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Abstract

Position Tracking during Human Motions using an Integrated
Wearable Sensing System
The University of Manchester

Giulio Zizzo
Master of Philosophy

July 28, 2016

Fixed motion tracking systems can offer highly accurate data but several
drawbacks are present, including a high upfront cost and require the user to
stay within a very limited area. Of keen interest are shoe mounted systems
which aim to offer a similar suite of information but are unconstrained in their
operating environment. The potential of knowing the user’s foot placement
and orientation is an extremely valuable set of information. This data can be
used in a wide range of applications such as healthcare monitoring, emergency
responder localisation, and lower limb prosthetic stability and control.

This thesis investigates the potential of using low cost (∼£30) inertial mea-
surement units (IMUs) to track a user’s motion and position. When using an
IMU, general purpose strap-down navigation is shown to give inadequate re-
sults after only seconds of use. Thus, to provide corrections, an Extended
Kalman filter (EKF) is used to provide zero velocity and heuristic drift reduc-
tion updates. This system is shown to have typical loop closure errors of ≤1%
with maximum errors of 4-5%.

In parallel with the IMU an ultrasound (US) trilateration system calculates
the displacement of each step and the results of the IMU and US systems are
combined. This addition gave slight improvements in the results, typically
reducing the cumulative error over a walk by 15%.

Lastly, a particle filter can impose movement constraints on the predicted
motion by including environmental information. In combination with the pre-
vious two sensing systems the addition of a particle filter gave consistent errors
of ≤1%.
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Chapter 1

Introduction

The integration of computers into society affects our daily lives on almost

every level. Seamlessly blending into the background, computers aid us in a

multitude of tasks. This is part of the paradigm of ubiquitous computing, in

which technology is present all around us in every object and location. Already,

the widespread diffusion of smart phones can be seen as a manifestation of this

trend. It is set to carry on expanding, completely changing jobs, industries

and daily life [1].

With computers diminishing in size and cost, one form of ubiquitous com-

puting is wearable technology. With products such as the Google Glass, Apple

SmartWatch, and VR headsets wearable technology is becoming a rapidly

emerging market.

1.1 Background

An area of wearable technology which is receiving increasing attention is pedes-

trian tracking. Shoe mounted tracking systems have undergone significant

advancements in recent years benefiting from increasingly accurate, compact,

and low cost sensors such as accelerometers, gyroscopes, magnetometers, and

ultrasound. Coupled with this are more powerful microprocessors that can

perform the required data analysis on the fly to provide real time gait informa-

tion. Unlike fixed motion labs, a shoe mounted system is unconstrained in its
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operating environment and offers a wide range of applications from gait mon-

itoring in healthcare, prosthetic limb stability, augmented reality and, most

predominately, pedestrian tracking.

Effective pedestrian navigation can be employed in a variety of situations

from museum tours [2] to emergency responder navigation [3]. It has been

undertaken using beacons such as radio frequency identification, wideband

ultrasound [4] and Wi-Fi signal strength [5]. However, what these systems of-

fer in accuracy and reliability is offset by their cost and extensive pre-installed

infrastructure. This is a major obstacle preventing their more widespread use.

On the other end of the spectrum are foot mounted inertial measurement units

(IMUs) consisting of a 3-axis accelerometer and 3-axis gyroscope. They offer

total freedom of movement and work without reliance on external infrastruc-

ture. This has attracted significant attention in terms of tracking pedestrian

motion in any potential environment.

IMUs can track the changes in orientation of an object and hence, project

the accelerations measured by the accelerometers into a global navigation

frame enabling the object’s position to be obtained. IMUs have, in theory,

the ability to track the position of an object with almost no limitations. In

reality however, unbound error growth occurs in the estimated position aris-

ing from inaccuracies in the measured acceleration and angular velocity. Such

errors are referred to as drift. Despite these issues IMUs are widely used as

tracking sensors, either with periodic corrections of the position via an external

source, such as global navigation satellite systems (GNSSs), or by having such

large and accurate IMUs, such as those found on submarines, that positional

accuracy can be maintained over prolonged use.

It is only with the development of micro-electrical-mechanical systems

(MEMS) that IMUs have become small enough to be used as wearable sensors.

Although their accuracy continues to improve, they do not yet have the levels

of accuracy possessed by the large mechanical sensors used in submarines or

aircraft. Despite this, their durability due to the lack of moving parts, coupled

with their small size, makes them a staple of many motion tracking systems.

Although being significantly cheaper than pre-intalled motion tracking sen-

sors, a barrier to IMU tracking in everyday use is the cost associated with a
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sensor of a high enough quality. Commonly used IMUs for motion tracking,

such as Xsens sensors, have a price of over £1000 [6]. On the other hand, low

cost IMUs that are found in mobile phones cost several orders of magnitude

less, but suffer from large amounts of error accumulation.

Therefore, a sensor fusion approach is considered. If by using several dif-

ferent types of low cost sensors, such as ultrasound, position sensitive devices,

and IMUs then the drawbacks of each individual method can be mitigated by

the efficiency of another sensor, and so effective pedestrian motion tracking

can be performed.

The objective of this thesis is to develop a shoe mounted system that

can measure the user’s walking characteristics and by extension track a user’s

movement indoors. From this we can define the following aims to address in

this thesis.

1.2 Aims

1. Devise a shoe mounted system that can track a user’s walking using

primarily IMUs, supplemented with additional data from other sensors

such as ultrasound, position sensing, and magnetometers. The walking

will be at a user selected speed and examined on flat indoor terrain.

2. Should map information be available then this information will be com-

bined with the sensor data to improve tracking accuracy.

3. The system should be built with the aim of trying to achieve similar

performance the results obtained in the in literature using Xsens IMUs

but at a drastically reduced cost.

To reach the aims above the following objectives are considered:

1.3 Objectives

1. IMU Performance: The IMU will be used in a standalone fashion to

track the user’s footsteps. Via an Extended Kalman filter (EKF) the
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user’s step length, width and heading are computed. Its performance

for tracking in a global co-ordinate frame is then examined against a

fixed motion capture system. When a fixed motion tracking system is

unavailable the wearable system will be analysed by having the user

perform a closed walk, i.e. the walk ends when the user has returned to

their starting point. Any misclosure errors given by the wearable system

can be used to analyse its accuracy.

2. Ultrasound Sensor Fusion: To improve on the data gathered with

the IMU, ultrasound sensors are mounted on the foot which measure

the step length and width. This is done by using multiple receivers

which enable a trilateration algorithm to be applied to find the step

parameters. By combining this with the IMU system more accurate

information is synthesised. Similarly, the effect of the ultrasound sensors

will be evaluated against the results from a Vicon motion capture system

and in terms of loop misclosure.

3. Imposing Map Constraints: Lastly, the effect of having a known

map of the environment is considered. The map can be used to impose

movement constraints, and as such, correct for the predicted motion. For

example, should the system predict the user has stepped though a wall

then that motion can be taken as an error and a better estimate of the

position calculated. This will be done by implementing a particle filter to

represent the user’s position, and by modelling the building constraints

via a 2D polygon.

1.4 Research Questions

When developing the system the following research questions were considered.

1. What performance can be achieved by using low cost IMUs?

Numerous motion tracking systems have been developed that use high

cost MEMS, such as the Xsens IMU. The monetary cost of these sensors
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can be prohibitive for widespread use and so the potential of cheaper

IMUs is considered.

2. Can multiple low cost sensors compensate for each others’ weak-

nesses and match the performance of similar systems using state

of the art MEMS? If by using multiple different sensors the overall

cost of the system could be dramatically reduced and hence, widen the

use of motion tracking in everyday situations enormously.

3. To what extent is prior map knowledge required to provide

accurate tracking? The more accurate and detailed a map of the

environment is the more constraints can be imposed upon the user’s

motion, and therefore the larger the error reduction in the user’s position.

However, having an extremely detailed map is often impractical and so

a balance between accuracy and prior knowledge must be found.

1.5 Thesis Overview

The remainder of this thesis is organised as follows

Chapter 2: Details on existing and related work on pedestrian tracking are

examined. The mathematical techniques used in foot tracking are discussed,

which leads onto the technologies and algorithms used.

Chapter 3: Tracking using an IMU is explored. The IMU sensor is exam-

ined in particular with regards to its error characteristics. An EKF is applied

to correct for errors caused by the IMU’s noisy data. Results obtained using

an IMU in conjunction with an EKF are presented.

Chapter 4: The system discussed in Chapter 3 is developed further to

include a series of ultrasound sensors mounted onto the shoes. The ultrasound

sensors give the user’s step length and width and thus can be combined with

the IMU data to give a more accurate result.

Chapter 5: Prior knowledge of the environment is utilised to provide

movement constraints. A particle filter takes in data from the IMU/ultrasound

hybrid system and combines it with known environmental constraints to track

the user within a known map.
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Chapter 6: We revisit the aims stated at the beginning of the thesis and

evaluate our results against them. The main contributions of this thesis are

summarised and additional routes for further development are proposed.
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Chapter 2

Literature Review

A wide body of literature encompasses motion tracking. The measurement of

real time foot placement and stride data is used for both researching human

walking as well as pedestrian tracking and localisation.

There are two broad approaches to motion tracking. The “gold standard”

approach is to use a motion laboratory to conduct a full analysis of the motion

of body segments. Motion laboratories typically use highly accurate computer

based force and optical tracking sensors. This provides high quality data of-

fering complete gait analysis. The drawbacks however are significant, as aside

from the costs of acquiring and maintaining the equipment, the small capture

volume limits the distance travelled and is an inherent handicap.

In contrast wearable lightweight sensors, predominately IMUs, can be used

to perform motion tracking in a wide range of unrestricted environments. They

can provide information on multiple parameters involved in human walking and

have numerous applications. However, a price must be paid for this freedom

and IMUs are prone to high levels of uncertainty.

It is on this second category of IMU tracking systems which we will focus

on. Due to the noisy measurements obtained from wearable sensors, research

is currently focused on developing algorithms and techniques to minimise the

errors that occur.
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2.1 A Probabilistic Approach

When dealing with motion tracking and navigation, uncertainty dominates.

What is required is a way to deal with the errors arising from imperfect mea-

surements. We naturally turn to probability theory to represent, and deal

with, noisy measurements. To begin with, we examine Bayesian filters which

form the basis for more sophisticated treatment.

2.1.1 Bayesian Filters

When conducting motion tracking a wide range of methods are available. In-

ertial sensors, ultrasound, and infra-red are all examples of sensors which can

be used to give relevant information. The reason why so many technologies

operating on completely different physical principles have been developed is

simple: not one of them is a silver bullet which satisfies all the needs of a

ubiquitous motion tracking sensor [7].

With each individual sensor possessing an inherent flaw, Bayesian filters

provide a framework in which to combine measurements to provide a more

accurate result. Bayesian filters maintain a probability distribution, which

means that at each stage we have an estimate for a particular parameter, but

also the uncertainty associated with it. As measurements from sensors are

received, Bayesian filters take into account this new measurement along with

its uncertainty, to update our belief of the parameter.

What is of widespread use in pedestrian tracking is not so much the ability

of Bayesian filters to combine different sensor readings, but to be able to apply

constraints to the system. For example, should a user know the maximum

value of a parameter, such as speed, height, or acceleration, such a constraint

can be applied via pseudo-measurements. Pseudo-measurements are virtual

measurements which can enforce such prior knowledge of a system.

A Bayesian filter provides this framework for updating the state of a sys-

tem based on noisy measurements by representing the state at step k as a

probability distribution, Bel(xk), conditioned on all previous measurements

z1:k,
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Bel(xk) = p(xk|z1, ..., zk). (2.1)

This is referred to as a posterior distribution and, as can be expected, with

an increasing amount of sensor measurements the complexity of calculating

the posterior grows exponentially [8]. To be able to calculate the posterior we

thus assume that the system’s state at step k depends only on the state of the

system at k − 1. This is known as a Markov assumption.

From this, it follows that the Bel(xk) is obtained from the previous distri-

bution Bel(xk−1). The Bayes filter algorithm computes Bel(xk) in two separate

steps, a prediction and measurement update stage. Firstly the prediction step,

Bel−(xk) =

∫
p(xk|xk−1)Bel(xk−1)dxk−1 (2.2)

computes the prior distribution Bel−(xk). This prior distribution is then

updated with new measurements to give the posterior distribution,

Bel(xk) = η p(zk|xk)Bel−(xk) (2.3)

where η is a normalisation factor. In other words, to compute the pos-

terior the Bayes filter multiplies the belief Bel−(xk) by the probability that

measurement zk occurs [9].

We can see that Baysian filters provide a framework for recursively esti-

mating the state of a system based on new information. Of key importance

is that it does not specify how the belief Bel(xk) is represented. Due to this,

how Bel(xk) is chosen leads to different assumptions, computational costs and

accuracy.

Kalman Filters

Kalman filters are some of the most widely used implementation of Bayesian

filters. It is part of a wider family of Gaussian filters which make the assump-

tion that the prior belief, Bel(xk), follows a Gaussian distribution. From this

Bel(xk) can be represented by the mean and covariance, known as moments

of parametrisation.
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R.E Kalman published his ground breaking work in 1960 [10]. The Kalman

filter is a recursive algorithm to estimate the state of a system and has very

powerful features, offering estimation of past, current and future states even

when noise is present.

The Kalman filter predicts the state of a system, xk, which evolves accord-

ing to the linear equation:

xk = Axk−1 +Buk + wk. (2.4)

In equation 2.4, A is the transition matrix and describes how the system at

step k− 1 relates to k in the absence of input or process noise. The matrix B

states how the control input, uk, influences the future state. Lastly, wk is the

process noise of the system [11]. It should be noted that equation 2.4 represents

the general form of a system’s time evolution. In the specific implementation

of the Kalman filter used later in this work, both the matrix, B, and control

input, uk, are removed as we are not introducing a control action in our system.

When a measurement, zk, is made it is related to the state of the system

through the matrix H via:

zk = Hxk + vk (2.5)

where vk is the measurement noise. In essence, the matrix H determines

which states of the system have been measured by zk.

It is then possible to obtain two sets of equations: prediction and correction

equations. Prediction equations forecast the future state and error covariance

to calculate a priori predictions for the future step. Correction equations then

use new measurement data to acquire a more accurate posteriori estimate.

This cycle is shown in Figure 2.1

The most costly operations when running the Kalman filter are the matrix

multiplications required. These can be implemented in O(N2) time where N

is the number of states in the system [12]. This can become computationally

expensive in certain scenarios. For example, in robotic localisation if the robot

has to track the location of several hundred landmarks, all in real time, then the

computational delay can be detrimental. In the case of tracking human motion,
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Figure 2.1: Figure illustrating the Kalman filter equations. The prediction
step advances the state and the associated error covariance matrix Pk. The
update step takes new information into account and computes a more accurate
state estimate. The matrices Q and R represent the process and measurement
noise of the system.

the Kalman filters used have relatively few states and so the computation can

be done extremely quickly.

One of the main limitations of the Kalman filter is the numerous assump-

tions made about the system noise. For the Kalman filter to function the

noises must be independent, white, Gaussian, and with zero-mean. Obviously

these assumptions do not always hold true.

Additionally, the Kalman filter only works on linear systems. In practice

we are often dealing with non-linear systems which have the effect of not

preserving the Gaussian nature of our variables. To deal with this problem of

non-linearity the Extended Kalman filter (EKF) is used. It performs a local

linearisation of the system around the current best estimate of the state [9].

To demonstrate these features consider Figure 2.2. We can see how a local

linearisation of the function preserves the Gaussian distribution.
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Figure 2.2: (a) shows that by passing our Gaussian variable through a linear
function the output remains a Gaussian. (b) illustrates how the passing a
Gaussian through a non-linear function will result in a non Gaussian output.
(c) demonstrates that by performing a local linearisation we can preserve the
Gaussian distribution. (d) shows that the tighter the Gaussian is the more
accurate the linearisation will be [9]. Real systems are rarely linear and so this
issue of non-linear systems is present in many applications including our own.
The relevant equations for IMU based tracking have several non-linear terms,
and therefore an EKF is required.

For moderately non-linear systems where the Gaussians are relatively com-

pact the EKF provides an effective approximation. It is the EKF algorithm

with its additional flexibility that has been successfully implemented in a wide

variety of works concerning shoe mounted gait analysis and pedestrian dead

reckoning systems [13],[14],[15],[16].
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2.1.2 Kalman Filters in Pedestrian Dead Reckoning

Pedestrian dead reckoning (PDR) refers to tracking the relative movement

of a pedestrian. A novel approach of using Kalman filters to perform PDR

was conducted by Foxlin [17] who developed a shoe mounted system named

NavShoe. Its aim was to track the location of a person in GPS denied environ-

ments and, when GPS was available, combine the odometry readings from the

NavShoe with the GPS. An innovative advance was performed by incorporating

zero-velocity updates (ZUPTs) into the algorithms to reduce the accumulated

errors.

The principle behind ZUPTs is that a person has a stationary stance phase

and a moving stride phase while walking. By making the approximation that

the foot’s velocity is zero during the stance phase, then any measured velocity

must be due to errors arising from the IMU. Therefore any measured velocity

can be incorporated as a pseudo-measurement into a EKF to provide error

corrections.

Exploiting the cyclical nature of gait allows ZUPTs to be periodically sup-

plied, which enables the EKF to provide corrections at every step. Whereas

traditional approaches involving integration of the acceleration and angular ve-

locities yield a error growth proportional to t3, incorporating ZUPTs reduces

the error growth, from being cubic in time, to one that is related to the number

of steps taken.

This has advantages over simply setting the velocity to zero in every stance

phase. Primarily ZUPTs allows the EKF to estimate the accumulated errors

in several system parameters. These errors, once determined can be suitably

corrected. The EKF can be used to correct the drift in position as well as

errors in the velocity, gyroscope and acceleration biases, and orientation.

Despite their predominance some authors have questioned the validity of

ZUPTs, in particular [18] points to the modelling errors introduced when using

ZUPTs. Firstly, there is the question of the foot not being completely still and

having speeds in the order of a few mm/s in the stance phase. From this the

step length is underestimated as parts of the gait cycle are declared stationary

and the related motion is ignored. [18] makes the point that the modelling
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errors introduced will mean that inertial navigation systems utilizing ZUPTS

have an inherent limitation due to the assumptions made about the foot’s

velocity. Therefore, the accuracy of ZUPT aided tracking systems will not be

improved beyond a certain point by relying on ZUPTs.

Indeed, the fact that the foot is not truly stationary in the stance phase has

been examined in other works. [19] shows that none of the tested points on the

foot and shank had zero velocity at any time during the stance. It was seen that

for the foot the average minimum velocity was under 0.011 ms−1. Additionally,

stride length underestimation was seen of up to 0.7 % when using foot mounted

IMU navigation system.

However, the advantages that ZUPTs offer outweigh the modelling errors

introduced and so this method has been widely used in multiple research groups

[13],[14],[20],[21],[22],[23].

Early work is being conducted to apply alternative filter formulations to

navigation and tracking systems. The potential use of a Cubature Kalman

filter to directly filter the position, velocity and attitude, as opposed to their

errors, was investigated in [24]. However, the lack of vigorous experimental

validation means the effectiveness of the Cubature Kalman filter is yet to be

properly determined.

Although the principle of ZUPTs has been used in an extremely wide range

of works, several stand out for introducing new methodologies or approaching

pedestrian navigation in an innovative way.

[13] presented a system which integrated several techniques into one pedes-

trian dead reckoning system. Aside from using ZUPTs, they incorporated zero

angular rate updates (ZARUs). ZARUs are the angular equivalent to ZUPTs.

When the foot is on the floor the measured angular velocity should be zero.

Hence, any measured angular velocity can be taken as an error and fed into a

EKF to provide corrections. ZARUs have been criticised by [25]. The authors

pointed out that the foot can rotate while being on the floor and the effective-

ness of ZARU rests on that assumption: if the user does not rotate their foot

it can provide a strong error reduction technique analogous to ZUPT. How-

ever, should that assumption not hold true then applying ZARU will introduce

significant modelling errors.
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In addition to ZARUs [13] used heuristic drift reduction (HDR), discussed

in more detail in 2.2.1, in combination with a magnetometer to reduce the drift

in yaw. The culmination of all these techniques was a system that was able to

track the movement of the user with errors of 0.3-1.5% of the total distance

travelled.

In [26] the authors examined how by using two IMUs on each foot could

yield more accurate results. The principle the authors were exploiting is simple

to conceptualise: at all times the IMUs cannot be separated by more than a

maximum distance. The authors formulated a ZUPT aided Kalman filter,

which by incorporating a maximum bound on the foot to foot separation, gave

improved results.

This work was continued in [27], where a commercially implementable mo-

tion tracking system, named OpenShoe, was presented. The modules and code

are fully open source and can be found at: http://www.openshoe.org/. The

OpenShoe system functioned to a very high level of accuracy, accumulating

errors of 0.5% of the total distance travelled. The authors did not make use

of heuristics or magnetometers, hence with additional sources of information

it is feasible to reduce the error further.

2.1.3 Stance Detection

To be able to apply the EKF corrections a system must be able to determine if

the foot is in a stance phase. Foxlin’s approach was to measure the gyroscope

and accelerometer signals, and should they exceed particular thresholds then

the foot is declared to be in motion [17].

A similar methodology was taken by [25]. To determine when a stance

phase occurs the angular velocity readings from a shoe mounted IMU were

examined. In ideal conditions the angular velocity in a stance phase would be

0 rad/sec. In practice a threshold value was set to account for instrumentation

errors of up to 1 rad/sec. The signal was filtered to remove small fluctuations

in the angular velocity when it momentarily dropped below 1 rad/sec. Once

the stance and stride phases are identified error correction methods can be

applied.
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Figure 2.3: Angular velocity with a threshold of 1 rad/sec in combination with
a filter being used to determine stance phases [25].

An extremely robust algorithm was implemented by [13] in which 3 separate

conditions drawing on the acceleration, the acceleration variance and gyroscope

data are considered before declaring that the foot is stationary. Firstly, the

magnitude of the acceleration must fall between 9 m/s2 and 11 m/s2 for the

first condition signalling a stationary foot to be fulfilled. Secondly, the local

acceleration variance, which highlights foot activity, must be below 3 m/s2.

Lastly, the magnitude of the gyroscope readings must be below a threshold of

50 deg/sec. Once all three conditions are satisfied a stance phase is declared

as is shown in Figure 2.4. This method has also been used in [14] for applying

ZUPT.

An alternative method is to use force sensors to detect when the foot is

on the ground. [28] examined the angular velocities of the shank and thigh.

By using four force sensitive resistors (FSR) placed underneath the foot the

authors declared that the foot was on the ground once the measured force

exceeded certain thresholds. The authors used this information to reset the

inclination angle of the shank and thigh to 0◦ in the mid-stance phase as at

that point the shank and thigh segments are in their vertical positions.

Similarly [29] used two force sensors placed at the bottom of each foot to

detect heel-strike and toe-off stances. [29] highlights the importance of the

placement of the force sensors on the sole. They found a positive correlation

between cadence and positional error. In other words, a higher stepping rate

led to a larger displacement error. This was due to the force sensors being
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Figure 2.4: Stance detection using three separate conditions. Cond1 represents
acceleration magnitude, a, lying between 9m/s2 < a < 11m/s2. Cond2 is
when the acceleration variance is below 3 m/s2. Cond3 is when the magnitude
of the gyroscope is below 50◦s−1. These all represent logical conditions which
when true have a value of 1. The Stance phase corresponds to when the foot
is stationary on the floor. The Still phase is for a non-walking stationary foot.
It is detected when multiple stance samples occur back to back in a two second
or larger window [13].

installed on the toe, hence the system did not detect heel strike until the toe

had hit the ground. This is exacerbated at higher cadence.

Likewise in [30] FSRs were used to determine heel-strike and toe-off in

human gait using a shoe mounted system. Interestingly, [30] found that the

calibration for the FSR was highly non-linear which could lead to erroneous

force measurements without accurate calibration. Additionally, uncertainties

may arise due to the fact that after prolonged use the adhesive layer in FSR

breaks down contributing to an increased non-linearity. This will introduce

additional errors in detecting the heel strike and toe off stances.

In particular, a very thorough detection system was mathematically for-

malised by [31], in contrast to the ad-hoc nature of previous studies. This

stance detection problem was expressed mathematically as a binary hypothe-

sis:
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H0 : IMU is moving

H1 : IMU is stationary
(2.6)

and the detector’s performance is characterised by the false alarm proba-

bility, PFA = P (H1|H0) and the detection probability PD = P (H1|H1). The

authors aimed to maximise PD.

To achieve this the authors developed models for both the sensor and sig-

nals in order to develop a detection framework based on maximum likelihood

estimation. The new detector used both gyroscope and accelerometer signals

and is referred to as the SHOE detection scheme. To declare the foot as be-

ing stationary it combines both accelerometer and gyroscope data, and via a

threshold determines if the IMU is stationary.

Three different types of detector were derived in the context of maximum

likelihood estimation and use either the acceleration variance, the acceleration

magnitude or the angular rate energy and, along with the SHOE detector,

were analysed against each other.

Comparing the results of the detection schemes against the data from force

sensitive resistors mounted on the shoe, the authors saw that the SHOE and

angular rate energy detectors performed similarly with the acceleration vari-

ance and acceleration magnitude detectors giving worse results. The authors

pointed out that this would imply that the gyroscope signals have more reliable

information for accurately determining a user’s stance phase.

2.2 Heading

One of the most challenging parameters to accurately determine is the head-

ing, or yaw, of a user. ZUPTs, although offering very powerful error reduction

techniques, still lead to a drift in the yaw angle. There have been two ap-

proaches to limiting the drift in yaw, using magnetometers and a technique

named heuristic drift reduction.
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2.2.1 Heuristic Drift Reduction

Heuristic drift reduction (HDR) was originally proposed by [21]. It uses the

principle that many environments which humans walk in, such as corridors

and paths, are straight. The HDR algorithm seeks to determine if a person

is walking in a straight line and, if so, apply a correction to the heading. It

was implemented in [21] by creating a closed loop control system. Via the

use of a binary I-controller the yaw drift is tracked and corrected for. This

correction is performed at the end of every step. With the incorporation of a

low pass filter the HDR algorithm is efficient at removing swaying- i.e. motion

that is intended to be straight but due to the nature of walking contains

fluctuations. However curving, or the motion along an extended arc, causes

the most problems to the algorithm. This is because a continuous turn in a

large radius will interpreted as a drift and therefore be mistakenly corrected.

Figure 2.5: Example results as shown in [21]. As we can see the HDR algorithm
reduces the drift in yaw.

An alternative implementation was undertaken by [13]. They calculated the

orientation change between successive steps and if it was below a particular

value then the EKF was fed with a value to correct the heading error.

Additionally, HDR has been performed differently by [14]. In that work a

sliding window comprising of λ samples was used to compare the heading at

time k to k − λ. If this difference in heading is less than a given threshold
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then it is detected as an error and fed into the EKF. The advantage of using a

sliding window approach is that HDR can be performed at every time interval

and not solely at the stance phase.

2.2.2 Magnetometers

Magnetometers can be used to obtain a heading with respect to the magnetic

north. Outdoors they are very useful as they can provide accurate, drift free

headings. Indoors the situation is somewhat different. Large magnetic distor-

tions are present indoors which can significantly skew any obtained heading.

With regards specifically to pedestrian motion tracking the majority of the lit-

erature suggests that they are not suitable for indoor use, with only very few

works, such as [13], having reported an improvement using a magnetometer

indoors.

Attempts to compensate for varying magnetic disturbances are being con-

ducted. [32] used an adaptive EKF to determine orientation by combining

IMU and magnetometer data. The authors implemented a checking technique

to the accelerometer and gyroscope reading before including them in the EKF.

If the accelerometer was detected as being in motion then the measurement

covariance was set to ∞ and hence the filter relied on the magnetometer for

performing the state vector update. Likewise, magnetically perturbed envi-

ronments the magnetometer readings become very unreliable, so should the

sensor data deviate significantly from the earth’s local magnetic field then

the measurement covariance is set to ∞. However, that research was done

in the context of determining the orientations of human body segments, and

thus was only experimentally validated in a cubic volume measuring 60 cm in

height, width and length. Nonetheless, the authors did find that the maximum

errors were under 10◦ in either the roll, pitch or yaw axes.

By contrast, magnetometers for indoor navigation purposes was examined

in [33] and [34]. To gain accurate results the authors attempted to model the

effects of soft and hard iron disturbances. The soft iron effects are modelled

via the matrix A,
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Asi =

a11 a12 a13

a12 a22 a23

a13 a32 a33

 . (2.7)

The hard iron effects, equivalent to sensor bias, are represented by bhi,

bhi =
[
bhix bhit bhiz

]T
. (2.8)

The full error model relating the error free magnetic field ĥ to the measured

readings, h, follows

ĥ = Ah− b+ n (2.9)

where n is Gaussian wideband noise. The matrix A incorporates scale

factors, misalignments and soft iron disturbances while b is the combined bias.

By collecting magnetic field data in several orientations an ellipsoid can

be fitted to the data. From the fitted elliptical equation we can extract the

parameters A and b of equation 2.9. The authors of [33] and [34] individually

calibrated 12 magnetometers and arranged them as shown in Figure 2.6

Figure 2.6: Arrangement of magnetometers as used in [33] and [34]. After the
magnetometers are calibrated their results are combined via an adaptive least
squares method to yield accurate heading information.

By combining the results of the 12 magnetometers the heading was kept

stable with a deflection of 4◦ when an artificial magnetic disturbance was
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created as is shown in Figure 2.7.

Time (s)

H
ea

di
ng

 (
o )

Figure 2.7: Results presented in [33] in which the magnetometer array is passed
over an artificial magnetic disturbance. We can see that when functioning
together the magnetometers are able to keep an unperturbed heading.

2.3 Height Detection

Although not a focus of intensive investigation, researchers have examined

various techniques that determine the vertical distance traversed by a user.

IMUs as well as barometer sensors have often been used for this purpose.

One such system which used barometer and IMU data was [25]. The au-

thors performed a test to examine how their shoe mounted system works in a

3D trajectory by climbing up stairs. The total height measured by the barom-

eter information was compared to that given by the IMU. The results given

by the IMU are much smoother however, as is always the case with IMU data,

it has attached to it an accumulated error. The barometer readings have the

advantage of not being subjected to drift, but have a slower response time and

are much rougher. This can be seen in Figure 2.8.

A particularly unique approach used was discussed in [30] which made use

of a capacitive sensor which detected the height of the foot above the floor via
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Figure 2.8: Comparison of data gathered while a user climbed a flight of stairs.
As we can see the IMU readings (Right) are smoother and distinguish the steps
more clearly. However, they are subject to accumulated drift and over several
flights of stairs the positional accuracy will gradually deteriorate. On the other
hand, the barometer data (Left) is less clear but more reliable over prolonged
periods as it does not suffer from accumulated error growth [25].

capacitance loading from the ground. Furthermore, ultrasound sensors were

incorporated to measure the range and angle between each foot. Preliminary

results collected by the authors in [35] showed potential. However, the system

was deemed insufficiently mature to use during validation.

2.4 Particle Filters

A further widely used implementation of the Baysian filter is a family of filters

called non-parametric filters. Recall that in the case of a Kalman filter we

assumed that the posterior had a Gaussian form, however there can be many

cases in which a variable is not Gaussianly distributed.

One approach to account for non-Gaussian distributions is to use the parti-

cle filter. The key idea is to represent the posterior by a set of random samples

drawn from this distribution. This representation is approximate and becomes

increasingly accurate the more samples, or particles, we generate. The main

advantage of a particle filter is that it can represent any type of distribution

and can model highly non-linear functions without a loss of accuracy.

The set of particles, χ, can be expressed as
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χ = x1t , x
2
t , ..., x

N
t (2.10)

where each particle, xnt , represents a hypothesis of the state of the system.

For example, if dealing with an object’s position each particle represents a

potential location of the object.

The principle is that the probability that a particle is included in the set χ

is proportional to the posterior. Therefore, the higher the density of particles

in a subregion then the more likely that the true state falls within this region.

Figure 2.9: (a) Demonstrates how a non-gaussian distribution can be mod-
elled by a series of samples. (b) Shows a Gaussian distribution represented in
particle form [9].

Like all other Bayesian filter algorithms, a particle filter recursively es-

timates the state of a system. It does so in three stages. Firstly, all of the

particles are propagated forward according to the system’s propagation model.

The propagation model defines how the particles behave between successive

time steps. In the context of pedestrian tracking the propagation model will

receive information from underlying sensors about the size and direction of

the step and move the particles by the appropriate distance. Then, for every

particle a weighting is calculated and assigned to it. Returning to our ex-

ample of each particle representing a position, then each particle is weighted

representing how likely that a particular sample is the true location of the

object.

Lastly, the particles are re-sampled which is when a set of new samples

are generated from the weighted particles. Each particle’s weight corresponds

to the probability of it being re-sampled. This results in samples with a low
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probability being discarded and samples which we are confident in being mul-

tiplied. Informally it can be thought of as a “survival of the fittest”, with the

good samples replicating and so increasing our confidence that the object is in

a particular location while the poor samples are removed.

Of course the flexibility of a particle filter comes at a price: it is compu-

tationally expensive. For an accurate representation of the posterior a large

number of particles need to be generated.

2.4.1 Particle Filters in Tracking

Particle filters are primarily used in tracking to represent the position of a user

or robot within a map. Specifically, it can be used to constrain the user to

within physically sensible areas. For example [36] implemented a particle filter-

ing technique in combination with an Wireless Local Area Network (WLAN)

localisation scheme. The particle filter incorporated knowledge of the environ-

ment into the particle movement. It eliminates motions that a human could

not do: for example crossing a wall. If a particle violates this constraint then

the algorithm attempts to find a new particle position. If following multi-

ple attempts the particles position still does not satisfy the criteria then the

weighting is set to zero and the particle is removed.

Provided the building outline is known further limitations can be added.

In [37] the authors noted that a good indication as to whether one is indoors is

GPS availability. Should GPS be available then the particles that are within

the building have their weightings penalized and, vice versa if GPS is unavail-

able then the particles which are outdoors are handicapped. This has the effect

of preventing the particles from splitting into groups, inside and outside of the

building and diverging away from each other.

A further extension to particle filters has been the development of Back-

tracking Particle filters [38]. It refines the state estimates based on the particle

trajectory history. It is based on the assumption that an invalid particle, such

as one crossing through a wall, is the result of following an invalid trajectory.

If a particle is invalid the previous state estimate can be refined by removing

the incorrect particle trajectories. Recalculating the projection of particles
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without the invalid trajectory produces noticeably better estimates [38].

(a) Detecting invalid particles. (b) Backtracking the invalid trajectories.

(c) Backtracking estimated states. 

Figure 2.10: A series of diagrams illustrating the Backtracking Particle Filter.
The blue points represent particles, i.e. potential locations of the user. The
particle’s positions are averaged to give the best estimate of the location of
the user. (a) shows a common problem when employing particle filters. The
posterior density is shown in 4 different time intervals. Via particle filtering
the incorrect particles can be discarded. (b) Illustrates how by using Back-
tracking Particle filter algorithm the incorrect trajectories are removed. (c)
demonstrates how with the incorrect trajectories being removed the particles
successfully follow the correct path [38].

Exploiting prior knowledge of the map in this way can provide very accurate

tracking. The authors in [37] did not create a sophisticated Kalman sensor

fusion algorithm, but rather used the native software of the Xsens Mti motion

sensor. This software was designed for limb motion capture and so, when

subject to the high dynamics of the foot, showed several errors. Nonetheless,

over a 10 minute walk the particle filter showed high levels of accuracy. By

comparing the location accuracy when using regular pedestrian dead reckoning

(PDR) and then combining it with a particle filter (PF) and a backtracking

particle filter (BPF), we can see that the additional filtering algorithms provide

increased accuracy. It is clear from Table 2.1 that increasing the building map

information results in more accurate position estimates, which shows that a
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balance needs to be struck between highly detailed maps and realistic levels of

information which can be easily supplied.

Detail of Map PDR (m) PDR+PF (m) PDR+BPF (m)
External Wall Map 7.738 3.103 2.557
Detailed Wall Map 7.738 1.083 0.7432

Table 2.1: Table showing errors accumulated when using different algo-
rithms [37]. Note however that this was only from a single experiment of a
walk measuring ∼330 strides in length. Therefore, more experimental vali-
dation would be needed for a generalised result to be drawn as to the exact
improvement offered by the BPF.

Ultrasound sensors have also been incorporated into particle filter algo-

rithms to improve their performance. [22] used a very simple motion model

in which the user took steps of a constant size and utilised particle filters to

localise the user within a building. They incorporated particle filtering, but

also used ultrasound range sensors to determine the distance of the walls to

the user. With this information the particles could be weighted more appro-

priately, with particles matching well to the ultrasound range measurements

given a high weighting while those with a significant disparity would be given

a low one and be discarded. The effect of the ultrasounds can be seen in Figure

2.11.

An advantage of using ultrasound ranging measurements, as opposed to

laser based ones, in the context of localising emergency rescue personal is that

they are much more robust being able to provide range data in smoke filled

rooms and, due to their wider beam angle, are less easily obstructed. Whereas

laser based range sensors will offer very high resolution it is, to a certain degree,

unnecessary as other errors will dominate.

A novel addition to particle filters was presented in [39]. Here, the system

does not begin with the user’s location initialised, but rather determines it

when the user moves via a particle filter. The innovation is that rather than

using a fixed number of particles, their number is scaled based on how clus-

tered they are. Essentially, when the particles are tightly grouped around the
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(a) A particle filter tracking the user's location.

(b) Particle filter incorporating ultrasound range measurements.

Figure 2.11: (a) Demonstrates how as the user moves in the building (the left
diagram illustrating the earlier time point) the particle filter removes impos-
sible user locations and particles only occupy the corridors and rooms. (b)
shows the same walk however, incorporating ultrasound range data makes the
particle cloud much tighter and does not diverge as the particle filter algorithm
can make use of the new data [22].

true location of the user it is unnecessary to have several thousand particles.

Therefore, when the system is unsure of the user’s location the number of

particles is increased. Vice versa, if the user’s location has been determined

very accurately their number is drastically reduced. This reduces the com-

putational load significantly while still maintaining equivalent accuracy. The

system additionally uses WLAN to contain the user’s location to an approxi-

mate region of the building, further reducing the amount of particles needed.

This system was able to track a user within 0.73 m 95% of the time over 16

minutes of walking.
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2.5 Overlap with Robotics

An area of research in which tracking and localisation plays an important role

and overlaps in many ways with human motion tracking, is that of robotics.

Robotic localisation within an unknown environment has been described as

the “Holy Grail” [40] of building a truly autonomous robot. Several techniques

exist to carry out the task of simultaneous localisation and mapping (SLAM)

such as FastSLAM [41] and RatSLAM [42]. This is an extremely complicated

task and remains an active area of research.

Robotic localisation within a known map has been done with a high degree

of success. Robots such as Minerva [43] were used to give tours in museum, an

inherently chaotic and ever changing environment. By using a particle filter

approach the robot was able to effectively carry out the tours. Using a camera

aimed at the ceiling, Minerva was able to accurately localise itself within the

main hall and, in conjunction, also used laser range finders to localise itself

within the exhibits and avoid collisions with visitors.

This is when differences between pedestrian and robotic localisation begin

to arise. With pedestrian tracking it is highly desirable to keep the number

and size of sensors as low as possible to make them unobtrusive. Furthermore,

humans have few fixed mounting points suitable for the sensors used in robotic

localisation. By contrast, robots are generally fitted with a range of sensors

such as ultrasound, laser range finders, wheel encoders, and vision systems to

give a highly detailed suite of information.

Added onto all this, is that the motion of a human is far more prone to

uncertainty, and can be much more complex than that of a robot. For example,

consider the range of motion a human can carry out compared to a four wheeled

robot and it is immediately clear that accurately tracking a human poses more

of a challenge.

A more subtle difference is that a human tracking system cannot exert

any control over the motion of the user, whereas a robotic localisation system

can issue commands to move the robot in a way that will aid the localisation

process. For example, should a robot be unsure between two or more possible

locations it can move towards environmental asymmetry or landmarks and

41



Figure 2.12: A series of illustrations showing how the robot Minerva localises
itself by using a particle filter in the museum [43]. Minerva used a camera
pointed at the ceiling of the museum to generate the shown maps onto which
it can localise itself. The black dots represent particles and, as the robot takes
in more information the particles converge to its true location.

thus confirm one hypothesis while eliminating others. This is referred to as

active, as opposed to passive, localisation.

However, tracking a user’s foot position may soon become more directly

applicable to robotics with the increasing prominence of humanoid robots.

With [44] real time SLAM was conducted using a visual camera supplemented

with inertial data. If the inertial sensor was mounted on the robot’s foot and

the data processed using zero-velocity updates then more accurate odometry

could potentially be achieved.
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2.6 Trilateration

Trilateration is a method used to determine the location of an unknown point.

Using ranges measured from known points an object’s position can be cal-

culated. It is a common tool used in GPS, aeronautics [45], robotics, com-

puter vision, crystallography [46], and kinematics [47]. Conceptually it is a

simple problem, the range measurements form circles, or spheres in a three

dimensional case, and the object’s location is on the intersection point of the

circles. The objects location O(x, y, z) is related to the ith beacon position,

B(xi, yi, zi), via

(x− xi)2 + (y − yi)2 + (z − zi)2 = r2i (2.11)

in which ri is the range measurement form the i th beacon. Thus, to find

O(x, y, z) we must solve i = 1, 2, 3...n simultaneous equations. This solution

would be very involved due to the highly non-linear equation produced. The

problem can be approached in a variety of fashions; usually the equations are

linearised to reduce the problem to that of finding intersection of several planes

[48]. Increasingly accurate methods also employ linear as well as non-linear

least squares [49].

2.6.1 Wireless Networks

Regardless of the algorithm employed trilateration is used with a variety of

sensing technologies. A popular technology is to use Wireless Local Area

Network (WLAN). By measuring the received signal strength (RSS) from

known access points the distance travelled by the signal can be inferred. The

overwhelming advantage of using WLAN to conduct positioning estimates is

its prevalence. Virtually every building in developed nations has access to

a WLAN. However, the data is very noisy, and numerous factors can influ-

ence the RSS. The authors in [5] used a Kalman filter to try and reduce the

noise errors. Indeed, they reported a marked increase in accuracy compared

to a minimum mean squared error approach reducing the error from 34 m to

6.78 m. Similar work on WLAN trilateration was conducted in [50]. Rather
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than measuring the RSS they opted for a time-of-arrival (TOA) approach. By

measuring the time delay between Request-to-Send (RTS) and Clear-to-Send

(CTS) frames of the 802.11 standard, the approximate distance between the

user and WLAN access points could be determined. By employing a nonlinear

least squares approach and applying Newton iteration the position was found

to have an accuracy of between 2 m and 2.3 m in 90% of cases.

2.6.2 Ultrasound Beacons

Although WLAN trilateration is improving in recent years, it still remains too

inaccurate for our needs. More accurate range measuring devices are ultra-

sound sensors. Ultrasound is used very widely as a distance sensor for a multi-

tude of applications, and several innovative approaches for indoor positioning

have been undertaken. The potential of smart phones to act as ultrasound

transmitters was investigated by [2]. Commercial off the self smartphones are

capable of producing ultrasound in the range of 20 - 22 kHz. By placing a series

of microphones within a room, and using a least squares technique, the smart-

phone’s position is determined. This study was interesting, as rather than

using conventional time of flight which relies on a synchronisation between the

transmitter and the receiver, the authors used the difference in time of arrival

between the different microphones. This alternative approach was very suc-

cessful in locating a mobile phone with a typical accuracy of less than 10 cm

in ideal operating conditions. However, due to the high directionality of the

emitted ultrasound waves and the lack of penetrating power possessed at high

frequencies the orientation of the phone played a large role in the accuracy of

the system. If the speaker on the phone is facing downwards then the errors

can be as large as 70 cm. Likewise, if the phone is held at an angle then the

user’s body position can obstruct the ultrasound wave, further deteriorating

results.

In [51] the use of ultrasound beacons to correct for the drift in position

from IMUs was investigated. A ZUPT strategy was used to correct part of the

drift and the internal filtering of the Xsens sensor was employed to obtain a

rotation matrix which included magnetometer readings. However, as discussed
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previously, the indoor magnetic field is subject to large fluctuations which the

Xsens sensor was not fully able to correct, leading to an erroneous heading

estimate. Typically, the authors achieved an error of 7-8% of the distance

travelled. In the presence of machinery, and hence large magnetic fluctua-

tions, the tracked position accumulated an even larger error while travelling.

Ultrasound beacons were used as a “breadcrumb” trail to periodically provide

corrections. The results were solely simulated, so further work was needed for

experimental validation. Nonetheless, the simulations did show some promis-

ing early results. As the ultrasound position estimates can vary significantly

the authors opted to only use them if the IMU position estimate was over a

meter different to the ultrasound measurement. This gave the overall trajec-

tory a much smoother pattern and showed a significant improvement to the

IMU data.

2.6.3 Wearable Ultrasound Systems

Ultrasound sensors have been used in numerous foot tracking systems. They

have been primarily used to detect the step length of the user and thus can be

used instead of, or fused with, IMU derived step lengths.

The limitation of ultrasound based methods arise when obstacles lie be-

tween the feet, such as climbing stairs, and so block the ultrasonic pulses.

The other drawback is when both feet are off the ground simultaneously, as

this means that there will not be a fixed point from which the distances can

be measured. Studies such as [52] showed a 90 % accuracy when using ultra-

sound in ideal conditions, however the system was only tested in straight line

walking with no obstacles. Ultrasound by itself would struggle in more com-

plex gait patterns or conditions. More robust systems have used ultrasound in

combination with IMU data.

A footstep location system which uses wearable ultrasound has been created

in [29]. The ultrasound system used force sensors on the bottom of the sandals

to detect heel-strike and toe-off. When the foot was detected as being on the

ground the ultrasound sensors took range measurements. Via a triangulation

calculation the distance between the two feet is determined.

45



When the ultrasound sensors lost line of sight a complementary IMU based

method was used. This system used a dual axis accelerometer, an InterSense

InterTrax2 device to calculate orientation, and force sensors. The force sensor

is used to detect when the sandal is in a stride phase, and once the user’s foot

is in motion the accelerometer collects data at a rate of 100 Hz.

The two systems run in parallel, but the ultrasound system is preferentially

used due to its higher accuracy. The IMU system is only used if the ultra-

sound system cannot successfully perform a range measurement. A graphical

illustration of the two modes of operation is shown in 2.13.

[29] also used radio frequency identification (RFID) tags to attempt to

mitigate drift, and so is not completely free of infrastructure requirements.

Figure 2.13: Illustration of the two different methods employed to measure the
user’s foot step. (a) demonstrates how the ultrasound based method measures
the foot to foot distance giving a series of vectors. Summing the individual
vectors results in total displacement. (b) shows the case for the IMU based
method [29].

Despite the RFID tags the system performed poorly accumulating a 20%

positional error when performing straight line walking and between 7.45- 13.75%

error in rectangular paths. This can be attributed in part to the simplistic na-

ture of the algorithms used i.e. no Kalman filtering was performed to account

for IMU errors, neither was sensor fusion attempted and only the minimum

number of ultrasound transducers were used.

A different system which uses ultrasound is described by [53]. The authors

aimed to build a personal navigation system which was a full body suit aiming
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to give indoor localisation to fire-fighters and other search and rescue teams.

The system used a combination of odometry and laser range data to localise

itself within the environment.

Additionally it uses a custom built Stride Length Measurement Unit (SiLMU).

The SiLMU uses time of flight ultrasonic pulses to measure the distance be-

tween the feet and is refreshed at a rate of 60Hz. The measured pattern forms

a sine wave and it is filtered reducing data fluctuations. Once minimums and

maximums of the sine wave are obtained they are used to calculate the step

length as shown in 2.14. The heading was computed by using a Kalman filter

to combine gyroscope and magnetometer readings.

The SiLMU was tested separately to the other sensors. It was evaluated by

walking in a 55 m straight line walk and it performed strongly, with average

percentage error of 1.63%.

(a) (b)
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Figure 2.14: Figure showing how the stride length measurement system func-
tions. The ultrasound data provides the foot to foot displacement. As the
user walks the distance between the two feet forms a sine wave from which the
minimum and maximum foot distances are found. From that the stride length
can be readily obtained.

Interesting work was carried out in [54] where ultrasound and IMU data was

fused via a Kalman filter in order to obtain the stride length and width. Us-

ing the Xsens Forceshoe which contained two IMUs sampling at 50 Hz ZUPT,

HDR and zero height updates were used. Zero height updates state that the

total vertical displacement of the IMU over a step is zero, and so any mea-
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sured vertical displacement is fed into the EKF as an error. The authors also

augmented the EKF to include position updates based on range information

gathered from the wearable ultrasound sensors. The authors repeatedly walked

within a small volume covered by Vicon cameras. Vicon cameras are highly

accurate infra red sensors which are able to track the position of an object to

sub millimetre accuracy. By comparing the stride length and width calculated

from the IMU/ultrasound system to the data gathered with the Vicon cameras

its performance was evaluated. The system is shown to be very accurate with

mean stride length errors of 0.017 m and stride width errors of 0.015 m. How-

ever, the system’s capability to track a user’s motion over prolonged distances

and track the user’s absolute position was not analysed. It displayed very

strong performance for motion in a local co-ordinate system but accumulated

an error of 2.4 cm per step without even considering the yaw drift which was

a prime source of error for previous systems of this type.

2.7 Conclusions

While GPS allows accurate outdoor positioning it lacks high resolution and,

due to signal degradation, rarely gives sub-meter accuracy when indoors. How-

ever, there are a range of indoor technologies to perform tracking and posi-

tioning. The majority require pre-installed expensive infrastructure but can

offer extremely high precision.

New technologies are emerging which can offer motion tracking without

the infrastructure requirement. IMUs have traditionally been too noisy to use

effectively, however, the development of ZUPTs [17] has enabled them to be-

come a viable option. There have been several refinements and improvements

on the original algorithm and recent works [26] have achieved less than 0.5%

positional error.

A different paradigm in ubiquitous tracking has been to use pre-existing

sensors such as WLAN [5], or sensors that can be inexpensively deployed such

as ultrasound beacons [2]. These approaches suffer similar difficulties in which

the noisy data makes accurate positioning extremely challenging. However,

they do have an advantage over IMU based approaches in that the obtained
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position is not subject to drift, and therefore can function for indefinite periods

of time without accumulating unbound error growth.

An approach that has been taken by authors to limit the drift in IMU

based systems is to use particle filters in combination with a pre-known map.

This limits the motion of the user to physically possible locations and has been

shown to give extremely good performance in long term motion tracking, with

some sophisticated approaches overcoming the associated computational cost

and implementing it in a real time fashion [39].

From the literature we can identify potential areas for improvement which

we can address in this work. Firstly, all of the IMU based approaches used

high end commercial IMUs designed for motion tracking, or used specialised

custom built IMU set-ups. This monetary barrier is a significant hurdle if

accurate tracking is to occur in daily life. Hence, we proceed to investigate the

potential of lower end IMUs in Chapter 3.

Secondly, the use of wearable ultrasound sensors as an aid to inertial nav-

igation has only been examined in a few works. Among those works, ultra-

sound sensors were used as part of a full body system equipped with a large

amount of additional sensors in [53]. By contrast in [29] the navigation was

performed poorly, and in [54] only individual steps were considered. Therefore,

in Chapter 4 we carry out further investigation into the performance of using

an ultrasound based aiding system.

Finally, in virtually all the examined works the systems are examined with-

out accurate ground truth data. This means the step by step performance of

the systems is unknown. Therefore, when evaluating our systems we use a

Vicon motion capture system to provide the ground truth data from which we

can make such an analysis.
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Chapter 3

Inertial Navigation

IMUs are staple sensors in motion tracking and navigation systems. In this

thesis IMUs are initially used to track the user’s footstep without any addi-

tional sensors or map information. Therefore, we first explore the principles

behind inertial navigation and the sensor’s stand-alone performance.

3.1 Inertial Measurement Units

IMUs are composed of gyroscopes and accelerometers. Their low size and

weight, especially those using micro-electrical-mechanical systems (MEMS)

technology are extremely popular but, due to their bias, they suffer from un-

avoidable drift in the displacement data. A further consideration is that the

size and performance of MEMS sensors are correlated, so the more compact

the sensor the lower the achieved performance [55]. This becomes a trade

off when devising motion tracking systems for pedestrians which require the

system to be small and portable, yet maintain high accuracy.

3.1.1 IMU Technologies

The MEMS sensors used in this thesis are rigidly attached to the shoe, giving

what is known as a strapdown navigation system. Strapdown systems have

the IMU sensors rigidly mounted onto the tracked object. Hence, the readings

are given in the local body frame rather than the global navigation frame.
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On the other hand, in stable platform navigation, the IMU is mounted onto

a platform which is held in alignment with the global frame. The platform is

mounted on gimbals which allow it to freely rotate. If the gyroscopes detect

rotation, motors then rotate the platform back into its original alignment. By

using angle pick offs the angle between the different gimbals is measured and

the orientation is tracked.

accelerometers

Figure 3.1: Differences between a stable-platform (left) and strap-down (right)
systems [56].

Strapdown systems tend to be smaller and do not possess any moving

parts. This comes at a increased computational load to process the navigation

algorithm. However, as computational power is becoming less of an obsta-

cle strapdown systems are now the prevalent method of inertial navigation.

Aside from the mounting configurations, either stable platform or strapdown,

gyroscopes and accelerometers come in various types operating on different

principles.

Gyroscopes

Gyroscopes encompass a wide range of technologies spanning significantly in

terms of cost and accuracy. The most accurate types of gyroscope are the large

mechanical sensors which function by tracking the precession of a rotating

mass. More compact sensors are emerging; laser ring gyroscopes for example,

detect the phase difference between two light beams travelling in opposite

directions. They operate on the Sagnac effect, in which the relative phases of

the two laser beams are shifted depending on the angular rotation.
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More exotic forms of technology exist such as cold atom gyroscopes and nu-

clear magnetic resonance gyroscopes. However, of most relevance to this thesis

is the principle of operation behind MEMS gyroscopes. They work by having

a vibrating proof mass which has an oscillating linear velocity. Should the

sensor be rotated in an orthogonal axis to this velocity a Coriolis acceleration

is created. By detecting the resulting movement of the proof mass via capac-

itors the rate of turn can be inferred. These sensors can be made extremely

small and compact due to silicon etching techniques. MEMS sensors have to

be made to an extremely high degree of precision as the silicon wafers are

between 50-100µm. Additionally, the proof masses only move around 10−9 m

under a 1 rad/s turn. This results in a peak charge of 15,000-65,000 electrons,

an exceedingly small amount [57].

Figure 3.2: Diagram illustrating the operating principle of a MEMS gyro-
scope [57].
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Accelerometers

Accelerometers in their most basic configuration operate by having a proof

mass suspended with a spring and, as the sensor is subject to acceleration,

the proof mass will be displaced. By measuring this displacement via a pick

off then a signal proportional to the acceleration is derived. An alternative

approach is to measure the force required to return the proof mass to its

original, or null, position. This is typically achieved by having a pair of coils

on the proof mass within a magnetic field. By measuring the amount of current

required to generate a magnetic field of sufficient strength to counteract the

acting acceleration we can then infer its magnitude and direction.

MEMS accelerometers work on a very similar principle. The sensor is

manufactured out of silicon wafers, with the proof mass suspended via poly-

silicon springs. By using capacitors the displacement of the proof mass can be

measured and the acceleration obtained.

3.1.2 Inertial Measurement Unit Errors

Due to the reliance on gyroscopes and accelerometers, several sources of error

arise in any motion tracking system employing IMUs. Position correction

measurements from GPS could be supplied however, with indoor tracking being

the area of investigation means that GPS is too unreliable. Alternatively,

this problem can be mitigated by using higher performance sensors which will

exhibit minimal drift over the period of data collection. However, it does not

eliminate drift but rather attempts to reduce it to an acceptable level. In

addition, higher precision of gyroscopes and accelerometers will come at an

increased monetary cost, offsetting the low cost aim of this project. IMUs

can be broadly categorised from commercial grade to strategic grade systems.

Each jump in category offers a significant increase in precision but conversely

also has a 100 fold increase in price [56].

Even extremely high performance IMUs will suffer unacceptable levels of

drift for motion tracking given enough time. Figure 3.3 shows a simulation of

results when only considering random error sources [56]. In practice, due to

scale factor calibration errors and slight gravity fluctuations, the real perfor-
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mance will be worse.
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Figure 3.3: Shows a 20 minute long simulation when modelling the random
error sources in different grades of IMU [56].

The errors that result in positional drift arise from 5 principal sources:

sensor bias, white noise, calibration errors, temperature effects, and bias in-

stabilities.

3.1.3 Bias

An accelerometer and gyroscope will output a constant signal even when not

subject to acceleration or rotation. This is known as a bias and is a constant

offset in the readings. In the case of a gyroscope bias, ρg, it causes the error,

τe, to grow linearly with time, while with an accelerometer bias, ρa, due to

double integration, it causes the error, Pe, to grow quadratically in time t,

τe = ρgt (3.1)

Pe = ρa
t2

2
(3.2)
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The biases for the gyroscope and accelerometer can be obtained with proper

calibration. However, due to the presence of other errors it is difficult to truly

eliminate the bias completely.

3.1.4 White Noise

Thermo-mechanical white noise will cause the output of a MEMS IMU to be

corrupted by noise fluctuating at a much faster frequency than the sampling

rate of the sensor. This means that data is perturbed by a series of zero mean,

uncorrelated random signals, referred to as white noise.

This results in the sensor output being influenced by a zero mean random

walk error, with a standard deviation growth proportional to
√
t in the case

of a gyroscope and t
3
2 for an accelerometer [58]. Note that in the context of

sensor errors random walks refer to the mathematical formalisation, not the

user walking in a random direction.

3.1.5 Calibration Errors

Calibration errors are systematic effects that collectively include scale factors,

mis-alignments and cross axis sensitivities in the IMU. These effects cause

additional drift in the data and are only observable when the IMU is in motion.

They are usually correctable with high end IMUs possessing their own internal

corrections.

3.1.6 Temperature Effects

Variations in environmental temperature as well as the sensor self heating will

cause changes in the bias. This causes the residual bias to give an angular error

growing linearly with time and a displacement error growing quadratically.

It is possible to compensate for temperature effects by having a thermome-

ter on the IMU to measure the changing temperature and provide suitable

bias corrections. However, the IMUs used in this thesis are not equipped with

thermometers and so the temperature effects are not directly compensated for.
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3.1.7 Bias Instability

The bias in MEMS accelerometers and gyroscopes changes gradually over time

due to flicker noise in the electronics. Flicker noise is usually observable at low

frequencies, being overshadowed by white noise at high frequencies.

The bias instabilities can be modelled as a random walk. However, bias

instabilities do not behave as a true random walk but are constrained within

a particular range around zero. This is of great benefit, else the error in the

bias would grow in an unbound fashion.

3.2 Tracking with Inertial Measurement Units

Having discussed the various sources of error present in an IMU we now turn

our attention to how IMUs can be used for tracking. Firstly the IMUs utilised

in this thesis are examined and their set-up explained. Then the IMUs must

be calibrated to get the most accurate data possible. Lastly, the acceleration

and angular velocity data can be passed into a navigation algorithm which

tracks the IMU’s position.

3.2.1 Inertial Measurement Unit Setup

In this work two separate IMU mounted adjacent to each other are used. The

two IMUs each have a 3 axis accelerometer and a 3 axis gyroscope. Both

the accelerometer and gyroscope outputs are averaged between the two IMUs.

This reduces the noise associated with the acceleration and angular velocity

measurements. Hence, we effectively have a single, more accurate IMU by com-

bining the results. The reader should thus note that, unless stated otherwise,

when the words “accelerometer” or “gyroscope” are used, they refer to the

combination of two accelerometers or two gyroscopes effectively functioning as

a single sensor.

The accelerometers used are ADXL345 manufactured by Analogue Devices.

They have high resolution (13-bit) measurements at up to 16 g. They interface

either via Serial Peripheral Interface (SPI) or Inter-Integrated Circuit (I2C)

communication. It is set to the full scale range of ±16 g and to dynamically
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adapt the resolution to maintain a 256 per g reading. Further we set it to have

a 200 Hz sampling frequency.

The gyroscopes are ITG-3200 manufactured by InvenSense with a full scale

range of 2000◦s−1. They use a I2C serial interface for communications. They

are set to sample at 200 Hz with an internal 20 Hz digital low pass filter.

The ADXL345 and ITG-3200 sensors are mounted on a board readily avail-

able for purchase at any large electronics supplier (see Appendix for details).

Communication between the IMU and the microcontroller is conducted via the

I2C bus.

The I2C bus was developed by Philips in the early 1980s and has since

grown to be a systems control bus used in millions of electrical products. The

two wire I2C bus functions by having a master and slave components connected

by serial data (SDA) and serial clock (SCL) lines. Both are bi-directional, able

to function as inputs and outputs.

I2C devices are either in standard (100 kHz) mode or most modern devices

can also operate in fast (400 kHz) I2C mode allowing for much faster data

transfer. This improvement was achieved by reducing the rise time in the data

and clock lines. Additionally, fast I2C devices have larger address fields of 10

bits rather than 8 bits allowing for more components to be on the same I2C

bus. Both the ADXL345 and the ITG-3200 are capable of running in fast I2C.

The IMU is connected to an Arduino Uno Board with an ATmega328P

microcontroller. After the microcontroller has acquired the data it sends the

data to a laptop PC via a WiFi connection or, if WiFi is unavailable, it uses

a cable running to the laptop and transfers the data via asynchronous serial

communication. The data is then subsequently post-processed on the laptop.

It should be noted that while in this thesis the data was post-processed with

suitable software changes it could be adapted to run in a real time manner. The

inertial navigation algorithm, combined with the EKF algorithm (discussed

further in 3.4), takes an average of 3.4605x10−4 s to run per sample (tested on

a laptop running an Intel i5-2410M at 2.3 GHz). As the microcontroller is able

to provide data at a rate of ∼160 Hz to the PC, the additional delay caused

by the computation is extremely small.

Below in Figures 3.4 and 3.6 we have both the block diagram of the system

57



and the physical layout on the shoe.

PC/Tablet/Smartphone 
for post-processing and display 

WiFi

IMU

IMU

or 
serial cable 
link

PSD

PSD

Micro-
controller

Figure 3.4: Block diagram showing the sensors connected to the microcon-
troller. The two IMUs outputs are averaged, effectively resulting in a single,
more accurate IMU. For the inertial navigation system two position sensitive
devices (PSDs) aid in detecting step events for applying ZUPT updates (see
section 3.4.5 for details). The microcontroller transmits the data to an end
user device which post-processes the data [59].
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Figure 3.5: Picture showing the system being worn prior to data collection.
On the left foot is mounted the inertial measurement system hardware. The
majority of the wires on the left foot are for the complementary ultrasound
based navigation system, discussed further in Chapter 4. Additionally on the
right foot we can see further sensors used in the ultrasound navigation system.
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PSD Sensor

PSD Sensor

IMUs

Micro-controller

Figure 3.6: Physical setup of the sensing system. Highlighted are the IMU and
PSD sensors, as well as the mirco-controller. Additionally we can see a series
of ultrasound transducers and IR LEDs which form the basis for an ultrasound
navigation system, discussed further in Chapter 4.
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Figure 3.7: The two IMUs mounted adjacent to each other.

Figure 3.8: Close up on the IMU mounted on the left of Figure 3.7. As we
can see it has been slightly modified. This is done so both IMUs can function
on the same I2C bus. By default the accelerometers share the one I2C address
with the gyroscopes sharing another. However an alternate I2C address can be
selected by changing pins 12 on the accelerometer or pin 9 on the gyroscope
from ground to 3.3V. The rectangular accelerometer therefore had a small wire
running from pin 12 to 3.3V while the square gyroscope had pin 9 attached to
an adjacent pin which is held at 3.3V.
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3.2.2 IMU Calibration

To effectively use IMUs the various sources of error described in section 3.1.2

must be quantified and corrected for as much as possible. High end IMUs

can be calibrated by using six position and static rate tests. The six position

method functions by having the IMU mounted on a flat surface, with each sen-

sitive axis pointing first upwards and then downwards. For accelerometers the

reference signal is the gravity vector, while the gyroscopes should output the

angular rotation of the earth. For lower end IMUs the noise associated with the

gyroscope completely drowns any angular velocity due to the earth’s rotation

[57]. The traditional approach to calibrating lower end IMUs is via the use of

a mechanical platform which can rotate the IMU to precisely known positions

at very accurate angular velocities. The IMU output is then compared against

the known gravitational forces and rotational velocities. However, cheap off the

shelf IMUs come uncalibrated and the calibration equipment is both expen-

sive and specialised, something which is highly undesirable if a low cost foot

mounted tracking system is to achieve widespread use. Various algorithms

which relax the use of specialised equipment have been developed [60]. We use

a procedure introduced by [61] and further developed in [62] to calibrate the

IMU without the use of external sophisticated equipment.

The equipment free calibration procedure relies on two separate constraints.

1. The magnitude of the static acceleration must always equal that of grav-

ity. This can be used to accurately calibrate the accelerometer.

2. If a static calibrated accelerometer measures a gravity vector G1 and it

is rotated so that the new gravity vector is G2 then G1C = G2 where C

is a rotation matrix computed from the gyroscope’s angular velocities.

From these conditions then we can calibrate the accelerometer and then

the gyroscope without any external equipment. Note, that for the calibration

procedure is the only time in the thesis where we consider the two accelerome-

ters and two gyroscopes as separate. Here we calibrate the two accelerometers

individually and then calibrate the two gyroscopes. At all other points in the
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thesis the combined output from two accelerometers and two gyroscopes is

used.

To calibrate the accelerometer we must build a model of the various sources

of error to calibrate. Firstly, we note that misalignments between the axis

leads to non-orthogonal measurements from the accelerometer. If the non-

orthogonalities in the sensor frame are different only by small angles from

the orthogonal co-ordinate axes in the platform frame then a rotation can be

performed. Defining the acceleration measured in the sensor frame to be sa

and in the platform frame as sp then, assuming that the non-orthogonality is

due to small angles, sa and sp are related via:

sp = Tsa (3.3)

where T is

T =

 1 −αyz αzy

αxz 1 −αzx
−αxy αyx 1

 . (3.4)

The angle αij represents the rotation from the ith accelerometer axis around

the jth platform axis. We can see the angles illustrated in Figure 3.9.

Defining the x-axis of the platform to coincide with the x-axis of the sensor,

and defining the yp axis to lie on the plane spanned by xa and ya then angles

αxz, αxy and αyx reduce to zero. Equation 3.4 is then simplified to

T =

1 −αyz αzy

0 1 −αzx
0 0 1

 . (3.5)

We can now consider the scale factors and cross axis sensitivities to be

represented by the matrix S,

S =

sxx sxy sxz

syx syy syz

szx szy szz

 . (3.6)
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Figure 3.9: The non orthogonal sensor sensitivity axes xa, ya and za can be
rotated to the orthogonal platform axes xp, yp and zp through the illustrated
angles [61].

Multiplying matrices T and S gives the calibration matrix Ea to be

Ea =

sxx − syxαyz + szxαzy sxy − syyαyz + szyαzy sxz − syzαyz + szzαzy

syx − szxαzx syy − szyαzx syz − szzαzx
szx szy szz

 ,
(3.7)

which can be more compactly written as

Ea =

e00 e01 e02

e10 e11 e12

e20 e21 e22

 . (3.8)

Ea is therefore a diagonally dominant correction matrix. To calibrate the

acceleration data we must subtract the bias vector, ba, from the raw accelera-

tion values, as. Then after multiplication with the matrix, Ea, the calibrated
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accelerometer values, ap, are achieved:

ap = Ea(as − ba). (3.9)

The parameters to be obtained can be expressed as a single vector,

Γ = [e00, e01, e02, e10, e11, e12, e20, e21, e22, bx, by, bz] (3.10)

and to calculate Γ we define our cost function as,

La(Γ) =
k=N∑
k=1

(||g||2 − ||ap||2)2 (3.11)

where N is the number of static orientations that the accelerometer is

exposed to. It must at least be equal to the number of parameters being

estimated, in our case 12. The cost function can be minimised using a variety

of techniques. Here Newton’s method [63] was selected,

Γk = Γk−1 + [
d2La(Γ)

dΓdΓT
]−1

dLa(Γ)

dΓ
(3.12)

After the accelerometer is calibrated it can be used to calibrate the gy-

roscope. By keeping the gyroscope stationary we can take an average of the

output on each axis and obtain the basis. To calculate the other calibration pa-

rameters we can, in a similar fashion to the accelerometer, construct a matrix,

Eω, with the scale factors, misalignments and cross factor sensitivities,

ωp = Eωωs (3.13)

where ωp and ωs are the calibrated and uncalibrated gyroscope readings

respectively.

To calibrate the gyroscope the following procedure is applied.

1. Firstly, an initial gravity vector gint is measured by the static calibrated

accelerometer.

2. The IMU is rotated and, using the second order algorithm integration

method as is presented by Jekeil [64], the rotation matrix C is obtained.
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3. The initial gravity vector is rotated by C to give gfin and is compared to

the output of the accelerometer in the IMU’s post rotation position, ua.

In the absence of errors ua and gfin will have the same value. Hence, we

define the cost function as

Lω =
k=N∑
k=1

||ua − gfin||2 (3.14)

in which N is the number of rotations the IMU is exposed to and should be

equal to, or greater than, the number of parameters being estimated, in this

case 9. We minimise equation 3.14 by using MATLAB’s built in non-linear

least squares solver [65] which solves non-linear least suqares problems of the

form,

min
x

(f1(x)2 + f2(x)2 + ...+ fn(x)2) (3.15)

After minimising 3.14 we obtain our calibration parameters Eω. This al-

gorithm will however yield a worse calibration result than the accelerometer

procedure. This is an inherent limitation as we are assuming a perfectly cali-

brated accelerometer as well as no integration errors.

The selected integration method in step two of the procedure above, is

that presented in [64]. It is a second order algorithm which relates the current

quaternion, qk, to the previous quaternion, qk−1, through

qk = [cos(0.5|δβ|)I +
1

|δβ|
sin(0.5|δβ|)B]qk−1 (3.16)

where I is a 4x4 identity matrix. δβ is a vector composed of the product

of the angular velocities ωp and the time step ∆t. The matrix B is given by,

B =


0 δβx δβy δβz

−δβx 0 δβz −δβy
−δβy −δβz 0 δβx

−δβz δβy −δβx 0

 . (3.17)

The procedures above were implemented as follows: firstly the accelerom-
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eter was held stationary in a total of 26 orientations. For each orientation

3 minutes of data was collected. The orientations consisted of each of the

accelerometer’s 6 faces, 12 edges and 8 corners being aimed downwards i.e.

towards earth. It is important to emphasize that a precise orientation is not

needed, the algorithm simply relies on the constraint the magnitude of the

measured gravity must be equal to 9.81 ms−2. A range of orientations is used

here so that there is data on each axis experiencing a significant gravity com-

ponent, and hence enabling the calibration parameters for each axis to be

calibrated more accurately. The accelerometer data is pre-multiplied by the

scaling factor of g
250

which is the approximate scaling as recommended by the

data sheet. After the procedure above was carried out and data gathered in

all the relevant orientations the following bias and calibration matrices where

then obtained:

Ea =

 0.956 −0.0016 −0.003

−0.0016 0.960 −0.0084

−0.003 −0.0084 0.9898

 , ba =

0.2476

−0.190

−0.660

 .

Ea =

 0.9668 0.00193 −0.00395

0.0019 0.96797 −0.00561

−0.00395 −0.00561 1.0046

 , ba =

 0.2598

0.2980

−0.6987

 .
For the gyroscopes the following method to gather the data was conducted.

Firstly, the IMU was held stationary for 2 minutes to obtain the initial gravity

vector, gint, and the gyroscope bias. Then, the IMU is rotated by approxi-

mately 180◦ and held in the new orientation for 30 seconds to obtain a value for

gfin. Note that the exact angle that the IMU is rotated though is unimportant-

all that is required is for the IMU to go through a sufficiently large rotation

that the gyroscope errors can accumulate and be corrected for through appro-

priate calibration. Further the exact rotation speed is unimportant as long as

it remains within the tolerances of the gyroscope and is appropriate for the

sampling frequency of the IMU.

The IMU is exposed to a range of different rotations as shown in Figure
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3.10. For each setup the IMU is rotated first clockwise and then counter-

clockwise giving a total of 18 unique rotations. After the data was gathered

for each rotation the gyroscope calibration algorithm was executed which gave

the following calibration parameters:

Eω =

 1.040 0.017 −0.004

−0.011 1.032 0.023

0.025 0.021 0.990

( 1

14.375

)
π

180
, bω =

29.517

48.263

0.138

 .

Eω =

1.011 −0.025 −0.009

0.015 1.024 −0.033

0.004 0.015 0.987

( 1

14.375

)
π

180
, bω =

−59.073

27.018

−8.74

 .
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Figure 3.10: Diagram illustrating the different rotations the IMU was exposed
to when calibrating the gyroscope.
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As accurate turntables were unavailable it was not possible to determine the

accuracy of the gyroscope calibration parameters. However, by using gravity as

a reference we can gain a measure of how accurate the accelerometers are. The

accelerometers were held stationary for five separate two minute long trials.

The average of the accelerometer output is presented in tables 3.1 and 3.2.

This gives the average error for the two accelerometers to be 0.0324 ms−2 and

0.0196 ms−2.

Test Number Measured Gravity (ms−2) Error (ms−2)
1 9.765 0.045
2 9.816 0.006
3 9.801 0.009
4 9.783 0.072
5 9.780 0.030

Table 3.1: Calibration results for accelerometer number 1.

Test Number Measured Gravity (ms−2) Error (ms−2)
1 9.776 0.034
2 9.796 0.014
3 9.835 0.025
4 9.800 0.010
5 9.825 0.015

Table 3.2: Calibration results for accelerometer number 2.
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3.2.3 Inertial Navigation

Once the IMU is calibrated we can develop the required navigation algorithm.

The strapdown navigation algorithm is comprised of several stages. However,

before diving into the mathematics a brief overview can illustrate a few key

points. Firstly, as a strapdown system is used we must note that the ac-

celerometer measures the acceleration in its own body frame which is not the

same as the global navigation frame.

Therefore, we use the gyroscope to track the IMU’s orientation with respect

to the navigation frame. After rotating the measured accelerations into the

navigation frame the effect of gravity can be accounted for, and after double

integration of the acceleration the position obtained. Figure 3.11 gives an

overview of the steps involved.

Position
Accel
Data

Gyro
Data

Remove
Bias

Update
Orientation

Remove
Bias

Remove 
Gravity

Integrate 
Accel

Integrate 
Velocity

Rotate 
Accel

Figure 3.11: Block diagram of inertial strap-down navigation.

The gyroscope measures the angular rotation with respect to an inertial

frame, which is a frame that is not subject to acceleration or rotation. Hence,

strictly speaking if we take our navigation frame’s x and y co-ordinates to

align with north and east, it is not an inertial frame of reference due to the

rotation of the earth. In our case as the IMU is a relative tracking sensor

it is not possible, unless further information is provided, to compensate for

the earth’s rotation. Compensation would only be possible if the IMU was

initialised with an absolute rotation with respect to the earth and if the IMU’s

latitude was known. However, the errors arising from neglecting the earth’s

rotation are far smaller then those arising from sensor noise. For comparison
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the earth’s rotation of 7.292x10−5 rad/sec is close to two orders of magnitude

less than the gyroscope’s standard deviation as quoted by the data sheet of

6.632x10−3 rad/sec. Therefore, in this thesis we make the approximation that

the navigation frame is an inertial frame.

3.2.4 Strap-down Algorithm

The first stage in a strap-down navigation algorithm is to bias compensate the

raw acceleration, abk, and gyroscope, ωbk, information at step k,

ω
′b
k = ωbk − δω (3.18)

a
′b
k = abk − δa (3.19)

where δω and δa represent the gyroscope and accelerometer biases respec-

tively. ω
′b
k and a

′b
k are thus the bias compensated gyroscope and accelerometer

readings.

Subsequently, the sensor orientation is updated with respect to the navi-

gation frame via a Padé approximation [66],

Cbk|k−1
= Cbk−1|k−1

2I + δΩk∆t

2I− δΩk∆t
(3.20)

where ∆t is the time step between updates and I is a 3x3 identity matrix.

Cbk|k−1
is the rotation matrix which transforms from the sensor frame to the

navigation frame, which has not yet been corrected by the EKF. Cbk−1|k−1
is the

last rotation matrix available which has been corrected by the EKF at update

k − 1. Ωk is the skew symmetric matrix used to define small increments in

orientation.

δΩk =

 0 −ω′bzk ω
′by
k

ω
′bz
k 0 −ω′bxk

−ω
′by
k ω

′bz
k 0

 . (3.21)

In the third stage the bias compensated accelerometer readings are trans-

formed to the navigation frame and gravity, g, is subtracted from the vertical

component.
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ack = Cbk|k−1
a
′b
k − [0, 0, g] (3.22)

Lastly, the acceleration readings, ack, are double integrated via the trapez-

ium rule to yield first velocity, vk|k−1 and then position, rk|k−1,

vk|k−1 = vk−1|k−1 + (ack−1 +
ack − ack−1

2
)∆t (3.23)

rk|k−1 = rk−1|k−1 + (vk|k−1 +
vk−1|k − vk−1|k−1

2
)∆t. (3.24)

As we can see going from acceleration and angular velocity requires several

stages. Small errors in the initial acceleration and angular velocity measure-

ments can propagate to give large uncertainties in the final position.

3.3 Error Accumulation Analysis

The inertial navigation algorithm presented would work well if the IMU was

not subject to the sources of errors discussed in section 3.1.2. Errors in the

acceleration which are propagated through the double integration will cause

error growth in position values proportional to t2. However, accumulated er-

rors in the gyroscope will cause the most severe positional errors. This is

because the gyroscope readings are used to calculate the orientation matrix C.

This in turn leads to both the attitude being computed incorrectly, but more

significantly, leads to residual gravity components being doubly integrated.

To evaluate the IMU drift a simple experiment was conducted. The IMU

was held stationary for a period of 180 seconds and the acceleration and gy-

roscope data was collected. For the same set of data the navigation algorithm

was run four different times. For each run a different source of error was

examined, the results of which are shown in Figure 3.12.

To see the impact of the gyroscope errors the accelerometer data was ar-

tificially set to a
′b = [0, 0, 9.81]. Thus the positional drift will only be due to

the gyroscope errors.

In turn, the effect of the accelerometer errors were also examined. By
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setting the gyroscope readings to ω
′b
k = [0, 0, 0] we thus remove any errors

arising from the gyroscope and the rotation of the earth.

To examine how much of the gyroscope errors are actually due to the

rotation of the earth we can set every data point to:

ack = [0, 0, 9.81] (3.25)

ω
′b
k = [ξ cos Λ, 0, ξ sin Λ] (3.26)

where ξ is the earth’s rotation, 7.292x10−5 rad/sec and Λ is the latitude

where the tests are performed (Manchester, 53.48◦). Therefore, the only error

source is the unavoidable rotation of the earth.
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Figure 3.12: Drift results due to the various sources of error. We can see how
gyroscopic errors account for the majority of the observed drift.

Figure 3.12 shows the measured position under the different testing condi-

tions. We can see two separate features from the graph. Firstly, that errors

arising from the gyroscope dominate over accelerometer errors. This can be

attributed in part due to the fact that the gyroscopes are calibrated to a worse

standard than the accelerometers (see 3.2.2 for details). Additionally, we can
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note that the accumulated errors for both the gyroscope and earth’s rotation

grow proportionally to t3 with the acceleration errors growing in proportion to

t2 as expected from the inertial navigation algorithm. We see that the earth’s

rotational errors, although starting extremely small, due to the cubic in time

error growth rapidly accumulate and will eventually overtake the accelerometer

errors which have a quadratic in time error growth.

Lastly, Figure 3.12 demonstrates the importance of requiring powerful error

correction techniques to obtain meaningful data. Indeed, tracking a moving

object will cause even more errors to arise due to two reasons. Firstly, the

larger accelerations will cause more significant positional errors due to being

rotated using an incorrect rotation matrix. Secondly, the gyroscope did not

have any significant rotation applied to it and mis-calibrations in the cross-

axis sensitivity, non-linearity and misalignments will only be observed when

the gyroscope is subject to rotation.

3.4 Kalman Filters in Pedestrian Dead Reck-

oning

As can be clearly seen from Figure 3.12 any positional data inferred from the

IMU quickly becomes meaningless. Thus, additional stages to correct for the

accumulated error must be introduced.

Error corrections in position from devices such as GPS to directly correct for

the position do offer improved accuracy however, direct position corrections

will only effect the variables it directly observes. GPS for example will be

unable to offer corrections to the sensor biases, as well as tilt and roll angles.

To be able to correct for the various states in the system we exploit our

knowledge of human walking in combination with a Kalman filter to apply

corrections with every footstep.

Kalman filters have been used in conjunction with a strapdown navigation

system to feed in ZUPT and HDR corrections. In this work, an inertial nav-

igation algorithm which received error correction information from an EKF

was used.
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The EKF uses a 15 element error state defined as:

δx = [δφ, δω, δr, δv, δa] (3.27)

where all 5 components are 3x1 matrices. δφ, δr, and δv are the estimated

error in orientation, position and velocity respectively, while δω and δa are the

estimated biases for the gyroscope and accelerometer. Hence, the EKF tracks

the error states which can be used to correct the various parameters in the

navigation algorithm.

We can linearise the navigation algorithm around a state estimate to give

δxk|k−1 = Φkδxk−1|k−1 + wk (3.28)

in which xk|k−1 is the predicted error state and xk−1|k−1 is the last filtered error

state. wk represents the process noise with covariance matrix Qk and Φk is the

transition matrix,

Φk =



I ∆tCn
bk|k−1

0 0 0

0 I 0 0 0

0 0 I ∆tI 0

−∆tS(a
′n
k ) 0 0 I ∆tCn

bk|k−1

0 0 0 0 I


(3.29)

where each element is a 3x3 matrix. S(a
′n
k ) is the cross product matrix:

S(a
′n
k ) =

 0 −azk ayk

azk 0 −axk
−ayk axk 0

 . (3.30)

In the matrix a
′n
k is the bias corrected acceleration which is transformed into

the navigation reference frame. This causes errors in orientation to become

correlated to velocity errors. These correlations are stored in the covariance

matrix Pk. Due to the covariance matrix ZUPTs are able to correct all of the

correlated errors despite only directly observing a limited number of states.

The measurement model to obtain the errors, zk, for this EKF is
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zk = Hδxk|k + nk (3.31)

where H is the measurement matrix and nk is the measurement noise with

noise covariance Rk.

At this point we can use our knowledge of human gait to provide error

correction techniques. The core of these techniques is the zero velocity update

of which we now examine the mathematical implementation.

3.4.1 Zero Velocity Updates

As detailed in Section 2.1.2, zero velocity updates (ZUPTs) declare that the

velocity of the foot during the mid stance phase should be 0 ms−1. We can

therefore state that the measured error, mv, is any velocity, ∆v, detected by

the IMU

mv = ∆v − [0, 0, 0]. (3.32)

The corresponding measurement matrix, H, is then

H =
[
03x3 03x3 03x3 I3x3 03x3

]
(3.33)

where the subscripts indicate 3 by 3 matrices. ZUPTs is one of several

error state corrections that we can apply. These similar techniques that we

can incorporate alongside ZUPTs deal with other parameters in the error state

matrix.

3.4.2 Heuristic Drift Reduction

Rather than implementing a binary-I controller as was done by [21], we in-

corporate heuristic drift reduction (HDR) measurements into the EKF frame-

work. If the change in yaw, δψ, between successive steps is lower than a certain

threshold then we interpret this as an incorrect measurement due to drift and

feed in an appropriate correction value,
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mHDR =

∆ψ, if ∆ψ ≤ 5◦

0, otherwise.

Hence, HDR has a measurement matrix of,

H =
[
[001] 01x3 01x3 01x3 01x3

]
. (3.34)

3.4.3 Combination

To combine the techniques described above the individual measurement ma-

trices can be merged to give

H =

[
[001] 01x3 01x3 01x3 01x3

03x3 03x3 03x3 I3x3 03x3

]
(3.35)

with mk, the measured error, corresponding to

mk = [∆ψk ∆vk]. (3.36)

Each component of the measured error arises from one of the error reduction

techniques of ZUPTs or HDR.

From the derived matrices we can then execute the regular Kalman filter

equations with Kalman gain, Kk, obtained via,

Kk = Pk|k−1H
T (HPk|k−1H

T +Rk)
−1 (3.37)

where Pk|k−1 is the estimation error covariance matrix and is computed at

every step k from

Pk|k−1 = ΦkPk−1|k−1Φ
T
k +Qk. (3.38)

Pk|k−1 is then updated once the EKF corrections are applied via the Joseph

form equation,

Pk|k = (I −KkH)Pk|k−1(I −KkH)T +KRkK
T . (3.39)
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Finally, the filtered error state can be calculated from,

δxk|k = δxk|k−1 +Kk(mk −Hδxk|k−1) (3.40)

With the EKF we can feed the error corrections, δrk and δvk, into the

navigation algorithm. The obtained position and velocity are corrected via

rk|k = rk|k−1 − δrk (3.41)

vk|k = vk|k−1 − δvk (3.42)

The attitude adjustment is performed by updating the rotation matrix with

δφ, corresponding to the errors for roll, pitch and yaw. Using a small angle

approximation the rotation matrix is updated following,

Cn
bk|k =

2I + δΘ

2I− δΘ
Cn
bk|k−1 (3.43)

where δΘ is

δΘk =

 0 −δφk(3) δφk(2)

δφk(3) 0 −δφk(1)

−δφk(2) δφk(1) 0

 . (3.44)

The non-bias error terms of the state are reset to 0 after they are passed

onto the navigation algorithm and used to refine the position, velocity and

attitude.

3.4.4 Filter Initialisation

For proper functioning of the EKF the parameters of the process noise, Qk,

measurement noise, Rk, and covariance matrix, Pk, need to be properly selected

to ensure stable performance. Fine tuning of these parameters needs to be

carried out as their values have a large influence on the effectiveness of the

EKF.

In an ideal scenario the process noise represents solely a magnitude of a

white noise sequence. This is under the assumption that all the various error
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sources are accurately modelled into the state propagation matrix.

However, many error sources are not represented in the state transition

matrix such as non-linearity, hysteresis, misalignments, g-sensitivity, and scale

factor temperature coefficients. The accelerometers and gyroscopes are as-

sumed to be dominated by two primary sources of error [67]:

1. Sensor noise: The IMU was held stationary for a period of 180 sec-

onds and the measured acceleration and angular velocity was exam-

ined. Form this the accelerometer was found to have a standard de-

viation of 0.0381 ms−2 with the gyroscope having a standard deviation

of 8.1500x10−3 rad s−1.

2. Mis-calibration errors: The two accelerometers had an average error

of 0.265% when measuring gravity. Therefore, we take the accelerometer

noise as σa = 2.65x10−3a. For the gyroscope a reference signal was not

available, however as the gyroscope relied on a less precise procedure for

calibration we know that it will be calibrated to a worse degree than the

accelerometer. Therefore, the error is modelled as 1% of the measured

value, σω = 0.01ω.

The procedure to determine the gyroscope covariances is therefore to:

1. Set ωmax = max(ωφ, ωθ, ωψ).

2. Let σ2
ω = (8.1500x10−3)2 + (1x10−2ωmax)

2. In other words we sum the

individual covariances of sensor noise and mis-calibration to obtain the

total error for that particular reading.

3. Set the matrix

Q̂ω =

σ
2
ω 0 0

0 σ2
ω 0

0 0 σ2
ω

 (3.45)

.

Here we make the assumption that there is no covariance between the

sensor axes.
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4. Set the submatrix of Q which represents the gyroscope covariances to be

Qω = CkQ̂ωC
T
k (3.46)

where Ck is the rotation matrix at time-step k.

This procedure is then repeated for the accelerometer, but with amax =

max(ax, ay, az) and a standard deviation of 0.0381 ms−2.

To obtain the angular covariances, the ωmax values are multiplied by the

duration of the time-step, ∆t, and due to the first order integration used,

have an integration error added of ω2
max∆t. Therefore, the integration adds

a covariance per step of ω4
max∆t

4 [67]. This is carried out equivalently for the

velocity covariances [68], however as a second order algorithm was used for

integrating the acceleration the covariance per step is a6max∆t
6. This method

will provide a slight overestimation of the noise covariance as we are using the

maximum value, ωmax or amax, to determine the covariance for all the axes.

Accurately determining the values of the covariance matrix Qk is more of an

art than a science in many cases, with rather arbitrary scaling often required

[67], [68]. Indeed, through experimental testing the values generated using the

above gave less than optimal results. Hence, the covariances corresponding to

the roll, pitch and yaw were set to a larger fixed value of 0.5x10−3 rad2 and the

gyroscope covariance due to the sensor noise was increased to 1x10−2 rad2s−2.

The measurement noise covariance matrix was modelled in an equally ap-

proximate manner. It was assumed that there was a small amount of uncer-

tainty in each reading that was independent of other measurements. Hence,

the matrix was set to

R =


0.01 0 0 0

0 0.01 0 0

0 0 0.01 0

0 0 0 0.01

 . (3.47)
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3.4.5 Step Detection

To be able to apply the EKF corrections the system must be able to determine

if the foot is in a stance phase. To that end, a dual approach of using two

position sensitive devices (PSD) in conjunction with the IMU data is used.

For a foot to be declared flat on the ground then three conditions need to be

met.

Proximity Sensing

The PSDs are mounted on the heel and the toe of the shoe. When the system

is first turned on, and the foot is flat on the ground, the distance from the

PSDs to the floor is obtained. When both the PSDs measure under 1.05 of

the initial measured distances, Dint, we consider the first condition, Ĉ1, to be

fulfilled,

Ĉ1 =

1, if Dk ≤ 1.05Dint

0, otherwise.

In which Dk is the range as measured by the PSD.

Acceleration

Secondly, we look at the magnitude of the bias compensated acceleration,

amag, and if the sensor is measuring close to gravity we interpret it as the foot

being stationary according to the accelerometer. Hence, if the magnitude is

within the limits 9.3 ms−2 ≤ amag ≤ 10.3 ms−2 then the second condition, Ĉ2,

is fulfilled,

Ĉ2 =

1, if 9.3 ms−2 ≤ amag ≤ 10.3 ms−2

0, otherwise.

Gyroscope

Lastly, the gyroscope data is examined to evaluate any potential foot motion.

Should the magnitude of the calibrated gyroscope readings, ωmag, be under
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20◦s−1, then the third and final condition is satisfied.

Ĉ3 =

1, if ωmag < 20◦s−1

0, otherwise.

Accel

Stance Detection

ZUPT HDR

Extended Kalman Filter Error Estimation 

Inertial Navigation Algorithim

Error Integration

𝛿v 𝛿𝛹

m

𝛿x=[𝛿φ,𝛿ωb,𝛿r,𝛿v,𝛿ab]

GyroGyroAccel

PSD PSD
Average Average

Position
Velocity

Rotation
Matrix

Figure 3.13: Block Diagram showing the software blocks for the EKF correcting
the navigation algorithm from ZUPT and HDR measurements.

83



3.5 Evaluation

To test the performance of using an EKF to correct the calculated foot position

three different types of walk were examined. The subject for all the walks was

the author and the walks were conducted at a user selected walking speed.

1. The first type of walk was when the user travelled in a straight line

forward for approximately 4.5 m, turned around, and then walked back.

This type of walk is referred to as Type 1.

2. Secondly, a walk in which the user travelled in a rectangle measuring

approximately 4x2 m was considered. The user walked around this rect-

angle three times before stopping. This type of walk is referred to as

Type 2.

3. Lastly, a longer closed loop walk measuring approximately 55 m in length

in which the user travelled in a typical indoor environment was examined.

The path consisted of entering and exiting multiple rooms connected by

a corridor. This type of walk is referred to as Type 3.

The three types of walks were evaluated differently. Types 1 and 2 were

conducted in a motion laboratory and a Vicon system was used to track the

position of the user. Type 3 walking was evaluated in terms of loop misclosure

as discussed further in section 3.5.2.

3.5.1 Vicon Evaluation

The wearable sensing system generates results in the form of footstep positions.

Therefore, to be able to use the Vicon system as a ground truth comparison

the raw Vicon data needs to be converted to give a series of footstep locations.

To this end four markers were placed on the wearable system as shown in

Figure 3.14. The marker labelled “Outer Marker” was used as a tracking ref-

erence with the other markers aiding in footstep detection and reconstruction

of data should the Outer Marker be subject to flickering at any point during

a trial.
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Inner Marker

Rear Marker

Outer Marker
Front Marker

Figure 3.14: Picture showing the marker locations on the system.

To determine when a footstep occurs the 4 markers’ vertical height was

considered. If all visible markers were moving by less then 0.05 mm between

successive samples then that sample was flagged as a quasi-stationary phase.

To then identify which samples corresponded to footsteps the average vertical

height of all four markers was taken and the varying baseline subtracted. A

quasi-stationary sample was then considered a footstep sample if it lay within

certain thresholds after the baseline was subtracted. The footstep samples are

then grouped together to form footstep events. This is highlighted in Figure

3.15. The average x-y position of the footstep events is then taken as the foot’s

position for a particular footstep. If we further examine Figure 3.15 then we

can gain a more quantitative value of the walking speed in the various trials.

Figure 3.15 shows that to conduct 13 steps with the left foot around 6000

data points were gathered by the Vicon system. As the Vicon system gathers

data at 200 Hz it corresponds to 2.3 s per left footstep. This is slightly slower

than normal walking, and is due to the slight additional difficulty caused by

navigating with the sensing system.

The position obtained from the Vicon system was then compared against

the results from the IMU system. Two different error metrics were then cal-

85



0 1000 2000 3000 4000 5000 6000 7000

Sample

0

20

40

60

80

100

120

140

160

180

H
ei

gh
t (

m
m

)

Heel Marker
Toe Marker
Outer Marker
Inner Marker

0 1000 2000 3000 4000 5000 6000 7000

Sample

-10

0

10

20

30

40

50

60

H
ei

gh
t (

m
m

)

Processed Height
Footstep Sample

Figure 3.15: Graphs illustrating how the footstep position from the Vicon
data is obtained. (Left) shows the vertical height of the four markers and if
the change in height of all visible markers is less then 0.05 mm then the sample
is considered to be quasi-static. (Right) Shows after further post processing
and the application of thresholds the quasi-static samples that correspond to
footsteps are found.

culated.

1. Absolute Error: This is obtained by calculating the distance between

the Vicon and IMU results at every footstep. Hence, every time the

footstep is detected the difference in position between the two systems

is obtained.

2. Percentage Error: This is calculated by taking the absolute error as a

percentage of the total distance travelled as given by the Vicon system.

Both of these metrics are illustrated in Figure 3.16.

The data was collected and subsequently post processed. As was mentioned

in section 3.2.1 the navigation and EKF algorithms run at close to 3000 Hz on

the utilised PC. Therefore, with more sophisticated data acquisition methods

it will be feasible in future work to perform the motion tracking described in

a real time manner.

It is important to remember that the shoe mounted system does not deter-

mine the initial heading or position. Rather, it tracks the motion relative to

the starting point. In these experiments the initial heading is set to 0◦ and the

initial x, y co-ordinates are also both set to 0 m. This introduces an inherent

86



Actual 
Postion (xa,ya)

Sensor calculated 
position (xs,ys)

l1

l2
Absolute Error: 
sqrt((xs-xa)

2+(ys-ya)
2)

Percentage Error: 
(Absolute Error/L)*100

L=l1+l2

Legend

IMU Derived Path
Vicon Ground Truth
Error

Figure 3.16: Diagram illustrating how the two different error metrics, absolute
error and percentage error, are calculated.

error in all of the results as we assume that the IMU’s x-axis is initially aligned

with the forward direction of the user. Previous works that did not use mag-

netometers have applied post-processing rotations to the final results [27], or

used ground truth information for alignment [68]. However, these techniques

either rely on known movements or require external equipment to be present

which is unrealistic in everyday walking environments. Hence, the results pre-

sented here represent more “rugged” operating conditions which could be more

representative of real-world use.

3.5.2 Type 3 Walking Evaluation

Type 3 walking was evaluated slightly differently. As the walk went far outside

the Vicon capture volume the absolute and percentage errors could not be cal-

culated. Hence, it was evaluated in terms of its loop misclosure. Theoretically,

as the walk was a closed loop, the final footstep should return the user to the

starting position. The distance between the start and end point is thus taken

as the error.

Although this type of metric is very common in evaluating IMU perfor-

mance, when applied to pedestrian motion tracking it can be somewhat mis-

leading. This is because many systematic errors accumulated when travelling
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will be re-compensated on the return journey. For example, should the system

consistently over-estimate the step length, then at the end of a straight line

walk the error will be at a maximum. However, when the user walks back to

their starting position the system will carry on over-estimating the step length

and so the final error will be small.

3.5.3 Results Type 1 Walk

Three Type 1 walks were conducted and the results are shown in Figures

3.20 to 3.25. We can see that as the user walks forward a drift in position

occurs. Figures 3.21, 3.23 and 3.25 illustrate how the drift accumulates, both

in absolute terms and in relation to the distance travelled by the user. They

show that the error, in absolute value, was largest at the “tip” of the walk.

The average maximum error is 0.402 m from the three trials, at the tip of the

walk. This can be contrasted with a average final error of 0.263 m. This is, as

mentioned in 3.5, because of the system compensating for systematic errors on

the return walk. Additionally we can see the effect of the EKF in the velocity

data in Figure 3.19. Any non-zero velocity when the foot is detected as being

stationary is taken as an error and used to correct for the system parameters

of orientation, velocity, position and sensor bias.

Trial Absolute Errors (m)
Final Error Maximum Error Final Percentage Error

1 0.191 0.332 2.11
2 0.326 0.400 3.55
3 0.271 0.475 2.92

Table 3.3: Summary of results for Type 1 walking. Note that the final error
is consistently smaller than the maximum error due to the systematic errors
being compensated.
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Figure 3.17: Image of the system undergoing validation. Here we can see the
left foot is on the ground, signalling that ZUPT and HDR corrections should
be applied.

Figure 3.18: Image of the system undergoing validation. Here we can see the
left foot is on the ground, signalling that ZUPT and HDR corrections should
be applied.
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Figure 3.19: Velocity data from part way through a walk. This shows the effect
of the EKF corrections on the underlying data. If the black markers labelled
‘Step Detection’ have a value of 0 it signals a EKF correction is to be made,
whereas if they have a value of 1 it indicated the foot is in a stride phase.
We can see that at the end of the stride phase if the velocity is non-zero it is
taken as an error an corrected. Though the EKF algorithm described earlier
the velocity errors are correlated to errors in orientation, position and sensor
bias which enables these other system parameters to be corrected.
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Figure 3.20: Path comparison between the IMU and Vicon systems for trial 1.
The black border represents the constraints of the capture volume.
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Figure 3.21: Percentage and absolute errors for the first Type 1 walk. Details
of how the errors are computed are given in Figure 3.16.
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Figure 3.22: Path comparison between the IMU and Vicon systems for trial 2.
The black border represents the constraints of the capture volume.
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Figure 3.23: Percentage and absolute errors for the second Type 1 walk. De-
tails of how the errors are computed are given in Figure 3.16.
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Figure 3.24: Path comparison between the IMU and Vicon systems for trial 3.
The black border represents the constraints of the capture volume.
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Figure 3.25: Percentage and absolute errors for the third Type 1 walk. Details
of how the errors are computed are given in Figure 3.16.
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3.5.4 Results Type 2 Walk

Type 2 walks were then examined. In total, three type 2 walks were conducted.

Figures 3.26 to 3.31 show the results.

We can see from the figures the effect of walking in a closed loop path, and

how it artificially reduces the error. When a loop is completed, or in some cases

shortly afterwards, the error decreases rapidly. This suggests that the testing

methodologies of many previous works, which evaluated the performance solely

based on loop closure, were somewhat inadequate. This is due to the fact that

the error will have been consistently measured at its lowest point, and so does

not give a true indication of the accuracy of the various systems. This effect

can be significant with the percentage error oscillating between 4% and 0.5%

in a typical cycle.

We can also note from a visual inspection of the path comparison that the

system displayed a systematic error where the position drifted to the user’s left.

This systematic error, which is present to a much lesser degree in the Type 1

walk, may be due to several sources. Clearly the initial heading error will be

contributing. In addition, residual biases will be contributing to systematic

yaw drift.

For Type 2 walks Tables such as 3.3 are not included as there are several

loop closures and local maxima. Due to this, for Type 2 walks the results are

better represented by considering Figures 3.26 to 3.31 directly.
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Figure 3.26: Path comparison for trial 1 of the ground truth position as given
by a Vicon system and the motion as given by the IMU system.
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Figure 3.27: Percentage and absolute errors for the first Type 2 walk. Details
of how the errors are computed are given in Figure 3.16.
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Figure 3.28: Path comparison for trial 2 of the ground truth position as given
by a Vicon system and the motion as given by the IMU system.
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Figure 3.29: Percentage and absolute errors for the second Type 2 walk. De-
tails of how the errors are computed are given in Figure 3.16.
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Figure 3.30: Path comparison for trial 3 of the ground truth position as given
by a Vicon system and the motion as given by the IMU system.
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Figure 3.31: Percentage and absolute errors for the third Type 2 walk. Details
of how the errors are computed are given in Figure 3.16.
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3.5.5 Results Type 3 Walk

For the Type 3 walk we were unable to use the Vicon capture system as the

walk went far outside the Vicon capture volume. The purpose of the walk was

to examine the performance in a typical indoor environment and consisted of

entering and exiting multiple rooms.

Hence, we use the previous testing methodologies of evaluating its perfor-

mance in terms of loop misclosure. However, as previously discussed, this is a

vague indication of performance, due to error cancellation in closed loop paths,

and results in the system errors being understated. Therefore, we also make

an estimate of the maximum error on each trial, but without accurate ground

truth data it is only to be taken as a rough figure. This type of walk was

repeated three times and the paths as measured by the IMU system are shown

in Figures 3.32 to 3.33. As we can see, trial 3 showed more significant error

with the heading estimate being incorrectly calculated. This caused the path

to skew and end up rotated in an incorrect position. Again, we can observe

why loop closure is an overestimate of system accuracy. In trial 3 the path

went out of the building constraints by a maximum value of 1.035 m, implying

that, at that particular instance there was at least a 1.035 m error. However,

the final loop close error was only 0.553 m.

The loop close errors for all three walks are summarised in Table 3.4.

Trial Absolute Error (m)
Misclosure Maximum Error Percentage Misclosure

1 0.176 0.47 0.32
2 0.319 1.19 0.58
3 0.553 1.78 1.01

Table 3.4: Table showing the comparison for the loop misclosure and maximum
error for the different type 3 walks. In this case accurate ground truth data
was unavailable and so the maximum error is an estimate. The percentage
misclosure error is the misclosure expressed as a percentage of the total distance
travelled.
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Figure 3.32: Predicted path trajectory for the first Type 3 walk. In this trial
the system showed extremely strong performance The only notable error is
that the path went too close to the wall in the highlighted area.
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Figure 3.33: (Left) the second trial for Type 3 walking. The system showed
generally good performance with the most significant error occurring in the
centre room where the path want outside of the building constraints. This is
highlighted in magenta. (Right) Shows the last Type 3 walk conducted. This
was the weakest of the trials with the path being significantly skewed due to
yaw drift. Although the final loop closure was rather small, we can see from a
visual inspection of the path that significant errors occurred, with a maximum
error in the top highlighted area, but also very significant error in the bottom
highlighted area.
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3.6 Magnetometers

Magnetometers could be a powerful tool for providing heading corrections. It

is known that magnetic fluctuations indoors can case large heading errors. In

literature there are several proposed techniques which can reduce the impacts

of soft iron effects however, in the context of pedestrian motion tracking they

have not been applied extensively. Thus the use of magnetometers was briefly

investigated in this thesis as a potential supplementary sensor. Following the

procedure as described in [33] a HMC5883L sensor was calibrated. However,

using just a single magnetometer performed poorly indoors with the large

magnetic fluctuations. Without developing the full magnetometer array, as

was done in [33], the data was of too low quality to use effectively.

3.7 Conclusions

This chapter has presented a method to calibrate the IMUs without the need

to use external equipment, enabling end user’s to periodically re-calibrate their

systems. Due to a lack of traditional IMU calibration equipment, it was not

possible to compare the equipment free method to the results using standard

approaches for the gyroscope. By using gravity as a reference signal the two ac-

celerometers’ calibration can be examined. The average error over 5 trials was

found to be 0.0324 ms−2 and 0.0196 ms−2 for the first and second accelerome-

ters.

An EKF scheme which uses ZUPT and HDR as error reduction techniques

was implemented. In terms of loop closure it performed very strongly in a

Type 3 walk with a maximum loop closure error of 0.553 m with an average

of 0.349 m. This demonstrates that the relative motion of the user from a

starting position can be tracked well for a walk of a few minutes in duration.

However, due to the accumulation of error the quality of the information will

degrade over time.

Furthermore, Type 2 walks showed similar levels of accuracy to Type 3

walks in terms of loop misclosure as the average loop misclosure in a Type

2 walk was 0.9055% against Type 3 loop misclosure of 0.636%. Additionally
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we have illustrated with the Vicon data for Type 2 walks that the testing

methodologies of several previous works, most notably [17], [13] and [21], which

evaluated the performance of their system in terms of a closed loop path, will

give artificially accurate results. The cyclic nature of closed loop walks will

lead to errors being compensated from the nature of the walk, rather than

the accuracy of the system employed. This was a significant effect with the

percentage error cycling between 0.9% and 4% over a typical walk.

The key contributions of this chapter have thus been to investigate and

analyse the performance of low cost IMUs and see if they are comparable to

higher end systems. Our low cost approach has performed better than certain

works such as [13] obtaining 2-10% loop closure when running ZUPTS and

HDR corrections. On the other hand it was slightly outperformed by other

works such as [17] and [27] which had errors of 0.3% and 0.5% respectively. This

indicates that lower end IMUs can, with proper treatment, provide comparable

results to systems running more sophisticated sensors.
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Chapter 4

Ultrasound

Ultrasound sensors are popular in localisation and tracking applications due

to their low cost and power consumption while still offering high quality data.

In certain environments, such as underwater, they are often the only viable

sensor.

Having examined the performance of inertial navigation using an EKF

we now turn to ultrasound as a potential means of gaining a more accurate

measurement of step displacement. The operating principle behind ultrasound

sensors is examined, before evaluating their performance.

4.1 Piezoelectric Effect

Sound waves at a frequency higher than that of human hearing are classi-

fied as ultrasound waves. Ultrasound devices operate from 20 kHz to several

megahertz depending on their application. Ultrasound sensors work via the

use of the piezoelectric effect, which is the phenomenon of electrical charge

accumulating via the mechanical deformation of a material. It is a reversible

process and substances that exhibit this phenomenon are referred to as piezo-

electric materials. Piezoelectric materials work via the interplay of electrical,

mechanical, and thermal effects thus requiring many parameters to be fully

described.

However, we can give a qualitative description of their operation. First, the
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ceramic transducers are poled, that is, the dipole moments are aligned via an

electric DC field giving the ceramic an overall polarisation. This polarisation

gives the ceramics properties that can be exploited to produce ultrasound

sensors. A mechanical deformation of the ceramic alters the dipole moment

generating a voltage. Should the deformation be compression then a voltage,

of the same polarity as the poling voltage, is created. Vice versa tension causes

a voltage with polarity opposite to that of the poling voltage. In this scenario

the transducer is acting as a receiver, detecting incoming ultrasound waves

which deform the ceramic and thus induce a voltage.

Should the transducer function as a transmitter then a voltage must be

applied to the transducer. If the applied voltage is of the same polarity as the

poling voltage then the ceramic will elongate and its radius narrow. Similarly,

if the voltage is opposite in polarity to the poling voltage the ceramic’s length

will shrink and its radius will increase, By applying an alternating voltage the

rapid changes in dimension causes ultrasound waves to be generated and thus

the transducer acts as a transmitter [69].
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Figure 4.1: (a) Shows how compression of the piezoelectric material causes a
voltage in the same direction to that of the poling voltage. (b) Demonstrates
how tension creates a voltage in the opposite direction to the poling voltage.

The idea behind ultrasonic range finding is simple to conceptualise. An

AC current is applied and thus generates ultrasonic waves. The ultrasound

pulse then reflects off a distant object and returns to the ultrasound sensor.

By deforming the piezoelectric material an electrical signal is generated that
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upon amplification can be readily detected. Thus, by measuring the elapsed

time between the pulse being transmitted and then received the distance that

the ultrasound pulse travelled can be calculated.

4.2 Ultrasound Propagation

Once the transducer has produced an ultrasound pulse it propagates through

the air as a longitudinal wave. Being a mechanical wave, its speed of propa-

gation is affected by the material it is travelling though. If we make the as-

sumption that the medium follows the ideal gas law then the speed of sound,

c, can be expressed as

c =

√
γRT

M
(4.1)

were γ is the adiabatic index, R is the molar gas constant and M is the

molar mass of the gas.

For the majority of cases we can take the speed of sound to be 343.2 ms−1,

corresponding to the average molecular mass of air at a temperature of 20◦C.

Of potential concern is fluctuations in the temperature changing the speed of

sound from our value at 20◦C and thus rendering the time of flight calcula-

tions inaccurate. However, within a normal working environment this effect

is minimal. Temperature variations will only begin to have an effect in very

extreme cases, such as tracking firefighters or other emergency rescue workers

due to the severe heat. Temperature corrections can be applied via the use of

a thermometer however, for the operating conditions under which the tracking

system will be tested in this thesis, such corrections are unnecessary.

4.3 Reflection

All ultrasound systems are affected to various degrees by noise interference

and reflections. Noise effects are typically easier to deal with and can be

minimised by operating at a frequency without much external interference

and filtering around that frequency [70]. Reflection of the emitted pulse can
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cause the sound to travel via a longer route than a direct path and make the

object appear further away than it actually is. Hard surfaces such as walls

and flooring can reflect an ultrasound wave with sufficient amplitude to be

detected by a receiver.

This only becomes a problem should line of sight between the transmitter

and the receiver be lost. If line of sight is maintained then the first pulse to

be picked up by the receiver will be the one that travelled the shortest path

and therefore be the true distance. Any fraction of the emitted ultrasound

wave which scattered off objects and arrives at a later time can be discarded.

However, should line of sight be lost then it is possible for the ultrasound pulse

to reflect off multiple objects and still be detected by the receiver as shown in

Figure 4.2.

In the case of foot tracking, line of sight blockages are relatively rare. Typ-

ically, should line of sight be lost the signal is completely blocked, for example

in the case of travelling up a flight of stairs. To reduce potential problems

arising from reflections we can use prior knowledge of typical gait lengths and

reject values which are significantly larger than the distance a person could

travel in a single step.
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Figure 4.2: Illustration of how ultrasound reflections can cause the measured
length to be much larger [70].

4.4 Ultrasound Navigation via Trilateration

In order to improve upon the results given by the inertial navigation algorithm

a complementary ultrasound navigation system runs in parallel. It functions

via trilateration with five receivers and one transmitter. Due to the limited

angular width of the ultrasound receivers and transmitters there are two tri-

lateration systems one functioning when the left foot is in front, and the other

when the right foot is in front as demonstrated in Figure 4.3.

As stated in Section 2.6, the problem of trilateration can be expressed as

that of determining an object’s location, O(x, y, z), which is the intersection

of the spheres centred on a beacon’s position, B(xi, yi, zi), via
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(a) (b)

Figure 4.3: (a) Illustrates that when the right foot is forward the ultrasound
sensors marked in red are active and are facing the correct direction. (b)
Demonstrates when the left foot is forward the ultrasound sensors marked in
blue are providing the trilateration data.

(x− xi)2 + (y − yi)2 + (z − zi)2 = r2i (4.2)

in which ri is the range measurement form the i th beacon.

Through manipulation of the above equation we can express them in the

following linear system

Ax̂ = b (4.3)

where

A =


x2 − x1 y2 − y1 z2 − z1
x3 − x1 x3 − x1 z3 − z1

...
...

...

xn − x1 xn − x1 xn − x1

 (4.4)

x̂ =

x− x1y − y1
z − z1

 (4.5)
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b =
1

2


r21 − r22 + (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

r21 − r23 + (x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2
...

r21 − r2n + (xn − x1)2 + (yn − y1)2 + (zn − z1)2

 (4.6)

Theoretically without noise or interference only 4 beacons are needed to

obtain O(x, y, z) in a 3 dimensional case. However, when errors arise in both

the range measurements and the positions of B(xi, yi, zi) then any solution

calculated through the above would be inaccurate. Hence, a more sophisticated

treatment is required and we turn to linear and non-linear least squares to deal

with noisy measurements.

Considering a 2D case we define the vector R to be,

R =

[
x

y

]
(4.7)

we can use the least squares method to give a good initial estimate of the

foot location, R1:

R1 = (ATA)−1AT b (4.8)

To improve the results further we can use a non-linear least squares algo-

rithm as presented in [49] and [71]. If r̂i is the actual distance between the

beacon and the object, then to minimise the square of the errors the function

F (x, y, z) =
n∑
i=1

(r̂i − ri)2 (4.9)

must be minimised. To do this, an initial guess is obtained using the linear

least squares algorithm and a Newton iterator is then used to find an optimal

solution. Differentiating the above equation gives

∂F

∂x
= 2

n∑
i=1

fi
∂fi
∂x

(4.10)

where fi is
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fi(x, y, z) =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 − ri (4.11)

by defining the vector ĝ as

ĝ = 2JTf̂ (4.12)

where

J =



∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

...
...

∂fn
∂x

∂fn
∂y


, f̂ =


f1

f2
...

fn

 , ĝ =

∂F∂x
∂F
∂y

 . (4.13)

Then Newton iteration gives

Rk+1 = Rk − (JT
k Jk)−1JT

k f̂k (4.14)

Equation 4.14 is iterated 50 times to achieve convergence of the results.

Once the x and y displacement have been calculated for an individual

footstep they must be transformed into the global co-ordinate frame. The

total step length as obtained from the ultrasound is given by,

LUS =
√

∆x2 + ∆y2. (4.15)

where ∆x and ∆y are the displacements in the local frame of reference of

a particular footstep. Therefore LUS is then rotated to the global co-ordinate

system though,

xUSk = LUScos(θk − η) (4.16)

yUSk = LUSsin(θk − η) (4.17)

where θk is the yaw at the end of the footstep and η is the difference between

the user’s final heading and the direction of the step [68]. These angles are
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illustrated in Figure 4.4.

𝛿θ1

η1

𝛿θ2
𝛿θ3

η2

η3

l1
l2

l3

Initial foot 
position

Figure 4.4: Diagram illustrating the parameters δθ, the change in yaw for every
step and η, the difference between the user’s final heading and the direction
of the step, for three separate steps l1−3. θk is thus obtained by the sum of
all the successive yaw changes. The blue ellipses represent the user’s foot and
the dashed lines indicate the user’s heading after taking a footsetp. Therefore,
to calculate the direction in which ln must be projected the angle η must be
obtained.

4.4.1 Sensor Weighting

Once xUSk and yUSk are obtained, which correspond to the displacement over

a single step according to the ultrasound system, they are combined with the

step displacement as given by the IMU via a maximum likelihood estimation

(MLE).

To determine the relative weights we begin by stating that the error in the

global co-ordinate frame for a single step is proportional to the displacements

in the x and y directions.

Additionally, the accuracy of the ultrasound system was found to reduce

as the change in yaw over a single footstep, δθk, increased. Therefore, the

errors assigned to the IMU data were multiplied by cos2(δθk). In other words,

we increase the weightings on the IMU data in relation to the ultrasound

depending on the value of δθk. It should be noted that, while several checks to

ensure data validity have been implemented, due to the approximate nature of

how the sensor weightings are carried out, if poor ultrasound data is fed into

the algorithm it may have an undesired effect of degrading the results. In other

words improvement due to using the ultrasound sensors is not a mathematical

certainty, rather an experimentally derived observation.
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4.5 Ultrasound Navigation Summary

The ultrasound system has several steps which enable it to offer an improved

step length measurement. This is then combined with the IMU results as

shown in Figure 4.5. The ultrasound system is an optional step, and can be

skipped should the cost of the additional sensors be too much for a potential

user.

The ultrasound algorithm is shown in a pseudo-code fashion in Algorithm 1,

which illustrates the mathematics of the system and how it was implemented.

IMU Data Navigation
Algorithm

PSD

Step
Detection

EKF

IMU
Motion

US
Data

Remove
Spikes

Trilateration MLE

Motion
Tracked  

Refined
Tracking

Optional 
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D
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Figure 4.5: Block diagram illustrating how the optional ultrasound system
interacts with the core IMU system [59].
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Algorithm 1 Ultrasound Algorithm

1: procedure Ultrasound(USi,xi−1, yi−1, η, θi, δθi, x
IMU
i , yIMU

i )
2:

3: Description of input data
4:

5:

6: USi . Raw ultrasound range measurements for step i
7: xi−1, yi−1 . Position calculated for previous step
8: θi, δθi . Angle information for step i
9: xIMU

i , yIMU
i . Position calculated for step i according to IMU data.

10:

11: Start of algorithm
12:

13:

14: Check that sufficient data is present to compute the step length
15: V alid← Check V alid DataSet(USi)
16: if V alid = true then
17: Filter Range measurements for spikes
18: Filtered Data← Filter Extremes(USi)
19:

20: Obtain step length
21: LUS ← Trilateration(USi)
22:

23: Rotation
24: xUSi = xi−1 + LUScos(θi − η)
25: yUSi = yi−1 + LUSsin(θi − η)
26:

27: Maximum Likelihood Estimation
28: (xi, yi)←MLE(xUSi , yUSi , xIMU

i , yIMU
i , δθi)

29: end if
30:

31: Return (xi, yi)
32: end procedure
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4.6 Ultrasound Sensors and Setup

The ultrasound modules used are a modified HC-SR04 sensors. These ultra-

sound sensors have separate transmitter and receiver transducers and have a

maximum range of 4 m with a 2 cm minimum measuring distance.

Figure 4.6: The HC-SR04 ultrasound sensor. The transducer to the right is
the receiver while that on the left is the transmitter. Additionally, we can see
the crystal clock mounted across the top as well as the trigger and echo pins.

The HC-SR04 modules have four pins: ground, Vin, trigger, and echo. The

HC-SR04 operate by waiting for a signal on the trigger pin. When the pin is

set to high for at least 10µs it signals a range measurement is to be made.

The transmitter then emits 8 cycles of 40 kHz ultrasonic pulses. The HC-SR04

then raises its echo pin and waits for the reflected ultrasound wave. Upon

receiving the returning ultrasound the echo pin is then brought to low. By

timing the duration that the echo pin was set to high, the distance travelled

by the ultrasound can be obtained. This cycle is illustrated in Figure 4.7.

The HC-SR04 modules are originally designed to have the transmitter and

receiver on the same module. However, for our application we require sepa-

rate transmitter/receivers. To achieve this the transmitter on a HC-SR04 was

covered. This prevents the ultrasound pulse from propagating. The echo pin

is still raised to high and awaits a ultrasound pulse to arrive at it. Hence, the

HC-SR04 effectively acts as a standalone receiver. By employing another HC-

SR04 to act as a standalone transmitter, a transmitter - receiver combination

is achieved and the distance between them can be obtained.

The devices are synchronised via an infra-red (IR) pulse from a IR LED
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Figure 4.7: HC-SR04 Timing Diagram.

mounted on the left shoe which has the ultrasound receivers. As soon as the

IR pulse is sent the receivers are set to begin timing. Likewise, as soon as the

IR pulse is detected on the right shoe which has the ultrasound transmitters

the ultrasound pulse is sent.

The IR pulse is picked up by a TSOP4038 IR receiver. The IR receiver is

set to only receive signals which operate at 38 kHz. This has the advantage of

filtering out ambient sources of IR radiation, such as filament light bulbs, and

so provide a more reliable detection method.

In total 16 HC-SR04 modules are used; there are ten receivers and six

transmitter types. They are arranged so that both the forwards and backwards

directions on each foot are covered. The six transmitters are arranged into two

clusters of three, one pointing forward and the other backwards. This was done

so that the three transmitters would act as a single, larger transmitter with a

much wider beam angle. Both the block diagram and the physical layout of

the system are shown in Figures 4.8 and 4.9.
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Figure 4.8: Block diagram illustrating the set-up of the ultrasound sensors.
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Figure 4.9: Physical layout of the ultrasound transmitters on the left and right
shoes. On the right shoe we can see the 3 front facing ultrasound transmitters
clustered together to act as a single transmitter with a wider beam angle.
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The HC-SR04 had a further modification implemented to improve their

use for motion tracking. The standard transducers which are mounted onto

the HC-SR04 have a beam angle of 15◦. This means that the beam is very

focused and can be useful to detect distant objects. However, a 15◦ beam angle

is too narrow for our purposes and the distances that need to be measured

are well under a meter in length. Therefore, the transducers were removed

and replaced with Prowave 400SR120 or Prowave 400ST120 for receiver and

transmitter transducers respectively. The Prowave transducers have a beam

width of 85◦ which made them far more reliable for our system.

An additional alteration had to be carried out on the HC-SR04 to enable

them to function reliably as a transmitter-receiver pair. Should a receiver set

its echo pin high and fail to detect an ultrasound pulse, it would frequently

remain in a “locked” state with the echo pin stuck on high and be unable

to receive range measurements. The exact cause of this problem was not

fully understood as, according to the manufacturers specifications, the echo

pin should fall to a low state after a brief interval if no ultrasound pluses

are received. To solve this issue a transistor switch was installed as shown

in Figure 4.10. At the beginning of every range measurement the HC-SR04

sensors would be powered down for 5µs to ensure that all the pins were in the

low state. The full sequence of events required to make a range measurement

is shown in Figure 4.11.

A minimum of three receivers had to successfully detect a range measure-

ment for the trilateration system to function. However, five receivers were used

to provide range measurements, both for redundancy and, if more than three

range measurements are available then the position can be determined with

more accuracy.
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Figure 4.10: Circuit diagram for the transistor switch in controlling the power
to the HC-SR04 modules. If a range measurement is to be made the trigger
pin is set to high which cuts off power to the ultrasound sensors ensuring that
all the pins are in a low state. After 5µs the trigger pin is returned to low and
power is restored to the ultrasound sensors.
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Figure 4.11: Block diagram illustrating the sequence of events occurring on
both the left and right shoes

119



4.7 Evaluation

The ultrasound system was evaluated in the same manner as the IMU sys-

tem. The same walks previously conducted had the ultrasound measurements

added to the post-processing. The results obtained using the IMU and the

IMU/ultrasound (IMU/US) systems are compared.

4.7.1 Results Type 1 Walk

The results shown in Section 3.5.3 had the ultrasound results included in the

software and the comparison between the Vicon, IMU and IMU/US systems

is conducted. As we can see from Figures 4.13 to 4.18 the ultrasound system

resulted in a slight error reduction as the absolute and percentage error are

consistently smaller than when using the IMU only. To gain a more quanti-

tative measure of how the ultrasound improved the results Figures 4.14, 4.16

and 4.18 are integrated. Therefore, we compare the area under the error curve

for the IMU and IMU/US systems. The results of carrying out the area com-

parison for the error curves is shown in Table 4.1.

Trial Total Absolute Error (m) Total Percentage Error
IMU/US IMU Ratio IMU/US IMU Ratio

1 2.49 2.50 0.996 59.81 59.93 0.998
2 1.79 2.59 0.691 51.52 67.43 0.764
3 3.63 4.03 0.901 101.6 112.3 0.905

Table 4.1: Table to evaluate the performance of the IMU system and the
IMU/US setup via integrating the error curves.
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Absolute Error (m)
Trial Final Error Maximum Error Final Percent Error

IMU/US IMU IMU/US IMU IMU/US IMU
1 0.179 0.191 0.331 0.332 1.98 2.11
2 0.228 0.326 0.302 0.400 2.49 3.55
3 0.257 0.271 0.452 0.475 2.78 2.92

Table 4.2: Comparisons of key results for the IMU and IMU/US systems in
Type 1 walks.

Figure 4.12: Picture showing both feet on the ground during walking. At this
point ultrasound measurements are taken giving the displacements between
the two feet.
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Figure 4.13: Path comparison for trial 1 of the ground truth position as given
by a Vicon system and the motion as given by the shoe mounted systems.
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Figure 4.14: Percentage and absolute errors for the first Type 1 walk. For this
particular trial the ultrasound offered only marginal improvement on the IMU
results. Details of how the errors are computed are given in Figure 3.16.
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Figure 4.15: Path comparison for trial 2 of the ground truth position as given
by a Vicon system and the motion as given by the shoe mounted systems.
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Figure 4.16: Percentage and absolute errors for the second Type 1 walk. We
can see the improvement in accuracy due to the ultrasound measurements.
Details of how the errors are computed are given in Figure 3.16.
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Figure 4.17: Path comparison for trial 3 of the ground truth position as given
by a Vicon system and the motion as given by the shoe mounted systems.
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Figure 4.18: Percentage and absolute errors for the last Type 1 walk. We can
see the improvement in accuracy due to the ultrasound measurements. Details
of how the errors are computed are given in Figure 3.16.
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4.7.2 Results Type 2 Walk

The same procedure is repeated for the Type 2 walks; the results as given

by the IMU/US system are compared to both using the IMU in a standalone

fashion and the ground truth data. Similarly to the Type 1 walk, the error

when using the ultrasound data is reduced compared to using the IMU alone.

The integrals of the error curves are shown in Table 4.3 to better quantify

the effect of the ultrasound system. In addition we can see the cyclic effect of

walking in a closed loop fashion in the results, similarly to the results presented

in section 3.5.4.

Trial Total Absolute Error (m) Total Percentage Error
IMU/US IMU Ratio IMU/US IMU Ratio

1 14.49 18.39 0.788 89.86 133.2 0.675
2 20.29 23.18 0.875 187.5 210.7 0.889
3 14.32 16.03 0.893 110.3 121.9 0.905

Table 4.3: Table to evaluate the performance of the IMU system and the
IMU/US setup via integrating the error curves.
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Figure 4.19: Path comparison for trial 1 of the ground truth position as given
by a Vicon system and the motion as given by the shoe mounted systems.
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Figure 4.20: Percentage and absolute errors for the first Type 2 walk. We can
see the improvement in accuracy due to the ultrasound measurements. Details
of how the errors are computed are given in Figure 3.16.
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Figure 4.21: Path comparison for trial 2 of the ground truth position as given
by a Vicon system and the motion as given by the shoe mounted systems.
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Figure 4.22: Percentage and absolute errors for the second Type 2 walk. We
can see the improvement in accuracy due to the ultrasound measurements.
Details of how the errors are computed are given in Figure 3.16.
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Figure 4.23: Path comparison for trial 3 of the ground truth position as given
by a Vicon system and the motion as given by the shoe mounted systems.
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Figure 4.24: Percentage and absolute errors for the last Type 2 walk. We can
see the improvement in accuracy due to the ultrasound measurements. Details
of how the errors are computed are given in Figure 3.16.
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4.7.3 Results Type 3 Walk

As the Vicon motion capture system was unavailable for the Type 3 walks, the

effect of the ultrasound is considered in terms of loop closure and, rather more

qualitatively, from a visual inspection of the path given by the IMU/US system.

The results for including the ultrasound data are shown in Figures 4.25 to 4.26.

Unlike the Type 1 and Type 2 walks the IMU/US system gave essentially

equivalent performance to an IMU standalone system in a Type 3 walking

scenario. The loop closures and maximum estimated error are summarised

in Table 4.4. The lack of improvement in performance is due to the more

“curvy” type of walking carried out, and so the ultrasound system suffers

from more shadowing effects, therefore it fails to gather appropriate data for

certain footsteps. This leads to the fact that the systematic effects are not

cancelled out as effectively. In other words, due to the asymmetric walking

trajectory the ultrasound system may function better on the outwards journey

compared to the return journey. This means that systemic errors, which are

always cancelled out in the case of an IMU functioning in a standalone manner,

will not be fully removed in the case of an ultrasound system.

Absolute Error (m)
Trial Misclosure Maximum Error Percent Misclosure

IMU/US IMU IMU/US IMU IMU/US IMU
1 0.143 0.176 0.48 0.47 0.26 0.32
2 0.551 0.319 0.92 1.19 1.00 0.58
3 0.439 0.553 1.74 1.80 0.80 1.01

Table 4.4: Comparisons of key results for the IMU and IMU/US systems in
Type 3 walks.
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Figure 4.25: Path travelled using the IMU alone, and when combined with
ultrasound corrections, for the first Type 3 walking trial.
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Figure 4.26: Path travelled using the IMU alone, and when combined with
ultrasound corrections, for the second and third Type 3 walking trial.
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4.8 Conclusions

When combining ultrasound trilateration with IMU system the additional ul-

trasound data gave a small, but noticeable, improvement in accuracy for Type

1 and 2 walks. The average reduction in the total error across both Type

1 and 2 walks was 15%. This improvement is due to the step length being

measured to a higher degree of accuracy. The observed improvement was not

uniform however, with some Type 1 and 2 walks benefiting far more from the

ultrasound sensors then others. For example trial 1 in Type 1 walking had a

ratio of absolute error accumulation between IMU/US and IMU of 0.996. In

other words there was less than 1% improvement. On the other had trial 1

in Type 2 walking had a ratio of absolute errors of 0.788, i.e. close to 22%

reduction in errors.

In Type 3 walking the IMU/US system resulted in equivalent with the

average final loop misclosures being 0.636% with the IMU and 0.686% with

the IMU/US system. This is due to the ultrasound system not fully cancelling

out systematic effects in Type 3 walks, and if small improvements due to the

ultrasound are present the vague ground truth data in Type 3 walks makes

such small improvements impossible to measure.

Despite the ultrasound improving the results in Type 1 and 2 walking

ultrasound provides no information about the orientation of the user. Hence,

the uncertainty in the yaw, which was the main source of error, continues to

dominate.

The contribution of this chapter has been to present a novel wearable ul-

trasound based system that can aid in pedestrian navigation. Very few works

in literature explored this idea with ultrasound sensors generally being used as

fixed infrastructure beacons. We have demonstrated that wearable ultrasound

sensors are a viable technology to incorporate in navigation. However, the sys-

tem shown here is simply a proof of concept with further work being required

to make it feasible in everyday life. Improvements necessary include a better

ergonomic design, more accurate error models for the ultrasound sensors, and

making the system less susceptible to ultrasound signal blockage.
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Chapter 5

Map Constraints

Until now we have not made use of any prior knowledge of environmental

constraints such as walls and other impassable features. Although it represents

a significant increase in the amount of information requested from the user, it

can provide very strong error correction techniques.

As we have seen, the largest source of error in a IMU based navigation

system is determining the user’s heading. This chapter described the particle

filter which is used to enforce the building constraints which corrects for both

the step length, and crucially, the heading of the user.

5.1 Particle Filter Overview

Tracking the user’s motion using the IMU/US system suffers the problem that

the positional accuracy within a global co-ordinate frame degrades over time

as the accumulation of errors results in unbound error growth.

A known map of the environment will limit the possible movement of the

user to within known areas. Motion constraining obstacles, primarily walls,

thereby can be used to correct for both positional uncertainty and heading

errors.

To enforce environmental constraints a particle filter is employed. It re-

ceives data from the IMU/US system and by using environmental knowledge it

corrects the calculated foot position. The accuracy of the particle filter scales
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with the number of particles used. In this case the number of particles was

set to 2000. The drawback of using a large number of particles is that the

algorithm is very computationally expensive, and in this current implementa-

tion, is too slow to be performed in real time. Scaling down the number of

particles in conjunction with a more efficient implementation could reduce the

computational time down sufficiently for real time tracking to be performed.

However, that is left as future work.

The particle filter receives information from the IMU/US system at every

footstep in the form of,

S = (l, δθ, η) (5.1)

where l and δθ are the step length and change in yaw respectively. η

represents the difference between the step direction and the user’s heading.

Details of these parameters can be found in Figure 4.4. This data is passed

though three stages which constitutes the particle filter algorithm. The stages

are particle propagation, particle weighting and re-sampling, and clustering.

5.2 Particle Propagation

In the propagation step, the new particle’s position is calculated from its pre-

vious state and the step information given by the navigation algorithm. The

step length, l, and change in yaw, δθ, are initially perturbed by lpert and θpert

drawn from our error model,

l′ = l + lpert (5.2)

δθ′ = δθ + θpert (5.3)

The values of lpert and θpert are modelled as a normal Gaussian distribution

with zero mean and standard deviation of 0.1 m and 0.1 rad respectively. The

standard deviation is somewhat arbitrarily chosen to ensure that the particles

are sufficiently spread, so that in the case of large IMU/US errors the particle

filter is able to effectively function. Should the standard deviation be made
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too small then large errors could cause the entire particle cloud to cross a wall.

The new yaw, θk, and position, (xk, yk), are computed from the previous

step parameters

θk = θk−1 + δθ′ (5.4)

xk = xk−1 + l′cos(θk − η) (5.5)

yk = yk−1 + l′sin(θk − η) (5.6)

where η is the difference between the user’s final heading and direction of

the step as previously defined in 4.16.

5.3 Particle Weighting and Re-sampling

The particle weighting stage updates the weight of a particle based on how

likely it is to represent the true motion of the user. Here a simple weighting

scheme is adopted: if the particle did not cross any walls then it represents a

potential motion of the user and is given a weighting of 1/N where N is the

number of particles. However, if the particle crossed a wall then it obviously

represents an impossible motion and is given a weight of 1/10000N . The

reason for not assigning it a weight of zero is in the case of all the particles

crossing a wall. In that case assigning a weight of zero would kill off the entire

particle cloud. However by assigning a low weight it allows the particle filter

to re-localise itself on subsequent steps.

Should we simply stop the algorithm at this stage it would work well in

tracking the user over relatively short distances. However, as the number

of steps increase, the number of high weight particles will gradually reduce

as more and more particles cross walls and are assigned a low weight. This

problem will lead to what is known as the weight degeneracy problem, in which

the user’s position is represented by a handful of high weight particles.

This has a two fold negative effect. Firstly, the belief distribution of the

user’s location is badly represented. For a particle filter to be effective a large

amount of particles need to present and thus its accuracy is reduced. Sec-
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ondly, the low weight particles are still passing through the particle filtering

algorithm, leading to the bulk of the computational time being spent on par-

ticles with a negligible weight.

To solve this re-sampling can be implemented. A set of new particles are

generated by randomly sampling the particles proportionally to their weights.

This ensures high weight particles are duplicated and low weight ones are

removed.

5.4 Clustering

A problem which may occur by using a particle filter in symmetric environ-

ments is a splitting of the particle cloud. In other words, there are two locations

which are possible candidates for a user’s true location. In this scenario, tak-

ing an average of all the particles would not make much sense as it is obvious

that a large number of the particles have ended up in an incorrect position

and furthermore the average location of all the particles is likely to place the

user in a physically impossible position. Consider the two scenarios presented

in Figure 5.1,

Ground Truth

IMU 
Prediction
Particle 
Direction

(a) (b)

Figure 5.1: Both (a) and (b) demonstrate how the particle cloud can diverge.
This clearly shows how computing a direct average will yield inaccurate results
as it will give a location situated in an impassible terrain feature. By applying
a clustering algorithm it is possible to exclude the smaller particle cloud from
influencing the calculated position.

As we can see taking an average places the user in a physically impossible

position. Hence, a more sophisticated approach is required. To do this we

group the data into clusters to determine the user’s position. The subtractive

clustering algorithm proposed by Chiu is used [72]. The subtractive clustering
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algorithm is an extension of the mountain method first proposed by [73]. In

the mountain method a grid is generated, and each grid point is assigned

a potential value based on the number and distance of nearby data points.

Therefore, should a grid point have many data points surrounding it, then that

particular grid point has a high potential. The grid point with the highest

potential value is taken as the cluster centre. The next step is to reduce

the potential of all the grid points near the first cluster centre and repeat

the procedure until all of the grid points have a potential reduced below a

given threshold. The main drawback of the mountain method is that the

computational load depends on the resolution of the grid, trading precision

with computational complexity, and furthermore the higher the dimensionality

of the problem the larger the computational time.

The subtractive clustering method overcomes these problems by consider-

ing each data point as a potential cluster centre. This eliminates the require-

ment of specifying a grid resolution and the computational complexity grows

with the number of data points. The algorithm works as follows; firstly the

potential Pi of a particle xi is given by

Pi =
n∑
j=1

e−α||xi−xj ||
2

(5.7)

where

α =
4

r2a
(5.8)

Therefore the potential of a particle is a function of its separation to other

data points. The distance ra determines how far particles contribute to the

potential. This is one of the major differences of subtractive clustering com-

pared to the mountain method, i.e. the potential is computed for a particle

rather than a grid point. Additionally, the influence of data points decreases

exponentially with the square of the distance, rather than the distance itself, as

is the case in the mountain method. The data point with the highest potential

is then declared as the first cluster centre.

Usually the subtractive clustering algorithm will reduce the potential of
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particles nearby the first cluster centre, and then repeat the procedure finding

ever more cluster centres until the potential of all the particles is below a

certain value. However, in this situation there can only be one location for the

user. Therefore finding additional cluster centres is unnecessary, and we take

the first cluster centre to be the true location of the user.

5.5 Particle Filter Summary

The particle filter algorithm is composed of a few key stages which allow it to

take into account environmental information into the predicted user position.

The stages which need to occur are shown in Figure 5.2. Figure 5.2 also shows

how the particle filter algorithm integrates with the IMU and ultrasound based

systems.

Below Figure 5.2 Algorithm 2 displays the particle filter in a pseudo-code

manner illustrating the mathematics more clearly than a block diagram.
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Figure 5.2: Block diagram illustrating how the different systems interact with
each other as well as briefly examining their key stages [59].
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Algorithm 2 Particle Filter Algorithm

1: procedure Particle Filter(xk−1, yk−1, l, θi, δθi, Poly)
2:

3: Description of input data
4:

5: xi−1, yi−1 . Position calculated for previous step i.
6: θi, δθi, li . Data for step i.
7: Poly . 2D ploygon representing the map
8:

9: Start of algorithm
10:

11: Perturb the step parameters
12: l′ ← li + lpert
13: δθ′ = δθi + θpert
14:

15: Update particles position and heading
16: θi = θi−1 + δθ′

17: xi = xi−1 + l′cos(θi − η)
18: yi = yi−1 + l′sin(θi − η)
19:

20: Determine if the particles has an invalid trajectory
21: Intersect(xi,xi−1,yi,yi−1, Poly)
22:

23: Weight the particles
24: w ← Weight(Intersect)
25:

26: Re-sample the Particles
27: xi, yi ← Re-Sample(xi, yi, w)
28:

29: Determine Cluster Centre
30: xi, yi ← subclust(xi, yi)
31: Return (xi, yi, θi)
32: end procedure
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5.6 Evaluation

The same set of walks were examined when a particle filter was applied to

them. The particle filter received step information from the IMU/US system

and then imposed movement constraints. Therefore, this final set-up is referred

to as IUP as it is a combination of Inertial+Ultrasound+Particle filtering

algorithms.

It should be highlighted that while the IMU and IMU/US systems could

have been modified to generate results in real time (as discussed in section

3.4) the IUP system, in its current implementation, is too slow to run in a

real time fashion. To run the particle filter algorithm with 2000 particles takes

1.75 s per step. As typical walking is at a rate of 1-1.5 steps per second the

particle filtering algorithm would need to be able to run significantly faster for

real time data to be generated.

5.6.1 Results Type 1 Walk

The IMU/US results as shown in Section 4.7.1 were then incorporated into the

particle filter framework. The results are shown in Figures 5.3 to 5.8.

As we can see, the walk is well within the environmental constraints and

so the particle filter has little way in which to provide assistance. Table 5.1

shows the integral of Figures 5.4, 5.6, and 5.8 as to have a more quantitative

metric for measuring the different walks.

Trial Total Absolute Error (m) Total Percentage Error
IUP IMU/US Ratio IUP IMU/US Ratio

1 1.02 2.49 0.410 30.51 59.81 0.510
2 1.25 1.79 0.698 35.91 51.52 0.697
3 2.88 3.63 0.793 86.41 101.6 0.850

Table 5.1: Table comparing the errors when using the IMU/US system with
and without particle filtering for Type 1 walking via integrating the error
curves.
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Absolute Error (m)
Trial Final Error Maximum Error Final Percent Error

IUP IMU/US IUP IMU/US IUP IMU/US
1 0.070 0.179 0.151 0.331 0.78 1.98
2 0.230 0.228 0.230 0.302 2.51 2.49
3 0.237 0.257 0.390 0.452 2.56 2.78

Table 5.2: Comparisons of key results for the IMU/US and IUP systems in
Type 1 walks.
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Figure 5.3: Path comparison for trial 1 of the ground truth position as given by
a Vicon system and the motion as given by the IMU/US and the IUP systems.
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Figure 5.4: Percentage and absolute errors for the first Type 1 walk. Details
of how the errors are computed are given in Figure 3.16.
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Figure 5.5: Path comparison for trial 2 of the ground truth position as given by
a Vicon system and the motion as given by the IMU/US and the IUP systems.
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Figure 5.6: Percentage and absolute errors for the second Type 1 walk. Details
of how the errors are computed are given in Figure 3.16.
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Figure 5.7: Path comparison for trial 3 of the ground truth position as given by
a Vicon system and the motion as given by the IMU/US and the IUP systems.
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Figure 5.8: Percentage and absolute errors for the last Type 1 walk. Details
of how the errors are computed are given in Figure 3.16.

144



5.6.2 Results Type 2 Walk

For Type 2 walks, environmental constraints play a much larger role as the

user walked close to the wall edges. The results for the particle filter are

shown in Figures 5.9 to 5.14. The particle filter provides a strong source of

error corrections and keeps the maximum accumulated error under 0.3 m in

the majority of footsteps.

Additionally, we can note that the particle filter removes a significant

amount of systematic error accumulation, with all 3 walks showing an ap-

proximately constant absolute error of around 0.15-0.2 m.

Table 3.40 shows the integrals of the error curves and we can see that the

absolute error accumulated when using the particle filter is much smaller than

when using the IMU/US system, and more notably from Figures 5.10, 5.12

and 5.14, is that the error does not grow with the number of steps taken.

Trial Total Absolute Error (m) Total Percentage Error
IUP IMU/US Ratio IUP IMU/US Ratio

1 6.18 14.49 0.427 56.46 89.86 0.628
2 5.20 20.29 0.256 65.80 187.5 0.351
3 4.95 14.32 0.346 51.11 110.3 0.463

Table 5.3: Table comparing the errors when using the IMU/US system with
and without particle filtering for Type 2 walking.
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Figure 5.9: Path comparison for trial 1 of the ground truth position as given by
a Vicon system and the motion as given by the IMU/US and the IUP systems.
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Figure 5.10: Percentage and absolute errors for the first Type 1 walk. Details
of how the errors are computed are given in Figure 3.16
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Figure 5.11: Path comparison for trial 2 of the ground truth position as given
by a Vicon system and the motion as given by the IMU/US and the IUP
systems.
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Figure 5.12: Percentage and absolute errors for the second Type 2 walk. De-
tails of how the errors are computed are given in Figure 3.16
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Figure 5.13: Path comparison for trial 3 of the ground truth position as given
by a Vicon system and the motion as given by the IMU/US and the IUP
systems.
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Figure 5.14: Percentage and absolute errors for the third Type 2 walk. Details
of how the errors are computed are given in Figure 3.16
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5.6.3 Results Type 3 Walk

The Type 3 walk has the largest amount of environmental interaction as the

user entered and exited a number of rooms, as well as travelled repeatedly

down a corridor. The results for the particle filtering algorithm receiving data

from the IMU/US system are shown in Figures 5.15 to 5.16. As we can see the

particle filter kept the walk within the building constraints at all times, and

therefore the overall trajectory was far more accurate despite the loop closure

being slightly higher. For Type 3 walking with the IUP system it was not

possible to accurately determine the maximum error as no ground truth data

was present. The IUP system gave results which where consistently very close

to the path travelled with no large, obvious deviations.

Trial Absolute Error (m) Percentage Error
IUP Misclosure IMU/US Misclosure IUP IMU/US

1 0.592 0.143 1.07 0.26
2 0.423 0.551 0.77 1.00
3 0.326 0.439 0.59 0.80

Table 5.4: Loop misclosure for Type 3 walking obtained using the IMU/US
system with and without particle filtering. The particle filter gave a slightly
higher loop misclosure on trial 1, however from a visual inspection of the path
in Figure 5.15 we can see the overall trajectory is more accurate as the particle
filter results centred the path to be in the middle of the corridors.
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Figure 5.15: Figure showing the effect of including the particle filtering algo-
rithm (IUP) on the IMU/US results.
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Figure 5.16: Figure showing the effect of including the particle filtering algo-
rithm (IUP) on the IMU/US results.
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5.7 Conclusions

The particle filter can provide very strong error reduction techniques. Of most

importance it provides a way to correct for the drift in heading and so, should

a map be available tracking over prolonged periods of time can be performed.

However, this does come with drawbacks. Namely the inherent requirement

for a map means that a user is constrained to only pre-known environments.

Additionally there is a very high computational cost as for the filter to be

effective a large number of particles need to be used. Hence, this represents

a large jump in the computational time with each step requiring 1.75 s of

computation.

For Type 2 and 3 walking the particle filter is shown to drastically reduce

the error accumulated. The path trajectories in Type 3 walking was far better

contained in the building constraints and, in two of three cases, also had a

lower loop misclosure. For Type 2 walking the errors as shown in Figures 5.10,

5.12 and 5.14 was shown to be far smaller and exhibited a much smaller cyclic

error pattern. Indeed the average total absolute error for the IUP system was

just over a third (0.343) of the average total absolute error for the IMU/US

system.

On the other hand, should the walk be well contained within the building

parameters, for example if the user is walking near the middle of a large room,

the particle filter does not provide as much of an improvement. This is due

to the fact that there are no environmental constraints near the user that can

be utilised by the particle filter. We can see this effect in a Type 1 walk with

the average total absolute error for the IUP system being a factor of 0.6336

smaller compared to the IMU/US system.

Type 3 walking is more challenging to evaluate precisely without accurate

ground truth data. The final loop misclosure was 0.447 m for the IUP system

against 0.378 m for the IMU/US setup. However, despite the loop misclosure

being slightly higher it is incorrect in saying that the IUP system performed

worse in Type 3 walking as from a visual inspection of Figures 5.15 to 5.16 the

overall path trajectory is far more accurate.

The innovation of this chapter has been to demonstrate that with a known
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map low cost sensing systems are just as effective at tracking compared to

high end systems using a map. Our system had a typical tracking accuracy

of ∼0.25 m while [39] tracked a user to under 0.75 m in 95% of cases and [38]

achieving accuracy of 0.743 m. Additionally we have used a subtractive clus-

tering algorithm which was able to prevent the particle cloud from splitting in

Type 3 walking. The use of a subtractive clustering algorithm to account for

highly symmetric environments has not been used in literature to our knowl-

edge.
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Chapter 6

Conclusion

6.1 Research Contributions

This work has shown the potential of using IMUs costing ∼£30 for tracking

the motion of a pedestrian. This was done by firstly calibrating the IMU

without the use of sophisticated equipment via a series of minimisations and

constraints. However, the lack of traditional calibration equipment meant that

it was not possible to compare the calibration parameters for the gyroscopes

obtained in this equipment free manner to those acquired though a traditional

calibration procedure. For the accelerometers, gravity can be used as a refer-

ence signal and the average error for the two accelerometers was 0.0324 ms−2

and 0.0196 ms−2.

Once the IMUs were calibrated, an Extended Kalman filter (EKF) which

tracked the error states accumulated by a inertial navigation system was im-

plemented. When the foot was detected as being stationary on the ground the

EKF applied zero velocity and heuristic drift reduction updates. This enabled

the user’s motion to be effectively tracked.

A complementary wearable ultrasound trilateration system was developed

which measured the user’s step displacement. This information was then com-

bined with the IMU data via a maximum likelihood estimator (MLE). This

resulted in a small but noticeable improvement in the results.

Lastly, should the user be able to provide map information then environ-
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mental constraints could be enforced. This was done by having a particle filter

which received data from the underlying IMU/US system. This was able to

track a user’s motion with a very high degree of accuracy, however it did come

at a significant computational cost.

The three different layers (IMU, ultrasound, and particle filtering) were

analysed in three different types of walks. Type 1 and 2 both involved trav-

elling within the capture volume of a Vicon system. This allowed the perfor-

mance of the systems to be evaluated on a step by step basis. The results

highlighted that several previous testing methodologies, which discussed the

system accuracy only in terms of loop closure, would have been over estimating

the system accuracy. Type 3 walking, which did not use a Vicon system for

comparison, was forced to be evaluated by using the loop misclosure and an

estimated maximum error.

We now return to the research questions posed at the start of the thesis

and discuss how the results have answered them.

Question 1: What performance can be achieved by using low cost

IMUs?

To keep the same testing methodologies as previous works we look at the

performance of the IMU system in terms of its loop closure in a Type 3 walk.

The IMU system incurred loop closure errors of 0.32, 0.58 and 1.01 %. Its

performance can be compared to other research groups systems: [13] had errors

of 2-10 % when using ZUPTs and HDR; [68] achieved a worst case drift of

1.28 % and [17] had errors of 0.3 % even when considering vertical drift. This

indicates that the performance of this system is comparable to those running

higher end inertial measurement units, but can be outperformed.

Question 2: Can multiple low cost sensors compensate for each oth-

ers weaknesses and match the performance of similar systems using

state of the art MEMS?

The inclusion of the ultrasound system resulted in broadly more accurate track-

ing, as shown by the Vicon system results in sections 4.7.1 and 4.7.2. However,
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the largest limiting factor remains the drift in heading which is uncorrected

by ultrasound. Further work could be done to incorporate a magnetometer

system similar to that in [33] and [34]. If magnetometers could be effectively

incorporated into the tracking system they could then provide an absolute

reference in heading.

Question 3: To what extent is prior map knowledge required to

provide accurate tracking?

Map constraints limit the possible motion of the user to areas bounded by walls.

This is shown to give a very significant reduction in error and, of importance, is

able to correct for the user’s heading. This means that the errors do not grow

significantly and can be used to track even long walks with a high degree of

accuracy. However, as shown by the results given by the Type 1 walk, should

the environment provide few constraints then the particle filter will not offer

significant improvement.

The extent to which map knowledge is required depends on the length of

walk being tracked. The longer the walk, the more errors accumulate and

therefore the more important having motion limiting constraints become.

6.2 Limitations

Motion tracking is a wide multidisciplinary area with researchers from the

medical field through to robotics, computer science and engineering. To create

a comprehensive motion tracking system which can work effectively in any en-

vironment is a huge undertaking and so the following limitations were inherent

to this thesis and can be approached in later research.

1. The only mode of locomotion available to the user is walking.

More complex types of movement, such as running or jumping, increases

the challenge substantially. Additionally, we assume that moving floor

surfaces such as elevators, escalators and moving walkways are not used.

The algorithms presented here could be adapted to account for these
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more exotic forms of travel, however such extensions are left for subse-

quent research.

2. Only indoor tracking is examined. Outdoors the availability of GPS,

the rugged terrain, and the lack of mobility limiting features makes the

problem very different. Therefore, only the cases in which the user is

indoors were presently considered.

6.3 Future Work

Many avenues exist for improving the work demonstrated in this thesis. There

have been several works in literature which have showed interesting and novel

approaches which could be adapted and merged together to potentially make

a very accurate system.

Magnetometers

One of the dominating errors in unconstrained inertial navigation was the

gradual degradation of the user’s heading. HDR provided a way to limit this

drift, however it is not possible using IMU technology alone to eliminate it

completely. Magnetometers can provide an absolute heading reference which

can provide a way to indefinitely give a drift-free heading. However, indoors

the presence of large magnetic fluctuations makes them unreliable. Although

the use of magnetometers was briefly examined in this thesis (Section 3.6)

further work in this area could be one of the most promising avenues for future

improvements.

Simultaneous Localisation and Mapping

As was shown in Chapter 5 map information can be a very powerful way of

reducing the navigation errors. However, in Chapter 5 we used prior map

knowledge to provide the environmental constraints. An extremely useful ex-

tension of this technique would be to incorporate more ideas from the area

of robotics and perform simultaneous localisation and mapping (SLAM). This
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has been attempted to a degree in [53], however several improvements are pos-

sible and could provide a way to build up a map on the fly and therefore always

be able to use particle filtering to enforce environmental constraints.

Smartphone IMUs

Smartphones contain within them an MEMS inertial sensor. As smartphones

are extremely widespread in today’s society, using the information from a

smartphone IMU as an additional sensor to foot mounted IMUs could be an

interesting avenue for further research. It would be very challenging to use

smartphone IMUs in a stand alone fashion without the use of foot mounted

IMUs as previous works on pocket mounted systems [74] have shown much

larger errors compared to foot mounted systems.

The information from a smartphone IMU could be used in a similar fashion

to [26] where a maximum separation between the various IMUs is declared and

used to provide navigation constraints.

Multiple Users

Should multiple users be equipped with IMUs and have inter agent ranging

sensors, then additional information between the distance which separates each

user is obtained. This is of particular interest for firefighters and other emer-

gency responders due to their team focused approach to operations. [75] looked

into this area of investigation but lacked vigorous experimental validation.

Therefore, further work into this type of system could yield promising results.
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Chapter 7

Appendix

7.1 Bill of Materials

This section details all of the parts used in the system.

7.1.1 Microcontrollers

2x Arduino Uno microcontrollers, one for each shoe (∼£20 each depending on

supplier).

7.1.2 Sensors

1. 2x ADXL345 and 2x ITG3200 mounted on two separate SparkFun 6

Degrees of Freedom IMU Digital Combo Board (∼£30 each depending

on supplier).

2. 16x HC-SR04 ultrasound sensors, 10 mounted on the left shoe and 6

mounted on the right shoe (∼£1.5 each depending on supplier).

3. 6x Vishay TSOP38438 IR Receivers (∼£0.5 each depending on supplier).

4. 4x IR LED (∼£0.2 each depending on supplier).

5. 2x GP2Y0A41SK0F Position Sensitive Devices (∼£6 each depending on

supplier).
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6. 10x Prowave 400SR120 ultrasonic transducer (∼£5 each depending on

supplier).

7. 6x Prowave 400ST120 ultrasonic transducer (∼£5 each depending on

supplier).

7.1.3 WiFI Communication

1. 2x XBee Wi-Fi (S6B) PCB antenna (∼£45 each depending on supplier).

2. 1x Xbee explorer USB (∼£20 depending on supplier).

3. 1x Arduino Xbee shield (∼£11 depending on supplier).

7.1.4 Miscellaneous

All these items have a negligible cost.

1. 2x 10µF capacitors.

2. 2x BC 638 PNP transistor.

3. 2x 2.2 kΩ resistors.

4. 2x 10 kΩ resistors.

5. 1x 47 Ω resistor.

7.1.5 Overall System Costs

The minimum system cost for a one off prototype module composed of 2 IMUs,

one Arduino microcontroller and two PSDs is ∼£92. Should wireless connec-

tivity be included, which is highly desirable in many applications a cost of

∼£121 must be added. This setup of IMU system plus wireless connectivity

(∼£213) is the most cost effective set-up considering the limited improvement

offered by the ultrasound system. Of course this represents the cost of a single

unit and several steps can be taken to reduce the cost further, for example the

accelerometers and gyroscope sensors could have been purchased and a board
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developed for them in-house. Should the ultrasound system be included then

an additional cost of ∼£127 needs to be included.
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7.2 Code Overview

Here the flies and functions written to carry out the project are presented.

7.2.1 Motion Tracking Code

Main

Trilateration- Trilateration algorithm

Det_Var - Determine trilateration
                 matrices.

US_Data_Matrix- Weighed result of IMU and US data.

US_Percentile- Excludes top and lowest
                          5% of calculated step lengths.
Mean_US- Averages US reulsts for one footsetp.
Weighting- Combine US and IMU data. 

Initial_Conditions- Initialise geometric parameters
KF_Parameters- Initialise Kalman filter paramteres
US_Rx_Tx_Pos- Calculate positions of the US transducers
Map- Create map for Type 3 walking.
Map_Vicon- Create map for Type 1 and 2 walking
Data_Block- Convert raw text file data to matrices.
INS_EFK- Inertial navigation and Kalman filtering
US_Measurement- Calculates ultrasound displacement data 
                               in local frame.

L_Calc- Calculate step parameters
Particle Filter- Particle filtering
Vicon Analysis- Compare data against Vicon results

ID_Flat- Identify quasi-static samples.
Basline_Sub- Subtract baseline
Step_ID- Apply thresholds to identify steps
Vicon_Step- Generate Vicon step data.
Error Calculation- Caluclate the errors
                              between the two systems

Total MATLAB code length excluding repeated functions, large 
comment blocks and all plots: approx. 2025 lines.
Arduino Code:
              - Left_Shoe_Main   930 lines
              - Right_Shoe_Main 95 lines 

S
ub

fu
nc

ti
on

s

Figure 7.1: Summary of functions written, with approximate code length.
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7.2.2 Calibration Code

Accelerometer Calibration

Cal_Data_Read_Acc- Convert raw text data to matrices.

Main_Accel_Cal- Accelerometer calibration algorithm.

Gyroscope Calibration

Main_Gyro_Cal

Cal_Data_Read_Gyro- Convert raw text data to matrices.
In_Cell- Insert matrices in cells.
Accel_Conversion- Calibrate the accelerometer data.
Grav_Vectors- Compute gravity vectors.
Gyro_Variables- Initialise gryoscope parameters.
Gyro_Quat- Integration algorithimS

ub
fu

nc
ti

on
s

Total code length: approx 750

Figure 7.2: Summary of functions written, with approximate code length, for
the calibration procedures.
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