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Abstract 

The present thesis, entitled A fractal transport approach to heat transfer through 

cellular structure, was submitted in the alternative format, by Chulin Jiang to The 

University of Manchester for the degree of Doctor of Philosophy in the Faculty of 

Engineering and Physical Sciences, School of Mechanical, Aerospace and Civil 

Engineering, 18 September 2016.  

The transport of heat and mass through porous structures has been the focus of 

extensive research for many decades. Porous materials have excellent characteristics 

like large contact area, controllable pore sizes and low density, which are widely 

exploited in chemistry, biomechanics and fluid mechanics. Cellular heat exchangers 

utilise porous materials and are of particular interest in this research.  These types of 

heat exchangers combine high conductivity materials with good enhancement of fluid 

mixing to increase heat transfer rates. However, the use of porous media presents 

challenges in the form of extremely complex geometries, which are difficult to 

accurately represent and analyse. This research focuses on the use of fractals (or more 

correctly pre-fractals) for the representation of porous media and a new numerical 

analysis method to enable the application of continuum thermal analysis.  This is 

achieved by tessellating the continuum and extending classical continuum mechanics 

by a procedure coined tessellated continuum mechanics for the study of the thermo-

mechanical response of porous media.   

The new procedure for the representation of porous materials involves pre-fractals 

which can produce extraordinarily complex porous geometries using a relatively small 

number of linear affine contraction maps.  This approach is mirrored by an almost 

identical approach for the creation of tessellations but in this case affine expansion 

maps are employed.  Elements on a pre-fractal are placed in a one-to-one 

correspondence with tiles in a tessellation and the associated bijection map is termed a 

hole-fill map.  With tiles doubling up as elements, numerical analysis can be 

performed on the tessellation and the results immediately “lifted” to the 

corresponding pre-fractals.  The whole approach is shown to be extremely accurate 

with discontinuous physics on tessellations being accounted for with a new concept 

termed the discontinuity network.  Results obtained by the new approach are 

contrasted with direct analysis using a commercial package and high accuracy is 

recorded.  
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Chapter 1.  

Introduction  

This research is concerned with continuum mechanics for porous materials and its 

application to cellular heat exchangers [1]. A fractal or a pre-fractal is introduced to 

represent a porous material. In order to apply continuum mechanics, relative 

tessellated structures are created to investigate thermal behaviour of pre-fractals. This 

thesis has explored the analysis of heat transfer for porous materials through analysis 

of an appropriately related continuous construction. 

 

1. 1 Background 

Porous materials have many great qualities like low density, large contact area, high 

heat resistance, etc [2]. A large number of engineering, biological and geological 

materials such as ceramics, concrete, wood, bricks, rocks, polymers, biological tissues 

and bones are characterised by porous materials [3]. Due to the ability of 

enhancement of the heat transfer, they are always considered in heat exchangers.  

Heat exchangers are a piece of equipment with the primary responsibility of 

transferring energy from one medium to another. They are used in all manner of 

devices, industries and applications including heating, refrigeration, air conditioning, 

power plants, petroleum refineries, natural gas processing, and sewage treatment. 

Many types of heat exchangers can be distinguished from their composition like plate 

heat exchanger, shell and tube heat exchanger [4]. Cellular heat exchangers as an 

application of porous materials are of particular interest in this thesis. An alternative 

but similar configuration is the plate-fine heat exchanger design [5]. 

Porous materials with cellular structures provide high efficiency exploiting a complex 

geometrical structure to maximise fluid contact area and flow tortuosity. Many 

cellular heat exchangers embody this geometry through high thermal conductivity 

metallic foams such as copper and aluminium. Boomsma et al. [6] explored the 
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thermal performance of cellular heat exchangers and reported on the advantages 

offered by these types of design. Similar conclusions were drawn by Bhouri et al. [7] 

where metallic honeycomb heat exchanger designs were shown to be suitable for 

enhanced thermal management in hydrogen storage systems.  

Although cellular designs provide effective cooling and enhance heat transfer, their 

analysis is difficult arising principally from the complex geometry involved. The 

transport of heat and mass through porous structures has been the focus of extensive 

research for many decades. Tarasov [8][9] and Ostraja-Starzewski [10][11] for 

example investigated the use of fractional derivatives in an attempt to analyse 

transport behaviour of irregular structures. However, there is scant practical evidence 

for theoretical work of this ilk. The vast majority of practical analysis to date is 

founded on continuum equations and assumptions, with the indirect representation of 

geometry using parameters such as permeability, porosity and fractal dimension 

[12][13].  Such approaches have severe limitations and are unlikely to capture the 

complex flow and heat transfer physics involved in practical cellular designs. 

An alternative approach adopted in this thesis is the direct representation of the 

complex geometries involved. Such an approach is not without controversy, as 

practical cellular designs are very complex. Cellular metal structures can be classified 

into two broad classes; one with stochastic topology, and the other with a periodic 

structure [14]. Commercial metal foams with open cells typically have a stochastic 

structure; they provide good compact heat exchangers and are relatively cheap. 

Nonetheless, as cross-flow heat exchangers, they can provide a high thermal 

conduction path for heat transport, a very high surface area for dissipation into a 

cooling fluid (typically located in the pores) and a contiguous path for forcing the 

coolant through the structure. The complexities involved in the modelling of cellular 

heat exchanger systems means that presently there exist no realistic means of coupling 

cells to the macro behaviour of the structure. 

The research presented here is concerned with the application and development of a 

recently discovered general transport theory for fractals/pre-fractals. The cellular 

structures are represented using pre-fractals and collapsed using a hole-fill map 

concept. The hole-fill maps can be generated as part of the fractal construction 

process, which is relatively simple and involves only the repeated application of a 
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number of affine maps. The approach returns the analysis to the continuum but in this 

case the continuum is tessellated and each tile in the tessellation possesses thermal 

properties arising from the hole-fill map. 

 

1. 2 Objective of the Research 

The hypothesis underpinning the research is that thermal analysis for a porous 

material can be achieved on a tessellated continuum. In order to test out the 

hypothesis the following four measurable objectives form the focus of the proposed 

research: 

i. Obtain analytical solutions for pre-fractals to provide a means to test the accuracy 

of the tessellated approach.  

Simple fractals such as Cantor dust is first considered to test the hypothesis 

through the analytical solution. The hole-fill map concept is applied to construct a 

relative tessellation. The results will confirm that the tessellated approach can be 

used to demonstrate the thermal analysis for pre-fractals. Hence, the accuracy of 

the tessellated approach is established. 

ii. Develop a Galerkin finite element method (applicable to tessellations) to describe 

the thermal response of porous material when cooled by a highly conductive 

coolant.  

A Galerkin finite element method is introduced to the tessellated approach to 

explore thermal behaviour for porous materials with a prefect conductive matrix 

in cooling system. The analytical solution and numerical solution from the 

Galerkin finite element method are first used to demonstrate the temperature 

distribution of Cantor dust. Then, numerical results of thermal behaviour for a 

series of non-product fractals are obtained to prove the accuracy of the method.  

iii. Develop a Galerkin Finite Element Method with discontinuity networks to cater 

for discontinuities that arise on a tessellation with more realistic cooling of the 

porous material. 
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Discontinuity networks are introduced to the tessellated approach in order to 

better describe the discontinuous behaviour for fractals. The Galerkin finite 

element method with discontinuity networks is then applied to investigate thermal 

analysis for porous materials. The mapped results from both analytical and 

numerical solutions using tessellated approach with discontinuity networks is first 

tested on 1-D Cantor dust. The numerical solutions from tessellated approach with 

and without discontinuity networks on several typical non-product fractals are 

investigated. Accuracy for tessellated approach with and without discontinuity 

networks are then explored to demonstrate the influence of the discontinuity 

networks. 

iv. Test the robustness of the tessellated approach and in particular its insensitivity to 

alternative hole-fill maps. 

The tessellation is not unique or arbitrary. This tessellation variability is reflected 

by changes in the maps defined on the original set. The construction of the hole-

fill maps may induce problems for numerical analysis. Thus, it is important to 

explore the accuracy and robustness of the tessellated approach.  

 

1. 3 Outline of the Thesis 

The thesis will start with a general literature review in Chapter 2, which introduces 

the basic knowledge, analysis and how to characterise the porous material. Cellular 

heat exchangers provide a focus in this thesis as an application example involving a 

porous material and heat transfer. In order to analyse and design a cellular heat 

exchanger, the porous material has to be represented by a mathematical model with a 

similar geometric structure or described by real geometry through CT-micro scanning. 

Then, transport theory, Partial Differential Equations, Darcy’s Law, Lattice Method 

and Lattice Boltzmann Method can be involved in the analysis of the thermal 

response of porous materials. It is thus important to consider these approaches along 

with existing analytical and numerical methods. 
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Exploring the ideas and concepts on relatively simple fractals is the focus of Chapter 

3. A feature of some simple fractals considered in this chapter is the existence of 

analytical solutions, which can be used to test out the tessellated approach. The 

cellular structures of porous materials are represented using pre-fractals. The hole-fill 

maps concept is proposed to construct the corresponding tessellations. Transport 

equations and partial differential equations are introduced to link the transport 

phenomenon on the fractal to a corresponding tessellation. Complex thermal 

conductivity distributions on corresponding tessellations are presented for a series of 

non-product fractals. Other material properties such as density, specific heat and heat 

coefficient on tessellations are illustrated. Analytical solutions on fractal dusts and 

rings in 1-D and 2-D are obtained for a range of thermal loading conditions.  

The Galerkin finite element method is applied to the tessellated continuum to capture 

the energy transfers for pre-fractal structures in Chapter 4. The relationship between 

the principal directions of thermal conductivity on each tile and the principal stretch 

directions of hole-filling maps are investigated. A weighted transport equation is 

introduced via the Galerkin finite element method for the tessellated constructions to 

demonstrate numerical analysis of cellular designs. The analytical and numerical 

solutions of simple Cantor dust are explored to analyse the accuracy of the tessellated 

approach. A series of pre-fractals to represent porous materials are tested with respect 

to heat transfer in order to extend the work. Modelling error is illustrated to establish 

the accuracy of the approach.  

Discontinuity networks are introduced in Chapter 5 to the tessellations in order to 

present the discontinuous behaviour of pre-fractals. The procedure for construction of 

pre-fractals and corresponding tessellations with complex networks is described. 

Weighted transport equations are applied to the tessellations with discontinuity 

networks to obtain steady state and transient solutions via a finite element method. 

The mapped results for discontinuity networks of simple 1-D fractals are obtained 

from analytical and numerical solutions. Heat transfer analysis of classical fractals is 

carried out on the corresponding tessellations both with and without discontinuity 

networks. The importance of discontinuity networks for the tessellated approach is 

demonstrated in this chapter. The modelling error for tessellations with discontinuity 

network is investigated to show the advantage of the complex networks.  
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As the fluid is assumed as a perfect conduct, limitations of the tessellated approach in 

the presentation of thermally complex matrix materials are examined in Chapter 6. 

Analytical solution and numerical solution on simple 2-D Cantor Dust from 

tessellated approach without discontinuity network are investigated. Tessellations 

with and without discontinuity networks are considered to investigate the effect of the 

discontinuity networks. A series of classical non-product pre-fractals are tested by 

considering the matrix material. The temperatures at the vicinity of relatively large 

matrix domains are focused on demonstrating the accuracy of the tessellated approach. 

A further test is applied to explore the impact on the mapped temperature with 

temperature boundary condition for alternative expansion maps.  

In Chapter 7, the research is summarised, and conclusions are drawn. This thesis only 

considers classical fractals, simplified heat transfer coefficients for cooling channels 

and manually constructed hole-fill maps. Thus, some future work is proposed which 

could enhance further the tessellation.  
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Chapter 2.  

Literature Review 

This thesis explores the analysis of heat transfer through porous materials. Porous 

materials with cellular structures should be represented in order to be described in the 

analysis. Advanced porous materials have been explored for mechanical properties, 

heat transfer, and fluid mechanics for decades. Some typical theories are considered in 

its research such as transport theory, partial differential equations and Darcy’s law. 

Analytical methods and numerical methods for solving porous materials problems are 

discussed in this chapter.  

 

2. 1 Porous Materials 

Many porous materials underlying cellular structures have been studied for 

engineering applications [15]. Classic porous materials include organic materials and 

polymeric foams. Recently, a large number of inorganic materials like metal foams 

and ceramics have been developed for areas such as insulation, cushioning, impact 

and construction materials [16]. The past decade has seen significant development in 

the ability to manufacture new porous materials. 

 

2. 1. 1 Porous Material Concept 

Because of the controllable dimensions for the ordered or irregular arrangement of 

pores, porous materials are of scientific and technological importance in biology, 

chemistry and mechanics [17]. They are composed of a matrix and a porous space, 

latter being typically filled by a fluid like liquid or gas [18][19]. There are some 

examples of porous materials depicted in Figure 2.1. The internal structure of many 

porous materials involves multiple scales which hinders research on the relation 
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between structure and transport properties [20]. Due to their special structure, they 

embody decreased density and increased specific surface area. The true density of the 

porous materials excludes pores, and the surface area is the accessible area of the 

solid surface per unit mass of the material [2].  

Because porous materials are abundant both in nature and industry, they have been 

focused by researchers for many decades. Porous materials are considered in diverse 

branches of applied science and engineering such as solid mechanics [21], fluid 

mechanics [22], and thermal mechanics [23]. The heat transfer performance is defined 

as the ratio of heat transfer rate enhancement to pressure drop increment [24], and it 

has been shown that high heat transfer performance values can be achieved by porous 

inserts. In this thesis, the thermal behaviour of porous materials is focused on fluid 

flowing through the pores. 
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(a) porous titania sintered fine 

power 

(b) grinding wheel, abrasive grains with 

a vitrified bonding agent 

  
(c) sponge titamium (d) a traditional ceramic 

  
(e) porous copper sintered electrolytic 

powder 

(f) porous silicon carbide produced by 

reaction sintering 

  

(g) charcoal 
(h) porous glass prepared by leading 

method 

Figure 2.1. Examples of porous materials [25]  



22 
 

2. 1. 2 Porous Material Applications  

According to accessibility, porous materials usually are classified into open porous 

materials (which connect to the outside of the material) and closed pores (which are 

isolated from the outside) [25], shown in Figure 2.2. Open pores are required for most 

industrial applications such as filters, catalysts and bioreactors [25]. However, close 

pores are used mainly in thermal insulators, heaters and heat exchangers [25].  

 

 

Figure 2.2. Different morphology of pores [25] 

 

Because porous materials have a positive effect on the heat transfer enhancement but 

a negative impact on the pressure drop [26], they are often considered in heat 

exchangers which have been studied in the past. The enhancement of heat transfer in a 

straight channel fully filled with porous materials is investigated through a series of 

experiments in [27][28][29][30]. Printed circuit heat exchanger (PCHE) [1] concept 

allows simultaneous high temperature and high pressure operation with relatively thin 

wall thicknesses between the primary and secondary coolants. At the same time, the 

thermal behaviour of foam structure has been investigated by Mancin [31] and 

Boomsma [6]. They illustrated that the open-cell foams in heat exchangers can 



23 
 

enhance heat transfer. The structure of porous heat exchangers is also considered in 

this research. The honeycomb structure is a second class of cellular materials which is 

suitable for heat exchanger to improve thermal management [7]. Honeycomb ceramic 

materials can additionally be for thermal storage under high temperature operation 

with high heat transfer rate [32]. In this thesis, the cellular heat exchanger design is 

focused on considering both open and closed pores as the two typical structures. 

 

2. 2 Representation of Porous Materials 

As a random process material, each sample in a population will be different from 

others in a point-to-point sense for porous materials, so it is difficult to use a 

traditional geometry for their representation [33]. Therefore, experimental and 

theoretical tools have been developed for the description of porous materials in order 

to investigate different capabilities. As a demonstration of the sufficiency of 

parameters extracted from a porous material, explicit (using a mathematical tool) and 

implicit (using the geometry itself) methods are commonly applied to represent the 

cellular structures for porous materials in order to create a model for the analysis.  

 

2. 2. 1 Fractals 

A fractal was first suggested by Mandelbrot in 1982 to represent a new kind of 

geometry for many of the irregular self-similar patterns [34]. It provides a 

mathematical set exhibiting a repeating pattern at multiple scales. As a class of self-

similar objects, fractals are exactly the same at every scale or nearly the same at 

different scales [35]. With these characteristics, they can be used to describe 

coastlines, porous media, turbulent flows and even the surface of the human brain 

[36][37]. Fractal mechanics is applied in research since it can generate an elegant 

model where continuum mechanics will fail, particularly for highly irregular 

geometries [38][39][40]. Because the pore space of real media is characterised by an 

extremely complex and irregular geometry [41], the fractal can be used to better 

describe and investigate the permeability of unsaturated media [42].  



24 
 

In addition, fractals can be used to represent a set of cellular structures like porous 

materials; a pre-fractal as a finite subset can be used to demonstrate one 

porous/cellular structure. For example, the role of pore structure on liquid flow 

behaviour in porous media has been investigated on a classical fractal model 

Sierpinski carpet [43]. Other cases have investigated the relationship between the 

thermal conductivity and the pore size for porous materials on a pre-fractal Sierpinski 

carpet [44][45]. Although these research works only use Sierpinski carpet in their 

approaches, they confirm that fractals can be used to describe the geometry structure 

of porous materials. In this thesis, fractals are chosen to describe the cellular structure 

of porous materials.  

Fractal dimensions are always considered in the fractal analysis, because they can be 

defined in connection with the real-world data and measured approximately by means 

of experiments [46]. The concept of fractal dimension gives a provisional 

mathematical definition of a fractal as a set [47]. Box counting as a method of 

gathering data for complex geometry is always applied to determine fractal 

dimensions. It presents better analytical properties since the definition is based on a 

measure; and it can connect each level of a pre-fractal to the original set to present the 

property of each pre-fractal. Using the fractal dimensions, the material properties of 

the k th pre-fractal can be linked to the original set. In reference [48], the conductivity 

kK  of pre-fractal elements scale as given by the relationship  
1

0 0

D

k kK K


  on 

the k th pre-fractal, where k  is pre-fractal length and D  is the fractal dimension for 

Cantor dust.  

 

2. 2. 2 X-ray computed micro-tomography (micro-CT) 

Micro-CT scanning has become a non-destructive and truly 3D imaging technique 

[49]. It provides a direct way to image the pore space as a volumetric (3D) 

representation of structures and a three-dimensional image of the pore space at a 

resolution of several microns [50]. Micro-CT can be used to investigate characteristics 

of porous media. It is an effective technology to study the cellular structure of porous 

materials [51]. Thus, it cannot only be used in experiments but also create three-
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dimensional models for numerical analysis by importing data into commercial 

simulation packages.  

Micro-scanning is applied in a number of previous research works. In reference [52], 

the ability to present porous material from micro-CT scanning is clearly shown. 

Micro-CT diameters can describe blocks of porous material with different diameters 

and illustrate the bones with porous structures, as shown in Figure 2.3 and 2.4. In 

Liu’s numerical study on fluid flow and heat transfer through porous media, the 

porous geometry is reconstructed using micro-tomography images from micro-CT 

scanner [53]. Micro-CT scanning is also utilised to investigate 3D microstructure of 

porous magnesium composite reinforced by multi-walled carbon nanotubes [54]. All 

these studies illustrate that X-ray computed micro-tomography (micro-CT) can be 

used to represent the structure of porous materials. It provides another method of 

presenting more realistic models for porous materials in the analysis. 
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Figure 2.3. Micro-CT reconstruction of the four types of porous blocks [52] 

 

 

Figure 2.4. Projected porosity on the periosteal surface of the femur cortex [52] 
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2. 3 Analysis of Porous Materials 

Different methods are used to explore porous media such as transport theory, 

fractional derivatives, fractional integrals and partial differential equations. They are 

always applied on fractals to do the investigation with analytical methods. Darcy’s 

law is always used to investigate fluid flow through a porous medium. As water 

coolant flowing through the channels of the cellular heat exchanger is considered, 

Darcy’s law can be used to demonstrate heat transfer coefficients in the channel. Due 

to the complex geometry of the fractal, the Lattice Boltzmann method (LBM) can be 

chosen to do further analysis of the fluid flow in the voids of the porous materials. 

 

2. 3. 1 Transport Theory 

In engineering, the exploration of transport phenomena involves the exchange of mass, 

energy and momentum between systems [55][56]. In particular, the analysis of 

transport phenomena in porous materials is encountered in many natural processes 

and technological applications [57]. Transport theory is used to refer to the 

mathematical description of the transport of particles [58] and has been applied to 

study fluid flowing through porous media [59]. Because the direct derivation of the 

governing partial differential equations is not straightforward, the integral form of the 

governing transport equations is introduced. The transport equations for momentum, 

energy, heat transfer and mass can be constructed in different forms.  

The transport theory has been applied to the analysis of porous material in different 

areas. The seepage mechanics of fluid in fractal porous media has been studied in [60] 

by introducing fractional order derivative to establish a new mathematical flow model. 

Transport approaches involving fractals and fractional derivatives can be introduced 

to link the fractals to a relatively continuous structures. Ostoja-Starzewski [10][11][61] 

created a continuum-like transport equation for mass momentum and energy for a 

fractal porous media. Tarasov has described fractal media using fractional integrals to 

define the medium mass for a continuum media in [8]. He [9] again considered a 

fractional continuous medium model for the fractal media and derived a fractional 
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generalisation of the balance equations of mass density, momentum density and 

internal energy. Because they are founded upon transport forms that do not readily 

arise from the underpinning physics, their approaches are untested and physically 

unrealisable. Nevertheless, all these researches confirm that the transport theory can 

be applied to obtain relative material properties for corresponding continuous 

constructions in order to investigate behaviour for fractals.  

 

2. 3. 2 Partial differential equations 

Partial differential equations in a multidisciplinary sense have a special emphasis on 

applications to the problems in civil engineering, mechanical engineering, theoretical 

and applied mechanics [62]. It covers the topics such as fluid flow, diffusion and mass 

transport in porous media and heat conduction in solid [62]. A set of partial 

differential equations with a set of algebraic relations can solve multiphase flow in 

porous media for the basic mathematical models [63]. The heat transfer problems for 

porous materials can also be explored through governing partial differential equations 

in numerical methods [64].  

Although transport phenomena in porous materials bring a challenge to mathematical 

problems in the field of partial differential equations, partial differential equations 

involving partial derivatives can be applied to solve transport equations. The 

framework of continuum hypothesis is used to obtain the numerical solution for 

transport phenomena in porous media through partial differential equations [65]. 

Several pressure distributions are illustrated as the solution of flow problem for 

porous media. However, all the results are only shown for the continuous construction. 

Partial differential equations can be introduced to explore the behaviour for porous 

materials. In Davey’s research [48], partial differential equations are combined with 

transport equations to connect fractals and their relative continuous structure in order 

to investigate the thermal analysis for fractals. This approach proves that the partial 

differential equations can be used to obtain the results for porous materials from 

continuum structures.  

 



29 
 

2. 3. 3 Darcy’s Law 

Darcy’s law is able to represent the complex physics involved in a wide variety of 

porous geometrical structures with great accuracy. Convection in porous media 

governed by Darcy’s law has been used to study nonlinear dynamics and pattern 

formation of convective flow [66]. In recent research for either free or combined 

convection in porous materials, the boundary layer treatments have mainly been based 

on Darcy’s law [67][68]. However, it is well known that Darcy’s law is an empirical 

formula relating the pressure gradient, the bulk viscous resistance and the 

gravitational force in a porous medium [67]. Thus, the formulation of convective heat 

transfer problems based on Darcy’s law completely neglects the viscous force acting 

along a surface. Heat transfer coefficient can be determined by Darcy-Weisbanch 

equation and Dittus-Boelter equation through the size of the channel and the 

conditions of the flow [69].  

Darcy’s law is always used as a basic law to explore the fluid flow in porous media. 

In Li’s research, the temperature dependent fluid properties (variable fluid viscosity 

and thermal conductivity) are taken into account in the modified Darcy's law to 

describe the constitutive relations of highly coupled velocity and temperature fields in 

porous medium through computational fluid dynamics [70]. Based on Darcy’s law, 

Chevalier has investigated yield stress fluid of flowing through a porous medium in 

the experiment [71]. These research works confirm that Darcy’s law can be combined 

with other methods to investigate fluid mechanics of porous materials.  

 

2. 3. 4 Lattice Method 

Lattice method generates a model with regular structure and tessellations on a unit 

cell along independent periodic vectors in the space continuum [72]. It is quite 

popular amongst the theoretical methods because the discretization of any continuum 

model can be turned into a lattice model [72]. Therefore, lattice method can be used to 

establish continuum structures for porous materials. The early studies of porous 

structures were carried out to investigate lattice structures [73]. Later, 3D lattice 

models were established as a kind of tessellated constructions [74]. In addition, 
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Lattice methods including its derivative are powerful alternatives to traditional 

numerical methods for solving partial differential equations, particularly in simulating 

fluid flow for porous media [75]. 

Lattice methods are used to investigate different capabilities for porous materials. 

Stiffness and strength of periodic cellular materials have been explored for both 3D 

open and closed cell lattices by Vigliotti [76]. This unprecedented research illustrates 

that Lattice model can be used to obtain the mechanical properties of cellular 

structures. Xiao applied Lattice models to represent the random structure of porous 

media by using tessellations, and the Lattice Boltzmann method was introduced to 

solve the fluid flow problem [77]. This confirmed that the Lattice method could be 

used to establish a relative continuous structure for a porous media. Other research 

works carried out are on the stress [78] and flow[79] for porous media where results 

have been obtained by analysing the problem along the independent periodic vectors. 

All these studies show the Lattice methods can be used to solve the heat transfer 

problem for porous materials by combining it with other methods.  

 

2. 3. 5 Lattice Boltzmann Method 

The Lattice Boltzmann Method (LBM) is a powerful technique for the computational 

simulation of a wide variety of complex fluid flow problems with complex geometries 

[80]. It does not require re-meshing and can overcome the limitations of the 

conventional and Finite Element Methods by using a fixed, non-adaptive (Eulerian) 

grid system to represent the flow field [81]. Because some discrete distribution 

functions on the fluid boundary cannot be solved directly like internal particles, 

macroscopic boundary conditions are required. Bounce-back boundary conditions are 

applied in LBM due to its ability of readily simulating complex boundaries. However, 

LBM is recognised to be particularly attractive for low Reynold number flows 

involving complex boundary conditions [82].  

With some development, the LBM is widely used in fluid mechanics for porous media. 

High resolution with large eddy simulation by LBM is applied to the porous medium 

structures to describe turbulent transport processes inside porous media by Y. Kuwata 
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[83]. D3Q27 Lattice Boltzmann model has been created for four different three 

dimensional fractals. In another research, a lattice Boltzmann model for two 

dimensional fractal Sierpinski gasket is introduced [84] to investigate the influences 

of porosity on fluid flows and the effect of thermal conductivity ratio of solid matrix 

to fluid on heat transfer in fractal porous medium. An improved Non-Dimensional 

Lattice Boltzmann Method [85] is developed to perform comparison studies between 

direct and porous medium model heat exchangers. D2Q9 Lattice Boltzmann model 

has built in these two researches. All these studies show that simple Lattice 

Boltzmann model can be used to solve the fluid flow problem for porous materials 

and fractals. Despite the popularity of the LBM in simulating fluid mechanics in 

complex porous media, this approach has some limitations. The LBM is restricted to 

simulate fluid-fluid multiphase flows and fluid-fluid interfaces [86] [87]; hence, this 

approach needs to be improved in order to investigate the complex fluid flow and heat 

transfer in a porous medium. 

In this thesis, porous materials are represented by fractals and analysed for relative 

tessellations. Due to the continuous structure and perfect thermal conductivity for the 

matrix, the LBM is not considered for the thermal analysis of porous materials. 

However, LBM can be applied in the future work in order to bring more accuracy to 

the analysis of fluid flow through the pores.  

 

2. 4 Solving the Porous Materials Problem 

Analytical solution, experimental solution and numerical solutions are the three main 

general solutions for solving problems. In this section, analytical methods and 

numerical methods for solving porous materials problem are focussed. In analytical 

methods, fractals are mainly used as a mathematical model in order to better describe 

porous materials. The thermodynamic orthogonality as a general framework in which 

to formulate constitutive laws in continuum mechanics of elastic/dissipative media 

been established for fifty years [11]. A relative continuous structure is constructed to 

analyse fractal problems. For numerical methods, both explicit and implicit models 
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for porous materials can be considered. Finite element method is focused on in order 

to investigate porous media in this section. 

 

2. 4. 1 Analytical Methods 

Mathematical modelling of porous materials as an analytical method usually needs to 

apply a simplified effective concept such as continuum construction. However, porous 

media with points and domains, which cannot be filled with the medium particles, 

cannot be considered as a continuous media directly in general cases [88][89]. Most 

of analytical solutions will first introduce fractals to represent porous media and then, 

select a relative continuum structure to do the analysis. Fractal with self-similar 

geometry as one of the most important development structures is worthwhile for the 

exploration of porous materials, which brings an alternative approach to the 

mathematics. Finally, porous media can be represented by a special continuous media 

through fractals [8][9]. The difference between the real fractal medium and fractional 

continuous medium model is analogous to the difference between the real atomic 

structure (fractal medium) and usual continuous models for that medium.  

Continuous structures have been chosen to analyse porous materials problems. 

Tarasov has tried to create continuous medium model for fractal media in [8], but he 

has focused on the properties of the fractal media. Again in 2015, he introduced 

continuum models with non-integer dimensional space to describe isotropic fractal 

materials [90], but still no physical solution was obtained. His research pays too much 

attention to the analysis on the fractal media but not with realistic continuous model 

for mechanical analysis. Other studies like [91][92][93][94] are based on the 

application of fractional derivatives. Similar to Tarasov, these theories are untested 

and unrealisable in the physical field, because fractional derivatives do not readily 

come from the governing physics.  

More realistic problems have been investigated. For example, Balankin has discussed 

the mapping of constitutive equations for mechanical behaviour into the fractal 

continuum framework by using Menger sponge as an example depicted in Figure 2.5 

[95]. Although this research confirms that the fractal problem can be solved with the 
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exploration of a relative continuum model, it does not provide any accurate theory for 

the continuous fractal model. A new concept of hole-fill maps, is provided by Davey 

to create a relative tessellation for a pre-fractal [48] which is used to represent one 

shape of porous material. This research has shown that the analysis of fractals can be 

achieved through the analysis of the corresponding continuous structure and has 

established the accuracy of the tessellated approach through comparing analytical and 

numerical solutions shown in Figure 2.6. This research provides an excellent 

approach for solving cellular structures, but it only considers simple Cantor dust as an 

example which should be extended. 

 

 

Figure 2.5. Mapping of essentially discontinuous Menger sponge into the fractal 

continuum   
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(a) temperature contours on 
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Figure 2.6. Contour temperature plots for pre-fractal and corresponding continuum 

[48] 
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2. 4. 2 Numerical Methods 

The finite element method (FEM) is the most common numerical method applied to 

complex geometries in different application areas [96]. FEM can be applied to explore 

complex elasticity, structural and thermal problems by using commercially developed 

packages such as Matlab, ABAQUS and ANSYS.  

The FEM began to be used to predict the response of structures involving porous 

materials in the 1990s [97]. Different characteristics of porous materials have been 

explored through FEM. Tensile behaviour of fibrous porous material is investigated 

using finite element analysis (FEA); an optimised FEA model is obtained from the 

calculated results' dependence on the quantity of numerical samples, mesh density and 

model size [98]. Lu investigated the compressive behaviour using a  FE model with 

ANSYS [99]. The microstructure of real material is reconstructed in the numerical 

model by extracting the primary features of bonded networks of the porous Si3N4 

ceramics, as shown in Figure 2.7. Although these research works illustrate the 

capability of FEM for solving porous materials problems, their FE models are always 

represented by the materials themselves in order to obtain the analytical solution. 

Another example is that of Cantor dust which was chosen to demonstrate the thermal 

behaviour in Davey’s study for the temperature distribution illustrated in Figure 2.6 

[48]. This research does thermal analysis on a relative continuum structure through 

finite element method using Mathcad. This research also provides a simple approach 

to represent cellular structures. 
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(a) Porous Si3N4 ceramics (b) The representative FE model 

Figure 2.7. Porous Si3N4 ceramics and its FE model [99] 

 

Other numerical methods with and without elements as in [100][101] (the Generalized 

Finite Element Method) [102] (a development of the Runge–Kutta discontinuous 

Galerkin methods) could, in principle, be applied to solve porous media problems. 

These methods performing a numerical analysis can be divided into two ways: i) the 

continuous tessellation which is then mapped on the fractal; ii) the porous media 

directly. All these approaches have the limitation of representing complex geometries. 
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Chapter 3.  

Paper 1: HEAT TRANSFER 

THROUGH FRACTAL-LIKE 

POROUS MEDIA: A 

TESSELLATED CONTINUUM 

APPROACH  

This chapter presents a tessellated continuum approach to demonstrate heat transfer 

analysis of porous materials. Hole-fill maps are introduced to build a relative 

tessellation for pre-fractal representation of the porous material. The tessellation is 

linked to the pre-fractal through the transport equation and partial differential 

equations. Thermal analysis on pre-fractals can be then performed through the 

analysis of the tessellation. 

Simple Cantor dust and rings are considered to test the hypothesis. The thermal 

behaviour of different fractals is obtained from the analytical solution. All these 

results provide a means of testing the accuracy of the tessellated approach. In addition, 

the most complex material property, thermal conductivity, is obtained from the 

distribution on a series of non-product fractals.  

The theory presented in this chapter follows that found in reference [48]. The hole-

filling maps were created by K. Davey. The tests were designed to validate the 

fundamental equations. The distributions of thermal conductivity and thermal 

behaviour were obtained by C. Jiang. The manuscript was written by K. Davey, with 

technical and editorial supervision and proofing provided by R. Prosser and C. Jiang. 

Published in Computers & Structures  
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� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Heat exchangers find widespread application in areas as diverse
as refrigeration, natural gas processing and engine cooling. The
increasing power densities encountered in these applications moti-
vates the development of improved heat exchanger design. The cel-
lular heat exchangers used to cool printed circuit boards provide an
example of this [1], exploiting a complex geometrical structure to
maximise the fluid contact area; many cellular heat exchangers
embody this geometry through metallic foam materials [2]. Metal-
lic foam heat exchangers utilise high conductivity materials such
as aluminium or copper alloys. They are recognised to be a good
option for enhancing heat transfer, since they possess both a large
fluid–solid contact surface area, and provide good enhancement of
fluid mixing [3]. These designs have been shown to be useful in
thermal management devices for high power density applications
[4].

Although cellular designs provide effective cooling, their analy-
sis is beset with difficulties arising principally from the complex
geometry involved. The transport of heat and mass through porous
structures has been the focus of extensive research for many
decades [5–9]. The research has led to approaches founded on
modifications to continuum equations which account for the
effects of complex geometry indirectly through variables such as
permeability and porosity. One of the founding studies by Darcy
revealed an empirical expression relating pressure drop across a
porous medium to average-flow velocity, material permeability
and viscosity. Suggestions for improvements to Darcy’s law (as it
is now know) have been made with ever increasing complexity,
from Brinkmann’s [10] relatively simply quadratic modification,
to more recent elaborate formulations [11]. It is unlikely that these
empirical approaches will be able to represent completely the
complex physics involved in the vast variety of porous geometrical
structures that exist, nor to meet increasing demand for greater
accuracy.

The idea that fractals could be applied to represent better
cellular geometry is more recent and was first suggested by
Mandelbrot in 1982 [12]. Transport approaches involving fractals
have been considered by Tarasov [13,14] and more recently by
Ostoja-Starzewski [15,16]. Their approach (like others [17–20]) is
founded on the application of fractional derivatives. These theories
are untested and physically unrealisable in many respects since
fractional derivatives do not readily arise from the governing phys-
ics. An alternative approach that avoids the need for fractional
derivatives is the indirect use of fractal quantities; such approaches
also have severe limitations akin to those arising with the employ-
ment of parameters in empirical expressions, so is not considered
further here [21,22].

The transport methodology presented in this paper is founded
on the existence of mappings between pre-fractals and the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2015.01.006&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2015.01.006
http://dx.doi.org/10.1016/j.compstruc.2015.01.006
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc
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continuum. These maps are termed hole-fill maps because they
close the holes in the fractal to create a tessellated continuum. In
view of the extraordinary complexity involved in fractal geometry,
it might be anticipated that hole-fill maps are equally difficult to
construct. However, a novel procedure is introduced here that
readily facilitates the construction of these maps. This involves
constructing a tessellated continuum in a manner that mirrors
the generation of a fractal. Thus, a fractal constructed through
the iteration of n contraction maps also has n maps for the iterated
construction of the tessellated continuum. The hole-fill maps can
then be formed either by means of function composition or—more
directly—by identifying corresponding elements of the fractal with
the tessellation. While the hole-fill maps allow the analysis of heat
transfer on the tessellated continuum, the precise form of the gov-
erning partial differential equations on the tessellation is not obvi-
ous. One of the novel contributions of this paper is to derive the
transport forms for both the fractal and the tessellated continuum,
and to relate both through the hole-fill maps; from these transport
equations, the governing partial differential equations may then be
obtained. Interestingly, the physics of heat transfer from fractal to
fluid manifests itself through the appearance of heat sources at the
edges of elements in the tessellation. These distribution terms can
readily be taken into account by integration of the governing par-
tial differential equations.

This paper establishes the equivalence of the new hole-filling
method with an earlier approach developed by the authors [23];
background material is presented in Section 2 to establish the idea
that analytical heat solutions on a continuum can be applied to
fractal dusts. Section 3 is concerned with hole-filling maps which
provide the formal link between pre-fractals, fractals and the tes-
sellated continua. A general transport theory is presented in Sec-
tion 4, thereby establishing the relationship between the
governing partial differential equations on a fractal to those on
the associated tessellation. A specific application to heat transfer
is given. The general theory is applied to heat transfer in Section 5,
where material properties on the tessellated continuum are estab-
lished for fractal dusts and rings. The non-linear hole-fill maps
involved in the creation of fractal rings manifest themselves in
inhomogeneous and anisotropic material properties. Thermal solu-
tions on fractal dusts and rings in 1-D and 2-D are presented in
Sections 6 and 7; analytical solutions are obtained for thermal
loads, through which heat sources arising from the fluid manifest
themselves as Dirac delta distributions at the edges of tessellated
elements in the continuum. New analytical solutions are estab-
lished. In Section 8, the spatial distribution of thermal conductivity
is calculated for the three non-product fractals. The paper ends
with a discussion and conclusions.
Fig. 1. Pre-fractals for the Cantor dust.
2. Background theory

The analysis outlined in Ref. [23] is concerned with the solution
of a partial differential equation @khk ¼ 0 on a pre-fractal domainbEk, where @k is a differential operator and hk represents the temper-
ature on the kth generation pre-fractal. The solution to this equa-
tion is obtained indirectly by first obtaining a continuum
analytical solution to @hðx; tÞ ¼ 0 (where @ is a differential operator
identical in form to @k), and second establishing a piecewise-linear
mapping xkðsÞ between the pre-fractal bEk and the continuum bE0.
The solution on bEk for a binary composite consisting of two isotro-
pic materials with extreme thermal properties was shown to be
hkðsÞ ¼ h � xkðsÞ. The solution strategy outlined in Ref. [23] is lim-
ited to product dusts so could not be applied to non-product frac-
tals such as the Sierpinski gasket, for example. To illustrate the
approach consider the embedding of a Cantor set [24] in a bar of
initial length ‘0. The required Cantor set is generated by the self-
similar contraction mappings

S1ðxÞ ¼
x
3

and S2ðxÞ ¼
2‘0 þ x

3
ð1Þ

where bE0 ¼ ½0; ‘0�.
The initial pre-fractals are shown in Fig. 1 and the null regions

contained in bE0 n bEk are loosely associated with bEk to avoid the

introduction of unnecessary notation. The support lk on bE0 is

lkðsÞ ¼
1 if s 2 bEk

0 if s 2 bE0 n bEk

8<: ð2Þ

and the piecewise-linear mapping xk : bE0 ! bE0 central to the theory
is

xkðsÞ ¼
3
2

� �k Z s

0
lkðrÞdr: ð5Þ

The mapping is depicted in Fig. 2 for k ¼ 1; 2; . . . ; 5, and is
denoted here to be a hole-fill map. It is evident that xk is continuous

and maps regions of bEk to corresponding regions in the continuumbE0, which is effectively subdivided into Nk ¼ 2k regions of length

N�1
k ‘0. The null regions associated with bEk are mapped to the corre-

sponding internal boundaries of bEo. It is important to note that
because xk is piecewise linear its derivative is piecewise constant,
i.e.

dxk

ds
ðsÞ ¼ 3

2

� �k

lkðsÞ ¼
‘k

‘0

� �D1�1

lkðsÞ ð6Þ

where ‘k is the length of an element of bEk and D1 is the Hausdorff
fractal dimension.

Although it is possible to invoke mappings whose derivatives
are not piecewise constant these can suffer the disadvantage of
changing the form of the continuum partial differential equation
@h ¼ 0 when contrasted against @khk ¼ 0. The transient heat equa-
tion on bEk is

qkck
@hk

@t
¼ Kk

@2hk

@s2 ð7Þ

where-as explained in [23]-on the basis of heat, mass and energy

considerations, thermal conductivity satisfies Kk ¼ K0ð‘k=‘0Þ1�D1 ,

density satisfies qk ¼ ð‘k‘
�1
0 Þ

D1�1
q0 and ck ¼ c0.

Under the assumption that hkðsÞ ¼ h � xkðsÞ, then

@hk

@s
¼ dxk

ds
@h
@x
¼ 3

2

� �k

lk
@h
@x
¼ ‘k

‘0

� �D1�1

lk
@h
@x

ð8Þ
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and

@2hk

@s2 ¼
d2xk

ds2

@h
@x
þ dxk

ds

� �2
@2h
@x2 ¼

‘k

‘0

� �D1�1

lk

" #2
@2h
@x2 ð9Þ

Substitution into Eq. (7) gives

qkck
@hk

@t
� Kk

@2hk

@s2 ¼
‘k

‘0

� �D1�1

lk q0c0
@h
@t
� K0

@2h
@x2

 !
¼ 0 ð10Þ

and it follows that h satisfying the continuum heat equation ensures
that hkðsÞ ¼ h � xkðsÞ is a solution to the heat equation on bEk.

It is important to appreciate that the theory is founded on the
existence of a continuous hole-fill map, which is recognised to be
singular. The map gives rise to the differential relationship
dVk ¼ ð‘k‘

�1
0 Þ

D1�1lkdVD, where dVD is a differential measure of vol-
ume on the pre-fractal and dVk ¼ Adxk.
3. Hole-fill maps

One of the principal difficulties with the approach outlined in
Section 2 (and [23]) is the determination of the hole-fill map. The
map is readily determinable for product dusts through the integra-
tion of the support. However, this approach cannot easily be
applied to non-product sets (e.g. the Sierpinski gasket/carpet), so
an alternative method involving two sets of maps, is presented in
this section.

The basic idea is to create a tessellation for the structure under
consideration using the exact same number of maps used in con-
struction of the original porous fractal. A pre-fractal formed by

the union bEk ¼ [SiðbEk�1Þ has a corresponding tessellation (should

this exist) produced by bT k ¼ [PiðbT k�1Þ. A hole-fill map identifies a

coordinate s 2 bEk � bE0 with a coordinate x 2 bT k ¼ bE0; should the

point s 2 bE0 n bEk, then x belongs to an internal edge of the tessella-

tion. The map x : bE0 ¼ bEk [ ðbE0 n bEkÞ ! bT k by design is continuous
and surjective (onto) but not injective (one-to-one).

Two approaches for the formation of the maps are considered:
(1) indirectly via the formation of correspondence points
xðiÞ ¼ xðsðiÞÞ, where the bracketed superscripts are used to index
the points; (2) directly via a function composition
Pi � Pj � � � � � Pk � S�1

k � � � � � S�1
j � S�1

i . Restricting attention to
piecewise linear maps is a convenience used to simplify the analy-
sis, but introduces additional internal boundaries and constrains
the shape of the tessellating maps. However, by assembling the
tessellating maps, each of the Pj can easily be formed in parts; this
observation allows the extension of the hole filling approach from
the 3 point tessellations of the Sierpinski gasket to (for example)
the 4 point tessellations of the Sierpinski carpet.
3.1. Cantor dust

3.1.1. Construction of maps by method of corresponding points
The two contraction maps for the dust are defined in Eq. (1).

One of the features of the Cantor dust is that the interval end points
in bEk are fixed points and are generated from the two-point setbES

0 ¼ f0; ‘0g; observe for example that

bES
1 ¼ S1

bES
0 [ S2

bES
0 ¼ 0;

‘0

3

� �
[ 2‘0

3
; ‘0

� �
ð11aÞ

and

bES
2 ¼ S1

bES
1 [ S2

bES
1 ¼ 0;

‘0

9
;
2‘0

9
;
‘0

3

� �
[ 2‘0

3
;
7‘0

9
;
8‘0

9
; ‘0

� �
ð11bÞ

It is apparent that bES
0 � bES

1 � bES
2 � � � �, i.e. the points in the sets are

fixed points.
The maps fP1; P2g that provide the tessellation/cover for bE0 are

P1ðxÞ ¼
x
2

and P2ðxÞ ¼
‘0 þ x

2
ð12Þ

and observe that, for bEP
0 ¼ f0; ‘0g,

bEP
1 ¼ P1

bEP
0 [ P2

bEP
0 ¼ 0;

‘0

2

� �
[ ‘0

2
; ‘0

� �
ð13aÞ

and bEP
2 ¼ P1

bEP
1 [ P2

bEP
1 ¼ 0;

‘0

4
;
‘0

4
;
‘0

2

� �
[ ‘0

2
;
3‘0

4
;
3‘0

4
; ‘0

� �
ð13bÞ

where it is again apparent that bEP
0 � bEP

1 � bEP
2 � � � �.

Note that by stitching together the holes in the original fractal,

the interior boundaries in the set bEP
k are counted twice (this can be

seen explicitly by xð1Þ1 ¼ xð2Þ1 in Eq. (13a), say). Thus, by counting
interior points twice, a one-to-one correspondence exists between

the set bES
k and bEP

k .
In view of the correspondence between bES

k and bEP
k the hole-fill-

ing map is readily obtained, i.e.

xkðsÞ ¼ xðiÞk þ
xðiþ1Þ

k � xðiÞk

sðiþ1Þ � sðiÞ

( )
s� sðiÞ
� �

¼ xðiÞk þ
0 if xðiþ1Þ

k ¼ xðiÞk

‘k
‘0

� 	D1�1
ðs� sðiÞÞ if xðiþ1Þ

k – xðiÞk

8<:
ð14Þ

where s 2 ½sðiÞ; sðiþ1Þ� and it is assumed here that bES
k � bEk is enumer-

ated from left to right, so that sðiþ1Þ � sðiÞ ¼ ‘k if xðiþ1Þ
k – xðiÞk .

Observe that the derivative dxk=ds is piecewise continuous with

finite discontinuities occurring at the points xðiÞk in the continuum;
any solution must be therefore considered in a weak sense, which
lends itself to an integral transport approach.

3.1.2. Construction of maps by function composition
The alternative function–composition approach makes use of

the inverse maps S�1
1 ðsÞ ¼ 3s and S�1

2 ðsÞ ¼ 3s� 2‘0. Thus, on bE1,

the hole-fill map is P1 � S�1
1 ðsÞ ¼ 2�13s, s 2 ½0;3�1‘0� and

P2 � S�1
2 ðsÞ ¼ �2�1‘0 þ 2�13s, s 2 ½3�12‘0; ‘0�. Likewise on bE2 the

hole-fill map is obtained by pre and post mapping operations on
P1 � S�1

1 and P2 � S�1
2 to give,

P1 �ðP1 �S�1
1 Þ�S�1

1

P1 �ðP2 �S�1
2 Þ�S�1

1

P2 �ðP1 �S�1
1 Þ�S�1

2

P2 �ðP2 �S�1
2 Þ�S�1

2

8>>>><>>>>: ¼

ð2�13Þ
2
s if s2½0;‘09�1�

�4�1‘0þð2�13Þ2s if s2½2‘09�1;3‘09�1�

�‘0þð2�13Þ2s if s2½6‘09�1;7‘09�1�

�4�15‘0þð2�13Þ2s if s2½8‘09�1;9‘09�1�

8>>>>>><>>>>>>:
ð15Þ
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and similarly for bE3 the four identified components of the maps in
(15) give rise to 8 components Pi � ðPn � Pm � S�1

m � S�1
n Þ � S�1

i ,
i 2 f1;2g.

Although this approach appears a little cumbersome it has the
distinct advantage that the maps can be generated directly as part
of the Fractal/Tessellation formation process.

3.2. Cantor product dust

Product fractals of the type bEk � bF k, where bEk and bF k are dust-
like fractals, are considered in reference [23]. Here, consideration

is given to the set bE2
k ¼ bEk � bEk where bEk is the Cantor dust pre-

fractal discussed in previous sections. Thus, bE2
0 ¼ ½0 ‘0�2 ¼

fðx; yÞ : 0 6 x 6 ‘0; 0 6 y 6 ‘0; g and bE2
k ¼W�kðbE0Þ �W�kðbE0Þ, with

WðbE0Þ ¼
S2

i¼1SiðbE0Þ and the superscript �k denotes the kth compo-

sition. Examples of bE2
k for k ¼ 1, 2, 3 are depicted in Fig. 3 along

with the corresponding tessellated continua. The approach
adopted in [23] gives the hole-fill map to be

ðr;sÞ# ðxkðrÞ;ykðsÞÞ¼
‘k

‘0

� �D1�1Z r

0
lkðr0Þdr0;

‘k

‘0

� �D1�1Z s

0
lkðs0Þds0

 !
ð16Þ

Interest here however is on the points ðxðiÞk ; y
ðjÞ
k Þ ¼ ðxkðrðiÞÞ; ykðsðjÞÞÞ,

which can be generated directly by identifying appropriate maps.
Note that the four contraction maps employed to create the dust
fractal are Sijðx; yÞ ¼ ðSiðxÞ; SjðyÞÞ where the Si are defined in Eq.
(1). Similarly, the corresponding maps used to cover bE2

0 are
Pijðx; yÞ ¼ ðPiðxÞ; PjðyÞÞ with Pi defined in Eq. (12). Observe thatbE2S

1 ¼
[
i;j

Sij
bE2S

0 ¼
[
i;j

Si
bES

0 � Sj
bES

0 ð17Þ

and similarly bE2P
1 ¼

S
i;jPij

bE2P
0 ¼

S
i;jPi
bEP

0 � Pj
bEP

0 and the hole-fill map
readily follows, i.e.

ðr; sÞ# xðiÞk þ
xðiþ1Þ

k � xðiÞk

rðiþ1Þ � rðiÞ
ðr � riÞ; yðjÞk þ

yðjþ1Þ
k � yðjÞk

sðjþ1Þ � sðjÞ
ðs� sðjÞÞ

 !
ð18Þ

where ðr; sÞ 2 ½rðiÞ; rðiþ1Þ� � ½sðjÞ; sðjþ1Þ�.
In terms of function composition the map of interest on bE1 is

P11 �S�1
11

P12 �S�1
12

P21 �S�1
21

P22 �S�1
22

8>>>><>>>>: ¼

ðP1 �S�1
1 ðrÞ;P1 �S�1

1 ðsÞÞ if r; s2 ½0;3�1‘0�
ðP1 �S�1

1 ðrÞ;P2 �S�1
2 ðsÞÞ if r2 ½0;3�1‘0�; s2 ½3�12‘0;‘0�

ðP2 �S�1
2 ðrÞ;P1 �S�1

1 ðsÞÞ if r2 ½3�12‘0;‘0�; s2 ½0;3�1‘0�
ðP2 �S�1

2 ðrÞ;P2 �S�1
2 ðsÞÞ if r; s2 ½3�12‘0;‘0�

8>>>><>>>>:
ð19Þ
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Fig. 3. Pre-fractals for the Cantor product
and similarly for bE2, Pij � ðPnm � S�1
nmÞ � S�1

ij gives rise to sixteen com-
ponents of the hole-fill map.

Observe further that the map gives rise to volume and area

differential relationships dVk ¼ ð‘k‘
�1
0 Þ

D2�2l2
kdVD and dAk ¼

ð‘k‘
�1
0 Þ

D1�1lkdAD with Hausdorff dimension D2 ¼ 2D1, where
D1 ¼ ln 2= ln 3, and where l2

k and lk are support functions.

3.3. Other fractals

Extensions of this approach to the Sierpinski gasket and carpet
have been developed to demonstrate the power of the method; the
mappings for these latter fractals are more involved algebraically
but add nothing substantially new to the observations already made.
Consequently, the mappings and tessellations associated with these
fractals relegated to an Appendix A at the end of this paper.

4. Transport equations for a fractal

When considering physical processes on a fractal structure,
direct derivation of the governing partial differential equations is
not straightforward; a simpler approach is to start with the inte-
gral forms governing transport, and then proceed to the strong
form.

4.1. Integral form of transport equation

The starting points are the continuum transport equations
applied to: (1) a stationary control volume Xs (within which bEk is
embedded) and (2) a stationary control volume Xr (within whichbT k is embedded):

d
dt

Z
Xs

qsws dVs þ
Z

Cs

qswsv s � ns dCs ¼ �
Z

Cs

Js � ns dCs þ
Z

Xs

qsbs dVs;

ð20Þ

d
dt

Z
Xr

qrwr dVr þ
Z

Cr

qrwrv r � nr dCr ¼ �
Z

Cr

Jr � nr dCr þ
Z

Xr

qrbr dVr;

ð21Þ

where q is density, v is the material velocity, J � n is a flux, b is a
source term. The k indicating the kth generation of pre-fractal has
been dropped for convenience.

Equation (20) can be related to Eq. (21) via the hole-fill map; geo-
metrical considerations give rise to Nanson’s differential relation-
ships: dVr ¼ jFjlkdVs, dCr ¼ jFjlC

k dCs � F�1, where Fij ¼ @xi=@sj,
dCs ¼ nsdCs and dCr ¼ nrdCr . Substitution of these into Eq. (21) gives
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dust and corresponding tessellation.
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Fig. 4. Rotated Cantor dust pre-fractals and corresponding continuum.
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d
dt

Z
Xs

qrwr jFjlk dVs þ
Z

Cs

qr jFjwrlkF�1 � v r � dCs

¼ �
Z

Cs

jF�X jlkF�1 � Jr � dCs þ
Z

X�S

qr jFjlkbr dVs ð22Þ

Recognising that a mass conserving map satisfies qrdVr ¼ qsdVs

it follows that qr jFj ¼ qs and matching of the two terms on the left
hand-side of Eqs. (20) and (22) is achieved with wr ¼ ws and
F�1 � vr ¼ v s. Similarly, the right-hand sides of Eqs. (20) and (22)
match with the definitions jFjF�1 � Jr ¼ Js and br ¼ bs.
4.2. Differential form of transport equation

By direct inspection, the associated partial differential equation
for the transport Eq. (21), say, is

qr
@wr

@t
þ qrv r � rwr ¼ �div rðJrÞ þ qrbr ; ð23Þ

To relate quantities appearing on the fractal to those appearing
on the tessellation, guidance is sought from the integral transport
forms. As an example, consider the problem of heat transfer. Set-
ting v s ¼ v r ¼ 0 gives rise to
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qr
@hr

@t
¼ div rðK r � rrhrÞ þ qrQ r ð24Þ

where K r is the conductivity tensor, hr is specific enthalpy and Qr is
a heat source. Now, from the scaling identified for the transport
equations, it follows that the conditions br ¼ bs, ur ¼ us,

qrjFj ¼ qs and jFjF�1 � Jr ¼ Js give rise to Qr ¼ Qs, hr ¼ hs,

qr ¼ jFj
�1qs and _qr ¼ jFj�1F � _qs, where the heat flux

_qs ¼ �K s � rshs. From the observations cr@hr=@t ¼ cs@hs=@t and

hs ¼ hðxðsÞ; tÞ, it follows that rshs ¼ FT � rrhr , which leads to
_qr ¼ �K r � rrTr , where K r ¼ jFj�1FKsF

T .
Fig. 6. Temperature plot for a finite bar fixed bar with fixed wall temperatures for
_Q0‘

2
0

K0Dh0
¼ 5, _Q1 ¼ 0 and

_Q2 ‘
2
0

K0Dh0
¼ 0:5 and _Q0 ¼ _Q1 ¼ _Q2 with

_Q0‘
2
0

K0Dh0
¼ 1.
5. Thermal transport on Cantor dusts

It is instructive to re-examine the examples presented in Sec-
tion 2 in the light of the new theory.

The hole-fill map for the 1-D Cantor dust is xðsÞ ¼ ð‘k‘
�1
0 Þ

D1�1R s
0 lkðs0Þds0 and the associated deformation gradient tensor is sim-

ply a scalar, i.e. jFj ¼ F ¼ ð‘k‘
�1
0 Þ

D1�1
; the support lk is not included

as calculations are performed on the continuum domain Xr , for
which lk ¼ 1 almost everywhere. It immediately follows that

qr ¼ jFj
�1qs ¼ ð‘k‘

�1
0 Þ

1�D1qs and Kr ¼ jFj�1FKsF
T ¼ ð‘k‘

�1
0 Þ

D1�1
Ks,

where Ks and Kr in this case are scalars. The relationships between
densities and conductivities are exactly those stipulated in
Section 2.

The isotropic product fractal dust with xðrÞ ¼ ð‘k‘
�1
0 Þ

D1�1R r
0 lkðr0Þdr0 and yðsÞ ¼ ð‘k‘

�1
0 Þ

D1�1 R s
0 lkðs0Þds0 gives rise to

jFj ¼ ð‘k‘
�1
0 Þ

2D1�2
and

K r ¼ jFj�1FK sF
T

¼ jFj�1 ð‘k=‘0ÞD1�1 0

0 ð‘k=‘0ÞD1�1

" #
Ks 0
0 Ks


 � ð‘k=‘0ÞD1�1 0

0 ð‘k=‘0ÞD1�1

" #

¼
Ks 0
0 Ks


 �
ð25Þ

which establishes that K r ¼ K s in complete agreement with the
results of reference [23].

The simplicity of these relationships is a consequence of the
piecewise linear maps being employed as well as their homogene-
ity in this case. The same simplicity is not found, however, for cur-
vilinear (or other intrinsically non-linear) systems.
Fig. 5. Temperature plot for a finite bar fixed bar with fixed wall temperatures for
_Q0‘

2
0

K0Dh0
¼ 5 & _Q1 ¼ 0 and _Q0 ¼ _Q1 with

_Q0‘
2
0

K0DT0
¼ 1.
5.1. Spherical fractal forms

Differential expressions arising from a curvilinear system gives
rise to non-linear hole-fill maps. As an example, consider the hole
filling maps that take as their input the circular swept Cantor dust
shown in Fig. 1. The associated explicit hole-filling maps the rota-
tion of the Cantor dust appearing in Fig. 1 through an angle of 2p is
considered. The initial pre-fractals are depicted in Fig. 4(a) and the
Hausdorff dimension D2 of the construction is 1þ D1, where
D1 ¼ ln 2= ln 3. To ensure that mass is conserved the following
identity must hold:

dMk ¼ 2pqklkðsÞsds ¼ 2pq0rkdrk ¼ dM0 ð26Þ

Integrating this provides

r2
kðsÞ ¼

qk

q0

Z s

0
2lkðs0Þs0 ds0 ð27Þ

Which, setting s ¼ ‘0 gives ‘2
0 ¼ qkq�1

0

R ‘0
0 2lks0 ds0. The radial

symmetry implies lkð‘0 � sÞ ¼ lkðsÞ, soZ ‘0

0
2lkðs0Þs0 ds0 ¼

Z ‘0

0
2lkð‘0 � s0Þð‘0 � s0Þds0

¼ ‘0

Z ‘0

0
2lkðs0Þds0 �

Z ‘0

0
2lkðs0Þs0 ds0 ð28Þ

which yields
R ‘0

0 2lks0 ds0 ¼ ‘0
R ‘0

0 lk ds0 ¼ ‘2
0ð‘k=‘0Þ1�D1 and it imme-

diately follows that the required continuum map is
Fig. 7. Temperature plot for a finite bar fixed bar with fixed wall temperatures for
2h0‘

2
0=wK0 ¼ 1 and ðh‘ � h1Þðh0 � h1Þ ¼ 0.



Fig. 8. Temperature plot for per-fractal rings in steady state with heat sources for
different values of k.
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rkðsÞ ¼
‘k

‘0

� �D1�1
2
Z s

0
2lkðs0Þs0 ds0


 �1=2

ð29Þ

where density is qk ¼ ð‘k‘
�1
0 Þ

D1�1
q0 as previously derived for the

dust embedded in a 1-D continuum.
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It is evident from the analysis above that qr ¼ ð‘k‘
�1
0 Þ

1�D1qs

implies jFj ¼ ð‘k‘
�1
0 Þ

D1�1
. Given that x1 ¼ r cos /, x2 ¼ r sin /,

s1 ¼ s cos / and s2 ¼ s sin /, it follows that

F ¼
@x1
@s1

@x1
@s2

@x2
@s1

@x2
@s2

" #
¼

r0 cos2 /þ r
s

� �
sin2 / r0 � r

s

� �� �
sin / cos /

r0 � r
s

� �� �
sin / cos / r0 sin2 /þ r

s

� �
cos2 /

" #
ð30Þ

where r0 ¼ dr=ds. Following some algebraic manipulation, the Jaco-
bean reduces to jFj ¼ ðr=sÞr0, which is the expected result since

direct differentiation of Eq. (29) gives ðr=sÞr0 ¼ ð‘k‘
�1
0 Þ

D1�1
.

A somewhat more straightforward expression for F is obtained
when the polar coordinate system is applied directly to give

F ¼

@r
@s

1
s
@r
@/

r
@/
@s

r
s
@/
@/

2664
3775 ¼ r0 0

0 r
s

" #
: ð31Þ

The conductivity tensor for the continuum is

K r ¼ jFj�1FK sF
T ¼ jFj�1K sF

2¼ jFj�1K s
r02 0
0 r

s

� �2

" #
¼K s

r0s
r

� �
0

0 r0s
r

� ��1

" #
ð32Þ

which yields Kr ¼ Ksð‘k‘
�1
0 Þ

D1�1ðs=rÞ2 and Kh ¼ Ksð‘k‘
�1
0 Þ

1�D1 ðr=sÞ2.

The key lesson here is that an inhomogeneous, anisotropic and
piecewise continuous material conductivity in the tessellated con-
tinuum emerges as a consequence of the non-linear map (29).
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(b) Conductivity ( r sK K ) on k̂T

(c) Conductivity ( r sK K ) on k̂T =4

=3

(a) Conductivity ( r sK K ) on k̂T =2

Fig. 10. Thermal conductivity (Kr=Ks) distribution on tessellation for pre-fractals of
the Sierpinski gasket.
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6. Analytical solutions for Cantor dusts

This section focuses on solutions for the Cantor dust depicted on

Fig. 1, whose continuum model is a bar bE0 of length ‘0 with thermal
conductivity K0 subject to various types of thermal loading but
constrained by temperatures at x ¼ 0 and x ¼ ‘0 of h0 and h‘,
respectively. The fractal/pre-fractal can be thermally loaded in a
variety of ways, with varying degrees of complexity. Setting

Kr ¼ K0 ¼ ð‘k‘
�1
0 Þ

D1�1
Ks (see Section 5.1) has the effect of producing

different values for Ks, depending on whichever pre-fractal bEk the
analysis is being performed.

Consider a model problem, in which a fluid is assumed to flow
through the voids of a pre-fractal Cantor dust model. Elements in
the fractal are assumed to contain a uniformly distributed internal
heat source, defined such the total load per unit volume _Q0 appears
uniform on the tessellated continuum. An alternative possibility
also considered is fluid flowing over elements of width w to pro-
vide thermal loads through convective heat transfer, in which the
bar is subjected to a heat flux of the form q0 ¼ h0ðh� h1Þ, where
h0 is a (constant) heat transfer coefficient, and h1 is viewed as
the ambient temperature of the of the surrounding medium.

Additional thermal loading arising from the fluid flowing
through the voids is assumed to manifest as a set of source terms

of the form ð2k � 1Þ
�1 _Q 1dð‘�1

0 x� 2�kiÞ, 1 6 i 6 2k � 1, where 2k � 1

is the number of holes associated with bEk and d is the Dirac delta
distribution function.

If the fluid is viewed as a perfect conductor, the edge tempera-
tures of any two adjacent solid components are common. A wider
variety of thermal loading problems can be analysed by allowing
the model fluid itself to support a temperature gradient, wherein
the temperature gradient induced by conductive heat transfer
would manifest itself as discontinuous behaviour across adjacent
element edges. Such behaviour can be replicated by the inclusion
of source terms of the form ð2k � 1Þ

�1 _Q2‘0d
0ð‘�1

0 x� 2�kiÞ, where d0

represents the x derivative of the Dirac delta distribution.

6.1. 1-D bar subject to uniform heat loading

The governing differential equation applicable to the tessella-
tion bT 1 incorporating the heat sources alluded to above is
K0h

100 þ _Q0 � _Q1dðx=‘0 � 1=2Þ � _Q2‘0d
0ðx=‘0 � 1=2Þ ¼ 0, which can

be integrated to give

h1ðxÞ ¼ �
_Q 0

2K0
x2 þ

_Q 1‘
2
0

K0

x
‘0
� 1

2

� �
þ

_Q 2‘
2
0

K0
H

x
‘0
� 1

2

� �
þ h‘ � h0

‘0
þ

_Q0‘0

2K0
�

_Q 1‘0

2K0
�

_Q 2‘0

K0

 !
xþ h0 ð33Þ

where H is the Heaviside step function or more generally the gov-
erning equation on the tessellation bT k is

K0h
k00 þ _Q 0 �

_Q 1

2k � 1

X2k�1

i¼1

d
x
‘0
� i

2k

� �
�

_Q 2‘0

2k � 1

X2k�1

i¼1

d0
x
‘0
� i

2k

� �
¼ 0

ð34Þ
with solution

hk ¼ �
_Q 0

2K0
x2 þ

_Q 1‘
2
0

K0ð2k � 1Þ

X2k�1

i¼1

x
‘0
� i

2k

��

þ
_Q2‘

2
0

K0ð2k � 1Þ

X2k�1

i¼1

H
x
‘0
� i

2k

� �

þ h‘ � h0

‘0
þ

_Q 0‘0

2K0
�

_Q 1‘0

2K0
þ

_Q 2‘0

K0

" #
xþ h0 ð35Þ
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Fig. 11. Thermal conductivity ðKr=KsÞ distribution on tessellation for pre-fractals of the Sierpinski carpet.
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Fig. 12. Thermal conductivity (Kr=Ks) distribution on tessellation of a finger-like porous fractal.
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Fig. 13. Initial Points and domain for the Sierpinski Gasket.
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where f	g is a Macaulay bracket, which returns the contents if
positive.

The solution hk ¼ hk � xk with hk given by Eq. (35) with _Q 2 ¼ 0 is
presented in Fig. 5 for two different values of _Q0 and _Q1. Observe
from Fig. 5 that all temperatures are continuous and are set at con-
stant values across holes despite not being truly representative of
the temperature there. Moreover, note the effect of the heat sink
_Q 1 which has the effect of producing different temperature pla-

teaus when non-zero. It is apparent for this case however, that
any change in plateau temperature reduces with increase in k as
a consequence of finer adjustments being made to the pre-fractals.
Temperature of the case _Q 2 – 0 are presented in Fig. 6, where dis-
continuous behaviour is now apparent at holes. In the case where
_Q 1 ¼ 0 the temperature of the largest plateau is invariant for eachbEk although slight changes appear at other plateaus. For _Q 1 – 0 (as

in Fig. 5) large changes in plateau temperatures are apparent along
with temperature discontinuities as a consequence of _Q 2 – 0.

6.2. 1-D bar subject to convective heat loading

In this case and with regards to bE1 for example, the governing
equation for the temperature h1 on bT 1 is thus given by

K0h
100 þ 2h0

w
ðh1 � h1Þ � _Q 1d

x
‘0
� 1

2

� �
� _Q 2‘0d

0 x
‘0
� 1

2

� �
¼ 0 ð36Þ
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where w is width.
Eq. (36) can be solved by assuming a solution of the form

hG ¼ hcf þ hP þ h1, where the complementary function

hcf ðxÞ ¼ a coshðaxÞ þ b sinhðaxÞ with a ¼ ð2h0=wK0Þ
1
2, and where a

and b are integration constants. The particular integral hP is
obtained by setting hP ¼ Zeax, which on substitution into Eq. (36)
and integrating yields

Z0 ¼
_Q1‘0

K0
e

a‘0
2 e�2axH

x
‘0
� 1

2

� �
þ

_Q2‘0

K0
e�axd

x
‘0
� 1

2

� �
� a‘0e

a‘0
2 e�2axH

x
‘0
� 1

2

� �� �
: ð37Þ

One further integration and multiplication with eax gives

hP ¼ �
_Q 1‘0

K0a
sinh a

‘0

2
�x

� �� �
þ

_Q 2‘
2
0

K0
cosh a

‘0

2
�x

� �� �� �" #
H

x
‘0
�1

2

� �
:

ð38Þ

Extending the analysis to bT k provides

K0h
k00 þ 2h0

w
ðh1 � hkÞ�

_Q 1

2k � 1

X2k�1

i¼1

d
x
‘0
� i

2k

� �
�

_Q 2‘0

2k � 1

X2k�1

i¼1

d0
x
‘0
� i

2k

� �
¼ 0

ð39Þ

Which, following a similar procedure as above gives

hkðxÞ ¼ h0 � h1ð Þ coshðaxÞ þ b sinhðaxÞ

�
_Q 1‘0

K0að2k � 1Þ

X2k�1

i¼1

sinh a
i‘0

2
� x

� �� �
H

x
‘0
� i

2k

� �

þ
_Q 2‘

2
0

K0 2k � 1
� 	 X2k�1

i¼1

cosh a
i‘0

2k
� x

� �� �
H

x
‘0
� i

2k

� � !
þ T1; ð40Þ

where b is determined on setting hkð‘0Þ ¼ h‘.
Fig. 7 gives the temperature hk ¼ hk � xk with hk given by Eq. (40)

for small values of k. Fixed end temperatures are applied and (for
demonstration purposes) 2h0‘

2
0=wK0 ¼ 1 and ðhk

‘ � h1Þðh0�
h1Þ ¼ 0. The temperatures are continuous in the case of _Q 2 ¼ 0
but discontinuous when _Q 2 – 0.
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Fig. 15. Pre-fractals for the Sierpinski Gasket.
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7. Analytical solutions for circular dusts

In the foregoing analyses, the mappings between the contin-
uum and fractal have been relatively straightforward to identify,
and essentially transparent in their application. In the swept ring
Cantor set, the coordinate system itself impacts on the mapping
and, through this, the fractal description itself. Consider the gov-
erning steady-state partial differential equation on a cylindrical
continuum;

div rðqÞ ¼
1
r

@

@r
ðrqrÞ þ

@

@h
ðq/Þ

� �
¼ 0; ð41Þ

where q ¼ �K r � rrhr , and rrhr ¼ ð@h=@rÞer þ r�1ð@h=@/Þe/.

The axi-symmetric problem reduces to dðs2r�1ðdhr=drÞÞ=dr ¼ 0

and integrates readily to give ðdhr=drÞ ¼ Ars�2, where A is an inte-
gration constant. The absence of piecewise linearity presents a dif-
ficulty through the appearance of s in the differential equation, and
to proceed further requires the inverse map for rðsÞ.

The map from the cylindrical pre-fractal to the continuum is
obtained in a similar way to Eq. (29), and takes the form

r2 � a2 ¼ ð‘k=‘0ÞD1�1 R s
a 2lkðs0Þs0 ds0, where a is the internal radius.

Applying this map to an annular element of the pre-fractal with

inner radius sj gives r2 � r2
j ¼ ð‘k=‘0ÞD1�1ðs2 � s2

j Þ and the governing
differential equation integrates to give
hr ¼ A
1
2

‘k

‘0

� �D1�1

ln
‘k

‘0

� �1�D1

ðr2 � r2
j Þ þ s2

j

 !
þ Bj ð42Þ

for rj 6 r 6 rjþ1; the integration constants A and Bj are determined
by boundary and temperature compatibility conditions.

It is readily confirmed that the solution to the governing
equation dðsðdhs=dsÞÞ=ds ¼ 0 is given by hs ¼ hr � r, since

sðdhs=dsÞ ¼ sr0ðdhr=drÞ ¼ Ar0r=s but ðr=sÞr0 ¼ ð‘k‘
�1
0 Þ

D1�1
, so it imme-

diately follows that d sðdhs=dsÞð Þ=ds ¼ d Að‘k‘
�1
0 Þ

D1�1
� 	

=ds ¼ 0.

Heat sources and sinks can in principle be incorporated into the
governing steady-state equations; on bT 1 for example, the internal
sources and edge loadings described in preceding sections can be
included:

‘k

‘0

� �1�D1 1
r

d
dr

s2

r
dhr

dr

� �
þ

_Q 0

Ks
�

_Q 1

Ks
d

r
r1
� 1

� �
¼ 0; ð43Þ

and integrated once to give

‘k

‘0

� �1�D1 dhr

dr
þ

_Q 0

2Ks

r3

s2 �
_Q 1r1

Ks

r2

s2 H
r
r1
� 1

� �
¼ A

r
s2 ð44Þ

The second integration is rendered more difficult through the
presence of the s-coordinate and thus involves the inverse map
mentioned above:



0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Fig. 16. Corresponding tessellated domains for the Sierpinski Gasket.
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The governing equation on the tessellation bT k is

‘k

‘0

� �1�D1 1
r

d
dr

s2

r
dhr
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þ

_Q 0

Ks
�

_Q 1

Ks 2k � 1
� 	X2k�1

i¼1

d
r
ri
� 1

� �
¼ 0 ð46Þ

whose solution mirrors that on bT 1. Corresponding temperature
plots are depicted in Fig. 8 for difference magnitudes of heat source.
8. Material properties in 2-D

On a tessellated continuum the material conductivity satisfies
the relationship K r ¼ jFj�1FK sF

T as discussed in Section 5. The
behaviour of a thermal conductivity is thus well defined but can
be inhomogeneous, anisotropic and discontinuous. These proper-
ties are apparent with the ring fractal but are also evident in the
non-product fractals presented in Appendix A. Fig. 9 for example
shows the distribution of the point-wise maximum thermal con-
ductivity in the form of contour plots on tessellated continua for
pre-fractals of the Sierpinski gasket. Threefold rotational symmetry
is apparent in the plots, as is the increasing complexity as the level
of detail is increased on the pre-fractals. The results are also
displayed in 3-D in Fig. 10 where the piecewise continuous behav-
iour of the conductivity is readily visible.

Similar results pertaining to the Sierpinski carpet are presented
in Fig. 11, where the excessive shear present in the maps is
revealed in the distribution of the thermal conductivity. Likewise,
results for a finger-like fractal depicted in Fig. 12 reveal similar
intricate spatial variation in the thermal conductivity. All the plots
reveal how the geometric complexity present in the pre-fractals
manifests in the material properties on the tessellated continuum.

The ability to determine thermal conductivity on a tessella-
tion—which can form the basis for a finite element mesh—opens
up the approach to numerical analysis. The incorporation of
element-edge sources/sinks in a standard continuous Galerkin
finite element method corresponds to the situation where Dirac-
delta terms are included in the governing differential equations.
Moreover, the discontinuous Galerkin finite element method facil-
itates inclusion of asymmetric element-edge sources/sinks, which
is equivalent to the inclusion of derivative-type Dirac-delta terms
in the governing differential equations as discussed above.
9. Conclusions

This paper tests the hypothesis that heat transfer analysis on
fractals/pre-fractals can be performed on an associated tessellated
continuum. The results presented in Sections 6–8 confirm that, for
the simple fractals considered, it is feasible to perform heat trans-
fer analysis on a tessellated continuum. This is achieved by two
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Fig. 17. Pre-fractals for the Sierpinski carpet along with corresponding tessellated domains.
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distinct techniques: the hole-fill maps themselves and—equally
important—the representation of the governing physics via integral
forms of the transport equations. The transport equations provide a
description of the underlying physics in the weak sense, and hence
are particularly suitable for analysis on inherently discontinuous
pre-fractals. The generality of the approach provides its key attrac-
tiveness but, as discussed in Section 8, the simplifications arising
from the transfer of the analysis to the continuum are somewhat
offset by the complexity arising in the material property spatial
distribution.

In establishing the validity of the approach for the types of frac-
tals considered, a number of advances have been made, which are:

	 A procedure similar to the generation process for a fractal has
been established for the generation of the associated tessellated
continuum.
	 Two procedures have been presented for formulation of a hole-

fill map between a pre-fractal and its associated tessellated
continuum.
	 Transport equations linking transport phenomenon on a fractal

to a tessellation has been established.
	 Partial differential equations have been defined on the

tessellated continuum and along with material properties by
application of the transport theory.
	 Analytical temperature solutions on fractal dusts and rings have

been established for a range of thermal loading conditions prin-
cipally involving heat sinks and sources.
	 Complex material distributions have been presented on tessel-
lated continua for a selection of non-product fractals.

Appendix A. Examples of hole-fill maps

A.1. Sierpinski gasket

Things are somewhat more involved with non-product sets and
the Sierpinski gasket is an example where extra points are required
to facilitate the construction of a piecewise linear hole-filling map.
Depicted in Fig. 13 is an equilateral triangle with identifiable cor-
ner and mid-points; the domain and points are denoted respec-

tively bE0 and bES
0, where

bES
0¼ ð0;0Þ; ‘0

2
;0

� �
; ‘0;0ð Þ; 3
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ffiffiffi
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2
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 !
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ffiffiffi
3
p

4
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 !( )
ð47Þ

In forming bE1 or more notably bES
1 three maps are employed, i.e.

S1ðx; yÞ ¼
x
2
;
y
2

� 	
; S2ðx; yÞ ¼
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2
þ x

2
;
y
2
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and S3ðx; yÞ
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4
þ y

2

 !
ð48Þ
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Similarly, three corresponding cover maps are

P1ðx; yÞ ¼
P11ðx; yÞ if

ffiffiffi
3
p

y 6 x

P12ðx; yÞ if
ffiffiffi
3
p

y > x

(
;
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3
p

y > ‘0 � x

(
and

P3ðx; yÞ ¼
P31ðx; yÞ if 2x 6 ‘0

P32ðx; yÞ if 2x > ‘0

(
ð49Þ
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The six maps in Eq. (49) send the triangular shapes identified in
Fig. 14 to the tessellation identified in the same figure. In forming
maps by the composition approach it is possible to indentify how
individual components compose without explicit reference to the
inequalities identified in (49). For example (with reference to
Fig. 14) in forming bT 2 (say) the application P1 is achieved through
compositions P11 � P11, P11 � P21, P11 � P22 and P12 � P12 P12 � P31

P12 � P32 and similarly on application of P2 and P3.
The pre-fractal and the corresponding continuum domain pro-

duced by the maps in Eq. (48) and (49) are depicted in Figs. 15
and 16, respectively. Observe from Figs. 15 and 16 that the bound-
aries of the triangles are not fractal and dAk ¼ dAD. The hole-fill
maps in this case are much more involved and evidently
inhomogeneous.

A.2. Sierpinski carpet

Similarly for the carpet the contraction maps are of the form:

Siðx; yÞ ¼ ðxi; yiÞ þ
x
3
;
y
3

� 	
ð50Þ

where ðxi; yiÞ refers to the coordinates of the bottom left corner
points for i ¼ 1; . . . ; 8.

Four of the continuum maps are identical to those defined in
(50) apart from

P2ðx; yÞ ¼
P21ðx; yÞ if y P 2x and 2x 6 1
P22ðx; yÞ if y P 2ð1� xÞ and 2x > 1
P23ðx; yÞ otherwise

8><>:
P4ðx; yÞ ¼

P41ðx; yÞ if 2y 6 x and 2y 6 1
P42ðx; yÞ if 2y P ð2� xÞ and 2y > 1
P43ðx; yÞ otherwise

8><>:
P5ðx; yÞ ¼

P51ðx; yÞ if 2y 6 1� x and 2y 6 1
P52ðx; yÞ if 2y P 1� x and 2y > 1
P53ðx; yÞ otherwise

8><>:
P7ðx; yÞ ¼

P71ðx; yÞ if y 6 2� 2x and 2x 6 1
P72ðx; yÞ if y 6 �1þ 2x and 2x > 1
P73ðx; yÞ otherwise

8><>: ð51Þ
where
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1
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þ x

3
;
1
3
þ y

3

� �
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1
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þ x

3
;
1
3
� x
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þ y

3

� �
;
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x
2
;
1
3
þ y

3

� �

P41ðx;yÞ¼
1
3
þ x

3
;
1
3
þ y

3

� �
; P42ðx;yÞ¼

1
3
þ x

3
� y

3
;
1
3
þ y

3

� �
;

P43ðx;yÞ¼
x
2
;
1
3
þ y

3

� �

P51ðx;yÞ¼
2
3
þ x

3
� y

3
;
1
3
þ y

3

� �
; P52ðx;yÞ¼

1
3
þ x

3
þ y

3
;
1
3
þ y

3

� �
;

P53ðx;yÞ¼
1
2
þ x

2
;
1
3
þ y

3

� �

P71ðx;yÞ¼
1
3
þ x

3
;
2
3
� x

3
þ y

3

� �
; P72ðx;yÞ¼

1
3
þ x

3
;
1
3
� x

3
þ y

3

� �
;

P73ðx;yÞ¼
1
3
þ x

3
;
1
2
þ y

2

� �

ð52Þ

It is apparent from the definition of the continuum maps that
the four maps in Eq. (51) are constructed with three linear parts.
The effect of the maps is illustrated in Fig. 17, where it is apparent
that significant element shearing is necessary to hole-fill and cre-
ate a continuum. As with the Sierpinski Gasket the boundary is
not Fractal and dAk ¼ dAD.
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Chapter 4.  

Paper 2: TESSELLATED 

CONTINUUM MECHANICS: A 

GALERKIN FINITE ELEMENT 

METHOD  

In this chapter, hole-fill concept is applied to create relative tessellations for pre-

fractals. Transport theory and partial differential equations are applied to connect the 

pre-fractal to its corresponding tessellated construction. Thus, the material properties 

for the tessellations can be obtained. Weighted transport equations are introduced in 

order to use the Galerkin finite element method on the tessellations. Simple Cantor 

dust and several non-product fractals are all considered to test the approach. 

Mapped temperature distributions on pre-fractals are obtained from the temperature 

distributions on the corresponding tessellations. Mesh refinement is achieved through 

increasing the number of tiles on the original set of the pre-fractal. Despite of a small 

modelling error, all the results show high accuracy for the tessellated approach.  

The hole-filling maps were improved upon by C. Jiang who also generated the 

thermal-conductivity distributions presented here. The tests performed were designed 

by K. Davey and C. Jiang. The thermal responses portrayed in the chapter were 

obtained by C. Jiang. The manuscript was written by K. Davey and C. Jiang, with 

technical and editorial supervision and proofing provided by R. Prosser. 
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This paper tests the hypothesis that the tessellation used in tessellated continuum mechanics can form a
mesh in a continuous Galerkin finite element method. Although the tessellation is not unique, neither is it
arbitrary, and its construction imposes constraints on any numerical analysis. A distinctive feature of the
tessellation is that it can possess highly distorted elements yet—as a consequence of associated aniso-
tropy in material properties—can still return accurate results.
The numerical procedure is tested on classical fractal porous geometries to demonstrate the potential

of the method, and also illustrate the capability for analysis of disparate porous materials on continua.
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1. Introduction

Porous materials are widespread in nature and can take on var-
ious forms; examples include biological tissue such as wood, cork
and bone. Rocks and soils also often contain natural porous struc-
tures that may act as gas and oil reservoirs; as such, these struc-
tures are of particular interest to petrochemical industry, where
there is currently much activity driving developments in fracking.
Porous materials are also studied in diverse branches of modern
engineering such as impact mechanics [1], fluid mechanics [2],
poromechanics [3] and Printed Circuit Board (PCB) heat exchanger
design [4]. This latter application exploits the porous structure to
maximise the fluid contact area, and many porous heat exchangers
embody this geometry through high thermal conductivity metallic
foams such as copper and aluminium [5]. These are recognised to
be an excellent choice for enhancing heat transfer, since they pos-
sess a large fluid-solid contact surface area, high thermal conduc-
tivities and provide good enhancement of fluid mixing [6]. Heat
transfer provides a strong driver for the work described in this
paper.

Although heat exchanger performance is enhanced by exploit-
ing porous material, the heat transfer analysis itself faces serious
difficulties arising principally from the complex geometry
involved. The transport of heat and mass through porous media
has received much attention for many decades in a wide variety
of fields [7,8]; such approaches are indirect in that a continuum
approach is retained, with the influence of the cellular structure
relegated to coarse grained parameters such as permeability and
porosity. Clearly such models are unable to capture any effects
arising from refined changes in cellular designs. To incorporate
more refined structures, Lattice Boltzmann Methods have been
proposed as a possible way around the purely classical continuum
description; Yan Su et al. [9] for example has performed compar-
ison studies between direct and porous medium model heat
exchangers. The coupling of discrete lattice models—which
account for interactions between voids or particles via local poten-
tials—with continuum models (e.g. quasi-continuum models [10])
is an area of active research [11]. The idea underpinning these
types of approaches is the establishment of an appropriate contin-
uum representation, where the material-constitutive response is
informed by the lattice model. Although such approaches advance
the analysis they are evidently restricted by the extraordinarily
complex geometries involved, and are therefore unlikely to capture
the complex flow and heat transfer physics in practical porous
medium heat exchanger designs.

An alternative approach is to utilise the mathematics of fractal
geometry [12] and/or involve extensions to traditional calculus by
involving fractional derivatives or other such mathematical
devices. Transport approaches involving fractals and fractional
derivatives have been considered by Tarasov [13,14] and Ostoja-
Starzewski [15,16]. Their approaches are untested and physically
unrealisable, since they are founded upon transport forms that
do not readily arise from the underpinning physics. More recently,
a fractional differential equation has been investigated by Salva-
tore et al. [17] with the aim of establishing a more definitive con-
nection between fractional calculus and fractal geometry.
Similarly, Gianluca et al. [18] investigated fractal-porous materials
founded on classical fractals, including the Cantor dust, Sierpinski
carpet and the Sierpinski gasket using a fractional-order transport

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2016.07.003&domain=pdf
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equation. It is transparent from the literature that most theories
involving fractional derivatives have limited physical basis and
offer little advance on classical parameter-continuum theory.

The approach adopted in this paper has at its foundation a clas-
sical control volume representation of the underlying physics.
Transport equations in an integral (Euler) form are used in the
analysis since integration—if correctly defined—readily caters for
the discontinuous physics associated with fractals. The transport
methodology is based on the existence of maps linking pre-
fractals with the continuum which, in turn, is founded on the con-
tinuum hypothesis. These maps are named hole-fillmaps due to the
role they play in closing the pores in any fractal cellular represen-
tation to produce a tessellated continuum. We term the whole pro-
cedure of hole-fill, tessellated continua and subsequent analysis
with transport equations as tessellated continuum mechanics.

Although the task of establishing hole-fill maps appears com-
plex, a novel procedure introduced in Ref. [19] (and improved upon
here) provides a straightforward route to obtain such construc-
tions. The tessellated continuum—which forms an associated mesh
in a Galerkin finite element analysis—is constructed in a process
that essentially mirrors the fractal construction process itself. Thus,
a fractal constructed through the iteration of n contraction maps
also has nmaps for the iterated construction of the tessellated con-
tinuum. The hole-fill maps can be constructed either by means of
function composition or (more directly) by identifying the corre-
sponding elements of a fractal with elements in the tessellated
continua. The former is more suited for analytical work, with the
latter suited to numerical analysis. For analytical work, the former
approach is more suitable, since the requirement for the precise
form of the governing partial differential equations can be ele-
gantly established by means of the hole-fill map and the integral
transport equations. For numerical analysis however, weighted
forms of the transport equations can be established and immedi-
ately applied using the second approach, without recourse to par-
tial differential equations. One of the novel contributions of this
paper is to establish a finite element method on a tessellated con-
tinuum. We limit attention in this paper to a Galerkin formulation
as this permits a commercial code to be readily employed. How-
ever, the appearance in the new approach of energy flux related
terms at element edges—when coupled to the Galerkin formula-
tion—limits the choice of fluid to those that are highly conducting
and unable to support a temperature difference perpendicular to
the direction of fluid flow. This does mean however that a mod-
elling error [20,21] is present, which cannot be removed by means
of mesh refinement. It is demonstrated in the paper that for the
heat-exchanger problems considered that the modelling error is
relatively small.

Other numerical methods (with or without elements [22–25])
could in principle be applied to solve the problems considered
here. This could be done in one of two ways, i.e. by performing a
numerical analysis on the tessellation (and mapping the results)
or on the porous medium directly. No papers presently exist for
analysis on a tessellation (as this paper is the first) but many meth-
ods have been applied to porous media [26–30], although these are
limited to the solution of equations involving indirect representa-
tions of the geometry. There also exists a range of computational
techniques for the efficient analysis of problems where the physi-
cal response is characterised by the size of the structure and the
size of some underlying localised microscopic phenomena. The
homogenisation approach [31] (which also capture the effect of
geometry indirectly) can often be employed to analyse these types
of problems and a computationally efficient approach can typically
involve decomposition methods (see for example Refs. [32,33]).

This paper demonstrates an application of the Galerkin finite
element method to a tessellated continuum to capture the energy
transfers taking place on pre-fractal structures with applications to
cellular heat exchangers. To achieve this, the general transport the-
ory for pre-fractals and tessellated continua is presented in Sec-
tion 2, where the physics of the two domains are related by the
assumed existence of a hole-fill map. This is followed by the intro-
duction to weighted transport equations in Section 3 and the
establishment of the Galerkin finite element method for tessellated
continua providing a convenient vehicle for numerical analysis of
cellular designs. The whole procedure depends intimately on the
tessellated continuum structure which is generated by means of
a recursive method closely replicating the fractal generation pro-
cess. Material properties for non-product fractals are considered
in Section 4 along with corresponding tessellations. Of particular
focus is the relationship between material properties on a tessella-
tion and its relationship between corresponding pre-fractals. The
tessellated finite element analysis method is introduced in Sec-
tion 5 via some simple 1-D fractals; analytical 1-D solutions are
obtained and contrasted against numerical predictions on different
(but equivalent) tessellations. The process is repeated in Section 6
for product tessellations. In Section 7, thermal analysis is per-
formed on non-product sets and predictions are contrasted with
results obtained from the commercial package ABAQUS.
2. Tessellated continuum mechanics

The idea underpinning the tessellated approach is the
assumed existence of a map (a hole-fill map) from a pre-fractalbEk (which can be formed by the kth iterations of an Iteration

Function Scheme (IFS) [34]) to a tessellation bTk (which also
can be formed in a similar fashion). Typical tessellations for
some classical fractals are depicted in Figs. 1 and 2. The arrows
depicted in the figures identify a corresponding selection of pre-
fractal elements and tiles and it is important to appreciate that
all pre-fractal elements have corresponding tiles. Physics taking

place on bEk is best represented in a weak sense using transport
equations in integral form as these readily capture the highly
discontinuous nature of the problem under consideration. Trans-
port equations apply physical conservation laws to a control vol-

ume (identified here by Xs), within which the pre-fractal bEk is at
least in part embedded. A control volume is a continuous open
set of points whose closure includes a continuous orientable
boundary Cs. A typical transport equation for a stationary control
volume takes the form

d
dt

Z
Xs

qswsdVs þ
Z
Cs

qswsv s � dCs ¼ �
Z
Cs

Js � dCs þ
Z
Xs

qsbsdVs; ð1Þ

where w is a specific field variable, q is density, v is the material
velocity, n is an outward pointing unit normal, dC ¼ ndC, J � n is a
flux, b is a source term and subscript s is used to indicate quantities

in the physical space. It is assumed here that the fractal bEk is not
deforming although it is noted in passing that transport theory
can readily account for such a scenario.

The pre-fractal bEk is assumed to support mass and given that Xs

can be made arbitrarily small it is possible that bEk \Xs ¼ U, i.e. the
intersection of the control volume and pre-fractal can under cer-
tain conditions be empty. This can happen in a situation where a
control volume fits in a pore for example. Thus, in order to ensure
the validity of Eq. (1) for arbitrary Xs some care is required partic-
ularly with flux terms; the absence of mass readily removes
domain integrals but not necessarily the flux integral.

With the assumed existence of a tessellation bTk it can be
assumed further that there exists a similar transport equation for

the stationary control volume Xr in which the tessellation bTk is
embedded. The transport equation for Xr is
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Fig. 1. Pre-fractal and corresponding tessellated domains for the Sierpinski Gasket.
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d
dt

Z
Xr

qrwrdVr þ
Z
Cr

qrwrv r � dCr ¼ �
Z
Cr

Jr � dCr þ
Z
Xr

qrbrdVr ð2Þ

where subscript r is used to indicate quantities in the tessellation
space.

Eq. (1) can be related to Eq. (2) via the hole-fill map x : s#x.
Geometrical considerations give rise to Nanson’s differential rela-
tionships: dVr ¼ jFjlkdVs, dCr ¼ jFjlC

k dCs � F�1, where Fij ¼ @xi=@sj,

dCs ¼ nsdCs and dCr ¼ nrdCr , and where lk is a support on bEk

and lC
k is a support on Cs. It is important to appreciate that certain

fluxes do not involve mass (e.g. radiation heat transfer), so lC
k is not

necessarily equal to lk on Cs. Support functions generally take on
values of 1 or 0, with 1 identifying elements belonging to the set
of interest. In this analysis control volumes Xs and Xr are related
by an identity map i : s#s and by design conserved quantities

are required to match on the sets bEk \Xs and bTk \Xs, wherebTk ¼ xðbEkÞ. To achieve this, consider the substitution of Nanson’s
identities into Eq. (1):

d
dt

Z
Xs

qrwrjFjlkdVs þ
Z
Cs

qrjFjwrlkðF�1 � v rÞ � dCs

¼ �
Z
Cs

jFjlC
k ðF�1 � JrÞ � dCs þ

Z
Xs

qr jFjlkbrdVs ð3Þ
Greater generality can be obtained on multiplication of Eq. (3)
by a scalar (or by a matrix if wr is a vector); this is not required
for analysis limited to heat transfer, so is not considered further
here. Thus, in view of the requirement for mass conservation,
which takes the form qrdVr ¼ qsdVs, it follows that qr jFj ¼ qs and
matching of the two terms on the left hand-side of Eqs. (3) and
(1) is achieved with wr ¼ ws and ðF�1 � vrÞ ¼ v s. Similarly, the
right-hand sides of Eqs. (3) and (1) match with the definitions
jFjF�1 � Jr ¼ Js and br ¼ bs. The support functions are dropped for
convenience since by design a tessellation is free of porosity, so
lk ¼ 1 almost everywhere on a tessellation. In the subsequent
development of the approach, the general theory presented is
restricted to the case of heat transfer, where the field variable is
specific enthalpy (i.e. ws ¼ hs) and the flux term is heat flux (i.e.
_qs � ns ¼ Js � ns). To keep the presentation as clear as possible with
reference to cellular systems, convection is not considered in this
work (i.e. v s ¼ 0).

2.1. Heat transfer through a tessellation

The transport equation for transient heat transfer is

d
dt

Z
Xs

qshsdVs ¼ �
Z
Cs

_qs � dCs þ
Z
Xs

qs
_QsdVs; ð4Þ
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Fig. 2. Pre-fractal and corresponding tessellated domains for the Sierpinski Carpet.
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where _Qs is a heat source and the heat flux is defined here (given its

practical ubiquity) as _qs � ns ¼ ĥsðTs � T1Þ, and where ĥs is a heat
transfer coefficient and T1 is the bulk temperature of the cooling/
heating medium.

The equivalent equation on the tessellated domain is

d
dt

Z
Xr

qrhrdVr ¼ �
Z
Cr

_qr � dCr þ
Z
Xr

qr
_QrdVr ð5Þ

where qr ¼ jFj�1qs, hr ¼ hs, _Qr ¼ _Qs and _qr ¼ jFj�1F � _qs. The latter
definition provides convective heat transfer boundary conditions
of the form:

_qr � dCr ¼ ĥrðTr � T1ÞdCr ¼ jFj�1ðF � _qsÞ � ðjFjdCs � F�1Þ
¼ ĥsðTs � T1ÞdCs; ð6Þ

which is satisfied for Tr ¼ Ts and ĥrdCr ¼ ĥsdCs.
Note that the equality Ts ¼ Tr means Tsðs; tÞ ¼ TrðxðsÞ; tÞ, which

gives rsTs ¼ FT � rrTr , and in view of the identity _qr ¼ jFj�1F � _qs

leads to _qr ¼ �K r � rrTr where the associated conductivity tensor
K r on the tessellated domain is

K r ¼ jFj�1FK sF
T ð7Þ

which, for isotropic (or indeed, orthotropic) K s, gives rise to an
orthotropic K r .

This property arises from the fact that K r is evidently symmetric
and positive definite, hence giving rise to at most three distinct
positive conductivities in orthogonal directions.

3. The tessellated finite element method

The finite element method can be derived in one of three ways:
direct minimisation of a functional (e.g. minimisation of potential
energy); A variational statement, provided one exists for the prob-
lem (e.g. Hamilton’s principle) and; the weighted residual method
applied to the governing partial differential equations. A fourth
approach has arisen in the literature [35], which avoids the use
of the governing partial differential equation, provided a transport
equation is available. The approach involves the direct weighting
of the transport equation which, on application to Eq. (4) gives

d
dt

Z
Xs

WsqshsdVs ¼ �
Z
Cs

Ws _qs � dCs þ
Z
Xs

rsWs � _qsdVs

þ
Z
Xs

Wsqs
_QsdVs; ð8Þ

where Ws is a weighting function which in the first instance is
assumed continuous at least up to the first derivative, i.e.
Ws 2 C1ðXsÞ and is independent of time, i.e. @Ws=@t ¼ 0. A similar
equation is assumed to exist for the tessellation

d
dt

Z
Xr

WrqrhrdVr ¼ �
Z
Cr

Wr _qr � dCr þ
Z
Xr

rrWr � _qrdVr

þ
Z
Xr

Wrqr
_QrdVr ð9Þ

which, after substitution of Nanson’s identities and qr ¼ jFj�1qs,

hr ¼ hs, _Qr ¼ _Qs, _qr ¼ jFj�1F � _qs and rs � F�T � rr gives

d
dt

Z
Xs

WrqshslkdVs ¼ �
Z
Cs

WrlC
k
_qs � dCs

þ
Z
Xs

rsWr � F�1F � _qslkdVs þ
Z
Xs

Wrlk
_QsdVs

ð10Þ
which is identical to Eq. (8) on setting Wr ¼ Ws.
The finite element method applied to an element in the tessel-

lation bTk immediately follows, i.e.

d
dt

Z
Xe
r

NiqrhrdVr ¼ �
Z
Ce
r

Ni _qr � dCr �
Z
Xe
r

rrNi � K r � rrTrdVr

þ
Z
Xe
r

Niqr
_QrdVr ð11Þ

where Ni is a shape function and Xe
r is an element in bTk; tessellated

elements and finite elements are assumed identical in this paper.
While it is usual for Ni 2 C1ðXe

rÞ, the weight function typically

satisfies Wr 2 H1ðXrÞ if approximated using shape functions. This
means that continuity of the first derivative is only weakly
enforced at element boundaries. Continuity at element boundaries
is assumed to apply for both the weighting and the temperature
field. This assumption is convenient because it permits analysis
with classical Galerkin finite elements but places limitations on
the types of analysis that can be reasonably attempted. Any cooling
medium passing through a porous structure is required to be a per-
fect conductor, which essentially means no temperature gradients
are permitted perpendicular to the channel flow direction. If tem-
perature gradients are present in the cooling medium, then the
analysis becomes approximate. A feature of performing any analy-
sis on a tessellation is the absence of pores; heat sources or sinks
appear at element edges/surfaces in the tessellation to replicate
their effect. This aspect is captured by the first term on the right
hand side of Eq. (11).

In the following sections, the behaviour of thermal conductivity
on individual tiles and tessellations is examined. The geometric
complexity apparent in the fractal is manifestly absent on a tessel-
lation, yet is found to re-emerge in the distribution of thermal con-
ductivity. This finding is then exploited through heat transfer
exemplars on relatively simple classical fractals embedded in 1-D
and 2-D spaces.
4. Understanding material behaviour on tessellations

As a consequence of hr ¼ hs and Tr ¼ Ts (as established in Sec-
tion 2) it follows that the specific heat satisfies cr ¼ cs. Density fol-

lows qr ¼ jFj�1qs and therefore, for corresponding pre-fractals and
tiles, scales in accordance with their volumes (in 3D) and areas (in
2D).

The behaviour of the conductivity (Eq. (7)) is less straightfor-
ward and depends on the principal stretch directions associated
with the deformation tensor F. The conductivity tensor K r is posi-
tive definite and symmetric, so can be represented by a Schur
decomposition K r ¼ QDQ T , where Q has eigenvectors as columns
and is orthogonal (i.e. Q TQ ¼ I) and D is a diagonal matrix whose
eigenvalues (principal values of thermal conductivity) lay on the
principal diagonal. Suppose now that F can decomposed into: the
eigen-decomposition F ¼ SDFS

�1 (assuming F is diagonalisable)
and; the Q FR decomposition (which always exists), where S has
eigenvectors as columns, DF is a diagonal matrix with eigenvalues
on the principal diagonal, Q F is an orthogonal matrix and R is an
upper triangular matrix. Direct substitution of each decomposition
into the definition of the conductivity tensor gives

K r ¼ jRj�1Q F ½RK sR
T �Q T

F and K r ¼ jDF j�1ðSDFÞ½S�1K sS
�T �ðSDFÞT ,

which simplifies significantly if DF ¼ kI to K r ¼ kK s with k being
identified as a stretch ratio. Thus, for isotropic stretching with
k > 1, thermal conductivity increases in proportion to the amount
of stretching taking place. In effect, thermal conductivity increases
to mitigate increasing thermal resistance due to the presence of
additional material. If however, , where is a diagonal
matrix, then , which is nothing more than
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Fig. 4. Principal thermal conductivity ratio (Kr=Ks) distribution on Sierpinski-gasket tessellations.
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Fig. 5. Principal thermal conductivity ratio (Kr=Ks) distribution on Seirpinski-carpet tessellations.
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(a) Coarse Pre-fractals

 (b) Coarse Tessellations

 (c) Fine Pre-fractals

(d) Fine Tessellations
Fig. 6. Pre-fractals and Tessellation for the Cantor Dust.
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the Schur decomposition (since is a diagonal matrix).
This confirms for this case that principal conductivity directions
are immediately known to be the columns of Q F and hence the nor-
malised columns of F. Moreover, principal conductivities are
related by ðKrÞi ¼ kiKs for an isotropic pre-fractal material, where

(in 2D).
To illustrate the behaviour when DF ¼ diagðk1; k2Þ with k1–k2

it is convenient to consider a particular pre-fractal element
(labelled ‘‘a”) and corresponding tile as depicted in Fig. 1. The

deformation tensor F ¼ ½F1 F2�, with F1 ¼ b1 0cT and
F2 ¼ b1:3472 1:7778cT . For this element, F happens to be upper
triangular, so F ¼ R and Q F ¼ IF is diagonalisable with
DF ¼ diagð1:7778;1Þ and S ¼ ½S1 S2� with eigenvectors

S1 ¼ b0:866 1cT and S2 ¼ b1 0cT . The hole-fill map when
applied to the pre-fractal element depicted in Fig. 1 stretches
the element by a factor of 1.788 in the S1 direction but providing
no elongation in the S2 direction. This can be contrasted this with
the thermal conductivity tensor K r ¼ ½K1 K2� with
K1 ¼ b1:5833 1:3472cT and K2 ¼ b1:3472 1:7778cT , represented
by the Schur decomposition with D ¼ diagð0:3298;3:0313Þ and
orthogonal tensor Q ¼ ½Q1 Q2�, Q1 ¼ b�0:7321 0:6812cT ,
Q2 ¼ b�0:6812 � 0:7321cT . The Schur decomposition indicates
that the maximum thermal conductivity is in the direction of
Q2, which is towards the direction of maximum stretch S1. It is
appreciated of course that principal values of thermal conductiv-
ity act along mutually perpendicular directions, so in general will
not align with principal stretch directions, as this example illus-
trates. The situation is illustrated graphically in Fig. 3.

It is also of interest to observe typical spatial distributions of
thermal conductivity on tessellations for classical pre-fractals to
provide some indication of how the loss of geometrical complex-
ity (present on pre-fractals but absent on tessellations) trans-
forms into an increase in material complexity. Contour plots
showing how the maximum principal value of thermal conduc-
tivity varies spatially for a selection of tessellations is depicted
in Figs. 4 and 5. Larger values of thermal conductivity can be
expected at areas of severe distortion. These distributions,
although complex in appearance, do not provide a barrier to
numerical analysis, particularly for a tessellation doubling up
as a finite element mesh. The element stiffness matrices in the
finite element method are readily obtained and in the case of
a linear triangular element (used throughout this paper for 2D
analysis) the thermal conductivity tensor is spatially invariant
on each element domain.
5. Solutions on 1-D cantor dusts

In this section, analytical solutions to heat transfer problems
with convection boundary conditions are defined on Cantor dusts
in one and two dimensions. The analysis begins with the governing
partial differential equation, which for Eq. (5) is of the form

qr
@hr

@t
¼ div rðK r � rrTrÞ þ _Q0 þ _Q1; ð12Þ

where _Q0 and _Q1 are heat sources associated with elements and
edges, respectively.
Table 1
Heat transfer coefficient (HTC) for pre-fractal holes.

dholes Hydraulic diameter (m) 0.1667 0.0222 0.0026 3:0111� 10�4

ĥi‘0=2
k (W/m2 K) 574.6 46.9 3.7 0.3
5.1. Pre-fractal and tessellation construction

The pre-fractals bEk and corresponding tessellation bTk for the
Cantor dust depicted in Fig. 6(a) are generated respectively by
the self-similar contraction maps

S1ðxÞ ¼ x
3

and S2ðxÞ ¼ 2‘0 þ x
3

ð13Þ

and affine-tessellation maps

P1ðxÞ ¼ x
2

and P2ðxÞ ¼ ‘0 þ x
2

ð14Þ

with both initiated on the set bE0 ¼ ½0; ‘0�.
Although the affine-tessellation maps are not unique, the ones

selected in Eq. (14) are a natural choice producing tessellated ele-
ments of equal size. In any numerical method this choice corre-
sponds to one finite element per pre-fractal element. A finer
mesh can be obtained by simple function composition of the orig-
inal map, i.e.

P1 � P1ðxÞ ¼ x
4
; P1 � P2ðxÞ ¼ ‘0 þ x

4
;

P2 � P1ðxÞ ¼ 2‘0 þ x
4

and P2 � P2ðxÞ ¼ 3‘0 þ x
4

ð15Þ

which is a technique that can be employed for more complex
structures.

The corresponding pre-fractal and tessellation generated by
Eqs. (13) and (15) are presented in Fig. 6(b). Note that the pre-
fractal and tessellation are constructed recursively usingbEk ¼

S
iSiðbEk�1Þ and bTk ¼

S
iPiðbTk�1Þ, respectively; complex struc-

tures can be created/represented with this approach and the asso-
ciated data efficiently captured [19]. Splitting the domain

according to bE0 ¼ bEk [ ðbE0 n bEkÞ (i.e. elements and holes), then a
hole-fill map is designed, which identifies a coordinate

s 2 bE0 ¼ bEk [ ðbE0 n bEkÞ with a coordinate x 2 bTk ¼ bE0; if s 2 bE0 n bEk

then x belongs to an internal edge of the tessellation. The hole-
fill map in for the case is simply

xkðsÞ ¼ xðiÞk þ xðiþ1Þ
k � xðiÞk
sðiþ1Þ
k � sðiÞk

ðs� sðiÞk Þ; ð16Þ

where s 2 ½sðiÞ; sðiþ1Þ� and sðiÞk and xðiÞk are corresponding end-points of
elements in the pre-fractal and tessellation, respectively. The graph
for the map xk is depicted in [36] and can be written in terms of sup-
port lk, i.e.

xkðsÞ ¼ 3
2

� �k Z s

0
lkðrÞdr ¼

‘k
‘0

� �D1�1 Z s

0
lkðrÞdr; ð17Þ

where ‘k is the length of an element of bEk and D1 is the Hausdorff
fractal dimension [37] (see Ref. [20] for derivation). Eq. (16) pro-
vides a definition suitable for use in numerical analysis, and Eq.
(17) provides the same definition for analytical work.

The associated deformation gradient tensor for this case is a

scalar and is of the form jFj ¼ F ¼ ð‘k‘�1
0 ÞD1�1

, so qr ¼ jFj�1qs ¼
ð‘k‘�1

0 Þ1�D1qs with scalar Ks and Kr related by Kr ¼ jFj�1FKsF
T ¼

ð‘k‘�1
0 ÞD1�1

Ks. Since the length ‘k of each element of the kth pre-
fractal for the Cantor dust is constant, the thermal conductivity is
homogeneous on the tessellation; this is however not generally
the case. It is important to appreciate also that any solution
obtained for a fractal by means of a tessellation must be indepen-
dent of the hole-fill map.
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5.2. Analytical solution for a 1-D Cantor-dust model

In order to represent conditions met in a cellular heat exchan-
ger, fluid is assumed to flow normal to the voids of the pre-
fractal Cantor-dust model depicted in Fig. 6. Elements in the fractal
are loaded uniformly with an internal heat source, defined such the

total load per unit volume _Q0 appears uniform on the tessellated
continuum. Thermal cooling arising from the fluid flowing through
the voids is assumed to manifest as a set of source terms of the

form 2‘�1
0 ĥxðT � TwatÞdð‘�1

0 x� 2�kiÞ 1 6 i 6 2k � 1, where 2k � 1 is

the number of holes associated with bEk, dð�Þ is the Dirac delta dis-

tribution function, ĥx is a heat transfer coefficient, and Twat is the
bulk coolant temperature. If the fluid is viewed as a perfect con-
ductor, the edge temperatures of any two adjacent solid compo-
nents are common. External surfaces (the faces) are assumed to

be exposed to a heat flux of the form _q0 ¼ ĥ0ðT � T1Þ, where T1
is the ambient temperature of the of the surrounding medium
and h0 is the heat transfer coefficient of the surrounding medium.

5.2.1. Steady-state solution for a 1-D Cantor-dust

Eq. (12) expressed on the single element bE1 yields the governing
equation

KrT
00 þ _Q0 � 2ĥ0

w
ðT � T1Þ � 2ĥ‘0=2

‘0
ðT � TwatÞd x

‘0
� 1
2

� �
¼ 0 ð18Þ

on bT 1, where w is the width of the bar (i.e. depth in the flow
direction).

Eq. (18) can be solved by assuming a solution of the form
T ¼ Tcf þ Thole þ Tsource, where the complementary function

Tcf ðxÞ ¼ a coshðaxÞ þ b sinhðaxÞ satisfies KrT
00
cf � 2ĥ0w�1Tcf ¼ 0 for

a ¼ ð2ĥ0=wKrÞ
1
2, and where a and b are integration constants. The

term Tsource satisfies KrT
00
source þ _Q0 � 2ĥ0w�1ðTsource � T1Þ ¼ 0 and is

simply Tsource ¼ T1 þ 2�1ĥ�1
0 w _Q0 (provided ĥ0–0). The term Thole

is a little more involved; substituting T ¼ Tcf þ Thole þ Tsource into
Eq. (18) gives

T 00
hole þ a2Thole � 2

Kr‘0
ĥ‘0=2ðT � TwatÞd x

‘0
� 1
2

� �
¼ 0 ð19Þ

which can be solved by setting Thole ¼ Zeax and noting that
302  

303  

304  

305  

306  

307  

308  

309  

310  

0.0  0.2  0.4  0.6 

Te
m

pe
ra

tu
re

 (K
)

Distance (m)

5 

1 
9 

1,5,9

6 

10
2 

2,6,10

7 

Fig. 7. Temperature plots for Cantor-dust with s
T 00
hole þ a2Thole ¼ ðZ00 þ 2aZ0Þeax ¼ d

dx
ðZ0e2axÞe�ax

¼ 2
Kr‘0

ĥ‘0=2ðT � TwatÞd x
‘0

� 1
2

� �
ð20Þ

integrates to give

Z0 ¼ 2
Kr

ĥ‘0=2ðT‘0=2 � TwatÞe
a‘0
2 e�2axH

x
‘0

� 1
2

� �
: ð21Þ

One further integration and multiplication with eax gives

Thole ¼ � 2
aKr

ĥ‘0=2ðT‘0=2 � TwatÞ sinh a
‘0
2
� x

� �� �
H

x
‘0

� 1
2

� �
ð22Þ

Extending the analysis to bTk provides

KrT
00 �2ĥ0

w
ðT�T1Þ� 2

‘0

X2k�1

i¼1

ĥi‘0=2
k ðTi‘0=2

k �TwatÞd x
‘0
� i

2k

� �
¼0 ð23Þ

which, following a similar procedure as above gives

TðxÞ ¼ a coshðaxÞ þ b sinhðaxÞ þ 2
aKr

X2k�1

i¼1

ĥi‘0=2
k ðTi‘0=2

k � TwatÞ

� sinh a x� i‘0
2k

� �� �
H

x
‘0

� i

2k

� �
þ Tsource ð24Þ

where a and b are determined by setting

ĥwallðTx¼0 � TwallÞ ¼ Krð@T=@xÞjx¼0 and ĥ0ðT‘0 �T1Þ¼�Krð@T=@xÞjx¼‘0
,

and where it is assumed that at x¼0 the medium is in contact with
a wall of specified temperature Twall through a conductance mea-

sured in the form of a heat transfer coefficient ĥwall. Some algebraic
manipulation is required to take account of the initially unknown
temperatures Ti‘0=2

k , which arise with through the application of

the end condition at x¼ ‘0. This is achieved through Eq. (24), which

at x¼ i‘0=2
k reduces to

T
i‘0
2k

� �
¼ acosh a

i‘0
2k

� �
þbsinh a

i‘0
2k

� �
þ 2
aKr

X
j<i

ĥj‘0=2
k ðTj‘0=2

k �TwatÞsinh a‘0
2k

ði� jÞ
� �

þTsource ð25Þ

and is defined sequentially for i ¼ 1;2; . . . ;2k � 1.
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5.2.2. Steady-state validation tests
In this section the analytical solution is compared with results

obtained via the commercial package ABAQUS and a purpose-
built finite element code developed at the University of Manch-
ester (UoM). The material for the Cantor dust is chosen to be cop-
per and the length of the test specimen is set to ‘0 ¼ 1 m with
width w ¼ 1 m. The air flowing around the Cantor dust is assumed
to have a bulk temperature Twall ¼ T1 ¼ 323 K and heat transfer

coefficient ĥwall ¼ ĥ0 ¼ 200 W=m2. The bar is subjected to a uni-
form heat loading of _Q0 ¼ 400 J=m3 to account for the thermal
loading from an external heat source. For the Cantor set the heat

transfer coefficients ĥi‘0=2
k for the holes are identical for both tessel-

lations and pre-fractals and are tabulated in Table 1. The coeffi-
cients are determined using the Dittus-Boelter empirical
relationship, the details of which are given in Appendix A (see also
Refs. [38–40]).

Temperature plots from analytical, UoM finite element code

(UoMFEC) and ABAQUS for the tessellated structure bTk and corre-

sponding pre-fractal bEk are depicted in Figs. 7 and 8 for different
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Fig. 8. Temperature plots for Cantor-dust wit
values of k. The first thing to appreciate is that the pre-fractal tem-
peratures for analytical and the UoMFEC are indirect: they are
determined first on the tessellation and then mapped onto the
pre-fractal. Evidently therefore correspondence of results on tes-
sellations gives correspondence on pre-fractals for the analytical
and the UoMFEC. The principal reason for the development of the
UoMFEC is to provide a convenient platform for the determination
of element-conductivity (stiffness) matrices, which generally
involve orthotropic conductivity tensors (Eq. (7)). Two options
are available to ABAQUS, i.e. direct temperature determination on
pre-fractals (which involves problematic geometry definitions)
and temperature determination on tessellations (which involves
problematic material property specifications). The former is easier
to apply in ABAQUS but, more importantly, is also the most critical
to the validation trials. The UoMFEC predictions provided in Fig. 8
are performed on different tessellations as depicted in Fig. 6. It
transpires that different tessellations have little impact on the
results, principally in this case, because of near-linear temperature
distributions over pre-fractal elements. It is evident on close exam-
ination of Fig. 8 that the maximum deviation between UoMFEC and
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ABAQUS results arise at pre-fractal holes. Note that differences can
be expected as continuity (Galerkin) assumptions are enforced on
the tessellation. This means that temperatures on the two sides
of any hole in a pre-fractal are identical for the UoMFEC and ana-
lytical predictions. This is not the case for ABAQUS and identical
temperatures would only be achieved for high cooling-channel
heat transfer coefficients. Despite this observation, it is apparent
on examination of Table 2 (which provides average temperature
(a) At point 0.25 on 1Ê

(b) At point 0.0625 on 3Ê
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Fig. 9. Transient temperature

Table 2
Steady-state temperature differences for 1-D Cantor dust.

k Tessellation bTk

Analytical vs UoMFEC (coarse) Analytical vs UoMFEC (fine)

D on bEk (K) D% on bEk (%) D on bEk (K) D% on bEk (%)

1 0.0050 0.0016 0.0050 0.0016
2 0.0012 0.0004 0.0012 0.0004
3 0.0003 0.0001 0.0003 0.0001
4 0.0015 0.0005 0.0015 0.0005
5 0.0014 0.0005 0.0014 0.0005
differences) that reasonably high accuracy is returned. The aver-
ages D and D% appearing in Table 2 are obtained with the
relationships

D ¼ 1
n

Xn
i¼1

jT ðaÞ
i � TðbÞ

i j ð26Þ

and
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1Ê

plots for a Cantor Dust.

Pre-fractal bEk

Analytical vs ABAQUS (fine) Analytical vs ABAQUS (fine)

D on bEk (K) D% on bEk (%) D on bEk (K) D% on bEk (%)

0.0004 0.0001 0.5722 0.1862
0.0003 0.0001 9.5596 3.0977
0.0003 0.0001 7.3826 2.3891
0.0003 0.0001 8.9782 2.9279
0.0002 0.0001 12.9905 4.1606



Table 3
Average temperature differences on bEk and bTk .

x ¼ 0:25 and k ¼ 1 x ¼ 0:125 and k ¼ 2 x ¼ 0:0625 and k ¼ 3

D (K) D% (%) D (K) D% (%) D (K) D% (%)

Analytical vs UoMFEC(coarse) on bTk
16.2782 44.1550 9.4507 13.4720 2.3379 3.1508

Analytical vs UoMFEC (fine) on bTk
5.7731 23.9875 3.3168 8.1821 0.7144 1.8801

Analytical vs ABAQUS (fine) on bTk
0.2901 1.9369 0.6455 2.5640 0.6283 1.4462

Analytical vs ABAQUS (fine) on bEk
1.8335 6.4139 8.8444 5.4921 14.1051 5.7719

Table 4
Edge-boundary temperatures on bTk (unit-tessellated continuum).

Boundary edge (m) x ¼ 0 y ¼ 0 x ¼ 1 y ¼ 1
Temperature (K) Trð0; yÞ ¼ y Trðx;0Þ ¼ y Trð1; yÞ ¼ 1� y Trðx;1Þ ¼ 1� x
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D% ¼ 2� 100
n

Xn
i¼1

TðaÞ
i � TðbÞ

i

TðaÞ
i þ TðbÞ

i

�����
����� ð27Þ

where superscripts (a) and (b) distinguish the method and n is the
number of the data points.
(i) Analytical

(iii) UoMFEC with 16 elements 

Fig. 10. Temperatures on T̂k for product
5.2.3. Transient solution for a 1-D Cantor-dust
Following the approach adopted for the steady state solu-

tion, the transient equation on the tessellated continuum bTk is
given by

qrcr
@T
@t

¼ Kr
@2T
@x2

þ _Q0 � 2ĥ0

w
ðT � T1Þ

� 2
‘0

X2k�1

i¼1

ĥi‘0=2
k ðSi‘0=2k � TwatÞd x

‘0
� i

2k

� �
; ð28Þ
(ii) ABAQUS

(iv) UoMFEC with 256 elements 

Cantor dust without heat sources.
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where it is assumed that steady state temperatures are attained at
pre-fractal holes, consistent with the application of very high heat
transfer coefficients there.

Consider a solution of the form , where S sat-
isfies Eqs. (18) and satisfies

ð29Þ

which, assuming that x reduces to

qrcr
Kr

_s
s
þ 2ĥ0

wKr
¼ X 00

X
¼ �x2 ð30Þ

A solution to the transient part of the equation is

sðtÞ ¼ expð�bðx2 þ a2ÞtÞ ð31Þ

where b ¼ Kr=qrcr and a ¼ ð2ĥ0=wKrÞ
1
2 and similarly for the spatial

part the solution is

XðxÞ ¼ A cosðxxÞ þ B sinðxxÞ: ð32Þ
Specified temperature end conditions return A ¼ 0 and

xn ¼ np=‘0 and to match an arbitrary initial condition, a solution
of the form

Tðx; tÞ ¼ SðxÞ þ
X1
n¼1

Bn sinðxnxÞ expð�bðx2
n þ a2ÞtÞ ð33Þ

is required. Setting Tðx; 0Þ ¼ 0 for example gives the requirement
thatX1
n¼1

Bn sinðxnxÞ ¼ �SðxÞ ð34Þ

which is simply a Fourier Sine series representation of �SðxÞ and the
Euler formulae are obtained from

Bn ¼ � 2
‘0

Z ‘0

0
SðxÞ sinðxnxÞdx ð35Þ
Temperature differences along x ¼ y on a 2-D Cantor Dust.

No. of
elements

Maximum
difference
(K)

Maximum
difference
(%)

Average
difference
(K)

Average
difference
(%)

UoMFEC 16 0.2499 24.9900 0.1250 16.6627
64 0.1428 14.2800 0.0571 5.7120
256 0.0721 7.2100 0.0290 2.9267
5.2.4. Transient validation tests
The validation trials for the transient theory follow those for the

steady state, with comparisons made between the analytical solu-
tion, the UoMFEC and ABAQUS. The initial temperature on the tes-
sellation and pre-fractals is assumed to be zero. Two tessellations
are employed (fine and coarse, as depicted in Fig. 6), with the
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Fig. 11. Temperature plots on T̂k along x ¼
coarse tessellation having an identical number of tiles as pre-
fractal elements. The ABAQUS meshes are set to match the tessel-
lations, which is relatively straightforward for a 1-D structure. The

transient temperature plots for a selection of points on bEk are pre-
sented in Fig. 9 along with average differences calculated through
Eqs. (26) and (27) appearing in Table 3.

One aspect of interest in this work is the appropriateness of a
coarse tessellation when contrasted with more refined meshes.
This is of interest because a coarse tessellation has—by construc-
tion—the identical number of elements as pre-fractal elements,
and thus is the starting point for any analysis. It is evident on
examination of Table 3 and Fig. 9 that errors can be quite large
for low values of k but reduce as k increases. This reflects the fact
that as the pre-fractals becomes more complex, involving more
pre-fractal elements, the number of corresponding tiles increases.
With tiles doubling up as finite elements, the mesh refines as k
increases but the downside is that the geometry is more involved
along with energy transfers. However, accuracy improvements
with an increase in k can generally be expected due to the dimin-
ishing effect of geometry refinement. It is apparent from Table 3

that the coarse UoMFEC provides reasonable accuracy on bTk. Con-

trasting results on bEk with the direct application of ABAQUS show
larger errors arising as a direct result of the Galerkin assumption
being employed resulting in the presence of a modelling error.
6. Solutions on 2-D product cantor dusts

Although not as straightforward as in 1-D, analytical solutions
can also be found on product dusts [20] in 2D (and possibly in
3D), so it of interest to contrast the tessellated approach on these
relatively simple structures before examining more complex
geometries. The thermal problem considered here is slightly artifi-
cial in that it involves constant heat sources appearing at the inter-
nal edges of tiles, whose intensity is such that the total rate (per
0.8  1.0  

T(Analy�cal)

T(ABAQUS)

T1

T2

T3

Analy�cal
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UoMFEC (16 elements)
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UoMFEC (256 elements)
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y for product dust (no heat sources).
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unit volume) of heat supplied by them takes a constant value _Q .
This problem is selected because it matches the problem consid-
ered in Ref. [36] for which an analytical solution exists. The starting
point is again Eq. (12), where it is readily confirmed that

K r ¼ jFj�1FK sF
T ¼ Ks confirming that the tessellated continuum

is isotropic, permitting a scalar Kr in Eq. (12) related by Kr ¼ Ks

[36]. It is assumed here that Cantor Dust is a material with thermal
conductivity Ks ¼ 400 W=mK, density qs ¼ 400 kg=m3, specific
heat cs ¼ 1000 J=kg K and edge length ‘0 ¼ 1 m, i.e. the analysis is
performed on a unit square domain. The edge temperatures are

fixed on bTk and the chosen values consistent with Ref. [36] are
defined in Table 4.
6.1. Steady state and different tessellations

Product fractals are relatively easy to produce and involve the
same contraction maps used in 1D. Thus, the four contraction maps
employed to create the Cantor product-dust fractal are
Sijðx; yÞ ¼ ðSiðxÞ; SjðyÞÞ, where the Si are defined in Eq. (13). The
(i) Analytical on 1̂T

(iii) UoMFEC on 1̂T (4 tiles on 0Ê ) 

Fig. 12. Contour temperature plots on tessellation with differ
tessellation similarly involves the four affine maps
Pijðx; yÞ ¼ ðPiðxÞ; PjðyÞÞ with Pi defined in Eq. (14). The tessellation
produced by Pijðx; yÞ is the coarsest when taken as a mesh for
analysis purposes. Refinement however is relatively
straightforward and mathematically represented by function
(consistent with Eq. (15)) and takes the form
Pijkmðx; yÞ ¼ Pij � Pkmðx; yÞ ¼ ðPi � PkðxÞ; Pj � PmðyÞÞ. In a numerical
setting there is no requirement to determine composition functions,
since the process is a recursive application of Pijðx; yÞ ¼ ðPiðxÞ; PjðyÞÞ
to an initial tessellation created by the same map in the first place.
An additional facet of the numerical analysis is the use of triangular
tiles, which is simply achieved on subdivision of the rectangular
tiles produced by Pij.

The steady state equation on bTk involves distribution terms to
capture heat input at tile edges and is of the form

Kr
@2T
@x2

þ @2T
@y2

 !
þ

_Q

2ð2k � 1Þ
X2k�1

i¼1

d
x
‘0

� i

2k

� �
þ d

y
‘0

� i

2k

� �� �
¼ 0

ð36Þ
(ii) ABAQUS on 1̂T

(iv) UoMFEC on 1̂T  (64 tiles on 0Ê ) 

ent methods applied to T̂1 with fixed wall temperatures.
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where the total rate of energy input _Q is determined from the

dimensionless identity _Q‘20=KrDTr ¼ 1, which in this case gives
_Q ¼ 400W=m3 for DTr ¼ 1K.

However, prior to applying this identity and involving heat
sources, it is convenient in the first instance to set _Q ¼ 0 W=m3

to ascertain the influence of different tessellations with the bound-
ary conditions given in Table 4. One of the features of the UoMFEC
is that it enforces specified temperature boundary conditions
somewhat indirectly. It does this with a convective condition
_q ¼ ĥrðTr � TspecifiedÞ and by stipulating a very high value of ĥr . The
advantage of this approach is that the FE code is simplified and it
generally transpires that most practical problems are convective.
The disadvantage is that temperature differences at the boundary
can result, which can be particularly significant when a coarse
mesh is involved as is apparent in the following tests.

In order to test out the importance of different tessellation tem-
perature contours for the analytical solution [36], ABAQUS and
(i) Analytical on 3̂T

(iii) UoMFEC on 3̂T (4 tiles on 0Ê ) 

Fig. 13. Contour temperature plots on tessellation with differ
UoMFEC are depicted in Fig. 10. Temperatures along the diagonal
line x ¼ y are sampled and shown in Fig. 11 and Table 5.

The temperature distributions on all the tessellations take the
same form for the three approaches. The analytical and ABAQUS
results match precisely, but errors are present for the UoMFEC
results on the different tessellations considered. However, the
maximum errors appear at the boundary as expected due to the
convection condition applied (with an exceedingly high heat trans-
fer coefficient). The results in Figs. 10 and 11 also reveal that these
errors reduce with refinement of the tessellation. The tests rein-
force the validity of the approach and also provide further valida-
tion for the UoMFEC.
6.2. Steady state analysis with heat sources

The analysis in Section 6.1 is repeated with heat sources applied
to all internal edges in the tessellation. Temperatures are provided
(ii) ABAQUS on 3̂T

(iv) UoMFEC on 3̂T  (64 tiles on 0Ê ) 

ent methods applied to T̂3 with fixed wall temperatures.
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on bTk using the three approaches (analytical, ABAQUS, UoMFEC)

and also on bEk with mapped results from bTk which are contrasted

with ABAQUS applied directly to bEk. The two tessellations selected
for the analysis are obtained with (a); no composition or (b); two
initial compositions of Pijðx; yÞ, which produces (a); 4 or (b);

4� 42 ¼ 64 initial triangular tiles on bE0. Temperature contours

on tessellations bT 1 and bT 2, are depicted in Figs. 12 and 13. Temper-
atures along the diagonal line x ¼ y are sampled and shown in
Fig. 14 and Table 6.
(a) On 1̂T

(b) On 3̂T
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Fig. 14. Temperature plots along x ¼ y product dust on

Table 6
Temperature differences along x ¼ y: 2-D Cantor product with heat source.

Set Number of tiles on bE0
Maximum difference (K) M

UoMFEC bT1
4 0.2499 24
64 0.0722 7.bT2
4 0.1428 14
64 0.0361 7.bT3
4 0.0721 7.
64 0.0180 6.
The trends observed in Section 6.1 are observed here with near

identical results for the analytical solution and ABAQUS on bTk, with
the principal disparity for the UoMFEC occurring at the boundary
for reasons already discussed.
6.3. Transient solution on a 2-D Cantor-dust

The transient equation on bTk involving distribution terms to
capture heat input at tile edges is
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T̂k with heat sources and fixed wall temperatures.

aximum difference (%) Average difference (K) Average difference (%)

.9900 0.1250 16.6627
2165 0.0097 1.7255
.2800 0.0571 5.7120
6070 0.0027 0.7605
2100 0.0290 2.9267
5801 0.0008 0.3234



Table 7
Average temperature differences on bTk .

Point on bTk
k Analytical vs

UoMFEC (4 tiles
for each

element) on bT
Analytical vs
UoMFEC (64
tiles for each

element) on bT
Analytical vs
ABAQUS (fine)

on bTk
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qrcr
@T
@t

¼ Kr
@2T
@x2

þ @2T
@y2

 !

þ
_Q

2ð2k � 1Þ
X2k�1

i¼1

d
x
‘0

� i

2k

� �
þ d

y
‘0

� i

2k
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; ð37Þ
k k

D (K) D% (%) D (K) D% (%) D (K) D% (%)

(0.5, 0.5) 1 0.0059 0.9343 0.0012 0.2023 0.0004 0.0634
2 0.0124 2.1610 0.0004 0.0682 0.0010 0.1717
3 0.0135 2.4076 0.0003 0.0524 0.0003 0.0507

(0.25,0.25) 2 0.0061 1.4465 0.0003 0.0785 0.0007 0.1570
3 0.0073 1.7486 0.0003 0.0610 0.0003 0.0597
where it is assumed that edge-boundary conditions are identical to
the steady-state problem above. Moreover, to conform with the
analytical solution presented in Ref. [36], the initial condition is

set as Trðx; y; 0Þ ¼ x=‘0 þ y=‘0 � 2xy=‘20. The thermal histories on bTk

are given in Fig. 15. The transient behaviour is accurately captured
and is quantified explicitly in Table 7 using Eqs. (26) and (27) for
results obtained with UoMFEC and ABAQUS. Errors are apparent

on bTk for points close to the boundary with the UoMFEC due to
the manner in which temperature boundary conditions are applied
(using a high heat transfer coefficient).
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Fig. 15. Temperature plots fo
7. Analysis on non-product tessellations

This section demonstrates that thermal analysis can be per-
formed on more intricate pre-fractal geometries using the tessel-
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lated approach. A procedure for the creation of different tessella-
tions with various levels of refinement is presented. This aspect
is of some importance, particularly when a tessellation doubles
up as a mesh, since mesh refinement is a necessary prerequisite
for high levels of numerical accuracy. A particular concern however
is that tessellations can become highly distorted. The distortion of
a tile is intimately linked with the level of anisotropy in the mate-
rial conductivity as discussed in Section 4. This coupling has the
effect of mitigating deleterious effects resulting from tile distortion
since in effect it is the behaviour on a pre-fractal that is ultimately
being analysed.

7.1. Pre-fractals and tessellations for the Sierpinski gasket

The Sierpinski gasket is an example of a non-product fractal set
and is constructed by the recursive application of the following
three affine contraction maps:

S1ðx; yÞ ¼ x
2
;
y
2

� �
; S2ðx; yÞ ¼ ‘0

2
þ x
2
;
y
2

� �
and

S3ðx; yÞ ¼ ‘0
4
þ x
2
;

ffiffiffi
3

p
‘0

4
þ y
2

 !
; ð38Þ

where each Si maps a triangular domain into a smaller triangular
domain as deduced on inspection of Fig. 1.

The initial 6 tiles on bE0 provide a means to define the tessella-

tion maps for the construction of bTk. The same number of tessella-
tion maps are used as contraction maps (3 in this case). However,
each tessellation map consists of a number of sub-maps with a

number equal to the number of initial tiles on bE0 (6 in this case).
Explicitly, the tessellation maps for the Sierpinski are illustrated
in Table 8.

The tessellation maps produce a tessellated continuum free of
the holes which are present in the corresponding pre-fractals. Their
definition is evidently not unique with each affine sub-map Pij tak-
ing the form of an expansion map; the triangular tiles must expand
to remove holes. These maps are constrained in number and also
Table 8
Tessellation maps for the Sierpinski gasket.
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by the boundaries of the initiating triangular domain. The number

of sub-maps Pij depends on the initial number of tiles on bE0 but this
can be increased in a simple manner. The tessellations produced in
Fig. 1 are achieved by application of the tessellation maps to the
previous tessellation. Evidently however any of these tessellations

can be used as a starting tessellation on bE0. An example of this is

depicted in Fig. 16, where the tessellation appearing in bE1 (and

hence bE0) (Fig. 16) is the tessellation appearing in bT 2 in Fig. 1. It
is apparent on further examination of Fig. 1 (and 2) that all the tiles
used in the tessellations are triangular. This simplifies the analysis
considerably since F in Eq. (3) is constant on a triangular domain.
7.2. Thermal analysis of a Sierpinski gasket heat exchanger

The thermal problem considered involves water coolant flowing
through the voids depicted in Fig. 1. Heat loading of the heat
exchanger is achieved by loading pre-fractal elements from an
external source in a manner than ensures that the volumetric heat
loading _Qtot ¼ 300 kW=m3 appears uniform on the tessellated con-
tinuum. The heat exchanger is manufactured from copper with
thermal conductivity Ks ¼ 400 W=mK, density qs ¼ 8930 kg=m3,
specific heat cs ¼ 385 J=kg K, and triangular edge length ‘0 ¼ 1 m.
The heat transfer coefficient hair associated with air flowing exter-
nal to the heat exchanger is taken to be 100 W=m2 K. The heat

transfer coefficients ĥhole
s pertaining to cooling channels are deter-

mined using empirical relationships found Appendix A. These vary

depending on the hydraulic diameter dhole
s , where dhole

s ¼ 4bA=bP , and
where bA is cross sectional area and bP is the wetted perimeter.

Values of ĥhole
s for various sizes of dhole

s pertinent to Sierpinski pre-
fractals are tabulated in Table 9. These values must be scaled prior
to application to edges in the corresponding tessellation in accor-
dance with the theory presented in Section 2.

Temperature distributions on pre-fractal bE3 and bT 3 for different
tessellation refinements with results determined using the UoM-
FEC are depicted in Fig. 17. The different tessellations are obtained
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(i) 0Ê with 18 elements

(ii) 1̂T with 3    18× elements (iii) 1Ê with 3 18× elements

(iv) 0Ê with 3 162× elements

(v) 1̂T with 3 162× elements (vi) 1Ê with 3    162× elements
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Fig. 16. Pre-fractals and tessellations for the Sierpinski Gasket with different meshes.
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by application of different numbers of tiles to the initial triangular

domain bE0, i.e. 6, 18 ¼ 3� 6, 54 ¼ 32 � 6 and 162 ¼ 33 � 6. The ini-
tial tessellations are obtained using an IFS with the maps defined in
Table 9. Examination of the tessellated and pre-fractal domains in
Fig. 17 confirms convergence of the results. These results can be
contrasted with those obtained by ABAQUS directly for the domainbE3 depicted in Fig. 18. The meshing routine in ABAQUS provides a
slightly different number of elements per pre-fractal element. It is



Table 9
Heat transfer coefficients for the Sierpinski gasket heat exchanger.

dholes (m) 0.289 0.144 0.072 0.036 0.018

ĥhole
s (W/m2 K) 11823.4 5249.4 2330.6 1034.8 459.4

(i) 3̂T with 6 tiles on 0Ê

(iii) 3̂T with 18 tiles on 0Ê

(v) 3̂T with 162 tiles on 0Ê

Fig. 17. UoMFEC contour temperatures o

K. Davey et al. / Computers and Structures 175 (2016) 157–183 177
evident however on comparison of Figs. 17 and 18 that remarkably
similar temperatures are obtained despite the continuity restric-
tion placed on the results obtained from the UoMFEC. The results
provide further confidence in the proposed methodology of using
(ii) 3Ê  with 6 tiles on 0Ê

(iv) 3Ê with 18 tiles on 0Ê

(vi) 3Ê with 162 tiles on 0Ê

n T̂3 and Ê3 with different meshes.



(i) 3Ê with 6 tiles per pre-fractal element

(ii) 3Ê with 16 tiles per pre-fractal element

(iii) 3Ê with 150 tiles per pre-fractal element

(iv) 3Ê with 1536 tiles per pre-fractal element

Fig. 18. ABAQUS contour temperature plots on Ê3 directly for various meshes.
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Table 10
Average temperature errors on Sierpinski pre-fractals along x ¼ 0.

UoMFEC vs
ABAQUS (coarse)

on bEk

UoMFEC vs
ABAQUS (fine) onbEk

k Number of tiles on bE0 D (K) D% (%) D (K) D% (%)

1 6 2.2778 0.6049 5.5767 1.4025
18 2.0637 0.5337 1.8220 0.4540
162 0.4399 0.1156 0.2614 0.0694

2 6 2.7703 0.8155 3.3962 1.0166
18 3.1598 0.9342 3.7012 1.0973
162 3.6382 1.0788 3.9415 1.1770

3 6 2.3360 0.7138 3.7942 1.1506
18 2.6484 0.8068 3.5763 1.0827
162 3.1908 0.9680 3.4138 1.0353 Table 11

Percentage errors on bEk with mesh refinement.

lnð‘=hÞ 3.7274 4.8260 5.9246 7.0232 8.1218 9.2204

Error (%) On bE1
10.2324 0.3111 0.1842 1.2603 1.2224 1.2224

On bE2
3.2461 0.9576 0.9942 0.9113 0.9167 0.9230

On bE3
1.1019 1.1031 1.0992 1.0947 1.0920 1.0917
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a tessellated continuum to provide predictions on structures with
lacunae. The average errors quantified using Eqs. (26) and (27)
are provided in Table 10 for the edge x ¼ 0. In addition, the temper-

ature distribution on E
_

1 along the edge x ¼ 0 is presented in Fig. 19.
(i) on 1̂T
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Fig. 19. Temperature plots along x ¼ 0 on T̂1 for various tiles
Both Table 10 and Fig. 19 confirm good accuracy with results

obtained using the UoMFEC on bTk and subsequently mapped tobEk and contrasted in ABAQUS results applied directly to bEk.
The average error obtained using Eq. (27) is recorded with mesh

refinement in order to estimate the size of the modelling error,
which is the error remaining on convergence. The modelling error
is defined here to be the difference between results obtained from
fully converged solutions from the UoMFEC and ABAQUS applied
directly to the pre-fractal. The errors are presented in Table 11

and Fig. 20 on bEk where mesh refinement is achieved by increasing
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per pre-fractal element using ABAQUS and the UoMFEC.



Table 12
Heat transfer rates for Sierpinski pre-fractals with 162 tiles on bE0.
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Fig. 20. Percentage error plots on Êk showing magnitudes of modelling errors on convergence.

Table 13
Heat transfer coefficients for the Sierpinski carpet heat exchanger.

dholes (m) 0.333 0.111 0.037 0.012 0.004

ĥhole
s (W/m2 K) 12735.0 1460.1 167.4 19.2 2.2

Table 14
Average temperature errors on Sierpinski pre-fractals along x ¼ 0.

k UoMFEC vs ABAQUS

(coarse) on bEk

UoMFEC vs ABAQUS (fine)

on bEk

D (K) D% (%) D (K) D% (%)

1 3.1738 0.8647 5.1345 1.2330
2 3.2674 0.9123 3.2976 0.9053
3 4.6927 1.3354 5.0856 1.4442
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the number of tiles on bE0. The table and plots confirm convergence

but a small modelling error remains on each bEk.
From a thermal analysis perspective it is of interest to deter-

mine energy transfers on each pre-fractal. These can be found in
Table 12 which confirm the stabilisation of transfer rates as k

increases due to increasingly refined changes in bEk and a diminish-
ing cooling ability for holes of small hydraulic diameter. Also pre-
sented in Table 12 are the energy transfer rates to the cooling
channels obtained from a converged ABAQUS model along with
the corresponding modelling error calculated using

e1 ¼ max kX � Xexactk1 ð39Þ

Errors in heat fluxes can be anticipated since these are represented
with Robin boundary conditions at the pre-fractal holes involving
heat transfer coefficients. In the tessellation these heat transfer
coefficients are suitably scaled and applied to element edges and



(i) UoMFEC on 3̂T with 8 tiles on 0Ê (ii) UoMFEC on 3Ê with 8 tiles on 0Ê

(iii) ABAQUS on 3Ê with 8 elements per pre-fractal element

(iv) ABAQUS on 3Ê with 152 elements per pre-fractal element

Fig. 21. Contour temperature plots for Ê3 using the UoMFEC and ABAQUS.
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there is no error involved in that aspect but because temperatures
are assumed continuous the heat-fluxes are slightly different and
hence a source of error. It is apparent on examination of Table 12
however that these errors are relatively small.
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Fig. 22. Temperature plots along x ¼ y for pre-fractals Ê3 using the UoMFEC and ABAQUS.

Table 15
Material properties of water at temperature Twat ¼ 293 K [41].

Thermal conductivity (Wm�1 K�1) 598:4� 10�3

Viscosity (kg=ms) 1002� 10�6

Specific heat capacity (kJ=kg K) 4.183

Table 16
Contraction maps for Sierpinski carpet.
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Table 17
Tessellation maps for Sierpinski carpet.
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7.3. Thermal analysis of a Sierpinski carpet heat exchanger

The construction of pre-fractals and corresponding tessellations
for Sierpinski carpet are relegated to Appendix B. The heat exchan-
ger is manufactured from the same copper material used for the
Sierpinske gasket with same surrounding conditions as described
in Section 7.2, with water flowing through the voids shown in
Fig. 2. A volumetric heat loading _Qtot ¼ 500 kW=m3 is applied
and appears uniform on the tessellation. Heat transfer coefficient
ĥhole
s with different size of hydraulic diameter dhole

s on Sierpinski
carpet pre-fractals are tabulated in Table 13. The heat transfer
coefficients on the effected edges in the corresponding tessellation
are scaled prior to their application in accordance with the theory
in Section 2.

Temperature distributions on bE3 and bT 3 determined by the
UoMFEC can be contrasted with those obtained by ABAQUS
directly with different numbers of elements depicted in Fig. 20.
Eqs. (26) and (27) are used to investigate the average temperature
differences along the diagonal line x ¼ y and the results can be
found in Table 14. In addition, temperature distributions along

x ¼ y on bEk from both the UoMFEC and ABAQUS are presented in
Fig. 21. All the results provide confidence in the tessellated contin-

uum methodology with good accuracy returned on bEk (see Fig. 22).

8. Conclusions

This paper tests the hypothesis that heat transfer analysis on
cellular structures can be performed with a new proposed form
of continuum mechanics coupled to a Galerkin finite element
method. The proposed method is validated through a series of tests
on pre-fractals of increasing complexity. In establishing the tessel-
lated finite-element approach for thermal analysis the following
conclusions can be drawn:

� Transport equations can connect transport phenomena on pre-
fractals to those on tessellated continua.

� Thermal analysis on pre-fractals can be achieved indirectly
through analysis on a tessellated continuum using a Galerkin
finite element method.

� The accuracy of the Galerkin finite element method is reason-
able (less than a few percent for the examples considered)
although requires reasonably high heat transfer coefficients to
be applied to cooling channels to reduce modelling error.

� In order to capture the geometric complexity involved, the ther-
mal conductivity on the tessellated continuum is manifestly dif-
ferent from the pre-fractal material. The principal directions for
thermal conductivity on a tile are related to principal stretch
directions for the hole-fill map.
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Appendix A. Heat transfer coefficient calculation

It is assumed here that the flow is turbulent and fully developed
and flowing out of the page in the non-product pre-fractals por-
trayed in Figs. 1 and 2. It is further assumed that the Dittus-
Boelter equation [38] is applicable, i.e.

ĥd
k

¼ 0:023
jd
l

� �0:8 lcp
k

� �n
ð40Þ

where d ¼ 4Â=P̂ is the hydraulic diameter, Â is cross section area, P̂
is the wetted perimeter, k is the thermal conductivity of the bulk

fluid, l is viscosity, j ¼ qÂv is mass flux rate, n ¼ 0:33 [39] for cool-
ing (wall hotter than the bulk fluid), v is average velocity, q is den-
sity, cp specific heat capacity at constant pressure.

The Darcy-Weisbach equation [40] provides a relationship
between average velocity v and pressure drop Dp along a channel
and is of the form

Dp ¼ 0:316
qvd
l

� �1=4 L
d

� �
q

v2

2

� �
ð41Þ

where L is the cooling channel length and fully developed for turbu-
lent flow in the channel is assumed.

Substitution of Eq. (41) into Eq. (40) gives the required heat
transfer coefficients for the pre-fractal holes, i.e.

ĥ ¼ 0:0535
k0:67Â0:8q0:457c0:33p

l0:584L0:457

 !
Dp0:457d0:371 ð42Þ

Consider then water flowing through the hole at temperature
Twat ¼ 293 K, where pipe length L ¼ 1 m and pressure drop
Dp ¼ 50 kPa. Using the physical parameters for water in Table 15
the heat transfer coefficients calculated using Eq. (42) can be found
in Tables 9 and 12 for various hydraulic diameters.

Appendix B. Maps for the Sierpinski carpet

The Sierpinski carpet is a non-product fractal set is constructed
by the eight affine contraction maps in Table 16.

Each contraction map, maps a rectangular domain into a smal-
ler rectangular domain as deduced on inspection of Fig. 2. The ini-

tial number of tiles on bE0 in Fig. 2 is 6, which means that the 8
tessellation maps will each consist of 6 sub-maps although some
are identical. The tessellation maps satisfy P1 ¼ S1, P3 ¼ S3,
P6 ¼ S6 and P8 ¼ S8 with the remaining maps defined Table 17
but limited here to distinctive sub-maps.
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Chapter 5.  

Paper 3: A TESSELLATED 

CONTINUUM APPROACH TO 

THERMAL ANALYSIS: 

DISCONTINUITY NETWORKS 

Due to the discontinuous behaviour of pre-fractals, discontinuity networks are 

introduced as described in this chapter. Although the strategy for closing holes in pre-

fractals is changed, the structure and the material properties are the same between the 

tessellations with and without discontinuity networks. The Galerkin finite element 

method with discontinuity networks is then applied to investigate the thermal 

behaviour of pre-fractals.  

The temperature distributions from the tessellated approach with and without 

discontinuity networks are nearly the same. However, the discontinuity networks can 

improve significantly the accuracy of the approach. Mesh refinement is achieved 

through increasing the number of tiles in the original set of pre-fractals. The results 

show that the modelling error is reduced from that of tessellations without 

discontinuity networks. Because the hole-fill maps are not unique, further tests are 

carried out to show that there is little impact on the mapped result from different 

tessellations.  

The concept of discontinuity network was introduced by C. Jiang. The tests and the 

results presented in this chapter were designed and generated by C. Jiang. The 

manuscript was written by K. Davey and C. Jiang, with technical and editorial 

supervision and proofing provided by R. Prosser. 
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Abstract Tessellated continuummechanics is an approach for the representation of thermo-mechanical behav-
iour of porous media on tessellated continua. It involves the application of iteration function schemes using
affine contraction and expansion maps, respectively, for the creation of porous fractal materials and associated
tessellated continua. Highly complex geometries can be produced using a modest number of contraction map-
pings. The associated tessellations form the mesh in a numerical procedure. This paper tests the hypothesis that
thermal analysis of porous structures can be achieved using a discontinuous Galerkin finite element method
on a tessellation. Discontinuous behaviour is identified at a discontinuity network in a tessellation; its use is
shown to provide a good representation of the physics relating to cellular heat exchanger designs. Results for
different cellular designs (with corresponding tessellations) are contrasted against those obtained from direct
analysis and very high accuracy is observed.

Keywords Heat exchangers · Heat transfer · Transport theory · Porous fractals · Analytical solutions ·
Finite elements

1 Introduction

In the recently developed method of tessellated continuummechanics, physics defined on fractal porous media
is mapped to a corresponding continuum [1,2]. The classical Galerkin finite element method (GFEM) can
then be combined with tessellated continuummechanics to describe thermal physics in cellular structures. The
drawback with the Galerkin approach, however, is that discontinuous behaviour arising from the closing of the
pores during the mapping (which is pervasive on tessellations) cannot readily be accommodated. This paper
extends the work in references [1,2] by incorporating a network of lines/surfaces on a tessellation at which
discontinuous behaviour occurs. The discontinuities can be viewed as enforcing internal boundary conditions
where (say) heat fluxes on different parts of a pore’s surface are mapped to a single line. The new feature is
called a discontinuity network and is designed to capture more completely the physics on cellular materials.

Many natural materials possess hierarchical microstructures extending over length scales that cover many
orders of magnitude [3]. Those microstructures observed with geometric similarity over a range of scales are
denoted as self-similar [4]. Self-similar objects possessing interesting mathematical properties have received
the attention of researchers inmany fields includingmathematics, biology, chemistry and engineering. Analysis
of these types of structures falls under the heading of multi-scale modelling [5], where physical self-similarity
can in principle be used to describe scaling relationships connecting behaviours across a range of length scales.

Communicated by Andreas Öchsner.
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Of particular interest in this paper is the behaviour of self-similar porous structures subject to fluid-induced
thermal loading.

The performance of heat exchangers involving thermo-fluids and cellular materials is an area of practical
interest, designs of which can be found in everyday use for the cooling of printed circuit boards [6]. Self-similar
porous materials that maximise fluid–solid contact areas offer potentially very high rates of heat transfer. This,
when combined with high thermal conductivities and good enhancement of fluid mixing, may be exploited for
heat exchanger designs [7]. Examples of commercial heat exchangerswhich incorporate a complex geometrical
structure include miniature shell and tube heat designs [8]. Alternative configurations are honeycomb metallic
structures [9],metallic foams [10] and plate-fin designs [8]. These designs play an important part in applications
requiring high-density energy transfers, and growth in their use and application is expected [8]. Experimental
evidence showcasing the benefits of cellular designs can be found in reference [11].

The complex geometries involved in porous/cellular heat exchangers raise particular challenges for analy-
sis. These challenges include: the accurate representation of the geometry; the application of boundary con-
ditions; meshing problems that arise with large and thin sections; and any computational constraints imposed
by the large number of elements involved. The standard approach to the analysis of flow through porous
heat exchangers would typically not include a direct description of the geometry of the porous media (see
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Fig. 1 Pre-fractal and corresponding tessellated domains containing discontinuity networks for the Sierpinski gasket
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references [12–14]). Classical approaches founded on continuum equations, and involving coarse-grained
geometrical parameters such as porosity and permeability [15] provide limited accuracy. Recent alternatives
to these classical treatments include discrete techniques such as the lattice Boltzmann method (LBM), which
is particularly attractive for low Reynolds number flows involving complex boundary conditions [16]. An
example of pore-scale turbulent flow modelled using LBM is provided in [11], where four types of porous
structures are considered. Unfortunately, despite the LBM offering some advantages, it still suffers in a similar
manner to continuum approaches as a consequence of the complex geometries involved [17].

In order to represent better the types of complex geometries found in cellular material, the authors have
investigated the use of fractals [2,18], which arise in many other areas of science [19] and play a part in
describing a variety of behaviours in nonlinear systems [20]. Fractals can be constructed in a number of ways,
but a particularly attractive procedure is by application of a small number of affine contraction maps [2,20,21].
Although complex geometries can readily be represented using fractals, their subsequent use in practical
analysis is beset with difficulties. The principal concern is the lack of meaningful measures on the fractal,
where traditional notions of length, area and volume are undefined as a consequence of non-integer Hausdorff
fractal dimensions [22]. Consequently, traditional physical quantities such as fluxes (rates per unit area) and
densities (per unit volume) are likewise ill-defined. Attempts to overcome these difficulties can be found in
the literature [23,24]. One possible method to avoid the problem altogether is to use pre-fractals, which are
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created with fractal construction procedures, but do not suffer from non-integer Hausdorff fractal dimensions.
A popular indirect approach is through the use of fractional derivatives [25,26] in the governing equations
describing the physics. An example is the fractional model considered in reference [27] for describing the flow
of two incompatible liquids through homogenous porous media. The drawback of approaches of this type is
that the governing equations are not directly derivable from the underlying physics. An alternative approach
is to consider transport equations in their integral (Euler) form. A variant of this approach is considered by
Tarasov [28,29] and underpins the fractional derivative approach outlined by Ostoja-Starzewski [30,31].

In this paper, the physics on the cellular material—whose geometry is represented by a pre-fractal—is
linked to the physics on a tessellation by means of a hole-fillmap. The map is identified as hole-filling because
when applied to a pre-fractal it has the effect of closing the holes within the porous pre-fractal structure. Hole-
fill maps can be constructed by means of function composition or by identifying corresponding elements in the
pre-fractal and tessellation. Function composition is more suitable for analysis, so focus is directed towards
the latter, which is preferred for the type of numerical work considered here.

A novel aspect of the work is the creation of a discontinuity network, which is a network of lines/surfaces
where discontinuous behaviour is possible. The discontinuity network is simultaneously created during the
formation of the fractal and associated tessellation, resulting in an elegant procedure controlled through a
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relatively small number of maps. The physics on the tessellations/pre-fractals is represented using weighted
transport equations, which can be formulated directly without recourse to partial differential equations (PDEs).
This aspect is important particularly if fractals (rather than pre-fractals) are involved, as the governing PDE
in this latter case may not be obvious; indeed, it may not even be definable using traditional derivatives. The
paper as a whole investigates how the finite element method can be applied to a tessellated mesh (where tiles
double up as elements) incorporating a discontinuity network. A critical aspect of this work is that the physics
on the porous structure are represented exactly in the continuum. This facilitates very precise analysis and is
particularly important when high accuracy is required.

The procedures for construction of pre-fractals, tessellations and discontinuity networks for three classical
fractals are presented in Sect. 2. The transport theory linking the tessellated space with the physical space is
described in Sect. 3, with particular focus on heat transfer. This is followed by weighted transport equations
in Sect. 4, which can be formulated directly and lead immediately to the finite element method. The role a
discontinuity network plays in the finite element method is discussed. Transient and steady-state analytical
solutions are given in Sect. 5 on a simple dust fractal and contrasted with numerical predictions. The role
and importance of discontinuity networks are investigated in Sect. 6. In the absence of analytical results,
numerical predictions—both with and without a discontinuity network—are compared with results obtained
for a pre-fractal via the commercial package ABAQUS. The influence of different tessellation refinements
is investigated in Sect. 7, where an efficient procedure for tessellation refinement is examined. Section 8
examines the influence of alternative expansion maps and confirms that they do not influence the accuracy of
the numerical predictions.

2 Discontinuity network

Tessellated continuummechanics is foundedon the idea that physics described on apre-fractal Êk canbe exactly
represented on a tessellation T̂k at least down to the smallest element/domain considered. The construction
of Êk is achieved by the recursive application (k times) of a relatively small number of contraction maps
Si , referred to as an iteration function scheme [11]. The recursive procedure starting from an initial domain

Ê0 is described by Êk = ⋃
i Si

(
Êk−1

)
. One of the attractive aspects of the tessellated approach is that

the tessellation is created in a corresponding fashion starting from T̂0 = Ê0 with the recursive relationship

T̂k = ⋃
i Pi

(
T̂k−1

)
, where in this case Pi are affine expansion maps. By design, the number of tiles in the
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tessellation T̂k is exactly the same as the number of pre-fractal elements in Êk ; there is thus a one-to-one
correspondence between tiles and pre-fractal elements, achieved by using an identical number of expansion
and contraction maps. The one-to-one correspondence means that analysis results obtained on a tessellation
T̂k can be immediately lifted and returned to the corresponding pre-fractal Êk .

Typical tessellations for some classical fractals are depicted in Figs. 1, 2 and 3 with affine contraction and
tessellation maps provided in Appendices A–C. An aspect deduced on examination of Figs. 1, 2 and 3 is that
Ê0 (not shown in figures) is supplied with an initial tessellation. The initial domain Ê0 has six tiles for the
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0Ê

1Ê
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3Ê

0l

1
02− l 1

02− l

2
02− l 2

02− l 2
02− l 2

02− l

3
02− l 3

02− l 3
02− l 3

02− l 3
02− l 3

02− l 3
02− l

3
02− l

0
22

l 0
22

l
0
22

l 0
22

l

0
32

l
0
32

l 0
32

l 0
32

l 0
32

l 0
32

l 0
32

l 0
32

l

0
4 4 4

2
× ×l

0
5 4 4

2
× ×l

0Ê
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pre-fractals in Fig. 1 and eight for those in Figs. 2 and 3, and each tile is purposely triangular. The initial tiling
has two distinct functions: first it serves to form a piecewise linear hole-fill map and second it provides a means
to modify the number of tiles in T̂k for the purpose of numerical analysis.

The creation of pre-fractals and tessellations is achieved independently using bespoke iteration function
schemes involving the (non-unique) maps given in “Appendices A–C”. A hole-fill map—on application to
a pre-fractal—has the effect of closing holes and producing the corresponding tessellation. Although it is
possible to form a hole-fill map explicitly through composition of contraction and expansion maps (and their
inverses), there is littlemerit in so doing. The independent creation of pre-fractals and tilesmeans that triangular
elements in each domain are related. This relationship is shown explicitly in Figs. 1, 2 and 3 bymeans of arrows
connecting a selection of tiles in each domain. A hole-fill map for a tile is simply a linear relationship which
maps points from a pre-fractal element to a tile; the map is linear as a consequence of the triangular domains
involved.

Figures 1, 2 and 3 also highlight a discontinuity network D̂k in each tessellation T̂k . It is important to
appreciate that like T̂k and Êk a discontinuity network D̂k is created recursively and satisfies the relationship

D̂k = D̂1 ∪ ⋃
i Pi

(
D̂k−1

)
, k ≥ 2. Thus a network is formed by forming a union with D̂1 and images of the

previous network under the maps Pi . Examination of Figs. 1, 2 and 3 reveals that networks are associated with
hole edges in pre-fractals. The closing of holes has the effect of bringing together the edges which appear on
the discontinuity network in a tessellation. This makes clear why discontinuous behaviour is ubiquitous on any
tessellation—there is little expectation that temperature and heat transfer rates are identical on opposite edges
of a hole. The network D̂1 in T̂1, in Fig. 1 for example, is obtained from the boundary of T̂0 = Ê0, and the
network D̂2 in T̂2 includes D̂1 and the three expansion maps {P1, P2, P3} (see “Appendix A”) applied to D̂1,

i.e. D̂2 = D̂1∪P1
(
D̂1

)
∪P2

(
D̂1

)
∪P3

(
D̂1

)
. Similarly, the network D̂3 in T̂3 again includes D̂1 and the three

expansion maps {P1, P2, P3} applied to the network D̂2 in T̂2 (i.e. D̂3 = D̂1∪ P1
(
D̂2

)
∪ P2

(
D̂2

)
∪ P3

(
D̂2

)
).

It is thus apparent that creation of discontinuity networks parallels the recursive procedure for creation of a
tessellation.

3 Transport theory

The ability to match physics on pre-fractals and tessellation was established in reference [2]. The basic idea
is to describe the physics of interest in each domain on control volumes, which identify continuous spaces
through which matter can flow. Control volumes are employed because they are concerned with the description
of physics on a continuum (a continuous space) rather than on a discontinuous set. Thus, the difficulty posed by
fractal geometry can in principle be overcomewith physics described using traditionalmeasures. Underpinning
the approach adopted here is the continuum hypothesis (advanced by Cantor in 1878 [32]), which asserts that
any infinite set (in 1-D) forms a bijection with either the set of natural numbers or the set of real numbers.
The fact that the Cantor dust (for example) forms a bijection with the real line was proved by Cantor in 1883
[33]. The concept underpins the strategy adopted in this paper where pre-fractals (and in the limit, fractals)
are mapped to continuous tessellations.

Table 1 Heat transfer coefficient (HTC) for pre-fractal holes on Êk

k dholes (m) P̂ (m) ĥwats (W/m2 K)

1 0.17 2.67 574.6
2 0.17 2.67 574.6

0.02 2.22 46.9
3 0.17 2.67 574.6

0.02 2.22 46.9
2.62 × 10−3 2.07 3.7

4 0.17 2.67 574.6
0.02 2.22 46.9
2.62 × 10−3 2.07 3.7
0.30 × 10−3 2.02 0.3
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Consider two control volumes �s and �r , with �s located in the physical domain in which the cellular
material resides (represented by Êk); �r is located in the tessellated space. For clarity, attention is restricted
to heat transfer problems, although more complex physics is possible via the inclusion of additional transport
equations. The transport equations for transient heat transfer through stationary control volumes (the latter
again chosen for simplicity) are given by

d

dt

∫

�s

ρshsdVs = −
∫

�s

q̇
s
· d�s +

∫

�s

ρs Q̇sdVs, (1)
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Table 2 Temperature differences for Cantor dust: steady state measured on Êk

k Analytical versus
UoMFEC (coarse)

Analytical versus
UoMFEC (fine)

Analytical versus
ABAQUS-lifted (fine)

Analytical versus
ABAQUS-direct (fine)

D̄ 10−2 K D̄% 10−2 % D̄ 10−2 K D̄% 10−2 % D̄ 10−2 K D̄% 10−2 % D̄ 10−2 K D̄% 10−2 %

1 1.95 0.64 0.51 0.17 0.04 0.01 5.722 18.62
2 0.35 0.12 0.09 0.03 0 00 0 00 15.75 5.17
3 0.14 0.05 0.05 0.02 0 00 0 00 3.95 1.31
4 0.05 0.01 0.13 0.04 0 00 0 00 64.98 82.19
5 0.07 0.02 0.09 0.03 0 00 0 00 51.24 45.31
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and
d

dt

∫

�r

ρr hrdVr = −
∫

�r

q̇
r
· d�r +

∫

�r

ρr Q̇rdVr (2)

where h is the specific enthalpy, Q̇ is a heat source and the heat flux is defined as q̇ · n = ĥ (T − T∞) with ĥ
a heat transfer coefficient and T∞ is the bulk temperature of an external cooling/heating medium.

The differentials dVs and dVr are measures of volume on the two control volumes and are thus well
defined. The tessellation is continuous and dVr = dVtess, where dVtess is a volume measure on the tessellated
set. Defining dVfrac as a measure of volume on a pre-fractal, dV frac = μdVs , where μ is a support function
taking the value of zero or one. It follows from the discussion in Sect. 2, however, that hole-fill maps (being
a material map) relate dV frac to dVtess with a relationship of the form dV tess = |F| dV frac. This expression
happens to be valid for precisely the situation where dV r = dV tess and dV s = dV frac, and it follows that
dVr = |F| dV s . The interpretation placed on Eq. (1) therefore is that the integrands involved may not be
defined for points off the pre-fractal, which is in fact an interpretation typical to classic control volume theory.
In view of the continuous tessellation and the validity of the relationship dVr = |F| dV s almost everywhere
on the tessellation, any support function is removable, as it takes the value of one. Substitution of Nanson’s
identities [34] dVr = |F| dV s , d�r = |F| d�s · F−1, into Eq. (2), where Fi j = ∂xi/∂s j , d�s = nsd�s and
d�r = nrd�r , and where the hole-fill map is of the form x : s �→ x, gives

d

dt

∫

�s

ρr hr |F| dVs = −
∫

�s

|F|
(
F−1 · q̇

r

)
· d�s +

∫

�s

ρr |F| Q̇rdVs (3)

which can be compared with Eq. (1).

Table 3 Temperature differences for Cantor dust: transient solution

x = 0.25 on T̂k and k = 1 x = 0.125 on T̂k and k = 2 x = 0.0625 on T̂k and k = 3

D̄ (K) D̄% (%) D̄ (K) D̄% (%) D̄ (K) D̄% (%)

Analytical versus
UoMFEC (coarse)
on Êk

16.17 43.99 10.60 13.71 2.99 3.31

Analytical versus
UoMFEC (fine) on
Êk

6.05 24.02 4.31 8.47 1.26 2.03

Analytical versus
ABAQUS-lifted
(fine) on Êk

0.29 1.94 0.68 2.59 0.66 1.43

Analytical versus
ABAQUS-direct
(fine) on Êk

1.83 6.41 0.84 2.41 0.68 1.44

Table 4 Heat transfer coefficients for the Sierpinski carpet heat exchanger on Êk

k dholes (m) P̂ (m) ĥwats (W/m2 K)

1 0.33 1.33 12,735.0
2 0.33 1.33 12,735.0

0.11 0.44 1460.1
3 0.33 1.33 12,735.0

0.11 0.44 1460.1
0.04 0.15 167.4

4 0.33 1.33 12,735.0
0.11 0.44 1460.1
0.04 0.15 167.4
0.01 0.05 19.2

5 0.33 1.33 12,735.0
0.11 0.44 1460.1
0.04 0.15 167.4
0.01 0.05 19.2
0.41 × 10−2 0.02 2.2
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Recognising that amass-conservingmap satisfiesρrdVr = ρsdVs , it follows thatmatching physics between
the tessellated continuum and physical spaces is achieved with ρr = |F|−1 ρs , hr = hs , Q̇r = Q̇s and
q̇
r

= |F|−1 F · q̇
s
. The convective heat transfer boundary condition can be provided in the form of

q̇
r
· d�r = ĥr (Tr − T∞) d�r = |F|−1

(
F · q̇

s

)
· (|F| d�s · F−1) = ĥs (Ts − T∞) d�s, (4)

which is satisfied for Tr = Ts and ĥrd�r = ĥsd�s giving ∇sTs = FT · ∇r Tr , and (in view of the identity
q̇
r

= |F|−1 F · q̇
s
) leads to q̇

r
= −K r · ∇r Tr . The relationship of thermal conductivity between tessellation

and pre-fractal is
K r = |F|−1 FK sFT (5)

where K r is the associated orthotropic conductivity tensor on the tessellated domain and K s is the isotropic
conductivity on the pre-fractal.

4 The finite element with discontinuity networks

In the absence of a governing partial differential equation, the finite element method can be applied directly to
a transport equation via the inclusion of a weighting function [35]; such an approach applied to Eq. (1) gives

d

dt

∫

�s

WsρshsdVs = −
∫

�s

Wsq̇s · d�s +
∫

�s

∇sWs · q̇
s
dVs +

∫

�s

Wsρs Q̇sdVs, (6)

where Ws is a weighting function which is assumed continuous at least up to the first derivative.

Fig. 8 Contour temperatures (UoMFEC) with and without a discontinuity network (DN). i On T̂3 without DN. ii On Ê3 without
DN. iii On T̂3 with DN. iv On Ê3 with DN
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The weighted transport equation for Eq. (2) is similar and takes the form

d

dt

∫

�r

Wrρr hrdVr = −
∫

�r

Wr q̇r · d�r +
∫

�r

∇rWr · q̇
r
dVr +

∫

�r

Wrρr Q̇rdVr . (7)

Substitution into Eq. (7) of the relationships established in Sect. 3 (i.e. ρr = |F|−1 ρs , hr = hs , Q̇r = Q̇s ,
q̇
r

= |F|−1 F · q̇
s
and ∇s ≡ F−T · ∇r along with Nanson’s identities) gives

d

dt

∫

�s

WrρshsdVs = −
∫

�s

Wr q̇s · d�s +
∫

�s

∇sWr · F−1F · q̇
s
dVs +

∫

�s

Wr Q̇sdVs (8)

which matches Eq. (6) on setting Wr = Ws .
The finite element method describing the physics on a tessellation T̂k (and hence Êk) is obtained by setting

Wr = Ws = Ni to give

d

dt

∫

�e
r

Niρr hrdVr = −
∫

�e
r

Ni q̇r · d�r −
∫

�e
r

∇r Ni · K r · ∇r TrdVr +
∫

�e
r

Niρr Q̇rdVr (9)

Fig. 9 Contour temperature plots for Ê3 using ABAQUS-direct. i Mesh on Ê3 with 8 elements per pre-fractal element. ii
Temperature contours on Ê3 with 8 elements per pre-fractal element. iii Temperature contours on Ê3 with 152 elements per
pre-fractal element
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where Ni is a shape function and �e
r is a tile in T̂k ; the tiles by choice double up as elements in the proposed

numerical procedure.
Three-noded triangular elements are used in the analysis of a tessellation, which reflects the restriction

imposed by the retention of linear hole-fill maps. Those elements that share no edges with a discontinuity
network are continuous in both Wr and Tr and are consistent with a standard Galerkin finite element method.
For elements connected by an edge on a discontinuity network, continuity cannot be assumed. Each element in
this case is subject to a mapped convective boundary condition from the associated hole in the corresponding
pre-fractal in accordance with Eq. (4).

Table 5 Temperature differences on Êk : influence of discontinuity network

k 1 2 3

No discontinuity network
Coarse mesh
D̄ (K) 3.17 3.27 4.69
D̄% (%) 0.86 0.91 1.34

Fine mesh
D̄ (K) 5.13 3.30 5.09
D̄% (%) 1.23 0.91 1.44

With discontinuity network
Coarse mesh
D̄ (K) 3.17 0.55 0.09
D̄% (%) 0.86 0.16 0.03

Fine mesh
D̄ (K) 5.13 0.67 0.47
D̄% (%) 1.23 0.19 0.13
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Fig. 10 Temperature plots along x = y for pre-fractals Êk using UoMFEC and ABAQUS-direct

Table 6 Maximum temperature difference at D̂k for the Sierpinski carpet

k 1 2 3

Tdiff (K) 0 30.26 26.04
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4.1 Numerical solution methods

The proposed finite element approach has been programmed into MATLAB at the University of Manchester
(UoM). The code incorporates a facility for the creation of tessellations that double up as meshes along with
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1Ê

1Ê
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discontinuity networks for the purpose of numerical analysis with the UoM finite element code (termed here
UoMFEC).

The commercial finite element package ABAQUS (version 6.13) has also been used for the purpose of
confirming the validity of the theory. The methods proposed in the preceding sections do not directly analyse
the pre-fractals but rather their tessellations. The ABAQUS code is able to analyse directly the pre-fractal
and thus provide benchmark solutions. The elements selected for the analysis with ABAQUS are also linear
three-noded elements.

It should be appreciated that the proposed work is aimed at very precise analysis on a continuum and takes
advantage of the manner in which tessellations and pre-fractals are generated. The process is efficient in this
regard involving recursive processes; tessellations, pre-fractals and discontinuity networks are all produced
recursively. It is recognised, however, that the use of a tessellation, which is recursively produced, as a mesh,
does place a constraint on the possible distribution of elements forming themesh. This can possibly result in too
few elements being located in regions of greatest need or equally too many in regions where there is no need.

Prior to testing out the full numerical theory on realistic fractals, however (as depicted in Figs. 1, 2, 3), it
is of interest to test out the ideas initially on a relatively simple fractal on which analytical solutions can be
developed.

5 Exact solutions on Cantor dusts

This section is concerned with the development of the analytical solution on the Cantor dust in one dimension,
with internal heat source and convection boundary conditions. The exact solution is compared with the finite
element method developed in the earlier sections. The governing partial differential equation arising from the
heat transport Eq. (2) is of the form

ρr
∂hr
∂t

= divr (K r · ∇r Tr ) + Q̇0 (10)

where Q̇0 is a heat source loading density on tiles in any tessellation.

Table 7 Transient temperature differences on Êk : influence of discontinuity network

Point 1 and 2 in Fig. 2 k No discontinuity network With discontinuity network

D̄ (K) D̄% (%) D̄ (K) D̄% (%)

(0, 0) 1 1.88 0.43 1.88 0.43
2 4.54 1.23 0.52 0.14
3 7.67 2.14 0.60 0.17( 1

3 , 1
3

)
1 1.64 0.50 1.64 0.50
2 0.19 0.06 0.10 0.03
3 0.41 0.13 0.02 0.01

Table 8 Heat transfer coefficients for the finger-like fractal heat exchanger on Êk

k dholes (m) P̂ (m) ĥwats (W/m2 K)

1 0.33 1.33 12,735.0
2 0.30 2.00 15,344.0

0.11 0.44 1460.0
3 0.24 2.67 15,145.0

0.10 0.67 1759.0
0.04 0.15 167.0

4 0.20 3.33 14,360.0
0.08 0.89 1736.0
0.03 0.22 202.0
0.01 0.05 19.0

5 0.17 4.00 13,551.0
0.07 1.11 1646.0
0.03 0.30 199.0
0.01 0.07 23.0
0.41 × 10−2 0.02 2.0
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5.1 Pre-fractal and tessellation construction

The pre-fractals Êk for the Cantor dust and corresponding tessellations T̂k with highlighted discontinuity
networks (appearing as discontinuous points) are shown in Fig. 4. The contraction maps that produce Êk in
Fig. 4 are

S1 (x) = x

3
and S2 (x) = 2�0 + x

3
(11)

along with the expansion maps for T̂k are

P1 (x) = x

2
and P2 (x) = �0 + x

2
(12)

with the original set Ê0 = [0, �0] used for both maps.
The expansion maps are not unique although those shown in Eq. (12) are a natural choice, producing tiles

of equal size. When viewed as a mesh it is evident the maps in Eq. (12) provide the coarsest mesh possible
originating from only one element on Ê0. Mesh refinement is possible and one approach is to supply an initial
mesh to Ê0, where, for example, setting Ê0 = [0, �0/2]

⋃
[�0/2, �0] provides the two-element refinement in

Fig. 5a, b. Equivalently, composition of the expansion maps can be used where, for example,

Fig. 12 Contour temperatures (UoMFEC) with and without a discontinuity network (DN). i Temperature contours on T̂3 without
DN. ii Temperature contours on Ê3 without DN. iii Temperature contours on T̂3 with DN. iv Temperature contours on Ê3 with
DN
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P1 ◦ P1 (x) = x

4
, P1 ◦ P2 (x) = �0 + x

4
, P2 ◦ P1 (x) = 2�0 + x

4
and P2 ◦ P2 (x) = 3�0 + x

4
(13)

which, when applied Ê0 produces four elements on T̂1 in Fig. 5c, d).
Examples of refined tessellations and corresponding pre-fractals are shown in Fig. 5. Observe also the

discontinuity network D̂k highlighted at particular points in the tessellations, which correspond to pre-fractal
holes. The correspondence of elements means it is relatively straightforward to stipulate an hole-fill map
between Êk and T̂k ;

xk (s) = x (i)
k + x (i+1)

k − x (i)
k

s(i+1)
k − s(i)

k

(
s − s(i)

k

)
, (14)

where s ∈
[
s(i)
k , s(i+1)

k

]
and it is assumed here that nodes are enumerated from left to right, so that s(i+1)

k −s(i)
k =

�k if x
(i+1)
k �= x (i)

k , with �k being the length of an element in Êk [1]. For this relatively simple case, the hole-fill
map can be written in terms of a support function μk as [1]

(i) (ii)

(iii) 
Fig. 13 Contour temperature plots for Ê3 using ABAQUS-direct. i Mesh on Ê3 with eight elements per pre-fractal element. ii
Temperature contours on Ê3 with eight elements per pre-fractal element. iii Temperature contours on Ê3 with 152 elements per
pre-fractal element
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xk (s) =
(
3

2

)k s∫

0

μk (r) dr =
(

�k

�0

)D1−1 s∫

0

μk (r) dr , (15)

where D1 is the Hausdorff fractal dimension (see Ref. [36] for derivation).
The relationship between material on pre-fractals and tessellations is readily obtained with knowledge of

the hole-fill map (Eq. (15)). Conservation of mass on Êk and T̂k gives ρr = |F |−1 ρs =
(
�k�

−1
0

)1−D1
ρs with

scalar Ks and Kr related byKr = |F |−1 FKs FT=
(
�k�

−1
0

)D1−1
Ks . Note that in view of the fact that �k is

constant for each element of the kth pre-fractal, the density ρr and thermal conductivity Kr are homogenous
for the corresponding tessellation.

Table 9 Temperature differences on Êk : influence of discontinuity network

k 1 2 3

No discontinuity network
Coarse mesh
D̄ (K) 2.25 7.11 5.09
D̄% (%) 0.66 2.14 1.57

Fine mesh
D̄ (K) 3.64 8.50 7.05
D̄% (%) 1.09 2.54 2.12

With discontinuity network
Coarse mesh
D̄ (K) 2.24 0.69 0.12
D̄% (%) 0.65 0.22 0.04

Fine mesh
D̄ (K) 3.28 1.71 2.15
D̄% (%) 0.98 0.51 0.62
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2Ê

2Ê
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3Ê

3Ê
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Fig. 14 Temperature plots along x = y for pre-fractals Êk using the UoMFEC and ABAQUS-direct
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5.2 Analytical solution for a 1-D Cantor dust model

In view of the ultimate objective to describe the behaviour of cellular heat exchangers, it is fitting to assume
that coolant flows in a normal direction through the voids in the pre-fractals for the Cantor dust depicted in

Table 10 Maximum temperature difference at D̂k for the finger fractal

k 1 2 3

Tdiff (K) 0 33.72 24.65
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Figs. 4 and 5. A uniform heat source is applied to each pre-fractal element, defined to ensure that the total
rate of energy supplied is constant on Êk (and consequently on T̂k). The loading appears as a constant value
of Q̇0 in Eq. (10) as a consequence of the total volume remaining constant on a tessellation. At nodes in the
discontinuity network, cooling is set as a boundary condition for each adjoining element and is of the form
q̇r = ĥx (Tr − Twat), where Twat is the bulk coolant temperature and ĥx is a heat transfer coefficient associated
with a pre-fractal hole. In this case, Eq. (4) gives q̇r = q̇s , i.e. the cooling experienced at a pre-fractal hole
is also experienced at the discontinuity network. External surfaces are exposed to a heat flux of the form
q̇0 = ĥ0 (Tr − T∞), where T∞ is the ambient temperature of the surrounding medium and ĥ0 is the associated
heat transfer coefficient. To arrive at an analytical solution on the tessellated structure requires the union of
solutions obtained on individual tiles in the tessellation.

5.2.1 Steady-state solution for a 1-D Cantor dust

According to Eq. (10), the governing equation on T̂k is

KrT
′′
r + Q̇0 − 2ĥ0

w
(Tr − T∞) = 0, (16)

where w is the width of the bar and is part of an additional term to capture convective heat transfer from the
top and bottom faces of the bar.

The form the solution takes on a tile can be assumed to be Tr = Tcf + Tsource, where the complementary
function is of the form Tcf (x) = a cosh(αx) + b sinh(αx) and satisfies KrT ′′

cf − 2ĥ0w−1Tcf = 0 with

α =
(
2ĥ0/wKr

) 1
2
, andwherea andb are integration constants. The temperatureTsource takes the formTsource =

T∞ +2−1ĥ−1
0 wQ̇0 (on assumption ĥ0 is nonzero) and satisfies KrT ′′

source + Q̇0 −2ĥ0w−1 (Tsource − T∞) = 0,
which is readily verified on substitution. The solution is

Tr (x) = ai cosh (α (x − xi )) + bi sinh (α (x − xi )) + Tsource (17)

where ai and bi are determined by two boundary conditions ĥi
(
T x=xi
r − T i

wat

) = −Kr (∂Tr/∂x)x=xi and

ĥi+1

(
T x=xi+1
r − T i+1

wat

)
= Kr (∂Tr/∂x)x=xi+1

, which applies at the edges of a tile.

5.2.2 Steady-state validation tests

The analytical solution is compared with results from ABAQUS and UoMFEC. The material properties for
the Cantor dust material (copper) are: thermal conductivity Ks = 400W/mK, density ρ = 8930 kg/m3 and
specific heat capacity cp = 385 J/kgK. The dimensions for the bar are taken to be: edge length l0 = 1m and
width w = 1 m. The ambient temperature of the surrounding medium is taken to be T∞ = 323K, with the
heat transfer coefficient ĥ0 = 200W/m2 K. A uniform heat-loading rate Q̇0 = 400W/m3 is applied to the bar
as an internal heat source to account for thermal loading. The required heat transfer coefficients ĥwats for the
pre-fractal holes are determined using an empirical relationship obtained on combination of the Dittus–Boelter
and the Darcy–Weisbach equations [37], which provides

ĥwats =
(

0.0535
k0.67 Â0.8ρ0.457c0.33p

μ0.584L0.457

)

�p0.457
(
dholes

)0.371
(18)

Table 11 Transient temperature differences on Êk : influence of discontinuity network

Point 1 and 2 in Fig. 3 k No discontinuity network With discontinuity network

D̄ (K) D̄% (%) D̄ (K) D̄% (%)

(0, 0) 1 0.82 0.23 1.03 0.28
2 25.88 7.53 3.49 0.98
3 49.67 14.51 17.44 4.85

(0.5, 0.5) 1 5.84 1.81 3.96 1.23
2 1.06 0.35 1.03 0.34
3 0.22 0.07 0.22 0.07
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Fig. 16 Pre-fractals and tessellations for the Sierpinski gasket with different meshes. i Ê0 with 18 tiles. ii T̂1 with 3 × 18 tiles.
iii Ê1 with 3 × 18 elements. iv Ê0 with 162 tiles. v T̂1 with 3 × 162 tiles. vi Ê1 with 3 × 162 elements
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where dholes = 4 Â/P̂ is the hydraulic diameter, Â is cross-sectional area, P̂ is the wetted perimeter (in this
case the perimeter of the cooling channel), k is the thermal conductivity of the bulk fluid, μ is the viscosity, ρ
is the density and cp is the specific heat capacity at constant pressure.

For water flowing through the hole at temperature Twat = 293K, with pipe length L = 1m and pressure
drop �p = 50 kPa, the heat transfer coefficient ĥwats with different sizes of dholes on pre-fractals for the dust is
calculated using Eq. (18) and given in Table 1.

Temperature plots on pre-fractals Êk for the analytical solution, for solutions fromUoMFECwith different
initial meshes on Ê0 and solutions from the commercial packageABAQUS are depicted in Fig. 6, with different
values of k. The pre-fractal temperatures from the analytical solution and from UoMFEC are mapped from
temperatures obtained on the corresponding tessellated structure T̂k . To obtain similar results from ABAQUS,
two options are available for the Cantor dust: (i) indirect temperature determination via a tessellation with
results lifted to the corresponding pre-fractal and (i.e. a procedure similar to that used by UoMFEC and termed
ABAQUS-lifted) and (ii) temperatures obtained directly on the pre-fractal (termedABAQUS-direct). Although
not an issue for the Cantor dust (but certainly so for more complex fractals), the use of ABAQUS for the two
approaches has particular drawbacks: with ABAQUS-lifted, complex orthotropic material properties for the
tessellation have to be determined and input as a separate exercise; with ABAQUS-direct, complex geometries
have to be loaded into the software.

The various approaches are tested on the pre-fractals and tessellation depicted in Fig. 5, where temperatures
lifted from tessellations are of principal interest. The results are provided in Fig. 6 and Table 2which, in general,
establish the credibility of the tessellation strategy via the high accuracy returned. The averages D̄ and D̄%
given in Table 2 are obtained with the relationships

D̄ = 1

n

n∑

i=1

∣
∣
∣T (a)

i − T (b)
i

∣
∣
∣ (19)

and

D̄% = 2 × 100

n

n∑

i=1

∣
∣
∣
∣
∣

T (a)
i − T (b)

i

T (a)
i + T (b)

i

∣
∣
∣
∣
∣

(20)

where superscripts (a) and (b) distinguish the methods (analytical solution, UoMFEC, ABAQUS-lifted and
ABAQUS-direct) and n is the number of the data points.

Examination of Table 2 reveals relatively small errors, with the largest of these for ABAQUS-direct (i.e.
for ABAQUS applied directly to the pre-fractals); this is a consequence of a modelling error arising from the
approximate enforcement of continuity on a disconnected set.

Table 12 Heat transfer coefficients for the Sierpinski gasket heat exchanger on Êk

k dholes (m) P̂ (m) ĥwats (W/m2 K)

1 0.29 1.50 11,823.4
2 0.29 1.50 11,823.4

0.14 0.75 5249.4
3 0.29 1.50 11,823.4

0.14 0.75 5249.4
0.07 0.38 2330.6

4 0.29 1.50 11,823.4
0.14 0.75 5249.4
0.07 0.38 2330.6
0.04 0.19 1034.8

5 0.29 1.50 11,823.4
0.14 0.75 5249.4
0.07 0.38 2330.6
0.04 0.19 1034.8
0.02 0.09 459.4
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5.2.3 Transient solution for a 1-D Cantor dust

The transient equation on the tessellated construction T̂k with a discontinuity network for each tile is given by

ρr cr
∂Tr
∂t

= Kr
∂2Tr
∂x2

+ Q̇0 − 2ĥ0
w

(Tr − T∞) (21)

(i) (ii) 

(iii) (iv) 

(v) (vi) 
Fig. 17 Contour temperatures (UoMFEC) on T̂3 and Ê3 with different meshes. i Contours on continuum with six tiles on Ê0.
ii Contours on corresponding pre-fractal with six tiles on Ê0. iii Contours on continuum with 18 tiles on Ê0. iv Contours on
corresponding pre-fractal with 18 tiles on Ê0. v Contours on continuum with 162 tiles on Ê0. vi Contours on corresponding
pre-fractal with 162 tiles on Ê0
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(i) (ii) 

(iii) (vi) 

(v) (iv) 

(iiv) 
Fig. 18 ABAQUS-direct temperature plots on Ê3 directly for various meshes. i Mesh on Ê3 with six tiles per pre-fractal element.
ii Contour temperature on Ê3 with six tiles per pre-fractal element. iii Mesh on Ê3 with 16 tiles per pre-fractal element. iv Contour
temperature on Ê3 with 16 tiles per pre-fractal element. v Mesh Ê3 with 150 tiles per pre-fractal element. vi Contour temperature
Ê3 with 150 tiles per pre-fractal element. vii Contour temperature Ê3 with 1536 tiles per pre-fractal element
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in which it is assumed that steady-state temperatures are attained instantaneously at holes in pre-fractals with
very high heat transfer coefficients. This assumption is an approximation but allows for an analytical solution
of the form Tr (x, t) = –T (x, t)+–S (x), where –S (x) is the steady-state solution of Eq. (17) and –T (x, t) satisfies

ρr cr
∂–T

∂t
= Kr

∂2–T

∂x2
− 2ĥ0

w
–T (22)

which, on assumption that –T (x, t) = X (x) τ (t) presents as

ρr cr
Kr

τ̇

τ
+ 2ĥ0

wKr
= X ′′

X
= −ω2. (23)

This equation provides solutions with the transient part

τ (t) = exp(−β(ω2 + α2)t) (24)

where β = Kr/ρr cr and α =
(
2ĥ0/wKr

) 1
2
.

The tile considered here is
[
xi , xi+1

]
, so it is convenient to set the spatial part of the solution to

X (x) = Ai cos (ω (x − xi )) + Bi sin (ω (x − xi )) . (25)

To satisfy the specific temperatures as end conditions for each element, it is necessary for Ai = 0 and
ωn = 2knπ/�0, with Bi unspecified, where use is made of the tile length lk = �0/2k . It follows that solution
on the interval

[
xi , xi+1

]
is

T i
r (x, t) = –S (x) +

∞∑

n=1

Bi
n sin (ωn (x − xi )) exp(−β(ω2 + α2)t) (26)

where in the limit t → ∞ the temperature T i
r (x, t) → –S(x), i.e. steady-state conditions are obtained after a

sufficient period of time.
For convenience, the initial condition along the bar is set to zero, i.e. T (x, 0) = 0, which means on[

xi , xi+1
]
the Fourier solution is required to satisfy

∞∑

n=1

Bi
n sin (ωn (x − xi )) = − —S (x) (27)

which is a Fourier sine series representation of −–S(x) on the interval
[
xi , xi+1

]
, where Bi

n are obtained from
the Euler formulae

Bi
n = − 2

lk

xi+1∫

xi

–S (x) sin (ωn (x − xi )) .dx (28)

The complete solution is obtained on joining solutions on tiles
[
xi , xi+1

]
with

⋃
i

[
xi , xi+1

] = [0, �0].

Table 13 Temperature errors on the Sierpinski gasket pre-fractals along y = 0 on Êk

k No. of tiles on Ê0 Average difference comparing with ABAQUS-direct

UoMFEC ABAQUS-direct with coarse mesh With coarse mesh With fine mesh

D̄ (K) D̄% (%) D̄ (K) D̄% (%)

1 6 6 2.28 0.60 5.58 1.38
18 16 2.07 0.53 1.82 0.45

162 150 0.44 0.12 0.26 0.07
2 6 6 0.79 0.23 1.76 0.53

18 16 0.58 0.17 0.76 0.23
162 150 0.13 0.04 0.38 0.12

3 6 6 0.37 0.11 1.45 0.45
18 16 0.29 0.09 1.20 0.37

162 150 0.26 0.08 0.71 0.22
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5.2.4 Transient validation tests

Transient results from the analytical solution are compared with results from UoMFEC and ABAQUS. The
assumption adopted in Sect. 5.2.3—that temperatures in cooling channels immediately attain steady-state
temperatures—makes the analytical solution approximate. The same meshes employed for the steady-state
case are also employed for the transient analysis. Transient temperature plots for selected points on Êk are
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Fig. 19 Temperature plots along x = 0 on Êk with different meshes using UoMFEC and ABAQUS-direct. i Temperature plots
along x = 0 on Ê1. ii Temperature plots along x = 0 on Ê3
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presented in Fig. 7, with average differences provided in Table 3; averages are again obtained using Eqs. (18)
and (19).

Errors in results from UoMFEC and ABAQUS on the tessellations T̂k and pre-fractals Êk are larger with
lower values of k but reduce significantly as k increases. This trend is apparent on examination of Fig. 7 and
Table 3. Increasing the value of k has the effect of increasing the number of elements involved, which appears
to override deleterious effects coming from an increase in geometric complexity.

6 The importance of discontinuity networks

The results provided in reference [2] were performed without the use of a discontinuity network, which meant
that temperature and heat transfer discontinuities could not be accommodated. It is of interest therefore to
investigate the influence of discontinuity networks on the accuracy of predictions on realistic pre-fractals. In
the absence of a network, cooling can be achieved along the edge of tiles by application of an appropriate heat
sink as described in reference [2].

For the results presented in this section, the material selected for the heat exchangers is copper as used
in Sect. 4 and the types of exchanger designs considered are limited to prismatic designs with cross sections
represented by pre-fractals. The heat transfer coefficient ĥair associated with flowing air with temperature
Tair = 323K around the pre-fractals is taken to be 100W/m2 K. Each pre-fractal has water flowing through the
voids in order to match typical working conditions pertaining to heat exchangers and is subjected to a uniform
heat loading with internal heat source Q̇0 = 500 kW/m3.

6.1 Thermal analysis of a Sierpinski carpet heat exchanger

The Sierpinski carpet is selected to represent a closed-pore cellular material for the heat exchanger. The con-
traction and expansion maps for the pre-fractals and corresponding tessellations are provided in “Appendix B”.
It is assumed that the water coolant flows through the voids in the pre-fractal depicted in Fig. 2 with temperature
Twat = 293K. The heat transfer coefficients ĥwats for each hole in the pre-fractals (with different hole sizes and
hydraulic diameters dholes ) are given in Table 4. Note that heat transfer coefficients in Table 4 are transferred
to the corresponding edges in a tessellation but first must be scaled to satisfy Eq. (6).

Two different meshes are defined in ABAQUS as follows: (i) one is a coarse mesh with exactly the same
number of tiles as used in UoMFEC and (ii) the other is a sufficiently fine mesh to provide a converged result.
Temperature distributions obtained with UoMFEC on tessellation T̂3 with and without discontinuity networks,
and with results subsequently mapped to pre-fractal Ê3 are depicted in Fig. 8. Similarly, results obtained
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1Ê

2Ê
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directly on Ê3 are obtained using ABAQUS (on two meshes) which are presented in Fig. 9. To provide a
quantitate basis of comparison, the average errors (using the converged ABAQUS solution as a benchmark)
are calculated using Eqs. (18) and (19) along the diagonal line x = y on Êk . These errors are given in Table 5,
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Table 14 Average transient temperature differences at points (see Fig. 1) on Êk

k No. of tiles on Ê0 Average difference comparing with ABAQUS (fine)

UoMFEC ABAQUS-direct with coarse mesh Point (0.5, 0) Point (0.5, 0.433)

D̄ (K) D̄% (%) D̄ (K) D̄% (%)

1 6 6 3.25 1.07 1.32 0.42
18 16 0.74 0.24 1.26 0.41

162 150 0.33 0.11 0.15 0.05
2 6 6 1.91 0.64 0.42 0.14

18 16 0.73 0.24 0.43 0.14
162 150 0.14 0.05 0.20 0.07

3 6 6 0.88 0.29 0.45 0.15
18 16 0.33 0.11 0.08 0.03

162 150 0.08 0.03 0.01 0.24 × 10−2
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and corresponding temperature distributions are presented in Fig. 10. It can be seen that errors increase with
an increase in k for the tessellated approach without discontinuity networks as a consequence of the unrealistic
enforcement of continuity at cooling channel holes. Although in this case reasonable accuracy is obtained in
the absence of a discontinuity network, higher accuracy is achieved with its inclusion.

Continuity assumptions are enforced on tessellations without discontinuity networks, which is equivalent
to temperatures and heat transfer rates on opposite sides of pre-fractal holes having identical values. This lack
of realism gives rise to problem-dependentmodelling errors. It is of interest, however, to quantify themaximum
temperature difference Tdiff at a discontinuity network D̂k to provide a direct indication of the significance of
this aspect; Tdiff is formally defined to be

Tdiff = max
x∈D̂k

∣
∣T+ (x) − T− (x)

∣
∣ (29)

where T+ − T− is the jump in temperature across the discontinuity network D̂k .
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Fig. 23 Pre-fractal and corresponding tessellated domains containing discontinuity networks for a Vicsek fractal with hole-fill
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In the case of the Sierpinski carpet heat exchanger, the values for Tdiff are presented in Table 6. The
magnitude is significant on D̂3 and D̂2 but zero on D̂1 as a consequence of symmetric boundary conditions
and the one symmetrically located hole.

Transient temperature plots mapped on Êk for the different points shown in Fig. 2 are provided in Fig. 11
for UoMFEC on two tessellations, which are compared with convergent ABAQUS-direct results (ABAQUS
applied directly to the pre-fractals with fine mesh). In addition, average differences calculated by Eqs. (19) and
(20) are given in Table 7 at two points in Êk . Similar to the steady-state solution, the discontinuity network has
little impact on transient results on Ê1. However, the influence of the network becomes obvious with increase
in k, where its inclusion provides greater accuracy. Errors tend to be greatest at or close to boundaries of holes,
and an increase in k provides a greater number of holes.

6.2 Finger-like fractal

It is of interest to investigate the open-pore structure depicted in Fig. 3 to represent a cellular heat exchanger.
The open-pore structure is assumed to be placed in a close-fitting container to enforce the flow of coolant
through the structure. The contraction and expansion maps for the pre-fractals and corresponding tessellations
shown in Fig. 3 are provided in “AppendixC”. The heat transfer coefficients ĥwats associatedwith each hydraulic
diameter dholes in the pre-fractals are given in Table 8. Examination of Fig. 3 and Table 8 highlights a peculiar
feature with higher heat transfer coefficients appearing at smaller holes on different tessellations. This is an
unfortunate consequence of the rather irregular wetted perimeter used in the calculation for the hydraulic
diameter.

Temperature distributions for the finger-like porous fractal are provided Figs. 12 and 13. Equations (19) and
(20) are again used to determine the average errors (contrasted against the benchmark converged ABAQUS-
direct results) along the diagonal line x = y on Êk . The temperature differences are presented in Table 9 with

(i) (ii) (iii) 

(iv) (v) (vi) 
Fig. 24 Principal thermal conductivity ratio (Kr/Ks) distribution for Vicsek fractal with hole-fill map formed with expansion
map (a). i Contours on T̂1. ii Contours on T̂2. iii Contours on T̂3. iv Graph on T̂1. v Graph on T̂2. vi Graph on T̂3
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corresponding temperature plots in Fig. 14. It is evident on examination in Table 9 and Fig. 14 that greater
accuracy is achieved with the inclusion of a discontinuity network. Errors are observed to be particularly large
for the continuous Galerkin approach at extreme corners and remain high despite higher values of k. Large
error at the corners is an indication that insufficient elements are being placed there, which is a constraint
imposed by tiles doubling up as elements with tessellations being created recursively.

Equation (29) is again employed to quantify the extent of the temperature differences on D̂k for the finger
fractal with the results given in Table 10. The results are similar to the results obtained for the Sierpinski
gasket (see Table 6) with non-trivial differences on D̂3 and D̂2 but zero on D̂1 because of symmetric boundary
conditions and the location of the (in this case) four holes.

Using the points illustrated in Fig. 3 on Êk , transient temperatures are depicted in Fig. 15, obtained both
from T̂k (UoMFEC) and directly obtained with ABAQUS-direct with fine mesh. The average differences
calculated by Eqs. (19) and (20) are provided in Table 11. The importance of including a discontinuity network
is clear on examination of the results, with maximum errors appearing at corners. The temperatures produced
by the continuous Galerkin method close to the corners are higher than those with a discontinuity network.

Comparing errors produced on the closed-pore structure (Sierpinski carpet) against the open-pore structure
(finger-like fractal) reveals the latter structure’s relative sensitivity to the inclusion of a discontinuity network.

(i) (ii) (iii) 

(iv) (v) (vi) 
Fig. 25 Principal thermal conductivity ratio (Kr/Ks) distribution for Vicsek fractal with hole-fill map formed with expansion
map (b). i Contours on T̂1. ii Contours on T̂2. iii Contours on T̂3. iv Graph on T̂1. v Graph on T̂2. vi Graph on T̂3

Table 15 Heat transfer coefficients for the Vicsek fractal heat exchanger on Êk

k dholes (m) P̂ (m) ĥwats (W/m2 K)

1 0.33 1.33 12,735.0
2 0.31 2.22 17,675.8
3 0.25 3.26 18,953.1
4 0.19 4.84 18,141.7
5 0.13 7.42 16,327.6
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This is not unexpected, since enforcing continuity between points separated across holes is difficult to justify
and is unrepresentative for open-pore constructions of the type depicted in Fig. 3.

7 The influence of mesh

It is apparent from the results in previous sections that UoMFEC provides improved accuracy in its mapped
results when compared with results obtained from ABAQUS applied directly to pre-fractals. A feature of
the tessellated approach, however, is that the tessellated mesh used in any analysis is related to the initial
tessellation on Ê0; it is thus of interest to investigate the influence the initial tessellation has on the accuracy
of predicted results.

Consider again the Sierpinski gasket with an initial tessellation of 6 elements on T̂0 = Ê0. Re-examination
of Fig. 1 reveals tessellations on T̂1, T̂2 and T̂3 consisting of 18 = 3× 6, 54 = 32 × 6 and 162 = 33 × 6 tiles.
The tile numbers arise from the number of maps involved (i.e. 3) and the initial number of tiles (i.e. 6). Each of
these tessellations is produced by the expansion maps provided in “Appendix A”. These tessellations could all
in principle be used as alternative initial tessellations on Ê0. The expansion maps now associated with these
initial tessellations on T̂0 = Ê0 are obtained by function compositions of the maps in “Appendix A”, but there
is no requirement to formulate these explicitly because all tessellations can be produced from the original set
of maps. This aspect is demonstrated in Fig. 16, which shows tessellations produced solely from the maps in
“Appendix A”, without recourse to composite functions. The different initial tessellations on T̂1 and Ê1 in Fig.

(i) (ii) 

(i) (ii) 
Fig. 26 Contour temperatures (UoMFEC) on T̂3 and Ê3 with hole-fill maps constructed with different expansion maps. i Contour
temperatures on T̂3 with expansion map (a). ii Contour temperatures on Ê3 with expansion map (a). i Contour temperatures on
T̂3 with expansion map (b). ii Contour temperatures on Ê3 with expansion map (b)



C. Jiang et al.

16 are obtained from different initial tessellations on Ê0, themselves formed from a tessellation consisting of
six tiles. Thermal analysis performed on the Sierpinski carpet in Sect. 5 is repeated but on the gasket with an
internal heat loading Q̇tot = 300kW/m3 and cooling-channel heat transfer coefficients given in Table 12, for
the various hydraulic diameters involved.

Temperature distributions on T̂3 mapped to Ê3 as determined by UoMFEC are shown in Fig. 17. These
are compared with results from ABAQUS-direct applied directly to Ê3 for a similar numbers of elements as
presented in Fig. 18. All the temperatures from UoMFEC (all UoMFEC results are lifted from the tessellation)
provide very close agreement with ABAQUS-direct results, providing further confidence in the tessellation
method and discontinuity networks. The average errors determined using Eqs. (19) and (20) on the edge y = 0
are given in Table 13. The results correspond to temperatures presented in Fig. 19.

The average error (contrasting UoMFEC against a convergent ABAQUS-direct solution) obtained using
Eq. (19) is recorded to give an indication on how error reduces with mesh refinement. Mesh refinement is
achieved through the increasing the number of tiles on the original set Ê0. The recorded errors on Êk are
depicted in Fig. 20, where convergent behaviour is observed.

Transient temperature profiles are shown in Fig. 21 along with average differences given in Table 14. Both
steady-state and transient results confirm that accuracy improves with tessellated mesh refinement.

Fig. 27 Contour temperature plots (ABAQUS-direct) on Ê3 directly for various meshes. i Mesh on Ê3 with eight elements per
pre-fractal element. ii Contour temperatures on Ê3 with eight elements per pre-fractal element. iii Contour temperatures on Ê3
with 152 elements per pre-fractal element
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8 The influence of different hole-fill maps

One of the features of the tessellated approach is the non-uniqueness of the sub-expansion maps Pi j in the
formation of on an expansion map Pi . This variability is reflected in changes in the tessellation on T̂1 and
changes in Pi change the hole-fill map x : s �→ x and influence the precise manner in which holes are closed.
Recall that hole-fill maps relate points s on a pre-fractal to points x in a tessellation. Any temperature T (x, t)
calculated on a tessellation is related to a temperature on a pre-fractal through the hole-fill map x : s �→ x, i.e.
T (s, t) = T (x (s) , t). Predictions on a pre-fractal are required to be invariant with respect to the non-unique
choice of hole-fill map x : s �→ x. The explicit form the hole-fill map takes for a fixed set of contraction
maps Si depends on the choice of expansion maps Pi . It is of interest therefore to demonstrate explicitly the
invariance of predictions for two significantly different hole-fill maps. It is also of interest to examine the effect
distorted tiles have on the accuracy of predictions. These aspects are examined on pre-fractals for the classic
Vicsek fractal, on tessellations formed with two distinct hole-fill maps.

8.1 Pre-fractal and tessellation construction

The Vicsek fractal is a non-product fractal, constructed by the recursive application of the affine contraction
maps shown in Table 23, “Appendix D”. Pre-fractals and two corresponding tessellations are shown in Figs.
22 and 23. These are formed from an initial tessellation on Ê0 consisting of eight-triangular tiles and are
produced with expansion maps defined in Tables 24 and 25. The arrows depicted in Figs. 22 and 23 illustrate
for a selection of triangles the effect of the two mappings.

Thermal conductivity contours using Eq. (5) for point-wise maximum thermal conductivities are shown in
Figs. 24 and 25. Examination of the two figures reveals significant differences in the distributions; it should be
appreciated that differences in the tessellated space can be expected but of principal concern is the retention
of isotropy in the physical space.

8.2 Thermal analysis of a Vicsek fractal heat exchanger

The open-poreVicsek structure is assumed to be placed in a close-fitting container to enforce the flowof coolant
through the structure. Consider then water coolant flowing through the voids shown in Figs. 22 and 23; the
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2Ê

3Ê
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heat exchanger is manufactured from the same copper material used in Sect. 5 with the exact same surrounding
conditions. A uniform heat loading of Q̇tot = 500 kW/m3 is applied on each pre-fractal as an internal heat
source. The cooling-channel heat transfer coefficients ĥwats are provided in Table 15 for the hydraulic diameters
met on the Vicsek fractal.

Temperature distributions on pre-fractal Ê3 and corresponding tessellation T̂3 determined by UoMFEC
from the two different tessellation maps are shown in Fig. 26. These can compared against results obtained
with ABAQUS-direct for two meshes as depicted in Fig. 27. Examination of Fig. 26 reveals stark differences
in temperatures on the tessellation, yet almost identical results in the physical space. This result provides good
evidence that the manner in which tessellations are created does not affect the final outcome as seen on pre-
fractals in the physical space. To quantify the results more precisely, temperature distributions along y = 0.5
are shown in Fig. 28 for both ABAQUS-direct and UoMFEC. It is clear that the two sets of tessellations return
high accuracy. The errors calculated via Eqs. (19) and (20) are also given in Table 16 and also confirm high
accuracy.

Transient plots for Point 1 in Fig. 22 with coordinates (0.5, 0.5) on Êk are depicted in Fig. 29 along with
the average differences calculated by Eq. (19) and (20) in Table 17. The results provided further evidence that
different hole-fill maps have little impact on results viewed in the physical space.

Table 16 Average temperature errors on Vicsek fractal along y = 0.5 on


Ek

k 1 2 3

Results with hole-fill map formed with expansion map (a) in Table 24
Coarse mesh
D̄ (K) 2.54 0.49 0.10
D̄% (%) 0.73 0.16 0.03

Fine mesh
D̄ (K) 4.03 0.70 0.13
D̄% (%) 1.16 0.23 0.05

Results with hole-fill map formed with expansion map (b) in Table 25
Coarse mesh
D̄ (K) 2.54 0.49 0.10
D̄% (%) 0.73 0.16 0.03

Fine mesh
D̄ (K) 4.03 0.70 0.13
D̄% (%) 1.16 0.23 0.05
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2Ê

2Ê
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Table 17 Transient temperature differences at point (0.5, 0.5) on Vicsek pre-fractals

k 1 2 3

Hole-fill map formed with expansion map (a) in Table 24
Coarse mesh
D̄ (K) 0.75 0.06 0.06
D̄% (%) 0.21 0.02 0.02

Fine mesh
D̄ (K) 2.14 0.84 0.17
D̄% (%) 0.60 0.27 0.06

Hole-fill map formed with expansion map (b) in Table 25
Coarse mesh
D̄ (K) 1.09 0.06 0.06
D̄% (%) 0.30 0.02 0.02

Fine mesh
D̄ (K) 1.80 0.84 0.17
D̄% (%) 0.50 0.27 0.06

It is worth noting that highly skewed tiles also have little impact on the accuracy of the results with the
tessellated approach. This is expected because changes in thermal conductivities compensate to provide an
analysiswhich is akin to doing calculationswith the regularmeshes appearing on the correspondingpre-fractals.

9 Conclusions

This paper tests the hypothesis that heat transfer analysis on porous media for cellular heat exchangers can be
performed on a tessellation with new form of tessellated continuummechanics using the finite element method.
Thermal analysis of a relatively complex structures replicated by pre-fractals is demonstrated on corresponding
tessellations incorporating discontinuity networks. In establishing the tessellated finite element approach for
heat transfer on tessellations with discontinuity networks, the following conclusions can be drawn:

• Temperatures on tessellated structures have been shown to return the temperatures on pre-fractals in support
of the contention that heat transfer analysis on pre-fractals can be achieved through analysis on tessellations
with high accuracy.

• The accuracy of the tessellated approach with the finite element method can be significantly improved by
incorporating discontinuity networks in tessellations.

• The use of highly skewed tiles and alternative expansion maps has little impact on the accuracy of the
procedure.

• Increased accuracy can be obtained by refining the initial tessellation on the initial domain T̂0 = Ê0, which
can be achieved very efficiently through multiple application of affine expansion maps.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

Appendix A: Maps for the Sierpinski gasket

The Sierpinski gasket is an example of a non-product fractal set and is constructed by the recursive application
of the following three affine contraction maps:

S1 (x, y) =
( x

2
,
y

2

)
, S2 (x, y) =

(
�0

2
+ x

2
,
y

2

)

and S3 (x, y) =
(

�0

4
+ x

2
,

√
3�0
4

+ y

2

)

, (28)

where each Si maps a triangular domain into a smaller triangular as deduced on inspection of Fig. 1.
The initial six tiles on the triangular domain Ê0 provide a means to define the expansion maps for the con-
struction of T̂k . Each expansion map consists of a number of sub-maps with a number equal to the number of
initial tiles on Ê0 (6 in this case). Explicitly, the expansion maps for the Sierpinski are illustrated in Table 18.
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Table 18 Expansion maps for Sierpinski
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Appendix B: Maps for the Sierpinski carpet

The Sierpinski carpet is a non-product fractal set constructed by the eight affine contraction maps in Table 19.
Each contraction map, maps a rectangular domain into a smaller rectangular domain as deduced on inspection
of Fig. 2. The initial number of tiles on Ê0 in Fig. 2 is 6, which means that the eight expansion maps will each
consist of six sub-maps although some are identical. The expansion maps satisfy P1 = S1, P3 = S3, P6 = S6
and P8 = S8 with the remaining maps defined in Table 20 but limited to distinctive sub-maps.

Table 19 Contraction maps for Sierpinski carpet
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Table 20 Expansion maps for Sierpinski carpet
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Appendix C: Maps for the finger-like fractal

The finger-like fractal is constructed by the five affine contraction maps in Table 21; the associated expansion
maps are defined in Table 22.

Table 21 Contraction maps for finger-like fractal

S1 (x, y) = ( x
3 ,

y
3

)
S2 (x, y) =

(
2�0
3 + x

3 ,
y
3

)

S3 (x, y) =
(

�0
3 + x

3 , �0
3 + y

3

)
S4 (x, y) =

(
x
3 , 2�0

3 + y
3

)

S5 (x, y) =
(
2�0
3 + x

3 , 2�0
3 + y

3

)

Table 22 Expansion maps for finger-like fractal

P1 (x, y) P11 (x, y) = ( x
2 − y

4 + 1
8 ,

y
4 + 1

8

)
If 2y ≥ 1 and y ≤ x

P22 (x, y) = ( x
4 + 1

8 , − x
4 + y

2 + 1
8

)
If 2x ≥ 1 and y ≥ x

P13 (x, y) = ( x
2 ,

y
2

)
Otherwise

P2 (x, y) P21 (x, y) = ( x
2 − y

4 + 3
8 ,

y
4 + 3

8

)
If 2y ≤ 1 and y ≥ xOR 2y ≥ 1 and y ≤ −x + 1

P22 (x, y) = ( x
4 + 3

8 , − x
4 + y

2 + 3
8

)
If 2x ≤ 1 and y ≤ xOR 2x ≥ 1 and y ≥ x

P23 (x, y) = ( x
4 + 3

8 , x
4 + y

2 + 1
8

)
If 2x ≥ 1 and y ≤ −x + 1OR2x ≤ 1 and y ≥ −x + 1

P24 (x, y) = ( x
2 + y

4 + 1
8 ,

y
4 + 3

8

)
If 2y ≤ 1 and y ≥ −x + 1OR 2y ≥ 1 and y ≤ −x + 1

P3 (x, y) P31 (x, y) =
(
x
4 + 5

8 , x
4 + y

2 − 1
8

)
If 2x ≤ 1 and y ≥ −x + 1

P32 (x, y) = ( x
2 + y

4 + 3
8 ,

y
4 + 1

8

)
If 2y ≥ 1 and y ≤ −x + 1

P33 (x, y) = ( x
2 + 1

2 ,
y
2

)
Otherwise

P4 (x, y) P41 (x, y) = ( x
4 + 1

8 , x
4 + y

2 + 3
8

)
If 2x ≤ 1 and y ≤ x

P42 (x, y) =
(
x
2 + y

4 − 1
8 ,

y
4 + 5

8

)
If 2y ≤ 1 and y ≥ −x + 1

P43 (x, y) = ( x
2 ,

y
2 + 1

2

)
Otherwise

P5 (x, y) P51 (x, y) =
(
x
2 − y

4 + 5
8 ,

y
4 + 5

8

)
If 2y ≤ 1 and y ≥ x

P52 (x, y) =
(
x
4 + 5

8 , − x
4 + y

2 + 5
8

)
If 2x ≤ 1 and y ≤ x

P53 (x, y) = ( x
2 + 1

2 ,
y
2 + 1

2

)
Otherwise
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Appendix D: Maps for the Vicsek fractal

The Vicsek fractal is constructed by the five affine contraction maps in Table 23.

Table 23 Contraction maps for Vicsek fractal

S1 (x, y) =
(
x
3 , �0

3 + y
3

)
S2 (x, y) =

(
�0
3 + x

3 , �0
3 + y

3

)

S3 (x, y) =
(

�0
3 + x

3 ,
y
3

)
S4 (x, y) =

(
2�0
3 + x

3 , �0
3 + y

3

)

S5 (x, y) =
(

�0
3 + x

3 , 2�0
3 + y

3

)

Two sets of expansion maps termed (a) and (b) are defined in Tables 24 and 25, respectively. The effect of
these maps is shown visually in Figs. 22 and 23, where disparate tessellations are displayed.

Table 24 Expansion maps (a) for Vicsek fractal

P1 (x, y) P11 (x, y) =
(
x
3 , − x

3 + 2y
3 + 1

3

)
If y ≥ x and y ≥ −x + 1

P12 (x, y) = ( x
3 ,

y
3 + 1

3

)
If y ≤ x and y ≥ −x + 1

P13 (x, y) =
(
x
3 , x

3 + 2y
3

)
If y ≤ x and y ≤ −x + 1

P14 (x, y) = ( x
3 , y

)
If y ≥ x and y ≤ −x + 1

P2 (x, y) = ( 1
3 + x

3 , 1
3 + y

3

)

P3 (x, y) P31 (x, y) = ( x
3 + 1

3 ,
y
3

)
If y ≥ x and y ≥ −x + 1

P32 (x, y) = ( 2x
3 − y

3 + 1
3 ,

y
3

)
If y ≤ x and y ≥ −x + 1

P33 (x, y) = (
x, y

3

)
If y ≤ x and y ≤ −x + 1

P34 (x, y) = ( 2x
3 + y

3 ,
y
3

)
If y ≥ x and y ≤ −x + 1

P4 (x, y) P41 (x, y) =
(
x
3 + 2

3 , x
3 + 2y

3

)
If y ≥ x and y ≥ −x + 1

P42 (x, y) = ( x
3 + 2

3 , y
)

If y ≤ x and y ≥ −x + 1

P43 (x, y) =
(
x
3 + 2

3 , − x
3 + 2y

3 + 1
3

)
If y ≤ x and y ≤ −x + 1

P44 (x, y) = ( x
3 + 2

3 ,
y
3 + 1

3

)
If y ≥ x and y ≤ −x + 1

P5 (x, y) P51 (x, y) = (
x, y

3 + 2
3

)
If y ≥ x and y ≥ −x + 1

P52 (x, y) = ( 2x
3 + y

3 ,
y
3 + 2

3

)
If y ≤ x and y ≥ −x + 1

P53 (x, y) = ( x
3 + 1

3 ,
y
3 + 2

3

)
If y ≤ x and y ≤ −x + 1

P54 (x, y) = ( 2x
3 − y

3 + 1
3 ,

y
3 + 2

3

)
If y ≥ x and y ≤ −x + 1
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Table 25 Expansion maps (b) for Vicsek fractal

P1 (x, y) P11 (x, y) = ( 2x
3 − y

3 , − 2x
3 + y + 1

3

)
If 2x ≥ 1 and y ≥ x

P12 (x, y) = ( 2x
3 + y

3 − 1
3 , 2x

3 + y − 1
3

)
If 2x ≥ 1 and y ≤ −x + 1

P13 (x, y) = ( y
3 , − 2x

3 + y + 1
3

)
If 2x ≤ 1 and y ≤ x

P14 (x, y) = (− y
3 + 1

3 , 2x
3 + y − 1

3

)
If 2x ≤ 1 and y ≥ −x + 1

P15 (x, y) = ( x
3 ,

y
3 + 1

3

)
Otherwise

P2 (x, y) = ( 1
3 + x

3 , 1
3 + y

3

)

P3 (x, y) P31 (x, y) =
(
x − 2y

3 + 1
3 , − x

3 + 2y
3

)
If 2y ≥ 1 and y ≤ x

P32 (x, y) =
(
x + 2y

3 − 1
3 , − x

3 + 1
3

)
If 2y ≤ 1 and y ≥ −x + 1

P33 (x, y) =
(
x − 2y

3 + 1
3 , x

3

)
If 2y ≤ 1 and y ≥ x

P34 (x, y) =
(
x + 2y

3 − 1
3 , x

3 + 2y
3 − 1

3

)
If 2y ≥ 1 and y ≤ −x + 1

P35 (x, y) = ( x
3 + 1

3 ,
y
3

)
Otherwise

P4 (x, y) P41 (x, y) = ( y
3 + 2

3 , − 2x
3 + y + 1

3

)
If 2x ≥ 1 and y ≥ x

P42 (x, y) = (− y
3 + 1, 2x

3 + y − 1
3

)
If 2x ≥ 1 and y ≤ −x + 1

P43 (x, y) = ( 2x
3 − y

3 + 2
3 , − 2x

3 + y + 1
3

)
If 2x ≤ 1 and y ≤ x

P44 (x, y) = ( 2x
3 + y

3 + 1
3 , 2x

3 + y − 1
3

)
If 2x ≤ 1 and y ≥ −x + 1

P45 (x, y) = ( x
3 + 2

3 ,
y
3 + 1

3

)
Otherwise

P5 (x, y) P51 (x, y) =
(
x − 2y

3 + 1
3 , x

3 + 2
3

)
If 2y ≥ 1 and y ≤ x

P52 (x, y) =
(
x + 2y

3 − 1
3 , x

3 + 2y
3 + 1

3

)
If 2y ≤ 1 and y ≥ −x + 1

P53 (x, y) =
(
x − 2y

3 + 1
3 , − x

3 + 2y
3 + 2

3

)
If 2y ≤ 1 and y ≥ x

P54 (x, y) =
(
x + 2y

3 − 1
3 , − x

3 + 1
)

If 2y ≥ 1 and y ≤ −x + 1

P55 (x, y) = (
x, y

3 + 2
3

)
Otherwise

References

1. Davey, K., Prosser, R.: Analytical solutions for heat transfer on fractal and pre-fractal domains. Appl. Math. Model. 37(1–2),
554–569 (2013)

2. Davey, K., Prosser, R., Jiang, C.: Heat transfer through fractal-like porous media: a tessellated continuum approach. Comput.
Struct. 151, 58–72 (2015)

3. Galvanetto, U.:MultiscaleModeling in SolidMechanics: Computational Approaches. Imperial College Press, London (2009)
4. Mandelbrot, B.B.: The Fractal Geometry of Nature byMandelbrot, Benoit B. (November 18, 1982) Hardcover.W.H.Freeman

& Co Ltd, New York (1701)
5. Horstemeyer, M.F.: Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to

Invigorate Engineering Design with Science. Wiley, New Jersey (2012)
6. Khan, H.H., M, A.A., Sharma, A., Srivastava, A., Chaudhuri, P.: Thermal-hydraulic characteristics and performance of 3D

wavy channel based printed circuit heat exchanger. Appl. Therm. Eng. 87, 519–528 (2015)
7. Boomsma, K., Poulikakos, D., Zwick, F.: Metal foams as compact high performance heat exchangers. Mech. Mater. 35(12),

1161–1176 (2003)
8. Li, Q., Flamant, G., Yuan, X., Neveu, P., Luo, L.: Compact heat exchangers: a review and future applications for a new

generation of high temperature solar receivers. Renew. Sustain. Energy Rev. 15(9), 4855–4875 (2011)
9. Bhouri, M., Goyette, J., Hardy, B.J., Anton, D.L.: Honeycomb metallic structure for improving heat exchange in hydrogen

storage system. Int. J. Hydrog. Energy 36(11), 6723–6738 (2011)
10. Mancin, S., Zilio, C., Cavallini, A., Rossetto, L.: Pressure drop during air flow in aluminum foams. Int. J. Heat Mass Transf.

53(15–16), 3121–3130 (2010)
11. Kuwata, Y., Suga, K.: Large eddy simulations of pore-scale turbulent flows in porous media by the lattice Boltzmannmethod.

Int. J. Heat Fluid Flow 55, 143–157 (2015)



C. Jiang et al.

12. Rashidi, S., Bovand,M., Esfahani, J.A.: Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers:
A sensitivity analysis. Energy Convers. Manag. 103, 726–738 (2015)

13. Dehghan, M., Valipour, M.S., Saedodin, S.: Temperature-dependent conductivity in forced convection of heat exchangers
filled with porous media: A perturbation solution. Energy Convers. Manag. 91, 259–266 (2015)

14. Chikh, S., Allouache, N.: Optimal performance of an annular heat exchanger with a porous insert for a turbulent flow. Appl.
Therm. Eng. 104, 222–230 (2016)

15. Nield, D.A., Kuznetsov, A.V.: 2 - Heat transfer in Bi-disperse porous media. In: Transport Phenomena in Porous Media III,
pp. 34–59. Pergamon, Oxford (2005)

16. Rupert, H.B.C., Nash, W.: Choice of boundary condition for lattice-Boltzmann simulation of moderate Reynolds number
flow in complex domains. Phys. Rev. E 89(2), 1–13 (2012)

17. Mehrizi, A.A., Farhadi, M., Sedighi, K., Delavar, M.A.: Effect of fin position and porosity on heat transfer improvement in
a plate porous media heat exchanger. J. Taiwan Inst. Chem. Eng. 44(3), 420–431 (2013)

18. Liu, Y., Zhou, X., Wang, D., Song, C., Liu, J.: A diffusivity model for predicting VOC diffusion in porous building materials
based on fractal theory. J. Hazard. Mater. 299, 685–695 (2015)

19. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Chichester (2003)
20. Barnsley, M.F.: Fractals Everywhere, 2, Sub edn. Morgan Kaufmann Pub, Boston (1993)
21. Falconer, K.J.: The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Philos. Soc. 103(2), 339–350 (1988)
22. Edgar, G.A.: Integral, Probability, and Fractal Measures. Springer, New York (2013)
23. Nakashima, Y., Nakano, T.: Steady-state local diffusive fluxes in porous geo-materials obtained by pore-scale simulations.

Transp. Porous Media 93(3), 657–673 (2012)
24. Keulen, J.V.: Density of porous solids. Matér. Constr. 6(3), 181–183 (1973)
25. Alaimo, G., Zingales, M.: Laminar flow through fractal porous materials: the fractional-order transport equation. Commun.

Nonlinear Sci. Numer. Simul. 22(1–3), 889–902 (2015)
26. Blanc, E., Chiavassa, G., Lombard, B.: Wave simulation in 2D heterogeneous transversely isotropic porous media with

fractional attenuation: A Cartesian grid approach. J. Comput. Phys. 275, 118–142 (2014)
27. Choudhary, A., Kumar, D., Singh, J.: A fractional model of fluid flow through porous media with mean capillary pressure.

J. Assoc. Arab Univ. Basic Appl. Sci. doi:10.1016/j.jaubas.2015.01.002
28. Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A 336(2–3), 167–174 (2005)
29. Tarasov, V.E.: Fractional hydrodynamic equations for fractal media. Ann. Phys. 318(2), 286–307 (2005)
30. Ostoja-Starzewski, M.: Towards thermoelasticity of fractal media. J. Therm. Stress. 30(9–10), 889–896 (2007)
31. Ostoja-Starzewski, M.: Towards thermomechanics of fractal media. Z. Für Angew. Math. Phys. 58(6), 1085–1096 (2007)
32. Reviews, C.T.: e-Study Guide for Elements of Advanced Mathematics, textbook by Steven G. Krantz: Mathematics, Math-

ematics. Cram101 Textbook Reviews (2012)
33. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and fractals: new frontiers of science. In: Chaos and Fractals: New Frontiers

of Science, pp. 545–591. Springer, New York (2006)
34. Clayton, J.D.: Nonlinear Mechanics of Crystals. Springer, New York (2010)
35. Davey, K., Mondragon, R.: A non-physical enthalpy method for the numerical solution of isothermal solidification. Int. J.

Numer. Methods Eng. 84(2), 214–252 (2010)
36. Davey, K., Rasgado, M.T.A.: Analytical solutions for vibrating fractal composite rods and beams. Appl. Math. Model. 35(3),

1194–1209 (2011)
37. Dittus, F.W., Boelter, L.M.K.: Heat Transfer in Automobile Radiators of the Tubular Type, vol. 2. University of California

Press, Berkeley (1930)

http://dx.doi.org/10.1016/j.jaubas.2015.01.002


40 
 

Chapter 6.  

Thermal Analysis on Pre-fractals 

This chapter builds on the results presented in Chapters 5 and 6, and tests further the 

hypothesis that the thermal analysis of porous materials can be explored by using a 

finite element method on the corresponding tessellated construction through 

tessellated continuum mechanics. Tessellations with and without discontinuity 

networks (DN) are again considered to demonstrate thermal behaviour of pre-fractals. 

Thermal analysis is performed on heat exchangers with porous cross-sections in the 

form of classical pre-fractal designs. The results obtained are contrasted against direct 

pre-fractal solutions which, in general, show great accuracy for the tessellated 

approach. A weakness of the approach, however, is its focus on the physics of fractal 

elements (or tiles) over the surrounding matrix material (or holes). Any hole (or 

matrix material) which maps to an edge in a tessellation requires the associated 

physics to be represented using distribution-like functions. This feature is examined 

for two situations; one which is favourable to the tessellated approach, and the other 

where it is not. 

 

6. 1 Introduction 

Tessellated continuum mechanics is further tested on porous heat exchangers. The 

cellular structures presented in this chapter are represented in the usual way using pre-

fractals, which are collapsed to tessellations using alternative hole-fill maps. This 

approach returns the analysis to the continuum but, in this case, the continuum is 

tessellated; each tile in the tessellation possesses thermal properties arising from the 

hole-fill map. The results selected for presentation in this chapter are obtained for 

classical fractal designs, but are chosen to test the limits of the tessellated approach. 

Results are contrasted against those obtained from direct analysis of the fractal heat 

exchangers to illustrate the higher accuracy achieved. The tessellated finite element 

method is tested in Section 6.2 on 2-D Cantor dust, where dust-like fractal elements 
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are embedded in a matrix material. This example provides a challenge for the 

tessellated approach as a consequence of the complex thermal response of the matrix 

material. The dust, however, benefits from the existence of an analytical solution 

which, along with the UoMFEC results, are represented on the tessellations and 

mapped to the corresponding pre-fractals. These are then compared with directly 

obtained ABAQUS results. It should be appreciated that an ABAQUS model of a pre-

fractal takes account of the physics of the matrix material, so despite the matrix 

having a relatively high conductivity, this provides a source of difficulty for the 

tessellated approach. The thermal fields are assumed to be continuous and hence do 

not involve a discontinuity network.  

The investigation performed in Section 6.2 is extended to classical non-product 

fractals in Section 6.3. However, in this section, discontinuity networks are included 

to highlight the added flexibility and accuracy these provide in the face of complex 

thermal responses of the matrix material. 

The influence of boundary conditions and hole-fill maps are explored for the Viscek 

Fractal in Section 6.4. The lack of uniqueness of hole-fill maps (arising principally 

from the non-unique expansion maps) is a source of concern and therefore it is of 

interest to investigate what effects different maps provide when considered in 

conjunction with different boundary conditions. Traditionally, two forms of boundary 

conditions are applied to account for the presence of a cooling system; these are: i) a 

convection condition employing a heat transfer coefficient (considered in earlier 

chapters), and ii) a fixed temperature condition. These are applied in Section 6.4 to 

assess the influence of different alternative hole-fill maps. The tests confirm that there 

is little impact on the mapped pre-fractal results from different hole-filling maps.  

 

  



42 
 

6. 2 Solution on 2-D Product Cantor Dust 

The same problem in [48] is selected again in this section to contrast against the 

ABAQUS direct result. The governing equations on a control volume are re-presented 

here for convenience. The equations for the physical and tessellated spaces are 

 

s s s

s s s s s s ss

d
h dV q d Q dV

dt
 

  

      , (6.1) 

  

and 

 

where Q  is a heat source and the heat flux is defined as  q n h T T   .  

The convective heat transfer boundary conditions in the two spaces are related by 

 

which is satisfied for r sT T  and r r s sh d h d    giving 
T

s s r rT T  F , and in view 

of the identity 
-1

r s
q q F F  leads to r r rr

q T  K .  

The relationship of thermal conductivity between tessellation and pre-fractal is  

 

 

r r r

r r r r r r rr

d
h dV q d Q dV

dt
 

  

       (6.2) 

  

       
-1 -1

r r r r s s s sr s
q d h T T d q d h T T d            F F F F , (6.3) 

  

-1 T

r sK F FK F  (6.4) 
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where rK  is the associated orthotropic conductivity tensor for the tessellated domain 

and sK  is the isotropic conductivity for pre-fractal. Thus, the tessellated continuum 

for 2-D Cantor dust is isotropic, permitting a scalar rK  related by r sK K .  

It is assumed here that Cantor Dust is a material with thermal conductivity 

400 /sK W mK , density 
3400kg/ms  , specific heat 1000 J/kgKsc   and edge 

length 0  1m, i.e. the analysis is performed on a unit square domain. The edge 

temperatures are fixed as ˆ
kT  and the chosen values are consistent as defined in Table 

6.1. Two different values of thermal conductivities are applied separately to the 

matrix material in the ABAQUS pre-fractal; i) an extremely high conductivity to 

simplify the problem, and ii) thermal conductivity of water 0.58 /waterK W mK . The 

matrix is supplied with a uniform heat source 
3400 /Q W m  to match the energy 

input with the expression 
2

0/ 1Q K T  , where 0 sK K  and 1T K  . 

Table 6.1. Edge-boundary temperatures on ˆ
kT  (unit tessellated continuum) 

Boundary Edge (m) 0x   0y   1x   1y   

Temperature (K)  ˆ 0,kT y y   ˆ ,0kT x x   ˆ 1, 1kT y y    ˆ ,1 1kT x x   

 

The temperature distributions on tessellations ˆ
kT  from the analytical solution and 

UoMFEC are mapped on to the corresponding pre-fractals ˆ
kE ; while ABAQUS 

obtains temperature distributions on ˆ
kE  directly. Temperature contours on ˆ

kE  are 

depicted in Figure 6.1 and 6.2 from the analytical solution, UoMFEC and ABAQUS. 
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i) Contours from analytical solution ii) Contours from UoMFEC 

  

iii) Contours from ABAQUS with high 

conductivity 

iv) Contours from ABAQUS with low 

conductivity 

Figure 6.1. Contour temperature plots for continuum and corresponding 2Ê  with fixed 

wall temperatures from different methods 
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i) Contours from analytical solution ii) Contours from UoMFEC 

  

iii) Contours from ABAQUS with high 

conductivity 

iv) Contours from ABAQUS with low 

conductivity 

Figure 6.2. Contour temperature plots for continuum and corresponding 3Ê  with fixed 

wall temperatures from different methods 
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The maximum differences in the solution giving by M  and %M  are defined as 

follow 

 

 ( ) ( )max a b

i i
i

M T T  
(6.5) 

 

and 

 

( ) ( )

% ( ) ( )
100 max

  
   

  

a b

i i

a b
i

i i

T T
M

T T
 (6.6) 

The average differences in the solution giving by D  and %D  are obtained from the 

relationships 

 

 (6.7) 

 

and 

 

( ) ( )

% ( ) ( )
1

2 100
a bn

i i

a b
i i i

T T
D

n T T





  (6.8) 

 

where superscripts (a) and (b) distinguish the methods and n  is the number of data 

points. Temperatures on ˆ
kE  for 2k   and 3k   along the diagonal line x y  are 

shown in Figure 6.3 with temperature differences in Table 6.2 calculated from 

Equations (6.5) to (6.8). Near identical results on ˆ
kE  are observed for the analytical 

solution and ABAQUS, with the principal disparity for UoMFEC occurring at the 

boundary. The reason is the convection condition with an extremely high thermal 

conductivity applied along the boundaries in an attempt to match the fixed 

( ) ( )

1

1 n
a b

i i

i

D T T
n 
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temperatures. The magnitude of errors appearing in Table 6.2 is misleading. However, 

as it is apparent from the inspection of Figure 6.3, maximum errors are located 

entirely at the boundary with a good match elsewhere. Other large errors are located 

near the matrix, which confirms the limitation of the tessellated approach when faced 

with a complex thermal response of the matrix. It is important to appreciate however 

that a continuous temperature field is assumed for the tessellation.  Applying a high 

value of conductivity to the matrix is found to reduce the errors. This is expected as 

an increase in conductivity provides a closer match with a continuous thermal field. 

This observation provides the motivation for the inclusion of a discontinuity network 

which is expected to offer greater accuracy.  
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(a) On 2Ê  

 

(b) On 3Ê  

Figure 6.3. Temperature plots along x=y for 2D Cantor Dust with heat source and 

fixed wall temperatures from different methods on ˆ
kE  
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Table 6.2. Temperature differences along x y :2-D Cantor product with heat source 

  
Maximum 

(K) 

Maximum 

(%) 

Average 

(K) 

Average 

(%) 

1Ê

 

Analytical vs UoMFEC 

(coarse) 
0.2499 24.9900 0.1250 16.6627 

Analytical vs ABAQUS 

(high conductivity) (fine) 
0.1690  28.9138  0.1382  23.7802  

Analytical vs ABAQUS (low 

conductivity) (fine) 
32.0440  191.9837  18.1803  138.0075  

2Ê

 

Analytical vs UoMFEC 

(coarse) 
0.1428 14.l2800 0.0571 5.7120 

Analytical vs ABAQUS 

(high conductivity) (fine) 
0.1144  27.7254  0.0809  16.5933  

Analytical vs ABAQUS (low 

conductivity) (fine) 
0.2713  89.4151  0.1593  37.0760  

3Ê

 

Analytical vs UoMFEC 

(coarse) 
0.0721 7.2100 0.0290 2.9267 

Analytical vs ABAQUS 

(high conductivity) (fine) 
0.1195 32.4823 0.0716 17.3644 

Analytical vs ABAQUS (low 

conductivity) (fine) 
0.1166  31.5266  0.0775  17.3274  

 

  



50 
 

6. 3 Analysis on Non-Product Fractal 

The results presented in this section are contrasted against those obtained from direct 

analysis of fractal heat exchangers to further test the limitations imposed by the 

complex thermal response of the matrix material in the tessellated approach. The 

Sierpinski Gasket is a non-product fractal set constructed by the pre-fractal affine 

maps presented in Chapter 5. The material selected for the heat exchanger is copper 

with thermal conductivity 400 W/mKsK  , density 38930 kg/ms   and specific 

heat 385 J/kgKsc  . The heat transfer coefficient surrh  associated with flowing air 

with temperature 323airT K  around the pre-fractals is taken to be 100 W/m
2
K. Heat 

loading of the heat exchanger is achieved by loading the pre-fractal elements from an 

external source in a manner than ensures the total heat loading 300totQ kW  is 

uniform on the tessellated continuum. Each pre-fractal has water flowing through the 

voids to match the working conditions pertaining to the heat exchanger presented in 

Figure 6.4. It is assumed that the material of the matrix is water with thermal 

conductivity 0.58W/mKsK   and the total heat loss loss

sQ  for each hole in the pre-

fractals with different hole sizes and hydraulic diameters 
hole

sd  are shown in Table 6.3. 

Table 6.3. Heat loss for the Sierpinski-Gasket heat exchanger 

hole

sd ( m )  0.289 0.144 0.072 0.036 

loss

sQ  ( kW ) 270  90  30  10  
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Figure 6.4. Operating condition for a Sierpinski Gasket heat exchanger 

 

The temperature distributions on 3T̂  and mapped on to the pre-fractal 3Ê  from 

UoMFEC are depicted in Figure 6.5. The distributions on both tessellations and pre-

fractals are quite different from each other. The temperature distributions from the 

tessellation with discontinuity networks illustrate discontinuous behaviour. The 

mapped temperatures are contrasted against an ABAQUS direct result on pre-fractal 

3Ê  in Figure 6.6. Here, two different meshes are considered in ABAQUS; a coarse 

mesh and a fine mesh with a convergent result.  
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(i) On 3T̂  without DN (ii) On 3Ê  without DN 

  

(iii) On 3T̂  with DN (iv) On 3Ê  with DN 

Figure 6.5. Contour temperatures (UoMFEC) with and without a discontinuity 

network (DN) 
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(i) On 3Ê  with 16 elements per pre-fractal element 

 

(ii) On 3Ê  with 1536 elements per pre-fractal element 

Figure 6.6. Contour temperature plots for 3Ê  using ABAQUS 

 

  



54 
 

The temperature plots on ˆ
kE  for 2k   and 3k   from UoMFEC and ABAQUS 

along the edge 0y   are presented in Figure 6.7; average temperature differences are 

quantified using Equations (6.7) and (6.8) in Table 6.4. The largest errors are at the 

centre where the largest hole is located. The inaccuracy using tessellations without 

discontinuity networks increases with increasing k  for results compared with 

ABAQUS with coarse mesh. This reduces on tessellations where a discontinuity 

network is incorporated.  However, despite higher accuracy offered from a 

discontinuity network, low overall accuracy still remains.  This illustrates the 

limitations of the tessellated approach arising from the complex thermal response of 

the matrix material.  

 

 

Figure 6.7. Temperature plots along 0y   for pre-fractals ˆ
kE  using UoMFEC and 

ABAQUS 
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Table 6.4. Temperature differences on ˆ
kE  

 

It is of interest to investigate the influence of different number of tiles on the initial 

tessellation 0Ê  for tessellations with discontinuity networks. Mesh refinement of the 

previous 0Ê  provides the tessellations on 2T̂ , 3T̂ , 5T̂ , 6T̂  and 7T̂  consisting of 

254 3 6  , 3162 3 6  , 51458 3 6   64374 3 6   and 7 613122 3   tiles to 

explore the associated temperature distribution. The temperature plots on 3Ê  along 

the edge 0y   are shown in Figure 6.8 for both UoMFEC and ABAQUS direct 

results, with the average percentage difference tabulated in Table 6.5 through 

Equations (6.7) and (6.8). The average percentage error with mesh refinement is 

plotted in Figure 6.9 in order to estimate the modelling error on convergence. The 

modelling error is defined as the average difference between results obtained from 

fully converged solutions from UoMFEC and ABAQUS direct results. Figure 6.8 and 

Table 6.5 reveal that by increasing the number of tiles on the original set 0Ê  

accuracy can be improved, but high modelling errors remain as shown in Figure 6.9. 

Other two tests on Sierpinski Carpet and Finger-like Fractal are demonstrated in 

Appendix A and B respectively.  

All the results show that the largest error is located close to the centre at the largest 

hole. This is not unexpected and reaffirms the limitation of the tessellated approach 

when matrix material is involved. These tests also provide evidence that tessellations 

incorporating discontinuity networks can provide greater accuracy. Mesh refinement 

 
1Ê  2Ê  3Ê  

No discontinuity network 

Coarse mesh 
(K) 493.6781 49.2106 97.7378 

(%) 73.4401 52.4982 127.9979 

Fine mesh 
(K) 492.8198 83.3381 152.9618 

(%) 73.3595 97.2703 142.6732 

With discontinuity network 

Coarse mesh 
(K) 493.6781 6.9728 9.1684 

(%) 73.4401 27.3402 12.8828 

Fine mesh 
(K) 492.8198 38.4049 61.4024 

(%) 73.3595 77.5928 44.9391 



56 
 

achieved by increasing the number of tiles on the initial domain 0Ê  is also shown to 

reduce errors. 

 

 

Figure 6.8. Temperature plots along 0y   on 3Ê  with different meshes 
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Table 6.5. Temperature errors on ˆ
kE  along 0y   with different meshes 

 
Average difference comparing with converge 

ABAQUS direct result 

ˆ
kE  

No. of tiles on 

0Ê  
 ln

h
 (K) (%) 

1Ê  

54 4.8260  492.8198  53.5573  

162 5.9246  493.5616  53.6393  

1458 8.1218  494.3916  53.7301  

4374 9.2204  494.5287  53.7452  

13122 10.3190  494.5961  53.7527  

2Ê  

54 4.8260  38.4049  62.2946  

162 5.9246  25.8766  64.0147  

1458 8.1218  10.9919  24.7962  

4374 9.2204  5.6834 24.8059  

13122 10.3190  5.2827  22.1788  

3Ê  

54 4.8260  61.4024  44.9391  

162 5.9246  43.0810  30.6483  

1458 8.1218  18.9293 14.8747  

4374 9.2204  12.5721 10.7569  

13122 10.3190  10.5834 9.0919  
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Figure 6.9. Percentage error plots on ˆ
kE  showing magnitudes of modelling errors on 

convergence 
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6. 4 The Independence of the Solution with 

Respect to the Expansion Maps 

One of the features of the tessellated approach is the non-uniqueness of the sub-

expansion maps Pij  in the formation of on an expansion map Pi . This variability is 

reflected in changes in the tessellation on 1T̂ . Moreover, changes in Pi
 can affect the 

hole-filling map and influence the precise manner in which holes are closed. Thus, it 

is of interest to investigate the influence that different hole-fill maps and temperature 

boundary conditions have on the results. The Viscek Fractal is selected for the 

investigation and is constructed by the recursive application of the five affine 

contraction maps with two different hole-fill maps. The thermal conductivity 

distributions associated with the maps are provided in Chapter 5. The Viscek Fractal 

heat exchanger is manufactured from the same copper as in Section 6.3 with water 

coolant flowing through the voids. The heat transfer coefficient airh  associated with 

exterior flowing air of temperature 323airT K  is taken to be 2100 /W m K . A total 

external heat source 500 ktotQ W  is applied uniformly on each pre-fractal. It is 

assumed that the fixed temperature at the edge of the voids is 293K to match the water 

cooling.  

Depicted in Figure 6.10 are temperature distributions on 3T̂  and 3Ê  for the two hole-

fill maps applied (i.e. map (a) and map (b)). These are compared with the results 

obtained by ABAQUS directly with two different meshes as depicted in Figure 6.11. 

Figure 6.10 reveals stark differences in temperature distributions on the two 

tessellations but the same distributions on the corresponding mapped pre-fractals. 
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(i) On 3T̂  with map (a) (ii) On 3Ê  with map (a) 

  

(i) On 3T̂  with map (b) (ii) On 3Ê  with map (b) 

Figure 6.10. UoMFEC contour temperatures on 3T̂  and 3Ê  with different hole-filling 

maps 
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(i) On 3Ê  with 8 elements per pre-fractal element 

 

(ii) On 3Ê  with 152 elements per pre-fractal element 

Figure 6.11. ABAQUS directly contour temperature plots on 3Ê  for various meshes 
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Temperature distributions along 0.5y   on 2Ê  and 3Ê  are shown in Figure 6.12 from 

both UoMFEC and ABAQUS. The average errors calculated through Equations (6.7) 

and (6.8) are tabulated in Table 6.6 along 0.5y   on ˆ
kE . It is clear that there is good 

agreement between the ABAQUS direct results and UoMFEC results. The 

involvement of two different hole-fill maps has little impact on the steady state 

temperatures on the pre-fractals. The hole-filling map (b) has a larger error on the 

mapped pre-fractal, because several bigger tiles are created on the original set 0Ê . 

Figure 6.12 shows that the largest difference appears at or near the boundaries in the 

corresponding pre-fractals, due to the manner in which temperature is fixed with a 

convection condition with an exceedingly high heat transfer coefficient. According to 

the analysis performed in Chapter 5, these differences can be reduced through mesh 

refinement on the original set 0Ê . However, the results provide further evidence that 

different hole-fill maps have little impact on results viewed in the physical space with 

fixed temperatures. 
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Figure 6.12. Temperature plots along 0.5y   for pre-fractals ˆ
kE  using UoMFEC and 

ABAQUS 

 

Table 6.6. Average temperature errors on Viscek Fractal along 0.5y   

 
1Ê  2Ê  3Ê  

Result with (a) tessellation maps 

Coarse mesh 
(K) 3.2222  0.6522  0.1304  

(%) 0.9843  0.2174  0.0443  

Fine mesh 
(K) 5.9679  1.2445  0.2502  

(%) 1.7958  0.4135  0.0849  

Result with (b) tessellation maps 

Coarse mesh 
(K) 4.3508  0.8419  0.1605  

(%) 1.3422  0.2813  0.0545  

Fine mesh 
(K) 7.3819  1.5270  0.2882  

(%) 2.2385  0.5083  0.0979  
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2Ê

2Ê
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3Ê

3Ê

3Ê



64 
 

6. 5 Conclusions 

The thermal analysis of complex cellular structures represented by the pre-fractals is 

demonstrated on the corresponding tessellations with and without discontinuity 

networks through the finite element method. In establishing the tessellated approach 

for heat transfer analysis on pre-fractals, the following conclusions can be drawn: 

 The tessellated approach has limited applicability for problems where complex 

physics governs the surrounding matrix material. Large errors have been 

shown to occur in the vicinity of relatively large matrix domains.  

 Tessellations incorporating discontinuity networks provide greater accuracy as 

they accommodate discontinuities that appear at tile boundaries. Their use 

offers improvements when accommodating complex material responses but 

errors can still be significant.  

 The tessellation with discontinuity networks and a large number of titles on 

the original set 0Ê  can reduce errors. 

 Alternative expansion maps (and consequently hole-fill maps) have been 

shown to have little impact on the mapped temperatures for the problems 

considered despite the use of Dirichlet boundary conditions.  
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Appendix A: Thermal analysis of a Sierpinski 

Carpet heat exchanger 

The pre-fractals and corresponding tessellations for Sierpinski Carpet are created by 

the affine maps shown in Chapter 5. The material selected for the Sierpinski Carpet 

heat exchanger is the same as in Section 6.3. Water with thermal conductivity 

0.58W/mKsK   is considered to flow through the voids as cooling channels with total 

heat loss loss

sQ  for each hole in the pre-fractals with different hole sizes (and 

hydraulic diameters 
hole

sd ) are shown in Table 6.7. A total external heat source 

500totQ kW  is applied as uniform load on each pre-fractal. 

Table 6.7. Heat loss for the Sierpinski-Carpet heat exchanger 

hole

sd ( m )  0.333  0.111  0.037  0.012  

loss

sQ  ( kW ) 270  90  30  10  

 

The tessellations with and without discontinuity networks are applied to UoMFEC. 

Temperature distributions obtained from UoMFEC on tessellation 3T̂  and pre-fractal 

3Ê  are depicted in Figure 6.13. Similarly, results obtained directly on 3Ê  are obtained 

using ABAQUS (on two different meshes) and are presented in Figure 6.14.  
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(i) On 3T̂  without DN (ii) On 3Ê  without DN 

  

(iii) On 3T̂  with DN (iv) On 3Ê  with DN 

Figure 6.13. Contour temperatures (UoMFEC) with and without a discontinuity 

network (DN) 
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(i) On 3Ê  with 8 elements per pre-fractal element 

 

(ii) On 3Ê  with 152 elements per pre-fractal element 

Figure 6.14. Contour temperature plots for 3Ê  using ABAQUS 

 

 

The temperature distributions on ˆ
kE  along the diagonal line x y  from UoMFEC 

and ABAQUS are presented in Figure 6.15. The average errors quantified using 

Equations (6.7) and (6.8) are provided in Table 6.8. Figure 6.15 and Table 6.8 confirm 

low accuracy with results obtained using the UoMFEC on subsequently mapped to 

ˆ
kE , (except 1Ê ) contrasted against ABAQUS direct results. The errors increase with 

the increase of k . 
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Figure 6.15. Temperature plots along x y  for pre-fractals ˆ
kE  using UoMFEC and 

ABAQUS 

 

Table 6.8. Temperature differences on ˆ
kE : Influence of discontinuity network 
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Appendix B: Thermal analysis of a Finger-like 

fractal heat exchange 

The affine maps of pre-fractals and corresponding tessellations for Finger-like fractal 

are demonstrated in Chapter 5. The Finger-like Fractal heat exchanger is 

manufactured with the same copper as in Section 6.3. The total heat loss loss

sQ  from 

water flowing through the voids in the pre-fractals with different hole sizes (and 

hydraulic diameters 
hole

sd ) is illustrated in Table 6.9. The heat exchanger is subjected 

to a uniform heat loading with total external heat source 500totQ kW . 

Table 6.9. Heat loss for the Finger-like Fractal heat exchanger 

ˆ
kE  hole

sd ( m ) 
loss

sQ  ( kW ) 

1E  
0.333  270 

2E  

0.296  270 

0.111  90 

3E  

0.241  270 

0.099  90 

0.037  30 

4E  

0.198  270 

0.080  90 

0.033  30 

0.012  10 

 



70 
 

Temperature distributions for Finger-like porous fractal from UoMFEC and 

ABAQUS are presented in Figure 6.16 and Figure 6.17 respectively. The difference in 

temperature distributions are significant between tessellations with and without 

continuity networks. The discontinuous behaviour is clear by observed on the 

tessellation with discontinuity networks.  

 

  

(i) On 3T̂  without DN (ii) On 3Ê  without DN 

  

(iii) On 3T̂  with DN (iv) On 3Ê  with DN 

Figure 6.16. Contour temperatures (UoMFEC) with and without a discontinuity 

network (DN) 
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(i) On 3Ê  with 8 elements per pre-fractal element 

 

(ii) On 3Ê  with 152 elements per pre-fractal element 

Figure 6.17. Contour temperature plots for 3Ê  using ABAQUS 

 

The temperature plots on ˆ
kE  from UoMFEC and ABAQUS along the diagonal line 

x y  are illustrated in Figure 6.18 with the average errors in Table 6.10 quantified 

using Equations (6.7) and (6.8). The shortfall from tessellated approach increases with 

the increase of k comparing with the convergent ABAQUS direct results; but the 

errors from tessellation with discontinuity networks are reduced contrasted against the 

ABAQUS direct results with a coarse mesh. 
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Figure 6.18. Temperature plots along x y  for pre-fractals ˆ
kE  using UoMFEC and 

ABAQUS 

 

Table 6.10. Temperature differences on ˆ
kE : Influence of discontinuity network 
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2Ê

2Ê
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Chapter 7.  

Conclusions and Future Work 

Tessellated continuum mechanics can be extended to classical continuum mechanics 

to study thermo-mechanical behaviour of porous media. In this research, a novel 

tessellated approach for thermal analysis is developed to investigate temperature 

distributions on the cellular heat exchangers. The purpose of this approach is to enable 

thermal analysis to be performed on the corresponding tessellations as opposed to 

complex fractal structures. It is shown that the thermal behaviour on the related 

tessellated continua predicts the thermal behaviour of the pre-fractals with great 

accuracy.  

 

7. 1 Introduction  

As a mathematical model, a fractal is chosen to represent the cellular structure of 

porous materials. A hole-fill map concept is introduced to construct a relative 

tessellation for pre-fractal. In order to analyse the material properties for the 

tessellations, transport equations and partial differential equations are considered. The 

Galerkin finite element method is applied to the related tessellations both with and 

without discontinuity networks in order to explore the thermal behaviour of the 

fractals. All the results confirm that the tessellated approach has great accuracy and 

discontinuity networks can reduce the error. However, there is a limitation in the 

approach when investigating a complex thermal response in the matrix material. 

Finally, some future work is recommended in order to extend this research. 
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7. 2 Conclusions 

This research uses tessellated continuum mechanics to explore heat transfer problem 

in porous media. A hole-fill map concept is applied to build a related tessellated 

continuum for a pre-fractal to present cellular structure of a porous material. As 

closing the holes have the effect of bringing edges together, the discontinuity 

networks are introduced to the tessellations. They are applied to identify and describe 

the discontinuous behaviour of pre-fractals. Although the approach of creating hole-

fill maps for tessellations with and without discontinuity networks are the same, the 

discontinuity networks can be used to better represent the physics of pre-fractals. 

Therefore, the tessellations both with and without discontinuity networks are 

considered in the process of creating hole-fill maps for pre-fractals.  

Transport theory has been coupled to the tessellated approach. The transport equations 

are applied to both pre-fractal and corresponding tessellations in order to match the 

physics of the two structures and control volumes are used to describe the physics of 

the continuous set (rather than on a discontinuous set). Based on the transport theory, 

partial differential equations are defined on both pre-fractals and the corresponding 

tessellations in order to obtain the material properties of the relative tessellations. As 

the heat transfer coefficients and temperatures are the same for a pre-fractal and the 

related tessellation, the specific heats are the same. The density relationship for the 

tessellations is found to be 
1

r s 


 F  based on the scales in accordance with their 

volumes and areas. Thermal conductivity is the most complex property and scales as 

-1 T

r sK F FK F  on the corresponding tessellations. The thermal conductivity is 

inhomogeneous, anisotropic and discontinuous, so it is obtained from each tile of the 

tessellation and illustrated through the point-wise maximum value. Therefore, refined 

distribution of thermal conductivity for the tessellation is obtained from a large 

number of tiles. The distributions of thermal conductivity for a series of classical non-

product fractals have been investigated to show how the geometric complexity present 

in the pre-fractals manifests in the material properties of the tessellations. The 

behaviour of thermal conductivity on the tessellation is explored and is found to 

depend on the principal stretch directions associated with the deformation tensor. 

Larger thermal conductivity is located at the tile with larger deformation. Due to the 
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same geometry, the tessellations with and without discontinuity network have the 

same material properties. 

The Galerkin finite element method is applied on both the pre-fractals and the 

corresponding tessellations to obtain comparative numerical solutions. The 

commercial finite element package ABAQUS is chosen to obtain the pre-fractal 

results directly; a developed finite element code named UoMFEC is used to study the 

associated tessellations. The principal reason for the development of UoMFEC is to 

provide a convenient platform for the determination of element-conductivity matrices, 

which generally involve orthotropic conductivity tensors.  

The hypothesis of this research is that the analysis of heat transfer for porous 

materials can be achieved through analysis on relative tessellated continuous 

structures. After the analysis of the hole-fill maps and material properties, thermal 

behaviour from analytical solution on fractal dusts and rings in 1-D and 2-D were 

tested. The results provided a means to test the accuracy of the tessellated approach. 

Considering the operating conditions of cellular heat exchangers, analytical solutions 

for heat transfer problems are then defined for Cantor dusts. The governing partial 

differential equations are applied to obtain an analytical solution. The analytical 

results with steady state and transient solutions are contrasted against the numerical 

results from UoMFEC and the direct result from ABAQUS in order to prove the 

accuracy of the tessellated approach. Different tessellations were considered for the 

Cantor dust problem. Because of near-linear temperature distributions over pre-fractal 

elements for a 1-D Cantor dust, different tessellations have little impact on the results. 

Since continuity in the Galerkin method is enforced via the temperatures on the 

tessellations, the temperature differences between the tessellated approach and the 

direct result are located on the edges representing holes in the pre-fractals. 

Nevertheless, all the results demonstrate great accuracy of the method. More intricate 

pre-fractals such as Sierpinski gasket, Carpet and Finger-like fractals are chosen to 

represent porous materials found in cellular heat exchangers. The solutions from the 

tessellated approach were compared with the direct results from ABAQUS. The 

results further illustrate the great accuracy of the tessellated approach.  
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A procedure for the creation of different tessellations with various levels of 

refinement was presented. The mesh refinement was achieved by increasing the 

number of tiles on the original set of the pre-fractal. A modelling error defined as the 

difference between results obtained from fully converged solutions from UoMFEC 

and ABAQUS with a fine mesh applied directly to the pre-fractal was investigated. 

The results show that the tessellated approach provides a small modelling error which 

can be reduced with increasing refinement.  

Discontinuity networks are applied on tessellations to analyse the thermal behaviour 

of cellular structures. An analytical solution to a heat transfer problem of Cantor Dust 

in one-dimension is derived considering both conduction and convection conditions. 

The temperatures from the analytical solution are compared with UoMFEC tessellated 

results and ABAQUS direct results. The tessellated approach using discontinuity 

networks are found to offer greater accuracy compared with the direct results. In 

contrast to tessellations without discontinuity networks, the accuracy of tessellations 

with discontinuity networks can be significantly improved with mesh refinement. 

Heat transfer on a series of classical non-product fractals was investigated on the 

corresponding tessellations with and without discontinuity networks to confirm the 

importance of discontinuity networks. The results have illustrated that the 

tessellations with discontinuity networks provide greater accuracy.  

The influence of mesh refinement on the initial fractal set is explored for tessellations 

with discontinuity networks. Both steady state and transient results confirm that mesh 

refinement with a large number of tiles on the original set of the pre-fractal can 

improve accuracy. The modelling error is also much less than that found in 

tessellations without discontinuity networks.  

The tessellated approach reuses non-unique sub-expansion maps in the form of a set 

of expansion maps. This variability is reflected in changes of the tessellation on the 

original set. The changes in an expansion map can affect the hole-fill maps and 

influence the precise manner in which holes are closed. Therefore, different hole-fill 

maps were considered to explore the influence of the tessellated approach on the 

thermal problem. The results show that different expansion maps have little impact on 

the mapped temperatures from alternative expansion maps with convection and 

temperature conditions. 
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The matrix is assumed to have a perfect conductivity, so further tests are undertaken 

to consider the thermal response of the matrix. Both analytical and numerical 

solutions from the tessellated approach without discontinuity networks on 2-D Cantor 

dust were contrasted against the pre-fractal direct results. Low accuracy is shown as 

large errors occur in the vicinity of relatively large matrix domains. Due to the 

consideration of two different thermal conductivities, high thermal conductivity 

applied to the matrix can increase the accuracy.  

A series of classical non-product fractals were tested in order to extend simple Cantor 

dust case. Tessellations with and without discontinuity networks were applied to 

investigate the thermal behaviour of pre-fractals with consideration of thermal 

response of the matrix. Despite higher accuracy offered by a discontinuity network, 

low overall accuracy remains. The results illustrate that the largest error is located 

close to the biggest hole. Although mesh refinement can improve the accuracy, high 

modelling errors remain. All the results confirm that the tessellated approach provides 

limited applicability due to complex physics of the matrix material. 

In this thesis, the thermal results obtained from tessellated approach are compared 

with the numerical results produced by ABAQUS. These two methods consider the 

same thermal conditions and both of them ignore the influence from the fluid flowing 

through the voids. Instead, they have applied convection conditions at the void edges 

to simulate the fluid flow. However, the results on the cellular structures from 

tessellated approach are returned from the results on the corresponding tessellations. 

The tessellated approach using UoMFEC makes effective use of recursion. Any 

thermal behaviour on the k
th

 pre-fractal can be immediately obtained by specifying 

the value of k in the UoMFEC. ABAQUS on the other hand is not founded on 

recursion and consequently results are obtained on creating the geometry of the pre-

fractal, each time. This latter approach is much more inefficient and cumbersome 

resulting in longer processing times than that required for the UoMFEC. Thus, the 

tessellated approach provides an effective means for efficiently investigating thermal 

behaviour for cellular structures on corresponding tessellations. 
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7. 3 Future Work 

The possibilities of future work which are considered here has three main aspects. 

Firstly, the fluid mechanics of water flowing through the voids of the porous media 

can be analysed further in detail, secondly, the tessellated approach can be extended 

to more realistic porous materials in three dimensional cases, thirdly, the hole-fill 

maps can be created automatically for any geometry of the porous materials.  

In this thesis, it is assumed that the water flowing through the voids of the porous 

media is turbulent and fully developed so that the Dittus-Boelter equation and the 

Darcy-Weisbach equation can be used to determinate the heat transfer coefficient for 

each void with different hydraulic diameter. However, it is clear that laminar flow 

will prevail with the decrease of the size of the voids in fractals. Reynolds number can 

be introduced to determine the type of the flow. Therefore, the heat transfer 

coefficient for the cooling channel should be more carefully calculated according to 

different flow conditions.  

Furthermore, more realistic condition can be applied on the tessellations to simulate 

the fluid flowing through the voids. In this research, it is assumed (in the continuous 

Galerkin formulation) that any cooling medium passing through a porous structure is 

a perfect conductor which essentially means no temperature gradients are permitted 

perpendicular to the channel flow direction in this research. Presently, empirical heat 

transfer coefficients are used to capture the physics of cooling but this is recognised to 

be a limiting feature. This situation could be improved with the aid of Computational 

Fluid Dynamics (CFD), which can be used to investigate the fluid flowing through the 

pores of the cellular structure. The results can be compared with the previously 

obtained ABAQUS direct (and/or UoMFEC) results. The difference between these 

two methods can be analysed to determine the relative importance of different 

conditions applied in the CFD model. In this way the boundary conditions on the 

ABAQUS/UoMFEC model can be improved in order to reduce modelling errors. 

It is proposed that the Lattice Boltzmann method providing greater accuracy can be 

examined with the objective of an improved representation of cooling involved. Some 

basic knowledge of Lattice Boltzmann method was introduced in the chapter on 
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literature review. This method can be employed to analyse fluid flow problems in 

complex geometries like porous media and it should be considered to investigate fluid 

flow in voids to improve the accuracy due to cooling channels in the tessellated 

approach.  The Lattice Boltzmann method can at least in principle, be applied to the 

cellular structures to explore the nature of the fluid flowing through the voids.  

Influence factors can then be considered for the tessellated approach on the edges 

representing cooling channels.  In this way it is envisaged that the accuracy of the 

approach can be improved to replicate more completely realistic operational 

conditions. Similar to the approach adopted in this thesis the Lattice Boltzmann 

method can be first tested on simple 1-D fractals to establish a route to do the further 

exploration on non-product fractals.  

Secondly, this thesis is mainly focused on thermo-mechanics of 2-D classical fractals. 

An extension of this work would implement the tessellated approach for thermal 

analysis in more realistic porous media. Typical 3-D fractals such as Menger Sponge 

can be investigated for a start. Then, the geometry of several real porous materials can 

be considered. They can be represented through micro-CT scanner which is 

introduced in the literature review chapter. Therefore, more complex hole-fill maps 

are needed. Due to the geometry, the real flow dynamics through the voids during 

heat exchanger operation will be extremely complex. Future work will concentrate on 

better representation of this flow complexity.  

Once a model from micro-CT for a complex realistic porous material is developed, it 

will be difficult to construct the relative tessellations manually.  The two main types 

of voids (closed and open pore) should be further considered along with their 

corresponding hole-fill maps. If the hole is a closed pore, a new programme should be 

created to find the central point of the hole and divide the hole with uniform area for 

2D fractals or volume for 3D cellular structures. After that, the hole can be filled by 

the elements around. If the hole is an open pore, then the axis of symmetry needs to 

be established together with the central point to build the hole-fill maps. Then, a 

corresponding tessellation can be obtained immediately with the input of the 

geometry of the porous materials. 
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