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Abstract

This thesis applies predictor-based methods for the distributed consensus control of
multi-agent systems with input delay. “Multi-agent systems” is a term used to describe
a group of agents which are connected together to achieve specified control tasks over
a communication network. In many applications, the subsystems or agents are required
to reach an agreement upon certain quantities of interest, which is referred to as “con-
sensus control”. This input delay may represent delays in the network communication.
The main contribution of this thesis is to provide feasible methods to deal with the
consensus control for general multi-agent systems with input delay.

The consensus control for general linear multi-agent systems with parameter uncer-
tainties and input delay is first investigated under directed network connection. Art-
stein reduction method is applied to deal with the input delay. By transforming the
Laplacian matrix into the real Jordan form, delay-dependent conditions are derived to
guarantee the robust consensus control for uncertain multi-agent systems with input
delay. Then, the results are extended to a class of Lipschitz nonlinear multi-agent sys-
tems and the impacts of Lipschitz nonlinearity and input delay in consensus control
are investigated. By using tools from control theory and graph theory, sufficient con-
ditions based on the Lipschitz constant are identified for proposed protocols to tackle
the nonlinear terms in the system dynamics.

Other than the time delay, external disturbances are inevitable in various practical sys-
tems including the multi-agent systems. The consensus disturbance rejection problems
are investigated. For linear multi-agent systems with bounded external disturbances,
Truncated Predictor Feedback (TPF) approach is applied to deal with the input delay
and the H∞ consensus analysis is put in the framework of Lyapunov analysis. Sufficient
conditions are derived to guarantee the H∞ consensus in time domain. Some distur-
bances in real engineering problems have inherent characteristics such as harmonics

6



and unknown constant load. For those kinds of disturbances in Lipschitz nonlinear
multi-agent systems with input delay, Disturbance Observer-Based Control (DOBC)
technique is applied to design the disturbance observers. A new predictor-based con-
trol scheme is constructed for each agent by utilizing the estimate of the disturbance
and the prediction of the relative state information. Sufficient delay-dependent condi-
tions are derived to guarantee consensus with disturbance rejection.
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Chapter 1

Introduction

1.1 Background

In decades, the cooperative control of multi-agent systems has emerged as an attrac-
tive area of research. In the formulation of cooperative control, there are two types
of methods in the literature: centralized method and distributed method. Compared to
centralized method which uses a core cell to control and connect a group of agents, the
distributed method, which uses the local information to design distributed controllers,
brings a number of benefits. By using low-cost sensors and processors to replace the
expensive core unit, distributed multi-agent systems can reduce the cost effectively;
the motion of the agent only relay on the local relative information from the neigh-
bours, which reduces the signal communication and computational workload [1]; fur-
thermore, distributed multi-agent systems are more tolerant to bad environment, since
failure of one agent does not seriously effect the performance of the whole system.

The developments of multi-agent systems also get well support from the improve-
ment of sensor technology, communication technique, and modern control theory. As
smaller, more accurate and reliable sensor and communication system come out, the
strategies using cooperative group of agents to implement a certain task become pos-
sible and applicable [2].

As a result, the distributed control of multi-agent systems has drawn increased
attention in recent years. Typical problems include consensus [3, 4], flocking [5],
swarming [6], formation control [7], and synchronization [8]. There are numerous
applications of multi-agent systems in the real world including wheeled robotics sys-
tem [9], satellites [10, 11], autonomous underwater vehicles (AUV) [12, 13], space-
craft [14], unmanned aerial vehicles(UAV) [15, 16], automated highway systems [17],

14



CHAPTER 1. INTRODUCTION 15

sensor network [8], surveillance [18], smart grid [19], and so on. Additionally, due to
different aims, the cooperative control of multiple mobile robots can implement some
specified tasks such as distributed manipulation [20], mapping of unknown or environ-
ments [21, 22], rural search and rescue [23], transportation of large objects [24, 25].

While the multi-agent systems research brings many benefits, it also introduces
challenges for the researchers. There are three key components for the control of a
group of agents: the agent dynamics, the network communication between the agents
and the cooperative control laws required to achieve the desired group behaviours [26].
In many applications, the technical challenge is to design consensus algorithms for the
agents to reach an agreement upon certain quantities of interest. In addition, time delay
may exist during the process of information communication between the agents. If not
taken into consideration a priori, delays will degrade the performance of the closed-
loop systems and, in the extreme situations, may even cause the loss of stability. Last
but not the least, in the real-world application, it is vital to handle a dynamic changing
environment. The agents must have the ability that cope with various unknown events
which may interfere with the process or disrupt the implementation.

1.2 Research Problems

This thesis studies the consensus problems though the tools from control theory and
graph theory with emphasis on the input delay, intrinsic nonlinear agent dynamics, and
external disturbances existing in the multi-agent systems. Specifically, we will focus
on the following consensus problems.

• For general linear multi-agent systems with input delay and parametric uncer-
tainties under directed network connection, the distributed protocols design for
the closed-loop systems to reach robust consensus will be investigated.

• The consensus analysis for nonlinear systems with delay is more involved due
to certain restrictions the nonlinearity imposes on using the information of the
individual systems. The impacts of Lipschitz nonlinearity and input delay in
consensus control will be investigated.

• The practical physical systems often suffer from external disturbances. For gen-
eral multi-agent systems with input delay and bounded external disturbances, the
H∞ consensus analysis will be investigated under directed network connection.
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• For Lipschitz nonlinear multi-agent systems with input delay and a class of un-
known external disturbances, the consensus disturbance rejection problem based
on DOBC approach will be investigated.

1.3 Overview of Related Work

The concept of multi-agent coordination is initially inspired by the observations and
descriptions of collective behaviour in nature, such as fish schooling, bird flocking and
insect swarming [27]. These behaviours may have advantages of seeking foods, mi-
grating, or avoiding predators and obstacles, and therefore the study of such behaviours
has drawn increased attention from researchers in various fields [28]. In 1987, three
simple rules, separation (collision avoidance), alignment (velocity matching) and co-
hesion (flock centring), were proposed by Reynolds [29] to summarise the key char-
acteristics of a group of biology agents. After that, a simple model was introduced by
Vicsek [30] in 1995 to investigate the emergence of self-ordered motion in systems of
particles with biologically motivated interaction. The flocking behaviours were later
theoretically studied in [31–34].

In this section, the related work will be reviewed. First, we introduce the general
overview of consensus control. Then, the delay effects existing in the multi-agent
systems are reviewed. Finally, we will introduce the uncertainties and disturbances
issues in control of multi-agent systems which may interfere the process or disrupt
implementation.

1.3.1 Consensus Control

Consensus is a fundamental problem in cooperative control of multi-agent system,
since many applications are based on the consensus algorithm design. In multi-agent
systems, consensus problem means how to design the control strategy for a group of
agents to reach a consensus (or agreement) as whole. The basic idea is that each agent
updates its information state based on the information states of its local neighbours
in such a way that the final information state of each agent converges to a common
value [18]. One significant contribution in consensus control is due to the application
of graph theory, particularly, the Laplacian matrix of the network connection, to the
control design of the multi-agent systems for the network links between the agents
[14,35,36]. A general framework of the consensus problem for networks of integrators
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was proposed in [4]. Since then, consensus problems have been intensively studied in
different directions in the literature.

In terms of the agent dynamics, consensus problems under various systems dynam-
ics have been massively investigated. The system dynamics has impactful influence
on the final consensus state of the multi-agent systems. For example, the consensus
state of multi-agent systems with single integrator dynamics often converges to a con-
stant value, meanwhile, consensus for second-order dynamics might converge to a dy-
namic final value (i.e., a time function) [2]. Many early results on consensus problems
are based on simple agent dynamics such as first or second-order integrators dynam-
ics [3, 37–41]. However, in reality a large class of practical physical systems cannot
be feedback linearised as first or second-order dynamical model. For instance, for a
group of Unmanned Air Vehicles (UAV) [42], higher-order dynamic models may be
needed. More complicated agent dynamics are described by high-order linear multi-
agent systems in [43–48]. After that, the results were extended to nonlinear multi-agent
systems [49–54]. Consensus for nonlinear systems is more involved than that for their
linear systems counterparts. The difficulty of consensus control for nonlinear systems
owes to certain restrictions the nonlinearity imposes on using the information of the in-
dividual systems. Consensus control for second-order Lipschitz nonlinear multi-agent
systems was addressed in [55]. The consensus problems of high-order multi-agent sys-
tems with nonlinear dynamics were studied in [49–51,54]. The works [52,53] address
the consensus output regulation problem of nonlinear multi-agent systems. A com-
mon assumption in the previous results is that the dynamics of the agents are identical
and precisely known, which might not be practical in many circumstances. Due to the
existence of the non-identical uncertainties, the consensus control of heterogeneous
multi-agent systems was studied in [56–59].

The communication connections between the agents are also playing an important
role in consensus problems. Most of the existing results are based on fixed communi-
cation topology, which indicates that the Laplacian matrix L is a constant matrix (see
Chapter 2 for graph theory notations). It is pointed out in [26, 60] that the consensus
is reachable if and only if zero is a simple eigenvalue of L . If zero is not a simple
eigenvalue of L , the agents cannot reach consensus asymptotically as there exist at
least two separate subgroups or at least two agents in the group who do not receive any
information [61]. It is also known that zero is a simple eigenvalue of L if and only
if the directed communication topology has a directed spanning tree or the undirected
communication topology is connected [3,4]. The results with directed graphs are more
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involved than those with undirected graphs. The main problem is that the Laplacian
matrix associated with a directed graph is generally not positive semi-definite [28]. The
decomposition method for the undirected systems cannot be applied to the directed one
due to this unfavourable feature. For the consensus control with directed communica-
tion graphs, the balanced and/or strong connected conditions are needed in [62, 63],
which are stronger than the directed spanning tree condition. In practice, the com-
munication between the agents may not be fixed due to technological limitations of
sensors or link failures. The consensus control of multi-agent systems with switching
topologies has been investigated in [4,54,64]. In [55] and [65], consensus control with
communication constraint and Markovian communication failure were studied.

In term of the number of leader, the above researches can also be roughly specified
into three classes, that is, leaderless consensus (consensus without a leader) [43, 51]
whose agreement value depends on the initial states of the agents, leader-follower con-
sensus (or consensus tracking) [38, 54] which has a leader agent to determine the final
consensus value, and containment control [40, 41] where has more than one leader
in agent networks. Compared to leaderless consensus, consensus tracking, and con-
tainment control have the advantages to determine the final consensus value in ad-
vance [48].

1.3.2 Delay Effects in Consensus Control

Time delays widely exist in practical systems due to the time taken for transmission of
signals, transport of materials, etc. The presence of time delays, if not considered in
the controller design, may seriously degrade the performance of the controlled system
and, in the extreme situations, may even cause the loss of stability. Therefore, the
stabilization of time-delay systems has attracted much attention in both academic and
industrial communities; see the surveys [66, 67], the monographs [68–70], and the
references therein.

In the formulation of stabilization of time-delay systems, there are two types of
feedback methods in the literature: standard (memoryless) feedback and predictive
(memory) feedback. Memoryless controllers are useful for the systems with state de-
lays [71–75]. However, it is known that system with input delay is more difficult
to handle in control theory [67]. For predictive feedback, compensation is added
in the controller design to offset the adverse effect of the time delay and the stabi-
lization problems are reduced to similar problems for ordinary differential equations.
A wide variety of predictor-based methods such as Smith predictor [76], modified
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Smith predictor [77], finite spectrum assignment [?], and Artstein-Kwon-Pearson re-
duction method [78, 79] are effective and efficient when the delay is too large to be
neglected and a standard (memoryless) feedback would fail. However a drawback of
the predictor-based methods is that the controllers involve integral terms of the control
input, resulting in difficulty for the control implementation [80]. A halfway solution
between these two methods is to ignore the troublesome integral part, and use the pre-
diction based on the exponential of the system matrix, which is known as the Truncated
Prediction Feedback (TPF) approach. This idea started from low-gain control of the
systems with input saturation [81], then it was developed for linear systems [82–84],
and nonlinear systems [85, 86].

With the Internet and other communication tools used in the consensus control,
time delay due to data transmission occurs more often [85]. In particular, the consen-
sus time delay occurs in the control input when the protocols depend on the relative
state information transmitted over the network. Consensus with input delay has been
extensively studied in the literature (see [16, 57, 87–97] and the references therein).
The early results of consensus with time delay in [4, 98–105] focus on analysing the
stability of consensus algorithms with time delay for first or second-order integrators
dynamics and finding the upper bounds on the time delays such that the consensus can
still be achieved in the presence of time delay. Based on a Linear Matrix Inequality
(LMI) method, consensus for directed networks of integrators with non-uniform time-
varying delays was investigated in [105]. Necessary and sufficient condition was de-
rived in [57] for a class of high-order multi-agent systems with communication delays.
TPF approach was applied in [106] for linear high-order multi-agent systems where the
open-loop dynamics of the agents is restricted to be not exponentially unstable. The
controlled consensus problem of multi-agent systems with nonlinear agent dynamics
and communication delay are more complicated and just a few results have been ob-
tained [107, 108]. Furthermore, the challenge to improve the convergence speed of a
consensus protocol with communication delay seems to be rarely studied in the litera-
ture [109].

1.3.3 Uncertainties and Disturbances in Consensus Control

A common assumption in the previous studies is that the dynamics of the agents are
identical and precisely known, which might be restrictive in many circumstances. The
practical physical systems often suffer from uncertainties which may be caused by
mutations in system parameters, modelling errors or some ignored factors [110]. The
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robust consensus problem of multi-agent systems has formed into a hot topic in re-
cent years. Han et al. investigated the robust consensus problem for multi-agent sys-
tems with continuous-time and discrete-time dynamics in [111] and [112], where the
weighted adjacency matrix is a polynomial function of uncertain parameters. In par-
ticular, the H∞ robust control problem was investigated in [113] for a group of au-
tonomous agents governed by uncertain general linear node dynamics. However, most
of the existing results on consensus control of uncertain multi-agent systems were
often restricted to certain conditions, like single or double integrators [114, 115], or
undirected network connections [116].

Other than the parameter uncertainties, the agents may also be subject to unknown
external disturbances, which might degrade the system performance and even cause the
network system to diverge or oscillate. The consensus problems of multi-agent systems
with performance requirements have emerged as a challenge topic in recent years. The
robust H∞ consensus problems were investigated for multi-agent systems with first and
second-order integrators dynamics in [115,117]. The H∞ consensus problems for gen-
eral linear dynamics with undirected graphs were studied in [118, 119]. The results
obtained in [118] were extended to directed graph in [63]. The H∞ consensus prob-
lems for switching directed topologies were investigated in [120, 121]. The nonlinear
H∞ consensus problem was studied in [62] with directed graph. Global H∞ pinning
synchronization problem for a class of directed networks with aperiodic sampled-data
communications was addressed in [122]. It is worth noting that the directed graphs
in [62,63] are restricted to be balanced or strongly connected. The main problem is that
the Laplacian matrix associated with a directed graph is generally not positive semi-
definite [28]. The decomposition method developed in [118] for the undirected sys-
tems cannot be applied to the directed one due to this unfavourable feature. Until now,
it is still an active research area to achieve H∞ consensus control in general directed
multi-agent systems. Besides the external disturbances, the unavoidable model and pa-
rameter uncertainties in the multi-agent systems, which may resulting from modelling
errors and varying environmental parameters, were also considered in [115, 117].

H∞ control has been proved to be effective for disturbance rejection of the multi-
agent systems with external disturbances bounded by H2 norms. However, distur-
bances in real engineering problems are often periodic and have inherent characteristics
such as harmonics and unknown constant load [123]. For those kinds of disturbances,
it is desirable by utilizing the disturbance information in the design of control input to
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cancel the disturbances directly. One common design method is to estimate the dis-
turbance by using the measurements of states or outputs and then use the disturbance
estimate to compensate the influence of the disturbance on the system, which is re-
ferred to as Disturbance Observer-Based Control (DOBC) [124]. Using DOBC, con-
sensus of second-order multi-agent dynamical systems with exogenous disturbances
was studied in [125, 126] for matched disturbances and in [127] for unmatched distur-
bances. Disturbance observer based tracking controllers for high-order integrator-type
and general multi-agent systems were proposed in [128, 129], respectively. A system-
atic study on consensus disturbance rejection via disturbance observers could be found
in [42]. Note that most existing results are limited to linear systems and there is a lack
of study on consensus disturbance rejection for nonlinear multi-agent systems. The
protocol design for nonlinear multi-agent systems with input delay is more involved
due to the unpredictable disturbances. For example, the well-known model reduction
method [79] cannot be applied for the consensus disturbance rejection problem.

1.4 Contributions and Organization

The objective of this thesis is to study consensus control problems for general multi-
agent systems with input delay. The main contributions include the followings:

• For general linear multi-agent systems with input delay and parameter uncer-
tainties, sufficient conditions for the robust consensus problem under directed
communication topology are identified using Lyapunov tools in the time domain.

• For a class of Lipschitz nonlinear multi-agent systems with input delay, the im-
pacts of Lipschitz nonlinearity and input delay in consensus control is inves-
tigated. Conditions based on the Lipschitz constant are identied for proposed
consensus protocols to tackle Lipschitz nonlinear terms in the system dynamics.

• The H∞ consensus control for general multi-agent systems with input delay and
external disturbances bounded by H2 norms is investigated. Sufficient delay-
dependent conditions are derived for the multi-agent systems to guarantee the
H∞ consensus.

• For Lipschitz nonlinear multi-agent systems with input delay and unknown ex-
ternal disturbances, DOBC method is applied and sufficient conditions is derived
to guarantee consensus with disturbance rejection.
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Overall, this thesis consists of seven chapters. The organization of each chapter
is described in detail at the beginning of that chapter. To understand the whole thesis
structure, a brief introduction of these chapters is given as follows.

In Chapter 1, we first introduce the background of consensus control of multi-
agent systems. Then, we review the related work, including the overview of consensus
control, delay effects, uncertainties and external disturbances existing in consensus
control. The main contributions of this thesis is also introduced.

In Chapter 2, some related preliminaries, including mathematical notations, matrix
theory, stability theory, basic algebraic graph theory, and preliminary results used in
this thesis, are introduced.

In Chapter 3, we systematically investigate the consensus control for general linear
multi-agent systems with parametric uncertainties and input delay. Artstein model
reduction method, one of the most well-know predictor feedback approaches, is used to
deal with the input delay. Due to the existence of parametric uncertainties, the system
can not be completely transformed into a delay-free one. Further endeavours are made
to ensure that the extra integral term, which remains in the system dynamics after
transformation, is properly considered. The significance of this research is to provide
a feasible method to deal with the robust consensus control for uncertain multi-agent
systems with input delay.

In Chapter 4, we systematically investigate the consensus control problem for Lips-
chitz nonlinear multi-agent systems with input delay. Artstein model reduction method
and TPF approach are adopted to design the consensus protocols such that the delays
can be compensated. Judicious analysis is carried out to tackle the influence of the
nonlinear terms under the state transformation. By transforming the Laplacian matrix
into the real Jordan form, global stability analysis is put in the framework of Lya-
punov functions in real domain. For the control design, only the relative information
obtained via the network connection is used, without local feedback control of the
agents. Sufficient conditions are derived for the multi-agent systems to guarantee the
global consensus in the time domain. The conditions can be solved as LMIs (linear
matrix inequalities) with a set of iterative scalar parameters.

In Chapter 5, we consider the H∞ consensus control for high-order multi-agent
systems with general directed graph and input delay. The connection graph between
the agents only needs a directed spanning tree, which is essential for consensus control,
rather than the balanced or strongly connected conditions. The input delay caused
by the communications between the agents is considered by using the TPF method.
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The troublesome integral term involved in traditional predictor feedback approaches is
ignored, and only the prediction based on the exponential of the systems matrix is used
for control design. The proposed TPF controller is infinite and easy to implement.

In Chapter 6, we consider the consensus disturbance rejection problem for Lips-
chitz nonlinear multi-agent systems with input delay based on the DOBC approach.
Different from the conventional predictor feedback approach, a non-ideal predictor
based control scheme is constructed for each agent by using the estimate of the distur-
bance and the prediction of the relative state. Rigorous analysis within the framework
of Lyapunov-Krasovskii functionals is carried out to guarantee that the extra integral
terms of the system state associated with nonlinear functions are properly considered.
Sufficient conditions are derived for the multi-agent systems to guarantee the consen-
sus disturbance rejection.

In Chapter 7, we summarize the thesis and discuss the future research directions.



Chapter 2

Preliminaries

2.1 Matrix Theory

In this section, some mathematical notations and basic definitions that will be used
in the remainder of this thesis are provided. The main references in this section are
[28, 85, 130].

Definition 2.1.1. The Kronecker product of matrix A ∈ Rm×n and B ∈ Rp×q is defined

as

A⊗B =


a11B · · · a1nB

... . . . ...

am1B · · · amnB

 ,
and they have following properties:

1. (A⊗B)(C⊗D) = (AC)⊗ (BD),

2. (A⊗B)+(A⊗C) = A⊗ (B+C),

3. (A⊗B)−1 = A−1⊗B−1,

4. (A+B)⊗C = (A⊗C)+(B⊗C),

5. (A⊗B)T = AT ⊗BT ,

6. If A ∈ Rm×n and B ∈ Rp×q are both positive definite ( positive semi-definite), so

is A⊗B,

where the matrices are assumed to be compatible for multiplication.

24
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Lemma 2.1.1 (Gershgorin’s Disc Theorem [130]). Let A = [ai j] ∈ Rn×n, let

R
′
i(A)≡

n

∑
j=1, j 6=i

∣∣ai j
∣∣ , i = 1,2, · · · ,n

denote the deleted absolute row sums of A, and consider the n Gersgorin discs{
z ∈ C : |z−aii| ≤ R

′
i(A)

}
, i = 1,2, · · · ,n.

The eigenvalues of A in the union of Gersgorin discs are given by

G(A) =
n⋃

i=1

{
z ∈ C : |z−aii| ≤ R

′
i(A)

}
.

Furthermore, if the union of k of the n discs that comprise G(A) forms a set Gk(A) that

is disjoint from the remaining n−k discs, then Gk(A) contains exactly k eigenvalues of

A, counted according to their algebraic multiplicities.

Definition 2.1.2. [130] A matrix A = [ai j] ∈ Rn×n is diagonally dominant if

|aii| ≥
n

∑
j=1, j 6=i

∣∣ai j
∣∣= R

′
i(A), ∀i = 1,2, · · · ,n.

It is strictly diagonally dominant if

|aii|>
n

∑
j=1, j 6=i

∣∣ai j
∣∣= R

′
i(A), ∀i = 1,2, · · · ,n.

Definition 2.1.3 (M-matrix, Definition 6 in [28]). A square matrix A∈Rn×n is called a

singular (nonsingular) M-matrix, if all its off-diagonal elements are non-positive and

all eigenvalues of A have nonnegative (positive) real parts.

Lemma 2.1.2 (Schur Complement Lemma). For any constant symmetric matrix

S =

[
S11 S12

S12 S22

]
,

the following statements are equivalent:

(1) S < 0,

(2) S11 < 0, S22−ST
12S−1

11 S12 < 0,
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(3) S22 < 0,S11−S12S−1
22 ST

12 < 0.

Lemma 2.1.3 (Youngs Inequality). For any given a,b ∈ Rn, we have

2aT SQb≤ aT SPST a+bT QT P−1Qb,

where P > 0, S and Q have appropriate dimensions.

Lemma 2.1.4 (Hölder’s Inequality). For x ∈ Rn and y ∈ Rn, if p > 1 and q > 1 are

real numbers such that 1/p+1/q = 1, then

n

∑
i=1
|xiyi| ≤

{
n

∑
i=1
|xi|p

}1/p{ n

∑
i=1
|yi|q

}1/q

.

Lemma 2.1.5 (Jensen’s Inequality in [68]). For a positive definite matrix P, and a

function x : [a,b]→ Rn, with a,b ∈ R and b > a, the following inequality holds:(∫ b

a
xT (τ)dτ

)
P
(∫ b

a
x(τ)dτ

)
≤ (b−a)

∫ b

a
xT (τ)Px(τ)dτ. (2.1)

Lemma 2.1.6 ( [85]). For a positive definite matrix P, the following identity holds

eAT tPeAt− eω1tP =−eω1t
∫ t

0
e−ω1τeAT τReAτdτ, (2.2)

where

R̄ =−AT P−PA+ω1P.

Furthermore, if R̄ is positive definite, ∀t > 0,

eAT tPeAt < eω1tP. (2.3)

2.2 Stability Theory

In this section, some basic concepts of stability theorems based on Lyapunov functions
are provided. The material in this section is from Ding [131].

Consider a nonlinear system

ẋ = f (x), (2.4)
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where x ∈ D ⊂ Rn is the state of the system, and f : D ⊂ Rn −→ Rn is a continuous
function, with x = 0 as an equilibrium point, that is f (0) = 0, and with x = 0 as an
interior point of D . D denotes a domain around the equilibrium x = 0.

Definition 2.2.1 (Lyapunov stability, Definition 4.1 in [131]). For the system (2.4), the

equilibrium point x = 0 is said to be Lyapunov stable if for any given positive real

number R, there exists a positive real number r to ensure that‖x(t)‖ < R for all t > 0
if ‖x(0)‖< r. Otherwise, the equilibrium point is unstable

Definition 2.2.2 (Asymptotic stability, Definition 4.2 in [131]). For the system (2.4),

the equilibrium point x = 0 is asymptotically stable if it is stable (Lyapunov) and fur-

thermore limt→∞ x(t) = 0.

Definition 2.2.3 (Exponential stability, Definition 4.3 in [131]). For the system (2.4),

the equilibrium point x= 0 is exponential stable if there exist two positive real numbers

α and λ such that the following inequality holds:

‖x(t)‖< α‖x(0)‖exp−λt ,

for t > 0 in some neighbourhood D ⊂ Rn containing the equilibrium point.

Definition 2.2.4 (Globally asymptotic stability, Definition 4.4 in [131]). If the asymp-

totic stability defined in Definition 2.2.2 holds for any initial state in Rn, the equilib-

rium point is said to be globally asymptotically stable.

Definition 2.2.5 (Globally exponential stability, Definition 4.5 in [131]). If the expo-

nential stability defined in Definition 2.2.3 holds for any initial state in Rn, the equi-

librium point is said to be globally exponentially stable.

Definition 2.2.6 (Positive definite function, Definition 4.6 in [131]). A function V (x)∈
D ⊂Rn is said to be locally positive definite if V (x)> 0 for x∈D except at x= 0 where

V (x) = 0. If D = Rn, i.e., the above property holds for the entire state space, V (x) is

said to be globally positive definite.

Definition 2.2.7 (Lyapunov function, Definition 4.7 in [131]). If in D ∈Rn containing

the equilibrium point x = 0, the function V (x) is positive definite and has continuous

partial derivatives, and if its time derivative along any state trajectory of system (2.4)

is non-positive, i.e.,

V̇ (x)≤ 0,
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then V (x) is a Lyapunov function.

Definition 2.2.8 (Radially unbounded function, Definition 4.8 in [131]). A positive

definite function V (x) : Rn −→ R is said to be radially unbounded if V (x) −→ ∞ as

‖x‖ −→ ∞.

Theorem 2.2.1 (Lyapunov theorem for global stability, Theorem 4.3 in [131]). For the

system (2.4) with D ∈ Rn, if there exists a function V (x) : Rn −→ R with continuous

first order derivatives such that

• V (x) is positive definite

• V̇ (x) is negative definite

• V (x) is radially unbounded

then the equilibrium point x = 0 is globally asymptotically stable.

2.3 Basic Algebraic Graph Theory

This section introduces some knowledge relates to graph theory, which is fundamental
in consensus control. The material in this section is from [28, 51, 132].

The graph theory has been introduced by Leonard Euler in year 1736. Generally it
is convenient to model the information exchanges among agents by directed or undi-
rected graphs. A directed graph G , (V ,E), in which V , {v1,v2, · · · ,vN} is the
set of nodes, and E ⊆ V ×V is the set of edge with the ordered pair of nodes. A
vertex represents an agent, and each edge represents a connection. A weighted graph
associates a weight with every edge in the graph. Self loops in the form of (vi,vi) are
excluded unless otherwise indicated. The edge (vi,v j) in the edge set E denotes that
agent v j can obtain information from agent vi, but not necessarily vice versa. For an
edge (vi,v j), node vi is called the parent node, v j is the child node, and vi is a neighbour
of v j . The set of neighbours of node vi is denoted as Ni, whose cardinality is called
the in-degree of node vi.

A graph is defined as being balanced when it has the same number of ingoing and
outgoing edges for all the nodes (edge (vi,v j) is said to be outgoing with respect to
node vi and incoming with respect to v j). A graph with the property that (vi,v j) ∈ E
implies (v j,vi) ∈ E for any vi,v j ∈ V is said to be undirected, where the edge (vi,v j)

denotes that agents vi and v j can obtain information from each other. Clearly, an
undirected graph is a special balanced graph.
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A directed path from node vi1 to node vil is a sequence of ordered edges of the form
(vik ,vik+1),k = 1,2, · · · , l − 1. An undirected path in an undirected graph is defined
analogously. A cycle is a directed path that starts and ends at the same node. A
directed graph is strongly connected if there is a directed path from every node to every
other node. Note that for an undirected graph, strong connectedness is simply termed
connectedness. A directed graph is complete if there is an edge from every node to
every other node. A undirected tree is an undirected graph where all the nodes can be
connected by the way of a single undirected path. A (rooted) directed tree is a directed
graph in which every node has exactly one parent except for one node, called the root,
which has no parent and has directed paths to all other nodes. A directed tree is defined
as spanning when it connects all the nodes in the graph. It can be demonstrated that
this implies that there is at least one root node connected with a simple path to all the
other nodes. A graph is said to have or contain a directed spanning tree if a subset of
the edges forms a directed spanning tree. This is equivalent to saying that the graph
has at least one node with directed paths to all other nodes. For undirected graphs,
the existence of a directed spanning tree is equivalent to being connected. However,
in directed graphs, the existence of a directed spanning tree is a weaker condition than
being strongly connected. A strongly connected graph contains at least one directed
spanning tree.

Associated with the communication graph is its adjacency matrix A = [ai j]∈RN×N ,
where the element ai j denotes the connection between the agent i and agent j. ai j = 1
if ( j, i) ∈ E , otherwise is zero, and aii = 0 for all nodes with the assumption that there
exists no self loop. In the directed graph G , (i, j) ∈ E denotes that the jth agent can
obtain the information from the ith agent, but not vice versa. A directed path on the
graph G from node i1 to node is is a sequence of ordered edges as (i1, i2), · · · ,(is−1, is).
A directed graph that contains a spanning tree is that there exists a node called the root,
and this root has a directed path to every other node of the graph. The Laplacian matrix
L = [li j] ∈ RN×N is defined by lii = ∑

N
j=1 ai j and li j =−ai j when i 6= j.

From the definition of the Laplacian matrix and also the above example, it is easy
to see that L is diagonally dominant and has nonnegative diagonal entries. Since L has
zero row sums, 0 is an eigenvalue of L with an associated eigenvector 1. According
to Gershgorins disc theorem, all nonzero eigenvalues of L are located within a disk in
the complex plane centred at dmax and having radius of dmax, where dmax denotes the
maximum in-degree of all nodes. According to the definition of M-matrix in the last
subsection, we know that the Laplacian matrix L is a singular M-matrix.
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Lemma 2.3.1 ( [3, 28]). The Laplacian matrix L of a directed graph G has at least

one zero eigenvalue with a corresponding right eigenvector 1 = [1,1, . . . ,1]T and all

nonzero eigenvalues have positive real parts. Furthermore, zero is a simple eigenvalue

of L if and only if G has a directed spanning tree. In addition, there exists a nonnega-

tive left eigenvector r of L associated with the zero eigenvalue, satisfying rT L = 0 and

rT 1 = 1. Moreover, r is unique if G has a directed spanning tree.

Lemma 2.3.2 ( [51]). For a Laplacian matrix L that zero is a simple eigenvalue, there

exists a similarity transformation T , with its first column being T1 = 1, such that

T−1LT = J, (2.5)

with J being a block diagonal matrix in the real Jordan form

J =



0
J1

. . .

Jp

Jp+1
. . .

Jq


, (2.6)

where Jk ∈ Rnk , k = 1,2, . . . , p, are the Jordan blocks for real eigenvalues λk > 0 with

the multiplicity nk in the form

Jk =



λk 1
λk 1

. . . . . .

λk 1
λk


,

and Jk ∈ R2nk , k = p+1, p+2, . . . ,q, are the Jordan blocks for conjugate eigenvalues
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αk± jβk, αk > 0 and βk > 0, with the multiplicity nk in the form

Jk =



ν(αk,βk) I2

ν(αk,βk) I2
. . . . . .

ν(αk,βk) I2

ν(αk,βk)


,

with I2 being the identity matrix in R2×2 and

ν(αk,βk) =

[
αi βi

−βi αi

]
∈ R2×2.

2.4 Basic Idea of Predictor Feedback Design

2.4.1 Predictor Feedback Design

In this section, we will recall the basic idea of predictor-based feedback design. Con-
sider a linear input-delayed system

ẋ(t) = Ax(t)+Bu(t−h), (2.7)

where x ∈ Rn denotes the state, u ∈ Rm denotes the control input, A ∈ Rn×n and B ∈
Rn×m are constant matrices, h ∈ R+ is input delay, which is known and constant.

If delay is absent, we only need to find a stabilizing gain vector K such that the
matrix A+BK is Hurwitz. Accordingly, for input-delayed system (2.7), if we can have
a control that achieves

u(t−h) = Kx(t), (2.8)

the control problem of the input-delayed system (2.7) is solved with a stabilizing gain
vector K.

Control (2.8) can be alternatively written as

u(t) = Kx(t +h). (2.9)

It is unrealistic since the controller requires future values of the state x at time t + h
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which cannot be obtained with direct measurement. However, with the variation-of-
constants formula, the vector x(t +h) can be calculated as follows

x(t +h) = eA(t+h)x(0)+
∫ t+h

0
eA(t+h−τ)Bu(τ−h)dτ

= eAhx(t)+
∫ t

t−h
eA(t−τ)Bu(τ)dτ, ∀t ≥ 0. (2.10)

Therefore we can express the controller as

u(t) = K
[

eAhx(t)+
∫ t

t−h
eA(t−τ)Bu(τ)dτ

]
, ∀t ≥ 0,

which is implementable, but it is infinite-dimensional, since it contains the distributed
delay term involving past controls [70],

∫ t
t−h eA(t−τ)Bu(τ)dτ. The closed-loop system

is fully delay-compensated,

ẋ(t) = (A+BK)x(t), t ≥ h. (2.11)

During the interval t ∈ [0,h], the system state is governed by

x(t) = eA(t)x(0)+
∫ t

0
eA(t−τ)Bu(τ−h)dτ,∀t ∈ [0,h] . (2.12)

2.4.2 Model Reduction Method

Based on the basic idea of predictor feedback design, the model reduction method for
linear system with input delay was first developed by Kwon and Pierson in [78]. The
results were then extended to time-varying system with distributed delays by Artstein
in [79]. The outline of the method is as follows.

Consider a system
ẋ(t) = Ax(t)+Bu(t−h), (2.13)

where x ∈ Rn denotes the state, u ∈ Rm denotes the control input, A ∈ Rn×n and B ∈
Rn×m are constant matrices, h is input delay.

Let
z(t) = x(t)+

∫ t+h

t
eA(t−τ)Bu(τ−h)dτ, (2.14)
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Differentiating z(t) against time yields

ż(t) = Ax(t)+Bu(t−h)+ e−AhBu(t)−Bu(t−h)+A
∫ t+h

t
eA(t−τ)Bu(τ−h)dτ

= Az(t)+Du(t), (2.15)

where D = e−AhB. The general form of the Leibniz integral rule has been used for this
derivation.

The controllability of (A,B) and (A,e−AhB) are equivalent as proved in [133]. We
consider a controller

u(t) = Kz(t). (2.16)

From (2.14) and (2.16), we have

‖x(t)‖ ≤ ‖z(t)‖+h
(

max
−h≤θ≤0

‖eAθ‖
)
‖B‖‖K‖‖zt(θ)‖,

where zt(θ) := z(t + θ), −h ≤ θ ≤ 0. Thus, x(t)→ 0 as z(t)→ 0. In other words, if
the controller (2.16) stabilizes the transformed system (2.15), then the original system
(2.13) is also stable with the same controller [78].

Remark 2.4.1. With any given bounded initial condition u(θ), θ ∈ [−h,0], a stable

feedback controller (2.16) implies that u(t) in (2.14) is locally integrable, which allows

for the model reduction as (2.15).

Remark 2.4.2. By introducing a state transformation, the input-delayed linear system

is transformed to a delay-free one which is finite dimensional, where the reduction in

dimension is achieved.
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Robust Consensus for Linear MASs

In this chapter, we systematically investigate the consensus control for general linear
multi-agent systems with parameter uncertainties and communication delay. This kind
of network communication delay can be formulated as the input delay when the in-
puts only depend on the relative state information transmitted via the network. The
main contributions of this chapter are summarized as follows: (1) In this chapter, the
robust consensus problem for general linear multi-agent systems is considered. Com-
pared with [114, 115], the model under consideration is more general. (2) Compared
to the previous works [111,113,116], the requirement for the communication graph in
this chapter is more general. The connection graph between the agents only needs a
directed spanning tree, which is essential for consensus control, rather than the undi-
rected, balanced or strongly connected conditions. (3) Model reduction method is used
to deal with the input delay and further endeavours are made to ensure that the extra
integral term, which remains in the system dynamics after transformation due to the
parameter uncertainties, is properly considered.

The rest of this chapter is organized as follows. Some notations and the problem
formulation are given in Section 3.1. Section 3.2 presents the main results for the
consensus analysis. Based on the analysis result in Section 3.2, Section 3.3 presents
a consensus controller design method. Simulation results are included in Section 3.4.
The content of this chapter is summarized in Section 3.5.

34
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3.1 Problem Formulation

In this chapter, we consider the control design for a group of N uncertain subsystems
with input delay, of which the subsystems are described by

ẋi(t) = [A+∆A(t)]xi(t)+ [B+∆B(t)]ui(t−h), (3.1)

where for subsystems i = 1,2, . . . ,N, xi ∈ Rn is the state vector, ui ∈ Rm is the control
input vector, A ∈ Rn×n and B ∈ Rn×m are constant matrices with (A,B) being control-
lable, h > 0 is the input delay, the initial conditions xi(0) and ui(s), s ∈ [−h,0] are
given. ∆A(t) and ∆B(t) are time-varying uncertain matrices, and are assumed to be of
the form

∆A(t) = EΣ(t)F1 and ∆B(t) = EΣ(t)F2, (3.2)

where E, F1 and F2 are real constant matrices with appropriate dimensions, and Σ(t) is
an unknown real time-varying matrix that satisfies ΣT (t)Σ(t)≤ I.

Remark 3.1.1. It is worth noticing that the agents in the network are nominally iden-

tical and the model uncertainty matrices satisfy the same form as (3.2). Different from

the existing works that focus on the identical agents in the network, the terms ∆A and

∆B in (3.1) allow the agents to have different dynamics and the uncertainty is charac-

terised by the time-varying matrix Σ(t), which implies that each subsystem in the group

can be non-identical. For the consensus design, only the bound of Σ(t) (i.e., the worst

case) is needed.

Associated with the communication graph is its adjacency matrix A = [ai j]∈RN×N ,
where the element ai j denotes the connection between the agent i and agent j. ai j = 1
if ( j, i) ∈ E , otherwise is zero, and aii = 0 for all nodes with the assumption that there
exists no self loop. A directed graph that contains a spanning tree is that there exists a
node called the root, and this root has a directed path to every other node of the graph.
The Laplacian matrix L = [li j]∈RN×N is defined by lii = ∑

N
j=1 ai j and li j =−ai j when

i 6= j.

Assumption 3.1.1. The eigenvalues of the Laplacian matrix L are distinct.

Remark 3.1.2. In terms of the network connections, this condition implies that the

network has a spanning tree to connect any two subsystems in the system. As mentioned

in Lemma 2.3.1, for consensus design, we only need that the eigenvalue at 0 is simple.
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Assumption 3.1.1 is a bit stronger than necessary, and it is adopted for the convenience

of presentation of the proposed design.

The aim of the current chapter is to design a control strategy, using the relative
state information to ensure that all the uncertain subsystems converge to an identical
trajectory.

3.2 Consensus Analysis

By the model reduction method, we consider the following linear transformation for
each agent

zi(t) = xi(t)+
∫ t+h

t
eA(t−τ)Bui(τ−h)dτ.

The original multi-agent systems are transformed to

żi(t) =(A+∆A)zi(t)+Dui(t)

+∆Bui(t−h)−∆A
∫ t+h

t
eA(t−τ)Bui(τ−h)dτ, (3.3)

where D = e−AhB. As seen in (3.3), (3.1) is not completely reduced to a delay-free
system due to the parameter uncertainties.

We propose a control design using the relative state information. The control input
takes the structure

ui(t) =−K
N

∑
j=1

ai j[zi(t)− z j(t)]

=−K
N

∑
j=1

li jz j(t), (3.4)

where K ∈ Rm×n is a constant control gain matrix to be designed later.

Remark 3.2.1. It is worth noting from (3.4) that the proposed control only uses the

relative state information of the subsystems via network connections.

Remark 3.2.2. Note that the information on each control input ui(t) on the time in-

terval [t− h, t] can be stored and used for control. In practical implementations, the

discretization of an integral or some numerical quadrature method [134] can be used

to approximate the integral term in the control input ui(t).



CHAPTER 3. ROBUST CONSENSUS FOR LINEAR MASS 37

Let z(t) = [zT
1 ,z

T
2 , . . . ,z

T
N ]

T , and the closed-loop system is then written as

ż(t) =[IN⊗ (A+∆A)−L⊗DK]z(t)

− (L⊗∆BK)z(t−h)− (IN⊗∆A)σ(t), (3.5)

where σ = [σT
1 ,σ

T
2 , . . . ,σ

T
N ]

T with the elements defined by

σi =−
∫ t+h

t
eA(t−τ)BK

N

∑
j=1

li jz j(τ−h)dτ. (3.6)

Let us define rT = [r1,r2, . . . ,rN ] ∈ RN as the left eigenvector of L corresponding
to the eigenvalue at 0, that is, rT L = 0, and furthermore, we set rT 1 = 1. It can be
shown from Assumption 3.1.1 and Lemma 2.3.2 that there exists a non-singular matrix
T with the first column T (1) = 1 and the first row of T−1, T−1

(1) = rT , such that

T−1LT = J, (3.7)

with J being a block diagonal matrix in the real Jordan form

J =



0
λ2

. . .

λnλ

ν1
. . .

νnν


,

where λi ∈ R for i = 2,3, . . . ,nλ and

νi =

[
αi βi

−βi αi

]
∈ R2×2,

for i = nλ + 1,nλ + 2, . . . ,N. In the above expression of J, λi, αi and βi are positive
real numbers with λi being real eigenvalues and αi± βi conjugate eigenvalues of L ,
respectively. Clearly we have nλ +2nν = N. Note that the non-zero eigenvalues of L
are positive or with positive real parts.
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Based on the vector r, we introduce a state transformation

ξi = zi−
N

∑
j=1

r jz j, (3.8)

for i = 1,2, . . . ,N. With ξ = [ξT
1 ,ξ

T
2 , . . . ,ξ

T
N ]

T , we have

ξ = z− [(1rT )⊗ In]z = (M⊗ In)z,

where M , IN − 1rT . Since rT 1 = 1, it can be shown that M1 = 0. Therefore the
consensus of system (3.1) is achieved when ξ = 0, as ξ = 0 implies z1 = z2 = . . .= zN .
The dynamics of ξ can then be obtained as

ξ̇(t) =(M⊗ In)ż(t)

= [IN⊗ (A+∆A)−L⊗DK]ξ(t)

− (L⊗∆BK)ξ(t−h)− (M⊗ In)(IN⊗∆A)σ. (3.9)

To explore the structure of L , let us introduce another state transformation

η = (T−1⊗ In)ξ. (3.10)

Then we have

η̇(t) =[IN⊗ (A+∆A)− J⊗DK]η(t)

− (J⊗∆BK)η(t−h)−Ψ(z), (3.11)

where Ψ(z)= (T−1⊗In)(M⊗In)(IN⊗∆A)σ. For the convenience, let η= [ηT
1 ,η

T
2 , . . . ,η

T
N ]

T

and Ψ(z)= [ψT
1 (z),ψ

T
2 (z), . . . ,ψ

T
N(z)]

T with ηi ∈Rn and ψi :RnN→Rn for i= 1,2, . . . ,N.
Hence, if we can design a control gain matrix K to ensure that η converges to zero

asymptotically, the consensus control is achieved. With the control law shown in (3.4),
the control gain matrix K is chosen as

K = DT P, (3.12)

where P is a positive definite matrix. In the remaining part of this section, we will use
Lyapunov-function-based analysis to identify a condition for P to ensure that consen-
sus is achieved by using the control algorithm (3.4) with the control gain K in (3.12).
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Based on the state transformations (3.8) and (3.10), we have

η1 = (rT ⊗ In)ξ

= [(rT M)⊗ In]z

≡ 0.

As discussed earlier, the consensus control can be guaranteed by showing that η con-
verges to zero, which is sufficed by showing that ηi converge to zero for i = 2,3, . . . ,N,
since we have shown that η1 ≡ 0.

In view of (3.11), for i ∈ {2,3, . . . ,nλ}, the dynamics of the subsystem state vari-
ables are given by

η̇i(t) =(A+∆A−λiDK)ηi(t)−λi∆BKηi(t−h)−ψi.

For k ∈ {1,2, . . . ,nν}, we consider the dynamics of the subsystem state variables in
pairs. For convenience of presentation, define

i1(k) = 1+nλ +2k−1,

i2(k) = 1+nλ +2k.

The dynamics of ηi1 and ηi2 are expressed by

η̇i1(t) =(A+∆A−αkDK)ηi1(t)−βkDKηi2(t)−αk∆BKηi1(t−h)

−βk∆BKηi2(t−h)−ψi1,

η̇i2(t) =(A+∆A−αkDK)ηi2(t)+βkDKηi1(t)−αk∆BKηi2(t−h)

+βk∆BKηi1(t−h)−ψi2.

Let

V1 =
N

∑
i=2

η
T
i (t)Pηi(t) (3.13)
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for i = 2,3, . . . ,N. Then the derivative of V1 can be directly calculated as

V̇1 =
nλ

∑
i=2

η
T
i (t)

(
AT P+PA−2λiPDDT P

)
ηi(t)

+
N

∑
i=nλ+1

η
T
i (t)

(
AT P+PA−2αiPDDT P

)
ηi(t)

−2
nλ

∑
i=2

λiη
T
i (t)P∆BDT Pηi(t−h)−2

N

∑
i=nλ+1

αiη
T
i (t)P∆BDT Pηi(t−h)

−2
nν/2

∑
k=1

βkη
T
i1(k)(t)P∆BDT Pηi2(k)(t−h)+2

nν/2

∑
k=1

βkη
T
i2(k)(t)P∆BDT Pηi1(k)(t−h)

−2
N

∑
i=2

[
η

T
i (t)P∆Aηi(t)+η

T
i (t)Pψi

]
≤

N

∑
i=2

[
η

T
i (t)

(
AT P+PA−2αPDDT P

)
ηi(t)+

1
µ

η
T
i (t)PEET Pηi(t)

+µη
T
i (t)F

T
1 F1ηi(t)+

ᾱ+ β̄

ε
η

T
i (t)PEET Pηi(t)

−2η
T
i PΨi + ε(ᾱ+ β̄)ηT

i (t−h)PDFT
2 F2DT Pηi(t−h)

]
, (3.14)

where α , min{λ2, . . . ,λnλ
,α1, . . . ,αnv}, ᾱ , max{λ2, . . . ,λnλ

,α1, · · · ,αnv},
β̄ , max{β1, . . . ,βnv}. The inequality ±2aT b ≤ κaT a+ bT b/κ has been used to deal
with the uncertain terms ∆A(t) = EΣ(t)F1 and ∆B(t) = EΣ(t)F2.

The extra integral term Ψ in the transformed systems dynamic model (3.11) is ex-
pressed as a function of the state z. For the stability analysis, first we need to establish
a bound of the integral function −2ηT

i Pψi in terms of the transformed state η. From
the state transformations (3.8) and (3.10), we have

Ψ(z) =
(

T−1⊗ In

)
(M⊗ In)(IN⊗∆A)σ.

Let

Φ = [φ1, · · · ,φN ]
T = (M⊗ In)σ̄,

σ̄ = [σ̄1, · · · , σ̄N ]
T = (IN⊗∆A)σ.
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Recalling M = IN−1rT , we can get

φk = σk−
N

∑
j=1

r jσ j

= ∆A

(
σk−

N

∑
j=1

r jσ j

)
,

ψi = (τi⊗ In)Φ

=
N

∑
k=1

τikφk

=
N

∑
k=1

τik∆A

(
σk−

N

∑
j=1

r jσ j

)

= ∆A
N

∑
k=1

τikσk−∆A
N

∑
k=1

τik

N

∑
j=1

r jσ j,

where τi is the ith row of T−1. It then follows that

−2η
T
i Pψi =2η

T
i P∆A

N

∑
k=1

τik

N

∑
j=1

r jσ j−2η
T
i P∆A

N

∑
k=1

τikσk

≤2
ρ

η
T
i PEET Pηi +ρ

(
N

∑
k=1

τikσk

)T

FT
1 F1

(
N

∑
k=1

τikσk

)

+ρ

(
N

∑
k=1

τik

N

∑
j=1

r jσ j

)T

FT
1 F1

(
N

∑
k=1

τik

N

∑
j=1

r jσ j

)

≤2
ρ

η
T
i PEET Pηi +ρ

(
‖τi‖22 +‖τi‖2‖r‖2) N

∑
k=1
‖F1σk‖2. (3.15)
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From (3.4) and (3.6), we have

σk =−
∫ t+h

t
eA(t−τ)BK

N

∑
j=1

lk jz j(τ−h)dτ

=
∫ t+h

t
eA(t−τ)BK

N

∑
j=1

ak j
(
z j(τ−h)− zk(τ−h)

)
dτ

=
∫ t+h

t
eA(t−τ)BK

N

∑
j=1

ak j
[
(t j− tk)⊗ In

]
η(τ−h)dτ

=
∫ t+h

t
eA(t−τ)BK

N

∑
j=1

ak j

N

∑
l=1

(t jl− tkl)ηl(τ−h)dτ

=
N

∑
j=1

ak j

N

∑
l=1

(t jl− tkl)δl, (3.16)

where ti is the ith row of T and

δl =
∫ t+h

t
eA(t−τ)BKηl(τ−h)dτ. (3.17)

It then follows that

N

∑
k=1
‖F1σk‖2 =

N

∑
k=1
‖

N

∑
j=1

ak j

N

∑
l=1

(t jl− tkl)F1δl‖2

≤
N

∑
k=1
‖

N

∑
j=1

ak j

N

∑
l=1

t jlF1δl‖2 +
N

∑
k=1
‖

N

∑
j=1

ak j

N

∑
l=1

tklF1δl‖2

≤2‖A‖2
F‖T‖2

F

N

∑
l=1
‖F1δl‖2. (3.18)

We next deal with ‖F1δl‖2
2 and have

‖F1δl‖2
2 =δ

T
l FT

1 F1δl

=

(∫ t+h

t
F1eA(t−τ)BKηl(τ−h)dτ

)T (∫ t+h

t
F1eA(t−τ)BKηl(τ−h)dτ

)
≤h

∫ t+h

t
η

T
l (τ−h)KT DT eAT (t−τ+h)FT

1 F1eA(t−τ+h)DKηl(τ−h)dτ

=h
∫ h

0
η

T
l (t− τ)PDDT eAT τFT

1 F1eAτDDT Pηl(t− τ)dτ. (3.19)
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With (3.18) and (3.19), the summation of −2ηT
i Pψi can be obtained as

−
N

∑
i=2

2η
T
i Pψi

≤ 2
ρ

N

∑
i=2

η
T
i (t)PEET Pηi(t)+2ρ

N

∑
i=2

(
‖τi‖2 +‖τi‖2‖r‖2)‖A‖2

F‖T‖2
F

N

∑
l=2
‖F1δl‖2

≤ 2
ρ

N

∑
i=2

η
T
i (t)PEET Pηi(t)+ργ

2
0

N

∑
i=2

h
∫ h

0
η

T
l (t− τ)KT DT eAT τFT

1 F1eAτDKηl(t− τ)dτ

(3.20)

with

γ
2
0 = 2

N

∑
i=2

(
‖τi‖2 +‖τi‖2‖r‖2)‖A‖2

F‖T‖2
F

≤ 2
∥∥T−1∥∥2

F

(
1+N‖r‖2)‖A‖2

F‖T‖2
F ,

where we have used

N

∑
i=1
‖τi‖2 =

∥∥∥T−1
∥∥∥2

F
.

Hence, together with (3.14) and (3.20), we get

V̇1 ≤
N

∑
i=2

η
T
i (t)

(
AT P+PA−2αPDDT P+

(
1
µ
+

ᾱ+ β̄

ε
+

2
ρ

)
PEET P+µFT

1 F1

)
ηi(t)

+
N

∑
i=2

ε(ᾱ+ β̄)ηT
i (t−h)PDFT

2 F2DT Pηi(t−h)

+ργ
2
0

N

∑
i=2

h
∫ h

0
η

T
i (t− τ)PDDT eAT τFT

1 F1eAτDDT Pηi(t− τ)dτ. (3.21)

For the delayed term shown in (3.21), we consider the following Krasovskii functional

V2 = (ᾱ+ β̄)
N

∑
i=2

∫ t

t−h
η

T
i (τ)Rηi(τ)dτ, (3.22)

where

R− εPDFT
2 F2DT P > 0. (3.23)
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A direct evaluation gives that

V̇2 =(ᾱ+ β̄)
N

∑
i=2

η
T
i (t)Rηi(t)− (ᾱ+ β̄)

N

∑
i=2

η
T
i (t−h)Rηi(t−h). (3.24)

For the integral term shown in (3.22), we consider the following Krasovskii functional

V3 =ρhγ
2
0

N

∑
i=2

∫ h

0

∫ t

t−s
η

T
i (τ)PDDT eAT sFT

1 F1eAsDDT Pηi(τ)dτds.

A direct evaluation gives that

V̇3 =ρhγ
2
0

N

∑
i=2

∫ h

0
η

T
i (t)PDDT eAT sFT

1 F1eAsDDT Pηi(t)ds

−ρhγ
2
0

N

∑
i=2

∫ h

0
η

T
i (t− s)PDDT eAT sFT

1 F1eAsDDT Pηi(t− s)ds

≤ργ
2
0

N

∑
i=2

η
T
i (t)PDDTW−1DDT Pηi(t)ds

−ρhγ
2
0

N

∑
i=2

∫ h

0
η

T
i (t− s)PDDT eAT sFT

1 F1eAsDDT Pηi(t− s)ds, (3.25)

where

W−1 ≥ h
∫ h

0
eAT sFT

1 F1eAsds. (3.26)

Let

V =V1 +V2 +V3.

From (3.21), (3.24) and (3.25), we obtain that

V̇ = V̇1 +V̇2 +V̇3 ≤
N

∑
i=2

η
T
i (t)Hηi(t), (3.27)

where

H ,AT P+PA−2αPDDT P+µFT
1 F1 +(ᾱ+ β̄)R

+

(
1
µ
+

ᾱ+ β̄

ε
+

2
ρ

)
PEET P+ργ

2
0PDDTW−1DDT P. (3.28)
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3.3 Controller Design

In this section, we consider the problem of controller design for the multi-agent sys-
tems (3.1). Based on the consensus analysis in last section, a controller design method
is derived in the following theorem.

Theorem 3.3.1. For the input-delayed uncertain multi-agent systems (3.1) with the

associated Laplacian matrix that satisfies Assumption 3.1.1, if there exist matrices

X = P−1 > 0,Y > 0 and scalars µ > 0,ε > 0,ρ > 0, such that Y DFT
2

F2DT 1
ε

I

> 0, (3.29)


H̄ XFT

1 DDT

F1X −1
µ

I 0

DDT 0 − 1
ργ2

0
W

< 0, (3.30)

where

H̄ =XAT +AX−2αY T DT +

(
1
µ
+

ᾱ+ β̄

ε
+

2
ρ

)
EET +(ᾱ+ β̄)Y,

ᾱ =max{λ2, . . . ,λnλ
,α1, . . . ,αnν

},

β̄ =max{β1, . . . ,βnv},

α =min{λ2, . . . ,λnλ
,α1, . . . ,αnν

},

γ
2
0 =2

∥∥∥T−1
∥∥∥2

F

(
1+N ‖r‖2

2

)
‖A‖2

F

∥∥T
∥∥2

F ,

and W is a positive-definite matrix satisfying

W−1 ≥ h
∫ h

0
eAT sFT

1 F1eAsds, (3.31)

then the consensus control problem of system (3.1) can be solved by the control design

(3.4) with the control gain K = DT X−1.

Proof From the analysis above, we know that the control (3.4) stabilizes η if the con-
ditions (3.23), (3.26) and H < 0 in (3.28) are satisfied. Indeed, it is easy to see the
conditions (3.23) and (3.26) are equivalent to the conditions specified in (3.29) and
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Figure 3.1: Network connection topology

(3.30) with Y = P−1RP−1. From (3.28), it can be obtained that H < 0 is equivalent to

P−1AT+AP−1−2αDDT +

(
1
µ
+

ᾱ+ β̄

ε
+

2
ρ

)
EET

+µP−1FT
1 F1P−1 +(ᾱ+ β̄)P−1RP−1 +ργ

2
0DDTW−1DDT < 0, (3.32)

which is further equivalent to (3.31) with X = P−1. Hence, we conclude that η con-
verges to zero asymptotically. This completes the proof.

Remark 3.3.1. The conditions shown in (3.29) to (3.31) can be checked by standard

LMI routines for a set of fixed values R and W−1. The iterative methods developed

in [135] for single linear system may also be applied here.

3.4 Numerical Examples

In this section, the scenario under consideration is a connection of 4 subsystems in
networks as shown in Fig.3.1. The dynamics of each subsystem are described by (3.1)
with

A =

[
−1 1
0 0

]
, B =

[
0
1

]
, Σ(t) =

[
sin(t) 0

0 sin(2t)

]
,

E =

[
0.2 0
0 0.2

]
, F1 =

[
0.1 0
0 0.1

]
, F2 =

[
0.1
0.1

]
.
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The Laplacian matrix associated with the graph in Fig.3.1 is

L =


1 0 0 −1
−1 1 0 0
0 0 1 −1
0 −1 0 1

 .

The eigenvalues of L are [0,1,(3+
√

3j)/2,(3−
√

3j)/2], and the Assumption 3.1.1 is
satisfied. Then we obtain

J =


0 0 0 0
0 1 0 0

0 0 3
2

√
3

2

0 0 −
√

3
2

3
2

 ,
with the matrices

T =


1 0 1

2

√
3

2

1 0 −1 0

1 −2 1
2

√
3

2

1 0 1
2 −

√
3

2

 ,
and

T−1
=


1
3

1
3 0 1

3
1
2 0 −1

2 0
1
3 −2

3 0 1
3√

3
3 0 0 −

√
3

3

 .
Thus, we have rT = [1/3,1/3,0,1/3]T , α = 1, ᾱ = 1.5 and β̄ =

√
3/2.

Remark 3.4.1. For the directed communication graph, as seen in this example, the

Laplacian matrix L is asymmetric, which is more involved than the undirected case

in [50]. Furthermore, the third element of the left eigenvector r associated with the

zero eigenvalue is 0. This suggests that the Lyapunov function used in [62] cannot be

used for the consensus analysis here.

The input delay of the system is h = 0.03s. The positive definite matrix X can be
computed with µ = 1, ε = 1 and ρ = 1, as

X =

[
276.6367 −0.0436
−0.0436 0.6394

]
,
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Figure 3.2: The state 1 of subsystems with h = 0.03.

and thus the control gain is obtained as

K =
[
0.0001 1.5640

]
.

Simulation study has been carried out with the results shown in Figs. 3.2 and 3.3
for the states of each subsystems. Clearly the conditions specified in Theorem 3.3.1
are sufficient for the control gain to achieve consensus control. Without any re-tuning
the control gain, the consensus control is still achieved for the multi-agent system with
much larger uncertainty and delay, as shown in Figs. 3.4 and 3.5, which implies the
proposed protocol has preferred robustness and the conditions might be conservative
for a given input delay.

3.5 Summary

In this chapter, with aid of the reduction method, we have solved the consensus prob-
lem of the multi-agent systems with parameter uncertainties and input delay. Further
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Figure 3.3: The state 2 of subsystems with h = 0.03.

analysis has been developed to tackle the influence of the extra integral term under
the transformations. Two sufficient conditions are derived for the closed-loop system
to achieve global consensus using Lyapunov-Krasovskii method in the time domain.
The significance of this research is to provide a feasible method to deal with the robust
consensus control for uncertain multi-agent systems with input delay.
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Figure 3.4: The state 1 of subsystems with E = diag{2,2} and h = 0.3.
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Figure 3.5: The state 2 of subsystems with E = diag{2,2} and h = 0.3.



Chapter 4

Consensus Control for Nonlinear
MASs

In this chapter, we systematically investigate the consensus control problem for multi-
agent systems with nonlinearity and input delay. To deal with the input delay, model
reduction method is employed by a state transformation in the presence of nonlinear-
ity in the agent dynamics. Compensation based on the relative input information is
added in the controller design to offset any constant input delay. Due to the limitations
of sensors or link failures, sometimes, the relative input information is unobtainable.
For such cases, TPF approach is adopted to deal with the input delay and a finite-
dimensional TPF controller is constructed for each agent. To tackle the influence of
the nonlinear terms under the state transformations, further rigorous analysis is carried
out to ensure that the extra integral terms of the system state associated with nonlinear
functions are properly considered by means of Krasovskii functionals. By transform-
ing the Laplacian matrix into the real Jordan form, global stability analysis is put in the
framework of Lyapunov functions in real domain. Conditions based on the Lipschitz
constant are identified for proposed consensus protocols with/without relative input in-
formation to tackle Lipschitz nonlinear terms in the system dynamics. Simulations are
carried out to demonstrate the results obtained in the chapter.

The main contributions of this chapter are summarized as follows: (1) Many of
the results on consensus control are based on linear system dynamics [43–48]. In this
chapter, the consensus problem for Lipschitz nonlinear multi-agent systems is consid-
ered. (2) Compared to the previous works [49, 50, 52, 54], where the communication
graphs are undirected or strong connected, the requirement for the communication
graph in this chapter is more general. (3) Input delay is taken into consideration and

52
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further rigorous analysis is carried out to ensure that the extra integral terms of the
system state associated with nonlinear functions are properly considered by means of
Krasovskii functionals.

The rest of this chapter is organized as follows. The problem formulation is given in
Section 4.1. Section 4.2 presents the main results on consensus control with model re-
duction method. Based on the TPF approach, Section 4.3 presents a finite-dimensional
consensus controller design method without the relative input information. Simulation
results are included in Section 4.4. Section 4.5 summarises this chapter.

4.1 Problem Formulation

In this section, we consider control design for a group of N agents, each represented
by a nonlinear subsystem that is subject to input delay and Lipschitz nonlinearity,

ẋi(t) = Axi(t)+Bui(t−h)+φ(xi), (4.1)

where for agent i, i = 1,2, . . . ,N, xi ∈Rn is the state vector, ui ∈Rm is the control input
vector, A ∈ Rn×n and B ∈ Rn×m are constant matrices with (A,B) being controllable,
h> 0 is input delay, and the initial conditions xi(θ), θ∈ [−h,0], are given and bounded,
and φ : Rn→ Rn, φ(0) = 0, is a Lipschitz nonlinear function with a Lipschitz constant
γ, i.e., for any two constant vectors a, b ∈ Rn,

‖φ(a)−φ(b)‖ ≤ γ‖a−b‖.

Associated with the communication graph is its adjacency matrix A = [ai j] ∈ RN×N ,
where the element ai j denotes the connection between the agent i and agent j. ai j = 1
if ( j, i) ∈ E , otherwise is zero, and aii = 0 for all nodes with the assumption that there
exists no self loop. A directed graph that contains a spanning tree is that there exists a
node called the root, and this root has a directed path to every other node of the graph.
The Laplacian matrix L = [li j]∈RN×N is defined by lii = ∑

N
j=1 ai j and li j =−ai j when

i 6= j.

Assumption 4.1.1. Zero is a simple eigenvalue of the Laplacian matrix L .

Remark 4.1.1. This assumption implies that is a directed spanning tree in the net-

work. For undirected graph or strongly connected and balanced graph, the condition,

x̄T L x̄ ≥ 0, ∀ x̄ ∈ RN , holds. However, for the general direction graph in Assumption
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(4.1.1), the Laplacian matrix L is asymmetric and x̄T L x̄ can be sign-indefinite [28].

The decomposition method developed in [118] for the undirected multi-agent systems

cannot be applied here due to this unfavourable feature.

The consensus control problem considered in this chapter is to design a control
strategy, using the relative state information, to ensure that all agents asymptotically
converge to an identical trajectory.

4.2 Consensus Control of Nonlinear MASs with Input
Delay: Model Reduction Method

4.2.1 Stability Analysis for Single Nonlinear System

In this section, we first consider the Artstein model reduction method for a single
nonlinear system. Consider an input-delayed system

ẋ(t) = Ax(t)+Bu(t−h)+φ(x(t)), (4.2)

with φ : Rn→ Rn, φ(0) = 0, being a Lipschitz nonlinear function, and the initial con-
ditions x(θ), θ ∈ [−h,0], being bounded. Let

z(t) = x(t)+
∫ t+h

t
eA(t−τ)Bu(τ−h)dτ, (4.3)

Differentiating z(t) against time yields

ż(t) = Ax(t)+φ(x(t))+ e−AhBu(t)+A
∫ t+h

t
eA(t−τ)Bu(τ−h)dτ

= Az(t)+Du(t)+φ(x(t)), (4.4)

where D = e−AhB.
We consider a controller

u(t) = Kz(t). (4.5)

From (4.3) and (4.5), we have

‖x(t)‖ ≤ ‖z(t)‖+h
(

max
−h≤θ≤0

‖eAθ‖
)
‖B‖‖K‖‖zt(θ)‖,
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where zt(θ) := z(t +θ), −h≤ θ≤ 0. Thus, x(t)→ 0 as z(t)→ 0. In other words, if the
controller (4.5) stabilizes the transformed system (4.4), then the original system (4.2)
is also stable with the same controller [78].

4.2.2 Consensus Analysis

For the multi-agent systems (4.1), we use (4.3) to transform the agent dynamics to

żi(t) = Azi(t)+Dui(t)+φ(xi(t)), (4.6)

where D = e−AhB.
We propose a control design using the relative state information. The control input

takes the structure,

ui(t) =−K
N

∑
j=1

li jz j(t)

=−K
N

∑
j=1

ai j
(
zi(t)− z j(t)

)
, (4.7)

where K ∈Rm×n is a constant control gain matrix to be designed later, ai j and li j being
the elements of the graph adjacency matrix A and the Laplacian matrix L , respectively.

Remark 4.2.1. From (4.3) and (4.7), we have

ui(t) =−K
N

∑
j=1

li j

(
x j(t)+

∫ t+h

t
eA(t−τ)Bu j(τ−h)dτ

)
.

It is observed that certain compensation is added in the controller design based on

the model reduction method. With the state transformation (4.3), the original input-

delayed multi-agent systems (4.2) are reduced to delay-free systems (4.6). In this way,

conventional finite-dimensional techniques can be used for the consensus analysis and

controller design.

The closed-loop system is then described by

ż(t) = (IN⊗A−L⊗DK)z(t)+Φ(x), (4.8)
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where

z(t) =


z1(t)

z2(t)
...

zN(t)

 , Φ(x) =


φ(x1)

φ(x2)
...

φ(xN)

 .
With lemmas (2.3.1) and (2.3.2), we can define rT ∈RN as the left eigenvector of L

corresponding to the eigenvalue at 0, that is, rT L = 0. Furthermore, let r be scaled such
that rT 1 = 1 and let the first row of T−1 be (T−1)1 = rT , where T is the transformation
matrix defined in Lemma (2.3.2).

Based on the vector r, we introduce a state transformation

ξi(t) = zi(t)−
N

∑
j=1

r jz j(t), (4.9)

for i = 1,2 . . . ,N. Let
ξ = [ξ

T
1 ,ξ

T
2 , · · · ,ξ

T
N ]

T .

We have

ξ = z− ((1rT )⊗ In)z = (M⊗ In)z,

where M = IN − 1rT . Since rT 1 = 1, it can be shown that M1 = 0. Therefore the
consensus of system (4.6) is achieved when limt→∞ ξ(t) = 0, as ξ = 0 implies z1 =

z2 = · · · = zN , due to the fact that the null space of M is span(1). The dynamics of ξ

can then be obtained as

ξ̇ = ż− (1rT ⊗ IN) ż

= (IN⊗A−L⊗DK)z

−1rT ⊗ IN [IN⊗A−L⊗DK]z+(M⊗ In)Φ(x)

= (IN⊗A−L⊗DK)ξ+(M⊗ In)Φ(x). (4.10)

To explore the structure of L , let us introduce another state transformation

η = (T−1⊗ In)ξ. (4.11)
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Then with Lemma (2.3.2), we have

η̇ = (IN⊗A− J⊗DK)η+Ψ(x), (4.12)

where Ψ(x) = (T−1M⊗ In)Φ(x), and

η =


η1

η2
...

ηN

 , Ψ(x) =


ψ1(x)

ψ2(x)
...

ψN(x)

 ,

with ηi ∈ Rn and ψi : Rn×N → Rn for i = 1,2, . . . ,N.
Then from (4.9) and (4.11), we have:

η1 =
(
rT ⊗ In

)
ξ

=
(
(rT M)⊗ In

)
z

≡ 0.

The nonlinear term Ψ(x) in the transformed system dynamic model (4.12) is ex-
pressed as a function of the state x. For the stability analysis, first we need to establish
a bound of this nonlinear function in terms of the transformed state η. The following
lemma gives a bound of Ψ(x).

Lemma 4.2.1. For the nonlinear term Ψ(x) in the transformed system dynamics (4.12),

a bound can be established in terms of the state η as

‖Ψ‖2 ≤ γ
2
0(‖η‖

2 +4λ
2
σ(A)‖δ‖2), (4.13)

with

γ0 = 2
√

2Nγ‖r‖‖T‖F λσ(T−1),

δ =−
∫ t+h

t
eA(t−τ)BKη(τ−h)dτ.

Proof. Based on the state transformations (4.9) and (4.11), we have

Ψ(x) =
(
T−1⊗ In

)
(M⊗ In)Φ(x)

=
(
T−1⊗ In

)
µ,
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where µ = (M⊗ In)Φ(x). Then, we have

‖Ψ(x)‖ ≤ λσ(T−1)‖µ‖ , (4.14)

where µ = [µ1,µ2, . . . ,µN ]
T .

Recalling that M = IN−1rT , we have

µi = φ(xi)−
N

∑
k=1

rkφ(xk)

=
N

∑
k=1

rk (φ(xi)−φ(xk)) .

It then follows that

‖µi‖ ≤ γ

N

∑
k=1
|rk|‖xi− xk‖ . (4.15)

From the state transformation (4.3), we have

xi− xk = (zi−σi)− (zk−σk)

= (zi− zk)− (σi−σk),

where
σi =

∫ t+h

t
eA(t−τ)Bui(τ−h)dτ.

Then, we have

‖µi‖ ≤ γ

N

∑
k=1
|rk|(‖zi− zk‖+‖σi−σk‖) . (4.16)

From η = (T−1⊗ In)ξ, we obtain ξ = (T ⊗ In)η, and from the state transformations
(4.9), we have

zi− zk = ξi−ξk

= ((ti− tk)⊗ In)η

=
N

∑
j=1

(ti j− tk j)η j,

where tk denotes the kth row of T . Then, we obtain

‖zi− zk‖ ≤ (‖ti‖+‖tk‖)‖η‖ . (4.17)



CHAPTER 4. CONSENSUS CONTROL FOR NONLINEAR MASS 59

Here we used the inequality

N

∑
i=1

(aibi)≤ ‖a‖‖b‖

=

√
N

∑
i=1

a2
i

N

∑
i=1

b2
i .

We next deal with the derived terms σi and σk. We have

N

∑
k=1
|rk|‖σi−σk‖ ≤

N

∑
k=1
|rk|‖σi‖+

N

∑
k=1
|rk|‖σk‖

≤ ‖r‖
√

N ‖σi‖+‖r‖‖σ‖ , (4.18)

where σ = [σT
1 ,σ

T
2 , · · · ,σT

N ]
T , and we used the inequality

N

∑
i=1
|ai| ≤

√
N ‖a‖ .

Then, from (4.16), (4.17) and (4.18), we can obtain that

‖µi‖ ≤ γ

N

∑
k=1
|rk|(‖ti‖+‖tk‖)‖η‖+ γ

√
N ‖r‖‖σi‖+ γ‖r‖‖σ‖

≤ γ

(
‖r‖
√

N ‖ti‖+‖r‖‖T‖F

)
‖η‖+ γ

√
N ‖r‖‖σi‖+ γ‖r‖‖σ‖

= γ‖r‖
(
(
√

N ‖ti‖+‖T‖F)‖η‖+
√

N ‖σi‖+‖σ‖
)
. (4.19)

It then follows that

‖µ‖2 =
N

∑
i=1

(‖µi‖)2

≤

(
N

∑
i=1
‖µi‖

)2

≤ 4γ
2 ‖r‖2

N

∑
i=1

(
N ‖ti‖2 +‖T‖2

F

)
‖η‖2 +4γ

2 ‖r‖2
N

∑
i=1

(
N ‖σi‖2 +‖σ‖2

)
= 4γ

2 ‖r‖2 N
(

2‖T‖2
F ‖η‖

2 +2‖σ‖2
)

= 8γ
2 ‖r‖2 N

(
‖T‖2

F ‖η‖
2 +‖σ‖2

)
, (4.20)
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where we have used

N

∑
k=1
‖tk‖2 = ‖T‖2

F ,

and the inequality

(a+b+ c+d)2 ≤ 4(a2 +b2 + c2 +d2).

Next we need to deal with ‖σ‖2. From (4.7), we can get

σi =
∫ t+h

t
eA(t−τ)Bui(τ−h)dτ

=−
∫ t+h

t
eA(t−τ)BK

N

∑
j=1

li jz j(τ−h)dτ.

From the relationship between A and L , we have

N

∑
j=1

li jz j =
N

∑
j=1

ai j(zi− z j)

=
N

∑
j=1

ai j
(
(ti− t j)⊗ In

)
η

=
N

∑
j=1

ai j

N

∑
l=1

(til− t jl)ηl. (4.21)

Here we define δl

δl =−
∫ t+h

t
eA(t−τ)BKηl(τ−h)dτ. (4.22)

Then we can obtain that

σi =
N

∑
j=1

ai j

N

∑
l=1

(til− t jl)δl.

It then follows that

‖σi‖ ≤
N

∑
j=1

ai j
(
‖ti‖+

∥∥t j
∥∥)‖δ‖ . (4.23)
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where δ = [δT
1 ,δ

T
2 , · · · ,δT

N ]
T . With (4.23), the sum of the ‖σi‖ can be obtained

N

∑
i=1
‖σi‖ ≤ ‖δ‖

N

∑
i=1

N

∑
j=1

ai j(‖ti‖+
∥∥t j
∥∥)

= ‖δ‖
N

∑
i=1

N

∑
j=1

ai j ‖ti‖+‖δ‖
N

∑
i=1

N

∑
j=1

ai j
∥∥t j
∥∥

≤ λσ(A)‖T‖F ‖δ‖+λσ(AT )‖T‖F ‖δ‖

=
(
λσ(A)+λσ(AT )

)
‖T‖F ‖δ‖

= 2λσ(A)‖T‖F ‖δ‖ , (4.24)

with λσ(A) = λσ(AT ). In (4.24), we have used the following inequalities

N

∑
i=1

N

∑
j=1

ai j ‖ti‖=


a11 · · · aN1

... . . . ...
a1N · · · aNN



‖t1‖

...
‖tN‖

≤ λσ

(
AT)‖T‖F ,

N

∑
i=1

N

∑
j=1

ai j
∥∥t j
∥∥=


a11 · · · a1N

... . . . ...
aN1 · · · aNN



‖t1‖

...
‖tN‖

≤ λσ (A)‖T‖F .

Therefore we have

‖σ‖2 =
N

∑
i=1

(‖σi‖)2

≤

(
N

∑
i=1
‖σi‖

)2

≤ 4λ
2
σ(A)‖T‖2

F ‖δ‖
2 . (4.25)

Hence, together with (4.20) and (4.25), we get

‖µ‖2 ≤ 8γ
2 ‖r‖2 N ‖T‖2

F

(
‖η‖2 +4λ

2
σ(A)‖δ‖2

)
. (4.26)
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Finally, we obtain the bound for Ψ as

‖Ψ‖2 ≤ λ
2
σ(T

−1)‖µ‖2

≤ γ
2
0

(
‖η‖2 +4λ

2
σ(A)‖δ‖2

)
, (4.27)

with

γ0 = 2
√

2Nγ‖r‖‖T‖F λσ(T−1),

δ =−
∫ t+h

t
eA(t−τ)BKη(τ−h)dτ.

This completes the proof.

With the control law shown in (4.7), the control gain matrix K is chosen as

K = DT P, (4.28)

where P is a positive definite matrix. In the remaining part of this section, we will use
Lyapunov-function-based analysis to identify a condition for P to ensure that consen-
sus is achieved by using the control algorithm (4.7) with the control gain K in (4.28).

The stability analysis will be carried out in terms of η. As discussed earlier, the
consensus control can be guaranteed by showing that η converges to zero, which is
sufficed by showing that ηi converges to zero for i = 2,3, . . . ,N, since we have shown
that η1 = 0.

From the structure of the Laplacian matrix shown in Lemma (2.3.2), we can see
that

Nk = 1+
k

∑
j=1

n j,

for k = 1,2, . . . ,q. Note that Nq = N.
The agent state variables ηi from i = 2 to Np are the state variables which are

associated with the Jordan blocks of real eigenvalues, and ηi for i = Np + 1 to N are
with Jordan blocks of complex eigenvalues.

For the state variables associated with the Jordan blocks Jk of real eigenvalues, i.e.,
for k ≤ p, we have the dynamics given by

η̇i = (A−λkDDT P)ηi−DDT Pηi+1 +ψi(x),
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for i = Nk−1 +1, Nk−1 +2, · · · ,Nk−1, and

η̇i = (A−λkDDT P)ηi +ψi(x),

for i = Nk.
For the state variables associated with the Jordan blocks Jk, i.e., for k > p, corre-

sponding to complex eigenvalues, we consider the dynamics of the state variables in
pairs. For notational convenience, let

i1( j) = Nk−1 +2 j−1,

i2( j) = Nk−1 +2 j,

for j = 1,2, . . . ,nk/2. The dynamics of ηi1 and ηi2 for j = 1,2, . . . ,nk/2− 1 are ex-
pressed by

η̇i1 = (A−αkDDT P)ηi1−βkDDT Pηi2−DDT Pηi1+2 +ψi1 ,

η̇i2 = (A−αkDDT P)ηi2 +βkDDT Pηi1−DDT Pηi2+2 +ψi2 .

For j = nk/2, we have

η̇i1 = (A−αkDDT P)ηi1−βkDDT Pηi2 +ψi1 ,

η̇i2 = (A−αkDDT P)ηi2 +βkDDT Pηi1 +ψi2 .

Let

Vi = η
T
i Pηi, (4.29)

for i = 2,3 . . . ,N. Let

V0 =
N

∑
i=2

η
T
i Pηi. (4.30)

For the convenience of presentation, we borrow the following results for V0 from [51].

Lemma 4.2.2. For a network-connected dynamic system (4.1) with the transformed

state η, V̇0 has following bounds specified in one of the following two cases:

1) If the eigenvalues of the Laplacian matrix L are distinct, i.e., nk = 1 for k =
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1,2, . . . ,q, V̇0 satisfies

V̇0 ≤
N

∑
i=2

η
T
i
(
AT P+PA−2αPDDT P+κPP

)
ηi +

1
κ
‖Ψ‖2, (4.31)

with κ being any positive real number and

α = min{λ1,λ2, . . . ,λp,αp+1,αp+2, . . . ,αq}.

2) If the Laplacian matrix L has multiple eigenvalues, i.e., nk > 1 for any k∈{1,2, · · · ,q},
V̇0 satisfies

V̇0 ≤
N

∑
i=2

η
T
i
(
AT P+PA−2(α−1)PDDT P+κPP

)
ηi +

1
κ
‖Ψ‖2, (4.32)

with κ being any positive real number.

Using Lemmas (4.2.1) and (4.2.2), we easily obtain

V̇0 ≤
N

∑
i=2

η
T
i

(
AT P+PA−2αPDDT P+κPP+

γ2
0

κ
In

)
ηi +

4γ2
0

κ
λ

2
σ(A)∆̃, (4.33)

for Case 1) with ∆̃ = δT δ, and

V̇0 ≤
N

∑
i=2

η
T
i

(
AT P+PA−2(α−1)PDDT P+κPP+

γ2
0

κ
In

)
ηi +

4γ2
0

κ
λ

2
σ(A)∆̃, (4.34)

for Case 2). Here we have used ‖η‖2 = ∑
N
i=2 ‖ηi‖2.

The remaining analysis is to explore the bound of ∆̃. With δl in (4.22) and Lemma
(2.1.5), we have

∆̃i =
∫ t+h

t
η

T
i (τ−h)KT BT eAT (t−τ)dτ

∫ t+h

t
eA(t−τ)BKηi(τ−h)dτ

≤ h
∫ t+h

t
η

T
i (τ−h)PDDT eAT heAT (t−τ)eA(t−τ)eAhDDT Pηi(τ−h)dτ.

In view of Lemma (2.1.6) with P = In, provided that

R̄ =−AT −A+ω1In > 0, (4.35)
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we have
eAT teAt < eω1tIn,

and

∆̃i ≤ h
∫ t+h

t
eω1(t−τ)

η
T
i (τ−h)PDDT eAT heAhDDT Pηi(τ−h)dτ

≤ heω1h
∫ t+h

t
eω1(t−τ)

η
T
i (τ−h)PDDT DDT Pηi(τ−h)dτ

≤ ρ
2heω1h

∫ t+h

t
eω1(t−τ)

η
T
i (τ−h)ηi(τ−h)dτ

≤ ρ
2he2ω1h

∫ t+h

t
η

T
i (τ−h)ηi(τ−h)dτ,

where ρ is a positive real number satisfying

ρ
2In ≥ PDDT DDT P. (4.36)

Then the summation of ∆̃i can be obtained as

∆̃ =
N

∑
i=2

∆̃i

≤
N

∑
i=2

ρ
2he2ω1h

∫ t+h

t
η

T
i (τ−h)ηi(τ−h)dτ. (4.37)

For the integral term ∆̃ shown in (4.37), we consider the following Krasovskii func-
tional

W̃i =
∫ t+h

t
eτ−t

η
T
i (τ−h)ηi(τ−h)dτ+

∫ t+h

t
η

T
i (τ−2h)ηi(τ−2h)dτ.

A direct evaluation gives that

˙̃W i =−
∫ t+h

t
eτ−t

η
T
i (τ−h)ηi(τ−h)dτ

−ηi(t−2h)T
ηi(t−2h)+ eh

η
T
i (t)ηi(t)

≤−
∫ t+h

t
η

T
i (τ−h)ηi(τ−h)dτ+ eh

η
T
i (t)ηi(t).
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With W̃0 = ∑
N
i=2W̃i, we have

˙̃W 0 =
N

∑
i=2

˙̃W i

≤−
N

∑
i=2

∫ t+h

t
η

T
i (τ−h)ηi(τ−h)dτ+

N

∑
i=2

eh
η

T
i (t)ηi(t). (4.38)

Let

V =V0 +ρ
2he2ω1h 4γ2

0
κ

λ
2
σ(A)W̃0. (4.39)

From (4.33), (4.34), (4.37) and (4.38), we obtain that

V̇ ≤ η
T (t)(IN⊗H1)η(t), (4.40)

where

H1 :=AT P+PA−2αPDDT P+κPP+
γ2

0
κ

(
1+λ

2
σ(A)ρ2he(2ω1+1)h

)
In, (4.41)

for Case 1), and

H1 :=AT P+PA−2(α−1)PDDT P+κPP+
γ2

0
κ

(
1+λ

2
σ(A)ρ2he(2ω1+1)h

)
In, (4.42)

for Case 2).

4.2.3 Consensus Controller Design

The above expressions can be used for consensus analysis of network-connected sys-
tems with Lipschitz nonlinearity and input delay. The following theorem summarizes
the results.

Theorem 4.2.1. For an input-delayed multi-agent system (4.1) with the associated

Laplacian matrix that satisfies Assumption (4.1.1), the consensus control problem can

be solved by the control algorithm (4.7) with the control gain K = DT P specified in

one of the following two cases:

1) If the eigenvalues of the Laplacian matrix L are distinct, the consensus is
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achieved if the following conditions are satisfied for W = P−1 and ρ > 0, ω1 ≥ 0,

(A− 1
2

ω1In)
T +(A− 1

2
ω1In)< 0, (4.43)

ρW ≥ DDT , (4.44)WAT +AW −2αDDT +κIn W

W
−κIn

γ2
0(1+4h0ρ2)

< 0, (4.45)

where κ is any positive real number and h0 = λ2
σ(A)he(2ω1+1)h.

2) If the Laplacian matrix L has multiple eigenvalues, the consensus is achieved if

the conditions (4.43), (4.44) and the following condition are satisfied for W = P−1 and

ρ > 0, ω1 ≥ 0,WAT +AW −2(α−1)DDT +κIn W

W
−κIn

γ2
0(1+4h0ρ2)

< 0, (4.46)

where κ is any positive real number and h0 = λ2
σ(A)he(2ω1+1)h.

Proof. When the eigenvalues are distinct, from the analysis in this section, we know
that the feedback law (4.7) will stabilize η if the conditions (4.35), (4.36) and H1 < 0
in (4.41) are satisfied. Indeed, it is easy to see the conditions (4.35) and (4.36) are
equivalent to the conditions specified in (4.43) and (4.44). From (4.41), it can be
obtained that H1 < 0 is equivalent to

P−1AT +AP−1−2αDDT +κIn +
γ2

0
κ
(1+4h0ρ

2)P−1P−1 < 0, (4.47)

which is further equivalent to (4.45). Hence we conclude that η converges to zero
asymptotically.

When the Laplacian matrix has multiple eigenvalues, the feedback law (4.7) will
stabilize η if the conditions (4.35), (4.35) and H1 < 0 in (4.42) are satisfied. Following
the similar procedure as Case 1), we can show that, under the conditions (4.43), (4.44)
and (4.46), η converges to zero asymptotically. The proof is completed.

Remark 4.2.2. The conditions shown in (4.43) to (4.46) can be checked by standard

LMI routines for a set of fixed values ρ and ω1. The iterative methods developed

in [135] for single linear system may also be applied here.
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4.3 Consensus Control of Nonlinear MASs with Input
Delay: TPF Method

4.3.1 Finite-Dimensional Consensus Controller Design

The consensus controller (4.7) designed in last section

ui(t) =−K
N

∑
j=1

li jz j(t),

alternatively can be written as

ui(t) =−K
N

∑
j=1

li j

(
x j(t)+

∫ t+h

t
eA(t−τ)Bu j(τ−h)dτ

)
.

It is obvious that the controller for each agent requires the relative input signals
among the agents. It may be unreachable sometimes due to the sensor restriction. To
overcome this problem, in this section, we will propose another alternative dynamic
consensus protocol based on the TPF method. The control input takes the structure

ui(t) = KeAh
N

∑
j=1

ai j
(
xi(t)− x j(t)

)
= KeAh

N

∑
j=1

li jx j(t), (4.48)

where K ∈Rm×n is a constant control gain matrix to be designed later, ai j and li j being
the elements of the graph adjacency matrix A and the Laplacian matrix L , respectively.

Remark 4.3.1. It is worth noting from (4.48) that the proposed control only uses the

relative state information of the agents via network connections. The controller for

each agent is finite-dimensional and easy to implement since the integral of the relative

input information is not needed.

4.3.2 Overview of TPF Approach

Consider a linear input-delayed system

ẋ(t) = Ax(t)+Bu(t−h), (4.49)
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where x ∈ Rn denotes the state, u ∈ Rm denotes the control input, A ∈ Rn×n and B ∈
Rn×m are constant matrices, h > 0 is input delay.

As introduced in Chapter 2, the main idea of the predictor feedback is to design the
controller

u(t−h) = Kx(t), ∀t ≥ h. (4.50)

The resultant closed-loop system is then given by

ẋ(t) = (A+BK)x(t), (4.51)

where the control gain matrix K is chosen so that A+BK is Hurwitz. The input (4.50)
can be rewritten as

u(t) =Kx(t +h)

=Ku1(t)+Ku2(t), (4.52)

where

u1(t) =KeAhx(t),

u2(t) =K
∫ t

t−h
eA(t−τ)Bu(τ)dτ.

As point out in [82], no matter how large the value of the input delay is, the infinite
dimensional predictor term u2(t) in (4.52) is dominated by the finite dimensional pre-
dictor term u1(t) and thus might be safely neglected in u(t) under certain conditions.
As a result, the predictor feedback law (4.52) can be truncated as

u(t) = Ku1(t) = KeAhx(t), (4.53)

which is refer to as the TPF control method. The resultant closed-loop system is then
given by

ẋ(t) = (A+BK)x(t)+ d̃(t), (4.54)

where

d̃(t) =−BK
∫ t

t−h
eA(t−τ)Bu(τ)dτ.
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Now the control problem is to find a proper gain matrix K to stabilize the resultant
closed-loop system (4.54).

4.3.3 Consensus Analysis

For the multi-agent systems (4.1), we have

xi(t) = eAhxi(t−h)+
∫ t

t−h
eA(t−τ) (Bui(τ−h)+φ(xi(τ)))dτ.

Under control algorithm (4.48), the multi-agent systems (4.1) can be written as

ẋi = Axi +BK
N

∑
j=1

li jx j +φ(xi)

−BK
N

∑
j=1

li j

∫ t

t−h
eA(t−τ)

(
Bu j(τ−h)+φ(x j)

)
dτ.

The closed-loop system is then described by

ẋ =(IN⊗A+L⊗BK)x+(L⊗BK)(d1 +d2)+Φ(x), (4.55)

where

d1 =−
∫ t

t−h
eA(t−τ)Bu(τ−h)dτ,

d2 =−
∫ t

t−h
eA(t−τ)

Φ(x)dτ,

with

x(t) =
[
xT

1 (t),x
T
2 (t), · · · ,xT

N(t)
]T

,

u(t) =
[
uT

1 (t),u
T
2 (t), · · · ,uT

N(t)
]T

,

Φ(x) =
[
φ

T (x1),φ
T (x2), · · · ,φT (xN)

]T
.

Based on the vector r in Lemma (2.1.6), we introduce a state transformation

ξi = xi−
N

∑
j=1

r jx j, (4.56)
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for i = 1,2, . . . ,N. Let ξ =
[
ξT

1 ,ξ
T
2 , · · · ,ξT

N
]T . Then we have

ξ = x−
((

1rT)⊗ In
)

x

= (M⊗ In)x,

where M = IN − 1rT . Since rT 1 = 1, it can be shown that M1 = 0. Therefore the
consensus of system (4.55) is achieved when limt→∞ ξ(t) = 0, as ξ = 0 implies that
x1 = x2 = · · ·= xN , due to the fact that the null space of M is span{1}. The dynamics
of ξ can then be derived as

ξ̇ =(IN⊗A+L⊗BK)x−
(
1rT ⊗ In

)
[IN⊗A+L⊗BK]x

+(M⊗ In)(L⊗BK)(d1 +d2)+(M⊗ In)Φ(x)

=(IN⊗A+L⊗BK)ξ+(M⊗ In)Φ(x)+(L⊗BK)(d1 +d2) , (4.57)

where we have used rT L = 0.
To explore the structure of L , we propose another state transformation

η =
(
T−1⊗ In

)
ξ, (4.58)

with η =
[
ηT

1 ,η
T
2 , · · · ,ηT

N
]T . Then, based on Lemma (2.1.6) we have

η̇ =(IN⊗A+ J⊗BK)η+Π(x)+∆(x)+Ψ(x), (4.59)

where

Π(x) =
(
T−1L⊗BK

)
d1,

∆(x) =
(
T−1L⊗BK

)
d2,

Ψ(x) =
(
T−1M⊗ In

)
Φ(x).

For the notational convenience, let

Π =


π1

π2
...

πN

 , ∆ =


δ1

δ2
...

δN

 , Ψ =


ψ1

ψ2
...

ψN

 ,

with πi,δi,ψi, : Rn×N → Rn for i = 1,2, . . . ,N.
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From state transformations (4.56) and (4.58), we have:

η1 =
(
rT ⊗ In

)
ξ =

(
(rT M)⊗ In

)
x≡ 0.

With the control law shown in (4.48), the control gain matrix K is chosen as

K =−BT P, (4.60)

where P is a positive definite matrix.
The consensus analysis will be carried out in terms of η. By (4.58), the con-

sensus is achieved if η converges to zero, or equivalently if ηi converges to zero for
i = 2,3, . . . ,N, since it has been shown that η1 = 0. Let

Vi = η
T
i Pηi, (4.61)

for i = 2,3, · · · ,N. By employing the similar Lyapunov functions developed in last
section, we have the following results.

Lemma 4.3.1. For a multi-agent systems (4.1) with the transformed state η, V̇0 has

following bounds specified in one of the following two cases:

1) If the eigenvalues of the Laplacian matrix L are distinct, i.e., nk = 1 for k =

1,2, . . . ,q, V̇0 satisfies

V̇0 ≤ η
T

[
IN⊗

(
AT P+PA−2αPBBT P+

3

∑
ι=1

κιPP

)]
η

+
1
κ1
‖Π‖2 +

1
κ2
‖∆‖2 +

1
κ3
‖Ψ‖2, (4.62)

with κ1,κ2,κ3 being any positive real numbers and α is the real part of the smallest

non-zero eigenvalue of the Laplacian matrix L

α = min{λ1,λ2, . . . ,λp,αp+1,αp+2, . . . ,αq}.

2) If the Laplacian matrix L has multiple eigenvalues, i.e., nk > 1 for any k∈{1,2, · · · ,q},
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V̇0 satisfies

V̇0 ≤ η
T

[
IN⊗

(
AT P+PA−2(α−1)PBBT P+

3

∑
ι=1

κιPP

)]
η

+
1
κ1
‖Π‖2 +

1
κ2
‖∆‖2 +

1
κ3
‖Ψ‖2, (4.63)

with κ being any positive real number.

The following lemmas give the bounds of ‖Π‖2, ‖∆‖2 and ‖Ψ‖2.

Lemma 4.3.2. For the integral term ‖Π‖2 shown in the transformed system dynamics

(4.59), the bounds can be established as

‖Π‖2 ≤ γ0

∫ t

t−h
η

T (τ−h)η(τ−h)dτ, (4.64)

with

γ0 = 4hρ
4e2ω1h

λ
2
σ

(
T−1)‖L‖2

F ‖A‖
2
F ‖T‖

2
F ,

where A is the adjacency matrix, L is the Laplacian matrix, T is the non-singular

matrix, ρ and ω1 are positive numbers such that

ρ
2I ≥ PBBT BBT P, (4.65)

ω1I > AT +A. (4.66)

Proof. By the definition of Π(x) in (4.59), we have

‖Π‖=
∥∥(T−1⊗ In

)
(L⊗BK)d1

∥∥
≤ λσ

(
T−1)‖µ‖ , (4.67)

where µ = (L ⊗ BK)d1. For the notational convenience, let µ =
[
µT

1 ,µ
T
2 , . . . ,µ

T
N
]T .

Then from (4.48) and (4.55), we have

µi =−BK
N

∑
j=1

li j

∫ t

t−h
eA(t−τ)Bu j(τ−h)dτ

= BBT P
N

∑
j=1

li j

∫ t

t−h
eA(t−τ)BBT PeAh

N

∑
k=1

a jk
(
xk(τ−h)− x j(τ−h)

)
dτ. (4.68)
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From η =
(
T−1⊗ In

)
ξ, we obtain ξ = (T ⊗ In)η, and from the state transformations

(4.56) and (4.58), we have

xk(t)− x j(t) = ξk(t)−ξ j(t)

=
((

Tk−Tj
)
⊗ In

)
η(t)

=
N

∑
l=1

(
Tkl−Tjl

)
ηl(t), (4.69)

where Tk denotes the kth row of T . We define

σl = BBT P
∫ t

t−h
eA(t−τ)BBT PeAh

ηl(τ−h)dτ.

Then, from (4.68) and (4.69), we can obtain that

µi =
N

∑
j=1

li j

N

∑
k=1

a jk

N

∑
l=1

(
Tkl−Tjl

)
σl.

For the notational convenience, let σ =
[
σT

1 ,σ
T
2 , . . . ,σ

T
N
]T . It then follows that

‖µi‖ ≤
N

∑
j=1

∣∣li j
∣∣ N

∑
k=1

∣∣a jk
∣∣‖Tk‖‖σ‖+

N

∑
k=1

N

∑
j=1

∣∣li j
∣∣ ∣∣a jk

∣∣∥∥Tj
∥∥‖σ‖

≤
N

∑
j=1

∣∣li j
∣∣∥∥a j

∥∥‖T‖F ‖σ‖+
N

∑
k=1

N

∑
j=1

∣∣li j
∣∣‖ak‖‖T‖F ‖σ‖

≤‖li‖‖A‖F ‖T‖F ‖σ‖+‖li‖‖A‖F ‖T‖F ‖σ‖

= 2‖li‖‖A‖F ‖T‖F ‖σ‖ ,

where li and ai denote the ith row of L and A , respectively. Therefore, we have

‖µ‖2 =
N

∑
i=1
‖µi‖2

≤ 4
N

∑
i=1
‖li‖2 ‖A‖2

F ‖T‖
2
F ‖σ‖

2

= 4‖L‖2
F ‖A‖

2
F ‖T‖

2
F ‖σ‖

2 . (4.70)

Next we need to deal with ‖σ‖2. With the Jensen’s Inequality in Lemma (2.1.5) and
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the condition (4.83), we have

‖σi‖2 ≤ h
∫ t

t−h
η

T
i (τ−h)eAT hPBBT eAT (t−τ)PBBT

×BBT PeA(t−τ)BBT PeAh
ηi(τ−h)dτ

≤ hρ
2
∫ t

t−h
η

T
i (τ−h)eAT hPBBT eAT (t−τ)eA(t−τ)BBT PeAh

ηi(τ−h)dτ.

In view of Lemma (2.1.6), with the condition (4.84), we have

‖σi‖2 ≤ hρ
2
∫ t

t−h
eω1(t−τ)

η
T
i (τ−h)eAT hPBBT BBT PeAh

ηi(τ−h)dτ

≤ hρ
4eω1h

∫ t

t−h
η

T
i (τ−h)eAT heAh

ηi(τ−h)dτ

≤ hρ
4e2ω1h

∫ t

t−h
η

T
i (τ−h)ηi(τ−h)dτ.

Then, ‖σ‖2 can be bounded as

‖σ‖2 =
N

∑
i=1
‖σi‖2

≤ hρ
4e2ω1h

∫ t

t−h
η

T (τ−h)η(τ−h)dτ. (4.71)

Therefore, from Equations (4.67), (4.70) and (4.71), we have

‖Π‖2 ≤ γ0

∫ t

t−h
η

T (τ−h)η(τ−h)dτ.

This completes the proof.

Lemma 4.3.3. For the integral terms ∆(x) in the transformed system dynamics (4.59),

a bound can be established as

‖∆‖2 ≤ γ1

∫ t

t−h
η

T (τ)η(τ)dτ, (4.72)

where

γ1 = 4ρ
2heω1h

γ
2
λ

2
σ

(
T−1)

λ
2
σ(A)‖T‖2

F ,

with ρ and ω1 being as defined in (4.65) and (4.66).
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Proof. In a way similar to Lemma (4.3.2), we have

‖∆(x)‖=
∥∥(T−1⊗ In

)
(L⊗BK)d2

∥∥
≤ λσ

(
T−1)∥∥δ̄

∥∥ , (4.73)

where δ̄ = (L ⊗BK)d2. Let δ̄ =
[
δ̄T

1 , δ̄
T
2 , . . . , δ̄

T
N
]T

. Then, from (4.48) and (4.55), we
have

δ̄i =
N

∑
j=1

ai jBBT P
∫ t

t−h
eA(t−τ)

[
φ(xi)−φ(x j)

]
dτ.

It follows that

∥∥δ̄i
∥∥2

=
N

∑
j=1

a2
i j

∫ t

t−h

[
φ(xi)−φ(x j)

]T eAT (t−τ)dτ

×PBBT BBT P
∫ t

t−h
eA(t−τ)

[
φ(xi)−φ(x j)

]
dτ.

With Jensen’s Inequality in Lemma (2.1.5) and the condition (4.65), we have

∥∥δ̄i
∥∥2 ≤ h

N

∑
j=1

a2
i j

∫ t

t−h

[
φ(xi)−φ(x j)

]T eAT (t−τ)PBBT

×BBT PeA(t−τ)
[
φ(xi)−φ(x j)

]
dτ

≤ ρ
2h

N

∑
j=1

a2
i j

∫ t

t−h

[
φ(xi)−φ(x j)

]T eAT (t−τ)eA(t−τ)
[
φ(xi)−φ(x j)

]
dτ.

In view of Lemma (2.1.6), with the condition (4.66), we have

∥∥δ̄i
∥∥2 ≤ ρ

2h
N

∑
j=1

a2
i j

∫ t

t−h
eω1(t−h)∥∥φ(xi)−φ(x j)

∥∥2 dτ

≤ ρ
2heω1h

γ
2

N

∑
j=1

a2
i j

∫ t

t−h

∥∥xi(τ)− x j(τ)
∥∥2 dτ.
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From the state transformations, we have

xi(t)− x j(t) = ξi(t)−ξ j(t)

=
((

ti− t j
)
⊗ In

)
η(t)

=
N

∑
l=1

(
til− t jl

)
ηl(t).

Let us define σl =
∫ t

t−h ηl(τ)dτ for l = 1,2, · · · , N. Then,

∥∥δ̄i
∥∥2 ≤ ρ

2heω1h
γ

2
N

∑
j=1

a2
i j

N

∑
l=1

∣∣til− t jl
∣∣2 ‖σl‖2

≤ 2ρ
2heω1h

γ
2

N

∑
j=1

a2
i j

N

∑
l=1

(
|til|2 +

∣∣t jl
∣∣2)‖σl‖2

≤ 2ρ
2heω1h

γ
2

N

∑
j=1

a2
i j

(
‖ti‖2 +

∥∥t j
∥∥2
)
‖σ‖2 ,

where σ =
[
σ

T
1 ,σ

T
2 , . . . ,σ

T
N
]T . Consequently,

∥∥δ̄
∥∥2

=
N

∑
i=1

∥∥δ̄i
∥∥2

≤ 2ρ
2heω1h

γ
2 ‖σ‖2

N

∑
i=1

N

∑
j=1

a2
i j

(
‖ti‖2 +

∥∥t j
∥∥2
)

≤ 2ρ
2heω1h

γ
2
λ

2
σ(A)‖T‖2

F ‖σ‖
2 +2ρ

2heω1h
γ

2
λ

2
σ (A)‖T‖2

F ‖σ‖
2

= 4ρ
2heω1h

γ
2
λ

2
σ(A)‖T‖2

F ‖σ‖
2 . (4.74)

Putting (4.73) and (4.74) together, we have

‖∆‖2 ≤ γ1

∫ t

t−h
η

T (τ)η(τ)dτ.

with

γ1 = 4ρ
2hNeω1h

γ
2
λ

2
σ(T

−1)λ2
σ(A)‖T‖2

F .

Lemma 4.3.4. For the nonlinear term Ψ(x) in the transformed system dynamics (4.59),
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a bound can be established as

‖Ψ‖2 ≤ γ2 ‖η‖2 , (4.75)

where

γ2 = 4Nγ
2 ‖r‖2

λ
2
σ

(
T−1)‖T‖2

F .

Proof. By the definition of Ψ(x) in (4.59), we have

‖Ψ‖=
∥∥(T−1⊗ In

)
(M⊗ In)Φ(x)

∥∥
≤ λσ

(
T−1)‖z̄‖ ,

where z̄ = (M⊗ In)Φ(x). For the notational convenience, let z̄ =
[
z̄T

1 , z̄
T
2 , . . . , z̄

T
N
]T .

Then from (4.56), we have

z̄i =φ(xi)−
N

∑
k=1

rkφ(xk)

=
N

∑
k=1

rk(φ(xi)−φ(xk)).

It then follows that

‖z̄i‖ ≤
N

∑
k=1
|rk|‖(φ(xi)−φ(xk))‖

≤ γ

N

∑
k=1
|rk|‖xi− xk‖ .

In light of (4.69), we have

‖z̄i‖ ≤ γ

N

∑
k=1
|rk|(‖Ti‖+‖Tk‖)‖η‖

≤ γ‖η‖

(
N

∑
k=1
|rk|‖Ti‖+‖r‖‖T‖F

)
.
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Therefore we have

‖z̄‖2 =
N

∑
i=1
‖z̄i‖2

≤ 2γ
2 ‖η‖2

N

∑
i=1

‖Ti‖2

(
N

∑
k=1
|rk|

)2

+‖r‖2 ‖T‖2
F


≤ 2γ

2 ‖η‖2
N

∑
i=1

(
‖Ti‖2 N ‖r‖2 +‖r‖2 ‖T‖2

F

)
= 4Nγ

2 ‖r‖2 ‖T‖2
F ‖η‖

2 ,

and

‖Ψ‖2 ≤ γ2 ‖η‖2 .

This completes the proof.

Using (4.63), (4.64), (4.72) and (4.75), we can obtain

V̇0 ≤ η
T

[
IN⊗

(
AT P+PA−2α̂PBBT P+

3

∑
ι=1

κιPP+
γ2

κ3
In

)]
η

+
γ0

κ1

∫ t

t−h
η

T (τ−h)η(τ−h)dτ+
γ1

κ2

∫ t

t−h
η

T (τ)η(τ)dτ, (4.76)

where α̂ = α for Case 1 and α̂ = α−1 for Case 2 in Lamma (4.3.1).
For the first integral term shown in (4.76), we consider the following Krasovskii

functional

W3 = eh
∫ t

t−h
eτ−t

η
T (τ−h)η(τ−h)dτ+ eh

∫ t

t−h
η

T (τ)η(τ)dτ.

A direct evaluation gives that

Ẇ3 =− eh
∫ t

t−h
eτ−t

η
T (τ−h)η(τ−h)dτ−η

T (t−2h)η(t−2h)+ eh
η

T (t)η(t)

≤−
∫ t

t−h
η

T (τ−h)η(τ−h)dτ+ eh
η(t)T

η(t). (4.77)

For the second integral term shown in (4.76), we consider the following Krasovskii
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functional

W4 = eh
∫ t

t−h
eτ−t

η
T (τ)η(τ)dτ.

A direct evaluation gives that

Ẇ4 =− eh
∫ t

t−h
eτ−t

η
T (τ)η(τ)dτ+ eh

η
T (t)η(t)−η

T (t−h)η(t−h)

≤−
∫ t

t−h
η

T (τ)η(τ)dτ+ eh
η

T (t)η(t). (4.78)

Let

V =V0 +
γ0

κ1
W3 +

γ1

κ2
W4. (4.79)

From (4.76), (4.77), and (4.78), we obtain that

V̇ ≤ η
T (t)(IN⊗H3)η(t), (4.80)

where

H3 :=AT P+PA−2αPBBT P+
3

∑
ι=1

κιPP+

(
γ0

κ1
eh +

γ1

κ2
eh +

γ2

κ3

)
In. (4.81)

for Case 1 and

H3 :=AT P+PA−2(α−1)PBBT P+
3

∑
ι=1

κιPP+

(
γ0

κ1
eh +

γ1

κ2
eh +

γ2

κ3

)
In. (4.82)

for Case 2.
Basd on the analysis above, the following theorem presents sufficient conditions to

ensure that the consensus problem is solved by using the control algorithm (4.48).

Theorem 4.3.1. For the Lipschitz nonlinear multi-agent systems (1) with input delay,

1) If the eigenvalues of the Laplacian matrix L are distinct, the consensus control

problem can be solved by the control algorithm (4.48) with K =−BT P if there exists a
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positive definite matrix P and constants ω1 ≥ 0, ρ,κ1,κ2,κ3 > 0 such that

ρW ≥ BBT , (4.83)(
A− 1

2
ω1In

)T

+

(
A− 1

2
ω1In

)
< 0, (4.84)WAT +AW −2αBBT +(κ1 +κ2 +κ3)In W

W −In

Γ

< 0, (4.85)

are satisfied with W = P−1 and

Γ =
γ0

κ1
eh +

γ1

κ2
eh +

γ2

κ3
.

2) If the Laplacian matrix L has multiple eigenvalues, the consensus control prob-

lem can be solved by the control algorithm (4.48) with K = −BT P if there exists a

positive definite matrix P and constants ω1 ≥ 0, ρ,κ1,κ2,κ3 > 0 such that the condi-

tions (4.83), (4.84) andWAT +AW −2(α−1)BBT +(κ1 +κ2 +κ3)In W

W −In

Γ

< 0, (4.86)

are satisfied.

Proof. From the analysis in this section, we know that the feedback law (4.48) will
stabilize η if the conditions (4.65), (4.66) and H3 < 0 in (4.80) are satisfied. Indeed, it
is easy to see the conditions (4.65) and (4.66) are equivalent to the conditions specified
in (4.83) and (4.84). From (4.81), it can be obtained that H3 < 0 is equivalent to

WAT +AW −2α̂BBT +(κ1 +κ2 +κ3) In +

(
γ0

κ1
eh +

γ1

κ2
eh +

γ2

κ3

)
WW < 0,

which is further equivalent to (4.85). It implies that η converges to zero asymptotically.
Hence, the consensus control is achieved.

It is observed that (4.85) is more likely to be satisfied if the values of ρ,ω1,κ1,κ2,κ3

are small. Therefore, the algorithm for finding a feasible solution of the conditions
shown in (4.83) to (4.85) can be designed by following the iterative methods devel-
oped in [135] for an individual linear system. In particular, we suggest the following
step by step algorithm.
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1) Set ω1 = λmax(A+AT ) if λmax(A+AT )> 0; otherwise set ω1 = 0.
2) Fix the value of ρ,ω1,κ1,κ2,κ3 to some constants ω̃1 > ω1 and ρ̃, κ̃1, κ̃2, κ̃3 > 0;

make an initial guess for the values of ρ̃, ω̃1, κ̃1, κ̃2, κ̃3.
3) Solve the LMI equation (4.85) for W with the fixed values; if a feasible value of

W cannot be found, return to Step 2) and reset the values of ρ̃, ω̃1, κ̃1, κ̃2, κ̃3.
4) Solve the LMI equation (4.83) for ρ with the feasible value of W obtained in

Step 3) and make sure that the value of ρ is minimized.
5) If the condition ρ̃≥ ρ is satisfied, then (ρ̃, ω̃1, κ̃1, κ̃2, κ̃3,W ) is a feasible solution

for Theorem (4.3.1); otherwise, set ρ̃ = ρ and return to Step 3).

Remark 4.3.2. Given the input delay h and the Lipschitz constant γ, it is concluded that

the existence of a feasible solution is related to the matrices (A,B) and the Laplacian

matrix L . Additionally, since the values of h and γ are fixed and they are not the

decision variables of the LMIs, a feasible solution may not exist if the values of h and

γ are too large. Therefore, a trigger should be added in the algorithm to stop the

iteration procedure if the values of ρ̃, ω̃1, κ̃1, κ̃2, κ̃3 are out of the preset range.

4.4 Simulations

4.4.1 A Circuit Example

In this section, we will illustrate in some details the proposed consensus control design
through a circuit example. The system under consideration is a connection of four
agents (i.e. N = 4) as shown in Figure (4.1), each of which is described by a second-
order dynamic model as {

ṗi(t) = vi(t),

v̇i(t) = f (vi)+ui(t−h),
(4.87)

where pi = [pix, piy, piz]
T ∈R3 denotes the position vector of agent i, vi = [vix,viy,viz]

T ∈
R3 the velocity vector, f (vi) ∈ R3 the intrinsic dynamics of agent i, governed by the
chaotic Chua circuit [136]

f (vi) =

 −0.59vix + viy−0.17(|vix +1|− |vix−1|)
vix− viy + viz

−viy−5viz

 .
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Let xi = [pT
i ,v

T
i ]

T ∈R6. The dynamic equation (4.87) of each agent can be re-arranged
as the state space model (4.1) with

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −0.59 1 0
0 0 0 1 −1 1
0 0 0 0 −1 −5


, B =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


,

and φ(xi) = [0,0,0,−0.17(|vix + 1| − |vix− 1|),0,0]T . The adjacency matrix is given

Figure 4.1: Communication topology.

by

A =


0 0 0 1
1 0 0 0
0 0 0 1
0 1 0 0

 ,
and the resultant Laplacian matrix is obtained as

L =


1 0 0 −1
−1 1 0 0
0 0 1 −1
0 −1 0 1

 .

The eigenvalues of L are
{

0,1,3/2± j
√

3/2
}

, and therefore Assumption (4.1.1)
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is satisfied. Furthermore, the eigenvalues are distinct. We obtain that

J =


0 0 0 0
0 1 0 0

0 0 3
2

√
3

2

0 0 −
√

3
2

3
2

 ,

with the matrices

T =


1 0 1

2

√
3

2

1 0 −1 0

1 −2 1
2

√
3

2

1 0 1
2 −

√
3

2

 ,
and rT = [1/3,1/3,0,1/3]T .

The nonlinear function φ(xi) in each agent dynamics is globally Lipschitz with a
Lipschitz constant γ= 0.34, which gives γ0 = 3.7391 by (4.27). Based on the Laplacian
matrix L , we have α = 1. In simulation, the input delay is set as h = 0.03s. A positive
definite matrix P can be obtained with κ = 0.01, ω1 = 1.5 and ρ = 2, as

P =



5.03 −0.53 0.18 2.58 0.29 0.08
−0.53 5.37 0.43 0.28 2.39 0.47
0.18 0.43 7.75 −0.08 −0.38 1.58
2.58 0.28 −0.08 2.65 0.93 0.17
0.29 2.39 −0.38 0.93 2.17 0.25
0.08 0.47 1.58 0.17 0.25 0.92


,

to satisfy the conditions of Theorem 4.1. Consequently, the control gain is obtained as

K =

−2.19 −0.12 −0.01 −2.46 −0.74 −0.15
−0.13 −2.10 0.30 −0.75 −2.08 −0.32
−0.09 −0.43 −1.64 −0.18 −0.18 −1.27

 .
Simulation study has been carried out with the results shown in Figure (4.3) for the

positions state disagreement of each agent. Clearly the conditions specified in Theorem
4.1 are sufficient for the control gain to achieve consensus control for the multi-agent
systems. The same control gain has also been used for different values of input delay.
The results shown in Figure (4.4) indicate that the conditions could be conservative
in the control gain design for a given input delay and Lipschitz nonlinear function.
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Figure 4.2: Schematic representation of coordinate frames.
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Figure 4.3: The positions disagreement of 4 agents: h = 0.03s.
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Figure 4.4: The positions disagreement of 4 agents: h = 0.3s.
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Figure 4.5: The state 1 disagreement of agents with h = 0.1 and g = 0.03.

Indeed, extensive simulation shows that the same control gain can possibly achieve
consensus control for the system with a much larger delay and Lipschitz constant.

4.4.2 A Numerical Example

In this section, a simulation study is carried out to demonstrate the effectiveness of
the proposed TPF controller design. Consider a connection of four agents as shown in
Figure 4.1. The dynamics of the ith agent is described by a second-order model as

ẋi(t) =

[
−0.09 1
−1 −0.09

]
xi(t)+g

[
sin(xi1(t))

0

]
+

[
0
1

]
u(t−0.1).

The linear part of the system represents a decayed oscillator. The time delay of the
system is 0.1 seconds, and the Lipschitz constant γ = g. The eigenvalues of L are{

0, 1, 3/2± j
√

3/2
}

and rT =
[ 1

3 ,
1
3 , 0, 1

3

]
.

In this case, we choose γ = g = 0.03, and the initial conditions for the agents
as x1(θ) = [1, 1]T , x2(θ) = [0, 0]T , x3(θ) = [0.3, 0.5]T , x4(θ) = [0.5, 0.3]T ,u(θ) =
[0, 0, 0, 0]T , for θ ∈ [−h,0]. With the values of ω1 = 0,ρ = 0.3,κ1 = κ2 = 0.05, and
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Figure 4.6: The state 2 disagreement of agents with h = 0.1 and g = 0.03.
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Figure 4.7: The state 1 disagreement of agents with h = 0.5 and g = 0.15.
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Figure 4.8: The state 2 disagreement of agents with h = 0.5 and g = 0.15.

κ3 = 0.5, a feasible solution of the feedback gain K is found to be

K =
[
−0.1480 −0.6359

]
.

Figures 4.4 and 4.5 show the simulation results for the state disagreement of each
agent. Clearly the conditions specified in Theorem 4.3 are sufficient for the control
gain to achieve consensus control. Without re-tuning the control gain, the consensus
control is still achieved for the multi-agent systems with a larger delay of 0.5 seconds
and a bigger Lipschitz constant of g = 0.15, as shown in Figures 4.6 and 4.7.

4.5 Summary

This chapter has investigated the impacts of nonlinearity and input delay in consensus
control. This input delay may represent some delays in the network communication.
Sufficient conditions are derived for the multi-agent systems to guarantee the global
consensus using Lyapunov-Krasovskii method in the time domain. The significance
of this research is to provide feasible methods to deal with consensus control of a
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class of Lipschitz nonlinear multi-agent systems with input delay which includes some
common circuits such as Chua circuits.



Chapter 5

Disturbance Rejection with H∞

Consensus Control

In this chapter, we consider the H∞ consensus control for general multi-agent systems
with directed graph and input delay. To deal with input delay, a truncated prediction
of the agent state over the delay period is approximated by the finite dimensional term
of the classical state predictor. The truncated predictor feedback method is used for
the consensus protocol design. By exploring certain features of the Laplacian ma-
trix, the H∞ consensus analysis is put in the framework of Lyapunov analysis. The
integral terms that remain in the transformed systems are carefully analyzed by using
Krasovskii functional. Sufficient conditions are derived for the multi-agent systems to
guarantee the H∞ consensus in the time domain. The feedback gain is then designed
by solving these conditions with an iterative LMI procedure. A simulation study is
carried out to validate the proposed control design. The contributions of this chapter
are two folds. Firstly, upon exploring the certain features of the Laplacian matrix in the
real Jordan form, the H∞ consensus analysis is put in the framework of Lyapunov anal-
ysis for multi-agent systems connected by a general directed graph. Compared to the
previous works, the requirement for the communication graph in this chapter is more
general. The connection graph between the agents only needs a directed spanning tree,
which is essential for consensus control, rather than the balanced or strongly connected
conditions. Secondly, we consider the H∞ consensus control of multi-agent systems in
the presence of input delay. This input delay may represent some delays in the network
communication. By using the TPF method, the troublesome integral term is ignored,
and only the prediction based on the exponential of the systems matrix is used for
control design. Furthermore, rigorous analysis is carried out to ensure that the extra

91
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integral terms under the transformations, including the ones for external disturbances
and input delay, are properly considered using Krasovskii functionals. Sufficient con-
ditions are derived for the multi-agent systems to guarantee the H∞ consensus in the
time domain. The conditions can be solved as LMIs (linear matrix inequalities) with a
set of iterative scalar parameters.

The remainder of this chapter is organized as follows. Section 5.1 presents some
notations and the problem formulation. Section 5.2 presents the main results on the
H∞ consensus control design. Simulation results are given in Section 5.3. Section 5.4
summarises this chapter.

5.1 Problem Formulation

Consider a group of N agents, each represented by a linear dynamic subject to input
delay and external disturbance,

ẋi(t) = Axi(t)+Bui(t−h)+D1ωi(t), (5.1)

where for agent i, i = 1,2, . . . ,N, xi ∈ Rn is the state vector, ui ∈ Rm×n is the control
input vector, A ∈ Rn×n, B ∈ Rn×m and D1 ∈ Rn×m are constant matrices with (A,B)

being controllable, h > 0 is input delay, and ωi ∈ Lm
2 [0,∞) is the external disturbance.

The communications among the agents are described by a directed graph G (V ,E),
where V is a set of vertices and E is a set of edges. A vertex represents an agent, and
each edge represents a connection. Associated with the graph is its adjacency matrix
A , where element ai j denotes the connection between two agents. More specifically,
if a connection exists from agent j to agent i, ai j = 1; otherwise ai j = 0. The Laplacian
matrix L is defined by lii = ∑

N
j=1 ai j and li j = −ai j when i 6= j. For a directed graph,

the Laplacian matrix L has the following properties.

Lemma 5.1.1 ( [3,28]). The Laplacian matrix L of a directed graph G has at least one

zero eigenvalue with 1 as a corresponding right eigenvector and all nonzero eigenval-

ues have positive real parts. Furthermore, zero is a simple eigenvalue of L if and only

if G has a directed spanning tree. In addition, there exists a nonnegative left eigen-

vector r of L associated with the zero eigenvalue, satisfying rT L = 0 and rT 1 = 1.

Moreover, r is unique if G has a directed spanning tree.

The objective of this chapter is to design a control algorithm for each agent such
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that the multi-agent systems (5.1) achieve consensus and meanwhile maintain a desir-
able disturbance rejection performance. In view of this, we introduce a state transfor-
mation

ξi = xi−
N

∑
j=1

r jx j, (5.2)

where i = 1,2, . . . ,N, ξi ∈Rn, r j denotes the jth element of the nonnegative left eigen-
vector r of L associated with the zero eigenvalue, satisfying rT L = 0 and rT 1 = 1.
Based on the new variable ξi, we define the performance variable as ei(t) = Cξi(t),
where ei ∈ Rm, C ∈ Rm×n is a constant matrix. Let e(t) =

[
eT

1 ,e
T
2 , · · · ,eT

N
]T , ω =[

ωT
1 ,ω

T
2 , · · · ,ωT

N
]T .

Remark 5.1.1. The consensus value is related to the weight average of the initial

conditions of the states of the nodes. It depends on the graph topology through the left

eigenvector r = [r1,r2, · · · ,rN ]
T of the zero eigenvalue of Laplacian matrix L [132].

To this end, ξi could be formulated as the consensus state error for each agent.

The H∞ consensus control problem can be defined as below.

Definition 5.1.1. Given a positive scalar γ̄, the H∞ consensus is achieved if the two

requirements listed below are satisfied:

1. The multi-agent systems (5.1) with ωi ≡ 0 can reach consensus. That is, under

these control algorithms, the following hold for all initial conditions,

lim
t→∞

(
xi(t)− x j(t)

)
= 0, ∀i 6= j.

2. Under the zero-initial condition, the performance variable e(t) satisfies

J1 =
∫

∞

0

[
eT (t)e(t)− γ̄

2
ω

T (t)ω(t)
]

dτ < 0. (5.3)

Assumption 5.1.1. Zero is a simple eigenvalue of the Laplacian matrix L associated

with the network connection in this chapter.

Remark 5.1.2. This assumption implies that the directed graph contains a spanning

tree, which is essential for consensus control. If zero is not a simple eigenvalue of L ,

the agents cannot reach consensus asymptotically as there exist at least two separate

subgroups or at least two agents in the group who do not receive any information [3].

Remark 5.1.3. The left eigenvector r of the Laplacian matrix L with the zero eigen-

value is crucial for the consensus design with directed graph. Feasible methods are
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given in [3] to calculate this vector. In addition, the elements of r in this chapter could

be zero. This suggests that the methods developed before may not be suitable for the

H∞ consensus analysis here.

5.2 Main Results

For the multi-agent system (5.1), we have

xi(t) = eAhxi(t−h)+
∫ t

t−h
eA(t−τ) (Bui(τ−h)+D1ωi)dτ.

By employing the TPF approach, the control input can be constructed as following

ui(t) = KeAh
N

∑
j=1

ai j
(
xi(t)− x j(t)

)
= KeAh

N

∑
j=1

li jx j(t), (5.4)

where K ∈ Rm×n is a constant control gain to be designed later, ai j and li j being the
elements of the graph adjacency matrix A and the Laplacian matrix L , respectively.
Under control algorithm (5.4), the multi-agent system (5.1) can be written as

ẋi(t) = Axi(t)+BK
N

∑
j=1

li jx j(t)+D1ωi

−BK
N

∑
j=1

li j

∫ t

t−h
eA(t−τ)

(
Bu j(τ−h)+D1ω j

)
dτ.

Let x =
[
xT

1 ,x
T
2 , · · · ,xT

N
]T , u =

[
uT

1 ,u
T
2 , · · · ,uT

N
]T . The closed-loop system is then de-

scribed by

ẋ(t) =(IN⊗A+L⊗BK)x(t)+(L⊗BK)(d3 +d4)+(IN⊗D1)ω, (5.5)

where

d3 =−
∫ t

t−h

(
IN⊗ eA(t−τ)B

)
u(τ−h)dτ,

d4 =−
∫ t

t−h

(
IN⊗ eA(t−τ)D1

)
ω(t)dτ.
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From the state transformation (5.2), we have

ξ = x−
((

1rT)⊗ In
)

x

= (M⊗ In)x, (5.6)

where ξ =
[
ξT

1 ,ξ
T
2 , · · · ,ξT

N
]T , M = IN − 1rT . Since rT 1 = 1, it can be shown that

M1 = 0. Therefore the consensus of system (5.1) is achieved when limt→∞ ξ(t) = 0,
as ξ = 0 implies that x1 = x2 = · · · = xN , due to the fact that the null space of M is
span{1}. The dynamics of ξ can then be derived as

ξ̇ =(IN⊗A+L⊗BK)ξ+(L⊗BK)(d3 +d4)+(M⊗D1)ω, (5.7)

where we have used rT L = 0.
To explore the structure of L , we propose another state transformation

η =
(
T−1⊗ In

)
ξ, (5.8)

with η =
[
ηT

1 ,η
T
2 , · · · ,ηT

N
]T . Then we have

η̇ =(IN⊗A+ J⊗BK)η+∆1(x)+∆2(t)+Ω(t), (5.9)

where J is the Jordan form of the Laplacian matrix L defined in Lemma (2.1.6), and

∆1 =
(
T−1L⊗BK

)
d3,

∆2 =
(
T−1L⊗BK

)
d4,

Ω =
(
T−1M⊗D1

)
ω(t).

From state transformations (5.6) and (5.8), we have:

η1 =
(
rT ⊗ In

)
ξ

=
(
(rT M)⊗ In

)
x

≡0.

With the control law shown in (5.4), the control gain matrix K is chosen as

K =−BT P, (5.10)
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where P is a positive definite matrix to be designed. In the remainder of the paper,
Lyapunov-function-based analysis will be carried out to identify a condition for P to
ensure that the consensus problem is solved by using the control algorithm (5.10) with
control gain K in (5.4).

The consensus analysis will be carried out in terms of η. Let

Vi = η
T
i Pηi, (5.11)

for i = 2,3, · · · ,N. Then, let

V0 =
N

∑
i=2

Vi.

For the convenience of presentation, we recall from [51] the following results on V0.

Lemma 5.2.1. For multi-agent systems (5.1) with the transformed state η, V̇0 has fol-

lowing bounds specified in one of the following two cases:

1) If the eigenvalues of the Laplacian matrix L are distinct, V̇0 satisfies

V̇0 ≤
N

∑
i=2

η
T
i
(
AT P+PA−2αPBBT P+(κ1 +κ2)PP

)
ηi

+
1
κ1
‖∆1‖2 +

1
κ2
‖∆2‖2 +2η

T (IN⊗P)Ω, (5.12)

where ∆1 and ∆2 are defined in (5.9),κ1 and κ2 are any positive real numbers, and α

is the real part of the smallest non-zero eigenvalue of the Laplacian matrix L

α = min{λ1,λ2, . . . ,λp,αp+1,αp+2, . . . ,αq}.

2) If the Laplacian matrix L has multiple eigenvalues, V̇0 satisfies

V̇0 ≤
N

∑
i=2

η
T
i
(
AT P+PA−2(α−1)PBBT P+(κ1 +κ2)PP

)
ηi

+
1
κ1
‖∆1‖2 +

1
κ2
‖∆2‖2 +2η

T (IN⊗P)Ω. (5.13)

The following lemmas give the bounds of ‖∆1‖2 and ‖∆2‖2.

Lemma 5.2.2. For the term ∆1(x) shown in the transformed system dynamics (5.9), a
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bound can be established as

‖∆1‖2 ≤ ρ1

∫ t

t−h
η

T (τ−h)η(τ−h)dτ, (5.14)

where

ρ1 = 4ha4
1e2λh

λ
2
σ

(
T−1)‖L‖2

F ‖A‖
2
F ‖T‖

2
F ,

with a1 and λ being positive numbers such that

a2
1I ≥ PBBT BBT P, (5.15)

λI > AT +A. (5.16)

Proof. By the definition of ∆1(x) in (5.9), we have

‖∆1‖=
∥∥(T−1⊗ In

)
(L⊗BK)d3

∥∥
≤ λσ

(
T−1)‖µ‖ , (5.17)

where µ = (L⊗BK)d3.
Let µ =

[
µT

1 ,µ
T
2 , . . . ,µ

T
N
]T . Then from (5.5) and (5.10), we have

µi = BBT P
N

∑
j=1

li j

∫ t

t−h
eA(t−τ)BBT PeAh

N

∑
k=1

a jk
(
xk(τ−h)− x j(τ−h)

)
dτ. (5.18)

From η =
(
T−1⊗ In

)
ξ, we obtain ξ = (T ⊗ In)η. And from the state transformation

(5.6), we have

xk(t)− x j(t) = ξk(t)−ξ j(t)

=
((

Tk−Tj
)
⊗ In

)
η(t)

=
N

∑
l=1

(
Tkl−Tjl

)
ηl(t), (5.19)

where Tk denotes the kth row of T .
We define

σl = BBT P
∫ t

t−h
eA(t−τ)BBT PeAh

ηl(τ−h)dτ. (5.20)
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Then, from (5.18) and (5.19), we can obtain that

µi =
N

∑
j=1

li j

N

∑
k=1

a jk

N

∑
l=1

(
Tkl−Tjl

)
σl.

For the notational convenience, let σ =
[
σT

1 ,σ
T
2 , . . . ,σ

T
N
]T . It then follows that

‖µi‖ ≤
N

∑
j=1

∣∣li j
∣∣ N

∑
k=1

∣∣a jk
∣∣‖Tk‖‖σ‖+

N

∑
k=1

N

∑
j=1

∣∣li j
∣∣ ∣∣a jk

∣∣∥∥Tj
∥∥‖σ‖

≤
N

∑
j=1

∣∣li j
∣∣∥∥a j

∥∥‖T‖F ‖σ‖+
N

∑
k=1

N

∑
j=1

∣∣li j
∣∣‖ak‖‖T‖F ‖σ‖

≤ 2‖li‖‖A‖F ‖T‖F ‖σ‖ , (5.21)

where li denotes the ith row of L . Therefore we have

‖µ‖2 =
N

∑
i=1
‖µi‖2

≤ 4‖L‖2
F ‖A‖

2
F ‖T‖

2
F ‖σ‖

2 , (5.22)

where we have used ∑
N
i=1 ‖li‖

2 = (‖L‖F)
2.

Next we need to deal with ‖σ‖2. By Lemma (2.1.5), we have

‖σi‖2 ≤ h
∫ t

t−h
η

T
i (τ−h)eAT hPBBT eAT (t−τ)PBBT BBT PeA(t−τ)BBT PeAh

ηi(τ−h)dτ

≤ ha2
1

∫ t

t−h
η

T
i (τ−h)eAT hPBBT eAT (t−τ)eA(t−τ)BBT PeAh

ηi(τ−h)dτ,

where a1 is a positive real number such that

a2
1I ≥ PBBT BBT P.

In view of Lemma (2.1.6) with P = I, provided that

R =−AT −A+λI > 0,

we have
eAT teAt < eλtI,
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and

‖σi‖2 ≤ ha2
1

∫ t

t−h
eλ(t−τ)

η
T
i (τ−h)eAT hPBBT BBT PeAh

ηi(τ−h)dτ

≤ ha4
1e2λh

∫ t

t−h
η

T
i (τ−h)ηi(τ−h)dτ.

Then, ‖σ‖2 can be bounded as

‖σ‖2 =
N

∑
i=1
‖σi‖2

≤ ha4
1e2λh

∫ t

t−h
η

T (τ−h)η(τ−h)dτ. (5.23)

Hence, together with (5.17), (5.22) and (5.23), we get

‖∆1‖2 ≤ ρ1

∫ t

t−h
η

T (τ−h)η(τ−h)dτ.

This completes the proof.

Lemma 5.2.3. For the term ∆2(t) in the transformed system dynamics (5.9), a bound

can be established as

‖∆2‖2 ≤ ρ2

∫ t

t−h
ω

T (τ)ω(τ)dτ, (5.24)

where

ρ2 = ha2
1a2eλh

λ
2
σ

(
T−1)‖L‖2

F ,

with a1 and λ being as defined in (5.15) and (5.16), and a2 is a positive real number

such that

a2I ≥ DT
1 D1. (5.25)

Proof. In a way similar to Lemma 5.2.2, we have

‖∆2‖=
∥∥(T−1⊗ In

)
(L⊗BK)d4

∥∥
≤ λσ

(
T−1)∥∥ζ̄

∥∥ , (5.26)

where ζ̄ = (L ⊗BK)d4. Let ζ̄ =
[
ζ̄T

1 , ζ̄
T
2 , . . . , ζ̄

T
N
]T

. Then from (5.5) and (5.10), we
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have

ζ̄i =
N

∑
j=1

li jBBT P
∫ t

t−h
eA(t−τ)D1ω jdτ.

It follows that

∥∥ζ̄i
∥∥2

=
N

∑
j=1

l2
i j

∫ t

t−h
ω

T
j DT

1 eAT (t−τ)dτPBBT BBT P
∫ t

t−h
eA(t−τ)D1ω jdτ.

With Lemma (2.1.5) and the condition (5.15), we have

∥∥ζ̄i
∥∥2 ≤ ha2

1

N

∑
j=1

l2
i j

∫ t

t−h
ω

T
j DT

1 eAT (t−τ)eA(t−τ)D1ω jdτ.

In view of Lemma (2.1.6), with the conditions (5.15) and (5.16), we have

∥∥ζ̄i
∥∥2 ≤ ha2

1a2eλh
∫ t

t−h

N

∑
j=1

l2
i j
∥∥ω j

∥∥2 dτ.

Consequently,

∥∥ζ̄
∥∥2 ≤ ha2

1a2eλh
∫ t

t−h

N

∑
i=1

N

∑
j=1

l2
i j
∥∥ω j

∥∥2 dτ

≤ ha2
1a2eλh‖L‖2

F

∫ t

t−h
ω

T (τ)ω(τ)dτ. (5.27)

Putting (5.26) and (5.27) together, we have

‖∆2‖2 ≤ ρ2

∫ t

t−h
ω

T (τ)ω(τ)dτ.

This completes the proof.

For the first integral term shown in (5.14), we consider the following Krasovskii
functional

W5 = eh
∫ t

t−h
η

T (τ)η(τ)dτ+ eh
∫ t

t−h
eτ−t

η
T (τ−h)η(τ−h)dτ.
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A direct evaluation gives that

Ẇ5 =− eh
∫ t

t−h
eτ−t

η
T (τ−h)η(τ−h)dτ−η

T (t−2h)η(t−2h)+ eh
η

T (t)η(t)

≤−
∫ t

t−h
η

T (τ−h)η(τ−h)dτ+ eh
η(t)T

η(t). (5.28)

For the second integral term shown in (5.24), we consider the following Krasovskii
functional

W6 = eh
∫ t

t−h
eτ−t

ω
T (τ)ω(τ)dτ.

A direct evaluation gives that

Ẇ6 =− eh
∫ t

t−h
eτ−t

ω
T (τ)ω(τ)dτ+ eh

ω
T (τ)ω(τ)−ω

T (t−h)ω(t−h)

≤−
∫ t

t−h
ω

T (τ)ω(τ)dτ+ eh
ω

T (τ)ω(τ). (5.29)

Let

V =V0 +
ρ1

κ1
W5 +

ρ2

κ2
W6. (5.30)

From (5.12), (5.13), (5.28) and (5.29), we obtain that

V̇ ≤ η
T (t)

[
IN⊗

(
H5 +

ρ1

κ1
ehIn

)]
η(t)+

ρ2

κ2
eh

ω
T (t)ω(t)+2η

T (IN⊗P)Ω, (5.31)

where

H5 :=AT P+PA−2αPBBT P+(κ1 +κ2)PP,

for Case 1), and

H5 := AT P+PA−2(α−1)PBBT P+(κ1 +κ2)PP,

for Case 2).
The above expressions can be used for the H∞ consensus analysis. The following

theorem summarizes the results.

Theorem 5.2.1. For an input-delayed multi-agent system (5.1) with the associated
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Laplacian matrix that satisfies Assumption 5.1.1, the H∞ consensus control problem

can be solved by the control algorithm (5.4) with the control gain K =−BT P specified

in one of the following two cases:

1) If the eigenvalues of the Laplacian matrix L are distinct, the consensus is

achieved if the following conditions are satisfied for W = P−1 and a1 > 0, λ≥ 0,

(A− 1
2

λIn)
T +(A− 1

2
λIn)< 0, (5.32)

a1W ≥ BBT , (5.33)
Γ1 W D1

W −
(

ρ1eh

κ1
+a3

)−1

In 0

DT
1 0 −

(
γ̄2− ρ2

κ2
eh
)

a−1
4

< 0, (5.34)

where

κ1 > 0,

κ2 >
ρ2

γ̄2 eh,

a3 ≥ λmax(T T T ⊗CTC),

a4 ≥ λmax(T−1MMT (T−1)T
),

Γ1 =WAT +AW −2αBBT +(κ1 +κ2)In.

2) If the Laplacian matrix L has multiple eigenvalues, the consensus is achieved

if the conditions (5.32), (5.33) and the following condition are satisfied for W = P−1,

a1 > 0, λ≥ 0, 
Γ2 W D1

W −
(

ρ1eh

κ1
+a3

)−1

In 0

DT
1 0 −

(
γ2− ρ2

κ2
eh
)

a−1
4

< 0, (5.35)

where Γ2 =WAT +AW −2(α−1)BBT +(κ1 +κ2)In.
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Proof. From (5.8), we obtain that

e(t) =(IN⊗C)ξ

=(IN⊗C)(T ⊗ In)η(t).

It follows that

eT (t)e(t) = η
T (t)(T T T ⊗CTC)η(t)

≤ a3η
T (t)η(t). (5.36)

Under the zero-initial condition, x(0) = 0. It is clear that V (0) = 0. Next, for any
non-zero ω, we have

J1 =
∫

∞

0

[
eT (t)e(t)− γ̄

2
ω

T (t)ω(t)+V̇
]

dτ−V (∞)+V (0)

≤
∫

∞

0
η

T
[

IN⊗
(

H5 +
ρ1

κ1
ehIn +a3In

)]
ηdτ

+
∫

∞

0

(
ρ2

κ2
eh− γ̄

2
)

ω
T (t)ω(t)+2η

T (IN⊗P)Ωdτ

=
∫

∞

0

[
η

ω

]T

Θ

[
η

ω

]
dτ, (5.37)

where

Θ =

 IN⊗
(

H5 +
ρ1
κ1

ehIn +a3In

)
T−1M⊗PD1(

T−1M
)T ⊗DT

1 P
(

ρ2
κ2

eh− γ̄2
)

I

 .
Thus, J1 < 0 if Θ < 0. By Schur complement lemma, we know that Θ < 0 if the
following inequality hold

H5 +
ρ1

κ1
ehIn +a3In +a4

(
γ̄

2− ρ2

κ2
eh
)−1

PD1DT
1 P < 0. (5.38)

From W = P−1, and condition (5.31), it is obtained that (5.38) is equivalent to

WAT +AW −2αBBT +(κ1 +κ2)In

+

(
ρ1

κ1
eh +a3

)
WW +a4

(
γ̄

2− ρ2

κ2
eh
)−1

D1DT
1 < 0, (5.39)
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for Case 1), and

WAT +AW −2(α−1)BBT +(κ1 +κ2)In

+

(
ρ1

κ1
eh +a3

)
WW +a4

(
γ̄

2− ρ2

κ2
eh
)−1

D1DT
1 < 0, (5.40)

for Case 2).
By Schur complement lemma, we know that the conditions (5.39) and (5.40) are

equivalent to the conditions specified in (5.34) and (5.35). Considering conditions
(5.32)–(5.35), we can obtain that J1 < 0. Therefore the H∞ consensus problem is
solved.

The consensus analysis for multi-agent systems with directed graph can clearly be
applied to the systems with undirected graphs. Indeed, it can be treated as a special
situation of the Case 1. A corollary is given for this special case..

Corollary 5.2.1. For an input-delayed multi-agent system (5.1) with undirected graph,

the H∞ consensus control problem can be solved by the control algorithm (5.4) with

the control gain K =−BT P where P is a positive definite matrix satisfying conditions

(5.32)–(5.34).

5.3 Numerical Examples

In this section, A simulation study is carried out to demonstrate the effectiveness of the
proposed control design. Consider a connection of four agents as shown in Figure 1.
The dynamics of each agent is described by (5.1), with

A =

[
0 −0.1

0.1 0.1

]
, B =

[
0.5 0
0 0.5

]
, C =

[
0.1
0

]T

, D1 =

[
0.1 0
0 0.1

]
.

The external disturbances ω = [2w,w,−2w,1.5w]T , where w(t) is a ten-period square
wave starting at t = 0 with the width 5 and height 1. The input delay of the system is
0.1 seconds. The Laplacian matrix is given by

L =


1 0 0 −1
−1 1 0 0
0 0 1 −1
0 −1 0 1

 .
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Figure 5.1: Communication topology.

The eigenvalues of L are
{

0, 1, 3/2± j
√

3/2
}

. Therefore, Assumption 5.1 is satis-
fied. We obtain that α = 1 and rT =

[ 1
3 ,

1
3 , 0, 1

3

]
. In this case, we choose the H∞

performance index γ̄ = 1, and the initial states of agents are chosen randomly within
[−5,5], u(θ) = [0, 0, 0, 0]T , for θ ∈ [−h,0]. With the values of λ = 0.2,a1 = 0.3, and
κ1 = κ2 = 0.1, a feasible solution of the feedback gain K is found to be

K =

[
−1.5349 −0.1504
−0.1504 −1.5541

]
.

Figures 5.2 and 5.3 show the simulation results for the state of each agent under the
case ω = 0. Clearly the conditions specified in Theorem 5.4 are sufficient for the
control gain to achieve consensus control. Figures 5.4 shows the trajectories of the
performance variables ei(t), i = 1, · · · ,4 under the zero-initial condition. In addition,
with the same control gain, the consensus control is still achieved for the multi-agent
system with a much larger delay h = 0.5, as shown in Figures 6.5 and 6.6, which
implies the conditions could be conservative in the control gain design for a given
input delay.

5.4 Summary

In this chapter, we have addressed the H∞ consensus problem for linear multi-agent
systems with input delay and general directed graph. This input delay may represent
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Figure 5.2: The state 1 of agents with h = 0.1.
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Figure 5.3: The state 2 of agents with h = 0.1.
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Figure 5.5: The state 1 of agents with h = 0.5.
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Figure 5.6: The state 2 of agents with h = 0.5.
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some delays in the network communication. The truncated prediction feedback method
is employed to deal with the input delay, and the integral terms that remain in the
transformed systems are carefully analyzed by using Krasovskii functionals. By using
the real Jordan form of the Laplacian matrix, sufficient conditions for the H∞ consensus
are identified through Lyapunov analysis. The conditions can be solved by employing
LMIs with a set of iterative parameters. The requirement for the communication graph
in this paper is much relaxed than the conditions specified in previous results, as the
method presented in this section only requires the connection graph to have a spanning
tree. Future work will focus on H∞ consensus protocol design for multi-agent systems
with time-varying input delay and Lipschitz nonlinearities.



Chapter 6

Disturbance Rejection with DOBC

Approach

In this chapter, a new predictor-based consensus disturbance rejection method is pro-
posed for high-order multi-agent systems with Lipschitz nonlinearity and input delay.
First, a distributed disturbance observer for consensus control is developed for each
agent to estimate the disturbance under the delay constraint. Based on the conventional
predictor feedback approach, a non-ideal predictor based control scheme is constructed
for each agent by utilizing the estimate of the disturbance and the prediction of the rel-
ative state information. Then, rigorous analysis is carried out to ensure that the extra
terms associated with disturbances and nonlinear functions are properly considered.
Sufficient conditions for the consensus of the multi-agent systems with disturbance
rejection are derived based on the analysis in the framework of Lyapunov-Krasovskii
functionals. A simulation example is included to demonstrate the performance of the
proposed control scheme.

Compared with previous works, there are three main contributions of this chapter:
1) The consensus disturbance rejection problem is considered for general multi-

agent systems with communication topology containing a directed spanning tree, which
include the single, double, and high-order integrator-type systems [125–128] and undi-
rected communication graphs [118, 119] as its special cases.

2) Input delay in considered for the consensus disturbance rejection. By revisit-
ing the well-known predictor feedback approach, a non-ideal predictor based control
scheme is constructed for each agent by adopting the estimate of the disturbance ob-
server and the prediction of the relative state information.

3) Unlike [129], [42], where the agents are restricted to be linear, in this chapter, we

112
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consider the Lipschitz nonlinearity in the system dynamics. Further rigorous analysis
is carried out to guarantee that the extra integral terms of the system state associated
with nonlinear functions are properly considered by using the tools of Krasovskii func-
tionals.

The remainder of this chapter is organized as follows. In Section 6.1, the prob-
lem formulation is introduced. Section 6.2 presents the main results on the consensus
disturbance rejection design. Simulation results are given in Section 6.3. Section 6.4
concludes the paper.

6.1 Problem Formulation

In this chapter, we consider leader-follower consensus control with a group of N

agents. Assume that the dynamics of followers, labelled as 2,3, . . . ,N, are described
by

ẋi(t) = Axi(t)+φ(xi(t))+Bui(t−h)+D2ωi(t), (6.1)

and the leader agent is indexed by 1, whose dynamics are represented by

ẋ1(t) = Ax1(t)+φ(x1(t)), (6.2)

where xi ∈ Rn denotes the state, ui ∈ Rm denotes the control input, x1 ∈ Rn is the
leader’s state, A ∈ Rn×n, B ∈ Rn×m and D2 ∈ Rn×s are constant matrices with (A,B)

being controllable, h> 0 is the constant and known input delay, ωi ∈Rs is a disturbance
that is generated by a linear exogenous system

ω̇i(t) = Sωi(t), (6.3)

with S ∈Rs×s being a known constant matrix, and the nonlinear function φ : Rn→Rn,
φ(0) = 0, is assumed to satisfy the Lipschitz condition as

‖φ(α)−φ(β)‖ ≤ γ‖α−β‖,∀α,β ∈ Rn

where γ > 0 is the Lipschitz constant.
Let ξi = xi− x1, i = 2,3, · · · ,N as the tracking error. Then, based on the system
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dynamics (6.1) and (6.2), the error dynamics of the ith agent can be obtained as

ξ̇i(t) = Aξi(t)+ψi +Bui(t−h)+D2ωi(t), (6.4)

where ψi = φ(xi(t))−φ(x1(t)).
With the agent 1 as the leader, the control objective of this chapter is to design

a control algorithm for each agent to follow the state of the leader x1 under the dis-
turbances. That is, under these control algorithms, the following hold for all initial
conditions,

lim
t→∞

[xi(t)− x1(t)] = lim
t→∞

ξi(t) = 0, ∀i = 2,3, · · · ,N.

We make two assumptions about the dynamics of the agents and the connections be-
tween the agents.

Assumption 6.1.1. The disturbance is matched. i.e., there exist a matrix F ∈ Rm×s

such that D2 = BF.

Assumption 6.1.2. The communication topology G contains a directed spanning tree

with the leader as the root.

Remark 6.1.1. The matching condition in Assumption (6.1.1) guarantees that the dis-

turbance act via the same channel as that of the control input. This assumption could

be relaxed in some circumstances because unmatched disturbances under uncertain

conditions may be converted to the matched ones based on output regulation the-

ory [42]. Furthermore, the disturbance condition given in (6.3) is commonly used

for disturbance rejection and output regulation. Many kinds of disturbances in engi-

neering can be described by this model. For instance, unknown constant disturbances

or harmonics with unknown amplitudes and phases, belong to the allowed class of

disturbances.

Remark 6.1.2. For the directed communication graphs in the previous sections, the fi-

nal consensus value, which depends on the initial values, the network connection, and

the agent dynamics, might be unknown a priori [28]. In some cases, it might be desir-

able for the agents states to converge onto a reference trajectory, which is known as

consensus tracking (leader-follower consensus) problem. Compared to leaderless con-

sensus, consensus tracking has the advantage to determine the final consensus value

in advance.
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Because the leader has no neighbours, the Laplacian matrix L of G has the follow-
ing structure

L =

[
0 01×(N−1)

L2 L1

]
,

where L1 ∈ R(N−1)×(N−1) and L2 ∈ R(N−1). From Definition 2.1.3, it is obvious that
L1 is a nonsingular M-matrix. We also have the following result for L1:

Lemma 6.1.1 ( [42]). For the nonsingular M-matrix L1, there exists a positive diago-

nal matrix G such that

GL1 +LT
1 G≥ r0I, (6.5)

for some positive constant r0. It is also shown that G can be constructed by letting G =

diag{q2,q3, · · · ,qN}=(diag(π))−1, where π= [π2,π3, · · · ,πN ]
T =

(
LT

1
)−1

[1,1, · · · ,1]T .

6.2 Consensus Controller and Disturbance Observer De-
sign

The disturbance rejection design consists of disturbance estimation and rejection. The
estimation is based on the relative state information obtained through the communica-
tion network. It is assumed that the ith agent collects the relative state information of
its neighbouring agents as

ζi(t) =
N

∑
j=1

ai j
(
xi(t)− x j(t)

)
,∀i = 2,3, · · · ,N.

From the relationship between A and L , it is easy to see that ζi(t) = ∑
N
j=2 li jξ j(t). The

disturbance estimation and rejection proposed in this chapter will be designed based
on relative state information ζi(t).

The control input for disturbance rejection is designed as follows:

ui(t) = cKχi(t)−FeSh
ω̂i(t), (6.6)
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where χi(t) and ω̂i(t) are generated by

χi(t) =eAh
ζi(t)+

N

∑
j=2

li j

∫ t

t−h
eA(t−τ)cBKχ j(t)dτ, (6.7)

ω̂i(t) =ηi(t)+Lζi(t), (6.8)

η̇i(t) =Sηi(t)+(SL−LA)ζi(t)−LBF
N

∑
j=2

li j

(
η j(t)− eSh

η j(t−h)
)

−LBF
N

∑
j=2

li j

(
Lζ j(t)− eShLζ j(t−h)

)
− cLBK

N

∑
j=2

li jχ j(t−h), (6.9)

where c≥ 2qmax/r0 is a positive real constant with qmax = max{q2,q3, · · · ,qN}, K and
L are constant gain matrices to be designed later.

Remark 6.2.1. The integral term of χi(t) is added in the controller design to offset

the adverse effect of the time delay. If the nonlinear and disturbance terms in (6.1)
are absent, χi(t) is an ideal predictor of the relative state information of the ith agent.

Due to the presence of disturbance, it is a non-ideal prediction of the relative state

information. Furthermore, (6.8)-(6.9) are referred to as a distributed predictor-based

consensus disturbance observer, which is only dependent on the relative state informa-

tion, and independent of the information of the local state.

Let z̃i(t) = ωi(t)− ω̂i(t). A direct evaluation gives that

˙̃zi(t) = Sωi(t)− η̇i(t)−L
N

∑
j=2

li jξ̇ j(t)

= Sz̃i(t)−L
N

∑
j=2

li jψ j−LBF
N

∑
j=2

li j z̃ j(t), (6.10)

which can be written in the compact form as

˙̃z(t) = (IN−1⊗S)z̃(t)− (L1⊗LBF)z̃(t)− (L1⊗L)Ψ, (6.11)

where Ψ =
[
ψT

2 ,ψ
T
3 , · · · ,ψT

N
]T .

With the control input (6.6), the closed-loop dynamics of each agent in (6.4) can



CHAPTER 6. DISTURBANCE REJECTION WITH DOBC APPROACH 117

be written as

ξ̇i(t) =Aξi(t)+ψi +BFeShzi(t−h)+ cBKeAh
N

∑
j=2

li jξ j(t−h)

+ cBK
N

∑
j=2

li j

∫ t

t−h
eA(t−τ)cBKχ j(τ−h)dτ, (6.12)

where we have used ωi(t) = eShωi(t−h) and D2 = BF .
From the error dynamics (6.4), we have

ξi(t) = eAh
ξi(t−h)+

∫ t

t−h
eA(t−τ) (ψi +Bui(τ−h)+D2ωi(τ))dτ. (6.13)

Invoking (6.13) into (6.12), we obtain

ξ̇i(t) =Aξi(t)+ cBK
N

∑
j=2

li jξ j(t)+ψi +BFeShz̃i(t−h)

− cBK
N

∑
j=2

li j

∫ t

t−h
eA(t−τ)

(
ψ j +BFeShz̃ j(τ−h)

)
dτ. (6.14)

Let ξ =
[
ξT

2 ,ξ
T
3 , · · · ,ξT

N
]T , z̃ =

[
z̃T

2 , z̃
T
3 , · · · , z̃T

N
]T . The error dynamics of ξ(t) can be

written in the compact form as

ξ̇(t) = (I⊗A+ cL1⊗BK)ξ(t)+Ψ+
(

I⊗BFeSh
)

z̃(t−h)+∆1 +∆2, (6.15)

where

∆1 =−(cL1⊗BK)
∫ t

t−h

(
I⊗ eA(t−τ)

)
Ψdτ,

∆2 =−(cL1⊗BK)
∫ t

t−h

(
I⊗ eA(t−τ)BFeSh

)
z̃(τ−h)dτ.

For the convenience, let ∆1 =
[
δT

2 ,δ
T
3 , · · · ,δT

N
]T and ∆2 =

[
δ

T
2 ,δ

T
3 , · · · ,δ

T
N

]T
.

Next, we will design the control gain K and the observer gain L. With the control
law shown in (6.6), K and L are chosen as

K =−BT P, (6.16)

L = cQ−1DT
2 , (6.17)
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where P > 0,Q > 0 are constant matrices to be designed.
In order to obtain the main results, the bounds on ‖∆1‖2 and ‖∆2‖2 are given in the

following lemma.

Lemma 6.2.1. For the terms ∆1 and ∆2 in the error dynamics (6.15), bounds can be

established as

‖∆1‖2 ≤ ρ1

∫ t

t−h
ξ

T (τ)ξ(τ)dτ, (6.18)

‖∆2‖2 ≤ ρ2

∫ t

t−h
z̃T (τ−h)z̃(τ−h)dτ, (6.19)

where

ρ1 =(N−1)c2hρ
2eα2h

γ
2 ‖L1‖2

F ,

ρ2 =(N−1)hα1c2
ρ

2e(α0+α2)h‖L1‖2
F ,

with ρ,α0,α1,α2 being positive numbers such that

ρ
2I ≥ PBBT BBT P, (6.20)

α0 > λmax(S+ST ), (6.21)

α1 ≥ λmax(FT BT BF), (6.22)

α2 > λmax(A+AT ). (6.23)

Proof. From the definition of ∆1 in (6.15), we have
∥∥∆1

∥∥2
= ∑

N
i=2 ‖δi‖2. With (6.16),

we can get

δi = cBBT P
N

∑
j=2

li j

∫ t

t−h
eA(t−τ)

ψ jdτ,

and

‖δi‖2 = c2
∫ t

t−h

(
N

∑
j=2

li jψ
T
j

)
eAT (t−τ)dτPBBT BBT P

∫ t

t−h
eA(t−τ)

(
N

∑
j=2

li jψ j

)
dτ.

Based on Lemma (2.1.5) and the condition (6.20), one obtains

‖δi‖2 ≤ c2hρ
2
∫ t

t−h

N

∑
j=2

li jψ
T
j e(AT+A)(t−τ)

N

∑
j=2

li jψ jdτ.
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In light of Lemma (2.1.6) and the condition (6.23), one gets that

‖δi‖2 ≤ (N−1)c2hρ
2eα2h

N

∑
j=2

l2
i j

∫ t

t−h

∥∥φ(x j)−φ(x1)
∥∥2 dτ

≤ (N−1)c2hρ
2eα2h

γ
2

N

∑
j=2

l2
i j

∫ t

t−h
ξ

T
j (τ)ξ j(τ)dτ

≤(N−1)c2hρ
2eα2h

γ
2 ‖li‖2

∫ t

t−h
ξ

T (τ)ξ(τ)dτ.

Consequently,

∥∥∆1
∥∥2 ≤(N−1)c2hρ

2eα2h
γ

2
N

∑
i=2
‖li‖2

∫ t

t−h
ξ

T (τ)ξ(τ)dτ

≤(N−1)c2hρ
2eα2h

γ
2 ‖L1‖2

F

∫ t

t−h
ξ

T (τ)ξ(τ)dτ.

In a similar way, we have

δ̄i = cBBT P
N

∑
j=2

li j

∫ t

t−h
eA(t−τ)BFeShz̃ j(τ−h)dτ.

It follows that

∥∥δ̄i
∥∥2 ≤ c2

ρ
2h

∫ t

t−h

(
N

∑
j=2

li j z̃T
j (τ−h)

)
eST hFT BT eAT (t−τ)

× eA(t−τ)BFeSh

(
N

∑
j=2

li j z̃ j(τ−h)

)
dτ

≤ hα1c2
ρ

2e(α0+α2)h
∫ t

t−h

N

∑
j=2

li j z̃T
j (τ−h)

N

∑
j=2

li j z̃ j(τ−h)dτ

≤ (N−1)hα1c2
ρ

2e(α0+α2)h
N

∑
j=2

l2
i j

∫ t

t−h
z̃T

j (τ−h)z̃ j(τ−h)dτ.

Consequently,

‖∆2‖2 ≤ (N−1)hα1c2
ρ

2e(α0+α2)h
N

∑
i=2
‖li‖2

∫ t

t−h
z̃T (τ−h)z̃(τ−h)dτ

≤ (N−1)hα1c2
ρ

2e(α0+α2)h‖L1‖2
F

∫ t

t−h
z̃T (τ−h)z̃(τ−h)dτ.
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This completes the proof.

6.3 Consensus analysis

The following theorem presents sufficient conditions to ensure that the consensus dis-
turbance rejection problem is solved by using the control algorithm (6.6) with the con-
trol gain K and the observer gain L in (6.16)-(6.17).

Theorem 6.3.1. For multi-agent systems (6.1)–(6.2) with Assumptions 6.1 and 6.2, the

consensus disturbance rejection problem can be solved by the control algorithm (6.6)

with (6.16)–(6.17) if there exist positive definite matrices P,Q and constants ω1 ≥ 0,

ρ,κi > 0, i = 1,2, · · · ,5, such that

ρW −BBT ≥0, (6.24)[
AW +WAT −2BBT +(κ1 +κ2 +κ3 +κ4) I W

W −ε
−1
1

]
<0, (6.25)

QS+ST Q−2DT
2 D2 + ε2I <0, (6.26)

are satisfied with W = P−1 and

ε1 =
(

κ
−1
1 + cκ

−1
5 σ

2
max(L1)

)
γ

2 +ρ1π
−1
minπmaxκ

−1
3 eh,

ε2 = πmaxπ
−1
min

(
α1κ

−1
2 e(α0+1)h + cκ5λmax(DT

2 D2)+ eh
κ
−1
4 ρ2

)
,

where πmin = min{π2,π3, · · · ,πN}, πmax = max{π2,π3, · · · ,πN}.

Proof. To start the consensus analysis, we try a Lyapunov function candidate

V0 =ξ
T (G⊗P)ξ+ z̃T (G⊗Q) z̃+σ0eh

∫ t

t−h
eτ−t z̃T (τ)z̃(τ)dτ, (6.27)

where σ0 is a positive value to be chosen later.
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The derivative of V0 along the trajectory of (6.11) and (6.15) can be obtained as

V̇0 = ξ
T (G⊗ (PA+AT P

)
− c
(
GL1 +LT

1 G
)
⊗PBBT P

)
ξ

+2
N

∑
i=2

1
πi

ξ
T
i P
(

BFeShz̃i(t−h)+ψi +δi +δi

)
+ z̃T (t)

(
G⊗

(
QS+ST Q

)
− c(GL1 +LT

1 G)⊗DT
2 D2

)
z̃(t)

−2cz̃T (t)(GL1⊗DT
2 )Ψ−σ0eh

∫ t

t−h
eτ−t z̃T (τ)z̃(τ)dτ

+σ0ehz̃T (t)z̃(t)−σ0z̃T (t−h)z̃(t−h)

≤ ξ
T (G⊗ (PA+AT P+(κ1 +κ2 +κ3 +κ4)PP

)
− cr0I⊗PBBT P

)
ξ

+
γ2

κ1

N

∑
i=2

1
πi

ξ
T
i ξi +

α1

κ2
eα0h

N

∑
i=2

1
πi

z̃T
i (t−h)z̃i(t−h)+

∥∥∆1
∥∥2

κ3πmin
+

∥∥∆2
∥∥2

κ4πmin

+ z̃T (t)
(

G⊗
(

QS+ST Q+
πmax

πmin
cκ5λmax(DT

2 D2)I
)
− cr0I⊗DT

2 D2

)
z̃(t)

−σ0z̃T (t−h)z̃(t−h)+σ0ehz̃T (t)z̃(t)+
cγ2

κ5
σ

2
max(L1)

N

∑
i=2

1
πi

ξ
T
i ξi

≤ ξ
T (G⊗ (PA+AT P−2PBBT P+(κ1 +κ2 +κ3 +κ4)PP+σ1I

))
ξ

+ z̃T (t)
(
G⊗

(
QS+ST Q−2DT

2 D2 +σ11I
))

z̃(t)+

∥∥∆1
∥∥2

κ3πmin
+

∥∥∆2
∥∥2

κ4πmin

+
(

α1κ
−1
2 π

−1
mineα0h−σ0

)
z̃T (t−h)z̃(t−h), (6.28)

where

σ1 =
(

κ
−1
1 + cκ

−1
5 σ

2
max(L1)

)
γ

2,

σ11 = σ0πmaxeh + cκ5πmaxπ
−1
minλmax(DT

2 D2),

and Lemmas 6.1.1, 2.1.5 and 2.1.6 are used in above derivation.
By choosing σ0 = α1κ

−1
2 π

−1
mineα0h, the derivative of V0 could be written as

V̇0 ≤ ξ
T (G⊗ (PA+AT P−2PBBT P+(κ1 +κ2 +κ3 +κ4)PP+σ1I

))
ξ

+ z̃T (G⊗ (QS+ST Q−2DT
2 D2 +σ2I

))
z̃+

ρ1

κ3πmin

∫ t

t−h
ξ

T (τ)ξ(τ)dτ

+
ρ2

κ4πmin

∫ t

t−h
z̃T (τ−h)z̃(τ−h)dτ, (6.29)



CHAPTER 6. DISTURBANCE REJECTION WITH DOBC APPROACH 122

where σ2 = πmaxπ
−1
min

(
α1κ

−1
2 e(α0+1)h + cκ5λmax(DT

2 D2)
)

.
To deal with the first integral term shown in (6.29), we consider the following

Krasovskii functional

V1 = eh
∫ t

t−h
eτ−t

ξ
T (τ)ξ(τ)dτ,

With the direct calculations as

V̇1 =− eh
∫ t

t−h
eτ−t

ξ
T (τ)ξ(τ)dτ+ eh

ξ
T (t)ξ(t)−ξ

T (t−h)ξ(t−h)

≤−
∫ t

t−h
ξ

T (τ)ξ(τ)dτ+ eh
ξ

T (t)ξ(t). (6.30)

Similarly, the second integral term in (6.29) is coped with as

V2 = eh
∫ t

t−h
z̃T (τ)z̃(τ)dτ+ eh

∫ t

t−h
eτ−t z̃T (τ−h)z̃(τ−h)dτ.

With the derivative as

V̇2 =− eh
∫ t

t−h
eτ−t z̃T (τ−h)z̃(τ−h)dτ+ ehz̃T (t)z̃(t)− z̃T (t−2h)z̃(t−2h)

≤−
∫ t

t−h
z̃T (τ−h)z̃(τ−h)dτ+ ehz̃T (t)z̃(t). (6.31)

Let

V =V0 +ρ1π
−1
minκ

−1
3 V1 +ρ2π

−1
minκ

−1
4 V2. (6.32)

A direct evaluation gives that

V̇ ≤ ξ
T (t)(G⊗P1)ξ(t)+ z̃T (t)(G⊗Q1) z̃(t), (6.33)

where

P1 =PA+AT P−2PBBT P+(κ1 +κ2 +κ3 +κ4)PP+ ε1I, (6.34)

Q1 =QS+ST Q−2DT
2 D2 + ε2I. (6.35)

The condition in (6.24) is equivalent to the condition specified in (6.20). With
(6.34) and (6.35), it can be shown by Schur Complement that conditions (6.25) and
(6.26) are respectively equivalent to P1 < 0 and Q1 < 0, which further implies from
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Figure 6.1: Communication topology.

(6.33) that V̇ (t) < 0. Thus, the error dynamics systems (6.4) are globally asymptoti-
cally stable at the origin, which implies that the consensus disturbance rejection of the
multi-agent systems (6.1)–(6.2) is achieved. This completes the proof.

6.4 Simulation

In this section, we will demonstrate the consensus disturbance rejection method under
the leader-follower setup of five subsystems whose connection graph is specified by
the adjacent matrix

A =


0 0 0 0 0
1 0 0 1 0
0 1 0 0 0
0 0 1 0 1
1 1 0 0 0

 .

Note that the first row all are zeros, as the agent indexed by 1 is taken as the leader.
The communication graph is represented by Figure 6.1, and only the followers indexed
by 2 and 5 have access to the leader’s information. From Figure 6.1, it is easy to see
that the communication topology contains a directed spanning tree. The dynamics of
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Figure 6.2: The trajectories of state 1 with h = 0.1 and g = 0.05.

the ith agent is described by (6.1), with

ẋi(t) =

[
xi1(t)

xi2(t)

]
, A =

[
0 −1
1 0

]
,

B =

[
1 0.5

0.5 1

]
, φ(xi) = g

[
sin(xi1(t))

sin(xi2(t))

]
,

which may present a practical dynamical model of unmanned aerial vehicle (UAV)
[137]. In this work, it is supposed that external disturbance and time delay are exist in
the control channel. The input disturbance wi(t) is generated by (6.3) with

S =

[
0 −0.1

0.1 0

]
, F =

[
1 −0.5
−0.5 1

]
,

which represents an external periodic disturbance with known frequency but without
any information of its magnitude and phase. The time delay of each agent is 0.1s, and
the Lipschitz constant γ = g. It can be checked that Assumptions (6.1.1) and (6.1.2)
are satisfied.
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Figure 6.3: The trajectories of state 2 with h = 0.1 and g = 0.05.
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Figure 6.4: The evolutions of tracking error xi1− x11.
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Figure 6.5: The evolutions of tracking error xi2− x12.

The Laplacian matrix L1 associated with A is that

L1 =


2 0 −1 0
−1 1 0 0
0 −1 2 −1
−1 0 0 2

 .

Following the result shown in Lemma 2, we obtained that G = diag{0.3846 0.3571
0.5556 0.7143} and r0 = 0.2573. With pmax = 0.7143 and 2pmax/r0 = 5.5523, we set
c = 6 in the control algorithm (6.6).

The initial states of agents are chosen randomly within [ 0, 5 ], and u(θ)= [ 0, 0, 0, 0 ]T ,

∀θ ∈ [−h,0]. The observer gain L is chosen as L = µDT
2 with µ = 15. With the values

of ρ = 0.2,g = 0.05, a feasible solution of the feedback gain K is found to be

K =

[
−0.1924 −0.1233
−0.0962 −0.2466

]
.

Simulation study has been carried out with different disturbances for agents. Figures
6.2 and 6.3 show the simulation results for the trajectories of the state. The tracking
errors between the four followers and the leader are shown in Figures 6.4 and 6.5. The



CHAPTER 6. DISTURBANCE REJECTION WITH DOBC APPROACH 127

Time (seconds)
0 0.5 1 1.5 2 2.5 3 3.5 4

z 2

-100

-80

-60

-40

-20

0

20

40

60

80

z
21

z
22

Time (seconds)
0 0.5 1 1.5 2 2.5 3 3.5 4

z 3

-30

-20

-10

0

10

20

30

40

50

60

z
31

z
32

Time (seconds)
0 0.5 1 1.5 2 2.5 3 3.5 4

z 4

-60

-50

-40

-30

-20

-10

0

10

20

30

40

z
41

z
42

Time (seconds)
0 0.5 1 1.5 2 2.5 3 3.5 4

z 5

-40

-20

0

20

40

60

80

100

z
51

z
52

Figure 6.6: The tracking errors of the disturbance observers.



CHAPTER 6. DISTURBANCE REJECTION WITH DOBC APPROACH 128

disturbance observer errors are shown in Figures 6.6. From the results shown in the
figures, it can be seen that clearly all the five agents converge to the same set of states
although they are under different disturbances; therefore, the conditions specified in
Theorem 6.2 are sufficient to achieve the consensus disturbance rejection.

Remark 6.4.1. As only the Lipschitz constant γ is used for the disturbance observer

design and the exact information of the nonlinear functions is not required, this leads

to conservatism in the presented conditions. With the same control gain, the consen-

sus disturbance rejection is still achieved for the multi-agent systems with a larger

Lipschitz constant.

6.5 Summary

In this chapter, we have addressed the consensus disturbance rejection problem for
Lipschitz nonlinear multi-agent systems with input delay under the directed commu-
nication graph. The input delay may represent some delays in the network commu-
nication or in the actuators. The conditions for designing disturbance observers for
consensus control in presence of input delay are identified. In light of the well-known
predictor-based feedback approach, a non-ideal predictor-based control scheme is con-
structed for each subsystem by using the estimate of the disturbance observer and the
partial prediction of the relative state information. By exploring certain features of
the Laplacian matrix, global consensus analysis is put in the framework of Lyapunov
analysis. The proposed analysis ensures that the integral terms of the system state are
carefully considered by using Krasovskii functionals. Sufficient conditions are derived
for the input-delayed nonlinear systems to guarantee consensus disturbance rejection
in the time domain. The gain in the controller can be obtained through an iterative LMI
procedure. Finally, an example has demonstrated the effectiveness of the theoretical
results.



Chapter 7

Conclusion and Future Work

This chapter concludes the thesis and discusses the future research directions related
to the work done in this thesis.

7.1 Conclusion

This thesis considers the consensus problems of multi-agent systems with general
agent dynamics and input delay under directed network connection between the agents.
More specifically, the following research problems have been investigated rigorously.

1. The robust consensus problem of general linear multi-agent systems with input
delay and parametric uncertainties has been considered. To deal with the input
delay, Artstein model reduction method has been employed by a state trans-
formation. The input-dependent integral term that remains in the transformed
system, due to the model uncertainties, has been judiciously analysed. By care-
fully exploring certain features of the Laplacian matrix, sufficient conditions for
the global consensus under directed communication topology have been identi-
fied using Lyapunov-Krasovskii functionals in the time domain. The proposed
control only relies on relative state information of the agents via network con-
nections. The effectiveness and robustness of the proposed control design has
been demonstrated through a numerical simulation example.

2. The impacts of Lipschitz nonlinearity and input delay in consensus control have
been investigated. Based on the predictor-based feedback approaches, distributed
protocols have been proposed for a class of Lipschitz nonlinear multi-agent sys-
tems with input delay. Further rigorous analysis has been carried out to ensure
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that the extra integral terms of the system state associated with nonlinear func-
tions are properly considered by means of Krasovskii functionals. By transform-
ing the Laplacian matrix into the real Jordan form, global stability analysis has
been put in the framework of Lyapunov functions in real domain. Conditions
based on the Lipschitz constant are identified for proposed consensus protocols
to tackle Lipschitz nonlinear terms in the system dynamics under delay con-
straint.

3. The consensus disturbance rejection for multi-agent systems with input delay
and external disturbances has been considered. First, the H∞ consensus control
for high-order multi-agent systems with input delay and external disturbances
bounded by H2 norms has been investigated. Sufficient conditions have been
derived for the multi-agent systems to guarantee the H∞ consensus in the time
domain. Then, the multi-agent systems with unknown external disturbances has
been studied. DOBC approach has been applied to design the disturbance ob-
server and consensus protocols. A non-ideal predictor-based control scheme is
constructed for each subsystem by utilizing the estimate of the disturbance and
the prediction of the relative state information. Sufficient conditions have been
derived to guarantee consensus with disturbance rejection in the time domain.
Simulations have been employed to demonstrate the validity of the theoretical
results.

7.2 Future Work

In this section, several potential extensions to our research are listed as follows.

1. The input delay existing in the multi-agent systems leads to extra integral terms
in the transformed systems, and the analysis of the integral terms makes the de-
rived conditions more conservative. Simulation results in this thesis also indicate
that there is certain conservatism in the presented conditions. With the same con-
trol gain, the consensus is still achieved for the multi-agent system with a larger
input delay. Further analysis to relax the conditions is a topic of future research.

2. In Chapters 4 and 6, consensus control for a class of Lipschitz nonlinear multi-
agent systems has been studied. The impacts of Lipschitz nonlinearity and input
delay in consensus control have been investigated. However, in reality, many
nonlinear systems may not be satisfied with the Lipschitz condition. Hence,
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consensus control for more general nonlinear multi-agent systems with input
delay is a topic of future research from a practical point of view. The obstacle to
solving consensus control problem for general nonlinear systems stems mainly
from certain restrictions the nonlinearity imposes on using the information of the
individual systems.

3. In recent years, distributed optimization based on multi-agent systems has been
widely investigated due to its importance from a practical point of view. Most of
existing results are based on simple agent dynamics such as first or second-order
integrators dynamics. It is worthwhile investigating the distributed optimization
based on general multi-agent systems. Furthermore, it is also meaningful to
consider the imperfect communications, such as pocket drop and link failure
in communication channels, for the consensus protocol design of multi-agent
systems.
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