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Abstract

The University of Manchester

Abstract of thesis submitted by Erick Andrés Pérez Alday for the degree

of Doctor of Philosophy and entitled Theoretical investigation of non-invasive

methods to identify origins of cardiac arrhythmias.

Month and Year of Submission: 23th March, 2016.

Cardiac disease is one of the leading causes of death in the world, with an increase

in cardiac arrhythmias in recent years. In addition, myocardial ischemia, which arises

from the lack of blood in the cardiac tissue, can lead to cardiac arrhythmias and even

sudden cardiac death. Cardiac arrhythmias, such as atrial fibrillation, are charac-

terised by abnormal wave excitation and repolarization patterns in the myocardial

tissue. These abnormal patterns are usually diagnosed through non-invasive elec-

trical measurements on the surface of the body, i.e., the electrocardiogram (ECG).

However, the most common lead configuration of the ECG, the 12-lead ECG, has

its limitations in providing sufficient information to identify and locate the origin of

cardiac arrhythmias. Therefore, there is an increasing need to develop novel meth-

ods to diagnose and find the origin of arrhythmic excitation, which will increase the

efficacy of the treatment and diagnosis of cardiac arrhythmias.

The objective of this research was to develop a family of multi-scale computa-

tional models of the human heart and thorax to simulate and investigate the effect

of arrhythmic electrical activity in the heart on the electric and magnetic activities

on the surface of the body. Based on these simulations, new theoretical algorithms

were developed to non-invasively diagnose the origins of cardiac arrhythmias, such

as the location of ectopic activities in the atria or ischemic regions within the ven-

tricles, which are challenging to the clinician. These non-invasive diagnose methods

were based on the implementation of multi-lead ECG systems, magnetocardiograms

(MCGs) and electrocardiographic imaging.
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Chapter 1

Introduction

Cardiovascular disease affects millions of people worldwide and is one of the lead-

ing causes of death in developed countries [1]. Unfortunately, epidemiological studies

have shown an increase in the population of patients with cardiac arrhythmias, which

has been linked to an ageing society [2, 1]. In addition, myocardial ischemia, which

arises from the lack of blood in the cardiac tissue, can also lead to cardiac arrhyth-

mias and in some cases, sudden cardiac death [3, 4]. Cardiac arrhythmias, such as

atrial fibrillation, are defined as an irregular beating of the heart or any disordered

cardiac rhythm which is associated with abnormal excitation wave and repolarization

patterns in the cardiac tissue [5, 6]. These abnormal patterns can be identified by

invasive and non-invasive methods, such as electrodes placed on the surface of the

heart [7] or on the surface of the body [8]. However, invasive methods can produce

further complications during surgery and might require further surgical procedures

[9]. Therefore, cardiac arrhythmias are usually diagnosed through non-invasive elec-

trical measurements on the surface of the body, i.e, the electrocardiogram (ECG).

Unfortunately, the 12-lead ECG, which has been implemented as a standard clinical

diagnostic technique for multiple decades [10], has its limitations in providing suffi-

cient information to identify and locate the origin of cardiac arrhythmias [11, 12, 13].

There is therefore a pressing need to develop effective non-invasive methods to diag-

nose and determine the origin of arrhythmic excitation.

Previous studies have shown that multi-lead ECG configurations provide more

information about irregular cardiac conduction and repolarization patterns than the

standard 12-lead ECG [14, 15]. However, it is still an open question whether this

information is sufficient for the accurate diagnosis of cardiac arrhythmia [10]. Recent

studies have developed algorithms to non-invasively identify the location of focal ec-

topic sources by using either standard 12-lead [8, 16] or multiple-lead ECG systems

[15, 17]. The success rates of these algorithms range from 40% to 90% [8, 16, 17]. It

is also important to be able to distinguish the type of arrhythmia, as the underlying
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Chapter 1. Introduction

mechanisms in each case can be different and thus different intervention may be re-

quired to terminate the arrhythmia.

In addition to the ECG, the magnetic field produced by the electrical activity in

the heart has been hypothesized to provide a greater level of detail of cardiac excita-

tion patterns compared to body surface potential measurements. Combined with its

high independence to electrical resistivity inhomogeneities inside the tissues of the

body [18, 19], magnetocardiograms (MCG) are more sensitive to currents tangential

to the surface of the chest than ECGs [19]. In addition to that, due to the high tem-

perature of the MCG sensors, these are placed at a short distance of the body and

not on its surface, which makes it a completely non-invasive method. Therefore, the

MCG provides a potential practical alternative to the ECG for monitoring certain

cardiac conditions, such as ischemia. Unfortunately, the magnetic signals measured

from the human heart are around 10−9, while the magnetic earth field is 10−4, there-

fore, high sensitive sensors and a magnetic shielded room are required which makes

MCG technique more expensive than ECG techniques. Therefore, detailed correla-

tion between the presence of cardiac arrhythmias and the characteristic response of

the MCG are yet to be established to compare its advantages and disadvantages.

Moreover, the electrocardiographic imaging, the spatio-temporal reconstruction

of cardiac electrical activity from multi-lead ECG systems based on inverse prob-

lem solutions [20], is a promising method in clinical diagnosis. However, there is a

lack of information in the multi-lead ECG measurements that enables one to find a

reliable analytical solution of the cardiac electrical activity. Consequently, current

algorithms require further information to constrain the solution to achieve a reliable

reconstruction of cardiac excitation waves [21]. Furthermore, the minimum num-

ber of electrodes needed and the best type of inverse formulation to find a reliable

solution during different arrhythmia conditions are still open questions, which are

difficult to address in clinical practices.

The aim of this Thesis was to make a computational investigation of non-invasive

methods to identify origins of cardiac arrhythmias. Therefore, a family of multi-scale

computational models of the human heart and thorax was developed. These com-

putational models allowed simulation of the effect of cardiac arrhythmic excitation

patterns on the electric and magnetic activities on the surface of the body. Based

on these simulations, new theoretical algorithms were developed to non-invasively

diagnose and identify the origins of cardiac arrhythmias, such as the location of fo-

cal ectopic activities in the atria or ischemic regions within the ventricles through

multi-lead systems. In addition, these simulations allowed the comparison between
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non-invasive methods during different heart excitation patterns, such as MCG and

ECG signals produced by myocardial ventricular ischemia. Also, these computa-

tional models allowed the efficacy of non-invasive methods to be tested, such as

spatio-temporal atrial surface reconstruction during atrial fibrillation using electro-

cardiographic imaging. All these are clinically important challenges [10]

This Thesis is organized following the Alternative Format Thesis allowed by the

University of Manchester Thesis submission regulations [22], which allows incorpora-

tion of sections based on published peer-reviewed articles or manuscripts in prepara-

tion for publication in peer-reviewed journals. Therefore, this Thesis is organized in

the following structure: In Chapter 2, a short review of the anatomy and physiology

of the heart and thorax is presented, followed by a brief introduction to mathe-

matical models and methods for simulating the electric and magnetic activities of

the heart-thorax. In Chapter 3, a more detailed description of the mathematical

and numerical methods used to theoretically investigate the non-invasive methods

is presented. Chapter 4 details the computational models developed to simulate the

various approaches (such as body surface potential mapping, magnetocardiograms

and electrocardiogram imaging) used to identify the origins of cardiac arrhythmias.

In the subsequent chapters, novel research results on developed algorithms for iden-

tifying arrhythmic origins based on 64-lead ECG (Chapter 5 and 6), ECG & MCG

(Chapter 7) and electrocardiographic imaging systems (Chapter 8) are presented

based on published articles, or manuscripts in preparation for publication. In Chap-

ter 9, a summary and further work based on the Thesis are presented.

The main contribution of this Thesis is presented in the following manuscripts.

Chapter 5.

Perez-Alday EA, Colman MA, Langley P, Butters TD, Higham J, Workman AJ,

Hancox JC, Zhang H. A new algorithm to diagnose atrial ectopic origin from multi

lead ECG systems - Insights from 3D virtual human atria and torso. PLoS Comput

Biol. 2015 Jan 22;11(1):e1004026.

Chapter 6.

Perez-Alday EA, Colman MA, Langley P, Zhang H, Novel non-invasive algorithm

to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs.

A computational study. (Submitted and waiting for revision).

Chapter 7.

Perez Alday EA, Ni H, Zhang C, Coman MA , Gan Z, Zhang H. Comparison of
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electric- and magnetic- cardiograms produced by myocardial ischemia in models of

the human ventricle and torso. (Submitted and waiting for revision).

Chapter 8.

Perez-Alday EZ, Colman MA, Zhang H. Reconstruction of atrial ectopic focal

and re-entrant excitations from body surface potential. Insights from 3D virtual

human atria and torso. (Draft version).

In all publications, the author of this Thesis (Perez-Alday) had the main re-

sponsibility in designing and writing a first draft of the manuscript, designing and

developing the torso tools and as well as analysing the data in each study. Revisions

of the writing were incorporated by the co-authors directly or Perez-Alday after dis-

cussion with the other authors. The overall contribution of each author is listed

bellow:

Prof. Henggui Zhang - The University of Manchester - Main supervisor during

this research, focusing on the concept and design, providing guidance and support

on each study.

Dr. Michael A Colman - The University of Manchester - Collaborated on

the design; providing advice and support in each study. Further to this, Michael

provided the atria model used in this study.

Dr. Philip Langley - The University of Hull - Provided the expertise in exper-

imental multi-ECGs and technical discussions needed in the atria studies. Further

to this, Philip provided the 64-lead ECG experimental data used to validate the

atria-torso model.

Haibo Ni - The University of Manchester - Provided the ventricular model,

which was used in Chapter 7. Further to this, Haibo provided support on the study

of Chapter 7.

Chen Zhang - Peking University - Provided the experimental 36-lead ECG and

MCG used to validate the ventricular-torso model. Further to this, Chen provided

support on the study of Chapter 7.

Dr. Zizhao Gan - Peking University - Provided the experimental 36-lead ECG

and MCG used to validate the ventricular-torso model. Further to this, Zizhao pro-

vided support on the study of Chapter 7.

34



Chapter 1. Introduction

Dr. John Higham - University of Manchester - Provided expertise in heart

modelling, along with technical discussion on the study of Chapter 5.

Dr. Timothy Butters - University of Manchester - Provided expertise in heart

modelling, along with technical discussion on the study of Chapter 5.

Dr. Antony Workman - University of Glasgow - Provided clinical perspective,

along with technical discussion on the study of Chapter 5.

Dr. Jules Hancox - University of Manchester - Provided clinical perspective,

along with technical discussion on the study of Chapter 5.
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“The value of magnetocardiography in patients with and without relevant

stenoses of the coronary arteries using an unshielded system,” Pacing and clin-

ical electrophysiology, vol. 28, no. 1, pp. 8–16, 2005.

[19] D. B. Geselowitz, “Electric and magnetic field of the heart,” Annual review of

biophysics and bioengineering, vol. 2, no. 1, pp. 37–64, 1973.

[20] C. Ramanathan, R. N. Ghanem, P. Jia, K. Ryu, and Y. Rudy, “Noninvasive elec-

trocardiographic imaging for cardiac electrophysiology and arrhythmia,” Nature

medicine, vol. 10, no. 4, pp. 422–428, 2004.

[21] H. S. Oster and Y. Rudy, “The use of temporal information in the regularization

of the inverse problem of electrocardiography,” Biomedical Engineering, IEEE

Transactions on, vol. 39, no. 1, pp. 65–75, 1992.

[22] “documents.manchester.ac.uk/display.aspx?docid=7420.” http://documents.

manchester.ac.uk/display.aspx?DocID=7420.

37

http://documents.manchester.ac.uk/display.aspx?DocID=7420
http://documents.manchester.ac.uk/display.aspx?DocID=7420


38



Chapter 2

Literature Review

The electrical activity of the heart produces an electric and magnetic field surround-

ing the body. Hence, the human heart can be seen as an electric source inside an

inhomogeneous volume conductor (i.e., the human body). Measuring the electric

and magnetic field state can give us information about the behaviour of the heart.

Unfortunately, the electric and magnetic fields outside or on the surface of the body

are extremely weak signals compared to the signals produced in the heart. Thus,

it is still a scientific challenge to correlate the state of the heart with the measured

electric and magnetic signals on the thorax to a high degree of accuracy. This chap-

ter introduces basic anatomical, physiological, physical and mathematical concepts

relevant to this Thesis.

2.1 The heart

The heart is one of the most important organs in the human body. It supplies

oxygenated blood to millions of cells throughout the body. In order to achieve this,

a normal healthy heart beats approximately 10,000 times a day and pumps more than

14,000 litres of blood in a day.[1]. If the heart stops beating, blood stops flowing

to vital organs, which can cause tissue damage and death if it is not treated within

minutes [1].

2.1.1 Location of the heart

The healthy human heart is approximately the size of one’s fist. It is located inside

the thorax, above the diaphragm and surrounded by the lungs and rib cage. From a

frontal view, the heart can be seen as a cone pointing to the left, anterior and inferior

part of the body; the “peak” is referred to as the apex of the heart, whereas the base

of the heart (base of the cone) is in the right, posterior and superior direction (Figure

2.1).
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Figure 2.1: Illustrations of the position of the heart inside the body. (a) Location
of the heart inside the thorax from a frontal view. (b) Axial cut of the thorax, the
position of the lungs and heart can be observed. (c) Coronal cut of the lungs and
heart. Figure adapted from [2].

2.1.2 Anatomy of the heart

The heart is composed by four chambers, two upper chambers (the atria) and two

lower chambers (the ventricles) (Figure 2.2 a). The atria is comprised of two com-

ponents, namely left atrium (LA) and right atrium (RA) which are separated by a

thin barrier known as the inter-atrial septum. The atria constitutes most of the base

of the heart. Similarly, the ventricles are divided into the left ventricle (LV) and

right ventricle (RV) which are separated by a narrow barrier called the interventric-

ular septum. The right ventricle constitutes most of the anterior part of the heart,

whereas the left ventricle constitutes most of the apex of the heart. Atria and ven-

tricles are electrically and physically isolated by non-conductive fibrous connective

tissue rings collectively known as fibrous skeleton [1].
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Figure 2.2: Coronal view of the interior of the heart, showing (a) De-oxygenated
blood (gray arrows) and oxygenated blood (red arrows) flow through the heart and
(b) key anatomical structures of the heart. Figure adapted from [3].

2.1.3 Cardiac working cycle

The RA collects de-oxygenated blood from the body, through the superior vena cava

(SVC). Then, it pumps the blood to the RV via the tricuspid valve (Figure 2.2 a).

Once the RV is filled with blood, it pumps the blood into the pulmonary arteries,

through the pulmonary valve to the lungs, where it loses carbon dioxide (CO2) and

gains oxygen (O2) (Figure 2.2 (a), gray lines). Subsequently, the LA collects the

oxygenated blood from the lungs via the pulmonary veins (PV). Then, it sends the

blood to the LV through the mitral atrioventricular valve (Figure 2.2 (a)). Finally,

the oxygenated blood inside the LV is pumped through the aortic valve into the

aorta and the rest of the body, where the blood loses O2 and gains CO2 (Figure 2.2

(a), red lines).

2.1.4 Cardiac electrical conduction system

The action of pumping blood, to either the lungs or the rest of the body, is primar-

ily carried out by the contraction of heart muscle cells, known as cardiac myocytes

(described in section 2.1.5). This activity is produced by electrochemical impulses

transmitted from one cell to another. Waves of electrical excitation are initiated by

auto-rhythmic cells which form the sinoatrial node (SAN), located in the RA (Figure

2.3). Then, the electrical impulse is spread to all cells of the left and right atrium

[4, 1].

After propagating through the atria, the fibrous skeleton prevents excitation from

the atria to reach the ventricles. However, the atrioventricular node (AVN) provides

a conduction pathway from the atria to the start of the Purkinje’s fiber (PF) network

(Figure 2.3). At the AVN, a time delay, due to slow conduction, is produced to allow
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complete contraction of the atria. This delay also allows the ventricles to be filled

with blood before the electrical impulse reaches them. In the event of SAN dys-

function, cells in the AVN can act as a subsidiary pacemaker and start the electrical

activity in the heart [4, 1].

Figure 2.3: Illustration of the conduction system of the heart. The black arrows
represent the direction of the electrical wave through the heart. Figure adapted
from [5].

The electrical wave propagates to the ventricles through a series of branched tis-

sue structures. First, the AVN transmits the electrical impulse to the bundle of His

(Figure 2.3), and then the electrical impulse is spread into the ventricle walls, via

the PF network. This activity starts in the apex and then propagates to both left

and right ventricles. The outcome is the contraction of the ventricles, and therefore,

the pumping of blood to the lungs and the whole body. The PF network ensures

synchronous contraction due to the multiple activation sites.

2.1.5 Cardiac electrophysiology

As previously mentioned, myocardiac cells with pacemaking activities form the con-

duction system of the heart which includes the SAN, the AVN and the PF network

as shown in Figure 2.3. The rest of the heart, including the atria and ventricles mus-

cles, consists of mostly contractile cells with the capacity to transmit electrochemical

impulses. However, each type of cardiac cell has different electrophysiological and

morphological properties which yield to differences in their electrical action poten-

tials. [6, 4].
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Membrane potential

All myocytes are surrounded by a phospholipid bilayer which is frequently referred

to as the sarcolemma or cell membrane. Across it, there is a resting potential due

to the different extra- and intra-cellular ionic concentrations on each side of the

membrane. However, there are different proteins that allow and control the flux of

specific ions into and out of the cell via elaborated sequences of opening and closing

mechanisms of protein-formed ion channels (Figure 2.4 b). These channels can be:

passive (ion channels), which allow the flux of ions in the direction of the electro-

chemical gradient; active (ion pumps), which contribute to the flux of ions against

the concentration gradient; and ion exchangers, which move ions in either direction

across the membrane. The difference in the transmembrane potential is known as

the membrane potential. The resting membrane potential in working myocardial

cells is close to -80 mV [7].

Figure 2.4: Illustration of ion channels (a) and cardiac muscle cells (b), where the
extra-, intra-cellular mediums and the sarcolema can be observed. Figure adapted
from [2] and [8].

Action potential (AP)

The change that gives rise to a positive membrane potential is known as membrane

depolarization. Subsequently, the change that returns the membrane potential to
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a negative value is known as membrane repolarization. The change in membrane

potential over time is known as action potential (AP) (Figure 2.5). This electrical

transient can be propagated through the whole heart, by transferring the impulse

from cell to cell, through gap junctions which electrically couple the cells and allow

the flux of ions between them (Figure 2.4 a).

The morphological characteristics of an AP, such as shape and duration, is mainly

determined by the transmission of ions across the cell membrane. This ion flow pro-

duces different types of electrical inward (from outside to inside the cell) or outward

(from inside to outside the cell) currents, I, which contribute to the AP. The electri-

cal cycle of a cell can be divided into five phases, one describing the diastolic interval

(resting potential) and the other four the evolution of the AP (figure 2.5).

Figure 2.5: Illustration of a generic cell action potential (AP). The 5 phases can be
observed in the Figure and are denoted by the numbers: 0 to 4.

Phase 0 is initiated by a rapid depolarization of the membrane (Figure 2.5). It

is mainly produced by the activation of sodium (Na) current channels (INa), which

results in an inward flow of Na+ ions into the cell. At the end of this phase the

potassium (K) current (IK) is activated, this means the depolarization is finished.

Phase 1 is characterised by the rapid repolarization of the membrane, produced

by activation of the transient outward K+ current channels, Ito, and the inactivation

of INa. This can be seen as a small downward notch in the action potential, which

follows the rapid depolarization (Figure 2.5).
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Phase 2, known as the plateau phase, is usually an equilibrated potential produced

by the balance of inward and outward currents (Figure 2.5). The inward current is

primarily composed by L-type Calcium current ICaL. Meanwhile, the outward cur-

rent is principally produced by efflux of K+ to the exterior of the cell, carried by

the activation of both rapid (IKr) and slow (IKs) components of IK current channel.

Furthermore, the current exchanger of Na+ and calcium (Ca2+) ions, INCX , also

contributes to the plateau phase.

Phase 3 is usually the last and faster period of re-polarization, which can be seen

as the rapid downslope in the AP (Figure 2.5). This is primarily produced by the

efflux of K+ ions to the exterior of the cell, which are carried out by IKs, IKr and

the inward rectifying potassium current IK1. During this phase, the L-type Ca2+

channels close and stop the influx of Ca2+ ions into the cell.

Phase 4 is known as the refractory period, during which several channels are

inactivated and the cell returns to its resting potential (Figure 2.5). The resting

potential (̃-80mv) is mainly maintained by the Na+ and K+ pump, the INCX ex-

changer current, IK1 current and background currents.

The shape and duration of the AP vary in each myocardial cell and depend on

the different kinetics and current density expressed in each type of cell.

2.1.6 Cardiac arrhythmias

An alteration in the cardiac electrical conduction system can produce cardiac ar-

rhythmias, which are defined as an irregular heartbeat or any period without cardiac

rhythm [9, 10]. Cardiac arrhythmias affect about 2-3% of the population worldwide

and are one of the principal causes of cardiovascular deaths worldwide [11, 4]. There

are different types of cardiac arrhythmias, fast atrial arrhythmias (FAA) being one

of the most relevant, which includes atrial tachycardia (AT), atrial fibrillation (AF)

and atrial flutter (AFL). An abnormal slow heart rate is called bradycardia or brad-

yarrythmias and can be caused by a disruption of the electrical conduction signal,

which can lead to heart failure and sudden death [11, 4]. In addition, myocardial

ischemia, which arises from the lack of blood in the cardiac tissue, can also promote

abnormal excitation wave conduction and repolarization patterns, leading to cardiac

arrhythmias [12, 4]. All of the above conditions may lead to heart failure and poten-

tially sudden cardiac death.

Unfortunately, the 12-lead ECG (detailed in section 2.4), which has been im-

plemented as a standard evaluation procedure for cardiac arrhythmias diagnosis for
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multiple decades [6] has shown to be insensitive or provides insufficient information

for satisfactory identification and correct location of the source of FAA or ischemia

[13, 14] which are the focus of this project.

Fast atrial arrhythmias

FAA can reduce cardiac output and lead to ventricular arrhythmias and further com-

plications, such as sudden cardiac death and stroke [11, 4]. Such rapid activity may

be associated with focal ectopic activity (rapid and irregular spontaneous excitation

originating from regions of the heart other than the SAN), re-entrant (self perpetu-

ating) excitation and multiple wavelets [15, 16, 4]. AT is associated with rapid and

regular ectopic focal activation of the atria [11, 4]; AFL is associated with re-entrant

excitation patterns or self-perpetuating loops across the atria [11, 4], whereas AF is

characterized by irregular heartbeats of the atria [11, 4]. Identifying the presence

and source of such activity in a non-invasive way may prove vital in diagnosis and

treatment of cardiac disorders, such as targeting ablation therapy of which success

rate is not entirely satisfactory. This unsatisfactory success rate may lead to repeated

operations leaving significant portions of scar tissue which can induce further compli-

cations [17]. Invasive methods, such as endosurface mapping has proven to be useful

in locating the source of AF, however, they can induce further complications during

surgery [18]. Identifying the location of such activities (for example the anatomical

location around which leading circuit re-entry occurs) with a non-invasive method

presents a greater challenge, due to irregular waves [19]. However, it offers the po-

tential to assist in target catheter therapy, increasing the success rate and reducing

the need for repeated operations [6].

Cardiac ischemia

Ischemic heart disease is one of the principal causes of death in developed coun-

tries and worldwide [11, 4]. Coronary artery occlusion can cause, within hours, cell

death in ischemic myocardium. This results from a lack of blood flow to the heart

which decreases, partially or completely, the oxygen supply to the cell, causing irre-

versible damage to the tissue [4, 14]. Therefore, significant ischemic regions within

the heart can reduce the cardiac output, because these cells are unable to contract

[4]. Furthermore, the standard diagnosis method, 12-lead ECG (described in sec-

tion 2.4), has been found to be insensitive in many cases such as silent ischemia,

in which ECGs may only differ by 15-30% as compared to normal patients [14, 20].

Other non-invasive techniques, such as magnetic resonance imaging are believed to

be far more sensitive to the detection of ischemia [21]. However, they only detect

cardiac structures, not electrical conduction patterns. Furthermore, they are highly

expensive and time consuming, and therefore not practical for day-to-day, bedside
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monitoring and detection of asymptomatic ischemia [22, 23]. Therefore, being able

to detect, quantify and locate the site of acute transient ischemic regions in the heart

by non-invasive techniques is a clinically important challenge.

2.2 Mathematical models of the heart

Computational modelling can provide a convenient and reliable framework to investi-

gate and predict the relation between cardiac arrhythmias and non-invasive diagnosis

methods. In addition, Computer simulations can overcome some of the problems that

are faced experimentally/clinically by reproducing the behaviour of a system with

different characteristics, dissecting the results in an arbitrary number of ways and

re-running simulations an arbitrary number of times with different parameters.

In this section, a brief introduction of the mathematical cardiac models used in

this Thesis will be provided for completeness of reviewing the research field, as it is

not the aim of this study to develop models for simulating cardiac cells. In the next

chapter (Chapter 3) a mathematical description of the electric and magnetic field

propagating through a volume conductor will be presented.

Different mathematical formulations of the cell membrane, myocyte function and

the propagation of the electric and magnetic field through a volume conductor have

been developed over the last decades [24, 6]. Most of the models are based on simple

assumptions involving the cellular membrane, ion currents and electrical density in

order to reduce computing time [6].

2.2.1 Equivalent electric circuit model of the heart

Generally speaking, the electrical behaviour of a cell can be described by an equiva-

lent circuit model (Figure 2.6), with a capacitance, Cm, representing the membrane

and a voltage Vm which is the difference between the potential inside the membrane,

φin, and the potential outside the membrane, φex, i.e.,

Vm = φin − φex. (2.1)

Each ion current, IX , is associated with a conductivity, gX , and a potential

difference, VX , which is the driving force of the current across the channel of the

respective ion, X, (Na for sodium, Ca for calcium, etc). The sum of all the active

ion currents is given by the total current:

Iion = INa + IK + ICa + . . . , (2.2)
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Figure 2.6: Equivalent circuit model of a cardiac cell. Cm is the capacitance of the
cell membrane, gX is the conductivity and VX the driving force of the ionic currents.
Figure adapted from [6]

.

Therefore, from Figure 2.6 and due to conservation of charge (Kirchhoff’s circuit

laws) [6], the change of the potential with time across the membrane can be described

as

Cm
dVm
dt

+ Iion = 0, (2.3)

Equation (2.3) relates the total ionic current with the transmembrane potential,

and can be used to determine the AP (see section2.2.3). Furthermore, the driv-

ing force VX is related to the Nernst potential described by the Nernst equation (

equation 2.4) [6].

2.2.2 Nernst equation

The Nernst equation is a thermodynamic equation which describes the potential

difference produced by the ionic concentration, [X], on both sides of a membrane.

When the equilibrium is produced between the chemical concentration gradient and

the electrical gradient, the potential difference, Er, is given by [6].

EX,r =
RT

ZXF
ln

(
[X]ex
[X]in

)
, (2.4)

where, R is the ideal gas or universal gas constant, T is the absolute temperature,
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F is the Faraday constant (magnitude of electric charge per unit of electrons), Z is

the charge of ion X, and [X]in and [X]ex denote intracellular and extracellular con-

centrations of X, respectively. At the Nernst equilibrium potential, Er, the current

across the cell membrane is equal to zero, i.e. the net flow of charge through the ion

channel is zero.

2.2.3 Hodgkin-Huxley model

One of the first models to describe the electrical behaviour of a cell membrane,

was the Hodgkin-Huxley model, first presented by Alan Lloyd Hodgkin and An-

drew Huxley in 1952 [25]. They proposed that the current of a particular ion, IX ,

can be determined as the product of voltage difference Vm − EX,r and the channel

conductivity, gX , as follows

Ix(V, t) = (Vm − EX,r)gx(V, t). (2.5)

Therefore, each ion experiences a net driving force proportional to Vm − EX,r,

which drives the movement of ions across the membrane.

The Hodgkin and Huxley model is a mathematical model based on an equivalent

circuit, formed by three X components: sodium (Na), potassium (K) and a leakage

(l) [25] (Figure 2.6).

The model was able to represent the activation and inactivation mechanisms of

ion channels by considering the maximal constant conductance of each ion as gmax:

g = mahbgmax. (2.6)

Where a and b are numbers specific for each ion and generated empirically,

whereas, m and h are the activation and inactivation variables of each conductance.

If the value of m (or n) represents the proportion of channels in the activated state

(or inactivation states). Hence, the proportion of channels not in the activated state

(or not inactivation states) must be 1−m (or 1−n). If αm is related to the opening

of the gate (αn to the closing gate), then the rate of change of opening will be given

by (αm(1−m)) (and the closing αn(1− n)).Therefore if this two variables are time

dependent, then the rate change in m and n are given by Rush and Larsen equation

[26]:
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dm

dt
= αm(1−m)− βmm, (2.7a)

dh

dt
= αh(1− h)− βhh. (2.7b)

where, α and β are time independent functions of the potential difference in the

membrane. A solution of the equation (2.7), can be given as

m(t) = m∞ − (m∞ −m0)e(−
t
τm

), (2.8)

where m0 is the value of m at t = 0 and

m∞ =
αm

αm + βm
, (2.9a)

τm =
1

αm + βm
. (2.9b)

Here, equation (2.9a) represents the steady-state value of the gate and equation

(2.9b) the time constant.

Equation (2.3) is the equation that describes the equivalent circuit in Figure 2.6,

and if we consider three ion channels with the assumption given by the Hodgkin-

Huxley model (equation (2.5)) and equation (2.6), equation (2.3) becomes:

Cm
dV

dt
= −gKn4(V − EK,r)− gNam3h(V − ENa,r)− gl(V − El,r) + Iap. (2.10)

Here gi is the maximum conductance for each channel i, and Ei,r is the equilib-

rium potential for each channel i. Each channel i, stands for potassium K, sodium

Na and the leakage l. The activation and inactivation mechanism are expressed by

the gating variables m, n and h. Iap is the applied current, or stimulus current flow-

ing across the membrane. Thus, Hodgkin and Huxley were able to use this model

to replicate experimental measurements and received the Nobel prize in recognition

for their achievement.

The Hodgkin-Huxley model has been extended to different models which included

many different combinations of ion channels, each with their own variations in gating

equations. However, there are some processes that can only be described by a Markov

Chain model, which is the topic of the subsequent subsection.
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2.2.4 Markov chain model

A Markov chain model describes a random process through transitions from one

state to another and assume statistical independence. The main characteristic of

this model is that the next state only depends on the current states and is indepen-

dent of any previous states.

The main difference between Hodgkin-Huxley formulation and Markov chain

models is that the latter considers the state of each ion channel to be state de-

pendent, and can include many different states, such as open, closed and inactivated.

This formulation allows the description of complex interactions between different

states controlled by random processes through stochastic techniques [6]. This be-

haviour is a more accurate description of some currents, which the Hodgkin-Huxley

model may be unable to predict.

In general, the Markov chain formulation also works under the assumption that,

the number of ion channels in a certain possible state is depicted as a fraction (be-

tween 0 and 1) which changes with time. These channels are expressed by chemical

transition formulations, which outline the average behaviour of thousands of individ-

ual channels described by multiple differential equations [6]. Therefore, its computa-

tional cost is increased considerably due to the large set of differential equations to

be solved. However, Markov Chain models are best suited when a more detailed de-

scription of the currents is needed and which Hodgkin-Huxley models cannot provide.

Both Markov chain and Hodgkin-Huxley models can describe the AP generation.

In this study mostly Hodgkin-Huxley formulation based models were used to produce

AP inside the heart.

2.2.5 Action potential propagation

In this section, an overview of modelling AP propagation, based on [6], is presented;

further details can be found in [24, 27]. The bidomain equation, first proposed by

Miller and Geselowitz in 1978 [28], is one of the main approaches to describe the

AP propagation. The process of describing every cell of the heart has around 10

billion sets of parameters at each time instant, thus, computationally speaking, it is

not possible to model. Therefore, the bidomain model does not describe every single

myocyte inside the heart. Instead, it homogenizes the properties of the myocardiac

cells to simplify the modelling of the heart tissue, and thus, the whole heart. In other

words, myocytes are considered to be part of a continuum which may be arbitrarily
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divided.

The first assumption of the bidomain model is to separate each point of the whole

heart into two domains. The two domains are associated with the intracellular and

extracellular medium. The two domains exist and overlap in the cardiac muscle, i.e.,

each point in the myocardium lies in both domains. Therefore, from Ohm’s Law, for

each point it holds:

~Jn = −σn∇φn, (2.11)

where, n represents the intra- or extracellular medium, σn, φn and ~Jn are the

conductivity, potential and current density of each medium, respectively. As the two

equations hold for the same point and due to conservation of current:

∇ · ~Jin = −∇ · ~Jex. (2.12)

Combining equation (2.12) with equation (2.11), it is possible to write

∇ · σin∇φin = −∇ · σex∇φex. (2.13)

Now, from the previous definition of the transmembrane potential, Vm (equation

(2.1)), the equation (2.13) can be rewritten in terms of Vm and the extracellular

potential φex. Then, by subtracting ∇ · σin∇φex, from both sides, the bidomain

equation can be written as

∇ · ((σin + σex)∇φex) = −∇ · (σin∇Vm) (2.14)

The last equation relates the extracellular and the transmembrane potentials.

Now, as the stimulus current, Iap, crosses the membrane, it follows that:

∇ · ~Jin = ∇ · ~Jex = AmIap, (2.15)

where, Am represents the membrane surface per volume of tissue. Therefore, by

comparing equations (2.14) and (2.15), it is straightforward to arrive to:

~Jin = −σin∇Vm. (2.16)

The last equation is used to compute the intracellular potentials. Now, by intro-

ducing equation (2.3) in equation (2.15), it is possible to obtain

∇ · (σin∇φin) = Am

(
Cm

∂Vm
∂t

+ Iion

)
, (2.17)

where, as previously defined, Cm is the membrane capacitance and Iion is the
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ionic current. Therefore, rewriting equation (2.17) in terms of Vm, and subtracting

∇ · (σin∇φex) from both sides of the equation, an alternative form of the bidomain

equation can be obtained:

∇ · (σin∇Vm) +∇ · (σin∇φex) = Am

(
Cm

∂Vm
∂t

+ Iion

)
. (2.18)

Therefore, from equation (2.14) together with (2.18) the transmembral potential

can be computed. As long as the appropriate boundary conditions are included,

i.e., there is no intracellular current flowing out of the heart, the body is a passive

conductor and the extracellular potential and the body potential, at the surface of

the heart, are the same.

However, the computational cost for solving these coupled differential equations

is still very high, due to the large scale of the problem and the non-linearity of single

cell models. Therefore, another approximation is usually done, and this leads to the

monodomain equation, which is another approach to the AP propagation model.

The monodomain model assumes that the two domains are equally anisotropic

(σin = kσex). Thus, the set of coupled equations (2.14) and (2.18), can be combined

to generate the monodomain equation

∇ · (σ∇Vm) = Am

(
Cm

∂Vm
∂t

+ Iion

)
, (2.19)

where, σ is defined as σ−1 = σ−1
ex + σ−1

in , it provides the change of the membrane

potential, Vm, in an interval of time. Recently, improvements over the monodomain

equation have been perform by including different parameters, e.g., Bueno-Orovio et

al. [29], which used fractional diffusion models to described structural heterogeneity.

2.2.6 Numerical methods for heart modelling

There are many numerical methods that can be used to solve the mathematical

models describing the behaviour of the heart. The models used in this Thesis used

the forward Euler method (FUM) together with the finite difference method (FDM),

therefore, in this section only these two are described. Furthermore, it was not the

aim of this Thesis to develop a new cardiac model.

Forward Euler method

The FUM is an explicit and efficient method to solve integral equations numerically,

which can predict the state of a system after a time interval, given the state at the

current time. If we consider a certain function F (y, t), with initial variables, (t0, y0),
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and, under the assumption that the change of F is negligible over some small interval,

∆t, then the state of the system at, t, time can be given by

yt+∆t = yt + ∆tF (y, t) (2.20)

Therefore, the evolution of the system through time can be predicted with a

relatively small time step, ∆t, between each successive point. The small time steps

are necessary to ensure stability and to ensure an accurate solution is obtained

[30]. Although this increases the computational cost, this is compensated by its

simplicity (more stable methods are by nature more complicated and introduce more

computational cost per iteration) [31]. Due to its simplicity, the Forward Euler

Method is the method used for heart modelling in this Thesis.

Finite difference method

The FDM is a numerical technique used to calculate the solution of a spatial partial

differential equation, such as the monodomain equation (equation (2.19)), by dividing

the space into N discrete nodes. If we consider the spacing between each node as

∆x, the left side of the monodomain equation (equation (2.19)) can be approximated

in the x direction as

D
d2V

dx
≈ D

∆x
(Vx+∆x,tVx−∆x,t − 2Vx,t) (2.21)

where D is the diffusion tensor which includes the conductivity, the membrane

capacity and the membrane surface per volume of tissue terms, Vx,t, Vx+∆x,t and

Vx−∆x,t are the value of V at time t and at the nodes x, x + ∆x and x − ∆x,

respectively. Then, rearranging the monodomain equation (2.19) and using equation

(2.21), we can write

dV

dt
≈ D

∆x
(Vx+∆x,tVx−∆x,t − 2Vx,t)−

Iion
Cm

(2.22)

Using Forward Euler method, the value of V at a time t+ ∆t, can be written as

Vt+∆t ≈ Vt +
D∆t

∆x
(Vx+∆x,tVx−∆x,t − 2Vx,t)−

∆tIion
Cm

(2.23)

Equation (2.23) can be extended to the three dimensional case by applying the

same approximations in each direction. This equation, together with Neumann

boundary conditions, which set the dV
dx

= 0 at the edges of the tissue [32], are the one

used in this Thesis to model the heart electrical activity. Other methods can also be

used to obtain the AP for cardiac modelling (finite or boundary element method),

but FDM provides an easy and efficient way to model the electrical activity in the

heart [31].

54



Chapter 2. Literature Review

Numerical stability

Solving the previous integral equations via FUM, and for the specific case of gating

variables (equation (2.23)-the Rush-Larsen method [26]), then the second term in

equation (2.23), D∆t
∆x

, can be related to the numerical stability, and its value for

convergence to occur has to be less than 0.5 [33]. Therefore, this constrains the

value of the time step (∆t) and spatial step (∆x) used for the integration. To

confirm stability, the time step used in this study was range between 0.005 - 0.01

ms, while the spatial step was 0.33 mm, all simulations were run for a period of 10

minutes.

2.3 The thorax

The heart is located inside the thorax, which protects it from the outside. There

are different types of tissues and organs inside the thorax, such as lungs, the rib

cage, muscles and different internal structures. Therefore, the human thorax can

be viewed as an inhomogeneous and anisotropic volume conductor, due to its direc-

tionally dependent conductivity and non-linear relations in its electrical parameters.

Nevertheless, most modelling studies, related to electrocardiac activity, consider the

thorax as a homogeneous and isotropic medium, which may not produce a large

difference between theoretical and experimental values [34, 35].

2.3.1 Properties of the thorax

The human thorax is not an infinite medium; instead, it is bounded with skin. In

general, the heart is located in the centre of the torso (Figure 2.7). It is surrounded

by the rib cage and the intercostal muscles. From an anterior view, the breastbone or

sternum and the pectoralis muscles can be observed (Figure 2.8a). From a posterior

view (Figure 2.8b), the spinal cord is surrounded by thoracic vertebrae, where the

rib cage starts, and the muscles of the back, such as trapezius, rhomboideus and

teres major can be found (Figure 2.8b).

From a transverse view of the thorax, the position of the lungs around the heart

can be observed (Figure 2.7a). Since the apex of the heart is towards the left, the

left lung is smaller compared to the right lung, in order to accommodate the position

of the heart. For the respiration process, both lungs fill with air and expand at the

same time, and with an isometric movement of the intercostal muscles and ribs, it

leads to the expansion of the thorax during inspiration and its contraction during

exhalation.
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Figure 2.7: Illustration of the location of the human heart inside the body. (a) Cross
sectional view. (b) Frontal view. Figure adapted from [36, 37].

Figure 2.8: Illustration of the upper body musculo-skeletal system. a) Anterior view.
b) Posterior view. Figures adapted from [1].

In general, the tissues inside the thorax, in particular the skeletal muscle, are

electrically anisotropic, because their cellular structures are composed of parallel

long fibres oriented in a specific direction. The electric current at low frequencies

cannot flow through the cell membrane [38, 39]. Thus, the conductivity of the tissues

strongly depends on the density and distribution of the cells, and on the length of

the conductive pathways between them.

Now, taking into account the inhomogeneities already described, and the knowl-

edge that a dipole source declines with the distance r as 1
r2

[6, 40], it can be expected

that the measurement of the potentials on the body surface is a highly attenuated

version of the potentials produced in the heart. However, this potential difference

measured with electrodes placed on the surface of the body can be correlated with
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the electrical activity in the heart: this process is called electrocardiography and the

measurements are known as an electrocardiogram signals (ECGs).

2.4 Electrocardiogram signals (ECGs)

Electrocardiogram signals (ECGs) are measurements of the body surface potential

(BSP) produced by the electrical activity in the heart, via electrodes placed on

the surface of the thorax. The electrical currents generated inside the heart flow

through the heart muscle and the different tissues of the body, depending on its

value of conductivity. These currents generate electrical potentials on the surface

of the body. Therefore, a potential difference produced between two points on the

surface of the thorax where the electrodes are placed generates the ECG.

2.4.1 History of the ECG

It has been more than 120 years since Augustus D. Waller measured the voltage

differences between two electrodes placed on the body surface [41]. He found that

the frequency of the signals measured was related to the heart rate [6].

As in any research area, several previous studies on measuring the BSP were

performed. However, it was in 1903 when Einthoven and co-workers published their

results about the ECGs measurement [42], and in several, now “classic”, papers

[43, 42] the lead theory was introduced, which is the basis of electrocardiography in

the modern era.

Einthoven measured the BSP produced by the electrical activity in the heart with

a string galvanometer. He placed three electrodes in a triangular configuration; one

on each arm and the third one on the left leg. He postulated each electrode measured

a potential generated at each vertex of an equilateral triangle, and he assumed the

heart, located at the triangle’s centroid, was a single, time-dependent, fixed dipole

source inside an infinite and homogeneous conductor, where the body was part of it

[6].

Due to this landmark in medicine, Einthoven was awarded the Nobel Prize in

1924 [44]. The quality of the ECG signals have gradually improved, as the available

equipment and the physical knowledge of the underlying physiological phenomenon

have improved. Therefore, different configurations and methods of measuring the

ECGs and BSP have been developed.
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Lead theory, based on the Einthoven’s triangle, was formally introduced around

the 1940s and 1950s. It considers the cardiac sources as distributed dipole sources

placed inside a three dimensional, finite, irregularly shaped and inhomogeneous

medium, i.e., the human body. Both assumptions were first introduced by McFee

and Johnston [45], and Burger and van Milan [46].

2.4.2 Lead theory

A lead does not refer to the wires from which the voltage difference is physically

measured (these are the electrodes); rather, a lead is the direction from which the

electrical activity in the heart is observed. A lead can be interpreted as the mea-

surement produced by the voltage difference of a specific configuration; it can be the

difference between two real or artificial terminals. The artificial configurations can

be produced using a linear combination of the voltages measured by real electrodes

[6].

In order to generate an artificial configuration, the lead theory is based on

Helmholtz fundamental principles of field theory. However, an important assumption

has to be made, which is to consider the human thorax as a linear volume conductor

[6, 39]. This assumption yields two main principles. The first is the superposition

principle, which states that the electric field produced from several sources is the

same as the arithmetic sum of the electric fields produced by each source separately

[6, 39]. The second is the reciprocity principle, which states that the current flowing

from a source to a pair of measured points, i.e. electrodes, is the same as if the posi-

tion between the source and the measured points are interchanged, in other words,

the current does not depend on which direction it flows. Another important issue,

regarding the lead definition, is the polarity convention. It implies that the “posi-

tive” terminal, selected arbitrarily, is seen as having a higher potential in magnitude

compared to the “negative” one, which is not always the case.

The gold standard to test and diagnose heart failure is the 12-lead electrocardio-

gram (12-lead ECG), where, each lead looks at the electrical activity in the heart

from a different point, through the position of the electrodes on the surface of the

body (Figures 2.10, 2.11). The 12-lead ECG can be constructed using one electrode

placed on each limb, and six electrodes placed on the chest (Figure 2.9).

According to Figure 2.9 (a), the electrodes will be labelled in agreement with their

location. The right electrode, RA, is located on the right shoulder, and the potential

measured on it is φRA. The left electrode, LA, is located on the left shoulder, with

a measured potential, φLA. Similarly, the electrode located on the left leg, LF, is
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Figure 2.9: Anatomical position of the electrodes for 12-lead ECG recording. a) The
locations of the six chest electrodes. b) Two possible configurations for the limb
electrodes. The figures were adapted from [47].

called the foot electrode, and its potential measured, φLF . Typically, the electrode

located on the right leg, N, is the ground electrode. Therefore, the voltage of the

first three leads can be determined by the following equations:

VLead I = φLA − φRA, (2.24a)

VLead II = φRA − φLF , (2.24b)

VLead III = φLA − φLF , (2.24c)

(2.24d)

From equations (2.24), it is possible to define the first three leads: Lead I, equa-

tion (2.24a), is the difference of electric potential measured between RA and LA,

using RA as the negative terminal. Lead II, equation (2.24b), is the difference of

electric potential measured between RA and LF, using also RA as the negative ter-

minal. Lead III, equation (2.24c), is the difference of electric potential measured

between LA and LF, using LA as the negative terminal.

For the remaining leads of the 12-lead ECG, an artificial terminal, the Wilson’s

central terminal (WCT ) is used (equation (2.25):

VWCT =
φLA + φRA + φLF

3
. (2.25)

Subsequently, the next three leads are known as the augmented leads. They are

formed by one of the electrodes mentioned before, RA, LA or LF, as the positive

terminal, and theWCT as the negative terminal. However, as the potential measured
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was very small, a consequence of having one electrode on each side of the equation,

the convention changed to not include the positive terminal in the WCT calculation

[6]. Therefore, the equations for the augmented limb leads are

VaV L = φLA −
(
φRA + φLF

2

)
, (2.26a)

VaV R = φRA −
(
φLA + φLF

2

)
, (2.26b)

VaV F = φLF −
(
φRA + φLF

2

)
. (2.26c)

Lead aV L, equation (2.26a), is formed by electrode LA as the positive terminal

and the WCT as the negative terminal, but without taking into account the elec-

trode LA in its computation. In a similar way, Lead aV R (equation (2.26b)) and

Lead aV F (equation (2.26c)) are formed with RA and LF electrodes as positive

terminals, respectively, and electrode WCT as negative, but without including the

positive terminal in its computation.

From the electrode positions and the specific configurations of each limb lead,

previously described, it can be observed that each lead “looks” at the heart from a

different angle in a coronal plane (Figure 2.10). Starting from Lead I at 0o, and in

a clockwise direction: Lead II at 60o, aV F at 90o, Lead III at 120o, aV R at −150o

and aV L at −30o

In the same sense, the six electrodes located in the chest area, are denoted as

V with a subindex (Figure 2.9). V1 is located at the right of the breastbone in the

fourth intercostal space. V2 is also placed in the fourth intercostal space but at the

left of the breastbone. V3 is located in the middle of the electrodes V2 and V4. V4

is located in the fifth intercostal space, on the left of the midclavicular line. V5 is

located on the left anterior axillary line, horizontally to the left of V4. Finally, V6 is

located in the mid-axillary line, horizontally to the left of V5. Therefore, the voltage

potential measured in each electrode, from V1 to V6, are named φ1 to φ6, respectively.

And so, the chest leads are denoted by
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Figure 2.10: Hexaxial reference system. Angular view of each limb lead recording
the electrical activity, viewed in the coronal plane. Figure adapted from [48].

V1 = φV1 − φWCT , (2.27a)

V2 = φV2 − φWCT , (2.27b)

V3 = φV3 − φWCT , (2.27c)

V4 = φV4 − φWCT , (2.27d)

V5 = φV5 − φWCT , (2.27e)

V6 = φV6 − φWCT . (2.27f)

Equations (2.27 a to f) are formed by each Vn electrode as the positive terminal,

and the WCT as the negative, where n = 1, . . . , 6. Each of them is “looking” at the

heart from a different angle in the transversal plane (Figure 2.11).

From each lead’s different viewpoint of the heart, the direction of the electri-

cal current propagation in the heart can be determined. If the electrical impulse is

flowing towards the positive electrode of a specific lead, it will produce a positive

upward deflection in the signal recorded. If it is flowing away from the positive

electrode, it will produce a negative downward deflection in the signal recorded. In

the same sense, a biphasic deflection will be produced if the direction of the electric
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Figure 2.11: Angular view of chest leads (V1 to V6), viewed from a cross-section
plane. Figure adapted from [49].

propagation vector is perpendicular to the vector between the positive and negative

terminals of the lead.

Unfortunately, the 12-lead ECG has its limitations in AF and ischemia diagnosis

[14]. Therefore, different multi-lead arrays have been proposed to provide sufficient

information to help the diagnosis of these specific cardiac disorders [50].

2.4.3 ECG segments, intervals and waves

An ECG lead is mainly composed of five standard “waves”, P, Q, R, S and T (Figure

2.12). Each of them is correlated to the depolarization or repolarization of a specific

region in the heart. Therefore, the length of each wave, or complex of waves, provides

information about the time duration of each event.

In general, the depolarization of the atria is associated with the P-wave, the QRS

complex is produced by ventricular depolarization and the T-wave is produced by

ventricular repolarization (Figure 2.12). The convention is that the first upward de-

flection in the QRS complex is the R-wave, and any downward deflection preceding

the R-wave is the Q-wave; thus, any downward deflection after the R-wave is the

S-wave [6, 51, 49, 52]. The signals vary in magnitude, depending on which direction

of the heart is being considered. Therefore, not all the leads will necessarily have all

three Q-, R-, and S-waves in its QRS complex. Although atrial repolarization does

occur, it produces a small signal compared with the QRS complex, so it can rarely

be measured.
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An ECG can be divided into segments and intervals. A segment does not include

the wave; it just takes into account the region between the waves [51, 49]. On the

contrary, an interval does include the wave and the segment [51, 49]. For example,

the PR segment begins at the end of the P-wave until the point where the QRS com-

plex starts, the ST-segment begins at the end of the QRS complex and it finishes at

the starting point of the T-wave. Subsequently, the PR interval is the segment from

the starting point of the P-wave until the point where the QRS complex begins, and

the QT interval includes both the QRS complex and the T-wave (Figure 2.12). The

morphology and duration of an ECG of a “healthy patient” can vary significantly.

Figure 2.12: Components of an electrocardiography signal, in which all the waves
and segments in which it is divided are shown. Figure adapted from [53].

2.4.4 Morphology and duration of ECG

The morphology and duration of the ECG waves, intervals and segments depend on

several variables, such as the weight, age, sex, race, physical fitness, body position,

etc. [49]. However, most literature tends to agree that a “normal 12-lead ECG” is

similarly to Figure 2.13. A summary of the general description made in [6, 51, 49, 52]

is described in this section.
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Figure 2.13: 12-lead ECG signal taken from a Caucasian person who does not present
any heart disease. Figure adapted from [52].

P-wave and PR interval

In general, the P-wave duration can be interpreted as the time taken by the electri-

cal impulse, which starts in the SAN, to flow through the atria. Meanwhile, the PR

interval is the time between atrial and ventricular activation, i.e., the time between

atrial and ventricular activation [4]. The P-wave duration is usually around 0.11

seconds. The duration of the PR interval is normally between 0.12 and 0.22 seconds.

The P-wave should be positive in Lead I, Lead II, aV F and V4 to V6, but

negative in aV R; it is ofter either positive or biphasic in Lead III. There are some

discussions about the P-wave profile of aV L [6, 51], but it is generally agreed that

it usually has a negative deflection in this lead. V1 to V3 are usually positive, but a

biphasic wave is acceptable.

QRS complex and ST-segment

The QRS complex duration is the time interval taken for the electrical impulse to

flow through the ventricles. The time interval starts from the point at which the

first ventricular cells are activated, and ends when both ventricles are excited. There

are different QRS complex morphologies among different leads, which is primarily

because of the multiple activation points due to the PF network (see section 2.1.4)

[4]. The QRS complex duration is usually between 0.08 and 0.12 seconds. The ST-

segment duration is normally between 0.08 and 0.12 seconds.

64



Chapter 2. Literature Review

The QRS can vary a lot in the limb leads, whereas it is regularly uniform in the

chest leads. There is usually a small negative Q-wave in Lead I, aV L, V5 and V6,

sometimes also presented in Lead II and aV F . Then, a positive deflection, R-wave

larger than S-wave, can be seen in Lead I, Lead II, Lead III and V4 to V6. This

is because they are almost entirely determined by the left ventricular depolarization

[4]. For the same reason, a large negative deflection (S-wave larger than R-wave)

can be seen in leads aV R, V1 and V2. Usually, the R-wave gets taller from V1 to V6,

whereas the S-wave gets smaller in the same direction. However, an S-wave equal or

larger than the R-wave in lead I, Lead III, and Lead II is also acceptable in some

cases.

The ST-segment is associated with the plateau phase of ventricular AP. It means

some leads are constant and usually zero during this segment. Although the ST-

segment is completely horizontal in most of the leads, it is also acceptable to have a

small elevation in the leads V2 to V5 [51].

T-wave and QT interval

The ventricular repolarization is slower than the previously described depolarization

process, thus the T-wave is usually broader compared to other waves. In addition,

the QT interval can be seen as the duration of ventricular AP, i.e., the total time

between depolarization and repolarization of the ventricles. The T-wave duration

is usually around 160 ms. The QT interval normally takes less than 0.4 seconds in

men, and 0.44 seconds in women.

The T-wave is normally more rounded than asymmetrical. It is positive in leads

V2 to V6, but inverted in aV R. T-wave of aV F is always positive, however in Lead III

and V1, it may be positive or negative. The T-wave has a smaller amplitude than

other leads and is usually positive in aV L, but may be negative in some cases. In

the case of V3 a biphasic, inverted or even flat T-wave can be presented depending

on the race [49].

Finally, the R-R interval is the time interval of the cardiac cycle and is calculated

by taking the difference between two sequential R waves. This is the inverse of the

heart rate, which is normally around 60 or 70 bpm, depending on age, complexity,

fitness, sex, race, etc [49].
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2.4.5 Limitations of the 12-lead ECG

As mentioned before, the 12-lead ECG varies depending on different factors such

as anthropometric parameters, sex and race [49]. In addition, cardiac arrhythmias

are usually presented as irregular and complex patterns in the different waves and

segments, which can be triggered by one or more disorders such as re-entry, multiple

wavelets, focal activity or ischemic conditions [15, 16, 4]. Thus, though the 12-lead

ECG is the standard tool used to diagnose and monitor cardiac arrhythmias in a clin-

ical environment, it has its limitation in providing detailed information about the

origin and location of the disease, which is vital to therapy procedures of such dis-

orders [13, 14]. Therefore, different studies have focused on the prediction, location

and treatment of cardiac arrhythmia sources, with invasive [54, 55] and non-invasive

methods [56, 50].

Invasive methods, though able to map atrial electrical excitation patterns, can

induce further complications during and after the surgery; also they are usually ex-

pensive due to the different surgeries that have to be performed [18]. Therefore,

recent studies have developed algorithms to non-invasively identify the location of

focal sources by using the standard 12-lead ECG [57, 58, 59]. The success rate of

these algorithms range from 40% to 70 % [57, 58]. Most are based on the correla-

tion between the location of focal activity and the P-wave morphology or polarity.

While they are useful in identifying the origin of focal excitation, current algorithms

may not be applicable to identify re-entry or rapid focal activity [57, 58, 59]. Non-

invasive methods based on the solution of the inverse problem (see section 2.7) can

reconstruct cardiac excitation pattern using the BSP [56, 6], but such reconstructed

solutions require further information than the standard 12-lead ECG [56, 6].

Origin and mechanism of ST-segment changes on ECG during ischemia

Abnormal currents flowing through depolarized normal and ischemic regions may

results in changes on the ST-segment, either elevation (transmural ischemic regions)

or depression (non-transmural ischemic regions).This effects are produced by an in-

crease in the baseline of the AP and a shorter AP duration on the ischemic regions.

During non-transmural ischemic conditions, if the depolarizing currents are flowing

toward a positive terminal the baseline voltage prior to the QRS complex (normally

isoelectric) can be elevated. Then when the ventricles depolarized, all the cardiac

muscles depolarized, the ST-segment is recorded as usual and the T-wave may re-

main positive as well. If this occurs the elevated baseline voltage will give the effect

that the ST-segment is depressed relative to the baseline. On the other hand, if
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the ventricles are at rest and repolized during transmural ischemic conditions, if the

depolarizing current are flowing away from the recording electrode, all the baseline

may be depressed except for the ST-segment, therefore it may appeared that the

ST-segment is elevated compared to the baseline.

Due to these effects, current diagnosis of cardiac ischemia by the 12-lead ECG has

its limitations as some leads are insensitive in many cases and may show unnoticeable

differences compared to normal patterns [14, 20]. This suggests that the 12-lead ECG

provides insufficient information for satisfactory ischemia diagnosis. Therefore, other

non-invasive techniques can be more sensitive to the detection of silent ischemia (i.e.

asymptomatic ischemia which does not present as an arrhythmia) [22, 23].

Previous studies have shown that spatially extended recordings of ECG config-

urations on the torso or BSP maps provide more information for the diagnosis of

irregular cardiac conduction and repolarization patterns than the standard 12-lead

ECG [20, 23] (see next section - section 2.4.6). This can provide the information

needed for the inverse problem solutions and/or the development of multi-lead algo-

rithms. Also, the magnetic field produced by the electrical activity in the heart may

provide a greater level of detail of cardiac excitation compared to the body surface

potential (see section 2.5), because the magnetocardiograms are more sensitive to

currents tangential to the surface of the chest than ECGs [60, 61].

2.4.6 Multi-lead ECG and body surface potential (BSP)

The multi-lead ECG systems are formed by placing additional numbers of electrodes

on the body compared to the 12-lead ECG. This can provide further information

about the spatio-dynamics of the potential difference in the surface of the body.

This technique, which uses many additional leads compared to the 12-lead ECG is

known as BSP mapping and allows having a greater spatial coverage of body or torso

in order to investigate optimal sites of the heart activity [62]. Several studies have

shown that the extra information that body surface ECG measurements produces

is useful to generate more accurate non-invasive algorithms and is the basis of the

inverse problem solutions [56, 6, 50]. This is because of the strong correlation that

has been found between invasive measurements of intracardiac activation rates and

multi-lead ECG or BSP [62, 63]. Unfortunately, even though multi-lead body surface

ECG can help to improve the diagnosis of cardiac arrhythmias, it is still not practical

for day-to-day use and bedside monitoring because of the many electrodes that have

to be placed around the torso. Therefore, different studies have focused on finding

regions of the BSP with large changes during cardiac diseases compared to normal

conditions, in order to reduce the number of electrodes needed and make it more

practical for monitoring.
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Dipole evolution

Another advantage of the multi-lead body surface ECG is the feasibility to compute

the spatial distribution and amplitude evolution of the P-wave dipole [64]. This

dipole is obtained with the maximum positive potentials (positive pole) and the

minimum negative potentials (negative pole) on the surface of the body at every

time step [64]. These poles change in amplitude and spatial distribution across the

surface of the body as the atrial activation evolves. Therefore, the atrial dipole can

be computed from the maximum positive and minimum negative potentials from the

multi-lead ECG P-waves [64].

2.5 Magnetocardiogram signals (MCGs)

A magnetocardiogram (MCG) is the non-invasive measurement of the magnetic field

on the surface or outside the body produced by the electrical activity in the heart,

the same bioelectrical activity that generates the ECGs. These measurements are

more sensitive to currents tangential to the surface of the chest than ECGs and may

provide a greater level of detail of cardiac excitation compared to ECG signals [60].

Combined with its high independence to tissue inhomogeneities in electrical resistiv-

ity inside the body and on the skin [23, 61], the MCG therefore provides a potential

practical alternative to the ECG for monitoring cardiac conditions.

However, it has not been conclusive yet whether or not MCG can provide extra,

useful information which increases diagnosis and characterization of cardiac diseases.

So far, detailed correlation between the presence of cardiac diseases and the char-

acteristics of the MCG has yet to be established. Direct comparison between ECG

and MCG under the same conditions is still a challenge in clinical environments, but

can be easily done with mathematical models as described in details in Chapter 3

(in this section a brief introduction was presented).

2.5.1 History of the MCG

The magnetic field produced by the electric activity in the heart was first measured

in 1963 by Baule and McFee [65], however the signals were very noisy due to the large

magnetic background. David Cohen in 1967 [66] obtained heart measurements inside

a magnetic shielded room to avoid the background noise. The noise was significantly

reduced, however, due to the measurement system, coil detectors, the signals still had

a large level of noise in order to be used in the clinical environment. Therefore, MCG

signals remained in a research stage until the 1970 when sensitive superconductor

systems (super quantum interference device - SQUID), introduced by Zimmerman
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[67], were combined by magnetic shielded room, to produced clearer MCG signals

comparable to ECG [68].

Recently, it has started to become a new measurement method in some clinical

laboratories due to the introduction of new electronics with multi-channel and high-

temperature superconductor systems [6]. Unfortunately, it still has some technical

problems such as the use of sensors based on liquid helium/nitrogen and the need of

a magnetically shielded room which makes it more expensive [6, 69]. Nevertheless,

it has been prove that MCG has improved signal measurements when compared to

ECG, such as a multi-channel lead configuration that can be used at the bedside due

to its completely non-invasive measurement system. Therefore, different groups have

been trying to create databases to standardize the data measurement and analysis

and develop compatibility system with ECGs [61, 23].

2.5.2 MCG segments, intervals and waves

The biomagnetic field measured on the surface or outside the body is produced

by the electrical activity created by the transmembrane potential of the cardiac

cells, i.e., MCGs and ECGs are generated by the same electrical source (the heart).

Thus, an MCG has the same general morphology as an ECG (Figure 2.12), for each

corresponding segment, interval, P-wave, QRS complex and T-wave [6]. However,

they do not necessarily have the same polarity, so, the different information between

ECG and MCG is still controversial.

2.6 Forward problem

The forward problem in electrocardiography involves computing the magnetic and/or

electric field across the human body or thorax produced by bioelectrical activity in

the heart, having previous knowledge of the body shape and electrical properties.

These two fields are produced by the same bioelectric source, the human heart, the

location and properties of which are also known (Figure 2.14). Going in the opposite

direction of the forward problem is called inverse problem, and it is described in the

next section (section 2.7) (Figure 2.14).

There have been different approaches to solve the forward problem: experimen-

tally, analytically and numerically. Each of them has its advantages and limita-

tions, nevertheless, in most of the cases two main assumptions are usually used to

simplify the description of the problem: considering the human thorax as a linear-

homogeneous volume conductor, and a quasi-static approximation [6, 39]. However,

before giving a more detailed description of these two assumption (section 2.6.2), a
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Figure 2.14: Diagram of the forward problem (green line), and the inverse problem
(red lines) in electrocardiography. Figure adapted from [39].

brief description of the historical development of the forward problem in cardiology

is presented in the next section (section 2.6.1).

2.6.1 History of the forward problem in cardiology

The theory of classical electromagnetism has been well known since Maxwell sum-

marized the electromagnetic theory in four equations in 1873 [40]. This includes

the potential propagation through a volume conductor generated by internal current

sources, which is the base of the forward problem solution in cardiology.

The history of the forward problem in cardiology is similar to the history of the

ECG measurement. In general, simple models which are able to reproduce the mea-

surements, may yield to a better understanding of the problem.

The first approach to forward problem solutions was the construction of physical

models. Before the era of computer modelling, the only two options to perform a

model experiment were electrolytic tank models and in vivo animal measurements.

In 1946, Burger and van Milaan [46] worked with a human torso shaped tank for

the first time. They had a dipole representation of the cardiac electrical activity,

and used sandbags to model the lungs. This model helped the understanding of
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the potential propagation through the body and yielded a more accurate clinical

determination of the ECG. For the second approach, canine models with modified

intracavity characteristics [70] have been mostly used to model and measure the BSP.

Even though a complex set up is needed in order to avoid the human influence in

the measurements [71], this physical model is still widely used [72].

Several research groups worked on the improvement of the first model approach.

However, in 1971, Rush published the last torso-shaped electrolytic-tank model [71].

This model included several regions of the heart, and some organs and tissues such

as lungs, liver, great vessels, skeletal muscle, ribs, and also fat subcutaneous tissue.

The cardiac electrical activity was represented by a multiple dipole source.

During the 1980s, as the understanding of the problem increased, so had the

complexity of the models, and researchers turned to model specific parts of the

heart instead of the whole heart [35]. However, it was in the 1990s, when compu-

tational models started to gain more popularity [73], and technology advances and

the imaging methods improved in resolution, and the level of detail of computational

biophysical models has increased to replace physical models [6].

2.6.2 Numerical approaches

According to experimental evidence [74, 75] and detailed mathematical treatments of

bioelectrical systems [76, 77], due to the time it takes the electric wave to propagate

through the body, the capacitance, inductive and propagation effects can be neglected

to simplify the description of the problem, without important errors arising in the

computation of the solution; i.e. it is possible to consider the thorax as a linear

conductor and work under quasi-static conditions. Therefore, through conservation

of current, and taking into account that the total current, J , flowing into and out of

any closed region is zero (the current density is solenoidal), the continuity equation

takes the form of:

∇ · ~J = 0. (2.28)

Now, taking into account the presence of the electric source inside a known

medium conductor, the relation between the electric field, E, and the total current

density, J , is given by the Ohm’s law:

~J = σ ~E + ~J i, (2.29)

where σ is the conductivity and ~J i is the applied current density, produced by

the active source (the heart). This vector is non-zero only in the region where the
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source is located. Then, combining equations (2.28) and (2.29), it can be obtained

that

∇ · ~J i = −∇ · (σ ~E). (2.30)

From the electrostatic Maxwell equations, which describe the quasi-static elec-

tromagnetic behaviour of an electric source inside a linear volume conductor and by

conservation of the electric field, the electric field can be associated with the gradient

of a scalar potential, φ, as

~E = −∇ · φ. (2.31)

So, introducing equation (2.31) into equation (2.30), and by considering the vol-

ume as homogeneous and isotropic, after re-arranging, the Poisson’s equation can be

written as

∇2φ =
∇ · ~J i

σ
. (2.32)

Equation (2.32) describes the relation between the electric potential φ, inside a

body with conductivity σ, and the active source or its applied current density ~J i.

There are different numerical approaches used to solve equation (2.32). One

approach used by the finite element method (FEM) and FDM is to divide the thorax

and each region inside it into small volumes with different conductivity, and the

potential is computed inside all of these small volumes. However, as the properties

and geometry are approximated to real values, the computational cost of this solution

becomes very expensive. Another numerical approach splits the body into regions

with isotropic and uniform conductivity, and the potential is computed only on the

surface of these regions. This method is called the boundary element method (BEM),

and is the one used in this study. A more detailed description will be made in the

next chapter (Chapter 3).

2.7 Inverse problem

The inverse problem in electrocardiography, or electrocardiographic imaging, can

be summarized as finding electrical information about the source, from a set of field

measurements produced in a volume conductor, with previous knowledge of the prop-

erties of the medium. Therefore, it is going backwards compared with the forward

problem previously described (Figure 2.14) (section 2.6).

Generally, the inverse problem can be divided into three types. The first one is
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computing the potentials inside the heart or on its surface, from the field measured

outside or on the surface of the body. The second one is computing the activation

wavefront locations in the heart, also from the BSPs or MCGs. The third one is

to reconstruct the intracavity potentials inside the heart from the measured heart

surface potentials. This study focused on the first type of inverse problem.

2.7.1 History of the inverse problem in cardiology

Through history, the advantages of solving the inverse problem has been the focus

of several studies, almost since the forward problem was first defined. But unfor-

tunately, there is a lack of information on the measured field that enables one to

find a reliable analytical solution of the source (further discussion in section 2.7.2),

in addition to the difficulty of obtaining simultaneous measurements of the active

source and field on the body for validation-comparison purposes. Therefore, it is

still a present subject of research interest in different groups. Fortunately, with the

development of new imaging techniques, more information about the body or the

problem itself can be obtained, compared with the first studies related to this topic,

where a lot of information remained unknown, and stronger approximations had to

be assumed which did not yield reliable solutions [6].

Early formulations treated the inverse problem as an extension of BSP measure-

ments [6], therefore one of the first studies related to this subject was performed by

Burger and van Milaan [46] in 1946. They used a copper disk, as a source inside

a tank filled of electrolytes. However, the first attempt to reconstruct the cardiac

electrical activity in an animal model using an array of electrodes on its thorax sur-

face and on the heart surface (validation-comparison) was performed by Spach and

Barr in 1978 [78]. But, the spatio-temporal resolution of both reconstructed and real

measurements were low, and the current theoretical treatment of ECG inverse tech-

niques had not been developed yet. Similar comparative studies have been carried

out since, with an increasing understanding of the problem which yields improve-

ments in the measurement techniques. For example, a study made by Nash and

co-workers, where they used a pig model, was able to measure the potential on the

surface of its body and on the surface of the heart simultaneously, helping to build

the current theoretical electrocardiographic imaging techniques [79].

In agreement with the forward problem history, some inverse problem studies were

made using electrolytic tanks, but most of them used an animal heart as a source.

The study carried out by Taccardi, with a frog’s beating heart inside a cylindrical

tank [80], was one of the first with a quantitative validation of the reconstructed

data. Colli-Franzone et al. [81] used a human-shaped thorax tank, which was the
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base of several inverse problem studies which was used to validate the theoretical

aspect of the inverse solution [6].

From the theoretical perspective, early formulations were based on reconstructing

discrete, equivalent sources, i.e., dipole and multipole heart models [78, 80]. How-

ever, the validation of such equivalent sources was sometimes impossible because

relating real heart activation times or cardiac electric potentials with dipole or mul-

tipole equivalent sources was a difficult task [6].

More recently, as the understanding of the problem improved, so to did the

number of mathematical and theoretical approaches which might generate a feasible

solution. Unfortunately, a clear quantitative clinical validation of inverse ECG meth-

ods remains an elusive challenge [6]. Nevertheless, some research groups have been

working intensively for years around different aspects of the inverse problem and have

been able to find feasible solutions by limiting the possible solutions in order to make

them as physically and physiologically consistent as possible [82, 56], others stud-

ies constrained the number of unknowns to be obtained, e.g. reconstruction of the

epicardium electrical activity [82, 56]. Another approach uses a numerical solution,

which does not explicitly compute an inverse of the matrix, but instead matches the

forward problem solution [83]. Others had proposed to include additional informa-

tion using alternative techniques, e.g. electrical impedance tomography (EIT) [84].

Though each of these different approximations have shown some improvements, such

reconstruction might still not give enough information or have even been tested for

some clinical procedures and therefore it is still a subject of research due to the lack

of clinical validation. As the imaging and computational methods have been increas-

ing in power, the modelling studies represent an important tool to provide additional

information which is difficult or impossible to obtain in a clinical procedure, and can

also provide a better understanding of the problem.

2.7.2 Challenges of inverse solutions

As mentioned before, the inverse problem in cardiology does not have a mathemati-

cally complete solution, because, in agreement with Hadamard axioms [85], it is an

ill-posed problem. The characteristics which make it an ill-posed problem are:

• The problem does not have a mathematically unique solution. This means that

one set of BSP measurements can be produced by multiple and different configura-

tions of the electric source inside the body.

• The solution does not depend continuously on the data. Slight variations in

the measured BSP can lead to a large variation in the solution. This is because the
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BSP is a highly attenuated and smoothed signal, due to the resistivity properties of

the volume conductor.

However, a set of constraints can be applied to the solution in order to find

a more reasonable, physical and physiological solution. These constraints usually

mean introducing prior information about the solution. One way is via regularization

techniques, and another is to limit the solution to the electrical activity only on the

epicardium [56].

2.7.3 Approaches to the inverse problem

There are different approaches found in the literature for solving the inverse problem.

However, they can be summarized into analytical and numerical solutions.

An analytical solution, usually based on concentric and eccentric spheres [82],

has shown to be sensitive to the geometry proposed, i.e., the position of the heart,

concluding that such an approach cannot easily be applied to realistic anatomical

solutions. Though, this can still provide some fundamental comprehension of some

aspects of the inverse solution behaviour[6].

The numerical approaches can be divided into iterative methods and regulariza-

tion methods. The iterative methods do not explicitly compute an inverse solution,

but instead, match the forward problem solution. The regularization methods add

extra information to constrain the solution. But either have their main limitation

in the need of a realistic, geometrical and physiological accurate forward problem

model [6]. A more complete description of the numerical solution used in the present

study is in the next chapter (Chapter 3).

Truncated iterative approaches

The truncated iterative method can approach the solution of the inverse problem by

evaluating it according to a ’goodness’ criterion: the solution is tested at every time-

step until it meets some threshold of accuracy [6]. However, the problem with this

type of method is that, as it does not have any constraint, the solution will converge

to an unreliable one, given by the ill-posedness of the problem. So, the main issue is

when to truncate the iteration, before the ill-posedness affects the solution. The most

used method of this type is the Generalized Minimum Residual (GMRes) method.

However, it only works if the numbers of measurements and unknowns are the same

[86], which is not usually the case.
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Regularization method

The regularization method limits the solution in order to find a more reliable physical

and physiological one [87]. The most common method in electrocardiography inverse

problem imaging is the Tikhonov regularization [6]. In this method one or a set of

constraints acts directly on the matrix as a penalty function. Then, the weighted

norm of this function plus the residual norm are minimized. This is the method used

in this study and is further detailed is in section 3.2.4.

2.7.4 Validation of the inverse problem

The validation of an inverse solution method can be as difficult as solving the prob-

lem per-se, due to the need of electrical measurements on two different surfaces at

the same time of a patient with a developed cardiac arrhythmia. Mainly, there are

two principal validation methods. One is through experimental studies and the other

via simulation studies [6]. The simulation studies, which are based on computational

algorithms to solve the inverse problems, can also be divided into two types: analyt-

ical solutions and numerical solutions [6].

In the case of experimental validation, the main problem is controlling all the

physiological variables, which are easier to control in the simulation studies. Most

of the experimental studies are based on animal, not human, models [6]. With some

exceptions, the majority only have a partial forward solution to validate the prob-

lem. In some cases, they may only be able to validate the solution with clinical

information that can be found in the literature, which is usually based on indirect

evidence [6].

Due to the fact that the inverse problem is ill-posed, an analytical solution would

need a high degree of constraints. This would mean that the conclusions cannot be

applied to physiological situations. In the case of the numerical solutions, the in-

verse solution is usually influenced by the assumptions used to compute the forward

solution. Most numerical studies used the same matrix to compute the forward and

the inverse solution [6]. Therefore, additional information has to be included, such

as adding numerical noise in order to validate the solution.
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in der physiologie,” Pflügers Archiv European Journal of Physiology, vol. 99,

no. 9, pp. 472–480, 1903.

[43] W. Einthoven, “Weiteres über das elektrokardiogramm,” Pflügers Archiv Euro-
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Chapter 3

Derivation of Mathematical and

Numerical Methods

This chapter contains a description of the mathematical models used to develop, solve

and implement the forward and inverse problem in order to conduct a theoretical

investigation of non-invasive methods to identify cardiac arrhythmias.

3.1 Forward problem in electrocardiography

The forward problem in electrocardiography consists of computing the fields (electric

or magnetic) propagating through the body (or thorax) that are generated by the

heart (electrical source) inside the volume, whose properties are well known.

3.1.1 Introduction

The forward problem in electrocardiography is still a very important research sub-

ject in several groups, because it can be undertaken experimentally, analytically or

numerically to provide correlated information about the dynamics of the fields and

the bioelectrical source (i.e. the heart) during specific conditions that is difficult

or impossible to obtain in a clinical environment. Although these three approaches

(experimental, analytical, and numerical), have contributed over time to the knowl-

edge of electrocardiography theory, the main approach used more recently by most

research groups is the numerical computational simulation with experimental results

used as validation [1]. Even though the main limitation of computer modelling is

the current computer’s power and capacity, it is a more flexible approach because

it does not have geometrical limitations and can represent any source configuration

and activation, which is difficult or impossible to implement by the other two scenar-

ios. Also, as technology advances, more complexity can be included in the problem

description and more accurate solutions can be obtained.
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In the present study, a numerical approach was used to solve the forward problem,

and with a Boundary Element Method (BEM), based on Green’s second Theorem,

the fields produced by the heart inside the thorax were computed to investigate

cardiac arrhythmias.

3.1.2 Body electric field produced by the heart

In order to compute the electric field, E, inside an homogeneous and isotropic vol-

ume V , with conductivity σ, produced by a bioelectric source J i (impressed current

previously described, equation (2.30)), Maxwell’s electrostatic equations together

with Poisson’s equation (equation (2.32)) and Ohm’s law (equation (2.29)) are the

starting point

∇2φ =
∇ · ~J i

σ
, (3.1a)

~J = σ ~E + ~J i, (3.1b)

where φ is the electric potential (previously define equation (2.31)) and J is the

total current density which is solenoidal, ∇ · ~J = 0.

Electric field in an infinite homogeneous medium

In the case where the volume is infinite with a conductivity, σ, the solution for

Poisson’s equation (equation (3.1a)) is given by

φ(r) = − 1

4πσ

∫
∇ · ~J i(r′)
|~r − ~r′|

dv, (3.2)

where, |~r−~r′| is the distance from an element of the integration (dv) to an observa-

tion point inside the volume, where the field is evaluated (Figure 3.1). Now, by using

the vector identity∇·(~C(r)B(r)) = B(r)∇· ~C(r)+ ~C ·∇B(r) with∇(|~C|−1) = ~C|~C|−3

together with Gauss theorem, and J i = 0 on the boundary, equation (3.3) can be

written as

φ(r) = − 1

4πσ

∫
~J i(r′) · ~r −

~r′

|~r − ~r′|3
dv, (3.3)

Electric field in a bounded inhomogeneous medium

The Green’s second identity, for a volume, V , delimited by a surface S, reads that

for any two scalar functions φ and ψ, it holds that
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Figure 3.1: Solution components of the forward problem description, i.e., the bound-
ary element method. Where O represents the origin, ~r is the vector to a volume
element dv, and ~r′ the vector to an arbitrary point within the volume. Si are the
surface involve, with internal conductivity σ−i and external conductivity σ+

i .

∫
V

(φ∇2ψ − ψ∇2φ)dv =

∫
S

(φ∇ψ − ψ∇φ) · dS. (3.4)

By taking φ as the scalar electrical potential and ψ as 1/r, where r = |~r − ~r′| as

previously defined, and substituting Poisson’s equation (equation (3.1a)), into the

equation (3.4), it is possible to arrive at

∫
V

(
φ∇2

(
1

r

)
− 1

r

(∇ · ~J i)
σ

)
dv =

∫
S

(
φ∇
(

1

r

)
−
(

1

r

)
∇φ
)
· dS. (3.5)

Then, taking into account that the nabla operator, ∇, works on the source coordi-
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nates (unprimed coordinates). It is possible to rewrite the first term of the equation

(3.5) in terms of the Dirac delta function, as

∇2

(
1

r

)
= ∇2

(
1

|~r′ − ~r|

)
= −4πδ(~r′ − r). (3.6)

After that, on the surface of the body, the following boundary condition can be

assumed, ∇φ · dS = 0, which means that the air surrounding the body has zero

conductivity. Therefore, equation (3.5) can be rewritten as

φ(~r′) =
1

4πσ

∫
V

−∇ · ~J i

r
dv − 1

4π

∫
S

φ(~r)∇
(

1

r

)
· dS. (3.7)

From the last equation, it is possible to identify a differential element of solid

angle, dΩ, from

∇
(

1

r

)
· dS =

(~r′ − ~r)
|~r′ − ~r|3

· dS = dΩ, (3.8)

where, the solid angle, Ω can be seen as the measurement that an object subtends,

for the two dimensional angle, at a point in a three dimensional space. Therefore,

equation (3.7) takes the form of

φ(~r′) =
1

4πσ

∫
V

−∇ · ~J i

r
dv − 1

4π

∫
S

φ(~r)dΩ. (3.9)

From equation (3.9), it is possible to notice that the first term in the right hand

is the potential in the infinite homogeneous medium, equation (3.3). Therefore, the

last term in equation (3.9) is due to the delimited torso. Thus, the next step is to

discretize equation (3.9), i.e., dividing the surface, S, into n triangles:

φ(~r′) ≈ 1

4πσ

∫
V

−∇ · ~J i

r
dv − 1

4π

n∑
j=1

φj∆Ωj, (3.10)

where, each jth surface element has a potential φj, with an increment of the solid

angle δΩj taken from ~r′. Then, the potential φ(~r′) is evaluated at an arbitrary point

inside the volume. But, if the point is chosen to be at the centre of the triangle,

on the surface S, where ∇φ · dS = 0, the expression to find the potential on the ith

triangle, φ, takes the form of

φi =
1

4πσ

∫
V

−∇ · ~J i

r
dv − 1

4π

n∑
j=1

φj∆Ωij. (3.11)

Here, ∆Ωij represents the solid angle of the jth triangle taken from the ith triangle.

For the special case where i = j, then ∆Ωii = −2π, due to the definition of the solid

angle [1]. Therefore, the equation (3.11) can be rewritten as
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φi
2

+
n∑

j=1,j 6=i

(
∆Ωij

4π

)
φj =

1

4πσ

∫
V

−∇ · ~J i

r
dv, (3.12)

which is a system of n equations, that computes the potentials in the surface ele-

ments of the volume.

By assuming multiple surfaces, the generalization of the Green’s theorem, equa-

tion (3.4), for multiple surfaces can be used. Therefore, following the previous deriva-

tion, but including multiple inhomogeneities, corresponding to m surfaces, the equa-

tion (3.12), becomes

φi +
m∑
s=1

(
σ−s − σss
σ−q + σ+

q

) n∑
j=1,j 6=i

(
∆Ωij

2π

)
φj =

1

2π(σ−q + σ+
q )

∫
V

−∇ · ~J i

r
dv, (3.13)

where, q correspond to the surface of the ith element. Whereas s is the surface of

the jth element. A more complete derivation of equation (3.13) can be found in [2, 3].

Mathematical implementation of the electric field

If we consider an equivalent formulation, where ~J i is seen as a dipole density [4], we

can define the potential in the centre of the triangles at the surface as

Di =
1

4πσ

∫
V

~J i · (~r′ − ~r)
r3

dv. (3.14)

And, if we defined a matrix A, depending only on the geometry of the volume

conductor, for the case of the equation (3.12), as

Aij = −∆Ωij

4π
with Aii = 0.5. (3.15)

The equation (3.12), can be written in the matrix form

Aφ = D, (3.16)

with D can be seen as a vector, in which elements are given by equation (3.14),

and φ is the potential of the n triangles in a column vector form. The same argu-

ment can be used to rewrite equation (3.13) in a matrix form, similar to equation

(3.16). This last equation is the one used to solve the forward problem, with BEM.

Unfortunately, the matrix A, is singular, so, in this work, a formulation proposed by

Salu in [5], was used.
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As mentioned before, the matrix A in equation (3.16) is singular, because the

solution for this equation can be found only up to an additive constant C. It means

that, if φ is a solution, so it is φ+ C. Therefore, the matrix A is singular.

Salu proposed a method in 1980 [5], used in [6], to solve the problem of the

singularity of matrix A. In it, he divided equation (3.16) into a system of equations.

First, he imposed the condition that φ1 = 0. This assumption does not affect the

solution; it just sets a reference point. So, the other potentials are determined by a

set of n equations with n− 1 unknowns, i.e., it turned equation (3.16) into

n∑
j=2

Aijφj = Di i = 1, · · · , n (3.17)

Now, the system is complete and it should have only one solution. However, as

the rank of the submatrix Aij is n− 1, because i = 2, · · · , n and j = 2, · · · , n, there

exist n non-trivial λ′is, so that the rows of A satisfy

n∑
i=1

λiAij = 0 j = 2, · · · , n. (3.18)

Where, the λ′s can be specified only until a proportionality factor. Also, for

consistency with equation (3.17), we have to impose that

n∑
i=1

λiDi = 0. (3.19)

Then, for equation (3.19), Salu realized that this may not hold for several rea-

sons, such as numerical inaccuracies in the segmentation of the surface, or in the

computation of λ′is or the D′is. Therefore, the solution computed would only be an

approximation, meaning that there would be significant differences between the real

and the calculated vector φ. In the same direction, Salu noted that the electrostatic

potential, Di, can be determined only until an additive constant α, therefore, the

equation (3.19) becomes

n∑
i=1

λi(Di + αi) = 0. (3.20)

So, combining this equation with equation (3.17), we can write

n∑
j=2

Aijφj = Di + αi i = 1, · · · , n, (3.21)

which is now numerically consistent and also physically equivalent to equation

(3.16). The α term ensures that equation (3.21) has a consistent solution, which does
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not mean that the solution is accurate or correct; it only ensures that the solution

exists for the discretized physical problem.

Now, in order to find the value of α, Salu proposed a set of equations. The first

was to defined φ∗j(j = 2, · · · , n) as a potential solution of the n− 1 equations

n∑
j=2

Aijφ
∗
j = Di i = 2, · · · , n. (3.22)

Meanwhile, φ1
j(j = 2, · · · , n) was defined as the solution for the n− 1 equations

n∑
j=2

Aijφ
1
j = 1i i = 2, · · · , n. (3.23)

Where the right side of equation (3.23), represents a column vector of ones.

As the same matrix, A, multiplies both vectors φ∗j and φ1
j , this matrix only needs

to be inverted once, to solve both equations (3.22) and (3.23). Now, if we take

φj(j = 2, · · · , n) as a potential solution of the n− 1 equations

n∑
j=2

Aijφj = Di + αi i = 2, · · · , n, (3.24)

where α is the consistency factor, introduced in the equation (3.20). Then, we

will get a system of equations (3.22) to (3.24), of which the solution is given by

φj = φ∗j + αφ1
j j = 2, · · · , n

φ1 = 0. (3.25)

Now, substituting equation (3.25) into (3.21), we get

n∑
j=2

A1j(φ
∗
j + αiφ

1
j) = Di + αi. (3.26)

And finally, solving for α, it gives

αi =

(∑n
j=2 A1jφ

∗
j

)
−Di

1−
(∑2

j=2A1jφ1
j

) . (3.27)

The last equation (equation (3.27)), together with equations (3.22) to (3.24), are

the ones used to compute the Body Surface Potential in a discretized surface, in the

present work.
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3.1.3 Body magnetic field produced by the heart

In order to compute the magnetic field, B, inside an homogeneous and isotropic vol-

ume V with conductivity σ and magnetic permeability µ0, produced by a bioelectric

source J i (impressed current previously described, equation (2.30)), Maxwell’s mag-

netostatic equations together with Poisson’s equation (equation (3.1a)) and Ohm’s

law (equation (3.1b)) are the starting point

∇ · ~B = 0, (3.28a)

∇× ~B = µ0
~J (3.28b)

where J is again the total current density which is solenoidal, ∇· ~J = 0, (equation

(2.28)), which can also be obtained from equation (3.28b) and the vector identity

∇ · × ~B = 0 [7].

Magnetic field in an infinite homogeneous medium

The solution for the magnetic field, B, due to equations (3.28) is given by the Biot-

Savart law [7]:

~B(r) =
µ0

4π

∫
~J(r′)× ~r − ~r′

|~r − ~r′|3
dv, (3.29)

by using the vector identities ∇× (~C(r)D(r)) = D(r)∇× ~C(r) +∇(D(r)× ~C(r)

with ∇(|~C|−1) = ~C|~C|−3, it is possible to write

∫
V

~J× ~r − ~r′

|~r − ~r′|3
dv =

∫
V

~J×∇ 1

|~r − ~r′|
dv =

∫
V

∇× ~J

|~r − ~r′|
dv−

∫
V

∇×
~J

|~r − ~r′|
dv (3.30)

By using equation (3.1b), Stoke’s theorem and since J i = 0 on the boundary and

the curl of a gradient vanishes (∇ × ∇V = 0), the last term in the right hand of

equation (3.30) vanishes, and going backwards it is possible to write

~B(r) =
µ0

4π

∫
~J(r′)× ~r − ~r′

|~r − ~r′|3
dv =

µ0

4π

∫
~J i(r′)× ~r − ~r′

|~r − ~r′|3
dv (3.31)

For the case of an homogeneous medium there is no contribution of σ ~E, therefore

the total current can be replaced by the impressed current ~J i.
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Magnetic field in a bounded inhomogeneous medium

Following a similar derivation of the electric field, it is possible to obtain the magnetic

field of an inhomogeneous volume V, delimited by a surface S, divided into subregions

of m surfaces. Therefore, from the Biot-savart solution (equation (3.29)) with Ohm’s

law (equation (3.1b)), it is possible to write

~B(r) =
µ0

4π

∫
V

[~J i(r′)− σ(r)∇φ(r)]× ~r − ~r′

|~r − ~r′|3
dv (3.32a)

= ~B0 +
µ0

4π

m∑
s=1

σj

∫
Vj

[∇φ(r)]× ~r − ~r′

|~r − ~r′|3
dv (3.32b)

where ~B0 is the magnetic field produced by the current source ~J i in an homoge-

neous space. Now, by using the vector identity ∇× (D~C) = ∇D ×∇~C and Stoke’s

theorem, is easy to obtain

∫
Vj

∇φ(r)× ~r − ~r′

|~r − ~r′|3
dv =

∫
∂Vj

φ(r)~n(r)× ~r − ~r′

|~r − ~r′|3
dSj, (3.33)

where ~n is the outer unit vector normal to the surface Sj. Therefore, the magnetic

field for all ~r not on any surface Sj, is given by the Geselowitz formula

~B(r) = ~B0 −
µ0

4π

m∑
j=1

(σ−j − σ+
j )

∫
Sj

φ(r)~n(r)× ~r − ~r′

|~r − ~r′|3
dSj (3.34)

where, again, σ−j and σ+
j are the inner and outer conductivities of the surface Sj,

respectively.

Mathematical implementation of the magnetic field

A similar equivalent formulation to the electric field, equation (3.16), can be obtained

in order to compute the magnetic field, where ~J i is seen as a dipole density, therefore,

the magnetic field produced in an infinite homogeneous medium can be written as

[8]

~B(r) =
µ0

4π

∫
~J i(r′)× ~r − ~r′

|~r − ~r′|3
dv (3.35)

If the electric surface potential is known, the magnetic field can be calculated

by discretizing equation (7.4), where each surface Sj is tesselated in k triangular

elements and the total number of triangular elements on each surface Sj is Nj,k,
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∫
Sj

φj(r) ~nj(r)×
~r − ~r′

|~r − ~r′|3
dSj =

Nj,k∑
k=1

φkja
k ~nkj ×

~r − ~ck

|~r − ~ck
|3 (3.36)

where ak is the surface area, ~nkj the outward unit normal vector, and ~ck the centre

coordinates of the triangle element k. Therefore, the magnetic field produced by the

current source can be obtained in a discretized surface with equations (3.35) and

(3.36). Similar to the electric field, the magnetic field can also be written in a matrix

form:

B = B0 + Gφ (3.37)

where φ is the electric potential obtained from equation (3.16) and G can be seen

as the matrix composed by the last terms in equation (3.36), which is the equation

used in this study to compute the magnetic field.

3.2 The inverse problem in electrocardiography

The inverse problem in electrocardiography has been seen as a non-invasive, painless

and ideally cheap method to diagnose heart failure, which is a clear advantage over

the prevailing imaging methods, which are usually invasive or expensive. However,

as mentioned before, it is still an important research subject due to its nature, i.e.,

its ill-posed behaviour [9]. The ill-posed behaviour leads to a lack of a unique reliable

analytical solution which can be used in clinical procedures, because the measured

field on the surface of the body is a highly blurred and attenuated sum of the electri-

cal activity of millions of cells that contribute to the cardiac cycle. These properties

have been previously discussed in Chapter 2

In this section, the inverse solution and the numerical approach are formalised

mathematically. The computational implementation of the selected approach, as

used in the studies in this Thesis, is discussed in Chapter 4.

3.2.1 Potential between the heart surface and the body sur-

face

As the reconstruction of the electrical activity in the heart is an ill-posed problem,

several assumptions and constraints have to be made in order to have a reliable

solution. One important constraint is to limit the solution only to the surface of the

heart. Therefore, an alternative formulation compared to the one developed in the

previous section (section 3.1) was performed.
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With the use of Green’s second identity (equation (3.3)), the definition for solid

angles (equation (3.8)) and dividing the volume into an inner, SH (heart), and outer,

SB (body), surfaces, equation (3.9) can be written as [10]

φo(~r′) = − 1

4π

∫
SH

φH(~r)dΩ− 1

4π

∫
SH

∇φH(~r)

r
dSH −

1

4π

∫
SB

φB(~r)dΩ (3.38)

where φo is the potential at the observer’s point. The observer can be located

anywhere in the volume, therefore a particular case can be produced when the ob-

server is located very close to SH or SB, and the potential is equal to φH or φB, this

approach was first suggested by [11], which led to the derivation of a set of equations

φH(~r′)− 1

4π

∫
SH

φH(~r)dΩHH −
1

4π

∫
SH

∇φH(~r)

r
dSH −

1

4π

∫
SB

φB(~r)dΩHB = 0.

(3.39a)

φB(~r′)− 1

4π

∫
SH

φH(~r)dΩHB −
1

4π

∫
SH

∇φH(~r)

r
dSH −

1

4π

∫
SB

φB(~r)dΩBB. (3.39b)

Equations (3.39), can be discretized and rewritten in an operators formulation

similar to equations (3.10) and (3.15),using

PHH = − 1

4π

∫
SH

dΩHH (3.40a)

PHB = − 1

4π

∫
SB

dΩHB (3.40b)

GHH = − 1

4π

∫
SH

∇
r
dSH = 0 (3.40c)

PBB = − 1

4π

∫
SB

dΩBB (3.40d)

PHB = − 1

4π

∫
SH

dΩHB (3.40e)

GBH = − 1

4π

∫
SH

∇
r
dSH . (3.40f)

Therefore equation (3.39a) becomes

PHBΦB + PHHΦH +GHHΓH = 0 (3.41)

and equation (3.39b) becomes

PBBΦB + PBHΦH +GBHΓH = 0 (3.42)
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and ΓH contains the normal components of the gradients on SH from equations

(3.39). Then, from equation (3.41), the ΓH term can be obtained

ΓH = −(GHH)−1(PHBΦB + PHHΦH) (3.43)

Then, substituting equation (3.43) into equation (3.42), an equation that relates

ΦB and ΦH can be found

(PBB −GBH(GHH)−1PHB)ΦB = (GBH(GHH)−1PHH − PBH)ΦH (3.44)

Equation (3.44) can be written as

ΦB = ZBHΦH (3.45)

where ZBH is given by

ZBH = (PBB −GBH(GHH)−1PHB)−1(GBH(GHH)−1PHH − PBH) (3.46)

which is the equation used in this study to relate the potentials on both surfaces.

3.2.2 Inverse problem formulation

In this theoretical investigation only the surface potential of heart will be recon-

structed from the electric field measured on the surface of the body by a numerical

approximation. Therefore, the inverse problem formulation starts from the forward

problem formulation described from equation (3.45), but for simplicity of notation,

equation (3.45) is written as

y = Zx (3.47)

where y represents the measured potentials ΦB on the surface of the body, Z

is the matrix ZBH with only geometrical information, as described in the forward

problem section and x is the solution of the cardiac sources, in our case the epicardial

potentials ΦH .

An important property of the matrix Z is that it is independent of time, because

it was defined using only the geometrical properties of the volume conductor in a

quasi-static formulation without considering the dynamic variation of the geometry

(heart motion or other tissue motion due to respiration). This can be justified

because of the time delay between the electric excitation and the contraction in
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cardiac myocytes, except during the QRS complex. Also, the respiration process

and the cardiac rhythm have different main frequencies. Though, this may yield to

important sources of error, it is difficult enough to get high resolution static images

of the body, with current imaging techniques (such as MRI or CT-scan), to try to

create high resolution meshes of the heart and torso at a specific instant in time for

each patient.

3.2.3 Ill-posed cardiac inverse problem

Therefore, from equation (3.47), the inverse problem can be seen as finding a solution

x, given a set of measurements y produced from a model given by Z. The solution x

must be physically and physiologically consistent. Unfortunately, the mathematical

solution cannot be obtained by a simple inversion of the geometry matrix Z, and as

mentioned before, as x represents the potentials of the million of heart cells ΦH , the

inverse problem becomes ill-posed.

One of the main reasons that the inverse problem is ill-posed, is that different

configurations of the electric source can rise to exactly the same set of measurements

on the surface of the body; therefore, the solution is not unique. One way to over-

come the problem is to limit or constrain the set of possible solutions, i.e., finding the

potentials only on the epicardium. Though, it is still not possible to obtain a math-

ematically unique solution, so, the problem is still ill-posed. Another issue is that

the solution does not depend continuously on the measurements, which means small

perturbations on the body surface potential measured can produce large changes in

the calculated solution. In Figure 3.2, it can be seen that a normal least squares

solution makes non sense without previous constraints.

3.2.4 Mathematical model and inverse problem solution

If Z is non square, the typical way to solve equation (3.47) is via least squares

method. As long as the non-square condition was due to the number of measurements

being larger than the number of unknowns to be computed. The least squares method

finds a pseudo-inverse solution, by minimizing the (Euclidean) norm of the residual

error.

x = min
x
||Zx− y||2, (3.48)

The solution of the equation (3.48), also solves the matrix equation

x = (ZTZ)−1ATy. (3.49)
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Figure 3.2: Example of a regularized and non-regularized ill-posed signal. a) Epicar-
dial potential in one point. b) Body surface signal obtained by a forward solution.
c) Inverse problem solution for the epicardial, from the BSP measured using least
square without regularization. d) Inverse solution using Tikhonov regularization.
Image taken from [1].

However, this solution not only is not unique, but also can lead to unrealistic

solutions, such as the one observe in the Figure 3.2. So, one way to avoid this problem

is to add extra information about the solution. This is usually done by constraining

the solution, through regularization methods. For example, high spatial frequencies

are usually more attenuated in the volume conductor than low frequencies, so, one

way is to limit the solution to only low spatial frequencies. The most common method

used to reconstruct the epicardial potentials is called Tikhonov Regularization [12],

and it is the one used in this Thesis.

Tikhonov regularization method

The Tikhonov regularization method limits the solution in order to find a more

reliable physical and physiologically one. In this method one or a set of constraints

acts directly on the matrix as a penalty function. Then, the weighted norm of this

function plus the residual norm are minimized. Therefore, the equation (3.48), takes

the form of
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x = min
x
{||Zx− y||2 + λ2||Rx||2}, (3.50)

where λ is the “regularization parameter” or weighted function that controls the

degree of regularization. Meanwhile, the matrix R is the “regularization operator”,

which constrains the solution in the spatial domain.

If R = I (the identity matrix) the amplitude of the solution is limited, this is

known as Zero order Tikhonov regularization. If R = ∇ (the gradient operator) the

amplitude of the first derivative of the solution is limited, this is known as First order

Tikhonov regularization. Finally, if R = ∆ = ∇2 (the Laplace differential operator)

the amplitude of the second derivative of the solution is restricted, this is known as

second order Tikhonov regularization.

Therefore, the solution of the equation (3.50) also solves the next matrix equation

x = (ZTZ + λRTR)−1ZTy (3.51)

Thus, the final solution is a match among the unconstrained least squares solu-

tion and the set of constraints with prior information, this yields a more physical

and physiological solution.

There are other methods to constrain the solution of the inverse problem, such

as the singular value decomposition (SVD), which can be truncated (TSVD) or gen-

eralize (GSVD) [12], many others have been proposed but not tested yet [1].

L-curve and regularization parameter

The L-curve is a plot of the square norm of the residual vector against the norm

of the estimated regularized solution (Figure 3.3), and it is used to find the best

regularization parameter which fits the ill-posed problem best [13]. The graph is

usually plotted on a log-log scale; however a normal scale can also be used. The

best regularization parameter is found by selecting the corner value in the L-curve

plot. The corner of the L-curve plot gives the solution which equilibrates best the

regularization and the error produced by it. The corner can be found in an automated

way by triangulation algorithms [14].

The specific details of the implementation of the methods described in this chap-

ter is given in each result chapter (Chapters 5 to 8). However, in the next chapter

(Chapter 4), a description of the computational models (geometries, model develop-

ment and validation) is presented.
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Figure 3.3: L-curve method. Plot of the square norm of the residual vector against
the norm of the estimated regularized solution. The corner of the curve corresponds
to optimum regularization.
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Chapter 4

Computational Models of the

Human Heart and Torso

This chapter outlines the development of human heart and torso models in respect

to their constituent geometries, electrophysiological cellular and tissue models. Val-

idation of these models is also discussed.

4.1 Mesh and model development

A brief description of the heart model is presented in this section. However, more

details of the heart model and cardiac electrophysiology used in this Thesis are

discussed in each result chapter (Chapters 5-8), as it was not the aim of this project

to develop a new heart model. A Detailed description of the torso model is presented

in this chapter, as development of this model was one the objectives of this Thesis.

Therefore, some information presented in this chapter is necessarily repeated in some

result chapters (Chapter 5-8).

4.1.1 3D anatomically-accurate cardiac model

The heart anatomical models implemented in this Thesis were based on three-

dimensional (3D) detailed structural models of human atria (Figure 4.1A) and ventri-

cles (Figure 4.1B) that were developed in previous studies [1, 2, 3]. In both atrial and

ventricular anatomical models, cardiac tissues were segmented into variant structural

regions with distinctive electrophysiological properties (Figure 4.1) [1, 2, 3]. Such

anatomically accurate and electrophysiologically detailed 3D atrial and ventricular

models have been shown to be suitable for studying mechanisms underlying AF

[1, 4, 2] and ventricular fibrillation (VF) genesis [3]. Details of the atrial cellular and

whole organ models can be found in Colman et al [4]. Details of cellular models of

ventricular electrophysiology and its spatial heterogeneity can be found in the study
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of Ten Tusscher et al [5].

Figure 4.1: 3D atria and ventricular models of the human heart with segmented
regions. Frontal (A-i) and posterior (A-ii) atria views are presented. (A) Atria: right
atrium (RA, transparent purple), right atrial appendage (RAA, beige), pectinate
muscles (PM, green), cristal terminalis (CT, solid purple), sinoatrial node (SAN,
red), superior vena cava (SVC), atrio-ventricular ring (AVR, grey), right pulmonary
vein (RPV, blue), Bachmanns bundle (BB, orange), left atrium (LA, light blue), left
atrial appendage (LAA, yellow), inferior vena cava (IVC) and left pulmonary veins
(LPV, blue). Lateral (B-i) and horizontal (B-ii) ventricular views are presented. (B)
Ventricles: Left ventricle epicardium (EPI-LV, red), left ventricle midcardium (Mid-
LV, yellow), left ventricle endocardium (Endo-LV, green), right ventricle epicardium
(Epi-RV, light blue), right ventricle midcardium (Mid-RV, purple), right ventricle
endocardium (Endo-RV, dark blue). Figure adapted from [4]

.
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4.1.2 3D anatomically-accurate human thorax model

The torso model was based on the semi-automatic segmentation of MRI images taken

from the visible human dataset [6] using the software ITK-Snap [7] and MATLAB [8].

Two torso models have been used, including one male and one female, each considers

the inner organ structures of lungs, liver, spinal cord, ribs, stomach and kidneys with

different electrical conductivities (Figure 4.2). The electrical conductivity of the

inner organs was added using values derived from the literature and can be found in

[9, 10, 11, 12, 13] and in Table 4.1.

Figure 4.2: (A) Male and (B) female torso models reconstructed from the visible
human dataset [6]. Different internal tissues included in the model are illustrated
using (i) transparency and (ii) meshes. Blue-lungs, brown-liver, yellow-stomach,
black-spinal cord and ribs, green-kidneys, red-ventricles, pink-torso. The position of
the ventricles inside the body can also be observed.

The male (Figure 4.2A) and female (Figure 4.2B) geometries were discretised at

a spatial resolution of 0.66 x 0.66 x 0.66 mm3 and 0.66 x 0.66 x 0.1 mm3, respec-

tively. The inhomogeneous regions (lungs, liver, spinal cord, ribs, stomach, kidneys -
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Tissue type Conductivity (Sm−1)
Thorax 0.2
Lungs 0.08
Liver 0.15
Stomach 0.12
Kidneys 0.07
Bone 0.005
Blood 0.6
Fat 0.05
Myocardium 0.25

Table 4.1: Table of tissue conductivities
[9, 10, 11, 12, 13].

Figure 4.2-i), were discretised at varying, lower resolutions (1 x 1 x 1 mm3, 1.5 x 1.5

x 1.5 mm3 and 2 x 2 x 2 mm3) in order to improve the performance of the numerical

solution. All surfaces were meshes created by triangular elements connected through

nodes (Figure 4.2-ii).

The atria and ventricles models were placed inside the thorax models, with loca-

tion and orientation set based on the description made by Ho and Sanchez-Quintana

(Figure 4.3-i) [14] and Adeniran et al [3] (Figure 4.2), respectively. The position of

the heart was also aligned with the segmented heart surfaces in the torso (Figure

4.3-ii) as an additional guidance. In simulations, the two positions of the atria used

varied by a rotation of (315, 45, 40) in each direction, using a z-x-y Euler angles

convention, acting in the coordinate system of the heart, and a translation of (0.055,

-0.177, -0.217) mm in the x-y-z coordinate system (Figure 4.3).
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Figure 4.3: (A) Female and (B) Male torso models reconstructed from the visible
human dataset [6]. (i) Position of the atria as described by Ho and Sanchez-Quintana
[14]. (ii) Position of the atria based on the segmentation of the original MRI images.
Figure adapted from [15]. Green-lungs, brown-liver, yellow-spinal cord, blue/white-
atria, red-ventricles, pink-torso.

.
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4.2 Simulation of electric and magnetic fields

A computational program, written in the C language, was developed to calculate

the electric potential and the magnetic field on the body surface, as described in

Chapter 3. The fields were simulated at each element of the geometries described in

the previous section (section 4.1). These BSPs were used to find an inverse problem

solution with Tikhonov regularization method [16] on the surface of the atria (as

described in Chapter 3). Using equations (3.27) and (3.22) to (3.24), described in

Chapter 3, the electric potentials on the body surfaces were computed, based on the

method described by Salu [17, 18]. The magnetic field was calculated using equa-

tions (3.35) and (3.36), based on a method described by Nenonen et al [19, 20]. The

transfer matrices from equations (3.16), (3.47) and (3.37), were constructed by com-

puting the solid angle subtended by every triangular element, based on the method

proposed by van Oosterom and Strackee [21].

A subroutine was developed to read the pre-calculated cardiac membrane poten-

tials from a specific cardiac geometrical model (either atria or ventricles) as input.

The input file consists of a series of data representing membrane potentials of each

node in the heart model, with a time interval of 1 ms. In the geometry of the heart

model, there are cell nodes (active nodes) and empty space (passive nodes). For

each active node of the heart tissue, the current density was computed from equa-

tion (2.16). In order to reduce computational time, the atrial or ventricular model

was divided into 5x5x5 node blocks. From the active nodes, dipoles were generated

at the centroid of each block; the centroid was calculated from the distribution of

active nodes among the blocks. The constructed dipoles were then used as the source

terms in equations (3.3), (3.38) and (3.29). From these dipoles, the transfer matrices

(equations (3.16), (3.47) and (3.37)) were computed.

The Intel-LAPACK library [22], was used to solve the system of equations (3.16)

to (3.18). First, the SGETRF subroutine was used to factorize the transfer matrix

A (equation (3.16)). As a static torso was considered, this factorization had to be

performed only once. Then, the SGETRS subroutine was used to solve the equations

(3.17) and (3.18), for each instant of time, and using the factored transfer matrix

A. The first element of the mesh was chosen to be the zero potential, as required by

Salu’s method [17]. This element is part of the neck location of the torso mesh. Once

the BSP was calculated, the magnetic field was obtained with similar subroutines.

The discretized transfer matrix Z (equation (3.47)) was also computed using the

SGETRF and SGETRS subroutines to factorize each matrix from equation (3.46).

Then, equations (3.48) and (3.50) were calculated using the SGELS subroutine. In
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order to find the regularization parameters for each Tikhonov order, the identity

(Zero order), gradient (First order) and Laplace (Second order) operator were com-

puted and introduced on the regularized solution (equation (3.50)) [23]. The L-curve

method (section 3.2.4) together with the triangulation method [24] were also used to

find the best regularization parameter. Then, the best inverse solution was obtained

using equation (3.51) with the best regularization parameter and the SGETRF and

SGETRS subroutines.

4.2.1 Simulated ECG and MCG systems

After calculating the electrical potential and the magnetic field in all elements of

the body surface, the 12-, 36- and 64-lead ECG and MCG signals were derived

from selected elements of the torso mesh, corresponding to the locations of elec-

trodes/sensors for 12-, 36-, and 64-lead ECGs and 36-lead MCG sytems (Figure

4.4).

Figure 4.4: Positions of the electrode placement in the torso mesh for (A) 12-lead,
(B) 36-lead and (C) 64-lead systems, from the front (i) and from the back (ii).
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4.3 Validation of the model

An agreement between experimental and simulated data is not guarantee that the

model is well validated [25]. In principle, the validation of a multi-scale model needs

to include the agreement of many physical and physiological parameters, however,

taking into account all the variabilities in geometry and model parameter between

individual patients can be a difficult or impossible task. Therefore, most validation

process are preformed through comparison of the simulated and experimental data

during different conditions [25]. In this study, the models were validated by compar-

ing simulations with experimental data during normal (sinus rhythm) conditions at

different scales.

Validation of atrial and ventricular activation sequence during healthy/normal

conditions has been previously discussed and can be found in [1, 2, 4] and [3, 26],

respectively. The models have been previously used and determined suitable for

studying cardiac arrhythmia mechanisms [1, 2, 4, 3, 26].

4.3.1 BSP and ECG data

Atria

The simulated 12- and 64-lead ECG P-waves for healthy/control conditions (no car-

diac disease presented) matched well with those of the experimental data of multiple

patients [27]. The simulated P-wave (morphology and duration) of the 12-lead ECGs

during normal conditions (Figure 4.5) were within the normal range (section 2.4.4)

[25, 28, 29, 30]. In simulations, an upright P-wave was seen in Lead I, Lead II,

aV F and V3 to V6, with some degree of bifidity in V1 and V2. An inverted P-wave

was seen in aV R and aV L, with a biphasic almost flat P-wave in Lead III. The

simulated P-wave duration was 120 ms.
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Figure 4.5: Simulated P-waves of 12-lead ECGs during healthy/normal conditions.
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The polarity in simulated and experimental P-waves in the 64-lead ECG was

mainly positive in the left-superior part of the body, negative in the right, inferior

part of the body, and biphasic or flat in intermediary locations (Figure 4.6 A and B)

[15]. To quantify this agreement, polarity maps were also compared. In this map,

the polarity of the P-wave (positive/negative/biphasic) is noted at each electrode

location. A biphasic P-wave was defined as one in which the second largest peak

(positive or negative) was at least half of the amplitude of the largest peak (negative

or positive). Simulated data shows an agreement of 90.1 ± 3.2% in polarity distri-

bution with experimental data (Figure 4.6) [15].

The spatial distribution and amplitude evolution of the P-wave dipole was also

computed, replicating the experimental data [27]. Therefore, the atrial dipole was

computed from the maximum positive and minimum negative potentials from the

64-lead ECG P-waves [27]. The temporal evolution of the dipole location (Figure

4.7C-i) and amplitude (Figure 4.7C-ii) agreed with experimental data [27, 15]. Hence,

the model is validated for control and suitable for the investigation of ectopic atrial

activity. Further discussion of the P-wave dipole evolution can be found in Chapter 5.
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Figure 4.6: P-waves obtained from experimental data (blue line and grey shadow)
and simulated (red line) data. The experimental average is the average data of 8
healthy people (blue line), and the experimental range corresponds to the maximum
and minimum values of these signals (grey shadow). These measurements used the
same protocol as described in [15]. Both experimental and simulated P-waves were
normalized for comparison. Figure adapted from [15]

.
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Figure 4.7: Polarity maps and dipole validation. (A) and (B) Comparison of the
simulated 64-lead ECG P-waves polarity (ii) to experimental data (i). In this figure,
the arrangement of the P-waves is set out to match electrode placement (Figure 4.4).
We observed the polarity pattern of the P-waves of the experimental and simulation,
in the front (A) and back (B) part of the body. The red positive sign signifies an
upright P-wave, the blue negative sign represents an inverted P-wave, and the purple
positive/negative sign represents a biphasic P-wave. (C) Spatial (i) and amplitude
(ii) temporal evolution of the dipole. The black dots and lines are the experimental
data and error bar taken from [27], and the blue lines and dots are obtained from our
simulation during a stimuli applied to the superior part of the sino-atrial node region.
In (i) the horizontal axis is a continuous scale from the first vertical line electrodes
(1 to 6) to the last line of electrodes (33 to 38), without taking in to account 31, 32,
63 and 64. Figure adapted from [15]
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Ventricles

The simulated QRS complex and T-wave of the 12-lead ECGs during normal con-

ditions were within the normal range (section 2.4.4) [25, 28, 29, 30] (Figure 4.8).

An upright QRS complex was seen in Lead I and aV L. An inverted QRS complex

was seen in Lead II, aV R and aV F , with some degree of bifidity. A biphasic QRS

complex was seen in Lead II. The transient zone was seen in the chest leads, with a

negative to positive transition from V1 to V6. The simulated QRS complex duration

was 80 ms. A positive T-wave was seen in all the leads except for aV R, with an

observed duration of 120 ms.

Figure 4.8: Simulated QRS complex and T-wave in 12-lead ECG during
healthy/normal conditions.

During normal conditions, in both experimental and simulated data, the polarity

of the QRS and T-wave of 36-lead ECG signals showed similar spatial distribution

patterns (Figure 4.9). The polarity of the QRS complex was mainly positive in the

left-inferior part of the body, negative in the superior right part of the body, and

biphasic or flat in intermediary locations (Figure 4.9). The T-wave was positive in

most of the leads, except for the superior right part of the body. These simulated

spatial distribution patterns of QRS and T-wave of ECG matched experimental data

[31]. Further discussion of simulated and experimental 36-lead ECG can be found in

Chapter 7.
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Figure 4.9: Comparison of 36-lead ECG between experimental data (black line)
and simulated data (red line) during control conditions. The numbers and letters
represent the electrode/sensor position (Figure 4.4).
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4.3.2 Magnetic field data

Ventricles

During normal conditions, in both experimental and simulated data, the polarity of

the QRS and T-wave of MCG signals showed similar spatial distribution patterns.

For MCG, the polarity of the QRS complex was mainly positive in the right-inferior

part of the body, negative in the superior left part of the body, and biphasic or flat in

intermediary locations (Figure 4.10). The T-wave was positive in most of the leads,

except for the superior left part of the body. These simulated spatial distributions

patterns of QRS and T-wave of MCG matched to experimental data [31]. Further

discussion of simulated and experimental 36-lead MCG can be found in Chapter 7.

Figure 4.10: Comparison of 36-lead MCG between experimental data (black line)
and simulated data (red line) during control conditions. The numbers and letters
represent the electrode/sensor position (Figure 4.10).
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4.3.3 Inverse problem data

Validation of the inverse problem solution in this Thesis was performed by quantita-

tively comparing the reconstructed activation maps and activation timings at each

node of the cardiac surface to the original data, from which the inverse-problem so-

lutions were based by solving equation (3.51). In order to investigate the effects of

the spatial resolution of electrode placement on the accuracy of the reconstruction,

different lead densities, i.e. numbers of electrodes, were used together with triangular

atrial surface meshes with different number of nodes 4.11.

Figure 4.11: Snapshot of reconstructed epicardial surface activity during the time
course of a rotor wave, which were compared with its original data at different timings
(125, 375 and 725 ms). Reconstructed pattern with variant numbers of electrodes of
64 (A), 256 (B) and 2024 (C) were compared to the real activation pattern (D).
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4.4 Limitations

The ECGs and MCGs simulated in this work are the cumulation of a series of pro-

cesses involving the electric potential and magnetic field distribution inside the body,

originating from the electrical activation sequence of the heart. As previously men-

tioned, simulating the electrical activation sequence of the heart was not the aim of

this project. Therefore, changes in the activation of the heart, or differences in the

propagation velocities through the fibres could influence the simulated fields.

While the described models, torso and heart geometries provide a good reproduc-

tion of the characteristics of the BSP distribution and simulated ECGs and MCGs,

there are existing limitations which are worthwhile discussing. For example, the “as-

sembled” nature of the model, i.e. a different atria or ventricles orientation inside the

torso could produce better and different results. However, there were some anatom-

ical landmarks present inside each torso geometry, which limited its placement, e.g.

the addition of the inhomogeneous regions (lungs, liver, ribs, etc) produced a change

in the orientation of the atria and ventricles inside each torso geometry.

Inhomogeneous regions which were not considered in the torso model used in

this Thesis, such as skeletal muscle and subcutaneous fat layers, can produce some

influence on the measured electric and magnetic fields. Previous studies suggest that

the influence of these layers may affect the amplitude of surface potentials [32]. Nev-

ertheless, the absence of these tissues does not have a large effect on the polarity of

the ECG [33], MCG [34] waves and in the surface reconstruction process [35].

Another important limitation is the anisotropy in the cardiac muscle, which was

not considered during the estimation of the dipole sources of the heart. Unfortu-

nately, the effects of this are unknown due to the lack of studies considering this

behaviour [25]. In addition, the anisotropic electric conductivity of the tissue inside

any organ of the body was not considered. All the calculations in this Thesis were

perform using BEM, which discretizes the volume into meshes with isotropic and

homogeneous conductivity. FEM may prove to be an important tool with which to

include this effects; however, the computational time needed could increase signifi-

cantly.

Another limitation is that the presented model is static, meaning the effects of

myocardium contraction are neglected. Including this would introduce variations in

the position and shape of the sources and therefore may affect the computation of

the resultant BSP. Unfortunately, the effects of this are also unknown due to the

lack of studies considering this behaviour [25]. In addition, this could significantly
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increase the computational power required to solved the problem.

As previously mentioned, the inverse problem solution was only compared with

results obtained by cardiac simulations; this may have important differences in a

clinical study due to the non-static nature of the problem. In addition, in simulation

studies the inverse problem solution may be dependent on the forward problem cal-

culation and the assumptions used to obtain a forward solution. To overcome these

limitations the forward problem was calculated using equation (3.16), meanwhile

the inverse problem calculation used equation (3.47) to obtain the matrix equations.

Equation (3.16) considered different inhomogeneities inside the body and a dipoles

source model, whereas, equation (3.47) considered an homogeneous torso and epi-

cardial surface potentials as source.

Last but not least is the absence of noise in the present models, which may affect

the results obtained in this Thesis. However, most of the signals used in ECG are

highly filtered signals, i.e., there are algorithms designed to remove or reduce the

noise, whereas cardiac signals with large degrees of noise would be unsuitable for use

in any detailed clinical diagnosis.
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Abstract

Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular

arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic

activity from the electrocardiogram (ECG) can help to diagnose the early onset

of AF in a cost-effective manner. The complex and rapid atrial electrical activity

during AF makes it difficult to obtain detailed information on atrial activation using

the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more

detailed ECG lead configurations may provide further information about spatio-

temporal dynamics of the body surface potential (BSP) during atrial excitation. We

apply a recently developed 3D human atrial model to simulate electrical activity

during normal sinus rhythm and ectopic pacing. The atrial model is placed into a

newly developed torso model which considers the presence of the lungs, liver and

spinal cord. A boundary element method is used to compute the BSP resulting

from atrial excitation. Elements of the torso mesh corresponding to the locations

of the placement of the electrodes in the standard 12-lead and a more detailed 64-

lead ECG configuration were selected. The ectopic focal activity was simulated at

various origins across all the different regions of the atria. Simulated BSP maps

during normal atrial excitation (i.e. sinoatrial node excitation) were compared to

those observed experimentally (obtained from the 64-lead ECG system), showing a

strong agreement between the evolution in time of the simulated and experimental
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data in the P-wave morphology of the ECG and dipole evolution. An algorithm to

obtain the location of the stimulus from a 64-lead ECG system was developed. The

algorithm presented had a success rate of 93%, meaning that it correctly identified

the origin of atrial focus in 75/80 simulations, and involved a general approach

relevant to any multi-lead ECG system. This represents a significant improvement

over previously developed algorithms.

Introduction

Rapid atrial arrhythmias such as atrial tachycardia (AT) and atrial fibrillation (AF)

can reduce cardiac output and predispose to ventricular arrhythmias and further

complications, such as stroke and even sudden cardiac death [1, 2, 3]. Both AT and

AF are associated with ectopic activity - rapid and irregular spontaneous excitation

originating from regions of the atria other than the cardiac pacemaker, the sinoa-

trial node [4]. Such activity can interrupt normal sinus rhythm and mediate the

development of the self-perpetuating re-entrant excitation associated with AT/AF

[5], therefore implicating an important role for ectopic activity in the initiation and

recurrence of both arrhythmias. The pulmonary vein (PV) sleeves in the left atrium

(LA) are usually identified as a major source of rapid ectopic activity [6, 7, 8], and

catheter ablation therapy targeting the PV sleeves is commonly used as a treatment

of AF [4, 7]. However, success rates for catheter ablation therapy are not entirely

satisfactory (about 50% in single-procedure ablation [9]). Consequently, repeated

operations may be required, resulting in significant scar tissue in the LA. Such scar-

ring may induce further complications, such as contributing towards a reduction

in cardiac output as well as providing conduction barriers which may promote the

development of re-entry [10]. Furthermore, ectopic activity is not associated with

the PVs alone; focal beats have been observed to originate from multiple regions of

both the left and right atria [11, 12]. Hence, identifying the presence and location

of ectopic activity is important for guiding ablation therapy, which may increase

success rates and reduce the need for repeated operations. Moreover, identifying

atrial ectopic activity and its origins may help in the diagnosis of early onset AF [13]

and lead to timely treatment, inhibiting the development of persistent or chronic AF

before the occurrence of permanent electrical and structural remodelling [13]. The

electrocardiogram (ECG) is the most common non-invasive method of monitoring

cardiac activity. The P-wave of the ECG is associated with atrial activation; irreg-

ular ectopic atrial activity may therefore be reflected as an alteration to the P-wave

morphology (PWM). Multi-electrode ECG systems, such a 64-lead ECG vest [14],

provide spatially detailed mapping of the body-surface potential (BSP). However, it

is unclear if such further detail provides significant benefits over the standard 12-
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lead ECG in terms of resolving the location of ectopic atrial activity. In this study,

we have used a biophysically detailed computational model of the human atria and

torso to investigate the correlation between PWM of 64-lead ECGs and the location

of atrial ectopic activity, in order to develop a focus-location algorithm.

Methods and Models

3D atria-torso model and simulation of BSP and multi-lead

ECG

Previously we have developed a biophysically detailed computational model of the

three-dimensional (3D) human atria and torso [15, 16, 17]. The model accounts for

atrial anatomy [18] including segmented regions for the major anatomical structures

[16] (Figure 5.1Ai) and detailed atrial electrophysiology including regional differences

in electrical properties [16]. The model reproduces sinus rhythm depolarisation and

repolarisation patterns (Figure 5.1Aii) and has been used to study the mechanisms

underlying AF genesis [16, 17]. Implementation of the torso model proved useful

in correlating PWM with the origin of atrial ectopic activity in a previous study

[15]. However, detailed correlation between the two has not yet been established,

and the torso geometry used in the previous study was idealised [15]. For a more

comprehensive analysis of the relation between PWM and ectopic activity, a more

realistic torso model must be used. In this study, we use our 3D model of the human

atria and update the torso model in order to develop an algorithm to identify the

location of focal ectopic activity in the atria (Figure 5.1). Details of atrial model

development and simulation protocols can be found in Colman et al.[16], and in the

Supplementary Material Text S1.

Two torso reconstructions are used in the present study (Figure 5.2), based on

segmentation of magnetic resonance imaging (MRI) images taken from the female

and male visible human dataset [19], by using the software ITK-SNAP [20]. Note

that the atrial model does not account for gender differences in either anatomy or

electrophysiology [16] and investigation of gender differences is not the aim of this

study; rather, use of multiple torso geometries ensures generality of the developed al-

gorithm. The models account for the structure and different electrical conductivities

in the lungs, liver, spinal cord and blood masses [21]. The female torso model was

discretised at a spatial resolution of 0.33mm 0.33mm 0.33 mm [19], corresponding

to that of the female atrial model [16]. Meanwhile the male torso model was discre-

tised at a spatial resolution of 0.33mm 0.33mm 1 mm[19]. The 3D atrial model

(Figure 5.1A) [19] was then integrated into the two torso geometries and the BSP
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Figure 5.1: Models and procedure used to develop the algorithm. (A(i)) 3D Atrial
model with the different regions of the atria included in this simulation: right atrium
(RA, transparent purple), right atrial appendage (RAA, beige), pectinate muscles
(PM, green), cristalterminalis (CT, solid purple), sinoatrial node (SAN, red), supe-
rior vena cava (SVC), atrio-ventricular ring (AVR, grey), right pulmonary vein (RPV,
blue), Bachmanns bundle (BB, orange), left atrium (LA, light blue), left atrial ap-
pendage (LAA, yellow), inferior vena cava (IVC) and left pulmonary veins (LPV,
blue). A(ii) is a snapshot of the activation of the atria at 30ms after initiation. B(i)
Torso model with all the considerations used in the simulation, we can observe the
position of the atria as well. B(ii) BSP produced in our simulation, corresponding to
the atrial snapshot in Aii. C(i) and (ii) indicate the different stimulated points across
the surface of the atria, used for focal ectopic pacing. D Positions of the electrodes
placement in the torso mesh from the front (i) and from the back (ii), for the 64-lead
ECG system.

distribution was calculated through the use of a boundary element method (Figure

5.1B) [22]. Two different positions of the atria inside the torso were used to account

for variability between patients; one is based on Ho and Sanchez-Quintana [23] (Fig-

ure 5.2Ai,Bi), and the second one is the position of the atria obtained directly from

the segmentation of the visible human female dataset (from which the atrial anatom-

ical model was extracted) (Figure 5.2Aii,Bii). From the BSP, ECG signals can be

derived by selecting elements of the torso mesh which correspond to the location of

electrodes used in ECG systems. Ectopic focal activity was simulated by applying

stimuli to various locations across all regions of the atria (Figure 5.1C).In this study,

we replicated a 64-lead ECG system which measures the BSP on the front and back

of the torso (Figure 5.1D) as well as the standard 12-lead ECG. All leads in the

64-lead system are unipolar: the potential at the electrode is the positive terminal

and Wilsons Central Terminal [24] is the negative terminal.
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Figure 5.2: Positions of the atria inside the two different torso reconstructions used in
this study. A, Female torso taken from the visible human dataset [19]. B, Male torso
taken from the visible human dataset [19]. The labels (i) correspond to the position
based on Ho and Sanchez-Quintana [23]. The labels (ii) correspond to the position
of the atria obtained from the segmentation. The different tissues accounted for in
the model are illustrated in (i) and (ii); Green-Lungs, Brown-Liver, Yellow-Spinal
cord, red-Ventricles, Blue-Atria, Pink-Torso.

Characterisation of the P-wave

For each lead, the P-wave was characterised by its morphology and polarity. It was

indexed as positive if the amplitude of the positive peak was greater than double

that of the negative peak (if there was one), and vice-versa for a negative P-wave.

A biphasic P-wave is defined as one in which the second peak (positive or negative)

was at least half of the amplitude of the largest peak (negative or positive). Such a

definition resulted in the best performance of our focus location algorithm (described

in the next section), and is not intended as a general definition for other purposes.

Quantification of the atrial dipole evolution

The P-wave dipole pattern was constructed based on the maximum positive po-

tentials (positive pole) and the minimum negative potentials (negative pole) in the

body surface at every time step [14]. As the atrial activation evolves, the amplitude

and spatial distribution of the poles across the surface of the body change dynam-

ically. Furthermore, we constructed spatial polarity maps based on the polarity

(positive/negative/biphasic) of the P-wave at each electrode location.

Simulation of atrial focal activity

To simulate ectopic focal activity the model was stimulated by a sequence of exter-

nal supra-threshold electrical pulses applied to various locations across all different
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regions of the atria (Figure 1C), representing the range of ectopic foci observed exper-

imentally [11, 12]. Stimuli were applied to each location at both slow (cycle length =

700ms) and fast (cycle length = 300ms) rates to ensure that rate dependent changes

in PWM are accounted for. In each case, the P-wave resulting from the final of three

stimuli was analysed.

Focus location algorithm

Simulated BSP maps and ECG P-waves varied significantly with the location of

the ectopic focus (Figure 5.3). The P-wave polarity map offered the most effective

method of quantifying such differences, offering more information than the temporal

evolution of the dipole peaks while being less affected by noise than the raw P-waves.

P-wave polarity maps therefore form the basis of the development of an algorithm

to determine the location of an atrial focus from 64-lead ECG measurements.

Figure 5.3: Correlation between origin of two ectopic focal atrial activation and
the division of quadrants. Correlation between atrial focal origin (A) and the body
surface polarity (B), corresponding to ectopic pacing at the inferior vena cava (Ai)
right atrial appendage (Aii). In B, both the front (i,ii) and back (ii, iv) of the torso
are shown. The quadrants on the torso and the atria are illustrated in B (i),(ii)
and C. Qti indexes the quadrants of the torso B(i) and (ii), and the Qai indexes
quadrants of the atria C(i) and (ii).

To relate polarity patterns to atrial anatomical sites, both the atria and the torso

were divided into two sets of quadrants, four in the anterior part and four in the pos-

terior part of each anatomical model (Figure 5.3B,C). For the torso model, Qt1 to

Qt8 were used to label the quadrants (Figure 5.3Bi,ii). In the atria Qa1 to Qa8 were

used (Figure 5.3C) where each quadrant contains corresponding anatomical regions
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(Table 5.1). Note that the position of the atria within the torso had a significant

effect on PWM and the P-wave polarity map (Supplementary Figure S1), and that

the atrial anatomical locations associated with each atrial quadrant differ for both

orientations considered. As such, patient variability in the orientation of the heart

within the torso must be considered, and can be accounted for in this table rather

than the algorithm itself, which operates by relating atrial and torso quadrants.

Table 5.1: Regions of the atria included in each quadrant for the two positions inside
the torso.

Quadrant Position 1 Regions included Position 2 Regions included
Qa1 Superior-anterior part of RA,

right part of RAA, superior part
of the PM, superior part CT, su-
perior part of the SAN, anterior
part of the SVC

Superior-anterior part of RA,
right part of RAA, SAN, PM, Su-
perior part of CT.

Qa2 Left part of RAA Left part of RAA
Qa3 Inferior-anterior part of the RA,

inferior part of the PM, inferior
anterior part of the CT, inferior
part of the SAN

Inferior-anterior part of the RA,
inferior anterior part of the CT,
AVR, inferior-anterior part of
IVC.

Qa4 inferior-anterior-left part of the
RA, anterior part of the AVR

Anterior part of AVR.

Qa5 RPV, superior-right part of LA,
superior part of the AS, BB, pos-
terior part of the SVC

RSPV, superior-right part of LA,
BB, SVC, superior part of AS

Qa6 LPV, superior-left part of the LA,
LAA, posterior part of the AVR

LSPV, superior-left part of LA,
LAA, posterior part of AVR.

Qa7 inferior part of the AS, inferior-
right part of the LA, inferior-
posterior part of the CT, IVC

RIPV, inferior part of AS,
inferior-right part of LA, inferior-
posterior part of IVC.

Qa8 inferior-left part of the LA LIPV, inferior-left part of LA

The regions of the atria are: Right atrium (RA), right atrial appendage (RAA),
pectinate muscles (PM), cristal terminalis (CT), sinoatrial node (SAN), superior
vena cava (SVC), atrio-ventricular ring (AVR), right pulmonary vein (RPV), bundle
branch (BB), left atrium (LA), left atrial appendage (LAA), inferior vena cava
(IVC) and left pulmonary veins (LPV). Position 1 is taken from [23]. Position 2 is
taken from the actual position of the atria inside its torso.

Schematic illustration of the algorithm is shown in Figure 5.4, and details of the

algorithm are described below:

1. Construct the spatial polarity map.

2. Assign a numerical value to each electrode position based on the polarity of

133



the P-wave at that position; 2 for a negative P-wave, 1 for a bi-phasic P-wave

and 0 for a positive P-wave.

3. Take the mean average of all the values in each torso quadrant, denoted Sp.

4. Determine the largest value of Sp across all quadrants, denoted Spmax. If there

is a single quadrant which contains this value (Qtx, x=1-8), then the location

of the atrial focus is in the corresponding atrial quadrant (Qax).

5. If there are multiple quadrants which contain Spmax, then further analysis is

required:

(a) If the value of Sp in two quadrants is equal to Spmax, then two adjacent

quadrants must be compared. Then, the quadrant Spmax, adjacent to the

larger Sp from the second comparison, will be identified as the origin.

Note: for example, if both superior-right and superior-left anterior quad-

rants have the same Spmax value, then the Sp in the inferior-left and

inferior-right anterior quadrants are compared, as long as they are differ-

ent. If the inferior left has a greater Sp, then the atrial focal is in the

superior-left region.

(b) If there are 3 quadrants with the same Spmax value, then the corner quad-

rant will be identified as the atrial focal origin.

Note: for example, if the anterior superior-right, the anterior superior-

left and the anterior inferior-left quadrants have the same maximal value,

then the anterior superior-left quadrant will be the origin.

(c) If 4 or more quadrants have the same Spmax, the adjacent quadrants with

different Sp will be compared, and the quadrant with a larger Sp will be

identified as the origin.

Note: for example, if the four anterior quadrants have the Spmax, a subse-

quent maximal Sp in the posterior quadrants will be searched. If there is

one, say the superior-right posterior one, then the superior-right anterior

quadrant will be identified as the origin.

Results

Validation of the simulated 64-lead ECG system

Validation of the atrial activation sequence during control conditions has been dis-

cussed in [16, 17]. In order to validate the 3D atria-torso model, we first compared

the simulated BSP pattern and 12- and 64-lead ECG P-waves for the control case
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Figure 5.4: Schematic illustration of the algorithm to identify the quadrant of atrial
focal origin based on 64-lead ECG P-wave values.

to experimental data obtained from eight healthy subjects. It was demonstrated

that the simulated data of the 64-lead ECG (Figure 5.5) as well as the 12-lead ECG

and BSP pattern are in fair agreement to the experimental data. Then, we further

compared the simulated P-wave polarity to the experimental data. In both simu-

lations and experimental data, the polarity of P-waves was mainly positive in the

left-superior part of the body, negative in the right, inferior part of the body, and

biphasic or flat in the intermediary locations (Figure 5.6A,B).

To assess quantitatively the agreement between the polarity patterns in simula-

tion and experiment, the polarity of the simulated P-wave at every electrode was

compared with each experimental dataset. Inter-patient variability was quantified

by also comparing experimental datasets to each-other. The simulation data showed

a range of agreement between 87.1% and 94.5% with experimental data, comparable

to the range observed within the experimental data of 81.5% and 93.7%. Further-

more, the simulated temporal evolution of the dipole location (Figure 5.6Ci) and

amplitude (Figure 5.6Cii) agreed with experimental data [14]. Hence, the model

was validated for the control condition, and suitable for investigating the correlation

between ectopic atrial activity and P-wave profiles.
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Figure 5.5: P-waves obtained from experimental data (blue line and grey shadow)
and simulated (red line) data. The experimental average is the average data of 8
healthy people (blue line), and the experimental range corresponds to the maximum
and minimum values of these signals (grey shadow). This measurements used the
same protocol as described in [14]. Both, experimental and simulated P-waves were
normalized for comparison.

Focus location algorithm results

The algorithm was developed based on results from 30 simulations with different

atrial foci. It was then tested with 50 further simulations to determine its success

rate (i.e. the proportion of cases in which the algorithm correctly identified the origin
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Figure 5.6: Comparison of p-waves and dipole evolution between the simulated and
experimental data. (A) and (B) Comparison of the simulated 64-lead ECG P-waves
polarity (ii) to experimental data (i). In this figure, the arrangement of the P-waves
is set out to match electrode placement (see Figure 1). We observed the polarity
pattern of the P-waves of the experimental and simulation, in the front (A) and back
(B) part of the body. The red positive sign signifies an upright P-wave, the blue
negative sign represents an inverted P-wave, and the purple positive/negative sign
represents a biphasic P-wave. (C) Spatial (i) and amplitude (ii) temporal evolution
of the dipole. The black dots and lines are the experimental data and error bar
taken from [14], and the blue lines and dots are obtained from our simulation during
a stimuli applied to the superior part of the sino-atrial node region. In (i) the
horizontal axis is a continuous scale from the first vertical line electrodes (1-6) to the
last line of electrodes (33-38), without taking in to account 31, 32, 63 and 64.

of atrial focus from the P-wave polarity pattern). In such blind tests, the success

rate was 93%. Note that pacing rate affected PWM only to a small degree, and had

no effect on the P-wave polarity map (Supplementary Figure S2), hence ensuring the

algorithm is appropriate for both fast and slow pacing rates.

There were five cases for which the origin identified by the algorithm did not
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match the actual excitation site. In those cases the mismatch was a result of the

definition of a biphasic P-wave, when the PWM was highly irregular. These ir-

regularities could impact the value of the average for each quadrant, leading to a

mismatch in the location of the ectopic focus, mainly when the focal origin was close

to the boundary between two or more quadrants.

Further refinements to the spatial resolution of the quadrants could be performed

with the aim to improve the specificity of the algorithm for locating the focal origin

site, by dividing each quadrant into sub-quadrants. Accordingly, the algorithm was

updated as follows: if a quadrant adjacent to the quadrant with Spmax has an Sp

value close to that of the maximum quadrant (i.e. within 0.1 in this case), then the

activation focus is determined to be in the sub-quadrant that is close to the boundary

between the two quadrants (i.e. within the quadrant of maximum Sp value in close

proximity to the neighbouring quadrant considered). Conversely, if the difference

in values between the two quadrants is very large (i.e. greater than 0.1) then the

focus of the activation is determined to be within the sub-quadrant that is far from

the boundary of the two quadrants. Though such a spatial refinement improved the

detection accuracy in terms of the spatial resolution, the success rate of detection

showed a slight decrease, down to 89%. This could be due to the limitation of the

64-lead ECG to map the BSP.

Discussion

In this study, we have developed a new algorithm for detecting the location of atrial

focal activity using a 64-lead ECG system. The algorithm was developed using

simulation data, which enabled us to correlate BSP patterns to atrial activation

sequences more comprehensively than in an experimental setting.

Computational models:

The computational model implemented for this study was an update of our previous

model of the human atria and torso [15, 16, 17]. The updated model has the following

advantages compared to the previous model [15, 17]: (i) realistic torso meshes were

used for male and female, rather than an idealised one as used in the previous studies

[15, 17]; (ii) a greater level of detail was considered within the torso, including

the spine and liver as well as blood masses and lungs; (iii) various, experimentally

justified orientations of the atria [23] were considered. The developed atria-torso

models were validated by their ability to simulate BSP patterns, 12- and 64-lead

ECG PWM, 64-lead ECG polarity patterns and the spatio-temporal evolution of

the dipole peaks, all of which matched to experimental data from eight healthy
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patients. Note that experimental P-waves were filtered and averaged over a time

period of 1 minute - this has the effect of smoothing the signals compared to the

simulated P-waves, for which averaging would have no smoothing effect due to the

model being deterministic and subsequent P-waves being identical. Therefore, the

presented models provide a useful platform for simulating atrial excitations and their

BSP patterns in variant physiological conditions.

Comparison to other models

Several human atria-torso models have been developed by other groups in previous

studies [25, 26, 27, 28, 29], including the one by Krueger et al. [25], in which person-

alised atrial geometries were implemented for reproducing accurate patient specific

P-waves. The model in that study considered fat and muscle tissue, which can af-

fect the P-wave. However, due to the difficulty in segmenting both tissue types, few

models include them [25, 30]. That model also considered soft tissues of the bowels,

kidneys and spleen, which were absent in the present model. However, the simulated

PWM from the present models were similar to those from Kruger et al. [25], sug-

gesting that these soft tissues play only a small role in affecting the polarity of the

P-waves, as also suggested in a previous study [30, 31, 32]. Furthermore, agreement

of PWM between simulation and experiment were similar in both studies, despite

Krueger et al [25]. being patient-specific. Though other atria-torso models have been

developed for simulating body surface potential maps and multi-lead ECGs, the fo-

cus of those studies were in finding the ideal number of electrodes to obtain more

information of the atria as compared to the standard 12-lead ECG system [26, 27],

or to create a database for detecting atrial fibrillation [33, 34]. To our knowledge,

the present study is the first attempt to establish a detailed correlation between the

polarity map of body surface potentials and origins of atrial ectopic focus.

Focus location detection algorithm:

Comparison to previous algorithms

Focus-location algorithms have been developed previously based on the standard 12-

lead ECG system [35, 36], including the well-established Kistler et al. algorithm [11].

However, the 12-lead based algorithms have limited effectiveness due to the smaller

number of electrodes that provided incomplete information on atrial excitations. In

their study, Kistler et al. reported 93% focus detection accuracy. However, subse-

quent studies have found a lower accuracy [35, 36]. When we applied the Kistler et

al. algorithm to simulation data of P-waves, an accuracy of 73% was achieved, which

is within the 55-78% range observed in other studies [35, 36].
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In this study, we presented an algorithm for identifying atrial focal origins based

on simulated 64-lead ECG system. The developed algorithm showed a higher success

rate on the same data than the Kistler et al. algorithm (93% vs 73% respectively).

Our results suggest that the extra level of detail provided by 64-lead ECG compared

to the 12-lead ECG system was useful in accurately locating atrial focal activity.

The developed algorithm has two key strengths compared to previous algorithms:

(i) splitting the torso into two sets of quadrants means that the algorithm is not spe-

cific to an electrode array set up any array which covers the front and back of the

torso (symmetric or asymmetric) may be used, and the algorithm need not be ad-

justed. Similarly, relation of atrial anatomy to torso quadrants via a correlation table

intrinsically accounts for patient variability, also without the need to adjust the al-

gorithm itself; (ii) the algorithm is based on polarity patterns of the P-waves, rather

than the detailed PWM. Whereas this does not provide a full level of detail as with

PWM, such an approach has the following advantages: (a) inter-patient variations

manifest as alterations in PWM but have a much smaller effect on P-wave polarity;

(b) similarly, noise will not affect the P-wave polarity pattern but may have a signif-

icant effect on PWM, especially regarding bifidity; (c) we did not consider bifidity

in our definition of polarity, therefore avoiding the limitations of algorithms which

use bifidity, such as ambiguity in the definition of the magnitude of bump necessary

to be considered bifid and the effect of noise on accentuating or reducing bifidity.

Note that this was one of the primary limitations of the Kistler et al. algorithm [11]

responsible for the majority of its errors.

Another possible approach for locating atrial ectopic foci is to implement an

inverse solution. However, inverse solutions are computationally intensive and have

several limitations as discussed in other studies [37, 28, 38].

Potential application to the clinic

In the current study, torso quadrants are associated with atrial anatomical locations

by Table 5.1. For potential use of the algorithm in the clinic, a patient specific atria-

torso correlation table could be constructed if necessary. Low resolution MRI image

data can provide information of the orientation of the atria in the torso; typical

MRI images would be sufficient to construct such patient specific table, and allow

correlation between torso quadrants and atrial anatomical sites. As the algorithm

itself is generic, it could be applicable to patients without a need for individual

adjustment.
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Limitations

The torso model lacks considerations of some other tissue types or organs (such as

muscles, fat tissue, bowels, kidneys, spleen and skin) that may affect body surface

potentials. However, the absence of those tissues does not have a big effect on the

polarity of the P-waves [30, 31], which is the characteristic used in the present al-

gorithm. For example, test simulations in which the conductivity of the torso was

replaced by an average tissue conductivity accounting for muscle, fat and skin in var-

ious configurations demonstrates significant changes to P-wave amplitude but not to

the polarity patterns (Supplementary Figure S3).The developed algorithm was based

on simulation data, lacking consideration of the measurement noise as seen in real

data. However, the use of P-wave polarity in the detecting algorithm can minimise

the influence of noise as this may affect the amplitude of P-wave signals, but have less

impact on the P-wave polarity. Whereas polarity patterns may be affected by large

degrees of noise, such signals would be unsuitable for use in any clinical diagnosis.

In the algorithm, eight quadrants were defined to cover the torso. The spa-

tial resolution of the quadrant may require further refinement. For example, each

quadrant can be split into eight sub-quadrants. However, finer spatial resolution of

the quadrants may not help to improve the detection success rate as it decreases

to 89% when eight sub-quadrants were used for each quadrant. Another potential

limitation of the algorithm arises from the definition of a biphasic P-wave as it may

lead to a miscalculation of the atrial activation site. Although the use of P-wave

polarity overcomes the problems arising from the bifid definition as implemented

in the Kistler et al. algorithm [11], the present algorithm requires a well-defined

biphasic wave to optimise the performance of the algorithm. This biphasic definition

leads to a better performance of the algorithm than the use of the Kistlers bifid wave.

In the present study, we only tested the effectiveness of the algorithm for de-

tecting atrial focal activity. Its use for detecting the organisation centre of rotor

activity has not been performed. For that purpose, consideration of combined use

of the present algorithm with vectorcardiograms [39], phase relationships [40] and

correlation analysis [41] may be necessary, warranting further investigation. Finally,

the algorithm was based on simulation data. Though it provides a theoretical basis

for detecting atrial focus from multi-lead ECGs, it requires further tests on real ECG

data from patients or animal models with known atrial foci. Nevertheless, a test of

50 simulated atrial focus activities, different to those used to develop the algorithm,

was performed, which showed a similar success rate in both male and female torso

models with varying atrial position.
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Conclusion

Using a biophysically detailed computer model of the human atria-torso, we have

demonstrated a correlation between atrial focal origin and polarity pattern of the

BSP. Based on such correlation, a new algorithm has been developed to identify the

atrial origin from the BSP reconstructed from 64-lead ECG. This study provides a

theoretical basis for non-invasively detecting atrial focal origins, which is important

for designing AF ablation protocol, and demonstrates the advantages of multi-lead

ECG systems over the standard 12-lead ECG in detecting the origin of focal activity.
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Abstract

Atrial tachy-arrhythmias, such as atrial fibrillation (AF), are characterised by ir-

regular electrical activity in the atria, generally associated with erratic excitation

underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or

rapid focal activity. Epidemiological studies have shown an increase in AF prevalence

in the developed world associated with an ageing society, highlighting the need for

effective treatment options. Catheter ablation therapy, commonly used in the treat-

ment of AF, requires spatial information on atrial electrical excitation. The standard

12-lead electrocardiogram (ECG) provides a method for non-invasive identification

of the presence of arrhythmia, due to irregularity in the ECG signal associated with

atrial activation compared to sinus rhythm, but has limitations in providing specific

spatial information. There is therefore a pressing need to develop novel methods to

identify and locate the origin of arrhythmic excitation. Invasive methods provide

direct information on atrial activity, but may induce clinical complications. Non-

invasive methods avoid such complications, but their development presents a greater

challenge due to the non-direct nature of monitoring. Algorithms based on the ECG

signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In

this study, we used a biophysically detailed model of the human atria and torso to

investigate the correlation between the morphology of the ECG signals from a 64-

lead vest and the location of the origin of rapid atrial excitation arising from rapid

focal activity and/or re-entrant scroll waves. A focus-location algorithm was then

constructed from this correlation. The algorithm had success rates of 93% and 76%

for correctly identifying the origin of focal and re-entrant excitation, respectively.

The general approach allows its application to any multi-lead ECG system. This

represents a significant extension to previously developed algorithms to predict the

AF origins in association with focal activities.
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Introduction

Atrial tachy-arrhtyhmias, including atrial fibrillation (AF), atrial tachycardia (AT)

and flutter (AFL), are the most common cardiac arrhythmias, predisposing to heart

attack, stroke and even possible cardiac death [1, 2]. All three are characterised by

rapid and irregular electrical activation of the atria, with AF presenting the greatest

complexity. Such rapid and irregular electrical activity of the atria is normally asso-

ciated with one or more of the following abnormal excitation patterns: focal pacing

(spontaneous rapid firing of non-pacemaker cells) [3, 4], fibrillatory conduction of

multiple wavelets [5] and re-entrant excitation scroll waves (i.e., rotors) [4, 5].

Epidemiological studies have shown an increase in AF prevalence in the developed

world associated with an ageing society, highlighting the need for effective treatment

options [6, 7]. Current treatment of AF involves the use of rate control, anticoagu-

lation, cardioversion and ablation [8]. The restoration of sinus rhythm in the atria

may improve cardiac function, however several drug treatments have limited efficacy

in long term maintenance of sinus rhythm [4, 9]. Developments aiming to reduce

the critical mass required to sustain AF, such as catheter-based radio-frequency ab-

lation therapy, have proven to be more effective in suppressing AF substantially [9],

although multiple procedures may still be necessary due to high recurrence rates [10].

For a successful AF ablation, it is vital to know the origins (i.e., the driving

sources) of AF prior to the procedure, because isolating the driving source from the

rest of the atria is the primary goal of such therapy [9]. To identify such origins,

both invasive and non-invasive techniques have been developed. These include the

low density endo-surface mapping technique of 64-electrode basket catheters [11] and

electrocardiography imaging (ECGi) [12]. The main limitation of using an invasive

method is that it might produce further complications during the surgery [13]. There

is a pressing need to develop effective non-invasive methods to identify AF origins

which might provide all of the necessary information prior to the surgery. The ECGi

technology, based on the inverse problem solution [12], is a promising method in clin-

ical diagnosis. However, current algorithms require further information to constrain

the solution to achieve a reliable reconstruction of cardiac excitation waves due to

the ill-posedness of the problem [14].

Recent studies have also developed algorithms to identify non-invasively the loca-

tion of focal sources by using either the standard 12-lead [15, 16, 17] or multiple-lead

(e.g. 64-lead) ECG systems [18, 19]. The success rates of these algorithms range

from 40 to 90 %. Most are based on the correlation between the location of focal

activity and the P-wave morphology or polarity [16, 17, 18]. Whereas they are useful
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in identifying the origin of focal excitation, current algorithms may not be applicable

to identify re-entry or very rapid focal activity; at such rapid rates, atrial fibrillatory

waves or f-waves are typically observed and thus determination of morphology or

polarity of the main activation wave is non-trivial. Confounding the case for re-

entry, f-waves are also likely to be less regular and more complex in nature. It is also

important to be able to distinguish very rapid focal activity from that of re-entry at

a comparable rate, as the underlying maintenance mechanisms in these conditions

are different and thus it is possible that different intervention may be required to

terminate the arrhythmia.

The aim of this study is to go-beyond our previous studies [17, 18, 19] in iden-

tifying the origins of focal-related AF from body surface ECG to develop a novel

algorithm based on f-waves in order to identify origins for both rapid focal and

re-entrant activity from a multi-lead ECG system. A comparison with an inverse

problem reconstruction to investigate the effect of lead density is also presented.

Methods

Atria-torso model

A previously validated biophysically detailed computational model of the three-

dimensional (3D) human atria and torso [17, 18, 20] was used to simulate ectopic

focal and re-entry conditions (Figure 6.1). The atrial model was segmented into

the major anatomical structures and accounts for electrophysiological heterogeneity

between these regions (Figure 6.1A) [21]. The model has been previously used and

determined suitable for studying atrial arrhythmia mechanisms [21, 22]. The atrial

model was placed into a previously developed and validated torso model which ac-

counts for the segmented structure of lungs, liver, blood masses and spinal cord and

the respective electrical conductivities (Figure 6.1B) [18, 20]. This model has been

used before to develop an algorithm to diagnose atrial ectopic origin from multi lead

ECG systems [18]. Details of the atrial cell models and 3D simulation protocols can

be found in Colman et al [22]; details of the torso model development, validation

and simulation protocols can be found in Perez Alday et al [18].

Simulating atrial rapid ectopic foci and re-entry

Ectopic focal and re-entrant excitations were initiated in different regions of the atria

(Figure 6.2 Ai). In order to allow rapid excitation waves with rates at frequencies

typical of AF/AT/AFL (i.e. 2.5-8 HZ [22, 23]) to be sustained in the atria, param-

eters of the Colman et al. model of single human atrial myocytes were modified to
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Figure 6.1: Models and procedure used to develop the algorithm. Illustration of
atria (A) and torso (B) models used in the study to simulate re-entry and ectopic
activity in the atria. (C) Electrode positions used to simulate the 64-lead ECG. (D)
Simulated anterior (i) and posterior (ii) polarity map, as compared to experimental
data, validating the 3D atria-torso models.

incorporate experimentally observed AF-induced electrical remodelling of ion chan-

nels [22], which resulted in shortened AP (Figure 6.2A). To simulate ectopic focal

activity, a sequence of external supra-threshold electrical pulses (with amplitude of

2nA and duration of 2-3ms) was applied to various locations across different regions

of the atria (Figure 6.2Ai). Re-entrant excitation waves were initiated by a phase

distribution method [24, 25]. Although this is an artificial method for initiating re-

entrant excitation, it allows the location of the centre of the rotor wave to be easily

controlled. To avoid possible effects of the transition period of excitation waves on

their kinetics due to the unphysiological initiation procedure, data after 1 second of

initiation were analysed. In cases where re-entrant scroll waves were not localised to

the initiation point, i.e. there was a degree of meander, a small non-excitation area

(0.5 cm in radius) was incorporated around a specific region of the atria, in order

to stabilise the rotor centre (Figure 6.2C). This allowed sustained re-entrant activity

with its origin (i.e. tip) located in a specific region of the atria to be produced. The

inclusion of a small area of non-excitable tissue did not produce a marked change

in tissues volume or morphology of the measured potential on the body surface. In

simulations, cases when re-entrant excitation waves had a significant degree of mean-

der were used to test the ability of the algorithm to track the tip of the scroll waves

spatio-temporally.

To test the algorithms ability to distinguish between focal and re-entrant activities

centred on the same spatial locations, a set of focal stimuli simulations were matched

in location and excitation rate to re-entrant simulations centre at multiple locations.
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Simulating body surface potential

A boundary element method (BEM) was used to calculate the potential on the

surface of the torso [26]. From the body surface potential (BSP), 64-lead ECG

signals were obtained by selecting elements of the torso mesh corresponding to the

position of the electrodes as described in previous studies [18, 20]. The P-wave of the

64-lead ECG during control conditions matched the experimental data of multiple

patients [18, 27] (see S1 Fig), validating the development of the heart-torso model.

Measurement of potentials of positive and negative poles

From the measured atrial-waves, the dynamical evolution of the spatial distribution

and amplitude of the atrial-wave dipole was computed from the 64-lead ECG, follow-

ing the same method as used in previous experimental studies [18, 27]. The dipole

pattern on the body surface was reconstructed by selecting the maximum positive

potential value (positive pole) and the minimum negative potential value (negative

pole) of the 64-lead ECG at every time step [27]. The amplitude and the spatial

pattern of the atrial-wave dipole based on the 64-lead ECG changed with time as

the atrial activation evolved. In the model, both the amplitude and the temporal

evolution of the dipole location agreed with the experimental data [18, 27] during

control conditions (S1 Fig), further validating the model development.

Algorithm to locate the atrial source

In a previous study, we developed an algorithm to identify the location of atrial ec-

topic focal activity, using the polarity map on the body surface potential that was

produced from a 64-lead ECG system, which was split into two sets of quadrants

(anterior/posterior) [18]. The algorithm was based on the fact that a negative polar-

ity P-wave in a certain lead implied an excitation wave propagating away from the

positive electrode of that lead. Thus, the quadrant of the 64-lead electrode positions

with the largest number of electrodes with negative P-waves would correlate directly

to the origin of the focal excitation. The success rate of the algorithm was 93%.

However, the previous algorithm cannot be applied directly to detect the origin

of atrial excitation waves due to rapid focal or re-entrant activity because of the

complexity of the body surface waveform, which produces f-waves. Determining the

polarity of f-waves is not trivial since an f-wave may consist of positive, negative and

biphasic waves, depending on the time period investigated (Figure 6.2C(ii), 6.2D(ii)).

Furthermore, re-entrant and focal excitation patterns may present different charac-

teristics of f-waves, and the ability to distinguish between these types of excitation

could provide valuable information for directing treatment. Thus, in order to apply
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Figure 6.2: Illustration of different atrial activation associated with different body
surface atrial waveform morphology. (A) Different stimulated points (circle) and
tip of re-entry across the surface of the atria (i), atrial action potentials (ii) and
their corresponding body surface atrial-waves at different excitation rates (iii): top
3Hz; bottom 5Hz. (B) Snapshot of atrial activation at control conditions at a fast
rate, (i) and its corresponding ECG exhibiting distinct P-wave in lead V1 (ii). (C)
Snapshot of atrial activation when the tip of the re-entry is located in the SAN (i),
and its corresponding f-waves of lead V1 (ii). (D) Snapshot of atrial activation with
the focal ectopic activity located in the right atrial appendage (RAA) (i) and the
corresponding f-waves of lead V1 (ii). A red sign represents a positive polarity in the
atrial-wave (magenta/shaded area), the blue sign is a negative polarity and a purple
sign represents a biphasic atrial-wave (magenta/shaded area).

our previously developed algorithm to both rapid focal and re-entrant excitation,

new tools were developed. The first tool was to determine the polarity of the f-wave

associated with main atrial activation, in order to identify the location of the source.

The second tool was to quantify the differences between focal and re-entrant activity.

Further details of these algorithmic developments are provided below.
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Determining the polarity of f-waves.

At slow pacing rates, it is straightforward to determine the polarity of individual P-

waves: the long period of the diastolic phase means that the ECG signal remains at a

baseline during this interval, with a clear deflection from the baseline corresponding

to atrial activation during the systolic period (Figure 6.2B). This deflection is the

P-wave, and may be positive, negative or biphasic (with both positive and negative

portions). The duration (i.e., the time interval) of the P-wave corresponds to the

time interval of atrial activation.

The challenge for determining the polarity of the atrial wave at rapid pacing

rates is that the diastolic period is absent, leaving the ECG signal absent of a stable

baseline. Therefore, there is no clear distinction between successive deflections (Fig-

ure 6.2C(ii), 6.2D(ii)). Determination of the polarity of the atrial wave in such case

is thus non-trivial; any polarity can be extracted from the same signal, depending

on the time interval which is considered (Figure 6.2C(ii), 6.2D(ii)). However, the

polarity in the interval during which a large volume of the atrial mass is excited (i.e.

main atrial activation) can be determined and is suitable for our algorithm. Thus the

time interval corresponding to the main atrial activation must first be determined.

Analysis shows that the dipole signal provides sufficient information to determine

the time interval of main atrial excitation (Figure 6.3). Figure 6.3 illustrates results

for three different cases of atrial activation originating from the same location but

with increasing complexity (i.e. slow focal pacing, rapid focal pacing, and re-entrant

excitation).

At the slow rate, determination of the polarity of the P-wave is straightforward

and can be seen to be positive in lead V1 (Figure 6.3A black line). Note that the

time interval of the P-wave indeed corresponds to the time interval of the atrial

activation (Figure 6.3A(i),(ii)). Also, both positive and negative poles of the body

surface dipole have one significant deflection, and the time interval of this deflection

corresponds directly to the time interval of atrial activation and therefore the P-

wave (Figure 6.3 red and blue lines). The positive and negative dipole signals can

be combined as a dipole sum (defined as the sum of the modulus of the negative and

positive poles), giving a single signal with a significant deflection corresponding to

the time interval of atrial activation (Figure 6.3 green line).

At rapid rates where f-waves rather than P-waves are observed, there are no

clear markers for the time interval of atrial activation in the ECG f-wave signal

(Figure 6.3B and C black line). The dipole sum, however, still presents a signal

with one easily identifiable prominent deflection; the time interval of this deflection

corresponds to the main atrial activation (Figure 6.3B(i),(ii)), even in the case of

more fragmented f-waves resulting from re-entrant activity (Figure 6.3C(i),(ii)). The

portion of the f-wave within this time interval therefore gives the polarity associated
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Figure 6.3: Dipole and atrial activation evolution in different atrial activations lo-
cated in the pulmonary veins (PV). (A) Slow ectopic atrial activation focus in the
PV (non f-waves observed). (B) Fast focal activation focus in the PV (f-waves ob-
served). (C) Re-entrant activation around the PV (f-waves observed). Red line:
Positive dipole. Blue line: Negative dipole. Green line: Dipole sum. Black line:
lead V1 (ECG). The Magenta regions represent the time interval of the main atrial
wave, selected from the peaks in the dipole pattern. (i)-(ii) Snapshots of the atria
activation at the beginning and end of the time interval selected.

with the main atrial activation. In examples shown in Figure 6.3, the polarity is

positive in lead V1 for all cases but the polarity will vary spatially across the body

surface according to lead position.

Thus, by selecting the ECG segment corresponding to the main atrial activa-

tion (obtained from dipole sum, Figure 6.3 magenta/shaded regions), the polarity

(positive, negative or biphasic) of each lead in this segment is determined.

Atrial source location based on the atrial-wave polarity map

Having identified the polarity of the f-waves in each lead, the resulting 64-lead po-

larity distribution feeds directly into our original atrial source location algorithm

[18].

Figure 6.4 shows the implementation of the developed algorithm for determining

the origin of non-meandering atrial re-entrant activations, centred on the sino-atrial

node (SAN) (left), right atrial appendage (RAA) (middle) and pulmonary veins (PV)

(right). In each case, the time interval has been obtained by selecting the largest

deflection in the dipole sum evolution pattern (Figure 6.4A- vertical dashed lines)

as described in the previous section. Then, an atrial-wave polarity map is created

(Figure 6.4B) from the time interval selection. Once the polarity map has been

created (Figure 6.4A and 6.4B), the location of the source of the atrial activation
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can be found through the Perez Alday et al. algorithm [18] (S2 Fig), which associates

the two set of torso quadrants (Qti) (Figure 6.4B) with the two set of atria quadrants

(Qai) (Figure 6.4C (i)-(ii)).

Differentiating ectopic focal from the re-entrant activity

Our simulations demonstrate that re-entrant excitation waves are characterised by

more fragmented ECGs (Figure 6.3C) compared to focal activity (Figure 6.3A,B).

This might be attributable to the fact that the wave propagation through the atria

due to focal excitation is more uniform and symmetric (around the origin of excita-

tion) than re-entrant excitation. Performing Fourier Transformation analysis (FFT)

of the signal from lead V1, commonly used for AF analysis due to its large atrial

signal [28] (closest is lead 15 in the 64-lead configuration), allows the fragmentation

of the signal V1 to be quantified, providing a way to distinguish the cases of focal

from re-entrant excitation waves, with the same excitation rate and origin (Figure

6.5). From the FFT, as would be expected the dominant frequency (DF) shows no

marked difference between the focal and re-entrant cases due to the same activation

rates. However, the re-entrant cases exhibited considerably more power at higher

frequencies. To quantify this, the ratio of the area under the power spectrum den-

sity (PSD) in the ranges 0 (2 x DF) Hz and 0 50 Hz (AFFTr2DF) was calculated.

The use of the threshold of (2 x DF) was chosen because it is the value at which

the distinction between focal and re-entrant excitation was the most significant (S3

Figs). The ratio showed dramatic differences between re-entrant and ectopic activa-

tions (Figure 6.5A,B,C). By plotting the AFFTr2DF against its DF for all simulations

(Figure 6.5D), it was clear that a ratio of above 0.675 corresponded to focal activity,

a ratio below 0.655 corresponded to re-entrant activity and a ratio in the range 0.655

to 0.675 could correspond to either (overlapping area in Figure 6.5D).

Algorithm flow chart

The new tools developed were integrated into a flow chart of the algorithm as il-

lustrated in (Figure 6.6). The first step of the new algorithm was to compute the

dipole sum from the body surface potential distribution. Then, by selecting the time

interval corresponding to the largest peak in the dipole sum, which is attributable

to a large volume of the atrial mass that has been excited, a polarity map can be

created. The next step was to implement the previous algorithm we have developed

[18] to identify the source of atrial activation based on the body surface potential

distribution. The last step was to differentiate focal from re-entrant activities based

on the spectral characteristics of the f-waves.
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Figure 6.4: Illustration of algorithm implementation for activation from three atrial
sites. (A): Dipole sum (green line) (i), lead V1 (black line) (ii) and Lead 47 (Grey
line)(iii), (i) were used to identify the time interval (section between dotted lines) of
re-entrant patterns where the tip was located in the sino-atrial node (SAN), right
atria (RA) and pulmonary veins (PV). The amplitude in all cases has been normal-
ized. (B): Atrial-wave polarity map in the anterior (i) and posterior (ii) part of the
torso for atrial activation initiated at different locations of the atria (SAN, RA and
PV). A red sign represents a positive polarity in the atrial-wave, the blue sign is
a negative polarity and a purple sign represents a biphasic atrial-wave. The black
square represents the electrode position of lead V1, and the grey circle represents
the electrode position of lead 47. (C): Rotor tip (red dot) identified by the algorithm
in each simulation. The anterior (ii) and posterior (i) parts of the atria and torso
(B-i,ii) are shown for each case. In each case the algorithm correctly identifies the
correct quadrant: SAN the tip is located in the quadrant Qa5 (i), for RA the tip is
located in the quadrant Qa2 (ii), and for PV the tip is located in the quadrant Qa7
(iii).
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Figure 6.5: Power spectral density for ectopic focal and re-entrant activation. Power
spectral density for ectopic focal (blue) and re-entrant (red) activity located in (A)
SAN; (B) PV and (C) RAA. The darker shadow corresponds to the area between 0
2 x DF. (D): a scatter plot of (AFFTr2DF) against the DF, the magenta area is the
overlapping area where both activities can occur. AFFTr2DF is the ratio of the area
under the power spectrum density in the ranges 0 (2 x DF) Hz and (2 x DF) 50
Hz: AFFTr2DF = Area(0-2DF)/Area (0-50Hz)
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Figure 6.6: Schematic illustration of the algorithm to identify the location of atrial
focal origin or re-entry from atrial wave polarity maps.
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Results

Success rate of algorithm

Location

The algorithm (Figure 6.6) was developed based on simulated data of re-entrant

excitation waves and ectopic focal activities with their origins located at 10 different

sites across the atria. The algorithm was then tested with 20 further simulations to

determine its success rate.

In the test for re-entrant excitation, the success rate of determining the atrial

quadrant containing the tip of the scroll wave was 75%. In the cases which the

origin of the scroll wave was not identified by the algorithm, it was due to the tip

of the scroll wave being close to the boundary of two nearby quadrants (i.e., within

0.5 cm). The direction of the rotation of the scroll wave played an important role as

well.

In the test for ectopic focal excitation the success rate for detecting the atrial

quadrant where the rapid focal activity was located was 92%. This is comparable

with the success rate of our previous algorithm [18] for slow ectopic foci (93%).

The consistency between the present and the previous algorithm suggests the newly

devised tool for identifying the polarity of the f-wave is valid.

Focal vs Re-entry

The success rate to differentiate ectopic activity from re-entrant activation with the

same frequency was 88%. Note that the algorithm never produced a false positive,

because in the remaining 12% of the cases the AFFTr2DF was within the overlapping

area where ectopic and re-entrant activity could not be distinguished (Figure 6.5D,

magenta shaded area).

Further test

The algorithm was tested with random noise added to ECG signals. During this test,

a dipole sum was obtained with the same characteristics as previously described. The

AFFTr2DF values were affected by the addition of noise, however, the changes did

not produce large differences. Further information can be found in supporting infor-

mation text S4.

The algorithm was also tested with a different torso geometry. During this test,

dipole sum and AFFTr2DF values were obtained and the algorithm successfully iden-
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tified the quadrant where the origin of the arrhythmia was located. Further infor-

mation can be found in supporting information text S5.

Determining the time-dependent location of meandering re-

entry

The algorithm showed good feasibility for tracking the tip of scroll waves with a

significant degree of meander. This was done by selecting the time intervals when

the tip of the rotor was in two different positions across the atria (Figure 6.7).

Figure 6.7: Comparison of quadrants position and atrial-waves polarity maps in
meandering re-entrant activation. (A) Snapshot at two different instant of re-entrant
activation in the atria. (B) Snapshot at two different instant of re-entrant activation
of the atria-torso model from a posterior superior right view. (C) Simulated 64-lead
ECG atrial-waves polarity map at two different instant of re-entrant activation. We
observed the polarity pattern of the atrial waves of the experimental and simulation,
in the anterior (i), (iii) and posterior (ii), (iv) part of the body. The red positive sign
represents a positive atrial-wave, the blue negative sign represents negative atrial-
wave, and the purple positive/negative sign represents a biphasic atrial-wave.

Discussion

Major contribution

By using a biophysically detailed computer model of human atria-torso and iden-

tifying the correct polarity of the f-waves, we have developed a novel algorithm to

locate the origin of atrial fibrillation in association with both of ectopic focal and

re-entrant activity. The success rate of the algorithm was 92% and 75% for focal and

re-entry activation, respectively. The properties of the FFT allowed re-entry and

focal activation to be distinguished with a success rate of 88%.
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Comparison to previous/other algorithms

Previous studies have been focused on differentiating ectopic activity against re-entry

[29, 30, 31, 32]. Most use atria-electrocardiograms to detect and characterize complex

fractionated signals, FFT and DF atria maps [29, 30, 33]. The success rate of these

algorithms is in the range of 60-80% [29, 30, 34], however, as it is an invasive method,

it might unduly lengthen the ablation procedure [35]. By using a 12-lead ECG

system, algorithms to detect ectopic activity have been developed [16, 36], however,

the success rates range within 55-78% [15, 16, 18] and it has been proved that the 12-

lead ECG system does not produce enough information to identify the origins when

f-waves are presented or under re-entrant activity [15, 18, 32]. Other attempts have

used multi-lead ECG systems and body surface mapping [31, 32, 37], to correlate to

atrial DF or add extra information like phase mapping [32]. However, it has been

difficult to validate the time interval, location and the source of the atrial activation

when f-waves are presented. Nevertheless, they are promising methods that can add

extra useful information. Ours is the first attempt to distinguish the main activity

and find the position of the focus and tip of the re-entry from a multi-lead ECG.

Comparison with reconstruction of the atrial surface poten-

tials from body surface potentials.

In order to demonstrate the advantage of the developed algorithm for detecting AF

origins from 64-lead ECG over that of inverse problem solutions, the epicardial ex-

citation pattern of the atria was reconstructed during the time course of re-entrant

excitation based on the computed BSP from the atria-torso model. To solve the in-

verse problem, the transfer matrix, which relates the BSP to the electrical potential

in the atrial epicardio-surface, was calculated using Greens Theorem and a boundary

element discretization [38, 39]. A common zero order Tikhonov regularization was

implemented to find the potentials in the surface of the atria [40]. This method has

been suggested as a feasible method for reconstruction cardiac electrical excitation

[12, 14]. In numerical implementation, the L-curve was used to find the best regu-

larization parameter for each case [41]. Mathematical details of the reconstruction

method used can be found in Supporting information 2 (S6).

The body surface potentials at different lead densities were simulated. The effects

of lead density on the accuracy of the inverse-solution were investigated.

Figure 6.8 presents the snapshot of reconstructed atrial epi-cardial excitation pat-

terns at different timings using lead densities of 64 (Figure 6.8A), 256 (Figure 6.8B)

and 2024 (Figure 6.8C) electrodes. These are compared to the actual activation

pattern shown in Figure 6.8D. It demonstrates that a high number of electrodes is
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Figure 6.8: Snapshot of epi-cardial reconstruction of a rotor wave. Snapshot of
epi-cardial reconstruction of a rotor wave with its origin located in the sino-atrial
node region at different timings (125, 375 and 725 ms). Reconstructed pattern with
variant numbers of electrodes of 64 (A), 256 (B) and 2024 (C) were compared to the
real activation pattern (D).

needed to reliably reconstruct the atrial excitation patterns, and subsequently locate

the atrial activation source. Specifically, in the case of 64-lead ECG, the constructed

atrial activation pattern was not sufficient to locate the AF origin by inverse solution,

whereas our algorithm using 64-lead ECG performed very well.

The number of body surface potential leads can be artificially increased using

different types of interpolation [42, 43]. However, the minimum required distance

between electrodes and therefore the spatial resolution is still an open question [42].
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The algorithm developed in the present study using 64-lead ECG provided suf-

ficient information to locate the origin of the atrial activation, demonstrating the

superiority of the developed algorithm over the inverse-problem solution.

Further work to improve the reconstruction and therefore a comparison of the

accuracy of different inverse problem reconstruction with different spatial resolution

and different interpolation methods in all the different cases presented needs to be

performed. Also, the cases where the tip of the spiral wave is inside the atria and

not on its surface are not possible to be identified with the inverse solution, whereas

the algorithm presented in this study can still produce good results.

Limitations

The torso model lacks considerations of some other tissue types or organs (such as

muscles, fat tissue, bowel, kidneys and spleen) that may affect the amplitude of

simulated surface potentials. However, the absence of those tissues does not have

a large effect on the polarity of the atrial-waves, which is the characteristic used in

the present algorithm, as demonstrated previously [18]. In the algorithm, two-sets

of quadrants were defined to cover the torso. The spatial resolution of the quadrant

may require further refinement. For example, each quadrant can be split into four

sub-quadrants, though; the success rate of the algorithm may decrease.

Future work

In the present study, we only tested the effectiveness of the algorithm for detect-

ing single atrial focal activity and a single centre of a rotor activity. However, a

possible extension is to identify multiple wavelets, using the dipole evolution pat-

terns. For that purpose, consideration of combined use of the present algorithm with

vecto-cardiograms, phase relationships, correlation analysis and inverse problem re-

construction may be necessary, warranting further investigation.

Conclusion

A novel algorithm has been developed to locate the origins of rapid and irregular

atrial excitation waves, associated with both ectopic focal and re-entrant activity.

This represents a significant progress to previously developed algorithms to predict

AF origins in association with focal activities.

167



Supporting Information

Figure S1

Comparison of p-waves and dipole evolution between the simulated and

experimental data.

Figure S2

Schematic illustration of the algorithm to identify the quadrant of atrial

focal origin based on 64-lead ECG P-wave values. Fig adapted from [18].

Text S3

AFFTr frequency ratios dependency on the dominant frequency (DF).

Text S4

Testing the algorithm with random noise added to ECG signals.

Text S5

Testing the algorithm with a female torso geometry.

Text S6

Reconstruction of the atrial surface activation from the electric poten-

tial measured in the surface of the body performed using a Zero order

Tikhonov regularization.

Acknowledgments

CONACYT

Bibliography

[1] E. Anter, M. Jessup, and D. J. Callans, “Atrial fibrillation and heart failure

treatment considerations for a dual epidemic,” Circulation, vol. 119, no. 18,

pp. 2516–2525, 2009.

168



[2] E. J. Benjamin, P. A. Wolf, R. B. DAgostino, H. Silbershatz, W. B. Kannel,

and D. Levy, “Impact of atrial fibrillation on the risk of death the framingham

heart study,” Circulation, vol. 98, no. 10, pp. 946–952, 1998.

[3] K. T. Konings, J. L. Smeets, O. C. Penn, H. J. Wellens, and M. A. Allessie,

“Configuration of unipolar atrial electrograms during electrically induced atrial

fibrillation in humans,” Circulation, vol. 95, no. 5, pp. 1231–1241, 1997.

[4] S. M. Narayan, D. E. Krummen, and W. J. Rappel, “Clinical mapping approach

to diagnose electrical rotors and focal impulse sources for human atrial fibrilla-

tion,” Journal of cardiovascular electrophysiology, vol. 23, no. 5, pp. 447–454,

2012.

[5] J. Jalife, O. Berenfeld, A. Skanes, and R. Mandapati, “Mechanisms of atrial

fibrillation: mother rotors or multiple daughter wavelets, or both?,” Journal of

cardiovascular electrophysiology, vol. 9, no. 8 Suppl, pp. S2–12, 1998.

[6] I. Graham, D. Atar, K. Borch-Johnsen, G. Boysen, G. Burell, R. Cifkova, J. Dal-

longeville, G. De Backer, S. Ebrahim, B. Gjelsvik, et al., “European guidelines

on cardiovascular disease prevention in clinical practice: executive summary,”

European heart journal, 2007.

[7] F. Rahman, G. F. Kwan, and E. J. Benjamin, “Global epidemiology of atrial

fibrillation,” Nature Reviews Cardiology, vol. 11, no. 11, pp. 639–654, 2014.

[8] P. Jais, D. Shah, M. Hocini, L. Macle, K. J. Choi, M. Häıssaguerre, and
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Abstract

Myocardial ventricular ischemia arises from a lack of blood supply to the heart, which

may cause abnormal repolarization and excitation wave conduction patterns in the

tissue, leading to cardiac arrhythmias and even sudden death. Current diagnosis of

cardiac ischemia by the 12-lead electrocardiogram (ECG) has limitations as they are

insensitive in many cases and may show unnoticeable differences compared to normal

patterns. As the magnetic field provides extra information on cardiac excitation and

is more sensitive to tangential currents to the surface of the chest, whereas the

electric field is more sensitive to radial currents, it has been hypothesized that the

magnetocardiogram (MCG) may provide a complementary method to the ECG in

ischemic diagnosis. However, it is unclear yet about the differences in sensitivity

regions of body surface ECG and MCG signals to ischemic conditions. The aim

of this study was to investigate such differences by using 12-, 36- ECG and 36-

MCG computed from multi-scale biophysically detailed computational models of

the human ventricles and torso in both control and ischemic conditions. It was

shown that ischemia produced changes in the ECG and MCG signals in the QRS

complex, T-wave and ST-segment, with greater relative differences seen in the 36-

lead ECG and MCG as compared to the 12-leads ECG. The 36-lead ECG showed

more averaged sensitivity than the MCG in the change of T-wave due to ischemia,

whereas the MCG showed greater sensitivity than the ECG in the change of the

ST-segment. In addition, both MCG and ECG showed regional-dependent changes

to ischemia, but with MCG showing a stronger correlation between ischemic region

in the heart and the maximal difference map on the body surface. In conclusion,

MCG shows more sensitivity than ECG in response to ischemia, which may provide

an alternative method for the diagnosis of ischemia.
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Introduction

Ischemic heart disease is one of the leading causes of death in developed countries

and worldwide [1, 2, 3]. Coronary artery occlusion can cause, within hours, cell death

in ischemic myocardium [1]. This results from a lack of blood flow to the heart which

decreases partially or completely the oxygen supply to the cell, damaging the muscle

[1]. Significant ischemic regions within the heart can promote abnormal excitation

wave conduction and repolarization patterns, leading to ventricular arrhythmias and

even sudden cardiac death [4, 5]. Therefore, being able to detect, quantify and locate

the site of acute transient ischemic regions in the heart by non-invasive techniques

is a clinically important challenge [3, 6].

The 12-lead electrocardiogram (ECG) has been implemented as a standard bed-

side evaluation procedure for cardiac condition diagnosis for multiple decades [3, 7].

Unfortunately, the standard 12-lead ECG has been shown to be insensitive to cardiac

ischemia; the ECG waveforms of patients with ischemia may only differ by 15-30%

compared to none-ischemic patients [3, 4, 6, 8]. This suggests that the 12-lead ECG

provides insufficient information for satisfactory diagnosis of ischemia. Other non-

invasive techniques, including radionuclide methods [9], magnetic resonance imaging

[10] and positron computed tomography [11], are far more sensitive to the detection

of ischemia. However, they are highly expensive and time consuming, and therefore

not practical for day-to-day, bedside monitoring and detection of silent ischemia (i.e.

asymptomatic ischemia which does not present as an arrhythmia) [12, 13, 14].

Previous studies have shown that multi-lead ECG configurations provide more

information for the diagnosis of irregular cardiac conduction and repolarization pat-

terns than the standard 12-lead ECG [8, 12, 15]. Moreover, the magnetic field

produced by the electrical activity of the heart may provide a greater level of detail

of cardiac excitation compared to the body surface potential (BSP), because magne-

tocardiograms (MCG) are more sensitive to currents tangential to the surface of the

chest than ECGs. Combined with its high independence to inhomogeneities in elec-

trical resistivity inside the tissues of the body and on the skin [12, 16, 17], the MCG

therefore provides a potential practical alternative to the ECG for monitoring the

cardiac conditions. However, detailed correlation between the presence of ischemia

and the characteristics of the MCG has yet to be established.

In this study, we aim to compare and quantify the effects of the presence of ven-

tricular ischemia on BSP and MCG maps and the 36-lead ECG and MCG recordings

derived from these maps, in order to compare the most sensitive regions of the body

related to the presence of ischemia. This was achieved through application of a
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multi-scale computational model of the human ventricles to simulate the effects of

ischemic zones on electrical wave propagation throughout the heart. Then, using the

simulation data of the human ventricles, the electric and magnetic forward problems

were solved in a torso model to obtain the BSP and MCG maps, respectively.

Methods

Experimental ECG and MCG equipment and data acquisition

A self-developed 4-channel (HTc-rf-SQUID) Bio-magnetometer (Peking University,

China) [18] was used to detect the cardiac magnetic field. The multichannel system

(36-lead MCG) was arranged in a squared structure and was placed on the front

of the chest and recorded the vertical component of the MCG signal, which is, the

normal component of the magnetic field to the chest surface of the subject [18]. The

sensor array covered a square area of 80x80 mm, and the distance between adjacent

channels was 40 mm. The system was operated inside a magnetically shielded room

after inserting the system in a resin rod of identical epoxy-reinforced nonmagnetic

glass fiber crystals containing liquid helium [18]. The noise spectral density of the

fabricated magnetometers was less than in the white noise region [18, 19]. A 36-lead

ECG was also obtained placing the electrodes on the surface of the body, in a similar

position of the MCG sensors, in order to compare the measurements [18]. The MCG

and ECG experimental data was obtained from a 25 years old healthy (no cardiac

disease presented) subject.

Description of mathematical models

A three dimensional (3D) biophysically detailed computational model of the human

ventricles was incorporated into a heart-torso model to simulate normal and ischemic

conditions (Figure 7.1). The 3D ventricular anatomical model was previously devel-

oped and is segmented into the major distinctive electrically heterogeneous regions

[20] (Figure 7.1A). All of the models incorporated anatomical structures and detailed

electrophysiological heterogeneity with cellular electrophysiology being described by

the Ten Tusscher et al. single cell model of human ventricular action potentials

(TNNP) [21].

Single cell model

The human ventricular cell model proposed by Ten Tusscher, Noble, Noble and

Panfilov (TNNP) [21] was employed to simulate the action potential (AP) of the
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Figure 7.1: Multi-scale computer models of the human ventricles and torso. (A)
Computational model of the human ventricles showing (i) AP, (ii) anatomically ac-
curate structure, and (iii) myofibre orientations derived from DT-MRI scanning. (B)
Heart-torso model (i), and positions of the electrodes/sensors on the surface of the
body (ii). (C) simulated body-field maps and (D) example single electrode signals,
for the ECG (i) and MCG (ii). The white arrows show the direction of the electric
potential, while the green circled arrows show the direction of the magnetic field,
consistent with the right hand rule.

myocytes. The formulation of the rapid delayed rectified potassium current (IKr)

was replaced by a Markov-chain formulation [20]. The membrane potential can be

evaluated by:

dV

dt
= −Iion + Istim

Cm
(7.1)

where V is the voltage across the membrane, t is time, Iion is the total trans-

membrane current, Istim is the stimulus current applied externally, and Cm is the

capacitance of the cell. Also, the late component of the sodium current (INaL) was

incorporated by adapting the model of INaL from the Ohara et al. model [22]. The

TNNP model is capable of simulating three types of action potential representing

endocardial (ENDO), midcardial (MCELL) and epicardial (EPI) cells (Figure 7.1A

(i)).

Tissue model

The excitation and wave propagation in the tissue was abstracted to be a diffusion-

reaction problem, and modelled with the monodomain equation:
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Cm
∂V

∂t
= −Iion + Istim +∇ · (D∇V ) (7.2)

where D is the diffusion tensor describing the conductivities of the tissue along

different directions. D was set at 0.18 mm2/ms along the fibre direction and 0.06

mm2/ms across the fibre direction, giving a planar conduction velocity of 71.9 cm/s

along fibre direction and 42.5 cm/s across fibre direction. These values are close to

the 70 cm/s conduction velocity along the fibre direction found in human ventricles

[23].

The activation and wave propagation of excitation was simulated on an anatom-

ically accurate human ventricular geometry reconstructed from DT-MRI scanned

data. The derived fibre orientation was incorporated to account for the anisotropy

in the material property. In order to simulate the transmural electrical heterogene-

ity of the ventricle walls, the tissue was segmented into ENDO, EPI and MCELL

regions. Specifically, the MCELL region was considered to be isolated islands within

the endocardium [24, 25]. Apico-basal heterogeneities in the electrophysiological

properties of the myocardium were considered by adding gradients to IKs (slow rec-

tified delayed current) [24, 26]. A linear scaling function based on the distance to

the base of ventricles was applied to the channel conductance of IKs. As such, the

conductance of IKs in the myocytes in the apex was 2.67-fold larger than that of the

basal cells [26]. Empirically determined activation sites across the endo-surface of

ventricular walls were used to mimic the Purkinje conduction network, as a detailed

structure of such conduction system is not available. These activation sites were val-

idated by reproducing the excitation wave propagation pattern in human ventricles

and QRS complex of measured 64-channel ECG [20, 27].

Modelling ventricular ischemia

Acute ischemia can be considered in two phases: phase A (first 2-10 minutes post-

occlusion) and B (15-45 minutes after coronary occlusion) [28, 29]. These two phases

were modeled separately by mimicking ischemia induced changes on cardiac electro-

physiology [30, 30] at 10 and 45 minutes post-occlusion, respectively. In phase A, we

considered: (i) hyperkalemia: an increase in extracellular potassium concentration;

(ii) acidosis: decrease in the maximum conductivity of sodium and L-type calcium

currents, and; (iii) hypoxia: activation of ATP dependent potassium current, IKATP

[31, 32]. In phase B, changes to sodium-calcium exchanger, sodium-potassium pump

and intracellular calcium handling system were introduced in addition to the alter-

ations seen in phase A. The conductivity of tissue was also reduced in phase B but

not in phase A [30]. A detailed summary of the changes is given in Appendix 1. The
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resulting changes to ENDO, MCELL and EPI action potentials are shown in Figure

7.2.

IKATP was modelled using the formula from Kazbanov et al. 2014 [31], given by:

IKATP = GKATP · fATP · (
[K+]0

5.4
)0.3(V − EK) (7.3)

where GKATP is the maximum channel conductance, fATP the fraction of open

gate, [K+]o the extracellular potassium concentration, V the membrane potential,

EK the Nernst reversal potential for potassium. The parameters of IKATP were kept

the same with Kazbanov et al. 2014 [31].

To perform a thorough comparison of ischemia induced changes in ECG and

MCG, a number of ischemic lesion conditions with a single lesion but in 20 different

locations and different sizes were created. To simplify the problem, spherical is-

chemic regions were used with randomly selected centres throughout the ventricular

myocardium. Both small and large lesions (18 mm and 27 mm in radius respectively)

were considered. Similar to previous studies [30, 30], the lesions are composed of cen-

tral zones (CZ) and border zones (BZ), with CZ occupying myocardium within 80%

of the lesion radius to the centre. In the BZ, the ischemic parameters were assumed

to vary linearly from CZ ischemic parameter to normal.

Simulating ECG and MCG

To simulate ECG and MCG, the ventricle models were placed within a previously

developed torso model [33], which considers the presence of lungs, liver, stomach,

kidneys, blood masses, spinal cord and ribs, each with different electrical conduc-

tivities (Figure 7.1 B). The boundary element method (BEM) was used to compute

the electric potentials on the surface of the body (Figure 7.1 C), resulting from an

applied current density, Ji, obtained from the electrical activity of the ventricular

tissue-models. Details can be found in previous studies [33, 34]. Once the electric

potential φ is known, the magnetic field, B, was obtained by discretizing the volume

into m homogenous elements and using a BEM of the Biot-Savart law [35, 36]:

~B(r) = ~B0 −
µ0

4π

m∑
k=1

(σ−k − σ
+
k )

∫
Sk

φ(r)~n(r)× ~r − ~r′

|~r − ~r′|3
dSj (7.4)

where B0 is the magnetic field produced by the current source Ji, σ and σ are

the inside and outside conductivities of the element k, respectively, and r and r

are the distance to the observation point and the distance to a volume element dV ,

respectively. Then, the z-component of the magnetic field was selected in order to

compare simulated and experimental data.
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Elements of the torso mesh corresponding to the locations of the electrodes and

magnetic sensors were selected to simulate 12- and 36- lead ECGs and 36-lead MCG

(Figure 7.1B). The simulated 12- and 36-lead ECG and MCG was compared with

experimental data.

The QRS complex, ST-segment and T-wave were analyzed to compare control

with the two different ischemic stages. In order to evaluate the functional effects

of ischemia on the spatial distribution pattern of BSP and MCG maps, relative

differences in the amplitude of BSP and MCG signals between control and ischemic

conditions were calculated during each segment duration of the cardiac excitation

rhythm for variant ischemic cases, i.e. the amplitude difference between the control

and ischemic cases divided by the amplitude of the control signal at each specific

point. This is similar to the discriminant index [37], which has been suggested to

indicate the capability of each sensor site to distinguish between patients and control

[37, 38].

Results

Figure 7.2 shows the simulated ventricular action potentials of endocardium (ENDO),

mid-layer (MCELL) and epicardium (EPI) cells in the control and Phase A & B of

ischemic conditions. It was shown that ischemia caused an elevation in the resting po-

tential, reduced amplitude of AP and shortened action potential durations (APDs).

These effects became more pronounced with time course of ischemia. These simu-

lation results well matched to experimental [29, 30] and previous simulation studies

[31, 21].

Figure 7.2: Simulated action potentials (APs) under control conditions (Black line),
phase A (blue line) and phase B (red line) of ischemia. (A) Endocardium. (B)
Myocardium cell. (C) Epicardium.
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Effects of ischemia on ECG and MCG

First, we investigated the effects of ischemia on 12-lead ECGs, as well as MCGs

computed from the leads close to the chest leads for conventional 12-lead ECGs (i.e.,

leads D3 to D6 in Figure 7.1). The features of the time courses of the computed

12-lead ECGs during the control condition were within the range of previous exper-

imental studies [1, 3, 39, 40] and also matched to experimental recordings (Figure

7.3-ECG). The simulated MCG time courses from leads D3 to D6 also matched to

the experimental data (Figure 7.3-MCG). This validated the developed models and

algorithms for simulating ECGs and MCGs.

With the validated model, further simulations were performed to investigate the

effects of ischemia on the 12-leads ECG and MCGs. Results are shown in Figure

7.4. It was shown that the presence of ischemic condition (Phase A with vari-

ant ischemic locations) resulted in noticeable changes to the profiles of the 12-lead

ECGs as compared to control (normal) condition (Figure 7.3ECG). In simulations,

ischemia primarily affected the ST-segment (depending on the ischemic location, it

either elevated or depressed the ST-segment) and T-wave amplitude (dependent on

the ischemic location, it either increased or decreased the amplitude of the T-wave),

and also had a smaller effect on the QRS complex. These simulation results were

consistent with previous studies [40, 37, 30, 3]. Similar changes were also observed in

the simulated MCGs (Figure 7.3-MCG), which were consistent with previous studies

[12, 13, 15, 16].

Figure 7.4 shows the simulated 36-lead ECG and MCG under control and ischemic

conditions. In the control condition, the simulated QRS complex and T-waves of the

36-lead ECG and MCG showed strong agreement to experimental data [18] (Figure

7.4) for all of the 36-leads, which validated the multi-scale models of the ventricle.

In both experimental and simulation data, the polarity of the QRS and T-wave

of ECG and MCG signals showed similar spatial distribution patterns. For ECG,

the QRS complex was mainly positive in the left-inferior part of the body, negative

in the superior right part of the body, and biphasic or flat in intermediary loca-

tions (Figure 7.4-ECG). The T-wave was positive in most of the leads, except for

the superior right part of the body. In contrast, for MCG, the polarity of the QRS

complex was mainly positive in the right-inferior part of the body, negative in the

superior left part of the body, and biphasic or flat in intermediary locations (Figure

7.4-MCG). The T-wave was positive in most of the leads, except for the superior left

part of the body. These simulated spatial distributions patterns of QRS and T-wave

of ECG and MCG matched to experimental data. The slight differences in the traces
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between simulated ECG and MCG signals might reflect the difference between the

two measurement methods.

The effects of ischemia in the 36-leads are also shown in Figure 7.4. As the 36-

leads covered much wider area of the body surface compared to the 12-lead system,

simulation data showed more pronounced changes in BSP and MCG signals in some

specific regions of the body compared to the 12-lead system. For example, T-wave

inversion was seen in some of the 36-leads of both ECG (lead B5) and MCG (lead

C4), which was not seen in any of the 12-lead ECGs. Therefore, an analysis of sen-

sitivity regions through the calculation of the relative differences was performed in

both ECG and MCG data to quantify the regions with more pronounced changes in

signal due to ischemia conditions.
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Figure 7.3: Simulated time courses of 12-lead ECGs (superior), MCGs (from leads
D3 to D6; bottom) under control (blue line) and ischemic conditions (Phase A with
variant locations; gray lines). Experimental data (red) was included in the MCG
for comparison purposes. Simulated 12-lead ECG and MCG were normalized to the
maximum amplitude of each lead, and superimposed over normalized experimental
recordings from a healthy subject.
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Figure 7.4: Simulated 36-lead ECG (top panels) and MCG (bottom panels) in control
(blue line) and ischemic (grey line) conditions. In control conditions, ECG and
MCG were normalized and superimposed with experimental data [18] (red line),
simulated data (blue line) during control and ischemic conditions (Phase A with
variant locations; grey lines). The numbers and letters represent the electrode/sensor
position (Figure 7.1B-ii). Simulated 36-lead ECG and MCG were normalized to the
maximum amplitude of each lead, and superimposed over normalized experimental
recordings from a healthy subject.
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Sensitivity of ECG and MCG to ischemia.

To analyse the sensitivity of ECG and MCG to ischemia conditions (Phase A & B

with variant locations), averaged relative differences were calculated for the 12-lead

ECG, 36-lead ECG and 36-lead MCG, for the QRS complex (during the time period

of 410-460 ms), ST-segment (550-650ms) and T-wave (700-400ms) time intervals.

Results are shown in Figure 7.5.

For the QRS complex, ischemia induced small differences between ECG and MCG

signals. The computed relative differences between ischemia and control conditions

were similar for both ECG and MCG, which were 21% for 12-lead ECG, 25% for

36-lead ECG and 29% for the 36-lead MCG respectively (Figure 7.5, QRS complex).

For the ST-segment, ischemia induced marked changes in both ECG and MCG

as compared to control conditions. However, the MCG showed greater sensitivity to

ischemia than the ECG. The computed relative differences were 29% for the 12-lead

ECG, 40% for 36-lead ECG and 50% for the 36-lead MCG respectively (Figure 7.5,

ST-segment).

For the T-wave, the presence of ischemia produced greater changes in ECG than

MCG. The computed relative differences between control and ischemia were 28% for

12-lead ECG, 37% for 36-lead ECG and 32% for 36-lead MCG respectively (Figure

7.5, T-wave).

Figure 7.5: Averaged relative differences of the QRS complex, ST- segment and T-
wave of the 12-lead ECG (pink bar), 36-lead ECG (red bar) and MCG (blue bar)
between the ischemic (Phase A & B with variant locations) and control condition.

Regional differences in the sensitivity of ECG and MCG to

ischemia.

Next, possible regional differences in the sensitivity of ECG and MCG to ischemia

were investigated. As the 36-lead ECG and MCG provide more spatial information

of the torso, analysis was conducted in the 36-lead data. Results are presented in
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Figure 7.6, showing computed relative differences of ECG and MCG between control

and ischemia (during both phases) for each of the 36 leads during the ST-segment and

T-wave time intervals. It was shown that the relative difference for both of the ECG

and MCG was region-dependent, and was different between the ST-segment and T-

wave period. Such differences in the regional dependence between the ST-segment

and the T-wave period may account for the discrepancy shown by the averaged rela-

tive differences between MCG and ECG regarding their sensitivity to ischemic QRS

and T-wave.

Figure 7.7 shows quantified regional relative differences of ECG and MCG for the

QRS complex, ST-segment and T-wave in Phase A & B ischemic conditions.

The spatial distribution of the relative difference map of the BSP and MCG be-

tween ischemia and control did not show great changes between the two ischemia

phases (Figure 7.7). However, the map of the ST-segment differences showed pro-

nounced changes as compared to control (Figure 7.7 ST-segment), with more pro-

nounced changes in the MCG maps.

Further investigations were performed to study the effects of variant ischemic

locations on profiles of ECG and MCGs. Ischemic region in four sub-sections of the

ventricles were considered: the superior left ventricle, inferior left ventricle, superior

right ventricle and inferior right ventricle. For each case the relative difference be-

tween control and ischemia was computed.

Figure 7.8 plots the relative difference map of ECG and MCG signals, showing

a correlation between the ischemic region of the heart and the torso region with

maximal relative changes in the ST-segment of MCG, but not ECG. Our simulation

data showed that an ischemic region located in the superior left ventricle produced

a maximal relative change of MCG signals in the superior part of the torso (Figure

7.8A). An ischemic region located in the inferior part of the left ventricle produced a

maximal change of MCG signals in the superior and inferior right of the torso (Figure

7.8B). Similarly, an ischemic region located in the superior part of the right ventricle

produced a maximal relative change of MCG signals in the superior-left part of the

torso (Figure 7.8C), and an ischemic region in the inferior right ventricle produced

a maximal relative change of MCG signals in the left-mid part of the torso (Figure

7.8D). However, there was no such correlation observed from the ECG map.
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Figure 7.6: Relative differences for each of the 36 leads ECG (red) and MCG (blue)
with control conditions for the QRS complex, ST-segment, and T-wave.
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Figure 7.7: Maps of major differences of BSP (top panels) and MCG (bottom panels)
between ischemia and control conditions for the QRS complex, ST-segment, and T-
wave, during both early (Phase A) and late (Phase B) ischemic phases. The contour
lines correspond to small variations in the small difference range, in both frontal
(front) and posterior (back) part of the torso.
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Figure 7.8: Maps of the major difference of BSP and MCG between control and varied
localized ischemic condition during the ST-segment. Ischemic region was considered
in four different ventricular locations (labeled in red): Superior left ventricle (A),
inferior left ventricle (B), superior right ventricle (C), inferior right ventricle (D).
The contour lines correspond to small variations in the small difference range.
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Discussion

Major contribution

It remains controversial if MCG signals can provide useful extra information which

increases diagnose and characterization of cardiac diseases, mainly the one asymp-

tomatic to the ECG [23, 31, 41]. Previous studies have shown that both ECG and

MCG can produce similar results during specific silent ischemia [41], while other

studies have suggested that circular vortex currents can be detected by MCG but

not by ECG [16, 42, 43]. Moreover, the ischemic injury might increase the tangential

current flow through the ventricular tissue, producing the repolarization abnormali-

ties, which are detected differently by MCG and ECG [36, 42, 43]. In this study, by

using a biophysically detailed computer model of human ventricles-torso, we inves-

tigated the different features of 12-, 36-lead ECG and MCG, BSP and MCG maps

during normal and variant ischemic conditions. We also investigated the regional

dependence of the measured relative difference and how the area with maximal rel-

ative difference on the body surface varied due to altered stage and location of the

ischemic region.

Our major findings are: (i) both the 36-lead ECG and MCG showed greater

averaged relative difference in the QRS complex, T-wave and ST-segment than the

12-lead ECG, indicating the advantages of implementing multi-lead ECG/MCG sys-

tems than the conventional 12-lead ECG in diagnosing the ischemic condition; (ii)

ECG and MCG showed a different sensitivity to ischemia in producing changes in

the T-wave and ST-segment. Our results showed that the 36-leads ECG was more

sensitive than the 36-leads MCG in detecting changes in the T-wave by producing a

greater averaged relative difference in the T-wave. However, for detecting changes in

the ST-segment the MCG showed greater sensitivity by producing a greater relative

difference; (iii) both ECG and MCG showed regional-dependent changes to ischemic

condition on the body surface of the torso, but with MCG showing a stronger cor-

relation between ischemic region in the heart and the maximal difference map on

the body surface. Such difference in the sensitivity between ECG and MCG may be

due to the different effects produced by the ischemia to the AP (an elevation in the

resting potential, reduced amplitude of AP and shorter APDs), which mainly affects

the repolarization propagation that is associated with ST-segment and T-wave. Such

a cellular effect maps to electrical wave propagation, producing different tangential

and normal currents leading to altered electrical and magnetic fields; and (iv) the

correlation between ischemic region in the heart and the maximal relative differences

of MCG during QRS complex, ST-segment and T-wave provides a theoretical basis

for non-invasively diagnosing ischemic region.
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Limitations

The limitations of used cellular models for human ventricular action potentials have

been discussed in previous studies [20, 21], and such limitations were inherited in

the present study. In addition, the torso model lacks considerations of some tissue

types or organs (such as muscles, fat tissue) that may affect the amplitude of simu-

lated surface potentials. Nevertheless, the absence of those tissues does not have a

significant effect on the polarity of the ventricular-waves [33, 44], and produces less

effect in the MCG measurements [42, 12].

In the present study, by comparing the regional-dependence of the averaged rel-

ative difference map between control and ischemic ECG/MCG signals, we were able

to show a strong correlation between the ischemic region in the heart and maximal

relative difference in the MCG. However, it should be pointed out that for both ex-

perimentally recorded and simulated MCG its amplitude decreases significantly in

the areas far from the heart position, i.e. back of the torso or close to the limbs.

This causes smaller changes in the MCG as compared to ECG in these areas of the

body, which may limit the accuracy to detect ischemic region by using the whole

body MCG map. A possible solution to overcome such technique limitations is to

use combined high spatial resolution BSP and MCG maps, which provide a feasible

tool to diagnose cardiac ischemic in clinical environments.

Conclusion

Computer modelling provides a useful tool to compare the electric and magnetic field

produced by the electrical activity of the heart during normal and ischemic condi-

tions, which is a challenging task in clinical settings. Using biophysically detailed

models of human ventricles and torso, we have compared the sensitivity regions of

the ECG and MCG in response to ischemic conditions. Our results suggest that the

12-lead ECG is less effective to provide diagnosis of the ischemia, whereas the 36-

lead ECG and in particular MCG offer advantages in the identification of ischemic

conditions. By comparing the relative differences in the BSP and MCG maps, our

results shows that MCG has greater sensitivity than ECG in response to ischemia,

which may provide an alternative method for the diagnosis of ischemia.
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Supporting Information

S1 Table

Table 1 Summary of ischemia induced changes to the electrophysiological properties

of the human ventricles.
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Abstract

Non-invasive electrocardiographic imaging has been seen as a painless and ideally

economic method to map the electrical functions of the heart, showing advantages

over prevailing invasive imagining methods, which are usually expensive and/or pro-

vide the potential of complications. However, it is still a great challenge to obtain

accurate reconstruction of cardiac electrical activity from recorded body surface po-

tentials due to the ill-posed nature of the cardiac inverse-problem. Though some

advances have been made in solving the ventricular inverse-problem, few studies

have been conducted for the atria, which have dramatic differences to the ventricles

in the anatomical structures (such as tissue size and wall thickness) and electro-

physiological properties (such as the morphology of the action potentials (AP)). It is

unclear either how the spatial resolution of electrodes on the body surface and rapid

excitation rates of atrial activation during atrial fibrillation (AF) affect the accuracy

of the atrial inverse-problem.

In this study, we used a biophysically detailed model of the human atria and torso

to investigate the reliability of the three different Tikhonov regularization methods

and variant electrode spatial resolutions (corresponding to 64-, 256- and 512-lead

ECG vest) in reconstructing both simple and rapid and irregular epicardial activation

patterns, in the absence and presence of electrophysiological heterogeneity and AF-

induced electrical remodelling.

It was shown that the solution of the atrial inverse-problem was dependent on the

spatial resolution of electrodes on the body surface, with 512-lead producing the best

and most reliable solution; however, in some specific cases 256-lead also produced

a reliable solution. Different regularization methods produced the most reliable re-

constructions in different conditions, being particularly influenced by excitation rate
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and AP morphology.

In conclusion, an efficient method was determined to reconstruct atrial epi-cardiac

electrical excitation patterns non-invasively from a multi-lead ECG system, which

may provide a powerful method to diagnose AF. Novel insight is provided into the

effectiveness of different methods under varying underlying atrial electrophysiology

and activation patterns.

Introduction

The electrocardiographic imaging, based on the cardiac inverse problem solution [1],

provides a promising method for non-invasive diagnosis of cardiac arrhythmias. The

approach attempts to reconstruct the epicardial electrical potentials and the activa-

tion time isochrones from the body surface potentials (BSP) by solving the inverse

problem with the Tikhonov regularization method [1, 2, 3]. However, due to the

ill-posed nature of the problem, some prior empiric information is required to pro-

vide constraints in order to achieve a reliable solution [4, 2]. Therefore, due to the

limited number (i.e., the spatial resolution) of electrodes on the body surface and

unavoidable noise of the measured signals, it is still a challenge to obtain a reliable

and accurate solution of the problem.

Previous studies on the ventricular inverse-problem have shown that the number

of electrodes on the body surface has dramatic effects on the solution [5, 6, 7]. For

achieving a reliable reconstruction of the electrical activity on the ventricular epicar-

dial surface, a minimal number of electrodes was required [8, 9, 10, 4]. As few studies

have been conducted to investigate the atrial inverse-problem [3, 11, 12], it is un-

clear if the findings in ventricular inverse-problem are applicable to the atria-inverse

problem, given the dramatic differences in their electrophysiology and anatomical

structures [13].

However, there is a pressing need to develop new non-invasive methods to im-

prove the diagnosis of atrial fibrillation (AF), which is the most common cardiac

arrhythmia causing an increased risk of morbidity and mortality [14, 15]. Notably,

AF has a high incidence (> 2 % of population with ageing over 65), and such an

incidence is expected to be increased due to the ageing society in the next decade [16].

The primary differences between the atria and ventricles chambers are in (i)

the anatomic structures - the ventricles are almost twice the size and have thicker

walls than the atria [13]; and (ii) electrophysiological heterogeneity - there are

greater extents of electrophysiological heterogeneity in the atria than in the ven-
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tricles [17, 18, 19]. The unique features in both of the anatomical and electrophysi-

ological complexities in the atria may impose different requirements to the number

of electrodes on the body surface to obtain a reliable reconstruction of atrial epi-

cardial potentials as compared to the ventricles. In addition, the morphology of

the atrial action potential (AP) varies regionally from almost a triangular to almost

squared shape [20], which differs to the ventricular epicardial APs. As AF is nor-

mally associated with combinations of rapid focal pacing (spontaneous rapid firing

of non-pacemaker cells) [21, 22], fibrillatory conduction of multiple wavelets [23], and

re-entrant excitation scroll waves (i.e., rotors) [22, 23], its electrical activity is char-

acterised by rapid and irregular activation of the atria, which may be confounded

by complex anatomical structure. All of these may impose a challenge to obtain a

reliable solution to the atrial inverse-problem.

Implementation of variant Tikhonov regularization methods may also affect the

solution of the cardiac inverse-problem. However, it is still unclear how variant or-

ders of the Tikhonov regularization method determine optimal solutions for cardiac

excitation waves with different rates and dynamical behaviours during AF.

The aim of this study was to use a biophysically detailed model of the human

atria and torso to investigate reliability of three different Tikhonov regularization

methods using variant electrode spatial resolutions (corresponding to 64-, 256-, 512-

lead ECG vest) in reconstructing atrial epicardial activation patterns, during slow

and rapid ectopic pacing and rapid re-entry. Effects of the intrinsic electrophysio-

logical heterogeneity of the atria and atrial fibrillation induced electrical remodelling

were also considered.

Methods

Atrial-torso model

A previously validated biophysically detailed computational model of the three-

dimensional (3D) human atria and torso [24, 25, 26] was used to simulate ectopic

focal and re-entry conditions (Figure 8.1A). Details of the atrial-torso model (Figure

8.1C), which accounts for major anatomical structures (Figure 8.1D), electrophysio-

logical heterogeneity in different the atrial regions [27] and the respective electrical

conductivities within the internal body structures (Figure 8.1C) [24, 25], have been

considered in the model following the same method as described in the previous

publication [24]. The atrial model has been shown to be suitable for studying atrial
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Figure 8.1: Scheme of solving atrial forward (open arrow) and inverse (solid arrow)
problem pathway. (A) Atria activation pattern during ectopic activity; (B) Recorded
epicardial potential in slow (i) and fast (ii) rates; (C) the integrated torso model;
(D) trha atria model; (E) body surface potential (BSP); (F) Body surface polarity
pattern reconstructed from a multi-lead ECG system.

arrhythmia mechanisms (Figure 8.1B) [20, 26]. The atria-torso has been validated

and used to develop an algorithm to diagnose atrial ectopic origin from multi-lead

ECG systems (Figure 8.1E) in our previous study [24]. Details of the atrial cell

models and 3D simulation protocols can be found in Colman et al [20]; details of the

torso model development, validation and simulation protocols can be found in Perez

Alday et al [24].

Simulating atrial rapid ectopic foci and re-entry

Atrial ectopic foci and re-entry were initiated in different regions of the atria (Figure

8.2Ai-ii) following the same protocols that have been described previously [20, 24].

In order to allow rapid excitation waves with rates at frequencies typical of atrial fib-

rillation, atrial tachycardial and atrial flutter (i.e. 2.5-8 HZ [20, 28]) (Figure 8.2Aiii)

to be sustained in the atrial model, parameters of the Colman et al. model of single

human atrial myocytes were modified to incorporate experimentally observed AF-

induced electrical remodelling of ion channels [20], which resulted in a reduction of

the AP duration (APD) (Figure 8.2B). This reduction modified the morphology of
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AP, which, in some cases, changed from a squared AP (Figure 8.2Bi-RAA) to tri-

angular AP (Figure 8.2Bii-RAA). To simulate ectopic focal activity, a sequence of

external supra-threshold electrical pulses (with amplitude of 2nA and duration of

2-3ms) was applied to various locations across different regions of the atria (Figure

8.2Ai). Re-entrant excitation waves were initiated by a phase distribution method

[29, 30]. Although this is an artificial method for initiating re-entrant excitation, it

allows the location of the centre of the rotor wave to be easily controlled in a specific

location (Figure 8.2Aii).

Figure 8.2: Illustration of the atrial ectopic and re-entrant simulation protocols. (A)
Illustration of position of the ectopic and re-entrant origins on the atria (A-i) and a re-
entry activation centred on the sino-atrial node (SAN) (A-ii), with excitation waves
at different rates (A-iii). (B) Illustration of the effects of electrical remodelling in the
AP of a cell/node located in the left atria (LA-red line) and right atria appendage
(blue line- RAA). (i) Control and (ii) remodelling conditions.

Simulating body surface potential by solving the forward prob-

lem

To solve the atrial forward problem, a boundary element method (BEM) was used

to calculate the potential on the surface of the torso [31, 24]. From the body surface

potential (BSP), 64-,256- and 512-lead ECG (Figure 8.3) signals were obtained by

selecting elements of the torso mesh corresponding to the position of the electrodes

as described in previous studies [24, 25]. The P-wave of the 64-lead ECG during

control conditions matched the experimental data of multiple patients [24, 32] (Fig-

ure 8.3B), validating the development of the heart-torso model. Details of the model
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development and its validation can be found in [24, 25].

Inverse reconstruction of the atrial surface electrical excita-

tion

Based on the computed BSP from the atria-torso model, the epicardial excitation

pattern of the atria was reconstructed during the time course of ectopic focal and

re-entrant excitation. The transfer matrix, ZBH , which relates the electric poten-

tials measured on the surface of the body, ΦB, with the electric potentials on the

atrial surface, ΦH , was calculated using Greens Theorem and a boundary element

discretization method described in [33, 34] for triangular meshes:

ΦB = ZBHΦH (8.1)

As the inverted solution is an ill-posed problem, Tikhonov regularization method

was used to find the best inverse solution [35]. The epicardial regularized solution,

xλ, is computed by finding the minimum argument that best solved equation 8.2

xλ = min
x
{||ZBHΦH − ΦB||2 + λ2||R||}, (8.2)

where λ is the regularization parameter and R is the regularization operator,

which constraints the solution in the spatial domain. The zero order Tikhonov reg-

ularization uses the identity matrix as the regularization matrix, i.e. R = I. The

first order Tikhonov regularization uses the gradient matrix as regularization matrix,

i.e., R = ∇. The second order Tikhonov regularization uses the Laplacian matrix as

regularization matrix, i.e. R = ∆. The regularization parameter, λ, was found using

the L-curve method [36] together with the triangle method for each case [37]. The

inverse solution was validated by comparing the reconstructed atria surface with the

simulated one with the same resolution.

In numerical implementation, the effects of spatial resolution of ECG electrodes

(i.e., the number of electrodes on the body surface) on the accuracy of the inverse-

solution were investigated. Atrial epicardial excitation patterns were reconstructed

at different densities using 64, 256 and 512 electrodes, which were compared to the

actual activation pattern. A linear interpolation was used in each case to increase

the number of input in the implementation, as described in previous studies [38, 39].

In order to compare the different Tikhonov regularization methods and lead sys-

tems, whole atrial time activation maps were computed. Then, real and recon-

structed epicardial potentials from different points on the epicardial surface were
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obtained (the positions were selected due to their difference in electrophysiology

(Figure 8.2B)). From those epicardial potential, relative errors (RE) as a function of

time were calculated in order to quantify the specific differences.

REs were obtained by dividing the absolute error (absolute difference between

real and approximated data) by the magnitude of the real value:

RE =
|real data− reconstructed data|

real data
(8.3)

Figure 8.3: Illustration of the Multi-lead ECG systems. Illustration of electrode
position used to simulate the 64-lead ECG (A). Experimental and simulated anterior
and posterior polarity map in the 64-lead ECG (B) validating the forward and 3D
atria-torso models. Illustration of the electrode position used to simulate the 256-lead
(C) and 512-lead (D) ECG.
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Results

Comparison of the atrial surface reconstruction with ectopic

focus.

Potential maps, RE and isochrones were analysed for all datasets produced. For

illustrative purposes, the results from individual simulations are presented.

Figure 8.4: Isochrones maps of real and reconstructed ectopic activity with its origin
located in the pulmonary veins. Isochrones maps of epicardial reconstruction of an
ectopic focus atrial activity with its origin located in the pulmonary veins region.
Real activation pattern (A) was compared with reconstructed patterns with variant
numbers of electrodes of 64, 256 and 512, using zero (B), first (C) and second (D)
order Tikhonov regularization.

Surface isochrones maps were obtained for real atrial activation and epicardial

reconstruction using zero, first and second (Figure 8.4A-D) order Tikhonov regular-

ization and 64-, 256- and 512-lead ECG systems (Figure 8.4bottom-top). Smooth

and reliable time activation maps were produced with the second order Tikhonov

regularization with 512- and 256-leads systems (Figure 8.4D). A closed solution in

the case of first order (Figure 8.4C) was also obtained, although 512-leads were

necessary. In the case of zero order, similar solutions were obtained, but with a

significantly larger degree of noise (Figure 8.4B).

APs and RE were computed from single nodes located on the right atrial ap-
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Figure 8.5: Epicardial potential and Relative error of epi-cardial reconstruction of
an ectopic atrial activity focus on pulmonary veins. Epicardial potential and Rel-
ative error (RE) of epi-cardial reconstruction of an ectopic atrial activity with its
origin located in the pulmonary veins region using 512-, 256- and 64-lead ECG. The
ectopic focus can be observed in A (black and white spot). Left (i) and right atria
appendage (ii) epicardial potentials are observed in each case. The epicardial po-
tentials of real activation (red line), zero (black line), first (blue line), second (green
line) order Tikhonov regularization method can be observed in B. RE between real
and reconstructed patterns using zero (black line), first (blue line) and second (green
line) order Tikhonov regularization method can be observed in B.
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pendage (Figure 8.5Ai) and left atria (Figure 8.5Aii) for each activation pattern.

Here, both square (Figure 8.5Bi) and triangular (Figure 8.5Bii) epicardial potentials

were observed in different regions due to electrophysiological heterogeneity. For each

case, RE were calculated between the real atrial activation and the atrial epicardial

reconstruction for all lead systems and regularization methods (Figure 8.5).

As expected, the RE signal decreased when the number of electrodes increased

(Figure 8.5C) and thus, the solution which matched best the AP (i.e., have lower

RE signal) was produced with 512-lead system in all cases (Figure 8.5C). However,

the 256-lead ECG displayed a reliable atrial reconstruction in some cases (Figure

8.5C-i). On the comparison of the different Tikhonov regularizations, different peaks

were observed in the RE signals close to the depolarization phase (upstroke) with

all methods. Second and first order showed similar results (Figure 8.5C) with larger

RE signal around this area compared to zero order. In general, a higher RE signal

was observed for the first order in almost any case.

Note: If a peak was seen in the RE signal after or before (but close to) the up-

stroke of the AP (depolarization phase), it usually meant the reconstructed epicardial

signal showed a delay or an advance in comparison with the real one, respectively

(Figure 8.5C).

Comparison of homogenous and heterogeneous cases

For theoretical comparison, epicardial potentials (Figure 8.6) and RE (Figure 8.7)

were also computed for all lead systems and regularization methods under three

different electrphysiological conditions: regionally-homogeneous with a square AP-

morphology (Figure 8.6A); regionally-homogeneous with a triangular and shorted

AP morphology (as is observed in chronic AF remodelling - Figure 8.6B); regionally-

heterogeneous with both square (Figure 8.6Ci) and triangular (Figure 8.6Cii) mor-

phologies in different atrial locations. For all cases, the activation maps showed

similar results than the one in Figure 8.4.

A significant increase was observed in the RE signals when the electrophysiology

was modified from a squared to a triangular morphology, even though the tissue

was homogeneous in both cases (Figure 8.7 A and B). Furthermore, the RE signals,

when heterogeneous electrophysiology was included (Figure 8.7 C-i and C-ii), were

considerably larger compared to homogeneous square case but not as much as the

homogeneous triangular case. In addition, the increment in the RE signals when

comparing triangular and squared APs within the same heterogeneous electrophysi-
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ology atrial activation (Figure 8.7 C-i and C-ii) was also observed.

The 512-lead ECG system presented the lower RE signals, however, the 256-lead

ECG showed a close solution in each case. Furthermore, the 64-lead ECG showed low

RE signals in the case of squared and homogeneous electrophysiology. In addition,

the first order Tikhonov regularization showed the largest RE signals in most of the

cases (Figure 8.7 blue line). For homogeneous APs, second and first order showed

similar results. However, a smaller RE signal was seen in the second order case with

square APs (Figure 8.7A), and in zero order for triangular APs case (Figure 8.7B),

demonstrating the most reliable reconstruction in each case.
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Figure 8.6: Reconstructed epicardial potential of an ectopic atrial activity focus on
pulmonary veins. Epicardial potential reconstruction of an ectopic atrial activity
with its origin located in the pulmonary veins region using 512-, 256- and 64-lead
ECG. Real activation (red line) patterns were compared with reconstructed pattern
using zero (black line), first (blue line) and second (green line) order Tikhonov regu-
larization method. The reconstructions were obtained for homogeneous squared (A),
homogeneous triangular (remodelling) (B) and heterogeneous (C) cases. Left (i) and
right atria appendage (ii) epicardial potentials are presented in each case.

214



Figure 8.7: Relative error of reconstructed epicardial potential of an ectopic atrial
activity focus on pulmonary veins. Relative errors of reconstruction of an ectopic
atrial activity with its origin located in the pulmonary veins region using 512-, 256-
and 64-lead ECG. Real activation patterns were compared with reconstructed pat-
tern using zero (black line), first (blue line) and second (green line) order Tikhonov
regularization method. The reconstructions were obtained for homogeneous squared
(A), homogeneous triangular (remodelling) (B) and heterogeneous (C) cases. Left
(i) and right atria appendage (ii) epicardial potentials are presented in each case.
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Comparison of fast and slow ectopic activation rates

Different rates of focal ectopic activation were analysed (3, 4 and 5 Hz). In each case,

a heterogeneous electrophysiology was used. However, remodelling was included to

allow the faster rates to be sustained, which reduced the AP duration and its vari-

ability, and resulted in mostly triangular APs [20].

Figure 8.8 shows epicardial activation maps of an ectopic focus located in right

atrial appendage. The maps were obtained at different timings for real (Figure 8.8A)

and reconstructed signal using zero, first and second (Figure 8.8B-D) order Tikhonov

regularization with 512-leads ECG at 3Hz and 5Hz (Figure 8.8i,ii). It was observed

that the solution which matched best the original slow (3Hz) ectopic activation was

obtained with the second order Tikhonov regularization (Figure 8.8D). However,

when the rate was increased to 5Hz, the first and second order Tikhonov regulariza-

tion highly smoothed the solution, and therefore, the zero order method produced

the most reliable reconstruction (Figure 8.8B).

Figure 8.9 shows epicardial potentials (Figure 8.9-i) and RE signals (Figure 8.9-

ii) of reconstructed AP from a cell/node located on the left atria during an ectopic

focus located in right atrial appendage at different rates: 3Hz (Figure 8.9A), 4Hz

(Figure 8.9B) and 5Hz (Figure 8.9C). The RE grew with increasing pacing rate in all

the cases, except the 64-lead ECG at 4Hz case (Figure 8.9-left). The 512-lead ECG

system produced the lowest RE (Figure 8.9 left). At slower rates, the 256-leads ECG

showed similar results to the 512-lead system (Figure 8.9 middle). The difference

between those two ECG systems increased when the rate was increased (Figure 8.9 B

and C). When comparing the different Tikhonov orders, it was observed that a small

RE was obtained with the second order at a slow rate, i.e., 3 Hz (Figure 8.9Aii).

However, at the fastest rate, i.e., 5 Hz (Figure 8.9Cii), the smallest RE was obtained

with the zero order. These results were consistent with the activation maps (Fig-

ure 8.8), where the smoothing effects were more pronounced. In most of the cases,

the first order showed a delay in the reconstructed epicardial potential (blue peaks

observed in all the sets of Figure 8.9-ii), which may explain the results observed in

Figure 8.8.
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Figure 8.8: Snapshot of epicardial reconstruction of an ectopic atrial activity focus
on the Right atria appendage. Snapshot of epicardial reconstruction of an ectopic
atrial activity with its origin located in right atrial appendage region at different
timings (10, 80 and 120 ms) at a slow (i) and fast (ii) rate. Real activation patterns
(A) were compared with reconstructed pattern using zero (B), first (C) and second
(D) order Tikhonov regularization method with 512-lead ECG.
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Figure 8.9: Epicardial potential and relative error of epicardial reconstruction of an
ectopic atrial activity focus on the Right atria appendage. Epicardial potential and
relative error of epicardial reconstruction of an ectopic atrial activity with its origin
located in right atrial appendage region at different timings at increasing rates (A-C)
from a cell/node located on the left atria, using 512-, 256- and 64-lead ECG. The
epicardial potentials of real activation (red line), zero (black line), first (blue line),
second (green line) order Tikhonov regularization method can be observed in (i). RE
between real and reconstructed patterns using zero (black line), first (blue line) and
second (green line) order Tikhonov regularization method can be observed in (ii).
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Comparison of the atrial surface reconstruction of Re-entry

activation.

Different re-entry atrial activation patterns were analysed. Heterogeneous electro-

physiology with remodelling was used, as with the analysis of fast and slow rates.

Figure 8.10: Snapshot of epicardial reconstruction of a rotor wave with its origin
located at the sino-atrial node region. Snapshot of epicardial reconstruction of a rotor
wave with its origin located in the sino-atrial node region at different timings (160,
220, 340 and 500 ms). Real activation pattern (A) were compared with reconstructed
pattern using zero (B), first (C) and second (D) order Tikohonov regularization with
512-lead ECGs.

Figure 8.10 shows epicardial activation maps of a re-entrant atrial activation cen-

tred on the sino-atrial node (SAN). The maps were obtained at different timings

for real (Figure 8.10A) and reconstructed signal using all three Tikhonov regular-

ization methods with 512-leads ECG (Figure 8.10B-C). Figure 8.11 shows epicardial

potentials (Figure 8.11 top) and RE signals (Figure 8.11 bottom) of the same atrial

activation.
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When comparing the different activation maps, the zero order reconstruction

showed good feasibility for reconstructing the scroll waves with certain degree of noise

(Figure 8.10B). Despite the noise, the key features of the location of the scroll-wave

tip and gross atrial activation were captured. The first and second order Tikhonov

approaches did not result in reliable reconstructions because the signal was smoothed

and thus failed to capture the spatially complex pattern (Figure 8.10 C and D). For

the case of epicardial potentials, the 512- and 256-lead systems showed similar results

when comparing the RE (Figure 8.11). The RE calculations showed a peak at the

beginning of the rising phase mainly for first and second order Tikhonov regulariza-

tion (Figure 8.11); this meant a delay in the reconstructed signal. This delay may

affect the reconstructed map and explains the reason of being unable to track the

re-entry wave, and was consistent with the results at fast ectopic rates.

Figure 8.11: Epicardial potentials and relative error of epicardial reconstruction
of a rotor wave with its origin located at the sino-atrial node region. Epicardial
potentials and relative error of epicardial reconstruction of a rotor wave with its
origin located at the sino-atrial node region from a cell/node located on the left
atria, using (A) 512-, (B) 256- and (C) 64-lead ECG. The epicardial potentials
of real activation (red line), zero (black line), first (blue line), second (green line)
order Tikhonov regularization method can be observed in (i). RE between real and
reconstructed patterns using zero (black line), first (blue line) and second (green
line) order Tikhonov regularization method can be observed in (ii).
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Discussion

Major contribution

By using a biophysically detailed computer model of human atria-torso and different

Tikhonov regularization methods we have reconstructed the epicardial atria acti-

vation of arrhythmic rapid excitation in association with both of ectopic focal and

re-entrant activity. Our results provide novel insight into the effectiveness of different

methods under varying underlying atrial electrophysiology and activation patterns.

Specifically, we have demonstrated that the Tikhonov regularization methods

which produces the most reliable reconstruction is dependent on AP morphology

and activation rate. The second order regularization method provided better re-

constructed atrial activation during ectopic atrial pacing with more squared action

potentials and slow rates with homogeneous and heterogeneous electrophysiology,

compared with first and zero order. However, zero order performed better under re-

entry and fast ectopic atrial activation, wherein short and frequent action potentials

are observed. These results showed how the smoothing properties of the different

order Tikhonov regularization affect the reconstructed epicardial solution.

The number of body surface potential leads were artificially increased using sim-

ple interpolation [38, 39], which improved the reconstructed solution. The minimum

number of electrodes varied depending on the type of epicardial potential to re-

construct. However, reliable time activation patterns (isochrones) were possible to

obtain with 512- and 256- lead ECG systems, for ectopic activation cases. Unfortu-

nately, in none of the cases the 64-lead ECG system produced a reliable solution.

The RE showed the delay or advance produced in the reconstructed potentials

which may affect the diagnosis of the disease, mostly due to the smoothing properties.

In some cases (slow pacing) this does not affect the activation maps obtained, which

plays an important role in the location of the origins of the ectopic foci activation.

However, in cases where rapid pacing was observed (rapid ectopic or re-entrant), this

effect was increased and influenced the computation of the atrial activation map.

limitations

The torso model lacks considerations of some other tissue types or organs (such as

muscles, fat tissue, bowel, kidneys and spleen) that may affect the amplitude of sim-

ulated surface potentials. However, the absence of those tissues does not have a large

effect on the polarity of the atrial-waves as demonstrated previously [24].
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Different types of interpolation can be used to improve the inverse problem in-

put [38, 39], however, the best interpolation method, the position and the minimal

distance between electrodes are still open questions [40, 41].

No noise was added in the any regularized solution which may produce important

differences. However, most of the ECG signals are highly filtered in order to be used

by diagnosis algorithms.

Future work

In the present study, we only tested the effectiveness of the inverse solution during

single atrial focal activity and a single centre of a rotor activity. However, a possible

extension is to test the effectiveness of the inverse solution during multiple wavelets,

using different constraints. For that purpose, consideration of combined use of inverse

solution with multi-leads algorithms, vecto-cardiograms, phase relationships and/or

correlation analysis may be necessary, warranting further investigation. Further

work to improve the reconstruction and therefore a comparison of the accuracy of

different inverse problem reconstruction with different spatial resolution and different

interpolation methods in all the different cases presented needs to be performed.

Conclusion

Different Tikhonov regularization methods with different ECG lead systems were

developed to reconstruct the epicardial atrial activation during rapid and irregular

atrial excitation waves, associated with both ectopic focal and re-entrant activity.

Activation maps, isochrones and RE showed how the reliability of the different re-

construction methods depended on the morphology of the epicardial potentials and

the rate of the activation.
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Chapter 9

Summary and Further work

This chapter summarises the research work, main contributions and future directions

of the presented Thesis, which are detailed below.

The major contributions of the Thesis can be summarized as:

• The improvement of the BSP model which include different internal organs

and soft/hard tissues with electrical conductivity inhomogeneities.

• The segmentation of two torso models based on male and female visible human

project data, in each of which tissue electrical conduction inhomogeneities were

included.

• The development of a novel and well validated model of human atria-torso, with

consideration of different positions of the atria inside the body. The model was

used to investigate possible effects of heart positioning on 64-lead ECG.

• A computational program to calculate the magnetic field and MCGs was cre-

ated which include different internal organs and soft/hard tissues with electrical

conductivity inhomogeneities.

• A novel human ventricle-torso model with simulated 36-lead ECG and MCG

matching experimental data was developed.

• The development of a computational program to solve the cardiac inverse prob-

lem by using the Tikhonov regularization method.

• A new algorithm was created to detect atrial ectopic foci from multi-lead ECG

systems.

• A new algorithm was created to identify atrial re-entry and fast ectopic foci

from multi-lead ECG systems.
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• A sensitivity analysis of 36-lead ECG and MCG under ischemic conditions,

from which the correlation between ischemic regions and characteristics of ECG

and MCG was established.

• A comparison of atrial surface reconstruction using different multi-lead systems

and different order Tikhonov regularization during ectopic foci and re-entry.

All these represent a substantial improvement to the available models and a sig-

nificant advancement in the studies of detecting cardiac arrhythmias non-invasively.

It was shown that there were some differences in the sensitivity of ECG and MCG

signals in response to ventricular ischemia; it is therefore interesting to investigate

possible sensitivity difference of ECG and MCG signals to other cardiac diseases to

establish if MCG can provide useful extra information compared to ECG.

In addition, the algorithm for detecting atrial ectopic foci and re-entry from

multi-lead systems has been developed by using new features of ECG signal analysis

(such as dipole evolution, quadrant division). To the author’s best knowledge, these

new features of ECG signals have not been proposed or applied for detecting cardiac

arrhythmias before. Furthermore, the study in Chapter 8 demonstrates for the first

time, the effects of epicardial potential morphology, heterogeneity and excitation

rates on different Tikhonov regularization with different multi-lead systems during

ectopic and re-entry atrial activation.

9.1 Computational heart-torso models

In this Thesis, a powerful set of computational tools for modelling the electrical

and magnetic fields produced by cardiac activity were developed. The model used

to calculate the forward problem and to solve the cardiac inverse problem forms a

significant advancement to the cardiac modelling field.

The BSP model consisted of: (i) a parallelised C++ program which computes

the forward problem using BEM; (ii) two realistic torso meshes; (iii) fine detail on

internal structures, such as the spine, ribs, kidneys, stomach and liver as well as

blood-masses and lungs; (iv) multiple, experimentally justified orientations of the

atria and ventricles. All the torso geometries and their inhomogeneities were seg-

mented solely as part of this Thesis.
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Major contribution

The present model has the following advantages over previously published models

[1, 2] in the following ways: (i) realistic geometries were used rather than idealised

ones, (ii) different organs were segmented and included rather than only idealised

lungs used in the previous study, (iii) only one atrial orientation was previously

used, whereas the present study uses two atria/ventricles orientations. In addition,

the model was validated (and applied in two studies (Chapter 5 and Chapter 7) by

considering BSP patterns, dipole evolutions and different multi-lead ECG systems

(see Chapter 4). These are substantially improvements compared to the previous

studies, which were only validated through the 12-lead ECG [1, 2]. The additions

made to the model significantly improve its clinical relevance and provide a powerful

in silico tool for theoretical investigation of non-invasive approaches to detect cardiac

arrhythmias.

The MCG model consisted of: (i) a parallelised C++ program which computes

the forward problem using BEM; (ii) and the same realistic torso geometries and

their inhomogeneities used in the BSP model. Furthermore, the MCG model offers

a comparable, if not better, level of validation compared to other published models

(see Chapter 4), which allowed investigation into the diagnostic potential of MCG

compared to ECG for different cardiac diseases (see Chapter 7).

The computational model used to calculate the cardiac inverse problem solution

consisted of: i) a parallelised C++ program which computes the inverse problem

using BEM; (ii) and the same realistic torso geometries and their inhomogeneities

used in the BSP model. Furthermore, the inverse problem model offers comparable,

if not better, results than other published models in the sense that the computing

time is no more than the BSP method used and a comparison/validation with the

real atria simulation was also obtained. This allowed investigation of different heart

surface reconstruction techniques under different configurations (see Chapter 8).

Further work

In the future, further different tissue types and organs can be segmented and included

in the torso model to improve the accuracy of simulated ECG and MCG signal, as

well as their respective surface reconstruction. Also, the motion of the body and

internal organs, such as respiration or cardiac contraction, can be incorporated into

the model to increase the accuracy of the present model. Further clinical MCG signals

and atrial epicardial measurements are also needed to validate the accuracy of the
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MCG and inverse problem model; unfortunately, these measurements are difficult to

obtain under experimental settings [3]. Nevertheless, the models presented provide

a powerful in silico tool for theoretically investigating cardiac arrhythmias through

non-invasive approaches.

9.2 Multi-lead ECG algorithm

In this Thesis, a new algorithm was developed to locate the origin of rapid and

irregular atrial excitation waves, associated with both ectopic focal and re-entrant

activity, by using a multi-lead ECG system. This represents a significant improve-

ment over previously developed algorithms to predict AF origins associated with

focal and re-entry activities [4]. Therefore, the methods/algorithm presented in this

thesis may become a vital part in the early diagnosis for the onset of AF, helping in

the global effort to manage this epidemic more effectively and improve the quality

of patients’ lives.

Briefly, the algorithm can be divided in two parts: (i) a study described in Chap-

ter 5, which locates the origins of ectopic activity; and (ii) a follow-up study presented

in Chapter 6, which extended the algorithm to be used during fast pacing and re-

entry. This second part is a vital step in the process, because of the similarities in

the 12-lead ECG signals which makes it difficult, if not impossible, to distinguish

them.

Major contribution

The first part of the algorithm presented, i.e. Chapter 5, demonstrated a success rate

of 93%. The developed algorithm is, to the author’s best knowledge, the first to be

based on such a multi-lead ECG system. Simulation results indicate that the extra

level of detail provided by such a system is useful in accurately locating focal activity.

The multi-lead ECG systems are not as clinically available as the 12-lead ECG (as

there is one of these at every hospital bed) and one of the aims of this study was to

indicate whether the extra level of detail provided by a multi-lead system provides

benefits over the 12-lead ECG.

The first part of the algorithm has two key advantages: (i) splitting the torso into

two sets of quadrants means that the algorithm is not specific to an electrode array

set-up; in other words, any array which covers the front and back of the torso may be

used, and the algorithm need not be adjusted. This is certainly important if it is to

be used in the clinic, where the 64 lead vest may not be available; (ii) the algorithm
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is based on polarity patterns of the P-waves, rather than the detailed morphology it-

self. Whereas this does not provide the level of detail that PWM does, it helps in the

following ways: (a) not basing the algorithm on fine details that may vary from case

to case; (b) the effect of noise is reduced, in other words, whereas noise may affect

PWM, it will not affect the polarity, unless noise is higher than signal, in which case

the data is not suitable for any data analysis; (c) not basing any decisions on bifid-

ity, which can be affected by noise and has caused problems in other algorithms [5, 6].

The second part of the algorithm, i.e. Chapter 6, identifies the correct polarity

of the f-waves, and subsequently locates the origin of atrial fibrillation in association

with both ectopic focal and re-entrant activity. The success rate of the algorithm

was 92% and 75% for focal and re-entry activation respectively. Re-entry and focal

activation were distinguished with a success rate of 88%.

The second part of the algorithm has two key advantages: (i) It can locate the

time interval and (ii) the source of the atrial activation when f-waves are presented.

The time interval was obtained through the calculation of the atrial dipole from a

multi-lead system, whereas the source of the atrial activation was obtained through

the use of FFT properties. These two aspects are, to the author’s best knowledge,

these results represent the first effort to distinguish the main activity and find the

position of the focus and tip of the re-entry from a multi-lead ECG. The algorithm

developed in the present study using 64-lead ECG provided sufficient information to

locate the origin of the atrial activation (see Chapter 6).

Further work

The algorithm was developed using simulation data, where it is more straight-forward

to correlate BSP patterns with atrial activation sequences than in an experimental

setting. Therefore, further tests involving real ECG data from experimental models

with known atrial activation

origins are required.

A spatial refinement of the first part of the algorithm can be performed, a previ-

ous attempt can be found in [7]. However, the improvement in the spatial resolution

produced a decrease in the accuracy of diagnosis. Additionally, the minimum num-

ber of electrodes that can produce the same results can be further investigated.

The algorithm was proved to be effective for detecting a single atrial focal ac-

tivity and a single centre of a reentry activation. However, a possible extension
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is to identify multiple wavelets, using the dipole evolution patterns. For that pur-

pose, consideration of combined use of the present algorithm with vectorcardiograms,

phase relationships, correlation analysis and inverse problem reconstruction may be

necessary, warranting further investigation.

9.3 MCG and ECG comparison

The results presented in this study provide insight into the discussion around the

potential of MCG in cardiac monitoring, suggesting that it can provide extra, use-

ful information which improves diagnose and characterization of cardiac diseases,

mainly those that are asymptomatic to the ECG. Therefore in this Thesis, the dif-

ferent features of 12-, 36-lead ECG and MCG, BSP and MCG maps during normal

and variant ischemic conditions were investigated, especially their relative differences

between the normal and ischemic conditions. Also, the regional dependence of the

measured relative difference and how the area with maximal relative difference on

the body surface varied due to altered stage and location of the ischemic region was

investigated.

Major contribution

The major contributions were: (i) the comparison of 12-, 36-lead ECG and MCG av-

eraged relative difference in the QRS complex, T-wave and ST-segment, to indicate

the advantages of implementing multi-lead ECG/MCG systems than the conven-

tional 12-lead ECG in diagnosing the ischemic condition. In addition, by comparing

averaged relative difference it was found that the 36-leads ECG was more sensitive

than the 36-leads MCG in detecting changes in the T-wave, however, for detect-

ing changes in the ST-segment the MCG showed greater sensitivity by producing a

greater relative difference; (ii) The calculation of relative differences in both ECG

and MCG body map signals, which showed regional-dependent changes to ischemic

condition on the body surface of the torso, but with MCG showing a stronger cor-

relation between ischemic region in the heart and the maximal difference map on

the body surface. Finally, (iii) a correlation between ischemic region in the heart

and the maximal relative differences of MCG during ST-segment was obtained which

provided a theoretical basis for non-invasively diagnosing ischemic region, which to

the author’s best knowledge is the first attempt to directly correlate both particu-

larities. Such correlation was not seen from the ECG maps.

Therefore, results suggested that the 12-lead ECG is less effective to provide

diagnosis of the ischemia, whereas the 36-lead ECG and in particular MCG offer

232



Chapter 9. Summary and Further work

advantages in the identification of ischemic conditions. By comparing the relative

differences in the BSP and MCG maps, the results showed that MCG has greater

sensitivity than ECG in response to ischemia, which may provide an alternative

method for the diagnosis of ischemia.

Further work

A possible extension of this study is to produce an algorithm to detect and locate

the ischemia regions with high resolution using MCG maps, BSP map or specific

electrodes/sensors based on the correlation found in the study. In the same sense,

different ECG and MCG signals during cardiac arrhythmias can be compared to test

further differences between these two signals. In addition, inverse solutions can be

calculated and compared for both ECG and MCG signals, during different cardiac

arrhythmias.

9.4 Atrial surface reconstruction

The inverse problem in electrocardiography clearly offers advantages over prevail-

ing imagining methods [3], which are usually invasive or expensive. Unfortunately,

further research is still needed in order to make it clinically practical. In the study

described in Chapter 8, a biophysically detailed computer model of human atria-

torso and different order Tikhonov regularization method were used to reconstruct

the epicardial atria activation during ectopic focal and re-entrant activity. Activation

maps, isochrones and relative errors (RE) were used to compare real atrial simulation

and reconstructed ones, in order to investigate how the different multi-lead ECG and

the different regularization methods affect the epicardial reconstruction.

Major contribution

The major contributions were: (i) a good activation pattern was possible to obtain

with any 512- and 256-lead ECG, but not with a 64-lead ECG system. (ii) Ac-

tivation maps, isochrones and RE showed that the surface reconstruction depends

on the morphology of the epicardial potentials and the rate of the activation. (iii)

Second order Tikhonov regularization method provided a better reconstructed atrial

activation, and slow ectopic atrial activation compared with first and zero order.

However, zero order worked better under re-entry and fast ectopic atrial activation.

(iv) The smoothing properties of the first and second order Tikhonov regularization

produced a slight delay or advance in the reconstructed potentials which may affect

233



Chapter 9. Summary and Further work

the diagnosis of the disease, which was showed through the RE calculation.

Therefore, the results showed that ectopic focus and re-entry atrial activation

can be reconstructed through a simple Tikhonov regularization method, however,

the minimum number of electrodes and the order of Tikhonov regularization signif-

icantly depend on the morphology of the epicardial potential and the rate of the

activation.

Further work

In the present study, the effectiveness of the inverse solution during single atrial

focal activity and a single centre of rotor activity were tested. However, a possible

extension is to test the effectiveness of the inverse solution during multiple wavelets,

using different constraints. In addition, consideration of combined use of inverse

solution with multi-lead algorithms, vecto-cardiograms, phase relationships and/or

correlation analysis can also be tested, warranting further investigation.

Different regularization or inverse reconstruction methods, which have been pro-

posed but not tested, can be further performed. In addition, ventricular surface

reconstruction during different ventricular arrhythmias can also be tested.

No noise was added in any reconstruction, therefore a future study should include

how the epicardial reconstructions are affected by the addition of it.
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Appendix A

Supporting Information MS2

Supporting Text S3

The overlapping area, region where re-entrant and ectopic activation cannot be dis-

tinguished (magenta regions in Figure A.11DF, 2DF, 3DF), depends on the fre-

quency used to calculate the AFFTr ratios, this frequency depends on the dominant

frequency (DF) of each activation:

AFFTr1DF =
Area under the FFT curve between 0 and the DF in Hz

Area under the FFT curve between 0 and 50 Hz

AFFTr2DF =
Area under the FFT curve between 0 and 2 times the DF in Hz

Area under the FFT curve between 0 and 50 Hz

AFFTr3DF =
Area under the FFT curve between 0 and 3 times the DF in Hz

Area under the FFT curve between 0 and 50 Hz

Once the ratios are calculated, scatter plots of the ratio values against the DF

are created to find the ratio at which the overlapping area is minimized.

Figure A.1: Scatter plots of different (AFFTr) against the DF, the magenta area is
the overlapping area where both activities can occur. 1DF is (AFFTr1DF) against
the DF. 2DF is (AFFTr2DF) against the DF. 3DF is (AFFTr3DF) against the DF.
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The properties of the scatter plots of different (AFFTr) against DF are displayed.

Figure A.2A, shows the width of the overlapping area against the DF. Figure A.2B,

shows the number of cases (re-entrant and focal ectopic activation) inside the over-

lapping area against the DF. Figure A.2C, shows the number of focal ectopic acti-

vation inside the overlapping area against the DF. Figure A.2D, shows the number

of re-entrant activation in the overlapping area against the DF.

Figure A.2: Properties of the overlapping area from scatter plots against different
values of the dominant frequency (DF). (A) Width of the overlapping area from
scatter plot vs values of DF. (B) All simulation cases (Ectopic focal and re-entrant
activity) that are inside the overlapping area vs values of DF. (C) Number of Ectopic
focal activity simulations inside the overlapping area vs values of DF. (D) Number
of Re-entrant activity simulations inside the overlapping area vs values of DF.
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Supporting Text S4

White noise was added to re-entrant and ectopic focus ECG signals with origins in

the right atria appendage (Figure A.3). A dipole sum was obtained in each case

(Figure A.3Ai and Bi), and the time interval of the main activation was selected

(Figure A.3A and B). Subsequently, AFFTr2DF signals of original and noise signals

were computed to differentiate ectopic and re-entrant activation (Figure A.3C and

D).

20% and 40% white noise () was added to simulated ECG signals using the

formula:

σ = Rnd × RMS × f (A.1)

Where Rnd are random numbers, RMS is the root mean square value of the body

surface potentials over the entire time period to be analyzed, and f is the percentage

of noise to be added, i.e. f=.2 for 20% noise level, with a signal to noise ratio (SNR)

of 10.
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Figure A.3: Illustration of dipole sum and AFFTr2DF signals of ectopic and re-entrant
activation focused on the right atrial appendage with added white noise. Dipole sum
(green line) with 20% added white noise (blue line) (i) and lead 15 (black line) with
20% added white noise (red line) (ii). Time interval (section in magenta shadow)
of ectopic (A) or re-entrant (B) patterns. Power spectral density for ectopic focal
(C) and re-entrant (D) activation without (gray shadow) and with added noise (red
shadow) at 20% (C-i and D-i) and 40% (C-ii and D-ii) noise level. The darker shadow
corresponds to the area between 0 2 x Dominant frequency (DF). AFFTr2DF is the
ratio of the area under the power spectrum density in the ranges 0 (2 x DF) Hz and
(2 x DF) 50 Hz: AFFTr2DF = Area (0 - 2DF) / Area (0 - 50 Hz).

240



Appendix A. Supporting Information MS2

Supporting Text S5

Re-entrant and ectopic focus activations with origins in the inferior vena cava (IVC)

(Figure A.4Ai) were tested within a female torso model. The position of the atria

can be observed in Figure A.4Aii-iii. AFFTr2DF values of Lead-15 were obtained

to differentiate ectopic and re-entrant activation (Figure A.4B). Subsequently, the

dipole sum was calculated and the time interval of the main activation in each case

was selected (Figure A.4C). Polarity maps were then obtained in each case (Figure

A.4D). The algorithm correctly identifies the correct quadrant in each case.
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Figure A.4: Illustration of algorithm implementation in a female torso geometry.
(A): Illustration of atria ectopic activation focused on the inferior vena cava (i)
placed inside a female torso geometry (ii). (B): Power spectral density for ectopic
focal (blue) and re-entrant (red) activity located in the IVC. The darker shadow
corresponds to the area between 0 2 x Dominant frequency (DF). AFFTr2DF is the
ratio of the area under the power spectrum density in the ranges 0 (2 x DF) Hz and
(2 x DF) 50 Hz: AFFTr2DF = Area (0-2DF) / Area (0-50Hz). (C): Dipole sum (green
line) (i) and lead 15 (black line) (ii), (i) used to identify the time interval (section
between dotted lines) of the main atrial activation. (D): Atrial-wave polarity maps in
the anterior (i) and posterior (ii) part of the torso. A red sign represents a positive
polarity in the atrial-wave, the blue sign is a negative polarity and a purple sign
represents a biphasic atrial-wave. The black square represents the electrode position
of lead 15. In each case the algorithm correctly identifies the correct quadrant.
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