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Abstract

Statistical Disclosure Control for Frequency Tables

A thesis submitted to The University of Manchester for the degree of
Doctor of Philosophy

in the Faculty of Humanities

2016

László Antal

Disclosure risk assessment of statistical data, such as frequency tables,
is a prerequisite for data dissemination. This thesis investigates the
problem of disclosure risk assessment of frequency tables from the perspective
of a statistical institute.

In the research reported here, disclosure risk is measured by a mathematical
function designed for the data according to a disclosure risk scenario.
Such functions are called disclosure risk measures. A disclosure risk
measure is defined for frequency tables based on the entire population
using information theory.

If the disclosure risk of a population based frequency table is high,
a statistical institute will apply a statistical disclosure control (SDC)
method possibly perturbing the table. It is known that the application
of any SDC method lowers the disclosure risk. However, measuring the
disclosure risk of the perturbed frequency table is a difficult problem. The
disclosure risk measure proposed in the first paper of the thesis is also
extended to assess the disclosure risk of perturbed frequency tables.

SDC methods can be applied to either the microdata from which the
frequency table is generated or directly to the frequency table. The two
classes of methods are called pre- and post-tabular methods accordingly.
It is shown that the two classes are closely related and that the proposed
disclosure risk measure can account for both methods.

In the second paper, the disclosure risk measure is extended to assess
the disclosure risk of sample based frequency tables. Probabilistic models
are used to estimate the population frequencies from sample frequencies
which can then be used in the proposed disclosure risk measures.

In the final paper of the thesis, we investigate an application of building
a flexible table generator where disclosure risk and data utility measures
must be calculated on-the-fly. We show that the proposed disclosure risk
measure and a related information loss measure are adaptable to these
settings. An example implementation of the disclosure risk and data
utility assessment using the proposed disclosure risk measure is given.
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Chapter 1

Introduction

1.1 Statistical Disclosure Control

The collection and dissemination of data serve various purposes, such

as supporting the policy and decision making processes. The quality

of such decision making effects all of our lives and therefore the need

for data collection and dissemination is widely accepted as necessary

component of a well-functioning society. Many organisations collect and

treat data for statistical purposes. However, the confidential treatment of

individual data is a requirement for every organisation that holds data.

This requirement has emerged as a social need and is regulated by law in

many countries. A high number of organisations collect and treat data

for statistical purposes.

Statistical agencies produce outputs based on confidential data.

Confidentiality involves not just excluding unauthorised people from

data processing but also not disseminating data containing identifiable

individual information. In order to maintain the individuals’ confidentiality,

statistical disclosure control (SDC) methods are applied to the data before

dissemination. Statistical disclosure control aims at discovering the best

possible methods to ensure confidentiality.

The social need for data protection stems from the belief that confidential
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data might be used intentionally for harmful purposes. A hypothetical

person who attempts to use disseminated data for detrimental purposes

is called the intruder. The intruder scrutinises the data and attempts

to reveal confidential parts of them. If the intruder is able to connect

some parts of the released data to a certain individual, then a breach of

confidentiality might happen. The risk inherent in the data might increase

as the number of such possible individual-data matches rises. Statistical

disclosure control methods limit the intruder’s opportunity for matching

individuals and data. In fact, SDC methods foster the dissemination of

data since they eliminate or reduce the disclosure risk to an acceptable

level before the data release.

In order to identify the risk in the data to be disseminated, a data

protector has to assess the potential sources of risk. These sources come

from assumptions about how an intruder attempts to reveal confidential

data. The assumed methods of a potential intruder are called intruder

scenarios. To prevent such intrusion, the data protector has to act as an

intruder and detect possible vulnerabilities of the data. This detection

should be followed by the elimination of the vulnerabilities.

The other, also very important, side of the coin is the utility of the

released data compared to the data before SDC methods are applied. SDC

methods distort the distribution of the data. The aim when employing

SDC methods is to cause the least distortion, while guaranteeing confidentiality.

1.2 Tabular Data

Statistical disclosure control methods apply to microdata as well

as to tabular data. This thesis deals with tabular data, especially with

frequency tables. A cell in a table is determined by a category-combination

of table-spanning variables.1

1To generate a frequency table we need to select variables of a microdata set and
cross-classify them. We refer to the selected variables as table-spanning variables.
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A frequency table can be based either on the data of the entire

population or on sample data. The distinction is important as the

evaluation of the disclosure risk in the two cases requires different methods.

In a population based table, for example a census table, each individual

contributes to one cell, that is, the cells partition the population into

equivalence classes. The cell value or cell frequency or cell count is the

number of individuals contributing to the cell or, in other words, the size

of the equivalence class.

Sample based tables do not include every individual of the population.

Individuals not selected in the sample do not contribute to the cells,

therefore a sample-based cell frequency will usually be lower than the

(possibly unknown) population cell frequency. Often, a sample weight is

associated with each responding unit in the sample and only a weighted

count might be released.

Throughout the thesis we call a cell value small if it is 1 or 2. Identity

disclosure happens when an individual can be identified in released data.

An intruder might identify an individual without further knowledge if

the cell value is 1. If the cell value is 2, then one of the contributors

of the cell might identify the other without further knowledge. In such

situations the first contributor can be considered as an intruder. If a

cell value is at least 3, then the individuals might be identified if further

information is available to the intruder. By further information we mean

that the intruder has knowledge of cells where some of the individuals

fall. In other words, the intruder might have his/her own frequency

table on a subset of the population (or sample) and he/she can extract

his/her own frequencies from the frequency table released by the statistical

institute. There might be small cell values in the resulting frequency

table. The chance of identity disclosure usually decreases as the frequency

of a cell rises. However, an intruder might have extensive knowledge on

certain datasets, therefore even high cell frequencies can lead to identity

disclosure. Disclosive cells might be defined differently depending on the
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data protector’s assumptions about intruder knowledge.

Identity disclosure itself might not do much harm to the identified

individual. However, identity disclosure often implies attribute disclosure.

In case of attribute disclosure the intruder learns a new attribute, new

information about an individual or a group of individuals. For example, a

row in a frequency table might enable attribute disclosure if it has only one

positive cell value and the rest of the cells are zeroes. The cells of the row

and the categories of a table-spanning variable correspond, therefore the

intruder will know that the individuals contributing to the row necessarily

have only one particular category of the variable. Conversely, a row with

the same total but equal cell frequencies is likely to be of lower disclosure

risk. A disclosure risk measure should reflect the risk (and the lack of

risk) of identity disclosure and attribute disclosure.

To measure disclosure risk in tabular data, a substantial part of this

work employs the entropy to formulate a disclosure risk measure. The

entropy of a P = (p1, p2, . . . , pK) probability distribution is

H(P ) = −
K∑

i=1

pi · log pi .

Entropy is suitable to capture the risk of attribute disclosure. It takes

its extreme values when the P distribution is uniform or degenerate. This

property reflects the risk (and the lack of risk) of attribute disclosure

described above.

Therefore, in the case of population frequency tables the entropy (or

an appropriately chosen function of the entropy) helps to measure the

disclosure risk. However, entropy is defined for probability distributions

and for count data it will first be necessary to adapt it accordingly

and apply a transformation. One of the main points of this work is to

identify how the entropy can capture the disclosure risk in population

based frequency tables. Chapter 3 describes a possible approach to this

problem.
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If the disclosure risk measured by the entropy is high, a statistical

disclosure control method will be applied to the data. This method

can be perturbative, that is, some of the categories of some individuals

are deliberately changed in order to introduce more uncertainty into

the table. The extent of distortion caused by the SDC method requires

the comparison of the original and the perturbed data. f -divergences

(where f is an appropriately chosen function) can be employed in order to

compare the probability distributions of the original and perturbed data.

The f -divergence of the distributions, denoted by P = (p1, p2, . . . , pK)

and Q = (q1, q2, . . . , qK), is given by

Df (P ‖ Q) =
K∑

i=1

qi · f
(
pi
qi

)
.

Chapter 3 also introduces some well-known f -divergences and their

suitability for measuring the utility of the perturbed data.

In Chapter 4 we focus on sample based tables. Although the disclosure

risk of sample based frequency tables needs to be measured differently to

population based tables, an entropy based approach can also be used. The

difference from population based tables is that the intruder does not know

whether a particular individual contributes to the table or not. Even if

the intruder knows that a particular individual contributes to a sample

based frequency table, the intruder might not be aware of individuals

having the same or similar attributes, therefore attribute disclosure might

not happen with absolute certainty. In other words, sampling brings more

uncertainty from the intruder’s point of view. This uncertainty should be

reflected in the disclosure risk measure. Chapter 4 deals with the problem

of measuring disclosure risk in sample based frequency tables.

If the disclosure risk measure is high and an SDC method is applied

to the sample-based table, then the problem of measuring utility arises

again. The situation resembles the problem of measuring the utility in

population-based tables.
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Chapter 5 presents an application based on the theoretical parts of

Chapters 3 and 4. It is shown how a statistical institute can carry out

disclosure risk assessment on-the-fly in the context of a flexible table

generator. This is a web-based platform where users can define and

generate their own tables of interest. There are several examples of these

web-based platforms that are in use for census data, for example in the

United States and in Australia.

Chapter 6 summarizes the results of the main chapters and discusses

potential future work.

1.3 ’Beyond 2011’ Programme

The PhD studentship is sponsored by the ’Beyond 2011’ programme

of the Office for National Statistics (ONS). The programme aims at

discovering viable alternatives to the traditional census based on complete

enumeration. The programme intends to exploit administrative data

sources, design-based and model-based estimates to produce census

outputs. This approach requires fundamentally new SDC consideration

compared to previous censuses. In particular, the Office for National

Statistics identified attribute disclosure as the key risk of disclosure that

should be considered in the disclosure risk assessment for UK Census

tabular outputs. When assessing disclosure risk in the 2011 UK Census

tables, heuristics were used to assess attribute disclosure based on multiple

generations of tables from test data. These methods are described in

Chapter 3. Therefore, the main driver for this thesis supported by

the ’Beyond 2011’ programme was to develop a quantitative disclosure

risk measure for attribute disclosure to replace the heuristics that were

developed for the 2011 Census.

Another aspect of the ’Beyond 2011’ programme is the need to

modernize data dissemination. The number of potential data users is

rising and they desire instant access to the data. To meet these increasing
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needs, statistical agencies are considering new, alternative channels of

data dissemination. The ONS aims to promote online availability for

the 2021 census outputs in order to ease data access. In case of tabular

outputs the goal would be to enable the users to tailor and generate their

own tables through web-based platforms. From a statistical disclosure

point of view it demands the automated assessment of disclosure risk.

This assessment should be fast and on-the-fly since it would delay the

data access. Therefore, ideally the system of the web-based platform

should employ formulae that are relatively easy to calculate and should

capture the disclosure risk. If the risk exceeds a certain level set by

the statistical institute, the output might either be denied or it may be

perturbed, reassessed for disclosure risk and subsequently released to the

data user.

This thesis aims to contribute to the problems mentioned above. It

seeks new approaches to the disclosure risk measurement of census outputs,

especially frequency tables. Such tables can be based either on whole

population counts or on sample counts.

1.4 Alternative Format Thesis

The thesis is written using the alternative format, that is, it centres

on three papers. Each of the main chapters, namely Chapters 3, 4 and 5,

includes a paper. Each paper is the central part of its chapter. The papers

present the essence of the chapter and they are suitable for publication on

their own. However, they pertain to the same research area and together

they constitute a body of work on a set of related statistical disclosure

control problems. The papers were written concisely in order to make

their publication possible. Therefore, additional ideas and details are

given in the corresponding chapters.

The papers presented in Chapters 3, 4 and 5 were co-authored with my

supervisors, Natalie Shlomo and Mark Elliot. Newly defined disclosure risk
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measures appear in every paper and the measures were developed through

the normal supervision process. The papers in Chapters 3 and 4 were

primarily written by myself with comments provided by my co-authors.

The application paper in Chapter 5 was led by Natalie Shlomo’s work

with contributions by myself and Mark Elliot.

1.5 Motivation

The motivation for this work is to define a disclosure risk measure

that reflects the properties of attribute disclosure in frequency tables.

The aim of introducing the disclosure risk measure is to facilitate data

releases by statistical institutes. The disclosure risk measure helps decide

whether particular data can be disseminated and/or whether disclosure

control needs to be applied prior to release.

The thesis takes the viewpoint of the statistical institute that has

access to the original data and needs to assess disclosure risk of statistical

outputs. The question addressed is how to quantify the disclosure risk in

frequency tables.

The thesis contributes to the SDC literature with respect to the

disclosure risk measurement using information theory. A central theoretical

goal is to show that entropy and conditional entropy can be used to

measure the disclosure risk.
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Chapter 2

Some Aspects of Statistical

Disclosure Control

This chapter highlights some aspects of statistical disclosure control

that are important from the point of view of a statistical institute.

The main objective of a statistical institute is to disseminate useful

data. Tabular data have always been a significant element of this

dissemination function. Recently, the demand for microdata sets has also

been increasing, mainly from researchers. Microdata offer more flexibility

than tabular data because they include more variables than a given tabular

output and serve as the basis of more sophisticated statistical analysis.

Regardless of the data format, statistical institutes have to protect

against potential disclosure. Section 2.1 discusses disclosure, disclosure

risk and disclosure risk measures in general. Section 2.2 introduces our

notation. Some measures of disclosure risk are presented in Section 2.3.

Section 2.4 describes SDC methods for tabular data. The list cannot

be exhaustive because SDC is a live research area in itself and new

SDC methods are always being investigated and introduced; the goal of

section 2.4 is to give an overview of basic SDC methods. In Section 2.5

we briefly discuss the loss of information SDC methods cause.
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2.1 Disclosure, Disclosure Risk and Disclosure

Risk Measures

Disclosure occurs if an intruder learns the identity and/or some

attributes of an individual or a group of individuals. By releasing data,

statistical institutes expose the individuals contributing to the data to

intruders’ potential attacks. Disclosure risk is a term that is hard to define

and may mean different things according to a disclosure risk scenario.

Data protectors have recognized and collected certain permutations that

lead to disclosure with high probability, for example, a cell value of 1 in a

frequency table might imply identity disclosure. The disclosure risk of

a particular microdata set or table becomes more severe as the number

of such permutations increases. Disclosure risk measures quantify the

disclosure risk with respect to a specified risk scenario. Disclosure risk

measures, in fact, reflect the data custodian’s understanding of disclosure

risk and assign numerical values to statistical outputs, such as frequency

tables. Disclosure risk measures are based on the list of potentially

disclosive permutations, for example the number of cell values of size 1

in a table. However, such a list cannot be exhaustive, hence there is no

universal or best disclosure risk measure. The need for disclosure risk

measures lies in supporting good decision making whether particular data

are safe to release or not. Without disclosure risk measures such decisions

are subjective and subject to individual cognitive biases. Numerical

values make the decision more objective and impartial. In other words,

disclosure risk measures are mathematical functions. Such functions are

applied to the statistical output to be released and they compress the

disclosure risk into a numerical value.

Throughout the thesis the term ’disclosure risk measure’ has two

meanings. It is either a mathematical function as described above or the

numerical value that such a mathematical function provides when applied

to particular data.
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Since disclosure risk and disclosure risk measure are closely related

terms, sometimes, for ease of expression, we use them interchangeably.

2.2 Notation

Throughout the thesis we use the following notation.

• The number of cells in the frequency table(s) is K.

• The cells are denoted C = {c1, c2, . . . , cK}.

• The vector of frequencies of the original population based frequency

table is F = (F1, F2, . . . , FK).

• The sum of the frequencies is N =
∑K

i=1 Fi. It means implicitly

that the population consists of N individuals.

• The set of individuals will be denoted I = {a1, a2, . . . , aN}.

• The probability distribution P = (p1, p2, . . . , pK) will provide the

probability that an individual falls into cell ci in the original

population based table.

• The vectors of frequencies of perturbed and sample based tables

are G = (G1, G2, . . . , GK) and f = (f1, f2, . . . , fK) respectively.

• In few cases we will use the uniform distribution. If A is a (finite)

set (for example C or I), then UA is the uniform distribution on A.

The power set of A is P(A) = {B : B ⊆ A}, while the cardinality

of A is |A|.
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2.3 Measuring Disclosure Risk

2.3.1 Variables of Microdata Sets

Microdata sets are not the main topic of our discussion. However,

tabular data are generated from microdata, and as we will discuss some

SDC methods are applied to the originating microdata, therefore a brief

discussion of microdata is warranted.

Microdata sets usually contain more information than tabular data,

and therefore a data protector needs to act more carefully. A microdata

set consists of data units, such as individuals, and variables that describe

the attributes of those data units. Hundepool et al. (2012) produced

a four-way categorization of variables, which with slight variation of

terminology is widely used for SDC purposes.

The first category is directly identifying variables, for instance name

or personal identification number. From a statistical disclosure control

point of view it is essential to remove such variables before the data are

disseminated.1 The main purpose of statistical data release is to provide

accurate information about the overall population. Data, including

microdata, may serve as a basis of decision making and/or statistical

analysis. Neither requires identifying variables, therefore the removal of

such variables does not conflict with the interest of data users.

The second category of variables is called quasi-identifiers. Such

variables are usually categorical and do not identify individuals directly.

However, in combination with other variables they might allow an intruder

to identify individuals.

1A directly identifying variable identifies the individuals without any further
information. An intruder might identify an individual by name or personal
identification number. However, there are direct identifiers that do not raise much
disclosure risk. Such identifiers usually provide a unique number for each individual
in the population/sample. They are defined by the statistical institute and not
disseminated. Since an intruder does not know which number relates to which
individual, breach of confidentiality is unlikely to happen. Such directly identifying
variables can be used to link two or more different datasets within the statistical
institute or by a trusted third party.
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Non-sensitive variables are the third category. The disclosure of

such variables does not have much detrimental effect. An example of a

non-sensitive variable might be the number of books read in a month

from a survey examining access to public libraries.

The fourth category, which consists of sensitive variables2, is the

biggest concern from a statistical disclosure control point of view. Individuals

would like to keep sensitive variables, such as health information or income,

secret. When providing statistical institutes with sensitive variables,

individuals place their trust in the institutes. Disclosure of sensitive

variables might result in the loss of individuals’ trust and impact negatively

on response rates.

The four categories listed above are not necessarily disjoint. For

example, the ’gender’ variable might be considered as a quasi-identifying

and non-sensitive variable.

The overarching assumption of disclosure risk problem of microdata is

that an intruder attempts to identify individuals using the quasi-identifiers.

A data protector often considers disclosure scenarios. He/she tries to guess

how an intruder would attack the microdata. The data protector assumes

that the intruder might base the attack on quasi-identifying variables,

called key variables. For example, the data protector often calculates

frequencies given by the value-combinations of certain key variables in

the microdata. If some frequencies are low, then the data protector needs

to act accordingly.

2The categorization of a particular variable into the class of sensitive variables
should depend on what the society considers as sensitive. The law of a certain country
always tries to reflect the needs of the society. Sensitive variables, and in general,
statistical confidentiality is also regulated by law. In the UK sensitive variables are
regulated in the Data Protection Act 1998. At European level the European Data
Protection Directive 1995 and the 831/2002 Commission Regulation are the most
relevant legal acts to our topic.
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2.3.2 Disclosure Risk Measures of Tabular Data

For tabular data Willenborg and de Waal (2001) assert that: ’Disclosure

risk [measures] may be defined either for the whole table or separately for

each cell into which the table is organized.’ In both cases, SDC methods

need to be applied if the disclosure risk measure exceeds a predefined

threshold.

2.3.2.1 Disclosure Risk Measures of Table Cells

In understanding disclosure risk for tabular data we need to distinguish

between frequency tables and magnitude tables. See Willenborg and

de Waal (2001) for a discussion on the disclosure risk of both kinds of

tables. Here we outline the essential issues.

2.3.2.1.1 Disclosure Risk Measures of Frequency Tables

A cell of a frequency table contains the number of individuals of the

population (or sample) that possess the cell-defining attributes. Frequency

tables are often generated and released from census data.

The most common disclosure risk measure for frequency tables is

called a threshold rule or minimum frequency rule. The disclosure risk

measure of a cell is high if the cell value is lower than a given threshold.

2.3.2.1.2 Disclosure Risk Measures of Magnitude Tables

Many disclosure risk measures have been introduced for table cells of

magnitude tables. They are often called ’sensitivity rules’3 (see Hundepool

et al. (2012)).

A definition of magnitude tables can be found in Hundepool et al.

(2012) as follows. ’In a magnitude table, each table cell value represents

the sum of a particular response, across all respondents that belong to

3Here ’sensitivity’ has a different meaning to that discussed for sensitive variables
of microdata. Here it refers to cells that are potentially disclosive.
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that cell. Magnitude tables are commonly used for business or economic

data providing, for example turnover of all businesses of a particular

industry within a region.’

For magnitude tables the (n, k)-dominance rule and the (p, q)-rule are

two of the most important sensitivity measures. The former defines a

cell sensitive if the n greatest contribution to the cell surpasses k% of

the cell value. The latter also has two parameters. It assumes that a

respondent’s contribution to the cell can be estimated within q% prior to

the data dissemination. The cell is considered sensitive if the respondent’s

contribution to the cell can be estimated within p% after the data release.

Oganian and Domingo-Ferrer (2003) introduced a conditional-entropy

related disclosure risk measure. (See also Domingo-Ferrer et al. (2002).)

The disclosure risk is defined for table cells and uses the conditional

entropy. It takes the original cell value as well as the intruder’s knowledge

into account. The disclosure risk for a particular cell is

DR(X ) =
1

H(X|Y = y)
=

1

−∑x Pr(X = x|Y = y) · log2 Pr(X = x|Y = y)
.

Here X represents a random variable that provides the cell value, while

Y is the intruder’s knowledge. The threshold rule, the (n, k)-dominance

rule and the (p, q)-rule quantify the disclosure risk before an SDC method

is applied to the table. DR(X ) may be employed after that.

The nature of DR(X ) is close to the disclosure risk measure we

introduce in Chapter 3. Our disclosure risk measure is defined for whole

frequency tables, not for table cells. We measure the disclosure risk before

as well as after an SDC method is applied to the table.

2.3.2.2 Disclosure Risk Measures of Entire Tables

So far we have discussed disclosure risk measures that are defined for

table cells. Such measures can easily be transformed into a disclosure risk

measure for the entire table, for example by calculating the number/percentage
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of cells that have higher cell-level disclosure risk measure than a given

threshold. Below we discuss further disclosure risk measures defined for

entire (frequency) tables in the SDC literature.

2.3.2.2.1 SDC Literature for Population Based Tables

There is limited literature that relates to the disclosure risk of whole

frequency tables, and in particular based on information theory. Frank

(1976) identified three types of potential scenarios for disclosure in

frequency tables.

The first assumes that only one individual contributes to a row in a

frequency table. In that case, the identification of the individual might

imply disclosure of new attributes.

Only two individuals are in a certain row in the second scenario and

they are not in the same cell. Each individual can then know the other’s

previously unknown attribute.

Also two cells are populated in the third scenario but only one of their

values needs to be 1. The individual who is unique in the row can then

know the attribute of the other contributors of the row.

These basic scenarios show some concepts of statistical disclosure

control. The data protector assumes that a potential intruder may or

may not contribute to the frequency table.

The concepts given by Frank (1976) are valid. However, a data

protector also needs to think about the data environment. The data

environment approach attempts to take into account all possible datasets

available to a potential intruder. It is assumed that the intruder tries to

link the available datasets to the disseminated data. For a reference on

the data environment see Elliot et al. (2010).

An information-theoretical approach to disclosure risk assessment was

introduced by Frank (1978). It is assumed that an intruder possesses

information about a set of individuals, denoted by A. The A ∈ P(I) set,

called the prior disclosure set, is random, there is a probability distribution
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given on P(I). Denote the distribution by DA. The prior information

allows the intruder to disclose (at least) the individuals of A after the

release of the frequency table. If every individual in I \ A falls into the

same cell, then every individual of I is disclosed by definition, otherwise

only the individuals of A. It defines a so-called posterior disclosure set,

denoted by B.

B =

{
I if the individuals in I \ A fall into the same cell,

A otherwise.

Since A is random, so is B. Denote the distribution of B ∈ P(I) by DB.

It is proven that

0 ≤ H(DA)−H(DB) ≤ log

(
1 +

K∑

i=1

(2Fi − 1)

)
,

where H(DA) and H(DB) are the respective entropies of DA and DB.

The H(DA) − H(DB) difference is suggested as a potential disclosure

risk measure. Under various assumptions about the DA distribution,

H(DA)−H(DB) is calculated exactly.

The subtraction-attribution probability (SAP) method (see Smith and

Elliot (2008)) is mainly based on the frequency table to be published

and on the intruder’s knowledge. The paper shows how zero cells in

the frequency table can lead to disclosure and provides a disclosure risk

measure.

Statistical institutes publish tables which by definition are the margins

of larger tables. In effect the internal cells of the larger table have been

suppressed. An important question is whether those internal cells can

be recalculated from the released marginals. Even if an intruder cannot

determine the frequencies exactly, a lower and an upper bound of an

internal cell can be given by the so called Frechet bounds. The bounds

depend on the number of the table-spanning variables. Assume that the

table has k spanning variables. We follow the notation of Fienberg (1999)
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and denote an internal cell by ni1i2...ik . The marginal total over the jth

variable is ni1...ij−1+ij+1...ik . If the summation is over more variables, then

the corresponding indices are substituted for ′+′ signs. It implies that the

overall total is n++...+.

The bounds for a 2 × 2 two-dimensional table, where i1, i2 ∈ {1, 2},
are given as follows.

min{ni1+, n+i2} ≥ ni1i2 ≥ max{ni1+ + n+i2 − n++, 0}

More general bounds are given by Dobra and Fienberg (2000). They

consider decomposable and reducible graphs, which correspond to the set

of marginal tables, and provide sharper bounds if those special classes of

marginal tables are given.

The so called ”shuttle algorithm” was proposed by Buzzigoli and

Giusti (1999) (see also Buzzigoli and Giusti (2006)). It starts with an

upper bound and a lower bound for each of the cell entries, for example

with the Frechet bounds. The bounds are based on ((k − 1)-dimensional)

marginal totals. In each step the algorithm computes new upper and

lower bounds. The essence of the algorithm can be found in Buzzigoli

and Giusti (2006) as follows.

• ’the upper bound of the generic element cannot be greater than the

lowest difference between each of its marginals and the sum of the

lower bounds of the other elements along the same dimension (row,

column, etc.); to start the procedure the lower bounds are set to

zero;’

• ’the lower bound of the generic element cannot be less than the

highest positive difference between each of its marginals and the

sum of the upper bounds of the other elements along the same

dimension (row, column, etc.); if no difference is positive the lower

bound remains zero;’

27



• ’if some of the lower bounds are greater than zero the previously

computed upper bounds could obviously change; revised upper

bounds imply the revision of the previously computed lower bounds

and so on’.

The shuttle algorithm does not always provide sharp bounds. However,

computationally it is effective providing results quickly.

2.3.2.2.2 SDC Literature for Sample Based Tables

Disclosure risk might arise if a particular individual can be identified

from the released data. If a cell value in the sample-based table is 1, we

will call the individual contributing to this cell a sample unique. Similarly,

an individual is a population unique if there is no other individual

having the same value combination of the table-spanning variables in the

population. A population unique, if selected in the sample, is a sample

unique. However, sample uniques are not necessarily population uniques.

Bethlehem et al. (1990) also considers sample uniques to be of the

highest disclosure risk within sample microdata. They define the so-called

’key’ as ’the set of variables used for identification’. They omit the cells

that have 0 population counts. The table size is therefore the number

of category-combinations that actually occur. Therefore the table size

can be smaller than the total number of the categories. It means that

the population frequencies (Fi) can only be positive but there might be

zeroes among the sample frequencies (fi). Their estimation of the number

of population uniques is based on a Poisson-gamma model. The model

can be formulated as follows.

Fi|Πi = πi ∼ Po(Nπi) and Πi ∼ Gamma(α, β) .

28



These assumptions mean that the marginal distribution of Fi, i =

1, 2, . . . , K is negative binomial.

Pr(Fi = xi) =
Γ(xi + α ·N)

Γ(α ·N) · Γ(xi + 1)
· βxi

(1 + β)xi+α·N

The α and β parameters satisfy the following equations.

E(Πi) = α · β and var(Πi) = α · β2 .

Bethlehem et al. assume furthermore that

K∑

i=1

E(Πi) = 1 .

It implies that

K · α · β = 1 .

The formula for the expected number of population uniques is given as

K · Pr(Fi = 1) = N · (1 + β)−(1+α·N) .

The α and β parameters can be estimated. Although it is computationally

convenient, the Poisson-gamma model usually underestimates the number

of population uniques, therefore its applicability is restricted.

Takemura (1999) introduced the Dirichlet-multinomial model. The

probabilities of the cells are given by the

π = (π1, π2, . . . , πK)

vector. By assumption, the distribution of π is a Dirichlet distribution.

π ∼ Dirichlet(α1, α2, . . . , αK) .
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Here α1, α2, . . . , αK are parameters and can be estimated using the sample

frequencies (f = (f1, f2, . . . , fK)). The population frequencies follow a

multinomial distribution.

F ∼Multinom(N, π1, π2, . . . , πK) .

Denote A =
∑K

i=1 αi. The probability of a cell being a population unique,

as given by Takemura, is

Pr(Fi = 1) = N · αi ·
Γ(A) · Γ(A− αi +N − 1)

Γ(A+N) · Γ(A− αi)

and the estimated number of population uniques is

N · Γ(A)

Γ(A+N)
·
K∑

i=1

αi ·
Γ(A− αi +N − 1)

Γ(A− αi)
.

While the Poisson-gamma model controls only the expected sum of the

population frequencies, the Dirichlet-multinomial model provides exactly

the required sum of population frequencies (N).

Skinner and Holmes (1993) provide a more general approach, substituting

the gamma distribution of the Poisson-gamma model for an arbitrarily

chosen g density function. The model assumes that Fi, i = 1, 2, . . . , K

are independent Poisson distributed variables with respective rates λi,

i = 1, 2, . . . , K.

Fi|λi ∼ Po(λi), i = 1, 2, . . . , K (2.3.1)

Drawing the λi parameters from a log-normal distribution results in a

better fit than the previously chosen gamma.

log λi ∼ N(µ, σ2) (2.3.2)
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or equivalently,

log λi = µ+ εi, where εi ∼ N(0, σ2) . (2.3.3)

The probability of being a population unique can be given by the

following formula (Skinner and Holmes, 1998):

Pr(Fi = 1) =
P1∑∞
j=0 jPj

where Pj =

∫
e−λλj

j!
g(λ)dλ

Under Poisson sampling we can write (see Skinner and Holmes, 1998)

fi|λi ∼ Po(pλi) and Fi − fi|λi ∼ Po((1− p)λi) i = 1, 2, . . . , K

(2.3.4)

where fi and Fi − fi are independent given λi. The probability of

population uniqueness given sample uniqueness is also given in the article:

Pr(Fi = 1|fi = 1) =

∫
exp [−(1− p)]g(λ|f = 1)dλ ,

where p = n/N is the sampling fraction and

g(λi|fi = 1) =
λi · e−p·λi · g(λi)∫
λ · e−p·λg(λ)dλ

.

The (2.3.3) model is generalised as follows:

log λi = ηi + εi, εi ∼ N(0, σ2) , (2.3.5)

where ηi = µi + u1 + u2 + . . . + ul, where uj, j = 1, 2, . . . , l are main

effects in a log-linear model. Under model (2.3.5)

g(λi) = (2πσ2)−1/2λ−1
i · exp

[
−(log λi − ηi)2/2σ2

]
.
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In the article point estimates are given for µ and σ2. The estimated values

are denoted µ̂i and σ̂2. A disclosure risk measure given is

P̂ (Fi = 1|fi = 1) =

∫
exp [−λ− (log λ− η̂i)2/2σ̂2] dλ∫
exp [−pλ− (log λ− η̂i)2/2σ̂2] dλ

(2.3.6)

If εi disappears and λi is estimated by µ̂i/p, then

P̂ (Fi = 1|fi = 1) = exp [−(1− p)µ̂i/p] . (2.3.7)

The (2.3.6) disclosure risk measure provides better estimates of the true

values than the (2.3.7) measure according to the article.

Although population uniqueness is an important indicator of disclosure

risk, and the measures based on that are well-established, attention also

has been paid to higher frequencies. Elamir (2004) fixes the λi values and

provides the expected number of cells where {Fi = s, fi = r}, r ≤ s under

the (2.3.1) and (2.3.4) assumptions. Fixing the λi values is equivalent to

using a conditional probability space. Therefore we can rewrite Elamir’s

result as follows.

E

[
K∑

i=1

I (Fi = s, fi = r)
∣∣∣λ1, λ2, . . . , λK

]
=

K∑

i=1

(pλi)
r[(1− p)λi]s−r exp(−λi)

r! ·(s− r)!
(2.3.8)

Elamir combines (2.3.8) and a log-linear model to estimate the unknown

Fi frequencies. The log-linear model is applied to the expected sample

frequencies, denoted by µi = E(fi), i = 1, 2, . . . , K. Under (2.3.4) we

obtain µi = p · λi, i = 1, 2, . . . , K. The log-linear model is

log µi = xTi β , (2.3.9)

where the xi vector contains the main effect and interaction terms selected

in the model. The conclusion of Elamir’s work is that the model selection
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is important in the estimation of the cell frequencies. A complex model

might provide an unstable estimation for (2.3.8), while a too simple model

might not capture the variation of µi.

The (2.3.9) model also appears in Elamir and Skinner (2006). A

possible refinement of the model is also given by adding a random effect

to the model.

log µi = xTi β + εi . (2.3.10)

The εi term can allow for overdispersion. They develop and evaluate

a record-level disclosure risk measure for both log-linear models. The

record level disclosure risk measure introduced in the article is

θj = Pr(correct match|unique match, the record falls in cell cj) =

E

(
1

Fj

∣∣∣fj = 1

)

For the model under (2.3.10), ωj = exp (εj) is assumed to follow a gamma

distribution as follows.

g(ωj; v) =
vv

Γ(v)
· ωv−1

j exp (−vωj)

(2.3.4) is a fundamental assumption in the article. It is shown that

E

(
1

Fj

∣∣∣λj
)

=
1

(1− p)λj
· [1− exp (−(1− p)λj)]

Under the (2.3.9) model λj is fixed, therefore the above formula provides

an expression for θj. If we consider the (2.3.10) model, then

θj =
p · (exp (xTj β) + v)

(1− p) · (exp (xTj β)) · v

[
1−

(
exp (xTj β + v)

p−1 · exp (xTj β) + v

)v]

By estimating the λj , v and exp (xTj β) values we can get an estimation of
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θj for each model. There is no evidence that the (2.3.10) model performs

better than (2.3.9) according to the article. However, (2.3.9) is easier to

compute.

2.3.2.2.3 Our Contribution

This thesis focuses on measuring attribute disclosure in frequency

tables. There are only few disclosure risk measures defined for entire

tables. The measure we introduce in Chapter 3 quantifies the disclosure

risk for such tables. The analysis shows that entropy and conditional

entropy can be applied not just to cells but also to entire tables. It is

shown that the disclosure risk can be measured for both population based

and sample based tables by using information theoretical expressions.

2.4 Protection Against Disclosure

Once the data are recognised as having high disclosure risk, a statistical

institute should not release them in their original form. However, withholding

such data contravenes the main objective of the statistical institute, which

is data dissemination. Therefore, statistical disclosure control methods

are applied to the data. Such methods either alter the data or reduce

the information content and therefore reduce the disclosure risk. SDC

methods often target the elimination of problematic cases from the data,

for example by changing or suppressing a cell value of 1 in a frequency

table.

2.4.1 SDC Methods for Tabular Data

A statistical institute may employ either pre-tabular or post-tabular

SDC methods to protect tabular data.

Pre-tabular methods alter the underlying microdata before tabulation

takes place. Multiple tables may be generated from the same protected
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microdata set. Advantages of pre-tabular methods are

• that they need to be carried out only once and

• table margins are consistent across different tables.

However, a pre-tabular method will modify at least one of the table-spanning

variables and produce different tables from those generated from the

original microdata thereby it requires much more suppression/perturbation

in order to protect all possible tables. Pre-tabular methods are also less

transparent to users and more difficult to account for in statistical analyses

than post-tabular methods.

SDC methods applied directly to tables generated from original

microdata are referred to as post-tabular methods. It means that the

tables are protected after tabulation. Tables need to be protected

separately from each other, therefore it demands more effort than pre-tabular

methods. Table cells might not be consistent or additive across different

tables. This is both an irritation for analysts and can also increase risk

inadvertently as the inconsistencies could enable an intruder to ’unpick’

the disclosure control.

However, post-tabular methods are more transparent than pre-tabular

methods and provide better protection since all cells will generally be

affected. Post-tabular methods include, for example, cell suppression or

rounding of table cells.

2.4.1.1 Pre-tabular SDC Methods

Global recoding is one of the pre-tabular SDC methods. Two or more

categories of a certain variable (or more variables) of the microdata set

are combined into one category. Global recoding aims to increase the

frequencies for some category-combinations since the modified variable is

not as detailed as before.4

4In theory the modified variable should be considered as a different variable from
the original one since the range of the original variable differs from that of the modified
variable. However, the two variables are often called the same.
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The post-randomization method (PRAM) (see Gouweleeuw et al.

(1998)) is used to alter categorical variables. If a variable has L categories,

then a P transition matrix of size L×L is defined prior to the perturbation.

Each row and each column corresponds to a category. The (i, j)th

component of the matrix is

pij = Pr(perturbed cell value is j|original cell value is i) (2.4.1)

The data are perturbed according to the P matrix. In practice the pii,

i = 1, 2, . . . , L, probabilities are close to 1 to ensure that the perturbed

data remain close to the original values.

Record swapping is also an SDC method for microdata and is often

used as pre-tabular method. It selects a small proportion of pairs of

records within control strata and exchanges the values of a variable

(or more variables) between paired records. Frequency tables may be

generated from the perturbed microdata. Record swapping is often

applied to geographical variables. Geography is usually a hierarchical

variable. Record swapping is carried out usually at lower level in order

to preserve the distribution of data at higher level. More details about

record swapping can be found in Shlomo (2007).

2.4.1.2 Post-tabular SDC Methods

Cell suppression is one of the oldest methods for protecting tabular

data. For each table cell a sensitivity rule, for example the minimum

frequency rule or the (n, k)-dominance rule, provides a disclosure risk

measure. Cells that are of high disclosure risk according to the selected

sensitivity measure are subject to ’primary suppression’. It means that

the values of such cells are withheld. However, tabular data are usually

released with marginal totals. Totals and internal cells might allow an

intruder to calculate the value of a primarily suppressed cell. Therefore

secondary suppression needs to be carried out on the table. Secondarily
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suppressed cells prevent an intruder from determining the exact cell value

of primarily (and secondarily) suppressed cells. Although cell suppression

is an adequate method to protect tabular data, sometimes the number of

suppressed cells is high, thus so is the information loss.

To lessen the information loss controlled tabular adjustment (CTA)

has been proposed, see Dandekar and Cox (2002). Sensitive table cells

are determined as for cell suppression. However, cells are not suppressed

but modified. In order to preserve the additivity of tables, additional

non-sensitive cells are also adjusted. CTA leads to less information loss

than cell suppression and results in analytically more useful tables but it

is not transparent and bias may result.

The cell suppression problem can be approached by linear programming.

Sensitive table cells are determined again by a sensitivity measure (or

more sensitivity measures). The values of sensitive cells (and probably

some additional cells) are modified. The linear program ensures that

the modified values are ’sufficiently far’ from the original cell value. The

aim is to provide a table that is different to the original table, has an

acceptable level of disclosure risk measure, provides minimum information

loss and preserves the marginal totals. Papers that deal with this problem

are for example Fischetti and Salazar-González (2000), Fischetti and

Salazar-González (2003), Salazar-González (2006) and Hernández-Garćıa

and Salazar-González (2014).

The above mentioned methods are more typically used for magnitude

tables. In the case of many frequency tables generated from a microdata

set such as a census, cell suppression is not often used due to the

need to provide consistency across tables. For frequency tables, a more

common approach is rounding. Rounding is also a post-tabular method.

Deterministic rounding is the simplest version. A base b is selected and

cell values are rounded to the closest multiple of b. Random rounding

assigns a probability distribution to the set of multiples of b for each

cell. The distribution depends on the cell value. The value of the cell
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is changed to a multiple of b according to the probability distribution.

Often the probability mass is concentrated on at most two multiples

of b. For example, random rounding to base 3 can be carried out as

follows. If a cell value is a multiple of 3, it remains unaltered. If the

remainder is 1 or 2 when dividing the cell value by 3, then we round

it to the closest or second closest multiple of 3 with probability 2/3 or

1/3 respectively. Different cells in the table, including marginal cells, are

rounded independently. Deterministic and random rounding may not

result in additive tables, that is, internal cells may not add up to the

marginal total. A variation called controlled rounding uses mathematical

optimization programming and ensures that rounded cells add up to the

rounded marginal cells (see Cox (1987), Cox and George (1989)).

Barnardisation (see Hundepool et al. (2012)) modifies the non-zero

cell values by adding or subtracting 1 from the cell value with probability
1−p

2
and 1−p

2
respectively. p is a parameter and equals the probability that

a (non-zero) cell value remains unperturbed.

2.5 Information Loss

Information loss is an important aspect of statistical disclosure control.

Undoubtedly, application of SDC methods distorts the data and reduces

the information content, hence original and disclosure controlled data

might lead a user to different results and/or conclusions.

Information loss can be measured by various information loss measures.

They quantify the information loss by taking into account the distortion

or suppression between the original and protected data.

The importance of information loss measures stems from the so-called

R-U (risk-utility) confidentiality map, introduced by Duncan et al. (2001).

A data protector always should use the ’best’ available SDC method. It

reduces the disclosure risk measure to a required level, whilst keeping the

information loss minimal. Without an information loss measure the latter
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criterion cannot be properly evaluated, SDC methods could be compared

only on the basis of disclosure risk measures. Obviously, not releasing

data should always provide the least disclosure risk, but this conflicts with

the aim of functional data dissemination. Put another way, withholding

data causes the greatest information loss, therefore it should be avoided.

Therefore, information loss must be measured. Domingo-Ferrer and Torra

(2001) and Shlomo and Young (2006) and references therein provide some

examples of information loss measures depending on the types of outputs.

The terms ’information loss’ and ’utility’ need to be distinguished

from each other since they are often used in the statistical disclosure

literature. Information loss is discussed above. If perturbed data provide

similar analytical results to original data, then the utility of the perturbed

data is high, otherwise it is low.

Data utility is measured in Purdam and Elliot (2007). The paper

investigates how SDC methods affect the results of some research projects.

The utility of disclosure controlled data is gained by the comparison of

the results based on the original and perturbed data. The paper shows

that utility can be measured only after the research on perturbed data

is done. However, a data protector needs to rely on information loss

measures, since he/she cannot measure the utility.
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Chapter 3

Disclosure Risk and

Information Loss in

Population Based Frequency

Tables

3.1 Introduction

This chapter deals with disclosure risk and information loss measures

that can be applied to population based frequency tables. Such tables

are assumed to include every individual in the population. The measures

ensure the assessment of disclosure risk and give some ideas about the

information loss of the perturbed data.

Since we focus on population based tables, the counts in the tables

are based on complete enumeration. Hereinafter we call the table before

SDC methods are employed the ’original table’. The table after the

application of SDC methods is the ’perturbed table’. The statistical

agency naturally has the advantage of being aware of both the original

and the perturbed tables over the data user. This fact is essential to

determine the information loss and also very important in measuring the

40



disclosure risk. As we put ourselves into the agency’s point of view, our

approach also takes both the original and perturbed tables into account.

The use of information theoretical formulas in statistical disclosure

control evolves naturally. After the application of SDC methods to the

data, the information loss needs to be measured to inform data users

about the extent of bias in the perturbed table. The information loss

can be measured on the basis of the entropy as it is discussed for both

microdata and tabular data in Willenborg and de Waal (2001). The

comparability of (conditional) entropy across different techniques might

verify its application according to Willenborg and de Waal. For microdata

they determine the conditional entropy of the original data with respect

to the perturbed data for several SDC techniques, such as global recoding

and data swapping. Obviously, the higher the information loss, the

less preferred the SDC method. However, some authors (Oganian and

Domingo-Ferrer (2003), Oganian et al. (2004)) argue that entropy, as

a utility measure, sometimes can be misleading and might not express

the information loss properly. Oganian and Domingo-Ferrer provide an

example when the conditional entropy does not give a proper information

loss measure for rounded tabular data.

As the risk and utility framework (Duncan et al., 2001) is a crucial

concept in statistical disclosure control, the investigation of the entropy as

a disclosure risk measure also has undergone a development. Entropy-based

disclosure risk measures have been defined at cell level for tabular data

(Oganian and Domingo-Ferrer (2003); Oganian et al. (2004)). The

difference between these approaches and our investigation is that we

define the disclosure risk directly for the entire census frequency table.

Our attitude is led by the desire to develop a risk measure that can

be calculated with relative ease and provides an overview of the overall

disclosure risk. Prior to the definition of our disclosure risk measure

we review some information theoretical aspects in the following sections.

Most of the measures can be formalised as f -divergences. The theoretical
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concept of the f -divergence together with an allusion to an information

loss measure can be found in Csiszár (1967). f -divergences can express

the deviation of two probability distributions. Considering the measures

as f -divergences allows us to point out connections between different

measures and in a few cases the properties of a specific measure are

derived from the general investigation of f -divergences.

3.2 Notation

Although in this chapter we deal with post-tabular perturbation

methods, i.e. the perturbation is carried out on the F frequency table, we

need to define random variables on the set of individuals. According to

the general definition, random variables are measurable functions, that is,

functions between measurable spaces. If ΣA is a σ-algebra on an arbitrary

(non-empty) set A, then the pair (A,ΣA) is a measurable space. Below

we need the (I,P(I)) and (C,P(C)) measurable spaces. The

X : (I,P(I))→ (C,P(C)) (3.2.1)

variable will indicate where the individuals fall in the original frequency

table. For example, X(ak) = ci means that individual ak contributes to

cell ci. Since we do not distinguish between the individuals of I, it is

reasonable to assign the same probability to each individual. It would

ensure that the distribution of the X variable is F
N

=
(
F1

N
, F2

N
, . . . , FK

N

)
.

An arbitrary (A,ΣA) measurable space becomes a measure space as an

arbitrary measure, say µ, is attached to it. A µ measure is a function on

the ΣA (sigma-)algebra.

µ : ΣA → R .

Hence, the (A,ΣA, µ) triple is a measure space.

In our case the individuals should have the same probability, therefore
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a measure that is related to the UI uniform distribution should be used.

However, UI is not a measure on P(I) since it is defined on I and not on

P(I).

UI : I → R ,

UI(a1) = UI(a2) = . . . = UI(aN) = 1/N .

While P(I) is a (sigma-)algebra, I is not. However, UI can easily be

extended to P(I) by the following definition. For an arbitrary B ⊆ I

subset define µUI
(B) = |B|/N . By this definition,

µUI
: P(I)→ R .

(I,P(I), µUI
) is a measure space and the distribution of X is indeed F/N .

The frequencies of the perturbed table are denotedG = (G1, G2, . . . , GK).

The sum of the perturbed frequencies is M =
∑K

i=1 Gi.

The generation of a frequency table can be referred to as the categorization

of individuals into cells. (In the situation above the categorization is

given by X.) The perturbed frequency table (G) can be also considered

as the categorization of (imaginary) individuals into C. The number of

individuals must be equal to M . We denote these imaginary individuals

by J = {b1, b2, . . . , bM}. The situation is very similar to that for ’real’

individuals. However, for each real individual the category where the

individual falls is assumed to be known. We assume that a post-tabular

SDC method is applied to F . The categorization of the bk, k = 1, 2, . . . ,M

individuals should be given by a similar random variable to (3.2.1).

(J,P(J))→ (C,P(C)) .

We attach the UJ distribution to the (J,P(J)) measurable space. The

distribution of the random variable should be
(
G1

M
, G2

M
, . . . , GK

M

)
. However,

there may be more than one random variables with this property; the
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image of any specific (imaginary) individual and therefore the variable

is not uniquely determined by its distribution. We denote the set of

variables of distribution
(
G1

M
, G2

M
, . . . , GK

M

)
by ΩG.

ΩG = {Y : (J,P(J))→ (C,P(C)) : Gl = |{bk ∈ J : Y (bk) = cl}|, l = 1, 2, . . . ,K} .

Let the elements of ΩG be Y1, Y2, . . . , Y|ΩG|. If we need to select only

one of these variables, then we will omit the subscript and refer to the

variable as Y .

3.3 Information Theoretical Properties

The basis of the disclosure risk and information loss measures we

intend to investigate is mainly mathematical. Before we consider these

mathematical expressions as disclosure risk measures, the basic properties

are worth mentioning. The field of information theory and related areas

are covered comprehensively in Cover and Thomas (2006). Entropy is

one of the most important formulae. It is defined for random variables

and depends on their distribution. In order to maintain generality, the

information theoretical definitions below are defined for arbitrary X and

Y random variables. Their distributions are P = (p1, p2, . . . , pK) and

Q = (q1, q2, . . . , qK), respectively. However, while considering the general

definitions, one can think of the X and Y variables as defined in Section 3.2

and can identify P as F/N and Q as G/M . The sum determining the

entropy of X is as follows.

H(X) = −
K∑

i=1

pi · log pi . (3.3.1)

As it can be seen, H(X) depends exclusively on the distribution of

X. Therefore it does not lead to confusion if the argument of the H(·)
function is a distribution. In our case H(P ) will represent the same value

44



as H(X).

If pi = 0 for a certain i, the respective term in the sum will be

considered 0, since limx→0 x · log x = 0.

One can see easily that H(X) ≥ 0, since −pi · log pi ≥ 0. Entropy is

equal to 0 if the probability mass is concentrated on one point. In any

other case entropy cannot be 0, because −pi · log pi > 0 if 0 < pi < 1.

On the other hand, H(X) ≤ logK, as it will be proven below. For the

uniform distribution equality holds, H(UC) = logK.

There is a natural generalisation of the entropy of a single variable to

multivariate random variables. The joint entropy of two single variables

will be sufficient for us, although the definition can be easily extended to

any finite number of variables. Note that in order to define the entropy

of the (X, Y ) bivariate random variable, we have to assume that I = J .

H(X, Y ) = −
K∑

i=1

K∑

j=1

Pr(X = ci, Y = cj) · logPr(X = ci, Y = cj) .

The conditional entropy of two variables is defined as follows.

H(X|Y ) = −
K∑

j=1

Pr(Y = cj) ·
K∑

i=1

Pr(X = ci|Y = cj) · logPr(X = ci|Y = cj) .

(3.3.2)

It is well-known that H(X|Y ) ≤ H(X).

The connection between entropy, joint entropy and conditional entropy

can be formulated as

H(X, Y ) = H(Y ) +H(X|Y ) . (3.3.3)

If X and Y are independent, the (3.3.3) relationship will reduce to

H(X, Y ) = H(X) +H(Y ).

The utility measures we intend to investigate are in most of the cases

f -divergences. The concept of f -divergences can be found in Csiszár
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(1967) and Csiszár and Shields (2004). To define an f -divergence we

need two probability distributions (P and Q) and an f : R+ → R convex

function. For the sake of convenience we assume that f(1) = 0. The

divergence between the two distributions determined by f is

Df (P ‖ Q) =
K∑

i=1

qi · f
(
pi
qi

)
.

We also assume that 0 · f
(

0
0

)
= 0, f(0) = limx→0 f(x), 0 · f

(
c
0

)
=

limx→0 x · f
(
c
x

)
. Using the convexity of f , we are able to derive an

inequality that has several applications. Let u1, u2, . . . , uK and v1, v2, . . . , vK

be positive real numbers with sums u =
∑K

i=1 ui and v =
∑K

i=1 vi. Then

the following inequality holds.

K∑

i=1

vi · f
(
ui
vi

)
≥ v · f

(u
v

)
. (3.3.4)

The proof of the above inequality is based on the convexity of f .

According to Jensen’s inequality
∑K

i=1
vi
v
· f
(
ui
vi

)
≥ f

(∑K
i=1

vi
v
· ui
vi

)
=

f
(
u
v

)
. If f is strictly convex at u

v
, then equality holds if and only if

ui = u
v
· vi for every i.

It follows immediately that Df(P ‖ Q) ≥ 0, since choosing ui = pi

and vi = qi provides the inequality of

Df (P ‖ Q) =
K∑

i=1

qi · f
(
pi
qi

)
≥ 1 · f(1) = 0 .

Relative entropy or Kullback-Leibler divergence has a similar formulation

to entropy but it serves the comparison of two distributions. The relative

entropy of the P and Q distributions is defined as

D(P ‖ Q) =
K∑

i=1

pi · log

(
pi
qi

)
.
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Here 0 · log
(

0
qi

)
= 0, if qi > 0. Relative entropy is considered infinity if

pi > 0 and qi = 0 hold simultaneously for at least one i. It is easy to

see that relative entropy is an f -divergence with f(x) = x · log x, that is,

D(P ‖ Q) = Dx·log x(P ‖ Q).

Relative entropy is not symmetric, as it can be seen from the formula.

Triangle inequality also does not hold. Therefore D(P ‖ Q) does not meet

the criteria of distances. However, it is worth considering the relative

entropy as how far two distributions are from each other. The second

argument of the relative entropy (Q) can be taken as a reference value.

The non-negativity of relative entropy follows from the non-negativity of

f -divergences,

D(P ‖ Q) ≥ 0 ,

with equality if and only if pi = qi for all i.

With this inequality, H(P ) ≤ logK follows without much effort.

0 ≤ D(P ‖ UK) =
K∑

i=1

pi · log

(
pi

1/K

)
=

K∑

i=1

pi · log pi +
K∑

i=1

pi · logK = logK −H(P ) .

It is also obvious from the proof that equality holds if and only if the

distribution is uniform.

Note that D(Q ‖ P ) =
∑K

i=1 qi · log
(
qi
pi

)
is also an f -divergence with

f(x) = − log x.

To measure the distance between two distributions, Lp-norms also can

be used. For an arbitrary vector x = (x1, x2, . . . , xK) ∈ RK the Lp-norm

(1 ≤ p <∞) of x is defined as

‖x‖p =

(
K∑

i=1

|xi|p
) 1

p

.
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Most importantly, L2-norm is the Euclidean-norm. As p converges to

infinity, ‖x‖p tends to maxi |xi|. Therefore ‖x‖∞= maxi |xi| is referred to

as the L∞-norm of x. The distance of two distributions can be expressed

as the Lp-norm of the difference: ‖P − Q‖p. If p = 1, this distance is

equivalent to the f -divergence given by f(x) = |x − 1|. An Lp-norm

produces a metric on RK , since

1. ‖x− y‖p ≥ 0,

2. ‖x− y‖p = 0⇐⇒ x = y,

3. ‖x− y‖p = ‖y − x‖p,

trivially satisfy, and also

4. ‖x− y‖p + ‖y − z‖p ≥ ‖x− z‖p

fulfils. The latter equation follows from the triangle inequality of the

Lp-norm, which is proven in Serre (2002).

Let p > 1 and f(x) = − log x. Selecting ui = ppi and vi = pi results in

the following inequality according to (3.3.4):

K∑

i=1

pi · (− log pp−1
i ) ≥ − log

K∑

i=1

ppi ,

or

H(P ) ≥ − 1

p− 1
· log ‖P‖pp =

p

p− 1
· log

1

‖P‖p
.

If p→∞, then we get

H(P ) ≥ log
1

maxi pi
.

This inequality implies that the lower bound of H(P ) is higher as maxi pi

decreases. The lowest possible value for maxi pi is 1/K (in case of a

uniform distribution). H(P ) may decrease as maxi pi increases.
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The distance of P = (p1, p2, . . . , pK) and UC in L2-norm is as follows.

‖P − UC‖2
2 =

K∑

i=1

(pi − 1/K)2 =

K∑

i=1

p2
i − 2 · 1

K

K∑

i=1

pi +K ·
(

1

K

)2

= ‖P‖2
2 −

1

K
.

The trivial consequence of this equation is ‖P‖2
2 ≥ 1

K
. On the other hand,

‖P‖2
2 =

K∑

i=1

p2
i ≤

K∑

i=1

p2
i + 2

∑

i<j

pi · pj =

(
K∑

i=1

pi

)2

= ‖P‖2
1 = 1 .

For P = (p1, p2, . . . , pK) and Q = (q1, q2, . . . , qK) we denote
√
P =

(
√
p1,
√
p2, . . . ,

√
pK) and

√
Q = (

√
q1,
√
q2, . . . ,

√
qK). They are not

(necessarily) probability distributions, however, as vectors, their L2-norms

are 1.

One type of distance based on the L2-norm is the Hellinger distance.

This distance between P and Q is defined as

HD(P,Q) =
1√
2
· ‖
√
P −

√
Q‖2 .

Obviously, HD(P,Q) ≥ 0. On the other hand, HD(P,Q) ≤ 1, since

HD(P,Q) =
1√
2
·

√√√√
K∑

i=1

(
√
pi −
√
qi)2 =

1√
2
·

√√√√
K∑

i=1

(pi + qi − 2 · √pi · qi) =

1√
2
·

√√√√2− 2 ·
K∑

i=1

√
pi · qi =

√√√√1−
K∑

i=1

√
pi · qi ≤ 1 .

Suppose that f(x) = 1−√x. Then Df(P ‖ Q) =
∑K

i=1 qi · f
(
pi
qi

)
=

∑K
i=1 qi ·

(
1−

√
pi
qi

)
=
∑K

i=1(qi−
√
pi · qi) = 1−∑K

i=1

√
piqi = HD2(P,Q).

Therefore the Hellinger distance can also be considered as an f -divergence.

Assuming that pi > 0 and qi > 0 for all i, we can prove an inequality
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between the Hellinger distance and the relative entropy. Applying the

known x− 1 ≥ log x (x > 0) inequality to
√

qi
pi

, we get

√
qi
pi
− 1 ≥ 1

2
· log

qi
pi
,

2 · pi ·
(√

qi
pi
− 1

)
≥ pi · log

qi
pi
,

2 · (pi −
√
pi · qi) ≤ pi · log

pi
qi
.

Summing this inequality over i results in

K∑

i=1

2 · (pi −
√
pi · qi) ≤

K∑

i=1

pi · log
pi
qi
,

which means

2 · (1−
K∑

i=1

√
piqi) ≤

K∑

i=1

pi log
pi
qi
,

and thus

2 ·HD2(P,Q) ≤ D(P ‖ Q) .

Equality holds if and only if
√

qi
pi
− 1 = 1

2
· log qi

pi
for every i. It means

that pi = qi, i.e. P = Q. Since Hellinger distance is symmetric and the

roles of pi and qi are commutable in the proof, we gain immediately a

similar inequality.

2 ·HD2(P,Q) ≤ D(Q ‖ P ) .
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The distance of two distributions can be measured also by the chi-square

statistic. Chi-square statistic is fundamental to test statistical hypothesis,

since the independence of two random variables can be tested by this

function. Chi-square statistic, like relative entropy, is not symmetric:

χ(P,Q) =
K∑

i=1

(pi − qi)2

qi
.

However, it is an f -divergence with f(x) = (x − 1)2, since Df(P ‖
Q) =

∑K
i=1 qi · f

(
pi
qi

)
=
∑K

i=1 qi ·
(
pi
qi
− 1
)2

=
∑K

i=1
(pi−qi)2

qi
.

The distance of an arbitrary P and UC is as follows.

χ(P,UC) =
K∑

i=1

(pi − 1/K)2

1/K
= K ·

K∑

i=1

(
pi −

1

K

)2

= K · ‖P − UK‖2
2 =

K ·
(
‖P‖2

2 −
1

K

)
= K · ‖P‖2

2 − 1

Chi-square statistic, as it can be found in Csiszár and Shields (2004),

connects different f -divergences in the following sense. Assume that

qi > 0 for all i. If f is twice differentiable at x = 1 and f ′′(1) > 0, then

Df (P ‖ Q)

χ(P,Q)
→ f ′′(1)

2

as P → Q. (Here P converges pointwise to Q.)

The above convergence with f(x) = x·log x yields that relative entropy

and chi-square statistic can be ”close” to each other: D(P ‖ Q) ≈ 1
2
·

χ(P,Q). Also, with f(x) = − log x it follows that D(Q ‖ P ) ≈ 1
2
·χ(P,Q).

Finally, with f(x) = 1−√x we get that HD2(P,Q) ≈ 1
8
χ(P,Q) provided

that P and Q are close enough.

The Hellinger distance has been used to measure the information loss,

see for example Gomatam and Karr (2003), Gomatam et al. (2003), Gomatam

et al. (2005) and Shlomo (2007). The motivation for its use in measuring
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information loss is due to the following:

1. it is a metric (in the mathematical sense);

2. it provides larger impact when cell counts are small;

3. it can be calculated when the original count is zero which would

not be the case when using relative distance metrics.

For these reasons, it is a good distance measure to assess deviations from

original cell counts and the information loss resulting from perturbation.

The Hellinger distance is a useful measure both to the statistical agency

who needs to ensure that the perturbed data are fit for purpose as well as

to the users who need an understanding of the impact of the perturbation

in order to compensate for the distortion in their statistical analysis.

In the above paragraphs, the Hellinger distance has been formally

defined as an information theoretic f -divergence and is part of the

solution of using information theory for measuring both disclosure risk

and information loss in frequency tables. Through the definition of the

Hellinger distance as an f -divergence, the primary motivation for its use

is now more transparent. The main advantage of the Hellinger distance

over other f -divergences is its symmetry. A non-symmetric information

loss measure might be more difficult to account for.

3.4 Formulae in the Context of Frequency

Tables

This section describes how the above formulae can be analogously

defined for population based frequency tables. The calculation of the

disclosure risk and utility measures is easier if they are expressed by counts

and there is no need to convert the counts into probability distributions.

The division of the (F1, F2, . . . , FK) cell counts by the N population size

results in the

(
F1

N
,
F2

N
, . . . ,

FK
N

)
probability distribution, where the ith
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probability shows the likelihood of an individual falling into the ith cell.

The entropy of this distribution is

H

(
F

N

)
= −

K∑

i=1

Fi
N
· log

Fi
N

=
N · logN −∑K

i=1 Fi · logFi
N

.

The relative entropy of the distributions of the original and perturbed

frequency tables is

D

(
F

N

wwwww
G

M

)
=

K∑

i=1

Fi
N
· log

(
Fi/N

Gi/M

)
= log

M

N
+

1

N
·

K∑

i=1

Fi · log
Fi
Gi

.

The natural extension of the f -divergences is the application of the f

function to frequency counts. The analogous formulae to relative entropy

defined directly on the frequencies are

D(F ‖ G) =
K∑

i=1

Fi · log
Fi
Gi

Unlike relative entropy defined on the distributions, D(F‖G) can be

negative when N 6= M . For example, if 0 < F1 < G1 and F2 = G2,

F3 = G3, . . . , FK = GK , then D(F‖G) < 0. It can be seen that

D

(
F

N

∥∥∥∥∥
G

M

)
= log

M

N
+

1

N
·D(F‖G) .

It implies that if N = M , then

D

(
F

N

∥∥∥∥∥
G

N

)
=

1

N
·D(F‖G) .

Therefore, if the perturbation method is unbiased, that is, the sum of the

expected perturbed frequencies is equal to the original sum of frequencies,

then the calculation of D
(
F
N

∥∥∥ GM
)

and D(F‖G) is basically the same.
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The Hellinger distance of the distributions expressed by frequencies is

HD

(
F

N
,
G

M

)
=

1√
2
·
wwwww

√
F

N
−
√
G

M

wwwww
2

=
1√

2NM
· ‖
√
MF −

√
NG‖2 .

Being an f -divergence, the Hellinger distance also can be extended to

frequencies without the division by the population size.

HD(F,G) =
1√
2
· ‖
√
F −
√
G‖2 .

where
√
F = (

√
F1,
√
F2, . . . ,

√
FK) and

√
G = (

√
G1,
√
G2, . . . ,

√
GK).

We will use the above formula to measure the information loss.

3.5 Measuring Disclosure Risk Before

Perturbation

3.5.1 The Disclosure Risk Measure

Having known the basic properties of the information theoretical

expressions, we try to highlight how these formulas might be beneficial

from statistical disclosure control point of view.

The proportion of small cells in the table is one of the indicators of

disclosure risk. We consider a cell small, if its count is 1 or 2. Too many

cells with small values in the frequency table may require the application

of SDC methods.

Apart from the proportion of small cells, the average cell size (the

number of contributors to the table divided by the number of cells, N/K)

also measures the disclosure risk.

The entropy provides alternative opportunity to measure the disclosure

risk. Small entropy in a row/column can indicate few non-zero cells in

the row/column. The fewer the number of the non-zero cells, the more

likely that disclosure occurs. However, relatively large entropy does not
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exclude disclosure risk. Hence the entropy can be used as a risk measure

but

1− H(P )

logK
(3.5.1)

can express the disclosure risk more effectively. We may recognise the

relative entropy in this expression, as

D(P ‖ UC) = logK −H(P ) = logK ·
(

1− H(P )

logK

)
.

The 1 − H(P )
logK

formula is zero if P is the uniform distribution and is 1

if there is only one non-zero probability in P . In terms of frequencies,

this risk measure can be expressed as 1 − N · logN −∑K
i=1 Fi · logFi

N · logK
.

In most of the cases uniformly distributed frequencies in a row/column

do not raise too much disclosure risk. On the other hand, if we know

that the sum of a certain row/column is positive and entropy is zero (or

equivalently, 1− H(P )
logK

= 1), then all the contributors of this row/column

belong to one cell. Thus identity disclosure and group attribute disclosure

are likely to occur. Entropy of a row/column in a frequency table can

also be zero if there are only zeros in that particular row/column.

The disclosure risk measure we define in (3.5.2) is the convex combination

of the proportion of the zeros in the table, the entropy-based term defined

above and a third term depending on the N population size. We denote the

set of cells with zero frequency in the original table by D. w = (w1, w2, w3)

is a vector of weights, w1, w2, w3 ≥ 0 and w1 + w2 + w3 = 1.

R1(F,w) = w1 ·
|D|
K

+ w2 ·
(

1− N · logN −∑K
i=1 Fi · logFi

N · logK

)
−

w3 ·
1√
N
· log

1

e ·
√
N

(3.5.2)

where e is the base of the natural logarithm. More justification for the
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definition of the measure can be found in Section 3.9.

In the (3.5.2) formula we select three terms and take their convex

combination. The entropy term is the most important disclosure risk

measure because it measures attribute disclosure, however it is insufficient

on its own because it does not take into account the number of zeros in

the table and the population size of the table. The first and third terms

in (3.5.2) support the entropy measure in that the first term accounts

for the number of zeros and the third term the overall size of the table.

Therefore, the convex combination reflects the properties we set out in

the paper in Section 3.9.

The terms of the disclosure risk measure can also be evaluated

separately from each other. In that case the

( |D|
K
, 1− H(X)

logK
,

1√
N
· log

1

e ·
√
N

)

triple is a disclosure risk measure. However, a statistical institute always

has to decide whether a certain frequency table can be released. In order

to decide about the release, the disclosure risk measure should be below

a predefined threshold. In the case of the triple above, the statistical

institute has to set three thresholds, one for each of the elements of the

disclosure risk measure.

By choosing the weights of the three terms, a data protector can decide

which term is the most important. We concentrate on attribute disclosure,

therefore we propose that the highest weight be allocated to the second

term. More discussion on determining the weights is in Section 3.5.2.

The three terms may be combined into other expressions by taking for

example their geometric mean or root mean square. The geometric mean

does not reflect the disclosure risk according to the properties stated in

Section 3.9 since it can be zero if only one term is zero and the other

terms are positive and may be large. The root mean square is a viable

alternative as we show in Section 3.5.2.
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We turn now to an elaboration of the third term of the disclosure

risk measure in (3.5.2). This term, − 1√
N
· log 1

e·
√
N

, is a monotonically

decreasing function of N . It is in line with the fact that higher frequencies

often imply lower disclosure risk than small frequencies. We also would

like the term to be bounded by 0 and 1. There are other functions

with these properties and below we list some of the functions that were

investigated.

A natural choice would be 1/N . However, this function decreases very

quickly. If we consider

h1(N, ε) = N−ε ,

where 0 ≤ ε ≤ 1, then we get a function that can decrease more slowly.

To decrease the rate of decline even more we can use the

h2(N, ε) = −N−ε · log (e−1 ·N−ε)

expression. The term used in the disclosure risk measure in (3.5.2)

is h2(N, 0.5). The
(
− 1
K

∑K
i=1

1
Fi

log 1
e·Fi

)
function also naturally arises,

provided that Fi > 0 for all i. The formula can be generalised as follows:

h3(F, ε) =

(
− 1

K − |D| ·
∑

Fi>0

· 1

Fi
ε log

1

e · Fiε

)
.

The above functions are calculated for some small examples of tables

in Appendix A.1.

Regarding the h3(N, ε) function, it obtains a value of 1 if the frequency

table consists of all zeroes except for one and all ones: the (0, 0, 0, . . . , 0, 1)

and (1, 1, 1, . . . , 1) frequency tables have the same h3(N, ε) value. This is

a serious problem since it does not seem to be sensitive to the overall size

of the population and we will not investigate this function further.

Regarding the two remaining functions evaluated at ε = 0.1: h1(N, 0.1)

and h2(N, 0.1), these decrease slowly to zero (i.e., no risk) and tables of
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large population sizes might have too large of a disclosure risk measure

associated to them in spite of their low risk.

At the other extreme of ε = 0.8 or ε = 1, a (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

frequency table may not have its disclosure risk accurately reflected using

h1(N, ε) since we obtain the following measures: h1(N, 0.8) = 0.1585,

h1(N, 1) = 0.1000. It is clear that this value would be too low for

a disclosure risk measure. On the other hand, h2(N, 0.8) = 0.4504,

h2(N, 1) = 0.3303 and this more accurately reflects the disclosure risk in

the table. In general, we see that the h2(N, ε) is preferable to h1(N, ε)

since the former falls more slowly to zero (i.e., no risk).

Regarding the h2(N, ε) at different levels of ε, the disclosure risk is best

reflected when ε is between 0.4 and 0.8 according to the data protector’s

preference. We choose ε = 0.5 because it is more straightforward to

understand and calculate than other values of ε. This is the third term

shown in (3.5.2).

3.5.2 The Choice of Weights Before Perturbation

The weights of the (3.5.2) disclosure risk measure can be chosen by

the data protector. The weights can put emphasis on a selected term.

However, even if the data protector opts for a term to be emphasised,

the choice of the weights might remain problematic. Below we describe a

method that attempts to find the highest possible disclosure risk. This

method slightly changes the (3.5.2) risk measure. The modified risk

measure differs from (3.5.2) in the weights. We continue to assume that

w1, w2, w3 ≥ 0. However, now the weights will satisfy the following

equation: w2
1 + w2

2 + w2
3 = 1.

R∗1(F,w) = w1 ·
|D|
K

+ w2 ·
(

1− N · logN −∑K
i=1 Fi · logFi

N · logK

)
−

w3 ·
1√
N
· log

1

e ·
√
N
. (3.5.3)
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For the sake of simplicity we introduce

x1 =
|D|
K

,

x2 = 1− N · logN −∑K
i=1 Fi · logFi

N · logK
,

x3 = − 1√
N
· log

1

e ·
√
N
,

and the vector of these terms is

x = (x1, x2, x3) .

Here 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 and 0 ≤ x3 ≤ 1.

Fix now the F table and consider the (3.5.3) risk measure as the

function of w. It means that we can allocate different weights to different

tables. Fixing the table implies that x is constant. With the above

notations

R∗1(F,w) = x ·w = x1 · w1 + x2 · w2 + x3 · w3 .

According to the Cauchy-Schwarz inequality:

R∗1(F,w) = x ·w ≤
√
x2 ·
√
w2 =

√
x2

1 + x2
2 + x2

3 ·
√
w2

1 + w2
2 + w2

3 =
√
x2

1 + x2
2 + x2

3 = ‖x‖2 .

Equality holds if and only if

(w1, w2, w3) = C · (x1, x2, x3)
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with an appropriately chosen C > 0 constant. It is easy to see that this

constant must be C = 1√
x2

1+x2
2+x2

3

.

Hence we get the L2-norm of x as a risk measure. While the (3.5.2)

risk measure is bounded by 0 and 1, the bounds of (3.5.3) are 0 and
√

3.

We prefer the risk measure to be bounded by 0 and 1, therefore one can

use the following disclosure risk measure.

R∗1(F ) =
‖x‖2√

3
(3.5.4)

Note that (3.5.4) depends only on the table, it is not necessary to choose

weights.

3.6 Measuring Disclosure Risk After

Perturbation

The disclosure risk in frequency tables should be measured not just

before but also after perturbation. However, the perturbation method

can make a significant difference to the disclosure risk assessment.

The expected disclosure risk measure of perturbed tables is lower than

that of the original table since more uncertainty is introduced in the

perturbed table. In the following sections we propose to modify the first

and second terms of R1(F,w) in order to lower the disclosure risk. We

assume that both the original and the perturbed tables are known when

the disclosure risk is assessed.

60



3.6.1 Modifying the First Term of the Disclosure

Risk Measure

Denote the set of cells of zero frequency in the perturbed table by E.

We reduce R1(F,w) by replacing |D|
K

with

( |D|
K

) |D∪E|
|D∩E|

. (3.6.1)

If D = ∅ or E = ∅, then the first term of the disclosure risk measure

will be considered 0. The (3.6.1) term is smaller than |D|
K

because |D|
K
≤ 1

and |D ∪ E|≥ |D ∩ E|.

3.6.2 Modifying the Second Term of the Disclosure

Risk Measure

3.6.2.1 The Modification

In order to reduce the entropy-based term of the disclosure risk

measure, we will use the conditional entropy. The H(X|Y ) ≤ H(X)

relationship will help to decrease the second term of the disclosure risk

measure.

In order to define the H(X|Y ) conditional entropy, we need to ensure

that X and Y are defined on the same probability space, that is, I = J .

It implies that N = M .

We need to express the Pr(Y = cj|X = ci) conditional probabilities

in order to determine the conditional entropy. These probabilities vary

if we select different elements of ΩG. The choice of the Y ∈ ΩG variable

is arbitrary. We can assume that an RG probability distribution is

given on ΩG and we select the Y variable according to that. RG(Y ) is the

probability that Y is selected from ΩG. Another option is as follows. Once

the RG distribution is given, the expectation of the Pr(Y = cj|X = ci)

probabilities can be calculated for every fixed i and j. For every i and j
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we define a

ZG
ij = Zij : (ΩG,P(ΩG))→ ([0, 1],P([0, 1]))

random variable. By definition, Zij(Yl) = Pr(Yl = cj|X = ci). The

expectation is

E(Zij) =

|ΩG|∑

l=1

RG(Yl) · Pr(Yl = cj|X = ci) . (3.6.2)

The first natural assumption is to not distinguish between the elements

of ΩG. It means that we assume a uniform distribution on ΩG. Theorem 1

shows that in that case the (3.6.2) expectation depends mainly on the G

frequency table.

Theorem 1. If RG = UΩG
, then

E(Zij) =

{
Gj/N if Fi > 0 ,

0 if Fi = 0 .

Proof. The proof can be found in the Appendices.

As Willenborg and de Waal (2001) point out, the (3.3.2) formula can

be rewritten as

H(X|Y ) = −
K∑

i=1

K∑

j=1

Pr(X = ci) · Pr(Y = cj|X = ci)·

log
Pr(X = ci) · Pr(Y = cj|X = ci)∑K
k=1 Pr(X = ck) · Pr(Y = cj|X = ck)

. (3.6.3)
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Therefore in our case the conditional entropy, calculated on E(Zij), is

H(X|Y ) = −
K∑

i=1

K∑

j=1

Fi
N
· Gj

N
· log

Fi

N
· Gj

N∑K
k=1

Fk

N
· Gj

N

=

−
K∑

j=1

Gj

N

K∑

i=1

Fi
N
· log

Fi
N

= H(X) .

This equation proves that the entropy cannot be lowered by the conditional

entropy if RG = UΩG
. However, the risk measure should show difference

between the original disclosure risk and the disclosure risk after perturbation.

Therefore, we select a new RG distribution and calculate the conditional

entropy accordingly.

The new RG assigns positive probability to a Yl variable if the number

of a ∈ I individuals with X(a) = Yl(a) is maximal. Note that the F

and G frequency tables are fixed. The criterion means that the highest

number of individuals remain in the same cell ’after perturbation’. (Here

by perturbation we mean the switch from X to Y . It represents a

perturbation similar to pre-tabular methods.) If a Yl ∈ ΩG variable does

not satisfy this criterion, then its probability is zero, RG(Yl) = 0. The

positive probabilities probabilities are distributed uniformly.

For a fixed j consider the X−1(cj) = {a ∈ I : X(a) = cj} set of

individuals. Obviously, |X−1(cj)|= Fj . The highest number of individuals

in X−1(cj) that can remain in the same cj cell after perturbation is

min(Fj, Gj). Therefore, the highest number of individuals in the population

that can remain in the same cell is
∑K

j=1 min(Fj, Gj). Consequently, the

new RG distribution assigns positive probabilities to the variables of the

following set, denoted by Ω∗G.

Ω∗G =

{
Yl ∈ ΩG : |{a ∈ I : X(a) = Yl(a)}|=

K∑

j=1

min(Fj, Gj)

}
.

Our aim is to determine the (3.6.2) average using the newRG distribution.
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Theorem 2. Assume that F 6= G and

RG(Yl) =

{
1/|Ω∗G| if Yl ∈ Ω∗G

0 if Yl /∈ Ω∗G

Then

E(Zij) =
∑

Yl∈Ω∗G

RG(Yl) · Pr(Yl = cj|X = ci) =





min(Fi, Gi)

Fi
if i = j and Fi > 0 ,

(Fi −min(Fi, Gi)) · (Gj −min(Fj, Gj))

Fi · (N −
∑K

k=1 min(Fk, Gk))
if i 6= j and Fi > 0 ,

0 if Fi = 0 .

Proof. The proof can be found in the Appendices.

We can calculate the conditional entropy again with the new E(Zij)

values. The formula is given below. The proof can be found in the

Appendices.

H(X|Y ) = −
K∑

i=1

min(Fi, Gi)

N
· log

min(Fi, Gi)

Gi

−

K∑

i=1

Fi −min(Fi, Gi)

N
· log

Fi −min(Fi, Gi)

N −∑K
k=1 min(Fk, Gk)

− (3.6.4)

K∑

j=1

Gj −min(Fj, Gj)

N
· log

Gj −min(Fj, Gj)

Gj

.

3.6.2.1.1 An Example

To illustrate Theorems 1 and 2, consider the example below. Assume

that K = 3 and the original and perturbed frequency tables are F =

(0, 2, 4) and G = (0, 3, 3) respectively. Without loss of generality we

can assume that X(a1) = X(a2) = c2 and X(a3) = X(a4) = X(a5) =

X(a6) = c3. We can assume furthermore that I = J . The X and Yl
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Variable Individuals (I)
a1 a2 a3 a4 a5 a6 Is the variable in Ω∗G?

X c2 c2 c3 c3 c3 c3 -
Y1 c2 c2 c2 c3 c3 c3 yes
Y2 c2 c2 c3 c2 c3 c3 yes
Y3 c2 c2 c3 c3 c2 c3 yes
Y4 c2 c2 c3 c3 c3 c2 yes
Y5 c2 c3 c2 c2 c3 c3 no
Y6 c2 c3 c2 c3 c2 c3 no
Y7 c2 c3 c2 c3 c3 c2 no
Y8 c2 c3 c3 c2 c2 c3 no
Y9 c2 c3 c3 c2 c3 c2 no
Y10 c2 c3 c3 c3 c2 c2 no
Y11 c3 c2 c2 c2 c3 c3 no
Y12 c3 c2 c2 c3 c2 c3 no
Y13 c3 c2 c2 c3 c3 c2 no
Y14 c3 c2 c3 c2 c2 c3 no
Y15 c3 c2 c3 c2 c3 c2 no
Y16 c3 c2 c3 c3 c2 c2 no
Y17 c3 c3 c2 c2 c2 c3 no
Y18 c3 c3 c2 c2 c3 c2 no
Y19 c3 c3 c2 c3 c2 c2 no
Y20 c3 c3 c3 c2 c2 c2 no

Table 3.6.1: Example: the X variable and Yl variables

variables can be seen in Table 3.6.1.

Theorem 1 determines the expected conditional probability of Pr(Yl =

cj|X = ci). For instance, in our example one of the conditional probabilities

in the (3.6.2) average for i = 2 and j = 2 is

Pr(Y1 = c2|X = c2) =
Pr(Y1 = c2, X = c2)

Pr(X = c2)
=

|{ak∈I:X(ak)=c2,Y1(ak)=c2}|
N
F2

N

=
|{a1, a2}|

F2

=
2

2
= 1 .

The proof of Theorem 1 is based on the following idea, which is called

’double counting’ in the literature. Assume that i = 2 and j = 2. The
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point of Theorem 1 is to determine

E(Z22) =
20∑

l=1

1

20
· Pr(Yl = c2|X = c2) =

1

20
·

20∑

l=1

Pr(X = c2, Yl = c2)

Pr(X = c2)
=

1

20
·

20∑

l=1

|{ak∈I:X(ak)=c2,Yl(ak)=c2}|
N
F2

N

=

1

20 · F2

20∑

l=1

|{ak ∈ I : X(ak) = c2, Yl(ak) = c2}| .

It implies that for each Yl variable we need to count the number of

individuals that fall into c2 by both X and Y . Since only a1 and a2 are in

c2 by X, we need to count the number of c2s in the first two columns of

Table 3.6.1 (excluding the c2s in the row of X). Each column has 10 c2s,

therefore there are 20 c2s altogether. It means that E(Z22) = 1
20·2 · 20 = 1

2
.

The proof of Theorem 2 is based on the same idea. However, the

possible Yl variables are limited, only Y1, Y2, Y3 and Y4 are taken into

consideration in the example of Table 3.6.1.

3.6.2.2 Uneven Sums of Frequencies

In Section 3.6.2.1 we assumed that I = J and N = M . In numerous

cases the sum of the original frequencies is not equal to the sum of the

perturbed frequencies, that is, N 6= M . In this section we extend our

results to this situation.

We define first a new set of individuals, denoted by I ′. This set will

consist of N ·M (imaginary) individuals. If a ∈ I, then I ′ will contain

M ’copies’ of a. We define the J ′ set similarly. If b ∈ J , the J ′ set of

(imaginary) individuals will contain N individuals identical to b. It implies

that the new frequency tables are M · F = (M · F1,M · F2, . . . ,M · FK)

and N · G = (N · G1, N · G2, . . . , N · GK). Note that
∑K

i=1M · Fi =
∑K

j=1 N · Gj = N · M and the entropies of the new frequency tables

are equal to those of the initial tables. It means that we can assume
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that I ′ = J ′ and calculate the conditional entropy as it is described in

Section 3.6.2.1. Although the X, Y and Zij variables are different from

those used in Section 3.6.2.1, we do not change the notation.

Theorems 1 and 2 can be rewritten as follows.

Theorem 3. If RN ·G = UΩN·G, then

E(Zij) =

|ΩN·G|∑

l=1

RN ·G(Yl) · Pr(Yl = cj|X = ci) =





Gj

M
if Fi > 0 ,

0 if Fi = 0 .

Proof. The proof is the same as that of Theorem 1.

The (3.6.3) formula takes the following form.

H(X|Y ) = −
K∑

i=1

K∑

j=1

M · Fi
N ·M ·

N ·Gj

N ·M · log
M ·Fi

N ·M ·
N ·Gj

N ·M∑K
k=1

M ·Fk

N ·M ·
N ·Gj

N ·M
=

−
K∑

j=1

Gj

M
·
K∑

i=1

Fi
N
· log

Fi
N

= H(X) .

Theorem 4. Assume that F 6= G and

RN ·G(Yl) =

{
1/|Ω∗N ·G| if Yl ∈ Ω∗N ·G ,

0 if Yl /∈ Ω∗N ·G .

Then

E(Zij) =
∑

Yl∈Ω∗
N·G

RN·G(Yl) · Pr(Yl = cj |X = ci) =


min(M · Fi, N ·Gi)

M · Fi
if i = j and Fi > 0 ,

(M · Fi −min(M · Fi, N ·Gi)) · (N ·Gj −min(M · Fj , N ·Gj))

M · Fi · (N ·M −
∑K

k=1 min(M · Fk, N ·Gk))
if i 6= j and Fi > 0 ,

0 if Fi = 0 .

Proof. The proof is the same as that of Theorem 2.

We can calculate the conditional entropy on E(Zij) again. The proof
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of the following formula can be found in the Appendix.

H(X|Y ) = −
K∑

i=1

min(M · Fi, N ·Gi)

N ·M · log
min(M · Fi, N ·Gi)

N ·Gi

−

K∑

i=1

M · Fi −min(M · Fi, N ·Gi)

N ·M · log
M · Fi −min(M · Fi, N ·Gi)

N ·M −∑K
k=1 min(M · Fk, N ·Gk)

−

K∑

j=1

N ·Gj −min(M · Fj, N ·Gj)

N ·M · log
N ·Gj −min(M · Fj, N ·Gj)

N ·Gj

(3.6.5)

This formula is the generalisation of (3.6.4).

3.6.2.3 The Perturbation Method

So far we have dealt with a fixed G perturbed frequency vector without

taking the perturbation method into account. A post-tabular perturbation

method assigns probabilities to potential perturbed tables given the F

original table. In order to maintain generality, at this point we do not

select a perturbation method, therefore the set of the potential perturbed

tables consists of every integer vector of length K. We denote the set of

potential perturbed tables by PG.

PG = {G : G = (G1, G2, . . . , GK) ∈ ZK} = ZK .

However, we assume that the perturbation method assigns non-zero

probability to finite number of perturbed vectors. The probability assigned

to the G table by the perturbation method will be denoted T (G). It

implies that T (·) provides a probability distribution on PG.

We have defined the ΩG set for an arbitrarily chosen G perturbed

table. Denote the (disjoint) union of these sets by Ω.

Ω =
⋃

G∈PG
ΩG .
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Assume that we have defined an RG : ΩG → R probability distribution

for all G. It provides an R : Ω→ R probability distribution as follows. If

Y ∈ Ω, then Y is an element of an ΩG. By definition,

R(Y ) = T (G) ·RG(Y ) if Y ∈ ΩG .

R is a probability distribution on Ω, since

∑

Y ∈Ω

R(Y ) =
∑

G∈PG

∑

Y ∈ΩG

T (G) ·RG(Y ) =

∑

G∈PG
T (G) ·

∑

Y ∈ΩG

RG(Y ) =
∑

G∈PG
T (G) = 1 .

The Ω∗ set can be defined as follows.

Ω∗ =
⋃

G∈PG
Ω∗G .

At this point it is inevitable to replace the M and Zij notations with

MG and ZG
ij . It shows that they depend on the G perturbed table.

Theorems 3 and 4 can be extended as follows.

Theorem 5. If RN ·G = UΩN·G for all G ∈ PG, then

∑

G∈PG
T (G) · E(ZG

ij ) =





∑
G∈PG T (G) · Gj

MG

if Fi > 0 ,

0 if Fi = 0 .

Proof. This Theorem is the straightforward consequence of Theorem 3.

In this case the conditional entropy might not be equal to the H(X)

entropy.
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Theorem 6. Assume that

RN ·G(Yl) =

{
1/|Ω∗N ·G| if Yl ∈ Ω∗N ·G ,

0 if Yl /∈ Ω∗N ·G .

for all G ∈ PG. Then

∑

G∈PG
T (G) · E(ZG

ij ) =





∑
G∈PG T (G) · min(MG · Fi, N ·Gi)

MG · Fi
if i = j and Fi > 0 ,

∑
G∈PG\{F} T (G) · (MGFi −min(MGFi, NGi)) · (NGj −min(MGFj , NGj))

MG · Fi · (N ·MG −
∑K

k=1 min(MG · Fk, N ·Gk))

if i 6= j and Fi > 0 ,

0 if Fi = 0 .

Proof. It can be seen easily that E(ZF
ii ) = 1 and E(ZF

ij ) = 0 if i 6= j.

Otherwise the proof can be derived from Theorem 4.

The conditional entropy can be calculated on the formula given in

Theorem 6.

3.6.2.4 The New Term of the Disclosure Risk Measure

To reduce the second term of the risk measure we exploit theH(X|Y ) ≤
H(X) property. The risk measure before perturbation includes a 1− H(X)

logK

term. Similarly to this term, 1 − H(X|Y )
H(X)

is also bounded by 0 and 1.

However, the latter expression might surpass 1− H(X)
logK

. Thus, the product

of the two terms,
(

1− H(X|Y )
H(X)

)
·
(

1− H(X)
logK

)
, will be included in our

disclosure risk measure after perturbation.
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3.6.3 The Disclosure Risk Measure After Perturbation

The risk measure we apply after perturbation also consists of three

weighted terms.

R2(F,G,w) = w1 ·
( |D|
K

) |D∪E|
|D∩E|

+

w2 ·
(

1− H(X|Y )

H(X)

)
·
(

1− H(X)

logK

)
− w3 ·

1√
N
· log

1

e ·
√
N
. (3.6.6)

3.6.4 The Choice of Weights After Perturbation

The choice of the weights after perturbation is a similar problem to

that before perturbation. The method described in Section 3.5.2 can be

applied to the (3.6.6) risk measure.

We introduce the following risk measure analogously to (3.5.3).

R∗2(F,G,w) = w1 ·
( |D|
K

) |D∪E|
|D∩E|

+

w2 ·
(

1− H(X|Y )

H(X)

)
·
(

1− H(X)

logK

)
− w3 ·

1√
N
· log

1

e ·
√
N
. (3.6.7)

Here w1 ≥ 0, w2 ≥ 0, w3 ≥ 0 and w2
1 + w2

2 + w2
3 = 1.

We expect the disclosure risk to be lower after perturbation than

prior to that. Denote the first, second and third term of the (3.6.7) risk

measure by y1, y2 and y3 respectively.

y1 =

( |D|
K

) |D∪E|
|D∩E|

,

y2 =

(
1− H(X|Y )

H(X)

)
·
(

1− H(X)

logK

)
,
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y3 = − 1√
N
· log

1

e ·
√
N
.

Let the vector of these terms be y = (y1, y2, y3). Define now the risk

measure after perturbation as

R∗2(F,G) =
‖y‖2√

3
.

Since y1 ≤ x1, y2 ≤ x2 and y3 = x3, the risk measure after perturbation

is smaller than that before perturbation.

R∗2(F,G) =
‖y‖2√

3
≤ ‖x‖2√

3
= R∗1(F ) .

Therefore our expectation that we should get a lower disclosure risk

measure after perturbation is met.

3.6.5 A Note on the Disclosure Risk Measure and

Pre-Tabular SDC Methods

The R2(F,G,w) disclosure risk measure is designed for post-tabular

SDC methods. We assume that an RG distribution is given on the Yl,

l = 1, 2, . . . , |ΩG| variables and the conditional entropy is calculated

accordingly. This section is devoted to the relation of the conditional

entropy, and therefore the disclosure risk measure to pre-tabular methods.

A pre-tabular method, by definition, modifies certain categories of

few individuals. In other words, the original X : I → C categorization of

individuals is changed to a Y : I → C variable. Note that in this case the

variables share the same domain. The frequency table, generated from

the perturbed microdata, may be released.

The original X categorization of individuals provides the

F = (F1, F2, . . . , FK) frequency table. Denote the frequency table that

a Y variable provides by GY = (GY 1, GY 2 . . . , GY K). It is now obvious

that our way of thinking must be reversed with respect to post-tabular
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methods. In case of post-tabular methods, the G perturbed table is given

and we need to find the corresponding Y random variables. A pre-tabular

method selects a Y random variable and the GY perturbed table depends

on the variable.

Pre-tabular methods preserve the number of individuals of the microdata

set, that is, N =
∑K

i=1 Fi =
∑K

j=1 GY j. (A post-tabular method might

change the sum.) In order to maintain generality, we now do not exclude

any random variable from the potential Y variables, denoted by ΩPre.

ΩPre = {Y |Y : I → C is a random variable} .

Apparently, ΩPre ⊆ Ω, where Ω is defined in Section 3.6.2.3.

It is easy to see that for an arbitrarily given G = (G1, G2 . . . , GK) ∈
ZK frequency vector, where

∑K
j=1 Gj = N , there exists at least one

Y ∈ ΩPre that provides GY = G. Such variable is given for example by

the following definitions.

Y (a1) = Y (a2) = . . . = Y (aG1) = c1,

Y (aG1+1) = Y (aG1+2) = . . . = Y (aG1+G2) = c2,

. . . ,

Y (aG1+G2+...+GK−1+1) = Y (aG1+G2+...+GK−1+2) = . . . = Y (aN) = cK .

Therefore, the set of potential perturbed tables, denoted by PGPre, can

be given as follows.

PGPre = {G|G = (G1, G2 . . . , GK) ∈ ZK and
K∑

j=1

Gj = N} .

Obviously, PGPre ⊆ PG, where PG is a set introduced in Section 3.6.2.3.

A pre-tabular method, by definition, determines a probability distribution
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on the ΩPre set. Denote it by RPre.

RPre : ΩPre → [0, 1] .

A data protector selects a Y ∈ ΩPre variable according to the RPre

distribution and generates theGY frequency table. A particular pre-tabular

method might not assign positive probability to each Y element of ΩPre.

Consequently, there might be GY ∈ PGPre tables that occur with zero

probability after the application of the pre-tabular method.

If we select and fix now a particular G ∈ PGPre frequency table,

then we can follow a similar thought process to that we followed for

post-tabular methods. We can define the set of variables that provides

the fixed G table.

ΩPre,G = {Y ∈ ΩPre|Y provides the G frequency table} .

Apparently, ΩPre is the disjoint union of the above sets.

ΩPre =
⋃

G∈PGPre

ΩPre,G .

The RPre distribution naturally derives a distribution on each ΩPre,G

set. It is basically a conditional distribution. Denote it by RPre,G :

ΩPre,G → [0, 1]. By definition,

RPre,G(Y ) = Pr(we select Y |Y is in ΩPre,G) =
RPre(Y )∑

Y ∗∈ΩPre,G
RPre(Y ∗)

.

Obviously, the objects in the above discussion of pre-tabular methods

correspond to those in the description of post-tabular methods. The

corresponding pairs are ΩPre and Ω, ΩPre,G and ΩG, PGPre and PG,

RPre and R, RPre,G and RG.

However, there is a major difference between the two situations. In

case of a post-tabular method we do not know the RG distribution on ΩG,
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therefore we need to make an assumption on it. Theorems 1, 2, 3, 4, 5 and 6

are all based on that assumption. A pre-tabular method, by its nature,

assigns a probability to each Y ∈ ΩPre variable, therefore determines

the RPre,G distribution. This fact is easy to demonstrate on the PRAM

method. The category of the ai individual before perturbation is X(ai),

i = 1, , 2, . . . , N . Select and fix now a Y ∈ ΩPre variable. Assume that

(before perturbation) the probability of changing X(ai) to Y (ai) as the

result of the perturbation is pai(Y ). Since the ai individuals are perturbed

independently from each other, the probability of getting exactly the Y

variable is RPre,G(Y ) =
∏N

i=1 pai(Y ).

3.7 A Figure

Figure 3.1 attempts to clarify the relations of sets and variables used

in the sections above. The main point of the figure is to show that in case

of post–tabular methods we get the Y variables from the G perturbed

table, while for pre-tabular methods the opposite is true.

3.8 Measuring Information Loss

The application of SDC methods evidently brings some information

loss to the data. The role of information loss measures lies in expressing

how much the loss is. In other words, how close the perturbed data are

to the original data.

As mentioned in Section 3.3, we use the Hellinger distance to measure

the utility of perturbed data.

In frequency tables it is not necessary to use the distributions when

calculating the Hellinger distance. Similar formula can apply to the square

root of the F and G frequencies instead of P and Q probabilities. In fact,

Hellinger distance shows the magnitude of the cells since the difference

between the square roots of two ’large’ numbers are higher than in case of
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Figure 3.1: Relations of sets and variables
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two ’small’ numbers, even if these pairs have the same absolute difference.

HD(F,G) =
1√
2
· ‖
√
F −
√
G‖2

Naturally, the lower bound is zero, while the upper bound of this distance

of counts is
√

N+M
2

since

HD(F,G) =
1√
2
· ‖
√
F −
√
G‖2 =

1√
2
·

√√√√
K∑

i=1

(
√
Fi −

√
Gi)2 =

1√
2
·

√√√√
K∑

i=1

(Fi +Gi − 2 ·
√
Fi ·Gi) =

1√
2
·

√√√√N +M − 2 ·
K∑

i=1

√
Fi ·Gi ≤

√
N +M

2
.

If the perturbation method is unbiased, then the expected value of M

is N . It means that the upper bound is approximately
√
N .
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3.9 Paper: Measuring Disclosure Risk with

Entropy in Population Based Frequency

Tables

The paper below was submitted to the Privacy in Statistical Databases

2014 conference. It was published in the proceedings.
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Laszlo Antal, Natalie Shlomo, and Mark Elliot
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laszlo.antal@postgrad.manchester.ac.uk,

{natalie.shlomo,mark.elliot}@manchester.ac.uk

Abstract. Statistical agencies assess the risk of disclosure before re-
leasing data. Unacceptably high disclosure risk will prevent a statistical
agency from disseminating the data. The application of statistical dis-
closure control (SDC) methods aims to provide sufficient protection and
make the data release possible. The disclosure risk of tabular data is
typically quantified at the level of table cells. However, the evaluation
of disclosure risk can require the assessment of the table as a whole,
for example in the case of online flexible table generators. In this pa-
per we use information theory to develop a disclosure risk measure for
population-based frequency tables. The proposed disclosure risk measure
quantifies the risk of attribute disclosure before and after an SDC method
is applied. The new measure is compared to alternative disclosure risk
measures developed at the Office for National Statistics.

Keywords: Information theory, attribute disclosure, conditional entropy.

1 Introduction

Statistical agencies follow strict confidentiality rules since releasing data always
increases the risk of disclosure. They measure the risk of disclosure and apply
statistical disclosure control (SDC) methods if the risk is unacceptably high.
The subject of this paper is disclosure risk measurement in population-based
frequency counts of tabular form.

Dislosure risk measures of tabular data usually express the risk at cell level.
A regularly used disclosure risk measure for frequency counts is the so-called
threshold rule. A cell is of high risk if the count does not exceed a certain value,
for example 2.

The main objective of this paper is to measure the risk of attribute disclosure.
Attribute disclosure happens if confidential information about an individual can
be retrieved from the data. We use information theory to quantify the disclosure
risk of population based frequency tables. The disclosure risk is expressed for
the entire frequency table and for rows and columns of the frequency table.
Single cells in themselves are not considered here. Information theory has been
investigated in [5] to measure the disclosure risk of individual cells of magnitude
tables. However, there has been no attempt to quantify the disclosure risk of an

J. Domingo-Ferrer (Ed.): PSD 2014, LNCS 8744, pp. 62–78, 2014.
c© Springer International Publishing Switzerland 2014
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entire (either frequency or magnitude) table by information theory. This paper
provides a novel disclosure risk measure, which makes relatively quick disclosure
risk assessment possible. The bases of the measure are entropy and conditional
entropy.

Our aim is to develop a disclosure risk measure around the following
properties.

Property 1A If only one cell is populated in the table, then the disclosure risk
is high.

Property 1B Uniformly distributed frequencies imply low risk.
Property 2 Small cell values (i.e. ones and twos) are more disclosive than

higher values. In general, the greater the cells, the lower the
disclosure risk.

Property 3 Assume that two tables are given and there is only one cell pop-
ulated in each table. The frequencies of the non-zero cells are
equal. In this case we deem the table that has more cells (and
therefore more zeroes) to be of higher disclosure risk.

Property 4 We would like the disclosure risk measure to be bounded by 0
and 1.

The motivation behind the properties is as follows. The risk of attribute dis-
closure is normally high if the population is concentrated in one cell, see [7]. It
explains Property 1A. On the other hand, attribute disclosure is unlikely to oc-
cur if the frequencies are uniformly distributed, which drives Property 1B. The
ground of Property 2 is the fact that revealing new information about a respon-
dent becomes more difficult as the cell frequencies increase. The rationale behind
Property 3 is that a table may be a more detailed version of another table, e.g.
the breakdown of a table-spanning variable might be different in two tables. For
example, if we replace super output area with output area, then the table will
contain more detailed information. An intruder may obtain more information
from more detailed tables. Property 4 is driven by the desire of comparing the
disclosure risk of different tables.

Besides disclosure risk, information loss is also a crucial concept in statis-
tical disclosure control. We use another information theory-related expression,
Hellinger distance to measure the loss of information.

Although SDC methods provide protection to the data, a statistical agency
might not be certain about the adequacy of the protection. Therefore, we assess
the disclosure risk not just before but also after perturbation. The disclosure
risk measures before and after perturbation are described in Section 2. Pertur-
bation methods used for this study are outlined in Section 3. Section 4 discusses
alternative disclosure measures that were used by the Office for National Statis-
tics (ONS). Application of the theoretical results can be found in Section 5. A
discussion closes our investigation in Section 6.
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2 Disclosure Risk Measures and a Utility Measure

2.1 Before SDC Methods Are Applied

The most important information theoretical definition we use is entropy. Infor-
mation theory is covered comprehensively in [2]. If X is a random variable with
distribution P = (p1, p2, . . . , pK), then the entropy of X is defined as

H(X) = −
K∑

i=1

pi · log pi . (1)

Here log is the natural logarithm. If pi = 0 for a certain i, then the respective
term in the sum is considered 0.

Entropy is ideal to capture Properties 1A and 1B listed above since the value of
entropy is 0 if and only if the P distribution can be written as (0, . . . , 0, 1, 0, . . . , 0),
and the value of entropy is maximal (logK) if and only if P is uniform. There-
fore, the expression [1−H(X)/ logK] exactly reflects Properties 1A, 1B and 4.
However, entropy does not capture Properties 2 and 3 properly. The reason for
this is given below.

The table of frequencies we investigate is denoted F = (F1, F2, . . . , FK). The

population size is N =
∑K

i=1 Fi. Consequently, the distribution of the table is

P =

(
F1

N
,
F2

N
, . . . ,

FK

N

)
. (2)

If we apply (1) to this distribution, we obtain

H(X) =
N · logN −∑K

i=1 Fi · logFi

N
.

Consider, for example, an F = (F1, F2, F3) = (0, 2, 4) frequency table. Then
P =

(
0, 2

6 ,
4
6

)
and H(X) = 6· log 6−2· log 2−4· log 4

6 = 0.6365.
It can be seen from (1) and (2) that H(X) depends only on the Fi/N , i =

1, 2, . . . ,K ratios. Therefore, [1−H(X)/ logK] does not meet the expectations
outlined in Properties 2 and 3. The entropy of F is the same as the entropy of
c · F , where c > 1 is a constant, contradicting Property 2. On the other hand,
(1) shows that zeroes do not contribute to the value of entropy, therefore it does
not reflect Property 3.

In order to compensate for Properties 2 and 3, the proportion of zeroes in the
frequency table and an additional expression, based on N will be included in
the disclosure risk measure. Denote the set of zeroes in the F table by D. The
disclosure risk measure we define is a weighted average of three terms as follows.
The weights are w = (w1, w2, w3), where w1, w2, w3 ≥ 0 and w1 + w2 + w3 = 1.

R1(F,w) = w1 ·
|D|
K

+ w2 ·
(
1− H(X)

logK

)
− w3 ·

1√
N

· log 1

e ·
√
N

. (3)
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Here e is the base of the natural logarithm. Each term is bounded by 0 and
1, and therefore so is the overall disclosure risk measure. The third term is a
monotonically decreasing function of N , which reflects Property 2.

Considering the above example with F = (0, 2, 4), we will obtain that |D|
K =

0.3333, 1− H(X)
logK = 1− 0.6365

log 3 = 0.4206 and − 1√
N

· log 1
e·
√
N

= − 1√
6
· log 1

e·
√
6
=

0.7740.
If a frequency table consists of 1s only, that is, F = (1, 1, . . . , 1), then only the

third term of (3) differs from 0. In this case the chance of attribute disclosure is
low, since the number of zeroes is 0. The disclosure risk of F = (1, 1, . . . , 1) is also
lower than that of F = (10, 10, . . . , 10), therefore monotonicity is maintained.

2.2 After SDC Methods Are Applied

The disclosure risk after SDC methods are applied to the table must also be
assessed. The perturbed frequencies are denoted by G = (G1, G2, . . . , GK) and

their sum by M =
∑K

j=1 Gj . We assume that a statistical agency intends to
release the G frequencies and withhold F . Therefore, we assume that F �= G.

The disclosure risk after perturbation should be lower than that before per-
turbation, since an intruder has to encounter more uncertainty in G than in F .
We adjust (3) in order to assess the disclosure risk after perturbation. The first
and second terms of (3) are reduced in the new measure.

Denote the set of zeroes in G by E. The first term of (3) will be changed to

w1 ·
( |D|

K

) |D∪E|
|D∩E|

.

If D = ∅ or E = ∅, then this term will be considered 0. This expression is not
greater than |D|/K and is still bounded by 0 and 1.

The second term of (3) will be multiplied by a factor, which depends on the
conditional entropy. Assume that X and Y are two random variables with a
common domain (I) and a common range (C = {c1, c2, . . . , cK}).

X : I → C .

Y : I → C .

The definition of the conditional entropy of X and Y is as follows.

H(X |Y ) = −
K∑

j=1

Pr(Y = cj) ·
K∑

i=1

Pr(X = ci|Y = cj) · logPr(X = ci|Y = cj) .

In our case I is the set of individuals and C is the set of table cells (or cate-
gories). (Note that ci is not the frequency of the cell.) X provides the categories
where the individuals fall originally. Since we are dealing with the perturbation
of frequency tables, the individuals and their categories might not be exactly
followed after perturbation. Y should provide a similar categorisation to X after
perturbation. More details about the Y variable can be found below.
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It is well-known that H(X |Y ) ≤ H(X). Roughly speaking, in our case X
represents the original data and Y the perturbed data. H(X |Y ) expresses the
uncertainty the X variable has if Y is known. Therefore we choose the second
term of the disclosure risk measure after perturbation to be

w2 ·
(
1− H(X)

logK

)
· H(X |Y )

H(X)
.

If H(X) = 0, then the second term of the disclosure risk measure is considered 0.
The conditional entropy can be rewritten using the Pr(Y = cj |X = ci) prob-

abilities, as it can be found in [8].

H(X|Y ) = −
K∑

i=1

K∑

j=1

Pr(X = ci)·Pr(Y = cj|X = ci)·log
Pr(X = ci) · Pr(Y = cj |X = ci)∑

K
k=1 Pr(X = ck) · Pr(Y = cj |X = ck)

.

Pr(X = ci) in the above formula provides the probability that an individual
falls in cell ci in the original frequency table. It can be easily estimated by Fi/N .

The Pr(Y = cj|X = ci) conditional probabilities will be expressed by F =
(F1, F2, . . . , FK) and G = (G1, G2, . . . , GK). The formula we use is as follows.

Pr(Y = cj |X = ci) =

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(M · Fi, N · Gi)

M · Fi

if i = j and Fi > 0 ,

(M · Fi − min(M · Fi, N · Gi)) · (N ·Gj − min(M · Fj , N · Gj))

M · Fi · (N · M − ∑K
k=1 min(M · Fk, N ·Gk))

if i �= j and Fi > 0 ,

0 if Fi = 0 .

(4)

The complete justification for the (4) formula can be found in [1], we only outline
the proof here.

The X random variable determines the cells where each individual falls in
the original frequency table. Assume temporarily that N = M . The Y variable
should provide the counterpart of X for the perturbed frequency table. It means
that the individuals are recategorised in the perturbed table. However, the only
requirement for Y is given by the G = (G1, G2, . . . , GK) frequencies, the cell
where a certain individual falls in the perturbed frequency table is not deter-
mined unambiguously. In case of a post-tabular SDC method, such as random
rounding, Y is not (necessarily) uniquely defined. Different Y variables lead to
different values of Pr(Y = cj |X = ci). Instead of choosing one of the possi-
ble variables, we select a set of Y variables and calculate the average of the
Pr(Y = cj |X = ci) conditional probabilities in the set. If we took the average
of the conditional probabilities over the entire set of possible Y variables, then
the H(X |Y ) conditional entropy would not differ from H(X). Consequently, the
second term of the disclosure risk measure would not be lowered. Therefore, we
take the average conditional probability of a narrower set of possible Y vari-
ables. In statistical disclosure control a general aim is to cause the least possible
distortion to the data, therefore we select the Y variables that are as similar to
X as possible. It means that an individual should fall in the same cell by X and
Y , provided that the G = (G1, G2, . . . , GK) frequencies allow that.
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Table 1. Example: the X variable and possible Y variables

Individuals (I)
1 2 3 4 5 6

X variable c2 c2 c3 c3 c3 c3
First possible Y variable c2 c2 c2 c3 c3 c3
Second possible Y variable c2 c2 c3 c2 c3 c3
Third possible Y variable c2 c2 c3 c3 c2 c3
Fourth possible Y variable c2 c2 c3 c3 c3 c2

A Y variable not taken into account c3 c2 c2 c2 c3 c3

Continuing with our example, where F = (0, 2, 4), we can see that there
are six individuals and three categories, that is, C = {c1, c2, c3}. Assume that
G = (0, 3, 3). An X variable and possible Y variables are given in Table 1.

The variable in the last row of Table 1 is not taken into account when cal-
culating the average conditional probability because the category of the first
individual changes. It causes more distortion than necessary.

If N �= M , then we can apply the same reasoning to the M ·F = (M ·F1,M ·
F2, . . . ,M ·FK) and N ·G = (N ·G1, N ·G2, . . . , N ·GK) frequency tables. The
entropy of M · F is the same as that of F . The average conditional probability
is given under (4).

To summarize, the disclosure risk measure after perturbation is

R2(F,G,w) = w1 ·
( |D|

K

) |D∪E|
|D∩E|

+w2 ·
(
1− H(X)

logK

)
·H(X|Y )

H(X)
−w3 · 1√

N
· log 1

e ·
√
N

.

(5)

2.3 A Utility Measure

Besides disclosure risk, information loss is also an important aspect of SDC. We
measure that by a modified Hellinger distance, which is also related to informa-
tion theory. Hellinger distance measures the divergence between two probability
distributions, P = (p1, p2, . . . , pK) and Q = (q1, q2, . . . , qK). The definition of
Hellinger distance is as follows.

HD(P,Q) =
1√
2
·

√√√√
K∑

i=1

(
√
pi −

√
qi)2 .

This expression is bounded by 0 and 1. We substitute P and Q for F and G
respectively.

HD(F,G) =
1√
2
·

√√√√
K∑

i=1

(
√
Fi −

√
Gi)2 .

HD(F,G) is the L2-norm of the difference of
√
F = (

√
F1,

√
F2, . . . ,

√
FK) and√

G = (
√
G1,

√
G2, . . . ,

√
GK) and therefore it is a metric. Hellinger distance
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shows the magnitude of the cells since the difference between the square roots
of two ’large’ numbers are higher than in case of two ’small’ numbers, even if
these pairs have the same absolute difference. The lower bound of HD(F,G) is

0, while the upper bound is
√

N+M
2 .

In our example, where F = (0, 2, 4) and G = (0, 3, 3), the modified Hellinger

distance is HD(F,G) = 1√
2
·
√
(
√
2−

√
3)2 + (

√
4−

√
3)2 = 0.2940.

3 Perturbation Methods

We place ourselves in the statistical agency’s point of view and compare two per-
turbation methods. The perturbation methods we consider are random rounding
to base 3 and record swapping.

Random rounding moves the frequencies to one of the multiples of 3 with
certain probability structure. If a cell value is a multiple of 3, it remains un-
altered. If the remainder is 1 or 2 when dividing the cell value by 3, then we
round it to the closest or second closest multiple of 3 with probability 2/3 or 1/3
respectively. Different cells in the table, including marginal cells, are rounded
independently. Random rounding may not result in additive tables, that is, the
internal cells may not add up to the marginal total. In this paper we deal with
internal cells only.

Record swapping is a pre-tabular method and as such, it is applied to the mi-
crodata. It selects some pairs of records and exchanges the values of a variable
(or more variables) between paired records. Frequency tables may be generated
from the perturbed microdata. However, if the table-spanning variables do not
include at least one perturbed variable, then the frequency table generated from
the perturbed microdata is the same as that generated from the original micro-
data. More details about record swapping can be found in [7]. In Section 5, we
always include a perturbed variable in the table-spanning variables and consider
the resulting G = (G1, G2, . . . , GK) table as the perturbed frequency table. Al-
though record swapping is a pre-tabular method and the Y variable and the
Pr(Y = cj |X = ci) conditional probabilities can be determined exactly, we
use the (4) and (5) formulae to quantify the disclosure risk after perturbation.
The reason for this is ease of computation since (4) and (5), and therefore the
H(X |Y ) conditional entropy can be calculated on the F and G frequencies di-
rectly. There is no need to calculate the exact Pr(Y = cj |X = ci) values, which
can be computationally challenging since there are K ×K such probabilities.

4 Alternative Disclosure Risk Measures

The Office for National Statistics (ONS) applied alternative disclosure risk mea-
sures to the 2001 UK census data in order to determine the best perturbation
methods for tabular outputs of the 2011 UK census. The disclosure risk measures
below were developed specifically for record swapping. The measure to express
the degree of group attribute disclosure risk for rows was
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GAD1(F,G) =

∑
I(rows where all respondents fall into same category in the F and G tables)∑

I(rows where all respondents fall into same category in the F table)
.

Here I(·) is the indicator function. If a row in F has only one populated category,
then it is counted as 1 in the numerator of GAD1(F,G) if the same category is
the only populated cell in that row of G and the same individuals contribute to
the category before and after perturbation.

The within group attribute disclosure for rows was measured by

WGAD1(F,G) =

∑
I

(
rows where all respondents fall into

same 2 categories in F and G (only 1 respondent in one)

)

∑
I

(
rows where all respondents fall into 2

categories in F (only 1 respondent in one)

) .

The same features can be repeated as for GAD1(F,G).
The measures above may also be evaluated columnwise to obtain GAD2(F,G)

and WGAD2(F,G).
GAD1(F,G) and WGAD1(F,G) express the proportion of rows where an in-

truder may correctly reveal a new attribute of an individual or more individuals.
In case of WGAD1(F,G) the data protector assumes that the intruder may be
the person who contributes to a cell with frequency 1.

Denote the set of cells having frequency 1 by D1 and frequency 2 by D2

in the original table, that is, D1 ∪ D2 is the set of small cells in the table.
The counterparts of these sets in the perturbed table are denoted E1 and E2

respectively. A third measure, which was also used by the ONS, is as follows.

DR(F,G) =
|D1 ∩ E1| + |D2 ∩ E2|

|E1 ∪ E2|
.

The numerator is the number of small cells unchanged in the perturbed ta-
ble, while the denominator is the number of small cells in the perturbed table.
Therefore DR(F,G) measures the proportion of small cells where the original
and perturbed frequencies are equal.

The disclosure risk measures above were developed for the pre-tabular method
of record swapping. In order to adapt them to post-tabular random rounding in
our numerical study, we need to change the definitions slightly. In case of random
rounding the individuals cannot be followed through in the microdata, therefore
we cannot garantee that the same individuals contribute to a certain category
before and after perturbation. Therefore, GAD will be changed as follows.

GAD∗
1(F,G) =

∑
I(rows where only one frequency is higher than 0 in the F and G tables)∑

I(rows where only one frequency is higher than 0 in the F table)
.

In the numerator the non-zero frequencies before and after perturbation are in
the same category.
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Similarly,

WGAD∗
1(F,G)=

∑
I

(
rows where exactly two frequencies are higher

than 0 in the F and G tables and at least one of them is 1

)

∑
I

(
rows where exactly two frequencies are higher

than 0 in the F table and at least one of them is 1

) .

The non-zero categories are the same in F and G if the row is counted in the
numerator of WGAD∗

1(F,G).
These measures can also be evaluated columnwise and we obtain GAD∗

2(F,G)
and WGAD∗

2(F,G) respectively.
The idea behind GAD∗

1(F,G) and WGAD∗
1(F,G) is similar to GAD1(F,G)

and WGAD1(F,G). An intruder might correctly reveal a new attribute of an
individual or more individuals if the same (one or two) cells are populated in
the original and perturbed tables.

5 Numerical Results

5.1 Numerical Results for R1(F,w) and R2(F,G,w)

The data we use is an extract from the 2001 UK census tables. The table-
spanning variables for various tables include age, sex, output area, country of
birth, mode of travel, religion. In this paper only two-dimensional tables are
considered.

We investigate the output area × country of birth, output area × mode of
travel, output area× sex and output area × religion tables, where only 10 output
areas are taken into account. The population size is N = 2449. In case of the
output area × mode of travel table the population is restricted to individuals
between 16 and 74 years of age. As can be seen, each table includes output area
as a table-spanning variable. It coincides with the practice followed by the ONS,
since the geographical variable in their frequency tables is normally output area
and is the swapping variable for record swapping.

The entropy-based term is the core of the diclosure risk measure, therefore
we assign high weight to that term in R1(F,w). We use w = (w1, w2, w3) =
(0.1, 0.8, 0.1).

The R2(F,G,w) disclosure risk depends on the G perturbed frequency table,
therefore different perturbed tables provide different values of disclosure risk. In
order to avoid an extreme value, we carry out the perturbation 1,000 times and
take the average disclosure risk. This also reflects the perturbation method since
more possible perturbed tables and their respective chance of being the outcome
of the perturbation are taken into account. Random rounding and record swap-
ping were carried out. Random rounding was applied to the frequency table,
while record swapping to the output area variable of the microdata. 5% percent
of the individuals were selected and paired with other individuals from distinct
output areas, resulting in a total of 10% swapped individuals. The G frequency
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table was generated on the perturbed microdata. The weights of R2(F,G,w) are
unaltered compared to those before perturbation, w = (0.1, 0.8, 0.1).

An individual’s attribute might be revealed using the rows or columns of a
frequency table. Since the main point of this paper is measuring attribute dis-
closure, R1(F,w) and R2(F,G,w) are evaluated for each row, for each column
and for the entire table. The F frequency tables, R1(F,w), R2(F,G,w) and
HD(F,G) for random rounding and record swapping can be found in the Ap-
pendix, see Tables 2, 3, 4 and 5.

The values of R1(F,w) reflect the Properties listed in Section 1 reasonably
well. It can be observed that longer rows have higher disclosure risk. It might be
attributed to the potentially higher number of zeroes in longer rows.

It can be seen that R2(F,G,w) is always substantially lower than R1(F,w).
The R2(F,G,w) disclosure risk measure of rows and columns for record swap-

ping often shows slightly smaller values than for random rounding. This is at-
tributed to the different methods of perturbation. While random rounding com-
pletely removes small cell values and frequencies that are not multiples of 3, and
therefore it might change the distribution significantly, record swapping results
in similar distribution to that of the original table. Record swapping also provides
better information loss in numerous cases, especially in rows/columns where the
majority of the counts is not higher than 10. Note that the disclosure risk of
such rows/columns should not be low. Therefore, for rows and columns record
swapping seems to be preferable to random rounding. However, the values of
R2(F,G,w) for entire frequency tables are lower for random rounding compared
to record swapping. On the other hand, the Hellinger distance is higher for ran-
dom rounding compared to record swapping, reflecting higher information loss.
The statistical agency must balance the disclosure risk against information loss.

5.2 Alternative Disclosure Risk Measures

For the alternative disclosure risk measures discussed in Section 4, random
rounding and record swapping were carried out as described in the previous
section. The frequency tables were perturbed 1,000 times and the average dis-
closure risk measures are shown in Table 6.

The value of GAD∗(F,G) for random rounding is zero with one exception.
The non-zero value is the result of column 5 of the output area × country of
birth table. The value of GAD∗(F,G) for that column is either 0 or 1 for each
iteration.

In case of record swapping, GAD(F,G) and WGAD(F,G) are also zero with
two exceptions. Each individual contributes to the same column before and after
perturbation since only the output area variable is perturbed. (Consequently, each
column has the same total before and after perturbation.) Therefore, columns 5
and 7 in the output area × country of birth table can be accounted for the two
non-zero disclosure risk measures.

As it can be seen, GAD(F,G) and WGAD(F,G) are either 0 or 1 for each
iteration. This fact might overestimate or underestimate the true risk. The dis-
closure risk measures defined under (3) and (5) provide more realistic measures.
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6 Discussion

In this paper we have presented a new disclosure risk measure for population-
based frequency tables. Information theoretical expressions, such as entropy and
conditional entropy, are the focus of our investigation. We have demonstrated
that they are able to quantify the risk of attribute disclosure both before and
after the application of an SDC method.

The proposed disclosure risk measure can be applied to the entire frequency
table and to rows and columns of the table. A statistical agency may set a
threshold in order to decide whether a frequency table is safe to release or the
application of an SDC method is required. We have used the Hellinger distance
to measure the loss of information.

The entropy, the conditional entropy and therefore the whole disclosure risk
measure can be expressed by the F = (F1, F2, . . . , FK) original and G =
(G1, G2, . . . , GK) perturbed frequencies. This feature is particularly advanta-
geous for post-tabular perturbation methods, where the category of a certain
individual is not determined in the perturbed frequency table.

We compared our new disclosure risk measure with alternative disclosure risk
measures. While R1(F,w) and R2(F,G,w) provide a disclosure risk measure
for each row and column of the original and perturbed tables, GAD(F,G) and
WGAD(F,G) use both F and G to evaluate the disclosure risk for entire tables.
By applying GAD(F,G) and WGAD(F,G) the statistical agency automatically
assumes that an SDC method should be applied to the frequency table. How-
ever, it is not always necessary. If R1(F,w) shows low disclosure risk, then the
table might be released without perturbation. As we have seen, GAD(F,G) and
WAGD(F,G) can show high disclosure risk if one row or column is of high risk
and do not distinguish well between disclosure risk of different tables.

Although we have shown that R1(F,w) and R2(F,G,w) are preferable to
GAD(F,G) and WGAD(F,G), further research is needed to reveal further prop-
erties of R1(F,w) and R2(F,G,w).
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Table 4. Frequency table (F ) and disclosure risk and utility measures: output area (10
output areas) × sex. The right lower corner shows the measures for the entire table,
while the other measures are calculated rowwise/columnwise. ’Ran. Rou.’ and ’Rec.
Sw.’ denote random rounding and record swapping respectively.

Ran. Rou. Rec. Sw. Ran. Rou. Rec. Sw.
1 2 R1(F,w) R2(F,G,w) R2(F,G,w) HD(F,G) HD(F,G)

1 161 141 0.0247 0.0222 0.0223 0.0376 0.1165
2 105 94 0.0276 0.0259 0.0260 0.0486 0.1259
3 142 116 0.0294 0.0237 0.0239 0.0612 0.1202
4 158 154 0.0220 0.0219 0.0219 0.0539 0.1213
5 139 90 0.0512 0.0252 0.0269 0.0398 0.1445
6 129 90 0.0434 0.0250 0.0265 0.0000 0.1292
7 107 107 0.0252 0.0252 0.0252 0.0660 0.1274
8 133 147 0.0243 0.0228 0.0229 0.0402 0.1343
9 98 115 0.0289 0.0253 0.0255 0.0666 0.1396

10 136 87 0.0529 0.0254 0.0273 0.0409 0.1432
R1(F,w) 0.0170 0.0209 0.0150 - - - -

Ran. Rou. R2(F,G,w) 0.0127 0.0135 - 0.0100 - - -
Rec. Sw. R2(F,G,w) 0.0128 0.0136 - - 0.0100 - -
Ran. Rou. HD(F,G) 0.1227 0.1032 - - - 0.1611 -
Rec. Sw. HD(F,G) 0.3452 0.3720 - - - - 0.5076
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Table 6. Disclosure risk measures, GAD(F,G), WGAD(F,G) and DR(F,G)

Random rounding Record swapping
Frequency table GAD∗(F,G) WGAD∗(F,G) DR(F,G) GAD(F,G) WGAD(F,G) DR(F,G)

output area Rows 0 0 - 0 0 -
× Columns 0.329 0 - 0.902 0.796 -

country of birth Table - - 0 - - 0.7009

output area Rows 0 0 - 0 0 -
× Columns 0 0 - 0 0 -

mode of travel Table - - 0 - - 0.7444

output area Rows 0 0 - 0 0 -
× Columns 0 0 - 0 0 -
sex Table - - 0 - - 0

output area Rows 0 0 - 0 0 -
× Columns 0 0 - 0 0 -

religion Table - - 0 - - 0.7004



Chapter 4

Disclosure Risk and

Information Loss in Sample

Based Tabular Data

4.1 Introduction

A census is always one of the most important data collections a

statistical institute can conduct. A census may provide the most accurate

and comprehensive data about the population. A complete enumeration

delivers the broadest picture and takes every individual’s characteristics

into consideration. Therefore, numerous statistical institutes have gained

experience in conducting censuses. However, statistical institutes tend

to seek alternative solutions to the complete enumeration because there

are other important factors to take into account. Data users expect the

statistical institute to provide the data promptly. A complete enumeration

might last long and also the cost of such enumeration might be high. This

leads statistical institutes to investigate secondary or administrative data

sources and conduction of surveys instead of complete enumeration. Their

aim may be to substitute the traditional census for a new method based

on administrative data and surveys. Before a decision is made about this
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substitution, the institutes have to take the advantages and disadvantages

of the old and new approaches into account. For example, they have to

evaluate whether the change in the production of data can result in the

same or higher quality and whether it reduces the cost significantly.

4.2 Notation for Sample Based Tabular Data

Tabular data are always important outputs of a census. The tabulation

of the data might help to understand them better. Before the release of

tabular data, the disclosure risk should be assessed. The disclosure risk

of sample and population counts should be evaluated differently since

sampling brings uncertainty to the data; a particular individual might or

might not contribute to the sample-based table. In fact, sampling can be

considered an SDC method.

We use the following notations. n individuals are sampled from the N

individuals comprising the population, n ≤ N . The sampled individuals

are IS = {b1, b2, . . . , bn} ⊆ I, where subscript S refers to the sample. The

sampling fraction is denoted p = n/N . Sample frequencies are denoted

by f = (f1, f2, . . . , fK). It implies that n =
∑K

i=1 fi. The set of cells

having population frequency r is Cr = {ci : Fi = r}. The analogous set

in the sample-based table is DS,r = Dr = {ci : fi = r}. The cardinalities

of the sets are Nr = |Cr| and nr = |Dr| respectively. Consequently,

N =
∑∞

r=0 r ·Nr and n =
∑∞

r=0 r · nr.

4.3 Disclosure Risk Measure for Sample

Based Tables

We treat sampling as an SDC method. Therefore, the disclosure risk

of a sample based frequency table can be given by (3.6.6), where G is

substituted for f .
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R2(F, f,w) = w1 ·
( |D|
K

) |D∪E|
|D∩E|

+

w2 ·
(

1− H(X|Y )

H(X)

)
·
(

1− H(X)

logK

)
− w3 ·

1√
N
· log

1

e ·
√
N

(4.3.1)

Here the Y variable is defined on IS, while the form of X is the same

as in (3.2.1).

Y : (IS,P(IS))→ (C,P(C)) .

However, the situation is reversed compared to population based tables.

In Chapter 3 we assumed that the individuals of the population are known

and there are imaginary individuals in the perturbed frequency table.

The X variable was known exactly, while Y was not.

In contrast with perturbed frequency tables, for sample based frequency

tables b1, b2, . . . , bn are not imaginary individuals and the categories where

they fall are known. Now we assume that there is no information available

on the individuals in I \ IS. That is, in this chapter we assume that the Y

variable is known exactly, while X is not. Therefore, we need to estimate

the (F1, F2, . . . , FK) population frequencies.

Although the Fi, i = 1, 2, . . . , K population frequencies are random

variables and N =
∑K

i=1 Fi, we assume that the value of N is fixed and

not random.

Fi, i = 1, 2, . . . , K is a random variable, meaning that Fi : Ψ→ N is

a (measurable) function, where the Ψ domain can be given as

Ψ = {ω|ω is a function, ω : {a1, a2, . . . , aN} → {c1, c2, . . . , cK}} .

With this notation

Fi(ω) = |{a ∈ I| ω(a) = ci}| .
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Consider the
F

N
=

(
F1

N
,
F2

N
, . . . ,

FK
N

)
: Ψ→ NK multivariate random

variable. For a fixed ω ∈ Ψ the F
N

(ω) =
(
F1

N
(ω), F2

N
(ω), . . . , FK

N
(ω)
)

vector

is a probability distribution. If we denote Pω = F
N

(ω), then P = {Pω :

ω ∈ Ψ} resembles a statistical model, where we need to find the ’true’ ω

given the sample.

4.4 Estimating the Population Frequencies

4.4.1 The Expectation of Fi · logFi

Applying the (3.3.1) definition to the F
N

(ω) =
(
F1

N
(ω), F2

N
(ω), . . . , FK

N
(ω)
)

distribution results in the following equation.

H(X) = −
K∑

i=1

Fi
N

(ω) · log

(
Fi
N

(ω)

)
=
N · logN −∑K

i=1 Fi(ω) · logFi(ω)

N
.

(4.4.1)

The estimation of H(X) = H
(
F
N

(ω)
)

plays an important role in the

estimation of R2(F, f,w). Since the N population size is assumed to

be known, we need to estimate the
∑K

i=1 Fi(ω) · logFi(ω) term from the

sample. The most natural approach is to substitute Fi · logFi for its

expectation.

We know that under the (2.3.1) and (2.3.4) assumptions equation (2.3.8)

satisfies. Below we provide a formula for E(Fi · logFi|fi = r, λi) under

the same assumptions.

For x > 0 introduce the g(x) = x·log x function. Since limx→0 g(x) = 0,

we can assume that g(0) = 0. With this notation we need to determine

the expectation of g(Fi) given fi and λi.

E(g(Fi)|fi = r, λi) =
∞∑

s=0

Pr(g(Fi) = g(s)|fi = r, λi) · g(s) . (4.4.2)
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g(0) = g(1) = 0, thus the terms corresponding to s = 0 and s = 1

vanish in (4.4.2). The g(x) function is strictly monotonically increasing

on the
(

1
e
,∞
)

interval. Hence,

Pr(g(Fi) = g(s)|fi = r, λi) = Pr(Fi = s|fi = r, λi) ,

provided that s ≥ 2.

The conditional independence of fi and Fi − fi implies that the

conditional probability can be rewritten as follows.

Pr(Fi = s|fi = r, λi) =
Pr(Fi = s, fi = r|λi)

Pr(fi = r|λi)
=

Pr(Fi − fi = s− r, fi = r|λi)
Pr(fi = r|λi)

=
Pr(Fi − fi = s− r|λi) · Pr(fi = r|λi)

Pr(fi = r|λi)
=

Pr(Fi − fi = s− r|λi) .

According to (2.3.4) this probability is equal to

Pr(Fi − fi = s− r|λi) =
((1− p)λi)s−r

(s− r)! · e−(1−p)λi .

Thus the (4.4.2) equation takes the following form.

E(Fi · logFi|fi = r, λi) =
∞∑

s=r

((1− p)λi)s−r
(s− r)! · e−(1−p)λi · s · log s ,

or equivalently

E(Fi · logFi|fi = r, λi) =
∞∑

s=0

((1− p)λi)s
s!

· e−(1−p)λi · (s+ r) · log (s+ r) .

The applicability of this formula is restricted mainly due to the (2.3.1)

and (2.3.4) assumptions. The value of E(Fi · logFi|fi = r, λi) cannot

be computed exactly by the formula, the sum of the above series can

only be estimated by a finite
∑L

s=0
((1−p)λi)s

s!
· e−(1−p)λi · (s+ r) · log (s+ r)
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sum, where L can be chosen according to the required precision of the

estimation.

4.5 Frequencies of Frequencies

4.5.1 Entropy and Frequencies of Frequencies

The entropy can be determined by the Nr, r = 0, 1, 2, . . . frequencies

of frequencies as we will show below. In fact, Nr : F (Ψ)→ N is a function,

where the domain is F (Ψ) = {F (ω)| ω ∈ Ψ}. The function is defined as

Nr(F (ω)) = |{i|Fi(ω) = r, i = 1, 2, . . . , K}| .

Since F = (F1, F2, . . . , FK) is a random variable, therefore so is Nr, r =

0, 1, 2, . . . . However, we omit the rather cumbersome Nr (F (ω)) notation

and write simply Nr because it will not lead to confusion. The (4.4.1)

formula can be rewritten as follows:

H (X) = −
K∑

i=1

Fi
N

(ω) · log

(
Fi
N

(ω)

)
=

−
∞∑

r=0

∑

i: ci∈Cr

Fi
N

(ω) · log

(
Fi
N

(ω)

)
= −

∞∑

r=0

Nr ·
r∑∞

r=0 rNr

· log
r∑∞

r=0 rNr

.

(4.5.1)

This equation ensures that the estimation of the Nr values provides an

approximation of the entropy. Skinner and Shlomo (2012) provide an

estimation for Nr. The fundamental assumption is (2.3.1) but λi has a

gamma distribution with mean E(λi) = θ1 and variance var(λi) = θ1/θ2.

The compound distribution of the Poisson and gamma distributions is a

negative binomial, therefore Fi ∼ NegBin( θ2
θ1
, θ2). In order to introduce

the result of the article mentioned above we need to follow its notations.

µ̂1 =
n

K
and µ̂2 =

1

K

K∑

i=1

fi · (fi − 1) ,
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θ̂1 =
µ̂1

p
and θ̂2 = p · µ̂1

µ̂2 − µ̂2
1

.

The estimation of Nr is

N̂r =
K · Γ(r + θ̂1 · θ̂2) · θ̂θ̂1·θ̂22

r! ·Γ(θ̂1 · θ̂2) · (1 + θ̂2)r+θ̂1·θ̂2
, (4.5.2)

where Γ(·) is the gamma function. This provides an estimation of the

entropy through (4.5.1).

We can derive another natural estimator for Nr from (2.3.8) as follows.

N̂s =
s∑

r=0

E

[
K∑

i=1

I (Fi = s, fi = r)
∣∣∣λ1, λ2, . . . , λK

]
. (4.5.3)

The sum expresses the expected number of cells where Fi = s. This

estimation depends entirely on how the λi parameters and s are chosen,

as it can be seen below.

N̂s =
s∑

r=0

K∑

i=1

(pλi)
r[(1− p)λi]s−r · exp(−λi)

r! ·(s− r)! =

s∑

r=0

pr · (1− p)s−r
r! ·(s− r)!

K∑

i=1

λsi · exp(−λi) =
(p+ (1− p))s

s!

K∑

i=1

λsi · exp(−λi) =

K∑

i=1

λsi · exp(−λi)
s!

=
K∑

i=1

Pr(Fi = s) .

The λi, i = 1, 2, . . . , K parameters should depend on the known fi,

i = 1, 2, . . . , K sample frequencies and the p sampling fraction. Skinner

and Holmes (1998) estimate the λi parameters using a log-linear model

similar to (2.3.10):

log λi = xTi β + εi . (4.5.4)

The εi term follows a normal distribution by assumption, εi ∼ N(0, σ2).
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The model includes main effect terms only. Thus, the µ̂i estimation of

the expected sample frequencies is the product of n and the marginal

proportions chosen according to the cell. The paper provides also the

estimation of the σ parameter:

σ̂2 = log





∑K
i=1

f 2
i − fi
µ̂2
i

∑K
i=1

fi
µ̂i





.

Finally, the estimation of xTi β is given by

log
µ̂i

p · exp

(
σ̂2

2

) .

4.6 Estimating the Population Frequencies

by Models

Surveys are easier and cheaper to conduct than a complete enumeration.

Therefore, the estimation of population frequencies from samples is

essential to gain a relatively precise picture of the population. The

higher the sampling fraction, the closer the estimate can be.

A population based frequency table can be estimated from a sample

based one by using sampling weights. Individuals selected in the sample

represent those that are not selected. By using sampling weights we try

to account for not selected individuals. However, this approach uses the

attributes of selected individuals only. There might be a not observed

individual whose attributes cannot be inferred. Consequently, the most

difficult problem is the estimation of non-zero population frequencies

that are zeroes in the sample based table. Models applied to sample

based tables account for such frequencies. However, models might provide

positive population estimates where the ’true’ count is zero.
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4.6.1 Log-linear Models

Log-linear models can be applied to frequency tables regardless of

their dimensions. The number of potential log-linear models rises as the

dimension of the table increases. Cell probabilities provided by log-linear

models help to estimate the population frequencies and therefore the

overall disclosure risk measure.

For the case of measuring disclosure risk, log-linear models can be

used to estimate cell probabilities from sample frequencies and we are

able to infer the population frequencies. Depending on the model,

log-linear models will assign positive probabilities to cells where the

sample frequencies are random zero and the population frequencies are

positive and in addition, will assign a zero probability to population

frequencies that are structural zeros. By applying log-linear models, we

take into account the dependence between the table-spanning variables

and model the contingency table for inference.

As mentioned in Section 2.3.2.2.2 and references mentioned therein,

log-linear models appear in the SDC literature. For more discussion on

using log-linear models in disclosure risk assessment, see also Skinner and

Shlomo (2008).

Denote the estimated cell probabilities by P̂ = (p̂1, p̂2, . . . , p̂K). The

next sections outline the models on which we build some of our numerical

results.

4.6.1.1 Multinomial Model

In this section we assume that the sample based table, as well as the

population based table, follows a multinomial model.

f ∼Multinom(n; p̂1, p̂2, . . . , p̂K)

F ∼Multinom(N ; p̂1, p̂2, . . . , p̂K)
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As a consequence, the distribution of F−f is also a multinomial distribution.

F − f ∼Multinom(N − n; p̂1, p̂2, . . . , p̂K) (4.6.1)

The advantage of this model is the fixed population size. The

estimation of the population frequencies is straightforward as follows.

F −f can be generated as in (4.6.1) and the generated table can be added

to f . N and n are assumed to be known.

4.6.1.2 Poisson Model

The Poisson model is formulated under (2.3.4). The λi, i = 1, 2, . . . , K

parameters can be given as follows.

λi = N · p̂i

The problem with the Poisson model is the not fixed sum of population

frequencies (N). If we again generate the Fi − fi ∼ Po(λi) frequencies

and add them to the known fi, then

K∑

i=1

fi +
K∑

i=1

(Fi − fi) ∼
K∑

i=1

fi +
K∑

i=1

Po(λi) .

The latter expression is not necessarily equal to the fixed N population

size.

4.6.2 Pólya Urn Model

The Pólya urn model is discussed in Section 4.7.
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4.7 Paper: Disclosure Risk Measurement

with Entropy in Two-Dimensional Sample

Based Frequency Tables

The paper below was submitted to the ’Joint UNECE/Eurostat Work

Session on Statistical Data Confidentiality 2015’.
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Abstract. We extend a disclosure risk measure defined for population based frequency

tables to sample based frequency tables. The disclosure risk measure is based on in-

formation theoretical expressions, such as entropy and conditional entropy, that reflect

the properties of attribute disclosure. To estimate the disclosure risk of a sample based

frequency table we need to take into account the underlying population and therefore

need both the population and sample frequencies. However, population frequencies might

not be known and therefore they must be estimated from the sample. We consider two

probabilistic models, a log-linear model and a so-called Pólya urn model, to estimate the

population frequencies. Numerical results suggest that the Pólya urn model may be a

feasible alternative to the log-linear model for estimating population frequencies and the

disclosure risk measure.

1 Introduction

Statistical agencies measure the disclosure risk before releasing statistical outputs,
such as frequency tables. This work discusses how information theoretical defini-
tions, such as entropy and conditional entropy, can be employed to measure the
disclosure risk in two-dimensional sample based frequency tables. A similar ap-
proach has been followed and a disclosure risk measure has been introduced in [1]
for population based frequency tables. However, there has been no attempt to em-
ploy a similar disclosure risk measure to sample based tables. In this paper we show
that the disclosure risk measure can be applied to two-dimensional sample based
tables. The disclosure risk measure reflects the properties of attribute disclosure
properly as set out in [1].

The population from which a sample is drawn may be known or unknown to the
statistical agency. The disclosure risk assessment of a sample based table is more
straightforward in the former case. If the population is unknown, the population
frequencies can be estimated from the sample. We then use the estimated population
based table to estimate the disclosure risk of the sample based table.
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The outline of the paper is as follows. In Section 2 we introduce the notation we
follow throughout the paper. Section 3 describes how the entropy and the conditional
entropy can be applied to assess disclosure risk in tabular data. Section 4 presents the
disclosure risk measure. Section 5 proposes two models for estimating the population
frequencies and the disclosure risk measure when the population is unknown. A
simulation study with numerical results can be found in Section 6, followed by a
conclusion in Section 7.

2 Notation

The frequency tables we deal with have K cells. Table cells are denoted C =
{c1, c2, . . . , cK}. The (potentially unknown) population based frequencies are F =
(F1, F2, . . . , FK), and their sample based counterparts are denoted f = (f1, f2, . . . , fK).
The population size and the sample size are N =

∑K
i=1 Fi and n =

∑K
i=1 fi, respec-

tively. The set of individuals of the population is I = {a1, a2, . . . , aN}. The set of
sampled individuals, denoted by IS = {b1, b2, . . . , bn}, is a subset of the population,
IS ⊆ I.

In order to present our results, we need to introduce two random variables. The
variables, X and Y , provide the classification of individuals into table cells for the
whole population (X) and for the sampled individuals (Y ).

X : I → C ,

Y : IS → C .

X is an extension of Y in the following sense. If we restrict X to IS, then we will
get Y , since IS ⊆ I and an individual in IS is classified in the same table cell by X
and Y . Note that X is not always known in practice.

Denote the distribution of X by P = (p1, p2, . . . , pK) =
(
F1

N
, F2

N
, . . . , FK

N

)
, while

that of Y by Q = (q1, q2, . . . , qK) =
(
f1
n
, f2
n
, . . . , fK

n

)
.

Estimated population frequencies are referred to as F̂ = (F̂1, F̂2, . . . , F̂K).

3 Entropy and conditional entropy

The basis of the proposed disclosure risk measure is the entropy. The entropy of X
is given as follows.

H(X) = −
K∑

i=1

Pr(X = ci) · logPr(X = ci) = −
K∑

i=1

Fi
N
· log

Fi
N

(1)

Note that H(X) is never negative. It takes its maximum value if (and only if)
F is uniform. The maximum value is logK.
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The entropy of Y may be defined similarly. Since (1) depends only on the F
table, we sometimes refer to H(X) as the entropy of F .

The conditional entropy of two variables also has an important role in our disclo-
sure risk measure. Since the domain of X and that of Y are different, the conditional
entropy of X and Y cannot be defined directly. In order to calculate the conditional
entropy, we modify the variables.

First we define a new set of (imaginary) individuals, denoted by Ĩ as follows. If
we multiply F by n and f by N , then we get the n · F = (n · F1, n · F2, . . . , n · FK)
and N · f = (N · f1, N · f2, . . . , N · fK) frequency tables. Note that the entropy of F
is equal to that of n · F and the entropy of f is the same as that of N · f . It is easy
to see that

∑K
i=1 n ·Fi =

∑K
i=1N · fi = n ·N . Therefore n ·N imaginary individuals

contribute to each table. We assume that the same imaginary individuals contribute
to the two tables. This set of individuals is Ĩ. The two variables are

X̃ : Ĩ → C

and

Ỹ : Ĩ → C .

The conditional entropy, defined below, depends on the Pr(X̃ = ci|Ỹ = cj)
conditional probabilities. We have not defined the probabilities unambigously, since
we have to define for each imaginary individual where the individual falls by both
X̃ and Ỹ .

We assume that X̃ and Ỹ are as ’similar’ to each other as possible. This as-
sumption means that the maximum possible number of individuals fall into the
same category by X̃ and Ỹ . For instance, if n ·F1 ≤ N ·f1, then the n ·F1 imaginary
individuals that fall in c1 by X̃ also fall in c1 by Ỹ . This assumption reduces the
number of possible (X̃, Ỹ ) pairs. Instead of selecting one of the possible pairs, we
use the average Pr(X̃ = ci|Ỹ = cj) conditional probabilities over the possible pairs
in order to define the conditional entropy in (2). More details can be found in [1].

We define the conditional entropy of X and Y as follows.

H(X|Y ) = H(X̃|Ỹ ) =

−
K∑

j=1

Pr(Ỹ = cj) ·
K∑

i=1

Pr(X̃ = ci|Ỹ = cj) · logPr(X̃ = ci|Ỹ = cj) (2)

The conditional entropy is always smaller or equal to the entropy, H(X̃|Ỹ ) ≤
H(X̃) = H(X).
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4 The disclosure risk measure

4.1 The disclosure risk measure for population based frequency tables

The disclosure risk measure, which has been introduced for population based fre-
quency tables, is a weighted average as follows.

R1(F,w) = w1 ·
|D|
K

+ w2 ·
(

1− H(X)

logK

)
− w3 ·

1√
N
· log

1

e ·
√
N

(3)

Here D is the set of zeroes in the population based table, therefore |D|/K is the
proportion of zeroes. w = (w1, w2, w3) is a vector of weights, wi ≥ 0, i = 1, 2, 3,∑3

i=1wi = 1.

4.2 The disclosure risk measure for sample based frequency tables

While population based tables include every individual, only selected individuals
contribute to sample based frequency tables. Sampling can be considered as a spe-
cial statistical disclosure control (SDC) method. The smaller number of individuals
in sample based tables ensures protection against attribute disclosure to a certain
extent. An intruder faces more uncertainty in a sample based table than in a popu-
lation based table. Zeroes in a sample based table seemingly increase the chance of
attribute disclosure. However, a zero in a sample based table is not necessarily zero
in the population based table.

A disclosure risk measure for sample based frequency tables (f) is as follows.

R2(F, f,w) = w1 ·
( |D|
K

) |D∪E|
|D∩E|

+

w2 ·
(

1− H(X)

logK

)
·
(

1− H(X|Y )

H(X)

)
− w3 ·

1√
N
· log

1

e ·
√
N

(4)

Here E is the set of zeroes in the sample based table and e is the base of the
natural logarithm. The above disclosure risk measure was developed for perturbed
population based frequency tables. Since sampling can be considered as an SDC
method, the formula can be applied directly to sample based tables. Note that the
power of the first term reduces as follows since in our case D ⊆ E.

|D ∪ E|
|D ∩ E| =

|E|
|D| .

We assume that the population size (N) is known to the statistical agency, therefore
the third term of the above formula can be calculated with ease. Our aim is to
estimate H(X), H(X|Y ) and |D| from the sample based table when the population
frequencies are unknown. In this paper, this aim is achieved by estimating popula-
tion frequencies. From the estimated population frequencies the above mentioned
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quantities can be calculated as for known population based tables. The population
frequencies may be estimated from the sample by probabilistic models.

5 Models to estimate population frequencies

We present numerical results in Section 6 using two modelling approaches for esti-
mating population frequencies, a log-linear model approach and a so-called Pólya
urn model approach. The results are derived from generated and real population
based tables in order to assess the estimation error arising from the sampling in the
first case and from the sampling and estimation of population parameters in the
second case.

5.1 Log-linear model approach

A sample based frequency table may contain zero cells that have positive values in
the population based table due to the random sampling. Therefore cell probabilities
might not be reflected properly in a sample based table. Log-linear models can com-
pensate for sample-based (random) zero cells and introduce positive cell probabilities
by taking the table structure into account. On the other hand, log-linear models
can also estimate positive cell probabilities when there should be a true population
(structural) zero.

We apply a log-linear model to two-dimensional (sample based) frequency tables.
In this situation we can only include main effects in the mode which will have the
effect of estimating positive cell values even for those cells that are true (structural)
zeroes in the population.

Denote the sum of row i by ni• and that of column j by n•j. The expected cell
count under the log-linear model is

µ̂ij =
ni• · n•j

n
.

Dividing the above formula by n provides (estimated) cell probabilities p̂ij =
µ̂ij
n

.

5.2 Pólya urn model approach

The urn model has been employed in [8] to estimate population uniques in a fre-
quency table. Now we use a similar model to estimate all population frequencies.

The model starts with positive sample based frequencies. The frequencies are
represented by coloured balls in an urn. The urn contains f1 > 0 balls of colour 1,
f2 > 0 balls of colour 2, etc. In addition to the coloured balls, θ black balls are also
placed into the urn, where θ is a parameter to be estimated. In each step we draw
a ball from the urn. If it is a coloured ball, then we replace it and add a new ball
of the same colour to the urn. If the ball we draw is black, then the ball is replaced
and another of a new colour is placed into the urn. The balls of new colours account
for sample zeroes.
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In our case there might be true zeroes in the sample based table, therefore we do
not assume that all sample frequencies are positive. However, zeroes do not influence
the estimated population frequencies.

The estimation of the θ parameter has an impact on the number of newly in-
troduced frequencies. The number of zeroes in the population based table plays
an important role in the estimation of θ and in our disclosure risk measure with
respect to the first term in (4). A high θ might result in a large number of new
frequencies, therefore the number of zeroes in the population based table might be
underestimated. Similarly, a low θ might imply a high number of population zeroes.
We determine θ according to the number of zeroes in the population based table.

First assume that |D| is known. The number of cells that are zeroes in the
sample based table but positive in the population based table is |E| − |D|. Denote
Wz, z = 1, 2, . . . , N − n, an indicator variable as follows.

Wz =

{
1 if the zth draw is a black ball
0 if the zth draw is a coloured ball

The expected number of new colours is E(
∑N−n

z=1 Wz) =
∑N−n

z=1 E(Wz). The total
number of balls before the zth draw is n + θ + z − 1. Since the number of black

balls is constant at θ, therefore E(Wz) =
θ

n+ θ + z − 1
. We obtain θ by solving the

following equation (numerically):

|E| − |D| =
N−n∑

z=1

θ

n+ θ + z − 1
. (5)

Assume now that |D| is unknown. In order to use (5), we need to estimate |D|
from the sample based table. Section 9.8 of [2] provides expected frequencies of
frequencies. The expected number of zeroes is given by the following formula.

|̂D| =
K∑

i=1

(1− pi)N ,

where pi is the probability of cell ci. We estimate pi, i = 1, 2, . . . , K by applying an
independent log-linear model to the sample based table.

Therefore, (5) can be rewritten as follows.

|E| − |̂D| =
N−n∑

z=1

θ

n+ θ + z − 1
. (6)

We can solve (6) numerically to obtain the estimate θ̂.
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6 Simulation study

In this section we present results of a simulation study to assess the estimation error
of the disclosure risk measure in (4). We use a real population based table and a
table that is generated according to known model parameters estimated from the
real table. The aim is to assess the estimation error arising from sampling alone and
the estimation error arising from both sampling and estimated model parameters.

6.1 Data

The dataset we used is an extract from the 2001 UK census data. The dataset
consists of N = 2449 individuals of 10 selected output areas. The output area (10
output areas) × religion two-dimensional table has K = 90 cells. The frequencies
are shown in Table 1.

181 0 0 1 17 1 1 83 18
138 2 4 2 0 0 1 36 16
130 0 0 0 22 4 1 61 40
173 0 0 1 14 4 1 97 22
142 2 5 0 15 6 1 37 21
129 0 0 0 0 0 1 69 20
118 2 0 2 24 9 1 38 20
130 0 0 0 34 1 1 82 32
148 3 0 0 0 2 1 38 21
136 1 2 0 13 0 0 55 16

Table 1: Original frequency table

To obtain the generated population table for assessing the log-linear model ap-
proach, we applied the log-linear model with main effects on Table 1. The estimated
cell probabilities, denoted by (p̂sim1 , p̂sim2 , . . . , p̂simK ), were then used as the parameters
of a multinomial distribution. We drew N individuals from Multinom(N ; p̂sim1 , p̂sim2 ,
. . . , p̂simK ). When assessing the estimation error arising from sampling alone, we use
these same parameters (p̂sim1 , p̂sim2 , . . . , p̂simK ) for estimating the disclosure risk mea-
sure.

To obtain the generated population table for assessing the Pólya urn model
approach, we use θ given in (5) to generate the population based frequencies from
the sample based frequencies.

6.2 Simulation method

For the simulation study, we drew 1000 simple random samples from the (original
or generated) population using two sample fractions of 0.1 and 0.05. R2(F, f,w)
can be calculated on the (original or generated) population based table for each of
the sample based tables. The average of the R2(F, f,w) values is considered as the
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’original disclosure risk’. For this simulation, we use the following weights in the
disclosure risk measure: w = (0.1, 0.8, 0.1).

When population frequencies are assumed unknown, we need to estimate them
from the sample based table. In the log-linear approach, for the case of the gen-
erated population table with known parameters, we estimate the population fre-
quencies by drawing N − n individuals from Multinom(N − n; p̂sim1 , p̂sim2 , . . . , p̂simK )
and adding these frequencies to the respective sample-based table. For the case
of the real population table, we estimate the population frequencies by applying
the log-linear model with main effects to the sample-based table (f). The result-
ing table provides estimated cell probabilities. Denote them by (q̂S1 , q̂

S
2 , . . . , q̂

S
K),

where the superscript S refers to the sample. N − n individuals are drawn from
Multinom(N − n; q̂S1 , q̂

S
2 , . . . , q̂

S
K), and are then added to the sample-based table,

thereby estimating the population frequencies.
In the Pólya urn approach, for the case of the generated population table we use

θ given by (5) and for the case of the real population table, we estimate θ on each
of the sample based tables as defined in (6).

The simulation is carried out as follows for each sample fraction and for each
(original or generated) population. On each of the 1000 sample-based tables we
estimate the population frequencies 1000 times. For each estimated population-
based table (F̂ ) of each sample-based table we obtain an estimated disclosure risk
measure (R2(F̂ , f,w)). Note that the overall number of the R2(F̂ , f,w) values is
equal to 1000 · 1000. The average of the R2(F̂ , f,w) values is considered as the final
’estimated disclosure risk’.

6.3 Numerical results

Table 2 presents the results of the simulation study using both the generated and
real population based tables and two sampling fractions 0.1 and 0.05. We compare
the ’original disclosure risk’ with the ’estimated disclosure risk’. The weights for the
disclosure risk measure are w = (0.1, 0.8, 0.1).

Generated Original disc. risk Log-linear model Pólya urn model

and real data R2(F, f, (0.1, 0.8, 0.1)) R2(F̂ , f, (0.1, 0.8, 0.1)) R2(F̂ , f, (0.1, 0.8, 0.1))
Sampling fr. Mean St. dev. Mean St. dev. Mean St. dev.

Generated table 0.1 0.1538 0.0043 0.1568 0.0039 - -
(log-linear m.) 0.05 0.1427 0.0059 0.1416 0.0054 - -

Generated table 0.1 0.1694 0.0049 - - 0.1758 0.0053
(Pólya urn m.) 0.05 0.1535 0.0061 - - 0.1640 0.0057

Real 0.1 0.1697 0.0048 0.1715 0.0173 0.1764 0.0186
table 0.05 0.1535 0.0061 0.1731 0.0254 0.1821 0.0283

Table 2: Results of disclosure risk measures on generated and real population based
tables

For the log-linear model, using the generated population based table with known
parameters under the log-linear model, we see that we can obtain close estimates to
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the original disclosure risk measures when only sampling error is considered. The
estimated disclosure risk measure based on the real population table is slightly higher
than the original disclosure risk. The overestimation is worse for the smaller sample
fraction.

The Pólya urn modelling approach provides only slightly less accurate estimates
than the log-linear modelling approach but there appears to be overestimation both
in the generated table and the real population table.

7 Conclusion

In this paper, we present an information theoretical based disclosure risk measure
for two-dimensional sample based tables. Under the generated population based
table with known parameters, the disclosure risk can be estimated accurately and
therefore the estimation error arising from the sampling alone appears to be un-
biased. However, the estimated disclosure risk for a real population based table
where we need to account for the estimating of the parameters from the sample
based table is less accurate. The Pólya urn model approach is a feasible alternative
to the log-linear model approach. Further reseach needs to be carried out in order
to provide a more accurate approximation of the disclosure risk using different size
tables with varying sampling fractions and levels of random and true zero cells in
the population. In addition, further research is needed to explore the estimation of
disclosure risk in higher dimensional tables.
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4.8 Disclosure Risk in Three-Dimensional

Tables

The disclosure risk measurement of three-dimensional tables does not

differ much from that of two-dimensional tables. In order to assess the

disclosure risk we need to estimate cell frequencies. Log-linear models

can be applied again. However, there are more choices of the log-linear

model. We consider models with only main effects as well as with two-way

interactions included.

We considered the output area (10 output areas) × religion × sex

table. First 1,000 samples were drawn from the original population. The

sampling fractions we used are 0.1 and 0.05. A log-linear model was

applied to each sample based table and each resulting table was divided

by the sample size (n) in order to get estimated cell probabilities. We

generated N − n individuals 1,000 times from a multinomial distribution

and another 1,000 times following the Pólya urn model. The parameters

were given by the estimated cell probabilities. The frequency table based

on N − n individuals was added to the sample based table, thereby

estimating the population frequencies. We generated 1,000 sample based

tables, therefore there are 1,000 ’original’ R2(F, f,w) disclosure risk

measures. The mean of the 1,000 values is considered as the final

original disclosure risk measure. Since there are 1,000 estimated tables

for each sample, we have 1, 000 · 1, 000 = 106 estimated population based

frequency tables, and therefore the same number of ’estimated’ R2(F̂ , f,w)

disclosure risk measures. The final disclosure risk is the average of the

106 values. The weights we used are w = (0.1, 0.8, 0.1). The results are

shown in Table 4.8.1. In the table, ’Log-linear model 1’ refers to the

log-linear model with main effects only, while in ’Log-linear model 2’ also

two-way interactions are included. The estimates given by ’Log-linear

model 1’ are closer to the original disclosure risk than the values given by

’Log-linear model 2’.
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Original disc. risk Multinomial distr. Pólya urn model

R2(F, f, (0.1, 0.8, 0.1)) R2(F̂ , f, (0.1, 0.8, 0.1)) R2(F̂ , f, (0.1, 0.8, 0.1))
Sampling fr. Mean St. dev. Mean St. dev. Mean St. dev.

Log-linear 0.1 0.1542 0.0039 0.1499 0.0153 0.1491 0.0153
model 1 0.05 0.1327 0.0049 0.1412 0.0206 0.1412 0.0206

Log-linear 0.1 0.1542 0.0039 0.2264 0.0112 0.2260 0.0104
model 2 0.05 0.1327 0.0057 0.2169 0.0166 0.2451 0.0162

Table 4.8.1: Results of three dimensional tables
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Chapter 5

Flexible Table Generators

5.1 Introduction

Statistical agencies seek new channels to disseminate data. One of

the potential ways is online dissemination. A user can download tables

prepared by statistical agencies. A much more flexible alternative is to

allow users to tailor their own outputs. It serves the user needs much

better than fixed outputs. Also, by collecting the outputs users generate,

a statistical agency can easily follow what data are of most demand. Such

information can help statistical agencies to improve on their services.

Naturally, users desire swift access to the outputs. However, disclosure

risk assessment cannot be neglected, even if outputs are available online.

The process to protect data, described in the Section 5.2, is not different

for online access but it has to be carried out automatically.

5.2 Dissemination of Data

A statistical agency regularly disseminates data. The process of

dissemination follows the next steps for a particular dataset.

1. Select a disclosure risk measure.
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2. Set a threshold (T1) for the disclosure risk measure.

3. Measure the disclosure risk of the data.

4. If the disclosure risk measure is below T1, then the data can be

released. If not, then go to the next step.

5. Apply an SDC method with certain parameters to the data.

6. Set a threshold (T2) for the perturbed data.

7. Measure the disclosure risk of the perturbed data.

8. If the disclosure risk measure is below T2, then the perturbed

data may be released.

9. If the data can be released, then select an information loss

measure.

10. Set a threshold (T3) for the information loss measure.

11. Measure the information loss.

12. If the information loss exceeds T3, then the statistical agency

might prefer to not disseminate the data.

13. Repeat steps 5 - 12 for more SDC methods and parameters.

14. Find the best SDC method and its best parameters.

15. Disseminate the data if possible.

In step 2 a threshold has to be set. This work does not deal with

the problem of how to set it in detail. The threshold should depend

on the disclosure risk measure. A statistical agency might evaluate a

disclosure risk measure on many datasets and gain experience of data of

high/low disclosure risk. This approach is based on our understanding of

the term ’disclosure risk’. A data protector might ’feel’ that a particular
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dataset should/should not be released. The disclosure risk measure of

such datasets should be below/above the threshold.

If the disclosure risk measure surpasses T2 in step 8, then the data

protector needs to select either other parameters of the SDC method or

an entirely different SDC method.

Selecting a threshold (T3) for the information loss measure in step 10

is similar to that for the disclosure risk measure. The data protector can

decide whether the information loss is acceptable or not.

Steps 5 - 12 can be repeated for various SDC methods and parameters.

The point is to find the best method and parameters. The ’best’ SDC

method and its ’best’ parameters (see step 14) ideally provides the lowest

disclosure risk measure and the lowest information loss. Such method

and parameters might not exist. The situation resembles a search for

Pareto optimality. An SDC method and its parameters are not optimal

if other parameters or another SDC method and its parameters provide

lower/not higher disclosure risk and not higher/lower information loss

measure. We can call an SDC method and its parameters a (weak) Pareto

optimum if it is impossible to improve both on the disclosure risk and

the information loss. There might be more weak Pareto optimal SDC

methods and parameters. For example, the comparison of two SDC

methods may show that the first method provides lower disclosure risk

and higher information loss, while the second method higher disclosure

risk and lower information loss.

Disclosure risk measures always show a single numerical value on

a certain dataset. However, since a disclosure risk measure focuses on

certain aspects/problematic cases, a data protector might consider using

more different disclosure risk measures at the same time. More disclosure

risk measures will produce a vector of numerical values. A data protector

can deem a dataset safe to release if the elements of the disclosure risk

vector remain below a vector of thresholds. Setting the thresholds causes

problems again.
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Quick dissemination of data requires quick disclosure risk assessment.

Steps 1 - 15 above can be made automatic. Section 5.3 discusses how

frequency tables can be generated and released quickly.
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5.3 Paper: Measuring Disclosure Risk and

Data Utility for Flexible Table Generators

The paper below was submitted to the Journal of Official Statistics.

It was published in 2015.
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Measuring Disclosure Risk and Data Utility for Flexible
Table Generators

Natalie Shlomo1, Laszlo Antal1, and Mark Elliot1

Statistical agencies are making increased use of the internet to disseminate census tabular
outputs through web-based flexible table-generating servers that allow users to define and
generate their own tables. The key questions in the development of these servers are: (1) what
data should be used to generate the tables, and (2) what statistical disclosure control (SDC)
method should be applied. To generate flexible tables, the server has to be able to measure the
disclosure risk in the final output table, apply the SDC method and then iteratively reassess the
disclosure risk. SDC methods may be applied either to the underlying data used to generate
the tables and/or to the final output table that is generated from original data. Besides
assessing disclosure risk, the server should provide a measure of data utility by comparing the
perturbed table to the original table. In this article, we examine aspects of the design and
development of a flexible table-generating server for census tables and demonstrate a
disclosure risk-data utility analysis for comparing SDC methods. We propose measures for
disclosure risk and data utility that are based on information theory.

Key words: Statistical disclosure control; census tabular data; entropy; Hellinger distance.

1. Introduction

Driven by demand from policy makers and researchers for specialized and tailored census

frequency tables, many statistical agencies are considering the development of a web-

based software platform where users can generate tables of interest from underlying

census microdata through a user-friendly interface. This platform is called a “flexible

table-generating server”. Users access the server via the internet and generate their

preferred set of tables from predefined variables or categories using drop-down lists. These

tables can then be downloaded to the personal computers of the users. The United States

Census Bureau and the Australian Bureau of Statistics have developed such servers on

their websites to disseminate census frequency tables.

When generating flexible tables, the server should be able to provide a measure of

disclosure risk for the original table, apply a statistical disclosure control (SDC) method

and then reassess disclosure risk and the impact on data utility following the SDC method.

These steps must be carried out “on the fly” within the server for each generated output

table. SDC is a set of statistical practices which aim to ensure that no individual population
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unit can be reidentified from anonymised data nor any new information learnt about any

specific individual (with certainty). SDC is an active research area. For reviews of this

area, see Willenborg and de Waal (2001), Doyle et al. (2001), Duncan et al. (2011) and

Hundepool et al. (2012).

There are two main types of disclosure risks in census frequency tables: identity

disclosure, where small cell counts may lead to the identification of an individual in the

population, and attribute disclosure, where new information may be learnt about an

individual or group of individuals. Attribute disclosure in frequency tables occurs when

rows or columns of a table contain (real) zeroes and only one or two cells are nonzero. This

enables an “intruder” to first make an identification based on a margin total and

subsequently reveal new information according to other variables spanning the table.

Another type of disclosure risk that needs to be guarded against is disclosure by

differencing. The differencing of tables generated through the server can lead to residual

tables that are more susceptible to the above disclosure risks and even to the reconstruction

of individual records. This is typically dealt with by applying perturbative methods of

SDC, which raises the level of uncertainty of true counts in the tables and hence of the

difference between counts across tables. After the table is protected, a data utility measure

must also be calculated by comparing the perturbed table to the original table.

The need to measure disclosure risk “on the fly” for census frequency tables produced

via a flexible table-generating server motivated the research and development of a new

global disclosure risk measure. Until now, disclosure risk measures for tabular data have

been defined at the cell level and not for the entire table. We propose a new disclosure risk

measure based on information theory as shown in Antal et al. (2014) and also relate this

theory to a data utility measure.

The key issues when developing a web-based flexible table generating server addressed

in this article are: (1) what underlying data should be used in the background for

generating the output tables, and (2) at what stage should the SDC method be applied. In

addition, the article provides a comparison study of some common SDC methods which

may be used to protect census tables within a flexible table-generating server and

demonstrates how statistical agencies should undertake a disclosure risk-data utility

analysis to inform decisions about SDC methods and their parameterization. In general,

SDC methods employed by statistical agencies are often motivated by country-specific

agendas and policy sensitivities and it is difficult to develop a universal best practice.

However, one important distinction when considering SDC methods for flexible table-

generating servers is that the outputs are defined by users and the amount of disclosure risk

may vary in each output.

Section 2 presents aspects to consider in the design of a flexible-table generating server,

including the underlying data for generating output tables and the stage when SDC

methods may be applied. In Section 3, some common SDC methods for census frequency

tables are described. Section 4 introduces a new global disclosure risk measure based on

information theory and a related data utility measure that can be calculated “on the fly”

for each output table generated in the server. In Section 5, a comparison study is

carried out on generated census output tables from a flexible table-generating server.

The comparison study will be informed by a disclosure risk-data utility analysis on the

generated tables perturbed by the SDC methods described in Section 3 based on the
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measures outlined in Section 4. A discussion and concluding remarks are presented

in Section 6.

2. Designing a Flexible Table-Generating Server

In this section, we describe the design of an online flexible table-generating server and

discuss the following issues: the underlying data that may be used as input to the server,

the stage at which SDC methods can be applied, and preliminary SDC rules to determine

a priori whether the requested table can be generated or not.

2.1. Underlying Input Data to the Server

The underlying data to use as input for a web-based flexible table-generating server can be

based on the original microdata or disclosure-controlled microdata. The input data is

largely determined by the source and content of the data as well as the SDC method that

will be applied to the final output tables (if any). Microdata arising from social surveys

with small sampling fractions have a lower disclosure risk than microdata arising from

censuses containing whole population counts, and therefore are more appropriate for use

in their original form. Output tables generated from survey microdata where only weighted

counts are released are generally considered to be of low disclosure risk with no further

need for an application of SDC methods. Census (and administrative data) containing

whole populations and particularly those containing sensitive data, such as health statistics

or business microdata, are more problematic. In microdata containing the whole

population, individuals (or businesses) can easily be identified leading to the disclosure of

attributes. In this case, the underlying input data should be protected prior to the generation

of tables.

For a flexible table-generating server of census tables, one method for producing the

underlying input data is to aggregate the microdata into a very large multi-dimensional

frequency table, called a hypercube, where no data of individuals can be disseminated

below the level of a cell value in the hypercube. For example, users may only be able

to disseminate frequency counts of age in 5-year age bands and not counts for single

years. This approach was taken by Eurostat for the dissemination of census tables from

European Member States. A flexible table-generating server for European census tables

is being developed through the European Census Hub Project. Each Member State is

required to produce a set of predefined hypercubes containing their country’s census

counts: 19 hypercubes at the geography level of LAU2 and over 100 hypercubes at the

geography level of NUTS2, cross-classified with as many as six other census variables

in each hypercube. NUTS2 is a European subregional geography and LAU2 are small

municipalities or equivalent. Researchers are able to use the considerable number of

multidimensional hypercubes and their wealth of census data made available through

the European Census Hub to generate tables of interest beyond what would have

been available previously using standard table-extraction software. The flexible

table-generating server will allow comparative tables across Member States and the

combining of census data from multiple Member States. The hypercubes have the

additional advantage that they provide some limited protection against disclosure risk

since no data below the level of the cell values of the hypercube can be disseminated.
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However, the hypercubes themselves still have considerable disclosure risk since they

are very large and sparse with many zero and small cell counts. Therefore, there will

still be the need to apply an SDC method to protect output tables generated from the

flexible table-generating server.

2.2. Application of SDC Methods

SDC methods for protecting output tables generated from a flexible table-generating

server can be applied either on the underlying input data so that all tables generated are

deemed safe for dissemination (the pretabular SDC approach), or applied directly to the

final output table generated from the original data (the post-tabular SDC approach) or

a combination of both. Although sometimes neater and less resource intensive when

data is from a single source, the pretabular SDC approach is problematic for the

dissemination of European Census data for two reasons. Firstly, all Member States

would have to agree on a common SDC method in order to provide consistent

hypercubes across all Member States. For example, if one Member State employs a

rounding method whilst another Member State employs cell suppression, there will be

significant quality issues in a table that is generated based on both Member States’

data. Secondly, when aggregating data which have been separately disclosure

controlled, the effects of the SDC methods are compounded and the data may be

overprotected. For example, aggregating cells that have already been rounded not only

overprotects the data but also exacerbates the data utility impact by providing counts

that are no longer rounded to the nearest base. With the second approach of protecting

only the final tabular output, SDC methods are not compounded in this way. We

investigate the pretabular and post-tabular approaches in the comparison study

presented in Section 5.

2.3. Preliminary SDC Rules

The design of a web-based flexible table-generating server typically involves many ad hoc

preliminary SDC rules which determine a priori if generated tables can be released or not.

These SDC rules may include:

. Limiting the number of dimensions in the output tables.

. Ensuring consistent and nested categories of variables to avoid disclosure by

differencing.

. Ensuring minimum population thresholds.

. Ensuring that the percentage of small cells is below a maximum threshold.

. Ensuring average cell size above a minimum threshold.

The steps in a flexible table-generating server are:

(1) Determine whether the table can be released according to the preliminary SDC rules.

(2) Calculate a disclosure risk measure to determine if an SDC method should be applied

to the final output table.

(3) Apply the SDC method.
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(4) Recalculate the disclosure risk measure to determine if the table is safe to generate;

if yes proceed to Step 5, otherwise do not release the table.

(5) Output the final table with a measure of data utility.

According to the steps of a flexible table-generating server, it is clear that analytical

expressions of disclosure risk and data utility that can be calculated “on the fly” within the

server are necessary.

3. Statistical Disclosure Control Methods

In this section, we describe some common SDC methods which have been used to protect

census frequency tables: a pretabular SDC method of record swapping is used in the

United States and the United Kingdom, a post-tabular method of random rounding is used

in New Zealand and Canada, and a post-tabular probabilistic perturbation mechanism has

recently been implemented in Australia.

3.1. Record Swapping

Record swapping is based on the exchange of values of variable(s) between similar pairs of

population units (often households). In order to minimize bias, pairs of population units are

determined within strata defined by control variables. For example, when swapping

households, control variables may include: a large geographical area, household size, and the

age-sex distribution of individuals in the households. In addition, record swapping can be

targeted to high-risk population units found in small cells of census tables. In a census context,

geographical variables related to place of residence are often swapped. Swapping place of

residence has the following properties: (1) it minimizes bias based on the assumption that

place of residence is independent of other census target variables conditional on the control

variables; (2) it provides more protection for census tables since place of residence is a highly

visible variable which can be used to identify individuals; (3) it preserves marginal

distributions within a larger geographical area. For more information on record swapping, see

Dalenius and Reiss (1982), Fienberg and McIntyre (2005), and Shlomo (2007).

3.2. Semi-Controlled Random Rounding

A post-tabular method of SDC for census frequency tables is unbiased random rounding.

Let Floor(x) be the largest multiple bk of the base b such that bk , x for any value of x.

In this case, res(x) ¼ x-Floor(x). For an unbiased rounding procedure, x is rounded up to

Floor(x) þ b with probability resðxÞ=b and rounded down to Floor(x) with probability

ð1 2 ðresðxÞ=bÞÞ. If x is already a multiple of b, it remains unchanged.

In general, each cell is rounded independently in the table, that is, a random uniform

number u between 0 and 1 is generated for each cell. If u # ðresðxÞ=bÞ then the entry is

rounded up, otherwise it is rounded down. This ensures an unbiased rounding scheme, that

is, the expectation of the rounding perturbation is zero. However, the realization of this

stochastic process on a finite number of cells in a table will not ensure that the sum of the

perturbations will exactly equal zero. To place some control in the random rounding

procedure, we use a semi-controlled random rounding algorithm for selecting entries to

round up or down as follows: first the expected number of entries of a given res(x) that are
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to be rounded up is predetermined (for the entire table or for each row/column of the

table). The expected number is rounded to the nearest integer. Based on this expected

number, a random sample of entries is selected (without replacement) and rounded up.

The other entries are rounded down. This procedure ensures that rounded internal cells

aggregate to the controlled rounded total.

Due to the large number of perturbations under random rounding, margins are typically

rounded separately from internal cells and tables are not additive. When using semicontrolled

random rounding this alleviates some of the problems of nonadditivity since one of

the margins and the overall total will be preserved. Another problem with random rounding

is the consistency of the rounding across same cells that are generated in different tables. It is

important to ensure that the cell value is rounded consistently, otherwise the true cell count

can be learnt by generating many tables containing the same cell and observing the

perturbation patterns. Fraser and Wooton (2005) propose the use of microdata keys which can

solve the consistency problem. First, a random number (which they call a key) is defined for

each record in the microdata. When building a census frequency table, records in the

microdata are combined to form a cell defined by the spanning variables of the table. When

these records are combined to a cell, their keys are also aggregated. This aggregated key

serves as the seed for the rounding and therefore same cells will always have the same seed

and result in consistent rounding.

Further research is needed to ensure both the additivity and consistency properties

for random rounding. For simple tables of the type that would be generated in a flexible

table-generating server, controlled rounding algorithms can be applied to ensure additivity

on remaining totals without distorting the unbiasedness of the rounding (see Willenborg

and De Waal 2001).

3.3. Stochastic Perturbation

A more general method than random rounding is stochastic perturbation, which

involves perturbing the internal cells of a table using a probability transition matrix and

is similar to the postrandomisation method that is used to perturb categorical variables

in microdata (see Gouweleeuw et al. 1998). In this case, it is the cell counts in a table

that are perturbed. More details can be found in Fraser and Wooton (2005) and Shlomo

and Young (2008).

Let P be a ðLþ 1Þ £ ðLþ 1Þ transition matrix containing conditional probabilities:

pij ¼ Pð perturbed cell value is j j original cell value is i Þ for cell values from 0 to L,

where L is a cap on the cell values and any cell value above the cap will have the same

perturbation probabilities. Let t be the vector of frequencies of the cell values where the

last component would contain the number of cells above cap L and let v be the vector of

relative frequencies: v ¼ t/K where K is the number of cells in the table. In each cell of the

table, the cell value i is changed or not changed according to the prescribed transition

probabilities in matrix P and the result of a draw of a random multinomial variate u with

parameters pij j ¼ 0; 1; : : : ; L. If the jth value is selected, value i is moved to value j.

When i ¼ j, no change occurs.

Placing the condition of invariance on the probability transition matrix P (i.e., tP 5 t)

means that the marginal distribution of the cell values are approximately preserved under
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the perturbation. As described in the random rounding procedure in Subsection 3.2, in

order to obtain the exact marginal distribution a similar strategy for selecting cell values to

change can be carried out. For each cell value i, the expected number of cells that need to

be changed to a different value j is calculated according to the probabilities in the

transition matrix. We then randomly select (without replacement) the expected number

of cells i and carry out the change to j.

To preserve exact additivity in the table, an iterative proportional fitting algorithm

can be used to fit the margins of the table after the perturbation according to the

original margins. This results in cell values that are not integers. Exact additivity with

integer counts can be achieved for simple tables by controlled rounding to base 1 using

Tau-Argus, for example (Salazar-Gonzalez et al. 2005). Cell values can also be rounded

to their nearest integers resulting in “close” additivity because of the invariance property

of the transition matrix. Finally, the use of microdata keys as described in Subsection 3.2

can also be adapted to this SDC method to ensure the consistent perturbation of same

cells across different tables by fixing the seed for the perturbation.

4. Information Theory-Based Disclosure Risk and Data Utility Measures

For each output table generated, the flexible table-generating server must provide analytical

expressions of disclosure risk and data utility that can be calculated “on the fly” within the

server. As mentioned in Section 1, one of the major causes of disclosure risk in census

frequency tables is attribute disclosure caused by rows/columns that have many zero

cells and only one or two populated cells. A row/column with a uniform distribution of cell

counts would have little attribute disclosure risk, whilst a degenerate distribution

of cell counts would have high attribute disclosure risk. Moreover, a row/column with large

counts would have less risk of reidentification compared to a row/column with small counts.

There is no single global-level disclosure risk measure for census frequency tables that

measures attribute disclosure and identity disclosure. In planning for the 2011 UK Census,

the Office for National Statistics assessed attribute disclosure by producing many census

tables and calculating the proportion of those columns/rows where only one or two cells

were populated and the rest of the cells were zero. They also provided a measure based on

the proportion of small cells across the tables. These measures do not provide an accurate

quantification of the disclosure risk for a specific table. To obtain an analytical expression

of disclosure risk for the entire table (or row/columns), it is natural to use information

theory, specifically the entropy.

4.1. An Information Theory Disclosure Risk Measure

As described in Antal et al. (2014), a disclosure risk measure for a census frequency table

should have the following properties: (a) small cell values have higher disclosure risk than

large values; (b) uniformly distributed frequencies imply low disclosure risk; (c) the more

zero cells in the census table, the higher the disclosure risk; (d) the risk measure should be

bounded by 0 and 1. Using information theory, we develop an analytical expression of

disclosure risk that meets these properties.

Information theory is covered comprehensively in Cover and Thomas (2006). One of

the most important measures is the entropy. Let X be a discrete random variable having a
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distribution P ¼ ð p1; p2; : : : ; pKÞ. The entropy is defined as:

HðXÞ ¼ HðPÞ ¼ 2
XK

i¼1

pi� log pi

If pi ¼ 0 for a category i, the respective term in the sum will be considered 0, since

lim x!0 xlog x ¼ 0. It follows that HðPÞ $ 0, since 2pi� log pi $ 0 with HðPÞ ¼ 0 iff the

probability mass is concentrated on one point. Therefore, the smaller the entropy H(P),

the more likely that attribute disclosure can occur. Under the uniform distribution

UK ¼ ðð1=KÞ; ð1=KÞ; : : : ; ð1=KÞÞ, we obtain the maximum entropy: HðUKÞ ¼ log K and

minimum attribute disclosure risk.

The entropy of the frequency vector in a table of size K, F ¼ ðF1;F2; : : : ;FKÞ wherePK
i¼1 Fi ¼ N is:

HðPÞ ¼ H
F

N

� �
¼ 2

XK

i¼1

Fi

N
� log

Fi

N
¼

N� log N 2
XK

i¼1
Fi� log Fi

N
ð1Þ

To produce a disclosure risk measure between 0 and 1, we define the risk measure as:

1 2

H
F

N

� �

log K
: ð2Þ

The disclosure risk measure in (2) ensures property (b) since the term will tend to zero as

the frequency distribution is more uniform, and ensures property (d) since the measure is

bounded between 0 and 1. However, the disclosure risk measure does not take into account

the magnitude of the cells counts or the number of zero cells in the table (or row/column of

the table) and does not preserve properties (a) and (c). Therefore, an extended disclosure

risk measure is proposed in (3) and is defined as a weighted average of three different

terms, each term being a measure between 0 and 1.

RðF;w1;w2Þ ¼ w1�
jAj

K

� �
þ w2� 1 2

N� log N 2
XK

i¼1
Fi� log Fi

N� log K

2

4

3

5

2 ð1 2 w1 2 w2Þ�
1ffiffiffiffi
N
p � log

1

e
ffiffiffiffi
N
p

� �
ð3Þ

where A is the set of zeroes in the table and jAj the number of zeros in the set, K, N and F as

defined above and w1, w2 are arbitrary weights: 0 # w1 þ w2 # 1.

The first measure in (3) is the proportion of zeros which is relevant for attribute

disclosure and property (c). The third measure in (3) allows us to differentiate between

tables with different magnitudes and accounts for property (a). As the population size

N gets larger in the table, the third measure tends to zero. The weights w1 and w2 should be

chosen depending on the data protector’s choice of how important each of the terms are in

contributing to disclosure risk. Alternatively, one can avoid weights altogether by taking

the L2- norm (see Subsection 4.3) of the three terms of the risk measure in (3) as follows:
P3

i¼1 jxij
2

� �1=2
� �

= ffiffiffi
3
p

� �
where xi represents term i, i ¼ 1; 2; 3 in (3).
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Figure 1 provides a graphical interpretation of each of the three terms of the proposed

disclosure risk measure in (3). The figure on the left shows the first term of the disclosure

risk measure as a function of the proportion of zero cells (although a table of all zeros would

not be permissible in a flexible table-generating server). The figure in the middle shows the

second term based on the entropy in (2) where we demonstrate with a table of ten cells and

move from a uniform distribution to a degenerate distribution by accumulating zero cells

and spreading the total to the remaining cells. The figure on the right shows the third term of

the disclosure risk measure as the size of the population of the table increases.

The final disclosure risk measure (3) is an analytical expression and can be calculated

“on the fly” in the flexible table-generating server without the need to see the generated

table beforehand. In order to emphasize the risk of identity disclosure arising from small

counts (ones and twos), we split the entropy measure as shown in (2) into two parts,

small counts up to six and larger counts of seven and more, and provide different weights

for each part. For the comparison study in Section 5, the following weights were

chosen: w1 ¼ 0:1; w2Part1 ¼ 0:7; w2Part2 ¼ 0:1 and w3 ¼ 0:1 where the largest weight

is attributed to the entropy term based on small counts. These weights were motivated

by the empirical work carried out at the Office for National Statistics on SDC methods

for the 2011 UK census tabular outputs, where attribute disclosure and small counts were

of the highest concern.

4.2. Modifying the Disclosure Risk Measure After Perturbation

The disclosure risk measure in (3) does not take into account the application of SDC

methods and therefore needs to be modified to reflect the uncertainty that is introduced into

the counts of the table. Random rounding, for example, eliminates cells of size one and

two by introducing more cells of size zero and three in the table, and seemingly increases

the risk of attribute disclosure. However, these additional cells of size zero and three are

not true counts and the risk of attribute disclosure should decrease. The disclosure risk as

measured by the entropy in (2) (and the second term in (3)) does not reflect this uncertainty

on whether the cell count is a true value or not. Therefore, we introduce an additional

property for the disclosure risk measure following on from those defined in Subsection 4.1:

(e) the disclosure risk measure following the application of an SDC method must be

less than the original disclosure risk measure. In order to ensure property (e), we propose

to modify the first two terms of the disclosure risk measure in (3) after the application

of an SDC method as follows:
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Fig. 1. The three components of the proposed disclosure risk measure in (3)
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Modifying the First Term in (3):

The first term in (3) based on the proportion of zero cells can be generalized to

compare the number of zero cells in the original and perturbed table. From (3), A is the

set of zero cells in the original table and jAj is the number of zero cells in the set.

Similarly, let B be the set of zero cells in the perturbed table and jBj the number of

zero cells in the set. Denote A < B as the union of the sets of zero cells and A > B as

the intersection of the sets of zero cells in the original and perturbed table. The revised

first term in (3), which takes into account that nonzero cells may have been perturbed

into zero cells and vice versa, is defined as: ðjAj=KÞjA<Bj=jA>Bj. If there are no zero

cells in the original table and hence A > B ¼ 0, then the first term in (3) will remain

equal to 0 following perturbation. For example, assume in a table there is a fraction

of 0.10 zero cells and following perturbation a fraction of 0.20 zero cells and all

original zero cells remain as zero in the perturbed table. In this case, the power term

will be 2 and the risk measure following perturbation is reduced to 0.01 from the

original 0.10. The modification of the first term in (3) is always less than the original

term if nonzero cells are perturbed to zero cells and vice versa, and thus property (e)

is ensured.

Modifying the Second Term in (3):

Assume that the possible values in the table are: 0; 1; 2; : : : ; L and the frequency of

frequencies of these values is denoted by: ðn0; n1; n2; : : : ; nLÞ. The table is perturbed

according to a probability transition matrix (for example, the probability transition

matrix P defined in Subsection 3.3). Let the frequency of frequencies of the perturbed

values be denoted by: ðn00; n
0
1; n

0
2; : : : ; n

0
LÞ. For an observed perturbed value j,

j ¼ 0; 1; : : : ; L, the expected total from the cells of value j can be estimated by the

proportion of the original values of j that are not changed: ð j�njÞ�pjj and the proportion

of other values i, i – j that are changed to value j:
P

i–jði�niÞ�pij, so the expected total

from cells of value j after perturbation is:
PL

i¼0 ði�niÞ�pij.

To reflect the uncertainty of the counts in the perturbed table, we replace the

observed perturbed cells of value j by the expected total from cells of value j distributed

evenly across all cells having the perturbed value j:
PL

i¼0 ði�niÞ�pij

	 

=ðn 0jÞ

� �
. As an

example, assume the SDC method of random rounding to base 3. We replace the

zero cells in the perturbed table with: ½0�n0 þ 1�n1�ð2=3Þ þ 2�n2�ð1=3Þ�=n 00. This

reflects the fact that zero cells in the perturbed table are not true zeroes; rather,

a proportion of them arise from the perturbation of cells of values one and two

to zero cells under the probability mechanism, and it is unknown which zero cells

are true zero cells and which zero cells are a result of the perturbation. Similarly,

for the perturbed cell values of size three, we replace these with the term:

½1�n1�ð1=3Þ þ 2�n2�ð2=3Þ þ 3�n3 þ 4�n4�ð2=3Þ þ 5�n5�ð1=3Þ�=n 03.

For the pretabular method of record swapping, we use a probability transition matrix

applied at the cell level of the table for calculating the expectations as explained above,

although it is possible that a perturbed table will be equal to the original table if the

swapping variable is not involved in generating the table. The expected total from cells of

value j in the table after record swapping is:
PL

i¼0 ði�niÞ�pij, where pij is a probability
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transition matrix with the swap rate on the diagonal and all off-diagonals have equal

probability constrained to the sum of the row probabilities being equal to 1. This means

that we assume that every cell in the table can be perturbed according to the swap rate and

reflects the assumption that an intruder would not know which variables were swapped.

The modification of the entropy term in (2) replaces observed perturbed counts with

their expectations according to the probability transition matrix. In particular, true zero

cells which did not contribute to the entropy in the original table are now replaced by their

expected values. This should lead to a more even distribution of cell counts in the

calculation of the entropy and to a general reduction in the disclosure risk measure

in (2) following perturbation. As a final adjustment and to further guarantee property (e),

we multiply the resulting entropy-based disclosure risk measures in (2) by a multiplier

based on the average of the diagonal probabilities of the probability transition matrix. This

multiplier reflects a global level of uncertainty introduced into the perturbed cell counts.

4.3. An Information Theory Data Utility Measure

To assess the distance between two distributions, we use the L2-norm which, when applied

to the difference of two vectors, preserves the properties of a distance metric (non-

negativity, coincidence axiom, symmetry and triangle inequality). Measuring the distance

infers that the smaller the distance, the more information is left in the table. For an

arbitrary vector x ¼ ðx1; x2; : : : ; xKÞ the L2-norm of x is defined as:

k x k2 ¼
XK

i¼1

jxij
2

 !1=2

:

Let P ¼ ð p1; p2; : : : ; pKÞ be the original probability distribution of cell counts and

Q ¼ ðq1; q2; : : : ; qKÞ the perturbed probability distribution of cell counts. Define:ffiffiffi
P
p
¼ ð

ffiffiffiffiffi
p1
p

;
ffiffiffiffiffi
p2
p

; : : : ;
ffiffiffiffiffiffi
pK
p
Þ and

ffiffiffiffi
Q
p
¼ ð

ffiffiffiffiffi
q1
p

;
ffiffiffiffiffi
q2
p

; : : : ;
ffiffiffiffiffiffi
qK
p
Þ. These are not (necessarily)

probability distributions but have the property that as vectors, their L2- norms are 1.

The Hellinger Distance is defined as the L2 -norm:

HDðP;QÞ ¼
1ffiffiffi
2
p �k

ffiffiffi
P
p

2
ffiffiffiffi
Q

p
k2

and is bounded by 0 and 1.

In the case of frequency distributions from census tables, where F ¼ ðF1;F2; : : : ;FKÞ

is the vector of original counts and G ¼ ðG1;G2; : : : ;GKÞ is the vector of perturbed

counts, and
PK

i¼1 Fi ¼ N and
PK

i¼1 Gi ¼ M, the Hellinger distance is defined as:

HDðF;GÞ ¼
1ffiffiffi
2
p �k

ffiffiffiffi
F
p

2
ffiffiffiffi
G
p
k2 ¼

1ffiffiffi
2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i¼1

ffiffiffiffiffi
Fi

p
2

ffiffiffiffiffi
Gi

p� �2

vuut ð4Þ

The Hellinger distance is grounded in Information Theory and takes into account the

magnitude of the cells since the difference between square roots of two “large” numbers is

smaller than the difference between square roots of two “small” numbers, even if these

pairs have the same absolute difference. Naturally, while the lower bound remains zero,
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the upper bound of this distance metric changes:

HDðF;GÞ ¼
1ffiffiffi
2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i¼1

ffiffiffiffiffi
Fi

p
2

ffiffiffiffiffi
Gi

p� �2

vuut ¼
1ffiffiffi
2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i¼1

Fi þ Gi 2 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi�Gi

p� �
vuut

¼
1ffiffiffi
2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þM 2 2�
XK

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi�Gi

p
vuut #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þM

2

r
:

Since the SDC methods described in Section 3 produce approximately the same overall

population total N due to controlled methods of perturbation, the Hellinger distance is

bounded by 0 and
ffiffiffiffi
N
p

. For the comparison study in Section 5, we use the expression of

1 2 ðHDðF;GÞ=
ffiffiffiffi
N
p
Þ as the data utility measure, which is bounded between 0 and 1, 0

representing low utility and 1 representing high utility.

5. A Comparison Study

In this section we present a flexible table-generating server for census tables where we

proceed with the European Census Hub approach of defining a large hypercube as the

underlying data input to the server. We compare the application of SDC methods

described in Section 3 to four generated output tables and examine the properties of the

disclosure risk and data utility measures presented in Section 4.

5.1. Preparing the Underlying Hypercube and Generating Output Tables

For the comparison study, we generate a hypercube with an underlying population of size

1,500,000 individuals for two NUTS2 regions. The variables defining the hypercube

follow one of Eurostat’s specifications for a hypercube required by all Member States

as follows:

. NUTS2 Region – 2 regions

. Gender – 2 categories

. Banded age groups – 21 categories

. Current employment status – 5 categories

. Occupation – 13 categories

. Educational attainment – 9 categories

. Country of citizenship – 5 categories

From the UK Census 2001, cell proportions from published tables were calculated and

cross-classified using iterative proportional fitting. We then multiplied the proportions by

our population size of 1,500,000 individuals to produce the final hypercube. The

hypercube used in the comparison study has 245,700 cells. The distribution of cell counts

is skewed with a large proportion of zero cells as seen in Table 1.

The distribution of cell counts in the hypercube as shown in Table 1 was comparable to

the hypercube based on real census data produced by the United Kingdom according to the

above specification.
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In the flexible table-generating server of our comparison study, we apply a set of

preliminary SDC rules for generating tables and allow a maximum of three dimensions

with one additional variable to define the population of the table. Four different-size output

tables are generated from the input hypercube as follows (number of categories of each

variable are in parenthesis):

(1) Selected population: NUTS2 ¼ 1, table spanned by: Banded age group (21) *

Educational Attainment (9) * Occupation (13).

(2) Selected population: NUTS2 ¼ 2, table spanned by: Gender (2) * Banded age group

(21) * Country of citizenship (5)

(3) Selected population: Gender ¼ 1, table spanned by: Current activity status (5) *

Occupation (13) * Educational attainment (9)

(4) Selected population: Banded age group ¼ 10, table spanned by: NUTS2 (2) *

Occupation (13) * Educational attainment (9)

Table 2 contains details of the four generated output tables that are used in the comparison

study: the total size of the population, the number of cells and the average cell size in each

table as well as the distribution of cell counts.

Table 1. Distribution of cell counts in the generated hypercube

Cell value Number of cells Percentage of cells

0 226,939 92.4
1 4,028 1.6
2 2,112 0.9
3–5 2,964 1.2
6–8 1,664 0.7
9–10 720 0.3
11 and over 7,273 3.0

Total 245,700 100.0

Table 2. Details of four generated tables to be used in the comparison study

Details Table 1 Table 2 Table 3 Table 4

Total Population 854,539 645,461 736,355 96,656
Number of cells 2,457 210 585 234
Average cell size 347.8 3,073.6 1,258.7 413.1

Number of % % % %

Zeroes 1,534 (62.4) 49 (23.3) 275 (47.0) 84 (35.9)
Ones 44 (1.8) 14 (6.7) 16 (2.7) 9 (3.9)
Twos 35 (1.4) 2 (1.0) 9 (1.5) 4 (1.7)
Threes 27 (1.1) 5 (2.4) 3 (0.5) 6 (2.6)
Fours 20 (0.8) 4 (1.9) 9 (1.5) 1 (0.4)
Fives 17 (0.7) 1 (0.5) 5 (0.9) 4 (1.7)
Sixes and over 780 (31.8) 135 (64.3) 268 (45.8) 126 (53.9)
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From Table 2, output Table 1 is the largest table with the largest proportion of zero cells.

Output Tables 2 and 4 are similar in the number of cells but the size of the population is

considerably smaller in output Table 4, resulting in a larger proportion of zero cells and a

smaller proportion of cells of value one. Output Table 3 is a midsize table. It is clear from

the small cell counts and many zero cells that the generated output tables require the

application of SDC methods in the flexible table-generating server.

In the comparison study we provide an example of how a statistical agency might go about

assessing different SDC methods for a flexible table-generating server of census tables

through disclosure risk and data utility measures. In the pretabular approach of protecting

the input hypercube prior to generating tables, we apply three SDC methods as follows:

. Full random rounding of the hypercube to base 3 semicontrolled to the two NUTS2

totals.

. Random record swapping carried out by first constructing microdata of individuals

from the hypercube where each cell is duplicated to the number of individuals in the

cell. A random sample of five percent of individuals is selected in each NUTS2

region, then randomly paired with individuals in the opposite NUTS2 region and their

geographical variables swapped. This produced a total swap rate of ten percent of

individuals having their NUTS2 regions swapped. Following the record-swapping

procedure, the hypercube is reconstructed.

. Stochastic perturbation on the hypercube is based on an invariant probability

transition matrix with controls in the overall totals of the two NUTS2 regions.

The perturbation is carried out on cells of values in the range 0–10; all cells above a

value of 10 have the same probabilities of perturbation depending on their residual

value to base 5. The probability transition matrix for each NUTS2 region used in this

study is presented in Table 3.

The pretabular disclosure-controlled hypercubes are used as input to the flexible

table-generating server and the four output tables generated under each SDC method.

The comparison results also include the case where a post-tabular SDC method of

semicontrolled random rounding to base 3 is applied directly to the four output tables that

are generated from the original unperturbed hypercube. The SDC methods are compared

through the disclosure risk and data utility measures described in Section 4.

5.2. Results of the Comparison Study

To compare the pretabular SDC methods applied to the original hypercube (record

swapping, semicontrolled random rounding and stochastic perturbation), we first assess

the impact of the perturbation on the small cells in the generated output tables. Table 4

presents the number of small cells of size 1 and 2 in the original hypercube and in each of

the four output tables defined in Subsection 5.1, and the percentage of those cells that were

altered under the SDC methods. Record swapping generally provided the least number of

small cells perturbed except for output Table 4, where the swapped variable NUTS2 is

used as a spanning variable of the table. Output Table 3 did not include the swapped

NUTS2 variable and hence all cells in the table contain original cell counts. Random

rounding eliminates all small cells of size 1 and 2 and provides more protection compared
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to record swapping and the stochastic perturbation. It is well known, however, that random

rounding has the risk of being able to reveal original cell values, especially when the sum

of rounded cells does not add up to the rounded marginal totals. However, ensuring the

consistency of the rounding across same cells in different tables and controlling some of

the marginal totals lowers the risk of being able to reveal original cell values.

Table 5 presents the disclosure risk measure in (3) and the Hellinger distance in (4)

for the output tables defined in Subsection 5.1 generated on the pretabular disclosure-

controlled hypercubes according to the SDC methods: record swapping, semicontrolled

random rounding and stochastic perturbation. In addition, we report the measures for the

case where the SDC method of semicontrolled random rounding is applied directly to the

output tables that were generated from the original hypercube to compare the pretabular

and post-tabular approach for this SDC method.

To modify the second term in the disclosure risk measure in (3) following the SDC

methods as described in Subsection 4.2, we used the following multipliers: for record

swapping, the average diagonal probability of the probability transition matrix is 0.9; for

the stochastic perturbation, the average diagonal probability of the probability transition

matrix is 0.75 for the small counts and 0.9 for the large counts; for the random rounding to

base 3, we use the multiplier of 0.33.

From Table 5, we see that the disclosure risk measures are all smaller for the perturbed

tables compared to the original tables, even for the case of record swapping in output

Table 3 where the perturbed table is identical to the original table since the perturbed

NUTS2 variable was not included as a spanning variable of the table. The utility measures

are all high, showing that all SDC methods can provide tables that are fit for purpose

for users.

In general, it is clear that the method of record swapping when applied to the input

hypercube did little to reduce disclosure risk in the final output tables in the comparison

study. However, the disclosure risk measure is always slightly smaller than the disclosure

risk measure of the original table to reflect the uncertainty in the table based on the

assumption that an intruder cannot be certain which variables were swapped. The data

utility measure based on the Hellinger distance for output Table 3 under record swapping

is 1.00, since the perturbed table is equal to the original table. The data utility measure

under record swapping was low for the two output Tables 1 and 2 where the perturbed

Table 4. Number of small cells of size 1 and 2 in original hypercube and generated tables, and percentage of

those cells that were perturbed

Original
hypercube Table 1 Table 2 Table 3 Table 4

Number of cells of
size 1 and 2

6140 79 16 25 13

Percentage perturbed:
Record swapping 26.9 15.2 12.5 0 30.8
Stochastic

perturbation
33.2 29.1 25.0 36.0 23.1

Random rounding 100 100 100 100 100
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Table 5. Disclosure risk and data utility (Hellinger distance) for the generated tables

Disclosure risk
RðF;w1;w2Þ in (3)

Data utility
1 2 ðHDðF;GÞ=

ffiffiffiffi
N
p
Þ in (4)

Table 1

Original 0.318 -

Perturbed input
Record swapping: 0.282 0.988
Semicontrolled random rounding 0.137 0.991
Stochastic perturbation 0.239 0.995

Perturbed output:
Semicontrolled random rounding 0.135 0.993

Table 2

Original 0.248 -

Perturbed input:
Record swapping 0.191 0.972
Semicontrolled random rounding 0.070 0.996
Stochastic perturbation 0.210 0.998

Perturbed output:
Semicontrolled random rounding 0.072 0.996

Table 3

Original 0.339 -

Perturbed input:
Record swapping 0.295 1.000
Semicontrolled random rounding 0.130 0.994
Stochastic perturbation 0.254 0.996

Perturbed Output:
Semicontrolled random rounding 0.127 0.996

Table 4

Original 0.298 -

Perturbed input:
Record swapping 0.271 0.987
Semicontrolled random rounding 0.105 0.991
Stochastic perturbation 0.229 0.994

Perturbed output:
Semicontrolled random rounding 0.105 0.992
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NUTS2 variable was used to select the population for these tables. The data utility measure

under record swapping for output Table 4 was slightly higher, since in this case NUTS2

was a variable spanning the table and hence did not change the overall total of the table.

The stochastic perturbation carried out on the input hypercube outperformed record

swapping with smaller disclosure risk measures and higher data utility measures (except

for output Table 3). The stochastic perturbation has a higher disclosure risk compared to

semicontrolled random rounding, since a large percentage of small cells are unchanged

by the perturbation, but it has higher data utility.

The semicontrolled random rounding outperformed all other methods with respect to

the lowest disclosure risk, since there are no small cells in the tables and attribute

disclosure risk is reduced by the introduction of random zeros. However, the data utility

measure based on the Hellinger distance was slightly lower compared to the stochastic

perturbation method as mentioned above. There was little difference between the

disclosure risk measures comparing the pretabular semicontrolled random rounding on

the input hypercube to the post-tabular semicontrolled random rounding applied directly

to the output tables generated from the original hypercube. However, there is an increase

in the data utility measure when applying the post-tabular semicontrolled random

rounding, especially for the large output Table 1 and midsize output Table 3.

Figure 2 presents a disclosure risk-data utility map of the four generated tables where RS is

record swapping, SP is the stochastic perturbation, RR is the semicontrolled random

rounding on the input hypercube and RRP is the semicontrolled random rounding applied

directly to the generated output tables. The data utility measure is the Hellinger distance in

(4). The upper right-hand quadrant of the map represents high disclosure risk and high utility

and the lower left-hand quadrant represents low disclosure risk and low data utility.

The statistical agency needs to decide on a tolerable disclosure risk threshold above

which they are not prepared to release a table. As an example, the disclosure risk-data

utility map shows that for a tolerable disclosure risk threshold of up to 15 percent, the
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Fig. 2. Disclosure risk – data utility map for generated tables (output Table 1 (T1) to output Table 4 (T4)):

RS – record swapping, SP – stochastic perturbation, RR – semicontrolled random rounding on input hypercube,

RRP – semicontrolled random rounding on generated tables
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output tables where semicontrolled random rounding was applied directly to tables that

were generated from the original hypercube have the highest data utility as they are on the

farthest right-hand side of the map.

6. Concluding Remarks

In this article, we have compared pretabular SDC methods applied to a large hypercube

(record swapping, stochastic perturbation and semicontrolled random rounding) and a

semicontrolled random rounding applied directly to output tables generated from the

original hypercube. For the pretabular SDC methods, record swapping had little impact

on reducing disclosure risk and also had lower data utility. Semicontrolled random

rounding offered more protection as all cell values in the table not a multiple of base b

are perturbed, and by preserving the consistency of cells across tables, it is more

difficult to undo the rounding to reveal original cell values. The stochastic perturbation

had the best overall data utility, but entailed higher disclosure risks compared to the

semicontrolled random rounding. Finally, we have seen that the post-tabular SDC

method of semicontrolled random rounding applied directly to the generated output

tables produced nearly the same amount of disclosure risk reduction as the pretabular

semicontrolled random rounding applied to the input hypercube, but had a higher level

of data utility.

The aim of the comparison study was not primarily to evaluate specific SDC methods or

indeed determine their optimum parameterization, but rather to demonstrate how such a

disclosure risk and data utility analysis should be carried out by a statistical agency when

disseminating census data. To this end, we have proposed new global measures of

disclosure risk and data utility based on information theory that are particularly suited for

assessing disclosure risk arising from attribute and identity disclosure in census frequency

tables and can easily be embedded in a web-based flexible table-generating server. The

proposed modifications to the disclosure risk measure following the application of an SDC

method show that we can reflect the level of uncertainty added to the tables and therefore

reduce the disclosure risk. Further research is needed to refine and improve post-tabular

SDC methods whilst preserving additivity and consistency of user-defined tables. More

extensive empirical studies are needed that involve real data and the testing of SDC

methods across their respective parameter spaces.

Another key aspect of the SDC problem in a flexible table-generating server is the

management of users and governance processes. The server can be freely available on the

statistical agency’s website for all users or restricted via licensing and passwords to only

approved users. For the former case, it is clear that SDC rules and methods would have to

be highly protective to guard against the fact that users can query the same table multiple

times in an attempt to undo SDC methods and reveal original cell counts. Clearly,

perturbative SDC methods, preserving the additivity and consistency of same cells across

different tables, and high thresholds for dissemination would be required. For the latter

case, less protection would be needed, allowing for higher-quality data, but protocols

would then need to be in place to handle multiple overlapping queries from the same user,

the management of users and their expectations.

Shlomo et al.: Flexible Table Generators 323

Unauthenticated
Download Date | 12/7/15 7:01 PM



7. References

Antal, L., N. Shlomo, and M. Elliot. 2014. “Measuring Disclosure Risk with Entropy in

Population Based Frequency Tables.” In PSD’2014 Privacy in Statistical Databases,

edited by J. Domingo-Ferrer, 62–78. Berlin: Springer.

Cover, T.M. and J.A. Thomas. 2006. Elements of Information Theory, 2nd ed. New York:

Wiley.

Dalenius, T. and S.P. Reiss. 1982. “Data Swapping: A Technique for Disclosure Control.”

Journal of Statistical Planning and Inference 7: 73–85.

Doyle, P., J.I. Lane, J.M.M. Theeuwes, and L. Zayatz. 2001. Confidentiality, Disclosure

and Data Access: Theory and Practical Applications for Statistical Agencies.

Amsterdam: Elsevier Science B.V.

Duncan, G., M.J. Elliot, and J.J. Salazar. 2011. Statistical Confidentiality: Principles and

Practice. New York: Springer.

Fienberg, S.E. and J. McIntyre. 2005. “Data Swapping: Variations on a Theme by

Dalenius and Reiss.” Journal of Official Statistics 9: 383–406.

Fraser, B. and J. Wooton. 2005. “A Proposed Method for Confidentialising Tabular Output

to Protect Against Differencing.” Joint UNECE/Eurostat Work Session on Statistical

Data Confidentiality, Geneva, November 9–11. Available at: www.unece.org/file

admin/DAM/stats/documents/ece/ces/ge.46/2005/wp.35.e.pdf (accessed April 2015).

Gouweleeuw, J., P. Kooiman, L.C.R.J. Willenborg, and P.P. De Wolf. 1998. “Post

Randomisation for Statistical Disclosure Control: Theory and Implementation.”

Journal of Official Statistics 14: 463–478.

Hundepool, A., J. Domingo-Ferrer, L. Franconi, S. Giessing, E. Schulte Nordholt, K.

Spicer, and P.P. de Wolf. 2012. Statistical Disclosure Control. Chichester: John Wiley

& Sons.

Salazar-Gonzalez, J.J., C. Bycroft, and A.T. Staggemeier. 2005. “Controlled Rounding

Implementation.” Joint UNECE/Eurostat Work Session on Statistical Data Confiden-

tiality, Geneva, November 9–11. Available at: www.unece.org/fileadmin/DAM/stats/

documents/ece/ces/ge.46/2005/wp.36.pdf (accessed April 2015).

Shlomo, N. 2007. “Statistical Disclosure Control Methods for Census Frequency Tables.”

International Statistical Review 75: 199–217. Doi: http://dx.doi.org/10.1111/j.

1751-5823.2007.00010.x.

Shlomo, N. and C. Young. 2008. “Invariant Post-tabular Protection of Census Frequency

Counts.” In In PSD’2008 Privacy in Statistical Databases, edited by J. Domingo-Ferrer

and Y. Saygin, 77–89. Berlin: Springer.

Willenborg, L.C.R.J. and T. de Waal. 2001. Elements of Statistical Disclosure Control.

New York: Springer.

Received July 2013

Revised October 2014

Accepted November 2014

Journal of Official Statistics324

Unauthenticated
Download Date | 12/7/15 7:01 PM



Chapter 6

Discussion

This chapter discusses the findings of the thesis and their consequences.

It aims to: provide a quick overview of the results we described in detail

in the preceding chapters; point out what has not been achieved; draw a

conclusion and provide potential problems for further research.

Section 6.1 provides a short summary of the main findings. Section 6.2

discusses how our results relate to the SDC literature. Section 6.3 describes

problems stemming from our research. The concluding notes in Section 6.4

close the thesis.

6.1 Summary

The objective of a statistical institute is to disseminate data collected

from a sample or population of units. However, data also can be potentially

disclosive. For example, an intruder might be able to match some parts of

the disseminated data with a particular individual or a group of individuals

based on prior knowledge or the availability of a publicly available dataset

with shared quasi-identifiers. Statistical disclosure control methods are

applied to the data before dissemination in order to prevent a potential

intruder from matching the data to individuals.

A statistical institute must decide whether datasets can be released
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without providing an opportunity for an intruder to breach confidentiality.

Disclosure risk measures can be used to assess the risk of disclosure. Such

measures, when applied to the data to be released, provide a numerical

value and quantify the degree of disclosure risk. If the value is high, the

data cannot be released. Statistical disclosure control (SDC) methods

are applied to protect the data. They vary according to the data. SDC

methods for microdata differ from those for tabular data because the

released data are more detailed and therefore have more disclosure risk.

For tabular data, pre-tabular or post-tabular SDC methods may be used.

As their names suggest, pre-tabular methods are applied to microdata

before tabulation, while post-tabular methods alter tables generated from

the original microdata. Data might be released after an SDC method

is applied to them. However, disclosure controlled data differ from the

original data, therefore an information loss measure needs to be employed

to quantify the degradation in the data.

The main point of Chapter 3 is to define a disclosure risk measure

that fulfils the five properties listed in the introduction of the paper

presented in Section 3.9. The R1(F,w) and R2(F,G,w) disclosure risk

measures possess the properties before and after perturbation, respectively.

They are defined as the weighted average of three terms which cover the

properties. The weights allow a data protector to emphasize the property

he/she considers the most important. The R1(F,w) and R2(F,G,w)

measures can improve on the GAD and WGAD measures defined in the

paper presented in Section 3.9.

The core term of the disclosure risk measure depends on information

theoretical expressions, such as the entropy and the conditional entropy.

Chapter 3 also presents the main theoretical background of the disclosure

risk measure, in particular the method to define the conditional entropy.

The conditional entropy sheds light on the relationship of pre-tabular and

post-tabular SDC methods. More discussion on pre- and post-tabular

SDC methods can be found in Section 6.3.
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The disclosure risk assessment of population based tables is more

straightforward than that of sample based tables. The main difference is in

the sets of individuals contributing to the tables. While population based

tables include every individual, sample based tables include only a random

selection of the population and generally the underlying population

frequencies are unknown and need to be estimated. This means that an

intruder gains more information from a population based table and does

not need to have prior knowledge about a particular individual’s inclusion

into the table.

The estimation of population based frequencies from sample based

frequencies is the main point of the paper presented in Chapter 4. The

disclosure risk measure can be calculated on the estimated population

frequencies. While in Chapter 3 the X random variable is given and the Y

variable is to be determined, in Chapter 4 the Y variable is given and the

X variable is not. X provides the cell where the individuals fall originally,

while Y shows the cells the individuals contribute to after perturbation.

The paper presented in Chapter 5 provides an application of the

proposed disclosure risk measure and associated information loss measure.

It shows how a statistical institute should carry out a disclosure risk

assessment by optimising the SDC paradigm of minimum disclosure

risk according to a threshold and minimizing information loss for an

automatic web-based flexible table generating server. The disclosure risk

and information loss measures can be calculated automatically on-the-fly.

A user requests a table and an iterative process is carried out within the

server of assessing disclosure risk, applying SDC methods and reassessing

disclosure risk and information loss until the table can be released to

the user. The technical implementation of a flexible table generator tool

that is able to assess and release data without human interaction is not

covered in the thesis.
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6.2 Relation to SDC Literature

The disclosure risk measure defined in Chapter 3 is based on properties

listed in the introduction of the paper presented in Section 3.9. Properties

1A, 1B and 2 are considered true more widely and are often used in the

SDC literature. Properties 3 and 4 are technical requirements. The role

of any disclosure risk measure is in the decision about data releases. Our

disclosure risk measure is not an exception. Tabular data can be released

if R1(F,w) or R2(F,G,w) is low according to a threshold that would be

determined by the statistical institute.

The R2(F,G,w) disclosure risk measure is developed for post-tabular

SDC methods, such as CTA and various forms of rounding. However, it is

not compatible with cell suppression because the disclosure risk measure

assumes that the cell values of a perturbed table are not suppressed but

altered. In the case of cell suppression, the un-suppressed cell values are

not modified and the other cells are blanked out. CTA takes the cell

suppression a step further in that it imputes a value for the blanked out

cells. Cell suppression and CTA are not considered in the thesis since these

methods are more common in magnitude tables and are generally not

applied to frequency tables. However, since CTA provides an analytically

similar perturbed table to the original frequency table, the R2(F,G,w)

disclosure risk measure would not be greater than R1(F,w). Any form of

rounding changes the ’structure’ of the frequencies since only multiples of

the rounding base can appear in a rounded frequency table. It does not

change the fact that the perturbed table has lower or equal disclosure

risk measure to the original frequency table. Therefore the value of the

disclosure risk measure on a rounded frequency table can also be different

from that of a perturbed table that has similar frequencies to the original

table.

A commonly used sensitivity measure defined for frequency tables

is the threshold rule. This is a measure that is defined at the cell

level. The comparison of the R1(F,w) and R2(F,G,w) disclosure risk
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measures to the threshold rule is difficult since they are defined at the

row/column/table level and assess different scenarios of disclosure risk.

According to the threshold rule, a perturbed frequency table cannot be

released if a certain proportion of cell values is lower than the prescribed

minimum. The threshold rule aims to minimise the risk of identification.

Rounding for example might eliminate all cell values below the threshold

but CTA may still have small values remaining in the tables. On the other

hand, the risk measures R1(F,w) and R2(F,G,w) assess the distributions

in the table and show how close those distributions are to the degenerate

distribution (only one non-zero cell value in the row/column/table). This

provides a measure for attribute disclosure.

Frank (1978) also defined a disclosure risk measure based on the

entropy, see Section 2.3.2.2.1. However, his assumptions about a prior

disclosure set and an intruder’s knowledge are slightly unrealistic and

simplify the situation in our opinion. Contrary to Frank’s approach,

we adopt the viewpoint of a statistical institute. The disclosure risk is

also measured from the perspective of a statistical institute. Potential

intruders and their knowledge are not the focus of the thesis. However,

disclosure risk scenarios discussed in Frank (1976) are accepted and used

in the thesis.

Our proposed disclosure risk measure can be applied to a set of

internal cells as well as to marginal tables. However, it cannot measure

the disclosure risk of single cells, in contrast with the information theory

based disclosure risk measure in Oganian and Domingo-Ferrer (2003).

The SAP method (Smith and Elliot (2008)), contrary to the approach

laid out in this thesis, adopts the intruder’s perspective. Cell values of

zero, however, play an important role in both approaches. One advantage

of the approach described here over SAP is computational tractability.

SAP is very computationally intensive and is not feasible for the types of

on-the-fly output I consider in Chapter 5. SAP also focuses on the risk of

a single zero being discoverable in the table and does not take account
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of accumulative risk from multiple vulnerabilities unlike the measures

developed here.

Our proposed disclosure risk measure is defined mainly for attribute

disclosure. Small cell values, either in population based or in sample

based tables, increase the value of our disclosure risk measure. However,

the overall disclosure risk measure might not be high, even if there are

some small cell frequencies in the table. Therefore, the presence of a

small cell might not imply the need to apply an SDC method immediately.

This viewpoint is in line with the UK Office for National Statistics who

deemed attribute disclosure in the form of degenerate distributions as

potentially more disclosive than small internal cell values in a table.

While the SDC literature for sample based tables (and microdata)

treats the estimation of population uniques as an important problem, the

main concern in the thesis is the ’estimation of zeroes’ since they determine

potentially degenerate distributions in the table and lead to attribute

disclosure. Population uniques increase the value of our disclosure risk

measure but they do not necessarily have to be eliminated in a perturbed

table according to the UK perspective. The number of zeroes is a key

term in our proposed disclosure risk measure. In fact, it is not just the

number of zero cells but their location in the table that is important

since it influences the H(X|Y ) conditional entropy in the disclosure risk

measure.

In summary, SDC approaches vary depending on the disclosure risk

scenarios, type of data, type of disclosure risk and whether we take the

statistical institute or intruder perspective. This thesis focuses on the

disclosure risk of attribute disclosure for frequency tables from a statistical

institute perspective and focuses on both population based tables and

sample based tables.
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6.3 Future Work

The disclosure risk measure we introduce has its limitations. It is based

on some defined desirable properties and those properties are open to

criticism. The list of properties in the introduction of the paper presented

in Section 3.9 might be extended or narrowed and the disclosure risk

measure might be changed accordingly.

Below we address some topics for future work.

• Topic 1

The conditional entropy is calculated on the E(Zij) average, where E(Zij)

is the expectation of the Pr(Y = cj|X = ci) values, see Section 3.6.2.1.

The RG distribution (see Section 3.6.2.1) on the set of potential Y

variables (ΩG, see Section 3.2) is crucial in determiningE(Zij). Theorems 1,

2, 3 and 4 in Sections 3.6.2.1 and 3.6.2.2 can be proven with relative

ease because RG is chosen as a simple uniform distribution (UΩG
or UΩ∗G).

Further work needs to be carried out to find other RG distributions that

may express the disclosure risk more accurately. However, a more complex

distribution might not provide a closed formula for E(Zij), therefore

E(Zij) might have to be calculated numerically.

• Topic 2

In Section 2.4.1 we discussed the advantages and drawbacks of pre- and

post-tabular SDC methods. A post-tabular method can be given by

the original frequency table F and the set of the following conditional

probabilities.

Pr(the perturbed frequency table is G|the original frequency table is F ) ,

(6.3.1)

where G ∈ PG = {G : G = (G1, G2, . . . , GK) ∈ ZK}. Although PG

is countably infinite, in practice only a finite number of the above
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probabilities differ from zero for an arbitrarily selected post-tabular

method.

A pre-tabular method is based on the Pr(X = ci|Y = cj) conditional

probabilities directly. Indirectly, it provides the probabilities in (6.3.1),

therefore a pre-tabular method always implies a post-tabular method

(given the original microdata set and the table-spanning variables).

However, it cannot be reversed, not every post-tabular method has

a corresponding pre-tabular method.

Figure 3.1 in Section 3.7 shows that pre- and post-tabular methods are not

as far from each other as it seems. Further work needs to be carried out

to prove whether there are post-tabular methods that are ’equivalent’ to

pre-tabular methods, that is, whether the (6.3.1) conditional probabilities

are the same for a pre-tabular and a post-tabular SDC method. If there

are such methods, then, in principle, a statistical institute could benefit

from the advantages of both pre- and post-tabular methods discussed in

Section 2.4.1. Below we describe some initial thoughts to link pre-tabular

and post-tabular SDC methods.

A pre-tabular method, such as PRAM, defines the pij = Pr(Y =

cj|X = ci) conditional probabilities. PRAM perturbs the individuals

independently from each other. A perturbed frequency table is then

generated from the perturbed microdata. Since the number of individuals

is not changed by the perturbation, we obtain
∑K

i=1 Fi =
∑K

j=1Gj. By

definition, |{a ∈ I : X(a) = ci}|= Fi. Consider the number of individuals

that originally fall in ci and after applying PRAM they contribute to cj.

Denote the number by F j
i .

F j
i = |{a ∈ I : X(a) = ci, Y (a) = cj}| .

Now,
∑K

j=1 F
j
i = Fi. On the other hand,

∑K
i=1 F

j
i = Gj. We first fix

G. In this case, the F j
i values define an (adjacency) matrix, where two

marginal tables are F and G. The following equation can be proven,
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provided that the individuals are perturbed independently from each

other.

Pr(perturbed frequency table is G|original frequency table is F ) =

∑

Potential (F j
i ) matrices

K∏

i=1

Fi!

F 1
i ! ·F 2

i ! · . . . · FK
i !
· pF

1
i
i1 · p

F 2
i
i2 · . . . · p

FK
i
iK . (6.3.2)

Here by ’potential (F j
i ) matrices’ we mean matrices where F and G are

marginal tables, that is, the sums of rows provide F and the sums of

columns G. The
F j
i

Fi
proportion should be close to pij, since pij provides

the probability that an individual that originally falls into ci contributes

to cj after PRAM is applied. Therefore,

F j
i ≈ pij · Fi . (6.3.3)

Consider now the situation where the G perturbed table is not fixed. Still,

F is one of the marginal tables, Fi =
∑K

j=1 F
j
i , but the ’other’ marginal

table is not fixed. Therefore, any partition Fi = F 1
i + F 2

i + · · · + FK
i ,

i = 1, 2, . . . , K is admissible. Consider a partition for each Fi, i =

1, 2, . . . , K. They still provide a matrix and the sums of the columns

provide the G perturbed table. The pij probabilities define a probability

distribution on the set of the (F j
i ) matrices. The distribution provides

the Pr(perturbed frequency table is G|original frequency table is F )

probability for each G table.

Clearly, (6.3.2) assumes that the frequencies follow a multinomial distribution.

(6.3.3) provides an alternative idea. Assume that the F j
i frequency is the

result of a draw from a Poisson distribution as follows.

F j
i ∼ Po(pij · Fi) .

The F j
i , i, j = 1, 2, . . . , K frequencies are, by assumption, independent
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from each other. Since
∑K

j=1 pij = 1 and the sum of independent

Poisson-distributed numbers follows a Poisson distribution, therefore

K∑

j=1

F j
i ∼ Po(Fi) .

It implies that the sum of the F j
i frequencies over j might not be

equal to Fi. However,
∑K

j=1E(F j
i ) = Fi. Summing the F j

i frequencies

’columnwise’ provides the Gj frequencies. We can exploit again that the

convolution of independent Poisson distributions is a Poisson distribution.

Gj =
K∑

i=1

F j
i ∼ Po

(
K∑

i=1

pij · Fi
)
.

The above distribution of Gj provides the Pr(Gj = l), l = 0, 1, . . .

probabilities. The product of the probabilities gives the probability that

the ’perturbation’ results in the G frequency table.

A post-tabular method is often defined at cell level and the cells are

perturbed independently from each other, see for example random

rounding. Therefore often

Pr(perturbed frequency table is G|original frequency table is F ) =

K∏

j=1

Pr(jth perturbed cell value is Gj|jth original cell value is Fj) .

(6.3.4)

If (6.3.2) and (6.3.4) were linked, then a pre-tabular method and a

post-tabular method could be interconnected.

• Topic 3

The disclosure risk assessment for sample based tables requires the

estimation of population frequencies. We estimated the frequencies by

probabilistic models. The disclosure risk measure is sensitive to the
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(estimated) population frequencies, therefore the model is important.

Further work can be carried out to find other models that provide

good estimates of the population frequencies and thereby the disclosure

risk measure. The impact of having imprecise estimated population

frequencies on the value of the disclosure risk measure is not exactly clear.

The difference between the true and estimated values stems from the

difference between the first terms and the difference between the second

terms of the disclosure risk measure. (We assume that the third term is

equal for the two cases.) The absolute difference between the true and

estimated first terms (without the w1 weight) is

∣∣∣∣∣∣∣

( |D|
K

) |D∪E|
|D∩E|

−
(
|D̂|
K

) |D̂∪E|
|D̂∩E|

∣∣∣∣∣∣∣
. (6.3.5)

It can be seen that the estimated zero cells have a significant influence

on the first term. As we know, the estimation of zero cells from a sample

based table is always a difficult problem. Here we also need to ’estimate’

the place of zero cells in the table since the |D̂∪E| and |D̂∩E| expressions

depend on where the zeroes are. Therefore the (6.3.5) difference is hard

to estimate.

Regarding the second term of the disclosure risk measure, an upper

bound of the difference between the true and estimated second terms

can be given as follows.

∣∣∣∣∣

(
1− H(X)

logK

)
·
(

1− H(X|Y )

H(X)

)
−
(

1− Ĥ(X)

logK

)
·
(

1− Ĥ(X|Y )

Ĥ(X)

)∣∣∣∣∣ ≤

ε1 + ε2

Ĥ(X)
+

∣∣∣∣∣
ε1 · (H(X)−H(X|Y ))

H(X) · Ĥ(X)

∣∣∣∣∣ . (6.3.6)

Here ε1 = |H(X)− Ĥ(X)| and ε2 = |H(X|Y )− Ĥ(X|Y )|. The proof of
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the above formula can be found in the Appendix.

If we assume that the H(X) entropy and the H(X|Y ) conditional

entropy are estimated ’well’ by Ĥ(X) and Ĥ(X|Y ), that is, ε1 and ε2 are

small, then the above upper bound depends mostly on H(X)−H(X|Y ).

The I(X;Y ) = H(X) − H(X|Y ) expression is known as the mutual

information of X and Y . According to Cover and Thomas (2006), ’The

mutual information I(X;Y ) is a measure of the dependence between two

random variables. It is symmetric in X and Y and always non-negative

and is equal to zero if and only if X and Y are independent.’ The

mutual information can also be described as the relative entropy between

the joint distribution of X and Y and the distribution given by the

Pr(X = ci) · Pr(Y = cj), i, j = 1, 2, . . . , K products. (The set of the

latter products obviously defines a distribution on X × Y .)

I(X;Y ) =
K∑

i=1

K∑

j=1

Pr(X = ci, Y = cj) · log
Pr(X = ci, Y = cj)

Pr(X = ci) · Pr(Y = cj)
.

The value of (6.3.6) is small if I(X;Y ) = H(X) − H(X|Y ) is small.

However, the mutual information is zero if the variables are independent.

Since we get the Y variable by ’perturbing the X variable’, they would

not be independent. In fact, the correlation between the two variables

would be strong. However, (6.3.6) might still be sufficiently low since∣∣∣H(X)−H(X|Y )
H(X)

∣∣∣ = I(X;Y )
H(X)

≤ 1. The key point is to keep the ε1 and ε2 values

low. Further work should be carried out to estimate ε1 and ε2.

The third term of the disclosure risk measure depends on the population

size (N) only. This term is not sensitive to small cell values. A table

that has many ones and twos and some high frequencies can provide the

same value on the third term as a uniformly distributed table of medium

size cell values. A potential refinement of the disclosure risk measure

might improve on the third term.

• Topic 4
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R1(F,w) and R2(F,G,w) do not take the structure of the table into

account. We only need a vector of original and a vector of perturbed

frequencies to calculate the above quantities. It is important, however,

that the cells of the original vector and the cells of the perturbed vector

correspond. Further work needs to be carried out to define a disclosure

risk measure that takes the table structure into account.

6.4 Concluding Remarks

Any statistical institute or other agency responsible for releasing

data must assess the disclosure risk of the data that it is intending to

disseminate and therefore must have at its disposal adequate tools for

assessing that risk. No disclosure risk measure can be used in every

disclosure risk scenario, therefore the choice of the measure is important.

Whilst developing a new disclosure risk measure for a given disclosure

risk scenario, appropriate SDC methods or combination of SDC methods

need to also be developed leading to new insight and experiences. It

is only through taking a methodological approach to disclosure risk

assessment that statistical institutes can fully ensure the protection of

released statistical data. The definition of the new disclosure risk measure

outlined in this thesis is a step in the right direction.
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Appendix A

Appendices

A.1 Numerical Values for the Third Term

of the Disclosure Risk Measure

Numerical results for the h1(N, ε), h2(N, ε) and h3(F, ε) functions can

be found below.
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A.2 Proof of Theorem 1

Proof of Theorem 1. If Fi = 0, then Pr(Yl = cj|X = ci) = 0 for all

l = 1, 2, . . . , |ΩG|, therefore E(Zij) = 0.

Assume now that Fi > 0.

E(Zij) =

|ΩG|∑

l=1

RG(Yl) · Pr(Yl = cj|X = ci) =
1

|ΩG|
·
|ΩG|∑

l=1

Pr(Yl = cj|X = ci) =

1

|ΩG|
·
|ΩG|∑

l=1

Pr(X = ci, Yl = cj)

Pr(X = ci)
=

N

Fi · |ΩG|
·
|ΩG|∑

l=1

Pr(X = ci, Yl = cj) =

N

Fi · |ΩG|
·
|ΩG|∑

l=1

|{a ∈ I : X(a) = ci, Yl(a) = cj}|
N

=

1

Fi · |ΩG|
·
|ΩG|∑

l=1

|{a ∈ I : X(a) = ci, Yl(a) = cj}| (A.2.1)

Note that

|ΩG|∑

l=1

|{a ∈ I : X(a) = ci, Yl(a) = cj}|= |{(a, Yl) ∈ I × ΩG : X(a) = ci, Yl(a) = cj}|

(A.2.2)

We need to determine the cardinality of ΩG. We have
(
N
G1

)
choices to

select the individuals that fall into cell c1. Once one of the choices is

fixed, we have
(
N−G1

G2

)
choices to select the individuals that belong to cell

c2, etc. Therefore

|ΩG|=
(
N

G1

)
·
(
N −G1

G2

)
·
(
N −G1 −G2

G3

)
· . . . ·

(
N −∑K−1

i=1 Gi

GK

)
=

N !

G1! ·(N −G1)!
· (N −G1)!

G2! ·(N −G1 −G2)!
· (N −G1 −G2)!

G3! ·(N −∑3
i=1 Gi)!

· . . . ·

(
N −∑K−1

i=1 Gi

)
!

GK ! ·(N −∑K
i=1 Gi)!

.
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We get the following formula as the cardinality of ΩG.

|ΩG|=
N !

G1! ·G2! · . . . ·GK !
. (A.2.3)

Since Fi > 0, we can choose an a0 ∈ I individual such that X(a0) = ci.

If Gj = 0, then the number of Y ∈ ΩG variables with Y (a0) = cj is 0. If

Gj > 0, then the same number is

|{Y ∈ ΩG : Y (a0) = cj}|=
(N − 1)!

G1! · . . . ·Gj−1! ·(Gj − 1)! ·Gj+1! · . . . ·GK !
.

The proof of this formula is the same as for the cardinality of ΩG. For

both Gj = 0 and Gj > 0 we can write

|{Y ∈ ΩG : Y (a0) = cj}|=
Gj

N
· |ΩG| . (A.2.4)

There are Fi choices to select the a0 individual with the X(a0) = ci

property, therefore

|{(a, Yl) ∈ I × ΩG : X(a) = ci, Yl(a) = cj}|= Fi ·
Gj

N
· |ΩG| . (A.2.5)

Equations (A.2.1), (A.2.2) and (A.2.5) prove the theorem.

A.3 Proof of Theorem 2

Proof of Theorem 2. If Fi = 0, then Pr(Yl = cj|X = ci) = 0 for all

l = 1, 2, . . . , |Ω∗G|, therefore E(Zij) = 0.

Assume now that Fi > 0. Similarly to the proof of Theorem 1, we get

again that

E(Zij) =
1

Fi · |Ω∗G|
·
∑

Yl∈Ω∗G

|{a ∈ I : X(a) = ci, Yl(a) = cj}|=

1

Fi · |Ω∗G|
· |{(a, Yl) ∈ I × Ω∗G : X(a) = ci, Yl(a) = cj}| . (A.3.1)
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Our next aim is to determine |Ω∗G|. First we need to choose
∑K

k=1 min(Fk, Gk)

individuals that remain in the same cell. The number of the choices is

(
F1

min(F1, G1)

)
·
(

F2

min(F2, G2)

)
· . . . ·

(
FK

min(FK , GK)

)
.

If we fix one of the choices, we will know that the selected individuals

remain in their cells after perturbation. However, the cells of the not

selected individuals are not derived. Similarly to (A.2.3), there are

(N −∑K
k=1 min(Fk, Gk))!∏K

j=1(Gj −min(Fj, Gj))!

possible variables on the not selected individuals. Therefore the cardinality

of Ω∗G is

|Ω∗G|=
(N −∑K

k=1 min(Fk, Gk))!∏K
j=1(Gj −min(Fj, Gj))!

·
K∏

i=1

(
Fi

min(Fi, Gi)

)
. (A.3.2)

Since Fi > 0, we can select an a0 ∈ I individual such that X(a0) = ci.

If i = j and Gi = 0, then |{Yl ∈ Ω∗G : Yl(a0) = ci}|= 0. If i = j and

Gi > 0, then, similarly to (A.3.2),

|{Yl ∈ Ω∗G : Yl(a0) = ci}|=(
N − 1−min(Fi − 1, Gi − 1)−∑k 6=i min(Fk, Gk))

)
!

(Gi − 1−min(Fi − 1, Gi − 1))! ·∏k 6=i (Gk −min(Fk, Gk)) !
·

(
Fi − 1

min(Fi − 1, Gi − 1)

)
·
∏

k 6=i

(
Fk

min(Fk, Gk)

)
=

(
N −∑K

k=1 min(Fk, Gk)
)

!
∏K

k=1(Gk −min(Fk, Gk))!
·
(

Fi − 1

min(Fi, Gi)− 1

)
·
∏

k 6=i

(
Fk

min(Fk, Gk)

)
.
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There are Fi choices to fix the a0 individual. Therefore

|{(a, Yl) ∈ I × Ω∗G : X(a) = ci, Yl(a) = ci}|= Fi · |{Yl ∈ Ω∗G : Yl(a) = ci}|=

Fi ·

(
N −∑K

k=1 min(Fk, Gk)
)

!
∏K

k=1(Gk −min(Fk, Gk))!
·
(

Fi − 1

min(Fi, Gi)− 1

)
·
∏

k 6=i

(
Fk

min(Fk, Gk)

)
=

min(Fi, Gi) ·

(
N −∑K

k=1 min(Fk, Gk)
)

!
∏K

k=1(Gk −min(Fk, Gk))!
·
K∏

k=1

(
Fk

min(Fk, Gk)

)
.

(A.3.3)

The latter equation also fulfils if i = j and Gi = 0.

Combine this result with (A.3.1) and (A.3.2). We get

E(Zii) =
min(Fi, Gi)

Fi
.

Assume now that i 6= j. We will show that if Fi ≤ Gi or Fj ≥ Gj,

then |{(a, Yl) ∈ I × Ω∗G : X(a) = ci, Yl(a) = cj}|= 0.

If Fi ≤ Gi, then X(a) = ci implies that Yl(a) = ci since Yl ∈ Ω∗G. On

the other hand, if Fj ≥ Gj , then Yl(a) = cj implies that X(a) = cj . Since

i 6= j, it indeed follows that |{(a, Yl) ∈ I×Ω∗G : X(a) = ci, Yl(a) = cj}|= 0.

Therefore we can assume now that Fi > Gi and Fj < Gj.

We need to determine the |{Yl ∈ Ω∗G : Yl(a0) = cj}| frequency.

|{Yl ∈ Ω∗G : Yl(a0) = cj}|=(
N − 1−min(Fi − 1, Gi)−min(Fj , Gj − 1)−∑k 6=i,k 6=j min(Fk, Gk))

)
!

(Gi −min(Fi − 1, Gi))! ·(Gj − 1−min(Fj , Gj − 1))! ·∏k 6=i,k 6=j (Gk −min(Fk, Gk)) !
·

(
Fi − 1

min(Fi − 1, Gi)

)
·
(

Fj
min(Fj , Gj − 1)

)
·
∏

k 6=i,k 6=j

(
Fk

min(Fk, Gk)

)
. (A.3.4)

Fi > Gi and Gj > Fj yield that min(Fi − 1, Gi) = min(Fi, Gi) = Gi and
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min(Fj, Gj − 1) = min(Fj, Gj) = Fj . Therefore (A.3.4) can be written as

|{Yl ∈ Ω∗G : Yl(a0) = cj}|=(
N − 1−∑K

k=1 min(Fk, Gk))
)

!

(Gj − 1−min(Fj, Gj))! ·
∏

k 6=j (Gk −min(Fk, Gk)) !
·

(
Fi − 1

min(Fi, Gi)

)
·
(

Fj
min(Fj, Gj)

)
·
∏

k 6=i,k 6=j

(
Fk

min(Fk, Gk)

)
=

Gj −min(Fj, Gj)

N −∑K
k=1 min(Fk, Gk)

·

(
N −∑K

k=1 min(Fk, Gk))
)

!
∏K

k=1 (Gk −min(Fk, Gk)) !
·

Fi −min(Fi, Gi)

Fi
·
K∏

k=1

(
Fk

min(Fk, Gk)

)
.

We have Fi choices for the a0 individual, therefore

|{(a, Yl) ∈ I × Ω∗G : X(a) = ci, Yl(a) = cj}|= Fi · |{Yl ∈ Ω∗G : Yl(a) = ci}|=
(Fi −min(Fi, Gi)) · (Gj −min(Fj , Gj))

(N −∑K
k=1 min(Fk, Gk))

·
(
N −∑K

k=1 min(Fk, Gk))
)

!
∏K
k=1 (Gk −min(Fk, Gk)) !

·
K∏

k=1

(
Fk

min(Fk, Gk)

)
. (A.3.5)

Combine this result with (A.3.1) and (A.3.2). We get

E(Zij) =
(Fi −min(Fi, Gi)) · (Gj −min(Fj, Gj))

Fi · (N −
∑K

k=1 min(Fk, Gk))
.

This proves the theorem.
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A.4 Proof of (3.6.4)

Proof of (3.6.4).

H(X|Y ) = −
K∑

i=1

Fi

N
· min(Fi, Gi)

Fi
·

log

Fi

N
· min(Fi, Gi)

Fi

Fi

N
· min(Fi, Gi)

Fi
+
∑

k 6=i

Fk

N
· (Fk −min(Fk, Gk)) · (Gi −min(Fi, Gi))

Fk ·
(
N −∑K

m=1 min(Fm, Gm)
)

−

K∑

i=1

∑

j 6=i

Fi

N
· (Fi −min(Fi, Gi)) · (Gj −min(Fj , Gj))

Fi · (N −
∑K

k=1 min(Fk, Gk))
·

log

Fi

N
· (Fi −min(Fi, Gi)) · (Gj −min(Fj , Gj))

Fi · (N −
∑K

k=1 min(Fk, Gk))

Fj

N
· min(Fj , Gj)

Fj
+
∑

k 6=j

Fk

N
· (Fk −min(Fk, Gk)) · (Gj −min(Fj , Gj))

Fk · (N −
∑K

m=1 min(Fm, Gm))

=

−
K∑

i=1

min(Fi, Gi)

N
· log

min(Fi, Gi)

min(Fi, Gi) +

∑K
k=1 (Fk −min(Fk, Gk)) · (Gi −min(Fi, Gi))(

N −∑K
m=1 min(Fm, Gm)

)
−

K∑

i=1

∑

j 6=i

(Fi −min(Fi, Gi)) · (Gj −min(Fj , Gj))

N · (N −∑K
k=1 min(Fk, Gk))

·

log
(Fi −min(Fi, Gi)) · (Gj −min(Fj , Gj))

min(Fj , Gj) · (N −
∑K

k=1 min(Fk, Gk)) +
∑K

k=1(Fk −min(Fk, Gk)) · (Gj −min(Fj , Gj))
=

−
K∑

i=1

min(Fi, Gi)

N
· log

min(Fi, Gi)

Gi
−

K∑

i=1

∑

j 6=i

(Fi −min(Fi, Gi)) · (Gj −min(Fj , Gj))

N · (N −∑K
k=1 min(Fk, Gk))

· log
(Fi −min(Fi, Gi)) · (Gj −min(Fj , Gj))

Gj · (N −
∑K

k=1 min(Fk, Gk))
=

−
K∑

i=1

min(Fi, Gi)

N
· log

min(Fi, Gi)

Gi
−

K∑

i=1

K∑

j=1

(Fi −min(Fi, Gi)) · (Gj −min(Fj , Gj))

N · (N −∑K
k=1 min(Fk, Gk))

· log
(Fi −min(Fi, Gi)) · (Gj −min(Fj , Gj))

Gj · (N −
∑K

k=1 min(Fk, Gk))
=
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−
K∑

i=1

min(Fi, Gi)

N
· log

min(Fi, Gi)

Gi
−

K∑

j=1

Gj −min(Fj , Gj)

N −∑K
k=1 min(Fk, Gk)

·
K∑

i=1

Fi −min(Fi, Gi)

N
· log

Fi −min(Fi, Gi)

N −∑K
k=1 min(Fk, Gk)

−

K∑

i=1

Fi −min(Fi, Gi)

N −∑K
k=1 min(Fk, Gk)

·
K∑

j=1

Gj −min(Fj , Gj)

N
· log

Gj −min(Fj , Gj)

Gj

This completes the proof of the formula.

A.5 Proof of (3.6.5)

Proof of (3.6.5).

H(X|Y ) = −
K∑

i=1

min(M · Fi, N ·Gi)

N ·M · log
min(M · Fi, N ·Gi)

N ·Gi

−

K∑

i=1

K∑

j=1

(M · Fi −min(M · Fi, N ·Gi)) · (N ·Gj −min(M · Fj, N ·Gj))

N ·M · (N ·M −∑K
k=1 min(M · Fk, N ·Gk))

·

log
(M · Fi −min(M · Fi, N ·Gi)) · (N ·Gj −min(M · Fj, N ·Gj))

N ·Gj · (N ·M −
∑K

k=1 min(M · Fk, N ·Gk))
=

−
K∑

i=1

min(M · Fi, N ·Gi)

N ·M · log
min(M · Fi, N ·Gi)

N ·Gi

−

K∑

j=1

N ·Gj −min(M · Fj, N ·Gj)

N ·M −∑K
k=1 min(M · Fk, N ·Gk)

·

K∑

i=1

M · Fi −min(M · Fi, N ·Gi)

N ·M · log
M · Fi −min(M · Fi, N ·Gi)

N ·M −∑K
k=1 min(M · Fk, N ·Gk)

−

K∑

i=1

M · Fi −min(M · Fi, N ·Gi)

N ·M −∑K
k=1 min(M · Fk, N ·Gk)

·

K∑

j=1

N ·Gj −min(M · Fj, N ·Gj)

N ·M · log
N ·Gj −min(M · Fj, N ·Gj)

N ·Gj

This completes the proof of the formula.
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A.6 Proof of (6.3.6)

Proof of (6.3.6).

∣∣∣∣∣

(
1− H(X)

logK

)
·
(

1− H(X|Y )

H(X)

)
−
(

1− Ĥ(X)

logK

)
·
(

1− Ĥ(X|Y )

Ĥ(X)

)∣∣∣∣∣ =

∣∣∣∣∣

(
Ĥ(X)

logK
− H(X)

logK

)
+

(
Ĥ(X|Y )

Ĥ(X)
− H(X|Y )

H(X)

)
+

(
H(X|Y )

logK
− Ĥ(X|Y )

logK

)∣∣∣∣∣ ≤

|H(X)− Ĥ(X)|
logK

+

∣∣∣∣∣
H(X|Y )

H(X)
− Ĥ(X|Y )

Ĥ(X)

∣∣∣∣∣+
|H(X|Y )− Ĥ(X|Y )|

logK
.

Denote ε1 = |H(X) − Ĥ(X)| and ε2 = |H(X|Y ) − Ĥ(X|Y )|. We can

assume that Ĥ(X) ≥ Ĥ(X|Y ) ≥ 0.

∣∣∣∣∣
H(X|Y )

H(X)
− Ĥ(X|Y )

Ĥ(X)

∣∣∣∣∣ =

∣∣∣∣∣
H(X|Y ) · Ĥ(X)−H(X) · Ĥ(X|Y )

H(X) · Ĥ(X)

∣∣∣∣∣ =

∣∣∣∣∣
H(X|Y ) · Ĥ(X)−H(X) · Ĥ(X) +H(X) · Ĥ(X)−H(X) · Ĥ(X|Y )

H(X) · Ĥ(X)

∣∣∣∣∣ =

∣∣∣∣∣∣

Ĥ(X) · (H(X|Y )−H(X)) +H(X) ·
(
Ĥ(X)− Ĥ(X|Y )

)

H(X) · Ĥ(X)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

H(X) ·
(
Ĥ(X)− Ĥ(X|Y )

)
− Ĥ(X) · (H(X)−H(X|Y ))

H(X) · Ĥ(X)

∣∣∣∣∣∣

From the definitions of ε1 and ε2 we get Ĥ(X) ≤ H(X) + ε1 and

−Ĥ(X|Y ) ≤ ε2 − H(X|Y ). Therefore Ĥ(X) − Ĥ(X|Y ) ≤ ε1 + ε2 +
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H(X)−H(X|Y ) and

∣∣∣∣∣∣

H(X) ·
(
Ĥ(X)− Ĥ(X|Y )

)
− Ĥ(X) · (H(X)−H(X|Y ))

H(X) · Ĥ(X)

∣∣∣∣∣∣
≤

∣∣∣∣∣
H(X) · (ε1 + ε2 +H(X)−H(X|Y ))− Ĥ(X) · (H(X)−H(X|Y ))

H(X) · Ĥ(X)

∣∣∣∣∣ =

∣∣∣∣∣
H(X) · (ε1 + ε2) + (H(X)− Ĥ(X)) · (H(X)−H(X|Y ))

H(X) · Ĥ(X)

∣∣∣∣∣ ≤

ε1 + ε2

Ĥ(X)
+

∣∣∣∣∣
ε1 · (H(X)−H(X|Y ))

H(X) · Ĥ(X)

∣∣∣∣∣ (A.6.1)
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Fischetti, M. and Salazar-González, J. J. (2000). Models and

Algorithms for Optimizing Cell Suppression in Tabular Data with

Linear Constraints. Journal of the American Statistical Association,

95(451):916–928.
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