8 9 10 11 12 

b 

30 0 29 2 12 11 2 1 1 0 2 0 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 

C 

NUMBER OF CELLS OBSERVED 
I I I 

42 0 29 5 12 1 0 0 0 I 0 0 0 

NUMBER MISCLASSIFIED 0 1 2 3 4 5 6 7 8 9 10 11 12 

Fig. 2. Histograms showing the number of  misclassified chromosomes by (a) context-free classification, (b) 'benchmark'  context-driven 
assignment, (c) transportation algorithm. 
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coded as a look up table. These may be obtained 
by a method described by Paton (1969) and at- 
tributed to Lejeune and Turpin (1965, p. 61) 
whereby a Gaussian point spread function is ap- 
plied to each chromosome of  the training set. 

5. Discussion 

From our results it is apparent that good 
classifications can be obtained by using the for- 
mulation (1)-(3) in conjunction with the cost 
matrix defined by (4). We now outline possible 
directions for further work. 

(1) It is of  interest to know whether a more effi- 
cient procedure can be developed that explicitly 
takes into account the 0-1  nature of  our problem. 
In the extreme case of  our formulation when each 
group contains a single member (n i  = 1; i e  I)  the 
problem can be solved by a procedure known as 
the assignment algorithm (see e.g. Spivey and 
Thrall (1970)). Piper et al. (1980), in a thorough 
discussion of  factors influencing the economic 
viability of  algorithms for automatic chromosome 
classification, have noted that speed is as impor- 
tant a factor as accuracy of  classification in deter- 
mining overall system cost, since a fast algorithm 
allows the possibility of  reducing the error rate of 
classifications by karyotyping a number of cells. 

(2) The distribution of  chromosomes in the 
feature space, as we have noted in Section 4, is an 
aspect requiring further study. One question is 
whether the use of  empirical probability density 
functions can result in improved classifications. 
Another question is whether better discrimination 
might be achieved by including more chromosome 
measurements, thus creating a higher chromosome 
feature space. Both these questions can be ex- 
amined through the misclassification error rate 
and the misclassification matrix. Furthermore the 
mean difference between the value of  - 2  log L for 
the ' true'  classification and the theoretical 
minimum provides some indication of  the degree 
of  information loss in passing from the image to 
the feature space. 

(3) Although this study has been concerned with 
homogeneously stained chromosomes, we should 
emphasize that the techniques apply equally to 

banded chromosomes; these can be classified into 
24 groups each with at most two members. In this 
case we are closer to the conditions required for 
application of the 'assignment algorithm' men- 
tioned above. Granum (1981) has observed dra- 
matic improvements in the error rate for classify- 
ing banded chromosomes in going from a 'context- 
free' classification to a constrained classification 
using an algorithm similar to the 'benchmark'  
assignment described here. 

(4) We have given the procedure for identifying 
the groups relating to missing or extra chromo- 
somes. This is a matter of  great practical impor- 
tance as certain abnormalities are characterised by 
either a missing or an extra chromosome in a cer- 
tain group. Practical trials are required to establish 
the effectiveness of  the procedures given in coping 
with cell abnormalities. 

6. Conclusions 

Using the method of  maximum likelihood, we 
have formulated the chromosome classification 
problem as a constrained optimisation. We have 
shown that the optimal maximum-likelihood 
allocation can be determined by the transportation 
algorithm. Using this algorithm we have classified 
90 human cells into the Denver classification 
achieving an overall misclassification rate of  3.3 %. 

If we regard the optimal allocation as in some 
sense making the best use of the available informa- 
tion in the feature space of measurements on 
chromosomes, the differences in log likelihood 
between the optimal and the ' true' allocations pro- 
vides a measure of  the loss of  information in pas- 
ing from the image to the feature space. The 
validity of  this measure is due to the guarantee of  
global optimality which the transportation algo- 
ri thm provides. This measure may be used to in- 
vestigate the discriminatory power of  different 
parametrisations of the feature space. 

We have indicated the need for further mathe- 
matical investigation of  the distribution within the 
feature space and indeed the definition of the 
feature space itself. Further examination of  the 
iterative algorithm is likely to yield valuable gains 
in efficiency and hence improve the cost effective- 
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ness of any system for automated chromosome 
analysis operating in a 'production' environment. 

There is every promise that our approach will be 
directly applicable to the classification of banded 
chromosomes. On the clinical side, tests will be 
necessary to examine the ability of the algorithm to 
cope with abnormal cells. 
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Abstract 

Tso, M., P. Kleinschmidt, I. Mitterreiter and J. Graham, An efficient transportation algorithm for automatic chromosome 
karyotyping, Pattern Recognition Letters 12 (1991) 117-126. 

We have implemented an algorithm for the special case of the transportation problem with unit demands to assist in the 
automatic classification (karyotyping) of human chromosomes by image analysis. Use of the algorithm permits prior knowledge 
of the number of chromosomes of a certain type in a normal human cell to constrain the classification. A study involving the 
classification of three large datasets is described and a comparison is made of the maximum likelihood and Bayesian ap- 
proaches. 

Keywords. Chromosome classification, karyotyping, transportation algorithm, image processing, context constrained 
classification, maximum likelihood, Bayesian methods. 

I .  In t roduc t ion  

Karyotyping  is the process by which chromo-  
somes in a dividing cell, suitably stained are iden- 

tified and allocated to one o f  a number  o f  groups.  
This is an impor tant  clinical process, since the 
identification o f  abnormalit ies in chromosomes  of  
part icular  groups may be diagnostic o f  certain 

clinical syndromes.  
To  fo rm a karyotype  of  the 46 chromosomes  in 

a normal  human  cell, they are stained to exhibit a 

series o f  bands along their length (Figure 1) when 
viewed under  the microscope.  This banding pat-  

tern, together with the size and shape o f  tile chro-  
mosomes ,  is used to assign them into the 24 groups  
shown in Figure 1. In classifying the chromosomes  
in this way, the following informat ion  is used: 

(1) Each group  contains two identical (homol-  
ogous)  chromosomes ,  with the exception o f  groups 

X and Y which contain the sex chromosomes .  

0167-8655/91/$03.50 © 1991 i Elsevier Science Publishers B,V. (North-Holland) I17 
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Figure 1. A typical 24 hour Chorionic Villus preparation karyotyped on the Image Recognition Systems Cytoscan. 

(2) Female cells contain a homologous pair of X 
chromosomes while the male cells contain one X 
and one Y chromosome. 

These constraints on the classification allow 
doubtful cases to be properly assigned and con- 
tribute to high classification accuracy. The 
measurement and classification of chromosomes 
can be performed automatically (Granum et al. 
(1989), Groen et al. (1989), Piper and Granum 
(1989)) and studies have shown that the error rate 
of automatic procedures can be substantially im- 
proved if these constraints are incorporated (Piper 
(1988)). An efficient method of incorporating 
these constraints into automatic procedures is the 
subject of this paper. 

Rutovitz (1977) recognised that the error rate of 
a classification could be reduced by taking this 
contextual information into account and proposed 
a 'cascade' algorithm for satisfying the karyotyp- 
ing constraints. Slot (1979) sought to develop 
statistical multiclass classification procedures to 
incorporate constraints on class totals. Tso and 
Graham (1983) showed that a linear programming 

formulation was applicable and used the transpor- 
tation algorithm to obtain a globally optimal 
maximum-likelihood classification satisfying the 
constraints. They noted the requirement for an ef- 
ficient transportation procedure that exploited the 
special structure of the problem and presented the 
results of a study showing improved classification 
of unbanded chromosomes into the I0 Denver 
groups. However, recent work in automated 
chromosome classification has focussed almost en- 
tirely on banded chromosome images which allows 
classification into 24 groups. 

The study of algorithms for the transportation 
problem remains an active area of study in opera- 
tional research and in the context of optimization 
on networks (Tso (1986)). In particular, Klein- 
schmidt and co-workers (1987) have recently pro- 
posed an efficient algorithm for the special case of 
the transportation problem with unit demands, 
which is the case applicable to karyotyping. 

In this paper we present the results of a study on 
three large datasets of banded chromosome images 
using the algorithm proposed by Kleinschmidt et 
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al. (1987). We compare the improvement in 
classification accuracy gained using the transporta- 
tion procedure with published results obtained us- 
ing a suboptimal algorithm RC3 (Piper 0986)) 
which is a modified version of the 'cascade' algo- 
rithm proposed by Rutovitz (1977). In conclusion 
we discuss the formulation as a transportation 
problem of  an alternative Bayesian approach. 

2. Constrained classification - -  mathematical for- 
mulation 

For ease of exposition we shall first consider the 
problem of  karyotyping the 46 chromosomes in a 
female XX cell. Here the cell is known to contain 
22 pairs of homologous chromosomes and the pair 
of  sex chromosomes, making 23 pairs in total. We 
define c = {c I . . . . .  C46} where cj = i iff  chromosome 
j is assigned to group i to be a classification vector 
for the cell. The karyotyping constraint specifies 
that a valid classification vector for the 46 chromo- 
somes in,the cell should be a permutation of the 

vector 

c o = (1, 1, 1 ,2 ,2 ,3 ,3  . . . . .  23,23) (1) 

in which each of the pair group indices occurs 
twice. (Group 23 is taken to represent the X 
chromosome). We shall denote by K the class of  
such classifications satisfying the karyotyping con- 
straints. 

A permutation based approach was adopted by 
Slot (1979) in his study of  karyotyping as a 
multiclass classification problem. An alternative 
viewpoint proposed by Tso and Graham (1983) is 
to regard such a classification as being represented 
by a (23 × 46) assignment matrix X =  (x~i) of O's 
and l 's  whose rows correspond to pair groups and 
whose columns correspond to the chromosomes. 
The entries of  the matrix X define an assignment 
as follows: 

f l, if chromosome j is assigned 
xii = to class i, 

0, otherwise, 

and they satisfy the constraints 

23 

x 0.=1, j = l  . . . . .  46, (2) 
i=1 

46 

~ x i j = 2 ,  i = 1  . . . . .  23, 
j= l  

representing respectively the conditions that each 
chromosome is assigned once only and that 
precisely two chromosomes are assigned to each 
group. This formulation is the basis of the linear 
programming transportation approach described 
in the next section. 

When the sex of  the cell to be karyotyped is in- 
itially unknown, as is usually the case in practice, 
the freedom to choose between an XX female cell 
and a XY male cell on the basis of the data can be 
incorporated by the following straightforward 
modifications to the model. 

The classification vector c is augmented by a 
dummy entry c47 which is constrained to be either 
a group 23 (X-chromosome) or a group 24 
(Y-chromosome). Allowable classifications are ob- 
tained by permutations of  a new vector Co (modi- 
fied by a final '24' in position 47) that constrain 
the last entry to be one of  the sex groups. The cor- 
responding changes to the X-matrix are the addition 
of  an extra row corresponding to the Y-chromosome 
group 24, and an extra 47th column whose assign- 
ment is allowed only to groups 23 and 24. This 
amounts to defining the additional 0-1 variables 

S I =X23,47 and 32=X24,47 satisfying st +s2 = 1 and 

46 

E X23,j+SI = 2, 
J = 1 ( 3 )  

46 

~. X24,j+ S 2 = 1. 
j = l  

In linear programming terms s~ and s2 are known 
as slack variables. With (3) modifying (2), the set 
K of  allowable classifications is now expanded to 
include both male and female karyotypes. 

Occasionally it may happen that a cell is incom- 
plete so that the number of  chromosomes in the 
cell to be karyotyped is n where n < 46. This occurs 
when two or more chromosomes are overlapped in 
such a way that they cannot be reliably segmented 
by the image processing algorithm, or if a chromo- 
some is missing due to an abnormality or a prepa- 
ration artifact. In such cases only the first n 
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elements of c represent actual assignments, and the 
class K should be further restricted to rearrange- 
ments of  c o that are distinct in the first n elements. 

3. Maximum-likelihood and the transportation 
model 

Maximum-likelihood (ML) provides a criterion 
for selecting an optimal classification c from K 
given a dataset of  n (446)  feature vectors D =  
{ ~1 . . . . .  ~,} measured on the chromosomes images 
of  an unknown cell. Suppose that f(~j) is the 
known probability density function of  the feature 
vector ~j for a chromosome of class i. If dj is 
measured on an unclassified chromosome, the 
likelihood of  this chromosome belonging to group 
i is defined as L(i[ 5) = f ( ~ ) .  Assuming independ- 
ence of  the distributions, the joint likelihood of an 
arbitrary classification ¢ is given by 

It 

L(cID) = lI L(cjI~j). (4) 
j=l 

The ML classification is obtained by maximizing 
(4) with respect to c. Equivalently, we may deter- 
mine the assignment matrix X satisfying (2) 
modified by (3) to minimize 

I= - l o g L ( c l D )  

n 24 

= ~ ~_, [- logL(i l~j)]xi)  
j=l i=l 

n 24 

= Z Z ?uxij say. (5) 
j = l  i=1  

The optimization has been cast into the form of a 
linear transportation problem with cost matrix 
F= (Yij), the matrix of  log likelihoods. This prob- 
lem takes its name from the following supply- 
demand model which has been extensively studied 
in the context of  operational research. 

Suppose we have to transport a number of units 
of  a commodity from a given set of m sources to 
n destinations. We are given a i, the number of  
units available at source i, and bj, the number of  
units required, or the demand at destination j .  The 
cost of  transporting a unit quantity from source i 
to destination j is ~'U and this cost varies linearly as 
the number of  units transported along this route. 

The problem of determining a minimum cost 
shipment plan to satisfy all the demands is known 
as the transportation problem. Karyotyping can be 
viewed as a transportation problem in which each 
source is a chromosome class, and the chromo- 
somes themselves are regarded as destinations 
having unit demand. If the costs {Yij} are defined 
as in (5) to be log likelihoods, then the solution to 
the transportation problem is a maximum-likeli- 
hood classification. 

4. The algorithm 

The transportation problem (TP) is a type of  
linear programming problem for which, in the 
general case, algorithms are known that provide a 
globally optimal minimum cost solution. The 
special case of unit demands however means that 
more efficient procedures are available than the 
'stepping-stone' procedure used in Tso and 
Graham (1983). The lack of  a ready algorithm, on 
which for example timings could be based, gave 
rise to doubts about the practicality of  the linear 
programming approach for routine clinical use in 
an interactive system (see Piper (1986, p. 392)). 

Kleinschmidt et al. (1987) proved that the class 
of  transportation problems with unit demands 
could be solved by an algorithm based on the pivot 
rule proposed by Balinski (1985). This algorithm 
was incorporated into a program PCCS (the Passau 
Chromosome Classification System) which obtain- 
ed optimal classifications for the three large data- 
sets described in Section 5. Our study, using a Sun 
workstation, confirmed timings well within accep- 
table limits for the method to be usefully incor- 
porated in practical karyotyping systems. The 
algorithm has been shown to solve similar sized 
problems in less than 1 sec. on a IBM-PC, which 
represents a negligible overhead. In general, the 
algorithm is known to have a time complexicity of 
O(mn 2) for transportation problems with unit 
demands (Kleinschmidt et al. (1987))--m is the 
number of supply nodes or chromosome classes 
and n is the number of demand nodes or chromo- 
somes. Thus it is known to be efficient for such 
problems. For karyotyping, we would expect the 
likelihood matrix to contain a large number of  
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Table 1 
Summary of the datasets used in the study 

February 1991 

Copenhagen Edinburgh Philadelphia 

No. of cells 180 125 130 
No. of chromosomes 8106 5548 5947 
Mean no. of chromosomes per cell 45.0 44.4 45.7 

zeroes since the features will have been selected to 
give good discrimination between classes, so re- 
stricting the number of  possible classifications for 
each chromosome. Thus the resulting cost matrix 
will be sparse in the sense that it will contain a 
proportion of  effectively infinite entries corre- 
sponding to forbidden assignments. For sparse 
problems with degree of  sparsity K--defined as the 
number of non-excludable assignments--the time 
complexity of the computation is known to be 
proportional to n(~+mlogm) suggesting room 
for some slight performance improvement if spar- 
sity is taken explicitly into account. 

5. A study on three datasets 

We have evaluated the benefit of using PCCS by 
karyotyping cells in three large datasets using 
likelihood data supplied by the MRC Human 
Genetics Unit in Edinburgh (Table 1). The datasets 
are designated by their laboratory of origin 
(Copenhagen, Edinburgh or Philadelphia), and 
consist of cells which have each been classified by 
an experienced cytogeneticist. 

Each dataset represents metaphases prepared 
under significantly different laboratory condi- 
tions. The Copenhagen dataset is in many ways a 
model dataset of  carefully selected and measured 
cells which can provide a benchmark measure of 
performance for an algorithm operating under 
ideal conditions. The Edinburgh and Philadelphia 
datasets are more representative of  the quality of 
cells to be found in a routine chromosome labora- 
tory. The Copenhagen and Edinburgh datasets 
were imaged respectively by microdensitometer 
from film and by TV camera. These datasets came 
from peripheral blood cells. The Philadelphia 
dataset was collected using the commercially avail- 

able Cytoscan system which employs a mechanical- 
ly scanning linear CCD array. The cells in this 
dataset came from a Chorionic Villus preparation 
in which the appearance of  the cells is known to be 
consistently poorer than for other clinical prepara- 
tions. Further details of  the datasets can be found 
in Piper and Granum (1989). 

The features used in this study were weighted 
density distributions as proposed by Granum 
(1982). The cost matrix input to the transportation 
procedure was a matrix of  log likelihoods obtained 
by fitting a zero-correlation multivariate normal 
distribution to each class in a 16-feature space. 
Consistency with the features employed in Piper 
and Granum (1989) ensured that a valid compar- 
ison could be made with previously reported 
results. Each dataset was divided into independent 
test and training subsets whose r61es were later 
reversed so that each cell was used once for train- 
ing and once for classification. Each dataset was 
classified by three methods: (1) by context inde- 
pendent maximum likelihood, (2) by the transpor- 
tation algorithm PCCS, and (3) by the 'cascade' 
algorithm RC3 (Piper (1986)). 

6. Results of  study 

Table 2 shows a comparison of the error rates 
for each dataset expressed as a percentage of  
chromosomes incorrectly classified. Figures are 
means over the relevant dataset. 

All three classifiers confirm the ranking of  the 
datasets in terms of  image quality. On the Edin- 
burgh and Philadelphia datasets the improvement 
in error rate resulting from using either PCCS or 
the sub-optimal procedure RC3 is about 207o, con- 
firming the earlier results of  Piper and Granum 
(1989). On the Copenhagen dataset PCCS marked- 
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Table 2 
A comparison of PCCS against other procedures--observed error rates expressed as percentages 

February 1991 

Copenhagen Edinburgh Philadelphia 

Context independent ML Classification 
Rearrangement classifier RC3 
Transportation procedure PCCS 

6.5 18.3 22.8 
5.7 16.4 20.6 
4.4 15.5 19.9 

% Improvement over context 
independent classification 

95% confidence interval for mean % 
improvement using PCCS in preference to RC3 

I RC3 0.8 + 0.2 1.9 + 0.5 2.2 + 0.7 
PCCS 2.1 +0.5 2.8+0.9 2.9+ 1.0 

(0.8, 1.7) (0.1, 1.6) ( -0 .2 ,  1.5) 

ly outperforms RC3 giving an improvement over 
context independent classification of 2.1o70 com- 
pared to 0.8°70. 

Although the improvements we observed may 
appear to be numerically small, we do in fact have 
a useful reduction in the error rate. Taking the 
Copenhagen dataset for example, the recognition 
rate for context independent ML classification is 
93.5°70. An improvement of  2.1o70 in the recogni- 
tion rate means that some 30°70 of the errors re- 
maining are removed using PCCS. For the 
Edinburgh and Philadelphia datasets the cor- 
responding improvements are 15°70 and 13°70 
respectively. From Table 3 we see that the propor- 
tion of  Copenhagen cells that are completely cor- 
rectly classified has risen dramatically from 15.6°70 
to 46.7°70. In Section 7 we suggest that the reason 
for this lies in the choice of loss function implicitly 
assumed in the maximum likelihood approach. 

The confidence intervals and the error bounds 
shown in Table 2 are all based on large sample nor- 
mal approximations and a significance level 

a= 0 .05 .  

Table 3 
Number of totally correctly classified cells 

ML RC3 PCCS 

Copenhagen 28 41 84 
(15.6%o) (22.8%0) (46.7%) 

Edinburgh 0 0 1 
(0.8°70) 

Philadelphia 0 2 5 
(1.5%) (3.8%) 

In Figure 2 we show histograms of  the number 
of  errors made per cell for each procedure. For 
ease of  comparison, both the procedures PCCS 
and RC3 are displayed against the results of  con- 
text independent classification in a single 
histogram. These histograms show the improve- 
ment in the number of  cells which are totally cor- 
rectly classified, which is particularly marked in 
the Copenhagen dataset. Also noticeable is a 
general shift to the left when the karyotyping con- 
straints are applied, signifying a reduction in the 
mean error rate. 

7. A Bayesian analysis 

In this section we show that our maximum- 
likelihood analysis has a Bayesian interpretation in 
which the loss function is taken to be either 0 if the 
karyotype is correct, or 1 otherwise, i.e., equal 
weight is attached to an erroneous cell karyotype 
irrespective of  the number of  individual chromo- 
somes incorrectly classified. Use of  this loss func- 
tion results in a classifier that will maximize the 
expected number of 100°/0 correctly classified cells 
in any random sample of  cells, thus helping to ex- 
plain why our maximum-likelihood procedure 
seems to do so well by this criterion on the datasets 
used in this study. 

We then examine the Bayesian loss function that 
attaches a weight proportional to the number of er- 
rors in the karyotype. This is shown to result in a 
classifier that minimizes the expected number of 
errors in the karyotype. We briefly consider im- 
plementation of  this classifier, and show that, for 
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this classifier, a transportation procedure is still 
applicable if the cost matrix is suitably redefined. 

In the Bayesian approach we regard the class K 
of  possible classifications for a cell as the discrete 
set of  possible states of  nature {~} each of  which 
has equal prior probability of  occurrence. We first 
consider the loss function 

0, if c = ~, 

A°(c'c) = I, otherwise 
(6) 

associated with a decision to classify a cell as c 
when the true state is & The number of  cells cor- 
rectly classified out of  a random sample of  N can 
be expressed in terms of this loss function as 

N 
N(cor rec t )=  ~ [l--do(Ck,~k)], 

k=l 

and by taking expectations we see that the Bayes 
classifier minimizing the expected loss will also 
maximize the expected number of  correctly 
classified cells in a randomly sampled dataset. The 
expected ~loss for a decision c given data D, is 

n:Ao(C) = ~ Ao(C,e) Pr(e] D)  
~eK 

= ~ Pr(elo)  
,~¢:¢ 

= 1 - Pr(c I O).  (7) 

Noting that the probability P r ( c l D )  is propor- 
tional to the likelihood L(c I D), it follows that the 
Bayes classifier minimizing (7) is also the maxi- 
mum-likelihood classifier. Hence the maximum- 
likelihood classifier maximizes the expected 
number  of  correctly classified cells. 

A loss function which counts the number of  
chromosomes incorrectly classified was assumed 
by Slot (1979). The loss function can be written in 
terms of  the components of  c and ~ as 

?! 

,a~(c,e) = ~ ~(cj,ej) (8) 
j = l  

where 

0, if a = b, 

J ( a , b )  = I, otherwise. 

The expected loss under this new loss function is 

IEdl(c) = E Al(c,e)Pr(elD) 
?eK 

I| 

= ~ F. ,~(cj,ej)Pr(elo). (9) 
5~K j= 1 

Inverting the order of  the summation in (9), we 

obtain 

n 

n:,~l(c)= ~ E ~(cj ,ej)Pr(elo) 
j = l  t ~ K  

j=l #=q 

The Bayesian classifier obtained by minimizing 
(10) over all classifications c~K minimizes the 
mean error rate, which is an intuitively reasonable 
measure of  classifier performance.  Slot (1979) pro- 
poses that the components of  c should be chosen 
independently to minimize each component  of  the 
outer summation. However the resulting classifica- 
tion will not satisfy the karyotyping constraint that 
c ~ K unless a transportation procedure is applied. 
This requires that the cost matrix be computed 
whose elements are the inner summations in (I0). 
The number of  terms in each sum is in principle of  
the order of  the total number of  states in K, i.e., 
-46I /223.  However, it is known that in practice 
one or two size related features narrow the range 
of  possible classifications for any chromosome and 
we would therefore expect F, the matrix of  log 
likelihoods, to be quite sparse. If  this is the case, 
then many of  the terms in each sum will vanish and 
use of  the transportation algorithm to compute 
this classifier may be feasible. 

8. Discussion and conclusions 

We have implemented an efficient transporta- 
tion algorithm to perform a maximum-likelihood 
classification of a set of  objects subjec t ' to  con- 
straints of  the type occurring in the automatic 
karyotyping of  human cell chromosomes.  Use of 
the algorithm on three large datasets showed an 
improvement  on previously published results. 

The most noticeable improvement was observed 
on the high quality Copenhagen dataset where the 
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Figure 2 (contd.). 

transportation procedure removed almost 30% of  
the errors remaining after context independent 
classification. The final recognition rate was over 
95070--on average two misclassifications per cell. 
The percentage of  cells that were completely cor- 
rectly classified also rose from just below 20°70 to 
almost 50°70 for this dataset. Even on poorer quali- 
ty cells a consistent improvement in the absolute 
error rate of  some 2-3% was observed which 
removed some 100  of the errors remaining after 
context independent classification. 

On poor quality cells, the modest improvement 
obtained is only to be expected since a process of 
balancing likelihoods will only work well when the 
likelihoods which have to be estimated from a 
training set are a good approximation to their true 

values, and this is more likely to be the case on well 
prepared samples where the inherent variability 
will be less. There is clearly no substitute for good 

data. 

Through a Bayesian analysis, we have provided 
theoretical grounds for expecting that a transpor- 
tation procedure aimed at finding a maximum- 
likelihood classification should obtain a high pro- 

portion of totally correct cells. This confirmed 
what was observed on the high quality Copen- 
hagen data set. We have shown on the other hand 
that if the mean error count (number of  mis- 
classifications per cell) is to be minimized, then an 
alternative loss function should be adopted and 
that in consequence it may be possible to improve 
on maximum-likelihood classification if this is the 
criterion of  interest. We have demonstrated that a 
transportation procedure is still appropriate for 
this problem with an appropriately redefined cost 
matrix. 

We conclude that there are considerable advan- 
tages to be gained in viewing the problem of  
classification under class total constraints as a net- 
work optimization. For example, there is the 
possibility of  applying sensitivity analysis, to the 
results of  classification, in order to identify 
assignments that are sensitive to perturbations of  
the likelihood matrix. There is also the possibility 
of  applying algorithms for non-bipartite matching 
to extract homologous pairs, to develop an ap- 
proach suggested by Zimmerman et al. (1986). It is 
hoped that the demonstrable usefulness of  a 
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special purpose transportation algorithm for the 
particular pattern recognition task considered in 
this paper will provide an additional stimulus to 
the extensive research being carried out on such 
algorithms in an O.R. context. 
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Automatic Karyotype Analysis 
Jim Graham and Jim Piper 

1. Introduction 
1.1. A Warning to the Reader 

This chapter differs from the majority in this book in that its subject 
matter is the application of computer image interpretation techniques 
to the analysis of metaphase chromosome spreads. Were we to follow 
the prescription of the remainder of the book, we might simply pub- 
lish the code of a computer program together with a list of suitable 
equipment. This is not, however, a realistic option. The computer pro- 
grams in current commercial systems for automated cytogenetics typi- 
cally consist of approximately 100,000 lines of source code; in the 
case of automatic metaphase finders, the equipment may include pro- 
prietary mechanical or electronic components. Also, the rate of change 
in the performance and cost of cameras, displays, and computers are 
such that any list of equipment that is appropriate as we write in mid- 
199 1 would most likely be nearing obsolescence by the time the book 
is published. 

We have therefore decided to describe, in some detail, the mam proce- 
dures that have to be implemented in software, and the minimum perfor- 
mance that would be required from commercially available computer 
and imaging hardware in order to run the software successfully. Both 
should be specified in sufficient detail that a working system could 
be built by an experienced computer programmer. 

We will model our exposition on the best currently available technol- 
ogy. Commercially, we believe that this is represented by the Magiscan 

From Methods m Molecular B/o/ogy, Vol. 29. Chromosome Analysis Protocols 
Edkted by J R Gosden Copyright 01994 Humana Press Inc , Totowa, NJ 
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(Joyce Loebl, Gateshead, UK), Cytoscan (Image Recognition Systems, 
Warrington, UK) (both of these companies are now part of Applied 
Imaging International, Inc., Sunderland, UK) (the authors were, respec- 
tively, involved in the development of these two systems), AKS-2 
(Amoco Technology Inc., Naperville, IL), Genetiscan (Perceptive 
Scientific Instruments Inc., League City, TX), and similar machines, 
together with recent developments that may well appear in commer- 
cial products in the near future. 

However, we think it essential to warn readers contemplating mak- 
ing their own system that this is a big undertaking. The time and effort 
required depend, of course, on the skills and equipment available, but we 
cannot imagine that a simple but usable interactive karyotyping sys- 
tem (without automatic classification) could be programmed with less 
than six months of effort from an experienced programmer; an auto- 
matic karyotyper would require at least a year, as would an automatic 
metaphase finder. Polished, reliable, and ergonomic versions might 
increase these times by a factor of between two and ten! Those who 
think that these estimates are excessive should bear in mind the widely 
held belief that a competent computer programmer can, on average, 
produce just ten lines of correct, bug-free, and documented program 
code per working day. We believe that with modern operating sys- 
tems and software tools, this figure is an underestimate; however, 
even a simple “no-frills” automatic karyotyping system would most 
likely require several tens of thousands of lines of code. 

1.2. A Brief Introduction to Image Analysis 
Automatic karyotyping involves the analysis by computer of two- 

dimensional light microscope images. In outline, such analysis involves 
the following stages. 

1.2.1. Image Capture 
Light transmitted through the microscope slide is focused onto the 

target of an electronic camera and sampled on a regular two-dimen- 
sional grid. The resulting brightness values or “pixels” are stored as 
numbers in computer memory (Fig. 1). The pixel values and their geo- 
metric positions are the basic data for all subsequent analysis. The 
natural unit of measurement in image analysis is the spacing between 
pixels in the image (the sampling interval), and unless stated other- 
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Fig. 1. A. A simulated image with sampling grid superimposed. B. The mea- 
sured pixel values. The darker pixels (shaded) comprise several distinct connected 
components. 

wise, measurements and geometrical constructions will be assumed 
to be based on this pixel spacing unit. 

1.2.2. Segmentation 
The set of pixels corresponding to a single chromosome must be 

determined so that they may be processed together in order to make 
measurements about the chromosome separately from the other objects 
in the field. This can be achieved, for example, by choosing a “dark- 
ness threshold” that is a little darker than the mean pixel value of the 
clear field between the chromosomes. Then pixels that are darker than 
the threshold “belong” to chromosomes, and individual chromosomes 
can be separated by finding connected subsets of the darker pixels 
(Fig. 1). Ofcourse, this procedure is applicable to images other than metaphase 
cells, and sometimes other dark objects will occur even in metaphase fields, 
for example, interphase nuclei, so we will refer in general to such segmented 
sets of pixels as “image regions.” 

1.2.3. Feature Measurement 
Feature measurements on each image region are made by applying 

mathematical formulae to the set of pixels; in many cases (e.g., for 
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shape moments), the positional coordinates of pixels are also required. 
For example, the area of a chromosome may be estimated simply by 
counting the number of pixels. In practice, things are usually a little 
more complicated. In particular, in the case of chromosomes, most of 
the useful measurements depend on the position of the pixels relative 
not to the original Cartesian coordinate system of the pixel digitiza- 
tion grid, but to the chromosome’s medial or symmetry axis, which 
may be imagined running between the chromatids, and so finding 
this axis is a necessary precursor to making such measurements, of 
which two obvious examples are the chromosome’s length and cen- 
tromeric index. 

In order to make such feature measurements efficiently, each seg- 
mented image region or chromosome should be represented in an 
appropriate data structure. As will become clear in Section 3., the 
data structure must be capable of representing the arbitrary shapes, 
sizes, and orientations of chromosomes, and allow access to the pixel 
values so that computations may be made concerning the banding 
pattern. To describe such structures in detail is beyond the scope of 
this chapter, but examples may be found in refs. I and 2. 

1.2.4. Classification 
Classification of image regions is typically made by applying statisti- 

cal rules to a set of feature measurements. The rules are initially obtained 
either by introspection by the system designer, or more usually from 
a “training” or “design” set of image regions of predetermined class. 
Alternative classification schema, known variously as “syntactic” or 
“structural,” are based on recognizing the “grammatical” arrangement 
of substructures of the image. More complicated systems based on arti- 
ficial intelligence principles are the subject of current research, 

1.2.5. Model 
Crucially, a model or set of general principles that predict how a 

given biological entity, such as a metaphase chromosome, will be repre- 
sented in digitized pixel values is essential to guide the search for 
meaning in the digitized image. The model has to accommodate both 
biological variability (for example, how to deal with touching chromo- 
somes, bent chromosomes, the random position of chromosomes within 
the metaphase, or different metaphase contraction states), and image 
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degradation on account perhaps of noise from the camera or a less 
than optimally set up microscope. Typically in chromosome analysis, the 
models are implicit rather than explicitly stated and are simplistic in 
the extreme, partly accounting for the widespread reliance on operator 
interaction for many of the nontrivial decisions. 

1.3. Metaphase Finding 
An essential component in any investigation involving chromo- 

some analysis is the location of dividing cells of sufficient visual quality 
to permit the assessment of the chromosomes. The required cells may 
be at metaphase, prometaphase, or prophase, but the visual task does 
not vary greatly, and we will speak generically of “metaphase finding.” 

Unautomated metaphase findmg involves visually scanning the micro- 
scope slide fairly rapidly at low magnification. When a metaphase is seen, it 
is examined carefully to assess its suitability for detailed analysis. If it 
appears suitably compact, well stained, and well spread, it may then be 
reexamined (either visually or automatically) at high magnification, 
when its quality can be completely determined and analysis performed 
as appropriate. 

The proportion of the total analysis time and effort devoted to 
metaphase finding depends on the goals of the chromosome analysis 
and the material used. In “classical” (randomly induced) aberration 
scoring, for example, where the material is normally peripheral blood 
and the mitotic index is high, good-quality metaphases are easily found. 
The subsequent examination of individual cells, however, is very rapid, 
since dicentrics, acentric fragments, ring chromosomes, and so forth, 
are easily identified visually. The time spent locating new cells can 
therefore contribute significantly to the total analysis time. Karyotyping 
of bone marrow cells for leukemia diagnosis or treatment moni- 
toring provides an example of a different type of task. The analysis of 
individual cells is a difficult, time-consuming exercise, but the visual 
quality of the metaphase cells may be so poor and the mitotic index so 
low that it may be necessary to locate all the dividing cells in a sample, 
involving a thorough search of the entire slide. In this case also, 
finding the metaphases is a significant proportion of the total task. 

In clinical karyotyping using amniotic fluid or peripheral blood, 
metaphase finding contributes less significantly. Mitotic indices are 
high, and good-quality metaphases are fairly easily found in most 
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routine material, although this is less true if direct chorionic villus 
samples are used. There are tasks of clinical interest, however, in 
which the metaphase finding component can be significant. Detec- 
tion of fragile sites requires the examination of the order of 100 cells 
to be sure of correct diagnosis. The inspection of each cell can be 
fairly rapid, since the identification of the fragile site is often straight- 
forward and the role of metaphase finding is similar to that in classi- 
cal aberration scoring. Prophase analysis has similarities with cancer 
cytogenetics in the respect that a very thorough search might be nec- 
essary to locate a small number of cells in which the required bands 
can be identified on both homologous chromosomes. 

1.3.1. Automatic Metaphase Finding 
The central role of metaphase finding in all aspects of chromosome 

analysis and the fact that in some investigations it is a significant task in 
itself have led to the development of a number of automatic metaphase 
finders, some of which are associated with automated karyotyping sys- 
tems. Finding metaphases automatically is a fairly typical image analysis 
task. However, the quantity of data is enormous. With the usual pixel 
size of about 1 ltrn2, a coverslip area comprises about lo9 pixels. Metaphase 
finders therefore aim to use simple, but fast, analysis methods. 

It can be argued that metaphase finders have been more successful 
technically than karyotyping systems. Other than initial definition of 
the area of slide to be searched, they require no operator interaction and 
have been demonstrated to be highly efficient at identifying dividing 
cells (3). Most metaphase finders also include a measure of metaphase 
quality that can be calculated when the cell is found, allowing the cells to 
be presented for analysis in ranked order. This is a useful feature in 
clinical karyotyping where only a small number of cells is required, 
but it is important that they should be of good visual quality. In par- 
ticular, in prophase analysis, selection of cells in which the number 
of overlapping chromosomes is small may make a highly significant 
contribution to the efficiency of the overall process. 

In the following paragraphs, we briefly discuss some of the features or 
properties of existing metaphase finders as they will be perceived by 
the user. In Section 3. l., we discuss some of the technical aspects of 
metaphase finding that influence these features. Detailed assessment 



Automatic Karyotype Analysis 147 

of some of these features for metaphase finders in use in Europe has 
recently been made by Korthof and Carothers (3). 

1.3.2. Speed 
At first sight, it appears that a high scanning speed is an essential 

feature of a metaphase finder. It is certainly the case that running the 
metaphase finder should not result in a significant time overhead for 
the busy cytogenetic laboratory. High scanning speeds can be achieved 
by applying highly optimized image acquisition methods (as used by 
Cytoscan, for example, see Section 3.1.1.). Machmes based on less 
application-targeted hardware, which acquire their images using a televi- 
sion (TV) camera, scan more slowly. In the Korthof and Carothers 
survey, Cytoscan achieved scanning speeds of 88 s/cm2 of slide on 
average over a range of material, whereas Magiscan took 596 s/cm2 
and other TV-based systems (no longer available commercially) took 
over 1000 s/cm2. Also using line scanning, the recently developed 
Geneti-Scanner from Perceptive Scientific Instruments is reported to 
achieve scanning speeds of about 66 s/cm2 (4). 

Speed is clearly important. All other things being equal, it is better 
to find metaphases quickly rather than slowly. However, TV-based sys- 
tems may compensate for their lower scanning speeds by running 
metaphase finding overnight on a number of slides, which may be as 
beneficial, or more so, to clinical laboratory throughput as a scan of a 
few minutes on each slide as required. Performance comes at a cost, 
and the impact of fast scanning speed on the entire automated analy- 
sis package must be considered in assessing the benefit obtained. 

1.3.3. Accuracy 
We can consider accuracy in terms of false-negative rates (unde- 

tected metaphases), false-positive rates (nonmetaphases classed as meta- 
phases), and ranking ability (the number of good-quality metaphases 
placed early in the analysis queue). For many clinical applications, 
the latter may be the only measure of interest to the user. If material 
with a low mitotic index is being analyzed, as in cancer cytogenetics, 
false-negative rates do become important. Fairly high false-positive 
rates may be tolerated, provided ranking is sufficiently good that 
nonmetaphases are only rarely presented to the user. 
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1.3.4. Adaptability 
Slide preparation for karyotyping varies widely from laboratory to 

laboratory, and of course among different types of specimen. The 
parameters used by a metaphase finder should therefore be adjusted 
to provide optimal performance for each type of material for each 
laboratory. If these parameters are adjustable by the user, changes in 
laboratory practice, such as improvements in preparation techniques 
or introduction of new types of investigation, can be accommodated 
conveniently. The most suitable method of adjustment by the user is 
through system training, in which the metaphase finder is used on the 
new material and the trained operator labels each of the objects found 
according to its quality. The system then uses these quality scores to 
match the measured parameters to the desired properties. 

1.3.5. System Considerations 
Metaphase finding is never an end in itself. Automatic metaphase 

finding is always a component in some overall analysis task, and the 
features of a metaphase finder must be considered as part of the overall 
system. A slow metaphase finder as part of a stand-alone karyotyping 
system may enhance the overall system efficiency at fairly little addi- 
tional cost. A laboratory with a large throughput may find a fast metaphase 
finder to be a useful central resource servicing a number of indepen- 
dent karyotyping stations. The Geneti-Scanner is clearly intended to 
be used in this way, since it can be loaded with up to 60 slides. After 
a setup period of about 30 min, these can be scanned unsupervised (4). 

The usefulness of a metaphase finder in any karyotyping environ- 
ment depends not only on its basic performance characteristics, but 
also on its user interface. It is important not only that every cell pre- 
sented to the operator for analysis is analyzable, but also that the 
operator interaction in loading the slides and specifying the scan param- 
eters should be minimal and straightforward. 

1.4. Automatic Karyotyping 
Automatic karyotypmg aims at describing the chromosome comple- 

ment or karyotype of a metaphase cell and producing an annotated 
karyogram (an arrangement of images of the chromosomes in a pre- 
scribed pattern). In the early days of research in automated cytogenetics, 
the goal was to produce a completely automatic system. 
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However, the end product of the process of karyotyping is a state- 
ment about the genetic constitution of an individual from the point of 
view of his or her health. The consequences of that decision are of great 
importance to the individual. The decision is influenced by a number of 
factors, some of which involve detection of subtle signs in the image and 
some of which involve information not present in the image at all. For 
these reasons, it is clear that, for the foreseeable future, the assessment 
of the data leading to that clinical decision will be made by highly 
trained human beings and not by computer systems. Whatever level of 
computer assistance is provided, it will be in the form of an aid to human 
decision making. That is to say the system will be interactive. 

A karyotyping system will be involved m either counting, or count- 
mg and fully analyzing, the chromosomes in a metaphase. However, 
the initial image obtained from the camera, and thresholded and seg- 
mented as described in Section 1.2., usually contains objects other than 
isolated chromosomes, notably chromosome clusters (both of touching 
and overlapping chromosomes), interphase nuclei, and noise of one 
sort or another (for example, stained cytoplasm, stain particles, or other 
dirt). In order to complete the classification and produce a karyogram, 
or even simply to perform a count, the objects that represent nonchro- 
mosomal material must be rejected, and the clusters resolved as far 
as possible into individual chromosomes. For karyotyping, the isolated 
chromosomes must be measured and classified. Methods for carrying out 
these procedures automatically are described in Sections 3.4.-3.6. 

The current generation of image analyzers fall well short of per- 
forming these tasks with 100% reliability, either because the neces- 
sary algorithms cannot be run quickly enough on currently available 
computers, or because sufficiently sophisticated algorithms have not 
been developed. The result of this is that intervention by the operator 
is needed to resolve difficulties in the detailed analysis. From the point of 
view of the system developer, this is embarrassing, but because of 
the fact that karyotyping is inherently interactive, useful systems can 
be provided, albeit requiring rather more input from the user than is 
ideally desirable. The important features from the point of view of 
system usefulness are the number of interactions, the ease of interac- 
tion, and whether the interactions intrude on the user’s interpretation 
of the image of the chromosomes. 
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1.5. Human-Machine Interaction 
1.51. Interface Design 

The process of interaction involves communication of knowledge 
between the user and the machine. For this communication to take 
place, it is necessary to have a physical medium on which messages 
are passed and an agreed vocabulary. 
1.5.1.1. THE PHYSICAL INTERFACE 

The physical components of the interface are displays, keyboards, 
and pointing devices, such as lightpens, mice, graphics tablets, or 
trackerballs. There has been some experimentation in karyotyping 
systems with voice input, but this technology is insufficiently advanced 
at this time to provide appropriate interaction. 

The most important item to be displayed is the metaphase image, 
although other items, such as menus and textual information, need to 
be displayed also. The image display needs to be of high quality, since 
the final decision is often based on fairly subtle image features. The 
minimum specification acceptable for image display is 5 12 x 5 12 
pixels of 64 gray levels. With earlier systems, the visual quality of 
such an image was generally believed to be poor compared to that 
obtained directly from the microscope or on a photograph, but prob- 
ably sufficient for diagnostic purposes (5-6). Nowadays, cameras and 
display monitors are available that are capable of considerably higher 
spatial and gray level resolution. 

The display of nonimage information, such as menus or text, may 
be considered intrusive if it occupies the same area as the image. One 
answer to this is to use a separate display for this information. Alter- 
natively, if high-resolution displays are used, a section of the display 
may be devoted to textual information without intrusion on the image. 
Many computer systems provide display management software using 
“windows,” which allows information from several sources to be dis- 
played and manipulated independently on the same screen. Thus, the 
areas of the screen to be used for different purposes may be altered inter- 
actively. Areas may be used temporarily for special purposes, such as 
magnification of selected regions of the image without altering the 
underlying display. The AKS-2 system, which is based on a Macintosh 
computer, uses the high-resolution display and windows environment 
very effectively in this way. 
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Pointing devices are needed, since interaction usually involves spe- 
cifying particular objects or parts of objects in the image, or selecting 
menu options. A mouse is preferred for this purpose, being inexpensive, 
robust, and easy to use. There is an advantage in using a lightpen for 
some types of interaction, particularly if careful drawing is required, but 
in general, lightpens are less satisfactory than mice. For karyotyping, 
trackerballs and graphics tablets appear to offer no particular advantage. 

It is inevitable that some textual input will be required, such as sample 
identifiers or comments on a karyotype, and for this purpose, the key- 
board is indispensable. However, it need have no other role in inter- 
action, and its use should be kept to a minimum. 
1.5.1.2. USER MODEL 

By “user model” we mean the user’s understanding of the objects 
displayed in the human-machine interface and his/her expectation of 
the system’s behavior on interaction. A widely known example of a 
user model is that generated using the “desktop metaphor” employed 
by a number of office systems, where the user interacts with the system 
using concepts familiar from the everyday world, such as filing cabi- 
nets and wastepaper baskets. This model is successful, because it allows 
the user to express his/her requirements in terms of objects and activities 
that characterize the task, rather than the machine’s implementation, 
In karyotyping, similarly, an appropriate interface should require the 
user to specify his/her requirements in terms of such objects as 
metaphases, chromosomes, centromeres, chromatids, or karyograms. 
It should not be necessary to require the user to think in terms of 
thresholds or pixels; these concepts are not difficult to cope with, but 
they introduce an element of opacity into a system that should be 
made as transparent as possible. 

1.5.2. The Interaction Process 
Here we outline some of the types of interaction that may be expected 

in automatic karyotyping systems. 
1.5.2.1. SEGMENTATION 

Inadequacies in segmentation algorithms generally show up as the 
inability to separate touching or overlapping chromosomes. In the case 
of touching chromosomes, it is easy for an operator to indicate with 
the pointing device the place where the composite object should be cut, 
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either by drawing a separation line or indicating a few points around 
the cut location, Overlapping chromosomes call for more complex inter- 
action, since the extent of each chromosome in the composite must 
be separately indicated. Cytoscan has a convenient method for achiev- 
ing this by drawing a rough axis for each chromosome. 
1.5.2.2. AXES AND CENTROMERE POSITIONS 

Defining a chromosome axis or centerline is a common step in extract- 
ing a number of important chromosome measurements (see Section 3.4.). 
For badly bent chromosomes, this may not be easy to define automati- 
cally. Centromere positions can also be difficult to measure, particularly 
in the case of highly elongated chromosomes. Since classification perfor- 
mance will be affected by errors in axis and centromere positions, correc- 
tion of automatically generated positions may be required. This usually 
involves drawing a correct axis with the pointing device or indicating a 
correct centromere. However, it is often easier to accept errors of this 
type and correct the resulting classification errors at a later stage, and 
there is some evidence that this results in fewer interactions overall (7). 
1.5.2.3. CLAESIFICATION (KARYOGFULM) 

Classification errors occur whether or not all stages in the analysis 
of the image have proceeded correctly. All of these errors show up as 
misplaced chromosomes on the initially presented karyograms. Chro- 
mosomes may either be in the wrong locations on the display or allo- 
cated to a “reject” class. Since the chromosomes must be examined 
carefully at this stage, e.g., for small structural abnormality, interac- 
tion to correct these errors is not a serious overhead, provided that 
there are only a few corrections to be made. Such corrections are gener- 
ally made by pointing to a chromosome on the display and indicating 
its correct position on the karyogram. Options will also be available 
for inverting a chromosome that has been presented the wrong way 
up or shifting chromosomes so that they are correctly aligned, in addi- 
tion to other possible presentation facilities, such as rotation, chro- 
mosome straightening, or banding pattern enhancement (8). 
1.5.2.4. COUNTING 

Counting chromosomes is the most easily described task in karyo- 
type analysis, but it is one that is most difficult to automate. This is 
because the whole procedure must be carried out quickly (as quickly 
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as the chromosomes can be counted by eye in the microscope). Using 
the types of computers appropriate for karyotyping systems, this pre- 
cludes the use of highly sophisticated segmentation algorithms. Auto- 
mated karyotyping systems approach this problem in various ways. 
In the Magiscan system, each image is digitized before any analysis 
takes place, and the user interacts with the image at all times via the 
screen, The Magiscan system provides semiautomated counting, in 
which an approximate count is presented to the operator, with all chro- 
mosomes marked, for correction by pointing at false chromosomes 
or missed chromosomes with the lightpen (9). Since the user may 
wish to examine every chromosome at this stage in any case, it is 
frequently found more convenient to disable the automated counting 
phase and to have the operator simply mark each chromosome in turn. 
In this way, the operator is guaranteed to look at each chromosome in 
the image, and the count is generated as a byproduct. The Cytoscan 
system also provides interactive, screen-based counting. Again, how- 
ever, except in particular cases (e.g., when counting hybrid cells with 
very many chromosomes), in typical use, counting is done entirely 
by “eyeball” analysis, in this case, of the metaphase directly in the micro- 
scope, because it is faster and easier for the operator, and not all 
counted cells need be analyzed further. 

Having a mark reliably placed on the interior of each chromosome 
at the counting phase provides information that can be used to cut 
down the number of segmentation interactions required (IO). This indi- 
cates that the provision of interaction in karyotyping systems is a matter 
that should be considered at the system level and not merely as a local 
“fix” to a processing problem. The need for a large number of inter- 
actions does not necessarily signify an inefficient combination of 
operator and machine. Interactions that advance the operator’s understand- 
ing of the image do no harm and could even be beneficial to the over- 
all process. What should be kept to a minimum is interactions in which 
the user is performing low-level tasks because of the machine’s lack 
of competence. 
152.5. WHOLLY INTERACTIVE SYSTEMS 

The Magiscan, Cytoscan, and AKS-2 systems are intended to be fully 
automatic systems, requiring interaction only to assist the automatic 
process. Other systems take a different approach. Genetiscan, for 
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example, provides a completely interactive environment in which the 
operator indicates each chromosome with a pointing device and speci- 
fies its group, whereupon it is transferred to a karyogram. In systems 
of this kind, the method of isolating each chromosome varies, but 
may involve indicating several points to specify the axis of the chro- 
mosome. This style of interaction ensures that the operator examines 
the structure of the chromosomes. It may, however, require consider- 
ation of factors not normally of great interest to the operator, such as 
exactly where a chromosome bends, and can involve a large number 
of interactions for each image. 

1.5.3. General Interaction Features 
Whatever physical device is used to create the interface, and what- 

ever the details of the user model, certain interaction features are essen- 
tial to maintaining a “user-friendly” interface. 
1.5.3.1. INSTANTANEOUS RESPONSE 

Interaction frequently involves some new processing of the image 
or part of it following a user request. This processing should not be 
apparent to the user, who is interested only in the result. Being forced 
to wait for the response to a command can intrude on the course of an 
interaction, and it is important that responses should appear to be 
instantaneous. Thus, good user interaction can demand the use of a 
powerful computer. 
1.5.3.2. VISUAL FEEDBACK 

Many interactions involve indicating significant image regions by 
pointing or drawing. It is important that the user is kept aware of the 
machine’s interpretation of interactive requests by suitably highlight- 
ing regions or lines, and indicating the type of interaction being under- 
taken. In the case of Cytoscan, as the pointer is moved around the screen 
by the mouse, the nearest chromosome (or other object) is highlighted 
by a box surroundmg it, and it is this chromosome that is selected for 
any subsequent command. This method has the added advantage of 
immediately confirming whether a chromosome is separated or is part 
of a cluster. Visual feedback should take account of the context of the 
interaction, for example, by warning of illegal or ambiguous user 
requests. The need for instantaneous response is particularly impor- 
tant here. 
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1.5.3.3. UNDOING INTERACTIONS 
A feature so useful as to be indispensable is the ability to undo the 

results of an interaction by returning to a previous state by at least 
one, but preferably several, steps. This is needed not only because 
interaction errors occur and need to be corrected, but also because it 
is sometimes unclear exactly what the outcome of an interaction should 
be. For example, it may be difficult to decide on the correct way to 
divide up a collection of overlapping chromosomes, and several trials 
may be needed. 

1.5.3.4. CONSISTENT INTERFACE 
It is much easier to interact efficiently if the style of interaction is 

kept as consistent as possible across different types of interaction. For 
example, all interactions might begin by selecting an object from the 
image. Many interactions involve drawing lines for different purposes. 
Lme drawing should always be invoked and executed m the same way. 
If a mouse is used, the functions of the mouse buttons should be con- 
sistent. Interactions that are similar to each other should involve the 
user in similar actions. 
1.535. USER ASSISTANCE 

It should be possible to obtain on-line descriptions of the available 
options by the provision of a “help” facility at each interaction stage. 

2. Materials 
2.1. Equipment Required 

for Karyotype Analysis 
The minimum equipment required by those intending to build their 

own karyotyping system comprises a microscope, a computer, a cam- 
era to acquire the images, and some means of display. The computer 
requires reasonable power and a good program development envi- 
ronment, ideally a scientific workstation running UNIX or a top-end 
PC, In either case, if the computer has a high-resolution monitor, then 
the display of images (digitized metaphase, karyogram) may be adequate 
without further equipment. The display should have at least 800 x 600 
pixels and at least 6-bit (64 level) gray-scale resolution. Color is not 
particularly important, but some means for displaymg graphical over- 
lays is desirable. Some means of interactive control apart from the key- 
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board is needed; the ubiquitous mouse is ideal. Windows software is 
highly desirable, but not essential. You will need adequate disk space 
(at least 50 Mbyte) and some means of backing up images and soft- 
ware (e.g., magnetic tape or optical disk). 

In order to digitize the image from the camera, a frame grabber will be 
required. In the past, these have had a display capability that required 
a separate monitor (in which case the requirements of the computer 
itself are obviously less in this respect than those specified above); 
nowadays, however, it is possible to display the digitized image directly 
in a window on the work station and possibly also the live image prior to 
digitization. The frame grabber will acquire a rectangular array of pixels 
by digitizing the camera signal; this frame should be at least 512 x 512 
pixels, with 6-bit gray-scale resolution. It is desirable that the pixel 
spacing be the same in each direction (square or 1: 1 aspect ratio). 

The camera should be a high-quality monochrome camera, either 
vacuum tube (Chalnicon or Newvicon tubes are best) or a CCD with 
resolution (number of pixels) similar to the frame grabber. There are 
several important aspects to bear in mind. First, CCD cameras are 
usually most sensitive in the near infrared part of the spectrum, and 
an infrared filter either within the camera or on the microscope will 
be essential for good image contrast. Second, an electrical low-pass 
or antialias filter with a cutoff frequency of about 6 MHz should be 
included between the camera and frame grabber (unless either already 
incorporates one), in order to reduce high-frequency white noise, and 
the “aliasing” effects that can arise between a CCD camera and a 
frame store unless their pixel clocks are synchronized (which is usu- 
ally not possible). Third, the sensitive area of most CCD cameras is 
smaller than that of “l-in.” vacuum tube cameras, resulting in an appar- 
ently larger magnification of the digitized image and correspondly 
smaller field of view. If you intend to use a “2/3-in.” tube or CCD camera, 
you should consider acquiring a 63x objective instead of (or in addi- 
tion to) the 100x, which is more suitable for use with a l-in. camera. 
An alternative is to use a zoom attachment, available for most good 
microscopes. The camera can be attached to a standard microscope 
by using a C-mount adaptor in the photography port. Fourth, you will 
need to experiment with microscope color filters in order to obtain 
the best contrast (e.g., of G-bands) with the chosen camera. It is worth 
bearing in mind that the camera will most likely be placed at the 
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primary focus of the objective, where, depending on the microscope, 
the image may not be fully color-corrected, in which case a fairly 
narrow bandwidth filter may well improve the image sharpness. 

A hard-copy device is essential for printing karyograms. There are 
two main types. Video printers attach directly to the composite video 
signal fed to a monitor; digital printers are capable of better resolution, 
but require a digital interface and will generally be slower in use. 
Relatively cheap video printers give reasonable results, with perhaps 
64 levels of gray on thermal paper. Digital thermal printers are a little 
more expensive, whereas photographic laser printers (not to be con- 
fused with the widely used xerographic laser printers, which are 
unsuitable) are capable of superb reproduction quality, but are expensive 
to buy and to run. 

2.2. Additional Hardware Requirements 
for Metaphase Finding 

To search for metaphases autonomously, the metaphase finding 
computer must be in control of the microscope. That is, it must be able to 
move the microscope stage along its x and y axes with adequate speed 
and accuracy; it must maintain focus during its search and so must be 
able to move the stage along its z axis. This is usually achieved by 
using a microscope stage fitted with stepper motors that are driven 
from the computer. The step size of these motors should be no greater 
than about 5 l.trn. A stepper motor can be attached to the focus control 
and should be geared to produce movements of the stage in the z 
direction in steps of about 0.1 l,trn. It is also useful to have computer 
control of the microscope lamp to maintain a suitable constant illu- 
mination level during the search. 

3. Methods 
3.1. Metaphase Finding 

In this section, we consider some of the technical issues that must 
be addressed in constructing a metaphase finder and that determine 
the system’s performance characteristics. 

3.1.1. Image Capture 
As outlined in Section 2.1.) image capture for karyotype analysis 

is generally done using a television camera, and this is also true of 
most metaphase finders. Scanning for metaphases involves moving 
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the microscope stage in fixed size steps and allowing it to stabilize 
between image captures. An alternative approach has been adopted 
by Shippey et al. (II), who exploited the fact that scanning is inher- 
ent to metaphase finding. The Fast Interval Processor, later to be made 
commercially available as the Cytoscan metaphase finder, uses a 
single-line CCD detector rather than the two-dimensional array of a 
television camera. The second image dimension is obtained from the 
continuous motion of the stage underneath the detector. A fast hard- 
ware preprocessor analyzes the input line by line and generates des- 
criptions of the imaged objects that are passed on to a computer for 
analysis. Although inherently less flexible than systems using TV 
cameras, this strategy provides very high speeds of data capture and 
processing in scanning tasks. Line scanning is also used in the Geneti- 
Scanner (4). 

3.1.2. Features Used for Metaphase Recognition 
Each image that is captured as the stage is moved must be analyzed 

to detect potential metaphases. A metaphase can be recognized as a 
region of rather granular image texture of a certain expected size. 
These regions may be automatically identified in various ways, and 
since each field needs to be analyzed rather quickly, the method used 
in any machine tends to exploit the strengths of that machine’s par- 
ticular hardware. However, the image properties that are measured 
are essentially the same from one system to another. A number of 
separate objects must be found within a predictable size range and 
with some optimum separation. 

The image analysis problem is to estimate the properties of object 
number, size, and separation given that individual chromosomes are 
not well resolved by the approx l+m2 sized pixels typically used for 
metaphase finding. The method adopted by Graham and Pycock (12) 
and implemented in the Magiscan system was to threshold a suspected 
metaphase region using a locally determined threshold and to use meth- 
ods from the field of Mathematical Morphology (13), involving erosion 
and dilation of the binary image, to estimate the sizes and separations 
of individual touching objects (Fig. 2). Regions are selected for this 
analysis according to the output of a rapid local texture measurement 
applied over the entire image and tuned to the variation in brightness 
expected within the region of a metaphase. 
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Fig. 2. Analysis of a suspected metaphase using morphological sizing (12). A. 
Extent of an irregular area with image texture appropriate for a metaphase. B. Result 
of applying a locally determined threshold within the area to detect the chromo- 
somes. C. The detected regions have been subjected to an opening (erosion + dila- 
tion) operation. Most isolated objects have been removed, but clumpy areas remain. 
Application of this operation with differently sized erosion/dilation structuring ele- 
ments allows a size distribution of possibly touching objects to be determined. D. 
The detected regions from (B) have been subjected to a closing (dilation + erosion) 
operation. The areas between the detected regions have been filled in, allowing 
object separation and overall object size to be measured. (Reproduced by permis- 
sion of Science Printers and Publishers Inc., St. Louis, MO.) 

A method of achieving essentially the same measures appropriate 
for linear scanning is described by Shippey et al. (II). The clustering 
in this case uses measured distance between detected “limbs” (simply 
connected above threshold regions that may touch each other). 
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Both of these systems assign a quality index to the detected meta- 
phase. Graham and Pycock (12) assign a figure of merit consisting of 
a weighted sum of measured parameters, such as number of objects, 
image brightness, and object separation, the weights being determined 
by training on samples of the material to be used. Shippey et al. (II) 
use a similar measure, applying a box classifier (see Section 3.6.1.) to 
eliminate at an early stage objects that are highly unlikely to be use- 
ful metaphases. 

3.1.3. Autofocus 
Reliable metaphase detection is dependent on the ability of the system 

to keep the microscope slide in good focus. Regular measurements 
must be made from which the focus can be determined and adjusted 
if necessary. A number of image properties may be measured for this 
purpose, such as average image density or gradient. The effective- 
ness of several different focus functions has been assessed by Groen 
et al. (14) and by Firestone et al. (15). 

In the continuous scanning system of Shippey et al. (II) the focus 
can be continuously monitored by using two additional linear detec- 
tors set slightly out of focus in either direction with respect to the 
principal linear detector array. The average image intensity from each 
of these three detectors can be used to determine the stage position 
for optimal focus. Usually in TV-based systems, focus is maintained 
by driving the stage through the focus position at regular intervals in 
the scan area to find the best value of the focus measure. Graham and 
Pycock (12) use a method of determining a sparse grid of correct 
focus positions before scanning for metaphases and interpolating between 
neighboring grid points as the scan proceeds. 

3.1.4. Building Your Own 
Commercially available metaphase finders are generally based on 

fairly specialized computers. These may have been designed specifi- 
cally to optimize scanning processes, such as Cytoscan, or may be 
machines intended to address a wider range of image processing tasks. 
In either case, the machines are architecturally rather specialized and 
therefore expensive. 

Up to about the time of writing this chapter, this use of specialized 
processors was necessary to allow the application of sufficient com- 
puting power to achieve realistic scanning speeds. This situation has 
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changed recently by the introduction of very powerful, inexpensive 
personal computers and scientific work stations. These machines deliver 
sufficient performance for image processing, while retaining a gen- 
eral-purpose architecture. This chapter is intended in part to act as a 
guide to those who wish to build their own systems, and these devel- 
opments open up the possibility of a do-it-yourself metaphase finder 
built of commercially available components. 

The performance that might be expected from such a system can 
be judged by the recent implementation of a metaphase finder on a 
Macintosh IIfx computer by Vrolijk and his colleagues at the University 
of Leiden (16). They have used commercially available hardware for 
image acquisition and microscope control, and achieved scanning 
speeds of about 360 s/cm2. The method of detection and assessment 
of metaphases used by these workers is similar to that described m 
(12); regions detected by a specially designed texture filter are mea- 
sured and ranked using a combination of mathematical morphology 
operators. The caveat of our introduction should, however, be par- 
ticularly emphasized here. To achieve the scanning speeds they report, 
these workers have used their long experience in this field to develop 
methods that are not only highly specific to the images, but also highly 
optimized for the particular computer architecture they chose. Any 
laboratory considering an ab initio implementation of a metaphase 
finder should bear in mind the investment in time and expertise nec- 
essary to build a working system with reasonable performance. 

3.2. High-Resolution Image Capture 
For karyotype analysis, it is particularly important that the quality 

of the image captured by the camera is as high as possible. To this end, 
care should be taken with the optical setup of the microscope lamp and 
condenser, cleanliness of the lenses, the level of illumination, the 
filter color (both of the latter may need to be different for the camera 
than for the human eye), and the overall magnification, taking the 
camera pixel size into account. As mentioned above, an infrared fil- 
ter is essential for a CCD camera, and an electrical antialias filter is 
recommended. Image degradation can be caused by incorrect electri- 
cal termination of video signals and also by electrical noise pickup. 
To reduce radio-frequency noise, it is wise to link all metal compo- 
nents, including the microscope frame, to a common earthing point. 
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A number of factors can be optimized by appropriate image analy- 
sis programs. Light level can be measured by identifying the back- 
ground peak in a histogram of digitized pixel gray values; the lamp 
should be adjusted so that this peak lies near the “white” end of the 
frame grabber’s range of pixel gray values. Focus is best adjusted by 
looking at the live image as seen by the frame grabber (since the 
camera and eyepieces may not be parfocal). Most microscopes show 
nonuniform illumination, in that they are typically less bright toward 
the edge of the field; this can be compensated for by taking a “shad- 
ing map” of a clear field and using it for shading correction, and also 
to compensate for any camera nonuniformity. 

Captured images will comprise a large amount of data, typically 
between 250 and 500 kbyte. Storing such images will soon fill up what- 
ever disk storage is available. Since most of the image is “background” 
(clear field), removing background (segmentation; see Section 3.) 
before storing to disk may reduce file sizes by about 90%. Your oper- 
ating system may provide a file compression program; this can typi- 
cally reduce the size of the thresholded images by a further 30%. 

There will always be some exceptionally well-spread metaphases 
that do not fit within the camera frame. The solution is to fuse parts of 
multiple digitized fields under software control; here again, rt is sen- 
sible to use segmented images as the basis of the operation. 

3.3. Metaphase Image Segmentation 
3.3.1. Initial Image Segmentation 

This is invariably done by thresholding; a darkness value is chosen, 
and “background” pixels lighter than this threshold value are discarded. 
Finding the connected sets of darker pixels results in an initial divi- 
sion into image regions that may represent individual chromosomes, 
chromosome clusters, or unwanted objects, such as stain particles 
and interphase nuclei. 

The threshold may be chosen automatically, by analysis of the his- 
togram of density values (Fig. 3). Such a histogram has a pronounced 
“background” peak, and the threshold must be chosen at a value a little 
above the upper end of the background region. 

Some authors (9) have described methods of local thresholding to 
take account of a nonuniform background, caused, for example, by slight 
cytoplasm staining. However, the most usual cause of nonuniform back- 
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Fig. 3. Histogram of pixel densities from a digitized metaphase image. The pro- 
nounced peak comes from the large area of clear background, whereas the chromo- 
somes give rise to the relatively small number of darker pixels. 

ground is uneven microscope illumination; this and any camera non- 
uniformity is best compensated for by preliminary shading correc- 
tion (8,17) (Section 3.2.). In an unpublished experiment, one of us (J. 
P.) found that local thresholding led to significant deterioration of the 
per-class coefficients of variation of relative chromosome size com- 
pared with simple global thresholding. 

In an Interactive system, the operator should have control over the 
final detection level, whether obtained from global or local analysis. 
As noted in Section 1.5., it is inappropriate for the operator to be asked to 
specify a threshold numerically. A rapid visual method can easily be 
provided if the display facilities include a look-up table (LUT). The 
effect of any particular threshold choice (specified, say, by pointing 
at a “slider bar”) may be simulated by setting LUT values below the 
proposed threshold to some uniform, non-natural color such as mid- 
gray or pale blue. The visual effect on the metaphase image is as if 
the operator had a bird’s eye view of the tide rising or falling around 
a number of islands. If the automatic threshold selection has been done 
properly, then interactive adjustment should in any case be required 
only rarely. After setting the threshold, the values of the remaining 
pixels may be “stretched” to make use of the full dynamic range of 
the display, resulting in a useful increase in image contrast. 
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3.3.2. Interactive Segmentation 
The user interface has been described above (Section 1 S.2.). From 

the programming point of view, the requirement is then quite straight- 
forward, namely, to take an image region and some graphical object 
generated by the interaction system (such as a polygon along the desired 
split path), and return the image regions of the segmented chromo- 
somes. Further discussion on semiautomatic segmentation can be found 
in Note 1. 

3.4. Feature Measurement 
The purpose of feature measurement is to obtain information in 

numerical form that is useful for classification of a chromosome into 
its correct class, or to decide that it is abnormal in some way. The features 
commonly used include relative size, centromeric index, and some numer- 
ical description of the banding pattern. 

3.4.1. Chromosome Size 
To a cytogeneticist, size usually means the length of a chromo- 

some, and the relative length is, of course, an important discriminator of 
chromosome class. However, it has been found that chromosome area 
is an equally reliable size measure, which has the advantage of being easy 
to compute, simply by counting the number of pixels, and in particular, 
does not depend on correctly locating the chromosome’s axis. 

3.4.2. Relative Density 
Some chromosomes are, overall, paler than others, and the relative 

density of a chromosome may be obtained simply by adding its pixel 
values and dividing by the area. 

3.4.3. Medial Axis, Orientation, and Polarity 
For all the other measurements that we wish to make, whether the 

chromosome is bent or straight, or whatever its orientation in the meta- 
phase plate is irrelevant, and such geometric variation is compen- 
sated for by making all measurements in a non-Euclidean coordinate 
frame determined by the chromosome’s axis of symmetry or centerline. 
Since one aim of a karyotyping system is to produce a karyogram 
presentation of the metaphase, the orientation must also be found 
explicitly, so that the chromosome can be displayed vertically in the 
karyogram. Finally, it is conventional to display the short arm upper- 
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most, and so the chromosome polarity (which arm is the short arm) 
must also be determined. 

Although in principle the chromosome orientation could be defined as 
the average direction of the medial axis, it turns out that finding the 
orientation is rather more reliable than finding the axis, and indeed, 
most axis-finding methods rely on an initial estimate of orientation. 
Possible methods include taking second-order moments of gray val- 
ues (18), finding the least-squares straight line fit to boundary coor- 
dinates (9), or finding the minimum width enclosing rectangle (MWR) 
(7). The MWR method makes use of the fact that the MWR is paral- 
lel to one chord of the convex hull or minimum enclosing convex 
polygon, Assuming an appropriate data structure for the chromosome 
image, the convex hull can be found extremely rapidly (19), and find- 
ing the MWR is then straightforward and rapid. 

Axis finding is still an unsolved problem; looked at another way, 
existing methods are prone to error in a significant number of cases, 
The consequence of finding a curve that is not in fact the chromosome’s 
symmetry axis is that subsequent measurement of length, centromere 
position, and banding features may well be erroneous. Since the sys- 
tem under discussion is intended to be automatic, such errors will not 
be apparent until the chromosome is misclassified and presented in 
the wrong location in the karyogram. Axis errors are an important 
cause of classification errors, and as was mentioned in Section 1.5.2., 
in some systems, the operator is given the opportunity to correct the 
axis interactively. 

Given the orientation, the axis can be found initially as a straight 
line (9,18). Of course, very few chromosomes are truly straight, and 
a curved axis is usually required. For relatively straight, well-formed 
chromosomes, the set of midpoints of chords perpendicular to the major 
orientation direction (Fig. 4) suffices (7). In the case of more seri- 
ously bent chromosomes, various methods have been proposed: fit- 
ting a cubic to the chord midpoints (9), a piece-wise linear fit (18), or 
use of the “skeleton” of the chromosome image region (7). 

As yet, no known method copes well with metaphase chromosomes 
that have an acute bend at the centromere (or elsewhere), since the true 
centerline of the chromosome no longer corresponds to the midline 
of the segmented “shape” of the object. The problem could be solved 
if it were known a priori that the object was an acutely bent chromo- 
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B 

Fig. 4. The axis derived from the midpoints of chords perpendicular to the major 
orientation of a chromosome is usually satisfactory in the case of relatively straight 
chromosomes A, but can be significantly in error at (particularly) the ends of bent 
chromosomes B. For clarity, only every fourth chord has been shown. 

some. However, even visually, such an object can often only be rec- 
ognized as a single chromosome, because, in effect, its two arms are 
recognized independently as belonging to the same chromosome class. 
In an automatic system, recognition follows segmentation and axis 
finding, and such circular reasoning has not yet been proven possible 
(20). Similarly, chromosomes whose chromatids are not parallel will 
typically confuse an axis algorithm. These are illustrations of a gen- 
eral principle that an automated system for biomedical image analy- 
sis will only work satisfactorily if care is taken to ensure that the 
biological preparation is of the highest possible quality and conforms 
to the system’s implicit model of such material. 

3.4.4. Profdes 
Having obtained the chromosome’s symmetry axis, the first stage 

in obtaining the remaining features is to reduce the two-dimensional 
chromosome image to a one-dimensional form known as a profile. A 
profile represents the distribution of some property of the chromo- 
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Fig. 5. Non-Euclidean coordinate system for computing profiles, based on lines 
perpendicular to the chromosome axis. For clarity, the scale used has been reduced 
by 4x. 

some, for example, its width or the intensity of staining, as it varies 
along the chromosome in a direction determined by the medial axis. 
More precisely, we define a non-Euclidean coordinate space (Fig. 5) 
and make measurements at points in this space. The points of interest 
are obtained in the following way. 

First, points are found on the medial axis that are unit distance (one 
pixel spacing) apart. Note that such points themselves do not usually 
have integer coordinates. Next, at each such point, a line is constructed 
perpendicular to the axis, and points are found on each such line at 
unit distance spacing (Fig. 5). Again, these points do not have integer 
coordinates, nor am they usually at unit distance from all of their neighbors. 
At each such point, an appropriate pixel intensity value is computed 
from the values of the neighboring original pixels. This can be done 
most simply by finding the nearest original pixel and choosing its 
value (nearest-neighbor method, Fig. 5), but it has been shown that 
values obtained by bilinear interpolation among the four surrounding 
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original pixels (Fig. 5) lead to more accurate measurement (21), and 
this is now the commonly used technique. 

Profiles are used both to represent the banding pattern and also to 
reduce the chromosome’s shape to a one-dimensional representation, 
in order to find the centromere. For band pattern representation, the 
“integrated density” profile is computed by taking the sum of all pixel 
values inside the chromosome boundary on each of the transverse lines 
across the chromosome (Frg. 6). Shape may be represented by the “width” 
profile (Fig. 6), computed by finding the number of connected pixels 
with above-threshold values in each transverse slice (9). The width 
may well either be noisy on account of closely adjacent chromosomes 
or stained cytoplasm, or the width at the centromere may not be sig- 
nificantly less than elsewhere. An alternative profile that partly over- 
comes these problems by integrating information across the chromatid 
structure is the moment or “shape” profile (7,22), computed as shown 
in Fig. 7. Shape profiles are compared with width profiles in Fig. 8. 

3.4.5. Centromere 
Usually, a metacentric chromosome’s centromere appears as a pro- 

nounced minimum in either the width or shape profile, whereas that 
of an acrocentric is represented only by a smaller than usual gradient 
at one end of the profile (Figs. 6 and 8). Since it 1s not known a priori 
whether a particular chromosome is in fact metacentric or acrocen- 
tric, the essential problem to be solved is how to compare the proper- 
ties of the gradient at an end of the profile with properties of a profile 
minimum. Various solutions have been proposed, none of which is 
entirely satisfactory: 

1. Groen et al. (18) used the width profile, truncated at either end, and 
chose the overall muumum width. The assumption IS that this will be at 
the correct end m the case of an acrocentric. 

2. Graham (9) found the end wtth lower gradrent if there was no profile 
muumum m the central 60% of the width profile. 

3. Piper (22) took the convex envelope of the profile and found the most 
“srgmfrcant” chord. The centromere was then assumed to be at the point 
furthest beneath this chord. 

4. Piper and Granum (7) deliberately constructed mmima at either end of 
the profile and then chose the “best” minimum, which m the case of 
metacentnc chromosomes was expected not to be one of those at the end. 
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Fig. 6. Chromosome width (left) and density profiles, determined from the cen- 
tral axes shown. 

3.4.6. Shape Features 
Centromeric index is the most useful shape measure yet discovered. It 

may be computed on the basis of length, area, or total pixel intensity. 
Although the former two are highly correlated, the last introduces some 
additional information about the chromosome. In order to compute the 
centromeric indices by area and total pixel intensity, the chromosome 
image must be divided by a line perpendicular to the medial axis that 
passes through the centromere, and pixels on either side of this line must 
be determined. 

In ref. 7, some other shape features were proposed, computed by 
applying Granum’s weighted density distribution (WDD) functions 
(23) to the shape profile. However, these tend either to be quite highly 
correlated with centromeric index or to have rather little class discri- 
mination ability. The centromere position is the best-known automatic 
determinant of chromosome polarity (which end is the short arm), 
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Fig 7 Computation of smgle point of “shape” profile. The profile shown 1s of 
the distribution of pixel values of a single “slice” across the chromosome (Fig. 5), 
perpendicular to the axis If C is the centroid of the slice, and point i at distance d, 
from C has pixel density p[, then the profile value for this shce is Zp,ld,lQ,. 

which in turn is required for the computation of some of the follow- 
ing band pattern features. 

3.4.7. Band Pattern Features from Density Profile 
Band pattern features divide into two overall classes, “global” and 

“local.” A global feature is a single number computed from the entirety of 
the density profile by a uniform arithmetical procedure. On the other 
hand, a local feature describes some particular structure in the den- 
sity profile, for example, the location of the most intense band. For 
comparison, the area of a chromosome is also a global feature, whereas 
the centromeric index is a local feature, determined by the centromere 
position. 

The view has long been held that local band pattern features will 
be required in order to detect and describe abnormality in banding 
patterns, and attempts at local band pattern descriptions have been made 
for more than two decades. However, from the point of view of clas- 
sification of normal chromosomes mto the normal classes, it has been 
found that the global features are superior. Active research continues 
in a number of laboratories into local description methods. 
3.4.7.1. GLOBAL BAND PAWERN FEATURES 

Two approaches are used to obtain single numbers that represent 
some aspect of an entire density profile. First, the profile values may 
be treated as samples from a distribution, and parameters of the distri- 
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Fig. 8. Width (left) and “shape” profiles of metacentric and acmcentic chromosomes. 

bution estimated (7). A variation is that the density differences between 
adjacent profile points are taken as the sample (23). 

The second main method is to multiply the profile by each of a set 
of basis functions, resulting in a corresponding set of feature values. 
If appropriate sinusoidal basis functions are used, then the resulting 
set comprises the Fourier transform of the profile (24). However, the 
lack until recently of affordable floating point hardware has led to 
widespread adoption of Granum’s WDD basis functions, which are 
triangular rather than sinusoidal (23). Typically, the first four func- 
tions are used. Granum (23) recommends the use of these functions 
both on the entire profile, and also on the p and q portions separately 
in order to obtain further features. The usefulness of the latter may, 
however, not be great in a system in which the machine-found cen- 
tromere is left uncorrected. Piper and Granum (7) showed that two 
additional WDD functions (Fig. 9) were also valuable. They also 
showed that if the WDD basis functions were applied either to the 
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Fig. 9. The first four weighted density distribution functions (23). 

“shape” profile or to the profile of differences between adjacent points 
of the density profile, then further valuable features resulted. 
3.4.7.2. LOCAL BAND PATTERN DESCRIPTION 

By analogy with the centromere, it is possible to use the location 
of certain landmark bands as classrfication features. Thus, the locations 
of the darkest band m either arm, and of the dark bands nearest to the 
centromere and to the telomeres provide usable features (I 7,181. Thus 
far, such features have been used with a conventional statistical clas- 
sifier, but together with a structural/syntactic classifier, they could 
well provide the means of detecting some band pattern abnormalities. A 
more rigorous approach to addressing that problem is provided by the 
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work of Granum and his associates (25) in the use of hidden Markov 
models for chromosome band patterns; so far, however, they have 
only presented data from normal material. 

3.5. Feature Normalization 
In a prometaphase cell, a number 1 chromosome may be two or three 

times longer than a number 1 in a midmetaphase. Indeed, the midmeta- 
phase number 1 may be shorter than, say, a chromosome 10 in the prometa- 
phase cell. Thus, “raw” size is not a very helpful measure. What remains 
true is that in either cell the length of a number 1 comprises about 8% 
of the length of a haploid set. 

The transformation to relative size by, perhaps, division by the sum 
of the sizes of all chromosomes in a cell is an example of a process 
known as normalization (7,9,18,23). Unfortunately, for the majority 
of features except size, there is no clear theoretical reason to justify 
normalization or to guide how to perform it. Centromere index varies 
only slightly with cell contraction and is usually left unnormalized. 
Other features may be normalized by standardizing the distribution 
within a cell (i.e., obtaining zero mean and unity standard deviation) 
(7), and in many cases, this appears to improve their discrimination 
capability, but the reason for this improvement is not well under- 
stood in most cases, 

3.6. Classification 
In Sections 3.4. and 3.5., we described ways in which attributes of 

chromosomes may be measured and represented numerically by an 
automated karyotyping system. Here we describe how these measure- 
ments can be used to produce an automatic classification. This sub- 
ject is often referred to as Pattern Recognition. We will begin with a 
brief introduction to Pattern Recognition methods and then consider 
how these are applied to chromosome classification. 

3.6.1. Pattern Recognition 
This is a necessarily brief introduction to a highly developed sub- 

ject, and the reader is referred to one of a number of excellent texts 
for a full account (e.g., 2627). In any classification or pattern recog- 
nition task, objects are to be assigned to classes on the basis of a set 
of measured attributes, or features, such as those described in Sec- 
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tion 3.4. Features should be numeric (i.e., they must be measurements), 
they should have some discriminating power (i.e., the features mea- 
sured from objects in different classes should be different), and they 
should ideally be independent (i.e., they should represent truly dif- 
ferent properties of the classes). 

Consider a case where we measure two features x and y (say chro- 
mosome length and centromeric index, as used for the classification 
of unbanded chromosomes), and we wish to distinguish three classes, 
There are a number of methods that may be applied to discriminate the 
classes on the basis of these features. To determine which method to choose 
and the appropriate parameters, features must be collected from a 
representative set of objects, and these objects assigned to their classes 
by an expert in the appropriate domain (a cytogeneticist in our case), 
in a process known as “classifier training.” We can plot the feature 
values on a space whose axes correspond to the features (Fig. 10). 
This space is known as afeature space. The feature values (x,y) for a 
particular object constitute itsfeature vector: The task of the classifier is 
to partition the feature space, so that when the feature vector for a new 
(unknown) object IS plotted, it can be assigned to one of the classes. 
Figure 10 shows some common methods of partitioning the space. 

Fig 10 (opposite page) Scattergrams representmg the two-dimensional feature 
vectors for a number of training examples of three classes. Dependmg on the distri- 
bution of these vectors in feature space, different strategies may be applied for 
allocating an unknown object with feature vector (2,~‘) to a class A. Box classi- 
fier. The classes can be distinguished by thresholds on each of the feature axes 
The thresholds may define upper and lower bounds for class membershtp. In the 
example shown, a single threshold on each of the axes is sufficient to partition the 
feature space. B. Linear discriminant. In this case, the classes would be poorly 
discriminated by thresholds, but can be easily separated by straight lines in feature 
space. An unknown vector is asstgned to one of the classes according to its posi- 
tion with respect to these lines, I e , according to the value of A$ + Bty’ + C1 and 
A& + B2y’ + C, C. Parametric classifier. The feature vectors of the trammg set 
form recognizable clusters that may overlap and so cannot be separated by a deci- 
sion line. The clusters may be modelled by a bivariate (m general, multivariate) 
normal distribution The ellipses represent the area contained within one standard 
deviation of the mean values of these distributions. An unknown feature vector is 
assigned to the class according to its distance from each of the class means, the 
distance being weighted by the covariance of the appropriate class. D. Nearest 
neighbor classifier. If the feature vectors in the training data are few in number, or 
not well clustered, a new vector may be assigned to the class of the nearest vector 
in the trammg data 
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3.6.1.1. Box CLAMIFIER 
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This is the simplest form of partition. “Boxes” are defined around 
each cluster by setting thresholds on the feature values. A new object 
will be classified according to which “box” its feature vector falls 
into. The advantages of a box classifier are its simplicity and ease of 
computation. Its principal disadvantage is that it requires the clusters 
to be well separated along at least one of the dimensions of feature 
space. This is rarely the case. 
3.6.1.2. LINEAR DISCRIMINANT 

If classes cannot be separated by thresholds on the features, they may 
be separated by a straight line m feature space. If the line Ax + By + C = 0 
separates the classes, then a measure of Ax, + By, + C for some new 
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object with feature vector (xi,yJ will be greater than zero for (xi,yJ 
on one side of the line and less than zero on the other. If more than 
two classes are present, several lines can be used. 

3.6.1.3. PARAMETRIC CLABIFIER 
In this case, the clusters arising from the classes are represented in 

some parametric form. Commonly, the clusters are modeled by multi- 
variate normal distributions (bivariate in the two-dimensional case con- 
sidered here). The classes are parameterized by the mean and variance 
of the corresponding clusters along each of the dimensions. A new 
object may be assigned to one of the classes by measuring its dis- 
tance from the mean vector of each class, weighted by the variance of 
that class. In general, this measure can be used to assign a likelihood 
of a new object belonging to each of the classes. The likelihood that 
an object with feature vector (x,y) belongs to class i is given by: 

[1/2N$L + o$ P2 exp -l/21 1 E(x - cLxJ2/~~, 1 + [(y - PyJ2/$ II (1) 
Since, in general, the object will be assigned to the class with highest 

likelihood, this method is often referred to as a maximum likelihood 
classifier. 

As described above and in Fig. 10, the features are assumed to be inde- 
pendent. This assumption is usually unrealistic and can be dispensed 
with by including the covariances in the calculation of distances. This, 
however, adds greatly to the computational cost, but has been shown 
to add little to the overall classification accuracy, at least for classifi- 
cation of chromosomes (28,29). 

3.6.1.4. NEAREST NEIGHBOR CLASSIFIER 

If the feature vectors do not fall into compact clusters or the train- 
ing set is very small, none of the above methods may be suitable. In 
this case, an unknown feature vector may be assigned to the class of 
the nearest object in the training set or, more robustly, to the class to 
which the majority of the k nearest objects belong (a k-NN classi- 
fier). The L-NN classifier can be highly effective, its principal disad- 
vantage being that the entire set of training data must be available 
and searched for each classification. 
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3.6.2. Classifying Chromosomes 
3.6.2.1. CLASSIFIER CAPABILITY 

Karyotyping is a rather challenging classification problem. There 
are few other applications in which it is necessary to assign objects to 
as many as 24 classes. In current implementations, the assignment 
may be based on anything from five to 16 features (7,9,18); that is to 
say that the two-dimensional feature spaces shown in Fig. 10 should 
be visualized in up to 16 dimensions. The topic of automatic selec- 
tion of suitable features is considered in Note 2. To our knowledge, 
all currently available karyotyping systems use maximum likelihood 
classification. In the case of the Magiscan and Cytoscan, the likeli- 
hood estimates are based on a parameterization of the observed dis- 
tribution of the training set as in Fig. 10 C. In the AKS-2 system, the 
probability density functions are estimated directly from the training 
set, rather than being expressed as a small number of parameters (18). 

Because of a number of factors, perfect chromosome classification 
is never achieved in practice. Errors in feature measurement, inad- 
equacies in the feature sets used, and imperfect separation of the 
classes in feature space result in misclassification rates on the order 
of 5-20% for routine quality preparations of material used for clini- 
cal karyotyping (7,30,31). We should be a little careful about what 
we mean by classification error rates. The percentage misclassifi- 
cations just quoted give us a measure, over several different studies, 
of the total number of chromosomes not assigned to their correct 
classes by an automatic classifier. However, if we examine classifier 
performance from a system point of view, this is not necessarily the 
most meaningful number we could derive. In a working karyotyping 
system, a classification error will be corrected interactively by the 
operator. This is much more easily done if the misclassified chromo- 
somes can be identified and placed together in a special group, rather 
than being assigned to the wrong groups and scattered all over the 
karyogram. This can be achieved to some extent by the inclusion of a 
“reject class” to which chromosomes are assigned if their likelihood 
of belonging to any real group is below some threshold. There will, 
of course, remain a number of chromosomes that are wrongly classi- 
fied with high likelihood, and these are the most serious classifica- 
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tion errors from a system standpoint. Lundsteen et al. (30) find that 
their residual misclassification rate is reduced from 9.0 to 5.5% by the 
inclusion of a reject class. We should, of course, be somewhat cir- 
cumspect about this. We could easily achieve near-zero error rates by 
setting the likelihood threshold high enough at the expense of reject- 
ing most of the chromosomes. 
3.6.2.2. CONSTRAINTS ON CHROMOSOME CLASSIFICATION 

The classification rates reported above refer to context-free classi- 
fication; that is to say, the class to which a chromosome is assigned 
depends entirely on the features measured for that chromosome, with 
no account being taken of the features or classification likelihoods of 
other chromosomes in the cell (other than by normalization; Section 
3.5.). The fact that almost all chromosomes in a cell will be paired as 
homologs of very similar appearance provides constraints on classi- 
fication that can be exploited to improve the overall classification 
performance. (This is of use in most cases, although when karyotyp- 
ing cells from bone marrow or solid tumors it is often the case that not all 
chromosomes in a cell are visible or the cell is in any case highly 
aneuploid, and this type of constramt is of limited use.) 

The most useful constraint arising from this source is the knowledge 
that no class should contain more than two chromosomes (except in 
the rare, but important case of numerical abnormality). Context-free 
classification may well assign more than two chromosomes to the 
same class on the basis of their maximum likelihoods. The classifica- 
tion must therefore be “rearranged” by assigning some chromosomes 
to “second choice” classes, possibly displacing other chromosomes 
from these classes, and so on. Piper (32) tested a number of algo- 
rithms for achieving such a rearrangement and showed that the over- 
all classification rate can indeed be improved in this way. All of the 
methods improve classification, but none guarantee an optimal rearrange- 
ment in the sense that the maximum overall likelihood is obtained sub- 
ject to the constraint. Tso and Graham (33) showed that an optimal 
assignment of chromosomes to classes can be achieved using a method 
derived from Operations Research. An efficient algorithm for per- 
forming this assignment has recently been described and tested (34). 
Application of this technique results in a further small improvement 
in assignment over the suboptimal methods in ref. 32. It should be 
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noted, however, that the overall performance improvement obtained 
by the use of such rearrangement algorithms is small, of the order of 
2-3% in a misclassification rate of 520% (32,34). This change alone 
would almost certainly pass unnoticed by the user of a karyotyping 
system. The methods do, however, result in an increase in the num- 
ber of cells in which no misclassifications occur or in which there is 
only one misclassification. These cells will be exactly those of high 
visual quality, which should be specifically selected by a competent 
metaphase finder. Thus, the effects on the efficiency of the system 
will be greater than might be expected from consideration of mis- 
classification rates alone. 

Some consideration has also been given to the fact that two homolo- 
gous chromosomes assigned to the same class should look similar. 
Zimmerman et al. (35) showed that chromosomes could be matched 
to their homologs with high accuracy. Recently, this constraint has 
been incorporated mto a classifier with promising results, but the high 
computational cost makes it unsuitable at present for inclusion in a 
practical automated karyotyping system (36). 

Karyotyping, as we have said, is a difficult classification task, and 
looked at in isolation, existing chromosome classifiers do not do parti- 
cularly well by pattern recognition standards, but in combination with 
other system components, they can contribute to useful sennautomatic 
cytogenetic analysis systems. Some further aspects of karyotyping 
classification are consrdered in Notes 3 and 4. 

4. Notes 
1. Semrautomatic segmentation: Although the purely interactive segmen- 

tation methods described m Sections 1 S-2. and 3.3.2. are adequate, at 
least some automatron is highly desirable, partrcularly when analyzing 
difficult material, such as bone marrow preparations. Fully automatrc 
segmentation 1s still an area of active research, and existing techniques 
are both not particularly accurate and extremely complex, so that only 
the barest outline will be given here, smce a detailed review would 
comprise a long chapter all by itself. However, even rather straightfor- 
ward automatic strategies can assist considerably, and a few of these 
will be mentioned here. The problem may be regarded as consrstmg of 
two stages, (a) recogmtron of objects, i.e., individual chromosomes, 
clusters, nuclei, or other nonchromosome material, and (b) resolutron 
of clusters. Since nonchromosomal material may be mvolved in clus- 
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ters, the two stages may iterate. The operator must still be allowed to 
review and change a machine decision, or initiate an action that the 
machme has not suggested. 

In some material, there is a large amount of particulate debris that 
appears in the image as many small spots. These may be highhghted in 
some way and classified as noise, unless the operator cancels the high- 
lighting. The operator’s involvement remains essential, since frequently 
the satellites of a D-group chromosome will have been separated by the 
mitral segmentation by thresholdmg. Similarly, large objects cannot 
possibly be isolated chromosomes. If these are also highlighted and the 
operator prompted that something must be done about them, then the 
scope for missing some necessary decisions is reduced. 

There are two different possible approaches to the resolution of clus- 
ters. Either the cluster detection and segmentation can both be auto- 
matic, with operator review of the final result (10,37,38), or the operator 
can be relied on to point at an object, which is then resolved automati- 
cally (39,40). In either case, the system will make errors in a substan- 
tial proportion of cases (usually fewer in “better” material), so some 
means of highlighting machme actions is important so that the operator 
can review and correct the decisions. 

Automatic cluster recognition and decomposition can be based on 
one of two techniques. Graham thresholded the image at two levels, 
and found an optimal grouping of the higher-threshold particles by a 
region-based split and merge technique that is guided by the expected 
position of chromosomes obtamed by a previous count-by-pointing 
phase (IO). 

The other approach to cluster recognition and segmentation is largely 
based on an analysis of the shape of the boundary compared with the 
expected shape of a single chromosome. Those boundaries with com- 
plex curvature are most likely to belong to clusters, and concavities on 
the boundary are likely end points for a path that separates the cluster. 
Such an analysis may be used both for cluster recognition (37,38,41) 
and for splittmg (39,40). The more successful systems construct split- 
tmg paths by “valley followmg” (regarding pixel value as topographi- 
cal height) and compare several potential splitting paths, choosmg the 
most probable on the basis of a set of measured features (39,41). 

2. Feature selection for classification: Not all features have the same dis- 
crimmating power, and m some circumstances, a feature may contrib- 
ute little or nothing. Consider, for example, the case of the band-pattern 
features if classifying homogeneously stained chromosomes. In such 
cases, inclusion of a feature may make the classification error rate higher, 
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whereas omitting it will also reduce the computational cost. Thus, It 
makes sense to evaluate the discrimmating power that each feature con- 
tributes, in order to select a useful subset. 

Methods for automatic feature selection for chromosome classlfl- 
cation are discussed and illustrated in refs. 7,23, and 28. Essentially, 
these depend on both the discrimination capability of the feature taken 
alone, which may be estimated from the classifier training data by a 
simple formula, and on the correlation between a particular feature and 
others already selected as “useful,” since the inclusion of an additional 
feature that is highly correlated with one already selected ~111 most 
likely contribute little. 

Alternatively, one can run full classification experiments with the 
training data (split into separate “training” and “test” sets [7]), using a 
variety of different, but plausible sets of features, and choose the best 
on the basis of minimum error rate, However, to do this thoroughly 1s 
extremely (computer) time-consuming, since the number of possible 
feature sets explodes combinatorially as the number of features increases. 

3. Future classifier developments: 
Classifier design: Classifiers and their associated feature sets in 

current systems were designed for use with fairly contracted 
metaphase chromosomes. The tendency in cytogenetics laboratories 
to analyze cells with longer chromosomes, showing more bands, may 
result in decreasing performance of these classifiers. Two areas of 
development in classifier design address this problem. Granum and 
his coworkers (25) have developed an approach to chromosome clas- 
sification based on syntactic analysis, that is a structural description 
of the banding pattern, which is in principle extendible to high reso- 
lution banding. The application of an artificial neural network to chro- 
mosome classification has been described by Errington and Graham 
(42). Classification performance is similar to that which can be obtained 
using statistical classifiers, and the flexibility inherent in neural net- 
works should make them easily adaptable to changes in the appear- 
ance of cells being analyzed. 

Automatic detection of abnormalities: Another notable feature of the 
current generation of classifiers is that they are designed only to classify 
normal cells. In the main, they have no inherent definition of any spe- 
cific abnormality. At first sight, this appears curious, since the object 
of karyotyping is to identify specific abnormalities. It can be under- 
stood by noting that a cytogeneticist spends most of his/her time exam- 
ining normal cells. Since karyotyping systems are intended to be used 
interactively, a normal cell classifier is a useful system component. 
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This is not to say that a classifier capable of recognizing abnor- 
malities is undesirable, but only that its design would be more diffi- 
cult and that little work has been done in this area. Lundsteen et al. 
(43) discuss some possible ways of approaching this and include a 
description of a small pilot study suggestmg that analysis of the fea- 
ture values for banded chromosomes m a corrected karyotype could 
provide an indication of the existence of abnormalities that are diffi- 
cult to perceive by eye. Carothers et al. (44) showed that it is theo- 
retically possible in a multiple-cell karyotyping system (see Note 4 
below) to detect numerical abnormalities completely automatically 
by processing 16-32 cells from a particular specimen, assummg the 
use of a classifter whose performance is not very different from those 
m current systems. If enough cells are analyzed, an aneuploidy should 
be detectable above the noise of the system error rate. The use of such a 
system would require a regime m which tests for aneuploidies would 
be carried out separately from analysis for structural abnormalities. 
This would mvolve a radical change m the normal practice of most 
cytogenetic laboratories. 

4. Multiple cell karyotypmg: It has been suggested several times during 
the development of automated cytogenetics systems that multiple-cell 
karyotypmg would be a highly useful application of computer technol- 
ogy. The original idea, m the era when chromosome analysis research 
aimed at complete automation, was that the final karyotype (descrip- 
tion of the chromosome complement) would be produced m a statisti- 
cal fashion from several cells (45,&S). Alternatively, tt has been proposed 
that the chromosomes m each group from all cells be displayed together 
(47). In either case, the aim is not only to provide a useful means of 
presenting the information from several cells, but also to reduce the 
need for operator interaction. Those analysis errors resulting m incor- 
rect segmentations or wrongly positioned axes or centromeres would 
simply be ignored, and result m objects that would be either wrongly 
classified or impossible to classify. Provided the number of these errors 
is fairly small, there should be enough examples of correctly identified 
chromosomes in each class to generate a karyotype. 

Carothers et al. (44) have specified the conditions under which a 
fully automatic system could be successful. Lundsteen et al. (43) have 
shown that a multiple-cell karyotypmg display system can be made to 
work, m which the only interactions required are the imttal mteractlve 
count for each cell and an mspection of the final compostte karyogram. 
The mterestmg point here is that all the mteractions mvolve the opera- 
tor understanding the chromosomes. This kmd of interactive facility is 



Automatic Karyotype Analysis 183 

not yet offered by any of the suppliers of karyotypmg systems, but is 
well within the capability of current technology. Its mtroductlon would 
require a change in the working practice of cytogenetics laboratones, 
which may not be possible until there 1s a wider acceptance of machme- 
assisted karyotyping. 
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This work presents an approach to the 
automatic classification of metaphase 
chromosomes using a multilayer percep- 
tron neural network. Representation of 
the banding patterns by intuitively de- 
fined features is avoided. The inputs to 
the network are the chromosome size and 
centromeric index and a coarsely quan- 
tized representation of the chromosome 
banding profile. We demonstrate that fol- 
lowing a fairly mechanical training pro- 
cedure, the classification performance of 
the network compares favourably with a 
well-developed parametric classifier. The 

sensitivity of the network performance to 
variation in network parameters is inves- 
tigated, and we show that a gain in effi- 
ciency is obtainable by an appropriate 
decomposition of the network. We dis- 
cuss the flexibility of the classifier devel- 
oped, its potential for enhancement, and 
how it may be adapted to suit the needs 
of current trends in karyotyping. 
0 1993 Wiley-Liss, Inc. 

Key terms: Automated karyotyping, con- 
text free classification, Multi-Layer Per- 
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Inspection of chromosomes is an essential procedure 
in many fields of investigation for detecting genetic 
abnormality, damage due to environmental factors, or 
diagnosis of cancer. In particular, for clinical purposes, 
a karyotype is required in which chromosomes must be 
assigned to one of 24 classes (29). This task, although 
highly skilled, contains substantial elements of a te- 
dious and repetitive nature, resulting in some interest 
in recent years in developing automated karyotyping 
systems (6,9,10,20,23,30,41). A number of such sys- 
tems are available commercially and in use in clinical 
laboratories (reviewed in 24). They have been shown to 
contribute positively to laboratory efficiency (23). A 
central element in automated systems is the classi- 
fication of chromosomes based on features that can be 
measured from the digitised image, such as that in 
Figure 1. 

A number of approaches to automatic chromosome 
classification have been described (5,6,11,12,14,20,22, 
23,27,28,31,32,37). In addition to  using the important 
features of chromosome size and centromere position, 
all make use of some representation of the chromosome 
banding pattern, often in the form of a density profile 
projected onto the chromosome's centre line (see Figs. 7 
and 8). 

Chromosome size and overall density vary signifi- 
cantly between cells, but these differences can be com- 
pensated in a straightforward manner. The banding 

patterns also vary considerably in detail in chromo- 
somes of the same class from different cells. It is to 
accommodate these differences that various classifi- 
cation methods have been applied such as template 
matching (27,28), Fourier analysis (5,6,20), Gaussian 
decomposition (11,12), the use of band transition 
sequences (221, weighted density distributions (14,23, 
31,32), structural band descriptions (15), and Markov 
networks (37). All of these classification methods make 
use of an intuitive transformation of the density distri- 
bution into a set of features to be used by some sort of 
statistical discriminator. In this study, we present a 
new approach based on an artificial neural network. 
Neural network classifiers have been shown to be 
highly adaptable and capable of generalising about 
classes based on training data (3,21,35). They have 
been applied in classification tasks where classical pat- 
tern recognition methods have not been applied or 
have been unsuccessful (1,16,26,36). In applying a net- 
work to chromosome data, we not only have the oppor- 
tunity to develop a novel and potentially superior clas- 
sifier but to compare the performance of a neural 
network with that of a more conventional classifier in 
a well-studied domain. 

'This work is partially funded by the U.K. Science and Engineering 
Council (SERC), Grant No. 90310105. 
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FIG. 1. Image of a metaphase cell showing G-banded chromosomes. 

MATERIALS AND METHODS 
Neural Network Classifier 

The Multi-Layer Perceptron (MLP) is a design of ar- 
tificial neural network that consists of a number of 
nodes and interconnecting weights (Fig. 2). The nodes 
are arranged in layers, such that every node in one 
layer is connected to every node in a succeeding layer 
by a weighted link. No connections exist between nodes 
in the same layer. The MLP is capable of solving com- 
plex decision problems after sufficient training (34,361. 

Each node in the network performs a weighted sum 
of all its inputs (Fig. 3). This sum is then passed 
through a nonlinear transfer function, commonly the 
sigmoid (equation 11, to produce an output in the range 
of 0 to 1 (Fig. 4). The value of this output is transmitted 
to all the nodes in the next layer. A special feature of a 
node is a trainable bias threshold, which allows differ- 
ent magnitudes of input sums to produce high or low 
responses at a node's output. 

1 
f(Y) = (1) 

The roles of the nodes in separate layers of the network 
are as follows. The input nodes serve to accept the data 
on which classification is to be based. Nodes in succes- 
sive hidden layers discriminate between these inputs, 
acting as feature detectors, whereas output nodes map 

inputs  
f f f f  

2 laver network f f  

inputs 
f t f f  

f f 3 layer network 
()uq,ulh ( 3  l'lycls ot \\.clghl\) 

FIG. 2. Examples of 2- and 3-layer multi-layer perceptrons (MLPs). 
Weights are applied on links between each node. 

the features detected to output categories. Any number 
of hidden layers may be used, although two layers are 
sufficient for most classification tasks, as they can form 
arbitrarily complex decision regions in classification 
space (21). 

For a given topology, the output of the network is a 
function of the input and the pattern of weights on the 
links between nodes. That is, the network's pattern of 
weights can act as a pattern recogniser, the relative 
strengths of each weight effectively constituting the 
pattern recognition algorithm. The pattern of weights 
appropriate to  a particular classification task can be 
determined by training. 

Network training algorithm. To train the net- 
work, we use the classical error back-propagation al- 
gorithm developed by Rummelhart et al. in 1986 (34). 
Other algorithms (reviewed in 8) are known to have 
improved properties, such as faster convergence to a 
stable set of network weights in some circumstances. 
We have not yet investigated whether their use would 
be appropriate in this case. 

In error back-propagation, weights are initially set 
at small random values (so that summed outputs will 
initially lie on the steepest portion of the sigmoid 
curve; see Fig. 4). Node biases are also initialised to 
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FIG. 3. Operation of a node in the network. 
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FIG. 4. Input to  output transformation at  a node in the network. 

small values. Each time a training example is pre- 
sented to the network, the values of all of the network's 
weights are altered in order that the values at output 
nodes move closer to desired target output values. As 
training proceeds, the weights are adjusted so that the 
response at an output signifying the category of train- 
ing example is near 1, whereas outputs signifying 
other categories are near 0 (Fig. 5 ) .  After many appli- 
cations of the training algorithm, the network weights 
should be such that if a training pattern is presented as 
input, a good approximation to the target response for 
the category of the pattern should be produced at  the 
output nodes. 

The key to the operation of the training algorithm is 
the back-propagation of error signals through the net- 
work, altering the values of weights to minimise each 
error signal. Although the error at an output node i is 
known, being the difference between an observed re- 

Input pattern p 

f f f 
Input layer nodes 

Hidden layer nodes 

These weights are 

v w u  
f f f 

Output layer nodes 

Output rehponhez o,,, 

Target response t i ,  I I) 0 

Target response t2, 0 I 0 

Target responx t , ,  ( I  I) I 

for category 1 

for category 2 

for category 3 

FIG. 5. Example of an  MLP showing the ideal target responses and 
the order in which weights are adjusted during training. 

sponse opi and its target response tpi for pattern p, the 
error for hidden nodes is not, being a function of the 
errors at each output node connected to the hidden 
node and the sigmoid transfer function. However, be- 
cause the sigmoid function has a simple derivative, by 
application of the chain rule of differential calculus, 
the values of error at each hidden node can be calcu- 
lated. (For specific details, refer to  34). 

The mechanics of the algorithm are as follows: 

1. Initialise the network weights and thresholds to 
small random values. 

2. Present each training pattern p in turn to the 
network. 

3. Calculate the summed weights at each node pass- 
ing the results to all nodes in the succeeding layer con- 
nected to that node, until values are produced at  output 
nodes. 

4. Calculate the error signal at each node in the out- 
put layer and use this to alter the values of the incom- 
ing weights to that node (using equations 2 and 4 be- 
low). Alter the node bias toward a value appropriate for 
the magnitude of the input sums. 

5. Consider nodes in previous layers consecutively 
altering the values of incoming weights to these nodes 
using equations 3 and 4, adjusting the node biases ap- 
propriately. 

6. Repeat steps 2-5 for all training patterns. 
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7. Repeat steps 2-6 until either all patterns produce 
the target responses at the output nodes or until the 
network weights do not appreciably change on each 
iteration. 

The error signal 6, for pattern p at node j is calcu- 

s,, = (tPI - OPJ opj (1 - OPj) (2) 

tipj = opi (1 - op,) C ti,, wk, (31 

lated as follows: 

For output units 

For units in previous layers 
k 

where 
hJ is the target response at node j for input pattern p. 
opJ is the observed response at node j for input pat- 

wkJ are the weights to a succeeding layer k. 
ijpk are the error signals at nodes in a succeeding 

The term opJ (1 - opJ) is the derivative of the sigmoid 

tern p. 

layer k. 

function with respect to its inputs. 

Using the error signal 6,, the weights are altered us- 
ing: 

WJL ( t  + I) + WJ, ( t )  + q s,, 0," + 01 (WJ. (t)  - WJ, ( t  - I ) )  (4) 

where wji (t) is the weight value from node j to node i at 
iteration t 
q is the gain term (see below) 
a is the momentum term (see below) 
opi is the value of the output of node i for pattern p 
6, is the value of the error signal for pattern p at  

node j 

It has been shown that, using the above algorithm, the 
weights will eventually converge to a stable pattern as 
long as their initial values are nonidentical (34). How- 
ever, because the method of weight adjustment is grad- 
ual in a gradient descent manner, the resulting stable 
pattern of weights may represent a local rather than a 
global error minimum. Convergence to a local mini- 
mum can often be avoided by the correct choice of the 
training parameters gain and momentum and the se- 
lection of a better suited network topology. 

Gain and momentum. During training the 
weights to any node are adjusted in proportion to the 
error signal at that node and to the size of weight 
changes in previous iterations (see equation 4). The 
parameters controlling this adjustment are the gain 
and momentum. 

The gain term in a network describes the amount by 
which the values of weights are changed by the error 
and output value of each node. Large values for gain 
result in large changes in weight values on each con- 
sideration of a training example. This is sometimes 
useful, as initially the random weight values on links 
may need to be altered considerably. However, so that 
weight values eventually stabilise to produce the low- 
est network error for training examples, smaller 
weight changes are more appropriate. The conflicting 

requirements may be resolved by reducing the magni- 
tude of the gain as training proceeds. Other work (34) 
suggests that a fixed small gain can achieve the same 
final result as a reducing gain mechanism, but previ- 
ous experiments with the data we use here showed that 
training times are improved by progressive reduction 
in gain (18). 

The momentum term in a network is a mechanism 
for adding in previous weight changes to the current 
weight changes, producing the effect of smoothing the 
changes in weights made on each training pass. This 
mechanism reduces oscillations caused by presentation 
of two consecutive examples that seek to alter the 
weights in different directions. Similarly, successive 
weight changes in the same direction are amplified, 
allowing the network weights to reach a minimum er- 
ror configuration faster. In general, inclusion of a mo- 
mentum term aids the network in achieving a stable 
configuration of weights at a faster rate (34). 

The gain in our experiments is initially fixed at a 
value between 0.1 and 0.9. Every 4 training passes (at 
step 7 in the above algorithm), a check is made to de- 
cide whether the current gain value should be reduced. 
If either the network error has significantly increased 
from its value on the previous pass or if the classifica- 
tion performance on training data is the same or worse, 
the gain value is halved. Training is stopped when the 
gain term is so low that no further weight adjustments 
occur (in our experiments when the gain drops below 
0.0001). Figure 6 shows a typical error minimisation 
graph over a number of passes of the training data and 
the corresponding improvement in classification per- 
formance which accompanies this training. 

Network topology. The performance of an MLP 
classifier is highly dependent upon its topology: the 
number of nodes it possesses and in how many layers 
they appear (Fig. 2 shows the two types of topologies 
generally chosen). 

The number of output nodes is set by the number of 
possible output categories. For our application, 24 out- 
puts are required, one for each chromosome class. The 
number of input nodes to the network is dependent 
upon how many inputs are to be fed to the network. In 
our experiments these inputs consist of a number of 
samples of the chromosome banding pattern together 
with features representing size and centromere posi- 
tion. 

The use of two hidden layers of nodes, rather than 
one, can result in improved discriminatory ability (21) 
at the cost of increased training and classification time. 
For some applications, a single layer is sufficient 
(34,36). 

Whereas theoretical guidelines can be derived con- 
cerning the number of nodes required for the first hid- 
den layer in an MLP (3,17,34), these involve knowing 
something about the expected variability of the input 
data. As this is generally not known prior to experi- 
mentation, the number of nodes in each hidden layer 
and the number of layers required are usually deter- 



NEURAL NETWORKS FOR CHROMOSOME CLASSIFICATION 63 1 

classification error 

network error 

Number of passes of training data 

20 
18 

14 
16 $3 

12 g 
10 8 
8 8’ 

4 :  
2 %  

O0 

6 2  

FIG. 6. Improvements in network error and classification rates as 
training proceeds. Arrows show positions where gain was halved. 

mined empirically (regrettably not always very thor- 
oughly). 

In common with other authors, we have adopted a 
shorthand notation for network topologies. A single 
hidden layer (i.e., a 2-layer) network with 15 input 
nodes, 100 hidden nodes, and 24 output nodes will be 
written as a 15-100-24 network, for example. 

Classification of Chromosome Data 
For our experiments we have used three databases of 

annotated measurements from G-banded chromosomes 
that have been used in previous classification studies 
(13,14,18,27,31,37,41). Their details are summarised in 
Table 1. 

In the case of the Copenhagen data set, chromosomes 
were carefully measured by densitometry of photo- 
graphic negatives from selected cells of high quality. 
The other two data sets were taken from routine ma- 
terial. Each data set includes a number of severely bent 
and touching but not overlapped chromosomes. The na- 
ture of the slide preparation methods results in direct 
chorionic villus samples providing cells of significantly 
poorer visual quality than in the case of peripheral 
blood. The data sets therefore represent a range of data 
quality. (See Fig. 8 for some example density profiles 
from the Copenhagen, Edinburgh, and Philadelphia 
data sets.) 

In each data set, the data for an individual chromo- 
some consist of up to 140 grey level profile samples 
taken along the medial axis of the chromosome (see 
Fig. 7). This is supplemented with values for each chro- 
mosome’s length and centromere position. The chromo- 
some orientations were determined by the centromere 
finding algorithm (see (31)) and assigned before grey 
level profile samples were taken. As a result some pro- 
files were sampled backwards, due in part to incorrect 
centromere location and in part to  variation in the cen- 
tromere position of meta-centric chromosomes. Manual 
correction of orientations was not applied. 

Standardisation of data. The banding data in the 

raw data sets are not standardised for chromosome 
length or grey level variation between cells (caused by 
such factors as stain uptake and illumination), and the 
intensities of characteristic band sequences in a chro- 
mosome’s profile vary considerably (Fig. 8). The num- 
ber of banding samples also varies between cells, even 
for the same class of chromosome. Standardisation of 
these values was therefore required before they were 
presented to the network as inputs. 

Density values were standardised by scaling the in- 
tegrated density of the whole cell to a constant value. 
Chromosome lengths were similarly standardised to a 
constant cell length. The lengths of the individual pro- 
files were further standardised by scaling each profile 
to a fixed length, stretching or compressing the profiles 
accordingly. In this way each input node in the net- 
work is presented with a profile value that consistently 
represents the same location in the banding pattern. 
Another approach would have been to adopt different 
standards for different classes of chromosome. This 
was, however, dismissed as unnecessarily difficult, as 
the classes of the chromosomes when presented to the 
classifier are unknown. By adopting a standard num- 
ber of samples and re-introducing the length of the 
original profile as a feature, no information was lost. 

Following results of a preliminary study (18),15 pro- 
file values were used, extracted from the full profile by 
local averaging. The optimal number of profile element 
samples for each data set was determined empirically 
(see below). Figure 7 illustrates the extraction of a pro- 
file for a schematic chromosome; Figure 8 shows pro- 
files both before and after the standardisation and sam- 
pling process. 

Two other features used in our study were the cen- 
tromeric index and standardised length of each chro- 
mosome. The centromere is a characteristic constric- 
tion that divides the chromosome into a long “arm” and 
a short “arm” (Fig. 7). The centromeric index is defined 
as the ratio of the length of the short arm to that of the 
whole chromosome. 

Network Training and Testing 
After extraction of the profiles and standardisation, 

the coarsely sampled profiles can be presented as in- 
puts to the network. Approximately half the data in 
each set was used for training the network, The other 
half was later used as unseen test data. The roles of the 
training and test data partitions were exchanged in a 
subsequent experiment. Classification values for both 
experiments were then averaged to produce a mean 
classification error rate for training and test data for 
all of the data set. 

The following experiments were conducted to iden- 
tify the optimal configuration of network parameters 
the topology. Network training typically required more 
than 100 passes through the training data before fur- 
ther training had no effect (Fig. 6) .  There was no rear- 
rangement of data between training passes. The initial 
network weight values for all three data sets were the 
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Table 1 
Three Chromosome Data Sets Used 

Tissue of Number of Data 
Data set origin Digitisation method chromosomes quality 
Copenhagen Peripheral blood Densitometry from photographic negatives 8,106 Good 
Edinburgh Peripheral blood TV camera 5,469 Fair 
Philadelphia Chorionic villus CCD line scanner 5,817 Poor 

Short arm Long arm * Chromosome 

Medial c Centromere 
Profile extraction AXiS 

- Normalisation of 
grey levels 

Grey level profile aiong medial axis c 
Local averaging 

c 
Fixed size - 

profile 
Coarsely sampled grey level profile 

FIG. 7. Example of an extraction of a fixed length profile from a 
chromosome. 

same, having been selected at random. The exception 
to this was experiment 5 in which the effect of varying 
the initial weight values was investigated. All of the 
classification results we present refer to classification 
of unseen test data. 

Experiment 1: Choice of optimum gain and mo- 
mentum values. The selection of initial gain and mo- 
mentum terms is a matter infrequently addressed in 
descriptions of network applications. The effect on clas- 
sification rates of these two parameters was tested by 
varying their values within their range of 0 to 1.0 and 
training a network with each value combination. After 
each network was fully trained, its classification per- 
formance on unseen data was evaluated. The experi- 
ment was performed using the Copenhagen data set. 

Experiment 2: Selection of network toplogy. To 
test the performance of different toplogies, input pro- 
files of 15 grey level samples were used. Twenty-four 
outputs were used correponding to the 24 possible chro- 
mosome classes in the data sets. Classification perfor- 
mance of the network was measured using different 
numbers of hidden nodes in both 2 and 3 layer net- 
works. 

Networks with 10, 24, 50, and 100 hidden nodes in 
the first hidden layer were initially tested for each data 
set, and the best performer of these networks for each 
data set was then tested with a further layer of nodes in 
a three layer network. The number of nodes in this 
third layer was varied over the same range. Notice that 
not all possible combinations of topology were explored, 
as that would have involved a prohibitively large num- 

ber of trials. We have made the assumption, common in 
hill-climbing optimisation, that the “topology space” is 
sufficiently smooth that  optimising sequentially along 
each dimension is adequate. 

Experiment 3 Inclusion of centromeric index 
and length. Centromeric index (CI) and length values 
are known to be powerful classification features (7, 
31,381. Three methods of incorporating these two fea- 
tures along with the banding profile were investigated 
(Fig. 9). Method 1 involved using the banding profile 
inputs with either a CI input or a length input; method 
2 incorporated both CI and length as dual inputs, 
whereas method 3 included the CI and length informa- 
tion after it had been processed by a pre-classifier. 

Centromeric index and length are features that have 
been used to classify chromosomes into seven “Denver” 
groups (7). Automatic classification using statistical 
classifiers have been shown to produce acceptable dis- 
crimination into 10 groups (38). The correspondence 
between the 10 “Denver” groups and the 24 pairs of the 
Paris convention (29) are shown in Table 2. 

For our “Denver” classifier we have use a MLP with 
two inputs, 10 outputs and a single hidden layer of 
nodes. The optimum number of hidden nodes for this 
network was determined in a similar manner to that 
described in experiment 2. The 10 outputs correspond 
approximately to probabilities of belonging to each of 
the “Denver” groups (33). As our experiments were 
conducted first with one-half the data in each data set 
as training data and then, in a following experiment as 
unseen data (see above), two separate preclassifiers 
were required for each data set. 

The three methods of inclusion of centromeric index 
and length features were evaluated using a (15 + XI- 
100-24 network, where X corresponds to 1 input 
(length or CI), 2 inputs (length and CI) or 10 inputs 
(from the “Denver” preclassifier). 

Experiment 4: Effect of the number of profile 
samples. The decision to use 15 input samples arose 
from preliminary investigations (18). Since optimisa- 
tion of the other network parameters may have altered 
the validity of this finding, we have evaluated the ef- 
fect on network performance of varying the number of 
input nodes, and hence the profile sampling density. In 
this evaluation a two-layer network with 100 hidden 
nodes and 24 outputs was used. The number of input 
samples was varied between 1 and 100 (i.e., the net- 
work toplogies ranged from 1-100-24 to 100-100-24). 
These sampling rates were chosen to represent a range 
from the coarsest possible (one sample measures mean 
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FIG. 8. Chromosome density profiles of chromosomes from group 1. A,B,C show examples of profiles 
from the Copenhagen, Edinburgh, and Philadelphia data sets, respectively, demonstrating the variabil- 
ity of the data that may be encountered. The rightmost example in A shows a profile that has been 
sampled in the wrong direction due to an incorrectly assigned centromeric index. D,E,F show the same 
profiles as 15 coarse samples after standardisation for length and cell grey level content has been applied. 

grey level along the chromosome) to a number approx- 
imating to the average number of samples available for 
each chromosome. 

Experiment 5. Effect of the initial random 
weight settings in the network. One remaining fac- 
tor that needed investigation was the effect of starting 
the network with different random weight values. This 

is necessary due t o  the gradient descent nature of back 
propagation, which may result in different final weight 
configurations and a corresponding classification per- 
formance variation. To investigate the possible vari- 
ability in performance, five experiments were con- 
ducted for each data set, training a 15-100-24 network 
with different initial random weight settings. The per- 
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FIG. 9. Different methods of inclusion of the centromeric index and 
length features. 

formance of each resulting network, once trained, can 
be used to judge the precision of all the results we 
present. 

RESULTS 
Experiment 1: Choice of optimum gain and mo- 

mentum values. Figure 10 shows the effect on classi- 
fication performance of varying the gain and momen- 
tum parameters using the same network. This 
demonstrates that the variation in network perfor- 
mance can be severely affected by inappropriate 
choices of values for these parameters. High parameter 
values need to be avoided, particularly in combination. 
However, there appears to be a broad valley of possible 
gain and momentum combinations that produce simi- 
lar low classification error rates. Classification perfor- 
mance of the network is therefore not critically depen- 
dent on which combination of the gain and momentum 
value is selected in this region. However, the rate of 
convergence of the network weights during training 
varies with the different parameter combinations. The 
values producing the most rapid convergence were 0.1 
for the gain and 0.7 for the momentum, and these val- 
ues were selected for use in all subsequent experi- 
ments. 

Experiment 2 Selection of network topology. 
Figure 11 shows the variation in performance of vari- 
ous 2-layer network topologies. As can be seen, the best 
performance can be achieved by the network with 100 
hidden nodes. This demonstrates that the network 
trains to a better representation of the classification 
problem with the greater number of nodes, as would be 
expected given that in our problem considerable 
within-class variability is observed in the training 
data. However, near optimum results can be produced 
with fewer nodes (e.g., 501, with corresponding advan- 
tages for speed of training and execution. 

The experiment with the addition of a second hidden 
layer of nodes (to form a 3-layer network) shows only 
slight variation in performance rates once a 24-node 
limit is passed, but again more nodes result in a better 
performance (Fig. 12). The decreased performance with 
10 hidden nodes in the second layer is not unexpected 
given that 24-output classes are to be separated. 

The tradeoff in both of these cases is an increase in 
the classification and training times. Training time in- 
creases linearly with an increase in the number of 
nodes, as with more nodes there are more error terms 
to calculate and more weights to alter on each training 
pass. When classifying, more weighted sums need to be 
performed. 

The best classification performances of the 2- and 
3-layer networks are presented in Table 3. 

Experiment 3: Inclusion of centromeric index 
and length. Adjustments of the topology of the pre- 
classifier for the “Denver” classification was performed 
in a similar manner to the selection of the topology of 
the main classifier except that only 2-layer networks 
were considered. Best classification performance was 
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Table 2 
Respective “Denver” Group for Each Chromosome Class 

“Denver”group A1 A2 A3 B C D El E2 F G 
Chromosomes 

in group 1 2 3 4, 5 6, 7, 8, 9, 10, 13, 14, 15 16 17, 18 19, 20 21, 22, 24(Y) 
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FIG. 10. Effect on classification error rates of variation of gain and 
momentum values. 
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FIG. 11. Classification performance of networks with different num- 
bers of hidden nodes in one hidden layer, tested with three data sets. 

achieved with networks of 24 or 26 hidden nodes. The 
classification rates obtained are shown in Table 4, 
which also includes the performance of the network if 
the correct class lies within the top two or three highest 
ouputs. This is important since the values of probabil- 
ity that are high, but not maximum, may also affect the 
result of the main network, as all of the preclassifier’s 
outputs, not just its highest output are presented as 
inputs to the main network. 

The performance of the various network configura- 
tions using centromere and length features are pre- 

sented in Table 5. These show that the separate inclu- 
sion of the centromere and length values both reduce 
error rates (method 1). Inclusion of the two features 
together (method 2) is more effective, but the approach 
using the preclassifier (method 3) is the most effective 
of all. 

Experiment 4: Effect of the sampling rate of the 
banding profile on classification performance. 
The effect of the sample rate of the banding profiles for 
the three data sets is presented in Figure 13. As might 
be expected, very coarse sampling does not provide ad- 
equate information for classification. The best perfor- 
mances occur with 20-30 samples in each data set, 
although these are only slightly better than the perfor- 
mance obtained with 15 samples as used in other ex- 
periments. As greater numbers of inputs to a network 
result in longer classification times and significantly 
longer training times, we believed it was acceptable to 
use 15 inputs as a standard sampling rate for our pur- 
poses. 

Experiment 5: Effect of the initial random 
weight settings in the network. Table 6 shows how 
the results of the 15-100-24 network, classifying the 
banding profiles only, change as the network is trained 
with different sets of initial random weights. The ini- 
tial network conditions does not appear to affect per- 
formance significantly. 

DISCUSSION 

We have investigated the effects on classification 
performance of varying several of the parameters de- 
fining a multilayer perceptron network. Inappropriate 
choices of these parameters can result in classification 
performances considerably worse than optimal. How- 
ever, the performance is not highly sensitive to any 
parameter. Figures 10-13 show that there are ranges 
of parameter values where overall classification perfor- 
mance rates are only slightly worse than the best ob- 
tained. 

From experiment 1 we see that, within broad limits, 
gain and momentum values can be chosen to optimise 
training efficiency without compromising accuracy. 
Experiment 2 shows that discrimination is improved 
by adding more hidden nodes. However, for large num- 
bers of nodes, the improvement is slow. Additional dis- 
criminating power is obtained by adding a second hid- 
den layer. 

The classification performance using the banding 
pattern alone is rather encouraging but, again unsur- 
prisingly, improved by the addition of length and cen- 
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FIG. 12. Variation in classification performance of networks with 
different numbers of hidden nodes, in their second hidden layer. Ex- 
periment performed with 100 nodes in the first hidden layer and 
tested with three data sets. 

Table 3 
Classification Error Rates for Unseen Data for the Best 

Performing 2-  and 3-Layer MLPs Using Banding Profiles as 
Sole Inputs (Experiment 2) 

Data set 
Network topology Copenhagen Edinburgh Philadelphia 
15-100-24 8.8% 22.3% 28.6% 
15-100-100-24 7.8% 22.1% 27.5% 

tromeric index features. Of these two, the centromeric 
index is the better additional discriminating feature. 
The improvement obtained by decomposing the net by 
factoring out the length and C.I. is interesting. These 
features are effectively being given a greater weight by 
this procedure. Presumably an “undecomposed” net- 
work with enough hidden nodes would be capable of 
achieving similar performance, but we achieved the 
performance gain by using knowledge of the problem to 
configure the network. It is tempting to  assign an ele- 
ment of psychological plausibility to this configuration. 
Approximate classification on the basis of global fea- 
tures, refined using the local banding information, may 
reflect the process applied by human experts in classi- 
fying chromosomes. 

Experiment 4 presents us with the result that the 
density profile representing the banding pattern need 
only be sampled fairly coarsely to obtain maximum 
discriminating power. This may be considered surpris- 
ing given that the original profiles contained up to 140 
samples and cytogeneticists examine fairly detailed 
features of the banding pattern. Two observations can 
be made here. First, few features may be necessary for 
classification of normal chromosomes, as distinct from 
identifying abnormalities. Even on the longer number 

1 chromosomes of the high-quality Copenhagen data, 
there are only seven or eight discernible peaks (see Fig. 
8). Second, the same resolution is used to identify long 
chromosomes (e.g., number 1) with several bands, as to 
identify the very short chromosomes (e.g., numbers 20, 
21) with only one reliable band. We may be observing 
a “best compromise” between undersampling and long 
chromosomes and oversampling the short. Improved 
performance may be obtained by sampling the long 
chromosomes more finely than the short ones. This 
would necessitate having several networks, each cor- 
responding to a different input resolution, with chro- 
mosomes assigned for classification on the basis of 
length, say. We have not investigated this extension, 
but it is a feasible route to improving results. 

The overall classification performance varies with 
the three data sets as the difference in visual quality of 
the data might lead us to expect. It is of interest to 
compare the performance of our best network with that 
of existing classifiers based on conventional pattern 
recognition techniques. To our knowledge, the best 
classification performance over all classes that has 
been reported is that described by Piper and Granum 
(31). That classifier uses a carefully selected set of fea- 
tures based on weighted density distributions. A com- 
parison with the results of (31) is likely to be particu- 
larly revealing since that study was conducted using 
the same data sets as we have used here. The final 
misclassification rates reported by those authors are 
obtained after application of the constraint which 
forces each class to contain at  most two chromosomes. 
No such constraint dependent modifications have been 
applied in our case, although they could well be and 
would be expected to improve performance further. The 
context-free classification stage of Piper and Granum’s 
work has been reported in (32,391, and we reproduce 
the results in Table 7 for comparison. Table 7 also 
shows the results obtained using another recently re- 
ported classifier (151, which uses a subset of the Copen- 
hagen data set. 

We are encouraged that we produced a small im- 
provement in the mean classification performance for 
all three data sets. Application of a standard test for 
differences of proportions reveals that these improve- 
ments are not significant (significance levels of 22%, 
25%, and 49% for the Copenhagen, Edinburgh, and 
Philadelphia data sets, respectively). Even this esti- 
mate of significance is likely to  be optimistic given that 
identical samples were used in both cases. We can pro- 
pose the following three advantages of the neural net- 
work classifier described here. 

Robustness. The classification of several different 
data sets has been achieved using the same networks, 
notwithstanding the fact that the parameters were op- 
timised on each set individually. Performance is not 
particularly sensitive to any parameter. It is worth not- 
ing that the network appears to be able to deal with 
polarity errors fairly naturally. This has not been in- 
vestigated explicitly in this study, although it may be 
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Table 4 
Classification Error Rates of “Denver” Classifiers Used for Preclassification 

Error rate with only Error rate with the Error rate with the 
Best the highest output first and second top three highest 

network considered highest outputs outputs considered 
Data set topology as correct considered as correct as correct 

Edinburgh 2-24-10 14.3% 4.4% 2.4% 
Copenhagen 2-24-10 7.3% 2.9% 2.1% 

Philadelphia 2-26-10 17.4% 7.7% 4.4% 

Table 5 
Classification Error Rates of Networks Using 15 Grey Level Banding Inputs With Different 

Representations of Centromere and Length Features 

Data set 
Features used Copenhagen Edinburgh Philadelphia 
Banding pattern alone 8.8% 22.3% 28.6% 
Banding and normalised length 8.4% 19.4% 27.6% 
Banding and centromeric index 7.7% 21.0% 26.5% 
Banding, length and centromeric index 6.9% 18.6% 24.6% 
Banding, and “Denver” groups 6.2% 17.8% 22.7% 

noted that 37.4% of number 1 chromosomes in the 
Copenhagen data set were sampled with incorrect po- 
larity. No attempt was made to take account of this, 
but the resulting classification error rate using band- 
ing information only for chromosome 1 was 4.5%. 

Flexibility. The process of arriving at a good net- 
work configuration is a fairly mechanical one. In this 
case we have avoided the necessity for inspired selec- 
tion of features. Neural networks have been shown to  
be highly adaptable classifiers in other fields (1,16, 
26,361, and this may prove very useful as the material 
that cytogeneticists choose to study changes. The data 
sets used here were obtained from fairly short chromo- 
somes with few bands. Today, longer chromosomes 
with greater numbers of bands are commonly used, and 
this trend is likely to continue. It can be expected that 
networks to deal with samples of this type will be 
trained fairly readily. 

Parallel Hardware implementation. The net- 
works presented here have all been implemented by 
software simulation. Although classification speed is 
not a problem, this may not be true of larger networks 
and we have noted the extra training burden that oc- 
curs as network size increases. The inherently parallel 
nature of the calculations makes implementation on 
parallel architectures fairly natural. In particular, 
there is a great deal of interest in hardware implemen- 
tations (4). Such developments could lead to useful im- 
plementations in time critical applications such as 
classification in flow karyotyping. 

The three data sets used in this study were chosen to 
enable a direct comparison with previously designed 
classifiers. Whereas the data sets are substantial, it 
may be that the number of chromosomes is insufficient 
for training either a network or a statistical classifier. 
A data set of 127,925 chromosome measurements is 

10 __ ” .L .. .. ” 
I I .. .- Ik I Coprmhagkn data set 

Oo 10 20 30 40 50 60 70 ab w - i k -  
Number of samples 

FIG 13. Variation in network classification error rate with changes 
in sampling rate of density profiles. The network used contained 100 
hidden nodes and 24 outputs. 

available (231, which could be used to investigate the 
effect of training set size on the network classification 
performance. This is a substantial study in itself and 
will be reported elsewhere. 
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Table 6 
Performance Variation for the Same Network Trained on the Same Data With Five Different 

Sets of Initial Starting Weight Values 

Data set 
Copenhagen Edinburgh Philadelphia 

Average classification error rate 8.72% 22.16% 28.36% 
Standard deviation in error rate 0.07% 0.17% 0.16% 

Table 7 
Comparison of Classification Error Rates for a Neural Network Classifier Using Both 

Banding and “Denver” Group Inputs with Two Recently Reported Statistical Classifiers 
(1 5.32) 

Classification error rate 
Parametric classifier Parametric classifier 

using W.D.D. using local band 
Data set Network classifier functions (32) descriptors (15) 
Copenhagen 6.2% 6.5% 11 5% 
Edinburgh 17.8% 18.3% NIA 
Philadelphia 22.7% 22.8% NIA 
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Abstract

We propose and evaluate a mechanism for resolving the segmentation of overlapping chromosomes using trainable
models of the expected banding appearance. The models consist of templates of sub-chromosome length band pro"les.
Candidate chromosome segments are classi"ed according to their responses to the entire set of templates, and matched
on the basis of the classi"cations. Evaluation of the models using a set of annotated banding pro"les yields correct
classi"cation rates of 90.8% for isolated chromosomes, and 55.4% for chromosome fragments; 70.6% of overlapping
chromosome pairs, simulated using the pro"le data set, are correctly resolved. ( 1999 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.

Keywords: Chromosome analysis; Trainable models; Template matching; Overlapping chromosomes; Chromosome
banding patterns; Classi"cation; Segmentation

1. Introduction

Cytogenetics is the study of the genetic constitution of
individuals at a scale which is revealed by light micro-
scopy. At this level, the genetic material of a cell can be
seen as a number of distinct bodies } the chromosomes.
Analysis of the appearance of chromosomes can provide
information on inherited or acquired syndromes, expo-
sure to genotoxic agents or the presence of cancers. There
are 46 chromosomes in normal human cells. Appro-
priately stained, they can be made to exhibit a sequence
of bands which, together with the chromosome size and
the position of a characteristic constriction called the

*Corresponding author. #44 161 275 5150; Fax: #44 161
275 5145; E-mail: Jim.graham@man.ac.uk

centromere (see Fig. 2), can be used to assign chromo-
somes visually into one of 24 classes (labelled 1-22, X
and Y). The last two classes are the sex chromosomes, of
which females have two in class X and males one X and
one Y. All other classes contain two identical (homo-
logous) chromosomes in normal individuals. It is often
helpful to display chromosomes arranged in a karyotype
} a tabular array in which the chromosomes are aligned
in pairs (see Fig. 1).

The appearance of chromosomes depends on the stage
of the cell division cycle at which they are viewed. For
much of the cell cycle (interphase), individual chromo-
somes cannot be distinguished. They only appear as
distinct bodies towards the end of the cycle, at prophase,
when they are long string-like objects, contracting and
separating at metaphase, just before cell division takes
place. Although not biologically signi"cant, it is common
to refer to an intermediate stage of contraction between



Fig. 1. Chromosomes at di!erent stages of contraction. The images show parts of cells at (a) prophase. (b) prometaphase and (c)
metaphase. The increasing contraction and decreasing resolution of the banding information on the chromosomes is clear. In the more
elongated stages, the interpretation is complicated by the large number of overlaps. A karyotype of a prometaphase cell is shown in (d).

prophase and metaphase as prometaphase. Fig. 1 shows
examples of prophase, prometaphase and metaphase
chromosomes stained by a commonly used method (G-
banding) together with a metaphase karyotype. Opera-
tionally, these stages in the division cycle are de"ned by
the number of bands visible in the cell. The more elon-
gated chromosomes exhibit more bands than shorter
ones. Metaphase cells have around 450 bands and
prometaphases are de"ned to have 550 bands and above.
A cell is not considered to be in prophase unless at least
850 bands are visible. The greater number of bands at the
more elongated stages provides a higher resolution de-
scription of the chromosome structure, which is advant-
ageous for analysis. The analysis is, however, much more
di$cult due to the greater complexity of the banding
patterns and the fact that longer chromosomes touch and

overlap each other much more frequently than shorter
ones (see Fig. 1).

The automation of chromosome analysis was "rst pro-
posed in the 1960s [1]. Many years of e!ort have resulted
in the development of commercial cytogenetics systems
for analysis of banded chromosome preparations [2].
A great deal of attention in cytogenetics has recently been
focused on molecular techniques and the application of
image analysis to interpretation of #uorescence micro-
scope images, including the location of speci"c hybridisa-
tion sites at interphase [3,4]. However, analysis of
banded chromosomes remains of great importance parti-
cularly at the prometaphase or prophase stages of con-
traction. Most studies in automation, on the other hand,
have concentrated on metaphase chromosomes, avoiding
the segmentation di$culties arising from touches and

1336 G.C. Charters, J. Graham / Pattern Recognition 32 (1999) 1335}1349



overlaps in the prophase and prometaphase cells. Graham
and Piper [5] provide a review of methods used in
automated chromosome analysis. Segmentation and
classi"cation of chromosomes into groups are important
stages in the analysis and are generally taken to be
separate tasks. Segmentation is usually performed by one
or other of a number of thresholding methods [6}9].
Classi"cation schemes use a representation of the band-
ing pattern, generally derived from the integrated density
pro"les of the segmented object, together with size and
centromere position [10}13] (see Fig. 2).

The straightforward segment-measure-classify strategy
is inadequate for the analysis of images of chromosomes
in their less contracted phases as it provides no mecha-
nism for resolution of overlaps. Some attempts have been
made to deal with clusters of touching (but not overlap-
ping) chromosomes [6}9] where combinations of geo-
metric and densitometric evidence have been used to
resolve segmentation ambiguities.

Clearly, automatic separation of overlapping chromo-
somes is important for the analysis of prophase and
prometaphase images, but has received relatively little
attention compared to other aspects of the chromosome
analysis problem, such as classi"cation. Ji [7,14,15] has
proposed methods for automatically segmenting both
touching and overlapping clusters. His approach to seg-
mentation of overlaps was to decompose a thresholded
object into individual components using geometric evid-
ence, i.e. by reasoning about shapes. Agam and Dinstein
[16] have similarly applied reasoning about boundary
curvature to separating touching or slightly overlapping

Fig. 2. Schematic representation of features used in chromo-
some classi"cation. The bands are arranged linearly along the
chromosome. Integrating density normal to the medial axis
gives a density pro"le which is characteristic of the chromosome.
The overall length of the chromosome and the position of the
centromere are also important features. The centromere divides
the chromosome into two &&arms'', conventionally labelled p
and q.

chromosomes. In this paper we propose an alternative,
additional source of information for disentangling over-
laps, namely the banding pattern. We suggest a strategy
for using the banding pattern, which uses the same chro-
mosome evidence for reasoning about segmentation
solutions and for classifying segmented chromosomes.
The method consists of identifying consistent pairings
of short sections of banding pattern to make believable
chromosomes. This approach conforms to the approach
of human experts, who often piece together chromo-
somes in overlaps by matching short banding sequences
to a mental model of the chromosome classes.

2. Outline of the method

We summarise our method here using, as an illustra-
tion, the schematic pair of overlapping chromosomes in
Fig. 3a. The banding pattern in the overlapping region is
obscured, but four short sections of banding pattern are
visible. The uncertainty in segmentation arises because
each of these segments could be matched to any of the
other three to generate complete chromosomes (Fig. 3c, d
and e). If the classes of the partial chromosome segments
can be identi"ed by their local banding pattern, then the
segments belonging to the same class can be matched,
and the segmentation uncertainty resolved.

The classi"cation of the segments is performed by
matching the unobscured sections of banding pattern to
a set of templates previously selected to match prefer-
entially to particular sub-chromosome sequences of the
banding pattern. These are called Partial Chromosome
Models (PCMs). Fig. 3b shows PCMs which match pref-
erentially to the end sections of the schematic chromo-
somes. The match is determined using a measure of "t
described in Section 4.2, and used to classify the visible
chromosome segments.

This approach takes inspiration from the work of
Lockwood et al. [17}19], who observed that certain
sections of the banding pattern are highly characteristic
and used in visual classi"cation of prophase chromo-
somes. They described a method of classifying prophase
chromosomes on the basis of a set of short sub-chromo-
some-length banding segments. By conducting an ex-
haustive band-by-band search of digitised prophase
ideograms (stereotyped banding patterns) they identi"ed
a set of 94 &&unique band sequences'' [19].

The PCMs we describe here are derived by training.
Sub-chromosome-length segments of banding pro"les
are extracted from a training set of pro"les in such a way
as to give a large number of templates with a range of
lengths (from half to three times the length of the shortest
chromosomes), located at positions covering the banding
pro"les of all classes. For each of the templates, corre-
sponding segments of banding pro"le are taken from the
homologous chromosomes in all cells in the training set
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Fig. 3. Schematic illustration of the use of PCM templates in resolving a single overlap. (a) In the overlap region the banding pattern is
obscured, but short lengths of banding pattern are visible which may be su$cient to identify the chromosomes. (b) Partial chromosome
models (banding templates) are matched to each location on the overlapped object to classify the individual segments. The positions of
best "t of four templates are shown. (c}e). There are three possible ways in which the segments can be paired to create whole
chromosomes. The segment classi"cations obtained at (b) are used to resolve the uncertainty.

to provide a statistical description of the segment, which
forms the PCM. Homologous chromosomes from di!er-
ent cells may have signi"cantly di!erent lengths, intro-
ducing a plastic deformation into the pro"le. This is
accounted for by resampling each training pro"le to have
the same number of samples, e!ectively length-normalis-
ing the segments (see Section 4.1 and Fig. 4). A collection
of PCMs is created, derived from di!erent segments of
di!erent classes, and each is matched at every position on
the unobscured sections of banding pattern in an overlap
to be resolved (the &&target'' segments). A measure of "t is
calculated between each PCM and each target segment
(the response of the target to the PCM).

We need a set of templates which is highly discriminat-
ing. That is, the collection of responses from the set of
PCMs should provide accurate assignment of the target
segment to the correct chromosome class. We assume
that this requires the PCMs to be speci,c for their &&own''
chromosomes. That is to say the response of a PCM
should be higher when matched to a target segment
corresponding to the one from which it was trained than
when matched elsewhere. Depending on how character-
istic and consistent the banding pattern is at di!erent
locations, the speci"city of the PCMs will vary. We select
from the very large set of possible PCMs, a smaller
&&speci"c'' set. If the speci"city of each of the selected
PCMs were very high, it would be su$cient to classify
each target segment on the basis of the best matching

PCM. It turns out that even the selected PCMs are not
that speci"c (Fig. 6), and we classify the target segments
on the basis of the response vector } the vector of max-
imum responses from each PCM.

The reason for classifying segments is to provide
a mechanism for deciding which segments should be
matched in resolving the overlap. The response vector is
used as a feature vector in calculating probabilities of
the segment being part of a chromosome from each of
the classes. By treating the class assignments of each of
the segments as independent events, we calculate the
probability of assigning each pair of segments to the
chromosome classes. The pairings that give the max-
imum combined probability for classi"cation of both
resulting chromosomes provide the resolution of the seg-
mentation uncertainty and the "nal classi"cation.

Assuming that the class probabilities assigned to each
segment are independent, we apply Bayes' formula. The
use of Bayes formula in contextual assignments is well
covered in standard sources (e.g. [20]). Here we
summarise the steps in arriving at a resolution of the
overlap.

The probability, P(u
ik
), of each segment, x

i
, being a

member of class k from the 24 classes is given by
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ik
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)"
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k
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P(g
k
) is the prior probability of obtaining class g

k
(equal

for all classes except the sex chromosomes). P(x
i
Dg

k
) is the

probability of obtaining the features x
i
, given the class

g
k
. This probability is given by application of a suitable

classi"cation function to the feature vector. We use a lin-
ear classi"er (Section 5.4).

The probabilities that candidates should be matched
to form a single (identi"ed) chromosome are calculated
according to
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P(c
ij
) is the maximum probability that segments i and j

belong to a single chromosome from any class.
The resolution of the overlap is the con"guration

which gives the maximum combined probability for both
chromosomes
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), (3)

where P(s
ijlm

) is the probability that segments i and j form
a single chromosome and segments l and m form another.

3. Chromosome data and experimental approach

For our study we have used a digitised set of
prometaphase chromosomes which have been used in
a number of previous classi"cation studies [21}24]. This
data set (known as the 600-band data set) consists of 6177
chromosome banding pro"les from 136 G-banded blood
cells, "xed and stained at the 600-band stage. Each
chromosome is represented by its density pro"le (Fig. 2)
together with its centromere position and class speci"ed
by a trained cytogeneticist. Isolated images of each chro-
mosome are also available, although not used in this
study. The pro"les in the data set carry with them an
identi"er for their cell of origin. In some circumstances
(such as the simulation experiments of Section 6) it is
useful to consider the chromosomes in the context of
complete cells, as would occur in &&live'' analysis.

Approximately 34% of the chromosomes in the data
set were touching neighbouring chromosomes in the
original images. For the purposes of the earlier studies
(for which the data were collected), cells were selected
which contained very few overlaps; no information is
retained concerning which of the chromosomes were
involved in these.

In the following section, we describe some details of
PCM representation, how the "t value is calculated and
the method of assigning segments to classes. The method
of selecting a &&speci"c'' set of PCMs from an initially
large set of candidates is described in Section 5. Cross-
validation experiments are used to evaluate the speci"-
city of individual PCMs. In Section 6 we evaluate the

selected PCMs for their ability to classify whole chromo-
somes and chromosome segments, and to resolve over-
laps simulated from the 600-band data. Paradoxically,
the &&clean'' nature of the data is an advantage for this
study, as we can use simulation to generate a large set of
overlaps with known correct resolution.

4. Trainable template matching

As we use the templates to generate probabilities of
banding segments belonging to each chromosome class,
the classes need to be de"ned in terms of observations
made on the image features. While the banding pat-
terns of chromosomes are characteristic of individual
classes, there is considerable within-class variability. Fur-
thermore, variations in the protocols for chromosome
sample preparation lead to di!erences in the appearance
of chromosomes imaged in di!erent cytogenetic laborat-
ories. It is important that templates represent the range
of banding patterns that are likely to be observed in
chromosome images, both in terms of an average band-
ing pattern and the allowed variability. We capture the
appearance and variability of the chromosomes by de"n-
ing the PCMs with respect to a training set of banding
pro"les. PCMs are trainable templates. We require a rep-
resentation of the banding sequence which can be deter-
mined by training and which includes a description of
variability. We also need a method of assessing how
closely the template "ts to the density pro"le of a target
chromosome segment. Having established a set of tem-
plates we require a method for using these templates for
assigning the segments to chromosome classes.

4.1. Template representation

There are many possible ways of representing a band-
ing pro"le, and several of these have been used in con-
structing chromosome classi"ers [11,12]. Errington
and Graham [13] have noted that the sequence of pro-
"le samples itself is as e!ective a representation as any.
The banding pro"le illustrated in Fig. 2 is sampled at
single pixel intervals along the chromosome axis. For
classi"cation purposes, the sampling interval can be
much larger than a single pixel, and Errington and
Graham used coarsely sampled pro"les in their neural
network classi"er. This representation has also been used
by Nivall [24] in classifying chromosome pro"les, in-
cluding the 600-band data set, and we adopt it for this
study (see Fig. 4). The most appropriate density of pro"le
sampling for template matching is a parameter to be
determined empirically (Section 5.2).

The PCM template is a mean pro"le constructed from
the corresponding pro"le segments in each cell in the
training set, together with the covariance matrix. The
di!erent &&raw'' pro"les in the training set corresponding
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Fig. 4. The stages of training a PCM. (a) A training set of n homologous chromosome pro"les is selected. The &&raw'' pro"les are sampled
at intervals of a single pixel along the chromosome axis (Fig. 2). Homologous chromosomes from di!erent cells vary in the detailed form
of the pro"le as well as in length, and hence in their number of samples. A particular PCM corresponds to a section of the pro"le,
indicated by the heavier line. The start and end positions are speci"ed in fractions of the chromosome length (in this case 0.15}0.6). (b)
The appropriate sections are extracted from each training example and resampled more coarsely to give a "xed number of samples in
each. (c) The variation in corresponding sample values is used to calculate a mean pro"le segment and covariance matrix. Templates of
this kind are generated for a number of partial pro"le segments in each class, of di!erent lengths and positions.

to the same chromosome class are represented by a dif-
ferent number of samples, due to di!ering degrees of
contraction of di!erent cells and small variations in seg-
mentation parameters. These di!erences can be quite
marked } up to 50% in pro"le length. If the samples are
to be used as classi"cation features, a constant length is
required. In generating the coarsely sampled partial pro-
"les, a "xed number of samples is used for each template,
the start and end positions of the segments being ex-

pressed as a fraction of the chromosome length. This is
illustrated in Fig. 4. A large set of PCMs is created in this
way, each speci"ed by di!ering start and end positions on
chromosomes of all classes (see Section 5.1).

4.2. Matching method

As chromosome pro"les are highly variable, there
are several possible matching methods which might be
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used. We describe elsewhere [25] the evaluation of four
methods using the classi"cation of whole chromosome
pro"les as the assessment criterion. The methods investi-
gated were rigid template matching (cross-correlation),
#exible template matching by dynamic programming
and linear and quadratic classi"cation. The details of our
method of testing are not relevant to this paper, but the
results showed template matching using a quadratic clas-
si"cation function to be clearly the method of choice.
Here (and later in Section 5.4) we use linear and quad-
ratic classi"cation in the conventional sense, to mean
classi"cation functions which assume the features to have
multivariate normal distributions with respectively
pooled and unequal covariance matrices (see e.g. [20]).
When used for template matching, the PCMs de"ne the
classes, and the target pro"le values provide the features
to be classi"ed. The value of the classi"cation function
provides the measure of "t. As an implementation detail,
we noted that best matching results were obtained by
normalising each template to a standard density and
including the integrated density of the template as an
additional element in the template vector.

4.3. Chromosome discrimination

As we shall see in Section 5.4, 182 &&speci"c'' PCMs
are de"ned with a range of lengths and starting points
distributed along the pro"les corresponding to all chro-
mosome classes. For chromosome segmentation and
identi"cation, we seek a response from each PCM to
each segment of chromosome as illustrated in Fig. 3. The
unobscured segments of chromosome are easily identi-
"ed, and each PCM is matched to all available locations
on each segment. The response for each PCM is the
maximum value of the measure of "t generated over all
locations on a segment. The responses for all PCMs
form the response vector for the segment. Any appropri-
ate classi"er may be used for assigning the segments to
chromosome classes using the response vector. Because
of constraints on the size of our training set we use a
linear classi"er.

5. Identifying the set of partial chromosome models

There is a very large number of candidate sub-chromo-
some pro"le segments of di!erent lengths at di!erent
locations, each of which could form a PCM. Not all of
these will provide speci"c matches against target pro"les.
We wish to identify a set of templates that collectively
gives best discrimination between chromosome frag-
ments. We assume that this set will be contained within
the set of templates that match with high speci"city to
their &&own'' chromosome segments. We determine this
speci"c set empirically using cross-validation experi-
ments. The data are split into two sets, A and B. PCMs

trained using set A are used to identify chromosomes in
set B and vice versa. In splitting the data set (here and in
the evaluation experiments of Section 6), assignment to
subsets is made on the basis of cells, i.e. chromosomes
from the same cell are always placed in the same data set.

For each trained PCM, a successful identi"cation in
the evaluation set is counted if the correct chromosome
appears in one of its top two scores after matching to all
possible locations. (There are two potential correct "ts to
each template. In the case of chromosomes with only one
example in a cell, such as the sex chromosomes, a success
is scored only when the top "t is correct.) Each candidate
PCM is evaluated according to its number of successes
(or recognition rate).

5.1. Generation of candidate sequences

In principle, we need to generate all possible candidate
templates for evaluation (all lengths of template with
starting points all along the chromosome density pro"les
derived from each class). This is a dauntingly large task.
The size of the task was reduced by limiting the range of
template lengths tested and evaluating the matches at
points separated by more than a single sample.

The experiments of Lockwood et al. [18] showed that,
for prophase chromosomes, their unique band sequences
ranged from slightly less than the length of the shortest
chromosome class to approximately twice the length of
the shortest class. Taking this result into account, we
chose to test six sizes of sequences ranging from one half
to three times the length of the shortest class.

Working along the pro"les, we used a separation of
three samples between candidate template positions, re-
ducing the number of tests required by approximately
one-third. It will become clear later that this was a rea-
sonable separation due to the fact that adjacent se-
quences produced similar results (Fig. 6). This resulted in
1308 candidate sequences for evaluation.

5.2. Optimisation of sample density

Errington and Graham [13] have noted that, for clas-
si"cation, the optimum number of samples used to de-
scribe the pro"les is rather less than the number in the
&&raw'' pro"les obtained by single pixel sampling along
the axis. The use of more coarsely sampled pro"les not
only reduces the computation required, but also in-
creases classi"cation rates. We can therefore maximise
the speci"city of the PCMs by selecting the correct samp-
ling density for the templates. We select the sampling
density empirically by measuring the recognition rate
(as de"ned above) at di!erent sampling densities. Pro"les
are resampled from the &&raw'' pro"les by local averaging.
The &&optimum sampling density'' is the one that gives the
highest recognition rate. Fig. 5 shows the results for
classes 1 and 2. The graphs show the optimum number of
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Fig. 5. Selecting the number of samples used to represent the template. Sample densities giving optimal performance for class
1 chromosomes (a) and class 2 chromosomes (b). Consistent results are obtained for training on the two halves of the data split, and the
relationship between the optimum number of samples and the measured length of the pro"le is approximately linear.

samples corresponding to di!erent lengths of template
(measured in units of &&raw'' pro"le samples). The curves
are approximately linear, showing that the fractional
sampling rate is, to a "rst approximation, independent of
PCM length. Results for each of the independent cross-
validation experiments are shown to indicate that the
results are in broad agreement. Similar results are ob-
tained for all chromosomes [25], although the fraction
by which the sampling density can be reduced is di!erent
for each class. The di!erence for classes 1 and 2 is clear
from Fig. 5. This means that the sampling density ap-
propriate for a PCM needs to be selected according to
the class from which the template is derived. Calibration
curves similar to Fig. 5 have been calculated for each
class.

5.3. Candidate template evaluation

The 1308 candidate templates generated as described
in Section 4.1 recognise their &&own'' banding sequences
with di!erent speci"cities. In this section we describe the
process of selecting the set of the most speci,c PCMs.
Fig. 6 shows the variation in speci"city for PCMs of
di!erent lengths derived from di!erent locations on chro-
mosome 1. Speci"city is assessed by the recognition rate.
Results from the separate evaluation experiments are
shown, indicating that the independent training sets are
broadly comparable. The average density pro"le for class
1 chromosomes is shown in Fig. 6a. The rest of the "gure
shows the results of matching the six di!erent lengths of
PCM (b}g). In each of the graphs, the horizontal axis
represents the location of the PCM along the pro"le.
(The structure of the pro"le at relevant points can be

determined from the density curve at (a).) The vertical
axis of each curve is the recognition rate achieved for
a PCM trained at that location. The short numbered
bars indicate the positions and lengths of the PCMs
"nally selected, and give an indication of the length of
PCMs evaluated at each level. The di!erences in the
recognition rates of templates of di!erent lengths gener-
ated from di!erent locations are clear, and correspond to
intuition. For example, the long lightly stained region at
the right-hand end of Fig. 6a is a readily recognisable
feature of chromosome 1, and the templates derived from
this region achieve high recognition rates at all template
lengths. Conversely, the region in the middle of chromo-
some 1 is not very characteristic and gives poor recogni-
tion rates at all lengths. Generally, PCMs of di!erent
lengths at the same location give similar responses, al-
though sometimes a high level of speci"city is obtained at
one particular length which captures a locally character-
istic banding appearance. An example of this is the sec-
tion labelled 5 in Fig. 6c, where a locally high response
occurs, in contrast to the responses of longer and shorter
PCMs at that location. Notice that the recognition rate
for any individual template is never very high (about
75% at best); it is their use in combination which gives
speci"city. Notice also that speci"city varies slowly along
the chromosome, justifying the strategy of generating
templates centred on every third sample.

Similar speci"city diagrams were generated for all
classes, and templates were selected from the complete set
of 1308 according to the following criteria.

1. The most speci"c templates of each class were chosen
(as in Fig. 6).
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Fig. 6. Template matching performance on candidate PCMs for class 1 chromosomes. The mean density pro"le for chromosome 1 is
shown at (a). The remainder of the "gure shows the recognition rates for templates derived at each location along the pro"le. The
recognition rates measure the speci"city of each PCM in recognising its &&own'' banding sequence. Results for six di!erent lengths of
PCM templates are shown, going from shorter templates (b) to longer ones (c}g). The dotted and solid curves represent di!erent
training/testing splits of the data, and show consistent performance. Each numbered horizontal bar corresponds to a sequence template
selected for further investigation.

2. Where several templates of the same length shared
substantial sections of pro"le, only the most speci"c
of them was used. Short templates overlapping with
longer ones were retained, even though they may be
less speci"c, on the grounds that they may be useful in
resolving overlaps where sections of longer templates
might be obscured.

Application of these selection criteria reduced the set to
182 templates, of which the fourteen selected for chromo-
some 1 are shown in Fig. 6.

5.4. Using PCMs for segment classixcation

This set of PCMs, selected for their individual speci"-
city in matching to their &&own'' chromosomes, is used to
generate a feature vector for classifying target segments.
In this way, the response of each PCM to a target
contributes to the segment's classi"cation. We attempted

to reduce the dimension of this feature vector using
Forward and Backward stepwise selection [26,27]. How-
ever, removal of features consistently resulted in reduced
classi"cation performance, so the full set of 182 PCMs
was retained.

Any suitable classi"er might be used for classifying
segments. The dimension of the feature vector is quite
large (182). Although the data set is substantial, there is
also a large number of classes, so that the quantity of
training data for each class is limited. As a consequence
we use a linear classi"er. We refer to this classi"er as the
linear PCM classi,er.

6. Evaluation of PCMs for resolving overlaps

In this section we evaluate the performance of the
linear PCM classi"er in classifying whole chromosomes,
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classifying chromosome segments and resolving over-
laps.

6.1. Cross-validation strategy

We wish to reduce bias in the estimation of our clas-
si"er performance by cross-validation. This is often
achieved by splitting an annotated data set into two,
using each half in turn to act as a training set for classify-
ing the other, as in Section 5. In our evaluation experi-
ments we require to train two sets of models: the PCM
templates themselves, and the linear PCM classi"er. The
PCM templates used are those selected as described in
Section 5.3 They are trained by gathering statistics from
the chromosome fragments as described in Section 4.1.
The linear PCM classi"er based on these templates is
itself trained using the response vector of identi"ed pro-
"le fragments. To reduce bias, these di!erent models
should be trained on separate data, with yet further data
being used for evaluation. We therefore split the data into
thirds, using each subset of the data in turn for (i) training
templates (the PCM training set), (ii) training the linear
classi"er (the classi"er training set) and (iii) evaluation,
requiring six complete classi"cation experiments to use
all the data for validation.

6.2. Simulation of overlaps

The chromosomes in the 600-band data set have been
selected so that occlusion by overlapping was kept to
a minimum. We use this set of clean pro"les to conduct
experiments on resolving overlaps by simulating the den-
sity pro"les from overlapping chromosomes. The ad-
vantage of this approach over the use of genuine overlaps
is that any number of overlapping con"gurations may be
created, each with a known true resolution, for both
training and evaluation. The disadvantage is that the
appearance of the density pro"le at the overlap may not
be totally realistic. This is not particularly problematic
as overlapping regions in real chromosome images
can be identi"ed by a number of straightforward
criteria [14].

We simulate overlaps by obscuring short sections of
pro"le at randomly selected positions on pairs of chro-
mosomes. The number of overlaps in any cell was se-
lected at random from a range determined from the
observed numbers in prophase images (about 26% of
chromosomes contain at least one overlap). The posi-
tions of obscured sections of pro"le were selected ran-
domly along the lengths of the pro"les; the widths of the
obscured sections were generated from the observed dis-
tributions of chromosome widths. Pro"le densities in the
obscured region were set to a value darker than the nor-
mal maximum density. We use the information on the
cell of origin of the chromosomes to simulate the analysis
of a complete cell at a time.

6.3. Experiments

We performed the three following experiments using
simulated overlaps. In each case the PCM templates were
trained as described in Section 4.1 using the PCM train-
ing sets. The experiments di!er in the evaluation sets
used and the corresponding classi"er training sets.

Among the conditions to be varied in the experiments,
the training data and the evaluation data may consist of
&&clean'' pro"les (containing no overlaps) or &&representa-
tively overlapped'' pro"les (simulated overlaps occurring
in about 26% of chromosomes). In the latter case, to
obtain su$cient numbers of overlaps for training and
evaluation, the overlap simulation procedure was applied
to the data in three passes, generating around 11 000
segments. To evaluate the e!ect of training set size, a set
of about twice that number was generated from six
passes. The larger numbers of overlaps were generated by
multiple passes, rather than a single pass with a higher
overlap rate, so that the distribution of sizes of unover-
lapped segments would remain representative. We will
refer to the three-pass or six-pass training or evaluation
sets.

Experiment 1 (Classi,cation of =hole Chromosomes). In
this experiment we sought to obtain a measure of classi-
"cation performance assuming all overlaps have been
correctly resolved. Three di!erent evaluations were car-
ried out using di!erent regimes of pro"le simulation.

(i) Evaluation of &&clean'' pro"les: no simulated overlaps
introduced.

(ii) Evaluation of &&representative overlaps'': each cell
contained a number of overlaps as described in
Section 6.2.

(iii) Evaluation on &&wholly overlapped'' pro"les: isolated
chromosomes which were not involved in simulated
overlaps were excluded from the evaluation.

To obtain su$cient evaluation examples, experiments
(ii) and (iii) were conducted using a three-pass evaluation
set.

Linear PCM classi"ers were trained on each of the
three types of simulated data, and each classi"er used in
turn to classify evaluation data of each type: nine classi-
"cation experiments in all.

Experiment 2 (Classi,cation of Chromosome Segments). In
this experiment we tested the PCM classi"cation perfor-
mance when applied to the classi"cation of chromosome
segments (uncorrupted sub-chromosome length sections
of pro"le extracted from overlapping chromosomes
in the three-pass evaluation set). From this we obtained
a measure of the ability to classify chromosome frag-
ments, distinct from the results on overlap resolution
(below).
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Table 1
Whole chromosome classi"cation using linear PCM classi"ers. Correct classi"cation rats are shown for training and evaluation on
clean, representative and wholly overlapped data (see text). Best classi"cation is obtained when the appropriate data are used for
classifer training

Training data

Clean Representative Overlapped

Classi"cation Clean 90.8% 88.8% 74.8%
data Representative 77.5% 83.7% 71.5%

Overlapped 52.6% 64.4% 67.7%

Lengths of segments varied from under 10% of chro-
mosome length to complete chromosomes. (The shortest
segments were 15 pro"le samples long, corresponding
to the shortest templates generated.) Classi"cation was
tested using linear PCM classi"ers trained in three di!er-
ent ways to compare di!erent training regimes.

(i) Trained on whole chromosomes.
(ii) Trained on segments from the three-pass training

set.
(iii) Trained on segments from the six-pass training set.

Experiment 3 (Resolution of Overlaps). One hundred and
thirty-six-overlapping pairs of chromosomes (one pair
from each cell in the data set) were simulated. Each
overlapping pair consisted of four segments. We per-
formed overlap resolution experiments using linear PCM
classi"ers, trained using three-pass and six-pass training
sets respectively. Overlap resolution was conducted as
described in Section 2 (Eqs. (1)}(3)).

6.4. Results

Experiment 1. Table 1 shows the results for classi"cation
of whole chromosomes using PCMs. Each column cor-
responds to one of the three forms of data used to train
the classi"er, and each row corresponds to the data
classi"ed.

Experiment 2. Table 2 shows the results for the classi"ca-
tion of chromosome segments according to the training
data used to generate the classi"er. Training on chromo-
some segments is clearly superior to training on whole
chromosomes, and some advantage is gained from the
larger training set.

Experiment 3. Table 3 shows the results of using the
PCM templates to resolve overlapping pairs of chromo-
somes. The rows correspond respectively to the smaller
and larger training set for the linear PCM classi"er. Each
row shows the percentage of overlaps correctly resolved
and the percentage of the correctly resolved overlaps
which were correctly classi"ed.

Table 2
Classi"cation of chromosome segments. Correct classi"cation
rates of isolated chromosome segments using the linear PCM
classifer trained on whole chromosomes (without simulated
overlaps) and on fragments extracted from the training set.
Training on fragments is clearly superior, and the larger number
of fragments in the six-pass training set gives advantage (see text)

Classifer training Percentage correct
classi"cations

Whole (clean) chromosomes 32.8
Chromosome segments (3 passes) 51.7
Chromosome segments (6 passes) 55.4

Table 3
Results for resolving overlapping chromosome pairs. Correct
overlap resolution rates for linear PCM classifers trained on
segments derived from three passes and six passes of segment
generation from the training set. The rightmost column shows
the number of correctly identi"ed chromosomes which were also
correctly classi"ed

Segment Correctly resolved Correctly classi"ed
training set overlaps chromosomes

Three-pass 66.5% 79.6%
training set
Six-pass 70.6% 82.6%
training set

7. Discussion and conclusions

Experiment 1 con"rms the expected result that clas-
sifying &&clean'' chromosomes gives better results than
classifying chromosomes with overlaps. The absolute
classi"cation rate for complete clean chromosomes is
encouraging, and compares well with previously pub-
lished classi"cation methods. Table 4 shows a compari-
son with the results of previous classi"cation studies
using the 600-band data. The "rst column shows the
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Table 4
Performance of template matching by quadratic discrimination. This table compares the template matching scheme used here as
a &&whole chromosome'' classi"er with the best previously published classi"cation rates for the &&600-band'' data set. Column 1 shows the
percentage of correct classi"cations obtained using banding pro"le and density features only in a quadratic classi"er. In column 2 the
method has been applied including normalised size and centromere position as additional features. Column 3 shows the rate achieved by
Kleinschmidt et al. [23] using a maximum likelihood classi"er on a di!erent representation of the pro"le together with size and
centromere position. Column 4 shows the rate achieved by Nivall [24] using a similar representation to that used here

Template matching by Template matching by Kleinschmidt Nivall
quadratic classifer quadratic classi"er et al.
(banding data only) (including length and

centromere position)

90.2% 92.4% 91.3% 91.6%

result of using trainable templates to classify clean chro-
mosomes with whole (rather than partial) chromosome
templates and a quadratic (i.e. multivariate gaussian),
instead of a linear, classi"er. The classi"cation perfor-
mance is almost identical with that shown in Table 1,
indicating that the PCMs provide as complete a descrip-
tion of the banding pattern as the full pro"les. If any-
thing, they do slightly better. The remainder of Table 4
sets this performance in context by comparing the tem-
plate matching classi"er of column 1 with the results of
Kleinschmidt et al. [23] and Nivall [24], who have pre-
viously achieved the best classi"cation performance on
the 600-band data. Both of these studies used, in addition
to the banding pattern, the powerful features of chromo-
some length and centromere position (Fig. 2), which are
not available to the PCM classi"er. The second column
of Table 4 shows the result of the template matching
classi"er of column 1 when these additional features are
used. Template matching achieves an improvement in
classi"cation over both Kleinschmidt and Nivall. Al-
though these improvements are signi"cant (at the 1.4%
and 5% levels respectively), they are small. The object of
the comparison is not to achieve a better classi"er, but to
demonstrate that the form of the template and the match-
ing method are capable of creditable results in recognis-
ing banding patterns on prometaphase chromosomes,
and that PCMs adequately represent the banding in-
formation.

Tables 1 and 2 show that the performance of the linear
PCM classi"er is best when trained with data of the same
type as is being classi"ed. It is not surprising that the
classi"cation of &&clean'' chromosomes is best done using
&&clean'' templates, but it is more di$cult to see why the
converse should be true. At the moment, we have no
explanation for this observation. However, using the
"gures of Table 1, we propose that if we have no idea
whether a chromosome to be classi"ed is isolated or
overlapped then the best results for classifying repre-
sentative overlapped data is 83.7%. In analysing a chro-
mosome image, it is usually possible to know which
chromosomes are isolated and which are involved in

overlaps. In which case an appropriately trained classi"er
could be used for each chromosome. Given our observa-
tion that 26% of chromosomes are typically involved
in an overlap, then the best result we can obtain is appro-
ximately 84.8% (0.74]90.8#0.26]67.7). We could
improve this rate to 86.0% if we were to use the quadratic
discriminant template classi"er to classify the clean
chromosomes (Table 4).

The classi"cation rates presented here will be to some
extent underestimated. The assumption that the chromo-
somes in the 600-band data set contain no overlaps is not
entirely true. There is a small (unknown) level of residual
overlap in the data, providing an element of noise in the
measurements, which will result in a slight depression of
the classi"cation performance. This does not a!ect our
conclusions, as the same assumption has been made in all
studies making use of this data set.

Experiment 2 indicates that chromosome fragments
can also be classi"ed fairly well. The fragments range in
length from about 10% to about 90% of the chromo-
some length. It is unsurprising that the correct classi"ca-
tion rate is much lower than for isolated chromosomes.

Experiment 3 shows that about 70% of simulated
overlaps can be correctly resolved using banding informa-
tion alone. Of those correctly resolved 82.6% are also
correctly classi"ed. For overlap resolution we can toler-
ate the modest classi"cation performance for segments
observed in Experiment 2, and it is possible to resolve the
overlap without correctly identifying each of the chromo-
somes. If two chromosomes overlap, it is su$cient to
have good evidence for identifying one of them, provided
there is no strong evidence for an alternative erroneous
interpretation.

The approach adopted in this study expands on the
&&unique band sequences'' of Lockwood et al. [17}19].
They identi"ed a set of 94 such sequences [18], which
were used as templates to be matched to candidate chro-
mosomes. We have extended this idea in two important
ways to provide the banding evidence for chromosome
segmentation and classi"cation. Firstly, we incorporate
knowledge of pro,le variability into the choice and use of
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sequences, by the use of trainable models. Secondly, our
sequence selection is determined by measured speci"city of
the templates, rather than by an intuitive assessment of
&&uniqueness''. Lockwood et al. did not evaluate their ap-
proach fully for classi"cation, concentrating on evaluating
matching speci"city. Using cross-correlation to match
templates to about 20% of the possible pro"le positions
on 850-band chromosomes they correctly identi"ed 88%
of template sequences [18]. Our results demonstrate that
this approach, applied to somewhat more condensed chro-
mosome material, can achieve results comparable to clas-
si"cation on whole chromosome pro"les.

The principal motivation for this study was the resolu-
tion of overlapping chromosomes, which we have con-
sidered as quite separate from the case of clusters of
touching chromosomes. Previous work [14,16] has
demonstrated that geometric evidence concerning local
boundary shape can lead to fairly accurate extraction of
individual chromosomes from touching or slightly over-
lapping con"gurations. In principle, banding informa-
tion could also be brought to bear to resolve touching
clusters, but in that case, the classi"cation of complete
hypothesised chromosomes could be used. We have
sought here to concentrate on the case of total overlaps,
where complete banding information is not available.
The most successful previous study with this aim is that
of Ji [14], who used purely geometric reasoning. Geo-
metric cues are often powerful for resolving overlaps
(see Fig. 1), and Ji achieves a correct resolution rate of
94.6% in resolving 46 overlaps. He subsequently showed
how his overlap resolution method can be combined with
splitting touching chromosomes for successful automatic
segmentation of unbanded chromosomes [15] (stained to
be uniformly dark } used in counting chromosome aber-
rations for environmental monitoring).

On the face of it, Ji's approach gives signi"cantly better
overlap resolution. However two points can be made.
Firstly, Ji's study [14] illustrates a di$culty in carrying
out this type of investigation: his methods were tested on
relatively small numbers of overlaps. This arises from the
di$culty of identifying a su$cient number of con"gura-
tions of chromosomes which are suitable for the analysis,
and for which &&correct'' solutions are known for both
training and evaluation. The approach taken here over-
comes this di$culty by simulating the appearance of
overlaps from &&clean'' data. We can therefore generate as
many partial chromosomes, with known classi"cations,
as we wish. There is a potential criticism of such an
approach, in that it requires the appearance of the
simulated overlaps to be realistic. Since we use only the
banding pro"le information away from the obscured
regions, we feel safe that nothing of signi"cance is lost in
pretending that these sections came from genuinely over-
lapping chromosomes.

Secondly, the method we describe here uses the
banding pattern as the only source of evidence for seg-

mentation. Rather than being seen as an alternative, the
banding pattern provides additional evidence which can
to be combined with geometry to provide a more in-
formed basis for the assessment of segmentation hy-
potheses. We have demonstrated that this source of evid-
ence alone can provide a useful contribution to resolving
the segmentation uncertainty. The issue of trainability is
important here: using trainable models means that the
methods are not tied speci"cally to the properties of
a given type of material, nor are they critically dependent
on the setting of arbitrary heuristic parameters. Further-
more, basing features on a training set results in measures
of compatibility between segments which approximate
to true probabilities and which could, in principle, be
used in combination with geometric cues to improve the
performance of both approaches. Problems of relative
scaling between disparate sources of evidence can be
overcome using Bayesian methods if all evidence is ex-
pressed as probabilities. We have investigated [25]
how PCMs may be combined with a trainable geometric
method, using the images of isolated chromosomes avail-
able with the 600-band data, and will describe this in
a later publication.

The disadvantage of using trainable models is in the
necessity for a large training set. The 600-band data set
used in this study was adequate in terms of numbers of
samples and length of chromosomes to demonstrate
feasibility. The methods would be used to best e!ect in
the segmentation and classi"cation of prophase (850
band) chromosomes. A set of 850-band data is currently
being assembled [24], but the task is labour-intensive
and time consuming and an insu$cient number of chro-
mosomes has so far been collected to allow the study
described here to be repeated at this stage.

8. Summary

Disentangling overlaps is an important task in the
analysis of images containing chromosomes at the
prophase or prometaphase stages of contraction. Pre-
vious investigations into segmenting overlapping chro-
mosomes have relied on reasoning about chromosome
shapes to resolve the ambiguities in interpretation. In-
formation contained in the chromosome banding pat-
terns can also be used for this purpose. We propose and
evaluate a mechanism of using the banding information
based on trainable grey level models. The models, refer-
red to as Partial Chromosome Models, consist of a set of
templates corresponding to banding sequences of sub-
chromosome length, selected so that they provide good
discrimination between chromosome classes. Candidate
pro"les are matched to templates using a quadratic clas-
si"cation function. Chromosome segments are assigned
to chromosome classes on the basis of their responses to
the entire set of templates, by using the matching scores
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as features in a linear classi"er. The classi"cations of the
segments are then used to propose matches to identify
complete chromosomes within a composite object. We
evaluate the method using a set of chromosome banding
pro"les derived from prometaphase chromosomes,
whose classes have been expertly identi"ed. The form of
the model and the matching method are shown to be
capable of high speci"city, achieving correct classi"ca-
tion results on whole chromosomes, using whole chro-
mosome models, of 92.4% which improves on previously
published classi"cation results on this set of data. Using
Partial Chromosome Models, a correct classi"cation rate
of 90.8% is obtained for isolated whole chromosomes
and 55.4% for chromosome fragments, some of which
represent less than 10% of the chromosome length. We
test the ability of the models to resolve overlaps by
simulating overlapping pairs of chromosomes using the
pro"le data set. Despite the rather low rate of correct
classi"cation for chromosome fragments, 70.6% of
simulated overlaps are correctly resolved. We discuss the
possibility of combining the use of grey-level cues with
geometric cues for untangling overlapping chromosomes.
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Disentangling Chromosome Overlaps by Combining
Trainable Shape Models With Classification Evidence

Graham C. Charters and Jim Graham

Abstract—Resolving chromosome overlaps is an unsolved problem in
automated chromosome analysis. We propose a method that combines ev-
idence from classification and shape, based on trainable shape models. In
evaluation using synthesized overlaps, certain cases are resolvable using
shape evidence alone, but where this is misleading, classification evidence
improves performance.

Index Terms—Biological cells, evidence combination, image segmenta-
tion, occlusion, shape modeling.

I. INTRODUCTION

The automation of chromosome analysis, involving segmentation of
chromosomes and classification into 24 groups, was one of the earliest
applications of pattern recognition research. Many years of effort have
resulted in the development of commercial cytogenetics systems for
automated analysis of banded chromosome preparations (see Fig. 1).
Analysis is complicated by the occurrence of clusters of unseparated
chromosomes. Mostly, these consist of “touches,” which are chromo-
somes that do not overlap but lie so close together that thresholding has
failed to separate them (see A of Fig. 1). Commercial systems usually
include methods that will separate a proportion of touches. The sep-
aration of true overlaps, such as those marked B in Fig. 1, invariably
requires operator interaction.

The problem of extracting individual objects from overlapping con-
figurations is one that occurs in a number of applications in machine
vision. It is a difficult problem in general and can be thought of in two
parts: 1) identifying overlapping objects in the first place and 2) iden-
tifying the individual components. In the case of chromosomes, it is
usually fairly easy to identify an overlap on straightforward shape cri-
teria; we discuss this further in Section VI. In this paper, we concen-
trate on the issue of identifying the individual objects in the cluster.
The approach adopted here falls under the generic heading of “hy-
pothesize and test.” Candidate objects are hypothesized based on some
data-driven process and the hypothesized objects evaluated against a
model of their expected appearance. The model of the objects in this
case is that they are long and flexible with a recognizable banding
pattern. We propose a method for matching hypothesized candidates
against that model.

In a previous publication [1], we have described a method for re-
solving overlaps, which makes use of classification evidence from the

Manuscript received June 15, 1999; revised April 12, 2002. This work was
supported by the Engineering and Physical Sciences Research Council, U.K.
The data used in this study were made available as part of the Concerted Ac-
tion of Automated Cytogenetics Groups, Project II.1.1/13, and the Concerted
Action on Automated Molecular Cytogenetic Analysis, Project BMH1-CT92-
1307, supported by the European Community. The associate editor coordinating
the review of this paper and approving it for publication was Dr. Maria Joao
Rendas.

G. C. Charters was with Imaging Science and Biomedical Engineering, the
University of Manchester, Manchester U.K. He is now with the IBM U.K. Lab-
oratories, Winchester, U.K. (e-mail: charters@uk.ibm.com).

J. Graham is with Imaging Science and Biomedical Engineering, the Univer-
sity of Manchester, Manchester, U.K. (e-mail: Jim.Graham@man.ac.uk).

Publisher Item Identifier 10.1109/TSP.2002.800421.

Fig. 1. Part of a dividing cell showing chromosomes stained to display a
pattern of bands. The banding pattern can be used to classify the chromosomes
into 24 groups. Isolated chromosomes can generally be segmented by
thresholding, but chromosomes often touch each other (indicated by A) or
overlap (B), requiring additional analysis for complete segmentation.

chromosomes’ banding pattern without taking into account the shape
of the hypothesized object. In this paper, we describe a method for
modeling shape, which can provide geometric evidence for resolving
overlaps. The models are trainable and readily provide a measure of
probability that a hypothesized shape is “good.” Previous approaches to
analysis of cluster geometry [2], [3] have been heuristic, using simple
shape models that are unsuitable for providing probability estimates.
We further describe a strategy for combining shape and classification
evidence to improve the performance of either approach by treating
them as independent estimates of the probability that a hypothesized
chromosome is genuine.

II. SOURCES OFEVIDENCE

We summarize our method using as an illustration the schematic pair
of overlapping chromosomes in Fig. 2(a). The banding pattern in the
overlapping region is obscured, but four short segments of chromo-
somes are visible. We assume that these segments can be detected by
some suitable data-driven cueing process, such as skeletonization and
identification of significant branches (see Section VI). Each of these
segments could be matched to any of the other three to hypothesize six
possible complete chromosomes [Fig. 2(b)–(d)]. We can evaluate the
hypotheses by assessing the shape of the candidate complete chromo-
somes. Some of the shapes in Fig. 2(b)–(d) are much more likely to
be real chromosomes than others. Also the banding patterns of some
of the hypothesized chromosomes may correspond more closely with
a genuine banding pattern than others.

Classification Evidence:In a normal cell, there are two chromo-
somes in each class (with the exception of the male sex chromosomes).
Each member of a homologous pair has an identical banding pattern
that is distinct from the banding patterns that are characteristic of all the
other classes. Fragments of chromosomes, as in Fig. 2, can be matched

1053-587X/02$17.00 © 2002 IEEE
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Fig. 2. Resolving a two-chromosome overlap. (a) Four isolated segments can
be labeled. These can be combined to form six hypothesized chromosomes in
three different solutions: (b) 1+4; 2+3. (c) 1+3; 2+4. (d) 1+2; 3+4. The
probability of these hypotheses corresponding to genuine chromosomes can
be assessed on the basis of shape. The chromosomes in (b) look most likely;
those in (d) seem reasonable; those in (c) appear to be the least likely solution
although not impossible as chromosomes are rather flexible (see Fig. 1). The
banding pattern can also be used to assess the hypotheses by matching templates
of short lengths of banding pattern to the visible segments (e). Evidence for a
hypothesized chromosome will be strengthened if the matched segments can be
paired with a high probability of belonging to a true chromosome.

by identifying that their banding patterns form part of the characteristic
banding pattern of a particular class. The more a pair of fragmentary
banding patterns appear to belong to the same class, the more likely
they are to belong to the same chromosome. We have described in de-
tail previously [1] how we obtain classification evidence for resolving
overlaps. The method only uses short sequences of band pattern that are
not obscured by the overlapped region. Each segment is matched with
a large set of trained templates [partial chromosome models (PCMs),
illustrated in Fig. 2(e)] to yield a feature vector for a linear classifier.
The output of this classifier yields a probabilityPr (Ckjui) that seg-
menti, represented by feature vectorui, should be assigned to classk,
which is one of the 24 chromosome classes. (The possibility of a chro-
mosome being observed in either of its possible orientations is dealt
with at that stage.) We seek to match fragments to form a single chro-
mosome by maximizing the probabilityPr (Cjui; uj) that an object,
which is formed by combining segmentsi andj, is a chromosome of
anyclass. (C is the union of all chromosome classes.) Sinceui anduj
represent disjoint fragments of the banding pattern of a complete chro-
mosome, we assume thatPr (Ckjui) andPr (Ckjuj) are independent
estimates of the chromosome’s class. We take the prior probabilities
of all chromosome classesPr (Ck) to be equal, allowing us to write
Pr (Cjui; uj) in terms of the class-conditional probabilities:

Pr (ui; uj jC) = max
k

Pr (uijCk)Pr (uj jCk): (1)

The assumption of equal priors is very closely true for almost all
chromosome classes. A small bias is introduced concerning the sex
chromosomes by using this assumption.

We showed that using combinations of short banding sequences,
classification performance is comparable with that obtained using the
entire banding pattern on unobscured complete chromosomes. Good
classification performance was also obtained on chromosomes partially
obscured by overlap.

Shape Evidence:As we wish to avoid heuristic approaches to evi-
dence combination, we need a method of describing shape that yields
a probability of being a valid chromosome shape. This will allow us to
conduct the combination of shape and classification evidence in a prin-

Fig. 3. Parameterization of the chord distribution model. A chromosome shape
is described by a set of chords equally spaced along its axis. Each chord is
parameterized by the angle it makes with the preceding chord (� ) and the
chromosome width (chord length)w . The length of the axis is also included in
the shape description.

cipled, probabilistic framework. In Section III, we describe a method
for representing shape using trainable models that allows us to calcu-
late the probability that any given shape belongs to the distribution de-
fined by the training set. In Section IV, we will describe the method of
combining shape and classification probabilities and examine the as-
sumptions necessary to make the problem tractable.

III. T RAINABLE SHAPE MODELS

We base our shape models on the point distribution models (PDMs)
of Cooteset al.[4], which describe shape using the statistics of a set of
landmark boundary points. Among other desirable features, PDMs deal
compactly with natural variability and are highly robust and specific,
provided the shape variations are approximately linear (e.g., changes
of scale or local deformations). Large nonlinear deformations, such as
bending, reduce the specificity of the model both for image search and
object description. Since bending is a universal feature of chromosome
shapes, we modify the method for use in this case.

We call our shape parameterization thechord distribution model
(CDM), and it is illustrated in Fig. 3. Each shape is described by
a set of equally spaced chords lying perpendicular to the curved
central axis. There are two parameters for chordi: 1) the angle
change�i between chordsi � 1 and i, and 2) the length of the
chord (i.e., the width of the chromosome)wi; each is scaled by the
standard deviations of the parameters. The lengthl of the chromosome
along the central axis is included, as this is an important parameter,
varying dramatically from one chromosome to another. The vector
x = (�0; w0; �1; w1; . . . ; �n�1; wn�1; l)

T specifies the shape
of a chromosome, which is represented byn chords. To maintain a
consistent shape description,n is a constant across all shapes. In the
case of a hypothesized chromosome extracted from an overlapping
configuration, as in Fig. 2, it is a straightforward matter to locaten
chords along the axis of the object formed by joining the segments.

Let xi be the vector describing theith example from a training set
of N shapes. We can calculate the mean shape (x = 1=N N

i=1
xi),

the deviation of each shape from the mean (dxi = xi � x) and the
covariance matrix (S = 1=(N�1) N

i=1
dxidx

T
i ) for the training set.

In general, considerable variability will be observed in the individual
parameters. However, these variations are usually highly correlated and
correspond to a set ofmodes of variationof the entire shape. The modes
of variation may be found by calculating the unit eigenvectors ofS,
pi; i = 1 � � �n (Spi = �ipi), where�i is theith eigenvalue,�1 �
�2 � � � � � �i � �i+1 � � � � � �n � 0, andpTi pi = 1. Any
shape from within the range of training shapes can be recreated using
the weighted sum of the eigenvectors (2)

x = x+Pb: (2)

P = (p1; p2; . . . ; pn) is the matrix of eigenvectors, and
b = (b1; b2; . . . ; bn) is a vector of weights applied to each eigen-
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Fig. 4. Some examples of chromosome shapes in the shape training set. Since
chromosomes can bend in different directions, the initial set was enlarged by
reflecting chromosomes in thex andy directions.

Fig. 5. Five most significant modes of variation of the chromosome training
set. In each case, the mean shape appears in the center. The variation results from
altering the weight (b) of the first five eigenvectors in turn over the range�2

p
�

to 2
p
� . The modes correspond to intuitive descriptions of shape change. The

most significant mode of variation is the chromosome length, followed by a
slight variation in width. Bending of the chromosomes is accounted for in the
third mode, bending with two axes of curvature appearing as mode 5. The fourth
mode reflects change in chromosome width along the axis; chromosomes are
not uniformly wide all the way along and, in particular, show a characteristic
constriction (the centromere), which can occur at various positions, including
the ends. Different weighted combinations of these modes can generate a wide
range of “legal” chromosome shapes, i.e., shapes that could occur within the
distribution of training shapes, even though individually, they may never have
been observed.

vector. The vectorb is equivalent tox as a shape description. Since
the eigenvectors are orthogonal, we can generateb for any shape
using (3). We callb theshape vectorof a chromosome as it represents
how closely a shape fits the model

b = P
T (x� x): (3)

The proportion of the variance described by each eigenvector is equal
to its eigenvalue. The variance in the training data described by thet
most significant eigenvalues is given byVt =

t

i=1
�i. The total vari-

ance in the data isVn. As there is a high degree of correlation amongst
the parameters, the shape variation can be described byt eigenvectors,
wheret is selected to represent a large proportion ofVn while giving
a shape vector with a dimension significantly reduced compared with
the original (2n+1). This generates a compact shape description while
ensuring that the observed variability is adequately represented.

Fig. 4 shows some examples from the set of 1412 shapes used to train
the shape model. These were extracted from chromosome images by
interactive thresholding and manual isolation of overlapping chromo-
somes. Axes were formed by skeletonization followed by manual ex-
tension of the skeletons to the boundaries and spline fitting. Forty-five
chords, which are normal to the spline axis and equally spaced along
it, were generated for each shape. The eight most significant modes of
variation describe 92.5% of the total variance in the training set. Fig. 5
shows the effect of varying each one of the first five modes in turn
(varying each of thebi individually over the range�2p�i to 2

p
�i).

The quality of fit of a given chromosome shape to the distri-
bution of shapes can be assessed from the Mahalanobis distance
(D2 = t

i=1
(b2i =�i)) from the mean shape usingt modes of varia-

tion. We normalize this to a probability measure using the Chi-square
distribution ofD2 with t degrees of freedom. Since the PCA removes
linear correlations from the features, we take thebi to be independent
measures of shape, making the use of Chi-square appropriate. In
addition, since we truncate the number of dimensions (modes) of the
shape distribution, the Chi-square calculation allows straightforward
comparison of results with different values oft.

Having expressed the shape in terms of a probability, it can be used
to evaluate the candidate chromosome either on its own or combined
with classification evidence.

IV. COMBINING EVIDENCE

In resolving a shape, neither the classification evidence, which is
outlined briefly in Section II, nor the shape evidence described in Sec-
tion III is totally reliable. The experience of analysis of chromosomes
by human expert observers is that the uncertainty in resolving the
overlap should be reduced by using both. Fig. 2 represents the possible
solutions of a two-chromosome overlap generating four identifiable
segments—an “X-shaped” overlap. Two overlapping chromosomes
can also form a three-segment, “T-shaped,” cluster (see Fig. 6). The
following argument is constructed in terms of the “X-shaped” overlap
but can equally be applied in the “T-shaped” case. Fig. 2(b)–(d)
represent three possible hypotheses for the resolution of the overlap.
We have constructed the two sources of evidence so that each provides
an estimate of the probability that a given hypothesized chromosome
is valid. We can therefore conduct the evidence combination in a
probabilistic fashion. Cast in Bayesian terms, we wish to identify the
hypothesis with the maximuma posteriori probability. That is, we
wish to choose

i� = arg max
i

[max
c

Pr (Hi; Cjr)] (4)

whereHi are separate hypotheses,C = (C1; C2) is a pair of pos-
sible class assignments, andr is a data vector. Rearranging this and
following Bayes theorem, in terms of the class conditional probabili-
ties and priors, we have

i� = arg max
i

[max
c

Pr (rjHi; C) Pr (Hi; C)]: (5)
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We take the prior probabilities of the individual classes to be equal.
We have noted that this is true to a close approximation. We also as-
sume that all cluster geometries are equally probable. (It is generally
accepted that chromosomes lie in random positions and orientations in
the image.) Using these assumptions, we need to maximize the likeli-
hood of the data, subject to the hypothesis and the assigned classes

i
� = arg max

i
[max

c
Pr (rjHi; C)]: (6)

The datar for a given hypothesis consists of a pair of shape vectors
b1 andb2 (see Section III) and four classification vectorsu1 � � �u4
(see Section II). Each hypothesis consists of an association between
each of the shape vectors and two of the classification vectors. Equation
(6) becomes

i� = arg max
i

[max
c

Pr (b1;b2;u1;u2;u3;u4jHi; C)]: (7)

This is, in principle, a very large problem as we need to maximize
over all shape configurations, each over all pairs of classes. We make
the problem tractable by assuming that the shape and classification ev-
idence are independent. This is a reasonable assumption up to a point.
The banding pattern is largely independent of shape. (In fact, some dis-
tortion of the banding pattern occurs due to bending, but the effect of
this on classification is minimal and has never been taken into consider-
ation in the design of chromosome classifiers.) The shape is also at least
partly independent of the class. One aspect of a chromosome’s shape
that is correlated with class is its length, which forms part of the shape
descriptor (see Section III). Chromosome length is a feature commonly
used along with the banding pattern in chromosome classification [5].
Our hypothesis testing becomes greatly simplified if we can factor out
the shape from the classification to give

i
� = arg max

i
[Pr (b1;b2jHi)max

c
Pr (u1;u2;u3;u4jHi; C)]:

(8)
This simplifying assumption can be justified on the grounds that we

are assessing the probability that a hypothesized object is a chromo-
some ofanyclass. For the purpose of resolving the overlap, we are not
interested in knowing the class of the chromosome; the classification is
merely a convenient mechanism for pairing up segments of the banding
pattern. We therefore pool the length variability as part of the shape
model. In principle, one could propose using the assigned classes of
the hypothesized chromosomes to provide more information about the
resolution. However, the resolution of the overlap is then influenced by
the classes of all other chromosomes in the cell, which may in turn be
involved in overlaps, leading rapidly to a problem of intractable com-
plexity [6].

We further assume that the banding patterns and shapes of the can-
didate chromosomes arising from a given hypothesis are independent
of each other. This is also a close approximation to the truth. Certainly,
knowing the shape of one chromosome in an overlap provides no con-
straint on the shape of the other. There is some small interaction be-
tween the classes of the hypothesized chromosomes. It is less likely that
they will belong to the same class than to different classes. Assuming
independence of classes introduces a small bias into the classification
evidence. However, the assumption allows us to write the probability
of a given outcome as

i
� = arg max

i
[Pr (b1jHi) Pr (b2jHi)

�max
c

Pr (u1;u2jHi; C1) max
c

Pr (u3;u4jHi; C2)]: (9)

The probabilities in the left-most product are the shape probabilities
described in Section III. The probabilities in the right-most product are
derived using (1).

In summary, to resolve an “X-shaped” overlap such as that in Fig. 2,
we visit each of the three hypotheses in turn and identify the two can-
didate chromosomes by generating a shape connecting the free ends.
For each generated chromosome, we calculate the shape probability for
each (see Section III) and the maximum class-conditional probabilities
based on the combination of fragmentary banding patterns. Finally, we
multiply all four probabilities, choosing the hypothesis that yields the
largest result. A “T-shaped” overlap can be resolved in the same way.
There are three hypotheses for each overlap in this case also.

V. EVALUATION

Chromosome Data:We used a publicly available data set (the “600-
band” data set) consisting of 6177 chromosomes from 136 G-banded
blood cells, which has been used in a number of previous classification
studies (see, e.g., [1] and [7]). For each chromosome, there is, among
other things, an isolated image, the class specified by a cytogeneticist,
and an identifier for its cell of origin. The chromosomes have been
selected so that very few have banding patterns corrupted by overlaps
in the original images.

Simulation of Overlaps:We used the isolated “clean” chromosome
images to form simulated overlaps. The method of selecting the chro-
mosomes to be involved in the overlaps was the same as that reported
in our earlier paper [1]. In addition to the image and classification data,
each chromosome record in the data set contains a banding profile,
which is a linear representation of the banding pattern in which the
chromosome density is projected onto the central axis. The length of
the profile corresponds to the length of the chromosome. To select chro-
mosomes to be involved in overlaps, the banding profiles from a given
cell are appended and two random positions selected along the length
of the aggregate cell profile. By selecting chromosomes in this way,
the likelihood of a chromosome being involved in an overlap is propor-
tional to its length. The isolated images of the selected chromosomes
were added to a target image at randomly selected positions and ori-
entations. Only some random configurations result in overlaps. If an
overlap was present, it was evaluated as a “T-shaped” (three-segment)
or “X-shaped” (four-segment) cluster according to whether or not four
segments with skeletons longer than 15 pixels could be isolated. (Clas-
sification evidence cannot be generated for segments smaller than 15
pixels due to the size of the smallest template in the PCM set, which
is defined to be half the size of the shortest chromosome class in the
600-band data set [1].)

Chromosome shapes and smooth axes were obtained for the simu-
lated cluster, as described in Section III. The location of the overlap
was defined to be a node in the skeleton of the cluster. This was con-
firmed manually, as we sought to evaluate the evidence combination
rather than the preprocessing. Banding patterns, for use by the PCM
classifier, were obtained by integrating density normal to the axis. A
single overlap was generated from each alternate cell in the evaluation
sets, resulting in 56 “T-shaped” clusters and 13 “X shapes.” The small
number of “X-shapes” arises from the limit on the smallest segment that
can be used for classification evidence. Crossing chromosomes having
one segment less than 15 pixels long were classified as “T-shapes.”

Evaluation Experiments:We performed the following experiments.
Each experiment was a cross-validation in which the data were split
into reversible training and evaluation sets. PCM training was per-
formed, and as described previously [1], CDMs were trained as in Sec-
tion III.

Experiment 1: Resolution using classification evidence by setting
all thePr (bj jHi) to be equal.
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TABLE I
RESULTS OFOVERLAP RESOLUTION EXPERIMENTS. THE COLUMNS

CORRESPOND TO THETHREEEXPERIMENTS: RESOLUTION ONCLASSIFICATION

EVIDENCE, ON SHAPE EVIDENCE, AND COMBINED EVIDENCE. IN EACH CASE,
THE PERCENTAGE OFCORRECTLY RESLOVED OVERLAPS IS SHOWN

FOR X-SHAPED (FOUR-SEGMENT) AND T-SHAPED (THREE-SEGMENT)
CLUSTERS, AS WELL AS THE OVERALL TOTALS

Experiment 2: Resolution using shape evidence by setting all the
Pr (ui; uj jHiC) to be equal.

Experiment 3: Resolution using combined evidence by using
trained values for both shape and classification evidence.For this
experiment, we set a threshold such that if the classification proba-
bilities of all segments were less than 0.05, they were set to be equal
and the resolution took place on shape evidence alone. Classification
evidence becomes extremely unreliable when all segments have low
classification probability.

The results are shown in Table I. Aside from the encouragingly high
proportion of correct resolutions, we can make several observations.
“X-shaped” overlaps are well resolved on shape information alone.
This is intuitively reasonable as “X-shapes” formed from the coinci-
dence of very bent chromosomes [as in Fig. 2(c)] are rare. Conversely,
the classification evidence is much less useful for “X-shapes” than for
“T-shaped” clusters, making no apparent contribution to the resolu-
tion. The greater contribution of classification evidence in the case of
“T-shapes” probably occurs because the segments are longer with more
of the banding pattern visible than in the “X-shapes.” The shape evi-
dence is often more misleading for the “T-shapes” (see Fig. 6), and the
combination of evidence makes a noticeable contribution to the reso-
lution. Some examples of errors made on shape and classification evi-
dence are shown in Fig. 6.

VI. CONCLUSIONS ANDDISCUSSION

In this paper, we have dealt with ways of using available evidence
to resolve clusters of chromosomes. Our premise is that clusters can
be recognized as such by some other process. Furthermore, we as-
sume that it is straightforward to locate the positions where chromo-
somes cross and, hence, identify the “uncorrupted” segments away
from the overlap region. It has been shown in other studies [2], [8]
that this “cueing” process can be achieved straightforwardly and ro-
bustly by analysis of the shape of the cluster. Ji [2] used an analysis of
the skeleton and boundary based on curvature and the convex hull. (Our
semi-manual cueing method was intended to approximate Ji’s method.)
Popescuet al. [8] proposed a method of analyzing the boundary and
axis shape that is less heuristic than that of Ji, giving comparable re-
sults for axis and overlap location on small numbers of clusters. We
have also restricted ourselves to dealing with the resolution of overlap-
ping rather than “touching” chromosomes. In the latter case, the sep-
aration can often be achieved by following a “pale path” between ap-
propriate boundary points. Ji used this method for unbanded chromo-
somes. The method is more difficult to apply to banded chromosomes
as there are many “pale paths” across the chromosomes. Nevertheless,
Graham [9] has addressed this issue using a split-and-merge approach
in the context of an interactive system, and Popescuet al.[8] have pro-
posed a mechanism for “pale path cutting” that involves evaluating the
resulting candidate chromosomes in a “hypothesize and test” strategy.

Fig. 6. Examples of overlaps, showing how evidence is combined. (a)
Example in which the shape evidence is misleading, giving the incorrect
solution that segment 3 is a single chromosome and that segments 1 and 2
should be joined (we use the notation {1+2;3}). The correct solution, which is
generated by the classification evidence, is {2; 1+3}. (b) Showing the opposite
effect. The classification evidence generates the wrong solution ({1+3; 2+4}),
largely due to the paucity of banding information in segments 1 and 4. The
shape evidence corrects this in the combined result to give {1+2; 3+4}. This
is a fairly typical result in X-shaped overlaps. (c) Only example among the
simulated overlaps where all the classification, shape, and combined evidence
resulted in an incorrect solution. The correct solution is {1; 2+3}. The incorrect
solution of {2; 1+3} arises because the skeleton for the combination {1+3}
results in a more likely shape than {2+3}. The classification evidence suggests
the wrong solution as segment 3 is extremely short, and the banding pattern
at the end of segment 2 is corrupted due to an overlap at that position in the
original data. As we have noted, the number of overlaps in the data was kept
to a minimum but not totally eliminated; there is a small residue of corrupted
banding patterns.

The same study also deals with overlapping chromosomes, assessing
hypothesized objects constructed from segments on the basis of their
banding pattern. This is one of a number of recent studies [10], [11]
that use different methods of assessing the banding evidence for candi-
date chromosomes isolated from a cluster and are directly comparable
with our earlier study (see [1, Sec. ]). The studies of Stanley [11] and
Popescu [8] are particularly relevant in dealing specifically with over-
laps in this way.

Webelievethat this is the firstattempt tocombineevidencefromshape
andclassificationforresolvingoverlappingclusters.Ji’s[2]methodofre-
solving overlaps using geometric evidence provides an interesting com-
parison with the use of shape evidence reported here. In a trial on 46 two-
chromosome overlaps, which in our terminology would be “X-shaped,”
he achieved a correct resolution of 94.6%. This is nearly identical to the
resolution rate obtained here on our small set of “X-shapes” (Table I),
which was also almost entirely based on geometric evidence, tending to
confirm the intuition that “X-shaped” overlaps of two chromosomes can
be reliably resolved on the basis of shape.

The studies by Agam and Dinstein [3] and Lerneret al. [10] are rel-
evant in using, respectively, shape and banding evidence for resolving
clusters, although both are restricted to touching or “slightly overlap-
ping” configurations (“T-shaped” in our terminology). Agam and Din-
stein [3] evaluate hypotheses using simple, heuristic models of shape. A
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correct resolutionrateof82%overalland88%ontwo-chromosomeclus-
ters is reported.Theseclusterscontainanunspecified,butprobablyhigh,
proportion of “touches.” Lerneret al.[10] assess the hypothesized chro-
mosomes by classification of the banding pattern with an MLP neural
network. They evaluate the method on 46 images of two-chromosome
clusters and achieve a “probability of correct segmentation” of 82.6%.
This method, however, is subject to the serious constraint that the classes
of the chromosomes involved need to be knowna priori. The authors
claim that this knowledge can be obtained using a “simple elimination
criterion” after classification of isolated chromosomes. We feel that this
claim grossly underestimates the difficulty of the problem. There would
need to be no more than one overlap per cell, and all other chromosomes
would need to be classified with very high accuracy; neither condition
is reasonable. This constraint might be dispensed with by adopting the
optimizationstrategyofPopescuetal.[8],whoappear toachievea lower
correct recognition rate for overlapping chromosomes. However, their
method applies a much more realistic analysis to more difficult clusters.
Despite the close relationship between [3] and [10], these studies use
shape and classification evidence asalternatives, perhaps due to the dif-
ficulty of combining essentially heuristic information. Our use oftrain-
ablemodels of shape allows this evidence to be combined with proba-
bilistic classification evidence to resolve difficult cases.

We have not sought, with the small evaluation set used in this study,
to infer the proportion of overlaps that could be resolved in a larger
set of real images, particularly in the case of “X-shaped” overlaps. Our
results are, however, consistent with those of previous studies. We can
conclude that for an important class of overlap (the “T-shapes”), the
combination of shape and banding evidence provides an advantage over
the use of either in isolation and that the use of a trainable shape model
provides a natural mechanism for the evidence combination.

In this work, we have restricted our attention to overlap resolution.
The segmentation and classification of isolated chromosomes is a
more straightforward problem that has been the subject of a number
of studies (see, for example, [5] and [7]). Furthermore, we have
limited ourselves to two-chromosome clusters, which is a limitation
we share with other similar studies [2], [10]. The same evidence
could, in principle, be used for larger clusters, but the complexity
of analysis increases with the numbers of chromosomes involved.
Even “X-shaped” or “T-shaped” objects could be composed of
more than two chromosomes due to unfortunate alignments of small
chromosomes. This has a rather lower likelihood of arising in practice
than the two-chromosome overlaps investigated here, although such
configurations are observed in the analysis of real metaphases. Again,
the same evidence could be used to evaluate individual segments as
for combinations of segments. It is possible to imagine a strategy for
analyzing clusters by taking these possibilities into account. One might
proceed heuristically (in the manner of Ji) by re-examining cases
where the probability of combining segments to form a chromosome
is low. In the current study, these have simply been resolved on
shape evidence alone, assuming that two chromosomes are present.
A more robust and computationally sound approach would be to use
an optimization strategy such as that described by Popescuet al. [8].
It would take a longer study to quantify the error in segmentation and
classification arising from such cases.

In evaluating our method on simulated overlaps, we have sought to
avoid the problem of acquiring a sufficient number of expertly anno-
tated clusters to form ground truth for both evaluation and training. This
problem restricted Ji and Lerneret al. to a relatively small evaluation
sets, which was somewhat larger in the study by Popescuet al.We have
two models to train—a banding model and a shape model. The shape
models were trained on a set of 1412 chromosomes independent of the
600-band images (see Section III). The banding model was trained and
evaluated as a separate exercise, as described in our earlier paper [1].

In that case, 136 simulated overlaps were used in a cross-validation ex-
periment, where the model for each overlap was trained on an indepen-
dent set of about 4000 chromosomes. (However, the figures shown in
Table I for “classification only” resolution correspond to banding pro-
files extracted from the simulated images generated in this study.) For
the evaluation of evidence combination, the use of synthetic clusters
lets us make use of an existing resource: a body of preclassified chro-
mosome images. Furthermore, we can, in principle, generate as many
overlaps of known true resolution as we like (although the process is
rather time consuming). By using randomly selected and positioned im-
ages of real isolated chromosomes, we believe that we avoid the danger
of introducing bias into the evaluation set. Visual inspection of simu-
lated clusters (e.g., Fig. 6) suggests that in doing so, we do not generate
objects of unusual appearance.

Automated karyotyping systems are now in common use in clin-
ical cytogenetics laboratories and are available commercially from a
number of vendors. These systems deal very well with the segmenta-
tion and classification of isolated chromosomes. While complex over-
laps involving several chromosomes are observed in metaphase images,
they tend to occur most frequently in images that are unsuitable for vi-
sual analysis in any case. The most frequently occurring type of cluster
in images used in practice consists of a pair of touching chromosomes,
and some commercially available systems have functions for dealing
with these. However, separation ofoverlapsis left to operator interac-
tion. The majority of overlaps to be resolved consist of pairs of chromo-
somes, and solving that problem reliably is the single most important
improvement in functionality that could be brought to these systems.
The fact that a number of recent publications have addressed this issue
is evidence of both its practical importance and technical challenge.
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Abstract  

In this study we have investigated the application of an Artificial Neural Net classifier to the diagnosis of vascular 
disease using Doppler ultrasound blood-velocity/time waveforms. A multi-layer perceptron network was trained 
with waveforms from control subjects and from patients with arterial disease. The diseased cases were confirmed by 
angiography and allocated to three groups according to the location of the stenosis: proximal or distal to the site of 
measurement or multi-segmental. We compared network classification results with a Bayesian classifier following 
a Principal Component Analysis of the waveforms. Versions of both classifiers were trained to discriminate two 
classes (normal v. abnormal) and four classes. In both cases the neural networks gave superior discrimination to the 
Bayesian classifier. While the four-class network was unable to provide useful discrimination among the stenosis 
sites, discrimination between abnormal and normal classes was obtained which is comparable to that achieved by 
a human expert observer. 

Introduct ion 

Vascular disease 

Vascular disease is the most frequent cause of mor- 
bidity and mortality in the western world [1]. One of 
the commonest forms of the disease is atherosclerosis 
[2], a condition which affects the intima of the aorta 
and larger distributing arteries, and is responsible for 
approximately 60% of deaths from cardiovascular dis- 
ease. The disease is characterised by the presence of 
raised plaques of fibrous fatty material which encroach 
on the lumen of the vessgl and lead to the impairment of 
the arterial circulation. When the disease is present in 
the lower systemic circulation and the patient is at rest, 
it has been shown [3] that a reduction of 40% in the 
lumen diameter will significantly inhibit blood flow; 
the ischaemic effects of such a stenosis is enhanced 
when the limb is exercised. 

Doppler ultrasound 

Arteriography has been widely used as a diagnostic 
technique to assess the patency of diseased arteries. 
However, whilst being anatomically informative, it 
fails to give any indication of the haemodynamic func- 
tion of the circulation. The recording and analysis of 
Doppler ultrasound blood-velocity/time waveforms at 
the site of the common femoral artery for the purpose 
of haemodynamic assessment of atherosclerotic dis- 
eased arteries has been well documented. It has been 
shown that quantitative analysis of the shape of the 
waveform can, in some cases, distinguish between par- 
tially and totally occluded vessels both proximal and 
distal to the site of measurement. The changes in wave- 
form shape as a function of disease can be quite sub- 
fie. A range of methods of analysis have been applied 
from the straightforward, such as the Pulsatility Index 
[4], through to more complex approaches, for example 
Laplace Transform Analysis [5] and Principal Com- 
ponent Analysis (PCA) [6]. Various levels of success 
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have been reported for all these methods, but to date 
no single method has achieved both the sensitivity and 
specificity required to eliminate the need for invasive 
traumatic investigations such as angiography. 

Artificial neural networks 

Neural networks are devices, used mainly for recogni- 
tion and classification tasks, consisting of a number of 
computing elements (nodes or neurones) highly con- 
nected by weighted links. The analogy with a biolog- 
ical network of neurones lies not only in the physical 
connectivity, but also in the fact that the function of 
the network is largely determined by the pattern of 
weights on the links (analogous to synaptic strength) 
and that this pattern is determined entirely by training 
the network on examples of the classes of objects it is to 
recognise. Many different network architectures have 
been designed, varying in the topology of the connec- 
tions between nodes, the type of input data used (binary 
or continuous-valued) and the exact nature of the task 
being applied [7, 8]. 

Objectives 

The aim of this study was to investigate the efficacy 
of an artificial neural network (ANN) applied to the 
disease classification of Doppler waveforms recorded 
at the site of the common femoral artery of normal 
and atheromatous arteries. In particular we wished to 
evaluate the performance of the ANN in comparison 
with that of PCA in conjunction with a Bayes classi- 
fier [9] when applied to Doppler signals obtained in 
routine clinical investigations. A previous preliminary 
study (Taylor, unpublished) had shown that Bayesian 
classification following PCA was capable of some dis- 
crimination among disease categories using data of this 
form. To be sure of ground-truth, our study was carried 
out retrospectively on waveforms derived from arter- 
ies whose disease classification had been confirmed by 
angiography in the course of normal clinical investiga- 
tions. 

Methods 

Digitisation of the doppler waveforms 

Waveforms in the clinical archive are recorded as paper 
charts. Digitisation of this archive data involved trac- 
ing the outline of each waveform over one complete 

Figure 1. Selected examples of sampled waveforms indicating the 
range of appearance in the data set. Top row: Controls; Second 
row: Distal Disease: Third row: Proximal Disease; Bottom row: 
Multi-segmental disease. 

cardiac cycle using a digitisation tablet attached to a 
personal computer. This data was then normalised both 
in amplitude (the lowest amplitude assumed the value 
0, the highest 1) and time, and digitised into thirty three 
samples. The final data were stored in an ASCII data 
file on the same personal computer. 

In order to reduce the number of data input nodes to 
the ANN, and so reduce the processing time required, 
each waveform had the number of data points repre- 
senting its profile reduced to eleven. Examples of the 
resulting sampled waveforms are shown in Figure 1. 
This data reduction was deemed acceptable as Fourier 
transforms of the original waveforms revealed negligi- 
ble energy above the fifth harmonic. 

Disease classification and clinical groups 

Patients were grouped according to the site and sever- 
ity of their arterial disease. Four groups, one control 
and three disease groups, were defined from a total of 
408 Doppler waveforms taken from a cohort of 219 
subjects (161 males, mean age 61 years, age range 33 
to 84 years). Classification was based on both a clini- 
cal and angiographic assessment of the patients' arter- 
ies. The control group comprised waveforms recorded 
from subjects clinically judged to show no evidence of 
stenoses. The second group comprised data obtained 
from patients presenting with predominantly signifi- 
cant stenoses distal to the site of measurement (disease 
in the superficial and/or common femoral arteries). 
Group 3 included patients with prevalent disease prox- 
imal to the common femoral artery (disease in the aor- 
ta and/or iliac arteries). Patients with multi-segmental 



Table I. Number of Doppler waveforms in 
each disease classification group 

Disease Number of 

classification waveforrns 

Control 128 

Distal 108 

Proximal 88 

Multi-segmental 84 

Table 2. The optimum network parame- 
ters for each of the discrimination tasks 

Parameter 2 class 4 class 

network network 

N ~ hidden 10 10 

nodes 
Gain 0.09 0.03 

Momentum 0.9 0.9 

87 

1 ~  normal 
x 2 distal  

proximal 

multi-segmental 

input layer output layer 

Figure 2. The Network Structure. 

disease comprised the final group (significant stenoses 
both proximal and distal to the site of measurement). 
Examples of Doppler waveforms associated with each 
of these groups are presented in Figure 1 and the num- 
ber of waveforms included in each group are listed in 
Table I. 

Artificial neural network 

The Doppler waveform data set described above, in 
which continuous valued data has previously been 
assigned to known disease classes, lends itself nat- 
urally to the use of a multi-layer perceptron (MLP) 
network architecture. The MLP was simulated on a 
personal computer and coded in the C++ program- 
ming language. Figure 2 shows the configuration of the 
simulated network. The input layer consists of eleven 
nodes; the number of nodes in the single hidden lay- 
er is a variable parameter. The output layer comprises 
either two or four nodes depending on the classification 
experiment being performed (see below), each output 
node corresponding to a disease classification. 

The combining and transfer functions are the same 
for each node, being the weighted sum of the inputs 
and the sigmoid function respectively. The output yj 
from a node in layer j, which receives input from layer 
i, is represented by equation 1. 

1 
~ = (I) 

-k .  ~ wl.izi 
I + e  ~=o 

where wij = weight from node i to node j; x~ ~ output 
from node i and k is a factor which controls the'spread' 
of the sigmoid function (a value of k = 1 was used in 
this study). 

The classical 'back-propagation' training algo- 
rithm was employed throughout the analysis [10, 11]. 
This algorithm is the most commonly used training 
mechanism for the MLP network. Weights are initially 
assigned random values, and are then altered in suc- 
ceeding passes of the training data in a way which 
minimises the difference between the expected and 
observed outputs for each pattern in the training set 
[7]. Following training, the weights are configured so 
as to define decision regions in the space of the input 
vector. Thus an unseen waveform on presentation to 
the network, is classified according to the node in the 
output layer which yields the highest output value. 

Network optimisation 

The network is defined by a number of adjustable para- 
meters: the number of nodes in each layer, the gain (or 
learning rate) r/and the momentum a.  The learning rate 
governs the amount by which the weights change on 
each pass of the training data and the momentum sta- 
bilises the convergence by encouraging consecutively 
similar weight changes and damping oscillations. The 
number of nodes in the input layer is determined by the 
resolution of the Doppler waveform and the number of 
output nodes is determined by the number of disease 
classes defined. These parameters are therefore fixed 
for a particular study. The number of intermediate hid- 
den nodes may be varied to alter network performance. 
An optimum set of parameters was found empirically 
for each network by initially applying a coarse search 
followed by a more detailed inspection in the vicini- 
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ty of the combinations which gave discrimination on 
the training data set. The parameter values used in this 
study are shown in Table 2. 

Network training and assessment 

The ability of the ANN to discriminate between various 
disease groups was assessed as both a two-class and 
four-class problem (2 and 4 output nodes respective- 
ly). Initially, the data were collapsed into two classes, 
one containing normal waveforms the other waveforms 
from arteries with significant disease; the latter includ- 
ed equal portions of data from patients with distal, 
proximal and multi-segmental diseased limbs. Each 
class was represented by 125 waveforms. These were 
divided into 5 blocks, four being used for training and 
one as an unseen cross-validation set for testing dis- 
crimination power. The experiment was repeated with 
each of the blocks in turn acting as the cross-validation 
set for a network trained with the remainder of the 
data, The overall result is of a network trained using 
200 waveforms and assessed using a cross-validation 
data set of 250 waveforms (125 in each class). 

The four-class problem used the data preserved in 
four disease groups (Table 1). The same training strat- 
egy was used, the data being divided into six blocks 
in this case. The net effect was that of training on a 
total of 280 waveforms (70 in each class) and testing 
on a cross-validation set of 336 waveforms (84 in each 
class). 

Principal component analysis 

The use of principal component analysis (PCA) as a 
method of extracting salient features from Doppler 
ultrasound blood velocity waveforms has been well 
established [6, 12-15]. Application of a Bayesian clas- 
sifier to the features generated by the PCA gives prob- 
abilities of each observation belonging to each of the 
disease classes, allowing decision surfaces to be con- 
structed. This method has been discussed in detail by 
Evans [9]. 

PCA was applied to the same data sets as those 
used in the ANN two-class and four-class class analysis 
problems. Initially, the first two principal components 
were calculated from data in the training sets. (The first 
two principal components explained 82% and 86% of 
the variance in the data for the two-class and four- 
class problems respectively.) These were then used to 
calculate the first two principal component coefficients 
(PCC) for each of the Doppler waveforms in the cross- 

Table 3. Decision matrices for the two-class problem: 
a) Multi-Layer Perception discriminator; b) PCA using 
a Bayesian discriminator 

Angiographic classification 
Normal Disease 

Derived Normal 116 22 
Class Disease 9 103 

Angiographic classification 
Normal Disease 

Derived Normal 59 38 
Class Disease 66 87 

validation data sets. The Bayes Classifier technique 
was finally applied to these first two PCC in order 
to categorise each Doppler waveform into the clinical 
group with the greatest derived probability. 

Expert visual assessment of the doppler waveforms 

In order to provide some measure of the information 
available in the Doppler waveforms, the vascular flow 
laboratory technicians were asked, as experts, to clas- 
sify a set of waveforms according to one of the four 
disease groups. The classification had to be based only 
on visual content of the waveform's profile, as the 
patient's history and angiograms were not provided. 
Only typical reference waveforms were provided in 
order to aid them in their analysis. One hundred and 
ten waveforms, taken at random from all the four dis- 
ease groups, were provided for this study. 

Results 

Class discrimination 

Figure 3 shows the learning curves for the networks 
trained on the Doppler waveforms using the parameters 
listed in Table 2 for both two-class (solid line) and four- 
class (broken line) discrimination. The curves show the 
percentage of disease group misclassifications for the 
cross-validation data set as a function of the number of 
presentations of the training data set. Network stabili- 
ty occurs within about 100 passes of the training data. 
The lowest misclassification rates appear after 75 pass- 
es for the two-class network and after 250 passes for 
the four-class network. Tables 3 and 4 compare the net- 
work's performance at its best configuration, against 
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Figure 3. Learning Curves for the two networks using optimal net- 
work parameters, showing the proportion of the cross-validation 
data set misclassified as training proceeds, Solid Line = Two-class 
network; Dotted Line = Four=class network. 

Bayesian classification on Principal Components in the 
two-class and four-class tasks. Total misclassification 
rates together with sensitivity and specificity values are 
shown in Tables 5 and 6. In calculating the sensitivities 
and specificities for Table 6, the three disease groups 
were considered as one group, as in the case of the two- 
class problem. However, the overall misclassification 
rate was calculated for all four groups. 

Expert visual assessment of the doppler waveforms 

Results of this study revealed that using visual inspec- 
tion alone, it was only possible to reliably distin- 
guish between normal and abnormal waveforms, and 
so results were only compiled for the two-class prob- 
lem. An overall misclassification rate of 13.6% was 
achieved (82.9% sensitivity and 96.4% specificity). 

Discus~on 

Previous studies investigating methods of quantita- 
tive assessment of Doppler waveforms have compared 
PCA, Pulsatility Index (PI) and Laplace Transform 
Analysis (LTA). Overal| these studies have favoured 
PCA to be more sensitive and specific in terms of 
disease classification [6, 13, 16]. Evans et at. [13], 
for example, found that PCA was able to distinguish 
stenoses of less than 78% area reduction in the dog 
model, whilst PI and LTA were only able to distinguish 
stenoses of greater than 85% area reduction. If these 
data was categorised into groups of stenosis severi- 
ty, (0-51%, 65 or 77%, 85 or 88%, 92 or 95% area 
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reduction), it was found that PCA had an accuracy of 
75%, the remaining 25% of the data being classified 
into a category one more severe than it actually was 
[6]. Evans et at. [16] found all three techniques to be 
successful at separating badly diseased arteries from 
normal arteries in the human model. However, only 
PCA worked well in the presence of less severe dis- 
ease. This appeared to be due to its ability distinguish 
between limbs with and without distal disease. Sher- 
rift and Barber [15] used PCA on Doppler waveforms 
recorded at the site of the carotid artery in patients with 
extracranial carotid artery disease. Their work demon- 
strated a sensitivity of 90%, a specificity of 77% and 
an overall accuracy of 85%. 

Our principal aim in this study was to investigate 
the performance of a MLP classifier in this problem. 
Previous studies, while not directly comparable to this 
particular investigation, had suggested that PCA would 
probably be more effective than other approaches. In 
our hands, the neural network classifier significantly 
outperforms the Bayesian classification based on Prin- 
cipal Components. 

As might be expected, the discriminating power 
of both classifiers in the four-class problem is inferi- 
or to that in the two-class problem. In the case of the 
MLP, the overall misclassification rate increases dra- 
matically and the specificity is reduced in attempting 
to discriminate four groups. The principal source of 
error contributing to the misclassification rate in the 
four-class problem is the increase in misassignments 
among the disease groups. There is also a tendency 
(rather less pronounced) to assign controls to disease 
groups, presumably because there are a greater number 
of output classes to which ambiguous normal wave- 
forms may be assigned. This increased false positive 
count is expressed as a reduction in specificity. Dis- 
crimination among the disease groups on the basis of 
the waveforms alone is clearly difficult, as can be sup- 
ported by the attempt at visual classification by expert 
inspection. However, whilst this discrimination is poor, 
it is by no means random. Calculation of Cohen's Kap- 
pa statistic [17] gives a value of 0.32. (A value of 0.0 
equates to random assignment and a value of 1.0 infers 
perfect discrimination.) The network has learned some 
basis for distinguishing the various disease groups. 

The MLP is clearly the classifier of choice in this 
application. Its performance in the two-class problem 
is comparable to that found in the studies carried out 
by Allen and Murray [18, 19], in which ANN inputs 
were trained on photoelectric plethysmographic wave- 
forms. The size of both their training and test data sets 
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Table 4. Decision matrices for the four-class problem, a) Multi-Layer 
Perceptron discriminator; b) PCA using a Bayesian discriminator 

Angiographic classification 
Normal Distal Proximal Multi-seg 

Derived Normal 70 18 8 6 
class Distal 5 38 14 11 

Proximal 2 7 33 18 
Multi-seg 7 21 29 49 

Angiographic classification 
Normal Distal Proximal Multi-seg 

Derived Normal 34 22 35 15 
class Distal 33 39 10 20 

Proximal 14 12 5 10 
Multi-seg 3 11 34 39 

Table 5. Misclassification rates, sentivity and specificity for the two-class problem 

Disease classifier Misclassifications (%) Sensitivity (%) Specificity (%) 

MLP 12.4 82.4 92.8 
Bayesian, PCA 41.6 69.6 47.2 

Table 6. Misclassification rates, sensitivity and specificity for the four-class problem 

Disease classifier misclassifications (%) sensitivity (%) specificity (%) 

MLP 43.4 87.3 83.3 
Bayesian, PCA 65.2 71.4 40.5 

are similar to those used here; however, their disease 
groups were classed according to disease severity (nor- 
mal, significant and major peripheral vascular disease), 
rather than the site of  disease. Generally, our results 
are comparable to theirs although our values o f  over- 
all misclassification rate and specificity are better than 
the 20% and 63% achieved in their prospective study. 
Allen and Murray do not report the use of  a network 
trained specifically on two classes; our experience sug- 
gests that this is useful if only two-class discrimination 
is required. 

Whilst the ANN proved to be of  little use in local- 
ising the site of  disease in the peripheral circulation, 
it shows a greater potential in discriminating between 
those patients whose arteries are normal and those who 
need further investigation. Every patient who attends 
the vascular clinic has to undergo a Doppler ultra- 
sound test. The extra few minutes taken to process the 
results through the ANN may be rewarded by savings 
made, in trauma, time and cost, on further unnecessary 

invasive diagnostic tests. Obviously, in this mode the 
test requirement is 100% sensitivity with some accept- 
able specificity less than 100%, such that few normals 
are further referred. The MLP used in the two-class 
problem currently falls short o f  the sensitivity require- 
ment, but achieves discrimination comparable to expert 
humans. This is an encouraging result, particularly as 
we note that the size of  the training data set is rather 
limited. The appropriate size of  training set is difficult 
to estimate directly. James [20] suggests that a ' large'  
training set is one in which the number of  examples 
is more than ten times the number of  features. For 
our eleven-feature classifier, this implies that 110 data 
items would be sufficient, and that the classifier in this 
study is sufficiently trained. This conclusion however is 
contrary to common experience with neural networks. 
In a study using statistical classification methods on a 
real classification problem for which very large quan- 
tities o f  training data were available, Piper [21] has 
shown that the optimum size of  training set is great- 
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ly in excess of  J a m e s '  estimate, and is related to the 
complexi ty of  the classifier. He proposes that a suitable 
estimate may be ten t imes the number  of  parameters  to 
be determined.  Er r ing ton  [22] has applied a neura l  net- 

work classifier to the same data as Piper and  shown that 

the size of  t ra ining set required for best general isat ion 
of  an MLP is about  the same as that required for unbi-  

ased statistical classification. Furthermore,  taking the 

n u m b e r  of  parameters  in the network to be the n u m b e r  
of  weights,  Piper ' s  rule of  thumb gives an est imate of  
the n u m b e r  of  t ra in ing  data needed for Er r ing ton ' s  net- 
work which conformed  closely with the empir ica l  find- 

ings. Extrapolat ing (circumspectly)  f rom the results of  

these studies to the current  problem, we reach the con- 
clusion that to achieve op t imum general isat ion our  net- 

work of  11 input  nodes  10 h idden nodes and  two output  
nodes  would require a t raining set of  rather more  than 
ten t imes that used in  this study. While  ob ta in ing  this 
quanti ty of  t ra ining data would  be a s ignif icant  exer- 

cise in itself, the exper ience of  Err ington[22] and Piper  
[21] suggests that substantial  gains in sensit ivi ty and 

specificity could be  achieved. 
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Structured Point Distribution Models:

Modelling Intermittently Present

Features
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Abstract

Point distribution models have been successful in describing the shape
constraints on two dimensional objects for shape description and image
search. It is often the case that a class of objects to be modelled
contains certain features which may be wholly present or absent in
different instances. Moustaches on faces are a common example. Here
we describe a method of coding the presence or absence of a feature
within the PDM framework. We show that the method captures the
intermittent nature of the feature as one of the modes of variation, and
demonstrate that, where features are intermittently present, greater
model specificity is achieved.

1 Intermittently Present Features

There are classes of images that exhibit features which are only found in some
instances and not others. Examples include face images which may or may not
show moustaches and/or glasses and histological sections, in which structures may
appear in a proportion of contiguous slices in a stack. The particular example
that led to the approach described here is the study of electron microscope images
of nerve capillaries. There are several concentric layers of structures in capillary
cross-sections (figure 1). The central region is the lumen: the space through which
blood cells pass; this is surrounded by a layer of endothelial cells, and then the
basement membrane. In disease condition, such as diabetic neuropathy, changes
occur in the normal structure of the capillaries, including constriction of the lumen.
In some cases the lumen can become so constricted as to be unidentifiable (figure
1(b)). Finding the boundaries between these structures is important in quantifying
disease status and we have approached this task using Active Shape Models and
Genetic Search for the Basement Membrane / Endothelial Cell (BMEC) boundary
[6]. The lumen boundary is potentially easier to locate due to the clearer contrast,
but in modelling it we need to take account of the fact that it is often missing.
To use Active Shape Model search we need to build Point Distribution Models

(PDMs) of all the structures in the capillaries, including the lumen, when it is
present. We have considered three possibilities for dealing with the intermittent
presence of the lumen: Separate models for capillaries with and without a visible
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(a) (b)

Figure 1: Examples from the set of diabetic nerve capillary data

lumen; a Segmented model in which each separate boundary has a flag for pres-
ence or absence; or a Single model in which each point is flagged for inclusion or
exclusion individually. We prefer the third option as it allows us more flexibility
in admitting arbitrary patterns of inclusion, and is more likely to capture the re-
lationships between different components, for example, the gradual inclusion of a
new feature across a stack of histological slices. The difficulty presented by this
approach is in training a PDM with arbitrarily missing data points.

2 Data Imputation

Our approach to building models with arbitrarily missing data points is to include
in the PDM the coordinates of those boundary points that are present, and to
estimate the positions of the points that are not represented in some examples.
This problem of data imputation - estimating missing data values - is a fairly com-
mon one in statistical applications, and a number of methods have been proposed
(Rubin [5]). In adopting a method, our goal is to end up with a PDM (means and
eigenvectors of the point positions) as close as possible to those we would have ob-
tained had all the data been available. In this section we describe our own, novel,
method of data imputation and evaluate its performance in comparison with three
other well-founded methods with a view to their suitability for PDM building.

2.1 Imputation Methods

Replacement with mean: The simplest method is to replace each missing value
with the mean of the values that are present. This clearly underestimates the
variance in the data – a serious disadvantage for building PDMs.
Principal Component Analysis: Dear [4] proposed an imputation technique in
which initial imputation with the means is then re-estimated using the first prin-
cipal component of the imputed data. In this way, gross trends in the data are
preserved.
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Maximum Likelihood : Beale and Little [1] present an iterative method to produce
a maximum likelihood estimate of the missing values using a form of the Expec-
tation Maximisation (EM) algorithm. Before this algorithm can begin, an initial
estimate of the missing data must be generated. A sensible initial value is the
mean over all available data. The algorithm can be extremely sensitive to the
quality of this initial estimate as is shown in the evaluation in section 2.2.
Iterated PCA: We have developed a further method of imputation, designed to re-
tain data characteristics required by a subsequent PCA carried out on the imputed
data. Specifically, we wish to impute values in such a way as to retain relation-
ships found in the original data and do this without reducing the total variance.
The algorithm is based on an iterative version of Dear’s [4] PCA imputation with
several modifications and can be described with the following equations:

(Pxm,µx,σ2

xm, bxm) = pca(x,m) (1)

x̂ = µx + bxmPxm
T , xi.Mi

= x̂i.Mi
(2)

where x is the original data, xij is the jth observed value in example i, Mi

is the set of variables missing in example i, xi.Mi
is the set of estimated missing

values from xi and pca is a function that computes the firstm principle components
(Pxm), the variance each mode represents (σ

2

xm) and the mean (µx) of x, together
with the associated reconstruction parameters (bxm) for each example.
We begin by initialising x, for which we use mean value imputation, and cycle

through equations 1-2 until convergence. Choosing the value of m is crucial to
the well-mannered convergence of the algorithm. We use the following scheme:
m is set to 1 and the algorithm is run to convergence. The imputed data is now
consistent with data patterns represented by the first mode of variation, but no
others. To include relationships represented by other modes we increase m by 1
and repeat the convergence, starting at the result of the previous iteration. At
each stage of the iteration we are including effects of higher modes in the imputed
data, and matching it more closely to the original data patterns. However, the
imputed data itself also has some influence on the modes produced by PCA. As
we continue to include higher modes we will eventually reach one which is mainly
influenced by the effect of the imputed data, after which the algorithm will not
converge. Rather, the imputed data would be updated to reinforce the effects of
earlier imputed data. We therefore need a stopping criterion. In our experiments
we continue iterating until :

∑
σ2

xm∑
σ2

x

> p (3)

where σ2

x is the variance of all modes of x and p is the proportion of com-
plete data examples. This stopping criterion is somewhat heuristic, and has not
been shown to be optimal. However, it leads to satisfactory performance in the
evaluation experiments.
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2.2 Evaluation of Imputation Methods

Each of the imputation methods described in section 2.1 was evaluated using
synthesised data and some real shape data from annotated capillary boundaries.

Synthetic data: fifty vectors, each with ten elements, were constructed using
the following algorithm:

for i = 1 to 50

xi = (i, 2i, 3i, ..., 10i); xi = xi + ir; x = concat xi with x

The intention of this data is to evaluate the ability of an imputation method to
retain the underlying relationships in the data. There is one consistent relationship
for each vector, namely the increment in successive values, proportional to the first
element. The relationship is not perfect, being perturbed by the random factor r

(between -0.5 and 0.5), also scaled by the first element in each vector, i. These
vectors do not represent shapes, but give an insight into the effectiveness of the
methods in reconstructing patterns in the data corrupted by noise and missing
elements.

Nerve capillary landmark data: Here we use a subset of 30 examples of the
marked-up BMEC boundaries from capillary images. We take the first 30 points
in each case. This data gives an insight into the performance of the imputation
methods on realistic data.

Evaluation tests: In each case we remove a proportion (varying between 1%
and 50%) of the data points and replace them with imputed values according to
each of the four schemes. To measure the effectiveness of the imputation we make
two measures on the resulting data. Firstly we measure the Euclidean distance
(in the vector space of the data) between each example and its imputed version,
giving a measure of the raw error in the imputation process. Secondly, as we are
interested in preserving the modes of variation of the original data we measure
the Euclidean distance between the corresponding eigenvectors of the original and
imputed data sets. In the case of the synthetic data, there is only one significant
mode of variation, and only one eigenvector. In the case of the capillary data,
we estimate this distance for the first three eigenvectors. For the synthetic data,
there is a third measure we can make. In this case we know the underlying ”ideal”
relationship between the elements of each vector before corruption by randomi-
sation. It is interesting to see how well the imputation process reconstructs this
underlying relationship in the presence of the noise. We therefore measure the
distance between the ideal vector and the imputed vector in each case.
Results of the evaluation are shown in figure 2.2. The iterated PCA method

gives the closest imputation to the original data in both cases. For the synthetic
example, the maximum likelihood (EM) method gives almost identical results (fig
2(a)). In the case of the capillary data (fig 2(b)), however, the PCA method
comes closest to the performance of iterated PCA, though noticeably worse at
higher proportions of imputed data. In calculating the distance between the raw
and imputed eigenvectors, both iterated PCA and EM again perform equivalently,
and much better than the other methods, and PCA and iterated PCA give similar
performance on the capillary data. The maximum likelihood estimates for impu-
tation are influenced strongly by the initial estimates of the missing data (in this
case the mean values). This is a poor estimate in the case of the capillary data and

36



results in the poor performance in this case. The structure in the variation of Eu-
clidean distance between imputed and original modes of variation, with increasing
proportion of imputation, seen in figures 2(c) and 2(d), is due to the significant
effect that small changes can have on an eigen-analysis of the data. Figure 2(e)
shows the difference between the ”ideal” synthetic data and the imputed values
after randomisation. The distance between the ”raw” randomised data and the
underlying data is, of course, independent of the quantity of imputation being
applied and therefore constant. Both the EM and iterated PCA methods retain
a good estimate of this distance in the presence of up to 50% imputation, and
therefore seem to be responding to underlying patterns in the data. The other
methods, as might be expected from figures 2(c) and 2(e), do not. Figure 2(f)
shows the difference in total variance between the original and imputed capillary
data. The iterated PCA method retains the total variance of the data even in the
presence of large amounts of missing data. The other methods all perform poorly
on this measure.
The iterated PCA method appears to have the desired properties of an impu-

tation scheme. Other methods also have these properties for one or other of the
test cases, but not both. Mean imputation was always, of course, unlikely to meet
our criteria, but has been included to give a yardstick for measuring inadequate
performance.

3 Modelling Shape and Structure

Here we describe how we combine data imputation with a model of structural
variation. As our models constitute a variant of PDMs we call them Structured

Point Distribution Models (SPDMs).

3.1 Building the models

The modifications that need to be made to a standard PDM to deal with inter-
mittent structures are the following. We build a model that assumes all points
are represented (our capillary model would assume a lumen, a face model might
assume the presence of a moustache). When a PDM landmark point is not rep-
resented in a particular image it is replaced by a placeholder (such as NaN - a
computational representation of Not a Number). Once the training set has been
assembled, the shapes are aligned using the data points that are available, and
the missing data values imputed by some imputation scheme (we prefer iterated
PCA, of course). So an initial training vector for a shape i represented by points
[(x1, y1), (x2, y2), (x3, y3), (x4, y4)] where (x3, y3) is unobserved, is represented as

the data vector: xi = (x1, x2, NaN, x4, y1, y2, NaN, y4)
T
. Following alignment

and imputation of missing values we get a new shape vector (primed elements

are aligned, hat elements are imputed): x̂′

i = (x
′

1, x
′

2, x̂3, x
′

4, y
′

1, y
′

2, ŷ3, y
′

4)
T
. Shape

parameters, bs are then calculated by PCA in the usual way [3].
While this gives us a model of shape that represents as closely as possible the

shape variation we observe in the entire structure, we have lost the structural in-
formation about which boundary points may or may not be missing. We therefore
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Figure 2: Imputation performance. (a),(c),(e) – synthetic data, (b),(d),(f) – cap-
illary images. Error is shown as a function of increasing proportion of imputed
data. (a),(b) – raw error. (c),(d) – error in principal components. (e) error in
capturing the ”ideal” data pattern. (f) difference in total variance (see text).

(a)

(b)

Figure 3: Synthetic shape. (a) examples from the set of synthetic training data.
(b) the first mode of variation.
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augment the shape vector with a binary structure vector. For our shape i above
with point 3 missing the structure vector would be: xs

i = (1, 1, 0, 1)
T
.

This gives us a representation of the structure containing significant redun-
dancy, but which allows for arbitrary patterns of inclusion or exclusion of land-
mark points in the model. This redundancy can be reduced using PCA, just as in
the case of classical PDMs. The modes of the PCA represent the relationships be-
tween the structures in the landmark data. In the case of the capillary boundaries
the analysis results in a single mode, containing almost all the variance, repre-
senting the presence or absence of the lumen at its extremes. We have therefore
reduced our structure vector to a parameter vector of length 1. The SPDM like
the PDM is a generative model; that is, given a parameter vector we can recreate
the structure vector for a particular instance. The disadvantage of this approach is
that we are representing a binary process (presence or absence) by a linear model.
To recover binary parameters in the reconstructed structure vector we threshold
the individual elements. We use a threshold that represents the probability that
a particular feature point will be present in the image.
The PCA of the structural data matrix xs results in a matrix of continuous

structure parameters bd, which can then be used, together with the shape param-
eters bs to build the combined model of shape and structure. This is done in a
way similar to the construction of Active Appearance Models [2].
For each training example we generate a concatenated vector:

b =

(
b̂s

bd

)
(4)

where b̂s is a matrix of shape parameters generated after first shifting and scaling
the input (imputed) data to lie between 0 and 1. We perform this scaling to
avoid problems associated with shape and structure being measured on different
scales. In choosing to perform this transformation on the data, we are effectively
treating shape and structure as equally important. A combined model of shape
and structure is obtained by a further application of PCA.

c ≈ Qb (5)

whereQ is a matrix of t eigenvectors expressing the correlations between the shape
and structure data in vector b and c is a vector of combined model parameters
which controls both the shape and structure of the data. We can obtain b from c:

b = QT c (6)

From these equations we can produce the shape and structure vector of any
shape represented by the model.

3.2 Evaluation

We evaluate our approach to shape and structure modelling using a synthetic shape
set, nerve capillary images and face images. Firstly we demonstrate that presence
or absence of structure is represented in the model, and that correlations with
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shape data are captured. Secondly we demonstrate that modelling the presence
or absence of structures increases the specificity of the model.

Synthetic data: A set of synthetic shapes was generated using the following
algorithm.

generate a random number r, between 10 and 30

form a kite from the points [(r, 50), (50, 90), (100, 50), (50, 10)]
if (r < 25) form a square, centred (50, 50), with side length 100− 2r
otherwise put 4 NaN values in the data vector

This generates a set of structures consisting of squares within kites (see figure 2).
The first coordinate of the kite and the size of the square are correlated. When
the size of the inner square would be less than 0 the feature is not present in the
image. The proportion of complete to incomplete structures is 5:1. The SPDM
built from 50 training examples, retaining 99.5% of variation has only one mode
of variation shown in figure 2(a). The shape model has captured the correlation
between the size of the square and the shape of the kite, and the thresholding of
the structure vector has removed it at the relevant places.

Nerve Capillaries: An SPDM was calculated from 38 nerve capillary images, 15
of which contained lumens so constricted that they are practically undetectable, so
that only the BMEC boundary was annotated. Examples of the shapes are shown
in figure 4(a). The 99.5% of data retained produced 6 modes of variation, the first
three of which are shown in figure 4(b). Note that all the structural information is
contained in the first mode of the model. The second expresses lumen constriction
and the third appears to be capturing the translation of the lumen within the
capillary.

Faces: Figure 3.2(a) shows some examples from a set of 29 face images marked
up with 33 landmarks on the face outline, eyes nostrils and moustache (present in
nine out of the 29 faces). Figure 3.2(b) shows the first two modes of variation. Once
again the first mode represents the structural variation and the others represent
shape variation.

Model Specificity : The inclusion of the lumen structure into the model of nerve
capillaries is intended to contribute additional constraints to the model during
search, i.e. to increase its specificity. To measure the specificity of the models, we
used the 38 training examples of capillaries and 29 face images to build SPDMs and
PDMs retaining 99.5% of observed variability in each case. From each training set
we created increasingly invalid shapes by randomly perturbing the point positions
in the training examples using the following algorithm.

for i=1 to 25

for each training example x

xir = x+
ix̄r
100

; b = Qxr; x̂ir = Q
T b

This creates, for each training example, twenty five increasingly invalid shapes
obtained by adding a random shift to each point. If we try to fit the model to the
invalid data, a highly specific (constrained) model will find the nearest valid shape,
whereas a less- specific model will fit more closely to the invalid example. For our
purposes, we measure closeness as the mean point to point distance between the
model fit landmarks and the corresponding annotation landmark.
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Figure 5 shows the fits of SPDM and PDM models of capillaries and faces to
the unperturbed(valid) and perturbed(invalid) data, with increasing random per-
turbation. In each case the model shows some specificity by fitting more closely to
the nearest valid example than the perturbed version. However, for both capillary
and face shapes, the effect is more marked for the SPDM, indicating increased
specificity of the structural model.

4 Conclusions and Discussion

We have presented an extension to Point Distribution Modelling to deal with
circumstances in which features of the objects to be modelled may be wholly
present or absent in a proportion of examples. Our method combines the use of
a structure vector, which is subject to the same statistical analysis as the shape
vector, and imputation of values for model points which are coded as absent in
the structure vector. We have developed a straightforward method for imputation
which causes minimal distortion to the distributions of shapes in the original data.
Using experiments on synthesised data and data from real images we have shown
that the Structured Point Distribution Models successfully capture the variation in
shape and structure present in an image set and the correlations among these, and
that the use of the structured models improves the specificity of the model over the
classical PDM. Although not demonstrated in this short paper, the method can
be applied to Appearance Models [2] also, and model the grey level appearance of
intermittently present features.
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Figure 4: Faces. (a) examples from the set of face shape training data. (b) first
two modes of variation. Note that the first mode encapsulates the structure of the
missing data.
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Figure 5: Capillaries. (a) examples from the set of nerve capillary training data.
(b) the first three of six modes. Note that the first mode encapsulates the structure
of the missing data.
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Figure 6: The curves show the mean point to point landmark distance for both
PDM and SPDM model fits to the original shape (annotations) and perturbed
examples (random). (a) capillaries, (b) faces.
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Abstract. Active shape models (ASMs) have been shown to be a
powerful tool to aid the interpretation of images. ASM model parameter
estimation is based on the assumption that residuals between model
fit and data have a Gaussian distribution. However, in many real
applications, specifically those found in the area of medical image
analysis, this assumption may be inaccurate. Robust parameter es-
timation methods have been used elsewhere in machine vision and
provide a promising method of improving ASM search performance.
This paper formulates M-estimator and random sampling approaches
to robust parameter estimation in the context of ASM search. These
methods have been applied to several sets of medical images where ASM
search robustness problems have previously been encountered. Robust
parameter estimation is shown to increase tolerance to outliers, which
can lead to improved search robustness and accuracy.

Keywords.Medical Image Understanding, Shape, Active Shape Models,
Robust Parameter Estimation, M-estimators, RANSAC, Weighted Least
Squares.

1 Introduction

Statistical shape models have been shown to be a powerful tool to aid the inter-
pretation of images. Models represent the shape and variation of object classes
and can be used to impose a-priori constraints on image search. A frequently
used formulation, on which we shall concentrate in this paper, is the Active
Shape Model (ASM) [3], which also provides a method of fitting the model to
image data. ASMs have been applied to many image analysis tasks, most success-
fully when the object class of interest is fairly consistent in shape and gray–level
appearance [3][13][16]. The technique can suffer from a lack of robustness when
image evidence is noisy or highly variable [2][10]. Many medical images display
these types of characteristics.

To fit a model to data, parameters must be estimated in an optimal manner.
Standard ASM parameter estimation minimises the sum of squares of residu-
als between the model and the data. It has been widely recognised that least
squares minimisation only yields optimal results when the assumption of Gaus-
sian distributed noise is met. Under real conditions a Gaussian model of residual
distribution is seldom accurate. Least squares estimation is especially sensitive

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2353, pp. 517–530, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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to the presence of gross errors, or outliers [5]. Medical images containing widely
varying appearance and detailed structure potentially give rise to non-Gaussian
residuals, including outliers, breaking down the assumptions upon which ASM
parameter estimation is built. Robust methods of parameter estimation provide
a promising method of increasing the accuracy and robustness of ASM search.

Many computer vision problems are related to estimating parameters from
noisy data. Robust minimisation techniques have been applied to many areas of
machine vision. Torr and Murray [17] compare methods for the calculation of
the Fundamental Matrix, the calibration-free representation of camera motion.
Robust techniques have also been used in conic fitting [19], cartography [4],
tracking [1] and registration [20].

In this paper we investigate the case of robust parameter estimation tech-
niques for shape-model fitting. We use ASM search as a paradigm for shape
fitting, although the methods may be applied using any other parameterisation
of shape. We formulate several robust parameter estimation schemes and present
a quantitative comparison of the methods against standard least squares param-
eter estimation using several sets of medical images. The image sets have been
chosen because ASM search has previously been found to be insufficiently robust
in locating object boundaries.

1.1 Statistical Shape Models

Here we describe briefly the shape models used to represent deformable object
classes. ASMs are built from a training set of annotated images, in which corre-
sponding points have been marked. The points from each image are represented
as a vector x after alignment to a common co-ordinate frame [3]. Eigen-analysis
is applied to the aligned shape vectors, producing a set of modes of variation P .
The model has parameters b controlling the shape represented as:

x = x̄ + Pb (1)

where x̄ is the mean aligned shape. The shape x can be placed in the image
frame by applying an appropriate pose transform.

Neglecting alignment, the process of estimating model parameters b for a
given shape x proceeds by minimising the residuals:

r = (x − x0) (2)

where x0 is the current reconstruction of the model. Least squares estimation
therefore seeks to minimise E1(b) = rT r, specifically we wish to find δb so as to
minimise E1(b + δb). This can be shown to have a solution of the form:

δb =
(
P T P

)−1
P T δx (3)

which, as P is orthonormal, simplifies to:

δb = P T δx. (4)
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This is the standard ASM parameter update equation for iterative search [3]
and as such is expected to operate in the presence of noise in the shape update
vector δx. The estimator is optimal with respect to a Gaussian noise model. In
the presence of non–Gaussian noise the estimator is suboptimal, specifically a
single outlying value can significantly distort model parameters by an arbitrary
amount.

In ASM search, the update vector δx is obtained by searching the local
image area around each landmark point. Models of local image appearance for
each landmark point are built from the training set. These are used at each
iteration of search to determine the best local landmark position.

2 Robust Parameter Estimation

There are many robust estimation techniques in the literature [4][5][7][12][15][18].
For the purposes of ASM parameter estimation, they can be divided into two
categories: M-estimators and random sampling techniques, which we describe in
the following sections.

2.1 M-Estimators

The aim of M-estimators is to alter the influence of outlying values to make
the distribution conform to Gaussian assumptions. The estimators minimise the
sum of a symmetric positive definite function:

min
∑

i

ρ(ri). (5)

where ri is the ith element of the residual vector r = (r1, r2, . . . , rn).
The M-estimator of b based on the function ρ(ri) is the solution to the

following m equations:

∑
i

ψ(ri)
∂ri

∂bj
= 0, forj = 1, . . . , m, (6)

where the derivative ψ(x) = dρ(x)/dx is called the influence function, repre-
senting the the influence of a datum on the value of the parameter estimate. A
weighting function is defined as:

ω(x) =
ψ(x)

x
(7)

and (6) becomes:

∑
i

ω(ri)ri
∂ri

∂bj
= 0, forj = 1, . . . , m. (8)

which is a weighted least squares problem. In the ASM formulation ∂r/∂b is
given by P , resulting in a solution with the form:
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δb = KT δx (9)

where K = (P T W T WP )−1P T W T W and W is a diagonal matrix formed
from the weights ωi.

Weighting Strategies. There are many possible forms for the function ρ(x),
a summary is given in [19]. Each is designed to weight the influence of residuals
under non–Gaussian conditions. One of the most consistent and widely used
forms was devised by Huber [7], which results in a weighting function of:

ωi =



1 ri < σ
σ/|ri| σ ≤ ri < 3σ
0 ri ≥ 3σ

(10)

where σ is an estimate of the standard deviation of the residuals. The standard
deviation σ is not known, but can be robustly estimated from the median of the
absolute values of the residuals [12]:

σ = 1.4826(1 + 5/(n − p))median|ri| (11)

where n is the number of data points and p is the length of the parameter vector.
Equations 10 and 11 allow the calculation of a set of weights, which can be

applied in Eqn. 9 to calculate model parameter updates. This process must be
iterated to convergence with re-weighting at each stage to form a final parameter
estimate. We will refer to this weighted least squares method as WLS Huber.

In ASM search, profile models are used to generate the update shape vector
δx, by searching local image regions. The positions at which image data has the
smallest Mahalanobis distance d from the profile models are chosen as the new
landmarks for model parameter estimation. Bearing this in mind, an alternative
weighting scheme can be devised for ASM model fitting that draws on the like-
lihoods of profile matches. Mahalanobis distance d is distributed as a χ2 with
(p − 1) degrees of freedom, where p is the number of parameters of the profile
model, and can therefore be used to generate a probability for each element of x
given the model in the standard way. These probabilities p, one for each element
of x, can be used directly in a weighted least squares estimator. This estimator
reflects the quality of the image evidence from which the data resulted, rather
than the spatial distribution of points from which the model parameters are to
be estimated. We refer to this as WLS Image.

2.2 Random Sampling

Random sample based robust parameter estimation is, in some sense, the oppo-
site approach to the smoothing effect of least squares and iterated weighted least
squares. Rather than maximising the amount of data used to obtain an initial
solution and then identifying outliers, as small a subset of the data as is feasible
is used to estimate model parameters. This process is repeated enough times to
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ensure that within a some level of probability at least one of the subsets will
contain only good data.

One of the first robust estimation algorithms was random sample consensus
(RANSAC), introduced by Fischler and Bolles [4]. RANSAC proceeds by se-
lecting random subsets of data and evaluating them in terms of the amount of
data that is consistent with the resulting model parameterisation. After a certain
number of trails, the parameters with the largest consensus set is accepted as
the parameter estimate. A threshold can be set to stop the algorithm when an
acceptable consensus has been achieved. In order to determine the consensus set,
a distance measure between model and data points must be defined, together
with a threshold on this value.

In the case of ASMs, parameter estimation from random subsets of data can
easily be achieved by a weighted least squares scheme with binary weights. The
size of the consensus set can be determined by thresholding residual values after
model reconstruction in the image co-ordinate system.

A later example of a random sampling algorithm was least median of squares
(LMedS), proposed by Rousseeuw [12]. LMedS estimates model parameters by
minimising the non-linear function:

medianrT r. (12)

The algorithm is in fact extremely similar to RANSAC, the major differences
being that LMedS does not require a consensus threshold, and unlike RANSAC
no threshold is defined to end further random sampling.

In both algorithms we would ideally like to consider every possible subset
of the data. This is usually infeasible, so methods are required to calculate the
largest number of subsets required to guarantee a subset containing only good
data. Assuming the proportion of outliers in the data is ε, the probability that
at least one of m subsets consists of only good data is given by:

γ = 1 − (1 − (1 − ε)p)m (13)

where p is the size of each subset. If γ → 1, then

m =
log(1 − γ)

log(1 − (1 − ε)p)
(14)

In practice ε must be estimated by an educated worst guess of the propor-
tion of outliers. Commonly γ ≥ 0.95. We note that LMedS is computationally
inefficient in the presence of Gaussian noise [12] as a fixed number of parameter
estimations are always carried out. Both RANSAC and LMedS can be optimised
for specific tasks [20].

We note that other random sampling algorithms exist in the literature, for ex-
ample: least trimmed squares [11], MINPRAM [14] and MLESAC [18]1. These
techniques have not been evaluated here because they are closely related to
1 For a review of random sampling techniques see [8].
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RANSAC and LMedS. For application to ASM parameter estimation, it is ex-
pected that any suitable random sampling robust parameter estimation algo-
rithm will produce similar results to RANSAC or LMedS.

3 Experiments

To test the effects of using a robust ASM parameter estimation technique on
image interpretation, we have carried out a set of experiments on three differ-
ence image sets. The image sets we have chosen are: electron microscope images
of diabetic nerve capillaries [10], Echocardiograms of the left ventricle [6] and
magnetic resonance images (MRI) of the prostate [2]. Each set has been chosen
because of the poor performance achieved using ASM interpretation in previous
studies. Each type of image presents its own set of problems which must be
addressed to achieve optimal interpretation results. Details of the training data
available for each data set and the various modifications to the standard ASM
algorithm are as follows:

– Capillaries. The training set consists of 33 electron microscope images digi-
tised at 575 × 678 pixel 8-bit grey-scale. Each image has been annotated at
the basement membrane/endothelial cell boundary up to 4 times by an ex-
pert on separate occasions, giving a set of 131 annotations. There is a large
amount of ambiguity in the position of desired boundary, caused in part
by locally consistent but confusing image evidence, resulting in considerable
variability in expert-placed landmarks. A smoothed version of each anno-
tated boundary has been represented by 50 evenly spaced landmark points.
For this data, ASM profile models consist of a two cluster mixture model,
where one cluster represents normal profile appearance and one for the lo-
cally confusing evidence. The two classes of profile appearance have been
selected manually. The images are extremely complex and variable. Wavelet
texture analysis has been applied to the images to remove some of this com-
plexity. The ASM model built for this set of data has been found to impose
only weak constraints due to the small amount of consistent structure in the
capillary boundary shapes [9]. Figure 1 shows examples of these images.

– Left Ventricle Echocardiograms. The training set consists of 64 echocar-
diogram images digitised at 256× 256 pixel 8-bit grey-scale. Each image has
been expertly annotated with a plausible position of the left ventricle bound-
ary. The boundaries have been represented by 100 evenly spaced landmarks.
Echocardiogram images are inherently noisy and structural delineations are
often poorly defined. ASMs have previously been applied to this data set us-
ing a genetic algorithm search technique [6] that identified many ambiguous
possible model fit positions. Figure 2 shows some examples from this data.

– Prostate. This training set consists of 95 T2 weighted MRI images of the
prostate and surrounding tissues at differing anterior depths, digitised at
256×256 pixel 8-bit gray scale. Annotations of the perimeter of the prostate
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Fig. 1. Example capillary texture images with multiple ambiguous expert annotations.

Fig. 2. Example echocardiogram images with left ventricle boundary marked.

gland, consisting of 27 manually positioned landmarks, were used to train
the ASM. There is significant variation in the structure and appearance of
the tissue surrounding the prostate as the depth of the image slice varies.
This has been found to adversely affect ASM search [2]. Figure 3 shows some
examples from this data set.

On each image set we have evaluated several robust parameter estimation
methods in terms of robustness and accuracy: simple least squares (LS), weighted
least squares using Huber’s iterated scheme (WLS Huber), weighted least squares
with weights obtained directly from the image data (WLS Image), RANSAC and
LMedS.

3.1 Random Sampling Subset Size

Before we can apply a random sampling technique to ASM parameter estima-
tion, we must determine the smallest subset size that is feasible to instantiate
the model parameters. There is no precise fixed method of directly determining
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Fig. 3. Example prostate images with prostate perimeter marked.

this value. Rather, we can tune the subset size to achieve a certain accuracy
whilst avoiding degenerate matrices. When constructing an ASM, the number
of modes kept can be chosen to ensure that the model’s training set is repre-
sented to a given accuracy [3]. A similar approach can be taken to determine
the random subset size. A model’s training set can be reconstructed using a
RANSAC or LMedS approach with varying subset size and the corresponding
residuals recorded. The random subset size can then be chosen to give a desired
reconstruction accuracy, bearing in mind that larger subsets require far more
random trials to ensure the same probability of considering a good subset.

Table 1 shows RANSAC training set reconstruction errors for a model built
with 133 capillary boundaries. The table also shows the number of trails required
to obtain a 95% probability of the good subset under the assumption that 10%
of data is outlying.

Table 1. RANSAC training set reconstruction error for varying subset size. p is the
proportion of the total landmark points in each subset, r̄ is the mean reconstruction
residual in pixels across the entire training set and m is the number of trials required
to obtain a good subset with 95% certainty under the assumption of ε = 10%.

p r̄ m

0.3 5.51 12
0.4 2.40 23
0.5 1.74 40
0.6 1.24 69
0.7 1.00 118
0.8 0.95 201
0.9 0.90 341

In the following evaluations we have chosen RANSAC and LMedS subset
sizes of 0.4, 0.3 and 0.8 for capillary, left ventricle echocardiogram and prostate
images respectively.
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Fig. 4. Outlier tolerance for each set of data. Mean residual r over model training set
perturbed by non-Gaussian noise. Error bars show ±1 std. dev.
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Fig. 5. Capillary Robustness. Mean residual r is plotted against initialisation outlier
σ as a percentage of training set extent.

3.2 Outlier Tolerance

To investigate the effectiveness of the various parameter estimation methods
under known conditions, models were fitted to data that had been perturbed by
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non-Gaussian noise. Each annotation landmark in each data set was perturbed
by Gaussian noise with standard deviation σ = 0.5 pixels. 30% of the landmarks
in each annotation were selected at random and perturbed again by Gaussian
noise with σ =50% of the maximum extent of the training set annotations.
Model parameters were estimated using each method and the residuals calculated
between the original data and the model representation. WLS Image was not
considered in this case. Figure 4 shows the mean residual for each set of data and
each method, together with error bars of ±1 standard deviation. In each case, the
random sampling methods outperform LS and WLS Huber. This is as expected
as studies have reported that WLS methods are only robust when less than 20 –
25% of the data is outlying [17]. It is noteworthy that the worst performance for
WLS Huber is exhibited when applied to the capillary model, which has been
constructed from highly variable shapes with little consistent structure. The
model contains only weak constraints on capillary shape [9] which contributes
to the poor WLS Huber performance.

3.3 ASM Robustness

To investigate the effects of robust parameter estimation on ASM search, a set
of leave-one-out searches were performed. A subset of 10 images were selected at
random from each set of data and a single iteration of ASM search was carried
out on each. Each search was initiated from the position and parameters of
the correct annotated boundary, distorted by applying Gaussian noise to the
landmark positions and randomly creating outliers, as in section 3.2. In this
case 10% of points were made outliers. The size of σ used to create the outlier
set was varied between 0 and 50% of the training set extent. The final residuals
between the model fit position and the annotation(s) were recorded. In the case
of the multiple capillary annotations, the smallest residual for each model point
in each image was used to form r̄. Figures 5–7 show residual means and standard
deviations for each set of data and method.

In each of the evaluations, the search gives comparable results when outlier
distances are small. However, in each case the random sampling methods are
much more robust in the presence of large outlying distances. WLS Huber esti-
mation is more robust than the LS and WLS Image estimators, only breaking
down when the outlier σ becomes large. LS and WLS Image estimators are ap-
proximately equivalent for each set of data. This suggests that there is no useful
information in the quality of profile model matches to image data. In the case of
capillary images it has previously been hypothesised that ‘good’ profile model
matches are often found in inaccurate positions [9]. The similarity of LS and
WLS Image supports this assumption.

3.4 ASM Accuracy

The utility of robust techniques in practical situations has been evaluated by
performing a set of ASM searches. Models were fitted to the images used above
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Fig. 6. Ventricle Robustness. Mean residual r is plotted against initialisation outlier σ
as a percentage of training set extent.

using a single–resolution ASM search, initialised from the model mean shape
and pose. Results from each set of data and each method are shown in Fig. 8.

In general, random sampling parameter estimation improves search accuracy
and consistency compared to LS and WLS Image. This is shown well in prostate
search results, where LMedS gives a reduction in average residual of 52%. Im-
provements in search accuracy using the weakly constrained capillary model are
marginal. Capillary images contain many regions of locally confusing image evi-
dence that consistently attract profile model matches. These areas can be see as
the light image regions outside of the annotations of the capillary images in Fig.
1. The constraints imposed by the capillary model are not sufficient to identify
these matches as inconsistent with the global trend of all profile model matches.
Because of this, random sampling and M-estimator robust parameter estima-
tors do not identify the data as outlying and performance does not improve. In
general, WLS Image does not provide a reliable scheme to improve search accu-
racy. In each set of searches the other robust estimators result in better search
accuracy than WLS Image. The approach actually degrades search accuracy in
capillary images, an effect caused by the regions of locally misleading evidence.
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Fig. 7. Prostate Robustness. Mean residual r is plotted against initialisation outlier σ
as a percentage of training set extent.
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4 Conclusions

In many practical applications of shape model fitting, the assumption that resid-
uals will have a Gaussian distribution will not be accurate. In particular, the
presence of confusing evidence, due to noise, or highly variable image structure,
produces “outliers” in the set of image points used to estimate the model pa-
rameters. We have evaluated four methods of parameter estimation intended to
provide increased robustness to outliers in the fitting process, comparing these
with the standard least squares approach. Two of the methods (RANSAC and
LMedS) are examples of random sampling techniques. WLS Huber is a com-
monly used M-estimator. All three approaches gave improved robustness over
the LS fit in the presence of synthetically generated outliers, the random sam-
pling methods giving the best results. In general, the increased robustness results
in increased search accuracy. This improvement is small in the case of capillary
images because of the weakness of the constraints that can be imposed with
models of capillary shape. The searches using WLS Image were intended to in-
vestigate the effect of reducing the influence in the fitting of points where the
image data do not conform strongly to the local grey-level model. The hypoth-
esis here is that most outliers occur because there is no strong image evidence
in the local search area. Fitting should be improved if the influence of such data
is reduced. The absence of any improvement using this technique indicates that
outliers often occur because isolated points are found that correspond well to
the model image patch.

The increased robustness of the random sampling and M-estimator methods
is, of course, gained at the expense of increased computational cost.

Robust model parameterisation by itself is not a complete solution to the
complex medical image analysis problems addressed in this paper. However,
robust estimators have been shown to improve the robustness and accuracy of
ASM search, and are potentially a useful modification to the standard ASM
algorithm in many practical situations.
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Abstract

Neurological studies are often concerned with identifying abnormalities in
brain structure affecting asymmetry between left and right hemispheres. This
paper presents techniques which allow measurement and characterisation of
differences between neuroanatomic structures due to variation in both shape
and receptor distribution. This provides a potentially powerful tool for iden-
tifying subtle pathological asymmetries. We propose a combination of ap-
pearance modelling and linear discriminant analysis and present preliminary
results of the technique applied to 2D hippocampal autoradiographs. We
also describe experiments testing the relative performance of variants of our
method to test assumptions about the nature of the analysis and the nature of
the data.

1 Introduction

Despite many studies, the anatomical characteristics of the major neuropsychiatric dis-
orders are still poorly understood. Furthermore, few rapid and sensitive techniques exist
for characterising morphological variation of neural structure with which pathology can
be identified. Presently, studies depend upon fairly coarse and simplistic measurements
such as anatomic volume or thickness, measures which are unable to register anything
other than the most gross of structural and neurochemical abnormalities. This may be
particularly inappropriate for complex 3D structures such as the hippocampus, a region
often associated with schizophrenic patholologies[1].A specific area of investigation is
concerned with the identification of pathological asymmetries between structures located
in either hemisphere of the brain. For example, studies suggest that normal asymmetries
of the brain are far less in schizophrenics, some imaging studies reporting loss or reversal
[2, 6], although other studies conflict with these results [7]. This paper describes a method
which can be used to accurately identify subtle asymmetry of neuroanatomy.

In order to confirm theories correlating psychological disorders with types of neuro-
logical pathology, it is required that both structure and neurochemical make-up of a region
can be determined. Analysing the distribution of neurotransmitters can often reveal vari-
ations which are indicative of altered neuronal development. To this end, our technique is
applicable to both shapeand receptor distributions made visible using autoradiography.

BMVC 1998 doi:10.5244/C.12.53



526 British Machine Vision Conference

In developing methods for identifying lateral asymmetries, a key issue is sensitivity. In
structurally simple regions, such as the cortex, comparisons may be quite straightforward;
methods such as the construction and averaging of depth profiles may suffice. However,
more complex regions are not amenable to such simple approaches. The hippocampus,
a highly concave and reentrant structure located in the temporal lobe, is an ideal test
subject for any technique which seeks to identify complex or subtle asymmetry. Whilst
a 3D analysis is the eventual aim of this project, we present preliminary results of our
technique applied to 2D postmortem autoradiographic sections of the hippocampus.

2 Materials and Methods

Figure 1: Hippocampal Autoradigraph

The hippocampal tissue used as test data comes from five normal brains: subjects free
from a personal or family history of neurological or psychiatric disease. Both hemi-
spheres of hippocampal tissue were cryosectioned,20�m sections cut every100�m.
Sections were stained with 8-hydroxy-2-(N,N-di-N-propyl-amino) tetralin ([3H]-8-OH-
DPAT), selectively labelling 5-HT1A receptors, which are located in restricted classes of
neuronal cells. The sections were then washed to remove unbound ligands, dried rapidly
and exposed to high resolution tritium sensitive x-ray film for 8-12 weeks. In the resulting
autoradiographs grey-level intensity represents receptor intensity. For the purpose of our
2D analysis, a single section located at a consistent anterior depth was selected from each
hippocampal hemisphere. Analysis was centred on the relatively stable parahippocampal
gyrus rather than the entire hippocampus, because of the intrinsic anterior-posterior vari-
ation of regions such as the dentate gyrus.
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2.1 Point Distribution Models

Our method of identifying shape and grey-level asymmetries employs the point distribu-
tion model and appearance modelling techniques presented by Cootes et al[3]. The shape
information is captured by labelling the training images with consistent landmark points
(See Figure 1). Our training set was labelled under the guidance of a neurologist and with
the aid of a semi-automatic point planting software. Landmarks were typically curvature
extrema or distinctive regions of receptor intensity, supplemented by uniformly spaced
points between.

Each training imagexi labelled withp point coordinates can be described by its2p
shape vector(xi0; yi0; xi1; yi1 : : : xip�1; yip�1)T . It will be shown how the training set of
shape vectors can be used to identify shape differences between left and right hemisphere
hippocampi.

Grey-level information can also be expressed as a vector composed of the grey-level
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intensity of pixels making up the hippocampus. However, before these can be constructed,
variation due to shape must be eliminated. This is achieved by warping all training images
to the mean shape calculated from the training shape vectors. For each training image we
now have a grey-level vector(xi0; xi1; : : : xim�1; )T wherem is the number of pixels
contained within the boundary of the mean shape. See related work by Lanitis et al[5].

Normal variation in the training set can be specified by performing principal com-
ponents analysis on the shape and grey-level vectors. This generates a set ofmodes of
variation : eigenvectors of the covariance matrix which span a shape or grey-level space
of dimension considerably smaller than2p (orm).

In addition to the data compaction, the modescharacterisethe principal ways in which
the training set varies. Figure 2 shows the first three shape modes of a model built from
hemispheres ofboth left and right hemisphere hippocampi. The most significant mode
shows a lengthening of the collateral sulcus with an associated thinning of the parahip-
pocampal gyrus. The second most significant mode shows some vertical movement of the
right had side of the collateral sulcus. The third mode shows some bending and bowing
of both the parahippocampal gyrus and the collateral sulcus.

Figure 3 shows the most significant grey-level mode superimposed onto a mean hip-
pocampus shape. The variation described seems mainly to do with global increases in
receptor intensity.

Whilst these modes may contain some of the variation between left and right hemi-
sphere hippocampi, we cannot guarantee that they do so specifically and at the exclusion
of other variations. Principal component analysis identifies the variationwithin a single
training set. We require a technique which identifies variationbetweentwo training sets.

2.2 Linear Discriminant Analysis

We can think of each training example as a point in a space of high dimensionality. The
task of identifying shape and grey-level differences between left and right hemisphere
hippocampi can be viewed as the the task of separating two groups of points in this space.
Linear discriminant analysis is a statistical technique which seeks to maximise the differ-
ence between the two groups.

In figure 6, we see how the discriminant vector, represented by the dashed linea pro-
vides an axis onto which the point distribution can be projected, maximally seperating the
two groups. On this axis we can perform scalar measurements of separation between the
groups. Furthermore, the discriminant vector characterises the group separation. Imagine
a point resting on the vector att: moving one way along the vector makes the point more
like the first group, moving it the other way makes the point more like the other group.

Given a training set of points divided into two groups, how do we calculate the coef-
ficients which ensure the discriminant function maximally separates the two groups?

A metric which describes the separation between two groupsx1 andx2, subject to an
arbitrary discriminant coefficient vectora, is :

V =
aTx1 � aTx2

aTWa
(1)

wherex1 andx2 are vectors of dimension2p, representing the means of groups 1 and
2 respectively, andW thepooled within-class covariance matrixgiven by
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W =
1

nx1 + nx2 � 2

2X

i=1

nX

j=1

(xij � xi)(xij � xi)
T (2)

nx1 andnx2 denote the number of members in groups 1 and 2 respectively.)W is
simply the sum of the covariance matrices for groups 1 and 2.

So what does the metric described by equation 1 mean ? The termaTx1�aTx2 simply
projects the means of both groups onto the discriminant vector formed by the coefficients
a, and calculates their difference. This is intuitive : as the distance between the groups
increases, so must the separation of their means, and so equation 1 is maximised. The
term aTWa projects the pooled covariance matrix into a pooled variance value in the
1-D discriminant space. The smaller the variance of both groups (and hence the pooled
variance value), the less likely they will be to overlap and hence their separation will
increase. So as the variance decreases, so equation 1 is maximised.

Differentiating equation 1 with respect toa yieldsFishers Linear Discriminant Func-
tion :

a = cW�1(x1 � x2) (3)

where c is a scaling factor.
The discriminant coefficient vectora is a linear combination which maximally sepa-

rates groupx1 from groupx2.(See ref[4]).

2.3 Paired Linear Discriminant Analysis

The definition of discriminant analysis provided above is phrased in terms of a separation
between two groups. However, in the case of our hippocampal asymmetries we cannot
be sure that such global distinctions between left and right hemispheres exist. In order to
gain some feeling for how asymmetries may be expressed in the training set, the data was
inspected in the following manner. Left and right hemisphere hippocampi were projected
into the parameter space provided by the modes of a principal component analysis. With
a reduced parameter space, it becomes possible to visualize the training set.

Figure 4 shows the hemispheres of the five brains projected onto the three most sig-
nificant modes of shape variation (covering 85 per cent of all training set variation).The
annotation of a point with the prefixr indicates a hippocampus from the right hemisphere,
whilst l indicates a hippocampus from the left hemisphere. Points sharing the same sym-
bol type indicate hippocampi from the same brain. As can be seen from Figure 4 the
training set does not separate readily into distinct left and right hemisphere groups.

However, if we examine the training set purely on the basis of the most significant
mode (representing 55 per cent of total variation) we can see that although the groups do
not separate cleanly, the right hemisphere hippocampi have aconsistentlyhigher value
than their left hemisphere partners (See Figure 5). So although there is no significant
difference between thegroupof left hippocampi and thegroupof right hippocampi, there
may be consistent differences betweenpairsof hippocampi from the same brain.

We propose a form of discriminant analysis which seeks to maximise separation be-
tween agroup of pairsrather than apair of groups. Figure 7 shows a distribution where a
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Figure 4: Training set projected into PCA space Figure 5: Training
set projected onto
most significant
mode

set of pairs are maximised in their separation by a discriminant vectora. We modify the
standard discriminant analysis scheme thus :

Let theith pair of points in the distribution ofn pairs be given by them dimensional
vectors:

xi1 = (x1; x2; :::; xm) xi2 = (x1; x2; :::; xm) (4)

The difference between theith pair is

di = xi1 � xi2 (5)

and the mean difference is therefore

d =
1

n

nX

i=1

di (6)

We can define ourpaired covariance matrixas

P =
1

n� 1

nX

i=1

(di � d)(di � d)T (7)



British Machine Vision Conference 531

x1

x2

t

a

Figure 6: Discriminant mode for two
populations

x1

x2

a

Figure 7: Discriminant mode for a paired
population

where the variances are expressed in terms of differences between pairs. Using the same
steps as in section 2.2, the set of coefficients which maximise paired separation are given
as :

a = cP�1d (8)

3 Experiment : Applying Discriminant Analysis to 2D
Hippocampal Data

Although the theory behind standard and paired discriminant analysis is well founded, the
assumption that hippocampal asymmetries are a paired rather than global phenomena is
untested. The first task then, is to assess to what extent paired linear discriminant analysis
produces better separations in hippocampal sections than standard discriminant analysis.

A second issue is what parameter space to perform the analysis on. Using principal
component analysis, the dimensionality of the training vectors can be drastically reduced.
With this in mind, comparisons need to be made to make clear whether the computa-
tional savings achieved by performing discriminant analysis on the reduced space are
outweighed by any effects this may have on the detection of separations.

3.1 Experimental Procedure

The 10 hippocampal sections (5 left hemisphere and 5 right) were subject to discriminant
analysis of shape and grey-level under the following conditions:

� Paired Discriminant Analysis : maximisation of separation between paired obser-
vations of data,or Standard Discriminant Analysis : maximisation of separation
between two groups of data.

� Reduced b-space Vectors: training data composed of b-space vectors formed in
construction of shape and grey-level models of combined hemisphere hippocampi
(see section 2.1)or Sample Space Vectors: training data composed of vectors con-
taining the coordinates of landmark points describing the hippocampal structure, or
vectors of pixel grey-level values describing receptor distribution.
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Each experiment will yield a set of discriminant coefficients, each of which allow the
training set to be projected onto a one dimensional discriminant mode. Comparison of the
separations provided by the different modes can then be performed. The metric proposed
to allow quantitative comparison of separations is the t-test statistic. Although this test
requires normality, which is certainly not guaranteed using our small data set, we only
require a measure which gives an indication of therelative significance of separations
over the different conditions.

4 Results

The t-test statistics and corresponding significance levels for the four different experimen-
tal conditions are presented in tables 1 and 2 . It is clear that paired discriminant analysis
is providing a better description of the separation between the groups, particularly in the
case of grey-level differences. Figures 8 and 9 provide visualisations of the shape and
grey-level changes which occur along the axis of greatest separation between left and
right hemispheres. In these visualisations the centre hippocampal section can be regarded
as a section which is neutral of laterality, being an average of left and right hemispheres.
Moving one way along the mode, makes the section more ”leftish” and the other way
more “rightish”. The limit set for the variation in these visualisations isl=2, wherel is the
average separation between paired hemispheres.

� l
2

(left hemisphere)  Mean Shape ! + l
2

(right hemisphere)

Figure 8: Paired discriminant mode for shape

� l
2

(left hemisphere)  Mean Grey-level ! + l
2

(right hemisphere)

Figure 9: Paired discriminant mode for grey-level intensity

The visualisations demonstrate the the form of left-right hippocampal asymmetry.
Left hemisphere hippocampi have longer and more vertically aligned collateral sulci than
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Condition Num. samples Dimensions t-value Sig. level
Normal LDA (unpaired)

Reduced b-space 10 9 1.22 74.3%
Full sample space 10 102 2.99 98.3%

Paired LDA
Reduced b-space 5 9 2.35 92.2%
Full sample space 5 102 35.46 > 99:9%

Table 1: Shape asymmetry significance levels over four experimental conditions

Condition Num. samples Dimensions t-value Sig. level
Normal LDA (unpaired)

Reduced b-space 10 9 0.03 2.2%
Full sample space 10 40186 0.19 14.9%

Paired LDA
Reduced b-space 5 9 3.56 97.6%
Full sample space 5 40186 4.39 98.8%

Table 2: Grey-level asymmetry significance sevels over four experimental conditions

right hemisphere hippocampi, whose collateral sulci are stumpy and often slanted in ori-
entation. In addition, left hemisphere hippocampi have slightly straighter parahippocam-
pal gyri than right hemisphere hippocampi, whose gyri are more bowed. (See Fig 1 for
anatomical terms).

The grey-level discriminant mode is more difficult to interpret, although it can be said
that most of the left/right asymmetry takes place in the top left hand corner, where the
parahippocampal gyrus bends into the uncal sulcus. Although it is difficult to discern
from these diagrams, animations show that right hemisphere hippocampi have a greater
profusion of striations in the parahippocampal gyrus.

5 Discussion

The difference between left and right hemisphere populations is small in the context of
natural variability amongst individuals. The paired discriminant analysis seeks to find a
consistentmode of separation. The fact that a better separation is found by the paired
analysis indicates that while the left and right populations might overlap in their shape
and grey-level, the shifts between them are consistent. The paired discriminant analysis
is clearly a better way of identifying a discriminant vector for groups which are paired.

The second issue is the performance of both discriminant techniques when applied to
the model-space representation of the data set. The significance of the separations is not
as great as that gained when using the full sample space. There are two points regarding
this result. Firstly, the significance values for full parameter space seem suspiciously high.
This is due to the fact that we are trying to locate a vector which separates only 10 pieces
of data in a space of very high dimensionality: it is possible for many such vectors to be
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located. Results must therefore be regarded cautiously. Secondly, the use of a reduced
parameter space results in lower separations, possibly truncating some of the asymmetry
we are hoping to identify. It is possible, and indeed even quite likely, that some of the
asymmetries are quite small, and so are subsequently removed by the dimensional reduc-
tion taking place in the principal component analysis. However, the fact that significant
separations are still detectable under such a reduction offers encouragement.

6 Summary

We have demonstrated that linear discriminant analysis, coupled with accurate landmark-
ing of structure, provides a potentially powerful way of generating quantitative and spe-
cific descriptions of lateral asymmetries in hippocampal sections, both in shape and re-
ceptor distribution. We have presented a modified discriminant analysis scheme which
detects paired asymmetries. The results suggest that whilst left-right shape asymmetries
exist, and may be detected by considering the two hemispheres as groups;pairedasym-
metries due to shapeand receptor distribution seem to be more pronounced on examining
thepaireddifferences.

At a particular level of the parahippocampal gyrus, we have identified specific lateral
asymmetries. The significance of the measurements needs to be regarded with caution
given the small data set available, but the initial result allows us to form the hypothesis
that similar differences will be detected by a 3D study using the more substantial data set
which is currently being collected for this project.
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Abstract. We present results of morphometric analysis of the lateral
ventricles of a group of schizophrenic and control subjects to investi-
gate possible shape differences associated with schizophrenia. Our results
show shape changes localised to three regions : the temporal horn (its
tip near the amygdala, and along its body near the parahippocampal
fissure), the central part of the lateral ventricles around the corpus cal-
losum, and the tip of the anterior horn in the region of the frontal lobe.
The differences in the temporal and anterior horns are in regions close
to structures thought to be implicated in schizophrenia. The changes
observed are the most significant changes (p < 10−13) in shape parame-
ters calculated using a 3D statistical shape descriptor (point distribution
model). Corresponding points on the surface of the ventricles in the train-
ing set were obtained using an transportation-based method to match
high curvature points.

1 Introduction

Schizophrenia is a serious brain disorder which is accompanied by altered brain
structure. Interest in investigation of shape changes of the lateral ventricles due
to schizophrenia can be attributed to the work of Johnstone et al. [7] who showed
that schizophrenia is accompanied by an increase in the volume of the lateral
ventricles. Several groups e.g. [5] [11], are currently developing methods to inves-
tigate whether specific localised shape changes occur in the lateral ventricles and
other neuroanatomic structures due to schizophrenia and other brain diseases.

Because of the wide range of natural variability in the shape of structures
in the human body, statistical approaches to measuring differences in shape
are desirable. Statistical shape models (SSMs) use samples from control and/or
disease populations, the training set, to learn the variability in the structures
being modelled. They can therefore allow separation of shape changes due to
disease in the presence of natural variation, and provide better characterisation
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of differences between populations than volumetric techniques. A diverse number
of SSMs have been described. However, these all need a method of representing
shape, establishing correspondence across the training set and obtaining shape
differences qualitatively and/or quantitatively.

The particular SSM we use here is the point distribution model (PDM) [3],
which characterises shape by a small number of “modes of shape variation”, pro-
viding a compact parameterisation. We apply linear discriminant analysis (LDA
- see e.g. [6]) to the shape parameters to characterise inter-group differences.

2 Related Work

Buckley et al. [2] use 48 manually defined landmarks corresponding to curva-
ture extrema on the surface of the ventricles of 20 schizophrenic patients and
20 control subjects to investigate shape differences. They considered the whole
ventricular system and reported no overall shape differences between the entire
patient group and the entire schizophrenic group. However, when only the males
of both groups were considered, significant shape differences were identified in
the proximal juncture of the temporal horn and in the foramen of Monro.

Gerig et al. [5] performed shape analysis on the lateral ventricles of 5 pairs
of monozygotic and 5 pairs of dizygotic twins. Ventricles were mapped to a unit
sphere and decomposed into a summation of spherical harmonic functions. The
first order harmonics were used to impose correspondence between points and
the measure of shape differences was the mean squared distance between corre-
sponding points on the surfaces. They showed that, without normalisation for
ventricular size, no significant differences were seen between the two groups.
However, after normalisation using the volumes of the ventricles, the right lat-
eral ventricles of the two groups are significantly different. They concluded that
shape measures reveal new information in addition to size or volumetric differ-
ences, which might assist in the understanding of structural differences due to
neuroanatomical diseases.

Narr et al. [11] obtained average maps of anatomical differences based on
voxel values of the limbic structures and the lateral ventricles of 25 schizophrenic
and 28 control subjects. Their analysis showed that significant shape differences
occurred in the left lateral ventricles. In particular, there was enlargement of
the superior part of the lateral ventricle and the posterior horn. There were also
noticeable differences in the part of the lateral ventricles in the vicinity of the
caudate head.

Our approach has aspects in common with [2] and [5]. We build PDMs based
on corresponding landmark points across a training set. The landmark points
are used to generate a small number of shape parameters controlling the modes
of variation of the shapes. The use of this parametric description distinguishes
our approach from that of [2]. However, the parameters are devised from the
training data, unlike those of [5].
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3 Materials and Method

3.1 Data

Volumetric T2 MR scans of 30 controls (14-45 years, 13 female, 17 male) and 39
age and sex matched schizophrenics (14-45 years, 9 female, 30 male) were used
in this study. The scans were independently acquired in the sagittal, coronal and
axial orientations. Each slice had 256 x 256 voxels, with in-plane size of 0.86mm
by 0.86mm for sagittal and axial orientations, and 0.78mm by 0.78mm for the
coronal orientation. For all orientations the slice thickness was 5mm and the
intra-slice gap was 1mm.

All images were corrected for MR inhomogeniety [15], and the three views of
each subject were combined by rigid registration and interpolation to give 3D
images with effective resolution of 0.78mm x 0.78mm x 0.78mm. The lateral ven-
tricles were segmented using a 3D edge detector [9] to give edge segments which
were manually linked to form closed contours in each slice with the guidance of
a neuroradiologist. The contours of the left lateral ventricles were reflected to
give the same pose as those of the right, resulting in an evaluation set of 138
ventricles for this study.

For each subject, brain size parameters were obtained as follows. Skull strip-
ping was performed on each MR image [12], and ellipsoids were fitted to the
resulting brains. The lengths of the three principal axes of the ellipsoids were
stored as the brain size parameters. The ventricular surfaces were aligned to a
canonical coordinate system using their centroids and the three principal axes
obtained from the distribution of the coordinates of their surface points. The
brain size parameters were then used to scale each object centred ventricle in-
dependently in the three orthogonal directions for normalisation for brain size
with respect to the brain size of an arbitrarily chosen template brain. This was
necessary to remove the influence of brain shape on ventricular shape.

3.2 Point Distribution Models

A PDM [3] reparameterises a shape described by surface landmark points to a
smaller set of shape parameters using equation 1

x = x + Pb . (1)

x is the vector of the coordinates of surface landmarks of a particular shape,
x is the average of these vectors over a training set. P is the matrix whose
columns are the eigenvectors corresponding to the largest k eigenvalues of the
covariance matrix of the shape vectors. b is a vector of weights of dimension k.
Due to correlations in point positions, k can be much smaller than the number
of landmark points. b then becomes a vector of k shape parameters which are
equivalent to x as a description of the shape.

It is necessary to locate corresponding landmark points on all the surfaces in
the training set. In the case of 2D PDMs this can be achieved by manual anno-
tation. However, in 3D this becomes difficult and prohibitively labour-intensive.
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Davies et al. [4] have shown that the specificity of a SSM depends critically
on finding accurately corresponding landmark points. Several approaches have
been made towards automatic landmark generation in 3D, including the use of
spherical harmonic parameterisation [5] and optimisation of the shape models
[4]. Here we identify landmarks from the set of “crest points” on the ventricle
surface using a modification of the method due to Subsol et. al. [13]. Correspon-
dence is established using non-rigid registration of the surfaces and minimisation
of Euclidean distance expressed as a transportation cost.

3.3 Crest Lines on the Lateral Ventricle Surface

Crest points, which are curvature extrema on the ventricles, are used as anatom-
ical landmarks here. According to the definition of [13] they are points where
lines of principal maximal curvature on a surface have maximum values. Crest
lines are the locus of crest points and impose an ordering on crest points, which
is useful when using crest points to establish correspondence.

To extract the crest points of a ventricular surface, we use the marching
lines algorithm [14]. This obtains crest lines directly from the segmented voxel
images of the ventricles using the zero crossings of an extremality function of the
principal maximal curvature. “Noisy” crest lines and crest points are removed by
applying conservative smoothing during their extraction and thresholding using
the curvature values at crest points. This results in a consistent set of crest lines
across the training set.

3.4 Matching Crest Points as an Assignment Problem

To define correspondence across the training set, crest points and crest lines of
the ventricles are matched between ventricles in a pair-wise manner. An ICP-
based method for doing this is described in [13]. However, we use a method
based on minimising “transportation” costs [1]. In the matching process “in-
jectivity” and “monotonicity” have to be preserved. Injectivity refers to the
requirement that in matching the crest points of two ventricles A and B, we
create a one-to-one mapping between the crest points. The monotonicity con-
straint prevents crossovers in the mapping. Furthermore it is desirable to have
symmetric matches, in that the matching of surfaces A → B and B → A give
the same pairings.

The ICP-based method in [13] requires steps to impose injectivity and mono-
tonicity, and in general the matches are not symmetric. The transportation
method intrinsically enforces injectivity but not monotonicity. Furthermore, If
the number of crest points on both examples are the same the matches are
symmetric.

In general, the solution to the transportation problem is a global minimum
of the transportation cost

z =
m∑

i

n∑

j

Dijxij . (2)
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where Dij is a cost of transportation of one unit commodity from source i to des-
tination j, and xij is the quantity transported, subject to the constraint that the
sum of commodities generated at all (m) sources is equal to the sum consumed
at all (n) destinations

m∑

i=1

ai =
n∑

j=1

bj . (3)

where ai is the output of source i and bj is the requirement at destination j.
In the present case Dij is the Euclidean distance between point i on one

surface and point j on the other (following registration). All ai and bj have
unit value (each point can match to exactly one other point). In this case the
problem reduces to an assignment problem. Here we make use of an efficient
solution by Achatz et. al. [8]. A global minimum in z is guaranteed. Minimis-
ing the assignment cost results in matches that are more numerous and more
evenly distributed than those that result from the ICP-based method. Figure 1
illustrates the application of both methods to a pair of synthetic lines.

A 

B 

(a) ICP-based
A → B

A 

B 

(b) ICP-based
B → A

A 

B 

(c) Transporta-
tion

A → B

A 

B 

(d) Transporta-
tion

B → A

Fig. 1. To illustrate the difference between the ICP-based and the transportation-
based methods, both were applied to matching points on a pair of synthetic lines.
The above shows initial results (before enforcement of monotonicity and injectivity
constraints) for the ICP-based method in both directions (a and b). The initial results
of the transportation-based method are always symmetric (c and d) when the number
of points in A and B are the same, whereas those of the closest point method are not
generally symmetric

3.5 Construction of the 3D PDM of the Lateral Ventricle

One ventricle vt was used as a template and its surface represented by vertices
and vertex faces defined by triangular triplets of the vertices. The initial trian-
gulation produced about 10,000 vertices, but for computational reasons these
were decimated to give about 1,000 vertices. Crest lines were obtained for each
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ventricle and normalised with respect to the template as described in section
3.1.

The crest lines of each of the remaining 137 ventricles vi ∈ {v1, . . . ,v137}
were matched in a pairwise manner to those of the chosen template, vt. The
matches were in both directions i.e. vt → vi and vi → vt, using the trans-
portation method and a post-processing step to enforce monotonicity. Matching
was performed over 30 iterations: ten iterations each of rigid alignment, affine
alignment, and spline warping successively as described in [13].

Although the transportation-based method gives symmetric results for
matches in both directions when the number of crest points are equal, the results
are not guaranteed to be symmetric when the number of crest points are not
equal, which in general is the case with matching ventricles. Therefore, from each
matched pair (vt → vi and vi → vt), a subset of matches occurring on parts of
crest lines that were symmetrically matched in both directions were extracted.
Although this decreases the number of matched points used in the subsequent
transformation, it gives greater confidence that they are valid matches. For the
present case, 1,586 ± 167 crest points (79% of the total number matched) were
on symmetrically matched crest lines for the transportation-based method, and
964 ± 160 (70% of the total number matched) for the ICP-based method. The
symmetric subset of matched points are used to obtain coefficients defining a
final spline based warp allowing transformation of the vertex points of vt onto
the surface of each vi. The spline based warps are defined in [13].

3.6 Shape Analysis

The parameters of the b vectors are used to define a shape space using the first
k eigenvalues in the PDM (k=30 in the present case, explaining over 99% of
the observed variance). Each member of the training set is a point within this
k -dimensional space, represented by a vector bk. To characterise shape differ-
ences between the groups we conducted linear discriminant analysis (LDA) using
Fisher’s criterion (see e.g. [6]). This provides a “discriminant vector” in shape
space along which the difference between the groups is most marked. We can
quantify the shape differences by projecting the individual shape vectors onto the
discriminant vector to provide a scalar value representing the individual shapes.
The nature of the shape differences between the groups can be visualised by re-
constructing the shapes corresponding to the group means. Specific differences
correspond to locations where large movements occur between the reconstructed
shapes.

4 Results

Figure 2(a) shows the results of projection onto the discriminant vector. The
difference in the means was statistically significant (p < 10−13 by a Student’s t
test). Figure 2(b) shows the difference between the means of the schizophrenic
group and that of the control group colour-mapped onto a ventricular surface.
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The greatest differences were in the region of the tip of the anterior horn (8mm),
in the region of the temporal horn (between 2mm and 6mm), around the central
part of the main body of the ventricle in the region of the corpus callosum
(between 4mm and 6mm).
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Fig. 2. Results of shape analysis

5 Discussion

The results of the morphometric analysis are similar to those of [11] in that they
show differences localised to the temporal horn in the region of the parahip-
pocampal fissure, and in the anterior part of the lateral ventricle near the frontal
lobe. However, we also found differences in the central part of the lateral ven-
tricle in the region of the corpus callosum. Although [2] also report differences
in the temporal horn of male schizophrenics, they did not find differences in the
pooled groups of male and females as we have reported here.

Schizophrenia is a complex disease and, as the results of the linear dis-
criminant analysis shows, there is a considerable overlap in the ventricles of
schizophrenics and normals. Hence we do not propose we have a method
that allows the discrimination of lateral ventricles into schizophrenic and none
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schizophrenic groups. However, studies of this sort may help in understanding
and monitoring schizophrenia. In this study we have combined left and right
ventricles of both males and females. We have also removed all overall volume
effects by isotropic scaling of the ventricles prior to shape modelling. The differ-
ences we observe are residual differences in shape in addition to any volumetric
differences. Future work will include investigating age and gender effects as well
as comparing left and right asymmetry.
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ABSTRACT 

We use point distribution models (PDMs) to investigate 

lateral asymmetries in the shape of brain ventricles between 

control subjects and people with schizophrenia.  Ventricle 
surfaces were extracted from T2-weighted MR images and 

PDMs generated using structural correspondences on the 

individual surfaces.  Using paired linear discriminant 

analysis we calculate the vector in shape space that 

maximally separates the shapes of right and left ventricles in 

the group.  The magnitude of the asymmetry is quantified by 

projection of the individual ventricle shapes onto this vector.  

We observe significant differences in the magnitude of the 

asymmetry in both schizophrenia and control groups.  There 

is also a clear difference in the pattern of asymmetry.  Male 

and female subgroups show different magnitudes and 

patterns of asymmetry, in both groups. 

1. INTRODUCTION 

Since Johnstone et al.[1] reported volume changes in the 

brain ventricles associated with schizophrenia, there has 

been interest in measuring localized shape differences in the 

ventricles and other neuroanatomical structures between 

control and schizophrenia groups [2-4]. We have previously 

published a study in which ventricle shapes were 

characterised using a Point Distribution Model (PDM) [5].  

In that study significant (p<10-13) shape changes were 

observed between schizophrenia and control groups in the 
temporal and anterior horns in regions close to structures 

implicated in schizophrenia and in the ventricle body near 

the corpus calosum.  Here we present further analysis using 

the shape features derived from the PDM to investigate 

asymmetries between the right and left ventricles in control 

and schizophrenia groups.  Crow [6] hypothesised that loss 

of asymmetry in schizophrenia accounts for some of the 

symptoms of the disease, though subsequent evidence has 

both supported and contradicted this hypothesis.  We find 

significant differences between the shapes of right and left 

ventricles, and that this asymmetry is in turn significantly 

different between control and schizophrenia groups. 

2. MATERIALS AND METHODS 

2.1. Images 

This study used volumetric T2 MR scans of 30 controls (14-
45 years, 13 female, 17 male) and 39 age and sex matched 

people with schizophrenia (14-45 years, 9 female, 30 male). 

The scans were independently acquired in the sagittal, 

coronal and axial orientations. Each slice had 256 x 256 

voxels, with in-plane size of 0.86mm by 0.86mm for sagittal 

and axial orientations, and 0.78mm by 0.78mm for the 

coronal orientation. For all orientations the slice thickness 

was 5mm and the intra-slice gap was 1mm. MR 

inhomogeneity correction was applied using the method of 

[7],�and the three views of each subject were combined by 

rigid registration and interpolation to give 3D images with 

effective resolution of 0.78mm x 0.78mm x 0.78mm. The 
lateral ventricles were segmented using a 3D edge detector 

[8] to give edge segments which were manually linked to 

form closed contours in each slice with the guidance of a 

neuroradiologist. The contours of the left lateral ventricles 

were reflected to give the same pose as those of the right, 

resulting in an evaluation set of 138ventricle surfaces for 

model building (next section).
 Ventricle surfaces were normalized for brain size and 

shape to minimize the effect of these on measured shape 

parameters.  This was achieved by fitting an ellipsoid to the 
brain after skull-stripping [9].  The principal axes of the 

ellipsoid were used to scale each of the dimensions of the 

ventricles independently to an arbitrarily chosen example 

from the training set after alignment of their centroids and 

principal axes. 

2.2 Shape Modeling 

Point Distribution Models (PDMs), first described by 

Cootes et al. [10] have been used in a wide range of studies 

of image segmentation and shape characterization.  Shape is 
parameterised using equation 1. 

x = x + Pb  (1) 

x is the vector of the coordinates of surface landmarks of 

a particular shape, x �is the average of these vectors over a 

training set. P is the matrix whose columns are the 
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eigenvectors corresponding to the largest k� eigenvalues of 

the covariance matrix of the shape vectors. b �is a vector of 

weights of dimension k. Due to correlations in point 

positions, k� can be much smaller than the number of 

landmark points. b then becomes a vector of k� shape 

parameters which are equivalent to x � as a description of 
the shape.  A key point is that the vectors x for each 

training shape consist of corresponding landmark points.  

That is, each landmark represents the same anatomical 

location in each training example.  Details of the method of 

determining corresponding surface points are given in [5].  

Briefly, we identify “crest points”, loci where the lines of 

maximal curvature (crest lines) on the ventricle surface have 

locally maximum values.  To obtain correspondences 

between the crest points on a pair of surfaces an iterative 

algorithm, combining bi-partite graph-matching [11] and 

non-rigid surface registration, was used.  

The corresponding points derived from this method 
provide the coordinate vectors x in equation 1.  The 

eigenvectors P are used to define a shape space using the 

first k eigenvalues in the PDM (k=30 in the present case, 

explaining over 99% of the observed variance). Each 

b vector is a k-dimensional feature vector describing the 

shape of a particular ventricle.   

2.3. Paired Discriminant Analysis 

In our earlier study [5] we used linear discriminant analysis 

(LDA) to characterise shape differences between groups.  

This can be expressed as equation 2. 
1ˆ ( )c sα −= −w S b b   (2) 

where ŵ is the direction of the maximally discriminating 

vector in shape space, cb  and sb are the mean shape 

vectors of the two groups (control and schizophrenia) and 

S is derived from the covariances of the shape parameters. 

  In this case we are interested in the difference between 

pairs of ventricles belonging to the same individual.  We 

modify the normal LDA analysis as follows to produce a 

paired linear discriminant analysis.  We seek a vector in 

shape space that maximally separates members of a pair. 
1ˆ

p pα −=w S d   (3) 

where ˆ
pw is the direction of the vector that maximally 

separates members of pairs, d  is a vector expressing the 

difference between the shapes of a right-left pair and pS is 

the covariance matrix derived from the difference vectors. 

Figure 1 illustrates the calculation of ˆ
pw  for a number of 

(fictitious) right-left pairs 

We can quantify the shape differences by projecting the 

shape vectors onto the discriminant vector to provide a 

scalar value for the individual shapes.  The group means 

(right versus left) allow us to quantitate the degree of 

asymmetry. 

3. RESULTS 

Shape asymmetries were measured for both groups for the 

complete data set and for the male and female subgroups 

separately.  Figure 2 shows the paired values for the shape 

vectors projected onto the maximally discriminating vector 
for each of the sets.  The results are shown quantitatively in 

table 1, which shows the mean right-left differences for each 

group, and the p-values derived from the pair-wise t-test 

comparing the within-group differences in each case.  Taken 

as a whole, the magnitude of the shape difference between 

ventricle pairs is generally consistent amongst individuals in 

each group, the magnitude of the difference being greater in 

the control group than the schizophrenia group.  The 

opposite is true of the male subgroups: asymmetries in 

shape, as measured by the projected shape differences, are 

smaller in the control group.  For the female subgroup there 

is no significant difference.   
  Figures 3-5 show the shape differences in each of the 

groups colour-mapped onto the surface of the average 

ventricle, showing where the maximum differences are 

observed.  These figures show that the pattern of the 

asymmetry between right and left hemispheres is different 

for control and schizophrenia groups.  For example, for the 

whole set the asymmetry in the schizophrenia group is 

greatest in the lower part of the main ventricle body and in 

the anterior horn.  For control subjects the asymmetry was 

greatest at the tips of the temporal and anterior horns. 

Figure 1.  Illustration of the vector maximally separating 
right-left pairs in a two-dimensional shape space.
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schizD contD p

All subjects 7.94 (2.38) 2.49 (0.33) -19
4.5×10

Males 3.59 (1.07) 19.42 (11.23) -10
8.7×10

Females 23.15 (19.65) 32.45 (32.03) 0.43 

Table 1.  Means and variances (in brackets) of the scalar 
projections of the three groups shown in figure 2.  p is derived 
from the t-test comparing Dschiz and Dcont.

4. DISCUSSION 

We have used point distribution models to provide shape 

features that can be used in comparing asymmetries in shape 

between right and left ventricles of the brain.  We observe 

consistent asymmetries between individuals within the 

control and schizophrenia groups, but the groups differ in 

the pattern of the asymmetry observed.  That is, the shape 

vector that maximally distinguishes the ventricle shapes 

between right and left is different for the control and 
schizophrenia groups.  The same is true when we examine 

the male and female subgroups.  The control group shows 

greater asymmetry than the schizophrenia group in the 

complete set and the female subgroup; the reverse is true for 

the male subgroup (table 1).  The observed difference 

between control and schizophrenia groups is highly 

significant, except in the female subgroup, where the 

number of subjects with schizophrenia is very small.  

We have demonstrated that this is a potentially useful 

Figure 3. The pattern of mean differences between right and left 
ventricles in the complete data set colour-mapped onto the mean 
ventricle shape.  Smallest differences are blue, largest are red. (a) 
schizophrenia group (b) control group, medial and lateral aspects 

as indicated 

Medial Lateral

Medial Lateral

a

b

Figure 2.  The differences between right and left ventricles in 
control and schizophrenia groups projected onto the maximally 
discriminating vector in each case.  The scalar values for 
individual pairs of ventricles are shown connected (the vertical 
separation is for clarity).   (a) All subjects (b) Male subgroup 
(c) Female subgroup 

a

b

c
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technical approach to measurement of lateral shape 

differences.  However, the measured differences both 

quantitative (table 1) and qualitative (figs 3-5) on this 

dataset are not consistent between the whole group and the 

subgroups.  This may indicate that there are several vectors 

in parameter space that would be similarly discriminating 
between control and schizophrenia groups, the selection 

between them being stochastic.  A more stable selection 

might result from the use of a larger dataset.  Alternatively 

exploration of vectors that discriminate significantly, if not 

maximally, may also reveal important lateral changes. 
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Figure 5. The pattern of mean differences between right and 

left ventricles in the female subgroup colour-mapped onto the 
mean ventricle shape.  Smallest differences are blue, largest 
are red. (a) schizophrenia group (b) control group, medial and 

lateral aspects as indicated 
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Figure 4. The pattern of mean differences between right and 
left ventricles in the male subgroup colour-mapped onto the 
mean ventricle shape.  Smallest differences are blue, largest 
are red. (a) schizophrenia group (b) control group, medial and 

lateral aspects as indicated 

Medial Lateral 

Medial Lateral 

a

b
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Abstract

Proteomics research relies heavily on electrophoresis gels, which are com-
plex images containing many protein ‘spots’. The identification and quantifi-
cation of these spots is a bottleneck in the proteomics workflow. We describe
a statistical model of protein spot appearance that is both general enough to
represent unusual spots, and specific enough to introduce constraints on the
interpretation of complex images. We propose a robust method of automatic
model construction that is used to circumvent manual model construction
which is subjective and time-consuming. We show that the statistical model
of spot appearance is able to fit to image data more closely than the com-
monly used spot parameterisations which are based solely on Gaussian and
diffusion formulations.

1 Introduction

Proteomics is the study of the complete set of proteins in a cell or organism throughout the
entire life-cycle. It is hoped that this research will enhance understanding of cell function
in general and, more specifically, it will also identify proteins that can be used as drug
targets and disease markers. The main barrier to proteomics research is complexity. It is
estimated that total number of proteins in a human cell could be as large as 500,000. Key
to any analysis are separation and detection technologies. A well-established and widely
used technology is 2-Dimensional Electrophoresis (2-DE). This process separates protein
mixtures by iso-electric point (pI) and molecular weight (MW). Separation results from
two separate diffusion processes which are driven along orthogonal axes in a polyacrimide
gel, resulting in a grid of protein strains. The separated proteins are visualised by pre or
post staining, yielding an image, containing protein ‘spots’. Figure 1 shows two segments
of 2-DE gel images stained using different techniques. In practice, 3,000-4,000 spots can
be visualised on a single gel image, each representing an individual protein strain. The
analysis of these complex gel images is a significant bottleneck in the proteomics research
workflow [6].
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(a) Silver

(b) Fluorescent

Figure 1: Example electrophoresis images with watershed boundaries. (a) A sliver stained
image with 403 delineated fitting regions. (b) A fluorescent dye image with 573 fitting
regions.
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(a) Gaussian (b) Flat-Top (c) Irregular

Figure 2: Examples of electrophoresis gel spots. The top row shows the appearance of the
spot in the image with contours of constant gray-level overlayed. The bottom row shows
a 3D mesh representation of the same data. (a) Gaussian, (b) ‘Flat-top’, (c) Irregular.

Image analysis of 2-DE gels requires the identification of a large number of individual
spots. These must be characterised for further analysis of the sample. One of the first
steps in any spot detection algorithm is the segmentation of individual spots from the
background. After the segmentation step, spots are quantified and represented as a list
of parameters over which further analysis can be carried out. Commonly, protein spot
models are used to aid quantification by imposing constraints, which in turn improves the
robustness of the solution. The most commonly used spot model is a Gaussian function
[4]:

S(x,y) = B+ I exp

(
− (x− x0)

2σ2
x

)
exp

(
(y− y0)

2σ2
y

)

(1)

where B is background intensity, I is spot intensity, x0 and y0 control spot location and σx

and σy control the spread of the Gaussian independently in x and y directions. Figure 2(a)
shows an example of a typical protein spot with a Gaussian profile. This model is assumed
to provide a good representation of most spots present in most gel images. However, it
has been shown that Gaussian models produce an inadequate fit to some protein spots,
most notably large volume, saturated spots [1]. Figure 2(b) shows an example of a high
volume protein spot exhibiting a saturated, ‘flat-top’ shape. Bettens [1] addressed this
shortcoming by proposing a model based on the physics of the spot formation process.
Protein spots are formed by a diffusion process, which is only adequately represented
by a Gaussian when the initial concentration distribution occupied by the sample has a
small area. Bettens’ diffusion model more adequately represents spots in the gel when
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this assumption is not met:

S(x,y) = B+ C0
2

[
erf
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a′+r′

2

)
+ erf

(
a′−r′

2

)]

+ C0
r′
√

π

[
exp

(
−

(
a′+r′

2

)2
)
− exp

(
−

(
a′−r′

2

)2
)] (2)

where r′ =
√

(x−x0)2

D′
x

+ (y−y0)2

D′
y

, B is background intensity, C0 is initial concentration, D′
x

and D′
y are related to the diffusion constants in the two main directions of diffusion, x0

and y0 control location and a′ is the area of the disc containing the protein material. As
a → 0 equation 2 reduces to the bivariate Gaussin (eqn. 1).

Both the Gaussian and diffusion models assume perfect diffusion across the gel medium.
Spots created by a perfect diffusion process will be regular and symmetric. In practice,
the diffusion process is not perfect and spots can be formed with unpredictable, unusual
shapes. An example of such a spot is shown in Figure 2(c). To represent more adequately
the full range of observed spot shape, we have developed a new protein spot model that
is both flexible enough to represent irregular shape variation and specific enough to retain
usable constraints on the interpretation of gel images. The physical process by which
irregular spots are formed is extremely complex. It would be daunting task to directly
estimate all the physical variables affecting spot formation. Instead, we have used a Point
Distribution Model (PDM) [3] to represent observed variation in spot shape. Gaussian
convolution simulates the diffusion process and forms a full model of spot appearance. In
section 2 we describe the model, together with an automatic method for model construc-
tion. Results of an evaluation of the model and a discussion are presented in sections 3
and 4.

2 Modelling Protein Spot Shape and Appearance

To represent observed variation in protein spot shape we have used a PDM trained with
a set of protein spot boundaries. The PDM only represents shape, but we require a full
model of spot appearance. Protein spot formation in 2-DE gels is a diffusion process
which is equivalent to convolution of an initial concentration distribution with a 2-D Gaus-
sian kernel. We have assumed the initial concentration distribution can be represented as
a flat 2-D shape within the boundary represented by the shape model. This flat shape is
convolved with a bi-variate Gaussian kernel giving a full model of spot appearance. Fig-
ure 3 shows an example of the full spot appearance model. We define our model using the
parameter vector �p = (B, I,x0,y0,σx,σy,s,�bs) , where B is an additive background term, I
is spot intensity, x0 and y0 control location, σx and σy control the spread of the Gaussian
along the two directions of diffusion, s is a scaling for the spot shape (from the alignment
procedure) and�bs is a vector of PDM shape parameters. This model is equivalent to the
bi-variate Gaussian when s = 0, and is equivalent to the diffusion model when the shape
parameters,�bs , represent an elliptical shape.

2.1 Automatic Spot Model Construction

Section 2 described the basis of the models we use. Here we address the practical issue
of building the model: determining the training shapes from spot images and calculating
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Figure 3: Spot model formation. A flat shape is convolved with a bi-variate Gaussian
kernel, which is equivalent to a diffusion process.

the distributions of parameter values. In many applications of PDMs, manual marking of
landmark points has been used. Due to the complexity of the images, and the number of
spots required to build a model, this is an impractical strategy in this case. We proceed
by segmenting the spots in the training images, smoothing the boundaries obtained using
a general shape representation and making the landmark points evenly spaced round the
resulting boundary. As the boundaries are extracted from real image data, a number of
overlapping spots will be represented. These need to be detected and excluded from the
training data, as their inclusion would bias the model and result in reduced specificity.

2.1.1 Generating the Training Set

Raw spot boundaries are obtained by thresholding the Laplacian of Gaussian transform
of the training gel images. The resulting boundaries are smoothed using a Fourier shape
descriptor [5] resulting in a parametrisation of the spot shape by the Fourier coefficients
(5 harmonics). Spot appearance is modelled by convolving this smoothed shape with a
Gaussian kernel, in the same way described in section 2. The parameters of this spot
appearance model are then optimised to improve the fit to the original image data using
a Levenberg Marquardt gradient descent algorithm. This provides an adjusted parametri-
sation of the shape matched to the image data. In this way the shapes used to build our
statistical model are derived from our model of spot appearance, rather than the some-
what arbitrary data-driven segmentation. Using a Fourier representation in this strategy
does not impose any explicit shape constraints on the boundaries extracted. The PDM
landmark representation is obtained from the resulting spot shapes by placing 25 evenly
spaced points around the boundary.

2.1.2 Robust Model Building

Automatic generation of training shapes will include incorrect shapes in the model. These
shapes are the result of unseparated overlapping multi-spot groups. The Fourier shape
representation imposes no explicit shape constraints, other than smoothness, so it is not
possible to filter these incorrect segmentations at that stage. We could filter the result-
ing shapes by hand, but this would be a highly time consuming and subjective process.
Rather, we have chosen to reduce the influence of such shapes by using Robust Principal
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k=1
(48%)

k=2
(34%)

k=3
(9%)

k=3
(3%)

k=2
(38%)

k=1
(51%)

(a) Standard PCA (b) Robust PCA

Figure 4: Robust PCA. (a) The first 3 of 10 modes (±2 std.dev.) PDM built using standard
PCA. (b) The first 3 modes of a PDM built using Robust PCA. Both models were trained
with the same data.

Figure 5: Four examples of shapes that have been downweighted by robust PCA. Each
shape is superimposed over the image patch used in its generation.

Component Analysis [2] in the model building. We expect the number of incorrect shapes
to be small and their shape to be unusual, and therefore they can only influence the model
as outliers in the shape distribution. Robust PCA iteratively reduces the influence of out-
liers on the resulting model. The effect of the robust PCA can be seen in Figure 4. The
figure shows two PDMs, one built using standard PCA (Figure 4(a)) and one built using
robust PCA (Figure 4(b)). The models were generated from the same training data. Both
models represent the spots by principal components that retain 99% of the observed vari-
ance, in the robust case this is 99% of the variance remaining after the iterative weighting
procedure. The standard model represents the retained variance in the training data using
10 modes, whereas the robust model requires only 6 modes. The contribution of each
mode to the total variance of the training set is shown for each model. The first mode
of the standard model represents a large variation in aspect ratio with an apparent ’waist’
becoming visible at the extremes of the mode. This mode would allow the model to rep-
resent multiple overlapping spots, which is undesirable. There is no mode in the robust
model that allows shapes with ’waists’. Figure 5 shows examples of shapes that have
been treated as outliers by the robust analysis. They all represent highly uncharacteristic
shapes and several are clearly multiple spots.
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3 Evaluation of Models

We have compared the results for fitting the statistical spot model to image data with
those achieved using the Gaussian and diffusion models. The experimental procedure
was as follows. Spot regions were detected in a test image using a watershed algorithm.
Each of the spot models was fitted to each spot region using a Levenberg-Marquardt non-
linear optimisation algorithm to determine the best model parameters, minimising the

following residual: r = ∑x,y∈R

[
(S(x,y|�p)− I(x,y))2 /

(
nR(Imax

R − Imin
R )

)]
where R is the

region of the image over which fitting takes place, x,y∈R are the coordinates of the pixels
within the fitting region, I(x,y) are image values, S(x,y|�p) are the model values given the
parameter vectors, Imax

R , Imin
R are the maximum and minimum image values within the

region, and nR is the number of pixels within the region. This residual provides a measure
of model fit error that is normalised with respect to the intensity of the spot (which we
have approximated as Imax

R − Imin
R ) and the size of the fitting region (the number of pixels

nR). This residual form allows direct comparisons of fit quality to be made between high
and low volume spots. The three models were fitted to 403 watershed delineated spots
from a silver stained E.coli gel (375x228 pixels, 8 bit) and 573 spots from a gel stained
with a fluorescent dye (2896x2485 pixels, 24 bit). The silver image is low-resolution and
contains many saturated and overlapping spots, whereas the fluorescent image is much
higher quality and contains fewer saturated or overlapping spots.

The mean residuals r̄ for each model after fitting to all regions in both images are
shown in Table 1. In general the fitting results for the fluorescent image are better due
to the higher resolution of the image data. The statistical model results in the smallest
average residual after fitting for both images. Figure 6 shows the mean residual for each
spot model and image, grouped by volume. Group one contains the smallest 10% of spots
by volume, rising to group 10 which contains the largest 10% of spots by volume. In
both cases, the largest improvements in fit made by the statistical model are associated
with the largest spot volumes. We have assumed that high volume spots are more likely
to produce unusual spot shapes, which, we have argued, are the best represented by the
statistical model. For the silver image, small and medium volume spots (groups 1-6) give
fits for the Gaussian, diffusion and statistical diffusion models that are almost equivalent.
However, the statistical model results in reductions in residual for all volume groups of
the fluorescent image. This suggests that in the fluorescent image all spot groups contain
shape variation away from Gaussian assumptions, even the smallest spots by volume.
This trend is not visible in the silver image data and this may be due to the low-resolution
of the image preventing full convergence. For all spot volume groups the statistical model
results in fits that are better than or equivalent to the fits of the other two models. This is
achieved in both images despite large visual and resolution differences.

These results demonstrate that the statistical model is able to fit well to a wide variety
of gel image types. This is to be expected, as the model has the most degrees of freedom.
An important question is whether the reduction in residual corresponds to a increase in
model specificity. Both images contain watershed fitting regions with multiple spots. A
specific model should not represent these regions well. We have carried out the following
experiment to quantify the specificity of each type of model. Our aim is to determine the
relative ability of the models to distinguish between single and multiple spots, using their
model fit residual value. We have manually classified each fitting region in the fluorescent
image (Figure 1(b), 573 regions) into one of two classes: single spot regions (472 regions)
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Model Silver r̄ Fluorescent r̄
Gaussian 8.3×10−3 5.11×10−3

Diffusion 7.83×10−3 4.94×10−3

Statistical 7.49×10−3 3.63×10−3

Table 1: Mean residual after model fitting to 403 spots in the silver image and 573 spots
in the fluorescent image.

or multiple spot regions (101 regions). Figure 7 shows five examples of the single spot
region class, containing irregular, single spots and five examples of regions containing
multiple spots, together with the fits and residuals of each model. For each of the single
spot regions, the lowest residual is achieved with the statistical model. The fits of all
models to multi-spot regions are visually poor (Figure 7(b)). Examination of the residuals
of these 10 regions illustrates that, in general, it is not possible to define a threshold on
residual value that perfectly discriminates between the two groups. This is the case for
all the models. Figure 8 shows the estimated discrete probability distributions for each
model for each region class. The separation of the class distributions is not good for any
of the models, However, a more specific model will increase the separation between the
two distributions. The distributions are non-normal, so to quantify the difference between
each class we have chosen to use the non-parametric Kolmogorov-Smirnov (K-S) test.
The K-S test measures the similarity between two datasets by finding the maximum dis-
crepancy between their cumulative frequency distributions, which is called the d-statistic.
The d statistic ranges between 0 and 1, the smaller the value of d, the more similar the
two distributions. The discrete probability distributions (using 75 bins) and K-S distance
measures for the class distributions of each model are given in Figure 8. The statistical
model results in a K-S distance of d = 0.672, indicating that the distributions of single
and multiple spot residuals are more distinct than those of the Gaussian and diffusion
models (d = 0.536 and d = 0.515 respectively). This results shows that, as well as giving
a more accurate quantification of 2-DE protein spots, the statistical model is more specific
than the other models. The careful training and robust construction of the model results
in a representation that is specific to single spots, and therefore that can not represent
multiple spot regions significantly better than the other models. These selective fitting
improvements lead to an increase in the separability of the two types of fitting regions.

4 Concluding Remarks

In this paper, we have described a statistical model of protein spot appearance, together
with a automatic construction algorithm which takes into account the complexity of the
image data. This model is both flexible and specific enough to represent the true range of
protein spot appearance found in complex 2-DE gel images without the need to develop a
sophisticated theoretical model of the physical processes driving irregular spot formation.
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Figure 6: Mean residual r̄ of model fit with error bars showing +1 std. err., plotted by
increasing spot volume for each model. Spot volume group 1 contains the smallest 10%
of spots by volume, rising to group 10 which contains the largest 10% of spots by volume.

(b) Multi-spot regions

Spot Gaussian fit Diffusion fit Statistical Fit

1 31026.5 ���r
31018.5 ���r

31006.5 ���r

2 21013.1 ���r
21011.1 ���r
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(a) Single irregular spots

Spot Gaussian fit Diffusion fit Statistical Fit
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Figure 7: Example fits of each model to spot regions from the images shown in Figure
1, with resulting fit residuals for each model. (a) Shows examples of regions containing
single spots with irregular shape. The improved fit of the statistical model is clear in
each case. (b) Shows regions containing multiple spots. None of the models generate an
adequate fit to these spots.
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Figure 8: Discrete probability distribution (75 bins) of fit residual for single and multiple
spot fitting regions with K-S distance measure. (a) Gaussian model (b) Diffusion model
and (c) statistical model.
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Robust and Accurate Registration of 2-D
Electrophoresis Gels Using Point-Matching

Mike Rogers and Jim Graham, Member, IEEE

Abstract—Point-matching is a widely applied image registration
method and many algorithms have been developed. Registration
of 2-D electrophoresis gels is an important problem in biological
research that presents many of the technical difficulties that beset
point-matching: large numbers of points with variable densities,
large nonrigid transformations between point sets, paucity of
structural information and large numbers of unmatchable points
(outliers) in either set. In seeking the most suitable algorithm for
gel registration we have evaluated a number of approaches for
accuracy and robustness in the face of these difficulties. Using
synthetic images we test combinations of three algorithm compo-
nents: correspondence assignment, distance metrics and image
transformation. We show that a version of the iterated closest
point (ICP) algorithm using a non-Euclidean distance metric
and a robust estimation of transform parameters provides best
performance, equalling SoftAssign in the presence of moderate
image distortion, and providing superior robustness against large
distortions and high outlier proportions. From this evaluation
we develop a gel registration algorithm based on robust ICP
and a novel distance metric combining Euclidean, shape context
and image-related features. We demonstrate the accuracy of gel
matching using synthetic distortions of real gels and show that
robust estimation of transform parameters using M-estimators
can enforce inverse consistency, ensuring that matching results
are independent of the order of the images.

Index Terms—Biomedical image registration, iterated closest
point (ICP), robust point matching (RPM), 2-D electrophoresis
(2-DE) gels.

I. INTRODUCTION

TWO-dimensional electrophoresis (2-DE) is a method of
protein separation used in the field of Proteomics. The

technique results in a matrix of diffuse spots which can be vi-
sualized by pre or post staining. Each of these spots is a sepa-
rated protein strain. The volume of each spot is proportional to
the amount of each protein in the original sample. In practice,
3 000–4 000 spots can be visualized on a single gel image. Many
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recent studies involve differential analysis of sets of up to 100
2-DE gels. To carry out a differential investigation, it is neces-
sary to determine correspondence between spots on sets of gel
images. The production of 2-DE gels is inherently variable. As
a result complex nonlinear deformations are often required to
align comparable gels. These deformations are often quite large,
difficult to identify manually and extremely time-consuming to
correct. Fig. 1 shows two examples from a replicate gel set
[Fig. 1(a) and (b)] together with two synthetically deformed gels
[Fig. 1(c) and (d)] used in our evaluation (Section III-C). The
amount of deformation introduced is typical of the type of de-
formations encountered in gel analysis, however, the magnitude
of the synthetic deformation shown in Fig. 1(d) is larger than
that typically encountered in replicate gel sets.

A typical gel pair will take 4–8 h of manual spot matching
correction using current generations of software, if automatic
analysis fails. This level of user-input quickly becomes unten-
able as the size of the gel sets increase. The analysis of these
complex gel images is a significant bottleneck in the proteomics
research workflow [1], which can be alleviated by improved au-
tomatic analysis techniques.

In this work, we have focused on the problem of aligning a
pair of gels. Matching a pair of gel images is an image registra-
tion problem, and as such, algorithms that are directly driven
by image-based metrics, such as mutual information or sum
of squared differences (SSD), could be applied. However, the
numerous small spot features in the images produce a search
space that contains many local minima. We contend that it is
unlikely that any image-based local optimisation algorithm can
be sufficiently robust against these minima. The inherent local
convergence properties of such algorithms, combined with
the relatively large nonrigid and nonsystematic deformations
found in gel images, make even complex multiresolution search
methods, which utilize multilevel regularisation, unlikely to
determine a globally optimal registration. Instead, and as
rough segmentation of protein spot features is fairly easy to
achieve, we have taken the approach of matching these features
directly using a robust, constrained point-matching algorithm.
Point-matching of protein spot features presents all of the tech-
nical difficulties that beset such applications: large numbers of
points with varying densities, large nonrigid transformations
between point sets, significant numbers of unmatchable points
(outliers) in either set, and paucity of structural information
to help identify correspondences. In this study, we carry out
an extensive evaluation of the components of a number of
point-matching algorithms using point sets that simulate the
appearance of gels. In this way, we control parameters such
as deformation and outlier proportions, and identify how each

1057-7149/$25.00 © 2007 IEEE
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Fig. 1. Examples of 2-DE gel images and synthetic deformation. (a), (b) Real gel images; (c), (d) synthetically deformed versions of (a). (a) Gel 1; (b) Gel 2;
(c) medium deformation (E = 0:275); (d) large synthetic deformation (E = 0:5).

component of the matching algorithm is affected by them.
This allows us to specify a point matching scheme which is
well tuned to gel matching: an iterative, multiresolution algo-
rithm that uses a novel point distance measure. An important
contribution is that we have demonstrated inverse consistency
constraints can be introduced into our point matching scheme,
ensuring that matching results are independent of the order of
the images. We also develop a set of image-based features to
enhance our point matching algorithm. The resulting system is
compared with, and shown to be more robust and accurate than,
a commonly used fully image-based registration algorithm [2],
supporting our initial contention.

The rest of this paper is laid out as follows. In the rest of
this section, we briefly review existing work on point matching.
Descriptions of our methods, evaluations, and results using syn-
thetic point sets and gel images are given in Sections II and III,
respectively. Section IV contains a summary and conclusions.

A. Related Work

The registration of point sets is a common problem in com-
puter vision [3]–[7] and a complete review is beyond the scope
of this paper. In this work, we focus on the class of algorithms
derived from “iterative closest point” (ICP) [3]. ICP is attrac-
tive because of its simplicity and good convergence properties;
however it is a local refinement technique and requires a rea-
sonable starting point. Granger and Pennec [4] developed an al-
gorithm called EM-ICP which uses Gaussian weighted multiple

matches. Their algorithm was developed within a rigid transfor-
mation framework. Closely related to this is the SoftAssign point
matching method [6], [8] in which Gaussian weighted matches
are normalized to produce probability estimates for each pos-
sible correspondence. An alternative to closest point correspon-
dence estimation is optimal bi-partite graph matching (BGM).
Belongie et al. [9] used BGM to produce a one-to-one corre-
spondence at each iteration of their algorithm. They also used
rich descriptors of the distribution of points called shape con-
text as an alternative distance measure to Euclidian. Robust sta-
tistical methods have also been applied to address the presence
of outliers. Zhang [7] used M-estimators on the residual dis-
tance distribution to estimate parameters of a rigid transform.
The methods mentioned above do not impose symmetry of the
recovered solution. That is, a different result would be obtained
if the two point sets were swapped. Johnson and Christensen
[5] used inverse consistency constraints within the context of
intensity-based image registration to improve registration per-
formance by producing more correct correspondences.

II. POINT MATCHING FOR GEL REGISTRATION

In this section, we evaluate the performance of several can-
didate point matching algorithms using synthetic data which
simulates spot patterns extracted from 2-DE gels. There are
often important, genuine, differences in the patterns of spots in
gels being aligned. As well as these differences, automatic spot
detection algorithms often introduce additional spurious spots
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whilst missing or, more commonly, merging overlapping spots.
These factors will create outlier points in each gel of a compa-
rable pair that have no counterpart in the other. These outliers
typically lie within the spatial range of the true spot pattern.

With this in mind, our evaluation focusses on the sensitivity
of the algorithms to both shape deformation and the presence
of unmatchable outliers. While basing our investigation on the
class of algorithms derived from the ICP method [3], we extend
this comparative framework to include algorithms that apply de-
terministic annealing.

The rest of this section is structured as follows. Section II-A
defines the framework of a general point matching problem.
Section II-B describes the point-matching algorithms that
we have evaluated, separated into components to identify the
sources of strengths and weaknesses in each. A description
of global deterministic annealing methods that we have also
evaluated is given in Section II-C. Section II-D describes the
experiments we have carried out, and presents an analysis of
the results obtained.

A. Point Matching Definition

The problem of matching two point sets with unknown cor-
respondence can be described as follows. Given two sets of 2-D
points, , and , where

and , equivalently, we wish to find a
correspondence matrix, , and transformation, , which mini-
mize the following function:

(1)
where

(2)

and .
Here, is matrix with values in the range [0,1], representing

the confidence of each possible correspondence. The terms
and are the mean location and combined weight for a

weighted combination of original points where is the
th row of . In this way, is used to produce a weighted

one-to-one correspondence between and . Covariance
matrices, and , represent uncertainty on the posi-
tion of each point, and are used to produce a Mahalanobis
distance metric. The point covariances can be set manually
using prior assumptions, or estimated from data as appropriate
depending on the specific application. Note that in (1), is
a covariance associated with two corresponding points, and

, and is obtained from a weighted combination of estimated
point covariances. The final term represents transformation
smoothness and is formalized within the context of spline
transforms [10]; its form depends on the transform being used.
Throughout this process we have used clamped-plate splines
(CPSs) [11] to parameterize these transformations; in this case,
the smoothness term is proportional to the integral of the second
derivatives of the transform.

Fig. 2. Point matching algorithm structure. ICP type algorithms can be split
into Distance, correspondence and transformation components. Annealing can
be used to provide a global-to-local optimisation.

As stated, the correspondence matrix is used to estimate
points with one-to-one correspondence from the two sets of

feature points (2). These can be used to estimate the parameters
of a transform between the two point sets and are henceforth
referred to as control points. With source and target control
points, and , CPS ,
and affine parameters can be calculated to maximize smooth-
ness whilst interpolating through the control points by solving
the following linear system:

(3)

where is an vector of one component of the spline target
points, is an matrix of Green’s function values

, is an matrix whose rows are ,
is a 3 1 vector of zeros and is a 3 3 matrix of zeros. The
matrix is a weighting matrix with a diagonal structure:

. For anisotropic control point
errors has a block diagonal structure and the form of the
solution remains similar to (3) [10], [12].

The tradeoff between smoothness and the accuracy of control
point matching is controlled by the parameter . In our work, we
chose to manipulate as a function of , in
which case , with representing an interpolating
spline (no smoothing) and increases smoothing until only
affine parameters are obtained. All transformations have been
calculated within the coordinate range: [ 0.5,0.5], scaling and
centring image coordinates to this region.

No closed form solution to minimizing (1) exists. Therefore,
a point-matching algorithm such as ICP must combine (2) and
(3) in an iterative framework. Fig. 2 illustrates the iterative al-
gorithm used here. Briefly, the feature point correspondence
matrix is estimated using a distance measure between point
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TABLE I
DISTANCE MEASURES WITH EVALUATION PARAMETERS

TABLE II
CORRESPONDENCE ESTIMATION WITH EVALUATION PARAMETERS

sets. Equation (2) is then applied to give control point locations.
Equation (3) is then used to give an estimate of transformation
parameters. The transformation is applied to the point sets and
the distance measure recalculated. This process is repeated until
a convergence measure is satisfied. The resulting transformation
and correspondence estimates are assumed to minimize equa-
tion (1). The following sections describe the structure and com-
ponents of such an algorithm in more detail.

B. Local Point Matching Methods

Fig. 2 shows the basic structure of our algorithms applied to
solving the registration defined by (1). The boxed portion of
the figure represents the class of algorithms derived from the
ICP scheme. The figure also shows how this basic methodology
can be extended to allow global-to-local annealing algorithms,
such as robust point matching (RPM) [6], to be implemented
by allowing ICP to repeatedly converge at different parameter
values. We have explicitly separated the procedure into com-
ponents: distance measure, , and methods of estimating cor-
respondence, , and calculating transformation parameters,

, each of which can be evaluated in terms of its contribution
to the effectiveness of the overall algorithm. To enable us to
label the different combinations systematically, we provide in
Tables I–III a labelled list of the techniques we have imple-
mented for each component of the algorithm, together with any
appropriate adjustable parameters and the values of these that
we have used in this study. Each full algorithm will be described
in terms of these labels, for example, standard ICP is called
Euc-CP-CF: Euclidian distance measure (Euc), closest point
correspondence estimation (CP) and closed form transforma-
tion estimation (CF); whereas robust M-estimator ICP would be
Euc-CP-Mest. We now briefly describe each component option.

Distance: Euclidian (Euc). , where
is the 2-norm of a vector.

TABLE III
TRANSFORMATION PARAMETERS WITH EVALUATION PARAMETERS

Distance: Shape Context (SC). SC [9] provides a
semi-global description of the spatial distribution of neigh-
boring points by counting the number of points in radial regions,
yielding histograms that can be made invariant to affine de-
formations [Fig. 7(a)]. The method also includes an explicit
treatment of outliers. The statistic between histograms is
used as a distance between features.

Correspondence: Closest Point (CP). CP correspondence
produces a binary matrix. For each , if is the
minimum for all , and 0, otherwise. Therefore, correspondence
is assigned between and a single member of . This procedure
does not guarantee one-to-one correspondence.

Correspondence: -Closest Points (kCP). kCP correspon-
dence also produces a binary matrix. For each , if
is one of the smallest values for all , and 0, otherwise. In this
case, a single is estimated to correspond to members of
with equal likelihood. The parameter, , can be thought of as a
circular binary influence, or scale, parameter with a radius de-
termined at each data point as the Euclidian distance of the th
furthest point.

Correspondence: Bi-partite Graph Matching. We have
used an efficient implementation of the unit-supply transporta-
tion algorithm [13] to calculate an optimal BGM solution. The
result is a binary matrix with guaranteed one-to-one correspon-
dence between sets if the same number of points are present
in each. In our implementation supply must match demand so
when extra “slack” rows or columns are added to ,
to represent null, or outlier, correspondences. These “slack”
variables have a high transportation cost to ensure a maximal
graph matching is obtained.

Correspondence: Gaussian Weighted (Gauss). De-
rived from Bayesian assumptions of uniform Gaussian
noise on data points [4], each possible correspondence
is weighted by a normalized Gaussian term:

. This method is also
known as softmax [14]. The scale parameter, , can be decreased
in an annealing schedule, and for each , the corresponding
to the minimum distance, , approaches 1 while all others
approach 0. In the limit, , all will be 0 except the
corresponding to the minimum distance. This normalisation has
the effect of imposing a single winner-takes-all constraint.

Correspondence: SoftAssign (SA). In the same way as
softmax, SA uses a Gaussian-weighted correspondence ma-
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trix. SA forms a double stochastic matrix using Sinkhorn’s
method of repeated row and column normalisation [15], which
imposes two-way constraints. If , extra “slack” rows
or columns can be added to , representing null, or outlier,
correspondences. These “slack” variables can be included or
excluded from the Sinkhorn normalisation process and must be
initialized with a distance value. The Gaussian scale parameter
controls the “binaryness” of the matrix in a similar way to
softmax, again allowing an annealing approach. As
the matrix tends towards a binary permutation matrix.

Transformation: Closed-Form (CF). Given the correspon-
dence matrix, , transformation parameters, and , can be
calculated by minimizing (1), the analytical solution of which
is given by solving (3) using the block diagonal matrix

.
Transformation: M-estimator (Mest). The closed-form so-

lution to (3) is only appropriate when data, and , contain no
outliers, i.e., when contains only correct correspondences. The
closed-form solution is a least-squares model parameter estima-
tion method and, therefore, assumes a Gaussian distribution of
residuals. When outliers are present in the data the residual dis-
tribution will not be Gaussian, and least squares methods are not
appropriate. We have used an M-estimator approach to to reduce
the influence of outlying values making the residual distribution
conform more closely to a Gaussian model. This is achieved by it-
eratively re-weighting each correspondence to reduce or remove
the influence of correspondences not consistent with our trans-
formation model. The weighting function is based on the residual
between the transformed point, and its target position,

, where ,
is the combined covariance of point features and and is a
robust estimate of the mean of all . We have used one of the
most consistent and widely used forms of weighting function,
which was devised by Huber [16].

Transformation: M-estimator with inverse consistency
(Mestinv). A desirable property of any point matching scheme
is inverse consistency. That is, transform , is the in-
verse of the transform , i.e., . In general,
the correspondence methods described above will not give a
consistent result if the point sets are swapped. Also, CPS trans-
forms are not inverse consistent, even with fixed and consistent
correspondence. Johnson and Christensen [5], [17] have shown
that improved results are obtained when inverse consistency
constraints are introduced during image registration. We have
incorporated an inverse consistency constraint into our M-esti-
mator residuals as follows:

,
where is the forward transform, is the inverse of the
backwards transform. The first term can be thought of as an ac-
curacy constraint, and the second measures inverse consistency
at the point location. Parameters and control the relative
importance of each term. Using this residual in an M-estimation
scheme has the effect of reducing the weights of inaccurate and
inconsistent correspondences.

C. Global Deterministic Annealing Algorithms

The correspondence estimation methods kCP, Gauss and SA
each have some kind of scale parameter. Their performance is

dependent on setting a good value for this parameter. For this
reason, and to produce a global optimisation, these algorithms
can be applied in a deterministic annealing context where their
scale is lowered in an annealing schedule. In the context of
this work, the scale parameter can be thought of as control-
ling the extent of a weighted mean for the calculation of
(1). For example, as the Gauss parameter tends towards a
large value, all become equal and all tend towards .
The resulting transformation will transform every point to the
center of gravity of . As decreases, the region of influence
of the weighted mean decreases and the method becomes more
locally influenced. The settings for maximum and minimum
scale parameter value control the annealing schedule. The pa-
rameter is initialized at the maximum value, and is decreased
until the minimum value is reached. In this way, a coarse-to-fine
global search strategy is achieved. Parameter settings for each
annealing method are given in Table II.

D. Evaluation and Results

We have performed several experiments to evaluate the per-
formance of different combinations of point-matching compo-
nents using synthetic point sets designed to simulate protein spot
patterns.

Each experiment uses two point sets, referred to as the source
and target sets. Each source set consists of 100 points drawn
randomly from a uniform distribution within the unit circle. A
uniform distribution has been used to simulate protein spot dis-
tribution as we do not wish to bias our analysis towards a partic-
ular biological sample or gel production conditions. Each target
set is copy of the corresponding source set, giving us a ground
truth correspondence. Varying degrees of shape deformation can
be introduced by transforming the target set using a random
Gaussian RBF spline with a fixed transformation energy, .
Fig. 1 illustrates the amount of deformation typically observed
between a pair of gels [Fig. 1(a) and (b)] alongside the deforma-
tion resulting from a spline transformation with and

[Fig. 1(c) and (d)]. Fig. 3 shows that deformations up
to were applied in the evaluation experiments, a range
considerably larger than that commonly observed between com-
parable gels.

Outliers have been introduced to either set by removing or
adding points in the target at random. During gel registration
outliers are likely to occur in both sets simultaneously. For this
reason, outliers are generated by both adding a percentage of
random points to the target set and removing a percentage of
the target set.

In all experiments, 100 alignments of random source and
target pairs were performed for each method at each deforma-
tion energy or outlier level. Unless specified, parameters for
each algorithm are given in Tables I–III. These parameters were
chosen manually to produce a good alignment performance for
each algorithm. Parameter settings for SA and Gauss are equiv-
alent. During this evaluation all covariance matrices are set to

and a CPS smoothing parameter of was used.
Each figure in this section shows residual mean-squared

Euclidian distance, ( 1 s.d. error bars), between ground-truth
and corresponding points after alignment. These values are
either plotted against deformation energy, , or against
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Fig. 3. Effects of deformation on correspondence estimation and distance measure. (a) Without annealing; (b) with annealing; (c) shape context.

percentage outliers added and removed from the target set
depending on the experiment. A value of indicates a
perfect recovery of the deforming transformation at the data
points.

1) Deformation: Fig. 3(a) shows the effect of increasing de-
formation on different methods of correspondence estimation
with no outliers. CP is the most sensitive to deformation. BGM
and SA are the least sensitive to deformation and have similar
performance when the SA scale parameter is set to discount
all but local correspondences (see Table II). This equivalence
demonstrates the fact that both algorithms produce a local op-
timal solution w.r.t. initialisation. Gauss is less robust to defor-
mation than SA. Parameters for these two algorithms are equiv-
alent, so the improvement observed in SA is the sole result of
the dual row and column constraints of Sinkhorn normalisation,
as opposed to the single constraint of Gauss.

Fig. 3(b) shows results using annealing methods. BGM
results are repeated on the figure for visual comparison [in
Fig. 3, Euc-BGM-CF is almost co-incident with Euc-Gauss-CF
(Anneal)]. Gauss with annealing has a performance equivalent
to BGM. For SA, the initialisation value of the slack row and
column has a bearing on performance. Setting this value to 0

has the effect of disallowing outliers, as multiplica-
tive Sinkhorn normalisation has no effect (see Section II-B).
This setting produces the best performance of any algorithm
evaluated as it matches the data, which has no outliers. When
data is expected to contain few, or no, outliers SA without
slack row and columns produces optimal results. Our data
is expected to contain a large proportion of outliers, so this
parameter choice is not appropriate. Choosing a value allowing
outlier estimation and propagating the
slack row and column values throughout iterations results in a

performance less accurate than BGM. This is a more reasonable
parameter setting for our data and has been evaluated for data
containing outliers, the results of which are presented later in
this section. Numerous other possibilities exist for controlling
slack row and column values between iterations which we have
not investigated here. The two performances of SA presented
here represent the extremes of performance that can be achieved
with this algorithm by parameter tuning.

Fig. 3(c) shows the effect of deformation using the SC
distance measure with CP and BGM correspondence methods.
Euc-BGM-CF has been repeated for visual comparison.
Euc-CP-CF is the worst performing algorithm in Fig. 3(a),
and Euc-BGM-CF the best. However, using SC as a distance
measure produces similar performance for both CP and BGM
to that obtained by Euc-BGM-CF. Using a more descriptive
distance measure, allows a simpler correspondence method to
be used without degradation of results.

kCP, Gauss, and SA are not included on this figure. Using
SC with any of these non-one-to-one correspondence methods
produces unstable results, and the algorithm is not guaranteed to
converge. Using Euclidian distance, the scale parameters of these
algorithms control the width of a smoothing kernel during calcu-
lation of (1). However, correspondences with similar SC dis-
tances are not guaranteed to lie close to one another in Euclidian
space. In this case the scale parameters have little meaning with
respect to smoothing estimates of . In the form described in
Section II-A, none of these algorithms can be used with non-
Euclidian distance measures. It may be possible to modify these
correspondence techniques to use a non-Euclidian distance
measure, but this is beyond the scope of this comparison.

2) Outliers: Fig. 4 shows the effect of outliers on point
matching algorithms with varying amounts of deformation.
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Fig. 4. Effects of outliers on point matching algorithms with varying amounts of deformation using (a), (b) Euclidian and (c), (d) shape context distance measures.
(a) Medium deformation, E = 0:1, Euc; (b) large deformation, E = 0:25, Euc; (c) medium deformation, E = 0:1, SC; (d) large deformation, E = 0:25, SC.

Point sets were created by both removing original points and
adding extra random points to the target set. A representative set
of algorithms from the deformation study have been evaluated.
Correspondence methods used were the simple CP method, the
BGM method and SA with annealing. Both Euc [Fig. 4(a) and
(b)] and SC [Fig. 4(c) and (d)] distance measures were used
with each correspondence method.

Previously, we have shown that BGM is sensitive to the
proportion of outliers even when no deformation is present
when the target set contains both missing and extra points [18]
(data not shown). Inspection of these results shows “chains” of
incorrectly assigned, but relatively consistent correspondences
which introduce error into the global transformation. In con-
trast, where outliers from only additional or missing points are
present, BGM is able to find correct matches even at quite high
outlier proportions (data not shown). However, the presence
of “unmatchable” points on both reference and target images
corresponds more closely to the real situation in gel matching.
We do not believe that this test of BGM has been reported
previously. Euc-CP-CF is insensitive to the number of outliers,
its performance depending only on deformation [Fig. 4(a) and
(b)]. Using the Euclidian distance measure (Euc), SA is the
best performing correspondence method in terms of robustness
to outliers.

As shown in the case of deformation (Fig. 3), improving the
distance measure can allow the use of a less complex method
of correspondence estimation. This is again shown in these re-
sults. SC cannot be used with SA, but Euc-SA is included as
a benchmark in Fig. 4(c) and (d). SC-CP-CF has a comparable
sensitivity to outliers as that of Euc-SA-CF (Anneal). The SC
distance measure degrades slightly as outliers corrupt the local

point patterns. At larger deformations [ , Fig. 4(d)],
SC-CP-CF produces the best alignment of all the algorithms,
more accurate than that of the more complex SA correspon-
dence method.

In summary, when deformation is small Euc-CP-CF and
Euc-SA-CF are the best performing algorithms and are both
insensitive to the percentage of outliers. When deformation is
large SC-CP-CF and Euc-SA-CF with annealing are the best
performing algorithms in terms of alignment accuracy.

3) M-Estimation: The outlier sensitivity experiments were
repeated using M-estimation (Mest) to reduce the influence of
outliers on the CP and BGM schemes. Fig. 5 shows results from
these experiments in the presence of large amounts of deforma-
tion. Results from Euc-SA-CF are repeated on the figure to aid
visual comparison. In all results, Mest results in improved align-
ment over CF for each method. This improvement is greatest for
BGM methods, where Mest removes most of the chains of er-
roneous correspondences.

Unlike SA, Mest separates the measure used to determine
correspondence from the measure used to determine consis-
tency with the transformation model. Therefore, we are able to
use a non-Euclidian distance measure to determine correspon-
dence more effectively, whilst still imposing consistency con-
straints in terms of Euclidian residuals. When deformation is
large (Fig. 5, ) both SC-CP-Mest and SC-BGM-Mest
produce more accurate alignments than Euc-SA-CF and show
no significant increase in residual with respect to increasing
numbers of outliers.

4) M-Estimation With Inverse Consistency: Fig. 6 shows the
effects of adding an inverse consistency term to the M-estimator
residual distribution. Results for Mest are repeated for visual
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Fig. 5. Effects of outliers on point matching algorithms with varying amounts of deformation using M-estimation with (a) Euclidian and (b) shape context distance
metrics to calculate transformation parameters. (a) Large deformation, E = 0:25, Euc; (b) large deformation, E = 0:25, SC.

Fig. 6. Effects of additional and removed outliers on point matching algorithms using M-estimation with inverse consistency and (a), (c) Euclidian and (b)shape
context distance metrics. Large deformation, E = 0:25. (a) Accuracy, Euc; (b) Accuracy, SC; (c) Inverse Consistency, Euc.

comparison. Using Mestinv does not improve alignment accu-
racy using either Euc [Fig. 6(a)] or SC [Fig. 6(b)] distance mea-
sures. The accuracy of Mest and Mestinv are equivalent when
Euc is used a distance measure regardless of correspondence
method. The relationship is less clear when SC is used as a dis-
tance measure. When the number of outliers are small, Mestinv
degrades accuracy; however, the performance of all algorithms
converge at higher outlier levels.

Fig. 6(c) shows a measure of the consistency of forward and
reverse transforms, , plotted against
outlier percentage. We have evaluated at a regular grid of
10 10 locations covering the range of the transforms. A value
of indicates perfectly consistent forward and reverse
transformations and that swapping the target and source point
sets with one another would have no effect on the results of

alignment. In all cases, this measure shows that Mestinv results
in more inverse consistent transformations than standard Mest
(SC data not shown).

These results show that forcing inverse consistency when
most correspondences are good, as will be the case using SC
when the number of outliers is low [Fig. 6(b)], can erroneously
down-weight the number of “correct” matches in favour of in-
correct but inverse consistent correspondences. However, when
a larger number of outliers are present, the Mestinv technique
can produce a much more inversely consistent result, without
reducing the accuracy of the final solution, thus ensuring that
matching results are independent of the order of the images.

5) Summary: A summary of algorithms best suited for use on
data with given characteristics, as determined by our evaluation,
is given in Table IV.
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TABLE IV
DATA CHARACTERISTICS ALGORITHM SUMMARY

III. GEL REGISTRATION

Using the results of our evaluation of point matching al-
gorithms, we have developed a method of gel registration.
The entire algorithm is set in a multiresolution framework,
with the final transform from the current resolution being
used to initialize the next highest. At each level of image
resolution, spots’ center regions are detected from both gels
using a simple threshold on the Laplacian image. We estimate
anisotropic covariance for each detected spot center using
image partial derivatives [19]. A single point is extracted from
each connected region, its position defined to be the location
of the darkest pixel. All but the 400 most intense spots are
discarded. Increasing the number of spots used to align our gel
images does not significantly improve the performance of our
algorithm. We have shown that using a descriptive measure of
distance between points can produce good alignment results.
Using this finding, we estimate correspondence using a distance
measure combining Euclidean distance, shape context and two
novel measures describing the context of the distribution of
spot intensities and sizes. These new, gel-specific, measures are
described later in this section. The transformation parameters
arising from closest point correspondence with M-estimation
are calculated and refined using local image correlation. The
resulting transformation is used to initialize the next point
matching step. The process is iterated until convergence.

A. Point Matching for Gel Registration

Our point matching scheme uses CP correspondence estima-
tion. We use a combination of Euc and SC distance measures.
The evaluation of point matching methods in the presence of
outlier features presented in Section II-D shows that when de-
formation is expected to be large the most appropriate distance
measure is SC, and when deformation is small Euclidian dis-
tance yields the highest accuracy and robustness (see Table IV
for summary). We postulate that using a distance measure tai-
lored to a specific task will produce a better point-matching re-
sult than the simple application of a general approach. For this
reason, in addition to Euc and SC, we have added two more

distance measures designed to represent the local image struc-
ture of each gel-spot feature. The first of these is illustrated in
Fig. 7(b). Following the SC histogram binning method, we have
have developed semi-global image intensity and feature infor-
mation descriptors. Rather than counting the number of feature
points in a specific bin, we have used the average image inten-
sity within the region as an element of an attribute vector. We
use the robust least median of squares (LMedS) [20] measure
to calculate the distance between vectors. Similarly, we define
a third distance measure associated with the binary thresholded
Laplacian image used to determine point locations [Fig. 7(c)].
We use the term image context (IC) for the first of these two mea-
sures, as it contains information about the intensity distribution
and feature context (FC) for the second, which encapsulates in-
formation about the extent of surrounding spot center features.
Each of these measures describes a different aspect of a spot’s
local environment, and they are combined into a single distance
between features using the following formula (neglecting nor-
malisation): , where

is a weighting factor between the two measures, is Eu-
clidian distance, is shape context distance, and
are image context and feature context distances calculated using
LMedS. All measures are normalized over the set of all dis-
tances to have mean 0 and standard deviation 1, which ensures
equal influence for each measure when . It is expected
that the required deformation will be large at low image resolu-
tions, and will become progressively smaller as the gels come
into alignment at higher resolutions. For this reason, we vary
linearly between 0 (lowest resolution, entirely context driven)
and 1 (highest resolution, entirely euclidian driven) with reso-
lution level during registration. Section III-C gives results of ex-
periments showing the effect of including each of these different
distance measures on gel registration accuracy. We also adjust
the smoothness of the CPS transform. Starting with a strongly
constrained smooth transform at coarse resolutions, the value
of the smoothing parameter, , is decreased at each resolution
level, ending with a less constrained transform. In this work, we
vary linearly between 0.25 and 0.01.
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Fig. 7. Attributes for feature distance calculation. (a) Shape Context. Similarity of shape context is measured by constructing a histogram of numbers of points
within radially arranged bins. This gives a semi-global indication of the similarity of the shape environments of points being compared. (b) Image context. Similarly
to shape context, a measure of similarity of the image environment of comparable points is obtained by averaging the image intensities within radial bins to provide
a feature vector. (c) Feature context provides a measure of similarity of the extent of local features, determined by a feature detection step. The elements of the
vector in this case are counts of within-feature pixels.

Due to genuine differences in spot pattern and the simplicity
of our automatic feature extraction scheme, we know that cor-
respondences will contain errors. We have shown that M-esti-
mation can be used to improve alignment accuracy in the pres-
ence of outlier correspondences. Mestinv results in equivalent
accuracy for Euc distance with improved inverse consistency.
However, alignment accuracy is slightly impaired when using
SC as a distance measure. For this reason, we have used Mest as
our transform parameter estimation method. Results from Sec-
tion II-D also suggest that SA could be used as a point matching
algorithm, and an evaluation of its performance is given in Sec-
tion III-C.

B. Local Image-Based Refinement

A further refinement to our scheme addresses the inconsis-
tency of point localisation that arises from using the darkest pixel
of regions within the binary feature image. The darkest pixel of
corresponding feature areas in two different gels may not be in
the same position on each gel. For this reason, we optimize the
position of each point in one image with respect to the location
of the corresponding point in the other. We maximize the cross-
correlation between local image patches by adjusting the loca-
tion of a point in one of the images. This process is applied, fol-
lowing the determination of correspondence and transformation
parameters, on corresponding feature pairs with high weight at
each resolution level. The new feature locations are used in sub-
sequent feature matching iterations. For this work, we have used
an image region of 15 15 pixels, corresponding to an image
region slightly larger than the largest expected protein spot. Re-
sults of applying this technique are given in Section III-C.

C. Evaluation and Results

As the analysis of 2-DE gels requires the comparison of cor-
responding protein spots, the effectiveness of gel matching algo-

rithms should be measured in terms of the accuracy of alignment
of protein spots. To perform this evaluation we require a large
set of gel image pairs with annotated spot positions and known
correspondence. Ideally, the matching difficulty for each pair
should be known and should represent the true range found in
real data. Data meeting these requirements is not available and,
due to the complexity of the images, would be extremely time
consuming to produce. Instead, we have used DIGE gel pairs
with known spot locations and introduced varying amounts of
synthetic deformation to form our test data set. DIGE gels [21]
are produced using protein mixtures that are prestained with
different fluorescent dyes, chosen to have different U.V. exci-
tation frequencies. This allows pairs of images to be produced
with perfect correspondence but showing genuine sample dif-
ferences.1

In this evaluation, we have used five pairs of DIGE gel im-
ages, each with 650 annotated spot positions. Using these
images, we created a large evaluation data set by introducing
varying amounts of shape deformation to one image using a
random Gaussian RBF spline with a fixed transformation en-
ergy, . Fig. 1 shows an example of a synthetically deformed
image. In our evaluation, has been varied linearly in five steps
between . By observation, the top end of this range
exceeds the maximum amount of deformation required to align
corresponding gels in practice. At each value of , we have cre-
ated 5 randomly deformed images from each DIGE pair. This
gives a total of alignments, each with 650
spots.

After gel alignment, the recovered transformation is used
to transform the spot locations to their estimated position
in the un-deformed gel, giving a residual Euclidian distance
between the transformed spots and their ground-truth positions

1Gel matching is still required to compare between different DIGE gel pairs
or when a large number of comparisons is required.
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Fig. 8. Effect of distance measure on gel registration error. SC is shape context
only, SC + FC is an equal combination of shape context and feature context, and
SC + FC + IC is an equal combination of all three distance measures. SoftAssign
shows results obtained using SA with Euclidian distance.

Fig. 9. Comparison of point-based gel registration with image-based gel
registration.

. Residual is reported as a proportion of the maximum
dimension of the associated gel image. Our algorithms have
been applied using three resolution levels on images that are

in size.
Fig. 8 shows gel registration accuracy using various distance

measures. The best results are obtained using a combination of
all three distance measures (SC, FC, and IC). We obtain accurate
gel registrations which are robust even at the maximum amount
of applied shape deformation. SoftAssign, which has been ap-
plied with annealing at a single resolution using Euclidian dis-
tance, gives poor accuracy and robustness compared to the best
gel-specific method.

Fig. 9 shows gel registration accuracy for a commonly used
image-based B-spline registration [2]. Point matching results
are repeated for visual comparison. Image based registration
is significantly less robust than point matching as deformation
increases. These results are due to a combination of the local
refinement nature of image-based search and the weakness of
some image data. When multiresolution methods are applied,
weak spots can be effectively removed from the image data
at low resolutions. This creates image regions that contain al-
most no information and their alignment cannot be refined using
an image similarity measure such as normalized cross corre-
lation. However, upon increasing resolution, weak, small di-
ameter protein spots may become discernable in these regions.
Local search methods will fail if there is not some overlap of
the corresponding weak spots from the previous low resolution
registration and they will not be brought into alignment. Point
matching algorithms have the capability to match these features

Fig. 10. Effects of local refinement on gel registration accuracy.

even when they are not partially overlapping as they do not ex-
plicitly minimize an image-based similarity measure. It may be
possible to introduce a semi-global method of image search to
improve the performance of image-based registration methods
although this has not been done here.

Image-based methods commonly use a regular grid of con-
trol points that do not necessarily lie on any particular image
features. However, point matching methods benefit from fo-
cusing the estimated transformation on features of interest. In
our implementation, spline control points lie on protein spot fea-
tures which are the target of our evaluation measure. This may
contribute to the improvement in accuracy gained by our point
matching method.

Additionally, the image-based registration method we have
evaluated takes no account of outliers in the image intensity
residual measure caused not by misregistration, but by gen-
uine spot differences. It may be possible to improve the perfor-
mance of the method by using a image residual robust to out-
liers. However, we believe such a method would be unable to
distinguish these two types of outlier residuals (based solely on
residual intensity) and improvements would be unlikely. Per-
haps this could be circumvented by the production of a gel-spe-
cific image-difference measure, but this is beyond the scope of
this evaluation.

Image-based methods can, however, be used to refine the
results of our point matching method. We have evaluated two
methods: simple cross-correlation control point optimisation
and full B-spline image registration applied after each iteration
of point matching. Fig. 10 shows that both methods produce
equivalent results, slightly improving on point matching alone.
This result demonstrates that image-based registration is unable
to significantly improve on a given initialisation using only
local search in gel images. Optimizing the location of the
spline control points alone gives an equivalent improvement,
indicating that little improvement has been achieved away from
the control point locations.

IV. CONCLUSION

We have presented a method of aligning 2-DE gels using
point matching that is accurate and robust to large image distor-
tions and large percentages of unmatchable spots. This has been
achieved by separately evaluating the components of the point-
matching algorithm into distance measure, correspondence es-
timation and transformation calculation. We have shown that
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judicious choice of distance metric and the use of appropriate
robust estimation of transform parameters allows a relatively
simple algorithmic framework to be used without sacrificing ac-
curacy or robustness of matching. A summary of algorithms best
suited for use on data with given characteristics, as determined
by our evaluation, is given in Table IV.

The gel-registration algorithm that arose from this evaluation
uses a novel combination of Euclidean and shape-context
features in an iterative M-estimation algorithm, which corre-
sponds to the assumptions of medium to large deformation with
significant numbers of outliers in Table IV. We have shown
that it is possible to include inverse-consistency constraints into
the M-estimation loop. While improving inverse-consistency
of matches, these constraints have no significant effect on
matching accuracy, either positively or negatively. However,
using these constraints can ensure that matching results are in-
dependent of the order of the images. Robustness to both large
deformations and the presence of outlier (unmatchable) points
in both reference and target images is extremely important in
gel-registration. For this image-matching application we have
included further image-based features in the distance measure.
We have called these image context and feature context, and
they have also been shown to further improve the accuracy
and robustness of matching significantly over the point-based
scheme, resulting in no loss of matching accuracy in the face of
very large distortions. Adding a local refinement step based on
image intensities produces a slight, but measurable, improve-
ment in alignment accuracy. Our algorithms have been shown
to out-perform image-based registration. The high accuracy
and robustness of the system shows promise for use in practical
gel alignment situations.
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ABSTRACT 

Biomarker discovery in amenably sampled body fluids has 
the potential to empower clinical screening programs for the 
early detection of disease. Liquid Chromatography 
interfaced to Mass Spectrometry (LC-MS) has emerged as a 
central technique for sensitive and automated analysis of 
proteins and metabolites from these clinical samples. 
However, the potential of LC-MS as a precise and reliable 
platform for discovery and screening is dependent on robust, 
sensitive and specific signal extraction and interpretation. 
The output of LC-MS is formed as a set of quantifiable 
images containing thousands of biochemical signals 
regulated in disease and treatment. We propose to tackle this 
problem for the first time with a biomedical image analysis 
paradigm. A novel workflow of image reconstruction, 
groupwise image registration and Bayesian functional 
mixed-effects modeling is presented. Poisson counting noise 
and lognormal biological variation are modeled in the raw 
image domain, resulting in markedly improved detection 
limit for differential analysis.1 
 

Index Terms—Reconstruction, Image Registration, 
Functional Mixed Model, Mass Spectrometry, Proteomics 

1. INTRODUCTION 

The goal of clinical biomarker discovery and screening is to 
find patterns of proteins and metabolites whose changes in 
abundance, structure or function robustly discriminate 
between control and disease. By targeting body fluids 
(blood, urine or saliva) rather than the pathological tissue, 
these patterns can be used to directly drive noninvasive 
routine clinical screening programs as indicators of 
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predisposition, progression, treatment efficacy and early 
detection of disease before the onset of recognizable 
symptoms. This screening, and the informatics approach 
underpinning it, is complementary to and potentially 
symbiotic with data from macroscopic medical imaging 
modalities. Whilst body fluids may not be biologically 
proximal to the disease site, they are often directly affected. 
However, biomarker discovery has been challenging as 
human plasma carries 105 protein forms, a dynamic range of 
~1010 and significant variation. Systematic workflows have 
been established (e.g. Early Detection Research Network, 
NCI, USA), but few protein (‘proteomics’) and metabolite 
(‘metabolomics’) studies have been successful to date [1]. 

Since its origins in the late 19th century, mass 
spectrometry (MS) has become a fundamental method for 
determining the elemental composition of compounds [2]. 
Based on this, the life sciences community has adopted MS 
pervasively since the 1990s, but it is only in the last decade 
that clinical biomarker discovery and screening has found 
promise. MS measures the mass-to-charge ratio (m/z) of 
each ionized metabolite or peptide (protein fragment after 
digestion) contained in a sample mixture, binning each 
reading to form a histogram ‘spectrum’. While modern 
instruments achieve very high sensitivity, m/z accuracy and 
resolution, the sample complexity still necessitates pre-
fractionation by retention time on a liquid chromatography 
(LC) column. Two-dimensional separation by LC-MS 
therefore forms an image. Given the format and 
morphological characteristics of this data, it is perhaps 
surprising that there has previously been no cross-
disciplinary fertilization from the biomedical image analysis 
field. Fig. 1 illustrates the nature of an LC-MS dataset. 

The two cornerstones of computational MS analysis are 
quantification and identification of the underlying biological 
signals from the count data. Identification is performed 
through special acquisition of fragmentation spectra and its 
pattern matching against empirically curated databases. 
Identification is not the scope of this paper, except to note 
that if performed it causes gaps in the LC-MS quantification 
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images, as seen in Fig. 1d. Quantification and difference 
detection is performed by false-discovery rate controlled 
statistical testing on corresponding matched peaks across 
experimental groups of LC-MS datasets, using peak area as 
a surrogate for biological concentration. With existing tools, 
the raw data is disregarded after peak detection. While 
recent peptide modeling methodology [3] has improved 
sensitivity, substantial detection bias remains as only the 
strongest signals are reliably detected, quantified and 
matched between samples. Overlapping signals are either 
discarded or cannot be quantified accurately. Current 
algorithms are therefore limited in their ability to derive 
robust biological data on all detected biochemicals [4]. 

The proposed workflow consists of three recent image 
analysis techniques extended to provide a comprehensive 
biomarker discovery pipeline: (i) Sparse image restoration 
with a Poisson model for denoising and in-painting of gaps; 
This stage outputs images for subsequent (ii) smooth 
deformation non-rigid group-wise registration, which brings 
strong and weak features into correspondence; (iii) Bayesian 
multiscale functional mixed-effects modeling to estimate 
credible intervals and false-discovery rate controlled 
probabilities for difference detection. The fundamental 
principle is to retain and model raw image data from start to 
finish, enabling mining deep below the current detection 
limit and in complex regions of overlapping signals. 

2. METHODS 

Conventional processing invariably starts with feature 
extraction using an implicit Gaussian noise assumption [5]. 
However, a recent noise analysis [6] has revealed LC-MS 
data are instead dominated by the effects of the discrete ion 
event counting process. We therefore perform modeling of 
each observed LC-MS image g = (g1,…,gn) ∈ ! with the 
assumption that it represents a sample drawn from a random 
vector G = (G1,…,Gn)  of n independent Poisson variables:  

P G = g | λ[ ] = λi
gi e−λ

gi !i=1

n

∏
 

(1) 

Instead of feature extraction, we preserve all the data for 
differential analysis by employing sparse image restoration 
by assuming the signals can be represented parsimoniously 

in an over-complete dictionary. If the L0 pseudo-norm is 
replaced by a L1 norm, the point estimate still attains 
sparsity but the minimization becomes convex. Given an 
appropriate Lagrange multiplier λ, the solution x with input 
image b, dictionary A and Gaussian noise assumption is: 

min
x

1
2
b −Ax 2

2
+ λ x 1

 
(2) 

For Poisson noise, equation (2) can be utilized by first 
approximately stabilizing the variance with an Anscombe 
transform, b = 2√(b0+3/8). Nevertheless, the point estimate 
under Poisson noise is naturally sparsifying due to the 
distribution’s heavy tail. This fact was recently exploited by 
Shaked et al. [7] to provide a sparse version of the seminal 
Richardson-Lucy iteration for exact Poisson noise handling: 

!!!! = !∗ !
!!!

!!
!∗ ! !!     

(3) 

Since a positive valued dictionary is necessary to ensure 
positivity of the restored image, we employ a complete set 
of separable 2D multiscale cubic B-spline basis functions as 
our sparse domain. This models signal structure and enables 
multiscale in-painting. Because this fixed-point iteration is 
slow to converge, it was necessary to accelerate the method 
with Biggs-Andrews vector-extrapolation [8]. To correct the 
shrinkage bias, after execution with λ > 0, we rerun the 
method with λ = 0 on the remaining non-zero coefficients. 

The next step is to bring corresponding biological 
signals across the images into correspondence by accounting 
for retention time inhomogeneity. Alignment of equivalent 
spectra among (potentially large) groups of patient samples 
can be set as a non-rigid registration problem similar to 
those encountered in medical imaging. An important 
difference in this case is that the dimensions of the image 
(LC and MS) represent different physical quantities on 
different scales. The displacements are much greater in the 
LC dimension and variable throughout the image. Feature-
based registration is appropriate. However, the optimization 
is hampered by difficulties: large numbers of features with a 
very wide dynamic range of intensities, large numbers of 
similar spectra resulting in multiple local minima for 
registration, non-rigid retention time deformations and 
significant numbers of unmatchable features. 

Fig. 1. A typical protein LC-MS dataset, with ion counts in log scale after variance stabilization. (a) Illustrates the dynamic range and 
>100,000 m/z datapoints per spectrum. (b) Zoomed view shows Poisson noise masking significant dynamic range. (c) Zoomed in further, 
fine details are visible. Each biological signal is exhibited as a series of isotope peaks ~1/z apart, where z is its number of ionic charges. The 
instrument has a characteristic peak shape, while a periodic background signal is seen. Despite high resolution, overlapping signals are 
prevalent. (d) If identification spectra are acquired in the same run, missing quantification data will be evident (horizontal blue lines).       
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Rogers and Graham [9] proposed a point-based 
registration algorithm in the context of alignment of 2D 
electrophoresis gels, which share some of these difficulties. 
Their algorithm was based on robust point-matching using 
M-estimation and a non-Euclidean distance metric in a 
multi-resolution framework. Robustness to reference image 
selection was achieved by registration to an evolving mean. 
We have adapted this method to deal with the much higher 
and heterogeneous spatial resolution of the LC-MS images. 

In the final stage, to discover statistically significant 
biological regulation characteristic of potential biomarkers 
we have adopted a Bayesian Markov-Chain Monte Carlo 
(MCMC) method [4] for linear mixed-effects modeling on 
the restored, registered images. In large-scale biomarker 
discovery, a number of confounding systematic biases 
(‘fixed effects’) will be evident, such as the blocking of runs 
over different days. Additionally, multiple sources of 
statistical variation (‘random effects’) will be intermixed, 
such as when analyzing longitudinal samples from a subject 
against other subjects. Techniques that consider linear fixed 
and random effects are termed linear mixed models.  These 
can model regression relationships between outcomes and a 
set of multiple predictors, while accounting for potential 
correlation among the observations that might be induced by 
the experimental design.  Morris and Carroll introduced an 
approach extending the linear mixed model to analyze high-
dimensional complex functional data, termed the wavelet 
functional mixed model (WFMM). This work was extended 
to handle image data and other higher dimensional functions 
in Morris, et al. [4]. For a set of 2D images Yi(t1,t2), i=1, …, 
N, predictors Xia, a=1…p, and random effect predictors Zib, 
b=1…m, the functional mixed model is given by: 

 !!! !!, !! = !!"!!! !!, !! + ! !!"!! !!, !! + !!(!!, !!)!!!
!
!!! ,   

 !!! !!, !! = !!"!!! !!, !! + ! !!"!! !!, !! + !!(!!, !!)!!!
!
!!! ,   

(4) 

Where Ba(t1,t2) is a fixed effect function that measures the 
effect of predictor Xia on the image Yi(t1,t2) at position (t1,t2).  
The random effects Ub(t1,t2) and residual errors Ei(t1,t2) are 
assumed to be mean-zero Gaussian random variables. 

This approach models differences between the images 
without performing feature extraction, so has the potential to 
find results that would have been missed by peak detection 
failing to discern true peaks from noise [4]. The technique 
has been applied to low-resolution spectra and 2D 
electrophoresis gels. As LC-MS datasets are significantly 
larger, images were partitioned and cluster computing 
adopted. Data is Anscombe and lognormal transformed to 
stabilize biological variation across samples. The model is 
sampled with MCMC after each input image is wavelet 
transformed (2D Daubechies wavelets with 4 vanishing 
moments). The wavelet domain random variables allow 
heteroscedasticity both spatially and over scales, whilst the 
fixed effects use an adaptive spike-slab prior to promote 
peak-like signals. After applying inverse wavelet transforms 
to the MCMC samples of this wavelet space model, the 
result is a full posterior image distribution for each effect.  

3. RESULTS 

In the controlled validation study, 12 proteins were digested, 
resulting in thousands of peptide features across each LC-
MS image. 4 groups of 3 images were acquired, with 4 
proteins held at the same concentration in all groups, while 
8 were varied by known but approximate amounts. The 
experiment was repeated with co-acquisition of 
identification spectra. The total set of 24 images took 24 
hours to acquire on an Agilent 6530 Q-TOF. Datasets were 
then normalized to a peptide internal standard. As an 
authentic experiment, this validation data reflects the 
physical characteristics of production clinical studies. 

The datasets were processed with our workflow and the 
leading methodology of Progenesis LC-MS (Nonlinear 
Dynamics, UK). For our workflow, each LC-MS run was 
first processed with the image restoration method. Results 
are illustrated in Fig. 2a-d for 3 values of the shrinkage 
parameter λ. The strategy was to provide sufficient L1 
regularization to draw out faint biological signals and for 
robust in-painting. A conservative shrinkage λ = √2 was 
found to be suitable to avoid decimating real signal. The 
same value for λ gave equivalent results in all image 
regions. Conversely, feature extraction methods based on a 
Gaussian noise assumption requires a varying threshold 
across m/z due to reduced ion counts as m/z increases (as 
can be seen in Fig. 1a). This adds further evidence that 
Poisson noise is the dominant variation in LC-MS [6]. 

After restoration, the 24-image dataset was groupwise 
registered, as illustrated in Fig. 2e-f. All images were then 
manually examined for misregistration. The registration 
method identified one identification image as an outlier, 
which was confirmed to be the case and removed from the 
study. Otherwise, registration was successful between 
quantification and in-painted identification images, allowing 
identifications to be propagated to the quantification data.  

The registered quantification images were then input 
into WFMM. The design matrix consisted of three fixed 
effects representing the log ratio (i.e. up-fold or down-fold 

Fig. 2. (a) Raw count data for a 10 m/z region. (b-d) Denoising and 
in-painting results with a shrinkage factor of 20.0 (b), 20.5 (c) and 
21.0 (d). (e-f) A restored region before (e) and after (f) registration, 
demonstrating alignment of a quantification dataset (magenta) to 
an in-painted identification dataset (green).    

m 
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regulation between groups) between the three images in 
group A and the three images in groups B, C and D. 

For objective validation, we examined the derived fold 
changes for 15 features. Since these were necessarily 
identified and validated manually, we were limited to 
intense, isolated features. For suitable comparison, extracted 
features from Progenesis were modeled with MCMCglmm 
R package for Bayesian mixed modeling. As illustrated in 
Fig. 3a, mean fold change estimates were consistent 
between Progenesis and our workflow, whereas credible 
intervals were narrower with Progenesis. We postulate that 
this is due to additional biological knowledge utilized by 
Progenesis for background subtraction and peptide 
modeling. Nevertheless, intense features are frequently 
housekeeping proteins, whereas interesting biomarkers are 
often expressed only in trace amounts. As shown in Fig. 3b-
c, WFMM detects numerous significant changes in regions 
that Progenesis removes as background. Moreover, regions 
flagged by WFMM form peak trains characteristic of 
peptides. Since we do not model this distinctive signal 
structure, these patterns are unlikely to be false positives. 

4. CONCLUSIONS 

We have presented a new type of workflow for biomarker 
discovery and screening in LC-MS that is based upon 
principles that underpin biomedical image analysis 
methodology. The raw data is retained and utilized from 
beginning to end, with differential quantification founded on 
the proven mixed-effects model, thus enabling the handling 
of complex experimental designs. Unlike existing methods, 
it is not reliant on the performance of prior background 
subtraction and feature extraction routines, and therefore is 
capable of finding significant changes below current 
software detection limits. These newly discovered changes 
are candidate biomarkers for subsequent targeted validation.    

Since no prior biological knowledge is utilized, our 

workflow can be applied generally to all types of proteomics 
or metabolomics LC-MS experiment. Nevertheless, 
biological signal structure and correlation could also be 
modeled directly within our framework to improve 
sensitivity, which is a direction for future work. As well as 
comprehensive validation, we are also particularly interested 
in adapting our workflow to emerging MS Imaging 
technology, where mass spectra are acquired spatially across 
tissue sections for powerful ‘virtual’ histology. Moreover, 
the Bayesian functional mixed model also has a wide range 
of application in difference detection for other types of 
medical imaging data, including fMRI, EEG, and DTI. 
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Fig. 3. (a) Mean and 95% credible interval for the ratios between group A and B,C,D for 15 curated peptides. Results are shown for 
Progenesis (blue), and WFMM with restored (red) and raw (green) input. Black lines denote approximate ground truth. (b) WFMM mean 
and 95% credible interval for the image fixed effect between group A and B. (c) Right: For (b), posterior probability of log2 ratio > 1 (i.e. 
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overlaid on mean images of group A (green) and B (magenta). The 5 peptides detected by Progenesis are labelled/boxed, with the single 
significantly regulated peptide shown in solid blue. Left: Progenesis background subtraction and segmented boundaries for these peptides.    
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Detecting Reduced Bone Mineral Density From
Dental Radiographs Using Statistical Shape Models

P. Danny Allen, Jim Graham, Member, IEEE, Damian J. J. Farnell, Elizabeth J. Harrison, Reinhilde Jacobs,
Kety Nicopolou-Karayianni, Christina Lindh, Paul F. van der Stelt, Keith Horner, and Hugh Devlin

Abstract—We describe a novel method of estimating reduced
bone mineral density (BMD) from dental panoramic tomograms
(DPTs), which show the entire mandible. Careful expert width
measurement of the inferior mandibular cortex has been shown to
be predictive of BMD in hip and spine osteopenia and osteoporo-
sis. We have implemented a method of automatic measurement
of the width by active shape model search, using as training data
132 DPTs of female subjects whose BMD has been established by
dual-energy X-ray absorptiometry. We demonstrate that widths
measured after fully automatic search are significantly correlated
with BMD, and exhibit less variability than manual measurements
made by different experts. The correlation is highest towards the
lateral region of the mandible, in a position different from that
previously employed for manual width measurement. An receiver-
operator characterstic (ROC) analysis for identifying osteopenia
(T < −1: BMD more than one standard deviation below that of
young healthy females) gives an area under curve (AUC) value of
0.64. Using a minimal interaction to initiate active shape model
(ASM) search, the measurement can be made at the optimum re-
gion of the mandible, resulting in an AUC value of 0.71. Using an in-
dependent test set, AUC for detection of osteoporosis (T < −2.5)
is 0.81.

Index Terms—Active shape model (ASM), bone mineral density
(BMD), dental panoramic tomogram (DPT), inferior mandibular
cortex (IMC), osteopenia, osteoporosis, segmentation.

I. INTRODUCTION

O STEOPOROSIS is a general loss of bone mineral density
and can lead to an increased risk of fracture. Based on fac-

tors such as previous fracture, family history, and height loss.
Patients deemed to be at risk are referred for bone mineral den-
sity (BMD) assessment using dual-energy X-ray absorptiometry
(DXA). However, there has recently been great interest among
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Fig. 1. Example of a DPT of a normal (nonosteoporotic) patient. The positions
of anatomical points key to manual annotation are shown.

Fig. 2. A portion of the dental tomogram shown in Fig. 1 showing the appear-
ance of the mandibular cortex in a normal (nonosteoporotic) patient.

dental researchers in the possibility of identifying those at risk of
reduced BMD from dental radiographs since mandibular BMD
is related to systemic BMD [1].

Fig. 1 shows an example of a dental panoramic tomogram
(DPT) of a normal patient and Fig. 2 shows a close up of the
right mandible. Fig. 3 shows a schematic of Fig. 2—the cortical
region in this diagram is referred to as the inferior mandibular
cortex (IMC). There is evidence that the thickness of this cortex
is correlated with systemic BMD and hence causes osteoporosis
[2]. Fig. 4 shows the equivalent view of Fig. 2 for a patient with
osteoporosis—the mandibular cortex is much harder to perceive
visually as it is both thinner and less distinct from the mandible
as a whole. In particular, the thickness of the mandibular cortex
at a point closest to the mental foramen, referred to as the mental
index (MI), (Fig. 3) has been found to be the best indicator of
low BMD compared to the equivalent indices at the gonion (GI)
and the antegonion (AI) (Fig. 1) [2].

There is considerable room for subjectivity in the precise
placement of the MI measurement; the mental foramen is a very
indistinct feature, and the endosteal border can become very

1089-7771/$25.00 © 2007 IEEE
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Fig. 3. Schematic diagram of the dental tomogram shown in Fig. 2, showing
the point at which the inferior mandibular cortex thickness is measured by
dentists (mandibular index MI).

Fig. 4. Portion of a DPT showing the same region of the mandible as in Fig. 2,
but for a patient with osteoporosis. Note the thinning of the inferior mandibular
cortex compared with Fig. 2.

indistinct in cases of osteoporosis (Fig. 4). These factors do not
pose significant problems for an expert radiologist. However,
for general dental practitioners (GDP), they lead to consider-
able variability in MI measurement, even with individual train-
ing, and so routine assessment of low BMD risk from dental
radiographs by GDPs is not practical [4].

Dentists use a large number of radiographs, accounting for
32% of all medical radiological examinations in the U.K. [5],
opening the possibility of obtaining valuable medical informa-
tion about patients’ osteoporotic status from a routine radio-
logical examination. Here, we describe an automatic method of
measuring radiographic indices using computer image analy-
sis that is sensitive to mandibular BMD, and hence, systemic
osteoporosis.

Our approach is to use an active shape model (ASM) method
[7] to locate the upper and lower borders of the inferior mandibu-
lar cortex, and hence measure its thickness.

II. DATA

The patient data set had been collected for a previous study [3]
and consisted of 132 consecutive female patients aged be-
tween 45–55 who attended the University Dental Hospital of
Manchester for routine dental treatment.

A. Radiographic Examination

All of the patients received a radiological examination of the
mandible using a DPT. All radiographs were performed using
either a Cranex DC-3 unit (Soredex Orion Corporation, Finland)
or a Planmeca PM 2002C unit (Planmeca, Finland) using the
same film/cassette combination. The films were digitized using
a Kodak LS85 digitizer (Eastman Kodak, Rochester, NY) at a
resolution of 25.64 pixels/mm.

B. BMD Assessment

One hundred and twenty six females had central DXA of the
proximal femur and lumbar spine on the GE Lunar DPX-L (GE
Lunar Corporation, Madison, Wisconsin). BMD measurements
at each site were compared to the manufacturers reference data
to give a T-score value, which is the number of standard de-
viations the BMD measure lies from the sex-matched young
adult mean value. Using the World Health Organisation crite-
ria, patients are defined as osteopenic if their T-score value is
between −1 and −2.5 and osteoporotic if their T-score value
is less than −2.5. In this study, patients were categorized by
the lowest T-score value at either the total hip or lumbar spine
(L1-L4). Of the 126 patients with BMD measurements, 79 were
normal, 42 were osteopenic, and five were osteoporotic.

III. ASM METHOD

A. Point Distribution Model (PDM)

The ASM method has been extensively documented already
elsewhere [7]–[9], and only a brief description will be given
here. At its core is a PDM that describes the principal modes of
variation of a set of landmark points used to describe the object
of interest. The model is “trained” using points placed on a train-
ing set of example shapes, usually manually (see Section III-B),
at anatomically consistent locations around the border of the ob-
ject (see for example, Fig. 1). The points are concatenated into a
single shape vector x = (x1, y1, x2, y2, . . . , xn , yn ) for each of
the training examples, after alignment to a common coordinate
frame, where n is the number of points. New example shapes
can be generated from a principal component analysis of the
covariance matrix generated from the shape vectors, thus

x = x̄ + Pb (1)

where x̄ is the mean shape. P is the n × t matrix of the t
most significant eigenvectors P1,P2, . . . ,Pt of the covariance
matrix, and b is a vector of parameters b1, b2, . . . bt describing
the weights assigned to each eigenvector to describe a particular
shape. Equation (1) shows that b is equivalent to x as a shape
description. Each eigenvector Pi corresponds to a “mode of
variation” in the observed shapes in the training set. Varying the
values of b1, b2, . . . , bt allows us to generate shapes within the
observed range. For example Fig. 5 shows the effect of varying
b1 by ±3σ around its mean value, while keeping b2, . . . , bt at
their mean values. This mode of variation principally represents
the range from narrow to broad mandible shape. Other modes
represent different characteristics of the observed shape.
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Fig. 5. Effect of varying the first mode of variation by ±3sd on the PDM of
the mandible.

B. Manual Annotation

To build a PDM of the IMC of the mandible, the set of
training examples have to be manually annotated. This was done
by two experts using a custom-written graphical user interface.
The positions of the upper and lower border of the mandibular
cortex were marked at two key anatomical landmarks: the points
closest to the mental foramen, and the points at the ante-gonion
(see Fig. 1), henceforth, referred to as the MF and AG points.
Between these a number of equally spaced points were placed
to define the upper and lower borders of the mandibular cortex.

Between the left and right MF points, the shadow of the spine
is unavoidably superimposed on the center of the image of the
mandible resulting in poor definition of the cortex. Lateral to
the AG points there can also be superimposition of shadows of
the opposite side of the mandible, making the endosteal border
indistinguishable and the lower mandibular border difficult to
discern from other structures. Thus, the best region from which
to measure cortical thickness is between the AG and MF points,
and it is from these that the PDM used for search (Section III-
C) was built (though the example in Fig. 5 is from a PDM
including points beyond the AG and MF points to make visual
interpretation easier).

The model was built using 200 points in all by interpolating
between the AG and MF points with 50 equally spaced points
along the upper and lower margins of the mandibular cortex on
each side defined by the mean manually marked points. The
landmark points used in model construction were the mean of
the two sets of manual points.

C. Search

PDMs may be used in image search as ASMs [7]. ASMs have
been shown to be capable of robust location of image structure
in the presence of confusing image features such as those that
occur in DPTs. In this application, search is conducted by iter-
ative local refinement. Starting from an appropriate shape and
pose (typically the model average position—see Section III-D),
sample profiles are constructed normal to the boundary at each
landmark point. The position of maximum gradient along the
profile is chosen as the updated position of the landmark. If the
shape of the model were modified directly using the new point
positions, the result would not, in general, be a legal example of
the modeled shape. By using δx—the vector of displacements
of the landmark points, we can impose the shape constraints on
the model by rearranging (1) to give

δb = PT δx. (2)

This results in a set of shape parameters b, and so constrains
the new example to shapes that can be generated by the PDM.
However, though this restricts variation in shape to the axes
dictated by the eigenvectors of the PDM, it does not limit how
far along each of these axes the new shape lies. This means that
whilst the PDM cannot generate any possible shape (like a circle
or a star), it can produce examples of mandibles with features
exaggerated beyond anything that are likely to be found.

Realistic limits on how far along each of the shape axes to go
are determined from the training set. For each example shape
in the training set there is a shape vector b, and so, each bi has
a variance determined by its eigenvalue λi . We would therefore
expect the sum

t∑

i=1

b2
i

λi
(3)

to follow a χ2 distribution. Thus, by setting a limit on this sum,
and using the area under the χ2 distribution below this limit, we
can retain a desired percentage of the variance observed in the
training set for new example shapes. The value of this limit is
discussed below in Section III-D.

The above process is iterated until changes in landmark posi-
tions are sufficiently small, the precise threshold depending on
the application. In this case, ten iterations were found to be suf-
ficient to reduce changes in position to approximately 0.2 pixels
(0.026 mm).

The abundance of confounding structure in the images results
in the location of incorrect edges during ASM search. While
the imposition of shape constraints reduces the effects of such
erroneous detections, both speed and accuracy of search can be
affected by the detection of “outlier” points. Rogers and Graham
[11] have shown that robust estimation of model parameters can
lead to much more accurate fits in these circumstances. Here, we
use a version of ASM search that uses M-estimators [10] to fit
the model parameters in (2), using the method described in [11].
Briefly, the process of estimating the parameters b for a given
shape x proceeds by minimizing the residuals r = (x − x0)
where x0 is the current set of model points. In the M-estimator
method a set of weights ω are calculated based on the standard
deviation of the residuals σ, and thus

ωi =

{ 1, ri < σ
σ/|ri |, σ ≤ ri < 3σ
0, ri ≥ 3σ

(4)

These weights are then used to determine the influence of
each point on the estimation of the model parameters.

Since the inferior border of the IMC is far more clearly defined
than the superior border (Fig. 2), the search is divided into
two phases. The first phase uses a model built from the points
on the inferior border only to locate that edge, defining the
overall shape and pose of the mandible. This result is used as
the initialization of phase 2, which is a search using the complete
model of the IMC to obtain the positions of both inferior and
superior borders.
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Fig. 6. Example of the results of a model fit (UFit) showing the initial instance
of the model, i.e., the start point of the search (dotted line), and the results of
fitting the model to the data (solid line).

D. Experimental Procedure

To test the ability of an ASM search to segment an unseen
example, i.e., one not used in the training set, a leave-one-out
methodology is employed. Here, the model is trained on all
examples except the one to be tested, and this is repeated for all
examples in the data set.

Two versions of the ASM search described in Section III-C
were tested experimentally on the data set.

The first was a free search without any manual initialization
points. The ASM search for the inferior border of the IMC
(phase 1) was initialized from the mean position and pose of
the training data. For some images, the correct shape and pose
are some distance from this starting point. ASM search uses a
multiresolution coarse-to-fine search strategy in such circum-
stances [7], and that was employed in this case. The results of
this search were then used to initialize a full endosteal border
ASM search by warping the mean example of the full endosteal
PDM such that its lower edge matched the results of the lower
edge ASM fit. We refer to fits determined this way as “uncon-
strained fits” or “UFits.” An example of a UFit search result
showing start condition and final results is shown in Fig. 6.

The second version used four manually defined reference
points on the lower mandible edge at the left and right AG and
MF as starting points. To start the phase 1 search, the mean
example of the lower mandible border PDM was stretched and
positioned such that its AG and MF points matched the manu-
ally placed start points. An edge-based ASM search was then
initiated, making no further reference to the manual points dur-
ing the search. The full endosteal border ASM search was then
initiated from the results of the phase 1 search in the same way,
as described in the unconstrained fits.

The use of this straightforward interaction allowed us to de-
couple the effects of location and shape in ASM search. Starting
the search so close to the true position guarantees that the search
will finish up with the correct pose. The quality of ASM fit is
determined solely by the ability of the PDM to represent the
variation in shape that occurs among the images. We refer to fits
determined this way as “constrained fits” or “4PFits.” An exam-

Fig. 7. An example of the results of a model fit (4PFit) showing the initial
instance of the model, i.e., the start point of the search (dotted line), and the
results of fitting the model to the data (solid line).

ple of the results of a 4PFit showing the initial start condition
and final search result is shown in Fig. 7.

There are a number of parameters, which need to be set in
an ASM search such as sample profile length, degree of PDM
shape constraint (3), number of resolution levels, etc., and the
optimum values for these were found empirically.

For the unconstrained multiresolution fit, a shape constraint of
99% (see Section III-C) was required to provide sufficient flex-
ibility to accommodate the variation in shapes while retaining
sufficient shape constraint to avoid unfeasible matches arising
from the spurious edge features close to the mandible. How-
ever, for the full resolution fitting of the complete mandibular
cortex model in either the 4PFit method or the UFit method, a
constraint of 100% was necessary for the model to be able to
describe the fine detail of the endosteal border accurately and
give the best sensitivity to bone mineral density.

This is effectively a removal of model parameter constraint
since the tail of the χ2 distribution goes on to infinity, however,
this still restricts the shapes to those possible along the axes of
variation within the PDM (see Section III-C above). This high
degree of model flexibility was possible since the second phase
search started very close to the correct position, and so, only the
mandibular cortical edges would be within reach of the search
profiles of the models.

E. Image Resolution

The panoramic dental tomograms were scanned from film at a
resolution of 25.64 pixels/mm. At this resolution, the film grain
is visible, contributing a source of noise in the images, which
was found to interfere with ASM search. To overcome this, a
degree of smoothing was necessary. Dental panoramic radio-
graphy in digital format is becoming increasingly used; these
images typically have a resolution of 8.8 pixels/mm, and hence,
it is appropriate to evaluate the effectiveness of the method for
segmenting images at the current digital resolution. Experiments
over a range of subsampled resolutions on the data set showed
that reducing the resolution by Gaussian smoothing and subsam-
pling, to that of the digital radiographs had little effect on the
model fit accuracy, as measured by the point-to-point difference,
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TABLE I
MODEL FIT ACCURACY RESULTS

and no effect on the sensitivity to reduced BMD, which is indi-
cated by ROC analysis. Therefore, the results presented in the
following sections are based on a 30% reduced resolution of
7.69 pixels/mm, which is approximately equivalent to digital
radiographs.

IV. RESULTS

In common with many studies in medical image analysis, we
define “accuracy” to mean conformity with expert medical an-
notation. To compare the model fits with the manual annotation
we use the mean point-to-point, and the mean point-to-curve
difference between the manually placed points and those result-
ing from the model fit in order to estimate the accuracy of the
model fit. Since our goal is to measure mandibular cortical thick-
ness, we also compare the measurements of thickness derived
from model fits with those from manual annotation. The thick-
ness is measured as the distance between corresponding points
on the lower and upper border of the mandibular cortex. The
comparison is done using a Bland and Altman plot [12], where
the difference between two sets of measurements are plotted
against their mean. From this analysis, the bias is measured as
the mean difference between the two sets of measurements, and
the limits of agreement are the mean difference ±1.96 standard
deviations.

Ultimately, we wish to test the sensitivity of the derived mea-
surements to osteoporosis and this is done by calculating the
correlation coefficient between the parameter in question and
BMD, and by plotting an ROC curve [13]. The area under the
curve (AUC) can be used to quantify the overall diagnostic effi-
cacy of the parameter in question—ranging from 0.5 (no better
than chance) to 1.0 (perfect discrimination).

A. Fit Accuracy

The accuracy results are summarized in Table I. Four com-
parisons are made.

1) Manual 1–2—comparison of the manual annotation of the
two observers.

2) Manual-UFit—comparison of the mean of the manual
points with that of the unconstrained model fit.

3) Manual-4PFit—comparison of the mean of the two sets
of manual points against the results of the four-point ini-
tialized model fit (4PFit).

4) Fit1-Fit2—the 4PFit involves user interaction, and hence,
there is a certain degree of subjectivity invlolved in the ex-
act placement of the four initialization points. To estimate
the magnitude of this effect, we perform two 4PFits, each
initialized by a different observer.

Each of the above comparisons were made for the whole re-
gion of the mandible annotated, (i.e., the AG-MF region), and
separately the MF points, as these are the points used in manual
measurement. The point-to-point and point-to-curve differences
are presented as “mean value (standard deviation).” For com-
parison of cortical thickness measurements using the Bland–
Altman plots, the bias is the mean of the differences between
the two sets of measurements being compared, and the limits of
agreement are the mean difference ±1.96σ [12]. As an exam-
ple, Fig. 10 shows the Bland–Altman plot for the Mannual 1–2
comparison.

For the Manual-UFit comparison, the point-to-point differ-
ences are large—more than twice that of the manual inter-
observer reliability. This is because the unconstrained fits are
able to successfully find the correct location and shape of the
mandible, but may not find the correct scale. Because, the
mandible exhibits a strong grey-level edge along its lower bor-
der, there is strong evidence in the image for the position of a
point orthogonal to the mandibular edge, but there are no fea-
tures such as edges to characterize the position of a particular
point along the edge of the mandible, i.e., its correct medio-
lateral position with respect to the AG and MF landmarks. This
is borne out in the difference between point-to-point and point-
to-curve differences when comparing manual annotations. This
means that once the lower mandible ASM has adhered to the
mandible edge, there is no motivation in the search mechanism
to stretch or contract to the correct scale. This suggests that
an unconstrained ASM fit will accurately measure a portion of
the cortical thickness, but that the exact anatomical region of
the mandibular cortex that is being measured cannot be guar-
anteed. This is demonstrated in Fig. 8 where the results of an
unconstrained fit are plotted against the target image, along
with the user defined AG and MF points. The upper and lower
borders of the IMC has been correctly located, but the points
are displaced laterally with respect to the AG and MF points.
Fig. 9 shows the equivalent image for a 4PFit—here anatom-
ical correspondence is always guaranteed by the initialisation
points.
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Fig. 8. Example of the results of a fully automatic model fit. Though the
lower upper and lower bounds of the inferior mandibular cortex are accurately
delineated, anatomical correspondence with respect to the AG and MF points
cannot be guaranteed.

Fig. 9. Example of the results of a model fit using four-point manual initialisa-
tion on the same patient as shown in Fig. 8 - here the anatomical correspondence
is correct.

Thus, the point-to-curve differences and bias and limits of
agreement for the AG-MF region are only slightly higher than
those of the Manual-Fit and the Manual 1–2 comparison, but the
search result is more accurate than the point-to-point differences
would suggest. Because the location along the mandible edge
cannot be guaranteed in the unconstrained fit, the results for the
MF are of little meaning and so are not included in this case.

For the Manual-4PFit, the point-to-point differences are much
lower than inter-observer (Manual 1–2) equivalent. This is be-
cause between two observers there is much greater subjectivity
in the position of the points along the mandibular border than
there is in their distance from the border. Hence, the point-to-
curve differences for Manual 1–2 comparison are much lower
than the point-to-point differences, and are comparable with
those of the Manual-4PFit comparison.

For the Manual-4PFit comparison, the bias in the cortical
thickness measurement is larger than the manual inter-observer
bias suggesting a systematic difference between the maximum
gray-level gradient, and the edge perceived by the human ob-
servers. For the AG-MF region, the limits of agreement are
slightly lower than the Manual 1–2 comparison, but consider-

Fig. 10. Bland–Altman plot comparing the mean cortical width (AG-MF re-
gion) measured manually by two observers. Bias = −0.02 mm, Limits of
agreement = −0.77–0.72 mm.

TABLE II
CORRELATION COEFFICIENTS BETWEEN CORTICAL

THICKNESS MEASUREMENTS AND BMD

ably larger for the MF points. Closer inspection of the model fits
suggests these larger limits of agreement are due to poor ASM
location of the upper MF points, most probably due to image
noise in this region caused by the shadow of the spine.

For the Fit1-Fit2 comparison, the point-to-point differences
are similar to those of the Manual 1-2 comparison, since sub-
jectivity in point position along the mandibular border has been
reintroduced by the use of two sets of initialization points. How-
ever, the point-to-curve difference and the bias and limits of
agreement for the AG-MF region are much lower than the other
comparisons (Table I).

B. Sensitivity To Reduced BMD

1) BMD Correlations: Table II shows the correlation coeffi-
cients (Pearson’s) between the cortical thickness measurements
and the BMD values for the hip, spine, and the minimum BMD
T-score of the two sites (see Section II-B). Figures in bold ex-
ceed the p = 0.05 threshold, and figures with a “*” exceed the
p = 0.01 threshold.

None of the cortical thickness measurements derived from
the MF points show significant correlation, whereas, the AG-
MF measurements do. For the hip and spine BMDs, the 4PFit
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Fig. 11. Correlation coefficient between cortical thickness and Hip BMD plot-
ted as a function of position along mandible. For each of the 100-point positions
along the mandible, a mean of ten adjacent cortical thickness measurements are
plotted.

performs better than the manual measurements, or the UFit
measurements.

Fig. 11 demonstrates how the correlation between cortical
thickness and BMD of the hip varies with position along the
mandible for the manual and 4PFit results. The cortical thickness
measurements show greatest sensitivity to BMD in the lateral
halves of the mandible, and least around the MF points. This
would suggest that the MF points are not the optimal place to
measure cortical thickness in the detection of osteoporosis. A
similar pattern is observed for the spine BMD, and the minimum
T-score of the two sites.

2) Roc Analysis: Because, the number of osteoporotic pa-
tients is so small (5) in this data set, it is difficult to generate
a meaningful ROC curve using osteoporosis as the categorical
variable, and so, in the following analysis, the osteoporotic and
osteopenic patients are combined into a “reduced BMD” group
of 47.

Fig. 12 shows the relationship between position along the
mandible and the area under the ROC curve derived from the
cortical thickness at that position. The overall pattern is similar
to the results for direct BMD correlation (Fig. 11) in that the
sensitivity of cortical thickness measurement to reduced BMD
are optimal in the lateral halves of the mandible. Fig. 13 shows
the ROC curves obtained using the cortical thickness averaged
over this optimum region of the mandible for both manual and
4PFit points yielding an area under the curve (AUC) of 0.66 and
0.71, respectively. Analysis of the original films corresponding
to this data set using the traditional visual methods yielded an
AUC of 0.63 [3].

Fig. 14 shows the resulting ROC curve for reduced BMD
using the mean cortical thickness obtained from the uncon-
strained model fit as the discriminating parameter. Compared to
the equivalent from the four-point initialized model fit, the two
curves are indistinguishable (p = 0.60).

Fig. 12. Area under the ROC curve for reduced BMD as a function of position
along mandible from the AG to MF points. The results of manual annotation and
initialized model fit (4PFit) are compared. For each of the 100-point positions
along the mandible, a mean of ten adjacent cortical thickness measurements are
plotted.

Fig. 13. ROC curve for reduced BMD using the cortical thickness from the
optimal region suggested by Fig. 12 as the discriminating parameter. The results
of manual annotation and initialised model fit (4PFit) are compared.

V. DISCUSSION

One problem that all studies of this kind face is the lack of
absolute ground-truth against which to test the proposed mea-
surement technique. Within the limits of this study, the average
results from two expert manual observers is the only reference
we have against which to test the ASM model fit in its abil-
ity to measure cortical width. Therefore, all measurements of
fit accuracy presented depend on the accuracy of the manual
measurements. The sensitivity of the ASM method to BMD
and its ability to detect osteopenia, however, can be compared
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Fig. 14. ROC curve for Osteopenia using the mean cortical thickness (AG-
MF region) as the discriminating parameter. Initialized model fit (4PFit) and the
unconstrained fit (UFit) are compared.

directly with the objective DXA measurements, independently
of the subjectivity of expert image interpretation.

We can conclude from the above that it is possible to ac-
curately measure the width of the inferior mandibular cortex
in panoramic dental tomograms using an edge-based ASM
method. For these measurements to have an exact anatomical
correspondence, four manually placed initialization points are
required. This is a reasonable level of interaction, since only
the lower mandible edge need be identified—a clearly visible
feature in all patients—and the points only need to be placed
close to the border, not exactly on it, since the ASM search will
locate the exact position of the local edge anyway.

Correlation of the cortical thickness with the BMD measured
from the spine or hip was highest for the lateral portion of the
AG-MF region of the mandible. The results of the 4PFit were an
improvement on the manual measurements when compared with
both hip and spine BMD, and the fully automatic unconstrained
model fit yielded correlations equivalent to the manual results.
This indicates that even in the cases where there is reduced
anatomical correspondence between the model position and the
mandible, width measurements still produce useful information
on BMD.

The ROC analysis appears to confirm the conclusion that
the lateral portion of the AG-MF region of the mandible is
the optimum area from which cortical thickness is measured.
This effect is more pronounced for the model fit results than
the manual measurements, as model fitting in the MF region is
relatively poor due to noise mostly from the shadow of the spine.

It is conceivable that this observation reflects real physiolog-
ical effects. For example, the cortical bone in this region medial
to the antegonial point AG may be more sensitive to the sys-
temic effects of skeletal osteoporosis. In other regions such as
that adjacent to the mental foramen, the local musculature may
preserve bone due to local functional stimulation.

Fig. 15. ROC curve for Osteoporosis using the optimal cortical thickness
measured from a 4PFit as the discriminating parameter (AUC = 0.81). Here,
a data set of 50 osteoporotics and 50 nonosteoporotics is used.

The low number of osteoporotic patients in this data set make
it difficult to derive meaningfull ROC analysis for detection of
osteoporosis, as the statistical confidence intervals tend to be
large. Development of the model fitting method was performed
on this data set, because it represents a realistic sample of routine
panoramic dental tomograms from patients likely to benefit from
low BMD screening.

Fig. 15 shows an ROC curve for detecting osteoporosis
(T < −2.5), generated using DPTs from 50 osteoporotic and
50 nonosteoporotic individuals, who did not contribute to the
training set. This allows us to conduct a limited experiment on
truly “unseen” images, and to make a preliminary evaluation of
the diagnostic efficacy in detecting osteoporosis. The resulting
ROC curve has a larger area (AUC = 0.81) than those shown
above since the more severe condition of osteoporosis is being
used as the discriminating factor rather than osteopenia. Tradi-
tional measurement of the cortical thickness by five experts from
the original films yields an AUC of between 0.61 and 0.68 for
the same 100 individuals. Traditional manual analysis of data
from 653 subjects yielded an AUC range of 0.71–0.78 [16].

As this research was intended to develop a clinical tool for
diagnosis, it is worth considering from a dentist’s perspective,
and in the context of everyday practice. Most dentists currently
use radiographs on film. There has, however, been a steady
proliferation of digital radiology in dentistry over the last 15
years, and it is appropriate to develop computed methods of
image analysis for dental use.

It should be remembered that the manual measurements made
for this study were the result of expert annotation and that the
direct measurement techniques that have received previous re-
search attention [14] require time and care to give a result.
Furthermore, the repeatability of such measurements may not
be acceptable.

Osteoporosis diagnosis is not part of everyday dental practice,
and hence, any involvement in this task should be facilitated for
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the dentist. Measurement of cortical width will only be prac-
tical if it is fully automatic or very nearly so. The limited and
straightforward interaction described here may be sufficiently
unobtrusive to be practical. However, the results of automatic
search indicate that useful measurement can be made without the
involvement of dentist. The improved specificity and sensitivity
arising from being able to make measurements at anatomically
precise locations holds out the possibility of improved diag-
nostic performance. The ASM method does of course require
training by experts, however this has already been done in this
study and is not required for further applications of the method.
The application of the trained model to the unseen dataset de-
scribed earlier demonstrates this.

There have been calls [15] for improving access to dual-
energy X-ray absorptiometry for individuals at risk of osteo-
porosis. Dentists are in a unique position to carry out fortuitous
identification of patients at risk of osteoporosis and make a con-
tribution to general healthcare. This research offers the potential
to facilitate this process. Further work is in progress, collecting
DPT’s and DXA measurements from a large patient sample to
establish the diagnostic validity of our technique and the diag-
nostic threshold appropriate for clinical practice.
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Abstract

General dental practitioners use a vast amount of panoramic radiography in their routine clinical work, but valuable information about patients'
osteoporotic status is not collected. There are many reasons for this, but one of the prime reasons must be the disruption involved in clinical
routine with lengthy manual radiographic assessment. We have developed computer software, based on active shape modeling that will
automatically detect the mandibular cortex on panoramic radiographs, and then measure its width. Automatic or semi-automatic measurement of
the cortical width will indicate the osteoporotic risk of the patient. The aim of our work was to assess the computer search technique's ability to
measure the mandibular cortical width and to assess its potential for detection of osteoporosis of the hip, spine and femoral neck.

Mandibular cortical width was measured using the manually initialized (semi-automatic) method and, when assessed for diagnosing osteoporosis
at one of the three measurement sites, gave an area under the ROC curve (Az)=0.816 (95% CI=0.784 to 0.845) and for the automatically initialized
searches, Az=0.759 (95% CI=0.724 to 0.791). The difference between areas=0.057 (95% Confidence interval=0.025 to 0.089), p<0.0001. For
diagnosing osteoporosis at the femoral neck, mandibular cortical width derived from the manually initialized fit gave an area under the ROC curve
(Az)=0.835 (95%CI=0.805 to 0.863) and for the automatically initialized searches Az=0.805 (95%CI=0.773 to 0.835). The difference in Az values
between active shape modeling search methods=0.030 (95% CI=−0.010 to 0.070), and this was not significant, p=0.138.

We concluded that measurement of mandibular cortical width using active shape modeling is capable of diagnosing skeletal osteoporosis with
good diagnostic ability and repeatability.
© 2006 Elsevier Inc. All rights reserved.
Keywords: Osteoporosis; Active shape modeling; Risk assessment; Mandible; Radiography
Introduction

Mandibular cortical width on dental panoramic radiographs
is significantly correlated with bone mineral density at the hip
[1], lumbar spine [2] and forearm [3], the most common sites of
fracture related to osteoporosis in post-menopausal women.
Measuring mandibular cortical width could be used for diag-
⁎ Corresponding author. Fax: +44 161 275 6480.
E-mail address: Hugh.Devlin@manchester.ac.uk (H. Devlin).

8756-3282/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.bone.2006.10.024
nosis as a screening tool for osteoporosis. Taguchi et al. [2]
found that mandibular cortical thickness was related to the bone
mineral density of the third lumbar vertebra. Devlin and Horner
[3] found that mandibular cortical width had moderate accuracy
when used to diagnose skeletal osteopenia. Subsequent work [4]
advised that a cortical thickness of less than 3 mm in the mental
foramen region should be a trigger for referral for dual energy
X-ray absorptiometry (DXA).

While DXA facilities are often limited, millions of dental
panoramic radiographs are taken every year across Europe. A
recent study based in the United Kingdom, showed that 61% of

mailto:Hugh.Devlin@manchester.ac.uk
http://dx.doi.org/10.1016/j.bone.2006.10.024
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general dental practitioners used panoramic radiography
equipment [5]. Measurements of mandibular cortical width
from them may prove to be a cost-effective, efficient triage
method of selecting those patients at high-risk of osteoporosis
[4].

One important barrier to using cortical width measurements
in primary dental care is the significant observer variability in
measurement that is not improved by individualized instruction
[6]. Furthermore, manual measurement of cortical width may be
seen as a time-consuming interruption by the dentist in their
busy schedule.

We have developed computer software, based on active
shape modeling [7], that will automatically detect the man-
dibular cortex on panoramic radiographs and then measure its
width. Active shape modeling is a technique widely used in
computer vision to detect shapes and analyze them and has been
used successfully to replicate the shape of vertebrae [8] and
accurately detect the edge shape of bone in digitized radio-
graphs [9]. Once the mandibular cortex has been detected using
the active shape model, multiple measurements of width and
further analysis of the endosteal border become possible with
minimal user interaction.

In 2003, the 3-year OSTEODENT project was commenced,
consisting of collaboration by five European centers to
investigate the role of dental radiographs in the diagnosis of
osteoporosis. The overriding aim of this project was to identify
the most valid and effective radiographic index, or combination
of radiographic and clinical indices, for the diagnosis of
osteoporosis applicable for use by dentists. The aim of the work
reported here was to assess the computer search technique's
ability to measure the mandibular cortical width and to assess its
potential for detection of osteoporosis of the hip, spine and
femoral neck.

Method

Ethical approval was given for the recruitment of female subjects (aged 45–
70 years) following their informed consent. The study was open to all female
patients in this age-group, except those who suspected that they might be
pregnant. No one was excluded from recruitment based on race or pre-existing
medical condition such as secondary osteoporosis. With Ethics Committee
approval, those who have previously had a bone density scan performed and
were identified as having a below average bone density were recruited into the
study. Recruitment of osteoporotic individuals was encouraged to provide a
sufficient sample size with narrow confidence intervals around both sensitivity
and specificity values of the diagnostic tests.

We compared the diagnostic ability of clinical risk indices with that of the
computer radiographic measurements. Two well established indices were
chosen, that of the National Osteoporosis Foundation (NOF) index [10] and the
Osteoporosis Risk Assessment Index (ORAI) [11]. The NOF index scores 1
point for each of the following: patient is >65 years, weight <57.6 kg, maternal/
paternal history of fracture, current cigarette smoking, and a personal history of
fracture. ORAI used the following subject scoring system: age >75 years (+15),
age 65–74 years (+9), age 55–64 (+5), body weight <60 kg (+9), body weight
60–70 kg (+3), estrogen therapy (+2). The total score for each patient was
calculated for the two indices.

Central dual energy X-ray absorptiometry (DXA)

Dual energy X-ray absorptiometry (DXA) scans were performed on the
Hologic QDR 4500, Hologic Discovery (Hologic Inc., Bedford, Massachusetts,
USA) and the GE Lunar Prodigy (GE Lunar Corporation, Madison, Wisconsin)
at four centers throughout Europe. The four centers used were located in Leuven
(Belgium), Athens (Greece), Manchester (UK), and Malmo (Sweden) and
ambulant female patients were recruited from the area surrounding these centers.
Shewart's rules were used to monitor quality assurance throughout the study
period [12].

The European spine phantom was used to standardize measurements
between different manufacturers using the method described by Pearson and
colleagues [13]. T and Z scores were calculated using Hologic reference data for
the lumbar spine and NHANES reference data for the proximal femur [14].

Patients were diagnosed as osteoporotic according to the World Health
Organization (WHO) criteria, i.e. those with a bone mineral density T-score
value 2.5 S.D. or more below the mean value of the young sex matched
reference population.

Radiography

The subjects received a dental panoramic radiograph
examination while biting on a plastic block in the left premolar
region. The plastic block contained a spherical, steel ball
bearing (3.175 mm diameter), which was used to compensate
for the image magnification.

Digital and conventionally processed dental panoramic
radiography machines were used. Leuven (Belgium) and
Malmo (Sweden) used a Cranex III (Soredex, IL, USA)
whereas Athens (Greece) and Manchester (UK) used a
Planmeca (Planmeca USA, Roselle, IL, USA). The imaging
parameters also varied but typically were 70 kV at 8 mA for
15 s. In Leuven, ADC Solo (Afga, Mortsel, Belgium) was used
as the photostimulable phosphor plate system for image capture
and digital read out, but other centers used a conventional film/
cassette.

Point distribution model

The radiographs were digitized using a Kodak LS85 digi-
tizer (Eastman Kodak, Rochester, NY) at a resolution of
25.64 pixels/mm. Using a previous training set of 132 DPR
images, a point distribution model (PDM) [7] of the inferior
mandibular cortex was created by manual annotation of the
endosteal and periosteal borders. Two experts performed this
task independently using a graphical user interface, outlining
the inferior mandibular cortex by placing equally spaced
points on the computer images between the mental foramen and
antegonial region. The mean point position of both experts was
used to define the shape of the cortex, and the PDM built using
200 points interpolating between the manually placed points.
The point distribution model was used to search for and identify
the inferior mandibular cortex. Principal component analysis
applied to the covariance matrix of the point position allows the
main “modes of variation” of the target shape to be determined.
The point distribution model captured the principal modes of
variation of the shape of the inferior mandibular cortex. These
modes of variation were manipulated in an image search
program to find the region of the image whose shape was
contained within the observed shape distribution of the training
data, and which provided the best fit to the expected image
appearance. The point distribution model was then used to
locate the inferior mandibular cortex in the OSTEODENT



Fig. 1. From the manually initialized ASM fit, the mandibular cortical thickness
was calculated between the antegonial and mental regions. The cortical width
measurements from the lateral region of the mandible were (a) most highly
correlated with the minimum T-score derived from all three BMD measurement
sites or (b) provided the highest Az values in ROC analysis. In (a), the
correlation coefficient significance levels are 0.098 and 0.069 at the p=0.01 and
p=0.05 levels, respectively; with all our data points comfortably exceeding the
1% threshold. AG=antegonial position, MF=mental foramen position.
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sample, a set of dental panoramic radiographs which had not
been included in the training set. A search strategy was used in
which, from a given starting shape and pose, the point
distribution model iteratively deformed in an attempt to align
the points with the strongest image gradient (edge) found within
a predefined search area around each point. This combination of
point distribution model and search mechanism is known as an
active shape model.

The initial stage of the active shape model search was to
locate just the lower border of the inferior mandibular cortex
using a point distribution model built only from points
corresponding to the lower border. This is because the periosteal
border of the inferior mandibular cortex is a much more clearly
defined feature than the upper endosteal border. The final stage
of the active shape model search used a point distribution model
of the endosteal and periosteal borders of the inferior
mandibular cortex.

The points defining the inferior mandibular cortex were
positioned on a border which was well defined in a direction
perpendicular to the edge, but not along it. In other words whilst
we can be reasonably confident that the endosteal and periosteal
borders of the inferior mandibular cortex were correctly defined
in the active shape model search, the correct anatomical
positioning of the points with respect to the mental foramen and
antegonial regions could not be guaranteed.

Thus, two search strategies were investigated: a constrained
search using manually placed initialization points, and an
unconstrained search with no manual initialization. In the
constrained search, only four points were planted by the user on
the periosteal border of the inferior mandibular cortex at the left
and right mental foramina and antegonial regions. The point
distribution model of the mean shape was then warped so that its
mental foramina and antegonial points matched those placed by
the user, and this was used as the search start point with no
further reference to the initialization points being used during
the search. Accurate placement of the initialization points by the
user with respect to the mandibular cortex was not required
since the border was located by the active shape model search.
The unconstrained, active shape model search was completely
automatic and started from the mean shape and pose found in
the training set—in this case a multi-resolution coarse-to-fine
search strategy was required for robust search results. The
endosteal border was not defined by the user in either the
constrained or unconstrained searches, but was located by the
active shape model search.

After convergence of the search, the mandibular cortical
width was measured at a series of contiguous locations along
the lower border of the mandible between the antegonion and
the mental foramina for all subjects. The measured width at each
location was averaged over an interval of approximately 10% of
the length of the lateral cortical border. For each of these
locations the correlation was calculated between the measured
cortical width and the skeletal bone mineral density ground-
truth. Fig. 1(a) shows the correlation values as a function of
location along the mandible. Statistically significant correla-
tions were found in the lateral region of the inferior mandibular
cortex, the highest correlation occurring at 10–20% of the
distance from the antegonion to the mental foramen. Fig. 1(b)
shows a similar curve plotting the Az values arising from ROC
analysis. Maximum sensitivity is obtained for measurements
made in the same region. The “optimal measurement region”
defined by this measurement is indicated in Fig. 2. Results
reported from the manually-initialized and fully automatic
searches all refer to measurements made in this region.

The width of the ball bearing image was used to scale the
linear cortical width measurements in the constrained and
unconstrained fits. On each of the digital images the position of
the ball bearing was marked manually. The image was then
cropped around this position to a size larger than the expected
size of the ball bearing. A canny edge detector [15] was then
used to detect the edges in this cropped region and a Hough
transform [16] used to isolate those edges belonging to an
ellipsoidal object. From the detected elliptical image, the
dimensions of the ball bearing were then calculated. The
measured dimensions of the ball-bearing were used to scale the
width measurements made at different centers.



Fig. 2. Dental panoramic radiograph (DPR) showing antegonial and mental regions, between which the measurements of mandibular cortical width were made. The
ball-bearing used for inter-center calibration is visible on the left side of the mandible.

Table 1
Mean mandibular cortical width (MCW) and standard deviation (S.D.) derived
from automatically and manually initialized searches for osteoporotic and
normal individuals

N Mean MCW S.D.

Manually
initialized fit

Normal 3.747 0.596
osteoporosis at any of
three sites

3.031 0.552

Automatically
initialized fit

Normal 3.778 0.681
osteoporosis at any of
three sites

3.117 0.682
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Statistical analysis

ROC curve analysis was used to measure the diagnostic
abilities of the computed measurements of cortical width in
diagnosis of osteoporosis. In this respect, separate analyses
were performed for a diagnosis of osteoporosis at any measured
site (lumbar spine, femoral neck or total hip) and at the femoral
neck alone. The areas under ROC curves (Az) were calculated
using the Medcalc® software program (MedCalc Software,
Mariakerke, Belgium).

Repeatability of automated methods

It was not possible in our study to measure repeatability of
the cortical width measurements on radiographs obtained from
multiple exposures of the same patient for ethical reasons. The
robustness of the technique was tested by repeated measurement
of the same radiographic sample set.

Automatically initialized search

The same model applied to the same digital image produced
identical searches each time, so the reproducibility error was
zero in this case.

Manually initialized search

There is a source of variability in manually initialized search,
as four initialization points need to be specified interactively.
The variability arising from doing this was simulated by
perturbing each of the four initialization points by a set distance
in a random direction and repeated for 10 searches. The size of
the perturbation was calculated from the two sets of manual
mark-ups and corresponded to the mean distance between the
two sets of four points placed manually at the mental foramen
and antegonial positions. The mean within subject variance was
calculated for the 10 searches using one-way ANOVA. The
repeatability is the difference between two measurements for
the same subject and is expected to be less than 2.77 times
the within-subject standard deviation for 95% of pairs of
observations.
Results

671 subjects were recruited in total. 10 subjects were
eliminated from the study because 8 were outside the age range
of the inclusion criteria (45–70 years) and bone mineral density
data was incomplete on 2. The radiographs of a further 9
subjects were unsuitable for further analysis due to unaccep-
table quality, accidental loss, data corruption or the absence of a
ball bearing image and were eliminated from the study. Of the
remaining 652 subjects that formed the study population, 140
had osteoporosis at one of the three measurement sites and 65
had osteoporosis at the hip. The mean age of the subjects was
54.9 years (S.D.=6.10).

For the manually and automatically initialized searches,
there were significant differences between the mandibular
cortical widths of normal subjects and those with osteoporosis
at one of the three measurements sites (Table 1; using Mann–
Whitney U test, p<0.0001 for both searches).

There were significant correlations between the mandibular
cortical widths derived from both computer image searches and
bone mineral density at the total hip, spine and femoral neck
(Table 2).

ROC curves were plotted of cortical width derived from
manually initialized searches for diagnosing osteoporosis at
one of the three sites (Fig. 3) or at the femoral neck (Fig. 4).
The manually initialized searches gave higher Az values for
the ROC curves than the automatically initialized searches
(Figs. 5 and 6).



Table 2
Mandibular cortical width derived from automatically and manually initialized
search correlated with bone mineral density measured at the total hip, spine and
femoral neck using dual X-ray energy absorptiometry

Spearman's
rho

Manually
initialized
search

Automatically
initialized
search

Automatically initialized
search

Correlation
coefficient

0.722 1.000

Sig. (2-tailed) p<0.001
Total hip Correlation

coefficient
0.399 0.328

Sig. (2-tailed) p<0.001 p<0.001
Femoral neck Correlation

coefficient
0.460 0.376

Sig. (2-tailed) p<0.001 p<0.001
Lumbar spine Correlation

coefficient
0.433 0.359

Sig. (2-tailed) p<0.001 p<0.001 Fig. 4. Receiver Operating Characteristic curve for the measurements of cortical
width obtained by the manually initialized method in the diagnosis of
osteoporosis at the femoral neck. Az=0.835 (95% CI=0.805 to 0.863).
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Comparison of methods

The difference in area (Az) under the ROC curves was used
to identify the most effective method for diagnosis of osteo-
porosis in any site. Mandibular cortical width derived from the
manually initialized fits gave an area under the ROC curve (Az)
of 0.816 (95% CI=0.784 to 0.845) and for the automatically
initialized searches, Az was 0.759 (95% CI=0.724 to 0.791).
The manually initialized search model had a significantly
greater Az than the automatically initialized search model (Az

difference=0.057; 95% CI 0.025 to 0.089, p=0.0001).
For diagnosis of osteoporosis at the femoral neck, mandib-

ular cortical width derived from the manually initialized fit gave
an area under the ROC curve (Az)=0.835 (95% CI=0.805 to
0.863) and for the automatically initialized searches Az=0.805
(95% CI=0.773 to 0.835). There was no significant difference
Fig. 3. Receiver Operating Characteristic curve for the measurements of cortical
width obtained by the manually initialized method in the diagnosis of
osteoporosis at any site (lumbar spine, femoral neck or total hip). Az=0.816
(95% CI=0.784 to 0.845).
in Az between the two methods (Az difference=0.03, 95% CI
−0.009 to 0.070, p=0.135).

There was a significant correlation between manually
initialized and automatically initialized search models (Spear-
man's rho=0.722, p<0.0001, 95% CI=0.683 to 0.757). A
Passing & Bablok plot [17] was used to compare the manually
initialized and automatic search results (Fig. 7). The 95%
confidence intervals of the slope and intercept were used to
determine significant differences from 1 and 0, respectively.

Manual Search (Y)=0.30+0.90 Automatic Search (X).
Intercept=0.30 (95% CI: 0.13 to 0.47) and Slope=0.90

(95% CI: 0.85 to 0.95).
There was no significant deviation in linearity between the

automatic or manually initialized search methods (p>0.10,
using the Cusum test).
Fig. 5. Receiver Operating Characteristic curve for the measurements of cortical
width obtained by the automatically initialized method in the diagnosis of
osteoporosis at any site (lumbar spine, femoral neck or total hip). Az=0.759
(95% CI=0.724 to 0.791).



Fig. 6. Receiver Operating Characteristic curve for the measurements of cortical
width obtained by the automatically initialized method in the diagnosis of
osteoporosis at the femoral neck. Az=0.805 (95% CI=0.773 to 0.835).

Table 3
Summary table comparing radiographic assessment by computer with the
clinical indices National Osteoporosis Foundation (NOF) index and the
Osteoporosis Risk Assessment Index (ORAI)

AUC for osteoporosis
at the femoral neck Az

AUC for osteoporosis
at any of three sites Az

Manually initialized fit 0.835 0.816
Automatically initialized fit 0.805 0.759
ORAI 0.861 0.803
NOF 0.732 0.671

AUC=area under the ROC curve.
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Clinical indices

Table 3 summarizes the area under the ROC curve for the
radiographic measurements and the clinical indices in diagnos-
ing osteoporosis. ORAI performed significantly better than the
NOF index at detecting osteoporosis at the femoral neck
(p=0.001) and at any one of the three measurement sites
(p<0.001). For detecting osteoporosis at the femoral neck there
was no significant difference in Az values between the manually
initialized fit and ORAI (p=0.431), and between the auto-
matically initialized fit and ORAI (p=0.109). For detecting
osteoporosis at one of the three sites, there was no difference in
Az values between the manually initialized fit and ORAI
(p=0.641) and between the automatically initialized fit and
ORAI (p=0.135).

Numbers of patients detected

If a <3 mm threshold was applied to the manually initialized
search data, then 119 patients would have “failed” the radio-
Fig. 7. A Passing & Bablok plot to compare the manually initialized and
automatic search results. Linear regression line (with 95% CI).
graphic test and been referred out of a total population of 652.
Of these 119 referred patients, 72 were found to have
osteoporosis at one site as measured using DXA. The
probability that the referred patients had osteoporosis, given
that they had failed the radiography test, was therefore 60.5%.
This contrasts with the prior probability of osteoporosis in our
study population of 21.5%. Using the automatically initialized
search data with a cut-off threshold of <3 mm, 126 patients
would have been referred with osteoporosis, of whom 67 were
found to have osteoporosis using DXA. The probability that any
of these referred patients had osteoporosis, given that they had
failed the radiographic test was 53.2%, over double the prior
probability of osteoporosis. A high threshold of <4 mm with the
manually initialized search gave an excellent sensitivity of
96.4% (but poor specificity of 29.5%).

Repeatability of manually initialized search

For all 652 subjects, the mean mandibular cortical width was
3.59 mm (range 1.81 to 5.83 mm). The mean within-subject
variance for the subsequent 10 manually initialized searches
(corrected for image magnification) was 0.062 mm, giving a
measurement error of 0.25 mm and repeatability of 0.69 mm.
This error range indicates that the difference between two
measurements for the same subject is expected to be less than
0.69 mm for 95% of pairs of observations.

Discussion

Mass screening for the detection of osteoporosis is not
recommended as cost-effective. Instead a cheaper method of
detecting those at high risk of osteoporotic fracture is desirable.
Such a method should require minimal input from the clinician
to be cost-effective. Active shape modeling (ASM) search has
been used for robust location of anatomical features in a number
of medical imaging studies [18]. Of particular interest to the
current study is the location and measurement of the shape of
the femur in radiographs [19], and detecting the edges of bone
in digitized radiographs [9]. In the present study, the automated
image analysis software performed in an equivalent manner to
that reported previously with manual measurements by experts
[20]. Manually initialized ASM measurement of cortical width
produced an Az=0.816 in ROC curve analysis that was high for
detecting osteoporosis at either the total hip, femoral neck and
lumbar spine and for the automatically initialized searches,
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Az=0.759. Taguchi et al. [20] found that the Az for their expert
manual radiographic measurement was 0.802 (95% CI, 0.705 to
0.899) in detecting osteoporosis. With our image analysis
software, we anticipate that the automated computer measure-
ment would alert the examining dentist to the patient's thin
mandibular cortex. The dentist could follow up by an
examination of the patient's risk factors (low body mass
index, age, steroid use etc) and then consider the advisability of
further referral for central dual energy X-ray absorptiometry.
Our analytical software has a comparable diagnostic ability in
detecting osteoporosis to clinical indices such as ORAI, as
given by the area under the ROC curve.

Using the manually initialized fit for predicting osteoporosis
at the hip, Az was 0.835, and for the automatically initialized fit
was 0.805 indicating these provided good diagnostic tests in
predicting osteoporosis at this site.

The manually initialized fit used defined points on the dental
panoramic radiograph in the medio-lateral direction placed by
the observer, which limited the search along the mandible. The
automatically initialized fit was unable to use any edge features
on the image with which to establish correct anatomical
placement of the points with respect to the antegonion and
mental foramen regions. In other words, there were no features
along the edge of the mandible which could be used to define
the position of the points in the fully automated search. The
mean values for cortical width measured using the automati-
cally initialized search were greater than for the manually
initialized search (Fig. 7 and Table 1), resulting in reduced
sensitivity. This resulted in consistently greater cortical width
values for the automatically initialized fit than the manually
initialized fit in Fig. 6, with a slope significantly different from
unity. The mean values for cortical width measured using the
automatically initialized search were greater than for the
manually initialized search (Table 1). The manually initialized
search strategy provided better Az values than the automatic
search. At the appropriate operating point, both sensitivity (true
positive fraction of those with osteoporosis) and specificity (true
negative rate) were improved, with corresponding reductions in
false positives and false negatives. For maximum diagnostic
accuracy, some minimal observer interaction is therefore
necessary.

Given the less than perfect diagnostic accuracy of the cortical
width measurements, the dental panoramic radiograph would
not be taken for osteoporosis screening per se, but some
unrelated dental investigation. In addition, the patient's case
history and medical data must be considered before undertaking
further referral and investigation. Radiographic measurements
cannot be used as the sole basis for referral. With these
limitations, our computer methods of osteoporosis triage could
be cost-effective as the assessment is performed automatically
on digital films, with minimal intervention from the dentist.
Setting the threshold for further investigation to achieve a low
percentage of false positive diagnoses would be possible by
considering the high specificity end of the ROC curve. Our
future investigations will consider the precise threshold required
to minimize false positive diagnosis but yet still provide a good
diagnostic test. Manual measurements of mandibular cortical
width by general dental practitioners have poor repeatability [6],
but this problem would be eliminated using the computer-based
technology we have described.

The repeatability of the manually initialized search was
better than that previously described for the manual measure-
ments of different experts. Devlin and Horner [3] found that the
limits of agreement, which indicate the interval in which 95% of
measurement differences lie, were +1.32 mm for manual
measurements of cortical width. Larger limits of agreement
were found when the manual cortical width measurements were
made by general dental practitioners [6].

We have previously recommended that patients with a
mandibular cortical width of <3 mm should be referred for
further DXA investigation. That recommendation was on the
basis of our manual measurements of cortical width [4]. The
higher sensitivity and specificity and better reproducibility that
arises from the digital analysis would, of course, result in an
improved analysis at this threshold. Of more importance is to
consider the proportion of women labeled “osteoporotic” by this
test who are not truly osteoporotic (as measured by DXA).
Taguchi et al. [20] found that 60% of their patients who had a
cortical width of less than 3 mm were osteoporotic. Threshold
values for manual measurements on dental radiographs should
be chosen which balance sensitivity and specificity for the
prevailing health care systems. Using a high threshold for
mandibular cortical width, such as 4.785 mm below which
patients are classed as osteoporotic [21], will result in excellent
sensitivity, but poor specificity. In the environment seen in
many European countries of inadequate availability of DXA
[22,23], a low sensitivity/high specificity strategy may be more
appropriate, at least where DXA availability is less than the
minimum recommended 8 units per million population.

Digital analysis increases the diagnostic yield of radiographs
[24]. Gregory et al. [19] developed an active shape model of the
femur. They found that the gross morphology of the femur
could be used to identify patients who may develop a hip
fracture in the future. Despite differences in the positioning of
patients and femur in their study, as well as variable
magnification of the images, they found that their active
shape model was more robust than other methods. We have
compensated for magnification errors by asking the patient to
bite on a plastic block incorporating a ball bearing of 3.175 mm
diameter during the radiographic exposure. Magnification in the
DPR is about 20–36% for most machines. Another computer-
aided diagnostic technique [25] also used panoramic radio-
graphs to provide osteoporotic pre-screening, but required
considerable operator input e.g. to correctly identify the mental
foramen. This is a potential weakness in view of the non-
visibility of the mental foramen in a minority of patients [26]
and the low intra-examiner agreement in localizing the mental
foramen on DPRs [27]. Arifin et al. [25] described a semi-
interactive method based on image processing in which the
cortex was distinguished by thresholding, high-pass filtering
and morphological operations to enhance the image. They
showed that this method delivered measurements of similar
diagnostic value to manual measurement. Their measurements
were restricted to the region of the mental foramen, and required
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input from an expert user in defining the position of the mental
foramen.

In conclusion, active shape modeling is capable of automatic
mandibular morphometry of dental panoramic radiographs,
producing a diagnostic test of skeletal osteoporosis that is
comparable to that achieved by manual measurement. Our
technique does have some shortcomings and sources of error,
but it requires minimal interaction by the clinician and provides
automated warning if the patient is at high risk of osteoporosis.
Future work will use further automated image analysis of the
morphological features of the cortex to improve the diagnostic
accuracy of our methodology. In particular, we believe our
methodology has further potential for development where
automated detection of low bone density may be beneficial such
as implantology, and assessment of the effect of osteoporosis on
fracture healing, tooth loss and periodontitis [28].
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The role of the dental surgeon 
in detecting osteoporosis: 
the OSTEODENT study 
H. Devlin,1 P. Allen,2 J. Graham,3 R. Jacobs,4 K. Nicopoulou-Karayianni,5 

C. Lindh,6 E. Marjanovic,7 J. Adams,8 S. Pavitt,9 P. van der Stelt10 

and K. Horner11 

• Women at high risk of osteoporosis 
can be identified by dentists using 
information from panoramic radiographs 
supplemented by a few clinical questions. 

• Dentists may contribute to a woman’s 
general health by facilitating onward 
referral to medical colleagues. 

• The software that carries out the 
radiographic assessment requires 
minimal dentist input to work optimally. 

I N  B R I E F  

RESEA
RCH

 

Objective  To determine if thinning (<3 mm width) of the lower cortical border of the mandible on dental panoramic 
radiographs, as well as other clinical risk factors, may provide a useful diagnostic test for osteoporosis in young postmeno
pausal women. Design  Six hundred and fifty-two subjects (age range 45-70 years) were involved in this multi-centre, 
cross-sectional study. Setting  Patients were recruited from centres in Leuven (Belgium), Athens (Greece), Manchester 
(UK), and Malmo (Sweden). Subjects and methods  The subject’s age, body weight, whether the patient took hormone 
replacement therapy or had a history of low trauma fracture were used to form a clinical osteoporosis risk assessment 
(the OSteoporosis Index of RISk or OSIRIS index). Each patient also received a dental panoramic radiographic examination. 
Results  One hundred and forty subjects had osteoporosis involving at least one of the measurement sites (lumbar spine, 
femoral neck or total hip). Those with osteoporosis tended to have a low OSIRIS score and a thinned cortical mandibular 
border. The area under the ROC curve for using both cortical width and OSIRIS to predict osteoporosis was 0.90 (95% CI = 
0.87 to 0.92). There was a significant improvement in the diagnostic ability of the combined OSIRIS and cortical width test 
over both tests applied separately (p <0.001). The cost effectiveness of the cortical width and OSIRIS model was improved 
by using a high specificity threshold rather than high sensitivity. However, this analysis ignores the costs associated with 
missed cases of osteoporosis. Conclusion  Dentists have a role to play in the detection and referral of patients at high risk 
of osteoporosis. 

INTRODUCTION
 
Osteoporosis is a serious disease, but 
treatment can be instituted when early 
detection is made possible. Hip frac
tures, in particular, are associated with 
significant mortality and morbidity 
in the elderly,1 but in one study, less 
than one fifth (18%) of high risk peo
ple had received medical treatment for 
osteoporosis before the occurrence of 
hip fracture.2 The current failure to 
assess and treat patients at high risk 
of osteoporosis may be partly due to 
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insufficient resources or time, but a 
failure of health professionals to iden
tify risk factors and refer the patient for 
defi nitive diagnosis using dual-energy 
X-ray absorptiometry (DXA) is an 
important contributory factor. 

In an attempt to improve this situa
tion, several clinical risk ‘tests’ have 
been developed as a means of identify
ing subjects who would benefit from fur
ther investigation. The contribution of  
clinical risk factors (such as OSIRIS) to 
the primary prevention of osteoporotic 
fractures is at present under considera
tion by the World Health Organisation 
and the National Institute for Health and 
Clinical Excellence (NICE). OSIRIS is a 
weighted combination of those clinical 
risk factors that are known to independ
ently predict whether a patient has oste
oporosis. These indices, however, have 
not gained universal acceptance as a 
routine diagnostic test because of their 
poor specificity in detecting patients 
at increased risk of osteoporosis.3,4 

Harrison and Adams5 found that clinical 
risk indices misclassifi ed unacceptably 
large numbers of osteoporotic women, 
with consequent decreased cost effec
tiveness. Recently, we reported the use 
of mandibular cortical width measure
ments on dental panoramic radiographs 
(DPRs) as an alternative method of iden
tifying patients with osteoporosis.6,7 

The underlying rationale for this is the 
enormous number of DPRs taken in den
tal practice. We propose a strategy of 
the dentist referring individuals with a 
thin mandibular cortex and other clini
cal risk factors for further DXA inves
tigation. Detection of a thinned cortex 
on DPRs using specially developed com
puter software8 has been found to be a 
good predictor of systemic osteoporosis, 
and because the method is automatic it is 
also convenient. 

This study has two aims. The fi rst was 
to determine the diagnostic effi cacy of 
combining the OSIRIS clinical index 
with the cortical width measurement 
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on radiographs, using multivariate sta
tistical analysis. The second aim was to 

Table 1  Cortical width and OSIRIS data from 652 subjects, 140 of whom were 
osteoporotic at one of the measurement sites 
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evaluate the cost effectiveness of using 
this combined test as a basis for further 
referral for central dual energy X-ray 
absorptiometry (DXA), using the 90% 
sensitivity and 90% specifi city values 
as thresholds. 

METHODS 
This work forms part of the OSTEODENT 
study, a collaborative project funded by 
the European Commission Fifth Frame
work Programme ‘Quality of Life and  
Management of Living Resources’. The 
methodology of subject recruitment and 
examination has been fully described 
previously,7 and is summarised here. 
With Ethics Committee approval, female 
subjects (aged 45-70 years) were recruited 
consecutively into the study following 
their informed consent. Subjects were 
recruited from each centre using public
ity material and by word-of-mouth, but 
this patient group may not be representa
tive of a primary dental care population. 
The study included all female volunteers 
and patients in this age group, with sub
jects excluded only if they suspected that 
they might be pregnant. All subjects were 
interviewed and provided information 
about their age, weight, medication and 
fracture history. Patients were recruited 
from centres in Leuven (Belgium), Athens 
(Greece), Manchester (UK), and Malmo 
(Sweden). Six hundred and seventy-one 
subjects were recruited into the study. 
The bone mineral density of the total hip 
could not be measured in two subjects and 
a further eight subjects were found to be 
aged less than 45 years, so their data were 
not included in any further analysis. A 
further nine radiographs were either lost, 
digitally corrupted or of poor diagnos
tic quality. The remaining 652 subjects 
formed the study population and under
went a clinical risk assessment of oste
oporosis using the OSIRIS questionnaire 
(OSteoporosis Index of RISk) and compu
ter cortical width measurement. One hun
dred and forty subjects had osteoporosis 
involving at least one measurement site. 

Dental radiographs 
Each subject underwent a dental pano
ramic radiographic examination while 
biting on a spherical, steel ball bearing 

(3.175 mm diameter), used to calculate  
the image magnification. The Leuven 
(Belgium) and Malmo (Sweden) centres 
used a Cranex III (Soredex, IL, USA) 
dental panoramic radiography machine 
whereas Athens (Greece) and Manches
ter (UK) used a Planmeca (Planmeca 
USA, Roselle, IL, USA). In Leuven, a 
photostimulable phosphor plate system 
for image capture and digital read out 
was used, but other centres used a con
ventional film/cassette. Typical imaging 
parameters for panoramic radiogra
phy were 70 kV at 8 mA for 15 s. All 
of the radiographs were digitised using 
a Kodak LS85 digitiser (Eastman Kodak, 
Rochester, NY) at a resolution of 25.64 
pixels/mm.  

The mandibular cortex was automati
cally detected on the digitised pano
ramic radiographs using software based 
on Active Shape Model search9, which is 
a sophisticated computer imaging tech
nique. Its width was measured by the 
method described by Allen et al.8 

DXA Examination 
Central DXA of the proximal femur and 
lumbar spine was performed at each 
of the four centres. The World Health 
Organisation (WHO) criteria were used to 
diagnose osteoporosis, ie using DXA to 
identify those with a bone mineral den
sity T-score value 2.5 SD or more below 
the mean value of the young sex matched 
reference population at any of the lumbar 
spine, femoral neck or total hip meas
urement sites. This was used as a ‘gold
standard’ measure of osteoporosis. 

Osteoporosis Index of Risk (OSIRIS) 
The Osteoporosis Index of Risk (OSIRIS) 
is based on four variables:10 age, body 
weight, current hormone replacement 
therapy (HRT) use and history of previ
ous low impact fracture. The index is 
calculated by adding together: 
• Age multiplied by -2 (rounded down 

to the nearest integer) 
• Weight in kg multiplied by 2 (rounded 

down to the nearest integer) 

Osteoporotic (n = 140) Normal (n = 512) 

Cortical width OSIRIS Cortical width 

3.0 (0.6) 3.40 (2.9) 3.7 (0.6) 

5.1 14 5.8 

1.8 -4.6 2.2 

OSIRIS 

Mean (SD) -0.24 (2.5) 

Maximum 6.6 

Minimum -5.9 

Se
ns

iti
vi

ty
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20 

0 
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Cortical width 
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Fig. 1  ROC curve of OSIRIS, cortical width measurements on radiograph, and the effect of 
combining both variables 
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• +2 if a current user of HRT
 
• -2 if a history of low trauma fracture.
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An OSIRIS score of lower than -3 indi
cates a high risk of low BMD, between +1 
and -3 an intermediate risk and greater 
than +1.0 a low risk.11 

Statistical analysis 
Student’s t-test was used to analyse the 
significance of the differences between 
OSIRIS and cortical width values in the 
osteoporotic and normal individuals.  

Discriminant analysis, using the vari
ables cortical width and OSIRIS score, 
was used to derive the probability of 
osteoporosis in an individual subject. 
The model was evaluated using a leave
one-out cross validation strategy to avoid 
biasing the estimates of discrimination 
ability. Models were calculated from  
the entire data set except one, which 
was used as the test datum. This process 
was repeated using each of the patients 
in turn as a test datum. The calculated  
probability of osteoporosis from each of 
the experiments was used to generate an 
ROC curve. The resulting area under the 
ROC curve was compared with that of 
OSIRIS and the cortical width measure
ments. The 90% sensitivity and 90% spe
cificity thresholds were used to calculate 
the numbers of subjects correctly and 
incorrectly classifi ed as osteoporotic. 

Cost effectiveness 
Two strategies were compared to deter
mine those who should receive further 
investigation using dual energy X-ray 
absorptiometry. Criteria values for the 
combined cortical width and clinical 
analysis used either (a) 90% sensitivity 
or (b) 90% specificity. In calculating the 
cost per patient correctly diagnosed with 
osteoporosis, the costs used for central 
DXA were £50 per patient and for the 
OSIRIS index were £5 per patient. Both 
of these costs estimates have been used 
recently in other publications by our 
research group.5 

RESULTS 
The mean difference in mandibular cor
tical width between osteoporotic and 
healthy patients (0.718 mm) was highly 
significant (t = 12.83, p <0.0001) (Table 
1). The difference between osteoporotic 

and normal patients’ OSIRIS indices 
(3.62) was also highly significant (t = 
13.54, p <0.0001).  

Discriminant analysis was used to 
obtain a linear combination of weighted 
average of cortical width and OSIRIS 
variables that resulted in the best sepa
ration between those with and without 
osteoporosis in our sample. The result
ing discriminant score was used to 
distinguish between the two groups. 
Wilk’s lamba (the ratio of the within
group sum of squares to the total sum of 
squares) was 0.683 (χ2 = 247.6, df = 2, p 
<0.001). Therefore the two groups (those 
with and without osteoporosis) differed 
in their mean discriminant score, and 
79% of cases were correctly assigned to 

the groups. Both cortical width and OSI-
RIS variables contributed equally to the 
prediction of group membership because 
they had similar standardised regression 
coefficients (OSIRIS = 0.682, cortical 
width = 0.634). 

A model derived from a sample will 
usually fit it better than another sample 
obtained from the same population. In 
further leave-one-out cross validation 
analysis, each case was classifi ed using 
all the other data to derive the function 
except that one. A similar but less biased 
estimate of the correct classifi cation rate 
of 78.8% of cross-validated grouped 
cases was obtained. 

Using this model, the correlations 
between the probability of osteoporosis 

Table 2  The numbers (and % of the total sample) referred for DXA using a threshold of 
90% sensitivity. This guaranteed that the majority of patients with osteoporosis would 
be referred for further DXA examination, but 164 (56.6%) of the referred patients would 
have a normal BMD. In total, 178 (or 27.3%) of the 652 patients were misclassifi ed 

No referral for DXA Refer for DXA Total 

Osteoporosis present 
14 126 

140 
2.10% 19.30% 

Osteoporosis absent 
348 164 

512 
53.40% 25.20% 

Total 
362 290 

652 
55.50% 44.50% 
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Fig. 2  The variables OSIRIS and cortical width are plotted. The 90% specificity value has 
been used as a threshold and those who are or are not indicated for referral for central 
DXA are indicated (ie predicted probability of osteoporosis of either less than or greater 
than 34.5%) 
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and the BMD at the lumbar spine, femo
ral neck and total hip were -0.60, -0.64 

4 BRITISH DENTAL JOURNAL 

and -0.61, respectively. These correla
tions were highly significant, p <0.01. 

The area under the ROC curve (Fig. 
1) recorded separately for OSIRIS was 
0.84 (95% CI = 0.81 to 0.87) and for the 
cortical width was 0.82 (95% CI 0.79 to 
0.85). The difference between both ROC 
curve areas was 0.021, which was not 
significantly different (95% CI = -0.022 
to 0.064), p = 0.335. The area under the 
ROC curve for the predicted probabil
ity produced by the linear discriminant 
analysis in the cross validation experi
ment (cortical width and OSIRIS) was 
0.90 (95% CI = 0.87 to 0.92). There was 
a significant improvement in the diag
nostic ability of the combined OSIRIS  
and cortical width test over both tests 
applied separately (p <0.001). 

Using the combined OSIRIS and corti
cal width data, an ‘Osteodent Index’ was 
calculated giving the risk of osteoporo
sis. An operating point on the ROC curve 
with a specificity value of 90% (95% CI 
= 87.1 to 92.5) and corresponding value 
of sensitivity of 69% (95% CI = 60.2 to 
76.1) was selected. By using a high spe
cificity value, at the expense of sensi
tivity, the minimum number of patients 
would be sent for unnecessary further 
investigations. Using this criterion value 
gave a test with a positive likelihood 
ratio of 6.9 and negative likelihood ratio 
of 0.35. The diagnostic odds ratio, the 
ratio of positive likelihood ratio divided 
by negative likelihood ratio, was 19.7. 

The OSIRIS values were plotted 
against cortical width for the sample 
of 652 patients. Using the 90% specifi 
city threshold for the combined vari
able, the sample was divided into those 
predicted as being at either high or low 
risk of osteoporosis. Figure 2 shows the 
scatterplot of OSIRIS index and cortical 
width, with assignment to either high  
or low risk of osteoporosis. Our previ
ous work12 has shown that the optimal 
decision boundary of whether to further 
refer patients lies at a 3 mm cortical 
width. Figure 2 shows that in a patient 
with a 3 mm cortical width, only when 
the OSIRIS value is greater than 1.83 is 
referral not indicated.  

There is some overlap of osteoporotic 
and non-osteoporotic OSIRIS and cortical 

width values (Fig. 3). Those patients with 
osteoporosis tend to be grouped towards 
the lower values of both parameters.  

Table 2 shows the false positive and 
false negative assignments arising from 
a referral decision at 90% sensitivity for 
the combined cortical width and OSIRIS 
data. The corresponding specifi city was 
68% and the diagnostic odds ratio was 
18.73. While using a high sensitivity 
ensures that only 10% of osteoporotic 
patients would fail to be referred for  
further investigation, 56.6% of those 
referred would have a normal BMD. The 
cost of this strategy was £141 per oste
oporotic patient diagnosed. 

An alternative decision strategy is to 
adopt a high specificity operating point 
(Table 3). Using a threshold of 90% 

specificity, results in a referral of only 50 
(10%) of those with a normal BMD, but 
with the disadvantage that 44 out of the 
140 osteoporotic patients (31.4%) would 
be missed. The cost of this strategy was 
£110 per osteoporotic patient diagnosed. 

DISCUSSION 
In this study, we have described a case
finding strategy, where a combination of 
a clinical index (OSIRIS) and automati
cally measured width of mandibular cor
tex, is a technique with good diagnostic 
accuracy in predicting low bone mineral 
density at the hip or spine. The diag
nostic odds ratio, the ratio of positive 
likelihood ratio divided by negative 
likelihood ratio, measures the perform
ance of a test and a value above 20 

Table 3  The numbers (and % of the total sample) referred for DXA using a threshold of 
90% specificity. Only 50 (or 10%) of patients with normal BMD would be referred for 
further DXA examination. In total, 94 (or 14.4%) of the 652 subjects were misclassifi ed 

No referral for DXA Refer for DXA Total 

Osteoporosis present 
44 96 

140 
6.70% 14.70% 

Osteoporosis absent 
462 50 

512 
70.90% 7.70% 

Total 
506 146 

652 
77.60% 22.40% 
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Fig. 3  Cortical width measurements plotted against OSIRIS, with each point represented as 
either osteoporotic or normal according to DXA. While osteoporotic subjects tend to group 
towards low values of both parameters, there is extensive overlap between the two groups 
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indicates a diagnostic test with strong used as a screening test, at least in the osteoporosis. Using a test with 90% spe
evidence for effi cacy.13 Our test, provid- age group of women examined in this cificity (£110 per diagnosed osteoporotic 
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ing a diagnostic odds ratio of 19.7, falls 
into this category. Furthermore, the fact 
that the combined test performed better 
than either the clinical or the radiologi
cal test alone demonstrates that they are 
not providing the same information, but 
rather complementary information. It is 
therefore worthy of further clinical trial. 
Other case-finding strategies that have 
combined the information from clinical 
risk factors and selective use of BMD 
have also proven to be more successful 
in identifying high-risk patient groups.14 

Clinical risk factors have been shown to 
independently predict hip fracture risk,15 

but the balance between a simply admin
istered assessment is often at odds with 
the requirement for a comprehensive 
assessment of all possible risk factors. 
Therefore, we plan to further assess the 
ability of our diagnostic strategy to pre
dict hip fracture in our target population 
of young post-menopausal women. 

In the United States and other industr
ialised nations, patients are increasingly 
aware of the benefits of disease preven
tion, as well as the long-term cost sav
ing with healthcare.16 What then could 
be the clinical role for this form of test
ing for low bone density? Our detection 
strategy would be used to select those  
who would undergo further DXA, a case 
finding approach that follows the UK 
Royal College of Physicians Guidelines.17 

Millions of dental radiographs are taken 
by dentists annually, with dental radio
graphs accounting for nearly 25% of 
all medical radiographic exposures.18 

Using dentists to select postmenopau
sal women at high risk of osteoporosis 
has the advantage that patients are seen 
regularly from this age group, and that 
there is an increasing use of radiographs 
by dentists for diagnosis.19 

The diagnostic efficacy of the radio
graphic test alone makes it clearly 
unsuitable as a screening test, because it 
performs no better than the simple clini
cal risk assessment; it also has greater 
cost and an associated X-ray exposure. 
We have previously suggested that 
dentists should refer patients for DXA 
opportunistically using DPRs that they 
have taken for the usual dental purposes. 
Would the combined test be justifi ably 

study? The decision partly depends on 
the cost effectiveness of this strategy. 

With wide scale dental radiographic 
and clinical identifi cation of oste
oporotic patients, increased healthcare 
costs in the short-term would be inevi
table because of increased demand for 
DXA services. Europe is already under
resourced for central DXA machines.20 

Our study cannot predict the numbers 
of femoral neck fractures prevented if 
our methodology was introduced, but 
age and a history of previous fracture 
(which contribute to the OSIRIS index)  
and a low femoral neck BMD are clinical 
risk factors which play a role in femoral 
fracture risk.21,22 

In the UK, the National Osteoporosis 
Society has recommended that post
menopausal women given peripheral 
X-ray absorptiometry be classifi ed into 
three risk categories.23 In the fi rst group 
at high risk of osteoporosis, treatment is 
recommended, particularly if accompa
nied by other risk factors. In the second 
group, the patients are referred for cen
tral DXA for further confi rmation, and 
in the third group no additional action 
is recommended. In this context, we 
developed an analogous strategy using 
the combined cortical width and OSI-
RIS variables to categorise patients into 
three groups of differing osteoporosis 
risk. Two thresholds were chosen based 
on the 90% sensitivity (the low thresh
old) and the 90% specificity values (the 
high threshold), as described by Har
rison and Adams.5 The 90% sensitiv
ity value was the predicted probability 
value of osteoporosis represented by the 
10th percentile and the 90% specifi city 
value was the predicted value of non
osteoporosis represented by the 90th per
centile. However, the value of this whole 
approach is limited by the medical side 
effects and the high cost of providing 
long-term drug therapy for those in the 
highest risk group when they do not 
have osteoporosis. 

We therefore compared using either 
threshold values of 90% sensitivity 
or 90% specificity for the combined 
cortical width and OSIRIS variable as 
two strategies of referral for DXA for 
those patients considered ‘at risk’ of 

patient) provided a more cost effective  
option than using 90% sensitivity (£141 
per osteoporotic patient). This is due to 
the large number of patients with nor
mal bone mineral density that were 
referred unnecessarily for DXA, and 
therefore the comparatively low yield of 
osteoporotic patients. There was a cost of 
£233 per diagnosed osteoporotic patient 
if all patients in the study received cen
tral DXA. This analysis ignores the costs 
associated with the undiagnosed oste
oporotic patients as these were diffi cult 
to define in this study. The authors hope 
that some of these individuals would be 
identifi ed through further opportunistic 
testing using either our methodology on 
a future occasion or other techniques, 
such as dual energy X-ray absorpti
ometry or quantitative ultrasound. We 
also hope to use our test methodology 
and any subsequent patient treatment 
to examine the incremental cost-effec
tiveness ratio per quality adjusted life 
year. In addition, if the net benefit of our 
methodology is to be assessed, the dis
tribution of risk assessment cost over the 
population must be calculated.  

Case-finding strategies are prone 
to operator variability and error. For 
example, evidence from chest radiog
raphy taken in an emergency hospital 
department has shown that only 25% of 
patients with radiologically evident ver
tebral fractures received a diagnosis of 
osteoporosis or any treatment.24 Our own 
research using observer measurements 
of cortical width has demonstrated that 
the weakness lies in observer variabil
ity. One can postulate that dentists in 
a primary care setting would be inac
curate in making some measurements  
by hand.7,25 Our methodology involves 
a computer-measured mandibular corti
cal width to make the initial diagnosis 
of a high risk of osteoporosis, and fol
lowing consultation with the patient, 
the dentist can either provide fol
low-up clinical questions, such as an  
OSIRIS clinical risk index, or refer to 
a specialist.  

The cost effectiveness of our proposed 
methodology is dependent on the preva
lence of osteoporosis in our study popu
lation (21.5%) being comparable to that 
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of the hip and spine in general practice 
was similar (24%), but their study popu
lation consisted of women in their sev
enth decade.26 The mean age of our study 
sample was 55 years (sd = 6.1), and the 
age range (45-70 years) was chosen to 
test an asymptomatic population which 
was more representative of young post
menopausal women attending a gen
eral dental practice. Our osteoporotic 
screening method could be made more 
cost effective if restricted to an elderly 
population; fewer misdiagnoses are then 
likely because the incidence of vertebral 
and hip fractures increases exponen
tially with age.27 

Poor radiographic technique is com
mon in general dental practice and may 
limit the usefulness of our technique. 
For example in a study by Rushton et 
al., 28 the image of the lower border of the 
mandible was at least partially absent in 
9% of panoramic radiographs. Using dig
ital panoramic radiographs will approxi
mately halve the reject rate of fi lms as 
about half of faults are due to chemical 
processing of fi lm.28 Patient positioning 
faults could be reduced by using better 
positioning aids, further training of den
tists with an emphasis on quality assur
ance, and using only suitably qualifi ed 
personnel to take radiographs.28 

In conclusion, our methodology used 
computer software to detect and analyse 
the mandibular cortical width and when 
combined with clinical risk indices data 
detected patients at early, high risk  
of osteoporosis. 

Programme ‘Quality of Life and Management of 
Living Resources’ (QLK6-2002-02243; ‘OSTE-
ODENT’). 
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The relationship between the OSTEODENT index and hip
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Objectives. The OSTEODENT index is a predicted probability of osteoporosis derived from a combination of an
automated analysis of a dental panoramic radiograph and clinical information. This index has been proposed as a
suitable case-finding tool for identification of subjects with osteoporosis in primary dental care; however, no data exist
on the relationship between OSTEODENT index and fracture risk. The aims of this study were to assess the
relationship between the OSTEODENT index and hip fracture risk as determined by FRAX and to compare the
performance of the OSTEODENT index and FRAX (without femoral BMD data), in determining the need for
intervention as recommended in UK national treatment guidance.
Study design. The study was a retrospective analysis of data from 339 female subjects (mean age 55.3 years), from 2
centers: Manchester (UK) and Leuven (Belgium). Clinical information and femoral neck BMD were available for FRAX,
and dental panoramic radiographic data and clinical information were available to calculate the OSTEODENT index.
Subjects were classified into “treat” or “lifestyle advice and reassurance” categories using the National Osteoporosis
Guideline Group (NOGG) threshold.
Results. The OSTEODENT index result was significantly related to the 10-year probability of hip fracture derived from
the reference standard FRAX tool (Rs � 0.67, P � .0001); 84 patients (24.8%) were allocated to the “treat” category
on the basis of FRAX and the UK national guidance. Using this “treatment/no treatment” classification as the reference
standard, ROC analysis showed no significant difference between areas under the curves for the OSTEODENT index
(0.815) and the 10-year probability of hip fracture derived from the FRAX index without BMD (0.825) when used as
tests for determining therapeutic intervention.
Conclusion. The results suggest that the OSTEODENT index has value in prediction of hip fracture risk. Prospective
trials are needed to confirm this finding and to examine the feasibility for its use in primary dental care. (Oral Surg

Oral Med Oral Pathol Oral Radiol Endod 2010;110:243-249)
A major challenge in managing osteoporosis is the
difficulty in identifying affected individuals before the
condition is established and fracture has occurred.1-3
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Diagnosis of osteoporosis relies on measurement of
“areal” bone mineral density4 (g/cm2; BMDa) at the hip
and spine by dual energy x-ray absorptiometry (DXA),
with classification being based on standard deviation
(SD) scores (T score at or below –2.5).1 BMDa is,
however, only one risk factor for fracture, with a dou-
bling of risk for each SD reduction in BMDa.

5,6 Further-
more, some of the clinical risk factors used as indicators
for BMDa measurement are themselves associated with
a fracture risk greater than can be accounted for by
BMDa alone.7 Factors such as a low body mass index,
low milk consumption, lack of sunlight exposure, and
low physical activity account for about half of hip
fractures, and which are reversible by the patient.8 In
recent years, therefore, emphasis has shifted away from
diagnosis of osteoporosis by BMDa toward assessment
of clinical fracture risk. Early identification of risk
factors for osteoporosis and fracture may facilitate ac-
cess to appropriate medical intervention and fracture
risk reduction. Such a “case-finding” approach, based
on clinical risk factors, has been recommended rather
than population screening. Using meta-analysis tech-
niques applied to studies on population-based cohorts
that identified clinical risk factors for fracture, algo-
rithms (FRAX) have been developed that compute age-
specific 10-year fracture probabilities.9 FRAX can be
used without the availability of femoral neck BMDa, or
with its incorporation into the algorithm when avail-
able.9-11 In the United Kingdom, a management strategy
guideline, based on an individual’s estimated fracture risk,
has been devised by the National Osteoporosis Guideline
Group (NOGG),11 providing a clear pathway from clinical
risk assessment using FRAX through to appropriate guid-
ance on intervention.

Approximately 1 in 3 of all radiological examina-
tions are made by dentists.12 Dental radiographs invari-
ably show images of the bone of the jaws and there is
evidence that jaw BMDa and radiomorphometric indi-
ces correlate significantly with BMDa of other skeletal
sites, including the hip and spine.13-16 Subsequent work
has demonstrated that various radiographic features of
mandibular bone on panoramic radiographs have po-
tential value in predicting BMDa at these important
sites of fracture. The OSTEODENT study established
that an “automatic” measurement of mandibular corti-
cal bone thickness on panoramic radiographs was a
valid test for diagnosis of osteoporosis in women aged
45 to 70 years, with a receiver operating characteristic
(ROC) area exceeding 0.80.17 Subsequent data analysis
showed that combining the radiographic mandibular cor-
tical width data with clinical information, in the form of
the Osteoporosis Index of Risk (OSIRIS)18 (age, weight,
current estrogen therapy, and history of low trauma frac-

ture), produced a test result (the “OSTEODENT index”)
that was significantly better for prediction of BMDa than
either test alone (ROC curve area � 0.90).19 The authors
suggested that combining these clinical and radiographic
tests had potential to be used in primary dental health care
as a case-finding strategy for identification of patients at
risk of osteoporosis.

Although the OSTEODENT index, along with other
dental radiographic measurements, has been shown to
have diagnostic validity in predicting BMDa and osteo-
porosis, there is no information on how the index
relates to risk of fracture or to patient management
decisions. If the OSTEODENT index is to be a tool for
case finding in osteoporosis, then its performance
should be comparable with that of the FRAX tool
(without inclusion of BMDa data) in assessment of
fracture risk and management recommendations.

The aims of this study, therefore, were to (1) assess
the relationship between the OSTEODENT index and
hip fracture risk as determined by the FRAX tool, and
(2) compare the performance of 2 clinical tests, the
OSTEODENT index and the FRAX tool (without
BMDa data), to determine appropriate intervention as
recommended by NOGG.

MATERIALS AND METHODS
This study was carried out by retrospective analysis

of patient data from the OSTEODENT study (European
Commission Fifth Framework Programme “Quality of
Life and Management of Living Resources”; QLK6-
2002-02243). The aim of that study was to identify the
most valid and effective radiographic index, or combi-
nation of radiographic and clinical indices, for the
diagnosis of osteoporosis applicable for use by dentists
in a primary health care setting. Details of the study
have been reported in full previously20 and a summary
of pertinent aspects are reported here.

Women in the age range of 45 to 70 years were
invited to participate in the study, recruited at 4 centers:
Athens (Greece), Leuven (Belgium), Malmö (Sweden),
and Manchester (UK). Local ethical approval for the
study was obtained in each recruiting center and in-
formed consent was obtained from all subjects. The
racial origin of the patients, their menopausal status,
and history of hysterectomy and hormone replacement
therapy (HRT), if applicable, were noted. Weight (wt)
and height (ht) were measured and body mass index
(wt/ht;2 kg/m2) calculated. Information about meno-
pausal status, date of menarche, previous fracture his-
tory, tobacco-smoking habits, and alcohol intake were
recorded. Recruitment was performed over a 24-month
period extending from October 2003 to September
2005. For the study reported here, subjects from only 2
of the recruiting centers (Leuven and Manchester) are

included in the analysis. Subjects from Athens and
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Malmö were excluded because no record of glucocor-
ticoid use (required for use of the FRAX tool) existed.

Bone densitometry
DXA of the left hip was carried out on each subject

to determine femoral neck (FN) BMDa. Scans were
performed by experienced radiographers on the Ho-
logic QDR 4500 (Hologic Inc., Bedford, MA) in Leu-
ven and the Hologic Discovery (Hologic Inc.) in
Manchester. T-scores were calculated using National
Health and Nutrition Examination Survey (NHANES)
reference data.21 The European spine phantom (ESP)22

was used to standardize measurements between differ-
ent manufacturers using the method described by Pear-
son and colleagues.23 Standardization of BMDa mea-
surements was performed by one experienced scientist
(E.M.). Scans and results from the 2 centers were
reviewed and confirmed for good quality by one clini-
cal radiologist (J.E.A.) with expertise in this field. Sh-
ewarts rules were used to monitor quality assurance
throughout the study period.24

Clinical evaluation
All subjects were interviewed using a standard ques-

tionnaire covering a wide range of medical, social, and
family history, including age, sex, weight, height, pre-
vious fractures, parental hip fracture, current smoking,
glucocorticoid use, rheumatoid arthritis, secondary os-
teoporosis, alcohol intake, and current HRT use.

Radiography
In Manchester, dental panoramic radiography was per-

formed on each subject using a Planmeca PM2002CC
(Planmeca Oy, Helsinki, Finland). In Leuven, radiography
was carried out using a Cranex 3DC (Soredex, Tuusula,
Finland). The imaging parameters varied according to
equipment difference and patient variation, but typi-
cally were 70 kV (constant potential) at 8 mA for 15
seconds. In Leuven, ADC Solo (Afga, Mortsel, Bel-
gium) was used as the photostimulable phosphor plate
system for image capture and read out, whereas
Manchester used a conventional film/cassette combina-
tion. Procedures for radiographic quality assurance and
magnification control have been reported in detail pre-
viously.20 Hard-copy radiographs were digitized using
a Kodak LS85 digitizer (Eastman Kodak, Rochester,
NY) at a resolution of 25.64 pixels/mm.

Reference standard: NOGG intervention category
derived from fracture risk using FRAX

The clinical information collected from subjects was
used to calculate the 10-year probability of hip fracture
using the FRAX fracture risk assessment tool devel-

oped by the World Health Organization (WHO) (http://
www.shef.ac.uk/FRAX/, accessed between October 19,
2008, and January 20, 2009). The FRAX tool for the
United Kingdom was used for both Manchester and
Leuven subjects. FRAX incorporates the following
clinical risk factors: age, sex, weight, height, previous
fracture, parental hip fracture, current smoking, glu-
cocorticoid use, rheumatoid arthritis, secondary osteo-
porosis, and alcohol intake exceeding 3 units per day.
In the absence of BMD data, subjects are classified into
low risk (requiring reassurance), intermediate risk (re-
quiring BMDa to be ascertained), and high risk (requir-
ing treatment be considered either with or without
further BMDa assessment).

We entered the femoral neck BMD and clinical data
into the FRAX tool and, using the NOGG management
guidance link (http://www.shef.ac.uk/NOGG) from the
FRAX Web site, we calculated the 10-year hip fracture
probability. Using the reference standard given there,
subjects were classified into either “treat” or “lifestyle
advice and reassurance” categories.

Radiographic/clinical test: OSTEODENT index
assessment

The OSTEODENT index is the predicted proba-
bility of osteoporosis based on a combination of
automatic measurement of mandibular cortical width
on dental panoramic radiographs and OSIRIS,18 cal-
culated by a computer program.17 Briefly, the man-
dibular cortex was automatically detected on digi-
tized panoramic radiographs using software based on
an Active Shape Model search.25,26 The clinical data
required to calculate OSIRIS (age, body weight, cur-
rent HRT use, and history of previous low-impact
fracture) was then entered and combined with the
radiographic data, producing the predicted probabil-
ity (%) of osteoporosis. Each subject’s radiographic
and clinical information was entered to give her
OSTEODENT index.

Clinical test: 10-year probability of hip fracture
derived from FRAX without FN BMDa

Clinical information of subjects was used to calculate
the 10-year probability of hip fracture using the FRAX
tool (without inclusion of FN BMDa).

Statistical analysis
The relationship between the OSTEODENT index

and the 10-year probability of hip fracture derived from
the FRAX tool (with FN BMDa) was calculated using
Spearman’s rank correlation. Similarly, the relationship
between the 10-year probability of hip fracture derived
from the FRAX tool (without FN BMDa) and the 10-
year probability of hip fracture derived from the FRAX

tool (with FN BMDa) was calculated.

http://www.shef.ac.uk/FRAX
http://www.shef.ac.uk/FRAX
http://www.shef.ac.uk/NOGG
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The reference standard decision of “treat” or “life-
style advice and reassurance” derived from 10-year hip
fracture risk probability was calculated using FRAX
(with FN BMDa) and NOGG management guidance
link from the FRAX Web site and was used as a “gold
reference standard” in our calculations. The abilities of
FRAX (without FN BMDa) and the OSTEODENT
index in categorizing subjects into the NOGG “treat”
category were compared using ROC curve analysis.
The areas under the ROC curves (AUC) and analysis
for significant statistical differences between AUCs
were calculated using the MedCalc programme (Med-
Calc Software bvba, Mariakerke, Belgium).

RESULTS
A total of 351 women were recruited to the study. It

was not possible to record the mandibular cortical
width for 7 subjects because these films were unusable
for reasons including damage, accidental loss, lack of a
ball-bearing image, and unacceptable image quality.
Data on hip fracture probability (with FN BMDa) was
not available for a further 5 subjects. Clinical informa-
tion required to calculate FRAX was lacking in 3 sub-
jects for whether they had a confirmed diagnosis of
rheumatoid arthritis, the number of alcohol units con-
sumed per day, and their exposure to oral glucocorti-
coids. Dentate and edentulous patients were included,
as we have shown previously that the dental state of the
patient was not significant in predicting mandibular
bone mineral density.27 Several subjects had more than
one missing item of data and complete datasets were
available for 339 women. The mean age of this popu-
lation was 55.3 years (SD � 6.32). From this study
population, 62 (18%) were classified as having osteo-
porosis at the femoral neck.

The OSTEODENT index results (predicted probabil-
ity of having osteoporosis) in the study population
ranged from 0% to 99.4%. The data were not normally
distributed, with most people having a low score and
with a median result of 17.95%. Similarly, most sub-
jects had low 10-year hip fracture probability using
FRAX (with or without FN BMDa). For FRAX (with-
out FN BMDa), median probability was 0.7%, with a
range from 0.1% to 19.0%, whereas for FRAX (with
FN BMDa) the median was 0.6% and the range ex-
tended from 0% to 49.0%.

Relationship between the OSTEODENT index and
10-year probability of hip fracture

A significant relationship was demonstrated between
the OSTEODENT index and the 10-year probability of
hip fracture derived from the reference standard FRAX
tool (with FN BMDa), Rs � 0.67, P � .0001, indicating

a strong relationship between the 2 variables (Fig. 1, A).
The relationship between the 10-year probabilities of
hip fracture calculated using FRAX (without FN
BMDa) and FRAX (with FN BMDa) was Rs � 0.77
(P � .0001; Fig. 1, B). The 2 independent correlation
coefficients were significantly different from each other
(z � –2.72, P � .007). All the indices were positively
skewed. Most subjects had a low 10-year probability of
hip fracture (Table I), measured using any of the indi-
ces, and the correlation coefficients may therefore have
been influenced by outliers.28

Eighty-four patients (24.8%) were considered as re-
quiring treatment by NOGG subsequent to their FRAX
(with FN BMDa) assessment. Using this as the refer-
ence standard, ROC curve analysis (Fig. 2) showed that

Fig. 1. Scatter plots showing (A) the relationship between the
OSTEODENT index (%) and FRAX (with FN BMDa) (10-
year probability of hip fracture) and (B) the relationship
between FRAX (without FN BMDa) and FRAX (with FN
BMDa) for the 339 subjects in the study. Logarithmic axes are
used for both plots.
the AUC for the OSTEODENT index used as a means
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of determining treatment need was 0.815 (SE � 0.030)
and that for the 10-year probability of hip fracture
derived from the FRAX index without BMD was 0.825
(SE � 0.029). There was no significant difference in
AUC between these 2 curves (z � 0.36, P � .72).

DISCUSSION
Regular visits by patients to the dentist for check-ups

and treatment provide an opportunity to address issues
that may be of indirect relevance to dental health, but of
great importance to general well-being. Thus, many
dentists, at least in the United Kingdom, advise on
smoking cessation,29 perform blood pressure checks,30

and carry out oral cancer screening.31 Bone health is of
immediate importance to dentists, not least in the con-
text of implant and periodontal therapies. The inclusion
of opportunistic osteoporosis case-finding by dentists
has, therefore, a reasonable prospect of adoption if a
suitable test is available and if cost-effectiveness can be
demonstrated. The OSTEODENT software, based on
radiographic data supplemented by some simple clini-

Table I. The value of the different indices below which
the stated percentage of subjects were classified

Percentiles
OSTEODENT

index, %
FRAX (without

BMDa), %
FRAX (with FN

BMDa), %

Median 17.9 0.7 0.6
20 3.3 0.3 0.2
30 6.4 0.4 0.3
40 10.2 0.5 0.4
60 28.2 1.0 1.0
70 37.9 1.4 1.7
80 62.6 2.6 3.0
90 83.3 4.7 6.8

Fig. 2. Receiver operating characteristic curves for the
OSTEODENT index and FRAX (without FN BMDa), dem-
onstrating their value as diagnostic tests for allocating sub-
jects into the NOGG “treat” category. There was no signifi-
cant difference between areas under the curves.
cal information, has been shown to have good diagnos-
tic validity for identification of women with low
BMDa,

17,19 but there was no information available
about its relationship with fracture risk. This study
aimed to address this deficiency.

The study design was retrospective, being a reeval-
uation of data obtained from a previous study, designed
before the publication of the WHO FRAX fracture risk
assessment tool. Such a design invariably introduces
limitations. The number of women included was lim-
ited to those from only 2 of the original 4 recruiting
centers because all items of data needed for FRAX had
not been collected consistently. It should be recognized
that the study did not measure actual fracture incidence
in a longitudinal cohort study as the number of subjects
was too small to provide statistically significant fracture
data. Nonetheless, our study provides useful informa-
tion that may help determine whether a larger, prospec-
tive study of the OSTEODENT index and fracture
prediction is indicated.

The OSTEODENT index was significantly corre-
lated with 10-year probability of hip fracture derived
from FRAX (with FN BMDa). The OSTEODENT in-
dex has previously been shown to have high diagnostic
value in prediction of low BMDa and osteoporosis. As
BMD is a risk factor for hip fracture, such a finding is
not surprising. The useful information, however, was
the indication of the strength of the relationship be-
tween the OSTEODENT index and 10-year probability
of hip fracture calculated using FRAX (with FN
BMDa). This significant association (Rs � 0.67) was
weaker than that (Rs � 0.77) between FRAX (without
FN BMDa) and FRAX (with FN BMDa), although the
stronger relationship with the latter is not surprising in
view of the shared elements contributing to their cal-
culation.

Demonstration of a significant association between 2
variables does not address the potential value of the
OSTEODENT index as a clinical case-finding test.
Calculation of sensitivity and specificity and/or the use
of ROC curve analysis do provide such information,
but require a reference standard with which the test can
be compared. In this study, in the absence of any “true”
individual fracture data, we used the 10-year probabil-
ity of hip fracture obtained from FRAX (with FN
BMDa). To perform ROC analysis, these reference
standard data had to be dichotomized and this was
achieved using the intervention threshold recom-
mended by NOGG, which can be justified, as the
FRAX Web site links directly through to the NOGG
management recommendation. The FRAX tool pro-
vides an estimate of 10-year probability of both hip and
“major” (clinical spine, forearm, hip, or shoulder) frac-
ture. Similarly, when FN BMDa is included, FRAX

leads to NOGG guidance on intervention for both frac-
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ture probabilities. In this study, we chose to consider
only hip, rather than major, fracture probabilities be-
cause the impact of hip fracture on the affected indi-
vidual is greater.

Our ROC results indicate that the ability of the
OSTEODENT index to predict patient management
decisions according to NOGG is comparable with that
of FRAX without FN BMDa. The OSTEODENT index
is a combination of clinical and radiographic informa-
tion, whereas FRAX without FN BMDa is derived from
clinical data alone, although there are more clinical
items considered by FRAX than by the OSTEODENT
index. It seems possible that the radiographic infor-
mation provided by OSTEODENT is providing some
indicator of BMDa status that compensates for the
smaller number of clinical data items included. As
such, it is interesting to consider whether adapting
the OSTEODENT software to include the FRAX tool
factors, rather than the more limited OSIRIS factors,
might improve performance as a predictive tool. This
should be considered in future research, although the
advantage of the clinical data collection used in
OSTEODENT (age, weight, current HRT, and his-
tory of low trauma fracture) is that it is quick and
easy to collect and more feasible for application in
dental practice.

Although there are limitations in this study, the
OSTEODENT index has potential as a case-finding tool
for osteoporosis and as an indicator of hip fracture risk,
and a larger prospective trial in primary care seems
justified. Such a study should also address the impor-
tant issues of stakeholder acceptability, possible inter-
professional barriers, and an essential economic evalu-
ation.
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IMPROVING THE DETECTION OF OSTEOPOROSIS FROM DENTAL

RADIOGRAPHS USING ACTIVE APPEARANCE MODELS
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ABSTRACT

We describe improvements to a method of detecting patients
at risk of osteoporosis from automatic measurement of the
inferior mandibular cortex on panoramic dental tomograms.
Previous work had used an Active Shape Model (ASM) to
locate the mandibular edges. However, the edge-based ASM
has little lateral positioning information and in osteoporotic
cases the superior border is often poorly defined. These prob-
lems can degrade the accuracy of the measurements of cortical
width. We have obtained superior accuracy using an Active
Appearance Model incorporating a complex texture model
derived from an osteoporotic-enriched training set. This leads
to improvements in diagnostic accuracy, when applied to a
large dataset of 663 subjects with known Bone Mineral Den-
sity.

Index Terms— Osteoporosis, Dental Radiographs, Ac-
tive Appearance Model, Active Shape Model, Image Segmen-
tation.

1. INTRODUCTION

Osteoporosis is a progressive skeletal disease characterized
by low bone mass and structural deterioration of bone tissue,
leading to an increased susceptibility to fragility fracture. Os-
teoporosis is associated with increased morbidity and mortal-
ity - 27% of women who sustain a hip fracture die within 1
year. Early detection of osteoporosis can allow therapeutic in-
tervention, but the condition is often undiagnosed. There has
been recent interest among dental researchers in identifying
those at risk of reduced Bone Mineral Densitiy (BMD) from
dental radiographs [1]. Figure 1 shows part of a Panoramic
Dental Tomogram (PDT), on which the inferior mandibu-
lar cortex is visible. It was reported in [2] that measuring
the thickness of the cortical bone using Active Shape Model
(ASM) search [3] provides a good diagnostic of low BMD at
other skeletal sites. Further technical details on the ASM
search are given in [4].

In [4] two ASM procedures were presented: the shape
could be manually initialised by an expert practitioner click-
ing on 4 points (see Figure 1) along the inferior mandible; or a
fully automatic search starting from the mean shape could be
performed. These were referred to as 4PFit and UFit respec-
tively. As not all dental practitioners are expert in aligning

This work was supported by a research grant from the Dun-
hill Trust and used data previously acquired by a study funded
by a technological development project grant from the European
Commission (QLK6-2002-02243).

Fig. 1. a) Typical dental panoramic tomogram, with labelled
anatomical points. The rectangles indicate the lateral posi-
tion of the 4 point initialisation. b) the phase 1 ASM shape
extent (patient right side); c) the regions of the AAM texture
model sample types are indicated.

the shape with the 4 (indistinct) landmark points, a fully au-
tomatic system is desirable. This may also be useful in large
epidemiological studies. However both point-to-line accuracy
and ROC curve area were poorer in the UFit case. Closer in-
spection of UFit solutions revealed some ASM search failures,
or gross lateral misalignment, due to the fact that the edge-
based ASM has little evidence to use for positioning laterally
along the mandible. This may lead to bias in the thickness
measurement. Furthermore in osteoporotic cases the supe-
rior border is often poorly defined, which can lead to poor
positioning of the superior border by the ASM. We have at-
tempted to address these issues. We use more search phases
than [4], starting with a more global ASM search with a lat-
erally extended shape model, and concluding with an Active
Appearance Model (AAM) [5] using a complex texture model.
Because the AAM models the correlation between shape and
texture, it may be better suited than an ASM to fit to thin
osteoporotic mandibles with poorly defined superior borders.
It is inevitable that there will be occasional search failures,
and so we have enhanced the method by providing criteria
for identifying search failure.

2. MATERIALS AND METHODS

2.1. Data

We used the training set data already reported in [4], compris-
ing PDTs and BMD measurements from 132 female patients
aged 45-55 who attended for routine dental treatment. The

440978-1-4244-4126-6/10/$25.00 ©2010 IEEE ISBI 2010



independent test data had been previously collected during
the OSTEODENT study [1, 2] and consisted of 663 ambu-
lant female patients of which 140 were osteoporotic. Patients
were diagnosed osteoporotic according to the World Health
Organization criteria, i.e. those with a bone mineral density
T-score value below -2.5, evaluated at 3 skeletal sites (femoral
neck, total hip, and lumbar spine). Further details are given
in [1, 2]. As the original training set contained very few os-
teoporotic cases, the training set was enhanced by adding a
further 50 osteoporotic or osteopoenic cases taken from the
OSTEODENT set (BMD T-score < −2). The modelling was
extended by annotating more lateral points past the Gonion
(Figure 1). Further intermediate points for texture sampling
are interpolated as in [4].

2.2. Segmentation Method

In [4] a two-phase ASM was used with separate models for
the left and right halves, built from expertly annotated points
lying between the antegonion (AG) to the sub-mental fora-
men (MF) (Figure 1a,b). Firstly ASMs trained on just the
inferior border (Figure 1b) from Ante-Gonion (AG) to sub-
Mental Foramen (MF) points are run; followed by ASMs us-
ing both borders. We have extended this to use three phases.
Firstly a global ASM describing both halves of the cortex
is run to locate the inferior border. The model and search
are laterally extended beyond the Gonion (GO) (Figure 1b),
to seek more lateral positioning information. Starting from
the point locations found at the end of the first phase, we
run an ASM search for the lower border only, as in phase 1
of [4], but with a laterally extended model defined between
MF and GO (rather than AG). Finally we locate the supe-
rior border, and refine lateral positioning, by running Ac-
tive Appearance Model (AAM) search for the two halves. A
merged texture model was used for the AAM by concate-
nating several sub-sample types, some of which are sampled
only in specific sub-regions (Figure 1c). From AG to MF
grey levels are sampled in rectangles normal to the shape,
with a width of three sampling steps (1 step=2pixels). The
sampled grey level texture is renormalised onto (-1,1) using
the (signed) Geman-McClure robust function [6], so the me-
dian is zero, with a robust scale estimate based on the Me-
dian Absolute Deviation. In the region from GO to 15% of
AG-MF distance past AG, the 2D Sobel gradients in a sam-
pling rectangle of width 5 steps are computed, with the x-
axis aligned to the local tangent. Changes in gradient vector
components across the rectangle may offer lateral positioning
clues where the curvature changes. The gradient vector com-
ponents are renormalised onto (-1,1) across the whole sam-
ple using an orientation-preserving sigmoidal function as in
[7]. Finally smoothed 1D normal gradient components are
computed along the inferior border from MF to AG with sig-
moidal renormalisation.

To evaluate whether the UFit search was successful we
calculated two measures. Firstly we calculated the AAM
texture model residual sum of squares, with some empirical
rescaling factors (derived by bootstrap resampling) to bring
to better alignment with a χ2 distribution as in [8]. We then
transform this to a log-probability of being so far into the
upper tail of an approximated Gaussian cumulative distribu-
tion. The texture measure is the lower of that for the left and
right AAM submodels. Image noise can make it difficult to

distinguish a failure from a successful fit with high superim-
posed clutter, so we also use a measure based on shape sym-
metry. The mandible is reasonably left/right symmetric, but
search failures often have one half successfully fitted, whilst
the other fits to either shadow artefacts below the mandible,
or other edges up near the teeth. Both of these tend to de-
stroy left/right symmetry. We measure shape symmetry by
computing the angle of the local shape gradient θi at point i,
reflecting it in a notional symmetry axis to obtain θ̂i, and the
actual angle at the corresponding point on the other side θ′

i.
The notional symmetry axis is derived by fitting both halves
to a global shape model, and taking the rotation of the global
pose angle from the y-axis. The symmetry measure MS is a
similar log-probability measure as for the texture residuals,
given by:

MS = log(1− F (
z√
2
)) z =

P
i∈I
‖θ̂i − θ′

i‖ − μS

σS

(1)

where F (x) = 0.5(1 + erf(x)), and I contains the indices
of a subset of 20 (equispaced) points between MF and AG.
The mean and standard deviation μS , σS are derived from
the training set. Cut off thesholds are then derived from
the 4PFit distributions of the two measures. These are set
to μ + 5σ of either measure, or μ + 3σ in both, where μ is
the median, and σ is the robust Sn estimate [9] of standard
deviation suited to asymmetric distributions.

2.3. Experimental Procedure

To evaluate segmentation accuracy using the ground-truth
in the training set, leave-8-out cross-validation was used with
randomised ordering. Leave-8-out was used rather than leave-
1-out due to the long training time required for the feature
AAMs, and should not lead to significant deterioration given
a training set size of 182. To evaluate the diagnosis of osteo-
porosis, the search algorithms were run on the remaining in-
dependent OSTEODENT test data set using ASM and AAM
models built with the full training set. The segmentations
(via leave-8-out) of the 50 OSTEODENT images used for
training were added to the diagnostic test set. The algorithm
was run in 4PFit and UFit modes. ASM and AAM typically
use a multi-resolution coarse-to-fine search on a Gaussian im-
age pyramid. We used two levels of pyramid for all phases in
the 4PFit searches, increasing for UFits to four levels in phase
1, and three levels thereafter. For the 4PFit searches, 10 repli-
cations were performed to evaluate precision, with Gaussian
random displacements added to the annotated points, based
on manual precision figures in [4]. The precision error is calcu-
lated as the mean displacement from the mean solution over
the ten replications (with 9 degrees of freedom). For com-
parision we also completed the segmentation of both borders
using a final edge-seeking ASM phase as in [4].

To calculate the mandible thickness we fitted Bezier
splines to both borders from MF to AG and placed 100
equi-distant points on the inferior spline. The distance from
each inferior point to the nearest point on the superior spline
was computed, and laterally smoothed in a moving window
of semi-width 0.1L, using a Gaussian kernel of standard de-
viation 0.05L, where L is the total spline distance from MF
to AG. Similarly to [2] we optimised the measurement site,
as correlation between IMC thickness and BMD varies along
the mandible [2]. We selected the inferior point giving max-
imal ROC curve area in the training set. We independently
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optimised the 4PFit and UFit sites, because lateral error in
the UFit case may mean the measurements become more
unreliable close to the AG, where the cortex rapidly thins.
The optimal sites were found to be 0.79L and 0.66L from
MF for 4PFit and UFit respectively, though the smoothing
window allows for some latitude. We evaluated ROC curves
against osteoporosis diagnosed at any of the 3 skeletal sites;
and against osteoporosis diagnosed only using Femoral Neck
BMD. The latter is likely to be more closely correlated with
mandibular BMD, as both sites are predominatly comprised
of cortical (not trabecular) bone. Also hip fracture is the
most serious consequence of osteoporosis.

3. RESULTS

The point-to-curve error statistics are presented in table 1.
For comparison, the mean point-to-curve error in the ASM of
[4] was 0.31mm for 4PFit, rising to 0.49mm for UFit. Note
that the quoted mean comparison figure from [4] represents
a more idealised accuracy, as there were fewer osteoporotics,
and no random precision error was added to the initialisa-
tion. On the same dataset as [4] the AAM hybrid achieves
respective accuracies of 0.24mm (4PFit) and 0.31mm (UFit).
Thus the UFit point-to-line accuracy on largely normal cases
has improved to be comparable to the previous 4PFit. A
more significant improvement in accuracy is in fitting the
superior borders of osteoporotic cases, which are the most
difficult cases. The ASM accuracy degrades for superior os-
teoporotic borders in both 4PFit and UFit cases, whereas
the AAM accuracy is maintained at similar levels to normal
cases for the 4PFit; whilst in the UFit case the upper tail
of the error distribution is reduced, and the 75th percentile
is halved compared to ASM. But a small number of UFit
partial search failures (or poor lateral alignment) mean that
the UFit mean error degrades to 0.64mm, though that is still
significantly better than for the ASM. For the superior osteo-
porotic borders, the 98% confidence intervals for the mean
error difference (ASM-AAM), derived by factored (e.g. by
randomised initialisation) bootstrap resampling, are [1.0,3.1]
pixels (4PFit) and [1.2,2.90] pixels (UFit).

The mean precision for the 4PFit was 0.09mm (point-to-
line) and 0.76mm (point-to-point), which compare favourably
to the respective point initialisation precisions (0.31mm,
2.45mm). The point-to-point error in the UFit case was
4.58mm, an improvement on the 5.73mm in [4], but still
significantly larger than the expert manual point-to-point
precision of 2.45mm reported in [4]. Figure 2 shows the
AAM UFit solution (subset of points illustrated) for an
osteoporotic case; note the thinning of the cortex.

The failure criteria identified 58 failure cases out of 663,
a total of 9%. Upon visual inspection 8 of these were found
to be false positives. We visually examined the further 100
worst ranked image fits, and identified a further 15 failures
that were missed with the set thresholds. In clinical appli-
cation it may therefore be desirable to slightly reduce the
thresholds. The current settings give 99% specificity but only
77% sensitivity to failure. In only 5 cases was there failure of
both left and right sides.

Figure 3 shows the ROC curves obtained using the
mandibular cortical thickness at the optimum position for
both 4PFit and UFit estimates. Table 2 compares the ROC
areas for the new AAM method with previously published

Table 1. Model Fit Point Errors (mm)
point-to-curve error (mm)

Fit Mean median 75%-ile 90%-ile
4PFit

ASM All Data 0.29 0.16 0.35 0.87
AAM All Data 0.25 0.18 0.34 0.64
ASM Ost Sup 0.53 0.30 0.92 1.67
AAM Ost Sup 0.32 0.24 0.47 0.80

UFit
ASM All Data 0.4 0.17 0.37 1.18
AAM All Data 0.36 0.19 0.37 0.78
ASM Ost Sup 0.85 0.34 1.08 1.7
AAM Ost Sup 0.64 0.26 0.55 1.48

Table 2. ROC Curve Areas
4PFit UFit

BMD Site ASM [2] AAM ASM [2] AAM
Any Site 0.816 0.823 0.759 0.799

Femoral Neck 0.835 0.862 0.805 0.851

Table 3. False Positive Rates for UFit
FPR at 70% FPR at 80%
sensitivity sensitivity

BMD Site ASM [2] AAM ASM [2] AAM
Any Site 32.4% 23.2% 46.6% 37.9%

Femoral Neck 24.2% 13.8% 36.1% 22.5%

Table 4. McNemar test statistics (dN) for False Positive
Rate comparisons between ASM and AAM extracted thick-
ness at various sensitivity points on ROC curves.

dN for sensitivities
BMD Site 70% 75% 80%
Any Site 10.53 6.26 6.43

Femoral Neck 33.21 25.53 18.72

Fig. 2. AAM UFit for osteoporotic patient. Rectangles are
drawn at a subset of points from MF to AG. Note the thinning
of the cortex.
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Fig. 3. ROC Curves for UFit comparing AAM segmention
with previous ASM. Curves are shown for osteoporosis at any
skeletal site (Any in Legend), and at the femoral neck (Fem
Neck) in Legend)

ASM results from [2], whilst Table 3 compares false positive
rates (FPR) at 70% and 80% sensitivities. The specificities
at these (and 75%) sensitivities were compared using the
McNemar test [10] (Table 4) All test statistics were far in
excess of the 99% point of the χ2

1 distribution (6.63) for
femoral neck diagnoses, and when comparing osteoporosis
at any site the lowest McNemar test statistic was 6.26 (for
75% sensitivity), which is still significant for p = 0.025. This
confirms that there is a real reduction in false positive rate
at likely operating points of equivalent sensitivity.

4. DISCUSSION

The hybrid ASM/AAM results in an improvement in fitting
accuracy measured by point-to-line distance, particularly for
the superior edges in osteoporotic cases. However despite in-
cluding a larger span of the overall mandible, and attempting
to implicitly incorporate curvature features in the AAM, lat-
eral positioning errors remain quite large for UFits. This may
be because the AAM update is too local, the AG inflection
is sometimes very subtle, and also the areas of significant
curvature around the gonion are often corrupted by shadow
artefacts. We are currently investigating hybrid schemes in-
cluding a more global search using connected graphs of fea-
ture patches.

Because of limited correlation between mandible thick-
ness and BMD at other skeletal sites, improvements in di-
agnostic accuracy for 4PFit are slight. The UFit accuracy
improvement results in a more substantial gain in diagnostic
accuracy, which brings the fully automatic method close to
the previous manually initialised ASM, if low BMD at any
skeletal site is the required condition. The AAM Ufit reduces
FPR at 70% sensitivity from 32% to 23% (similar to 4PFit
ASM). An even more substantial reduction in FPR occurs if
we take Femoral Neck BMD as the gold standard, for which at
80% sensitivity the FPR reduces from 36% to 22.5%, better
than the 4PFit ASM FPR of 27%. This larger improvement
against osteoporosis at the femoral neck may indicate that
there is a fundamentally better correlation between the two

bone sites, which is physically plausible as both are predom-
inantly cortical (rather than trabecular) bone.

In summary we have improved the fully automatic point-
to-line fitting accuracy by use of a hybrid ASM/AAM search.
In fully automatic UFit mode the method diagnoses osteo-
porosis at the femoral neck with a sensitivity of 80% and
specificity 77.5%. As most dental practitioners are not ex-
pert in this method of assessment, the more automatic the
method, the more likely it is to be adopted. Nevertheless
any automatic method is prone to occasional failure, and so
we have supplemented the fit with failure conditions, in the
event of which the dentist could revert to a 4-point manual
initialisation of the shape.

Mandibular thickness is not the only clue present in the
image. Osteoporotic mandibles also tend to exhibit “holes” -
small dark regions where cortical bone is largely absent; con-
versely there may be additional superior edges (“residues”)
where there is still some partial remnants of where the en-
dosteal border used to be. Future work will therefore also use
morphological image analysis to improve diagnostic accuracy,
but this will rely upon an accurate initial segmentation.
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Abstract
Summary Automated software was used to measure the
mandibular cortical width in a large sample of dental
radiographs. We determined that cortical thinning normally
starts in women at age 42.5 years and accelerates thereafter.
We can estimate population referral rates and thus enable
cost benefit analyses for osteoporosis detection by dentists.
Introduction Previous studies have shown that the mandib-
ular cortical width is significantly correlated with the bone
mineral density at sites which may undergo osteoporotic
fracture, e.g. hip. Mandibular cortical width can be
determined automatically from dental panoramic radio-
graphs that dentists frequently request, using appropriate
software. We study the distribution of cortical width given
age to predict those patients requiring further investigation
for osteoporosis.

Methods The mandibular cortical width was measured in
4,949 dental panoramic tomograms, in patients aged 15–
94 years. The inferior and superior cortical edges were
detected automatically using a global active shape model
image search, followed by an active appearance model
search. Nonparametric statistical analysis and nonlinear
piecewise linear/quadratic regression were used to analyse
the data.
Results For females, the mean cortical width had a linear
increase before the age of 17 years, a period of no change
(estimate=3.25 mm, se=0.01) until the age of 42.5 years,
followed by a quadratic decrease with age. For males, it had
a linear increase before the age of 19 years, a constant value
(estimate=0.37 mm, se=0.01) until the age of 36 years and
then a slow linear decrease. The rate of decrease in mean
cortical width goes from 0.049 to 0.105 standard deviations
per year in the 60–80-year-old female age group, in line
with published bone mineral density T-score reductions.
Conclusions The pattern of decrease in mandibular cortical
width with age was similar to the known pattern of bone
loss from the hip, accelerating in women after the age of
42.5 years.

Keywords Active appearance model . Cortical bone .

Mandible

Introduction

Thin mandibular cortical width measurements in dental
panoramic radiographs have been used as a predictive
measure of systemic osteoporosis [1]. These radiographs
are frequently used by dentists and may provide a useful
opportunity to contribute to osteoporosis diagnosis, espe-
cially if the radiograph is taken for other reasons. In that
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situation, there is no additional radiation dose due to the
osteoporosis investigation. Early detection by dentists
would allow the necessary preventive treatment to be
instituted; however, what constitutes a normal value of
mean cortical width or the expected degree of variation
about this measurement in the population is unknown.

Ledgerton et al. [2] showed in a sample of British
women that mandibular cortical width generally decreased
from the age of 25 years, but this trend accelerated after the
age of 60 years. The study was undertaken only in women,
and the sample size of 500 subjects (with ten 5-year age
groups) was limited by having to perform the measurement
task manually. Manual measurement of the mandibular
cortical width is usually undertaken in the region directly
below the mental foramen, perpendicular to the lower
border of the mandible. Detection of the mental foramen
may be unreliable, as multiple foramina are sometimes
present [3]. Allen et al. [4] showed that the cortical width
could be measured automatically using computer image
analysis without the requirement for identification of the
mental foramen.

In cross-sectional studies, we have observed an associ-
ation between mandibular cortical width and the bone
mineral density (BMD) at important fracture prone sites
such as the spine and hip [5].

Our aim in this study was to measure the mandibular
cortical width in dental panoramic tomograms from a large
sample of men and women and to determine how it relates
to the patients’ age and gender.

Materials and methods

All dental panoramic tomogram images were collected
anonymously from one hospital database (Leuven, Belgium)
over a 2-year period, 2006–2008. Radiographs from the same
radiography machine at the same hospital site had contributed
to a previous study [6], in which the absolute value of scaling
between patient and image was calculated using a ball
bearing of known size in the image. No calibration object
was present in the radiographs for this study, but the same
scaling factor has been assumed.

Data

A total of 6,096 Digital Imaging and Communications in
Medicine (DICOM) images were received from the Oral
Imaging Centre of the Department of Dentistry, Oral
Pathology and Maxillofacial Surgery of the University
Hospitals, Catholic University of Leuven. All images had
been anonymized, and patients had given general informed
consent to the use of their radiographic images for research.
All images were inspected visually to exclude those that

were unusable due to unacceptable quality or evidence of
pathology, such as previous mandibular fractures, surgical
procedures, cysts or tumours that could have influenced the
mandibular cortex. The remaining set to be analysed
contained 4,949 tomograms. Patient age and gender were
extracted from the DICOM header files: age ranged from 15
to 94 years, and there were 2,386 males and 2,563 females.

Locating the edges of the mandibular cortex

The method of Allen et al. [4] for locating the inferior and
superior edges of the mandibular cortex on dental pano-
ramic radiographs used active shape models (ASMs) [7]. In
this approach, the edges are found by optimisation—image
search for the best fit to a model which had been built by
expert annotation of a training set of images. Separate
ASMs were used for the left and right halves of the
mandible, modelling the region between the gonion and a
point below the mental foramen. The ASM could be run
either in a fully automatic mode, search being initiated from
the mean shape derived from the training set, or by using a
manual initialisation defined using four user-specified
points (Fig. 1). However the former gave poorer diagnostic
ability than the latter due to some search failures and some
cases of lateral misalignment, as the edge-search used by
the ASM has little information with which to position the
shape laterally along the mandible.

Because of the large size of the dataset, we have developed
the modelling of themandible beyond that of Allen et al. [4] to
increase the reliability of fully automatic search [8]. Briefly,
the shape model was laterally extended by annotating the
upper and lower edges of the mandible beyond the gonion to
utilise more clues from the curvature of the mandible and
therefore improve the lateral positioning. The search is
conducted in two phases. In phase 1, a global ASM search is
conducted for the combined (left and right) inferior mandible
edge (Fig 1). This edge usually displays high contrast and
can be located reliably to provide an initial configuration for
phase 2: an active appearance model (AAM, [9]) search on
the separate left and right halves of the mandible to further
refine lateral position and locate the superior border. AAMs
allow the search to make use of an image texture model,
providing more information than is available to the ASMs.
Technical details are given in Roberts et al. [8], in which it is
demonstrated that this ASM/AAM hybrid method is more
accurate that the ASM method previously described by Allen
et al. [4] and gives superior diagnostic performance on the
dataset of Devlin et al. [6].

Detection of search failures

This ASM/AAM hybrid method in fully automatic mode
gave similar accuracy to the manually initialised ASM on
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the training set of Allen et al. [4]. However, when run on
the more challenging dataset of Devlin et al. [6], there were
partial search failures (convergence to incorrect locations)
in about 10% of cases. Therefore, we devised an automatic
diagnostic for incorrect convergence [8] based on:

1. The residual sum of squares (RSS) of the fit of the
AAM texture model to the image (fits with low
residuals are more reliable) and

2. A symmetry measure between the left and right halves
(reliable fits should be similar on both halves of the
mandible).

Thresholds on both measures were derived from calcu-
lating the median μ and a robust estimate of standard
deviation σ from an independent dataset [6], but using
solutions derived from the four-point manual initialisation.
We examined images where either failure criterion
exceeded μ+ασ. With α=5, the vast majority of searches
classified as failures were indeed failures, whereas only 5%
of detected failures between α=3 and α=4 were genuine.
We therefore set a threshold at α=3, above which the
search result was checked visually and if necessary
subjected to a four-point manual initialisation to reach a
reliable fit. This was applied to 1,273 images; in the
remaining 3,676 cases, the superior and inferior edges were
located using the fully automated ASM/AAM hybrid
search.

Extraction of cortical width measurement

It was previously found that the correlation between
mandibular cortical width and BMD at other skeletal sites
varies depending on the position along the mandible at
which the measurement is made, with a peak occurring at
roughly three quarters of the distance from the sub-mental
foramen point to the antegonion [4]. We found similarly
that a position sited 67% of the distance from the sub-
mental foramen point to the antegonion (Fig. 1) gave the
best area under a receiver operating characteristic curve, for
diagnosing osteoporosis from extracted width of the cortex.
Defining this distance as L, the extracted width was
smoothed over ±0.1L from this point using a Gaussian
kernel. Thus, the inevitable imprecision in the automatic
lateral positioning of the extraction point is mitigated by the

smoothing window. The final measurement is the mean of
the width measured at this position in the left and right
halves.

Statistical analysis

This is a cross-sectional observational study. The response
variable is mandibular cortical width, and the predictor is
the patients’ age. We used nonparametric regression and
parametric linear and nonlinear regression to estimate the
mean cortical width as a function of age for males and
females.

The basic model is y= f (x)+ε, where y is cortical width,
x is age, and ε is an error term that follows a normal
distribution with mean 0 and some unknown variance σ2.
Independence between observations is assumed, and a
different mean cortical width function f (x) is allowed for
each gender group. This model is for nonparametric
regression where no specific form of f (x) is given a priori,
it is only assumed to be a smooth function. Nonparametric
regression can be used on its own to estimate f (x) and can
also help to derive a parametric form for f (x).

We consider the age variable x as continuous even
though the recorded age was integer valued, for example,
someone who had had a 50th birthday, but not the 51st, was
recorded as aged 50, but the exact age can be anywhere
between 50 and 51. For this reason, we added 0.5 to the
recorded age to give the centre of the interval. The large
sample size (n=4,949) makes it less of an issue not to have
exact age in the data. The sample mean cortical width for
each age x available contains all the information about f (x),
and a confidence interval can be obtained. Plotting them
together for all x provides a clearer indication to the shape
of the function f (x) than the original data.

Nonparametric analysis

The methodology of nonparametric estimation and hypothesis
testing was entirely from Bowman and Azzalini [10], and
their R package ‘sm’ was used. The mean cortical width
function f (x) was estimated for males and females using
nonparametric regression by locally fitting linear functions
of age to the data. There were as many linear regressions as
values of x in the calculations. The data points(xi,yi) were

Fig. 1 Typical dental panoramic
tomogram, with labelled ana-
tomical points. The rectangles
show the lateral positions of the 4
points used if employing a man-
ual initialisation of the Active
Shape Model (ASM). The full
extent of the phase 1 global ASM
beyond the Gonion is also
indicated
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weighted using a Gaussian kernel according to how far xi
was from x relative to a smoothing parameter h—a larger
(smaller) value of h means more (less) smoothing. There are
various methods of selecting h, including cross validation
which minimises the ‘leave-one-out’ mean square error and
the default ‘df’ method in sm which tries to achieve a certain
degree of freedom (default=6). After fitting a linear
regression line like this to the data near x, it is used at x to
estimate f (x). This approach to the regression problem is
nonparametric because a formula for f (x) is not required.

The hypotheses of linearity and constancy were tested
separately for males and females over various intervals of
age, which were chosen based on inspections of the
nonparametric regression plots. Here, linearity means the
function is linear over a specific age interval and constancy
means it does not change with age over this range.

Parametric analysis

We used piecewise linear regression which is like straight
line linear regression, except that the line is allowed to
bend at one or more places, resulting in a different
equation for each section of the data. It can be fitted as a
linear model with suitably constructed predictors. By
estimating the equations simultaneously, the line seg-
ments will join perfectly. The bends can also be
estimated using nonlinear regression together with the
model coefficients, and we can allow a smooth quadratic
transition at each bend. We did all these for the male and
female data and were able to simplify the female model
using a quadratic piece.

For parametric linear and nonlinear regression using the
R functions ‘lm’ and ‘nls’, we refer to Venables and Ripley
[11]. The programming was done in R, and we found the
code provided by Lindstrom [12] useful when extending
the hockey model [13].

Results

Of the 4,949 dental panoramic images, 2,563 were of women
(51.8%). The mean age of the females was 44.25 years (sd=
17.50) and of males was 43.09 years (sd=17.83). The mean
mandibular cortical width was 3.21 mm (sd=0.46) overall,
3.14 mm (sd=0.46) for the females and 3.29 mm (sd=0.45)
for the males.

Considering only those subjects below the age of
50 years, there was a statistically significant difference
(0.1 mm) in mean mandibular cortical width between the
males and females (3.34 mm for males and 3.24 mm for
females, t=6.45, P<0.001). For subjects aged 50 or over,
the difference of 0.2 mm between males (3.20 mm, sd=
0.44) and females (2.98 mm, sd=0.52) was also statistically
significant (P<0.001).

We calculated the sample mean cortical width for each
age represented in the data separately for males and
females. A crude estimate of the mean cortical width
function f (x) of age x can be obtained by simply joining the
sample means, see the jagged red lines in Fig. 2a, b for
females and males, respectively. The vertical lines in blue
represent 95% confidence intervals for f (x) for each x
individually. There was obviously a need for smoothing to
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Fig. 2 Sample mean cortical
width against age a for females
and b for males
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get better estimates of f(x), as we only expect a gradual
change from 1 year to another.

Nonparametric analysis

The curves in Fig. 3a, b represent smoothed estimates of
f (x) for females and males, respectively, obtained by fitting
linear regressions locally as described earlier. The smooth-
ing parameters h=3.01 for females and 2.58 for males were
chosen by cross validation and used for data with age <25
to bring out more details, after which more smoothing was
applied by using the values h=6.99 (females) and 6.42
(males), as determined by the degrees of freedom method
(‘df’ in the R package ‘sm’). The dotted lines in each graph
provide a variation band that allows twice the standard
errors of the estimates above and below. The circles
represent sample means with varying sizes reflecting how
many individuals were included at each age. The mean
functions are different for males and females, and a
nonparametric test of equality gave highly significant (P<
0.001) evidence against it.

The sample means and smoothed values are given in
Table 1 for females and Table 2 for males. From Fig. 3a and
Table 1, the mean cortical width for females seems to
increase with age before 19, remains more or less constant
till about age 42 and then decreases in a nonlinear fashion
afterwards but not by more than 0.1 mm before age 55.
There is a slight hint of a bend at about age 75. The curve in
Fig. 3b for males suggests a similar but almost linear pattern
after age 40 with possible bends at 20, 40, 53 and 66. We
conducted nonparametric tests and found no significant

evidence (P>0.10) against linearity for males or females,
over the 5 age intervals delineated by vertical lines in each of
the two graphs in Fig. 3. There was significant evidence
against linearity for females over 42 (P<0.01) but not
significant evidence (P=0.37) against linearity with respect
to (age−42)2 over this interval. Further tests gave no
significant evidence against constancy for females from age
19 to 42 (P=0.39) and males from 20 to 40 (P=0.62).

Parametric regression

Three parametric models of increasing complexity were
used to fit the data.

1. A piecewise linear model with a single breakpoint at
age 20 for males and age 55 for females

2. A piecewise linear model with breakpoints at 20 and
40 years for males and 19 and 55 years for females,
allowing in each case a constant central segment

3. A combined linear and quadratic model for females,
with a breakpoint between linear segments at age 19
and a quadratic segment of the form a−b(x−42)2

starting at age 42

The breakpoints were initially specified by inspection of
the nonparametric regression curve, but were later estimat-
ed along with other model parameters using nonlinear
regression. A smooth quadratic transition of 12 months
duration was allowed between adjacent linear sections to
maintain a continuous first derivative. The fitted parametric
curves for females and males are shown in Figs. 4 and 5,
respectively.
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There was a significant difference in RSS between the
female two-piece and four-piece models (442.23 vs 440.25,
P=0.01), and the improvement from the three-piece to the
four-piece model was significant at 10% though not
significant at 5% (441.15–440.25, P=0.07) (Fig. 4). The
last model with a quadratic piece has a slightly larger RSS
than the four-piece. However, it is the preferred model as it
has a smaller Akaike’s information criterion or AIC value
(2,771.9 vs 2,774.5) taking into account its reduced number
of parameters. It also looks more natural giving a smooth
decay with an increasing rate with age. For the males, the
three-piece linear model is preferred, as it provides a
significant improvement in RSS from the two-piece (P=
0.01) but adding one or more bends does not do so (P=
0.13, 0.23) (Fig. 5).

The estimated bends in the preferred models are at age
17.12 (se=0.87) and 42.46 (se=1.85) for females and 19.08
(se=0.72) and 36.02 (se=4.40) for males. We set them to
17 and 42.5 for females and 19 and 36 for males and fitted
the models for the final time. Details of the final models are
given in Table 3 and plotted in Fig. 6 together with
nonparametric estimates for comparison. The parametric
and nonparametric estimates agree very well.

The model for females has a residual sum of squares
(RSS) of 440.49, compared to a total sum of squares about

the mean of 545.19. The proportion of the variance
explained by the age dependence is measured by the
pseudo-R2 value:

1� 440:49=545:19 ¼ 19:20%:

For males, RSS=456.57, but the total sum of squares of
477.51 was lower than for females, resulting in a reduced
pseudo-R2 value for males of:

1� 456:57=477:51 ¼ 4:38%:

This reflects the fact that that the mean cortical width for
males varies less with age than for females and changes
little after about age 20.

The estimated mean mandibular cortical width of
females decreased considerably with age after about
50 years (Fig. 4). The estimated mean cortical width
(Table 4) decreased by 4.5% from 3.22 mm at age 50 to
3.07 mm at age 60 years and by a further 8.4% at age 70–
2.82 mm. From age 40 to 70, the decrease was 13.4%. The
male cortical width decreased by 1.8% from age 50 to
60 years and a further 1.9% from age 60 to 70 years. The
reduction in the male cortical width from 3.35 mm at age
40 years to 3.16 mm at age 70 years was 5.4% (Table 4).
Taking into account the effect of age, the estimated standard
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Fig. 4 Two-piece, three-piece and four-piece linear regression models and three-piece linear/quadratic regression model for females
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deviation of cortical width for males was 0.44 and that for
females was 0.41 (Table 3).

Discussion

Mandibular cortical width has been proposed as an
opportunistic method of detecting osteoporosis in women
despite some variation about the sample mean. In our
sample, the estimated standard deviation in the cortical
widths of females was 0.41 mm, which takes account of
age. Potential sources of variability include errors in patient

positioning in the radiography machine, inaccuracies in the
accurate location of the mandibular measurement site,
variable anisotropic scaling at different locations in the
dental panoramic tomogram, measurement error in the
software detection of the endosteal bone margins and
inherent variation in the population. Our estimated standard
deviation of 0.41 is less than the value of 1.2 obtained by
Ledgerton et al. [2] using manual methods. To summarize,
we have found a nonparametric estimate and a precise
formula for the expected cortical width at any age after
15 years and a better estimate of the standard deviation. The
improved estimate of the age-related variation in cortical

Table 3 Details of final fitted parametric models for females and males

Females Males

f(x) a+c(x−17) x<16.5 a+c(x−19) x<18.5

a−0.35c(x−17.5)2 16.5≤x7.5 a−0.5c(x−19.50)2 18.5≤x<19.5
a 17.5≤x <42.5 a 19.5≤x<35.5
a−b(x−42.5)2 x≥42.5 a−0.5b(x−35.5)2 35.5≤x<36.5

a−b(x−36), x≥36.5
Estimates a=3.25(se=0.01) b=0.000575 (se=0.000023) a=3.37(se=0.01) b=0.0061 (se=0.0007)

c=0.12(se−0.01) σ=0.41 c=0.12(se=0.02) σ=0.44
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Fig. 5 Two-piece, three-piece, four-piece linear and five-piece linear regression models for males
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width allows us to estimate referral rates implied by the
application of various width thresholds, on which referral
decisions might be made.

We observed that accelerated cortical thinning in women
occurs after about 42.5 years of age. A number of other
studies have produced results with which this observation
may be compared. Morita et al. [14] measured the
mandibular cortical width in 80-year-old men and women.
They found that the prevalence of severe mandibular
cortical erosions was ten times higher in the female sample
than in the males (58.8% vs 5.9%). Figure 2 shows that this
is where the differences in mean values of cortical thickness
between sexes would be large. The accelerated decline in
cortical width of women after the age of 50 years has been
observed at various anatomical sites. Riggs et al. [15]
showed that cortical thinning accelerated in the radius only
after the age of 50 years in normal women, whereas men
were little affected. Hyldstrup and Nielsen [16] used the
“metacarpal index” (the ratio of the radiographic cortical
thickness of the metacarpal bone to the total mid-

metacarpal diameter) as a measure of osteoporosis. Using
thickness measurements on digital radiographs, the index
was maximal in the third decade and declined with age
[16]. However, it needs to be taken into account that the
metacarpal index is reduced by periosteal apposition, as
well as endosteal cortical resorption [17].

Thinning of the femoral cortex with age is more rapid
than the decline in areal BMD measured at the femoral
neck, and it is the precipitous decline in cortical bone width
at the hip which is present in hip fracture [18]. We have
found a similar pattern of cortical bone loss in the
mandible, which raises the intriguing question as to
whether the mandibular measurements could be used to
predict hip fracture.

We have previously proposed that mandibular cortical
thickness measured from dental panoramic radiographs
may be used as an opportunistic method for detecting
osteoporosis [5]. Our earlier recommendation, based on
manual measurements, was that a mandibular cortical width
below the mental foramen of less than 3 mm merited
referral of women for investigation of osteoporosis. The
present study utilised a more lateral measurement site on
the mandible (Fig. 1), which had previously been shown to
have a better efficacy of detection of skeletal osteoporosis
than measurement at the mental foramen [4]. Using this
previously published dataset of females, the ASM/AAM
method detected osteoporosis at the femoral neck with a
sensitivity of 78% and specificity of 80% at a mandibular
cortical width threshold value of 2.75 mm. In the analysis
of the large dataset reported here, we can calculate where
this threshold lies on the age-dependent width distributions.
At age 40 years, it lies 1.2 standard deviations below the
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Table 4 Estimated mean cortical widths at the age of 40, 50, 60 and
70 years together with standard errors for males and females

Estimated mean cortical width

Age (years) Females (mm) Males (mm)

40 3.25 (se=0.01) 3.35 (se=0.01)

50 3.22 (se=0.01) 3.28 (se=0.01)

60 3.07 (se=0.01) 3.22 (se=0.01)

70 2.82 (se=0.02) 3.16 (se=0.02)

Osteoporos Int (2011) 22:1915–1925 1923



mean female width, reducing at ages 50, 60 and 70 to
1.1, 0.7 and 0.1 standard deviations, respectively. As
osteoporosis is rare before age 40, we estimate that using
this threshold as a criterion for referral would result in a
false-positive rate of referral of low bone mass of 12% in
pre-menopausal women. Law et al. [19] found a similar
false-positive rate of 15% when using bone density
measurements at the femoral neck as a screening tool for
predicting hip fractures, based on a cut off of 1 standard
deviation below the mean density of the controls. Our
threshold would refer 50% of women at age 71 and 34% at
65 years. The latter figure is around double the estimated
National Health and Nutrition Examination Survey
(NHANES) III prevalence rate of 15% at 65 [20], although
the increase of 22% above our baseline false-positive rate
of 12% for 40 years old is closer to the NHANES figure.
The previously published prevalence figures for osteope-
nia in the femoral neck in women aged over 50 years is
50% [20], and we may be detecting a proportion of these.
From Table 3, the rate of decrease in mean cortical width
is 2b(x−42.5)mm/year for females with age x in the 60–80
range, which increases from 0.049σ per year at x=60 to
0.105σ per year at x=80. This is in line with the published
[21] reduction in BMD T-score in the UK, which varied
between 0.25 and 1.3 per decade for femoral neck at
different centres.

There has been no previous study on what mandibular
cortical width threshold should be used for ageing males,
and this study does not have BMD data to allow a definitive
recommendation. However, given the female threshold, we
make the provisional recommendation that males aged over
65 with a mandibular cortical width below the same
threshold of 2.75 mm should consider DXA screening.
This translates to 1 standard deviation below the male mean
at age 65.

Measurement of the mandibular cortical width has been
shown to be a poor predictor of fractures in an elderly study
group, but this statistically nonsignificant result may be due
to the small numbers of patients who developed fractures in
some studies [22]. In our previous work, greater sensitivity
in osteoporosis detection was introduced by using mandib-
ular cortical width in combination with other clinical risk
factors [1], but no other clinical risk factors were available
for our sample in the present study.

It was a limitation of our study that definitive absolute
scale measurements (e.g. including a ball bearing of known
size in the dental panoramic tomogram) were not available
relating image distance to anatomical distance. However,
the previous study [6] included data using the same
scanner, and in that study, absolute scale was measured
using a ball bearing of known size that was placed intra-
orally and incorporated into the radiographic image. This
was used to calibrate for differences in magnification

between images. As the images in the current study had
been collected for other reasons, no calibration object was
used. The standard error on the calculated mean scale
(derived by bootstrap resampling of the data in [6]) was
1.2%. The limitations of our study also include a few
unusually high or low averages in the cortical widths, e.g.
at age 42.5 in both the male and female data.

Many osteopenic or osteoporotic female subjects, aged
over 60 years, are likely to have cortical bone loss from
both the hip and the mandible. The rate of loss of bone
from the hip accelerates exponentially with age and follows
a time course which is very similar to that observed for the
mandibular bone [23]. The similarities with our results
imply a phenomenon that is driving bone loss in older
women, but which leaves men relatively unaffected. It is in
this age group of women that the automated detection of
cortical width will prove to be most useful in osteoporosis
diagnosis and prevention of hip fractures.

Acknowledgements We would like to acknowledge the assistance
of Herman Pauwels in the data collection for our sample. The study
was supported financially by the Dunhill Medical Trust.

Conflicts of interest The authors declare that there are no conflicts
of interest.

References

1. Devlin H, Allen PD, Graham J, Jacobs R, Karayianni K, Lindh C,
van der Stelt PF, Marjanovic E, Adams JE, Pavitt S, Horner K
(2008) The role of the dental surgeon in detecting osteoporosis:
the OSTEODENT study. Br Dent J 204:E16. doi:10.1038/sj.
bdj.2008.317

2. Ledgerton D, Horner K, Devlin H, Worthington H (1999)
Radiomorphometric Indices of the mandible in a British female
population. Dentomaxillofac Radiol 28:173–181

3. Yosue T, Brooks S, Arbor A (1989) The appearance of the mental
foramina on panoramic and periapical radiographs. II. Evaluation
of patients. Oral Surg Oral Med Oral Pathol 68:488–492

4. Allen PD, Graham J, Farnell DJJ, Harrison EJ, Jacobs R,
Karayianni K, Lindh C, van der Stelt PF, Horner K, Devlin H
(2007) Detecting reduced bone mineral density from dental
radiographs using statistical shape models. IEEE Trans Inf
Technol Biomed 11:601–610

5. Horner K, Devlin H (2002) Detecting patients with low skeletal
bone mass. J Dent 30:171–175

6. Devlin H, Allen PD, Graham J, Jacobs R, Karayianni K, Lindh C,
van der Stelt PF, Marjanovic E, Adams JE, Pavitt S, Horner K
(2007) Automated osteoporosis risk assessment by dentists: a new
pathway to diagnosis. Bone 40:835–842

7. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape
models—their training and application. Comput Vis Image
Underst 61(1):38–59

8. Roberts MG, Graham J, Devlin H (2010) Improving the detection
of osteoporosis from dental radiographs using active appearance
models. In: Niessen W, Meijering E (eds) Proceedings of the IEEE
international symposium on biomedical imaging, Rotterdam, 14–
17 April 2010, pp 440–443

9. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance
models. IEEE Trans Pattern Anal Mach Intell 61:38–59

1924 Osteoporos Int (2011) 22:1915–1925

http://dx.doi.org/10.1038/sj.bdj.2008.317
http://dx.doi.org/10.1038/sj.bdj.2008.317


10. Bowman AW, Azzalini A (1997) Applied smoothing techniques
for data analysis: the kernel approach with S-Plus illustrations.
Oxford University Press, Oxford

11. Venables WN, Ripley BD (2002) Modern applied statistics with
S., 4th edn. Springer, New York

12. Lindstrom M (2000). Contribution to online discussion thread [S]
Piecewise Linear Regression, S-News Archive, Division of
Biostatistics, School of Medicine, University of Washington in
St. Louis. http://www.biostat.wustl.edu/archives/html/s-news/
2000-04/msg00209.html. Accessed 24 Apr 2000

13. Bacon DW, Watts DG (1971) Estimating the transition between
two intersecting straight lines. Biometrika 58(3):525–534

14. Morita I, Nakagaki H, Taguchi A, Kato K, Murakami T, Tsuboi
S, Hayashizaki J, Inagaki K, Noguchi T (2009) Relationships
between mandibular cortical bone measures and biochemical
markers of bone turnover in elderly Japanese men and women.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:777–
783

15. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP (1981)
Differential changes in bone mineral density of the appendicular
and axial skeleton with aging. J Clin Invest 67:328–335

16. Hyldstrup L, Nielsen SP (2001) Metacarpal index by digital X-ray
radiogrammetry: normative reference values and comparison with
dual X-ray absorptiometry. J Clin Densitom 4:299–306

17. Adams P, Davies GT, Sweetnam P (1970) Osteoporosis and the
effects of ageing on bone mass in elderly men and women. Q J
Med 156:601–615

18. Thomas CD, Mayhew PM, Power J, Poole KE, Loveridge N,
Clement JG, Burgoyne CJ, Reeve J (2009) Femoral neck
trabecular bone: loss with aging and role in preventing fracture.
J Bone Miner Res 24:1808–1818

19. Law MR, Wald NJ, Meade TW (1991) Strategies for prevention of
osteoporosis and hip fracture. BMJ 303(6800):453–459

20. Looker AC, Orwoll ES, CC JJR, Lindsay RL, Wahner HW, Dunn
WL, Calvo MS, Harris TB, Heyse SP (1997) Prevalence of low
femoral bone density in older U.S. Adults from NHANES III. J
Bone Miner Res 12:1761–1768

21. Holt G, Khaw KT, Compston RDM, JE BA, Woolf AD, Crabtree
NJ, Dalzell N, Warldey Smith B, Lunt M, Reeve J (2002)
Prevalence of osteoporotic bone mineral density at the hip in
Britain differs substantially from the US over 50 years of age:
implications for clinical densitometry. Br J Radiol 75(897):736–
742

22. Okabe S, Morimoto Y, Ansai T, Yoshioka I, Tanaka T, Taguchi A,
Kito S, Wakasugi-Sato N, Oda M, Kuroiwa H, Ohba T, Awano S,
Takata Y, Takehara T (2008) Assessment of the relationship
between the mandibular cortex on panoramic radiographs and the
risk of bone fracture and vascular disease in 80-year-olds. Oral
Surg Oral Med Oral Pathol Oral Radiol Endod 106:433–442

23. Ensrud KE, Palermo L, Black DM, Cauley J, Jergas M, Orwoll
ES, Nevitt MC, Fox KM, Cummings SR (1995) Hip and calcaneal
bone loss increase with advancing age: longitudinal results from
the study of osteoporotic fractures. J Bone Miner Res 10:1778–
1787

Osteoporos Int (2011) 22:1915–1925 1925

http://www.biostat.wustl.edu/archives/html/s-news/2000-04/msg00209.html
http://www.biostat.wustl.edu/archives/html/s-news/2000-04/msg00209.html


	 93	

	

43. Image	texture	in	dental	panoramic	radiographs	as	a	potential	biomarker	
of	osteoporosis.		M.G.	Roberts,	J.	Graham,	H.	Devlin,	IEEE	Trans.	Biomedical	
Engineering,	60(9),	2384	–	2392,	2013.		doi:	10.1109/TBME.2013.2256908		

	 	



2384 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 60, NO. 9, SEPTEMBER 2013

Image Texture in Dental Panoramic Radiographs
as a Potential Biomarker of Osteoporosis

Martin G. Roberts, James Graham∗, Member, IEEE, and Hugh Devlin

Abstract—Previous studies have shown an association between
osteoporosis and automatic measurements of mandibular cortical
width on dental panoramic radiographs (DPRs). In this study, we
show that additional image texture features increase this associa-
tion and propose the combined features as a potential biomarker
for osteoporosis. We used an existing dataset of 663 DPRs of fe-
male patients with bone mineral density (BMD) measurements.
The mandibular cortex was located using a previously described
computer algorithm. Texture features, based on co-occurrence ma-
trices and fractal dimension, were measured in the bone within the
cortex and also in the superior basal bone above the cortex. These,
augmented by cortical width measurements, were used by a ran-
dom forest classifier to identify osteoporosis at femoral neck, total
hip, and lumbar spine. Classification performance was assessed
by ROC analysis. Area-under-curve (AUC) values for identifying
osteoporosis at femoral neck were 0.830, 0.824, and 0.872 using,
respectively, cortical width alone, cortical texture (co-occurrence
matrix features) alone, and combined width and texture. At 80%
sensitivity, these classifiers produced specificity values of 74.4%,
73.6%, and 80.0%, respectively. Fractal dimension was a less effec-
tive texture feature. Prediction of osteoporosis at the lumbar spine
was poorer, but a combined width and superior basal bone texture
classifier gave a significant improvement in AUC at p < 0.05 over
the use of width alone.

Index Terms—Co-occurrence matrices, dental panoramic radio-
graph (DPR), image texture, osteoporosis, random forest classifier.

I. INTRODUCTION

O STEPOROSIS is a progressive skeletal disease charac-
terized by low bone mass and structural deterioration of

bone tissue, leading to an increased susceptibility to fragility
fracture. It is associated with increased morbidity and mortality:
27% of women who sustain a hip fracture die within 1 year
[1]. Early detection of osteoporosis can allow therapeutic inter-
vention, but the condition is often undiagnosed. There has been
recent interest among dental researchers in identifying those
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Fig. 1. Dental panoramic radiograph. The inferior mandibular cortex, antego-
nion, and mental foramen are indicated. The course of the mandibular canal is
marked on the left side of the picture. The points marked around the cortex on
the right side of the picture indicate the positions of the superior and inferior
cortical border determined by image search. The cortical width is measured at a
point close to the antegonion. Image texture is measured in the cortex between
the antegonion and the mental foramen on both sides of the image and over the
same extent in the superior basal bone in a region bounded by the cortex and
the mandibular canal (indicated).

at risk of reduced bone mineral density (BMD) from dental
radiographs [2], [3]. Fig. 1 shows a dental panoramic radiograph
(DPR), on which the inferior mandibular cortex is visible. It was
reported in [3] that measuring the thickness of the cortical bone
using active shape model (ASM) search [4] provides a good
diagnostic of low BMD at other skeletal sites. Roberts et al. [5]
showed that the reduction in the mean width of the mandibular
cortex with age followed a similar curve to systemic BMD
loss in post-menopausal females. As DPRs are often taken
by dentists, they provide a useful opportunity for diagnosis of
osteoporosis, without requiring additional radiation exposure
to the patient. At-risk patients can be referred to their general
medical practitioner for advice about further investigation.

Other researchers [6]–[9] have examined the links between
bone loss at multiple skeletal sites and various texture measures
applied to DPRs (or intra-oral radiographs) in human cases and
animal models [10], [11]. In this study, we examined a variety
of texture measures applied to an existing dataset of DPRs from
663 females. Machine learning methods were applied to a large
vector of image texture features measured within and around the
mandibular cortex as predictors of osteoporosis. We also inves-
tigated prediction via a combined classifier using both cortical
texture and width measurements.

II. MATERIALS AND METHODS

A. Data

The dataset had been already collected during a previous
study [2] and consisted of DPRs for 663 ambulant female

0018-9294 © 2013 IEEE
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Fig. 2. Details of two DPRs showing the porous appearance of the cortex.
(a) Holes and residues in the cortex of an osteoporotic patient. (b) Presence
of an extensive residue creates uncertainty in the true position of the superior
cortical border.

patients together with BMD values determined by dual energy
X-ray absorptiometry (DXA). Robust radiographic protocols
and regular calibration were applied to ensure consistency of
radiographic and densitometric data. Patients were diagnosed
osteoporotic according to the World Health Organization crite-
ria, i.e., those with a BMD standardized T-score value below
−2.5, evaluated at three skeletal sites (femoral neck, total hip,
and lumbar spine). There were 140 patients who were osteo-
porotic at one or more sites.

B. Localization of the Mandibular Cortex

Devlin et al. [3] described location and measurement of the
width of the mandibular cortex using an active shape model
(ASM) [4]. The algorithm and independent training set are de-
scribed in more detail in [12]. Roberts et al. [13] improved the
search algorithm by extending the modeled region and by using
an active appearance model (AAM) [14] search after an initial
ASM, and this improved method was also used in this study.
ASM and AAM use image search, which can proceed auto-
matically to produce a delineation of the edges of the cortex.
However, fewer search failures occur if the search is initialized
from four landmark points defined interactively [12]. Here, we
are interested in the effect of texture features, so the latter ap-
proach is taken to isolate errors due to texture measurement
from those resulting from occasional search failures. The width
measurements, and texture measurements reported here, were
taken in the region of the cortex between the mental foramen
and the antegonion (see Fig. 1).

C. Holes and Residues

One problem with the cortical width measurement is that the
superior mandibular border (the endosteal margin) may become
unclear, especially in osteoporotic cases in which the bone may
be eroded more in some regions than in others. This can lead
to “holes” within the cortex, where there has been significant
bone loss; conversely, there may be bone islands or “residues”
remaining above the line of the superior border (see Fig. 2).
As a result, the upper edge of the cortical border becomes ill-
defined, leading to errors in width measurement [see Fig. 2(b)].
The purpose of this study was to examine image texture features

that might capture the appearance of these holes and residues,
and use these in a statistical classifier to improve the diagnosis.

The mandibular cortical index (MCI) [15] is a visual assess-
ment scale that has been developed to assess osteoporosis in the
cortical area of the mandible using DPRs. In this technique, the
inferior cortex is classified into three groups according to the
following criteria:

1) MCl 1: The endosteal margin of the cortex is even and
sharp on both sides of the mandible.

2) MCl 2: The endosteal margin has resorptive cavities with
cortical residues one to three layers thick on one or both
sides.

3) MCl 3: The endosteal margin consists of many cortical
residues and is clearly porous.

Taguchi et al. [16], [17] have studied the diagnostic capa-
bility of the MCI, and found that it has a significant predictive
value. For our study, an expert dental practitioner (HD) graded
the data on the MCI 1-3 system. In initial investigations, we
examined whether there were significant differences in sam-
ple means in putative texture features between patients in the
MCI = 1 group, and a group of patients with an MCI of ei-
ther 2 or 3. We also compared sample means for osteoporotic
patients and nonosteoporotic individuals as a means of deter-
mining which features to include in a classification process.

D. Image Normalization

Image texture values are potentially sensitive to image ex-
posure. While the data collection protocol sought to maintain
image values within a consistent range, image variation is in-
evitable. For this reason, we applied a robust image normaliza-
tion procedure prior to extraction of texture features.

The data are placed on (0, 1), with value 0.5 at the mean,
according to

g′ =
1
2

⎛

⎝1 +
g − ḡ

√
(g − ḡ)2 + 3σ2

⎞

⎠ . (1)

This is essentially the square-rooted Geman–McClure kernel
function [18] with maximum influence at σ. We use robust
estimators for ḡ and σ to allow for holes in the cortex, and also
any overlaid bright artifacts, which are sometimes present on
DPRs. For σ, we use the robust Sn estimate [19] of the standard
deviation within the cortex, and ḡ is a robust estimate of mean,
derived by starting from the median and then iteratively updating
the mean using a Geman–McClure weighting kernel given the
deviation from the current estimated mean, and kernel scaling√

3σ. The Sn statistic does not require an initial estimate of
mean, as it uses only inter-point deviations.

The sigmoidal shape of this normalization ensures that ex-
treme high and low image values become drawn closer to 1 and
0, respectively.

E. Fractal-Based Texture Measurement

Several authors have quantified bone texture in radiographs
using fractal dimension. Of particular relevance here, Yasar
et al. [9] showed that texture measured by a box-counting
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fractal dimension gave significant differences between samples
of MCI 1 and MCI 2 or 3. A similar method applied to radio-
graphs of the hip [20] had shown that several fractal dimen-
sion measures correlated with patient age. These results suggest
that image texture, in particular measured by fractal dimen-
sion, might be used to discriminate between osteoporotic and
nonosteoporotic bone. The method used in [9] requires binary
segmentation of the gray-scale image. The fractal dimension is
calculated by counting the number of “1” pixels within boxes
at a range of scales. We sought to avoid the use of an arbitrary
threshold and adopted the method of Rose et al. [21] in ana-
lyzing the spatial heterogeneity of tumors. This box-counting
method treats the image as a 3-D landscape.

In [22], Rose et al. used an alternative measure of fractal
dimension based on Rényi entropy [23]. The Rényi entropy is a
family of functions, parameterized by a unit-less scalar q ≥ 0,
and so, the Rényi dimensions are a family of fractal dimensions
defined in

dq = lim
s→0

log
∑

i gq
i

(1 − q) log
( 1

s

) (2)

where the gray levels are normalized so that
∑

i gi = 1.
In effect, we are using the normalized gray level as a pseudo-

probability density function for the distribution of bone within
the cortex. The limit as q → 1 (also known as the Rényi infor-
mation dimension) uses the conventional Shannon entropy. We
computed the Rényi dimensions for q = 1, 2, 4.

F. Co-Occurrence Matrices

There is no reason to believe that dental panoramic im-
ages display any fractal structure (such as self-similarity across
scale), and the fractal dimension here and in the previous stud-
ies merely acts as a general “roughness” measure. As an al-
ternative approach, we applied classical Haralick texture fea-
tures based on gray-level co-occurrence matrices [24]. In this
method, a 2-D histogram is constructed, representing the fre-
quency of occurrence of pairs of gray values in pixels separated
by a specified vector. The magnitude and direction of the vector
are application-dependent parameters.

In this case, the normal to the superior cortical border is a
natural local direction for this vector, as it is likely to respond to
residues. The 2-D histograms of gray-level co-occurrence were
computed for a range of pixel separations (from 2 to 8) along
these local normals. The histograms were then normalized to
probability distributions. For both co-occurrence features and
fractal features, a band of pixels above the cortex was included
in the texture calculation to allow for the size of the sampling
window. In the case of the co-occurrence matrix features, the
width of this sampling band was 10 and 16 pixels for fractal
dimension calculation, to accommodate the increasing scales
of box sizes used in box-counting. A large number of features
can then be calculated which encode different characteristics
about these distributions (see [24] for a full list of these). We
evaluated the first 12 of the features defined in [24] setting
the gray-scale quantization to Ng = 32, and then retained nine
features which seemed to show significant differences between

the manually scored MCI grades and also between osteoporotic
and nonosteoporotic individuals (see Section III for details).

These features at the various scales were then input to a
classifier. The range of scales (pixel separations) and width of
the image band above the cortex are variable parameters of the
method which were investigated in preliminary experiments.
Although the classifier performance did not depend strongly on
these, a roughly optimal performance was obtained by taking
separations from 2 to 5 pixels.

G. Use of Superior Basal Bone Above the Cortex

We also computed the same set of fractal and co-occurrence
matrix features for the basal bone situated above the cortex,
which we refer to as the superior basal bone. The region used
extended from 2 pixels above the notional cortical superior bor-
der to 2 pixels below the mandibular canal containing the alve-
olar nerve [see Fig. 1(a)]. The position of the inferior border of
the mandibular canal was marked on the images using four in-
teractively positioned points immediately below the mandibular
canal on each side between the mental foramen and antegonion.
Spline interpolation was then used to estimate the mandibular
canal location, and the small border of a further 2 pixels was
set to avoid sampling the brighter texture of the canal itself. In
contrast to the detection of residues near the cortical border,
there is no obvious sampling direction for the co-occurrence
matrix in the superior basal bone. We therefore computed the
co-occurrence features for four directions (normal to the cor-
tical border, tangential to it, and the two diagonal directions).
In view of the increased set of directions, and the fact that the
separation between the mandibular canal and the cortical border
can sometimes be quite small, we evaluated the co-occurrence
features only at separation distances of 2 and 4 pixels.

The bone above the mandibular canal was not used to avoid
sampling into the teeth, which would have a large effect on the
texture results.

H. Classification Method

Because of the potentially large number of texture features,
some of which may be weak and noisy, we used a random for-
est classifier [25]. This extends the ideas of a classification and
regression tree (CART) [26], in which the dataset is recursively
divided according to the decision variable threshold which best
separates the training data into child nodes of different classes.
Some measure of the mixing impurity is minimized, (e.g., en-
tropy [26]) to select the branching criteria. In a random forest,
many such trees are built by performing bootstrap aggregation
(randomly selecting data points from the sample with replace-
ment, also known as bagging) which helps to avoid overtraining.
Furthermore, at each decision node, the best branch of a ran-
domly selected subset of the possible decision variables is taken
(we used a subset size of

√
n for n decision variables). This in-

creases the independence of the trees in the forest. Each single
tree can then produce a (possibly weak) estimate of the probabil-
ity of the object’s classification, by taking the decision variable
set through the tree’s branching nodes. The output probability
of that tree is then the ratio of class types at the final decision
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TABLE I
CORTICAL BONE TEXTURE MEASURES FOR SEPARATING GROUPS

node. We used a minimum node size of five samples. So, for
example, if a tree branch terminates with one normal and four
osteoporotic cases in training, then the estimate of osteoporosis
probability at that node is 0.8. These probabilities are then av-
eraged over all the trees in the forest to produce a final estimate
of the probability of a positive classification. Random forests
are known to work well in combining large numbers of weak
and noisy features, and are robust against the addition of noise
variables [25].

The use of the bootstrap aggregation also means that unbi-
ased estimates of population classification performance can be
obtained without the additional complexity of multiple train/test
cross-validation cycles. Instead, an out-of-bag (OOB) estimate
[25] is obtained by classifying a training example using only
those trees which did not use that example as part of their boot-
strapped training sample. This will use around 37% (1/e) of the
total forest. We used large forest sizes (10 000 trees) so that
this reduction should be immaterial. Therefore, we did not sep-
arate the training set into train and test sets, but produced one
large forest for all of the data, and then used OOB estimates
for predicting the probability of osteoporosis of each patient.
A varying detection threshold was applied to this probability to
generate receiver-operating characteristic (ROC) curves [27].

Separate classifiers were trained for the cortical bone and
the superior basal bone between the cortex and the mandibular
canal.

I. Combination of Classifiers

An obvious approach to combining the width and texture fea-
tures is to simply use all the texture features and the two cortical
widths (left and right) together in one random forest. However,
because the width is a much better single predictor than any
single texture feature (see Section III), this is not necessarily
the best combination due to the random feature subset selection
at each tree node. Our previous experience in using unbalanced

combinations of features indicated that a better approach was to
use a cascade, first training a separate texture classifier for each
half of the cortex, and then training a final random forest classi-
fier using the two cortical widths and the predicted probability
of osteoporosis from the two texture classifiers.

J. Comparison of Classifiers

We wished to determine whether the combined classifier was
a statistically significant improvement over the classification
using width alone. For this, we used two methods: area under
the ROC curve (AUC) and comparison of sensitivity and speci-
ficity at selected operating points. While differences in AUC
can quantify differences in classification performance, AUC is
influenced by regions of the ROC curve that have little practi-
cal relevance (low sensitivity or specificity). It is also possible
that two ROC curves with similar values of AUC may still be
significantly different at important regions. For this reason, we
also compared the specificities of a set of operating points in the
70–90% sensitivity region (at 5% intervals) using McNemar’s
test [27], [28].

We estimated the distribution of the difference in AUC by
performing a smoothed bootstrap [29]. This involves randomly
resampling with replacement from the sample, combined with
kernel smoothing, and is explained in detail in the Appendix.

III. RESULTS

A. Texture Feature Evaluation

Table I shows the results of various texture features applied to
cortical bone in separating the manually categorized MCI 1 from
MCI 2&3 groups and in separating nonosteoporotic (at any of
the three sites) and osteoporotic groups. For compactness, only
the most significant results are shown; hence, only osteoporosis
at the femoral neck (OstF: 66 cases) and osteoporosis at the
lumbar spine (OstL: 120 cases) are included.
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TABLE II
SUPERIOR BASAL BONE TEXTURE MEASURES FOR SEPARATING GROUPS

In the case of the cortical bone features, there are significant
differences between the population means for MCI value 1 and
the 2 & 3 combined category for the fractal features: both the box
counting dimension (after taking the mean value of the left and
right halves of the cortex) and the Rényi entropy dimensions. In
all these cases, there is a reduction in the fractal dimension mea-
sure with osteoporosis, indicating that less of the space is being
filled. There is a similar reduction in fractal dimension for the
osteoporotic cases in comparison to the nonosteoporotic group,
with even more significant separation of population means, es-
pecially for patients who were osteoporotic at the femoral neck.

Table I also shows the nine co-occurrence matrix features
that gave the largest separation between MCI groups and os-
teoporotic and nonosteoporotic groups at most scales, with a
pixel separation of 4. (For details of these features, readers are
directed to [24].)

Table II shows the corresponding results for the superior basal
bone texture. In this case, no significant difference was found
between MCI categories or osteoporotic and nonosteoporotic
cases for any fractal dimension measure. Some significant dif-
ferences were found for a small set of co-occurrence features.
The table shows the mean and standard error separations of
means, indicating some significant separation (or close to sig-
nificant at some pixel distance) for directions normal to and
tangential to the cortical border for an inter-pixel distance of 4.
Results for the diagonal directions are similar to those along the
cortical border and are omitted in the interests of space.

B. Classification of Osteoporotic Individuals

The classification results are summarized in Table III, with
specific points highlighted in the following sections. The table
shows the AUC value and the false positive rate at selected
values of sensitivity.

1) Cortical Bone Features—Fractal Dimension: We trained
a random forest classifier using both box counting dimensions
and Rényi dimensions on the left and right sides of the image.

TABLE III
PREDICTION OF OSTEOPOROSIS

Despite the significant differences in population means, the
fractal dimensions did not prove to be very useful for classifying
individuals as osteoporotic. The AUC for predicting osteoporo-
sis at the femoral neck was 0.720. The false positive rate at 75%
sensitivity was 41.7%. Although this is better than random, the
specificity is clearly poor for practical clinical use. A classifier
trained on these fractal features and the two cortical widths gave
an apparent slight improvement on AUC from one trained on
width alone, increasing from 0.816 to 0.844. This was not sig-
nificant at p = 0.05 (only at p = 0.26) on the bootstrap test. The
false positive rate at 80% reduced from 26.4% to 23.1%.

The AUC of the fractal dimension classifier for predicting os-
teoporosis at the lumbar spine was substantially lower at 0.638,
and the combined classifier was essentially indistinguishable
from one trained on cortical width.

2) Cortical Bone Features—Co-Occurrence Matrix: We se-
lected the features shown in Table I, which resulted in a sig-
nificant difference at most separation scales, for inclusion into
another random forest classifier.

Fig. 3 shows the ROC curves, produced by three random
forest classifiers trained, respectively, on (1) the 72 dimensional
texture feature vector (two sides, four scales, nine features), (2)
left and right cortical widths, and (3) the combined classifier
using the output of separate left and right texture classifiers and
the widths. The ROC curves are for osteoporosis determined by
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Fig. 3. ROC curves for detection of osteoporosis at the femoral neck. Three
curves are shown for cortical texture classifier using co-occurrence features;
classifier using left and right cortical widths; and the combined classifier using
width and texture, as indicated in the key.

TABLE IV
MCNEMAR TEST STATISTICS FOR CLASSIFICATION

BMD at the femoral neck (66 such cases). The corresponding
AUCs are 0.824 (texture), 0.830 (width), and 0.872 (combined).
These, together with the false positive rates at 70%, 80%, and
90% sensitivities, are shown in Table III. The difference in AUC
between the combined classifier (cortical width plus cortical
texture) and the width classifier is significant at p = 0.05, as the
fifth percentile of the bootstrapped distribution of differences is
positive (fifth percentile 0.011, bootstrapped median difference
0.039).

The additional benefit provided by the texture measures was
confirmed at specific operating points by the results of the
McNemar test on false positive rates for operating points in
the 70–90% sensitivity range. The test statistics are given in
Table IV, and are clearly all substantially larger than the 5%
significance level of the χ2

1 distribution (3.84). The improve-
ment in specificity of the combined classifier appears to increase
with increasing sensitivity so that at the 90% sensitivity point,

the false positive rate reduces from 43.5% (width) to 28.2%
(combined).

If osteoporosis is determined at the lumbar spine (120 cases)
rather than femoral neck, then the prediction performance re-
duces (see Table III). The AUC for the texture classifier reduces
substantially to 0.730 for osteoporosis at the lumbar spine, with
a false positive rate of 44.1% at 80% sensitivity. There is no sig-
nificant difference in overall AUC between the combined and
width classifiers. At specific operating points (70% and 85%),
the McNemar test indicates significant differences in specificity
but the effect is marginal and much smaller than for the femoral
neck (see Table IV).

When all three skeletal sites are used for a single diagnosis
of osteoporosis (if any site is osteoporotic), then the results are
similar to those for the lumbar spine, which in effect dominates
(120 out of the overall 140 cases are osteoporotic at the lum-
bar spine). The combined classifier has a false positive rate at
80% sensitivity of 31.7% compared to 34.0% using only cortical
width (see Table III). The bootstrap test indicates no significant
difference in overall AUC, as zero difference is crossed at the
26th percentile. Similarly, the McNemar test indicates no signif-
icant difference in specificity between the combined classifier
and a width classifier in the 75–85% sensitivity range, although
the McNemar test does give a significant difference at both 70%
and 90% sensitivity at p = 0.05. It appears that the state of the
bone in the mandibular cortex is more strongly correlated with
the femoral neck than other skeletal sites.

3) Superior Basal Bone Features: As no fractal dimension
measure provided significant separation of groups (see Section
III-A), we did not train a classifier with these features. A tex-
ture classifier was trained using the following co-occurrence
matrix features: contrast, correlation, and difference variance
(all orientations); information dimensions of correlation for the
tangential orientation, and the sum average and sum variance
for other orientations (see Table II).

The AUCs for superior basal texture classifiers are given in
Table III. These were lower than for the cortical bone features
and the classifiers on their own performed quite poorly. Never-
theless, the combined classifier for cortical width and superior
basal texture performed better for predicting osteoporosis at any
site (AUC 0.820). Although superior basal texture is poorer than
cortical texture as a single predictor, it may be more indepen-
dent of the cortical width measurement, and so provide a better
overall predictor of bone status at predominantly trabecular sites
such as the lumbar spine. Fig. 4 shows the ROC curves for pre-
dicting osteoporosis at any site for the superior basal texture,
width, and combined classifiers.

The bootstrap test indicates a significant improvement in AUC
for the combined classifier in predicting osteoporosis at any of
the three sites (p < 0.05), and similarly significant differences
are observed in the McNemar test comparing false positive rates
at several sensitivities (see Table IV).

IV. DISCUSSION

Inoue and Ogawa [20] suggested the use of fractal dimension
in analyzing trabecular patterns at the hip. Yasar and Akgunlu [9]
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Fig. 4. ROC curves for detection of osteoporosis at any of the three skeletal
sites; three curves are shown for superior basal texture classifier using co-
occurrence features; classifier using left and right cortical widths; combined
classifier using width and superior basal texture, as indicated in the key.

showed a significant difference in mean fractal dimension of the
mandibular cortex for groups of patients with different MCI
values. However, Southard et al. found no relation between the
fractal dimension of the mandible and BMD at other skeletal
sites for either human [30] or animal models [11]. Our results on
a large dataset suggest that there is a relationship between vari-
ous measures of fractal dimension and osteoporosis, particularly
at the femoral neck. We have sought to improve on these rather
formulaic measures of fractal dimension in a number of ways.
First, we use a carefully implemented normalisation scheme
based on robust statistics; second, we avoid arbitrary thresholds
by regarding gray-level as an extruded third dimension; third,
we use a family of different fractal dimensions in a multivariate
classification framework. However, we conclude that although
the relationship between the fractal dimension of the mandibular
cortex and osteoporosis at other skeletal sites is clearly visible
at the population level, it produces only poor specificity if used
in predicting the osteoporotic status of individuals. This is due
to the large variance of the fractal dimension compared to the
small differences between the osteoporotic and nonosteoporotic
groups. The standard deviations of box counting dimension in
the nonosteoporotic and osteoporotic (femoral neck) groups are
0.0254 and 0.0275, respectively, whereas the separation in group
means is 0.021. Similarly, the separation of group means for the
Rényi correlation dimension (q = 2) is 0.66 times the standard
deviation of the nonosteoporotic group. The substantial over-
lap between the two distributions results in poor classification
performance. A similar problem appears implicit also in [9].

We investigated the use of co-occurrence matrix features,
based on the intuition that they would efficiently capture the
texture information about the clinically reported descriptions
in terms of holes and residues. The magnitudes and directions
of pixel separations were selected to correspond with this.
This framework provides a larger set of features for this
classification problem than the fractal measures. These features
separately capture different aspects of the image brightness
distribution across multiple scales resulting in a more sensitive
classifier. There are, of course, many texture features that

could be used [31] and other classifier designs that might
have been employed. In selecting the random forest, we have
used a classifier with well-attested performance, in which the
bootstrap training regime allows us to make maximal use of the
image dataset for training and evaluation. Our cortical texture
classifier using co-occurrence features performs almost as well
as cortical width as a predictor of osteoporosis at the femoral
neck, and when combined with cortical width results in a
statistically significant improvement in specificity in the most
interesting region of the ROC curve. Lumbar spine osteoporosis
is better predicted by combining cortical width with a texture
classifier sampling the superior basal bone above the cortex,
though this could be because of better response to cortical
residues above the notional superior cortical border.

BMD at femoral neck and lumbar spine are highly correlated
(Pearson’s correlation = 0.903, s.e. = 0.016, p = 0.001). How-
ever, there appears to be a stronger relation between the texture
of the mandibular cortex and BMD at the femoral neck, than
at lumbar spine or other skeletal sites. This is consistent with
the findings on cortical width in our earlier study [3] and might
be expected since the mandibular cortex and femoral neck are
both composed of primarily cortical bone, whereas the lumbar
spine contains a greater proportion of trabecular bone. The cor-
tical texture classifier has a false positive rate of 25.6% at 80%
sensitivity in detecting low BMD at the femoral neck, while the
corresponding false positive rate increases to 49.1% (specificity
50.9%) for osteoporosis at any of lumbar spine, total hip, and
femoral neck. Nevertheless, this is a similar performance to ex-
pert human grading reported by Taguchi et al. [17], who found
a sensitivity of 82.5% with specificity 46.2% for osteoporosis
at either lumbar spine or femoral neck by diagnosing all MCI
grade 2 or 3 patients as osteoporotic.

It is also possible to produce a cascaded classifier using both
cortical and superior basal bone texture features, but this per-
forms very similarly to the better of the single texture/width
combination (i.e., width and superior basal texture for diagno-
sis at any site or width and cortical texture for diagnosis at the
femoral neck).

Lerouxel et al. [10] used run-length moments as a texture
measure of the alveolar bone in radiographs of the mandible of
rats that had induced osteoporosis, and reported significant cor-
relations between texture and densitometric parameters. Run-
length moments are related to some co-occurrence features (e.g.,
longer run-lengths of the same pixel value will be observed with
higher correlation in the co-occurrence distribution). However,
we include a richer set of texture features which helps to boost
the performance of the classifiers.

We suggest that our use of co-occurrence texture features
and random forests may give a useful measure of bone quality
at other skeletal sites. Given that modern machine learning
methods such as random forests or boosting [32] can handle
large feature vectors (including noisy and weak predictors),
there is no need to restrict analysis to coarse single number
summaries of texture distributions such as box-counting
dimension. Chappard et al. [33] used a smaller set of three
co-occurrence features at a single separation distance combined
with geometrical features in linear regression models to
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predict the failure load of excised femurs. It is also possible
to use random forests for generalized regression as well as
classification, and this may allow a larger feature set and
nonlinear interactions to be explored without overtraining.

V. CONCLUSION

We have shown that image texture measured at the
mandibular cortex have a strong association with osteoporosis
diagnosed at the femoral neck, and a moderate association with
osteoporosis at other skeletal sites, and is therefore a poten-
tial biomarker for osteoporosis. Texture classifiers based on co-
occurrence statistics perform much better than those based on
fractal dimensions that have been investigated previously, and
can be more finely and objectively tuned than coarser grained
human expert assignment of MCI grades. The cortical texture
classifier performs similarly to cortical width as a biomarker for
osteoporosis at the femoral neck, but there is a weaker link to os-
teoporosis in the lumbar spine, for which cortical width remains
the best single predictor. The combined classifier using cortical
texture and width results in a significantly stronger association
with osteoporosis at the femoral neck than width-only methods,
but at other skeletal sites there is little if any improvement. A
smaller but significant improvement in AUC is obtained when
diagnosing osteoporosis at any of the three sites by combining
cortical width and similar texture features of the superior basal
bone above the cortex. The cortical texture is easier to compute
in a practical system, as it can be automatically calculated once
the cortical borders have been determined, and the resulting
improved association with femoral neck osteoporosis is partic-
ularly important, because hip fracture is one of the most serious
consequences of osteoporosis.

APPENDIX

BOOTSTRAPPING THE ROC CURVE

A simple bootstrap method to compare two ROC curves
would be to randomly select with replacement n1 instances
from the population of n1 osteoporotic cases, and n2 instances
from the population of n2 normal cases many times, use the
same bootstrapped subsample for each classifier, and calculate
the two AUCs, and then compute the difference. By repeat-
ing the bootstrapping many times (in this study, we have used
5000 bootstrap samples), we can estimate the distribution of
the difference, and, for example, if the fifth percentile of the
bootstrapped distribution exceeds zero, then the difference is
significant at the 5% level. A better estimate is obtained by the
smoothed bootstrap [29], in which the samples are drawn from
kernel-smoothed estimates of the cumulative distributions [34],
rather than sampling from the empirical sample. Equivalently,
one can sample from the empirical distribution and then add
small random errors to each data point drawn from the same
kernel [29]. Kernel-smoothed estimators of the ROC curve have
been shown to give better estimates than the simple sample ROC
curve [34]. In this approach, each sample data point is in effect
blurred out by a kernel function over some bandwidth interval.
We follow Zhou and Harezlak [35] in using an Epanechnikov
kernel [36] as the sampling distribution. Bowman et al. [37]

showed that for an Epanechnikov kernel on [−h, h], the optimal
kernel bandwidth is given by [2]

ĥ =
(

100
√

π

7n

)1/
3

σ. (3)

This expression uses a Gaussian approximation of the deci-
sion variable distribution (see [37] for details), where n is the
sample size, and σ is an estimate of standard deviation which
we set according to

σ = min {σ̂, (Q75 − Q25)/1.349} . (4)

Here, σ̂ is the sample standard deviation, and Q. represents
the subscripted percentile points. We follow Zhou and Harezlak
[35] in applying a log transformation prior to kernel smoothing,
as the classifier probability outputs are right-skewed, and the
log-transformed data tend to reduce oversmoothing caused by
overestimation of constant kernel bandwidth due to skew (the
Gaussian assumptions then cease to be valid). Note that the use
of any monotonic transform (such as logarithm) has no effect on
the empirical ROC curve, but can affect the kernel smoothing.
Better estimates should be obtained if the transform aligns the
distribution more closely to a Gaussian, for which the kernel
bandwidth formula is optimal.

Given sample sizes n1 for the osteoporotics and n2 for the
nonosteoporotics, we first perform bootstrap sampling with re-
placement picking subsamples of size n1 and n2 from the two
populations. The probability of osteoporosis is taken from the
full sample OOB estimates for both the cortical width and com-
bined random forest classifiers. Then, Epanechnikov random
noise is added using bandwidths computed as defined previ-
ously. The empirical AUC is calculated using this sample for
each classifier method, and then the difference dA between the
two AUCs is taken, and its overall distribution is estimated by
performing 5000 bootstrap repeats.

It could be argued that all of the random forest classifiers
should be retrained on each bootstrap sample; however, the OOB
estimates have already been derived through a bootstrap process,
and the random forest methodology is very effective at removing
overtraining, since the final estimate is a vote from thousands of
trees each trained on a different subset of the sample. Also, the
addition of the further noise (kernel smoothing) in effect already
covers classifier training set random variability.
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ABSTRACT

We present a method to detect damage in time-lapsed, micro-CT
images of progressively loaded bone. The method we have devel-
oped splits the image into regions and performs registration on each
region individually. The procedure is repeated with progressively
smaller regions until either a minimum size or a maximum number
of levels is reached. The regions are then classified as damaged or
undamaged. This method has been successfully applied to three sets
of images and tested with simulated damage. It will allow us to
determine the characteristics of trabecular architecture that provide
strength and to predict regions that are most likely to be damaged
based on their structure.

Index Terms— Bone Strength, Micro-CT Imaging, Image Reg-
istration, Trabecular Structure

1. INTRODUCTION

Osteoporosis is a disease characterised by low bone mass and a de-
terioration in bone quality. Common clinical assessments are based
on measures of the quantity of bone material (e.g. bone mineral den-
sity (BMD)). The architecture of trabecular bone, despite being an
important component of bone strength, is not generally measured,
partly due to the lack of availability of appropriate high resolution
3D imaging, but also the lack of a measure of bone quality to apply.

Appropriate imaging techniques such as dental cone beam com-
puted tomography (CBCT) and high resolution peripheral quanti-
tative computed tomography (HR-pQCT) are beginning to become
available. Measures of bone quality could for example be used to im-
prove the prediction of osteoporosis or the siting of dental implants.

The term ‘bone quality’ is not well defined. It covers the range of
properties that provide strength and resistance to fracture including
the quantity and density of bone, turnover and trabecular architec-
ture. It is the last of these with which we are concerned.

Micro-CT imaging allows 3D trabecular structure to be imaged
directly at high resolution. It has been widely adopted for both
in-vivo and in-vitro assessment of trabecular architecture in animal
models of osteoporosis. The most commonly used measures, such
as trabecular thickness, structure model index (a measure of ‘rod-
or plate-likeness’), anisotropy and connectivity, show characteristic
changes with osteoporosis and correlations to bone strength [1, 2].
These measures are mostly extensions of histomorphometric mea-
sures and not based on a knowledge of the way in which bone breaks.

We are interested in understanding the way in which bone frac-
tures under loading in order to devise a measure of bone quality more

Facilities for collecting in-situ loading data were kindly made available
by Skyscan. This work was in part funded by the BBSRC.

clearly linked to strength and fracture resistance. To do this we are
acquiring micro-CT images of progressively loaded rat vertebrae.
From these images we will identify regions where damage occurs
and look for features and structural characteristics that can predict
them.

Nazarian and Müller were first to suggest the use of micro-CT
based time-lapsed imaging to observe bone failure [3, 4]. They call
the method ‘image guided failure analysis’ (IGFA). Their method
involves in-situ, step-wise, compression with a strain held during
scanning. Other authors have imaged damage, in these cases using
synchrotron-based micro-CT, with a time lapsed method but again
have not detected or measured damage from their images [5, 6].

Larrue et al. examined the automatic detection of micro-cracks
from synchrotron-based micro-CT [7]. Their work differs from our
own as they look specifically for micro-cracks (typically 1μm in
width), which is only possible with synchrotron radiation, whereas
we are seeking to characterise regions of weakness at a larger scale.

Perilli et. al. and Tassani et. al. both compressed cylindrical sec-
tions of human femoral head until a fracture plane formed through
the entire specimen, producing two separate halves [8, 9]. In the
former study a fracture region was defined through the entire cross-
section of the specimen for the vertical extent of the fracture plane.
Standard measures of trabecular architecture were shown to be sta-
tistically different in this region compared to that in the rest of the
specimen. In the latter study the fracture region was determined au-
tomatically by registering each half of the the broken specimen to
the undamaged original. This method proved to be as effective at
delineating the damaged region as the manual approach.

In our study we seek to identify damage as it occurs at a scale
intermediate between microcracks and complete breakage, prior to
total failure of the bone. We require an automatic method with suf-
ficient sensitivity to achieve this, in the context that such local de-
formation can be visually difficult to identify and distinguish from
movement in the 3D volume. In particular we seek to differentiate
between changes that are due to damage and those that are due to
movement of undamaged bone. We register sections of loaded bone
to the image prior to loading. To achieve detection at smaller scales
we register increasingly small regions before classifying each region
as damaged or undamaged. The method has been applied to images
with artificially simulated damage to investigate the scale of detec-
tion that can be achieved, and to several sets of real data.

2. METHODS

2.1. Imaging and Loading

Individual lumbar vertebrae (L3, L4 and L5) were collected from
2 female rats, approximately 3 months old. Excess, external soft
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tissue was removed. Micro-CT imaging is described below. Recon-
struction was performed in the manufacturer’s software, NRecon or
InstaRecon (Skyscan, Kontich, Belgium). All images were resized
by half. Where segmented images are used a global threshold was
applied that was determined using Otsu’s method.

Two different methods of preparation, loading and imaging have
been used. The first involves separate compression and imaging
steps where the bone is able to relax after the loading. The second
method applies the load inside the scanner, the strain for each com-
pression being maintained throughout the scans. The first method
requires repositioning of the bone within the scanner between scans.
Three sets of data have been analysed, the first two using the first
method (1a, 1b) , the third using the second method (2a).

Specimens for the first method were prepared for loading by
removing the parts of any processes that extended beyond the
main body of the vertebra using a scalpel. Imaging was per-
formed in a Skyscan 1072 scanner. Reconstructed images were
1024×1024×975 voxels in size with a voxel size of 13.7 μm.
Loading was performed in a Zwick universal testing machine. An
increasing compressive strain was applied at a rate of 2 mm min−1

until a drop in force of 10% from the maximum occurred (typically
indicating fracture). After the first scan of the intact bone the speci-
men was removed from the scanner for each compression step. Two
vertebrae were loaded and imaged using this method. The first (1a)
has 4 stages of loading, where the final loading was stopped at a
strain of 20% as a drop of 10% did not occur. The second (1b) had
3 steps where the final loading was stopped at a force of 1000 N for
similar reasons.

The specimen for the second method (2a) was prepared for load-
ing by attaching PMMA caps to the each end of the vertebra. This
has the advantage of providing flat, parallel surfaces for loading and
the method has been devised to ensure repeatable, on-axis loading
scenarios for future experiments. Imaging was performed using a
Skyscan 1172 scanner and using Skyscan’s in-situ loading stage for
loading, minimising position differences between scans. A given
strain was held during each scan with 2 loading steps, each increas-
ing the strain by approximately 2.5%. Reconstructed images were
1500×1500×964 voxels in size with a voxel size of 10.1 μm.

2.2. Simulated Damage

Artificial data was generated from two images of the same bone that
were taken on separate occasions without any loading in between.
The two images were globally registered and 7, 1503 voxel sections
were selected that contained a variety of structure types.

Damage to the bone was simulated by applying 3D deformation
fields to one of the images. The deformation was described by three
parameters: position and size of the damage region and the mag-
nitude of the deformation. Each voxel in the damage region was
moved by the deformation magnitude equally in each direction. Be-
fore being applied to the starting image the deformation fields were
each smoothed (Gaussian smoothing with a SD of 6) to prevent dis-
continuities.

Two types of deformation were performed on each image pair.
The first had a fixed magnitude of 15 voxels and the size was in-
creased from 53 to 453 voxels in 5 steps. The second had a fixed size
of 153 and the magnitude was increased from 5 to 45 voxels in 5
steps. A correctly identified damaged region was defined as one that
coincided with 10% or more voxels above a threshold level in the
deformation field. The threshold was 10% of the starting deforma-
tion magnitude for each region. The results for each level of damage
have been averaged to provide a final result.

2.3. Registration

All damaged images were first registered onto the initial, undam-
aged, image using a global, rigid registration. This and all further
registration was performed using FLIRT [10], part of FSL. This soft-
ware was originally designed for use with neuro-MR images but has
been found to perform well for our purposes. It uses a multi-scale,
multi-start approach and applies de-weighting to edge pixels to de-
crease the effect of the changing overlap of two images being regis-
tered. In tests we found it reliably finds a global minimum for our
images. All registrations are rigid and use the correlation-ratio cost
function.

2.4. Location of Damage

We wish to identify regions that are damaged and distinguish them
from those that have moved as a result of damage. Splitting the im-
age into smaller regions and registering each individually will allow
for heterogeneous movement and localised damage (see figure 1). It
is hypothesised that damaged bone will not be able to be successfully
registered using rigid registration and this can be used to classify re-
gions. This method does not make any assumptions about the size
of damage which could range from a single deformed or broken tra-
becula to diffuse damage throughout a larger region.

Fig. 1. Illustrating the detection of damaged regions by registration.
Red indicates bone in the non-loaded image, blue in the loaded im-
age and orange the overlap. In the left image the site of the damage is
not obvious as global, rigid, registration can mask smaller, regional
damage. Splitting the image up into smaller regions and registering
individually in the right image reveals undamaged regions that have
moved and small scale damage that was masked by the movement
(arrows). At a larger scale the clear damage at the centre right will
be identified.

The first stage involves registering at several scales. The loaded
image is split into octants and each octant is registered individu-
ally onto the reference (non-loaded) image. This procedure is then
repeated, splitting each region into octants and registering the sub-
regions. With each level the number of regions increases exponen-
tially.

Regions that do not have any structure in the reference image are
discarded. The amount of structure is assessed by putting a threshold
on the number of bone voxels in the segmented image. At any level
registration is not performed if the loaded and reference images are
sufficiently similar within the region. This decision is based on the
difference between the registered images. This difference is quan-
tified as the sum of non-coincident bone voxels, normalised by the
number of edge voxels in the reference image to account for differ-
ing numbers and sizes of trabeculae in different regions. Edge voxels
are found by performing binary erosion on the reference image. The
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1 Load Step 2 Load Steps

3 Load Steps 4 Load Steps

Fig. 2. A central slice perpendicular to the loading direction of non-
loaded and loaded images of specimen 1a after multi-scale registra-
tion. The non-loaded image is shown in red, the loaded image in
blue and the overlap in orange. The green overlay indicates regions
that have been identified as damaged. As these are single slices from
a volume, structure may be present in a region on another slice that
is not visible.

process continues until either a minimum region size or maximum
number of levels is reached.

Regions are then classified at the lowest splitting level on the ba-
sis of the remaining difference between the two images after regis-
tration. An undamaged region should show small differences; larger
differences are indicative of damage. A region is thus classified as
damaged if the difference between the reference and loaded image is
above the threshold. If at any level the difference is below the thresh-
old the region is classified as undamaged. Additionally a region may
be classified as damaged if there is structure in the reference image
but not in the loaded image.

Figure 2 shows overlays of the loaded and reference images. The
loaded images are created as a mosaic of registered patches. Hence
in undamaged regions the correspondence between the loaded and
reference images is high, whereas there is low correspondence in the
damaged regions.

The structure threshold was set at 200 voxels for the real data and
100 voxels for the artificial damage data. The splitting process was
stopped after the third level (512 regions). The results are sensitive
to the selection of the threshold on the difference ratio. It should
be set at a level that prevents undamaged regions being classified
as damaged due to variation in the segmentation arising from noise.
Noise therefore limits the smallest levels of damage this method can

detect. We have used a threshold value of 1 for the first set of real
data, 6 for the second and a value of 0.6 for the artificial damage
data, these values were determined empirically.

3. RESULTS

Table 1 shows the results of classification for the loaded images.
The final region sizes were approximately 503 voxels. The num-
ber of regions classed as damaged increases with increasing damage
for all specimens at all loading steps except for the final loading
step of specimen 1b. This is due to the fact that catastrophic dam-
age occurred quickly in this specimen. Consequently all the regions
that were not discarded were classified as damaged in step 2. The
increased damage at the next step therefore could not increase the
number of damaged regions. Example images in figure 2 show the
number of regions identified as damaged increasing with each load-
ing step. Figure 3 shows the effect of regional registration on typical
damaged and undamaged regions.

Specimen Step Undamaged Damaged

1a 1 181 (35.4%) 48 (9.4%)
2 130 (25.4%) 99 (19.3%)
3 113 (22.1%) 116 (22.7%)
4 58 (11.3%) 171 (33.4%)

1b 1 72 (14.1%) 124 (24.2%)
2 0 (0%) 196 (38.3%)
3 0 (0%) 196 (38.3%)

2a 1 281 (54.9%) 6 (1.2%)
2 264 (51.6%) 23 (4.5%)

Table 1. Summary of classification results for the loaded images.
As damage in the image increases regions that were previously clas-
sified as undamaged become damaged. Percentages are of the total
number of regions, including those discarded.

Undamaged, Before Undamaged, Before Damaged, Before

Undamaged, After Undamaged, After Damaged, After

Fig. 3. Two regions classified as undamaged and one as damaged
from the first loading stage of specimen 1b, before and after the
fracture detection was applied. The non-loaded image is shown in
red, the loaded image in blue and the overlap in orange. Local reg-
istration has improved the correspondence between the images for
the undamaged regions resulting in a difference below threshold af-
ter regional registration. However, registration has been unable to
reduce the difference in the damaged region (right).
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Results for the detection of damaged regions in the artificially
damaged images have been summarised in table 2 and example slices
are shown in figure 4. Both types of damage show increasing sen-
sitivity with increasing damage while specificity remains relatively
constant.

Size /voxels 53 153 253 303 453

Sens. (%) 7.1 75.0 76.3 85.7 88.6

Spec. (%) 91.2 91.0 89.5 89.6 89.2

Magnitude /voxels 5 15 25 30 45

Sens. (%) 28.6 75.0 89.3 89.3 100

Spec. (%) 91.0 91.0 90.3 90.2 90.0

Table 2. Sensitivity and specificity of classification results for the ar-
tificially deformed images with increasing damage. Results are for
an average of 7 regions. True positives are regions correctly iden-
tified as damaged, true negatives are those correctly identified as
undamaged. The deformation field applied to create the simulated
damage is used to provide the ground truth, see section 2.2.

Position 1 Position 2

Fig. 4. Two example slices showing the artificial damage (level 2
on table 2) and the correct identification of a damaged region. The
image before artificial damage has been applied is shown in red, the
artificially damaged image is shown in blue and the overlap in or-
ange. Regions classified as damaged are shown in green.

4. DISCUSSION

We have described a method based on multi-scale registration for
identifying regions of damage in micro-CT images of loaded trabec-
ular bone. The strength of this method is its ability to distinguish
damage from movement where other techniques would not be able
to do so. Non-rigid registration, for example, would have difficulty
achieving this as it is necessary to identify large distortions at small
scale while simultaneously allowing large scale rigid movements. It
is not easy to see how a regularisation mechanism could deliver both
of these outcomes.

Most similar studies use a cylinder of trabecular bone selected
to have as uniform structure as possible. Our method allows whole
vertebrae to be tested despite its heterogeneous structure.

In this study we have examples of progressive damage in two
different loading protocols: repeated loading and progressive load-
ing, extending to levels of damage greater than we require to detect.
In all cases our method has identified regions of damage and distin-
guished these from regions of movement. Using synthesised ground-
truth, we have been able to specify the minimum volume and extent
of damage that can be detected using this approach.

The specific aim of this study is to propose methods for quantify-
ing bone quality. We take as a working definition of bone quality the

strength under loading. Regions of bone that suffer damage in the
early stages of loading are, under this definition, weaker (of lower
‘quality’) than regions that remain undamaged. Our future work will
seek to identify measures of local bone structure that allow us to dis-
criminate the weaker regions from the others. Early damage is likely
to occur in fairly small regions, where it may be difficult to detect vi-
sually. The methods described here are intended to identify regions
of minimal damage and regions that resist damage. These detected
regions will be confirmed visually before being used to train and
evaluate local structure measures.
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DIFFERENTIAL SEGMENTATION OF THE PROSTATE IN MR IMAGES USING COMBINED
3D SHAPE MODELLING AND VOXEL CLASSIFICATION

P. D. Allen, J. Graham, D. C. Williamson and C. E. Hutchinson

ISBE, University of Manchester, Oxford Road, M13 9PT, UK

ABSTRACT

Benign Prostatic Hyperplasia (BPH) is a non-cancerous ex-
pansion of the prostate, the progress of which can be quan-
tified by measuring the relative volumes of the prostate’s pe-
ripheral zone and central gland. Here we describe a method of
automatic segmentation of both regions of the prostate from
MR images using a combination of grey-level voxel classifi-
cation and 3D statistical shape modelling.

1. INTRODUCTION

Benign Prostatic Hyperplasia (BPH) is a non-cancerous en-
largement of the prostate which can cause constriction of the
urethra and therefore obstruction of urinary flow. It affects
70% of men between the ages of 61 and 70, rising to 80% for
men over 80 [1]. In 25% of men aged 80 symptoms are suf-
ficiently severe to require surgical transurethral resection of
the prostate (TURP), however this treatment has a high cost,
morbidity (16%) and mortality (2.01%) [2] and so alternative
treatments are sought.

Drugs such as finasteride can be used to treat BPH by
shrinking the prostate, and evaluation of such candidate treat-
ments requires a method of quantifying its effect. The cur-
rent standard is Transrectal Ultrasound (TRUS) in which three
orthogonal dimensions are measured and the volume is esti-
mated using the formula for a prolate ellipsoid [2, 3]. Anatom-
ically the prostate is divided into a number of zones: Periph-
eral (PZ), Central (CZ), Transitional (TZ), and fibromuscular.
BPH primarily affects the TZ and so both the total Prostate
(TP) and TZ volumes are measured using TRUS.

Tewari et al [2] have shown that the reduction in volume
due to finasteride treatment over 12 months for the total TP
and TZ are 8% and 27% respectively, however only the
change in TZ volume correlates with improvement in urinary
flow. For TRUS, intra-observer variability has been shown to
be −18% to +18% for the TZ volume and −21% to +30%
for the total volume [3].

Magnetic Resonance Imaging (MRI) is an attractive al-
ternative to TRUS as it offers better definition of the prostate
and is non invasive. MRI offers the possibility of accurately
segmenting the prostate rather than assuming its volume from
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three orthogonal measurements. However, manual segmen-
tation is time consuming, error prone and subjective, and so
the goal of this project is to investigate the possibility of auto-
matic segmentation of the appropriate regions of the prostate.

In MRI only two regions can be distinguished: the PZ,
and what is referred to as the Central Gland (CG) compris-
ing the remaining anatomical zones [4]. In cases of BPH the
CG is mostly comprised of TZ due to the latter’s expansion
and so CG and TZ can be considered equivalent. Methods of
segmentation [5] and registration [6] of just the outer prostate
surface have been described for MR imaging, here we de-
scribe a method of both whole prostate and CG segmentation.

For this study we have used T2 weighted fat suppressed
(T2FS) images as the CG/PZ contrast is enhanced in compar-
ison with T2 or T1 weighting, and there is clearer separation
of the prostate from surrounding tissue. The data were col-
lected using a 1.5T Philips Gyroscan ACS MR scanner (soft-
ware version NT5.3, Power Track 600, synergy body coil)
from 22 patients with BPH. For each patient there are 50 ax-
ial slices with a thickness of 2mm and an in-plane resolution
of 1.56mm.

Figure 1 shows a T2FS MR image of a prostate sliced in
the axial, sagittal, and coronal planes. In T2 weighted images
the PZ is generally brighter than the CG and in this case the
two can be distinguished reasonably well.

Manual segmentation of the prostate is particularly diffi-
cult toward the superior portion where the seminal vesicles
are very difficult to distinguish from the PZ, and toward the
inferior portion where surrounding structures can become con-
fused with the prostate and the prostate itself tends to bifur-
cate into two lobes. In the mid-section of the prostate blood
vessels anterior to it can be confused with the PZ or CG de-
pending on their relative intensity. The border between the PZ
and CG can vary greatly from patient to patient depending on
the severity of glandular enlargement. Figure 6 shows manual
segmentation of the axial slice of the prostate, illustrating that
the boundary between the regions is defined not only by the
voxel values, but requires a model of expected shape.

2. AUTOMATIC SEGMENTATION

In seeking a method of automatic segmentation, our approach
is to formalise the two level process behind manual segmen-
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Fig. 1. The appearance of the prostate in T2 weighted Fat suppressed MRI sliced in three orthogonal planes.

tation using grey-level voxel classification to make the initial
coarse segmentation, and to fit a 3D point distribution model
(PDM) [7] to this classified data to form the smooth spatial
constraint.

2.1. Voxel Classification

Fig. 2. Axial T2FS MR
image of a prostate.

Fig. 3. The result of apply-
ing grey-level tissue classifi-
cation to figure 2.
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Fig. 4. The grey-level
histogram of figure 2.

Fig. 5. The mean shape of
the double surface 3D PDM
of the prostate

Figure 2 shows an axial slice of a T2FS images cropped
close to the prostate. The histogram of grey-levels in this im-
age is shown in figure 4. There are three distinct peaks in this
histogram corresponding to PZ, CG and what we can consider
background (B), suggesting that we can assume the image as
being composed of three tissues. In an MR image a pure tis-
sue type would produce a distinct grey level intensity with
Gaussian distributed noise, so if the three tissue assumption

Fig. 6. Manual segmenta-
tion of an axial slice into PZ
and CG.

Fig. 7. The result of apply-
ing grey-level tissue classifi-
cation to figure 6.

holds we would expect the distribution of the histogram to be
a sum of three Gaussians.

By fitting a three Gaussian-model to the histogram we can
then calculate the class-conditional probability of each voxel
in the image belonging to each of the three tissue types [8,
9]. Figure 3 shows the results of using these probabilities to
classify the image into PZ, CG and B. The example in figure 2
is particularly well suited to voxel classification. However in
a less homogenous case such as that shown in figure 7 bright
BPH nodules will be wrongly classified as PZ and the dark
compressed regions of PZ wrongly classified as CG - thus a
further spatial constraint is required.

2.2. Shape Modelling

We are interested in fitting two surfaces: the Total Prostate
(TP) and the Central Gland (CG) (see figure 5). The 22 im-
ages have been manually segmented to provide examples of
each of these surfaces. To build a PDM from these surfaces
requires a set of points on each surface which correspond
across the data set and to achieve this we employ a method
of automatic correspondence optimisation [10].

Using a leave-one-out evaluation of the ability of the PDM
to represent the training data, it was found that using two sep-
arate PDMs for the TP and CG surfaces gave considerably
better representation of the observed shape variability than
using a single PDM of the two surfaces. This is because the
22 manually-segmented examples are not sufficient to ade-
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quately describe the variation in the spatial relationships be-
tween the two surfaces.

2.3. Model Fitting

2.3.1. TP Surface:

From the tissue classification (section 2.1) each voxel has
three values associated with it - PPZ , PCG, PB representing
the probabilities that it belongs to PZ, CG, or B. For an ex-
ample surface we can sum these probabilities for the voxels
enclosed by the surface giving the quantities which we can
call PZin, CGin, and Bin. For fitting the whole prostate sur-
face a sensible objective function would then be:

PZin + CGin − Bin (1)

We initialise the search for fitting all of the shape param-
eters by first fitting the pose of the average shape. Using the
objective function in equation 1, and pose paramters only, the
search space is fairly smooth. We are able to use simplex to
find an initial configuration for shape search. Optimisation
of the surface shape however presents a far more complex
search space with many local minima, and so here a genetic
algorithm is used.

2.3.2. CG Surface:

To fit the CG surface it is the PZ/CG border that must be em-
phasised in the objective function and this can be done in the
following way: Create a candidate CG surface C1, then di-
late that surface by one voxel to form a second surface C2,
which, for a correct surface C1, should be outside the CG. If
we sum the probabilities on the surfaces rather than in them
we can form the values PZonC2 and PZonC1. The differ-
ence between these values should be a maximum when the
CG surface is on the PZ/CG border. As the PZ does not al-
ways extend round to the anterior of the prostate (see figure
1), we also need to find the CG/B border in this region. We
therefore also calculate BonC2 and BonC1. From a search
point of view this objective function is spiky as candidate so-
lutions near but not at the correct position are no better than
surfaces further away, and so counting the voxel probabilities
inside the surface is also necessary. Thus the CG objective
function becomes:

(PZonC2−PZonC1)+(BonC2−BonC1)+CGin−Bin (2)

In this case the sums of probabilities in the surface are
normalised by surface volume to make them the same order
of magnitude as the sums on the surface which are normalised
by surface area. The term ‘−PZ ′

in is left out of the objective
function because in some cases the there is considerable miss-
classification of CG voxels as PZ.

Table 1. Fit Results (see text).

Surface Point Diff (mm) Volume Diff (%)

µ(σ) µ(σ)

TP 4.1 (1.1) 11.1 (9.5)

TP (mid) 2.8 (0.82) 6.5 (5.4)

CG 3.1 (2.5) 11.9 (8.9)

CG (mid) 2.0 (0.6) 6.8 (8.5)

Convergence of the CG fitting was not always successful
starting from the mean shape. This difficulty was overcome
by starting the search from a shape specified by a straightfor-
ward user interaction: the user marks four points on the mid-
dle slice roughly equally spaced around the CG, and selects
the slices corresponding to the inferior and superior limits of
the CG. This information is used to initialise the mean shape
by stretching it in the X,Y, and Z axes and adjusting position
in a simplex optimisation until the surface is as close to the
user defined points as possible. The resulting surface is then
used as a start point for a full GA optimisation of pose and
shape.

2.4. Results

Prior to tissue classification and PDM fitting the image data
was cropped manually around the prostate, as the full axial
slices encompass the entire pelvic area in which the prostate
is only a small region. The model fitting was tested in a series
of leave-one-out experiments in which a surface model was
built from the set of examples excluding the current example.
GA optimisation was performed using MATLAB’s genetic al-
gorithm toolbox.

The results of fitting the TP and CG surfaces to each of the
22 patients are shown in table 1 as a mean point distance and
percentage volume error. The effects of the anatomical ambi-
guity in the superior and inferior portions of the prostate (see
section 1 can be reduced by only considering the mid-third of
the cropped volume during shape and pose optimisation and
the results of this are also included in table 1. Naturally the TP
and CG volumes for the mid-third of the prostate are mean-
ingless in themselves, however the CG/TP ratio calculated for
this region from manual segmentation has a strong correlation
(r=0.97) with the CG/TP ratio for the whole gland (figure 8).
This suggests that to measure the CG/TP ratio, segmentation
of the more clearly defined mid-section of the prostate may
be sufficient.

2.4.1. Repeatability:

Since the GA includes a stochastic element the same fit given
the same data is not guaranteed. The magnitude of this vari-
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Fig. 8. The CG/TP ratio for the mid-gland plotted against the
CG/TP ratio for the whole prostate.

ability can be estimated by repeating the fitting process 10
times and observing the variation in measured volume. On
a subset of 10 of the patient group the results of this suggest
standard deviations of 3% and 2% for the whole and mid-
gland fits respectively.

3. DISCUSSION AND CONCLUSIONS

Table 1 demonstrates that in the majority of cases automatic
segmentation results in Total Prostate and Central Gland sur-
faces that correspond accurately to the manual segmentation
‘ground truth’. The key measure in this case is volume and
even in cases where there is the greatest difference between
automatic and manual segmentation these are comparable with
the variation in volume estimates using TRUS. Automatic seg-
mentation from MR images clearly has the potential to deliver
precise estimates of volume change. Much of the discrepancy
between manual and automatic segmentation arises in places
where the boundary location is genuinely unclear, and the ab-
solute nature of the ground truth is questionable. We intend
to investigate the variability in manual measurement in these
regions.

One of the more important measures to be derived is the
ratio of volume of the Central Gland to Total Prostate. We
have observed that this can be estimated reliably by only seg-
menting the more clearly defined central portion of the prostate.
In a practical situation this may provide a solution to the more
difficult cases.
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a  b  s  t  r  a  c  t

Prostate  volume  is  an  important  parameter  to guide  management  of  patients  with  benign  prostatic  hyper-
plasia (BPH)  and  to deliver  clinical  trial  endpoints.  Generally,  simple  2D  ultrasound  (US)  approaches  are
favoured despite  the  potential  for  greater  accuracy  afforded  by  magnetic  resonance  imaging  (MRI)  or
complex  US  procedures.  In this  study,  different  approaches  to  estimate  prostate  size are  evaluated  with
a simulation  to  select  multiple  organ  cross-sections  and  diameters  from  22 MRI-defined  prostate  shapes.
eywords:
uasi-Monte Carlo simulation
ltrasound
agnetic resonance imaging

rostate
olume
stimation

A quasi-Monte  Carlo  (qMC)  approach  is  used  to  simulate  multiple  probe  positions  and  angles  within
prescribed  limits  resulting  in a  range  of  dimensions.  The  basic  ellipsoid  calculation  which  uses  two  scan-
ning planes  compares  well  to  the  MRI  volume  across  the  range  of  prostate  shapes  and  sizes  (R =  0.992).
However,  using  an  appropriate  linear  regression  model,  accurate  volume  estimates  can  be made  using
prostate  diameters  calculated  from  a single  scanning  plane.

© 2013 Elsevier Ltd. All rights reserved.
. Introduction

Estimation of a prostate volume is an integral component in
he evaluation of patients with BPH. While measurement per-
ormance is important for routine clinical assessment, precision,
eproducibility and practicality of measurement are crucial to
nable derivation of clinical trial endpoints [6,15].

Volume estimation of the prostate is normally carried out using
rans-rectal US images. The measurement can be made by a plani-

etric method where a stack of 2D slices is constructed by step
ovements of the ultrasound probe. Clinically it is more conve-

ient to make NPUS measurements of prostate diameters in the
atero-lateral (LL), anterio-posterior (AP) and cranio-caudal (CC)
irections from 2D images using the assumption of an ellipsoidal
hape. By displacing the probe the operator determines the orien-
ation for the best estimate of diameters.

Bazinet et al. [3] have noted that volume measured in this way
s inaccurate when compared with US (PUS) or magnetic resonance

MR) and conducted a reproducibility trial, finding that differences
n volume estimates of up to 25% could be obtained in successive
PUS examinations of the same patient.

∗ Corresponding author. Tel.: +44 1304 620 314.
E-mail addresses: david-olivier.azulay@pfizer.com,

avid-olivier.azulay@wanadoo.fr (D.-O.D. Azulay).

895-6111/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.compmedimag.2013.09.001
Direct 3D measurements of a volume by PUS or MR  have the
potential to deliver more accurate and reproducible results but
are considerably more expensive, acquisition is time consuming
and, without automated interpretation, analysis is highly labour-
intensive [13,26,1]. US remains widely available to the urologist and
therefore remains the most practical method of estimating prostate
volume [22]. In this study we  sought to investigate which estima-
tion method can best be used with 2D NPUS to predict prostate
volume.

Allen et al. [2] have investigated the use of active shape model
(ASM) search for measuring the volumes of the complete gland
and central gland using MR  images. An ASM is a statistical model
of shape, built from a training set of images which have been
segmented (the important surfaces defined) manually [7,9]. For
their study [2] collected twenty two fat-suppressed MR  images of
prostates from patients diagnosed with BPH attending the urology
clinic at Salford Royal Hospital, UK.

The objective in this study is to simulate volume measurements
by NPUS using the manual segmentation obtained from the ASM
study in order to quantify the limitations on the accuracy and repro-
ducibility of taking this approach. Rahmouni et al. [21] and Lee and
Chung [13] have reported that measurements of volume using MR

accurately represent the volumes of real specimens after prosta-
tectomy. We therefore take the manually delineated borders of
the prostate used by Allen et al. [2] to be realistic ground truth
representing the prostate boundary.

dx.doi.org/10.1016/j.compmedimag.2013.09.001
http://www.sciencedirect.com/science/journal/08956111
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based on a qMC  (and not a Monte Carlo) method [18]. Sloane et al.
[24] have calculated a convenient set of distributions, which were
downloaded and used for this study (see Fig. 3). Planes generated
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Fig. 1. Example of a 3D rendered prostate: the approximately elliptical bound

Fig. 1a shows a 3D rendered prostate volume from the manually
nnotated data. Axial, sagittal and coronal sections are indicated
nd the corresponding slices through the volume are shown in
ig. 1b–d, with the prostate contour superimposed.

While Allen et al. [2] addressed the segmentation of both
he whole gland and the central gland, only the whole gland is
onsidered here, as this is what may  be measured using NPUS.
urthermore, internal structures are not necessarily comparable
etween MR  and US images. We  make the assumption that the US-
efined borders are close approximations to the borders defined

n MR  images. Making realistic hypotheses about the range of pos-
ible orientations of the NPUS probe, we have implemented a qMC
ethod to assess the distribution of the error in volume estimates

roduced by the different direct ellipsoidal formulae and the linear
odels extrapolated from these formulae. The errors have been

uccessively quantified with standard linear regression goodness-
f-fit parameters, correlation coefficients and Bland–Altman (BA)
lots.

. Methods

The most common clinical approach to estimating volume
sing NPUS is to capture US images from two  approximately
rthogonal planes passing through the centre of the prostate.
ather than collecting US and MR  images from volunteers, we
imulate the US measurements using a qMC  procedure that allows
s to investigate the error distributions arising from varying the
hoices of the US planes used and the analytical methods applied
o produce the volume estimates. The reference volume for the
imulation procedure is a triangulated closed surface defining the
D volume of the prostate derived from manual segmentation of
R images (see Fig. 1a). An evenly distributed selection of pairs

f orthogonal cuts through this surface is simulated to generate
erimeters that would have been obtained from the corresponding
PUS images. There is evidently an infinite number of planes
utting a 3D volume but the generation of a representative subset
s required. Triplets of points distributed on the surface of a
phere are successively picked to define planes that belong to this
ubset.

.1. Devising an evenly distributed set of orthogonal cuts

The general procedure is illustrated with the 2D example
ketched in Fig. 2.

The blue line represents the outer boundary of the 2D slice of
n artificial prostate, the dotted rectangle its bounding box. Cuts
re simulated across this boundary by selecting random pairs of
oints on the circumference of a circle. The figure shows six points
niformly distributed on the circumference of a small circle near

he centre of the prostate. A small circle is preferred, rather than

 large one circumscribing the bounding box because the cuts
hould pass close to the centre of the prostate. There are sev-
ral cuts that are geometrically equivalent in that they divide the
re taken to represent the projections that would be observed in NPUS images.

circle into segments whose areas are in the same ratio (e.g. AB,
BC, CD, DE, EF and FA, or AC, AE, BD, BF, CE and DF). However,
only some of those are suitably oriented. To start with the angle
between the probe and the anterior-posterior axis should be small
to reflect probe positioning. The selections are therefore limited by
requiring that this angle should be less than 22.5◦. While some-
what arbitrary, this tolerance probably represents an upper limit
on a human observer’s ability to estimate the orientation of the
LL diameter. On Fig. 2, AD is an acceptable choice because the
angle  ̨ with the AP axis is small, whereas CE is not acceptable
because the angle  ̌ is too large. Then it is assumed that an NPUS
operator should judge fairly accurately the position of the cen-
tre of the prostate which would be close to the middle zone of
the bounding box. In determining next the LL diameter, it is also
assumed that the two  diameters should intersect close to the true
centre.

The extension to 3D is less straightforward because there is
no easy parameterisation that allows fine control over the likely
position and orientation of the plane that is necessary to simu-
late the clinical situation. The obvious extension to Fig. 2 is to
distribute points on the surface of a sphere. However, distributing
points evenly on a sphere is a complex problem [23]. The solu-
tion we have adopted is due to Li et al. [14], which generates a
“low discrepancy” sequence of points by using the terms of the
sequence to approximate the sizes of surface on the sphere defined
by neighbouring groups of points. In other words, each point on
the surface is equidistant to its nearest neighbours. This guaran-
tees the existence of a bounded error (low discrepancy with the
uniform distribution).

A plane is fully determined from the selection of three distinct
points. Because these points are drawn from an evenly spaced
sequence (and not from a random sequence), the simulation is
Fig. 2. Principle of the cut selection procedure on the schematic of a 2D slice: the ˛
cut  is accepted but not the  ̌ cut because it is too far from the AP axis. The BC cut
would be equally accepted as its angle is  ̨ as well, even though it does not pass
through the center of the circle.
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Fig. 3. Example of three possible cuts in 3D. Three points from the uniform distribution of 50 points on a sphere are chosen to define each cutting plane; (a) cut defining CC
and  LL on the coronal plane, (b) defining AP and CC on the sagittal plane, (c) defining AP and LL along the transverse plane. (c) is an example of an extreme cut that passes
just  through the central sphere trimming the top of the prostate horizontally.

Table 1
Linear regressions on the top 5% and 10% estimates. Every one of the 10 listed formulae generates a different set of 22 estimates that was used to predict the 22 fixed MR
volumes. All the SEb are statistically significant (p‡ < 0.001) demonstrating the appropriateness of the linear fits. The likelihoods of the �2 observations were calculated as
well  to confirm the validity of the linear regressions (Q′′ > 0.1, Q′ > 0.01 and Q� > 0.001). The CI of the average Vd is printed in the last column. The first three linear regressions
on  the top 5% estimates are illustrated in Fig. 7.

Top 5% Top 10%

Vd (cm3) MR = a + bVd R SEb Vd CI(Vd) MR = a + bVd R SEb Vd CI(Vd)

AP.CC.LL 2.43+0.962Vd
′′ 0.992 0.028‡ 44.2 1.14 2.80+0.974Vd

′′ 0.990 0.030‡ 43.3 1.23
AP  . LL2 0.08+0.894Vd

′′ 0.983 0.037‡ 50.2 1.63 0.65+0.920Vd
′′ 0.987 0.033‡ 48.2 1.40

CC  . LL2 −5.16 + 0.818Vd
′′ 0.983 0.034‡ 61.3 1.64 −3.88 + 0.822Vd

′′ 0.981 0.036‡ 59.4 1.71
LL  . CC2 −6.38 + 0.819Vd

′′ 0.976 0.041‡ 62.6 1.94 −5.73 + 0.824Vd
′′ 0.975 0.042‡ 61.5 1.96

LL  . AP2 8.13+0.995Vd′ 0.969 0.057‡ 37.0 2.21 8.52+1.024Vd′ 0.968 0.059‡ 35.6 2.23
CC  . AP2 5.87+1.031Vd′ 0.965 0.062‡ 37.9 2.32 6.62+1.047Vd′ 0.964 0.065‡ 36.6 2.38
AP  . CC2 −1.37 + 0.900Vd

� 0.961 0.058‡ 51.5 2.46 −1.04 + 0.918Vd′ 0.965 0.056‡ 50.1 2.35
AP3 11.36+1.090Vd� 0.948 0.082‡ 30.8 2.83 12.30+1.114Vd� 0.941 0.090‡ 29.3 3.01
LL3 −7.34+ 0.708V � 0.941 0.057‡ 73.9 3.00 −6.90+ 0.740V � 0.956 0.051‡ 70.1 2.61
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CC3 −6.18+ 0.673Vd � 0.887 0.078‡ 75.9 

y close neighhbours would miss the center of the sphere and
herefore the approximate center of the prostate. These extreme
ases contribute to the observed variability in volume estimates.

There are three formulae for calculating volumes based on dif-
erent ellipsoidal approximations, requiring up to three diameters
the �/6 term will be omitted when referring to a specific formula
o simplify the notations):

spherical �/6 × d3
1,

spheroidal �/6 × d2
1 × d2 which falls into either the egg-shaped

prolate (d1 < d2) or disk-shaped oblate (d1 > d2) categories,
ellipsoidal �/6 × d1 × d2 × d3.

ach one of the three diameters d1, d2 and d3 can successively be
P, CC and LL leading to ten possibilities (see Table 1).

The LL, AP and CC diameters in the transverse and sagittal planes
hould all intersect at their middle point and be perpendicular to
ach other, which means that the sagittal plane needs to be per-
endicular to the transverse one while containg the AP diameter.
trict perpendicularity between planes, not diameters, is main-
ained during the qMC  simulation to prevent the overestimation of
he CC diameter. That is due to the latent inclination of the sagittal
lane which artificially increases the CC diameter when manually
easured [8].

.2. Simulation algorithm

One potential approach could have been the exhaustive enu-

eration of perfectly orthogonal cutting diameters across the 3D

olume. However, in a practical situation, the positions and angles
f the diameters and planes are estimated visually and therefore
f limited precision. Rahmouni et al. [21] and Kim and Kim [12]
d

 −5.83+ 0.686Vd � 0.894 0.077‡ 74.0 3.98

have reported that the choice of the transducer orientation relative
to the prostate is operator dependent. The transverse slice is
determined first since it is less error prone when delimited by the
human eye [17,11]. As a consequence, some flexibility has been
introduced in the automated procedure: for instance the longest
diameter is drawn at the expense of true orthogonality. We  set
the tolerances on perpendicular angles between diameters to 5◦

and on middle point localisations to a 5% precision of the lengths
of respective diameters. The purpose is to compensate for both
the visual imprecision of the operator and the potential shape
deformation of the prostate due to the probe.

The steps implemented to achieve the qMC  simulation are
summarised in the following algorithm:

Algorithm 2.1.
1: define points of a sphere such that each point is equidistant to its

nearest neighbours
2: repeat
3: choose a triplet of points from this uniform distribution to define

a  transverse plane
4: compute the 2D transverse slice
5: search the longest AP diameter within the 22.5◦ tolerance angle

of the real AP axis
6: search the longest LL diameter which is orthogonal to the AP

diameter within the 5◦ tolerance angle and intersects at their
middle points within the 5% tolerance distance

7:  compute the 2D sagittal slice which is perpendicular to the
transverse one and contains the AP segment

8:  search the longest CC diameter which is orthogonal to the AP
diameter within the 5◦ tolerance angle and intersects at their
middle points within the 5% tolerance distance
9:  until all triplets of points have been exhausted

A distribution of n = 50 points on the sphere was  chosen, describing
C50

3 = 19,  600 distinct planes, out of which m = 4808 are properly
oriented. Each accepted pair of planes provides estimates of the LL,
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for the same three volume estimation formulae. The grey bands
indicate the 95% confidence limits around the limits of agreement
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Fig. 4. Averages of the top 5% estimates for the t

C and AP diameters from which ten estimated volumes are com-
uted: one with each of the formulae and every combination of
arameters. These are the estimates to be compared with the true
olume obtained from the manual segmentation of the MR  images.
n NPUS imaging an operator would normally seek to maximise the
iameters. Kim and Kim [12] have shown that experienced oper-
tors produce larger estimates than beginner and trained ones. So
ll the main statistics in Section 3 are derived from the top 5% (240
argest) volume estimates to reflect how a user would be likely to
ecide on the maximum measured prostate size.

The figure of 5% is selected to provide sufficient statistics to
onstruct a linear model, constrained to produce the largest esti-
ates. The threshold is rather arbitrary and we  include figures in

able 1 representing models calculated using the largest 10% for
omparison.

.3. Error prediction for the linear models

Each formula for calculating the volume from measured diam-
ters corresponding to each pair of planes provides average and
ariance values for the volume of each of the 22 images. This forms a
raining set that is used to define a linear model of the form y = a + bx.
he predictor, x, corresponds to one of the spherical, spheroidal or
llipsoidal estimates and the outcome, y, is the true MR  volume [5].

Leave-one-out cross-validation analyses were completed in
rder to quantify the sensitivity of these linear models [20]. For
very formula, 22 distinct training sets are created including 21
verages, by leaving one average out from the original set and a
ew linear regression calculated for each of them.

.4. Assessing the agreement of the estimates with the MR
olumes

Bland and Altman [4] described a statistical procedure that here
an be used to evaluate the relative concordance between assumed
round truth from MR  and simulated NPUS imaging as a function
f prostate size. The BA plot shows how the difference between
easurements of the same quantity is related to the mean of the
easurement. If the differences follow a normal distribution with

verage ave and standard deviation SD then 95% of their values
hould be within the limits ave ± 1.96 × SD,  also called limits of
greement (LoA).

. Results
Fig. 4 indicates that application of different ellipsoidal approx-
mations from the top 5% estimates tend to systematically overes-
imate or underestimate the true prostate volume. This error can
e corrected by training a regression model that allows measured
mulae and each prostate, sorted by MR  volume.

values to predict the true volume. Here we use a linear model of
the form y = a + bx for simplicity. A slope lower or higher than 1
will correct for overestimates and underestimates respectively
[27,11].

Table 1 shows the linear models derived from the training data
corresponding to each of the ellipsoidal calculations along with
their correlation coefficients R, standard error of the slope (SEb),
mean value of the estimated volume and 95% confidence interval
around the mean.

The statistical significance of the linear regression parameters
can be estimated by the probability (Q) of the chi-square distri-
bution [19]. Values of Q greater than 0.1 represent believable fits.
The linear model is adequate to extrapolate the true volume of the
prostate, especially when the AP . CC . LL, AP . LL2, CC . LL2 or LL . CC2

formula is used.
The size of the 95% confidence interval (CI) of the average as

a proportion of the average itself is about 3% for the first four
ranked estimates. The arbitrary top 5% criterion reflects the experi-
ence of the operator searching for the maximum diameters. A less
experienced operator is more likely to miss these maxima; this is
quantified by the extension to 10%, that is to say the addition of
5% lower volumes to the previous calculations. Using the top 10%
clearly results in slightly lower volume estimates (around 2 cm3),
however the model parameters and standard errors are not affected
greatly by the acceptance threshold.

Fig. 5 shows the variation in the correlation coefficient that
arises when predicting the true (MR) volume for each of the train-
ing set using a model constructed in a leave-one-out manner from
the remaining data. Values for the three-diameter ellipsoidal cal-
culation and the two estimates using only two diameters with the
highest correlation are shown. Fig. 6 shows the Bland–Altman plots
Left-out prostate (#)

Fig. 5. Leave-one-out correlation coefficient R from the linear regressions on the
top  5% estimates. The horizontal dotted lines display the corresponding values of
the  complete training set shown in Table 1.
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ig. 6. BA plots for the three direct formulae. Estimates are obtained from the top
% largest volumes and scales are preserved across the plots to facilitate the visual
omparisons.

The means � and standard deviations � of three of the formulae
nd their respective diameters are listed in Table 2 along with the
easured ground-truth volume (MR).
Table 2 also shows the distribution of the 4808 simulated ellip-

oidal volumes for each prostate as a histogram. The vertical bar
n the histogram marks the reference volume, that is to say the 0%
eviation from the MR  volume.

. Discussion
A good linear model depends on the reproducibility of the devi-
tion, rather than its amplitude. For instance, in Table 2, the CC . LL2

irect estimate systematically overestimates the MR  by 39% on
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ig. 7. Linear regressions on the averages of the top 5% volumes for three formulae (ellips
R  reference value, an underestimate on the left side. The CI are delimited by the grey ba
aging and Graphics 37 (2013) 628– 635

average; however its derived linear model is acceptable as an esti-
mate according to the goodness-of-fit parameters R and SEb in
Table 1.

[4] explain why correlation coefficients can be misleading to
quantify the quality of the agreement between two  measure-
ments and suggest more appropriate calculations to perform better
assessments. They complement the standard linear regression plot
presented in Fig. 7 by the examination of the estimate errors, i.e.
the differences between the real and approximated values (Fig. 6).
The CI of the LoA are delimited by the gray bands whose widths are
both equal to 1.96 × CI(± LoA).

The CC . LL2 formula exhibits wide gray bands delimiting the 95%
LoA confidence intervals. Those are inadequate for an approxima-
tion method even if the correlation coefficient R for the CC . LL2

model is appealingly high in Table 1. Conversely, the spheroidal
AP . LL2 estimate is satisfactory according to both its correlation
coefficient and its BA plot notwithstanding the fact that its perfor-
mance is undermined by the extreme outlier #17 (see also Fig. 5).
The high correlation of the AP . LL2 model approximation indicates
that most of the prostates in the sample can be reasonably approxi-
mated as oblate spheroids with circular cross-section in the coronal
plane (the LL and CC diameters are often of similar length in Table 2).
Examination of the shape of prostate #17 indicates that its shape
approximates a prolate spheroid with a circular cross-section in the
transverse plane. Fig. 5 reveals that the correlation coefficient of
the AP . LL2 spheroidal model is better than those of the ellipsoidal
model when this prostate does not contribute to the model. The
correlation coefficient is slightly higher than the ellipsoidal model
in that case.

Fig. 4 demonstrates that the direct ellipsoidal calculation is con-
sistently close to the truth when restricted to the top 5% estimates.
Nevertheless there are significant variations as indicated by the
horizontal range of all the histograms displayed in Table 2: esti-
mates can vary from −50% to +20% which is in agreement with
the observation of a high variability in reproducibility studies by
[3]. The histograms also reveal that the majority of the qMC  ellip-
soidal volumes underestimate the true value. Because the prostate
is not a perfectly ellipsoidal object [21], the probability of coming
across an orientation which captures the three largest diameters in
a given pair of orthogonal planes at the same time is quite low. This
explains why  underestimation is expected and justifies the use of
the largest volumes only in the analysis [16,10,22].

The volume based on the ellipsoidal choice benefits from nar-
rower confidence intervals, but requires the acquisition of both the
transverse and sagittal planes. The AP . LL2 linear regression appears

to be of good accuracy but is obtained from the transverse plane
only; [10], [25] and [28] raised the same practical consideration
in terms of clinical feasibility. As determined by Fig. 4, the spher-
ical formula provides a lower limit on the volume estimate if the
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oidal and two  spheroidal models). An overestimate is found on the right side of the
nds centered around their line equation.
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Table 2
Means (�) and standard deviations (�) for the volume estimates for three of the formulae: ellipsoid (AP . CC . LL) and spheroids (AP . LL2 and CC . LL2) together with the values of
the  diameters giving rise to these volumes for each image of the 22 subjects. These are derived from the 5% highest volumes obtained in the qMC  simulation. The histograms
show  the distribution of all the ellipsoidal volumes (grey) as a percentage deviation from the MR volume (indicated by the vertical dotted line), while the bins shown in red
represent the 5% largest estimates used to derive the statistics shown. The average deviation of each estimate from the true volume is denoted �.  Overall estimates of � and
�  appear at the foot of the table.

# MR AP CC LL AP.CC.LL � AP LL AP . LL2 � CC LL CC . LL2 �

1 � 21.7 2.4 4.1 3.9 19.8 −8.9% 2.4 4.3 22.4 +3.6% 3.7 4.2 33.5 +54.4%

�  0.1 0.2 0.2 0.6 2.8% 0.0 0.1 0.5 2.3% 0.3 0.1 1.0 4.6%

2  � 23.0 2.7 3.9 4.2 22.9 −0.2% 2.7 4.2 24.7 +7.6% 3.9 4.2 35.8 +56.0%

�  0.1 0.1 0.1 0.4 1.7% 0.1 0.1 0.8 3.3% 0.1 0.1 1.1 4.8%

3  � 24.5 2.8 4.0 3.9 22.8 −6.8% 2.8 4.3 27.0 +10.2% 3.6 4.3 34.3 +40.2%

�  0.1 0.3 0.3 0.3 1.3% 0.1 0.1 1.4 5.5% 0.2 0.1 1.1 4.4%

4  � 30.1 3.2 4.6 3.9 30.0 −0.4% 3.1 4.7 35.4 +17.3% 3.7 4.7 43.0 +42.7%

�  0.1 0.4 0.4 0.5 1.6% 0.1 0.1 1.9 6.4% 0.1 0.1 2.2 7.3%

5  � 31.1 3.3 4.4 3.9 28.7 −7.7% 3.1 4.8 37.1 +19.2% 3.6 4.9 44.5 +43.0%

�  0.1 0.6 0.6 0.8 2.5% 0.2 0.2 2.9 9.5% 0.1 0.2 2.4 7.7%

6  � 33.1 3.4 4.3 4.3 33.2 +0.4% 3.3 4.6 36.6 +10.8% 4.2 4.6 46.5 +40.6%

�  0.1 0.2 0.3 0.4 1.3% 0.1 0.1 0.9 2.7% 0.1 0.1 1.5 4.6%

7  � 34.1 3.8 4.4 4.2 35.8 +5.0% 3.7 4.6 40.0 +17.3% 4.0 4.5 42.0 +23.0%

�  0.1 0.2 0.2 0.4 1.1% 0.2 0.1 1.5 4.3% 0.3 0.2 1.3 3.7%

8  � 34.3 3.5 5.0 4.1 37.5 +9.3 % 3.2 4.9 40.2 +17.0 % 4.2 4.8 49.8 +45.0 %

�  0.2 0.3 0.3 1.3 3.7% 0.2 0.2 3.2 9.4% 0.5 0.4 4.0 11.7%

9  � 34.4 3.6 4.5 3.8 31.3 −8.9% 3.2 4.8 39.1 +13.7% 3.6 4.9 44.6 +29.7%

�  0.2 0.5 0.5 1.3 3.7% 0.2 0.2 2.0 5.9% 0.1 0.1 1.6 4.6%

10  � 36.3 3.2 4.7 4.5 35.2 −2.9% 3.0 4.8 36.7 +1.1 % 4.5 4.9 56.1 +54.8 %

�  0.1 0.2 0.2 0.7 2.0% 0.2 0.1 1.4 3.8% 0.1 0.1 1.5 4.2%

11  � 37.9 3.1 4.6 4.4 31.8 −16.2 % 2.9 5.1 38.9 +2.7 % 4.0 5.0 53.3 +40.7 %

�  0.2 0.5 0.4 1.1 2.8% 0.2 0.2 1.7 4.5% 0.2 0.2 2.1 5.6%

12  � 39.9 3.7 4.3 4.9 40.4 +1.2% 3.7 4.9 47.1 +18.0% 4.3 4.9 54.3 +35.9%

�  0.1 0.1 0.1 0.5 1.4% 0.1 0.1 1.5 3.8% 0.1 0.1 0.7 1.8%

13  � 42.6 3.4 5.0 4.8 41.9 −1.6% 3.2 5.3 47.3 +11.2 % 4.7 5.3 67.9 +59.6 %

�  0.1 0.3 0.3 0.9 2.1% 0.2 0.1 2.2 5.1% 0.2 0.1 1.3 3.2%

14  � 46.5 3.7 5.3 4.2 43.5 −6.4 % 3.3 5.6 53.5 +15.0 % 4.2 5.6 68.7 +47.7 %

�  0.2 0.4 0.3 1.1 2.4% 0.1 0.1 2.2 4.7% 0.1 0.1 2.3 5.0%

15  � 48.7 4.1 4.8 4.9 50.2 +3.0 % 4.1 5.0 54.4 +11.7 % 4.7 5.1 62.9 +29.1 %

�  0.1 0.2 0.2 0.5 1.0% 0.1 0.1 1.5 3.1% 0.1 0.1 1.5 3.1%

16  � 50.2 3.6 5.4 4.5 45.6 −9.2 % 3.4 5.7 58.2 +15.9 % 4.1 5.8 70.5 +40.4 %

�  0.2 0.7 0.6 1.8 3.6% 0.2 0.2 3.8 7.5% 0.1 0.1 3.0 6.0%
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Table 2 (Continued)

# MR  AP CC LL AP.CC.LL � AP LL AP . LL2 � CC LL CC . LL2 �

17 � 55.0 4.5 5.3 4.6 57.0 +3.7 % 4.4 5.7 74.8 +36.1 % 4.1 5.7 69.5 +26.4 %

�  0.1 0.7 0.7 0.9 1.6% 0.1 0.2 5.5 9.9% 0.1 0.2 4.7 8.5%

18  � 57.8 4.0 5.4 5.0 56.6 −2.1 % 3.7 5.5 59.6 +3.2 % 4.8 5.6 78.8 +36.3 %

�  0.2 0.4 0.3 2.8 4.9% 0.3 0.2 2.4 4.2% 0.2 0.2 3.2 5.6%

19  � 58.5 3.9 5.4 5.3 58.1 −0.7 % 3.8 5.5 61.0 +4.2 % 5.4 5.4 83.0 +41.8 %

�  0.1 0.1 0.2 0.9 1.5% 0.1 0.1 1.4 2.3% 0.2 0.1 1.5 2.6%

20  � 62.9 4.4 5.2 5.2 60.8 −3.4 % 4.4 5.4 66.4 +5.6 % 5.1 5.2 73.3 +16.5 %

�  0.2 0.2 0.1 1.8 2.9% 0.2 0.1 2.5 3.9% 0.3 0.2 2.3 3.7%

21  � 90.5 5.0 6.0 6.1 96.0 +6.0 % 5.0 6.2 101.9 +12.6 % 6.0 6.1 118.0 +30.4 %

�  0.1 0.1 0.1 1.3 1.5% 0.1 0.1 1.0 1.1% 0.1 0.0 0.7 0.8%

22  � 95.8 5.0 5.8 6.1 92.7 −3.2 % 5.0 6.2 101.1 +5.6 % 5.8 6.3 117.9 +23.1 %

�  0.2 0.2 0.2 1.5 1.6% 0.2 0.1 3.0 3.1% 0.2 0.1 2.5 2.7%

� 44.9 3.6 4.8 4.6 44.2 −2.3 % 3.5 5.1 50.2 +11.8 % 4.4 5.1 61.3 +39.0 %

� 0.1 0.3 0.3 1.0 2.2 % 0.1 0.1 2.0 4.8 % 0.2 0.1 2.0 4.8%

Table 3
Mapping between measured values of first three non-planimetric approximations of Table 1 and the estimates of true (MR) volume Ve using the regression models of Fig. 7.
The  left column provides some example values of the measured direct volume Vd . The remaining columns show the corresponding estimates Ve of the true (MR) volume
derived from each model, together with their CI.

Vd = AP . CC . LL Ve = 2.43 + 0.962Vd Vd = AP . LL2 Ve = 0.08 + 0.894Vd Vd = CC . LL2 Ve = −5.16 + 0.818Vd

Vd Ve ± CI(Ve)cm3 Ve ± CI(Ve)cm3 Ve ± CI(Ve)cm3

20 21.68 ± 1.81 17.97 ± 2.85 11.19 ± 3.39
30  31.31 ± 1.41 26.91 ± 2.26 19.37 ± 2.79
40  40.93 ± 1.17 35.86 ± 1.81 27.54 ± 2.25
50  50.56 ± 1.19 44.80 ± 1.63 35.72 ± 1.83
60  60.18 ± 1.46 53.75 ± 1.79 43.90 ± 1.65
70  69.81 ± 1.88 62.69 ± 2.24 52.07 ± 1.76
80  79.43 ± 2.37 71.64 ± 2.83 60.25 ± 2.12
90  89.06 ± 2.90 80.58 ± 3.49 68.43 ± 2.64

9.53 ±
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100  98.68 ± 3.44 8

P diameter is used and an upper limit if the LL diameter is used.
enerally speaking the AP diameter is the shortest and the LL diam-
ter is the longest, with the result that the AP . LL2 oblate spheroid
rovides a suitable estimate of volume.

The regression lines specified in Fig. 7 allow us to estimate
he true volume of the prostate given specific measurements of
he ellipsoidal (AP . CC . LL),  oblate (AP . LL2) and prolate (CC . LL2)
pproximations. Table 3 lists the estimated values Ve correspond-
ng to examples of each of these direct measurements Vd together

ith associated confidence limits.
For instance, a direct volume of 50 cm3 using the AP . LL2 approx-

mation will result in a 95% chance that the true volume is 44.8
m3.

Using this table as a guide, measured values of each of these
hree approximations can be translated into an estimated true vol-
me.

The results of the leave-one-out exercise in Fig. 5 shows how

ensitive the linear models are to large prostates. [16], [13] and [10]
lready noticed that correlation coefficients were different if small
r large prostates were categorised. The ellipsoidal model estimate
s clearly more stable across all the leave-one-out tests.
 4.20 76.61 ± 3.23

5. Conclusion

Using ground truth from manually segmented MR  images of
the prostates the precision of direct volume estimates given by
several approximation formulae was evaluated. This has been
achieved with simulations of NPUS measurements covering a range
of reasonable combinations of capture planes and estimates of the
prostate dimension in each of these.

Despite the relatively small number of subjects, our observa-
tions are consistent with previously published results, such as the
high variability of replicates [3], the sensitivity of the direct volume
estimations to large prostates [16,13,22] and the good accuracy and
practicality of the AP . LL2 estimates [10].

We have measured the parameters of a regression formula
that generates an estimate of prostate volume, using an ellipsoidal
approximation, that is more accurate than simply using the direct
ellipsoidal calculation. This estimate requires the measurement

of prostate diameters in two  orthogonal planes. Using a single
plane, a volume estimate of good accuracy can be also obtained
from the regression model for the spheroidal model based on
AP . LL2. The slope of this model is less than unity, indicating that
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n estimate based only on the direct spheroidal formula would
end to overestimate the volumes of large prostates.

We  have demonstrated the use of a simulation study for inter-
ogating sources of variability in estimating prostate volumes. This
ariability arises from factors such as image planes not intersecting
t the centre or not being accurately perpendicular, operator pro-
ciency in finding the largest diameters, oddly shaped prostates,
tc.. This has resulted in an understanding of the sources of vari-
bility, and hence has enabled us to identify the most appropriate
easurement strategy.
The approach could also be extended to optimise volume esti-

ation in other organs such as the liver by studying the 3D shape.
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Propagating Segmentation of a Single
Example to Similar Images: Differential
Segmentation of the Prostate in 3-D MRI

Emmanouil Moschidis and James Graham

Abstract In this chapter, we address the online and real-time segmentation

propagation from one example onto similar images. We consider segmentation as

a process consisting of two stages: the localization of the anatomy of interest and its

boundary delineation. For each stage, we identify and evaluate different potential

candidate methods. All methods are assessed regarding their ability to tackle the

differential segmentation of the prostate on a dataset of 22 three-dimensional

magnetic resonance images of individuals with benign prostatic hyperplasia

(BPH). The estimation of the volume of different anatomical zones of the prostate

is important for monitoring the progress of the disease. Differential segmentation of

the prostate is challenging due to contrast challenges at different locations from

surrounding tissues. Also, the high variation of appearance of the prostate across

individuals affects the repeatability of frameworks that leverage prior knowledge

from one image example. Our observation is that the repeatability is improved,

when a two-stage methodology is employed, based on DROP (deformable registra-

tion using discrete optimization) registration followed by graph cuts-based segmen-

tation. Our methodology achieves automatically results close to the ground truth,

which can serve as an advanced starting point of an interactive process with reduced

human operator workload.

Introduction

The main objective of this study is to offer assistance in the context of an interactive

framework for building models of three-dimensional (3-D) medical images. In such

a framework, a human operator obtains by interaction the surfaces of the anatomy
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of interest, which will be subsequently modeled. These surfaces are extracted from

images, which are similar to each other in the sense that they depict the same

anatomy of interest and they are acquired by the same imaging modality using the

same protocol.

While the extraction of the organ surfaces can be tackled interactively on each

image separately, this approach results in an inefficient pipeline with increased

workload. As segmentation advances, the number of processed images and there-

fore the knowledge about the anatomy of interest increases. If this insight is

exploited, there is the potential for the design of a framework, which can reduce

the amount of user intervention by predicting the segmentation of unseen images.

The accuracy of the prediction with respect to the ground truth is associated with

the reduction of the amount of intervention that is further required until the desired

segmentation is obtained; an accurate prediction requires fewer interactive

maneuvers than an inaccurate one. Consequently, the provision of an accurate

segmentation prediction reduces the operator’s workload.

In this chapter, we address the problem of minimizing the user interaction when

similar images are processed, given a single previously segmented image as an

example of the desired outcome. We tackle this by propagating the segmentation

example onto the subsequently processed images. This way the user is freed from

the entire process and may intervene only if necessary at a later refinement stage or

in case the framework fails to provide satisfactory outcomes. Our main assumption

is that the processed images do not exist as a dataset, but they rather appear one at a

time (online), as often happens in real life. Therefore, groupwise approaches are not

included in the evaluation. Also, since one single image cannot capture the varia-

tion of a population, we exclude model-based methods and we restrict our study to

data-driven ones. We illustrate the approach using the example of differential

segmentation of the prostate in fat-suppressed T2-weighted magnetic resonance

(MR) images. The prostate is anatomically divided into several zones, but in MR

images, two regions can be identified: the central gland and the peripheral zone.

Figure 1 shows a schematic diagram of the relationship between these regions and

examples of their appearance in MR images.

We consider segmentation as a process that consists of two distinct tasks: the

localization/recognition of the anatomy of interest and its boundary delineation, as

suggested in [2]. Consequently, we suggest a two-staged framework that handles

these two tasks separately. For each stage we identify and evaluate potential

candidate methods against ground truth. Our evaluation can be regarded as an

assessment of the extent of the effectiveness of data-driven methods towards the

solution of this particular problem.

The results of the experimental work presented in this chapter demonstrate that

the suggested framework can provide results close to the ground truth, without any

user interaction, serving as an advanced starting point of an interactive process with

a small number of further interactive maneuvers. Moreover, we observe that the

framework’s repeatability improves when the segmentation task is tackled in two

distinct stages. Parts of the work that is discussed in this chapter have also appeared

in [3–5].
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Background

Differential Segmentation of the Prostate

The prostate is a gland of the size and shape of a chestnut [6]. It exists only in men

and is located immediately below the urinary bladder, where it surrounds a part of

the urethra. Its function is the production of a slightly alkaline fluid (40 % of the

volume of the semen), which assists towards the neutralization of the acidity of the

vaginal tract, thus prolonging the sperm lifespan. In addition, it assists the motility

of the sperm cells [6]. Benign prostatic hyperplasia (BPH) is a noncancerous

enlargement of the prostate that affects 50 % of men over 60 years old [7].

Approximately a third of them will develop lower urinary tract symptoms, and a

quarter of them will need to be operated. For the remaining BPH patients, drug

treatment is increasingly utilized [7, 8].

The prostate is anatomically divided into the peripheral (PZ), central (CZ),

transitional (TZ), and fibromuscular (FZ) zones. In BPH, the prostatic enlargement

is mainly due to the volumetric increase in the TZ. Therefore, the estimation of the

TZ volume and the TZ ratio (TZ volume/total prostate volume) is important for

monitoring the progress of the disease and the effectiveness of drug treatments [8].

In MRI, two regions are identified: the PZ and the central gland (CG), which

includes the other three anatomical zones (Fig. 1). However, in BPH, the TZ is

the predominant zone in the CG, due to its expansion, and therefore TZ and CG can

be considered as equivalent [1]. Differential segmentation—identifying the

surfaces of both the CG and PZ—is challenging. The appearance of the central

and peripheral glands varies significantly among individuals (Fig. 1). Furthermore,

surrounding tissue (seminal vesicles, blood vessels, the urethra, and the bladder)

present contrast challenges at different locations.

Fig. 1 Two axial midsections of the prostate of fat-suppressed T2 MRI from different individuals

(the red and green contours delineate the peripheral zone and the central gland respectively) (a, b)
and a three-dimensional schematic depiction of the anatomical zones of the prostate (c) [1]

© 2006 IEEE
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While a number of studies recently have addressed segmentation of the prostate

in MR images [9–19], segmentation of separate zones has attracted rather less

attention [3, 20–24]. These studies fall into two categories: those that employ

algorithms trained on multiple image examples in an attempt to model in detail

the morphology and shape of the different zones of the prostate and those that tackle

the segmentation task interactively. Of the former group, Allen et al. [1] combine a

3-D point distribution model with a Gaussian mixture model, while others apply

trained classifiers, such as an evidential C-means classifier in [20] and a Random

Forest classifier used within a contextual Markov random field model in [21], or

trainable graph-based models [22]. Litjens et al. [18] report that a trained linear

discriminant classifier outperforms a multi-atlas approach. Interactive or semi-

interactive methods [3, 24] base the segmentation on graphical representations.

Given the difficulties in the segmentation task, we have taken the direction in this

study of seeking to reduce the workload of interactive methods by leveraging the

prior knowledge arising from a single previously segmented example.

Segmentation Propagation from One Image Example

As differential segmentation of the prostate is a challenging task, we assume that

expert interaction will be required and investigate methods for minimizing the

workload required to achieve a final segmentation. It can often be the case that

images are acquired in a sequential (online) manner, rather than being available in a

group. In this study we consider the use of a single example as a guide for further

segmentations, reducing the level of intervention in subsequent cases. Forward

propagation of the template segmentation results in an approximate segmentation

for new cases. If this approximate segmentation is accurate, the interactive work-

load required is correspondingly reduced.

One of the few studies of the literature, which addresses the same problem as we

formulate it in this chapter, is the study of Cootes and Taylor in [25]. They adopt a

shape representation based on finite element methods (FEMs) [26, 27] when prior

knowledge is based on a single image example, whereas they employ an active

shape model [28] strategy when multiple image examples are available. When only

a single example is available, the allowable shape variation is expressed in terms of

the vibrational modes of the FEM model. As further examples are added, this

artificial representation of variability is replaced by observed statistical variability.

A single image example is also employed by Rother et al. [29] in a method they

call cosegmentation. This denotes simultaneous segmentation of the common parts

of a pair of images. In order to tackle this task, they employ an algorithm, which

matches the appearance histograms of the common parts of the images. At the same

time, the imposition of MRF-based spatial constrains guarantees the spatial coher-

ence of the resulting segmented regions. Results are presented for applications such

as video tracking and interactive cosegmentation. Similar ideas have been reported

in [30–35]. Most of these methods aim at segmenting 2-D colored natural images.
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Photographs generally demonstrate good contrast between foreground and back-

ground and, due to the variation in color, simple statistics such as color histograms

can offer effective discrimination of segments (e.g., [29]). However, histogram-

based classification has little to offer in the context of segmentation of greyscale

medical images, especially in cases where foreground and background demonstrate

similar intensity variations or in case of images with complex appearance.

Active Graph Cuts (AGC) [36] leverages previous segmentations to achieve

convergence in a new image in a different way. AGC, when provided with an initial

cut, constructs two disjoint subgraphs from the original graph. The initial cut

defines the boundary of the two subgraphs. Subsequently, the max-flow/min-cut

problem is solved on each of these two subgraphs separately. The combined

solution from these subgraphs provides the overall segmentation outcome in the

image. We consider and evaluate AGC in our work. To the best of our knowledge, it

is the first time that this algorithm is implemented and evaluated independently with

respect to its performance on 3-D medical image segmentation tasks.

Atlas-based segmentation is one additional segmentation approach in which

often a single image example, termed the atlas, is employed as the prior knowledge

about the anatomy of interest [37]. An atlas constitutes a complete description of

the geometrical constraints and the neighborhood relationships of the anatomy of

interest and is often created by manual segmentation of one image. The segmenta-

tion of subsequent images is obtained via registration of the processed image and

the atlas. Registration constitutes a procedure, which establishes a point-to-point

correspondence between two images [38]. When deformable registration is

employed for achieving the dense correspondence of the two images, the atlas

is deformed and its labels are mapped onto the processed image, also termed

reference image or target image. This process is often referred to as warping,
fusion, or matching [38].

One issue associated with frameworks leveraging prior knowledge is the effect

of the latter on their performance. If the sample that encapsulates the prior knowl-

edge is representative of the processed population, good results are obtained.

However, in the case that it consists of one image, as in this study, the results

decline drastically if this image is an outlier with respect to the population. This in

turn reduces the framework’s repeatability. This is an issue which has attracted

considerable attention in the context of atlas-based segmentation [37]. Solutions

towards this problem typically involve the combination of multiple atlases into a

mean atlas or alternatively the selection of a single atlas that demonstrates a high

degree of similarity with the processed image from a group of atlases. A more

recent approach is the multi-atlas label fusion [37]. In the context of this strategy,

the segmentation suggestions from multiple atlases onto the target image are

utilized as individual classifiers, which are combined via a voting scheme. These

approaches improve the repeatability of atlas-based methods. However, they all

employ multiple atlases. In our study, we are restricted to utilize one single example

as prior knowledge. Therefore, the repeatability issue remains.
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In the work presented in this chapter, we follow an approach that is driven by

registration, similarly to atlas-based segmentation. However, in order to improve its

repeatability, we employ a two-staged strategy, as outlined above. Each of the

stages, localization/recognition of the anatomy of interest and delineation of its

boundary, is tackled separately. In the first stage, the localization task is tackled via

registration; in the second stage, a semi-automatic refinement of the segmentation

boundary is realized via graph cuts [39, 40]. We show that adopting this strategy

improves the repeatability of the framework (in comparison to the single-stage

processing approach) and the sensitivity to unhelpful templates is reduced. While

we address this in the context of interactive segmentation, a similar conclusion

applies in “automatic” atlas-based segmentation, especially on occasions where a

single atlas is employed. In addition, for each stage of our approach we identify and

evaluate potential candidate methods against ground truth. Therefore, our study can

also serve as a comparative performance evaluation of registration and segmenta-

tion strategies. In the next sections, we will discuss further the different components

of the suggested framework.

Methods

Figure 2 summarizes our segmentation strategy, its constituent stages, and the

operations performed in each of these stages, illustrated here in two-dimensions

for the sake of clarity. The segmented example consists of the raw image and a

binary mask.

The registration (warping) stage is followed by boundary delineation using

graph cuts. As we shall discuss further in the following sections, we employ

graph cuts to operate on a zone, which is created via successive erosions and

dilations of the warped binary mask produced by the framework’s first stage. This

operation aims at the refinement of the boundary of the anatomy of interest, in cases

where registration has failed to provide an accurate segmentation boundary.

Dataset

We use a dataset consisting of 22 3-D T2 fat-suppressed MR images of the prostate

from individuals with BPH. T2 fat-suppressed MRI provides good contrast not only

between the prostate and its surrounding tissue but also between the prostatic

anatomical zones. The images were acquired using a 1.5 T Philips Gyroscan ACS

MR scanner. After their acquisition, all images were manually cropped close to the

prostate (Fig. 3). The ground truth for each image is a binary volumetric mask

produced after averaging the manual delineation of two radiologists on the cropped

images. Prior to the experiments, the intensities of all images were normalized to lie

in the bounded interval [0, 255]. Lastly, all images were resampled to allow for an

iso-voxel resolution and volumes of equal sizes to be created.
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Localization of the Anatomy of Interest

The framework’s first stage addresses the localization of the anatomy of interest.

We evaluate four different registration methods and AGC. In the following

paragraphs, we provide the necessary background information with respect to

these techniques.

a. Registration

Registration is a process that establishes a point-to-point correspondence between two

images. The images are considered to be identical, but one of them is treated as being

corrupted by spatial distortions; therefore, they cannot be aligned in their current

form. The two images are known as target and floating image. The terms reference or
fixed and template ormoving image respectively are also encountered in the literature

[38, 41]. The aim of registration is to compute the exact geometrical transformation

Fig. 2 Overview of the suggested framework

Fig. 3 An axial midsection of a T2 fat-suppressed image of the prostate (a), and the raw responses

of a Canny (b), a Phase Congruency (c), and a SUSAN (d) feature detector. The settings of the

parameters of each detector are outlined in the experiments section of this chapter
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that the floating image needs to suffer, in order to match the target image. For a

more comprehensive review of registration and its constituent components as a

framework, readers can refer to the relevant literature (e.g., [38, 41, 42]).

In the context of our framework, the example image plays the role of the

template image (Fig. 2). The registration scheme computes the spatial transforma-

tion, which best aligns this image to the image to be segmented, denoted as New

Image in Fig. 2. Subsequently, the spatial transformation is applied to the template

image’s binary mask. The deformed (warped) binary mask constitutes the segmen-

tation suggestion of the framework’s first stage. It also represents the prior knowl-

edge with respect to the segmentation outcome, in the new image’s coordinate

system.

The registration methods that we assess are the B-Spline-based registration

method of Rueckert et al. which employs nonrigid free-form deformations [43];

Thirion’s demons registration method [44]; the deformable registration method of

Glocker et al. [45], which employs MRFs and discrete optimization [46]; and the

groupwise registration method of Cootes et al. [47], utilized here in a pair-wise

fashion. The implementations of Kroon and Slump [48] were used for the first

two registration methods, whereas the authors’ implementations were provided

for the latter two methods. In the next paragraphs, we highlight briefly the main

components of these registration methods.

The B-Spline method of Rueckert et al. [43] employs a hierarchical transforma-

tion model, which combines global and local motion of the anatomy of interest.

Global motion is described by an affine transformation, whereas local motion is

described by a free-form deformation, which is based on cubic B-Splines. The

overall transformation is performed within a multi-resolution setting, which

reduces the likelihood of occurrence of a deformation field with invalid topology

due to folding of the control points (grid points). The similarity metric employed in

this method is normalized mutual information, and the optimization component is

based on a gradient descent approach [49].

The underlying concept of the original demons method [44] is that every voxel

of the template image is displaced by a local force, which is applied by a demon.

The demons of all voxels specify a deformation field, which describes fluidlike

free-form deformations; when this field is applied to the template image, the latter

deforms so that it matches the reference image. The algorithm operates in an

iterative multi-resolution fashion for increased robustness and faster convergence.

The original demons algorithm, as presented in [44], is data driven and demon-

strates analogies with diffusion models and optical flow equations. Since its original

conception, several variants have emerged in the literature [50]. In our study, we

use and evaluate the implementation of Kroon and Slump [48], which employs a

variant suggested by Vercauteren et al. in [51]. In this variant, the authors follow an

optimization approach to demons image registration; more specifically, they

employ a gradient descent minimization scheme and operate over a given space

of diffeomorphic spatial transformations. Diffeomorphic transformations can be

inverted, which is often desirable in image registration. Lastly, Kroon and Slump
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employ the joint histogram peaks as the similarity metric of their implementation,

which allows for the computation of local image statistics [48].

The registration method of Glocker et al. [45], denoted as DROP (deformable

image registration using discrete optimization), follows a discrete approach to

deformable image registration. Similarly to the method of Ruckert et al., local

motion of the anatomy of interest is modeled by cubic B-Splines. The difference,

however, is that image registration is reformulated as a discrete multi-labeling

problem and modeled via discrete MRFs. In addition, their optimization scheme

is based on a primal-dual algorithm, which circumvents the computation of the

derivatives of the objective function [46, 52]. This is due to its discrete nature.

In their approach, they also follow a multi-resolution strategy, which is based on a

Gaussian pyramid with several levels. Moreover, diffeomorphic transformations

are guaranteed through the restriction of the maximum displacement of the

control points. The authors’ implementation, which is available online [53],

features a range of well-known similarity metrics. In this study, the sum of absolute

differences was employed.

The registration method of Cootes et al. [47], denoted as GWR, belongs to the

groupwise approaches to image registration. Groupwise registration methods aim to

establish dense correspondence among a set of images [47], as opposed to pair-wise

approaches. In the context of groupwise registration, every image in the set is

registered to the mean image, which evolves as the overall process advances.

Groupwise registration is often employed in the context of automatic building of

shape and appearance models from a group of images, given few annotated

examples (e.g., [54]). Conversely, models of shape and appearance can assist

registration, when integrated in the process, by imposing certain topological

constraints in the spatial deformations. As a result of this integration, Cootes

et al. follow a model-fitting approach in their registration method; for each image

that is registered to the reference (mean) image, the parameters of the mean texture

model are estimated, so that the texture model fits the target image. The overall aim

in the process is to minimize the residual errors of the mean texture model with

respect to the images of the set. This is achieved via an information theoretic

framework, which is based on the minimization of description length (MDL)

principle, described in [55]. Piecewise affine transformations are employed for

the spatial transformations, which guarantee invertibility of the deformation field.

A simple elastic shape model is employed to impose shape constraints to the

transformation. Similarly to the previous methods, the registration technique of

Cootes et al. follows a multi-resolution approach [47]. In our work, we utilize this

method in a pair-wise fashion. We achieve this by employing the reference image to

play the role of the mean image. Consequently, the texture and shape model are

derived from this single image.

b. Active Graph Cuts

AGC [36] exploits an approximate segmentation as initialization, in order to

compute the optimal final segmentation outcome via max-flow/min-cut algorithms.

The authors pose no restriction on the nature of images that this algorithm may
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process and they claim that convergence is achieved even when the approximate

segmentation is very different from the desired one. In the context of our study, this

approximate solution is provided by the surface of the segmented example image.

While it does not perform registration, AGC does provide a method of propagating

an initial segmentation and is a likely candidate method for the first stage of our

framework. For the needs of our experimental work, we realized our own imple-

mentation of the method in MATLAB®. To the best of our knowledge, this is the

first independent implementation and evaluation of this technique in the context of

3-D medical image segmentation. In the following paragraphs, we provide further

details about the method.

AGC is a graph-based method; therefore, in the context of this technique, an

image is represented as a graph. Its initialization, termed “initial cut”, is a set of

contiguous graph edges, which separates the overall graph into two subgraphs that

form two independent flow networks. The vertices adjacent to the initial cut are

connected to the source graph terminal. Their t-link weight is equal to the capacity

of the adjacent graph edge, which is part of the initial cut. In order to solve the

max-flow/min-cut problem, different algorithms may be employed. In [36],

the authors suggest a preflow-push [56] approach to tackle this problem on the

subgraphs. Preflow-push strategies operate locally and thus flood the network

gradually. This in turn generates intermediate cuts as the algorithm progresses.

However, in our work, we are rather interested in the final min-cut instead of the

intermediate cuts. Therefore, we employ an implementation of a max-flow/min-cut

algorithm [57], which follows the augmenting paths approach as described in

[58]. The final segmentation outcome is provided by the aggregation of the

solutions of the max-flow/min-cut problem on the two subgraphs.

The authors provide no instruction about the positioning of the sink graph

terminal on the two subgraphs in [36]. In our work, we observed that different

choices may significantly affect the segmentation outcome. For the sake of consis-

tency, with respect to this problem, in all our experiments, the voxels at the image

borders were connected to the sink graph terminal of the subgraph that lies outside

the initial cut, whereas for the subgraph that is contained by the initial cut, the

voxels at a fixed distance, using a distance transform, from the centroid of the initial

cut were connected to the sink.

Delineation of the Anatomical Boundary

In the previous sections, we highlighted the candidate methods for the first stage

of our framework: localization of the anatomy of interest in the “New Image” of

Fig. 2. The second stage of our framework aims for the delineation of an accurate

boundary of the anatomy of interest, given the output of the first stage as

initialization.

In a previous study [57], we demonstrated that graph cuts segmentation [39, 40]

offers significant advantages over several other methods in the context of
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interactive segmentation. In the work presented in this chapter, we employ graph

cuts in a semi-automated fashion to refine the boundary of the anatomy of interest.

As shown in Fig. 2, graph cuts (GC) operates in a zone that surrounds the initial

boundary defined by successive erosions and dilations of the initial binary segmen-

tation. Erosion and dilation are morphological operations, which result into con-

traction and expansion of a binary object respectively [59]. The width of the zone is

controlled via a user-defined parameter and depends on the number of erosions and

dilations performed on the segmented image example. This is the only interaction

that takes place during delineation of the anatomy of interest.

For this stage of our framework, we employ GC with a modified objective

function and assess its performance as a means of accurate boundary delineation

against the original GC. More specifically, we modify the objective function’s

boundary term, in order to enable GC to couple with feature detectors. The concept

of employing feature detectors to enhance the boundary localization ability of GC is

recent. A similar approach to our work [4–6] is followed by Krčah et al. [60], who

employ the Hessian matrix as means of increasing the contrast at the boundaries of

bones in three-dimensional CT scans. However, the GC boundary term that they

employ is not the same as the one that we suggest. In our work, we couple GC with

three well-known edge detectors, namely, Canny [61], phase congruency [62],

and SUSAN [63]. The three GC variants are denoted as GC + C, GC + PC, and

GC + S, respectively. Subsequently, we evaluate the performance of these variants

with respect to their ability to provide accurate delineation of the anatomy of

interest, as part of our framework’s second stage. In the following paragraphs, we

provide further details about our modified boundary term and the boundary

detectors that we apply.

a. Coupling Graph Cuts with Feature Detectors

In interactive GC segmentation [39, 40], an image is represented as a graph. The

user selects voxels that belong to the interior and the exterior of the object of

interest, referred to as foreground and background seeds, respectively. The optimal

foreground/background boundary is then obtained via global minimization of a cost

function with min-cut/max-flow algorithms (e.g., [58]). Such a function is usually

formulated as

E Að Þ ¼ λ � R Að Þ þ B Að Þ (1)

where

R Að Þ ¼
X
p∈P

Rp Ap

� �
(2)

B Að Þ ¼
X
p;qf g∈N

B p;qf g � δ Ap;Aq

� �
(3)

and
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δ Ap;Aq

� �
¼ 1, if Ap 6¼ Aq

0, otherwise

�
(4)

R(A) and B(A) are the regional and boundary term of the energy function, respec-

tively. The coefficient λ weighs the relative importance between the two terms.

N contains all the unordered pairs of neighboring voxels and A is a binary vector,

whose components Ap, Aq assign labels to pixels p and q in P, respectively, on a

given 2-D or 3-D grid.

The regional term assesses how well the intensity of a pixel p fits a known model

of the foreground or the background. These models are either known a priori or

estimated by the user input, when this is sufficient. Otherwise, the regional term is

weighted low relative to the boundary term or in practice λ ¼ 0. This approach

is followed in [39] as well as in this study. The boundary term encompasses the

boundary properties of the configuration A, represented in the weighted graph. Each
edge in this graph is usually assigned a high weight if the pixel intensity difference

of its adjacent nodes is low and vice versa. The exact value of these weights is

calculated with the following Gaussian function [40]:

B p;qf g ¼ K � 1

dist p; qð Þ � exp
� Ip � Iq
� �2
2σ2

(5)

where Ip and Iq are the intensities of two pixels p and q and dist( p,q) the Euclidean
distance between them. dist( p,q) is set to 1 in case of equally spaced grids

(iso-voxel volumes) when only the immediate neighbors are taken into account.

Setting K to 1 leads to a Gaussian function with its peak equal to 1, which is useful

for the normalization of the graph weights. σ therefore is the only free parameter,

which controls the full width at half maximum of the Gaussian function.

In (5), the effect of the Ip � Iq
�� �� term is to position the min-cut at locations where

neighboring voxels demonstrate high-intensity difference, which corresponds to

peaks and valleys in the gradient image. This works well for images that demonstrate

boundaries with good contrast between foreground and background. However,

medical images are often noisy and often demonstrate weak contrast or textured

boundaries which are further compromised by partial volume effects. In such chal-

lenging boundary conditions, the previous approach can face difficulties in

localizing the boundary accurately. To address this problem, we suggest a modifica-

tion in GC’s boundary term, which allows the method to couple with feature

detectors. The modified boundary term is described below.

Feature detectors typically produce a response (voxels with high grey-level

intensity values) at image locations where, based on local image evidences, the

likelihood for the presence of a salient feature is high. In order to allow GC to

couple with feature detectors, we modify its weighting function as follows. As we

wish the min-cut to occur at maxima (ridges) in the feature output, we replace the

Ip � Iq
�� �� term in this function with (Rp + Rq)/2, where Rp and Rq is the response of
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the feature detector on pixel p and q, respectively. Consequently, we have the

modified boundary term:

B p;qf g ¼ exp� ε � Rp þ Rq

� �2� �
(6)

where ε ¼ 1/8σ2. Similarly to σ in (5), ε controls the full width at half maximum of

the peak of the Gaussian function. Within the following sections, we briefly

describe the three well-known feature detectors that we use: Canny [61], phase

congruency [62], and SUSAN [63]. Figure 3 also depicts the raw response of these

feature detectors on an example T2 fat-suppressed image of the prostate.

b. Canny Edge Detector

The Canny edge detector was derived to be an “optimal” edge detector. Its

implementation is straightforward in two and three dimensions due to the separa-

bility of the Gaussian filter, which is its main computational element [61]. The

parameters of the Canny edge detector implementation are the size of the Gaussian

filter and its standard deviation. Due to the fact that Canny is a gradient-based edge

detector, the strength of its response at a certain image location depends on the

magnitude of the gradient at this location.

c. Feature Detection from Phase Congruency

In [62], Kovesi employs the Fourier domain of an image to identify image

features. His work is based on the local energy model, introduced by Morrone

et al. [64] and Morrone and Owens [65], which suggests that humans perceive

features at image locations that demonstrate maximal phase congruency in their

Fourier components. Phase congruency can be calculated using log Gabor

wavelets. A Gabor wavelet is a filter, which is constructed via the modulation of

a Gaussian kernel function by a sinusoidal plane wave [66]. The computation of

phase congruency is complex as it involves the use of multiple filters at different

scales (wavelengths) and orientations. In addition, phase congruency is suscepti-

ble to noise. Therefore, a noise reduction strategy is routinely followed prior to its

computation [62]. Also, due to the fact that image features are identified in the

frequency domain, the strength of the phase congruency response, as a feature

detector, does not depend on the gradient of the image. This is a major qualitative

difference between feature detection based on phase congruency and gradient-

based schemes, such as Canny detection. We computed phase congruency

employing the code available from [67].

d. The SUSAN Feature Detector

SUSAN is an acronym, which stands for smallest univalue segment assimilating

nucleus [63]. The SUSAN edge detection scheme employs a circular mask (sphere

in 3-D), which is moved over the processed image. The advantage of circular masks

is that they provide isotropic responses. The typical radius of the SUSAN mask is
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3.4 voxels, which corresponds to a mask that covers an area of 37 pixels in 2-D and

179 voxels in 3-D. During edge detection, the nucleus of the mask is placed at each

voxel of the image. Then, the brightness of each voxel within the mask is compared

with the brightness of the nucleus. Those voxels that demonstrate similar brightness

to the nucleus (within a user-specified tolerance) belong to the USAN area. The size

of the USAN area plays an important role in this feature detection scheme. The

USAN area reaches its maximum size when the mask is over image areas that

demonstrate relatively uniform voxel intensity, whereas its size gets smaller when

the mask approaches an edge or a corner. The SUSAN detector is devised to provide

responses, when the USAN area is smaller than a predefined threshold and no

response otherwise [63]. The SUSAN edge detection scheme does not need any

noise reduction, it does not involve the computation of image derivatives, and it is

computationally efficient. In our work, we implemented the SUSAN edge detector

in MATLAB®.

Evaluation Framework

We assess the performance of our methodology with a score of classification

accuracy (CA), the Tanimoto coefficient (Tc), and the maximum point to surface

distance between the segmentation and the ground truth surface (MaxDist).

In order to calculate the CA metric, all the voxels are classified into true- and

false-positives (TP, FP) and true- and false-negatives (TN, FN). The CA score is

then defined as

CA %ð Þ ¼ 100� TPj j þ TNj j
TPj j þ TNj j þ FPj j þ FNj j % (7)

The Tc score is computed as

Tc %ð Þ ¼ 100� TPj j
TPj j þ FPj j þ FNj j% (8)

Finally, the MaxDist score is calculated via a 3-D distance transform. The

distance is given in voxels, but since we use images with isotropic voxels, the results

can be report in millimeters as well.

In the case of CA and Tc scores, accurate segmentation outcomes are

represented by large values, whereas in case of the MaxDist score, accurate

segmentation outcomes are represented by small values.
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Experiments and Results

Localization of the Anatomy of Interest

This section concerns the performance evaluation of the four deformable registra-

tion methods discussed in the previous sections and AGC. These methods are

employed to provide the localization of the anatomy of interest in a new unseen

image, given a single image as an example with respect to the desired segmentation

outcome. During the experiments, each image in every dataset was selected once as

a template image and its ground truth surface was propagated to the remaining

images of the same dataset with each of the assessed methods.

When propagation of the segmentation surface was performed via registration,

for each pair of images, the spatial transformation was first computed, and then the

template image’s ground truth surface was warped onto the target image’s space to

produce the new segmentation outcome. When propagation of the segmentation

surface was performed via AGC, a similar strategy was followed: each image’s

ground truth surface was set as the initial cut for the remaining images of each

dataset, providing thus the required initialization for the AGC algorithm.

In these experiments, all registration methods were employed with their default

settings. Figure 4 summarizes the results of the performance evaluation of the four

registration methods and AGC. GWR provided results that demonstrated (in most

cases) the best mean values of the three employed scores that quantify segmentation

accuracy, with DROP providing comparable results. More specifically, GWR

demonstrated mean values of the three performance scores of CA ¼ 93.5 %,

Tc ¼ 69.6 %, and MaxDist ¼ 5.5 mm for the total prostate segmentation task

Fig. 4 Summary of the performance of the first stage’s candidate methods with respect to the

accuracy metrics. The error bars represent the �1.96 � standard error of the mean
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and CA ¼ 94.8 %, Tc ¼ 58.9 %, and MaxDist ¼ 5.4 mm for the central prostatic

gland segmentation task. DROP achieved mean values of the three scores of

CA ¼ 92.3 %, Tc ¼ 69.6 %, and MaxDist ¼ 8.3 mm for the total prostate seg-

mentation task and CA ¼ 94.1 %, Tc ¼ 60.2 %, and MaxDist ¼ 8.1 mm for the

central prostatic gland segmentation task.

In terms of computational efficiency, DROP was by far the most computation-

ally efficient method and GWR the most expensive. For instance, GWR required

more than an hour to register two prostate images, whereas DROP performed

the same task in few seconds. Computational efficiency is a favorable quality

in the context of interactive segmentation systems. Therefore, DROP was adopted

as the most appropriate method for our framework’s first stage.

In our experiments, AGC consistently failed to produce plausible segmentation

outcomes. This is quantitatively depicted in the results presented in Fig. 4. It is

conceivable that segmentation of medical images is a challenging task for a

max-flow/min-cut segmentation strategy, which is not provided with a good

initialization. It is easier to understand this if we recall that AGC employs only

the boundary term of a GC objective function. Therefore, in complex images, when

wrong initial labeling is provided, the algorithm is susceptible to the detection of

undesirable edges, thus providing erroneous segmentation outcomes.

Delineation of the Anatomical Boundary

In this section, we present the results of the evaluation of candidate methods for our

framework’s second stage, using different GC variants operating in a zone

surrounding the boundary defined by the first stage. The voxels that lie within the

eroded warped volume are selected as foreground seeds for the GC segmentation,

whereas the voxels that lie outside the dilated warped volume are selected as

background seeds (see Fig. 2). The zone width is a user-defined parameter that

was kept constant for every dataset, to allow for unbiased experimental results.

More specifically, this zone was 6 voxels wide (2 voxels outside and 4 voxels inside

the boundary suggested by DROP) for segmentation of the prostatic central gland

and 9 voxels wide (3 voxels outside and 6 voxels inside the DROP boundary) for the

total prostate. We decided to create an asymmetric zone due to the frequent

misplacement of the segmentation boundary by the registration stage outside the

anatomy of interest. The width of the zone for the central gland is narrower than for

the total prostate because this anatomical structure is relatively small. Conse-

quently, a large number of erosions may leave no foreground seeds for GC to

operate.

The following parameter settings were used throughout the experiments: when

GC was employed with its original boundary term (5), σ was set equal to 1.5; in the

case of our modified boundary term (6), ε was set equal to 0.02. The Canny edge

detector used a Gaussian kernel of length 7, with standard deviation 0.7. In case of

phase congruency, log Gabor filters with 6 different scales and 6 orientations were
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utilized. The minimum wavelength (smallest scale) was set to 5 voxels. Lastly,

the SUSAN tolerance threshold was set to 24 (levels of grey). The output of all

feature detectors was normalized to lie in the interval [0,255]. All parameters were

set to these values via manual experimentation on few images.

The raw response of Canny and SUSAN edge detectors is readily computed in

3-D. However, the code employed for the computation of phase congruency in this

study only tackles the task in 2-D. In order to produce an estimate of phase

congruency in 3-D, the measure was computed along the three different anatomical

planes, and the results were combined by selecting the maximum value from every

plane for each voxel. Computation of phase congruency directly in 3-D is obviously

preferred; however, such a task is nontrivial. For example, the orientations that need

to be considered in 3-D are many more than in 2-D. Rajpoot et al. [68] suggest the

use of the monogenic filter to tackle the computation of phase congruency in 3-D.

However, when we experimented with their code, their approach produced noisier

raw responses than the one we employed.

Figure 5 summarizes the results of the performance evaluation of the candidate

methods for the second framework stage. The results of the DROP registration

without further segmentation are also included, to allow for direct observation of

the effect of the additional processing on the DROP outcome. Overall, the changes

in segmentation performance with respect to accuracy due to it are small. The main

effect is a slight reduction of the MaxDist error.

In the segmentation of the central gland, GC + S gave less variable results than

GC. However, in the total prostate, the use of edge detectors did not seem to provide

any advantage over the original GC, possibly due to the already good object/

background contrast.

In the case of the central gland segmentation, the paired t-test suggests that there
is no significant difference between the performances of GC + S and GC, when the

accuracy is assessed with the CA metric. However, this test suggests that GC + S

performs significantly better than GC ( p < 0.03), when the Tc and MaxDist scores

Fig. 5 Summary of the performance of the second stage’s candidate methods with respect to the

accuracy metrics. The error bars represent the �1.96 � standard error of the mean
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are used. The Wilcoxon signed-rank test [69] suggests that GC + S performs

significantly better than GC ( p < 0.01), in case of all the employed accuracy

scores. The Wilcoxon signed-rank test does not assume that the compared samples

are normally distributed. This statistical test may be more appropriate for our

assessment, as there is no guarantee that our experimental measurements are

normally distributed.

The major advantage of the additional processing step is the increase of the

framework’s repeatability, compared to the repeatability of the framework when

we employ a single-stage processing approach based on DROP registration.

Figures 6, 7, and 8 show the variation in segmentation accuracy as different

examples are employed as templates, with and without application of the GC

stage, using the CA, Tc, and MaxDist metrics, respectively. This improvement is

clearest when the framework’s performance is measured using the CA and

MaxDist metric (Figs. 6 and 8). These figures suggest that in all datasets the

second stage offers a reduction of the framework’s dependency on the selected

template. A qualitative example of the effect of the framework’s second stage is

also depicted in Fig. 9.

Fig. 6 Pairs of box and whisker plots depicting the repeatability of stage 1 (left image) and stage

2 (right image) for each segmentation task with respect to the CA score. The whiskers are

1.5 � the interquartile range. Values outside them are considered outliers (red crosses) [4]

© 2011 IEEE
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Fig. 8 Pairs of box and whisker plots depicting the repeatability of stage 1 (left image) and stage

2 (right image) for each segmentation task with respect to the MaxDist score. The whiskers are

1.5 � the interquartile range. Values outside them are considered outliers (red crosses)

Fig. 7 Pairs of box and whisker plots depicting the repeatability of stage 1 (left image) and stage

2 (right image) for each segmentation task with respect to the Tc score. The whiskers are 1.5 � the

interquartile range. Values outside them are considered outliers (red crosses)



Summary

In this chapter, we presented the results of a performance evaluation study of

candidate methods for an interactive segmentation framework, which leverages

prior knowledge from one single image example, in order to minimize the amount

of required user intervention when similar images are processed. The suggested

framework operates in two stages: localization (registration) followed by delinea-

tion (segmentation). The experimental results suggest that this framework

can provide results close to the ground truth, without any user interaction, for a

challenging segmentation task, when a deformable registration is followed by

a graph cuts segmentation. These results can serve as an advanced starting point

of an interactive process that can lead to the desired segmentation outcome with a

small number of further interactive maneuvers.

Using segmentation of the central gland and total prostate in 3-D MR images as

an example application, we show that one of the effects of the additional processing

step is the decrease of the MaxDist error. While the CA and Tc scores give overall

indications of agreement between the segmentation outcome and the ground truth,

they are rather insensitive to local segmentation errors. The MaxDist score gives a

handle on local segmentation problems, such as individual surface points being

moved away from the true surface. Such cases can result in interactive workload,

even if the overall CA and Tc scores are low.

In addition, while the second segmentation stage does not necessarily deliver

large improvement over registration-based label propagation in individual cases,

we have shown that a two-stage approach improves the framework’s sensitivity to

the selected template image. While we have addressed this in the context of

interactive segmentation, the results of this study can be applied in “automatic”

atlas-based segmentation as well, where a single image is often used as a template.

Clearly, as online segmentation proceeds, knowledge from increasing numbers of

segmented images can be used to inform the interactive process. Ultimately, with

sufficient segmented examples, a model can be built. The phase where several

Fig. 9 An example of axial midsection of a prostate, depicting the ground truth (left), the
segmentation outcome produced by DROP (middle), and GC initialized by DROP (right). The
yellow and cyan contours delineate the central gland and the total prostate, respectively. The result
of the GC+S variant is depicted for the segmentation of the central gland
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segmented images are available, but not sufficient to build a reliable model is the

subject of further development of this work.

In this chapter, we also suggest a modification of the GC boundary term, which

allows the method to couple with feature detectors. In our experiments, we assess

the performance of GC when coupled with three well-known feature detectors

against the original GC approach. Our experimental results suggest that the use of

feature detectors may not provide any advantage over the original GC, when images

demonstrate good object/background contrast. It may, however, improve the

boundary identification ability of GC in challenging cases, where information

from gradient is insufficient for the identification of the boundary of the anatomy

of interest, such as in the prostate central gland. In this study, we coupled GC with

feature detectors that respond to grey-level boundaries. However, detectors that

identify textured edges may also be employed with our modified boundary term.
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Abstract 
We present two applications of model based computer vision methods to measurement of image 

features significant in the diagnosis of diabetic neuropathy. The first involves the location of the 
boundaries of nerve fascicles in light microscope images. The second involves the segmentation 
of capillary cell regions using electron microscope images. In each case the boundaries required 

are of arbitrary shape and characterised by local texture or changes in textured regions. 
The fascicular boundary is located using an Active Contour Model responding to a texture 

measure based on edge directionality. A start position for the model is automatically generated. 
The capillary segmentation is performed using a region-based snake responding to a weighted 
combination of texture measures followed by a local boundary refinement using dynamic pro- 
gramming. These methods show that application of various types of Active Contour Model, 

accompanied by appropriate starting cues, or followed by local refinements, can locate robustly 
positioned and intuitively correct boundaries in these images. The aim of the work is the au- 

tomation of diagnostic measurements currently performed manually. We discuss the implications 
of automated analysis for procedures in quantitative histology. 

1. INTRODUCTION 
There are various symptoms and side-effects of the disease diabetes. Important among 
these are the effects on the nervous system. The most frequent pattern of involvement 
of diabetes on the nervous system is a peripheral symmetric neuropathy (non-traumatic 
disorder of the peripheral nerves) of the lower extremities affecting both motor and sen- 
sory functions[14]. 
The major effect is degeneration of the insulating myelin sheath that surrounds each 
nerve fibre leading to deterioration in motor and sensory functions. Biopsies are taken 
from patients and images obtained using light and electron microscopy. Number den- 
sities and size distributions of myelineated nerve fibres are obtained from these images. 
Currently these fibre measurements are made manuaUy[2] which is a time consuming 
process. We have developed automated methods for nerve fibre detection in both light 
and electron microscope images. We do not present these methods here, although we 
make use of the results in section 3.3. 
Nerve fibres are grouped together to form fascicles (fig. 1). 

Fig. 1. Example of nerve fibre fascicle 
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It is also necessary to locate the fascicle boundary so that an accurate measure of the 
fascicular area, and hence accurate fibre number densities can be obtained. In section 
3 we describe a method for automatically locating the fascicular boundary using an Ac- 
tive Contour Model responding to an appropriate image measure with a starting cue 
generated as a result of the automated fibre detection. 
Another symptom of interest is microangiopathy (disease of small blood vessels) with 
effects manifested within the nerve fibres themselves and in capillaries in the endoneu- 
rium (the interstitial connective tissue in peripheral nerves separating individual nerve 
fibres). The two main effects are; 
i) A thickening of the basement membrane or an accumulation of basement membrane 
material in the capillaries (visible as an apparent contraction of the luminal area), and 
ii) A proliferation of endothelial cell material together with basement membrane 
thickening. This manifests itself in arteries, arterioles and occasionally venules. 
The structure of two endoenuerial capillaries as they appear in electron micrographs is 
shown in fig.2. Fig.2a is a healthy example whilst fig.2b displays a degree of diabetic 
neuropathy and shows these effects. 

Fig.2. Electron Microscope images of endoneurail 
capillaries (a) normal and (b) showing neuropathy 

Currently the various regions are delineated by hand[13,16]. In section 4 we will de- 
scribe methods of automated segmentation of the three capillary regions using Active 
Contour Models followed by local boundary refinement using dynamic programming. 

2. MODEL BASED METHODS 
Both the fascicle and capillary images are complex. The image evidence defining the 
required regions involves several parameters which vary from image to image. Often 
the evidence is poor or missing requiring local interpolation of the data. Location and 
segmentation of the desired regions in both sets of images therefore require the use of 
some form of model based method. Statistically based methods such as Point Distribu- 
tion Models (PDMs) have been sucessfully applied, as part of a constrained image 
search strategy[5] (Active Shape Models), to the location of poorly defined boundaries 
in noisy images[6]. PDMs rely on the ability to label a consistent set of landmark points 
representing the boundary shape in a set of training images in order to construct a stat- 
istical model of the expected boundary shape and its allowed degree of variation. In 
both problems described in this paper it is not possible to identify a set of landmark 



274 

points that are consistent from image to image. The lack of correspondence among 
training images introduces such a large degree of variability between different 
examples that statistics gathered on shape and appearance impose little constraint on 
the model. As a result, for the problems presented in this paper, Active Shape Models 
have not provided a useful approach to image segmentation. 

2.1. SNAKES 
Active Contour Models (snakes)[ 10] do not rely on a description of the expected region 
shape to constrain image search but instead impose internal constraints using a quasi- 
physical model to control the spacing and curvature of boundary elements. The snake 
combines these internal constraints with external "forces" derived from the image evi- 
dence and iteritively re-positions itself to achieve a minimum energy configuration. 
In the absence of any external image forces a snake reaches equilibrium by collapsing 
either to a single point or line, as dictated by the internal constraints. Furthermore if 
the snake search is initiated too far away from the desired contour the snake will fail 
to converge to the correct solution. Cohen[4] added an extra inflationary term causing 
the snake to behave as a balloon. The inflationary term takes the form of an isotropic 
pressure potential resulting in an outward pressure force acting along the normal to each 
snake element. The balloon is inflated, expanding until trapped by strong image evi- 
dence (e.g. strong edges) but expanding through weaker evidence. The pressurised 
snake therefore has the advantage of being able to start its search a large distance away 
from the desired contour but has the disadvantage that an image feature must produce 
a strong response in order to overcome the snake's internal pressure force. Hence it is 
not always possible to segment an image adequately using a pressurised snake. 
An adaptation proposed by Ivins and Porrill[9] is the statistical snake, an active region 
model linking the pressure term to image data within the region enclosed by the snake. 
An initial seed region is defined either through user interaction or through some form 
of cue generation. Within this region the means and variances for a suitable set of image 
measures are determined. These measures should be capable of distinguishing between 
the region of interest and those around it. The snake is allowed to expand from the 
boundary of the seed region until the boundary elements encounter pixels whose image 
measures differ significantly from those in the seed region. 
An energy term for the region measure is obtained by multiplying the local change in 
area for each element by a goodness functional G(I(x,y)) representing the goodness of 
fit of the region measure at an element of the snake positioned at (x,y) in an image I. 
There are various choices for the goodness functional G(). These are as follows for a 
region having a mean response ~t and a range of allowed values within k standard devi- 
ations of ~t. 
Unary Pressure: The goodness functional G0  is set to unity for pixels with image 
measures within the range specified by the seed region and zero for pixels outside this 
range. 
Binary Pressure: The goodness functional G0  is set to +1 for pixels with image 
measures within the range specified by the seed region and -1 for those with measures 
outside the range. When a snake element encounters pixels outside the seed region's 
range the direction of expansion at that element is reversed. 
Linear  Pressure. A normalised linear pressure term allows the model to reach equilib- 
rium when its boundary elements encounter pixels at the statistical limits where the 
goodness functional and hence the pressure force evaluate to zero. 
Several image features may be combined by use of a Mahalanobis pressure term. 

3. F A S C I C U L A R  B O U N D A R Y  L O C A T I O N  
To obtain images with sufficient resolution for fibre detection using light microscopy 
a magnification of 40 times is required. At this magnification several fields are required 
to represent an entire fascicle. As a result the fibre detection is carried out on a mosaic 
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of images connected using cross-correlation. The composite images produced typi- 
cally have dimensions of 1000-2000 x 1000-2000 pixels. 
Application of active contour models to boundary detection requires the choice of a 
suitable image force and a method of generating a suitable starting position for the 
model. 
3.1 CHOICE OF IMAGE FORCE 
The choice of image force is determined by the faseicular boundary structure which 
consists of a series of closely spaced, fairly parallel lines (fig,3a,b). 

Fig. 3. Examples of fascicle boundary structure(a,b) 
and result of direction algorithm (c) 

However the contrast between these lines and the background is often poor and 
simple measures based on edge magnitude or contrast fail. To achieve robust de- 
tection we have used a texture measure based on edge frequency and edge direc- 
tionality. 
Image Force Algorithm:The algorithm implemented makes uses of the response 
of a Canny edge detector[3]. 
The Canny response along the fascicular boundary to consists of a number of paral- 
lel edges. Generally the response over the remainder of the image is low, except 
around nerve fibres, where it shows very little local directionality. 
The image feature used to generate the snake's image force is the modal value of 
the direction of the Canny output within a local neighbourhood. The following al- 
gorithm generates an intrinsic image based on this feature. 

1. Apply Canny Operator 
2. Threshold Canny output to retain only salient edges 
3. Quantise edge directions to 16 values 
4. Calculate modal direction value within local neighbourhood 
5. Retain number of responses at modal direction as pixel output 

A local neighbourhood half-width of 10 pixels was empirically found to give the 
most robust boundary response. An example of the algorithm's output is given in 
fig.3c. 
3.2. GENERATION OF A START POSITION 
A starting cue for the snake can be obtained by making use of myelineated nerve 
fibres detected by our automated method. The fascicle boundary lies in a region 
surrounding that containing the nerve fibres. In most cases the boundary is not a 
great distance from the fibre region. The limit of the fibre region is calculated 
using the distance transform[8] of the image containing the detected nerve fibres. 
The outer boundary of the fibre region is determined by thresholding the distance 
transform at a range of increasing values until a single isolated contour is obtained. 
A single contour is typically obtained at a distance just greater than the maximum 
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distance between adjacent nerve fibres. This contour, after being smoothed using 
morphological closing, is used as the starting position of the snake. A degree of 
smoothing is required since the contour produced by the distance transform is ex- 
tremely jagged. 

3.3. RESULT OF FASCICLE SNAKE 
A snake comprised of 61 elements, based on a n  algorithm by Williams and 
Shah[17] using the image force described in section.3.1, was applied to a series of 
sample images. In most examples the starting contour generated by the distance 
transform was fairly close to the actual boundary position. This allowed the snake 
to stabilise within 10-15 iterations achieving a close fit to the true boundary. 
To assess the robustness of the boundary location with respect to the snake's starting 
point, an eroded version of the contour produced from the distance transform was ob- 
tained. This produced a starting point lying well within the fascicular boundary result- 
ing in the snake having to cross regions of potentially confusing image evidence. Fig.4 
shows an example of a snake using a cue eroded by 50 pixels. Fig.4a shows the detected 
fibres with the eroded position superimposed. Fig.4b shows the final position reached 
by the snake. 

Fig.4. Result of snake starting from eroded cue 
While fig.4 demonstrates the robustness of the texture measure generating the image 
force, the greater search space and number of iterations required from the use of a dis- 
tant starting point result in a substantial loss of efficiency. The advantage of having a 
starting point close to the true boundary position is in the generation of a rapid solution. 
In some cases exhibiting a high level of neuropathy the limit of the fibre region may 
be further away from the fascicle boundary requiring the use of an extended search 
space. The distance between the fascicle boundary and the limit of the fibre region may 
be a useful diagnostic measure in such cases. 

4. S E G M E N T A T I O N  O F  C A P I L L A R Y  C E L L  R E G I O N S  
The method used to segment the areas of interest is determined by the appearance of 
the three areas. The lumen is generally light in colour and is usually flat or shows only 
light texture. The endothelial cell material is dark in colour and shows a high degree 
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of structure. The basement membrane area is lighter in appearance and generally shows 
less structure with greater directionality than the endothelial cell area. At a coarse scale, 
across examples, the three regions can be characterised by specific textures. At a finer 
scale the region boundaries are characterised by a great deal of detailed structure. 

4.1. APPROACH 
A two stage strategy has been implemented. An initial approximation to the boundary 
is obtained by application of a region-based (statistical) snake starting from a user 
supplied seed region. The use of a region-based snake is appropriate since it makes use 
of the consistent texture within a region to locate the boundary. The only restriction 
on the snake's starting point is that it lies inside the region to be segmented. The ap- 
proximate boundary obtained in this way is refined using a higher resolution search 
method based on dynamic programming which takes advantage of the approximation 
produced by the region-based snake. The dynamic programming method searches 
pixel by pixel near the approximate boundary using a measure based on the texture con- 
trast between regions. This measure is capable of greater sensitivity to texture changes 
when applied close to the true boundary. 

4.2. CHOICE OF IMAGE FORCE FOR REGION BASED SNAKE 
An image measure is required that can distinguish between the various regions of in- 
terest in the capillary. A selection of texture measures was used with discriminant 
analysis applied to produce a weighted combination capable of producing good classifi- 
cation between either lumen and endothelial cell material or endothelial cell material 
and basement membrane area. The discriminant analysis is carried out separately for 
the two boundaries of interest producing a separate set of weights for each. The image 
measures used were: 

�9 Local average luminance: the average grey level within a local 
neighbourhood. 

�9 Gradient: [ 15] a measure of gradient as a function of distance 
between pixels using the distance dependent texture description 
function g(d) computed for a user specified distance d. 

�9 Smoothness: A measure of the number of pixels within a local 
neighbourhood that lie within a specified grey level range of 
the central pixel value. 

�9 Entropy: to distinguish between regions with little or no texture 
and regions with some degree of semi-random structure. 

�9 Laws Texture Filters: Six combinations of Laws [ 11 ] texture 
filters were used. These are a well known set of 1D filters 
which can be combined to represent 2D texture primitives. 

These measures were performed on the various regions of interest for a series of training 
images. A discriminant analysis was carried out on the measures obtained to produce 
a classification between the lumen and endothelial cell area and then the basement 
membrane and endothelial cell area. This produced a weighted combination of the re- 
gion measures. A binary goodness functional based on the results of the discriminant 
analysis was used as the image force for the region based snake. 

4.3. REFINEMENT USING DYNAMIC P R O G R A M M I N G  
Dynamic programming as a search technique has been applied to a variety of problems 
in machine vision[l]. An advantage of dynamic programming is that is always guaran- 
teed to find the optimal path for a given objective function. It also compares well to 
other techniques such as heuristic search algorithms which depend critically upon the 
quality of the forward cost estimate. Its advantage as a refinement method is that the 
cost function is based on local measures, in contrast to the global energy function of the 
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snake methods. Lutkin[12] has shown that dynamic programming can be an effective 
method of assessing local image evidence based on an existing model boundary. 
In order to refine the result of the region based snake, dynamic programming was 
applied to a "straightened" image constructed from single pixel spaced normals to the 
snake's boundary approximation. Each pixel on the straightened boundary corresponds 
to a node in the search graph[12]. The search then proceeds through the graph finding 
the best route as dictated by the cost function: 

COSt i = Ct b o u n d  i -I- fl  (1 - (Oi - 0/+l)) 
where boundi  is the normalised boundary response at node i and Oi and Oi+l are the 
angles at nodes i and i+l, and a and fl are weighting constants. The cost function is 
designed to respond to the image evidence whilst maintaining a degree of compatibility 
with the initial boundary approximation. The compatibility constraint at a transition 
between nodes is a measure of the angle between the path from one node to the next 
and the direction of the approximate boundary. Since the dynamic programming is ap- 
plied to a "straightened" version of the region based boundary approximation the sec- 
ond term in the cost function constrains the refined solution to remain close to this initial 
approximation. 
Choice of Image Measure for Dynamic Programming: The image measure used is 
the difference in texture between two circular regions centred along the normal to the 
estimated boundary position. As in section 4.2, the texture measure is a weighted com- 
bination of the region measures, the weights being determined by discriminant analy- 
sis. At a true boundary point this difference between region responses should be maxi- 
mised. 
4.4. RESULTS 
For the segmentation of the lumen from the endothelial cell area the starting point for 
the snake was within the lumen. For the boundary between the basement membrane and 
the endothelial cell area the region based snake was positioned in basement membrane 
and allowed to contract inwards towards the boundary. For these experiments the endo- 
thelial cell area was not used as a starting point since its structure is less consistent than 
that of the other two regions. 
Results for the location of both boundaries are shown below. Fig.5 shows the region 
based snake applied to segmentation of the lumen endothelial cell area boundary. This 
boundary is very distinct and the region-based snake has produced a good approxima- 
tion to the actual boundary position. Fig.6 shows an enlarged section of the capillary 
shown in fig.5 showing application of the boundary based refinement to the result of 
the region based snake. 
Fig.7 shows the region based snake applied to locating the boundary between the base- 
ment membrane and the endothelial cell area. This boundary is less consistent than than 
the lumen endothelial boundary. In most places the boundary is distinct but in other 
places the image evidence is poor with the boundary appearing non-existent in some 
places. Fig.8 shows an enlarged version of fig.7 showing the detailed improvement 
achieved by the dynamic programming refinement. 



279 

Fig.5. Segmentation of lumen/endothelial cell area boundary 
a)Starting position b)Result of region based snake 

Fig.6. Comparison of a)region-based snake result and 
b)refinement due to dynamic programming 

Fig.7. Application of region based snake to location of basement membrane/endo- 
boundary. (a) starting point (b) result of region based snake. 
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Fig.8. Comparison of  a)region-based snake and b)dynamic programming results. 

4.5. APPLICATION OF PAIRED SNAKES 

A problem encountered when segmenting the endothelial cell area from the basement membrane 
is the presence of small regions within the basement membrane showing similar texture to that 
of the endothelial cell area. Although they are small in comparison to the main body of the endo- 
thelial cell area, the region based snake can still be "trapped" by these regions (fig.9a). A snake 
placed within the endothelial cell area can encounter similar problems due to the inconsistent 
structure of this area (fig.9b). 

Fig.9. Region based snake trapped by confusing local evidence 
a)Starting from basement membrane b)Starting from endothelial cell area 

This is an example of a general problem with snakes and arises from the fact thatthe only internal 
constraints on the snake are associated with smoothness. There is no way of preventing a smooth 
yet incorrect solution arising from confusing local evidence. 

Problems with confusing evidence can be overcome by combining two or more independent 
assessments of the available evidence. We attempt to obtain two independent views of the evi- 
dence through the use of a pair of snakes running simultaneously from differing starting posi- 
tions. In the absence of conflicting evidence both snakes would be expected to arrive at the same 
answer. Points where there is disagreement suggest the need for further analysis. 
The snakes of section 4.4 were augmented by two further snakes initialised within the endothelial 
cell area, one contracting towards the lumen, the other expanding towards the basement mem- 
brane. Fig.10a shows the initial and final positions of a pair of snakes converging on the bound- 
ary between the basement membrane and the endothelial cell area. In many places the snakes 
arrive at an identical position. As in the example shown in fig.9a the outer snake has been trapped 
by the outlying regions around the endothelial area. However in these places the inner snake has 
generally arrived at a satisfactory solution 
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Fig. 10. a)Start(white) and end(black) positions of two region based snakes 
b) Average snake position(white) and result(black) of application of dynamic programming 

Our initial approach to resolving the conflicting evidence has been to use the average position 
of the two snakes as the model boundary for dynamic programming refinement. Fig.10b shows 
that the result of the refinement to be an acceptable representation of the region boundary. 

5. CONCLUSIONS AND DISCUSSION 

The overall aim of the work presented is the development on an automated system for measure- 
ment of diabetic neuropathy encompassing image capture and automated nerve fibre detection 
as well as the two applications discussed in this paper. The purpose of the fibre detection and 
fascicular boundary measurements is perform a study of the effects of diabetes on the number 
densities and size distributions of myelineated nerve fibres. This requires measurement to be 
made on samples from a large number of patients. Thus a suitably efficient and reliable auto- 
mated system to replace the need for manual measurements is extremely desirable. Details of 
the diagnostic utility of the methods will be published elsewhere. The purpose of this paper is 
to describe the computer vision methods applied. 
Fibre detection and fascicular boundary location is a fully automated process. Snake based 
methods have been shown to successfully locate the fascicular boundary using a starting cue gen- 
erated from the results of automated fibre detection. The accuracy of boundary location is not 
sensitive to the effectiveness of this cue, but the fact that the starting point generated is generally 
close to the final position has a beneficial effect on the method's efficiency. 
The capillary segmentation is intended to be as nearly automated as possible and is intended to 
replace manual delineation of region boundaries. The results shown in this paper have have been 
based on manually positioned starting points. It may be possible to generate image-based cues 
for this application as in the case of the fascicular boundary location. The generation of such 
cues has not been investigated as yet but a possible candidate might use the (usually) uniformly 
light luminal area. 
Technically the achievement of this work has been the segmentation of structurally complex 
images. A principled approach to characterising texture boundaries has been taken based on 
trainable image features. These have been shown to be robust when used in conjunction with 
appropriate forms of Active Contour Model. Two problems which arise from from the use of 
snakes have proved particularly relevant to this work. Firstly the use of a global energy function 
means that they do not respond readily to detailed local boundary structure. Secondly the re- 
liance on smoothness as the constraint on snake shape leads to a lack of shape specificity. In our 
case this means that confusing image evidence can lead to an incorrect solution. The first prob- 
lem has been addressed through the use of an additional boundary refinement phase which takes 
locally detailed structure into account by using dynamic programming. The second problem has 
been addressed through the use of paired snakes to obtain two different views of the image evi- 
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dence. The use of this strategy in combination with the local refinement method produces ad- 
equate results. Further experiments will determine whether greater robustness is required. This 
could be achieved by more rigourous combination of the evidence. Gunn and Nixon[7], for 
example, have adopted an approach using paired snakes coupled together to encourage them to 
converge. Alternatively the dynamic programming refinement could weight the contribution 
made to its cost function by the approximate boundary according to the level of agreement be- 
tween the paired snakes. At positions where the paired snakes disagree the local refinement 
could be allowed more freedom than at positions where the snakes are in agreement. 
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Abstract. Microangiopathy is one form of pathology associated with peripheral
neuropathy in diabetes.  Capillaries imaged by electron microscopy show a
complex textured appearance, which makes segmentation difficult.
Considerable variation occurs among boundaries manually positioned by
human experts.  Detection of region boundaries using Active Contour Models
has proved impractical due to the existence of confusing image evidence in the
vicinity of these boundaries.  Despite the fact that the shapes have no
identifying landmarks, the weak constraints imposed by statistical shape
modelling combined with genetic search can provide accurate segmentations.

1. Diabetic Nerve Capillaries

Peripheral neuropathy is an important and debilitating symptom of diabetes.  Among
the pathological manifestations of neuropathy is microangiopathy (disease of small
blood vessels) which affects the capillaries in the endoneurium - the interstitial
connective tissue in peripheral nerves separating individual nerve fibres.  The two
main effects are:

1. a thickening of the basement membrane or an accumulation of basement membrane
material in the capillaries causing an apparent contraction of the luminal area, and

2. a proliferation of endothelial cell material together with a thickening of the
basement membrane, which manifests itself in arteries, arterioles and occasionally
venules.

The aetiology of the condition is unknown.  Quantitative studies of the variation in
shape and size of the Basement Membrane (BM), Endothelial Cell (EC) and lumen
region may shed light on the progression of nerve capillary damage [1].  The structure
of two endoeneurial capillaries as they appear in electron micrographs is shown in Fig.
1.

Currently segmentations of these areas for the purpose of measurement are taken by
hand [1], which is a time consuming process and restricts the quantity of samples that
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can be analysed. There is a requirement for an automated approach, both to reduce the
labour required and to make the measurements more objective.

The nerve capillary structures have a complex appearance, containing no consistent
structural features and wide variation in shape and structure.  The image evidence
defining the required boundary is extremely variable from image to image and is often
highly ambiguous.

(a)

(b)

Fig. 1.  Two examples of nerve capillary images showing the large variation in appearance and
structure.  Image (a) exhibits atypical texture around the EC/BM boundary.  Image (b) shows
an area of locally confusing image evidence at the top of the capillary structure.

Endothelial
cell material Luminal area

Basement
membrane

Basement
membrane
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2. Segmentation of Capillaries

Byrne and Graham [2] applied an Active Contour Model to this difficult segmentation
problem and achieved encouraging results however, the active contours were initiated
by manual positioning, and often became �trapped� on confusing image evidence (see
Fig. 1(b)), which provided good but incorrect local boundaries.  In this study we seek
to obtain more accurate segmentations by:

1. using genetic search to overcome the problem of local maxima in hill climbing
methods,

2. constraining the solutions using a model of capillary shape.

There is considerable variability in the shape of capillaries so shape constraints will
not be as powerful as those that can be exploited, for example, in the detection of
organs in anatomical images.  However, capillary shapes are not totally unconstrained
either, and conducting a search within the statistical limits imposed by a training set
should contribute to better solutions than might be obtained with a totally data-driven
approach.

Active Shape Models (ASMs) have been applied successfully to analysis of
radiological images [3,4].  The power of this method derives from the statistics of
consistent landmark positions on training objects (see section 3 below).  The shape
representation is then manipulated by a hill climbing search mechanism.  Capillaries
do not have recognisable landmarks.  However, it is still possible to use boundary
points to represent the shape, and the resulting descriptions are easily manipulated by
Genetic Algorithms (GAs).

3. Materials and Methods

3.1. Data

Our data set consists of 44 electron microscope images (8-bit grey scale, 768x575
pixels) of nerve capillaries. Significant variation in the quality of the images has been
introduced by inconsistencies in the image acquisition process.  A set of 10 images to
be used as the training set for grey level modelling has been chosen manually.  The
selection was made based on the perceived quality of the images.

Each capillary image has been annotated three times by experts who marked the
boundaries between the various structures within the capillaries. Even for expert
human annotation, the boundary positions are difficult to judge and there is
considerable variation in the position of manually placed boundaries even for the
cleanest images. Table 1 includes the mean point-to-line distances between different
expert annotations of the same image for the 10 images in the �good� image set.  The
average closest annotated boundary from any sampled point is 7.8 pixels.  Many of the
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differences between boundaries are small and represent variation in positioning the
same perceived boundary.  However, some of the larger distances represent different
interpretations of the positions of the boundaries between the relevant structures,
revealing a genuine ambiguity of interpretation.  Fig. 2 shows examples of capillary
images with two possible interpretations of the EC/BM boundary position from the
three annotations.

(a)                              (b)

Fig. 2. Two examples of nerve capillaries with multiple expert annotations (marked as solid
black lines) of different positions for the Endothelial Cell/Basement Membrane boundary

3.2. Texture Discrimination

As we wish to describe texture boundaries, we transform the grey level images into a
texture image.  We use the method described by Byrne and Graham [2] in which Laws
texture filters [5] are applied to a set of training images to give a set of texture
features.  These are combined using linear discriminant analysis to provide a texture
discrimination function.  This function is then used to generate the texture images used
in GA search.  Fig. 3 shows an example of a texture image generated in this way.

3.3. Active Shape Models

Active Shape Models [6] are generated using a statistical analysis of shape and local
grey level appearance over a training set of images.  For a detailed description of
ASM search see [7].  The training images are labelled with a set of landmark points
marking consistent features throughout the set of images.  Further evenly spaced
model points between chosen features are often required to provide an adequate
representation of the shape of a structure.  The local grey level appearance is modelled
over a patch at each model point.
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(a) (b)

Fig. 3. An example capillary image (a) with the corresponding texture image (b) generated
using the texture discrimination function.

The variation in shape across the set is described by applying Principal Component
Analysis (PCA) to the landmark points, resulting in a Point Distribution Model (PDM)
7.  In this way any valid example of the shape being modelled can be approximated
using:

Pbxx += (1)

where x  is the mean shape vector, P  is a set of orthogonal modes of variation and
b is a vector of shape parameters.  Conversely, for any shape x the parameter vector
b can be calculated:

)( xxPb −= T (2)

The model can be used as a representation for image search.  By constraining the
shape to lie within a specified range of  �allowed� shapes determined by the training
set, solutions can be found which are guaranteed to have �legal� shapes.

In the capillary images there are no consistently identifiable �landmark� points.  To
take account of this it was necessary to modify the ASM method.  The training points
were provided by sampling evenly spaced points from each boundary in the set of
expert annotations.  The first point on each boundary was defined to lie at one end of
the major axis of the best fitting ellipse to the original boundary.  Each training
example contains 50 boundary points.  The shape model training set contains all three
annotations from each of the 44 capillary images giving 132 sets of boundary points.
The first three modes of variation from the shape model built in this way are shown in
Fig 4.
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Mode 1

Mode 2

Mode 3

 2 s.d.

Fig. 4. First three modes of variation of the EC/BM boundary model.  The model is built using
50 landmark points sampled from each of 132 expertly annotated boundaries.

The grey level appearance in the capillary images is very variable across the entire set,
and this can lead to a model that fits well to flat image data.  In order to produce good
models capable of discriminating between regions, a subset of 10 images with good
discrimination between endothelial area and basement membrane were manually
chosen to build the grey level models.  An area of 20x3 pixels around each landmark
was modelled.  Since the model points do not correspond to any particular anatomical
feature, there is no reason to believe that the grey level appearance at one model point
should be different from that at any other point.  Any difference between the grey
level models is a feature of the small sample rather than any real property of the data.
Therefore a single local model, calculated from all model points was used for all
points in the PDM.

A further adjustment to the standard ASM grey level modelling scheme was
introduced to utilize our prior knowledge of how the texture images were formed.  An
ASM was built and an iteration of search was carried out using the original landmarks
as a starting point.  This has the effect of finding the local best fit of the profile model
to the image data, and relocating landmarks closer to areas of high texture gradient.
The new point positions after search are then used to build a new grey level model that
will find areas of high texture gradient more robustly.  This is only appropriate as we
want image search to identify areas of high texture gradient as good model matches.
The process can be thought of as removing small errors from the annotated landmark
positions.  Comparative results between a standard ASM with a combined grey level
model and an ASM built in this manner are given in section 4.

3.4. Genetic Algorithms

In the standard implementation ASMs perform a hill-climbing search.  Small areas of
locally difficult texture evidence in the capillary images cause many local maxima to
be present in an objective function of the quality of fit of an ASM (see Fig. 5).  It is
necessary to apply a search method capable of overcoming local maxima to correctly
determine the global solution.  Genetic Algorithms [8] are a commonly used stochastic
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search mechanism which can find good solutions in the presence of numerous local
maxima in the objective function.  In general, the fittest individuals of a population of
candidate boundaries tend to reproduce and survive to the next generation.

Fig. 5. A plane through the search space defined by the objective function (eqn. 3), produced
by varying translation parameters shows many local maxima. Axis values are in pixels.

We use as the objective function:

∑ 




 −

=
i

im
f

2
exp (3)

where mi is the Mahalanobis distance for the fit of model point i from the mean
position.  Hill et al. [9] show that convergence of GAs is accelerated by performing an
iteration of hill-climbing ASM search at the end of each generation.  We can think of
the GA locating hills in the objective function and the ASM reaching the top of them.
This approach has been shown to speed up GA convergence [9].

4. Results

GA searches were run on the set of 10 texture processed nerve capillary images that
had been used to build the ASM grey level model in a leave-one-out cross validation,
using a population size of 100 individuals and a maximum of 25 generations.  The
individual with the highest fitness from the final population was taken as the boundary
found by the search.  Result boundaries were evaluated against the expert annotations
available for the corresponding image by calculating the point-to-line distance for
each landmark point.  Several annotated boundaries exist for each image giving a set
of point-to-line distances for each landmark.  Table 1 gives details of the point-to-line
distances obtained for each of the 10 image searches.
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Image A B C
Ebm Ebm Ebm

1 5.98 6.76 10.34
2 26.19 25.48 6.71
3 15.28 14.52 8.22
4 6.73 3.84 5.86
5 12.60 12.94 10.18
6 5.97 5.43 6.23
7 6.32 5.65 6.60
8 16.70 14.79 6.91
9 6.42 4.94 6.48

10 129.3 84.62 8.72
Average 23.15 17.90 7.62

Table 1. Search results from leave-one-out GA searches. Column A shows results from GA
search with a standard ASM with a combined grey level model; column B shows results using
an ASM with optimised landmarks and a combined grey level model and column C shows
differences between expert annotations.

% Ebm Ebσ

Successful
(Ebm<35)

72.
73

17.1
4

12.5
7

Failure
(Ebm>35)

27.
27

62.9
9

28.5
3

Total 100 29.6
4

32.3
0

Table 2. Robustness results from the set of 44 capillary images, both combined and seperated
into successful and unsuccessful search categories. Ebm is the mean point-to-line distance of
each landmark to the closest single annotation, Ebσ is the standard deviation of the values

The searches of all the images have found good approximations to the annotated
boundaries except for image number 10 which has a far larger error than the rest of the
set for all three methods.  Of the two GA experiments, the performance of the ASM
with an optimized grey level model is slightly better throughout the set with a mean
point-to-line error Ebm of 17.90 against the standard ASM error of 23.15.  Ignoring the
results from image 10, average Ebm errors become 11.36 and 10.48 for the standard
and optimised landmark models respectively, which are comparable to the error in
expert annotation.  Fig. 6 shows examples of GA search results together with the
closest expert annotation.
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(a) (b)

(c) (d)

Fig. 6. GA search results: solid lines are automatic segmentations and dashed lines show the
closest expert annotation. (a) shows the result for image 1 from Table 1; (b) shows the result for
a successful search from the robustness set of 44 images; (c) show a search result that has been
influenced by local image evidence; (d) shows the results from image 10 in Table 1 which is an
example of a failed search.

Table 2 presents an extension of the evaluation in which leave-one-out tests were
carried out on the entire set of 44 usable capillary images. In each case 43 images
were used to train the shape model, but the training of the texture model was limited to
the �good� set of 10 images.  The search results have been classified into successful
searches, with a mean point-to-line distance less than 35 pixels, and unsuccessful
searches. The GA search technique is successful in 72.7% of cases.  The overall point-
to-line error throughout the entire set was 29.6 pixels.

5. Conclusions and Discussion

Actives Shape Models manipulated by GA search have been shown to produce results
that have comparable accuracy to human experts.  However, the method is
inadequately robust at its current state of development; just over 25% of the searches
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converge on totally misleading evidence.  Inspection of the images on which the
search failed suggests that this occurred in cases where the textured appearance of the
boundary is significantly different from those in the model, including image 10 in the
�good� set.  Fig. 1(a) gives an example of such an image with unusual texture
appearance.  This indicates that the most likely approach to improving robustness is in
development of more adaptive texture models. It is not yet clear whether the very wide
variation in texture in some images is a genuine feature of the capillary images or if it
has been caused by some error in the imaging process.  Analysis of a larger image set
will allow investigation of this.
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Abstract. Corneal Confocal Microscopy (CCM) imaging is a
non-invasive surrogate of detecting, quantifying and monitoring diabetic
peripheral neuropathy. This paper presents an automated method for
detecting nerve-fibres from CCM images using a dual-model detection
algorithm and compares the performance to well-established texture and
feature detection methods. The algorithm comprises two separate mod-
els, one for the background and another for the foreground (nerve-fibres),
which work interactively. Our evaluation shows significant improvement
(p ≈ 0) in both error rate and signal-to-noise ratio of this model over the
competitor methods. The automatic method is also evaluated in compar-
ison with manual ground truth analysis in assessing diabetic neuropa-
thy on the basis of nerve-fibre length, and shows a strong correlation
(r = 0.92). Both analyses significantly separate diabetic patients from
control subjects (p ≈ 0).

1 Introduction

Diabetic Peripheral Neuropathy (DPN) is one of the most common long-term
complications of diabetes. The accurate detection and quantification of DPN
are important for defining at-risk patients, anticipating deterioration, and as-
sessing new therapies. Current methods of detecting and quantifying DPN, such
as neurophysiology, lack sensitivity, require expert assessment and focus only
on large nerve-fibres whereas the earliest signs of neuropathy are likely to be
found among small nerve-fibres. On the other hand, small nerve-fibre damage is
currently assessed using skin/nerve biopsy, which is highly invasive and is not
suitable for repeated investigations.

However, recent research [15,10,8] using Corneal Confocal Microscopy (CCM)
suggests that this non-invasive, and hence reiterative, test might be an ideal sur-
rogate endpoint for human diabetic neuropathy. These studies demonstrate that
measurements made by CCM accurately quantify corneal nerve fibre morphol-
ogy. The measurements reflect the severity of DPN and relate to the extent of
� This work is supported by a JDRF scholar grant 17-2008-1031.
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Fig. 1. An illustration of the methods’ responses. (a) the CCM image, (b) Dual-model,
(c) Linop, (d) Hessian, (e) 2D Gabor, (f) Monogenic and (g) DTCWT.

intra-epidermal nerve-fibre loss seen in skin biopsy. However, the major limita-
tion preventing extension of this technique to wider clinical practice is that anal-
ysis of the images using interactive image analysis is highly labour-intensive and
requires considerable expertise to quantify nerve-fibre pathology. To be clinically
useful as a diagnostic tool, it is essential that the measurements be extracted
automatically.

The first critical stage in analysis of CCM images (an example is shown in
Figure 1(a)) is the detection of nerve-fibres. This is challenging as the nerve-
fibres often show poor contrast in the relatively noisy images. The literature on
this topic is not extensive, although the problem has a superficial similarity to
other, more widely investigated, applications, such as detection of blood-vessels
in retinal images. Ruggeri et al. [17] describe a heuristic method that was adapted
from retinal analysis. In [2] we conducted a preliminary comparison of methods
for contrast enhancement of nerve-fibres, comparing a Gabor wavelet with a
well-established line detector.

This paper presents a dual-model algorithm for automatic detection and mea-
surement of nerve-fibres in CCM images. Using a 2D Gabor wavelet and a Gaus-
sian envelope, the dual-model of foreground (nerve-fibres) and background is
constructed and applied to the original CCM image. The detection relies on es-
timating the correct local and dominant orientation of the nerve-fibres. Identify-
ing low-contrast fibrous structures is a commonly encountered problem in several
areas of investigation. Examples include mammography, retinopathy, angiogra-
phy and detection of asbestos fibres. A number of methods have been developed
and successfully applied in these applications. We evaluate our dual-model in
comparison with some of these methods and with appropriate well-established
feature detectors. While our analysis focuses on CCM images, our results sug-
gest that the this may be an appropriate contrast enhancement method in other
application domains. In addition to the evaluation of the nerve-fibre detection
responses, we have also evaluated the clinical utility of the method by a com-
parison with manual analysis.

2 Linear-Structure and Feature Detection

A method of linear structure detection (Line Operator - Linop), originally de-
veloped for detection of asbestos fibres [4] has also been shown to be effective
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in detecting ducts in mammograms [18]. Linop exploits the linear nature of the
structures to enhance their contrast by computing the average intensity of pix-
els lying on a line passing through the reference pixel for multiple orientations
and scales. The largest values are chosen to be corresponding to the line, the
strength of which is determined by the difference with the average intensity of
the similarly oriented square neighbourhood.

In a preliminary study [2], we use the 2D Gabor filter [9] to detect nerve-fibres
in CCM images. The filter is a band-pass filter that consists of a sinusoidal plane
wave with a certain orientation and frequency, modulated by a Gaussian envelope.
This spatial domain enhancement is based on the convolution of the image with
the even-symmetric Gabor filter that is tuned to the local nerve-fibre orientation.

Frangi et al. [6] used a multiscale decomposition of the Hessian matrix to
detect and measure blood vessels in Digital Subtraction Angiography images.
They derived a discriminant function based on the eigenvalues and eigenvectors
that has maximum response for tube-like structures. The external energy is used
to attract the curve towards points which have a high likelihood of lying on a
central vessel axis.

The Dual-Tree Complex Wavelet Transform (DTCWT) [11] is an extension of
the Discrete Wavelet Transform (DWT), which provides a sparse representation
and characterisation of structures and texture of the image at multiresolutions.
The DTCWT utilises two DWT decompositions (trees) with specifically selected
filters that gives it the properties of approximate shift-invariance and good di-
rectionality. The key feature of the DTCWT operation lies in the differences
between the filters in the two trees.

The Monogenic signal [5] (a variant of a 2D analytic signal) is an extension
of the analytic signal using quaternionic algebra in an attempt to generalise the
method so it is capable of analysing intrinsically 2D signals e.g. structures within
images. The Monogenic signal is based on the Riesz transform, which is a 2D
generalization of the Hilbert transform used in the conventional analytic signal.
The Monogenic signal is defined as the combination of the original signal and
the Riesz-transformed one in the algebra of quaternions.

3 Dual-Model Nerve-Fibre Detection

In order to quantify the CCM images the nerve-fibres have to be detected. These
captured images of nerve-fibre structures could suffer from several types of cor-
ruption due to some acquisition conditions, and nerve-fibres may appear faint
due to small size or being only partly in the focus plane. Therefore, a nerve-fibre
contrast enhancement algorithm is needed to exploit the linear structure of the
nerve-fibres and distinguish them from the background noise. All of the methods
described in the previous section are capable of providing this enhancement. In
the next section we describe our approach.

3.1 Nerve-Fibre Contrast Enhancement

For this purpose the foreground model MF is an an even-symmetric and real-
valued Gabor [9,3] wavelet and the background model MB is a two-dimensional
Gaussian envelope.
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xθ = x cos θ + y sin θ (3)
yθ = −x sin θ + y cos θ (4)

The x and y axes of the dual-model coordinate frame xθ and yθ are defined
by a rotation of θ, which is the dominant orientation of the nerve-fibres in a
particular region within the image (see Section 3.2). This dual-model is used to
generate the positive response RP = MF + MB and the negative response
RN = MF − MB that are applied to the original CCM image and can be
represented as in Equations (5) and (6) respectively.
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The equations of RP and RN assume that the Gaussian envelope of both re-
sponses are identical i.e. they have the same variances σ2

(x,y) and the same as-
pect ratio γ. The magnitude of the Gaussian envelope α defines the threshold in
which a nerve-fibre can be distinguished from the background image. The value
of α can be set empirically to control sensitivity and accuracy of detection. The
wavelength λ defines the frequency band of the information to be detected in
the CCM image. Its value might be computed for a subregion within the image
that has significant variability of nerve-fibre width. However for simplicity, λ is
chosen to be a global estimate of the entire image based on empirical results.

This in turn enhances the nerve-fibres that are oriented in the dominant di-
rection, and decreases anything that is oriented differently by increasing the
contrast between the foreground and the noisy background, whilst effectively
reducing noise around the nerve-fibre structure as shown in Figure 1(b). This
pixel-wise operation adjusts the models to suit the local neighbourhood char-
acteristics of the reference pixel at f (i,j) by modifying the parameters of the
foreground and background models. The dot products of the models and the ref-
erence pixel’s neighbourhood (Equations 7 and 8) are then combined to generate
the final enhanced value of this particular reference pixel g(i,j) (Equation 9).
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The neighbourhood area of the reference pixel is defined by the width ω. The
sharpness of the transition of the enhanced image value at a particular pixel g(i,j)

is controlled by k. A larger k amounts to a sharper transition when Γn = 0.

3.2 Nerve-Fibre Orientation Estimation

In CCM images, the nerve-fibres flow in locally consistent orientations every-
where. In addition, there is a global orientation that dominates the general flow.
This orientation field describes the coarse structure of nerve-fibres. Using the
least mean square (LMS) algorithm [7], the local orientation of the block cen-
tred at certain pixel is computed as in [16].

Since the orientations vary at a slow rate, a low-pass Gaussian filter is applied
globally in order to further reduce errors at near-nerve-fibre and non-nerve-fibre
regions. The LMS produces a stable smooth orientation field in the region of
the nerve-fibres; however when applied on the background of the image, i.e.
between fibres, the estimate is dominated by noise due to the lack of structure
and uniform direction.

4 Experimental Results and Analysis

The evaluation has been conducted on a database of 525 CCM images captured
using the HRT-III1 microscope from 69 subjects (20 controls and 49 diabetic
patients). The resolution is 1.0417μm and the field of view is 400 × 400μm2

of the cornea. For each individual, several fields of view are selected manually
from near the centre of the cornea that show recognisable nerve-fibres. Using the
Neuropathy Disability Score (NDS) [1], 48 patients were categorised into four
groups according to severity of neuropathy (asymptomatic: 0 ≥NDS≤ 2 (n =
26), mild: 3 ≥NDS≤ 5 (n = 9), moderate: 6 ≥NDS≤ 8 (n = 10) and severe:
9 ≥NDS≤ 10 (n = 3)).

The performance of all methods is obtained by validating the extracted nerve-
fibres in comparison with an expert manual delineation using CCMetrics2. Only
the raw response of each method is taken into account without any further
post-processing operations or shade correction methods as shown in Figure (1).
Binary images are obtained by a simple uniform thresholding operation that is
followed by a thinning operation to achieve a one-pixel-wide skeleton image.

4.1 Comparison of Nerve-Fibre Detection Methods

Three measures have been used in order to quantify the evaluation: the false-
positive (FPR), the true-positive (TPR) and the equal-error rate (EER), which
is the average of optimal FPR and false-negative rate at minimal difference be-
tween both. The measurements are taken by comparing the generated skeleton
at different threshold intervals of the methods’ responses with the manually
delineated “ground-truth”. A tolerance of ±3.141μm (3 pixels) was allowed in

1 Heidelberg Engineering Inc., modified to acquire corneal confocal images.
2 CCMetrics is a purpose built interactive graphical interface which helps experts to

manually delineate nerve-fibres in CCM images.
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determining coincidence between the ground-truth and the detected nerve-fibres.
The Peak Signal to Noise Ratio (PSNR) is also used to evaluate the performance
of all methods. The PSNR is computed with respect to the mean squared error
of the detected nerve-fibres from the manual delineation. The practical imple-
mentations of the Hessian, the DTCWT and the Monogenic signal were obtained
from public domain sources [12,14,13], while the rest are implemented by our
research group.

The EER and PSNR values for all the methods are presented in the box-plots
in Figure 2 and Table 1. Each data point in Figure 2 corresponds to the evaluation
on one of the 525 CCM images in the database. The dual-model shows lower EER
and higher PSNR than all other methods (Table 1). These improvements are sta-
tistically significant (p ≈ 0 using three different non-parametric tests). The table
also shows that the standard deviations of both EER and PSNR are low for the
dual-model, which indicates a more stable and robust behaviour. The closest com-
petitor is Linop. The methods designed for linear structures perform rather better
on this test than the more generic DTCWT and Monogenic signal methods.

The superior performance of the dual-model is borne out by the ROC curves
of Figure 2, in which the dual model shows improved detection at all operation
points.

Fig. 2. From left to right, the box-plots of the EER and the PSNR are shown for
all methods. The ROC curves are presented at the far right. The box-plots indicate
the upper and the lower quartiles as well as the median (the bar) of the EER and
PSNR values respectively; whiskers show the extent of the rest of the data while crosses
indicate outliers for (a) dual-model, (b) Linop, (c) 2D Gabor, (d) Hessian, (e) DTCWT
and (f) Monogenic.

Table 1. A comparison of mean EER and PSNR and their standard deviations

Dual-Model Linop [4] 2D Gabor [2,9] Hessian [6] DTCWT [11] Monog. [5]

EER[%] 17.79± 10.58 22.65± 10.76 24.15± 10.74 23.14± 11.53 34.17± 10.43 26.50± 12.58

PSNR[dB] 19.08± 2.16 18.51± 2.09 18.80± 2.11 17.93± 2.27 17.00± 2.23 18.11± 2.20

4.2 Assessment of Clinical Utility Results

In previous studies, using manual measurement of nerve-fibres, several features
have been used to quantify the CCM images, including nerve-fibre length (NFL):
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the total length of nerve-fibres measured in an image, nerve-fibre density: the
total number of nerve-fibres per unit area and branch density: the number of
fibre branches per unit area. Of these nerve-fibre length proved to be the most
discriminating, and we use this measure here to compare automated with manual
measurement of the nerve-fibre images.

The box-plots in Figure 3 show a strong similarity between the manual and the
automated analysis.However the scale of theNFLhas slightly changed from(3.68−
33.91) for themanual analysis to (5.67−26.53) for the automated analysis.ANOVA
analysis results in a p-value for discrimination among these groupswhich is slightly
higher for the automated than the manual analysis, though both are significant
(p ≈ 0). The automated NFL measurements show a very strong correlation (r =
0.92) with the manual NFL values, which indicates that the automated system is
successfully identifying the correct nerve-fibres. The coefficient of variation cv = σ

μ

of the manual analysis is 0.34, reducing for the automated analysis to 0.29, which
indicates more reliability and robustness of the results.

Fig. 3. Box-plots showing the NFL scores for each of the NDS groups calculated man-
ually (left) and automatically (right)

5 Conclusion

The analysis of CCM images requires the identification of fibre-like structures
with low contrast in noisy images. This is a requirement shared by a number of
imaging applications in biology, medicine and other fields. A number of methods
have been applied in these applications, and we have compared some of these,
and more generic methods with a dual-model detection algorithm devised for this
study. The comparison used a large set of images with manual ground truth. In
terms of both error-rates (pixel misclassification) and signal-to-noise ratio, the
dual model achieved highest performance. It seems reasonable to propose that
this filter is likely to prove equally useful in applications of a similar nature. The
question of the clinical utility of the method was also addressed in this paper. The
evaluation has shown that the automatic analysis is consistent with the manual
ground truth with a correlation of (r = 0.92). Similarity in grouping control and
patient subjects between manual and automated analysis was also achieved with
(p ≈ 0). Therefore, it is sound to conclude that the automated analysis, which
can be much quicker, is a potentially more reliable and practical alternative to
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manual analysis due to its consistency and immunity to the inter/intra-observer
variabilities.
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Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes.
Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies
corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis
and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive
dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres
and adapts itself to the local image information. Detected nerve fibres are then quantified and used as
feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We
show, in a comparative study with other well known curvilinear detectors, that the best performance
is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical
effectiveness shows that the performance of the automated system matches that of ground-truth defined
by expert manual annotation.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

According to numerous clinical reports (DiabetesUK, 2010), dia-
betes is among the most challenging chronic health problems. For
example, in the UK it is estimated that one in twenty people has
diabetes, whether diagnosed or undiagnosed, and by 2025 four
million people will have the condition. Damage to the peripheral
nerves (diabetic peripheral neuropathy, DPN) is one of the com-
monest long-term complications of diabetes occurring in at least
50% of patients with diabetes (Boulton, 2005). As a consequence,
about one in six diabetic patients have chronic painful neuropathy,
compared to one in 20 non-diabetic subjects (Daousi et al., 2004). It
is the main initiating factor for foot ulceration, Charcot’s neuroar-
thropathy and lower extremity amputation. As 80% of amputations
are preceded by foot ulceration, an effective means of detecting
and treating neuropathy would have a major medical, social and
economic impact. The development of new treatments to slow, ar-
rest or reverse this condition is of paramount importance but is
presently limited due to difficulties with end points employed in
clinical trials (Dyck et al., 2007). Therefore accurate detection
and quantification of DPN are important to define at-risk patients,
anticipate deterioration, and assess new therapies. Current meth-
ods are unsatisfactory, lacking sensitivity and requiring expert
ll rights reserved.

.A. Dabbah).
assessment, and focus only on large fibres (neurophysiology) or
are invasive (skin/nerve biopsy). Unfortunately, diabetic neuropa-
thy lacks a non-invasive surrogate for nerve damage (Tesfaye
et al., 2010).

Recent research (Malik et al., 2003; Kallinikos et al., 2004; Hoss-
ain et al., 2005) using corneal confocal microscopy (CCM) suggests
that this non-invasive, and hence reiterative, test might be an ideal
surrogate endpoint for human diabetic neuropathy. The establish-
ment of CCM as a surrogate for early diagnosis and an early bio-
marker for diabetic neuropathy could identify those at risk and
prompt more intense intervention including improved glycaemic,
blood pressure and lipid control. Furthermore a sensitive surrogate
endpoint would significantly lower hurdles to the development of
disease-modifying therapeutics by enhancing the capacity to test
therapeutic efficacy. The major advance of CCM is the entirely
non-invasive and relatively rapid (�2 min) acquisition of images
of small nerve fibres in patients. However, the major limitation
preventing extension of this technique to wider clinical practice
is that analysis of the images using interactive image analysis is
highly labour-intensive and requires considerable expertise to
quantify nerve pathology. To be clinically useful as a diagnostic
tool, it is essential that the measurements be extracted
automatically.

If an automatic CCM image analysis system is to be applied clin-
ically, especially to define early degeneration or regeneration, then
a key step is the automatic detection of low-contrast nerve fibres

http://dx.doi.org/10.1016/j.media.2011.05.016
mailto:m.a.dabbah@manchester.ac.uk
http://dx.doi.org/10.1016/j.media.2011.05.016
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media


(a)

(b) Control image 1 (c) Control image 2

(d) Patient image 1 (e) Patient image 2

Fig. 1. (a) An example of CCM image and nerve-fibre characteristics. (b)–(e) Samples of CCM image from controls and patients, showing the effects of different imaging
artefacts and neuropathy status.

1 The Heidelberg Retina Tomograph (HRT-III) confocal scanning laser ophthalmo-
scope developed by Heidelberg Engineering Inc. The instrument can be converted into
a corneal confocal microscope using a microscope lens which is attached to the
standard lens.
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among image noise (see Fig. 1). The literature on this topic is not
extensive, although the problem has a superficial similarity to
other, more widely investigated, applications, such as detection
of blood-vessels in retinal images. Ruggeri et al. (2006) and Scarpa
et al. (2008) describe a heuristic method that was adapted from
retinal analysis. A number of methods have been developed to en-
hance the contrast of such linear structures. In a previous study
(Dabbah et al., 2009), we used the 2D Gabor filter (Jain and Far-
rokhnia, 1991) to detect nerve fibres in CCM images. The filter is
a band-pass filter that consists of a sinusoidal plane wave with a
certain orientation and frequency, modulated by a Gaussian enve-
lope. This spatial domain enhancement is based on the convolution
of the image with the even-symmetric Gabor filter that is tuned to
the local nerve-fibre orientation. We subsequently extended this to
form a dual-model detector (Dabbah et al., 2010), see Section 4.

The automated system of analysing CCM images presented in
this paper is an extension of our previous single scale dual-model
fibre detector (Dabbah et al., 2010). The new detection algorithm
uses the dual-model property in a multi-scale framework to gener-
ate feature vectors from localised information at every pixel. These
vectors are then used to classify pixels using random forests (RF)
(Breiman, 2001) and neural networks (NNT) (Moller, 1993).

In the remainder of the paper we introduce CCM imaging, the
image characteristics and the metrics that have been used to quan-
tify the nerve morphology by interactive image analysis (Sections 2
and 3). We describe the single-scale dual model filter (Dabbah
et al., 2010) and its extension to multiple scales with pixel classifi-
cation (Sections 4–6). In Section 7 we describe a comparative eval-
uation showing the improved performance of the multi-scale
version over not only the single-scale filter but a number of other
multi-scale detectors. We also demonstrate that the automatically
detected fibres result in morphometric features equivalent to those
generated by expert interactive analysis.

2. Corneal confocal microscopy

The cornea is one of the body’s most innervated tissues. The
sub-basal nerve plexus runs parallel to the surface of the cornea
in the Bowman’s membrane, lying between the outer epithelial
layer and the stroma. Bowman’s layer is about 8–12 lm thick,
and the nerves may be imaged by confocal microscopy using either
a white-light source or a laser source. In this study laser confocal
microscopy was used.1 Typical images are shown in Fig. 1.
2.1. CCM for imaging diabetic peripheral neuropathy

Recent studies suggest that small unmyelinated c-fibres may
be the earliest to be damaged in diabetic neuropathy (Umapathi
et al., 2007; Loseth et al., 2008; Malik et al., 2005). The only
techniques which allow a direct examination of unmyelinated
nerve fibre damage are those of sural nerve biopsy with electron
microscopy (Malik et al., 2005, 2001), and the skin-punch biopsy
(Novella et al., 2001; Singleton et al., 2001; Sumner et al., 2003),
but both are invasive procedures. However, our previous studies
in patients with diabetic neuropathy have shown that CCM can
be used to quantify early small nerve fibre damage and accu-
rately quantify the severity of diabetic neuropathy (Malik
et al., 2003; Kallinikos et al., 2004). Moreover, we have shown
that corneal nerve damage assessed using CCM relates to the
severity of intra-epidermal nerve fibre loss in foot skin biopsies
(Quattrini et al., 2007) and the loss of corneal sensation (Tavak-
oli et al., 2007) in diabetic patients. CCM also detects early nerve
fibre regeneration following pancreas transplantation in diabetic
patients (Mehra et al., 2007). Recently we have also shown that
CCM detects nerve fibre damage in patients with Fabry disease
(Tavakoli et al., 2009) and idiopathic small fibre neuropathy
(Tavakoli et al., 2010a) in the presence of normal electro-physi-
ology and quantitative sensory testing (QST). CCM offers consid-
erable potential as a surrogate marker, and hence as an end-
point for clinical trials in diabetic neuropathy (Tavakoli et al.,
2010b; Hossain et al., 2005).
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2.2. Nerve fibre quantification

Nerve fibres in CCM images appear as bright linear structures
that flow in a predominant direction everywhere. However nerve
fibres have their independent local orientation h (Fig. 1). They also
have different dimensions of length and diameter k. Longer nerve
fibres with larger diameter are considered to be the main trunks
while nerve fibres branching from the main trunks are considered
to be secondary nerve fibres (or nerve branches) as shown in the
square and the ellipse of Fig. 1 respectively.

Previous analyses of CCM images have used manual delineation
of the nerve fibres by experts (Malik et al., 2003; Kallinikos et al.,
2004; Hossain et al., 2005). These studies have shown promising
results in distinguishing control and patient groups using features
such as nerve-fibre length (NFL), nerve-fibre density (NFD), nerve-
branch density (NBD) and tortuosity (NFT) of nerve fibres. Abnor-
mal subjects usually have fewer nerve fibres than normal subjects
and more tortuous structures as shown in Fig. 1. This in turn affects
the quantified metric, that may provide a diagnosis of the
neuropathy.

NFL, which we return to in Section 7, is defined as the total
length of all nerve fibres visible in the CCM image per square
mm. The total length is computed by tracing all the nerve fibres
and nerve-branches in the image. This number is then divided by
the area of the field-of-view provided by the microscope to pro-
duce the NFL (mm/mm2) value.
2.3. Artefacts

Although the process of capturing the images is relatively short
and quick, saccadic eye movement is faster, which could result in
motion or blurring effects of the nerve fibres. As shown in the im-
age samples of Fig. 1, the nerve fibres may also appear very faint
due to differences of depth. The same nerve fibre could appear
and disappear several times as it moves in and out of the focus
plane. This movement will also affect the visual diameter and the
brightness of the fibre. Since the cornea is a transparent spherical
structure, illumination artefacts arise that result in low-frequency
variation in image brightness and contrast. As shown in Fig. 1d,
CCM images also contain small bright structures (usually cells) that
are not nerve fibres, which add to the challenge of identifying
nerve fibres.
3. Linear-structure and feature detection

Detection of curvilinear structures is a requirement in several
applications of medical image analysis. A method of linear struc-
ture detection (Line Operator – LinOp), originally developed for
detection of asbestos fibres (Dixon and Taylor, 1979) has also been
shown to be effective in detecting ducts in mammograms (Zwigge-
laar et al., 2004). LinOp exploits the linear nature of the structures
to enhance their contrast by computing the average intensity of
pixels lying on a line passing through the reference pixel for multi-
ple orientations and scales. The largest values are chosen to corre-
spond to the line, the strength of which is determined by the
difference with the average intensity of the similarly oriented
square neighbourhood.

Frangi et al. (1998) used a multiscale decomposition of the Hes-
sian matrix to detect and measure blood vessels in Digital Subtrac-
tion Angiography images. They derived a discriminant function
based on the eigenvalues and eigenvectors that has maximum re-
sponse for tube-like structures. The external energy is used to at-
tract the curve towards points which have a high likelihood of
lying on a central vessel axis.
The Monogenic signal (Felsberg and Sommer, 2001) is a 2D gen-
eralization of the analytic signal, widely used in time-domain sig-
nal processing. There are several possible ways of extending this
approach to multiple dimensions. The Monogenic signal approach
makes use of the Riesz transform, and results in separating the sig-
nal into local amplitude (or ‘‘structure’’ corresponding approxi-
mately to image intensity) and local phase (corresponding to
local changes). It has been used in extracting structure information
(such as edge and ridge) from images in several medical image
analysis applications (Pan et al., 2006; Ali et al., 2008).

In a preliminary study (Dabbah et al., 2009), we used the 2D Ga-
bor filter (Jain and Farrokhnia, 1991) to detect nerve fibres in CCM
images. This spatial domain enhancement is based on the convolu-
tion of the image with the even-symmetric Gabor filter that is
tuned to the local nerve-fibre orientation.

4. Single-scale dual-model enhancement

All of the methods described in Section 3 are potential means of
enhancing the linear nerve structures in the face of the image cor-
ruption outlined in Section 2.3. In Dabbah et al. (2010) we reported
on the performance of the single-scale dual-model detector in
comparison with these methods. We showed that the detectors
specifically designed for detection of linear structures performed
better than more general feature detectors, such as the Monogenic
filter. In particular the single-scale dual-model detector was supe-
rior to all of them. In this section we briefly describe the algorithm.

4.1. Nerve-fibre contrast enhancement

The dual model consists of separate models of foreground and
background, which adapt to local image conditions to cope with
slowly varying illumination artefacts. The foreground model MF

is an even-symmetric and real-valued Gabor (Jain and Farrokhnia,
1991; Daugman, 1980) wavelet and the background model MB is a
two-dimensional Gaussian envelope.
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xh ¼ x cos hþ y sin h ð3Þ
yh ¼ �x sin hþ y cos h ð4Þ

The x and y axes of the dual-model coordinate frame xh and yh are
defined by a rotation of h, which is the dominant orientation of
the nerve fibres in a particular region within the image (see Sec-
tion 4.2). k and / are the wavelength and the phase of the sinusoidal
signal modulated by the 2D Gaussian envelope with x-axis variance
r2

x and y-axis variance r2
y . The aspect ratio of the Gaussian kernel is

defined by c and its magnitude is a. This dual-model is used to gen-
erate the positive response RP ¼MF þMB and the negative re-
sponse RN ¼MF �MB that are applied to the original CCM
image and can be represented as in Eqs. (5) and (6) respectively.
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The equations of RP and RN assume that the Gaussian envelope of
both responses are identical, i.e. they have the same variances r2

ðx;yÞ
and the same aspect ratio c. The magnitude of the Gaussian enve-
lope a defines the threshold in which a nerve fibre can be distin-



Fig. 2. An illustration of the single-scale dual-model detector (Dabbah et al., 2010). The images in the top row are the original CCM images, and their response is shown in the
bottom row.
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guished from the background image. The value of a can be set
empirically to control sensitivity and accuracy of detection. The
wavelength k defines the frequency band of the information to be
detected in the CCM image. Its value might be computed for a sub-
region within the image that has significant variability of nerve-fi-
bre width. However for simplicity, k is chosen to be a global
estimate of the entire image based on empirical results.

This in turn enhances the nerve fibres that are oriented in the
dominant direction, and decreases anything that is oriented differ-
ently by increasing the contrast between the foreground and the
noisy background, whilst effectively reducing noise around the
nerve-fibre structure as shown in Fig. 2. This pixel-wise operation
adjusts the models to suit the local neighbourhood characteristics
of the reference pixel at I(i, j) by modifying the parameters of the
foreground and background models. The dot products of the mod-
els and the reference pixel’s neighbourhood (Eqs. (7) and (8)) are
then combined to generate the final enhanced value of this partic-
ular reference pixel g(i,j) (Eq. (9)).
Cði;jÞp ¼ hIxði; jÞ;RPi ð7Þ
Cði;jÞn ¼ hIxði; jÞ;RN i ð8Þ

gði;jÞ ¼
Cði;jÞp

1þ e �2kCði;jÞnð Þ ð9Þ
The neighbourhood area, Ix(i, j), of the reference pixel (i, j) is defined
by the width x. RP and RN are the responses from Eqs. (5) and (6).
h � , � i is the dot product operator. The sharpness of the transition of
the enhanced image value at a particular pixel g(i,j) is controlled by
k. A larger k amounts to a sharper transition when Cn = 0.
4.2. Nerve-fibre orientation estimation

In CCM images, the nerve fibres flow in locally consistent orien-
tations. In addition, there is a global orientation that dominates the
general flow. This orientation field describes the coarse structure of
nerve fibres. Using the least mean square (LMS) algorithm (Hong
et al., 1998), the local orientation of the block centred at a certain
pixel is computed as in Rao (1990).

Since the orientations vary at a slow rate, a low-pass Gaussian
filter is applied globally in order to further reduce errors at near-
nerve fibre and non-nerve fibre regions. The LMS produces a stable
smooth orientation field in the region of the nerve fibres; however
when applied on the background of the image, i.e. between fibres,
the estimate is dominated by noise due to the lack of structure and
uniform direction.
4.3. Nerve fibre extraction

The response image is a map of the confidence at each pixel that
it corresponds to a nerve fibre. The sharp transition of the dual-
model between background and foreground has resulted in useful
characteristics in the response image, Fig. 2. Well-defined nerve fi-
bres are more likely to appear as connected structures, while noise
and small undesired curvilinear structures will also be detected
but usually manifested as ill-defined and disoriented small frag-
ments. This makes the extraction of nerve fibres a trivial task,
and the separation of noise and information becomes easier in
the post-processing stages.

The coordinates of each detected nerve fibre are considered to
be the central pixel along the width of the detected objects that ap-
pear as thick ridges flowing across the image. Hence, after the noise



Fig. 3. A conceptual diagram illustrating the operation of the multi-scale dual-model detection algorithm. The images are convolved with the adaptable dual-model
algorithm at different scales and then the responses are combined in the feature space to generate a feature vector for every pixel in the image. The S(�) is the scaling function.
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(small fragments) is removed in post-processing, the response
images are converted to binary images using a global threshold.
The remaining large fragments represent the detected nerve fibres
and are thinned using the method of Zhang and Suen (1984) to ob-
tain the skeleton image (i.e. the one-pixel wide line).
5. Multi-resolution dual-model enhancement

The single resolution detector described in Section 4 makes
use of local orientations calculated on a regional basis and oper-
ates with a single wavelength parameter for the Gabor filter,
thereby assuming a single width for all fibres. In this section
we extend the model to multiple resolutions using a scale pyra-
mid as shown in Fig. 3. We also calculate responses over a range
of orientations, selecting the most appropriate scale and orienta-
tion of the response by pixel classification. There are three
parameters of the Gabor filter that can vary in scale: k, the
wavelength of the sinusoid and rx and ry, the widths of the
Gaussian envelope. To explore this scale space efficiently, we
make use of the single-scale results, choosing values of k, rx

and ry at the original image scale to be the values used in the
single-scale detector. Keeping these values constant we create
a pixel pyramid by sub-sampling (with smoothing) and super-
sampling (by interpolation) the original image. While super-sam-
pling the image adds no new information to the pyramid, it has
the effect of reducing the wavelength and Gaussian widths of
the Gabor filter relative to the size of the image structure.

5.1. Image pyramid

Let us denote L as a vector set of different scale (re-sampling
levels) parameters. Each level l represent a set of estimated
parameters used in the dual-model detection. The spatial fre-
quency of the image structure (nerve fibres) in l is defined by
the k.
L , fl�L ; l
�
L�1; . . . ; l0; . . . ; lþL�1; l

þ
L g 2 R3jL 2 Zþ ð10Þ

l�k , fk;rx;ryg j k ¼ 1;2; . . . ;2Lþ 1 ð11Þ

For example l�1 ðkÞ defines the wavelength of the Gabor filter’s sinu-
soid at the super-sampled level 1. l�2 ðrxÞ defines the Gaussian
spread in x of the Gabor filter at the sub-sampled level 2, etc. In
our implementation L = 2 and the pixel sampling is doubled
(halved) between levels. At each level, eight values of orientation
(h) are explored. The specific values of k, rx and ry at level l0 were
defined empirically in the single-scale detector to be k = 9, rx = 4
and ry = 3.

5.2. Feature vector extraction

In order to generate the feature vector of each CCM image I we
use the transform T : RM�N ! RM�N�O�S, where M � N are the
dimensions of the image, O is the number of orientations used
and S is the number of levels in the pyramid (2L + 1). Analogous
to the single-scale dual-model detection algorithm in Section 4,
transform T consists of two models: foreground model
MF ðxh; yh; l

�
k Þ and background model MBðxh; yh; l

�
k Þ. The difference

between these models and those of the single scale (Eqs. (1) and
(2)) is that they are a function of the different scales defined by
the pyramid L. Also, all orientations are computed at every pixel
unlike the single model where orientation is locally estimated.
Hence there are no equivalents of Eqs. (3) and (4) in this case.

MF ðxh; yh; l
�
k Þ ¼ cos

2p
kk

xh þ /

� �
� exp �1

2
x2

h

r2
xk

þ c2y2
h

r2
yk

 !( )
ð12Þ

MBðxh; yh; l
�
k Þ ¼ a � exp �1

2
x2

h

r2
xk

þ c2y2
h

r2
yk

 !( )
ð13Þ

The adaptation of these two models across the complete range of
scales and orientations defined by the pyramid L should cover all
of the relevant feature space of the nerve fibres. By convolving them
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with the images to generate foreground and background responses
RF ðh; kÞ and RBðhÞ, and finding the difference Gi between these re-
sponses we can generate the feature vector F that describes the
CCM image I.

RF ðh; l�k Þ ¼ I �MF ðxh; yh; l
�
k Þ ð14Þ

RBðh; l�k Þ ¼ I �MBðxh; yh; l
�
k Þ ð15Þ
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F ¼ G1;G2; . . . ;GO�Sf g ð17Þ

a is the threshold parameters that is equivalent to the same param-
eter in the single-scale detector (Eqs. (5) and (6)). However, in this
multi-scale algorithm the logistic transition (Eq. (9)) is replaced by
the classification step of the generated feature vector F in order to
make the final decision.

5.3. Canonical form of the feature vector

Unlike the single-scale detector, the interpretation of the re-
sponse is not trivial. Applying the transform T using the pyra-
mid L generates longer feature vectors which raises the
questions of how to interpret the response in the best possible
way.

Since these feature vectors are associated with certain orienta-
tions, frequencies and local regions of the image, the specific se-
quence of features in the feature vectors is dependent on the
order which these features are formulated. For example the order
of the feature vector provides information about the local orienta-
tion of the fibre. This is useful to know, but irrelevant to classifying
the pixel as belonging to the fibre or non-fibre classes. We need to
generate the features in a canonical form, which means that similar
pixels have similar feature vectors. In this case we wish the feature
vectors to be orientation invariant. This can be achieved by assign-
ing the first sample of the vector to its maximum value, corre-
sponding to the predominant orientation, and then circularly
shifting all samples by this offset.

f , Fði; jÞ ¼ fG1ði; jÞ;G2ði; jÞ; . . . ;GO�Sði; jÞg ð18Þ
s ¼ t j arg max

ft

ðfÞ ð19Þ

f  fðf � sÞ ð20Þ

where f is the cyclic shift function; f is the pixel-wise feature vector
of F at (i, j). s is the number of shift cycles defined by the maximum
value of the vector f. This guarantees that responses of foreground
and background models are canonically aligned in the newly
formed feature vector and independent of the particular orientation
of the models.

6. Nerve fibre classification

We consider three possible ways of using the feature vector F

to assign pixels (i, j) to the foreground or background classes.

6.1. Maximum projection

One simple way of interpreting the feature vector of each CCM
image is by considering the maximum value of a particular sample
among all different frequencies and orientations. Following the
cyclic shift the first feature in the feature vector F has the maxi-
mum value.
Iði; jÞEnh ¼
ft if f t P 0jt ¼ 0
0 Otherwise

�
ð21Þ

The scale and the orientation of this maximum value of f is taken to
be the frequency and orientation at a particular pixel (i, j) of the de-
tected nerve fibre in the enhanced image IEnh. Although this method
is effective, efficient and easy to implement, it discards the rest of
the sample responses at other orientations and scales, hence
neglecting the possibility that combinations of features may be use-
ful in correctly classifying pixels.

6.2. Scaled conjugate gradient neural network

We assign pixels to fibre or non-fibre classes by means of a mul-
ti-layer perceptron neural network trained using the conjugate
gradient descent method. Conjugate gradient methods (CGM)
(Fletcher, 1975) are general purpose second order techniques that
help minimise functions of several variables using the second
derivatives of the function. They generally find a better way to a
minimum than a first order technique (such as standard backprop-
agation), by proceeding in the direction which is conjugate to the
directions of the previous steps of the error function. Thus the min-
imisation performed in one step is not partially undone by the
next, as is the case with standard backpropagation and other gra-
dient descent methods. The traditional CGM uses the gradient to
compute a search direction. It then uses a line search algorithm
to find the optimal step size along a line in the search direction
(Johansson et al., 1991).

The scaled conjugate gradient algorithm (SCG), developed by
Moller (1993), was designed to avoid the time-consuming line
search. This algorithm combines the model-trust region approach
used in the Levenberg–Marquardt algorithm with the conjugate
gradient approach in order to numerically estimate the second
derivatives (Hessian matrix) and scale the step size. Its success in
large-scale problems does not depend on the user dependent
parameters learning rate and momentum constant as in Rumelhart
et al. (1986). The number of input and output nodes are deter-
mined by the feature vector, while the number of hidden nodes
was empirically set at 50 to represent the variation in the classifi-
cation space and is defined during the learning procedure.

6.3. Random forest classifier

The random forests (RF) machine learning algorithm is a classi-
fier (Breiman, 2001) that encompasses bagging (Breiman, 1996)
and random decision forests (Amit and Geman, 1997; Ho, 1998).
RF became popular due to its simplicity of training and tuning
while offering a similar performance to boosting. It is a large col-
lection of decorrelated decision trees, which are ideal candidates
to capture complex interaction structures in data. RF is supposed
to be resistant to over-fitting of data if individual trees are suffi-
ciently deep.

Consider a RF collection of tree predictors h(x;wu), u = 1, . . . ,U,
where x is a random sample of d-dimensions associated to random
vector X and wu independent identically distributed random vec-
tors. Given a dataset of N samples, the bootstrap training sample
of tree h(x;wu) is used to grow the tree by recursively selecting a
subset of random dimensions d̂ such that d̂� d and picking the
best split of each node based on these variables. Unlike conven-
tional decision trees, pruning is not required.

ĉ ¼ majority votefCuðxÞgU
1 ð22Þ

To make a prediction for a new sample x, the trained RF could then
be used for classification by majority vote among the trees of the RF
as shown in Eq. (22), where Cu(x) is the class prediction of the uth
RF tree. The important parameters of the RF classifier were set as



Fig. 4. An illustration of the multi-scale dual-model detection responses when using different pixel classification methods. The first row consists of the original CCM images.
The following rows contain the response images when using maximum response, NNT and RF respectively. Responses are presented as heat maps, where brighter colours
correspond to higher values. The best response is given when using NNT. The classifier successfully learnt the right balance of sensitivity and specificity (see Section 7). The RF
has a far greater sensitivity than the maximum response but its higher sensitivity results in noisier detection. The improved response is most visible in regions of the image
where the signal to noise ratio is low. The very bright region at the centre of the image in column 4 is an extreme example of a low-frequency illumination artifact. It is not
clear visually whether any fibres are present there. The NNT and RF detectors identify more fibres with greater confidence.
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follows in this case. The number of trees in the forest should be suf-
ficiently large to ensure that each input class receives a number of
predictions: set to 1000. The number of variables randomly sam-
pled at each branch: set to 5.
2 CCMetrics is a purpose built interactive graphical interface which helps experts to
anually delineate nerve fibres in CCM images.
7. Detection results and analysis

7.1. Database and experimental settings

The evaluation is conducted on a database of 521 CCM images
captured using the HRT-III microscope from 68 subjects (20 con-
trols and 48 diabetic patients). The images have a size of
384 � 384 pixels, 8-bit grey levels and are stored in BMP format.
The resolution is 1.0417 lm and the field of view is
400 � 400 lm2 of the cornea. For each individual, several fields
of view are selected manually from near the centre of the cornea
that show recognisable nerve fibres. Other than the processing
inherent in the filters (described above), no additional preprocess-
ing was applied to the images.

Using the neuropathy disability score (NDS) (Abbott et al.,
2002), the patients were categorised into four groups according
to severity of neuropathy (non-neuropathic: 0 P NDS 6 2(n = 26),
mild: 3 P NDS 6 5(n = 9), moderate: 6 P NDS 6 8(n = 10) and se-
vere: 9 P NDS 6 10(n = 3)).
7.2. Nerve fibre detection performance

The evaluation of detecting nerve fibres is conducted against
ground-truth data which has been generated by clinical experts
using CCMetrics.2 Each nerve fibre and branch is traced to generate
a single-pixel wide line along the fibre centre, from which the
parameters NFL, NFD, NBD and tortuosity can be derived. In auto-
matic detection, the response images are thresholded and then
thinned to one-pixel wide lines. These lines are then compared pixel
by pixel to the ground-truth, a true positive being scored if the de-
tected pixel is within a three-pixel (3.14 lm) tolerance of ground
truth and a false positive if it is outside this tolerance. The evaluation
is quantified in terms of true-positive rate (TPR or sensitivity) and
false-positive rate (FPR or 1-specificity) defined at the operational
m



Fig. 5. ROC curves of nerve fibre detection for all different methods including the RF
and NNT pixel classifiers of the multi-scale dual model. As shown the NNT has
achieved the best performance followed by the RF classification. The single-scale
dual-model algorithm has marginally outperformed the maximum response
method.
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point of the equal error rate (EER). The training of the NNT and RF
was based on a single CCM image with a ground-truth delineation.
Once the classifier is trained using this single image, it is applied
on the entire database and the results are obtained through a com-
parison with the ground-truth delineation of every test image.

The single-scale methods (Gabor wavelet and single scale dual
model) were evaluated against their single-scale response, while
the multi-scale methods (LinOp, Hessian and Monogenic filters)
were evaluated against their maximum response. Fig. 4 shows
Fig. 6. A visual comparison between the responses of different detection methods for th
maximum response method for the multi-scale dual-model and (d) is its NNT counterpa
matrix response and (h) is the Monogenic signal response. The multi-scale dual model w
model. The Hessian and Monogenic responses suffer from a greater sensitivity to noise du
responses struggled to suppress the background. Responses are presented as heat maps
the response images in different CCM images arising from each
of the three methods of pixel classification i.e. maximum response,
NNT and RF. Both the RF and NNT classifiers are more sensitive
than the maximum response method.

In our earlier study (Dabbah et al., 2010) we compared the sin-
gle scale dual-model detector with the comparator methods de-
scribed in Section 3, some of which are specifically designed to
detect curvilinear structures, while others are more general feature
detectors. In that comparison we used single-scale instantiations of
all detectors, though some have multi-scale implementations. The
dual model produced the best ROC curves and EER classification
rates. Here we repeat the evaluation using multi-scale versions of
all detectors. Fig. 5 shows the resulting ROC curves. The single-
scale dual model detector is also included for comparison.

The single scale dual-model produces a better response than the
multi-scale versions of the other methods. The maximum projec-
tion version of the multi-scale dual model produced slightly worse
results than the single-scale version, while both the RF and NNT
versions generated improved results, more so in the case of the
NNT classifier.

This may be due to the fact that the orientation estimate in the
single scale model are locally smoothed, whereas those in the mul-
ti-scale, maximum response, model are not, and therefore subject
to noise variations. The NNT and RF classifications are less sensitive
to noisy orientation estimates because all orientations across scale
are contributing to the solution.

Due to the second order derivative components in the Hessian
and the Monogenic methods their responses are very sensitive to
the background noise. LinOp and the 2D Gabor methods, on the
other hand were less sensitive to noise, but tended to include too
much background.

Fig. 6 provides a visual illustration of the responses of several of
the detectors in the comparison. Fig. 5 and Table 1 provide quanti-
e original CCM image in (a). (b) is the single-scale dual-model response, (c) is the
rt. (e) is the LinOp response, (f) is the 2D Gabor Wavelet response, (g) the Hessian
ith NNT classification has the best performance followed by the single-scale dual-
e the second derivative components in the algorithms. The LinOp and the 2D Gabor

, where brighter colours correspond to higher values.
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tative confirmation of the qualitative results shown in Figs. 4 and 6.
The maximum response output of the multi-scale dual model
achieves superior performance to the maximum response outputs
of the Hessian and Monogenic filters, and matches the perfor-
mance of the multi-scale LinOp. The multi-scale dual model using
NNT pixel classification achieves the highest performance in
detecting nerve fibres. It achieves highest sensitivity and specificity
at the EER of 15.44%. We did not set out to conduct a comparison
between the two classifiers used, rather to show that the classifica-
tion method is capable of producing useful results. Using the par-
ticular (empirically set) parameters for these classifiers and this
data set, the RF is more sensitive than the NNT, resulting in a nois-
ier response (Fig. 4). The measured error rates for the NNT classifier
shown in Table 1 (significant at the p < 0.05 level) emphasise the
superior performance achieved by the NNT classifier, here.

7.3. Clinical utility using nerve-fibre length analysis

In studies using interactive measurements, nerve-fibre length
(NFL), was shown to be the most sensitive of the CCM metrics to
the presence of neuropathy as assessed by the current clinical tech-
niques. Hence it is also used here to evaluate the similarity of the
automatic analysis to the manual analysis. Fig. 7 shows the distri-
bution of NFL measurements in NDS groups made interactively by
experts (a) and automatically (b). The manually and automatically
generated NFL distributions are very similar and strongly corre-
lated (Fig. 7c) with r = 0.95. They are both statistically significant
in separating between the NDS groups: for the manual analysis
(p = 0.03 � 10�6), while the automatic has (p = 0.68 � 10�6). How-
ever as shown in the scatter plot Fig. 7c this statistical significance
is not enough for classification of individual cases due to the over-
lapped distributions. This could be as a result of the limitation in
using the NDS score, which is used as a diagnostic score and unsta-
ble for individual analysis. This result however could be improved
by utilising the potential of the automatic analysis in utilising fur-
ther metrics such as nerve fibre width.
Table 1
A comparison of mean EER, its standard deviations, TPR (sensitivity) and FPR (1-specificity)
NNT classification results in the lowest error rate.

Max NNT RF Dual m

EER (l) 0.2056 0.1544 0.1746 0.1779
EER (r) 0.1806 0.1083 0.1176 0.1058
TPR (sensitivity) 0.8135 0.8478 0.8290 0.8172
FPR (1-specificity) 0.1940 0.1533 0.1747 0.1758

Fig. 7. A comparison between the manually and automatically obtained NFL in groups
automatic (b) boxplots show strong similarity. Both are statistically significant (p � 0) in
strong correlation between them (r = 0.95) and demonstrates the overlap between the g
8. Conclusion

The analysis of CCM images requires the identification of fibre-
like structures with low contrast in noisy images. This is a require-
ment shared by a number of imaging applications in biology, med-
icine and other fields, and a number of methods have been
developed and used in these various applications. In the present
work we present a new multi-scale dual-model method to detect
corneal nerve fibres in CCM images and we compare this with
some more generic methods. In our evaluation the multi-scale
dual-model with the NNT pixel classification has outperformed
all other methods and obtained the lowest EER at 15.44%. A point
worth noting is that the additional performance was achieved at
the expense of a very small training burden. A single annotated im-
age was used to provide training data for both the RF and NNT clas-
sifiers. This is a potentially important issue in the practical
implementation of the method.

The clinical utility of the method was also evaluated by compar-
ing our automatic detection against expert manual annotation of the
images. We demonstrate equivalent results with the manual analy-
sis which has previously demonstrated encouraging clinical perfor-
mance for the stratification of neuropathic severity. Here we have
used the NDS score, which is widely used clinically and is adequate
for defining the clinical severity of neuropathy to assess the corre-
spondence between manual and automatic detection. However,
the NDS may not be adequate for a thorough assessment of clinical
utility because it does not detect small fibre damage. Hence as
CCM can evaluate small fibre damage, any assessment of the clinical
utility of this test may be limited. As noted in Section 2.1, the ac-
cepted gold standard for defining small fibre pathology can only be
achieved by either nerve or skin biopsy, both of which are invasive
and highly labour-intensive assessments. We are currently collect-
ing a data set that will enable us to evaluate the CCM metrics with
measures of loss of nerve fibres in skin biopsies.

In conclusion the automated analysis produces equivalent re-
sults to manual analysis, while being a quicker and potentially
of all detection methods. The table clearly shows that the multi-scale dual model with

odel LinOp 2D Gabor Hessian Monogenic

0.2265 0.2415 0.2314 0.2650
0.1076 0.1074 0.1153 0.1258
0.766 0.7212 0.7773 0.7240
0.2489 0.2467 0.2527 0.2782

of different severity of neuropathy, as judged by NDS score. The manual (a) and
separating the NDS groups detailed in Section 7.1. The scatter plot in (c) shows the
roups according to the NDS categories.
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more reliable and practical alternative due to its consistency and
immunity to inter/intra-observer variability. The multi-scale
detection method used here could, of course, be applied in other
contexts as the detection of curvilinear structures is a requirement
in a number of applications. The method is generic, requiring only
the establishment of appropriate parameters for k, rx and ry at the
resolution of the original image. The empirical values used in this
application are quoted in Section 5.1.
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Abstract— Objective: We describe and evaluate an automated 

software tool for nerve fibre detection and quantification in 

corneal confocal microscopy (CCM) images, combining sensitive 

nerve-fibre detection with morphological descriptors. Method: 

We have evaluated the tool for quantification of Diabetic 

Sensorimotor Polyneuropathy (DSPN) using both new and 

previously published morphological features. The evaluation 

used 888 images from 176 subjects (84 controls and 92 patients 

with Type 1 diabetes). The patient group was further subdivided 

into those with (n=63) and without (n=29) DSPN. Results: We 

achieve improved nerve-fibre detection over previous results 

(91.7% sensitivity and specificity in identifying nerve-fibre 

pixels). Automatic quantification of nerve morphology shows a 

high correlation with previously reported, manually measured, 

features. ROC analysis of both manual and automatic 

measurement regimes resulted in similar results in distinguishing 

patients with DSPN from those without: AUC of about 0.77 and 

72% sensitivity-specificity at the equal error rate point. 

Conclusion: Automated quantification of corneal nerves in CCM 

images provides a sensitive tool for identification of DSPN. Its 

performance is equivalent to manual quantification, while 

improving speed and repeatability. Significance: Corneal 

confocal microscopy is a novel in-vivo imaging modality that has 

the potential to be a non-invasive and objective image biomarker 

for peripheral neuropathy. Automatic quantification of nerve 

morphology is a major step forward in the early diagnosis and 

assessment of progression, and, in particular, for use in clinical 

trials to establish therapeutic benefit in diabetic and other 

peripheral neuropathies. 

 
Index Terms— Diabetic Sensorimotor Polyneuropathy, 

Computer Aided Diagnosis, Corneal Confocal Microscopy, Image 

Analysis, Nerve Fibre Quantification 

 

I. INTRODUCTION 

IABETIC sensorimotor polyneuropathy (DSPN) is one of 

most common long term complications of diabetes. Up to 

 
 J. Graham is with the Centre for Imaging Sciences, the University of 

Manchester, UK. E-mail: jim.graham@manchester.ac.uk 
 X. Chen is now at the Division of Imaging Sciences and Biomedical 

Engineering, Kings College London, UK. E-mail: xin.chen@kcl.ac.uk 
 M. Dabbah is currently at Roke Manor Research Ltd. Romsey, UK 
 I. Petropoulos, M. Tavakoli and Rayaz Malik are with Centre for 

Endocrinology & Diabetes, Institute of Human Development, Manchester, 
UK. I. Petropoulos and Rayaz Malik are also with Weill Cornell Medical 
College in Qatar, Division of Medicine, Doha, Qatar. 

Copyright (c) 2016 IEEE. Personal use of this material is permitted. However, 
permission to use this material for any other purposes must be obtained from 
the IEEE by sending an email to pubs-permissions@ieee.org. 

50% of diabetic patients suffer from it [1], and it is estimated 

that about one in six diabetic patients have chronic painful 

neuropathy [2]. Several methods are currently used to quantify 

neuropathy, including clinical scoring of symptoms, 

quantitative sensory testing, nerve conduction measurements 

and microscopic measurement of intra-epidermal nerve-fibre 

density (IENFD) in skin biopsy samples. These methods have 

their advantages and limitations. Thus, whilst symptoms and 

signs are directly relevant to the patient and are easily 

recorded, they are subjective resulting in poor repeatability 

[3]. Neurophysiology is more objective; however it only 

assesses large fibres, which constitute a tiny proportion of all 

the nerve fibres present in a peripheral nerve and has also been 

shown to have limited reproducibility [4]. The quantification 

of IENFD in skin biopsies is objective, but is clearly invasive 

and requires considerable expertise in assessment.  There is a 

need for a rapid, non-invasive assessment that is truly 

quantitative and assesses small nerve fibres, which are more 

likely to be involved in neuropathy [5, 6].  

      Corneal confocal microscopy (CCM) images of nerve 

fibres are captured from the sub-basal plexus immediately 

above Bowman’s membrane of the cornea by an in-vivo laser 

confocal microscope. Fig. 1a shows an example image. One of 

the advantages of CCM is the entirely non-invasive and 

relatively rapid (about 2 minutes) acquisition of images of 

small nerve fibres and other corneal structures. Clinical studies 

[7] have shown that CCM is capable of making quantitative 

assessment of DSPN and has the potential to be an ideal 

surrogate endpoint. It has also recently been shown to have a 

predictive ability in identifying diabetic patients at risk of 

developing DSPN [8] and has been used in several clinical 

intervention studies showing nerve-fibre repair [9-11]. 

Interactive analysis has been used to derive measurements 

from these images, such as corneal nerve-fibre length (CNFL), 

corneal nerve-fibre density (CNFD) and corneal nerve branch 

density (CNBD) [12, 13] (Fig. 1). CNFL is defined as the total 

length of all nerve fibres visible in the CCM image per square 

millimetre. CNFD and CNBD are the number of the major 

nerves (red lines in Fig. 1b) per square millimetre and the 

number of primary branches emanating from those major 

nerve trunks (green dots in Fig. 1b) per square millimetre 

respectively. Although an association has been demonstrated 

between these quantitative features and the severity of DSPN 

[7] in cross sectional studies, the manual analysis suffers from 

the usual problems of being labour-intensive and subjective 

and therefore raises considerable difficulties, particularly 

when undertaking longitudinal follow-up studies [14]. 
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Consequently the quantification results show poor 

reproducibility, especially in CNBD [15]. For the technology 

to be clinically useful, the analysis of images needs to be done 

automatically. 

Here we describe a fully automatic nerve-fibre detection 

and quantification system. Fig. 1a indicates that the 

appearance of nerve fibres in CCM images covers a wide 

contrast range, with some fibres appearing very faint on a 

noisy background, whilst other, larger, fibres show strong 

contrast. A number of studies have presented methods of 

detecting similar linear structures in different types of images 

e.g. the detection of blood vessels in retinal images [16], and 

the detection of curvilinear structure in mammograms [17]. 

Previous studies aimed at automatic fibre detection in CCM 

images include Scarpa et al. [18] who described a method for 

tracing nerve fibres based on automatically initialised seed 

points, and Holmes et al. [19]who identified fibres based on 

ridge points. Sindt et al. [20] detected several types of objects 

visible in CCM images, including dendritic immune cells and 

wing cells in addition to nerve fibres. Dabbah et al. [21] 

presented a method of fibre detection based on a multi-scale 

Gabor filter with responses trained using a neural network. 

The best detection performances in various applications are 

achieved using methods based on machine learning, in which 

features are derived from training images [16, 17, 21]. 

      Following fibre detection, it is required to extract 

individual fibres, identify branches and quantify appropriate 

features for classification. A number of studies have 

investigated the quantification of a variety of image features, 

describing the morphology of nerve fibres delineated either 

manually or automatically [13, 19-21]. These studies have 

shown the relationship between several features, including 

those listed above, and neuropathic status. None of them, 

however, has addressed the question of diagnosis of individual 

subjects.  

      We have previously described our image filter for 

enhancing nerve-fibre pixels [21] and reported clinical results 

of applying this system to DSPN [22]. This paper describes 

the development of the fibre detection method into a complete 

tool for measurement of nerve-fibre morphology to act as a 

diagnostic aid, making three specific contributions over our 

earlier publications: (1) we compare our fibre detector [21] 

with another, successful, linear feature descriptor and 

demonstrate the best reported performance in detecting nerve-

fibre pixels in CCM images. (2) The detailed algorithms for 

quantification of morphometric features are presented for the 

first time (only CNFL was used in [21]), including the 

established features (CNFD, CNFL, CNBD) and new features: 

Corneal Nerve-Fibre Width Histogram (CNFWH) and Corneal 

Nerve-Fibre Orientation Histogram (CNFOH). (3) Finally, we 

report a technical validation of the proposed system based on 

CCM images obtained from 84 control subjects and 92 type 1 

diabetic patients, which, to our knowledge, is the largest 

dataset in the literature for DSPN diagnosis of individuals. 

II. METHODS 

A. CCM Images and Manual Measurement 

CCM images (Fig. 1(a)) were captured from all participants using 

the Heidelberg Retina Tomograph Rostock Cornea Module (HRT-

III) as described in [13]. The image dimensions are 384×384 

pixels with the pixel size of 1.0417μm. During the CCM scan, 

images captured from all corneal layers and six sub-basal images 

from the right and left eyes were selected for analysis. Criteria for 

image selection were depth, focus position and contrast. A single 

experienced examiner, masked from the outcome of the medical 

and peripheral neuropathy assessment, manually quantified 

images of all study participants using purpose-written proprietary 

software (CCMetrics: M. A. Dabbah, Imaging Science, University 

of Manchester) to delineate main fibres, branch fibres and branch 

points (red lines, blue lines and green dots respectively in Fig. 

1b). The reproducibility and reliability of manual annotation are 

reported in [15].The specific parameters measured in each frame 

were_ENREF_18: CNFD, CNFL and CNBD, as described in 

section I in accordance with our previously published protocol 

[13]. 

B. Automated CCM Measurement 

The automated CCM measurement process consists of two 

main steps: nerve-fibre detection and nerve-fibre 

quantification. 

 

1)  Nerve-Fibre Detection: 

In this and similar applications [16, 17], methods based on 

machine learning have been reported to outperform others in 

detection of curvilinear features. The machine learning method 

normally consists of two key elements, feature description and 

classifier training on a set of samples.  

 

                                                        (a)                                                                 (b)                                                                      (c) 

Fig. 1. (a) Original CCM image. (b) Manually quantified CCM image. (c) Automatically quantified CCM image. Red lines represent main nerve fibres, blue 
lines are branches and green spots indicate branch points on the main nerve trunks. Refer to online coloured version. 
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For the feature description process, we have implemented 

and adapted two of the most successful methods [17, 21] for 

representing curvilinear structures. Dabbah et al. [21] 

proposed a multi-scale “dual-model filter” (DMF) that 

combines a foreground model based on a Gabor wavelet with 

a Gaussian background model that scales the output according 

to the level of noise. In our implementation, we apply the 

DMF at eight orientations (suggested in [21]) and at four 

levels of an image pyramid. Each level is a down-sampled 

(with smoothing) version of its immediate higher level by a 

factor of 2. The Gabor wavelet and Gaussian filter covered 

orientations from 0° to 180° and a range of fibre widths that 

we found to be sufficient for the CCM images in our study. 

The DMF method results in 32-dimensional vectors (8 

orientations × 4 scale pyramid levels) to describe features at 

each pixel location. 

Berks et al. [17] described a system that used the dual-tree 

complex wavelet transform (DWT) [23] for detection of linear 

structures in mammograms. The DWT combines the outputs 

of two discrete transforms, using real wavelets differing in 

phase by 90°, to form the real and imaginary parts of complex 

coefficients. It provides a directionally selective representation 

with approximately shift-invariant coefficient magnitudes and 

local phase information. As in the DMF method, the DWT is 

applied to a four-level image pyramid. Additionally, the DWT 

is performed at six different orientations (±15°, ±45°, ±75°, 

used in [17]) at each pyramid level. The six sub-bands are then 

multiplied by {i, -i, i, -1, 1, -1} respectively, so that the phase 

at the centre of the impulse response of each wavelet is zero. 

Finally, to achieve 180° rotational symmetry, any coefficient 

with negative imaginary part is replaced with its complex 

conjugate. Hence from coarse level to fine level of the image 

pyramid, the DWT results in a 48-element feature vector (4 

level image pyramid × 6 orientation × 2 magnitude and phase) 

for each selected pixel location. Both of these detectors 

outperformed competitors in their respective domains.   

In this study we have implemented both detectors in the 

form proposed by the original authors (number of pyramid 

levels and orientations) as these produced feature vectors of 

similar dimension. We then subjected them to a comparative 

analysis in detecting nerve fibres. 

For classifier training, the feature descriptors and their 

corresponding fibre/non-fibre labels from a set of training 

samples were used as the inputs to a classifier, which took the 

form of either a neural network or random forest [24]. The 

trained classification model was then used for classifying 

fibre/non-fibre pixels in unseen CCM images. 

CCM images have a fairly high level of background noise 

(see Fig. 2a), which at a fine scale have similar contrast to 

nerve fibres at random orientations. These may be detected by 

the trained detectors and are removed by a further denoising 

step, which iteratively diminishes pixels that are not consistent 

with the dominant direction over a localised region. The 

output response image after denoising is shown in Fig. 2b. The 

 

            (a)                                                                     (b)                                                                      (c) 

 

                                                     (d)                                                                    (e)                                                                      (f) 

Fig. 2. (a) Original CCM image (b) Response image after nerve-fibre detection and denoising (c) Nerve-fibre skeleton with highlighted weak connection 
segments (d) Nerve-fibre skeleton after assessment of weak connections. (e) Automatically detected end points (hollow circles) and intersection points (solid 

circles). (f) Final detected nerve fibres. 



0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2573642, IEEE
Transactions on Biomedical Engineering

TBME-01644-2015.R1 

 

4 

evaluation and comparison of different combinations of the two 

feature descriptors and the two classifiers, before and after 

denoising, are presented in section III.  

Based on the denoised image, a threshold is then applied to 

generate a binary image. The optimum threshold value is 

determined by the training and validation experiments 

described in section III-A. The binary image is then filtered by 

morphological operators to fill small gaps within nerve fibres 

and link adjacent structures. The binary structures are thinned 

to obtain a one-pixel wide skeleton (Fig. 2c). Branch and end 

points, identified by counting the neighbours of each skeleton 

point, are each assigned a unique label. For some regions, the 

evidence for nerve fibres is too weak (as highlighted in Fig. 

2c) to be detected by a global threshold. However, the 

undetected pixels may be important in determining the nerve-

fibre connectivity. Hence, for each end point, we extrude 30 

pixels along the fibre orientations. The orientation of nerve 

fibres at each pixel location can be estimated using the second 

eigenvalue of the Hessian matrix of the response image. If an 

intersection with another fibre is detected and the average 

probability from the response image of the extruded pixels is 

sufficiently high (> 0.2), the extruded line is retained, 

otherwise it is eliminated (Fig. 2d). Subsequently, independent 

small segments and short branches that are less than 15 pixels 

long are removed, and the intersection points (solid circles) 

and end points (hollow circles) are calculated again as shown 

in Fig. 2e. The final binary skeleton, as shown in Fig. 2f, is 

used for total nerve-fibre quantification, described in the next 

section.  

 

2) Nerve-Fibre Quantification 

Fig. 2f shows that the output of fibre detection consists of 

several networks of interconnected line segments. In order to 

produce similar results to the manual CNFD, CNFL and 

CNBD, it is important to identify the main fibres within these 

networks and the branch points along the main fibres. To 

connect the appropriate fibre segments together, we generate 

four N × N matrices (MI, ML, MW and MO) to store the fibre 

intensity, fibre length, fibre width (described later in this 

section) and fibre orientation information respectively for each 

segment. N is the total number of branch and end points. If the 

ith and jth end/branch points are connected by a segment, the 

intensity, width, length and orientation information will be 

saved at the [i, j] location of the corresponding matrices; if 

they are not connected, these elements are zero. The matrices 

of intensity (MI), length (ML) and width (MW) are 

symmetric, as the elements at [i, j] and [j, i] should be 

identical. The [i, j] and [j, i] elements in the orientation matrix 

MO represent the respective orientations of the opposite ends 

of the fibre segment.  

Identification of the main nerve fibres starts with the most 

prominent segments: those with greatest length and width. 

These are identified by multiplying the corresponding 

elements of MW and ML to produce a new matrix MA. The 

segments are considered in sequence according to the 

corresponding values of MA in descending order. There are 

normally two candidate segments that intersect with the 

current segment at a branch point. The candidate segments are 

ranked for the length, orientation difference, intensity and 

width parameters respectively. The candidate with the highest 

summed rank is chosen to connect with the current segment. 

The process continues till an end point is reached. The 

relevant entry in MA is set to zero and the process continues 

until no non-zero elements remain in MA. Finally, a list of 

connected fibres is obtained. Only the fibres with length 

greater than a threshold are kept as the main fibres. Fig. 1b 

and 1c respectively show the manual and automatic 

quantification results of the CCM image in Fig. 1a. The red 

lines show the principal nerve fibres, which are counted to 

produce CNFD. The blue lines indicate the secondary nerve 

fibres, which together with the principal fibres make up 

CNFL. The green dots are the branch points from the main 

fibres that are used for CNBD calculation.  
Besides the CNFD, CNFL and CNBD features that are 

readily measured in the manual analysis, automatic 

quantification is able to calculate additional features. These 

additional CCM features include the total corneal nerve-fibre 

area per mm2 (CNFA), the corneal nerve-fibre width 

histogram (CNFWH) and the corneal nerve-fibre orientation 

histogram (CNFOH). These can be calculated if the width and 

orientation at each nerve-fibre location is known. The 

orientation is calculated by the Hessian method referred to in 

section II-B-1. The nerve-fibre width estimation for a 

particular segment is illustrated in Fig. 3. Fig. 3a shows a 

highlighted example nerve-fibre segment along with a 

           

                                          (a)                                                                         (b)                                                                            (c) 

Fig. 3. (a) Original CCM image with a highlighted segment, a selection of orthogonal profile lines are indicated on the enlarged inset.  Profiles are calculated at 
each pixel along the segment. (b) Average of all the profile lines along the whole fibre segment. (c) The symmetric profile of (b) is firstly calculated, and then 
normalised (Solid line). A Gaussian distribution is fitted for nerve-fibre width estimation (broken line). The final width equals 2.5 times the RMS width (σ) of the 
fitted Gaussian curve.   
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Fig. 4. ROC curves for nerve-fibre detection on dataset 2, using 
DMNN (Dual Model, Neural Network), DMRF (Dual Model, Random 

Forest), DTNN (Dual-Tree Wavelet, neural Network) and DTRF 

(Dual-Tree Wavelet, Random Forest) respectively. 

magnified version. At each nerve-fibre location, an intensity 

profile line of length 13 pixels (larger than the thickest fibre) 

is extracted perpendicular to the nerve-fibre orientation, as 

indicated by the short straight lines in Fig. 3a. The profiles 

corresponding to a fibre segment are averaged along the length 

of the segment to generate a representative profile for the 

segment, which is then further averaged (Fig. 3b) with its 

symmetrically inverted profile, smoothed by a three pixel 

length average filter and normalised (Fig. 3c). Finally a 

Gaussian curve is fitted to the normalised profile curve (Fig. 

3c). The final width of that segment is calculated as 2.5 

(empirically determined) times the RMS width of the fitted 

Gaussian curve. CNFWH is the number of occurrences of 

different fibre widths in the range between 1 to 8 pixels, at 0.2 

pixels interval (36 bins). The CNFA is calculated as sum of 

fibre width × fibre length of all the fibre segments in mm2. 

The CNFOH is the number of occurrences of different fibre 

orientations in the range between 0° to 179°, at 5 degree 

interval (36 bins). 

III. MATERIALS AND EVALUATION 

We performed the model training and testing processes on two 

independent datasets. Dataset 1 contains 200 CCM images 

which were randomly selected from healthy volunteers and 

subjects who were diagnosed with type 1 diabetes. This 

dataset was used for model training and validation for 

parameter optimisations. The testing stage was conducted on 

an independent dataset 2 that contained 888 images captured 

from 176 subjects (84 controls and 92 diabetic patients). The 

subjects were divided into 3 groups: control (n=84), type 1 

diabetic patient with no neuropathy (n=63) and diabetic 

patients with neuropathy (n=29). The Toronto Diabetic 

Neuropathy Expert Group (TC) [6] recommendation was 

followed to define an individual to have DSPN if he/she met 

both of the following criteria: (1) Abnormal nerve conduction 

– A peroneal motor nerve conduction velocity of <42 m/s; (2) 

a symptom or sign of neuropathy, defined as ONE of the 

following: (a) diabetic neuropathy symptom (DNS) [25] of 1 

or more out of 4, (b) neuropathy disability score (NDS) [26] of 

3 or more out of 10. These features, along with a number of 

other clinical and physiological parameters, were measured for 

each subject [22]. 

Following the description in section II-A, all images from 

both dataset 1 and dataset 2 were acquired by the same 

procedure. They were all manually segmented by a trained 

clinician (INP). CNFD, CNFL and CNBD were also measured 

manually in each of the images using the CCMetrics 

annotation tool (denoted as MCNFD, MCNFL, and MCNBD, 

respectively). 

 

A. Evaluation of Nerve-Fibre Detection 

For the evaluation of nerve-fibre detection, we firstly trained 

and validated the models based on dataset 1 using a two-fold 

cross validation. The 200 images in dataset 1 were randomly 

divided into two groups with 100 images each. Each set served 

for parameter setting and training based on the other half as a 

test set.  The roles were then reversed. We performed this two-

fold cross validation on the four combinations of feature 

descriptors (DMF and DWT) and model classifiers [24] (random 

forest (RFC) and multi-layer perceptron neural network classifiers 

(NNC)), denoted as DMRF (DMF + RFC), DMNN (DMF + 

NNC), DTRF (DWT + RFC) and DTNN (DWT + NNC). For 

each of the combinations, we repeated the two-fold cross 

validation to investigate the optimum parameter settings by 

varying the number of training pixels (500, 1000, 2000 pixels 

randomly selected from each of the foreground and background 

regions for each image), the number of trees (100, 200 and 500 

trees) in RFC and the number of hidden neurons (20, 50 and 100) 

in the three-layer NNC.  

For performance evaluation, as in [21], the response images 

(before denoising) were thresholded and thinned to one-pixel 

wide lines. These lines were then compared pixel by pixel to 

the manually generated skeletons acting as ground-truth, a true 

positive (TP) being scored if the detected pixel is within a 

three-pixel tolerance of ground truth and a false positive (FP) 

if it is outside this tolerance. True negative (TN) and false 

negative (FN) pixels are recorded if the pixel in the detected 

image is zero while the ground-truth is zero and one 

respectively. The three pixel tolerance deals with the 

imprecision in placing hand-drawn centrelines. By varying the 

threshold of the response images, ROC curves can be 

generated for each of the parameter settings. Optimum 

performance, in terms of specificity and sensitivity at the 

equal error rate point and computational time, was achieved 

by using 1000 foreground and background pixels from each 

image for training, and 200 trees for RFC and 50 hidden 

neurons for NNC. 

In the testing stage, we applied the two optimised models 

(one from each of the two-fold cross validation runs on dataset 

1) to the independent dataset 2. ROC performances were 

compared between models trained using DMNN, DMRF, 

DTNN and DTRF. The values of sensitivity and specificity at 

the equal error rate point for the two models were as follows. 

DMNN: 0.917 and 0.913, DMRF: 0.912 and 0.908, DTNN: 
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TABLE I 
FDR AND FNR FOR THE FOUR COMPARED DETECTORS 

BEFORE AND AFTER IMAGE DENOISING. 

 

Method FDR/FNR 

Before denoising 

FDR/FNR 

After denoising 

DMNN 0.4810/0.2700 0.2013/0.2934 

DMRF 0.4828/0.2877 0.2014/0.2983 

DTNN 0.4890/0.2961 0.2012/0.3141 

DTRF 0.4881/0.3221 0.2013/0.3261 

 

0.888 and 0.882, DTRF: 0.883 and 0.878. In Fig. 4, we show 

the ROC plots of the model that with the higher performance. 

These were obtained using the raw detections before denoising 

to obtain an insight into the underlying detector performance. 

From the ROC curves, it is clear that the combination based 

on the DMF outperforms the DTW feature descriptor, having 

higher sensitivity at any value of specificity. 

    Although the specificity is a fair measurement for the 

detection of both background and foreground pixels, the value 

is dominated by the very high TN count. The absolute value of 

specificity is potentially misleading, as we have noted in 

section II-B-1 that the initial detection results in detection of a 

high number of background pixels that are removed by a 

subsequent denoising step. We therefore also calculated the 

False Discovery Rate (FDR=FP/ (FP+TP)) and the False 

Negative Rate (FNR=FN/ (FN+TP)). The smallest (best) 

FDR/FNR measures for the four methods before and after 

image denoising are listed in Table I. Since the two cross 

validation models produce very similar classifications, we 

only report the results from one of the cross validation models. 

All four detector/classifier combinations have similar FDR 

values before denoising and, significantly reduced, after 

denoising, consistent with the similar specificity values at 

most values of sensitivity in Fig. 4. The FNR values increase 

only slightly by denoising, the DM detector achieving better 

FNR figures. Following denoising there is no real difference 

between the RF and NN classifiers. 

B. Evaluation of Nerve-Fibre Quantification 

As observed in section III-A the two cross-validation 
models produced very similar performance on the 
independent dataset 2.  We chose the detector model with 
the slightly higher performance as the basis for automated 
measurements of nerve-fibre parameters, denoted ACNFD, 
ACNFL and ANCBD.  Additionally, total nerve-fibre area, 
orientation histogram and width histogram were calculated 
(CNFA, CNFOH ad CHWH).  For the multidimensional 
features CNFOH and CNFWH, we investigated the use of the 

maximum, standard deviation, skewness, kurtosis and logistic 

regression combing all elements of the histogram feature 

vectors to represent the feature. The standard deviation of the 

histogram proved to be the most effective; these are denoted as 

ASDOH and ASDWH. 

For each of the subjects, the average feature values obtained 

from their CCM images were used. Fig. 5 and Fig. 6 show the 

box plots of each of the manual and automated CCM features 

respectively. In these figures, the central red lines are the 

median, the edges of the box are the 25th and 75th percentiles 

(q1 and q3), and the whiskers extend to the most extreme data 

points that are not identified as being outliers (within the range 

q1-1.5(q3-q1) to q3+1.5(q3-q1)). The outliers are plotted 

individually as red dots. A common decreasing trend from 

control group to neuropathy group can be observed on all 

manual and automated CCM features. The values of the 

manually generated measurements are higher than those 

generated automatically. One reason for this is that the manual 

tracing process deviates from the exact fibre path (Fig 1(b)), 

resulting in a larger CNFL value. Additionally, the automated 

method is less effective than human annotators at connecting 

weak branches, resulting in generally higher CNFD and 

CNBD values for the manual analysis. However, the important 

point is the relative correlation between manual and automated 

measures across the control and patient groups. The Pearson 

correlation coefficients between automatically and manually 

derived CNFL, CNFD and CNBD measurements were 0.861, 

0.859 and 0.701 respectively. The lower correlation in the case 

of CNBD measurement is due to poor reproducibility in the 

manual measurement of this feature. This has been reported in 

[15] and arises from the subjective judgement required for 

identifying branch points. 

We used both the ANOVA test [27] and ROC analysis to 

demonstrate the capability of using the CCM image features to 

discriminate between control and non-neuropathic groups, and 

between non-neuropathic and neuropathic patients, as defined 

by the Toronto Criteria.   

Tables II and III show the respective ANOVA p-values, the 

area under the ROC curve (AUC) measures and sensitivity and 

specificity values calculated at the equal error point (EEP) of 

the ROC curves. We also experimented with different 

combinations of features, from both manual and automated 

analysis, using logistic regression in a leave-one-out manner. 

In these experiments each subject was predicted by the logistic 

regression model built from the remaining n-1 subjects, where 

n is the total number of subjects in both groups. ROC 

measures for the combinations of all manual features or all 

automated features are listed in Table II and Table III along 

with the single-feature measures. The confidence intervals for 

the combined methods indicate that the combination results in 

a discriminating power indistinguishable from the best manual 

or automatic methods respectively. This would indicate that 

the features are accessing the same underlying information 

about each of the groups. It is unsurprising that there should 

be dependency between total fibre length and fibre density or 

fibre area.  

IV. DISCUSSION 

A number of studies have shown the features extracted from 

Corneal Confocal Microscopy images are associated with the 

severity of diabetic peripheral neuropathy [7, 12, 13] and the 

potential of CCM to quantify severity of neuropathy and 

assess therapeutic benefit has been demonstrated [28]. In this 

paper, we have described the details of a complete system for 

measurement of CCM images to enable discrimination 

between control and diabetic subjects and between diabetic 

subjects with and without neuropathy. 
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Petropoulos et al. [22] reported a clinical evaluation study 

comparing the system described in this paper with manual 

analysis of CCM images and a broader range of subjective and 

objective clinical assessment methods, including the 

Neuropathy Symptom Profile, vibration perception thresholds, 

cool and warm thermal thresholds, and cold and heat induced 

pain. CCM features, measured both automatically and 

manually, were found to be significantly correlated with these 

methods. They noted that the automatic analysis of CCM 

images was significantly faster than manual analysis, taking 

10-22s per image, depending on the density of fibres, as 

opposed to 2-7 minutes.  

Based on the well-established Toronto Criteria, we show 

that both manual and automated CCM features discriminate 

diabetic patients with and without neuropathy. Manual and 

automatic measurement regimes result in broadly similar 

results: about 0.77 AUC value and 73% sensitivity-specificity 

at the equal error rate point. There were no significant 

differences between the ROCs of manual (MCNFD) and 

automated measurements (e.g. p=0.44 and 0.55 for ACNFD 

and SDWH respectively).  

Corneal confocal microscopy has shown considerable 

success in translation to the assessment of other neuropathies 

including Fabry disease [29], ISFN [30], CMT1A [31], 

sarcoidosis [32]. Automated quantification of corneal nerves 

provides a major step forward in the early diagnosis and 

assessment of progression, but in particular for use in clinical 

trials to establish therapeutic benefit in diabetic and other 

peripheral neuropathies.  

The automatic quantification software can be requested 

freely from [33] for research purposes. It is currently being 

used by over 40 research groups worldwide to investigate 

potential relationships between CCM features and different 

types of neuropathy [34]. 

V. CONCLUSION 

We have presented a technical evaluation of a complete 

system that is able to automatically quantify six different types 

of nerve-fibre features in CCM images. We have proposed an 

optimum configuration for detection of nerve fibres based on a 

   

       (a)                                                                           (b)                                                                                (c) 

   

                                         (d)                                                                            (e)                                                                                  (f) 
Fig. 6. Boxplots of automatically measured features for control, non-neuropathy and neuropathy groups in dataset 2 (a) ACNFD (b) ACNFL (c) ACNBD (d) 

ACNFA (e) ASDOH (f) ASDWH. 

 
 

                
                            (a)                                                                          (b)                                                                               (c) 

Fig. 5. Boxplots of manually measured features for control, non-neuropathy and neuropathy groups (a) MCNFD (b) MCNFL (c) MCNBD. 
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previously reported foreground and background model trained 

with a neural network. The automatic quantification results 

show a high correlation with manually measured CCM 

features (CNFL, CNFD and CNBD). The results also show 

significant differences (p-values of ANOVA test in table II) 

between the control and non-neuropathic group, indicating the 

system’s ability to detect early signs of change from a healthy 

to a diabetic condition. The automated system is able to 

produce additional CCM features that measure the area, width 

and orientation of the nerve fibres (CNFA, CNFWH and 

CNFOH). All these new measures show significant differences 

between the non-neuropathic and neuropathic groups (p-

values of ANOVA test in table III), with some features 

achieving 72% sensitivity-specificity at the equal error rate 

point, indicating the capacity to identify individuals suffering 

from neuropathy. The advantages in time labour and 

reproducibility suggest that automatically measured features 

may be used as a new, non-invasive method for diagnosing 

diabetic peripheral neuropathy, providing information on small 

nerve-fibre damage that is not accessible by most currently used 

methods. The only method in current clinical use that addresses 

small fibre damage is the intra-epidermal nerve-fibre density 

(IENFD) measure, which is invasive, requiring a skin biopsy, and 

currently cannot be evaluated automatically. We have recently 

shown [35] that analysis of CCM features has favourable 

diagnostic efficacy to IENFD (AUC of 0.66) 
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PURPOSE. To assess the diagnostic validity of a fully automated image analysis algorithm of in
vivo confocal microscopy images in quantifying corneal subbasal nerves to diagnose diabetic
neuropathy.

METHODS. One hundred eighty-six patients with type 1 and type 2 diabetes mellitus (T1/
T2DM) and 55 age-matched controls underwent assessment of neuropathy and bilateral in
vivo corneal confocal microscopy (IVCCM). Corneal nerve fiber density (CNFD), branch
density (CNBD), and length (CNFL) were quantified with expert, manual, and fully-automated
analysis. The areas under the curve (AUC), odds ratios (OR), and optimal thresholds to rule
out neuropathy were estimated for both analysis methods.

RESULTS. Neuropathy was detected in 53% of patients with diabetes. A significant reduction in
manual and automated CNBD (P < 0.001) and CNFD (P < 0.0001), and CNFL (P < 0.0001)
occurred with increasing neuropathic severity. Manual and automated analysis methods were
highly correlated for CNFD (r ¼ 0.9, P < 0.0001), CNFL (r ¼ 0.89, P < 0.0001), and CNBD (r
¼ 0.75, P < 0.0001). Manual CNFD and automated CNFL were associated with the highest
AUC, sensitivity/specificity and OR to rule out neuropathy.

CONCLUSIONS. Diabetic peripheral neuropathy is associated with significant corneal nerve loss
detected with IVCCM. Fully automated corneal nerve quantification provides an objective and
reproducible means to detect human diabetic neuropathy.

Keywords: corneal confocal microscopy, diabetic neuropathy, diabetes

Diabetic sensorimotor polyneuropathy (DSPN) is a frequent
complication of diabetes affecting up to 53% of people

with diabetes.1 Diagnosis of the condition is important to
define at-risk patients, anticipate deterioration, and assess new
therapies. Neuropathic symptoms and signs, together with
electrodiagnostic studies are the endpoints of choice to
diagnose DSPN and assess therapeutic outcomes.2 Although
these tests offer a robust means of assessing neuropathy, they
predominantly focus on large fiber deficits, yet the earliest
alterations occur in the small unmyelinated C- and thinly
myelinated Ad-nerve fibers.3 Small fiber neuropathy can be
evaluated using quantitative sensory testing of thermal thresh-
olds or skin biopsy to quantify intra-epidermal nerve fiber
density (IENFD). However, the assessment of thermal thresh-
olds is subjective and therefore liable to variability,4 while skin
biopsy is an invasive and costly technique, which is not
routinely available across healthcare systems.5

We have pioneered the use of IVCCM and shown that this
rapid, noninvasive ophthalmic technique can accurately
quantify changes in the human subbasal nerve plexus of
patients with diabetes.6 Alterations in the subbasal corneal
nerves occur early, increase with neuropathic severity,7 and are

paralleled by significant IENF loss.8 Recent studies have shown
that chronic glycemic exposure,9 even in subjects without
overt diabetes,10 hypertension,9 and elevated serum triglycer-
ides,11 are strong risk factors for corneal subbasal nerve loss.
Furthermore, early reinnervation of the cornea has been shown
in recipients of simultaneous pancreas and kidney transplanta-
tion (SPK).12,13 It is important to note that other ocular
diseases, such as dry eyes,14 atopic keratoconjunctivitis,15

epithelial membrane basement dystrophies,16 cystic corneal
disorders,17 and other conditions18 may also affect corneal
innervation, and should therefore be excluded in any study
using IVCCM in DSPN.

Concerns regarding the use of IVCCM have focused on the
reproducibility19,20 of the technique, its ability to prospectively
assess neuropathy, and the absence of an automated image
analysis system to allow objective corneal nerve quantification.
The latter is essential to eliminate inconsistencies, produce
comparable outcomes across centers, and enable the deploy-
ment of IVCCM for diagnosis, and as a surrogate endpoint in
clinical trials of diabetic neuropathy. Previous studies21–23 have
proposed a variety of quantification algorithms, which differ by
methodology and detection properties. In our recent work,23
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we described an algorithm that concurrently uses a dual-model
feature descriptor and a neural network classifier to distinguish
nerve fibers from the background and presented an evaluation
of its performance against other available detection methods.
The aim of the present study was to assess the diagnostic
validity of a fully automated image analysis algorithm of in vivo
confocal microscopy images in quantifying corneal subbasal
nerves to diagnose diabetic neuropathy.

METHODS

Study Subjects

One hundred eighty-six patients with diabetes mellitus (108
male/78 female) and 55 age-matched control subjects (28
male/27 female) (50.4 6 14.1 vs. 51.7 6 11.4 years) were
assessed for the presence and severity of DSPN between 2010
and 2011 based on the updated Toronto consensus criteria.2

Informed written consent was obtained from all participants
prior to their enrolment to the study. This research adhered to
the tenets of the Declaration of Helsinki and was approved by
the North Manchester Research Ethics Committee. Subjects
were excluded if they had a positive history of malignancy,
connective tissue or infectious disease, deficiency of vitamin
B12 or folate, chronic renal failure, liver failure, active diabetic
foot ulceration, and/or family history of peripheral neuropathy.
Control subjects were excluded from the study if they had
evidence of neuropathy or risk factors likely to cause
neuropathy. All subjects were also assessed for the presence
of corneal lesions by means of relevant history and slit-lamp
biomicroscopy. Subjects were excluded if they had active
ocular disease (e.g., severe dryness), systemic disease known
to affect the corneal subbasal innervation, other than diabetes
or chronic corneal pathologies (cystic corneal disorders,
epithelial basement membrane dystrophies).

Medical Status Assessment

All participants underwent assessment of their cardiometabolic
[glycated hemoglobin (HbA1c), total cholesterol (TC), triglyc-
erides and body mass index (BMI)] and renal status [estimated

glomerular filtration rate (eGFR) and albumin to creatinine

ratio (ACR)].

Peripheral Neuropathy Assessment

The neuropathy disability score (NDS), a scale of 0 to 10, was

used to stratify the neuropathic severity of the study

participants into none (0–2), mild (3–5), moderate (6–8), and

severe (9–10) as described elsewhere21 (Tables 1, 2). The

neuropathy symptom profile (NSP) was employed to assess

symptoms of neuropathy. Vibration perception threshold

(VPT) was evaluated on the hallux of both feet with a

Neurothesiometer (Horwell Scientific Laboratory Suppliers,

Wilford, UK). Cool and warm thermal (CT/WT) thresholds and

cold- and heat-induced pain (CIP/HIP) were established on the

dorsolateral aspect of the left foot (S1) with a TSA-II

TABLE 1. Medical and Peripheral Neuropathy Status

Variable

Controls, n ¼ 55, DSPN (�), n ¼ 86, DSPN (þ), n ¼ 100,

NDS ¼ 0 NDS � 2 NDS > 2

Duration of diabetes N/A 24.2 6 21.2 34.4 6 17.3

HbA1c, %/mmol/mol‡ 5.5 6 0.3/34 6 3.3 7.7 6 1.6/61 6 17.5§ 7.9 6 1.6/63 6 17.5§

BMI, Kg/m* 25.6 6 4.6 27.2 6 5.2 27.6 6 5.8j j
TC, mM‡ 5.1 6 0.9 4.3 6 1.2§ 4.4 6 0.9§

Triglycerides, mM 1.5 6 0.8 1.5 6 0.9 1.4 6 0.9

eGFR, mL/min/L‡ 85.8 6 7.8 81.8 6 18.2 70.0 6 24.5§j j
ACR, mg/mmol‡ 1.0 6 1.4 2.9 6 1.3 18.8 6 11.3§j j
BP, systolic†/diastolic, mm Hg 122 6 16/70 6 8.8 130 6 18§/71 6 9 138 6 23§j j/72 6 8

NSP 0 1.9 6 3.0 5.6 6 6.2

VPT, V‡ 5.8 6 4.6 9.2 6 6.5§ 22.3 6 12.6§j j
WT†/CT†, 8C 37.0 6 3.0/28.2 6 2.2 39.6 6 3.9§/27.0 6 9.2§ 42.7 6 4.6j j/20.8 6 9.2§j j
HIP/CIP‡, 8C 44.8 6 2.9/11.9 6 9.2 45.5 6 6.6/9.8 6 10.7 46.9 6 7.3/4.1 6 6.2§j j
PMNCV, m/s‡ 48.8 6 3.3 43.7 6 4.7§ 39.2 6 6.1§j j
SSNCV, m/s‡ 51.0 6 4.8 46.4 6 5.8§ 42.2 6 6.4§j j
PMNamp, lV‡ 5.2 6 1.8 4.5 6 3.2 2.4 6 2.1§j j
SSNamp, lV‡ 20.0 6 9.7 12.5 6 7.8§ 6.5 6 6.6§j j

Results are expressed as mean 6 SD, statistically significant differences using ANOVA/Kruskal-Wallis. N/A, not applicable for this group.
* P < 0.05.
† P < 0.001.
‡ P < 0.0001; post hoc results for DSPN (þ) significantly different from § control subjects and j j DSPN (�).

TABLE 2. IVCCM Assessment of DSPN Status

Variable

Controls,

NDS ¼ 0

DSPN (�),

NDS � 2

DSPN (þ),

NDS > 2

Manual IVCCM quantification

CNFDM, no./mm2§ 37.2 6 6.7 26.7 6 8.5jj 20.5 6 9.5jj¶
CNBDM, no./mm2‡ 92.7 6 38.6 54.9 6 35.7jj 48.7 6 33.2jj
CNFLM, mm/mm2‡ 26.4 6 5.6 20.3 6 6.7jj 16.7 6 7.6jj¶

Automated IVCCM quantification

CNFDA, no./mm2§ 30.0 6 6.9 20.1 6 8.7jj 14.4 6 8.9jj¶
CNBDA, no./mm2‡ 50.4 6 24.7 31.4 6 25.6jj 20.1 6 18.7jj¶
CNFLA, mm/mm2§ 21.2 6 3.5 17.1 6 4.5jj 13.7 6 5.2 j j¶

Corneal sensation

NCCA, mbar† 0.7 6 0.5 0.9 6 0.8jj 1.5 6 2.1j j

Results are expressed as mean 6 SD, statistically significant
differences using ANOVA/Kruskal-Wallis. no., number; mbar, millibar.

* P < 0.05.
† P < 0.01.
‡ P < 0.00.
§ P < 0.0001; post hoc results for diabetes DSPN (þ) significantly

different from j j control subjects and ¶ DSPN (�).
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NeuroSensory Analyser (Medoc Ltd., Ramat-Yishai, Israel) using
the method of limits.

Nerve conduction studies (NCS) were undertaken by a
consultant neurophysiologist (AM) as previously described.24

Peroneal motor nerve amplitude (PMNamp) and conduction
velocity (PMNCV) and sural sensory nerve amplitude
(SSNmap) and conduction velocity (SSNCV) were assessed.
The diabetes cohort included 11 patients that did not agree or
were unable to undergo NCS. These patients were not
excluded from the study, but were not considered when NCS
results were assessed.

Study Definition of Peripheral Neuropathy

The Toronto Diabetic Neuropathy Expert Group2 recommen-
dation was followed to define ‘‘Confirmed DSPN: the presence
of an abnormality of NCS and a symptom or symptoms or a sign
or signs of neuropathy. In the absence of an abnormal NCS, a
validated measure of small fiber neuropathy should be used’’
and ‘‘Subclinical DSPN: the presence of no signs or symptoms
of neuropathy confirmed with an abnormal NCS or a validated
measure of small fiber neuropathy.’’ To define an abnormal
result for NCS and QST we have used a mean 62 SD cutoff
based on our control population.

In Vivo Corneal Confocal Microscopy

All study subjects were scanned with a laser IVCCM (Heidel-
berg Retinal Tomograph III Rostock Cornea Module [HRT III
RCM]; Heidelberg Engineering GmbH, Heidelberg, Germany)
as described elsewhere.20 The overall examination took
approximately 5 minutes for both eyes of each subject, and
in this study two experienced optometrists performed all
IVCCM scans. All images were captured using the ‘‘section’’
mode and prior to scanning corneal sensation was assessed
using noncontact corneal aesthesiometry (NCCA) as described
elsewhere.25

Manual Image Analysis

During a bilateral IVCCM scan more than 100 images per
patient were typically captured from all corneal layers. Six
subbasal images from right and left eyes were selected for
analysis. Criteria for image selection were depth, focus
position, and contrast. A single experienced examiner (INP),
masked from the outcome of the medical and peripheral
neuropathy assessment, quantified 1506 images of all study
participants using purpose-written, proprietary software
(CCMetrics, MA Dabbah; Imaging Science and Biomedical
Engineering, University of Manchester, Manchester, UK). The
specific parameters measured per frame were: CNFD (no./
mm2), CNFL (mm/mm2), and CNBD (no./mm2) in accord with
our previously published protocol.20

Automated Image Analysis

Automated corneal nerve fiber quantification consists of two
steps: (1) IVCCM image enhancement and nerve fiber
detection, and (2) quantification of the three morphometric
parameters. As described in our earlier work,22,23 a dual-model
feature descriptor combined with a neural network classifier
was used to train the computer to distinguish nerve fibers from
the background (noise and underlying connective tissue). In
the nerve fiber quantification process, all the end points and
branch points of the detected nerve fibers are extracted and
used to construct a connectivity map. Each segment in the
connectivity map was then connected and classified as main
nerve fibers or branches.

Statistical Analysis

Statistical analysis was performed using StatsDirect for Win-
dows (version 2.7.9; StatsDirect Ltd., Cheshire, UK) and STATA
12 for Windows (Stata Corporation, College Station, TX, USA)
was used to generate the receiver operating characteristic
curves (ROC). Correlation analysis was performed to assess the
strength of the relationship between automated and manually
generated variables. Linear regression analysis was used to
assess the consistency of the responses from the fully
automated algorithm for a given manual estimate. The
intraclass correlation coefficient (ICC) was calculated as a
measure of reliability of the automated image analysis
algorithm over repeated assessment of the dataset. One-way
ANOVA (nonparametric Kruskal-Wallis) were used to evaluate
within and between group differences. P value was maintained
at 0.05 for multiple comparisons (Bonferroni adjustment or
Conover-Inman pairwise comparisons) and a P less than 0.05
was considered significant.

Receiver operating characteristic curves analysis was
performed for all corneal nerve parameters to identify the
point closest to the upper left corner of the ROC graph, which
concurrently optimized sensitivity and specificity and the AUC,
OR, and positive (þLR) and negative likelihood ratios (�LR)
associated with the point were calculated. The diagnostic
validity of IVCCM was assessed in relation to four established
measures of DSPN (PMNamp, SSNamp, PMNCV, and WT). A v2

test was used to compare the AUCs generated for all IVCCM
parameters.

RESULTS

Medical Status and DSPN Assessment

Detailed medical and DSPN assessment results for subjects
with diabetes and controls are presented in Table 1. Diabetic
sensorimotor polyneuropathy(þ) compared with DSPN(�) and
controls had a lower eGFR (P < 0.0001), higher ACR (P <
0.0001), systolic blood pressure (BP) (P ¼ 0.0003), VPT (P <
0.0001), WT (P¼0.0005), and lower CT (P¼0.0004), CIP (P <
0.0001), PMNCV (P < 0.0001), SSNCV (P < 0.0001), PMNamp
(P < 0.0001), and SSNamp (P < 0.0001). Diabetic sensorimo-
tor polyneuropathy(þ) subjects had a longer duration of
diabetes (34.4 6 17.3 vs. 24.2 6 21.2, P ¼ 0.01) and were
older compared with DSPN(�) (55.3 6 12.4 vs. 47.3 6 15.6, P

¼ 0.001). Metabolic control and BMI were significantly
different between controls (HbA1c, P < 0.0001; BMI, P <
0.05) and patients with diabetes, but comparable between
DSPN(þ) and DSPN(�). Total cholesterol (TC) was similar
between the two groups with diabetes, and lower compared
with controls (P < 0.0001), which is likely due to statin used in
the diabetes cohort.

Manual and Automated Assessment of DSPN With
IVCCM

Diabetic sensorimotor polyneuropathy(þ) compared with
DSPN(�) and controls had significantly lower manually
quantified CNFDM (P < 0.0001), CNBDM (P¼ 0.0005), CNFLM

(P ¼ 0.0002), and automatically quantified CNFDA (P <
0.0001), CNBDA (P ¼ 0.0002), and CNFLA (P < 0.0001)
parameters. A significant reduction was also detectable
between DSPN(�) and controls in CNFDM (P < 0.0001),
CNBDM (P ¼ 0.0006), CNFLM (P ¼ 0.0003), and CNFDA (P <
0.0001), CNBDA (P ¼ 0.0003), and CNFLA (P < 0.0001).
Changes detected using automated image quantification were
associated with a stronger significance level. Noncontact
corneal aesthesiometry showed a significant elevation in the
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corneal sensation threshold in diabetic subjects and control
subjects (P ¼ 0.004). All results are presented in Table 2.

Manual Versus Automated Image Analysis

Manual and automated results were strongly correlated for
CNFD (adjusted R2 ¼ 0.81, r ¼ 0.90, P < 0.0001), CNBD
(adjusted R2¼ 0.58, r¼ 0.75, P < 0.0001), and CNFL (adjusted
R2¼0.79, r¼0.89. P < 0.0001) (Figs. 1A–C). Upon revaluation
of the same dataset the reproducibility of the automated
algorithm was excellent (ICC ¼ 1.0) across all IVCCM
parameters. Automated quantification significantly reduced
image analysis time. Each image required 10 to 22 seconds to

be processed automatically, while manual analysis took 2 to 7
minutes per image depending on the density of the nerves.
Examples of analyzed images using the two methods are
presented in Figure 1.

Validity of IVCCM Image Quantification for Diagnosis
of DSPN. Receiver operating characteristic curves were
inspected for concurrent optimization of sensitivity and
specificity and the associated AUCs were calculated for manual
and automated IVCCM parameters with respect to the study
definition of ‘‘neuropathy’’ (Table 3).

PMNamp Less Than 1.4 lv. There were 53 (30%) diabetic
patients who had neuropathy based on abnormal PMNamp. A
CNFDM less than 18.7 no./mm2 was the point where sensitivity
(0.79) and specificity (0.78) were concurrently optimized and
associated with the highest AUC¼ 0.84, OR¼ 16.5,þLR¼ 4.6
(95% confidence interval [CI] 3.0–6.9), and�LR¼ 0.3 (95% CI
0.2–0.4). The corresponding point for automated analysis was
CNFDA less than 14.7 no./mm2 with sensitivity (0.76) and
specificity (0.72) and AUC¼0.80, OR¼11.0,þLR¼3.4 (95% CI
2.4–4.9), and �LR ¼ 0.3 (95% CI 0.2–0.5) (Fig. 2A). Similarly,
CNFLM and CNFLA were associated with an AUC of 0.82 and
0.84 respectively,þLR¼ 3.23 (95% CI 2.3–4.6) and�LR¼ 0.33
(95% CI 0.2–0.5) (Fig. 2).

SSNamp Less Than 5.5 lv. When an abnormal SSNamp
result was used as an indicator of neuropathy, the number of
abnormal cases increased to 72 (40%). Automatically quantified
CNFLA was associated with the highest AUC (0.77) and the
highest OR¼ 5.1. A CNFLA less than 16.1 mm/mm2 optimized
sensitivity (0.72) and specificity (0.66) withþLR¼ 2.1 (95% CI
1.6–2.9) and �LR ¼ 0.4 (95% CI 0.3–0.6). A CNFLM less than
19.1 mm/mm2 optimized sensitivity (0.68) and specificity
(0.67), but was associated with a lower AUC (0.70) and OR ¼
4.6 and comparableþLR¼ 2.1 (95% CI 1.5–3.0) and�LR¼ 0.5
(95% CI 0.3–0.7). Both CNFDM and CNFDA were equally
capable in ruling out neuropathy. Both CNBDA and CNBDM

showed limited ability to differentiate between cases with and
without neuropathy.

PMNCV Less Than 42 M/S. There were 96 (54%) diabetic
patients who had an abnormal PMNCV result. Automatically
quantified CNFLA was associated with the highest AUC (0.79)
and a CNFLA less than 16.0 mm/mm2 optimized sensitivity
(0.74) and specificity (0.71) with OR¼ 7.2,þLR¼ 2.6 (95% CI
1.9–3.8), and �LR ¼ 0.3 (95% CI 0.2–0.5). A CNFLM less than
19.7 mm/mm2 was associated with 0.74 sensitivity and 0.63
sensitivity, AUC¼ 0.73, OR¼ 4.8,þLR¼ 2.0 (95% CI 1.6–2.6),
and�LR¼ 0.4 (95% CI 0.3–0.6). Both CNFDA and CNFDM had
comparable AUC, OR, LR, and sensitivity/specificity to rule out
neuropathy.

WT Greater Than 428C. There were 95 (51%) patients
with diabetes who had an abnormal WT greater than 428C.
Both CNFDM and CNFDA were associated with the highest
AUC and modest OR. Specifically, a CNFDM less than 24.0/
mm2 optimized sensitivity (0.63) and specificity (0.62) and
was associated with AUC 0.69, OR 2.9, þLR 1.6 (95% CI
1.2–2.1) and �LR 0.7 (95% CI 0.5–0.8). The number of
patients with an abnormal CNFDM and a WT was 61 (64%),
while 35 (37%) had reduced CNFDM with a normal WT
result. All CNFDA, CNFLM, and CNFLA values were
comparable, but were associated with slightly lower AUC
and OR while sensitivity and specificity remained modest
(Table 3).

DISCUSSION

Diabetic peripheral neuropathy is the main initiating factor for
foot ulceration and amputation and is associated with heavy
morbidity, reduced quality of life, and poor healthcare

FIGURE 1. An IVCCM image of a control subject analyzed using (A)
manual expert and (B) fully-automated image analysis to quantify
corneal subbasal nerve morphology in DSPN. Use of either quantifica-
tion method results in the detection of comparable structures in the
image.
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outcomes.26 The prevalence of DSPN, in the diabetic
population varies from 10% to 53%.1,27–29 However, only a
few studies have used objective endpoints to estimate the rates
of neuropathy and this may explain the reported variability.
Dyck and colleagues30 found that when NCS was used in
combination with a functional abnormality to diagnose DSPN
as opposed to conventional clinical examination, twice as
many patients were detected. Electrodiagnostic studies are the
gold standard to diagnose neuropathy, but they are limited to
large fibers and previous research has shown that small nerve
fibers are affected first.3 An objective, noninvasive surrogate of
small fiber damage, such as IVCCM,7 is therefore desirable to
diagnose neuropathy early and define patients at risk.

Previous studies have identified age, duration of diabetes,
renal status, BP, cardiometabolic control, and anthropometric
parameters as risk factors for the onset and severity of
DSPN.29,31–33 Recent studies using IVCCM, have reported an
association between levels of HbA1c, BP, and triglycerides with
the density of corneal innervation.9–11 This study assessed 188
subjects with diabetes, but no other identifiable cause of
neuropathy, and found that a significant decline in eGFR,
increased ACR, and systolic BP were associated with neurop-
athy. Both diabetes groups [DSPN (þ), DSPN (�)] had modest
to poor metabolic control.

Corneal confocal microscopy provides the unique oppor-
tunity to repeatedly and reliably visualize the corneal nerves
adjacent to Bowman’s membrane. An increasing body of
literature supports the use of IVCCM in the diagnosis and
severity stratification of DSPN.6,7,9,34 At present, a major
drawback is the absence of an automated analysis system,
which would eliminate inconsistencies and make the tech-

nique suitable to a clinical setting. This study assessed, for the
first time, the performance and validity of a novel fully-
automated image analysis algorithm compared with manual
human expert analysis in relation to multiple gold standard
clinical endpoints used to define neuropathy.

We found that both methods of image quantification were
highly correlated primarily for CNFD and CNFL but also CNBD.
We detected a slight underestimation of corneal nerve density
and length when automated analysis was used, which was
however consistent. The detection of nerve structures in
IVCCM images is a challenging task: Nerve fibers often show
poor contrast on a relatively noisy background due to
microscope properties and underlying structures. As described
in our earlier work,23 the algorithm operates through a
combination of detection methods and predefined criteria,
mainly nerve-specific characteristics such as orientation and
axon reflectivity, to construct a connectivity map and
distinguish a nerve structure from noise. In contrast, manual
image analysis is a labor-intensive task, where a human
investigator applies subjective criteria to define a nerve and
an overestimation with less experience has been described.20

In this study, we found a significant and progressive reduction
in nerve density, branching, length between diabetic patients
with and even without DSPN, and controls using either
quantification method.

Corneal nerve branch density showed a significant positive
correlation between manual and automated assessment, but
this was not as high as for CNFD and CNFL. Corneal nerve
branch density, a measurement of nerve branches directly
connected to nerve fibers, has been reported to be highly
variable and appears to have modest validity in diagnosing

TABLE 3. Validity and Associated Probabilities of DSPN Detection Using Manual and Automated IVCCM Parameters Quantification

Definition of DSPN

IVCCM Value

(Sensitivity/Specificity) AUC

Odds Ratio

(95% CI) þLR (95% CI) �LR (95% CI)

PMNamp, <1.4 lV

CNFDM 18.7 (0.79/0.78) 0.84 16.5 (7.0–39.9) 4.6 (3.0–7.0) 0.3 (0.2–0.4)

CNFDA 14.7 (0.76/0.72) 0.80 11.0 (4.8–24.8) 3.4 (2.4–4.9) 0.3 (0.2–0.5)

CNBDM 41.7 (0.73/0.68) 0.75 5.9 (2.7–13.1) 2.3 (1.7–3.1) 0.4 (0.2–0.6)

CNBDA 14.9 (0.74/0.73) 0.79 9.2 (4.1–21.4) 2.9 (2.1–4.7) 0.3 (0.2–0.5)

CNFLM 15.8 (0.77/0.76) 0.82 9.8 (4.4–22.0) 3.2 (2.3–4.6) 0.3 (0.2–0.5)

CNFLA 14.6 (0.77/0.74) 0.84 12.9 (5.5–31.8) 3.3 (2.4–4.6) 0.2 (0.1–0.4)

SSNamp, <5.5 lV

CNFDM 23.1 (0.72/0.67) 0.74 4.7 (2.3–10.0) 1.9 (1.5–2.6) 0.4 (0.3–0.6)

CNFDA 18.9 (0.73/0.56) 0.72 5.1 (2.4–11.1) 1.9 (1.5–2.5) 0.4 (0.2–0.6)

CNBDM 47.1 (0.61/0.56) 0.65 2.1 (1.1–4.9) 1.4 (1.0–1.9) 0.7 (0.5–1.0)

CNBDA 23.4 (0.63/0.54) 0.70 2.1 (1.1–4.2) 1.4 (1.0–1.9) 0.7 (0.5–0.9)

CNFLM 19.4 (0.68/0.67) 0.70 4.6 (2.3–9.3) 2.1 (1.5–3.0) 0.5 (0.3–0.7)

CNFLA 16.1 (0.72/0.66) 0.77 5.1 (2.5–10.4) 2.1 (1.6–2.9) 0.4 (0.3–0.6)

PMNCV, <42.0 m/s

CNFDM 25.4 (0.78/0.70) 0.74 8.2 (4.1–17.3) 2.6 (1.9–3.7) 0.3 (0.2–0.5)

CNFDA 19.7 (0.80/0.61) 0.74 7.8 (3.7–16.7) 2.2 (1.7–3.0) 0.3 (0.2–0.4)

CNBDM 49.0 (0.69/0.61) 0.68 3.7 (1.9–7.2) 1.8 (1.3–2.5) 0.5 (0.4–0.7)

CNBDA 24.9 (0.68/0.52) 0.67 2.4 (1.2–4.6) 1.4 (1.1–1.9) 0.6 (0.4–0.9)

CNFLM 19.7 (0.74/0.63) 0.73 4.9 (2.4–9.7) 2.0 (1.5–2.8) 0.4 (0.3–0.6)

CNFLA 16.0 (0.74/0.71) 0.79 7.2 (3.5–14.7) 2.6 (1.8–3.8) 0.4 (0.3–0.5)

WT, >418C

CNFDM 24.0 (0.63/0.62) 0.69 2.9 (1.5–5.3) 1.7 (1.3–2.3) 0.6 (0.4–0.8)

CNFDA 17.3 (0.63/0.60) 0.67 2.5 (1.4–4.6) 1.5 (1.2–2.1) 0.6 (0.5–0.8)

CNBDM 47.2 (0.65/0.55) 0.65 2.1 (1.2–3.8) 1.4 (1.1–1.9) 0.7 (0.5–0.9)

CNBDA 22.9 (0.60/0.58) 0.64 2.1 (1.1–3.9) 1.4 (1.1–2.0) 0.7 (0.5–0.9)

CNFLM 19.2 (0.63/0.61) 0.67 2.7 (1.5–5.0) 1.6 (1.2–2.2) 0.6 (0.4–0.8)

CNFLA 15.9 (0.61/0.61) 0.68 2.3 (1.3–4.2) 1.5 (1.1–2.1) 0.7 (0.5–0.9)
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neuropathy in this and other studies.13,34 Moreover, inter- and
intraobserver estimation of the parameter in highly innervated
corneas has shown moderate reproducibility.20 The relevance
of corneal nerve branching to DSPN is not clear. In our recent
study,35 of the 1-year effects of SPK transplantation in type 1
DM recipients, we found a significant and stable increase
before an improvement in any other measure of regeneration.

In this study, automated analysis of CNBD was more capable in
staging neuropathy than manually quantified CNBD, likely due
to less variability compared with manual human analysis.

Recently, two studies have assessed the validity of IVCCM in
diagnosing DSPN. Tavakoli et al.7 has reported a CNFD less
than or equal to 27.8 no./mm2 and less than or equal to 20.8
no./mm2 as the values with the highest validity to define
disease status among patients with mild and more severe
neuropathy respectively. Ahmed et al.34 found that a CNFL less
than or equal to 14.0 mm/mm2 was the value with the highest
validity to rule in DSPN. We assessed the performance of
manual and automated IVCCM quantification to identify
patients ‘‘with’’ or ‘‘without’’ neuropathy based on gold
standard measures of peripheral nerve damage. We found that
CNFDM, CNFDA, CNFLM, and CNFLA were associated with the
highest sensitivity and specificity to diagnose DSPN when
PMNamp was used as the primary measure of neuropathy.
Corneal nerve branch density showed less but acceptable
validity in diagnosing DSPN and CNBDA had a significantly
higher AUC and OR compared with CNBDM. When other
endpoints of DSPN were used, such as SSNamp and PMNCV,
the diagnostic validity of IVCCM remained high and CNFLA was
consistently associated with the highest AUC and OR among all
parameters. We observed a significant decline in sensitivity and
specificity when an abnormality in WT was used as the primary
marker of neuropathy. One would expect the opposite since
warm detection is mainly mediated by small nerve fibers, and
previously we have shown an association between IENFD and
corneal nerve morphology.8 More recently CNFL has been
related to three different measures of small fiber neuropathy.36

This is likely for two main reasons: NCS offer a robust and
objective means of assessing neuropathy, while WT is a
subjective measurement of small fiber function. Cassanova et
al.37 in their study found that even patients with no IENFs had
consistent responses in WT and concluded that it is possible
for partially damaged nerve endings to still generate a
propagated action potential. We speculate that a similar
association may exist for the corneal subbasal nerves.

The validity of fully automated corneal nerve quantification
was comparable and in several cases exceeded the perfor-
mance of human expert assessment in ruling out DSPN. A
CNFLA between 14.6 mm/mm2 and 16.1 mm/mm2 was the
value consistently associated with the highest AUC and OR
given the case definition employed. Both CNFDM (18.7–25.4
no./mm2) and CNFDA (14.7–19.7 no./mm2) also showed
excellent performance with high OR, but were slightly more
variable.

This study has several strengths and limitations. The
strengths of this study are the detailed clinical assessment by
gold standard clinical techniques of a relatively large number of
participants with diabetes, representing a wide range of
disease duration and neuropathic severity. Moreover, the same
highly trained individuals performed all examinations for the
241 participants of this study ensuring consistency of the
results. Our findings and cutoff points selected for the
diagnosis of DSPN by IVCCM are comparable with the previous
studies of Ahmed et al.34 and Tavakoli et al.7; slight differences
could be due to the case definition of neuropathy employed in
each study, the number of patients investigated, and the
disease severity in each group. We have compared IVCCM with
several objective and subjective markers of DSPN with
significant findings for the validity of the technique. There
are no directly comparable published results for the fully
automated algorithm employed in this study, therefore we
cannot exclude the possibility that another system may be
superior to the one presented here. This is to date the only
available purpose-built, automated corneal nerve quantification
system that has been validated in a large cohort of patients

FIGURE 2. Receiver operating characteristic curves for manual (solid

black) and automated (red) CNFD (A), CNBD (B), and CNFL (C).
Corneal nerve fiber density and CNFL showed the highest validity to
diagnose DSPN with comparable AUCs (no significant difference).
Manual CNFD and automated CNFL were associated with the highest
OR.
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with diabetes and varying degrees of DSPN. Our results are
cross-sectional and ongoing longitudinal studies38 will deter-
mine the ability of IVCCM to predict the development and
progression or regression of DSPN. Recent data generated from
wide-field assessment of the subbasal plexus have suggested
that both central and inferior whorl nerve density may be
reduced early and therefore future studies should explore this
further.39

In conclusion, we show that diabetic peripheral neuropathy
is paralleled by a significant and progressive reduction in
central CNFD and CNFL. We have validated a rapid fully
automated analysis system to quantify alterations to replace
human manual quantification. The use of this system will
clearly enhance reproducibility, eliminate inconsistencies, and
make the technique suitable to clinical practice and research
centers worldwide.
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Small Nerve Fiber Quantification
in the Diagnosis of Diabetic
Sensorimotor Polyneuropathy:
Comparing Corneal Confocal
Microscopy With Intraepidermal
Nerve Fiber Density
Diabetes Care 2015;38:1138–1144 | DOI: 10.2337/dc14-2422

OBJECTIVE

Quantitative assessment of small fiber damage is key to the early diagnosis and
assessment of progression or regression of diabetic sensorimotor polyneuropathy
(DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but
corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the
potential to be a noninvasive and objective image biomarker for identifying small
fiber damage. The purpose of this study was to determine the diagnostic perfor-
mance of CCM and IENFD by using the current guidelines as the reference standard.

RESEARCH DESIGN AND METHODS

Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes),
with and without DSPN, underwent a detailed assessment of neuropathy, includ-
ing CCM and skin biopsy.

RESULTS

Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch
density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001)
were significantly reduced in patients with diabetes with DSPN compared with
control subjects. The area under the receiver operating characteristic curve for
identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66
for IENFD, which did not differ significantly (P = 0.14).

CONCLUSIONS

This study shows comparable diagnostic efficiency between CCM and IENFD, pro-
viding further support for the clinical utility of CCMasa surrogate endpoint forDSPN.

Diabetic sensorimotor polyneuropathy (DSPN) is one of most common long-term
complications of diabetes. Up to 50% of patients with diabetes suffer from DSPN,
and an estimated one in five patients with diabetes have chronic painful neuropathy
(1). Accurate detection and assessment of neuropathy would have a major medical,
social, and economic effect in relation to earlier diagnosis and timely intervention to
prevent progression and the difficulties with end points used in clinical trials of DSPN
(2) to address the major unmet need of a treatment for this condition (3,4).
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Methods to quantify neuropathy in-
clude clinical scores based on symptoms
and neurological tests, quantitative sen-
sory testing (QST), electrophysiological
measurements, in the form of nerve
conduction studies (NCS), and intraepi-
dermal nerve fiber density (IENFD) in
skin biopsy specimens (5). The neurolog-
ical examination involves an assessment,
such as the modified Neuropathy Disabil-
ity Score (NDS) (6), a composite score that
assesses touch, temperature, and vibra-
tion perception and reflexes, which re-
quires expert clinical judgment, a strong
element of subjectivity, and hence, poor
reproducibility (7). Neurophysiology is
objective and reproducible and is cur-
rently considered to be the most reliable
measurement for confirming the diagno-
sis of diabetic neuropathy and indeed
represents an essential part of the To-
ronto Criteria (TC) to identify those with
“confirmed DSPN: the presence of an
abnormality of NC[S] and a symptom or
symptoms or a sign or signs of neuropa-
thy” (8). However, thesemeasuresmainly
assess large nerve fibers, making them
less sensitive to early DSPN, which is
more likely to involve small fibers (9,10).
Small fibers can be assessed by quan-

tifying thermal thresholds (11) and
IENFD in skin biopsy specimens (12). Al-
though QST assessment has been shown
to have good repeatability (11), IENFD is
considered to be the most objective and
quantitative for the diagnosis of small
fiber neuropathy (13,14). However, its
invasive nature makes it unsuitable for
repeated investigations (12). Further-
more, the reliability of IENFD for the diag-
nosis of DSPN has never been thoroughly
validated in a large cohort of patients with
diabetes (15). Thus diabetic neuropathy
currently lacks a noninvasive surrogate
for accurately detecting small nerve fiber
damage and repair.
Several studies (16–20) have shown

that corneal confocal microscopy
(CCM) is capable of making a quantita-
tive assessment of small fiber damage
and has the potential to be a surrogate
end point for DSPN (9). Quantitative
analysis using manual annotation of
CCM images to identify fibers and
branches is labor-intensive and subjec-
tive. However, a fully automated nerve
fiber quantification method has been
shown to have high correlation with
the manually obtained measurements
(21,22), and our recent study (23)

compared manual and automated image
analysis in a large cohort of patients with
diabetes. We previously assessed CCM
and IENFD in the same patients and
showed that the measures were related
(17). However, to date there has been no
attempt to directly compare the ability of
CCM and IENFD in the diagnosis of DSPN.
In this report, we comprehensively eval-
uate manually and automatically quanti-
fied CCM-derived measures of nerve
fiber morphology and compare their di-
agnostic performance with IENFD mea-
surements according to the presence or
absence of DSPN using the TC.

RESEARCH DESIGN AND METHODS

Study Subjects
The study recruited 63 patients with type
1 diabetes from clinics of the Manchester
Diabetes Center, Manchester Royal Infir-
mary, and age-matched control subjects
from the community. The updated TCwas
used to assess all subjects for the pres-
ence and severity of DSPN between 2010
and 2011 (8). This research adhered to
the tenets of the Declaration of Helsinki
andwas approved by theNorthManches-
ter Research Ethics Committee. Informed
written consent was obtained from all
participants before their enrollment in
the study. All assessments were per-
formed by trained staff in a purpose-
designed clinical research facility in
central Manchester. Inclusion criteria
were age between 14 and 85 years
and a history of type 1 diabetes. Exclusion
criteria were a positive history of malig-
nancy, connective tissue or infectious dis-
ease, deficiency of vitamin B12 or folate,
chronic renal failure, liver failure, active
diabetic foot ulceration, family history
of peripheral neuropathy, active ocular
disease, systemic disease known to affect
the cornea other than diabetes, or chronic
corneal pathologies. All participants under-
went assessment of glycated hemoglobin
(HbA1c), HDL and LDL cholesterol, triglycer-
ides, BMI, and renal status (estimated
glomerular filtration rate and albumin-
to-creatinine ratio). Participants in this
study represent a subcohort of partici-
pants with type 1 diabetes (n = 110) and
control subjects (n = 97) who agreed to
undergo skin biopsy in addition to routine
neurological testing.

Peripheral Neuropathy Assessment
All study participants underwent an as-
sessment of neurological deficits (NDS)

(6) and symptoms (Diabetic Neuropathy
Symptom [DNS] score) (24). Vibration
perception threshold (VPT) was tested
using a Horwell Neurothesiometer (Sci-
entific Laboratory Supplies, Notting-
ham, U.K.). Cold thresholds (CT) and
warm thresholds (WT) were established
on the dorsolateral aspect of the left
foot (S1) using the TSA-II NeuroSensory
Analyzer (Medoc Ltd., Ramat-Yishai,
Israel). Electrodiagnostic studies were
undertaken using a Dantec Keypoint sys-
tem (Dantec Dynamics Ltd., Bristol, U.K.)
equipped with a DISA temperature regula-
tor to keep limb temperature constantly
between 328 and 358C. Sural sensory nerve
amplitude (SSNamp), sural sensory nerve
conduction velocity (SSNCV), peroneal
motor nerve amplitude (PMNamp), and
peroneal motor nerve conduction velocity
(PMNCV) were assessed by a consultant
neurophysiologist.

The Toronto Diabetic Neuropathy Ex-
pert Group (8) recommendation was fol-
lowed to define an individual as having
neuropathy if he or she met both of the
following criteria: 1) abnormal nerve
conductionda PMNCV of ,42 m/s; 2) a
symptomor sign of neuropathy, defined as
oneof the following:a) DNSof 1 ormoreof
4, or b) NDS of 3 or more of 10.

For the IENFD assessment, a 3-mm
punch skin biopsy specimen was ob-
tained from the dorsum of the foot,
and a bright-field immunohistochemis-
try protocol was used according to pub-
lished guidelines (12). Linear IENFD
(number of fibers/mm) was established
in at least four sections of 50-mm thick-
ness according to published counting
rules (IENFD have to cross or originate
at the dermal–epidermal junction, and
secondary branches and fragments are
not counted) (14). The assessments
were performed by two experts (M.J.
andR.A.M.)whoweremasked to theneu-
ropathic/diabetes status of participants
and were cross-validated.

Manual and Automated
Quantification of Corneal Nerves
CCM images (Fig. 1A) were captured
from all participants using the Heidel-
berg Retina Tomograph Rostock Cornea
Module (HRT-III), as described (23,25),
by two purpose-trained optometrists
(I.N.P. and M.T.). Their dimensions are
384 3 384 pixels with the pixel size of
1.0417 mm. During a bilateral CCM scan,
more than 100 images per patient were
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Figure 1—A: Original CCM image. B: Manually quantified CCM image. C: Automatically quantified CCM image. The red lines represent main nerve
fibers, blue lines are branches, and green spots indicate branch points on the main nerve trunks. CCM images of the subbasal nerve plexus from
a control subject (D), a DSPN(2) patient with type 1 diabetes (E), and a DSPN(+) patient with type 1 diabetes (F) show the reduction in corneal nerves
in the DSPN(+) patient. The red arrows indicate main nerve fibers (to calculate CNFD), and yellow arrows indicate branch fibers (to calculate CNBD).
Box plots of IENFD (G), manual CNFD values (H), automated CNFD (I), and automated CNFL (J) values in controls and in DSPN(2) and DSPN(+) patients
with type 1 diabetes based on the TC. K: ROC curves for manual CNFD (MCNFD), automated CNFD (ACNFD), and IENFD to discriminate DSPN(+) and
DSPN(2) patients with diabetes. G–J: Red lines represent median, the box borders 25th and 75th percentile. Whiskers represent the range of the
data (without outliers). Red plus symbols represent outliers.
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typically captured from all corneal
layers, and 6 subbasal images from the
right and left eyes were selected for
analysis. Criteria for image selection
were depth, focus position, and con-
trast. One experienced examiner (I.N.P.),
masked from the outcome of the medical
and peripheral neuropathy assessment,
manually quantified 1,506 images of all
study participants using purpose-written,
proprietary software (CCMetrics, M.A.
Dabbah, Imaging Science, University of
Manchester) (Fig. 1B). The specific pa-
rameters measured per frame were cor-
neal nerve fiber density (CNFD) (number
of main fibers per mm2), corneal nerve
fiber length (CNFL) (total length of main
fibers and branches per mm2), and cor-
neal nerve branch density (CNBD) (num-
ber of branches per mm2) in accordance
with our previously published protocol
(23,25).
Automated corneal nerve fiber quan-

tification consists of two steps: 1) CCM
image enhancement and nerve fiber de-
tection and 2) quantification of the
three morphometric parameters. As de-
scribed in our earlier work (21), a dual-
model feature descriptor combined
with a neural network classifier was
used to train the detection software to
distinguish nerve fibers from the back-
ground (noise and underlying connective
tissue). In the nerve fiber quantification
process, all of the end points and branch
points of the detected nerve fibers are
extracted and used to construct a con-
nectivity map. Each segment in the con-
nectivity map is then connected and
classified as a main nerve fiber or branch
(Fig. 1C). The software for automated CCM
image quantification (ACCMetrics) is
available via http://www.click2go.umip
.com/i/software/Biomedical_Software/
accmetrics_v2.html.
To evaluate the effectiveness of using

IENFD and manually and automatically
generated CCM features to diagnose
DSPN, we used the TC as ground truth
to categorize the subjects with diabetes
into those with DSPN (DSPN[+]) and
without DSPN (DSPN[2]).

Statistical Analysis
Statistical analysis and the receiver oper-
ating characteristic (ROC) curves were
performed and generated using MATLAB
R2012a software (The MathWorks, Inc.).
One-way ANOVA (nonparametric Kruskal-
Wallis) was used to evaluate within- and

between-group differences (control
group, the DSPN[+] group, and the
DSPN[2] group). A P , 0.05 was con-
sidered significant. The area under the
ROC curve (AUC) values, 95% CIs, and
sensitivity and specificity at the equal
error-rate point and at the threshold
of 2 standard deviations below the
mean of the control group were calcu-
lated for comparison. MedCalc 14.12.0
software (MedCalc Software bvba)
was used to compare the difference
between two ROC curves. The power
analysis was performed using G*Power
3.1.9.2 software. The power analysis was
performed based on the Wilcoxon-
Mann-Whitney test comparing the
group with type 1 diabetes and the
control group. For PMNCV, the power
was 0.999 (assuming an error rate a =
0.01), indicating that 26 control sub-
jects and 63 patients with type 1 diabe-
tes were sufficient to find a statistically

significant difference. Then the power
analysis was performed based on the
Wilcoxon-Mann-Whitney test compar-
ing DSPN(2) and DSPN(+) groups. For
PMNCV, the power was 0.999 (assuming
an error rate a = 0.01), indicating that a
sample size of 46DSPN(2) and 17DSPN(+)
was sufficient to find a statistically signifi-
cant difference.

RESULTS

Demographics, Metabolic, and
Anthropometric Assessment
The demographics and metabolic and
anthropometric measurements in pa-
tients with diabetes and control subjects
are summarized in Table 1. In the pa-
tients with type 1 diabetes, 57% were
on a multiple daily insulin injection reg-
imen, and 43% were on continuous
subcutaneous insulin infusion. Other
medications included an ACE inhibitor
or angiotensin receptor blocker in 36%

Table 1—Clinical demographic results and neuropathy assessment in control
subjects and in DSPN(2) and DSPN(+) patients with type 1 diabetes

Variable
Control subjects

(n = 26)
DSPN(2)
(n = 46)

DSPN(+)
(n = 17)

Age, years 44 6 15 44 6 13 59 6 11

Duration of diabetes, years N/A 23 6 15 39 6 14

HbA1c (%)‡ 5.5 6 0.3 8.2 6 1.4 8.5 6 1.3

HbA1c (mmol/mol)‡ 37.1 6 3.5 62.2 6 24.1¶ 69.3 6 14.3¶

BMI (kg/m2)* 26.8 6 4.0 26.4 6 4.5 27.5 6 3.5¶

Cholesterol (mmol/L)
Total* 5.0 6 0.8 4.4 6 0.9¶ 4.3 6 0.9¶
HDL 1.5 6 0.3 1.6 6 0.5 1.6 6 0.4

Triglycerides (mmol/L) 1.4 6 0.7 1.2 6 0.7 1.3 6 0.6

Blood pressure (mmHg)
Systolic† 126.7 6 16.3 130.3 6 17.8¶ 141.1 6 25.2¶§
Diastolic 70.2 6 9.1 71.6 6 9.6 73.0 6 9.8

VPT (V)‡ 6.0 6 5.5 7.6 6 5.5 25.2 6 13.4¶§

WT (8C)† 36.4 6 2.0 38.7 6 3.6¶ 43.5 6 4.6¶§

CT (8C)† 28.8 6 1.6 27.1 6 2.7¶ 16.8 6 10.6¶§

PMNCV (m/s)‡ 49.1 6 3.4 43.9 6 3.1¶ 31.0 6 9.5¶§

SSNCV (m/s)‡ 50.9 6 3.9 45.3 6 5.2¶ 37.8 6 6.8¶§

PMNamp (mV)‡ 6.0 6 2.4 6.0 6 8.3 1.6 6 1.6¶§

SSNamp (mV)‡ 19.7 6 8.3 12.5 6 6.9¶ 4.3 6 3.5¶§

IENFD¿ 9.8 6 3.7 7.0 6 5.0¶ 5.0 6 5.5¶§

Manual
CNFD‡ 36.8 6 5.3 28.3 6 7.2¶ 16.9 6 10.1¶§
CNBD* 92.8 6 36.4 56.1 6 30.3¶ 48.2 6 32.9¶
CNFL‡ 26.7 6 3.7 20.2 6 5.1¶ 14.8 6 8.3¶§

Automated
CNFD‡ 31.3 6 6.5 22.6 6 7.3¶ 13.5 6 9.1¶§
CNBD‡ 44.6 6 17.2 26.2 6 15.1¶ 15.4 6 12.1¶§
CNFL‡ 17.7 6 2.8 13.4 6 3.3¶ 8.8 6 4.7¶§

Results are expressed as mean6 SD. N/A, not applicable for this group. Statistically significant
differences using ANOVA/Kruskal-Wallis: *P, 0.05; ¿P, 0.01; †P, 0.001; ‡P, 0.0001. Post
hoc results for DSPN(+) significantly different from ¶control subjects and §DSPN(2).
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of subjects and statins in 71%. Age was
comparable between control subjects
and patients with diabetes. HbA1c was
significantly higher in patients with diabe-
tes than in control subjects, with no dif-
ference between DSPN(+) and DSPN(2)
patients. BMI was significantly higher
in DSPN(+) patients with diabetes com-
pared with control subjects. Total choles-
terol was significantly lower in DSPN(+)
and DSPN(2) patients with diabetes,
whereas HDL and triglycerides did not
differ between the groups. Systolic
blood pressure was significantly higher
in DSPN(+) and DSPN(2) patients with
diabetes compared with control subjects,
whereas diastolic blood pressure did not
differ between groups.

Neurological Assessment
The NDS differed significantly between
DSPN(+) patients and control subjects
(Table 1).

QST
VPT was significantly greater in DSPN(+)
patients compared with control subjects
and DSPN(2) patients (Table 1). CT and
WT both differed significantly in DSPN(+)
and DSPN(2) patients with diabetes
compared with control subjects.

Electrophysiology
PMNCV, SSNCV, and SSNamp were sig-
nificantly reduced in DSPN(2) patients
with diabetes compared with control
subjects (Table 1). PMNCV, SSNCV,
PMNamp, and SSNamp were all reduced
in DSPN(+) patients with diabetes com-
pared with control subjects and DSPN(2)
patients with diabetes.

IENFD
IENFDwas significantly reduced in DSPN(+)
patients (P = 0.002) and in DSPN(2) pa-
tients (P = 0.001), and was further reduced
in DSPN(+) compared with DSPN(2) pa-
tients (P = 0.05) (Table 1 and Fig. 1G and
Fig. 2). The median value of the control
group was 9.35 and the 0.05 quantile was
4.31, which is consistent with previously
published IENFD measurements (12).

CCM
Manual CNFD was significantly reduced
in DSPN(+) patients (P , 0.0001) and in
DSPN(2) patients (P , 0.0001) com-
pared with control subjects and was
further reduced in DSPN(+) patients
compared with DSPN(2) patients (P ,
0.0001) (Table 1 and Fig. 1H). Manual
CNBD was significantly reduced in

DSPN(+) patients (P , 0.0001) but not
in DSPN(2) patients (P = 0.09) com-
pared with control subjects. Manual
CNFL was significantly reduced in DSPN(+)
patients (P , 0.0001) and in DSPN(2)
patients (P , 0.0001) compared with
control subjects andwas further reduced
in DSPN(+) patients compared with
DSPN(2) patients (P = 0.001). Auto-
mated CNFD was significantly reduced
in DSPN(+) patients (P , 0.0001) and
DSPN(2) patients (P , 0.0001) com-
pared with control subjects and was
further reduced in DSPN(+) patients

compared with DSPN(2) patients (P ,
0.0001) (Fig. 1I). Automated CNBD was
significantly reduced in DSPN(+) pa-
tients (P , 0.0001) and DSPN(2) pa-
tients (P , 0.0001) compared with
control subjects and was further re-
duced in DSPN(+) patients compared
with DSPN(2) patients (P = 0.002). Au-
tomated CNFL was significantly reduced
in DSPN(+) patients (P , 0.0001) and
DSPN(2) patients (P , 0.0001) com-
pared with control subjects and was
further reduced in DSPN(+) patients
compared with DSPN(2) patients (P ,
0.0001) (Fig. 1J).

ROC Analysis
The patients with diabetes were catego-
rized into DSPN(2) (n = 46) and DSPN(+)
(n = 17). Table 2 reports the AUC values,
95%CIs, and sensitivity/specificity at the
equal error-rate point on the ROC curve
for manual and automated CCM fea-
tures as well as IENFD values. The high-
est AUC values among the manual and
automated CCM measures were ob-
tained for CNFD, with AUC values of
0.82 and 0.80, respectively. Almost all
individual CCM measurements resulted
in higher AUC values than IENFD (0.66).
Furthermore, sensitivity and specificity
values were calculated at the equal
error-rate point for the purpose of con-
sistency. For this measure of diagnostic
performance also, CNFD provided the
best discrimination (76% for manual
measurement and 70% for automated
measurement), which exceeded the
65% achieved by IENFD.

In using IENFD to identify DSPN, a de-
cision threshold for neuropathy is com-
monly set at 2 standard deviations
below the mean of the control group.
Table 2 also reports the sensitivity/spec-
ificity values obtained by applying this

Figure 2—Skin biopsy specimens immunos-
tained for neuronal marker PGP 9.5 from
a healthy subject (A), a DSPN(2) patient
with type 1 diabetes (B), and a DSPN(+) pa-
tient with type 1 diabetes (C). Note the de-
pletion of IENFD (red arrows) and reduction
of subepidermal nerve plexus (blue arrows)
in B and C, with both featuresmore severe in
the DSPN(+) patient (C). Original magnifica-
tion 3200, scale bar = 100 mm.

Table 2—AUC, 95% CI values, and sensitivity-specificity for manual and automated
CCM and IENFD for the diagnosis of DSPN

AUC 95% CI
Sensitivity-specificity at

equal-error rate
Sensitivity/specificity at
mean 6 2 SD (threshold)

Manual
CNFD 0.82 0.68–0.95 0.76 0.82/0.71 (24.0)
CNFL 0.70 0.54–0.85 0.71 0.59/0.74 (16.5)
CNBD 0.59 0.43–0.75 0.53 0.17/0.96 (15.0)

Automated
CNFD 0.80 0.66–0.93 0.70 0.60/0.83 (15.5)
CNFL 0.77 0.63–0.91 0.70 0.59/0.80 (10.5)
CNBD 0.70 0.55–0.86 0.59 0.29/0.98 (4.0)

IENFD 0.66 0.50–0.82 0.65 0.53/0.76 (3.3)
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threshold. When this threshold was
used, manual CNFD and automated
CNFD result in better sensitivity/speci-
ficity than IENFD: 0.82/0.71, 0.60/0.83,
and 0.53/0.76, respectively. There were
no statistically significant differences
between the ROC curves for manual
CNFD and IENFD (P = 0.14) and for au-
tomated CNFD and IENFD (P = 0.19) (26).
However, CCM measurements show
considerably less variability within the
subject groups than IENFD measure-
ments (Fig. 1G) and larger AUC values
(Fig. 1K).

CONCLUSIONS

There is a need for surrogate end points
of diabetic neuropathy that accurately
detect early disease, quantify disease
progression, and measure therapeutic
response (2). The current gold standard
for the diagnosis of neuropathy, neuro-
physiology, is a robust measure but has
poor reproducibility (27). Other mea-
sures of neuropathy, such as symptoms
and signs, are also poorly reproducible
(7), and although QST is reproducible, it
is subjective (11).
Small fiber neuropathy has direct

pathophysiological relevance to the
main outcomes of pain and foot ulcera-
tion. Skin biopsy assessment of IENFD
has been proposed as a valid measure
of diabetic neuropathy (15). Further-
more, skin biopsy detects early small
nerve fiber damage even when results
of electrophysiology and QST are still
within normal ranges (28,29), suggest-
ing that it could detect early neuropa-
thy. It has been shown to be abnormal in
subjects with IGT (19) and in recently
diagnosed patients with type 2 diabetes
(30). IENFD has also been shown to in-
crease with an improvement in meta-
bolic risk factors in subjects with IGT
(31) but not after combined pancreas
and kidney transplantation in patients
with type 1 diabetes (20). Furthermore,
the invasive nature of this technique
limits its practical use as a diagnostic
test and particularly when a repeat bi-
opsy is required in longitudinal studies
or clinical intervention trials.
CCM is a novel, rapid, and readily re-

iterative technique that quantifies small
nerve fibers noninvasively and shows
promise as a surrogate end point for
neuropathy (9,18,30,32–34). A number
of studies have shown the nerve fiber
features extracted from CCM are

associated with the severity of diabetic
peripheral neuropathy (17,23,33).

Because IENFD represents a measure
of themost distal nerve fibers, which are
affected in DSPN, a natural assumption
is that it should have a better diagnostic
ability than CCM. However, a compari-
son between IENFD and CCM features
for the individual diagnosis of DSPN
has not been reported to date. In this
report, we present a comparison of
nerve fiber features, quantified manu-
ally or automatically from CCM images
(CNFL, CNFD, and CNBD) with IENFD
measurement in identifying DSPN in in-
dividuals. CCM and IENFD are compara-
ble in their diagnostic performance for
detecting patients with diabetic neurop-
athy. Neither technique appears to have
an optimal diagnostic performance.
However, there were relatively small
numbers of patients in the study
because a significant proportion were
not willing to undergo biopsy. Further-
more, the diagnosis of DSPN does not
incorporate a measure of small fiber
damage, which limits the assessment of
the diagnostic performance of these
small fiber tests. The added advantage
of CCM compared with IENFD assess-
ment is the more rapid and noninvasive
acquisition of images and automated
corneal nerve image analysis allowing
rapid and consistent quantification
(22,23,35). The exception is themanually
measured CNBD, which has been found
previously (25) to be unreliable due to
the subjective judgment required in
identifying branches. The algorithmic
definition of branches in the automated
measurement results in greater consis-
tency, although this is the least useful
individual automated CCM measure-
ment. CCM and IENFD both seek to mea-
sure small fibers, but IENFD showed a
poorer discrimination between DSPN(+)
and DSPN(2) patients. Furthermore,
CCM measurements show considerably
less variability within the subject groups
than IENFD measurements. Interest-
ingly, very low IENFD values were ob-
served, even in control subjects.

This study has strengths and limita-
tions. Strengths include the study design
and techniques used to assess neuropa-
thy. This is the first study to report the
clinical utility of two highly sensitive
techniques, CCM and skin biopsy, in
the same group of patients with type 1
diabetes and control subjects. Thus,

CCM appears to be an emerging surro-
gate end point of diabetic neuropathy
that shows comparable performance
to the current gold standard of IENFD.

The limitations of the current study
are the relatively small number of pa-
tients with established neuropathy and
the use of the more distal site for the
biopsy, which makes comparison of the
IENFD results with other studies diffi-
cult. Furthermore, these data are only
applicable to Caucasian patients with
type 1 diabetes and need to be con-
firmed in nondiabetic neuropathies.

In conclusion, we show that the diag-
nostic efficiency of CCM is comparable
to IENFD. However, CCM may be pre-
ferred due to its rapid, noninvasive, au-
tomated and, hence, unbiased means of
quantifying small nerve fiber damage
and repair in DSPN(+) patients.
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Abstract. We present a novel framework for inferring 3D carpal bone kinematics
and bone shapes from a single view fluoroscopic sequence. A hybrid statistical
model representing both the kinematics and shape variation of the carpal bones
is built, based on a number of 3D CT data sets obtained from different subjects
at different poses. Given a fluoroscopic sequence, the wrist pose, carpal bone
kinematics and bone shapes are estimated iteratively by matching the statistical
model with the 2D images. A specially designed cost function enables smoothed
parameter estimation across frames. We have evaluated the proposed method on
both simulated data and real fluoroscopic sequences. It was found that the relative
positions between carpal bones can be accurately estimated, which is potentially
useful for detection of conditions such as scapholunate dissociation.

Keywords: Carpal bones kinematics, 2D 3D registration, Statistical model.

1 Introduction

Chronic pain in the wrist arises due to a number of conditions, such as instability
patterns, nonunion or malunion of fractures, primary osteoarthritis and inflammatory
arthritis. The result for patients is a severe reduction in quality of life due to impairment
of everyday functions, lost work time, increased morbidity and loss of the capacity to
live independently. The current method of distinguishing between these conditions is by
examining 2D video fluoroscopy sequences showing movement of the hand from full
ulnar to full radial deviation and from full flexion to extension in two orthogonal views.
From these images clinicians can infer the three-dimensional translations and rotations
of the carpal bones that take place during wrist movement, and arrive at a differential
diagnosis on the basis of variations from normal bone kinematics. The interpretation is
difficult and the accuracy of diagnosis depends wholly on the experience of the practi-
tioner. Currently, accurate diagnosis requires referral to a specialist hand consultant and
treatment is often delayed to the detriment of the patient.

The aim of the project is computer interpretation of the fluoroscopy sequences to
attain a higher degree of objectivity and quantification in the diagnostic process. During

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 680–687.
c© Springer-Verlag Berlin Heidelberg 2011
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wrist movement, the eight carpal bones follow a complex, multi-dimensional trajectory,
making interpretation of radiographs difficult. For this study we have trained a hybrid
statistical model (SM) from a set of CT images from different subjects at different
poses. Subsequently, the full 3D carpal bone motions can be recovered by matching
the SM with the fluoroscopy sequences through 3D-2D image registration techniques.
A number of studies have sought to represent the carpal kinematics using CT or MR
data, mainly concentrating on representing ‘average’ kinematics over a small number of
individuals (e.g. [1], [2]). More recently, Van deGiessen et al. [3] presented a 3D rigid
registration method based on segmented meshes, which aims to build SM of carpal
bones. A study of carpal bone kinematics based on a 4D imaging system was reported
in [4]. 3D-2D registration has been the subject of many studies (e.g. [5]), mainly in the
field of registration of pre-operative MR or CT images to intra-operative 2D images.
Our work differs from the above in that we seek to achieve registration of a 2D image
sequence to a 3D model (not derived from the same individual) to derive the kinematics
of an individual wrist. Zheng [6] took a similar approach to estimate the orientation of
pelvis from a single X-ray image.

The main contributions of this paper, distinguishing it from these studies, are: (1) A
hybrid SM is developed representing both the complex kinematics and shape variation
of the eight carpal bones plus radius and ulna. (2) The full 3D motion and bone shapes
are recovered by matching the SM with a single view fluoroscopy sequence: a difficult
ill-posed problem. (3) Our initial results show that the relative positions between the
carpal bones can be estimated accurately through the proposed framework. We are not
aware of any study which attempts to make a 2D to 3D inference in a system of this
level of complexity.

The system consists of a training phase and a 3D-2D image registration phase. We
currently have CT data from 10 subjects, each at five poses (neutral pose and two ex-
treme poses in flexion-extension and radial-ulnar deviation). In the training phase, only
the data from the neutral pose and two extreme poses in the radial-ulnar movement were
used, as the radial-ulnar movement is the current concern of this paper. The segmenta-
tion of each bone and rigid registration parameters that align bones at different poses
within and across the subjects were obtained using an iterative segmentation and regis-
tration algorithm [7]. A hybrid statistical model, representing both the kinematics and
shape variation, was built efficiently from the results of the segmentation-registration
framework. The kinematic model was built based on the transformation parameters,
while the segmentation result was used to build the statistical shape model for each in-
dividual bone. In the 3D-2D image registration phase, the 3D rigid transformation, the
kinematic motion and bone shapes were estimated in sequence from each frame of the
fluoroscopy sequences. Detailed descriptions are given in the following sections.

2 Problem Parameterisation

We use a perspective projection model to represent the relationship between the 2D
fluoroscopy image and the 3D configuration of bones. Almost all parameters necessary
for this model (pixel size and optical centre) are known. The distance from the X-ray
source and the detector needs to be measured for each patient. If this parameter is not
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accurate, it will lead to a scale difference of the estimated 3D model. The resulting
translation effects on the relative motion between carpal bones at pixels away from the
centre of the field is very small.

Three sets of parameters need to be estimated during image registration in order to
interpret the true 3D motion of the carpal bones: (1) Rigid transformation parameters
of the wrist and a global scale factor, denoted by θ={tx, ty, tz, α, β, γ, sglobal}. tx, ty and
tz denote the translations, and α, β and γ denote the rotation angles. sglobal controls the
distance between the centroid of each bone to the origin in the radius, and the global
size of the bones. (2) Kinematic model parameters M representing the carpal bone poses
during movement. (3) Shape model parameters Qi and scale factor si for each bone (i).

3 Training of Kinematic Model and Shape Model

We use the six rigid transformation parameters for each bone to train the kinematic
model. The common coordinate system for all pose and scale parameters has an origin
at the centroid of the head of radius for one subject. The pose of one subject is described
by (tx1, ty1, tz1, α1, β1, γ1, ..., tx10, ty10, tz10, α10, β10, γ10)t . (8 carpal bones, 1 radius
and 1 ulna). The orientation parameters all occupy values distant from the angular dis-
continuity. Then the kinematic model can be parameterised as,

M = µm + φmbm (1)

where the mean pose µm (m is a notation indicating the model parameters) and the prin-
cipal subspace matrix φm are computed from 3 (poses)× 10 (subjects) training samples
using PCA. The vector bm represents the kinematic parameters that describe the pose of
M along each principal direction. In our experiments, the first 8 significant modes are
used, which keeps 98% of variation.

The statistical shape model of each bone is a point distribution model, built using
the segmented volume of the same training subjects. The 3D structure of each bone is
described by a set of approximately 1000 points on the segmented surface. Correspon-
dence between these points across subjects was established by the minimum description
length algorithm [8]. The deformable shape model is then described as,

Qi = µq
i + φq

i bq
i (2)

where µq
i and φq

i (q is a notation indicating the shape parameters) are the mean shape
and the principal subspace matrix for the ith bone. bq

i is the shape model parameter to
be estimated. In order to keep the complexity within limits, only the first 3 significant
modes are used which keeps 84% of variation.

Based on the point distribution model of each bone and the kinematic model, a hybrid
statistical mesh model can be built by using the Crust mesh construction algorithm [9].
Figure 1 shows the poses of the first mode of the kinematic model (represented by the
mean shapes of each bone) and the shapes of the first mode of the scaphoid.

4 3D-2D Image Registration

The statistical mesh model from the training data is then used to match with the flu-
oroscopic sequence to infer the 3D motion and bone shapes. Figure 2(a) summarises
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Fig. 1. Top row: The poses of the first mode of kinematic model. Bottom row: the first mode of
the shape model of the scaphoid. In each case the mean +/-1.5s.d. are shown.
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Fig. 2. Overview of the 3D-2D image registration process. (b) The gradient magnitude map of
the fluoroscopic image after enhancement (cropped to show the region of interest) (top) and the
simulated image from mesh model (bottom).

the registration process, in which the preprocessed fluoroscopic image is iteratively
matched with a simulated projection generated from an updated pose of the mesh
model. Detailed descriptions are given in the following subsections.

4.1 Fluoroscopic Image Enhancement and Projection Simulation

As the edges are strong features that can be used for image matching, the fluoroscopic
image was firstly pre-processed to enhance the edges and reduce noise in homogenous
regions. Local intensity normalisation was achieved by subtraction of the local mean
intensity and division by the local standard deviation. The anisotropic diffusion [10]
filter is then used to smooth the image while preserving the edges. Figure 2(b) shows an
example of the gradient magnitude map of the fluoroscopic image after enhancement.

To optimise the pose parameters we iteratively generate projections from the mesh
model with updated parameters, using the perspective projection described in section
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2. The mesh model is considered to be a binary volume, and the projected intensity is
negatively proportional to the sum of binary values along the ray from the source to
each pixel in the image plane. Figure 2(b) shows an example.

4.2 Cost Function

To evaluate the similarity between the fluoroscopic image and the simulated image,
we investigated several forms of the cost function, achieving best results from the one
shown in Eqn. (3), based on the gradient along horizontal and vertical directions as well
as the gradient magnitude of the two images. Additionally, the adjacent frames of the
current fluoroscopic image were also taken into account in the cost function to make
the estimated poses smooth across frames.

Taking C(A,B) as the Normalised Correlation Coefficient between two images A and
B, we can write the cost function as:

E = C(Omk−1,Omk)+ ∑
p=k−1,k,k+1

wp(C(Imp,Dmk)+C(Ixp,Dxk)+C(Iyp,Dyk)) (3)

where k is the current frame number of the fluoroscopic sequence. Imp, Ixp and Iyp are
the gradient magnitude image, vertical gradient and horizontal gradient of the fluoro-
scopic image at the pth frame respectively. Dmk, Dxk and Dyk are the corresponding
values of the simulated image. The second term calculates a cross-correlation between
sets of three adjacent frames with weights wk−1, wk and wk+1= 0.2, 0.6, 0.2 respectively,
making the estimated pose smooth across frames. For the first term of the cost function,
the vertices in the statistical mesh model are projected to the image plane, we assume
the intensities at those projected points are similar across adjacent frames. Omk−1 and
Omk represent the gradient magnitude of the previous frame and the current frame at the
projected correspondence positions. The first term makes the shape of the cost function
sharper, leading to a faster and more accurate optimisation result. The (k− 1)th frame
and (k + 1)th frame are not evaluated for the first and last frame respectively.

4.3 Optimisation

The optimisation method used is the best neighbour search combined with parabola
fitting. The multi-dimensional search space (θ, M and Q) is explored by iteratively
individual 1D line search. The cost function is evaluated at the current position, positive
and negative neighbour positions (defined by a search range), then an optimum is found
by fitting a parabola to the 3 evaluated positions. The optimum is iteratively refined by
reducing the search range until convergence.

In our case, the true sizes of the bones are unknown; recovering the 3D pose from a
single image is therefore a difficult, ill posed, problem. Any movement along the out-
of-plane translation, could be compensated by scaling of the bone. In order to minimise
this effect, the optimisation is carefully sequenced. We firstly assume that the wrist is
not moving along the out-of-plane direction during radial-ulnar movement (ty=0), as it
is placed on a flat surface. The position of the model is firstly initialised by clicking the
centre of the radius in the first frame of the fluoroscopic sequence. In the first step of the
optimisation, only the first frame of the fluoroscopic sequence is used, and only the in-
plane rigid transformation parameters (tx, tz, β) are estimated along with the global scale
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factor (sglobal) and the relative scale parameters of each bone (si). The first significant
parameter of the kinematic model (bm) is also estimated to provide an estimate of the
overall pose. Other, less significant modes may include components of deviation along
the out-of-plane direction that would affect the estimation of the global scale parameter.
Inclusion of this first step resulted in significantly lower estimated error along the out-
of-plane direction than optimisation without this step. Starting from this initial estimate
of pose, the first frame is evaluated again, taking all the parameters into account (except
ty) in the following sequence: tx, tz, β, α, γ, bm, sglobal , si and bq

i . After convergence, the
estimated pose of the current frame is used as the starting pose for the next frame. The
shape model parameters bq

i are only estimated once in the first frame. From our initial
experiments, the shape parameters are not improved significantly when we include more
frames and the fitting is made significantly more complex and time consuming. At each
stage, when tx, tz, β, α and γ are estimated, only the region immediately surrounding
the radius and ulna are used for cost function evaluation, while the larger region that
includes the carpal bones is used for estimating the other parameters. There are about
60-80 frames per sequence. The whole process was performed in a 3-level multi-scale
framework at each frame to enhance the robustness of the registration.

5 Evaluation

The ground truth of the recovered 3D pose corresponding to real fluoroscopic sequences
is almost impossible to obtain. It would require the synchronisation of 3D imaging with
the fluoroscopy. Hence, we evaluated our framework based on a number of simulated
fluoroscopic sequences generated from the 3D CT data. All CT volumes have been
resampled to an isocubic volume with voxel dimension of 0.5 mm. We linearly interpo-
lated a number of poses between the neutral pose and two extreme poses of radial-ulnar
deviation in a full movement cycle containing 50 poses for each of 10 subjects. The
ray-casting method was then used to generate a simulated fluoroscopic sequence from
those interpolated 3D data. We evaluated the proposed framework in the leave-one-out
manner. The 3D pose of the simulated test subject was then calculated as described in
section 4, and registration error measured by the 3D Euclidian distance of each corre-
sponding point of the mesh between the target pose and the estimated pose is presented
in Table 1. The error of the registration is mainly caused by the ill posed problem (con-
fusion between the scale and translation along the out-of-plane direction), whereas the
errors along the in-plane directions are very small with average error of about 2 pixels
and maximum error within 4 pixels.

It is important to mention that the relative positions of the carpal bones with respect
to each other can be estimated much more accurately than the absolute positions of the
individual bones. The registration error of the 3D distance between the centroid of Tri-
quetrum and the centroid of Lunate (dTL), and the distance between the centroid of Lu-
nate and the centroid of Scaphoid (dLS) were also measured. The errors are 1.18±0.74
and 1.82±0.99 pixels for dTL and dLS respectively, compared to a bone size of about
30 pixels. One of the conditions that may be assessed using this method is dissociations,
where the distance between the bones is larger than normal. Scapholunate dissociation
is one of the most common of these. We normalise the dLS by dividing it by the es-
timated global scale factor sglobal and an average of the scale factor si for lunate and
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Table 1. The average error, measured in 3D, between the target and estimated correspondence
points of each carpal bone of 10 subjects: Triquetrum(Tri), Lunate(Lun), Scaphoid(Sca), Pisi-
form(Pis), Hamate(Ham), Capitate (Cap), Trapezoid (Trd) Trapezium (Trm). The measurement
errors of dTL and dLS.

eTri eLun eSca ePis eHam eCap eTrd eTrm Total eTL eLS
Err3D 5.4±2.6 5.1±2.5 6.5±3.6 6.8±3.7 6.5±3.8 6.6±4.0 6.5±4.6 7.6±4.3 6.3 ±3.7 1.18±0.74 1.82±0.99
ErrX 1.6±1.3 2.0±1.6 2.1±1.8 2.4±1.9 1.8±1.4 2.1±1.5 1.8±1.4 2.2±1.8 2.1 ± 1.7 / /
ErrY 3.7±2.8 3.0±2.6 4.9±3.7 4.8±3.9 5.4±4.2 5.3±4.4 5.5±5.0 6.1±4.6 4.6±4.0 / /
ErrZ 2.5±2.0 2.5±1.9 2.2±1.8 2.6±2.1 1.6±1.3 1.7±1.3 1.5±1.2 2.2±2.0 2.3±1.9 / /
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Fig. 3. Registration result of one frame from a real fluoroscopic sequence. The registration result
for the whole sequence can be found in [11].

scaphoid. From the tested 10 subjects, we successfully identified the subjects suffer-
ing from scapholunate dissociation (dLS=38.78±1.53 pixels) from the normal subjects
(dLS=34.49±0.83 pixels). Making this type of measurement without a 3D statistical
model would be impossible.

We also tested our framework on real fluoroscopic sequences. Although the match-
ing error cannot be quantified, the registration results show good visual correspondence
and have been confirmed by a clinician. A sample frame of the matching result and
the corresponding 3D pose are shown in Fig. 3 in which the projected contours from
the 3D mesh model are superimposed on the preprocessed fluoroscopy image. The es-
timated 3D mesh model in the palmar and dorsal views are shown in middle and right
respectively. The registration result for the whole sequence can be found in [11].

6 Concluding Remarks

We have presented a complete framework that is able to infer the 3D motion of carpal
bones from a single view fluoroscopic sequence. It uses a hybrid statistical model to es-
timate both the kinematics and bone shapes from the fluoroscopic sequences allowing
the motion of carpal bones during radial-ulnar deviation to be estimated. Particularly,
the relative positions between carpal bones can be estimated accurately. This is poten-
tially useful for detection of dissociation conditions, such as scapholunate dissociation,
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where the underlying pathology is a rupture of one or more ligaments, and the diagnosis
rests on a judgement regarding the joint separation.

In further work we will extend the current statistical model with more training data
(in progress) and test the framework for the flexion-extension movement.
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ABSTRACT

A novel framework is presented in this paper for simultane-
ous multi-label segmentation and registration of carpal bones
which leads to efficient statistical model building. It com-
bines the Grow Cut segmentation algorithm with rigid image
registration for propagating the segmentation of bones to new
poses or different individuals. The proposed framework com-
pares favourably to the conventional segmentation and non-
rigid registration methods, in terms of flexibility and compu-
tational time, for our CT data of carpal bones. The segmenta-
tion code was implemented in a GPU, running about 15 times
faster than CPU code.

Index Terms— Carpal bones, Grow Cut, Interactive seg-
mentation, Rigid registration, CUDA programming

1. INTRODUCTION

The wrist is one of the most complex and vulnerable joints
in the body, consisting of eight carpal bones. Wrist pain is
currently diagnosed by expert assessment of abnormal carpal
bone movements in 2D (projection) fluoroscopy sequences.
The overall aim of the current project is computer interpreta-
tion of these sequences to attain a higher degree of objectivity
and quantification in the diagnostic process. One important
step towards this aim will be the development of statistical
models (SD) of the carpal bones and their spatial relation-
ships. Statistical models of shape and appearance [1, 2] have
been widely used in the description and analysis of objects in
medical and other forms of images. For this study we will
train this statistical model from a large set of CT images.

Current well established methods of building SD require
finding a set of correspondences on segmented surfaces across
a training data set. The wrist presents particular segmentation
challenges as the carpal bones are small and in close contact
with each other, and the density and shape may vary between
individuals. Van de Giessen et.al. [3] have reported using
a geodesic active contour [4] for carpal bone segmentation,
but this has not proved successful in our hands with our CT
images. Interactive segmentation tools (e.g. Graph Cut [5]
and Grow Cut [6]) provide a more promising route forward.
However, our initial experience with our 3D CT data shows
that a significant burden of interaction is required to obtain a

Thanks to Medical Research Council for funding.

satisfactory result. This burden is particularly daunting when
a large 3D data set needs to be segmented for model build-
ing. Another class of methods to establish correspondence is
to use non-rigid image registration techniques. These meth-
ods suffer from long computation time, are sensitive to initial
starting pose and any inaccurate registration result can not be
easily corrected.

To address these problems we propose an integrated
framework which combines the Grow Cut segmentation
method with rigid image registration to simultaneously seg-
ment and align the carpal bones in CT data captured from
different subjects or in different poses from the same subject.
The kinematics of the carpal bones is complex and significant
pose difference can be introduced as the joint adopts different
positions. The framework significantly reduces the workload
of segmentation, simultaneously providing a good alignment
of the carpal bones which is used for building a kinematic
model. In the proposed framework, the segmentation of one
data set was obtained interactively using the multi-class Grow
Cut segmentation method [6] forming a template to segment
and align with other images. In Grow Cut the user specifies
a number of segmentation seeds which have initial strength
values of 1, other points being initialised to 0. Then the labels
are propagated interactively by comparing the transmitted
strength of each voxel to that of its neighbours. The regis-
tration stage automatically initialises a strength map for the
Grow Cut, which speeds up the segmentation significantly,
whilst the segmentation result provides an updated pose for
the registration, preserving the topology of the carpal bones.

2. METHODOLOGY

The proposed framework is designed to use the template
volume VS with its segmented volume VSseg to simulta-
neously register and segment the target volume VT . The
outputs of the framework contain a set of transformation
parameters (~p: 3 translations, 3 rotations, 1 scale) ~pi =
[txi, tyi, tzi, αi, βi, γi, si]

T (i = 1, 2...n, where n is the
number of bones) as well as the segmented volume VTseg of
VT . The framework consists of the following steps:

1. Rough Alignment: Manually adjust the transforma-
tion parameter ~pi for the whole or individual bone to roughly
align with the target volume VT generating a labeled volume
VTrans.
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2. Strength Map Generation: Using the labeled volume
VTrans (initialised from step 1 or updated from step 4), VT

can be classified as foreground (bone) and background (non-
bone) from which the respective intensity histograms, Pfore

and Pback, are calculated, leading to a strength map (Eqn. 1
to 5).

3. Multi-class Grow Cut Segmentation: Based on the la-
beled volume VTrans from step 1 (or updated from step 4)
and the strength map from step 2, run the Grow Cut algo-
rithm to refine the segmentation volume VTseg and calculate
the centroid point of each bone in VTseg .

4. Rigid Image Registration: Run the rigid image regis-
tration algorithm for each bone with its updated centroid to
produce a new transformation parameter ~pi and new labeled
volume VTrans.

5. Iteration and Termination: Steps 2 to 4 are repeated;
the segmentation volume, registration parameters and the in-
tensity histograms coherently improve each other until the ter-
mination conditions are satisfied. VTseg from step 3 and ~pi
from step 4 are the estimated segmentation and registration
results respectively. Details of each stage are described in
following subsections.

2.1. Rough Alignment

The segmented volume VSseg of the first data set VS is ob-
tained interactively using the Grow Cut segmentation method,
resulting in different bones having different integer labels.
The mesh model of each bone from VSseg is generated, to-
gether with a mesh model representing a rough shape of VT

constructed using a simple threshold. A straightforward GUI
is used to change the transformation parameters of all bones
simultaneously or individually, until the meshes of VSseg and
VT are roughly aligned. The sensitivity and robustness of the
proposed algorithm to this manual alignment are evaluated in
section 3. A new label volume VTrans is then created from all
the transformed bones. In VTrans, all overlapped bone areas
are set to zero, as new labels shouldn’t be introduced.

2.2. Strength Map Generation

Here we present a novel method for initialising the strength
map, which is used in Grow Cut in conjunction with the
object labels to update the segmentation (Section 2.3). The
objective here is to initialise this map, VStren with values
of 1 (high certainty) and 0 (low certainty) of being either
bone or non-bone. To obtain the VStren, an initial binary
volume, VbwTrans (bone=1, non-bone=0) is generated from
VTrans. The normalised foreground and background his-
tograms (Pfore and Pback) are calculated from the overlap of
VbwTrans and the target volume VT . Using Eqn. 1, we cal-
culate the likelihood (VL) of classifying each voxel as bone
(positive) or non-bone (negative), from which Eqn. 2 and 3
generate new binary volumes (VbwL1, VbwL2) representing
high certainty regions of bone and non-bone respectively.
The thresholds of 0.9 and -0.5 were determined empirically.
VbwL3 (Eqn. 4) represents the region of VT that is not clas-
sified as bone either in VbwTrans or VbwL1. Equation 5
identifies the regions that are identified with certainty to be
bone or non-bone, based on the histograms (Pfore and Pback),

constrained to be within the respective bone and non-bone re-
gions defined by VbwTrans. Following Grow Cut relabeling,
VbwTrans and VStren are reinitialised for each iteration step.

VL =
(Pfore(VT )− Pback(VT ))

max(Pfore(VT ), Pback(VT )))
(1)

VbwL1 = {
1 ifVL > 0.9
0 otherwise

(2)

VbwL2 = {
1 ifVL < −0.5
0 otherwise

(3)

VbwL3 = 1− (VbwTrans ∪ VbwL1) (4)

VStren = (VbwL2 ∩ VbwL3) ∪ (VbwTrans ∩ VbwL1) (5)

2.3. Multi-class Grow Cut Segmentation

An advantage of Grow Cut is its ability to obtain a multi-label
solution in simultaneous iteration, and it allows fast parallel
implementation. Hence, it is a natural choice for our appli-
cation in which a number of bones need to be labeled. For
efficiency the Grow Cut code was parallelised using NVidia
Quadro FX 3800 Graphic Card via CUDA API [7], which
achieved a run time about 15 times faster than the CPU based
code and 5 times faster than the Graph Cut algorithm running
in the CPU.

In our proposed framework, the strength map VStren was
initialised automatically in step 2, and VTrans (from step1
or step 4) was used as the labeled volume. Since, there is
only a small number of uncertain voxels with VStrenh = 0
at each iteration, it takes less than 2 seconds to complete the
segmentation of a 141× 268× 169 volume.

2.4. Rigid Image Registration

The cost function for image registration is the summed nor-
malised correlation coefficient calculated from the normalised
image and gradient images in X, Y and Z directions.

The optimisation method used is a simplified but efficient
version of Powell’s method [8], and has been described in de-
tail in [9]. The seven-dimensional search space (three trans-
lation, three rotation and one scale parameter) is explored by
local 1D search, conducted by fitting a parabola to neighbour-
ing points at multiple scales.

2.5. Iteration and Termination

The framework was implemented to run in a 3-level multi-
scale manner. For a 141× 268× 169CT volume, the original
data (level 3) was smoothed and downsampled by a factor of
2 and 4 for levels 2 and 1 respectively. In each level, step 2 to
4 are repeated, the segmentation volume, registration param-
eters and the intensity histograms coherently improving each
other. The system terminates or moves to higher level, if the
difference of the segmented volume VTseg between adjacent
iterations stops decreasing. For the optimisation of rigid im-
age registration in step 4, the initial searching range for all 3
levels are set to 1 pixel for translation, 1 degree for rotation
and 0.05 for scale. The registration terminates when all the
search ranges are smaller than 0.1. Finally in level 3, VTseg
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from step 3 and ~pi from step 4 are the final estimated segmen-
tation and registration results respectively.

Following convergence, the framework also offers the
flexibility to interactively refine the result by specifying ad-
ditional seeds to achieve accurate detail in segmentation. For
example Fig. 1 shows the result of the proposed method.
Some segmentation details in Fig. 1(c) are corrected interac-
tively using Grow Cut (making use of the final strength map
from step 3) to produce the final result (Fig. 1(d)).

3. EVALUATION AND RESULTS

We applied the algorithm to CT data from 14 subjects. Five
CT images were captured for each subject from different
poses (neutral pose and two extreme poses in flexion and
extension and medio-lateral movement). The CT slice thick-
nesses varied for different subjects, therefore the CT im-
ages were resized by trilinear interpolation to a volume with
isotropic voxels of 0.5mm × 0.5mm × 0.5mm. Figure 1
shows a slice from coronal view of the segmentation and
registration results of one subject by using data from another
subject as the template.

(a) (b)

(c) (d)

Fig. 1. A single slice from a volume registration, using the

segmentation of the wrist of a different subject as a template.

(a) Initial manual alignment. (b) Result from the registration

step. (c) Result from the segmentation step. (d) Segmentation

result after user interaction and smoothing. The arrows indi-

cated locations where interactive correction have taken place.

One important advantage of the proposed framework is
that the robustness to initial starting pose compares favorably
to registration alone. We evaluated this by choosing one of the
CT volumes as a template (with known ‘ground truth’ seg-
mentation obtained by interactive Grow Cut, validated by a
clinician). Copies of this segmented volume, translated, ro-
tated and scaled to a number of starting poses, were used to
register to and segment the original (untransformed) image.

The starting poses were grouped into 20 intervals based
on the widely used mean Target Registration Error (mTRE)
measurement [10], from 0-1 to 19-20 with 10 starting poses
per interval. For each starting pose, the mTRE was cal-
culated by using randomly generate, uniformly distributed,

transformation parameters ~p, selecting those transformations
for which the mTRE is in the required interval. After regis-
tration, the mTRE is again calculated to quantify the regis-
tration accuracy.
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Fig. 2. (a) Registration results for registration only method (b)

Registration results for the proposed method. The coloured

symbols represent the registration errors for the individual

carpal bones. The line shows the percentage successful regis-

trations as a function of the initial pose displacement.

In our test, the registration accuracy of the heads of the ra-
dius and ulna and the 8 carpal bones were evaluated individ-
ually, each at its own rotation centre (centroid point). Hence,
a total of 100 ((8 + 2) × 10) registrations were calculated
for each interval. We compared the proposed framework with
propagation of segmentation using registration alone (using
the method described in section 2.4) using the same set of
starting poses. All parameters were set to be the same and
the multi-resolution scheme was used for both methods. Fig-
ure 2 shows the registration results (measured by mTRE)
against the initial mTRE displacement. Each coloured sym-
bol represents a single registration run on a particular bone.
The graph represents the percentage of successful registra-
tions as a function of the initial pose shift. The registration is
defined as successful if the mTRE value after registration is
less than 1. Figure 2 shows that the proposed method results
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in a smaller number of unsuccessful registrations. With regis-
tration alone, the success rate drops below 100% at an initial
mTRE of about 6, whereas the proposed method is more ro-
bust, retaining 100% success rate up to an initial mTRE of
about 10. The relatively high values of mTRE in Fig. 2(b)
are almost all due to the segmentation of a single bone (the
trapezoid). Due to its small size and close articulation with
neighouring bones its segmentation tends to be more sensitive
to the initial pose, resulting in more failed cases and larger
registration errors. We also compared the two methods by
the following criteria (see table 1). Successful registration
rate (SRR): the number of successful registration divided by
the total tested number over all registrations (each individual
bone counted as a registration); registration accuracy (RA):
measured by mTRE based on the final estimated transforma-
tion parameters for the successful registrations; capture range
(CR): the maximum allowed initial displacement which can
achieve 100% successful registration rate. Time: all experi-
ments were tested on a 3.33 GHz PC with 24G memory, Grow
Cut being implemented in the GPU, see section 2.3.

Table 1. Comparison of Registration Results
SRR (%) RA (pixel) CR (pixel) Time (s)

Reg. only 68.6 0.0087 ± 0.020 6 37±24

Proposed 90.4 0.0093 ± 0.007 10 223±135

Table 1 shows that the proposed method achieved higher
successful registration rate, a larger capture range and more
stable registration results, as the standard deviation is much
smaller than the registration alone. The only drawback was
that it required more computation time, where the genera-
tion of volume VTrans of transformed bones in each iteration
took the majority of the time. The unsuccessful registrations
shown in Fig. 2 (mainly of the trapezoid) remain to be reg-
istered manually. This aspect was not part of the above eval-
uation. The mechanism for manual registration is to initiate
the process with a closer initial alignment for the particular
bones. The larger capture range for the majority of bones
means that this interaction step needs to be carried out rather
infrequently.

The segmentation results were further evaluated in the
context of propagating the segmentation from one individual
to images of others (as illustrated in Fig.1). We calculate an
error rate between a set of ‘ground truth’ labeled volumes and
the segmented volume by using the proposed method without
any further refinement. The ‘ground truth’ data were obtained
by applying the proposed method with further interactive re-
finement to 13 CT data from different subjects. All the seg-
mentations were validated by a clinician. The segmentation
error rate was calculated by counting the number of different
labels between ’ground truth’ and the final segmented vol-
ume without interaction, divided by the total ‘ground-truth’
bone volume. The segmentation error rate of our 13 tested im-
ages was 11.5 ± 1.6%. Interactive segmentation using Grow
Cut directly on the raw CT data normally took more than 20
minutes of interaction per volume (using the GPU code) to
achieve similar error rate, and also requires reordering of the
labels afterwards. Additionally, if different poses from the
same subject are registered by the proposed method, almost
no further interaction is required. We also tested rigid regis-
tration followed by local affine non-rigid registration without

segmentation on our data. It suffers from long computation
time and any incorrect registration result can not be easily
corrected.

4. CONCLUSION AND DISCUSSION

In the context of segmentation for model-building, the ability
to propagate a segmentation from one training example to oth-
ers is particularly important. We have demonstrated a novel
method for achieving this which is more robust to initial start-
ing poses than a conventional registration method. The multi-
class segmentation acts as a soft constraint which preserves
the topology of the segmented volume, as it does not allow
bone overlapping or jumps to random positions. Since dif-
ferent bones have the same intensity range, conventional seg-
mentation methods tend to merge the bones that are in close
contact. The registration stage acts to prevent the label float-
ing to neighboring bone areas.

A hybrid statistical model, representing the motion and
shape separately, can be built efficiently from the results of
this procedure. The kinematic motion model is built based on
the transformation parameters obtained from the rigid regis-
tration, and the segmentation result is used to build the shape
model for each individual bone.
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Automatic Inference and Measurement of 3D
Carpal Bone Kinematics From Single View

Fluoroscopic Sequences
Xin Chen*, Jim Graham, Member, IEEE, Charles Hutchinson, and Lindsay Muir

Abstract—We present a novel framework for estimating the 3D
poses and shapes of the carpal bones from single view fluoroscopic
sequences. A hybrid statistical model representing both the pose
and shape variation of the carpal bones is built, based on a number
of 3D CT data sets obtained from different subjects at different
poses. Given a fluoroscopic sequence, the wrist pose, carpal bone
pose and bone shapes are estimated iteratively by matching the
statistical model with the 2D images. A specially designed cost
function enables smoothed parameter estimation across frames
and constrains local bone pose with a penalty term. We have
evaluated the proposed method on both simulated data and real
fluoroscopic sequences and demonstrated that the relative poses of
carpal bones can be accurately estimated. One condition that may
be assessed using this measurement is dissociation, where the dis-
tance between the bones is larger than normal. Scaphoid–Lunate
dissociation is one of the most common of these. The error of the
measured 3D Scaphoid–Lunate distances were
for simulated data (25 subjects) and for real
data (15 subjects). We also propose a method for constructing
a “standard” pathology measurement tool for automatically
detecting Scaphoid–Lunate dissociation conditions, based on
single-view fluoroscopic sequences. For the simulated data, it
produced 100% sensitivity and specificity. For the real data, it
achieved 83% sensitivity and 78% specificity.

Index Terms—Carpal bone poses, fluoroscopic sequence, sta-
tistical pose model, statistical shape model, two-dimensional (2D)
three-dimensional (3D) registration, wrist pathology.

I. INTRODUCTION

W RIST pain, either acute or chronic, is a common
presenting symptom in hand clinics. It may be due

to a number of different pathologies, including acute trauma,
arthritis (either osteo or inflammatory), vascular disorders,
the sequelae of congenital abnormalities and the sequelae
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of trauma. These latter may include osteoarthritis secondary
to fracture malunion or nonunion, and ligament instability.
The standard assessment of a patient with pain of this nature
will include history taking, clinical examination, and special
investigations.
The wrist joint is complex, and the maintenance of the

normal relationship of the carpal bones, both at rest and on
movement is governed by intercarpal and extrinsic ligaments.
Normal function and integrity of these ligaments is essential
for the smooth movement of the wrist. No tendons insert onto
the carpal bones themselves, and their movements are therefore
dictated by the movements of the surrounding bones. Ligamen-
tous injuries may lead to disordered movements of the bones.
These disordered movements in turn lead to abnormal loading
and hence to osteoarthritis. Standard assessment of these disor-
dered movements includes plain radiography, MR scanning and
cine radiography. The first two modalities give static images
that may readily be examined and measurements taken, but are
only static images of a dynamic problem. Cine radiography
(e.g., fluoroscopic sequences) is more subjective and requires
judgement and experience. If there is still doubt about the diag-
nosis, wrist arthroscopy may give further information, but this
is an invasive procedure and therefore entails risk and expense.
A method of determining carpal kinematics from fluoroscopic
sequences that allowed more objective evaluation would be of
value to the hand surgeon in accurate diagnosis. It would also
contribute to treatment evaluation and to understanding an area
of hand surgery that still remains challenging.
Here we present a method for computer interpretation of the

fluoroscopic sequences to attain a higher degree of objectivity
and quantification in the diagnostic process. The wrist is a com-
plex joint (see Fig. 2); during wrist movement, the eight carpal
bones follow a complex, multi-dimensional trajectory, making
interpretation of radiographs difficult. One important step to-
wards this aim is the development of statistical models (SM)
of the carpal bones and their spatial relationships during move-
ment, which is able to represent the pose and bone shape varia-
tion in much fewer dimensions. For this study we have trained
this SM from a set of CT images from different subjects at
different poses. Subsequently, the full 3D carpal bone motions
can be recovered by matching the SM with the fluoroscopic se-
quences through 2D-3D image registration techniques.
A number of studies have sought to represent the carpal kine-

matics using CT or MR data, mainly concentrating on repre-
senting “average” kinematics over a small number of individ-
uals (e.g., [1], [2]). Van de Giessen et al. [3] presented a 3D

0278-0062/$31.00 © 2012 IEEE
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rigid registration method based on segmented meshes, which
aims to build a SM of carpal bones. More recently, they intro-
duced a 4D statistical model that locally describes the relative
positions of the carpal bones [4] in predefined poses, with the
aim of detecting abnormal bone spaces. A comparison of wrist
poses captured statically and dynamically was reported in [5].
They concluded that negligible differences were observed be-
tween the dynamic motion and the step-wise static motion of
the carpal bones from “healthy” subjects. Some authors have
focussed on building hierarchical statistical shape models ([6],
[7]) or an articulated shape model [8]. Davatzikos et al. [6] pre-
sented a method of using the wavelet transform to capture dif-
ferent levels of shape detail in a coarse to fine structure, which
enables the statistical shape model to cover a larger range of
variability with a small number of training samples. Cerrolaza
et al. [7] further extended the idea to deal with multiple ob-
jects for 2D brain image segmentation, where the objects to
be included for model building at each level have to be care-
fully selected. Boisvert et al. [8] studied spine variation using
3D articulated pose models. The relative rigid transformation
parameters of each vertebra with respect to the vertebra of the
upper level were used to construct the articulated pose model.
The spine variations between the same set of patients before and
after treatment were compared using themodel. Point-based sta-
tistical models, such as [7] do not retain the rigidity of each of
the multiple objects. In our proposed framework we build a sta-
tistical pose model (SPM), based on geometrical transformation
parameters and a separate point-based statistical shape model
(SSM) to deal with the issue of shape variation and articulation
of the carpal bones. We use the combined model to fit to image
sequences for quantifying 3D movement.
Many studies have investigated 2D-3D image registration

(e.g., [9]–[11]), mainly in the field of registration of pre-opera-
tive MR or CT images to intra-operative 2D images. Our work
differs from these in that we seek to achieve registration of a
2D image sequence to a 3D model (not derived from the same
individual) to infer the poses and shapes of an individual wrist.
Zheng [12] took a similar approach to estimate the orientation
of the pelvis from a single X-ray image. Whitmarsh et al. [13]
presented a method to reconstruct both the 3D bone shape and
3D areal bone mineral density distribution of the proximal
femur from a single dual-energy X-ray absorptiometry image.
More recently, Baka et al. [14] and Zheng et al. [15] similarly
presented a statistical shape model based framework to esti-
mate femur shapes from multiple X-ray images. In the case of
[14], fluoroscopic sequences were used, similarly to the work
reported here.
The main contributions of this paper, distinguishing it from

these earlier studies, are as follows. 1) A hybrid SM is devel-
oped representing both the complex pose and shape variation of
the eight carpal bones plus radius and ulna. 2) The full 3D mo-
tion and bone shapes are recovered by matching the SM with a
single view fluoroscopic sequence: a difficult ill-posed problem.
3) Our initial results show that the relative positions between
the carpal bones can be estimated accurately through the pro-
posed framework. 4)We have constructed a pathology detection
tool that takes advantage of the inherent ability of the SPM to
align wrist poses. In [4], they also detect abnormal bone spaces

based on 3D input data sets for a limited number of predefined
flexion–extension poses. We are not aware of any study which
attempts to make a 2D to 3D inference and measurement in a
system of this level of complexity. An early version of this work
was published in [16]. In this paper, we describe the framework
in greater detail and report the following further developments.
1) The SPM presented here is generated based on both the ra-
dial–ulnar poses and flexion–extension poses, where the SPM
used in [16] is only based on radial–ulnar poses. 2) Faster op-
timization and more robust registration, arising from the use of
a more constrained model. 3) Additional registration accuracy
is achieved by the use of local pose refinement, controlled by
a new cost function term. 4) Rather than building a SSM for
each individual bone, all bones are modelled simultaneously to
represent the shape variations of the ensemble of bones. This
helps to maintain the nature of the relationships between adja-
cent bone shapes and reduces the number of shape parameters.
5) We include more comprehensive experimental results based
on real fluoroscopic sequences using extended training datasets.
6) A method of constructing the pathology detection tool, based
on the SPM, is introduced for the first time. The evaluation re-
sults demonstrate the feasibility of using the proposed system
for clinical diagnosis.
The overview of the proposed framework is illustrated in

Fig. 1(a). The system consists of a training phase and a 2D-3D
image registration phase. We currently have CT data from
25 subjects, each at five poses (neutral pose and two extreme
poses in flexion–extension and radial–ulnar deviation). The
segmentation of each bone and rigid registration parameters
that align bones at different poses within and across the subjects
in the training set were obtained using an iterative segmen-
tation and registration algorithm [17]. Segmentation results
were confirmed by an experienced radiologist. A hybrid statis-
tical model, representing both the pose and shape variations,
was built from the results of the segmentation-registration
framework. The SPM was built based on the transformation
parameters, while the segmentation result was used to build
the SSM. In the 2D-3D image registration phase, the global
3D rigid transformation, the poses of carpal bones, the local
3D rigid transformation of each bone and the bone shapes
were estimated iteratively in sequence from each frame of the
fluoroscopic video. The registration is performed sequentially,
frame-by-frame, the estimated poses at each frame acting as
the starting positions for the next [see Fig. 1(a)]. Detailed
descriptions are given in Sections II–VI.

II. COORDINATE SYSTEM AND PROBLEM PARAMETERISATION

In Fig. 1(b), the coordinate axes , , and define
the source coordinate system with the origin at the radiation
source, whereas , , and define the machine coor-
dinate system with the origin at the isocenter. and define
the image coordinates, normal to the direction of the radiation
beam. The origin of the image plane is at the projection of the
optical center.
In order to interpret the true 3D motion of the carpal

bones, four sets of parameters are estimated iteratively in
sequence during image registration. 1) Rigid transformation
parameters of the wrist and a global scale factor, denoted by
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Fig. 1. (a) Overview of the proposed system. (b) Perspective projection geometry for the fluoroscopic imaging system.

in the machine coordinates.
denotes the translations along , and

axes. is the set of Rodrigues parameters
[18] representing the global orientations. The magnitude of
vector is the rotation angle around the axis represented by the
normalized unit vector of . controls the distance between
the centroid of each bone and the origin in the radius, and the
global size of the bones. 2) SPM parameters represent the
carpal bone poses during movement. By using the pose model
parameters, the transformation parameters of each bone can be
obtained, denoted as
( is an index identifying each bone). 3) Transformation pa-
rameters of each bone used
to refine the poses estimated from the pose model. 4) SSM
parameters for bone shape estimation. Using homogenous
coordinates, the constructed 3D statistical mesh model can be
projected to the image plane by

(1)

where indicates the mesh points of the estimated shape for
the th bone. and are the global and local scale factors re-
spectively that control the size of the carpal bones. is the pose
matrix of the th bone estimated using the pose model and the
local pose refinement. is the global rigid transformation ma-
trix. is the transformation matrix from the machine coordinate
system to the source coordinate system, and is the intrinsic
projection matrix of the X-ray imaging system. In detail, is
denoted as

(2)

where is the translation vector . is the 3 3 rota-
tion matrix represented by Rodrigues parameters [4], [18], cal-
culated as

(3)

where is the magnitude of the orientation vector
. is the identity matrix, and is the skew-sym-

metric matrix normalized by , expressed as

(4)

In (1), is calculated as

(5)

where is the summa-
tion of translation vectors estimated from the pose model and
local bone refinement. is the 3 3 rotation ma-
trix that combines the rotations estimated from pose model and
local bone refinement, respectively. and can be calcu-
lated individually by (3) using their corresponding Rodrigues
parameters.
Furthermore, in (1) is given by

(6)

where and denote cosine and sine functions, subscripts
and denote the view angles for 3D-2D projection, with
and producing the anteroposterior view,

and producing the left lateral view, and
and producing the right lateral view. indicates
the distance between the isocenter and the X-ray source.

in (1) is given by

(7)
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Fig. 2. Top row: The poses of the first component of the pose model (lateral view) that mainly describes the flexion–extension movement. Middle row: The poses
of the second component of the pose model (AP view) that mainly represents the radial–ulnar movement. Bottom row: the first component of the shape model.
(Major shape variations occur in the ulna, radius, and lunate.) In each case the mean s.d. are shown.

where is the distance between the X-ray source and detector
plane. and are the physical pixel sizes along the hor-
izontal and vertical directions of the detector, and are
the coordinates of the optical center on the image. In our data,

were always the center of the image. and are
known from the detector specification. Therefore, only needs
to be estimated, which can be done by measuring the distance
between the X-ray source and detector for each subject.
The use of Rodrigues parameters to represent bone orienta-

tions is convenient for pose model building and parameter op-
timization. More importantly, unlike the quaternion representa-
tion, it does not require vector normalization, nor does it suffer
from the singularity problem that arises when using the Euler
angle rotations.

III. TRAINING OF POSE MODEL AND SHAPE MODEL

To generate training data it was necessary to achieve con-
sistent segmentations and poses of the bones across subjects
in the training set and across the five wrist positions within
each subject. For this we developed an integrated framework

[17] that combines the Grow Cut segmentation method with
rigid image registration to simultaneously segment and align the
carpal bones in the CT data sets. The kinematics of the carpal
bones is complex and significant pose differences can be intro-
duced as the joint adopts different positions. The framework sig-
nificantly reduces the workload of segmentation, while simul-
taneously providing a good alignment of the carpal bones. Each
bone segmentation was verified by an experienced radiologist.
As the shape of each bone may vary from individual to

individual, we modelled this variation using a point distribu-
tion model (PDM) [19]. This was built using the segmented
volume of the same set of training subjects. Correspondence
between these surfaces of bones across subjects was established
by the minimum description length (MDL) algorithm [19].
The 3D structure of each bone is described by a set of 1002
points on the segmented surface. In our earlier work [16] we
modelled the shape of each bone independently. However here
we maintain the nature of the relationships between adjacent
bone shapes and reduce the number of shape parameters by
representing the shape points of all bones in a single column
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TABLE I
AVERAGE ERROR IN MM, MEASURED IN 3D, , , AND AXES, BETWEEN THE TARGET AND ESTIMATED CORRESPONDENCE POINTS OF EACH CARPAL
BONE OF 25 SUBJECTS: TRIQUETRUM(TRI), LUNATE(LUN), SCAPHOID(SCA), PISIFORM(PIS), HAMATE(HAM), CAPITATE (CAP), TRAPEZOID (TRD) TRAPEZIUM

(TRM). THE ”NO LOCAL SCALE” COLUMN LISTS THE REGISTRATION ERRORS WITHOUT ESTIMATION OF LOCAL SCALE OF EACH BONE (SEE TEXT)

vector in a consistent order. One training example is described
by (10 bones 1002
points each). The coordinates of the shape points of each bone
are expressed with respect to its own centroid, eliminating any
linkage between the shape model and the pose model. The
deformable shape model is then described as

(8)

where and (superscript is a notation indicating the shape
parameters) are the mean shape and the principal subspace ma-
trix for the shapes. is the shape model parameter to be esti-
mated.We retain the first 15 significant components in the shape
model, which keeps about 90% of variation.
The statistical pose model was trained using the

six rigid transformation parameters. The common
coordinate system for all pose parameters has an origin
at a specified point in the radius for a reference
subject. The sizes of all the wrists are normalized to a
consistent scale. The pose of one subject is described by

(eight carpal bones, one radius, and one ulna). The orientation
parameters allow for a continuous description of the wrist
movement (see Section II). Then the pose model can be
parameterized as

(9)

where the mean pose (superscript is a notation indicating
the pose model parameters) and the principal subspace matrix

are computed from 5 (poses) 25 (subjects) training sam-
ples using PCA. The vector represents the pose parameters
that describe the pose along each principal direction. In
our experiments, only the first two significant components are
used, which keeps 90% of variation. The first component re-
flects the flexion–extension motion and the second component
represents the radial–ulnar motion. By contrast, our earlier work
[16] used eight significant modes representing 98% of the vari-
ation based on 10 training subjects for the radial–ulnar move-
ment only. Experimentally we found that the use of fewer model
components reduced computational time by 40%. The inclusion
of flexion–extension poses for training also extends the motion
range which helps to reduce the registration errors. This prob-
ably arises because, in capturing the training data, there was no
constraint on the radial–ulnar movement in CT, so that the corre-
spondence between the extreme positions of radial–ulnar move-
ment in CT and fluoroscopy may not be exact. There are also
potentially small differences in the directions of flexion–exten-
sion and radial–ulnar movement between the fluoroscopy and
CT image capture processes. By further combining with the

Fig. 3. Overview of the 3D-2D image registration process.

local bone refinement procedure, the more constrained model
achieved smaller registration error in 3D by around 0.7 mm
(values shown in Table I), compared with the results in [16]. Our
experiments also showed that including significant components
beyond two does not improve the registration accuracy, which
indicates that the local bone refinement process (Section IV)
dealt with the deviation from the linear pose model very well.
Based on the SSM and the SPM, a hybrid statistical mesh

model can be built by using the Crust mesh construction algo-
rithm [20]. Fig. 2 shows the poses of the first two components
of the SPM (represented by the mean shapes of each bone) and
the first mode of the shape variation.

IV. 3D-2D IMAGE REGISTRATION

The statistical mesh model is then used to match with each of
the frames in the fluoroscopic sequence to infer the 3D motion
and bone shapes [see Fig. 1(a)]. The position of the model is
firstly initialised interactively by indicating a central point on
the radius in the first frame of the fluoroscopic sequence. Then
the poses of the bones in each frame are estimated in sequence,
the poses from the current frame being used as the starting
poses of the next. Fig. 3 summarizes the registration process,
in which the preprocessed fluoroscopic image is iteratively
matched with a simulated projection generated from an updated
pose of the mesh model. This registration procedure is used
specifically in the pose estimation and refinement steps illus-
trated in Fig. 1(a). For each iteration, the global pose parameter

, the SPM parameter , the local
transformation parameters
of each bone, and the SSM parameters are updated it-
eratively in sequence. Detailed descriptions are given in
Sections IV-A–IV-C.

A. Fluoroscopic Image Enhancement and Projection
Simulation

As there is considerable variation in the quality of fluoro-
scopic images, preprocessing is necessary to achieve consistent
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Fig. 4. Left: Gradient map of the original flouroscopic image.Middle: Gradient
map of the image after applying the diffusion filter. Right: Gradient map of the
image after local normalization and diffusion.

results. Firstly the intensities are normalized to zero mean and
unit standard deviation. This is followed by anisotropic diffu-
sion [21] to smooth the image and preserve edges. Local gradi-
ents are used for image matching, and Fig. 4 shows the gradient
maps of an original fluoroscopic image, and the image after
anisotropic diffusion and after normalization and anisotropic
diffusion respectively.
In order to optimize the pose parameters, we iteratively gen-

erate projections from the statistical mesh model with updated
pose parameters. The mesh model is considered as a binary
volume with background set to zero and bone set to unity. Based
on the perspective projection model described in Section II, the
simulated projection can be generated by ray casting. The pro-
jected intensity is in negative proportion to the sum of binary
values along the ray from the source to each pixel in the image
plane. The simulated image that represents the mean shape and
mean pose of the model is shown in Fig. 5.

B. Cost Function

To evaluate the similarity between the fluoroscopic image
and the simulated image, we investigated several forms of the
cost function, achieving best results from the one shown in (10),
based on the gradient along horizontal and vertical directions as
well as the gradient magnitude of the two images. Additionally,
the adjacent frames to the current fluoroscopic image were also
taken into account in the cost function to make the estimated
poses smooth across frames.
If we define the normalized correlation coefficient (NCC) be-

tween two images and as C(A,B), then the proposed cost
function can be described as

(10)

where is the current frame number of the fluoroscopic se-
quence. , and are the gradient magnitude, vertical
gradient and horizontal gradient of the fluoroscopic image at
the th frame respectively. , , and are the corre-
sponding values of the simulated image. The use of the absolute
gradient magnitude in the second term, in addition to the signed
gradient, results in a smoother objective function, resulting in a

Fig. 5. Left: Simulated image that represents the mean shape and mean pose
of the model. Right: Magnitude of gradient.

reduced tendency to converge to local minima than is the case
when using signed gradients alone. Calculating the cross-corre-
lation between sets of three adjacent frames makes the estimated
pose smooth across frames. The inter-frame weighting parame-
ters, , , and were set at 0.2, 0.6, and 0.2, respec-
tively. For the first term of the cost function, the vertices in the
statistical mesh model are projected to the image plane; we as-
sume the intensities at those projected points are similar across
adjacent frames. and represent the gradient mag-
nitude of the previous frame and the current frame at the pro-
jected correspondence positions. The first term makes the shape
of the cost function sharper, leading to a faster and more accu-
rate optimization result. The th frame and th frame
are not evaluated for the first and last frame, respectively.
Equation (10) is used to estimate the global pose parameter

and the SPM parameter . The wrist motion can be described
as approximately linear by the SPM parameters, where the de-
viations from linear positioning are accommodated by the local
refinement of individual bone poses. In the local refinement pro-
cedure, a different cost function is used, where an additional
term is added to as described in (11). The additional term
makes the estimated local pose as close as possible to the pose
model, weighted by a Gaussian distribution. This is able to pre-
serve the topology of the carpal bones, when the intensity term
is weak

(11)

In (11), represents the th 3D mesh points after the global
pose and pose model estimation. is the total number of mesh
points of the currently evaluated bone (In our case, for
each bone). is the local transformation matrix for that bone.
is the weighting parameter that balances the image intensity

term and the added geometric penalty term. is the standard
deviation of the Gaussian distribution. In our evaluation tests,

and were experimentally determined and
used.

C. Optimization

The coordinate origin for all motions is the centroid of the
radius in the statistical mesh model. The global transforma-
tion parameters are estimated based on the regions surrounding
all bones and iteratively refined by alternating with the SPM
parameter and local transformation parameter estimations [see
Fig. 1(a)]. By estimating the SPM parameter based on all
carpal bone and ulna regions, a set of transformation parame-
ters representing the
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kinematic pose of the th bone can be generated by (9). The
local transformation parameters for each bone are calculated
by evaluating the cost functions on the corresponding bone vol-
umes. The set of mesh points that represent the th bone
shape are obtained by substituting the estimated SSM param-
eter into (8). Subsequently, the 2D projection that represents
the current estimated 3D pose of the carpal bones can be gener-
ated using (1).
The optimization method we have used is a simplified version

of the Brent–Powell method [22], requiring a smaller number
of optimization steps. We used parabola fitting to replace the
Brent line search in the Brent–Powell method. The multi-di-
mensional search space ( , , , and ) is explored by itera-
tive individual 1D line searches. For each parameter search, the
cost function is evaluated three times at the current position and
its negative and positive neighbors, respectively, with the initial
distance between the current position and its neighbors prede-
fined by a search range. To fit a parabola to these three values,
the following three criteria are applied to select the best param-
eter value for the next iteration.
1) A minimum is found by equating the first derivative of
the fitted parabola to zero, with the second derivative
being positive: In this case, the minimum is selected as
the current best parameter value for the next iteration or
for evaluation of the next parameter.

2) A maximum is found with the second derivative being
negative: In this case, the parameter value corresponding
to the smallest cost function value, evaluated at the cur-
rent position and its neighbors, is selected.

3) Aminimum is found, but it is too far away from the eval-
uated position (located outside twice the initial search
range due to the cost function being too flat): In this case,
the transformation parameter value corresponding to the
smallest cost function value, evaluated at the current po-
sition and its neighbors, is again selected.

When a better value is found for one parameter, it will be
used for evaluating the next one. When all the transformation
parameters satisfy the first criterion, the search range is reduced
by dividing it by a factor to refine the estimation results. The
whole optimization is terminated when the changes in the eval-
uated cost function values are smaller than a preset threshold or
the search range is small enough.
In our case, the true sizes of the bones are unknown; recov-

ering the 3D pose from a single image is therefore a difficult,
ill posed, problem. Any movement along the axis in the
machine coordinates, could be compensated by scaling of the
bone. In order to minimize this effect, the optimization is care-
fully sequenced. We firstly assume that the wrist is not moving
along axis during radial–ulnar movement , as it is
placed on a flat surface. Following the interactive initialization
(Section IV), the first frame is evaluated, taking all the parame-
ters into account (except ) in the following sequence: , ,
, , , , , , , , , , , , and . After

convergence, the estimated pose of the current frame is used as
the starting pose for the next frame. The global scale factor ,
local scale factors and shape model parameters are only
estimated once in the first frame. From our initial experiments,

the shape parameters are not improved significantly when we
include more frames and the fitting is made significantly more
complex and time consuming.

V. EVALUATION

The true 3D poses corresponding to the recovered poses
for real fluoroscopic sequences are not available: there is no
ground-truth against which to judge the accuracy of the re-
covered poses. This would require the synchronization of 3D
imaging with the fluoroscopic imaging devices. The proposed
framework was therefore evaluated based on 25 simulated
sequences in addition to 15 real fluoroscopic sequences. All
evaluations were conducted using a leave-one-out strategy,
based on the training data. In all of the evaluation tests, the
input fluoroscopic sequences were preprocessed to construct a
three-level multi-scale pyramid (down-sampled by a factor of
2 at each level). In the optimization procedure, the same set of
fixed initial search ranges was used at each level (four voxels
for translation, for rotation, 0.2 for scale, one standard
deviation for pose model parameters and shape parameters).
The search ranges were divided by 2 each time the criteria were
met (see Section IV-C), and the whole process was terminated
when the maximum value of the search ranges was smaller than
a preset threshold. The registration accuracy of the simulated
data and real data are shown in Sections V-A–V-C. More
importantly, a measurement model that represents the healthy
pose of carpal bones at each kinematic pose is generated. This
model can be used for pathology detection and quantification.

A. Evaluation Based on Simulated Data

We evaluated our framework quantitatively based on a
number of simulated fluoroscopic sequences generated from
the 3D CT data. All CT volumes have been resampled to an
isocubic volume with voxel dimension of 0.5 mm. We inter-
polated (cubic spline) a number of poses between the neutral
pose and two extreme poses of radial–ulnar deviation in a
particular movement cycle (neutral–full radial–neutral–full
ulnar), resulting in 39 poses for each of 25 subjects. While we
assume a linear model for variation in pose, the cubic spline
interpolation makes the trajectory smooth around the observed
poses. The ray-casting method was then used to generate a sim-
ulated fluoroscopic sequence from those interpolated 3D data.
The tested dataset was not included in the training datasets.
We conducted initial leave-one-out experiments to evaluate

the number of PCA components required for the SSM. In these
we altered the number of shape model components, leaving all
other parameters unchanged. The final 2D-3D registration ac-
curacy stopped improving when 15 components were selected.
This may be due to the shape errors estimated using components
greater than 15 being less significant than the pose errors. This
suggests that using 25 subjects and 15 significant components
are sufficient for this application.
To test the registration accuracy of the whole framework, the

3D pose of the simulated test subject was then calculated as de-
scribed in Section IV. The registration error measured by the
3D Euclidean distance at each corresponding point of the mesh
between the target pose and the estimated pose is presented in
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Table I. The average 3D registration error is .
The main contribution to this error is the ill-posed problem (con-
fusion between the scale and translation along ), whereas
the errors along the in-plane directions, and , are very
small with average error about 1 voxel (0.5 mm).
As described in previous sections, the local scale factor of

each bone is also estimated in the local refinement procedure
to take account of the fact that the relative sizes of bones will
vary between individuals. Based on the 25 independent tests,
the mean value of this local scale factor varies between 0.98
and 1.13, depending on which bone is being considered. The
standard deviations are around 0.05, indicating that the relative
sizes of bones varies between individuals. While this compli-
cates the optimization, the last column of Table I shows that the
optimization without the local scale results in a larger registra-
tion error.
In clinical diagnosis, the absolute positions of the carpal

bones in 3D space are not important; of greater significance
is the relative movement of the bones. By using our method,
the relative positions of the carpal bones with respect to each
other can be estimated much more accurately than the absolute
positions of the individual bones. In calculating the distance
between bones we use the average distance between corre-
sponding surface points. Each bone is represented by the same
number of surface points (1002), determined when the shape
model was constructed using the MDL method (Section III).
Correspondences are determined using the index of each point,
giving a consistent set of correspondences.
One condition that may be assessed using this measurement is

dissociation, where the 3D distance between the bones is larger
than normal. As an example of this, we investigate Scapholu-
nate dissociation, which is one of the most common of these
conditions. The registration error of the 3D distance between
the Lunate and the Scaphoid (dLS) was measured. The error is

, compared to an average surface to surface
distance of 2 mm between the Scaphoid and Lunate. The sur-
face to surface distance is measured by the average of the 20
shortest Euclidean distances between the surface points of the
two bones. More importantly, using the statistical model, the
measured 3D bone distances can be normalized to a consistent
scale by dividing them by the estimated global scale factor and
an average of the two bones’ local scale factors, calculated as

. This leads to automatic classification of the bone
dissociation cases, which could not possibly achieved without
the statistical model (Section V-C).

B. Evaluation Based on Real Data

We also tested our framework on 15 real fluoroscopic se-
quences. There were about 40–100 frames per sequence, cov-
ering the radial–ulnar movement. In the absence of ground truth,
the absolute positions of bones cannot be used for evaluation.
However, the key question is whether the estimated relative dis-
tances between bones are equivalent to the measurements from
CT data, and the diagnostic conclusions unchanged. The regis-
tration accuracy of the real data can be validated by comparing
the 3D distance between Scaphoid and Lunate (dSL) estimated
from real fluoroscopic sequences and the original 3D volumes
of the same subject.

One major advantage of using the SPM as one of the registra-
tion steps is that the kinematic pose of the wrist from different
motion sequences can be aligned directly based on the SPM pa-
rameters. This provides an advantage comparedwith themethod
described in [4] where it is required to align the wrist to pre-
defined discrete poses. The first two components of our SPM
cover 90% of variation in the full range of flexion–extension
and radial–ulnar movements. The combination of the two com-
ponents is also able to generate interpolated poses within the
motion range. To measure the error in the estimated 3D pose at
each wrist position, we need to compare it with the pose of the
3D CT data at that position. To do this, we need to index the po-
sitions along the motion trajectory, which can be done using the
first two components of the SPM. The values of these compo-
nents define corresponding positions for the model and the CT
data.
To produce ground truth corresponding to the original 3D

data requires 3D-3D registration between each bone in the 3D
statistical mesh model and the corresponding bone in the orig-
inal 3D data set. This was done at a number of poses by es-
timating the global pose parameter, SPM parameter, and local
pose parameter ( , , -Section IV) at each pose. The CT
volume was then set to the same pose location according to the
first two components of the estimated SPM parameter. Poses of
the original 3D data, other than the neutral and extreme poses
were generated by cubic spline interpolation. Having matched
the poses of the estimated and real 3D bone positions, the 3D
distances between the Scaphoid and Lunate in the original and
estimated volumes were measured and normalized using the
estimated global scale factor . The 3D-3D registration was
achieved using a method similar to that described in [17]. This
is not the main focus of this paper, so we do not provide details
of the implementation here.
Another important issue is the reliability of the 2D-3D regis-

tration, as it may give misaligned results due to low quality of
the fluoroscopic sequence. Since the kinematic pose represents
the “average” pose of the carpal bones, the local deviation from
the kinematic pose should be relatively consistent across the se-
quence. A particular frame showing a larger deviation from the
kinematic pose than other frames may indicate a failed registra-
tion at that frame. Hence, the 3D Euclidean distance between
the local refined bone pose and the kinematic pose is used to in-
dicate the reliability of the registration, which is calculated by

(12)

In (12), represents the th 3D mesh points after the global
pose and SPM estimation. is the total number of mesh points
of the current evaluated bone (In our case, for each
bone). is the local transformation matrix for that bone. Then
the value is subtracted from the mean deviation of the whole
sequence. This is denoted as .
The registration was considered as successful if the deviation
is smaller than 1 voxel (experimentally determined). Further-

more, if the smallest is larger than a threshold, it indicates the
registration of the whole sequence may not be accurate, which
needs visual check by the user.
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TABLE II
ERRORS (MM) OF ESTIMATED 3D SCAPHOID–LUNATE DISTANCE BETWEEN REAL FLUOROSCOPIC SEQUENCES AND THE CORRESPONDING 3D VOLUMES

Fig. 6. Estimated first two SPM parameters for each frame of the 15 real fluo-
roscopic sequences.

The dSL of 15 subjects were calculated, each based on the
original 3D volume and real fluoroscopic sequence of the same
subject at their corresponding poses. Fig. 6 shows the estimated
first two SPM parameters for each frame of the 15 real fluoro-
scopic sequences. As expected, the values of the second com-
ponent, representing the major motion of the radial–ulnar fluo-
roscopic sequences, are distributed over the range of stan-
dard deviation. The values of the first component (representing
flexion–extension motion) are within a range of standard
deviation, making a small contribution tominimizing the out-of-
plane transformation errors. Table II presents the mean and stan-
dard deviation of the absolute differences between the estimated
dSL and the ground truth for each of the 15 subjects. Each es-
timated dSL was measured in the statistical model coordinate
system by dividing each by their estimated scale factor, hence
all the estimated dSL from different subjects can be compared at
a consistent scale. 83.5% of the frames were considered as suc-
cessful using the criterion based on (12), and these were used
to generate the measurements shown in Table II. The average
estimated error of successful registrations is ,
indicating good agreement of the dSL estimated from the real
fluoroscopic sequences and the original 3D volume.
A sample frame of the matching result and the corresponding

3D poses are shown in Fig. 7 in which the projected contours
from the 3D mesh model are superimposed on the preprocessed
fluoroscopic image. The estimated 3Dmeshmodel in the palmar
and dorsal views is shown in middle and right, respectively. The
registration result for the whole sequence can be found in [23].

C. Measurement Model for Pathology Detection

Our 3D CT and fluoroscopy datasets contain images of eight
and six individuals, respectively, suffering from Scaphoid–Lu-
nate dissociation, diagnosed radiologically on the basis of CT

images. Here we demonstrate the potential to perform the diag-
nosis automatically from the fluoroscopic sequences.
The 3D CT volumes of 15 “healthy” subjects, assessed radi-

ologically as not suffering from scaphoid-lunate dissociation,
were used to determine a “standard” model, based on neutral
and extreme radial–ulnar poses. The statistical mesh model
was aligned with these volumes by estimating the global rigid
transformation parameters, the SPM parameters and the local
transformation parameters for each bone (see Section V-B).
The kinematic poses at intermediate wrist positions were deter-
mined by cubic spline interpolation between the extreme and
neutral positions, sampled at every two integer values of the
second (radial–ulnar) component of the SPM, giving 36 wrist
positions. In calculating the distance between bones we use the
distance between corresponding surface points. As mentioned
in Section V-A, correspondences can be established between
surface points on different bones. Here we use a reduced
number of surface points ( , rather than 1002 used
in building the model) for improved computational efficiency.
Equation (13) and (14) show that we calculate the Mahalanobis
distances (MD) using the means and covariances of individual
pairs of corresponding points, rather than using the average
distance, as in Section V-A. Letting and represent the
th surface point on the th sample volume at pose on the
lunate and scaphoid, respectively, the relative distance between
the lunate and scaphoid at point is

(13)

is a 3 1 vector, so the mean and covariance matrix
of the th point pair based on all samples at pose can

be calculated. The Mahalanobis distance between the new test
data and the model at pose is calculated using

(14)

To assess a new wrist, the 2D radial–ulnar fluoroscopic se-
quence can be registered with the statistical model using the
methods described in Section IV, and thewrist poses determined
by the second SPM component. The MD can then be calculated
(14) at each pose to measure the deviation from the “standard”
model. The results for the 25 (17 healthy and eight abnormal)
simulated sequences and 15 (nine healthy and six abnormal)
real fluoroscopic sequences are shown in Fig. 8. In this figure
the triangles represent healthy subjects and the squares repre-
sent abnormal subjects. The lengths of the bars through the data
points represent the reliability of each registration, as calculated
in (12).
As shown in Fig. 8, for the simulated data, most of the ab-

normal subjects (squares) have larger MDs than the normal sub-
jects (triangles). The distinction between the two groups is less
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Fig. 7. Registration result of one frame from a real fluoroscopic sequence. The registration result for the whole sequence can be found in [23].

pronounced for the real fluoroscopic sequences. Additionally,
the registration is less reliable comparedwith the simulated data,
due to blurring effects generated by the wrist moving too fast.
By varying the threshold (the same threshold for all kinematic

poses) of MD for classifying the normal and abnormal cases,
the receiver operating characteristics (ROC) curve is generated
and shown in Fig. 9. The ROC for both the simulated data and
real data are presented, using only the successful registrations
[Section V-B, (12)]. This resulted in using 89.3% of the frames
for the simulated sequences and 83.5% of the frames for real
sequences. The thresholds that produce the best error rate for
simulated and real data are 2.75 and 2.86, respectively. These
values result in 87.0% true positive rate (TPR) and 14.0% false
positive rate (FPR) for simulated sequences, and 70.0% TPR
and 30.0% FPR for real sequences.
The diagnostic conclusion for an individual can be obtained,

by combining the classification results for all of the frames of
the sequence. The test set for diagnosis is small, and the result
rather dependent on a judicious choice of values for the MD
threshold and the method used of combining the frames. We in-
vestigated two ways of deriving the classification result based
on the MDs of frames. The first method is to use the weighted
sum of the MD of each frame, which results in a single MD
for each test sequence. The MD of each frame was weighted
according to the reliability factor. The best operating point in
the ROC evaluation, by varying the “averaged” MD threshold,
is found at the threshold of 2.8 which resulted in sensitivity and
specificity values of 68% and 90%, respectively. For the second
method, we define the normal frame ratio (NFR) as the number
of successful frames classified as “normal” divided by the total
number of successful frames in the assessed fluoroscopic se-
quence. If the NFR is greater than a threshold, the particular sub-
ject is considered as “healthy,” otherwise is diagnosed as having
Scaphoid–Lunated dissociation. Fig. 10 shows the ROC curve

obtained by varying the NFR, using a MD threshold of 2.5 (ex-
perimentally selected) for both the simulated and real data set.
The highly quantized nature of the ROC curve reflects the size of
the test set. The best operating point on this ROC curve is found
at a NFR of 0.33 (requiring two thirds of the detected frames
to be classed as abnormal before returning an abnormal diag-
nosis) resulting in sensitivity and specificity of 100% for simu-
lated data and around 80% (83% TPR, 22% FPR) for real data.
Other choices ofMD threshold resulted in sensitivity-specificity
combinations in the range (68%–90%) to (85%–70%).

VI. CONCLUDING REMARKS

We have presented a complete framework that is able to infer
the 3D motion of carpal bones from a single view fluoroscopic
sequence. It uses a hybrid statistical model to estimate both the
pose and bone shapes from the fluoroscopic sequences allowing
the motion of carpal bones during radial–ulnar deviation to be
estimated. The positions and orientations in the image plane are
estimated with high accuracy, and with slightly less accuracy in
the out-of-plane direction. More importantly, the relative posi-
tions of the carpal bones can be estimated accurately. This is
useful for detection of dissociation conditions. As an example
of clinical application for this type of analysis, we have used
Scaphoid–Lunate dissociation, where the underlying pathology
is a rupture of one or more ligaments, and the diagnosis rests on
a judgement regarding the bone separation.
The proposed framework was tested on both simulated (25

subjects) and real (15 subjects) fluoroscopic sequences in the
leave-one-out manner. The average absolute 3D point to point
registration error is , whereas the errors along
the in-plane directions, and , average about 0.5 mm.
There have been no comparable studies reporting cross-subject
2D-3D registration of multiple objects based on a single view.
For comparison, [14] and [15] estimated the shape of the femur
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Fig. 8. (a) The Mahalanobis distances of 25 simulated sequences for Scaphoid–Lunate measurement. (b) The Mahalanobis distances of 15 real sequences for
Scaphoid–Lunate measurement.

Fig. 9. ROC curve of the simulated data and real data for frame classification.

(a much larger structure) based on biplane X-ray images, re-
porting root mean square errors of and 1.4
mm, respectively. In our case, the relative 3D distances between
bones can be estimated more accurately. The error of the mea-
sured 3D Scaphoid–Lunate distances are for
simulated data and for real data. In addition,
the reliability of the registration can be estimated by comparing
the deviation of each bone from the SPM model poses with the
deviations of other frames in the same sequence.
We also proposed, and conducted a preliminary evaluation of

a method for constructing a “standard” pathology measurement
tool for automatically detecting Scaphoid–Lunate dissociation
conditions, based on single-view fluoroscopic sequences. For

Fig. 10. ROC curve of the simulated data and real data for subject diagnosis.

the simulated data, it produced 100% sensitivity and specificity.
For the real data, it achieved 83% sensitivity and 78% speci-
ficity. This tool could be a generic method for automatic, ob-
jective assessment of dissociation conditions. We have demon-
strated its use with fluoroscopic video input. It appears that the
limitation in accuracy arises largely from motion blurring ef-
fects in the video sequences. The method could equally well be
applied using 2D radiographs at fixed positions. In a clinical set-
ting, specified poses could be obtained using a fixation device.
The computational time for 1 frame was about 3 min run-

ning in Matlab on a 3.6 GHz machine. For a typical sequence,
this would result in three to 5 h of computation, which would
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be acceptable for an offline automatic analysis tool. If real-time
feedback were required, faster computation would be necessary,
which could be achieved by coding key parts in a compiled lan-
guage, or use of GPU processing to parallelize the optimization
process.
In further work, we will extend the current statistical model

with more training data (in progress), and improve the mea-
surement model by including more healthy subjects. A larger
training set may allow us a different compromise between con-
strainedmodel fitting and local refinement. Here we have sought
to avoid local minima by restricting the SPM to only two modes
of variation, relaxing the fit by local refinement. A larger dataset
may result in a more specific model, making greater use of ob-
served variability, reducing the need for the local refinement
stage. However, if a range of abnormal conditions were to be
included, the size of the training set might be prohibitive, re-
quiring the retention of the local refinement. Our experience in
this study indicates that it is a useful step in model fitting. On the
basis of more data, we could further explore the relationship po-
tentially associating the poses and shapes of bones. Nakamura
et al. [24] have shown that carpal movement is affected by vari-
ation in the shape of the lunate. This raises the possibility that
there may be more general relationships between bone shape
and kinematics. It may be possible to build a more compact
model by learning these relationships. We also intend to extend
the framework to the (even) more challenging lateral views of
flexion–extension motion, and further interpret the quantitative
results for other wrist conditions. Acquiring a larger data set
would also enable us to comprehensively test the classification
performance. Currently training and evaluation are conducted
using the same data in a leave-one-out fashion.
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Automatic Generation of Statistical Pose and
Shape Models for Articulated Joints
Xin Chen*, Jim Graham, Member, IEEE, Charles Hutchinson, and Lindsay Muir

Abstract—Statistical analysis of motion patterns of body joints is
potentially useful for detecting and quantifying pathologies. How-
ever, building a statistical motion model across different subjects
remains a challenging task, especially for a complex joint like the
wrist. We present a novel framework for simultaneous registra-
tion and segmentation of multiple 3-D (CT or MR) volumes of
different subjects at various articulated positions. The framework
starts with a pose model generated from 3-D volumes captured at
different articulated positions of a single subject (template). This
initial pose model is used to register the template volume to image
volumes from new subjects. During this process, the Grow-Cut al-
gorithm [1] is used in an iterative refinement of the segmentation
of the bone along with the pose parameters. As each new subject
is registered and segmented, the pose model is updated, improving
the accuracy of successive registrations. We applied the algorithm
to CT images of the wrist from 25 subjects, each at five different
wrist positions and demonstrated that it performed robustly and
accurately. More importantly, the resulting segmentations allowed
a statistical pose model of the carpal bones to be generated au-
tomatically without interaction. The evaluation results show that
our proposed framework achieved accurate registration with an
average mean target registration error of mm. The
automatic segmentation results also show high consistency with
the ground truth obtained semi-automatically. Furthermore, we
demonstrated the capability of the resulting statistical pose and
shape models by using them to generate a measurement tool for
scaphoid-lunate dissociation diagnosis, which achieved 90% sensi-
tivity and specificity.

Index Terms—Articulated joint, carpal bones, segmentation,
statistical pose model, statistical shape model, three-dimensional
(3-D) image registration, wrist.

I. INTRODUCTION

A NUMBER of recent studies have made use of statistical
models for determining and quantifying abnormal articu-

lated motion of anatomical joints (e.g., in the spine [2], [3], the
femur [4], and inferring 3-D motion from 2-D video sequences
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in the wrist [5]). The principal underlying problem in building
such statistical models is to establish correspondences repre-
senting important features across populations.
Davies et al. [6] have shown how such correspondences can

be achieved automatically, given a segmented training set. How-
ever, for a complex joint like the wrist, segmentation of the
wrist bones from CT volumes is a challenging task. They suffer
from variation in intensity due to the nature of the trabecular
bone and indistinct boundaries due to partial volume effects
and the narrow gap between adjacent surfaces ([7]–[10]). It is a
common experience, which we share, that “automatic” segmen-
tation methods do not produce sufficiently accurate results and
that “semi-automatic” methods such as those based on Graph-
cuts often require complex interactions for every training ex-
ample. The problem is frequently solved by tedious manual seg-
mentation. Furthermore, once segmentation is achieved further
registration is required to align different articulated positions of
different subjects [11]. This is complicated in articulated joints
as the relative poses of different components vary throughout
the motion of the joint. The wrist is a particularly challenging
example as it comprises eight carpal bones, the radius and the
ulna (see Fig. 2) moving in a complex 3-D pattern. Recently,
Cootes et al. [12] introduced a framework to compute dense
correspondences across groups of images based on groupwise
image registration, which has been successfully applied to face
and brain images. However, for the registration of bones, the
features mainly lie on the surface of the bone and the pose vari-
ation involves significant articulation of rigid parts. This is not
accommodated well in [12].
In this paper, we present a method for automatic segmenta-

tion and registration of bones in an articulated joint (specifically
the wrist) in a range of articulated positions across a group of
individuals for the purpose of building a statistical pose model
(SPM). There is a small body of research addressing this ques-
tion. van deGiessen et al. [11] introduced a constrained regis-
tration of the wrist joint based on segmented 3-D surfaces using
the iterative closest point (ICP) method, resulting in a 4D statis-
tical model of wrist bone motion patterns [13]. The model repre-
sents local statistical properties between adjacent carpal bones
by a set of predetermined point correspondences, and is used
for detecting abnormal bone spaces. Boisvert et al. [2] studied
spine variation using 3-D articulated pose models. The relative
rigid transformation parameters of each vertebra with respect to
the vertebra of the upper level were used to construct the artic-
ulated pose model. The spine variations between the same set
of patients before and after treatment were compared using the
model. Marai et al. [14] proposed a cost function based on dis-
tance fields for carpal bone registration, which is validated by
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Fig. 1. Overview of the proposed system. Dashed boxes represent the initial registration and segmentation of the randomly selected template volume. Solid boxes
represent the iterative registration and segmentation of the remaining examples.

aligning different poses for the same subject. In these studies,
bone segmentations are performed either manually or semi-au-
tomatically prior to the registration. Here we describe a method
that exploits the fact that identical bones from the same indi-
vidual occur in different poses in the same data set. The dif-
ferent examples of these bones adopt different poses relative to
the other bones as the joint moves. Examples of similar bones
in similar poses are observed for different individuals. We have
previously presented a framework for combined segmentation
and registration [15]. That work is extended here by removal of
the requirement for initial manual alignment prior to registration
and incorporating the SPM building process into the framework.
The main contributions of this paper, distinguishing it from

the aforementioned studies, are as follows. 1) it is an automatic
framework where a statistical pose model (SPM) and a statis-
tical shape model (SSM) can be generated via integrated seg-
mentation and registration methods. 2) A consistent global scale
factor is estimated by simultaneous registration performed on
all articulated positions of the same subject, which leads to an
accurate and compact SPM. 3) In contrast to [13], a statistical
description of the global motion pattern of all carpal bones is
calculated, from which the local pattern of motion between ad-
jacent bones can also be described directly. Additionally, the
SPM parameters can be used to align different wrist positions
from different subjects, without the requirement (as in [13]) for
a set of predefined positions. 4) The segmentation results are
produced by a combination of data from all the wrist positions,
which produces more reliable and consistent results than only
using one wrist position for segmentation (e.g., [15]). 5) We
avoid the requirement for interactive alignment (as in [15]) by
basing the registration and segmentation on the pose model.
This model, initially based on a single subject, grows incremen-
tally as further subjects are registered and segmented. This re-
sults in fully automatic registration and segmentation. 6) The
use of SPM and SSM as a measurement tool for pathology de-
tection is demonstrated based on the Scaphoid–lunate dissocia-
tion condition.
The proposed framework, illustrated in outline in Fig. 1, is

designed to align a template volume to target subjects,
each with a number of different wrist positions. In our training
datasets, CT data from 25 subjects, each at five different wrist
positions were used (neutral position and four extreme positions

in radial–ulnar and flexion–extension movement). The process
consists of four steps. Step 1 is a preprocessing step that only
needs to be done once. We randomly select one subject from
the training data sets as the template, and segment a CT volume
from one of the wrist positions (e.g., neutral position) using the
grow-cut interactive segmentation method [1]. The segmented
position is then registered to other positions within the template
subject using the method described in [15] (see Sections IV-A
and IV-B). The registration result is used to derive a pose model
(described in Section III). In steps 2–4, the template is prop-
agated to all the positions of the th target subject simultane-
ously, providing estimates of the global rigid parameters, pose
model parameters and local rigid parameters of each bone. In
step 4, the Grow-Cut multi-label segmentation method is inte-
grated with the registration process, which improves the robust-
ness of the registration [15] and also generates a final segmen-
tation. The successful registration result is then used together
with the previously available (k-1) registration results to pro-
duce an updated pose model for the next iteration. An outlier
rejection strategy is used for pose model updating. The whole
process is terminated when all subjects in the training data set
are registered to the template. Detailed descriptions of each step
are given in the following sections.

II. PROBLEM PARAMETERIZATION

A coordinate system is defined (see Fig. 2) across all the
subjects, in order to represent a consistent wrist motion. The
origin of the coordinate system is defined with respect to the
centroid of the radius bone. The X and Y coordinates are the
corresponding coordinates of the centroid. As the length of the
radius present in the image varies from subject to subject, the
Z-coordinate (along the length of the radius) is defined, arbi-
trarily, to be 30 voxels above the lowest point in the radius of
the template subject. The orientations of the X, Y, and Z axis are
defined by the original CT volume coordinate system. All bone
motions are represented relative to the origin. Three sets of pa-
rameters need to be estimated during image registration in order
to interpret the true 3-D pose of each carpal bone. 1) Global wrist
pose which is estimated by aligning the radius. It includes rigid
transformation parameters and a global scale factor, denoted by

. denotes the
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Fig. 2. (a) Poses of the first component (top row, lateral view) and the second component (bottom row, AP view) of the simple pose model. In each case the mean
s.d. are shown. (b) X-ray image showing the anatomical context of the carpal bones.

global translations, and is the Rodrigues pa-
rameter [13], [16] representing the global orientations. con-
trols the distance from the centroid of each bone to the origin in
the radius, and the global size of the bones. 2) Poses of the carpal
bones that are controlled by the statistical pose model parame-
ters [(6), is a notation indicating the model parameters],
which provides a rough alignment of the carpal bones. 3) Local
rigid transformation parameters and a local scale factor for each
bone ( is an index identi-
fying each of the carpal bones, the radius and ulna), which pro-
vide refined alignment of bones based on the results from (2).
Using homogenous coordinates, the th bone in the template

volume coordinate system can be transformed to the target
volume coordinate system by

(1)

where indicates the coordinates for the region of the th bone
in the template volume with respect to its own centroid. is
the transformed coordinates of the th bone in the target volume.
is the local scale factor that controls the size of the th bone.
is the pose matrix of the th bone estimated using the pose

model and the local pose refinement. is the global rigid trans-
formation matrix defined by

(2)

where is the translation vector . is the 3 3 ro-
tation matrix represented by Rodrigues parameters [13], [16],
calculated as

(3)

where is the magnitude of the rotation vector .
is the identity matrix, and is the skew-symmetric matrix

normalized by , expressed as

(4)

In (1), is calculated as

(5)

where is the summa-
tion of translation vectors estimated from the pose model and
local bone refinement. is the 3 3 rotation ma-
trix that combines the rotations estimated from the pose model
and local bone refinement respectively. and can be cal-
culated individually by (3) using their corresponding Rodrigues
parameters.
The use of Rodrigues parameters to represent bone orienta-

tions is convenient for pose model building and parameter op-
timization. More importantly, unlike the quaternion representa-
tion, it does not require vector normalization. Nor does it suffer
from the singularity problem raised by the Euler angle rotations.
In the first step illustrated in Fig. 1, the template volume

is randomly selected from the training data sets. is then
segmented semi-automatically using the multi-label grow-cut
method [1]. By using and its corresponding segmentation re-
sult , each bone in can be registered to other volumes
at different wrist positions within the same subject using the
method described in [15]. First, we manually adjust the transfor-
mation parameters of each bone in to roughly align with
the target volume, and then automatically refine the transforma-
tion parameters via intensity based registration [17]. The refine-
ment is iterated until an acceptable alignment is achieved. The
bones to be registered belong to the same subject, so there are
no significant shape differences. While the bone poses may be



CHEN et al.: AUTOMATIC GENERATION OF STATISTICAL POSE AND SHAPE MODELS FOR ARTICULATED JOINTS 375

very different in different wrist positions, the initial rough inter-
active alignment makes it easy to achieve accurate registration.
The interaction for each wrist position is also quick and effi-
cient. This interactive step is carried out only once for a given
template volume. The result is an initial pose model, which is
used for subsequent automatic registration.

III. STATISTICAL POSE MODEL GENERATION

The kinematics of the carpal bones is complex and
significant pose difference can be introduced as the joint
adopts different positions. In this section, we introduce a
method for constructing the pose model of the carpal bones
that enables the reproduction of valid poses with a small
number of parameters. When carpal bones from different wrist
positions of the same and different subjects are aligned, the
pose model can be constructed from the transformation
parameters of each bone with respect to a common reference
coordinate system. The method of registration is described in
Sections IV and V. After the registration, we use the six rigid
transformation parameters for each bone to train the SPM. The
common coordinate system for all bone poses has an origin in
the radius of the template volume (Section II). Hence, for the
SPM building, the transformation parameters for radius are
always zero. The sizes of all the wrists are normalized to the
template volume scale by using the estimated global
scale factor. The pose of one subject is described by

(eight carpal bones, one radius, and one ulna). Based on a set
of training subjects, the pose model can be parametrized as

(6)

where the mean pose ( is a notation indicating the model
parameters) and the principal subspace matrix are computed
using PCA. The vector represents the pose parameters that
describe the pose of along each principal direction. For the
initial pose model, only the volumes at different positions of the
template subject are used. The first two significant components
are shown in Fig. 2, which represent 99% of the variation. As
more subjects are aligned with the template, the pose model
is updated by including more training samples, and is used for
subsequent registrations.

IV. GLOBAL RIGID PARAMETER AND POSE MODEL
PARAMETER ESTIMATION

As illustrated in Fig. 1, by using and the pose
model, the global rigid pose and poses of the individual carpal
bones can be estimated in sequence, aligning the corresponding
bones in and (target volumes). The registration process
is to find the pose parameters that best align the corresponding
bones in and by producing an optimum similarity value.
The cost function that measures the similarity, and optimization
method for estimating the pose parameters are described in the
following subsections.

A. Similarity Measurement

To evaluate the similarity between the corresponding bone
regions in and , we investigated several forms of the cost

Fig. 3. Top: CT slice, bottom: corresponding normalized gradient magnitude.

function (normalized correlation coefficient, sum of squared
differences and mutual information based on intensities),
achieving the best results from the one shown in (7), based on
the difference of the normalized gradient magnitude of the two
images. We define the normalized sum of squared difference
(NSSD) between two images and as

(7)

where represents the region of interest (ROI) corresponding
to each specific bone and indexes the voxels of in . The
ROI is a region slightly larger than the bone volume, obtained
by a dilation of 10 voxels along the three axes. is the total
number of voxels in . and are the normal-
ized values derived from the image gradient in the transformed
template ROI image and the corresponding target image respec-
tively, which are generated by

(8)

where is the transformation (inverse to our estimated pose
transformations) applied to from target volume to template
volume. and represent the gradient magnitude of the
smoothed and respectively. and are smoothed by
a 7 7 7 Gaussian kernel with variance equal to 1 voxel (0.5
mm). was experimentally set to 0.1. Example images of the
original CT slice and corresponding normalized gradient mag-
nitude images are shown in Fig. 3.

B. Optimization

The global rigid pose parameter can be estimated by regis-
tration of the radius bone, since a point (defined in Section II)
in the radius of the mesh model is used as the origin of the coor-
dinate system for all motions. Other carpal bones and ulna are
registered by estimating their individual pose parameters. We
have target volumes captured at different positions (five wrist
positions in our case) that belong to the same subject. They have
different translation and rotation parameters, but should have a
consistent scale factor with respect to the template. Hence, we
register the template bones to those target volumes simultane-
ously at each iteration (Step 3 in Fig. 1)When the translation and
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Fig. 4. Overview of the integrated segmentation and registration system cor-
responding to box 4 in Fig. 1.

rotation parameters are estimated, only the volume with corre-
sponding wrist position is used to evaluate the cost function. In
estimating the scale factor, , on the other hand, volumes from
all wrist positions are used to evaluate the cost function (summa-
tion of the cost function values). At the end of the registration, a
set of translation and rotation parameters are obtained that cor-
respond to the poses of the individual bones, and a single global
scale factor is calculated for all wrist positions of the same sub-
ject. Individual scale factors for each bone are calculated in the
local refinement stage (Section V). Scale invariance is impor-
tant for pose model generation.
The optimization method we use is a simplified version of

the Brent-Powell method [18], requiring a smaller number of
optimization steps. We use parabola fitting to replace the Brent
line search in the Brent–Powell method. The multi-dimensional
search space ( , and ) is explored
by iterative individual 1-D line searches. For each parameter
search, the cost function is evaluated at the current position,
positive and negative neighbor positions (defined by a search
range), then an optimum is found by fitting a parabola to the
three evaluated positions. The optimum is iteratively refined by
reducing the search range until convergence. More details can
be found in [19].

V. SIMULTANEOUS REGISTRATION AND SEGMENTATION
FOR LOCAL POSE REFINEMENT

After performing the global rigid and pose model transfor-
mation, the template bones are approximately aligned with the
bones in the target volume. Some local misalignment may still
remain requiring a further step to refine the local pose of each
bone. In this section, we introduce an integrated segmenta-
tion and registration method, which combines the multi-label
Grow-Cut segmentation [1] and intensity-based registration.
This method, illustrated in Fig. 4, is developed from that de-
scribed in our previous paper [15], improved in several respects.
To make this paper self contained, the following description
includes details of the previously published version.
The main objective of the method is to estimate

for the th bone, improving its
registration accuracy. The use of combined segmentation and
rigid registration is preferred over nonrigid registration methods
for this application. Finding the accurate pose parameters to
align the bones is important for the SPM building. Nonrigid

registration tends to deform the shape rather than finding the
optimum pose. If rigid registration is performed individu-
ally, the topology of the bones may not be preserved and the
bone volumes may overlap. This is overcome by combining
the registration with multi-label Grow-Cut segmentation. In
Grow-Cut, multiple labels are calculated simultaneously at
each iteration and region overlapping is forbidden. It helps to
make the registration more robust to the initial starting pose,
and also acts as a soft constraint to preserve the topology of
the bones. Subsequently, the segmentation results can
be used to build the statistical shape model of each bone. The
overview of the framework is illustrated in Fig. 4; each of the
key steps is described in the following subsections.

A. Strength Map Generation

There are two key elements in Grow-Cut segmentation [1].
They are the current label at each voxel and a strength map asso-
ciated with the image. The strength map indicates the “energy”
of the corresponding voxel, which is used to determine if the
corresponding label can be propagated to its neighbors at each
iteration. Since each labeled bone from (segmentation of
) has been roughly aligned with the target volume through

previous registrations, the labels for can be therefore initial-
ized using the transformed , denoted as . In ,
all overlapped bone areas are set to zero, as new labels shouldn’t
be introduced. The initial label will be evolved according
to the associated strength map.
Here, we present a novel method for initializing the strength

map for Grow Cut. The objective is to initialize this map
with values of 1 (high certainty) and 0 (low certainty) of being
either bone or nonbone. To obtain the , an initial binary
volume, ( ) is generated
from . The normalized foreground and background his-
tograms calculated from the overlap of and the target
volume allow us to calculate the probability that a voxel be-
longs to the foreground or background . Using
(9), we calculate the likelihood of classifying each voxel
as bone (positive) or nonbone (negative), from which (10) and
(11) generate new binary volumes representing
high certainty regions of bone and nonbone respectively. The
thresholds of 0.9 and were determined empirically.
(12) represents the region of that is not classified as bone ei-
ther in or . Equation (13) identifies the regions
that are identified with certainty to be bone or nonbone, based
on the histograms ( and ), constrained to be within
the respective bone and nonbone regions defined by .
Following Grow Cut relabelling, and are cal-
culated for each iteration step

(9)

(10)

(11)

(12)

(13)
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Fig. 5. Process of integrated segmentation-registration iteration for registering the template volume (colored contours) to a target volume of a different subject.
At first (global) registration the correspondence between the template and target volumes is poor resulting in the inclusion of a significant region of background in
the foreground histogram. The segmentation step improves the correspondence of the bones. At a later iteration the registration and the foreground histogram are
improved. The resulting segmentation step results in good agreement between the segmentation and the target volume.

B. Multi-Class Grow Cut Segmentation

The advantages of Grow Cut in this application are its ability
to obtain a multi-label solution in simultaneous iteration, and
the capacity for fast parallel implementation. The segmentation
labels of 10 bones (carpal bones plus radius and ulna) need to
be updated simultaneously, helping to preserve bone topology.
For efficiency the Grow Cut code was parallelized using NVidia
Quadro FX 3800 Graphic Card via the CUDA API.
In our proposed framework, the strength map is ini-

tialised automatically in step A (Fig. 4), and (from step
A or updated from step C) is used as the labeled volume. Since,
there is only a small number of uncertain voxels with
at each iteration, it takes less than 2 s to complete the segmen-
tation of a 141 268 169 volume. The segmentation volume
is denoted as .

C. Rigid Image Registration

Following the segmentation, rigid image registration is per-
formed. The cost function expressed in (14) is used as the sim-
ilarity measurement in which a new term is added to the cost
function described in (7). Since each bone has a unique label,
the new cost function term tends to “drag” the template bones
to the corresponding segmented regions, which preserves the
topology of the bones

(14)

is the gradient-based cost function in (7). and are the
ROI binary image obtained from and the corresponding
binary image obtained from , respectively. Other nota-
tions are the same as in (7). The optimizationmethod is the same
as described in Section IV-B. A new is then obtained by
using the updated transformation parameters.

1Available online: http://www.nvidia.com/object/cuda_home_new:html

D. Iteration and Termination

Step A to C are repeated; the segmentation volume, regis-
tration parameters and the intensity histograms coherently im-
prove each other until the termination conditions are satisfied
(the difference of the segmented volume between adja-
cent iterations stops decreasing). The iteration process is illus-
trated in Fig. 5. The foreground histogram, registration and seg-
mentation result at the first and fifth (final) iterations are shown,
where the colored contours from the template are superimposed
on the target volume. The method described here differs from
that described in [15] in that the transformation parameters and
segmentations for all wrist positions are estimated in the same
framework, and a consistent scale factor for each bone is cal-
culated across all wrist positions. The final segmentation result
is derived from all wrist positions. The labelled volumes at dif-
ferent positions are transformed to the template volume coor-
dinate system. The overlapping area that is greater than 60%
is used for the final label. Then the final label is transformed
back to the volume at each position. The combination of seg-
mentations in different wrist positions, and hence with different
orientations relative to the sampling grid, reduces segmentation
errors arising from partial volume effects. Combining the seg-
mentation with the registration method makes the registration
more robust than the registration only method, in terms of the
sensitivity to the initial bone pose. This was evaluated in [15].

VI. STATISTICAL SHAPE MODEL GENERATION

The shape of the bones varies among different subjects. A
SSM of each bone in the wrist is also important for pathology
diagnosis. The key step of generating a SSM is to establish
correspondences across subjects. In some approaches this has
been achieved using deformable registration (e.g., [12], [20],
[21]). However, in these studies the principal aim is to establish
shape, rather than pose correspondence. In the context of our
framework, it is important to determine the correct relative
bone poses, and deformable registration would tend to change
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Fig. 6. First component of the shape model of the scaphoid. Mean s.d. are shown.

the shape of the bones rather than finding the correct pose. This
would result in a less accurate SPM, so rigid registration is
preferred. It would be possible to apply deformable registra-
tion after rigid alignment. In this case the computational cost
depends on the selected deformable model. The final result is
highly dependent on the regularization method applied, and
may be difficult to correct if increased accuracy is required. In
our proposed framework, the shape differences between the
corresponding bones of different individuals are accommodated
by the segmentation process. Following the automatic registra-
tion and segmentation framework, the segmentation result can
be directly used for the SSM construction. Our SSM is based
on the Point Distribution Model (PDM- for example [22]). This
requires the establishment of point correspondences between
bones of different subjects, for which we use the well-known
minimum description length (MDL) algorithm [6]. One training
example is described by
(1002 points on each bone). The coordinates of the shape points
of each bone are expressed with respect to its own centroid.
The statistical shape model, , is then described as

(15)

where and ( is a notation indicating the shape parame-
ters) are the mean shape and the principal subspace matrix for
the th bone. is the shape model parameter for generating new
valid bone shapes. Fig. 6 shows the shapes that arise by varying
the first component of SSM of the scaphoid.

VII. FRAMEWORK INTEGRATION

Each part of the framework (Fig. 1) has been described in
previous sections. Two important issues need to be further ex-
plained to complete the framework.
Firstly, in order to increase the robustness of the framework,

the CT volumes are preprocessed to construct a multi-scale
pyramid (downsampled by a factor of 2 at each level). In the
optimization procedure, the same set of initial search ranges
is used at each level for both the global and local registrations
(described in Section VIII). The search ranges are divided by 2
each time the criteria are met, and the whole process is termi-
nated when the maximum value of the search ranges is smaller
than a preset threshold. To avoid the optimization becoming
trapped in local minima, a stochastic optimization procedure is
used for global parameter (wrist pose and scale factor) and pose
model parameter (carpal bone pose) estimation, as follows.

1) Starting from zero transformation and orientation, opti-
mize the poses of the bones of all input wrist volumes.

2) Record the best cost function value for each pose.
3) Randomly alter the starting value of the parameters for un-
satisfied poses (defined in step 4) within the possible pa-
rameter space, and optimize again.

4) Repeat steps 2 and 3. Terminate the random process for
the pose if the best function value of that pose remains un-
changed for five times or the number of iterations exceeds
20.

This stochastic process is only performed on the lowest pyramid
level for computational efficiency and robustness.
Secondly, at each iteration of the SPM updating procedure

(see Fig. 1), an outlier rejection algorithm is applied to exclude
inaccurate registrations. After the registration is finished for
each subject, the cost function values for each bone across all
wrist positions are compared. Since the data is in the same
image modality and from the same subject, the cost function
value for the corresponding bones should be similar, inde-
pendent of bone poses. Only the wrist positions with the cost
function value less than the best (smallest) cost function
value are considered as successful registration. After all of the
subjects are visited, those excluded subjects are revisited and
aligned again by using the SPM generated from the included
subjects. If successful registration is achieved, the revisited
subject will be included to update the SPM. The process is
repeated until the number of included subjects is unchanged.
The unregistered volumes do not contribute to the model.

VIII. EVALUATION

We evaluated our framework based on CT data from 25 sub-
jects (10 female and 15 male, median age 51, age range 25–72
years), recruited from the hand clinic at Salford Royal Hospital,
Greater Manchester, U.K. Eight of these subjects were diag-
nosed radiologically as suffering from scaphoid–lunate disso-
ciation (referred to as the “abnormal” group in the following
discussion), the remainder being assessed not to have this con-
dition (referred to as the “normal” group). Each subject was im-
aged at five different wrist positions: neutral, and four extreme
positions in radial–ulnar and flexion–extension movement. The
wrist positions were held on a specially designed foam. Each of
the CT volumes is captured by a GE LightSpeed VCT machine
with a very low-dose exposure. The exposure from all five scans
was 20 mGy. The acquisition parameters were: tube voltage of
80 kV, focal spot of 0.7 mm, slice thickness of 0.625 mm, pixel
spacing of 0.29 0.29 mm . The volumes were resampled by
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TABLE I
MEAN AND STANDARD DEVIATION REGISTRATION ERRORS (MEASURED
BY MEAN TARGET REGISTRATION ERROR IN MM) AND THE SUCCESSFUL
REGISTRATION RATE OF EACH BONE BASED ON USING EACH OF THE

25 SUBJECTS IN TURN AS THE INITIAL TEMPLATE

tri-linear interpolation to iso-cubic volumes of 0.5 0.5 0.5
mm prior to the registration and segmentation. We found that
higher resolution (e.g., 0.25 0.25 0.25 mm ) did not pro-
duce a much better accuracy of the segmentation and registra-
tion but required much larger memory and longer computational
time.
Using the interactive method described in [15] we obtained

the segmentation of each of these subjects in the neutral position
and the transformation parameters that relate the neutral posi-
tion to the extreme positions for that subject. The segmentations
at each position were validated by an experienced clinician.
These segmented and registered images were used as ground
truth in the evaluation of the automated framework described
here.
In our experiments, each of the 25 subjects was selected as

the template and registered with the remaining 24 subjects in
turn. The registration order to other subjects was randomly se-
quenced. In the optimization procedure, the same set of fixed
initial search ranges was used at each level for both the global
and local registrations (four voxels for translation, for
rotation, 0.2 for scale and one standard deviation for pose model
parameters). The framework terminated when the largest search
range was smaller than 0.1.

A. Registration Results

To evaluate the registration results, we transformed the mesh
points of each bone in neutral position to other positions using
the ground truth registration parameters and our estimated
registration parameters respectively, for each subject. Then
the 3-D Euclidean distances of each corresponding mesh
point between the two transformed meshes for each bone are
measured (known as mean target registration error (mTRE)
[23]). The registration errors are presented in Table I, showing
the measurements from 25 (different initial template) 24
(subjects) 5 (positions) tests. The errors were only calcu-
lated based on successful registrations, defined by the outlier
rejection scheme (Section VII). Specifically, for each bone, the
successful registration rate is the total number of instances of
that bone included by the outlier rejection algorithm divided by
the total number of tested volumes. As shown in Table I, regis-
tration achieved subvoxel accuracy (mean error of
mm). The successful registration rate of each bone across all
tests are also presented in Table I. The successful registration
rate for most bones is very high. The main exception is the ulna
which is much lower than the others. The shape of the ulna
is highly symmetric and its movement varies greatly between
individuals. In some individuals, there is relatively little move-
ment, while in others there may be significant movement. Of

Fig. 7. Percentage of variation covered by the first two significant components
in SPM updating process. Each line represents the use of a different subject as
the template.

the others, the lowest successful registration rate occurred in
the trapezoid. This bone has a nearly spherical shape, making
calculation of the orientation rather unstable. It is also the
smallest of the carpal bones.
The standard deviation of the success rate indicates that the

success rate and registration error are not very sensitive to the
selection of initial template, as the SPM is updated each time
a new subject is included, and the failed registrations are revis-
ited in a larger loop. In our 25 independent tests, each based
on a different initial template, 19 or 20 out of 25 subjects were
consistently successfully registered (all positions successfully
aligned) and used for final SPM generation. Subjects were ex-
cluded from model building if any of the positions for that sub-
ject were rejected by the automatic framework. In each rejected
subject the failed positions arose because of misalignment of ei-
ther the ulna or trapezoid (or both).

B. Statistical Pose Model Updating

Only the first two significant components of the SPM were
used throughout the whole registration across all subjects.When
the SPM is updated at each iteration, the percentage of variations
captured by the first two significant components decreases. The
percentage variation represented by the first two components
in the evolving process of the SPM over the 25 independent
tests is shown in Fig. 7. This converged to 92%–93% varia-
tion, irrespective of the registration sequence and initial tem-
plate selection. An animation of generating intermediate poses
by varying the first two components of the final SPM can be
found in the supplementary material. In our experiments, in-
cluding more PCA components did not increase the registration
accuracy. This also indicates that the integrated registration and
segmentation local refinement step works very well based on
the starting pose provided by the pose model.

C. Segmentation Result

We compared the segmentation results with ground-truth
using the Tanimoto coefficient (TC) [24] (also known as the
Jaccard similarity coefficient [25]), presented in Table II,
showing the mean and standard deviation from 25 independent
tests using different initial template subjects. The Tanimoto
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Fig. 8. The axial view, coronal view, sagittal view, and 3-D mesh model of automatically segmented wrists at (a) radial deviation, (b) ulnar deviation, (c) flexion,
(d) extension positions of different subjects. Unlabelled bones that appear in some images are parts of the metacarpal bones which are not included in the segmented
template. Colored lines of the 2-D-slices correspond to the colors in the 3-D mesh models.

TABLE II
TANIMOTO COEFFICIENT COMPARING THE GROUND TRUTH SEGMENTATION
AND AUTOMATICALLY CALCULATED SEGMENTATION FOR EACH BONE. MEAN

AND STANDARD DEVIATION ARE SHOWN, BASED ON 25 INDEPENDENT
TESTS USING DIFFERENT INITIAL TEMPLATE SUBJECTS

coefficient measures the similarity between two sample sets, and
is defined as the size of the intersection divided by the size of the
union of the sample sets. The coefficient is between [0, 1], where

1 indicates perfect overlap of the compared images. These seg-
mentation results, arising entirely from the automated frame-
work without further refinement, show a high level of segmen-
tation accuracy and repeatability. An example of the automati-
cally segmented carpal bones is presented in Fig. 8, showing the
sagittal, axial, and coronal view with the 3-D mesh model.

D. Pathology Detection

In previous sections, we presented a complete framework for
automatically generating a SPM and SSM across subjects at dif-
ferent positions. In this section, we demonstrate the effective-
ness of the SPM and SSM by applying them to pathology detec-
tion and quantification. Using a “standard” SPM and SSM, the
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relative poses of the carpal bones can be measured and recorded
as “standard.” One condition that may be assessed using this
measurement is bone dissociation, where the 3-D distance be-
tween the bones is larger than normal. Scaphoid–Lunate disso-
ciation is one of the most common of these and we use it as an
example to demonstrate the method of using the SPM and SSM
for diagnosis.
Since the bone spaces may vary at different wrist positions,

the constructed “standard” measurement tool needs to be posi-
tion dependent. One major advantage of using the SPM is that
the wrist from different positions can be aligned directly based
on the SPM values. The first two components of our SPM cover
more than 90% of the observed variation in the full range of
flexion–extension and radial–ulnar movements. The combina-
tion of the two components is also able to generate interpolated
positions within the motion range. To simplify the problem, here
we only demonstrate the pathology detection tool based on ra-
dial–ulnar deviation movement, which is the most appropriate
for diagnosing Scaphoid–Lunate dissociation.
1) Building the “Standard” Scaphoid/Lunate Model: 14

subjects in the normal group, each at three different positions
(neutral and extreme radial–ulnar deviation), were used to build
the “standard” measurement model. Each of the 14 3 target
volumes is aligned with the final SPM (based on 25 subjects,
each at five wrist positions) from the registration framework
(Section VII) to obtain the poses of the individual bones, and
hence the scaphoid–lunate distance. Since there are not enough
samples that cover the full range of continuous positions, we
interpolated (cubic spline) the positions at integer intervals of
the pose model parameter (Fig. 2) between the neutral position
and two extreme positions of radial–ulnar deviation for each
subject. This results in the training volumes being grouped at
each integer interval of the second component of the SPM pa-
rameter. (The second component of the SPM mainly represents
radial-ulnar movement—see Fig. 2).
To diagnose the Scaphoid–Lunate dissociation conditions,

the “standard” range of distances between these two bones need
to be calculated and recorded. The “standard” SSM represents
a range of shapes for each bone. To maintain consistency in
the measurement of distances, each carpal bone is represented
by its mean shape. The SSM has the same number of surface
points (1002) on each bone. The point correspondences be-
tween different bones are established by using the index of the
mesh points on the surface. Here we used evenly down-sampled
number of surface points ( in our case) to reduce
the memory usage and improve the computational efficiency.
If each of the th selected surface points on the Lunate and
Scaphoid of the th sample volume at position are represented
as and respectively, the relative distance between the
Scaphoid and Lunate was calculated as

(16)

is a 3 1 vector (X, Y, and Z axis). Then the mean dif-
ferences and covariance matrix of the th point pair
based on all samples at position can be obtained. Equation
(16) shows that we calculate and record the distances for each

Fig. 9. Mahalanobis distances of 22 subjects at a range of wrist positions for
Scaphoid–Lunatemeasurement. Red squares represent abnormal subjects; black
crosses are normal subjects.

pair of points. Subsequently, the average Mahalanobis distance
(MD) between the newly accessed data and the model is calcu-
lated using

(17)

2) Wrist Diagnosis: To assess a new wrist, the image is
firstly registered to the template volume using the proposed
framework. After the SPM parameters are estimated, the
measurement of the input image can be compared with the
“standard” model at the corresponding wrist positions. Addi-
tionally, the mean shape of the SSM is used to represent each of
the assessed carpal bones, where the point correspondences be-
tween Scaphoid and Lunate were already established. The MD
(17) is then calculated to indicate the degree of abnormality
of the subject. Seventy-five volumes (three wrist positions
from each of the 25 subjects) were registered by the proposed
framework. The MDs of 64 automatically and successfully
registered volumes are presented in Fig. 9. The 11 unsuc-
cessfully registered volumes (see Section VIII-A) came from
three normal subjects and one abnormal subject. The MDs for
the remaining 14 successfully registered normal wrists were
calculated using leave-one-out experiments (13 subjects were
used for “standard” model building). In this figure, the red
squares represent abnormal subjects and the black crosses rep-
resent normal subjects. The accuracy of classifying individual
volumes as abnormal is indicated in the receiver operating char-
acteristic (ROC) curve shown in Fig. 10, obtained by varying
the threshold of MD (the same threshold for all positions). The
area under curve is 0.94. The MD threshold that produces the
best classification is 2.04, which results in a 92% true positive
rate (TPR) and 12% false positive rate (FPR) in identifying
individual abnormal wrist position.
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Fig. 10. ROC curve for individual wrist position diagnosis.

IX. DISCUSSION

Statistical pose models of articulated joints in 3-D are po-
tentially highly useful in imaging studies aimed at assessing ab-
normal kinematics [4], [13], [26]. We have previously described
[26] the use ofmodels built in this way for inference of 3-D kine-
matics based on 2-D image sequences, and demonstrated that
this can be achieved with sufficient accuracy to allow mean-
ingful clinical measurements to be made. However, the task
of building such a model, requiring accurate segmentation of
each bone in a complex joint in several articulated positions,
is a daunting one. We argue that the model needs to incorpo-
rate the position variation arising from the articulation (kine-
matics) and the variation in shape of bones between individuals.
In this study we have demonstrated a method for building such
models, which exploits the facts that identical bones from the
same individual are represented in different positions, and that
the positions are similar between individuals. Themethod learns
a statistical pose model, while simultaneously generating accu-
rate segmentations. The use of rigid registration integrated with
segmentation has allowed us to decouple the issues of pose and
shape, as it is only the latter that is relevant for segmentation.
Convergence of the iterative framework is assisted by using the
evolving model to constrain the registration. This approach has
something in common with combined group-wise registration
and model building [12], where the registration avoids the se-
lection of an arbitrary template. In this case the number of ar-
ticulated components adds several degrees of freedom to the
problem, and we have based the registration on a single tem-
plate example. However, we have demonstrated that the com-
bined registration and segmentation is insensitive to the tem-
plate selection. The variation in pose of the bones at different
joint positions results in a requirement for interactive initiation
of the registration in the template example. The segmentation

step works by having an initial approximate segmentation from
the registration of the bones across different positions, which
suggests the use of methods developed for semi-interactive seg-
mentation (e.g., Graph-Cut [27], Grow-Cut [1], and Random
Walker [28]). We evaluated some such methods; the efficient
multi-label propagation of segmentation provided by grow-cut
made it ideal for this purpose. The iterative refinement of the
grow-cut strength map means that, should further interactive
segmentation prove necessary after the final convergence, this
can easily be accommodated within the framework. Our ob-
served segmentations were sufficiently good to make this step
unnecessary in this case. The segmentation showed high con-
sistency with ground-truth and sub-voxel registration accuracy
was achieved.
We demonstrate the effectiveness of the statistical pose and

shape model built using our automatic framework by using it
to identify scaphoid–lunate dissociation. Scaphoid–lunate dis-
sociation is most apparent in wrist positions during radial–ulnar
movement. The model was able to represent the kinematics with
sufficient precision to allow the abnormal cases to be identified
with high sensitivity and specificity. The use of a SPM for this
purpose allows images from different sets of articulated posi-
tions to be aligned directly with themodel using the SPMvalues.
This confers an advantage over, for example, the method de-
scribed in [11], where comparisons are made by aligning the
wrists at a limited number of predefined positions.
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