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2015

In estimating econometric time series models, it is assumed that the parameters remain
constant over the period examined. This assumption may not always be valid when using
data which span an extended period, as the underlying relationships between the variables
in these models are exposed to various exogenous shifts. It is therefore imperative to
examine the stability of models as failure to identify any changes could result in wrong
predictions or inappropriate policy recommendations. This research proposes a method
of estimating the location of break points in linear econometric models with endogenous
regressors, estimated using Generalised Method of Moments (GMM).
The proposed estimation method is based on Wald, Lagrange Multiplier and Difference
type test statistics of parameter variation. In this study, the equation which sets out the
relationship between the endogenous regressor and the instruments is referred to as the
Jacobian Equation (JE). The thesis is presented along two main categories: Stable JE and
Unstable JE.
Under the Stable JE, models with a single and multiple breaks in the Structural Equation
(SE) are examined. The break fraction estimators obtained are shown to be consistent for
the true break fraction in the model. Additionally, using the fixed break approach, their T -
convergence rates are established. Monte Carlo simulations which support the asymptotic
properties are presented.
Two main types of Unstable JE models are considered: a model with a single break only in
the JE and another with a break in both the JE and SE. The asymptotic properties of the es-
timators obtained from these models are intractable under the fixed break approach, hence
the thesis provides essential steps towards establishing the properties using the shrinking
breaks approach. Nonetheless, a series of Monte Carlo simulations conducted provide
strong support for the consistency of the break fraction estimators under the Unstable JE.
A combined procedure for testing and estimating significant break points is detailed in
the thesis. This method yields a consistent estimator of the true number of breaks in the
model, as well as their locations. Lastly, an empirical application of the proposed method-
ology is presented using the New Keynesian Phillips Curve (NKPC) model for U.S. data.
A previous study has found this NKPC model is unstable, having two endogenous re-
gressors with Unstable JE. Using the combined testing and estimation approach, similar
break points were estimated at 1975:2 and 1981:1. Therefore, using the GMM estimation
approach proposed in this study, the presence of a Stable or Unstable JE does not affect
estimations of breaks in the SE. A researcher can focus directly on estimating potential
break points in the SE without having to pre-estimate the breaks in the JE, as is currently
performed using Two Stage Least Squares.
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Chapter 1

Introduction

A fundamental assumption when creating econometric models is that the parameters used
in characterising the models remain stable or constant throughout the period examined.
Such parameters are useful for economic forecasting, inference, budgeting, policy anal-
yses and other economic decision-making. However, as these models usually span over
long periods of time, the variables in these models are exposed to time-varying economic
situations and various amendments in economic policies and decisions. Such amend-
ments could be as a result of a change in government, key decision makers, technological
innovations or even changes in consumers’ preferences as they respond to modifications
in interest rates, economic growth and other economic factors.

As noted in the famous policy evaluation by Lucas (1976): “...optimal decision rules vary
systematically with changes in the structure of series relevant to the decision maker, it
follows that any change in policy will systematically alter the structure of econometric
models.” Thus, the variables are subject to individual change or their relationships and
interactions between them may change over time.

For example, Zhang et al. (2008) find changes in inflation dynamics in the United States
over the period 1968 - 2005 which they attributed to the diverse monetary policies be-
ing followed by different chairmen of the Federal Reserve, specifically, the Volcker-
Greenspan era. Additionally, within the same period, Bai (1997b) find changes in the
relationship between the response of market interest rates to changes in the discount rates
set by the Federal Reserve.

Structural changes are not limited only to economic variables, but also cut across a wide
range of sectors. For example, in Medical Sciences, Erdman and Emerson (2008) and
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Zhang and Siegmund (2007) detect changes in regions of DNA alteration which is impor-
tant in cancer research. In the field of technology, Chernoff and Zacks (1964) examine
the change point problem in means of independent and normally distributed random vari-
ables of a radar tracking system while Barry and Hartigan (1993) study the means of
circular hollows cut by a milling machine. In Finance, Andreou and Ghysels (2002) de-
tect multiple changes in the foreign exchange markets in Asia and Russia while Loschi
et al. (2005) estimate a number of change points in the series of returns of stock indexes
in Latin America.

The importance of detecting a change in economics cannot be over emphasised as fail-
ure to do so can be very costly, resulting in wrong predictions and inappropriate policy
recommendations. Furthermore, if the timing of these parameter changes is identified, it
can be taken into consideration when constructing models. This could also be useful in
determining the causes for changes as well as analysing the effects of policy changes or
other economic and exogenous shifts.

Thus, in developing econometric models, it is now commonplace to test models for sta-
bility, either of the model itself or of the parameters. In literature, this problem is com-
monly called the ’change-point’ or ’structural break’ problem and the location at which
the change occurs is known as the ’change point’ or ’break point’. The location of the
break point may be known or unknown beforehand. It may also be considered to be within
a specified time range in the sample. The problem is more specifically related to time se-
ries models whose observations are ordered by time. Models which have break points in
them are referred to as unstable models, while those without are termed stable.

The main issues associated with a model that exhibits break points have been summarised
in Bai (1997a). These are: (i) The determination of the number of breaks (ii) The estima-
tion of the break points given this number and (iii) The statistical analysis of the resulting
break point estimators. This research studies all three issues extensively, though more
focus is placed on the latter two.

The determination of the number of breaks is conducted through hypothesis testing. This
form of hypothesis test examines the null hypothesis of no break point or no structural
change against an alternative of one or more break points. Various structural and param-
eter stability tests have been proposed in literature, notable amongst these are those for
testing a single break in the model, for example Quandt (1958), Chow (1960), Andrews
and Fair (1988) and Andrews (1993); and those developed for testing the presence of mul-
tiple breaks, for example, Bai and Perron (1998), Hall et al. (2012) and Hall et al. (2015).
We discuss a variety of these tests in Chapter 6.



CHAPTER 1. INTRODUCTION 19

The hypothesis tests provide vital information about the stability of the model. Specifi-
cally, a model is termed unstable if the test statistic obtained is greater than the associated
critical value. That is, a significant test statistic indicates the model changes at some point
during the period under review but beyond that, it gives no other information. However,
researchers interests may surpass merely ascertaining whether or not a model is unstable.
They may also, perhaps more importantly, be interested in knowing the specific point in
time the breaks occur. These could be vital inputs in economic policy analyses. This leads
to the second issue associated with unstable models highlighted above.

The literature on estimating the locations of break points covers various methods of es-
timation. For example, from a Bayesian point of view, see Chernoff and Zacks (1964),
Yao (1988), Barry and Hartigan (1993), Zhang and Siegmund (2007) and Erdman and
Emerson (2008); for a maximum likelihood approach, see Hinkley and Hinkley (1970)
and Bhattacharya (1987); for least squares, see Bai (1994a), Bai (1994b), Bai (1997a),
Bai (1997b), Bai and Perron (1998), Chong (2001), Perron and Qu (2006) and Perron and
Yamamoto (2015); for Two Stage Least Squares, see Hall et al. (2012) and Boldea et al.
(2012); and for Generalised Method of Moments, see Li and Müller (2009) and Hall et al.
(2012).

The instability in models can be caused by a single break point or by multiple break
points. Bai (1994b) provides a method of estimating a single break point in the mean
of a linear process within the context of Ordinary Least Squares (OLS). Also using least
squares, Bai (1994a) proposes a method of estimating a break point in the regression
parameters based on the Wald-type test statistic. The location of these break points need
not be known beforehand. The asymptotic properties of the break point estimators were
also established.

In estimating multiple break points on the other hand, two methods are generally used
in literature - the Sequential and Simultaneous Estimation Methods. In the Sequential
Estimation Method as proposed by Bai (1997a) and Chong (2001), the individual break
points are estimated one at a time until all the break points are obtained, while in the
Simultaneous Estimation Method, all break points are concurrently estimated alongside
the regression parameters as laid out in Bai and Perron (1998).

These methods are effective in estimating the location of the break points in models; how-
ever, since they are all established within the OLS framework, they are based on the as-
sumption that the independent variables in the regression models are exogenous. In other
words, the regressors are assumed to be uncorrelated with the errors in the model. How-
ever, if these regressors are actually correlated with the errors, that is, if the regressors are
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endogenous, then biased and inconsistent OLS parameter estimators would be obtained
if OLS estimation is carried out on such a model. This problem of endogenous regres-
sors, known as the ’endogeneity problem’, is frequently encountered in research and the
three usual causes1 have been identified as: omitted variables, measurement errors and
simultaneity.

One of the earliest and classical examples frequently used to illustrate the endogeneity
problem is given in Wright (1928) who was interested in estimating the elasticities of
demand and supply curves for the agricultural product, flaxseed. We present the system
of equations as,

dt = αpt + udt (1.1)

st = β1pt + β2xt + ust ,

where dt and st represent demand and supply quantities in year t respectively, pt is the
price of the commodity in year t, xt is a vector containing factors relating to supply.
The market is assumed to clear in year t and hence, dt = st and pt is the equilibrium
price. The difficulty lies in obtaining the elasticity of demand, that is, how to obtain an
estimator of α in (1.1) when dt and pt are known. pt is endogenous because producers
change their price in response to demand and consumers change their demand in response
to price. Hence, since the quantity demanded and price are simultaneously determined,
then the OLS estimates are biased and Instrumental Variables (IV) are commonly used in
literature to address this endogeneity problem.

These IV, which we denote as zt have two main properties: (i) they are correlated with
the endogenous variable, price pt and (ii) they are uncorrelated with the error term udt in
(1.1). Thus, the endogenous variable pt can be formed as,

pt = γ0 + γzt + upt , (1.2)

where γ 6= 0, E[ztu
d
t ] = 0, E[udt , u

p
t ] = Ω, Ω has V ar[udt ] and V ar[upt ] as its main

diagonal elements and Cov[udt , u
p
t ] on its off-diagonal elements with Cov[udt , u

p
t ] 6= 0. As

such, multiplying through by zt, (1.1) now becomes,

E[ztdt] =αE[ztpt] + E[ztu
d
t ],

where E[ztu
d
t ] = 0. Using yield per acre as an instrument, a consistent estimator of α,

1See Wooldridge (2009) and Verbeek (2008).
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denoted α̂ is obtained as

α̂ =

∑T
t=1 ztdt∑T
t=1 ztpt

, since E[ztu
d
t ] = 0.

In econometrics, there are two main approaches to IV estimation, notably the Two Stage
Least Squares (2SLS) and the Generalised Method of Moments (GMM). Using 2SLS,
Hall et al. (2012) obtained consistent estimators of break points by minimising the residual
sum of squares (RSS) in the second step of the 2SLS estimation process. Prior to this
second step however, the reduced form for the endogenous regressor in the first step of
the 2SLS procedure (as given in equation (1.2)) needs to be estimated and any breaks
therein identified using the procedure in Bai and Perron (1998). The limiting distribution
of these break fraction estimators are established in Boldea et al. (2012).

On the other hand, applying a similar minimisation procedure to the sums of partial GMM
estimators over all partitions of the sample, Hall et al. (2012) obtained inconsistent break
fraction estimators. They attribute this behaviour to the inherent structure of the GMM
objective function2. Since the GMM minimand is the square of sums, then it is possible
that the effect of any misspecification due to the estimation of a wrong break date is offset
within these squares of sums. Consequently, this prevents the break points from being
identified.

Li and Müller (2009) propose another GMM method which focuses on obtaining infer-
ence on only the stable subset of parameters in a partially stable GMM model with mod-
erate magnitude of shift. Other GMM approaches focus on testing rather than estimating
the break points. These are discussed later on in Chapter 6.

More recently, Perron and Yamamoto (2015) propose a method of estimation in the pres-
ence of endogenous variables still using OLS. Their approach involves reformulation of
the model with the probability limits of the OLS parameter estimates in such a way as
to make the regressors and errors contemporaneously uncorrelated. If this process is effi-
ciently carried out, then the usual break point estimation method in Bai and Perron (1998)
can be used to identify the breaks. They found this approach to yield consistent estimators
of the break dates in the New Keynesian Hybrid Phillips Curve. To the best of our knowl-
edge, no further research has been carried out within the GMM framework to estimate
consistent break points. Although Zhang et al. (2008) provide a good reference for an

2The Monte Carlo simulations carried out also revealed these break point estimators are relatively dis-
persed over all the possible partitions in a manner similar to the estimators obtained from a model with no
break point.
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empirical application of our proposed methodology when they estimate the break point in
the New Keynesian Philips Curve (NKPC), they however do not provide any theoretical
justification for their results.

Estimation within the GMM framework, as introduced by Hansen (1982), is hinged on a
population moment condition (pmc), E[ztu

d
t (α0)] = 0, which is assumed to hold through-

out the sample. The GMM objective function (or GMM minimand) is based on a quadratic
form of the sample counterparts of this pmc. Based on the GMM minimand, the J − test,
which is actually a test of the overidentifying restrictions3, is frequently used as a diag-
nostic test for model specification within the GMM literature. However, Hall and Sen
(1999) note that the pmc is actually made up of two orthogonal parts: the identifying re-
strictions which represent the part of the pmc that are used up during estimations of the
parameters and the overidentifying restrictions which are essentially a measure of how far
the restrictions are from zero and are thus, associated with the structural stability of the
model. Therefore, the J−testmay not be effective in detecting a break in the parameters.
This was the case when Ghysels and Hall (1990) find the asset pricing models of Hansen
and Singleton (1982) and Dunn and Singleton (1986) which were structurally stable when
the J − test was used, actually exhibited parameter instability when subjected to other
predictive and Likelihood Ratio tests. Thus, Ghysels and Hall (1990) conclude that the
J − test had no power against local alternatives that had a break in the parameters and
consequently, parameter instability can still be undetected when using the J − test. This
leaves a gap in the literature for an alternative GMM-based approach to estimating break
points in linear models that exhibit endogeneity.

In this study, we propose a different statistic to that used in Hall et al. (2012). Our ap-
proach focuses on test statistics which have power to detect parameter variation. The
statistics are based on sequences of the Wald, Difference and Lagrange Multiplier (LM)
type tests. These tests are described in more detail in Chapter 6. Due to the complexity
of the variance-covariance matrix used in the computation of the Wald and LM test statis-
tics, the theoretical analysis and proofs of the asymptotic properties of the break fraction
estimators cover only the Difference-type tests. However, these three tests statistics per-
form comparably in finite samples as seen in the Monte Carlo simulations in Chapter 5.
Using our approach, the break fraction estimators are shown to be T -consistent which is
coherent with existing OLS literature, as given in Bai (1994a), Bai (1997a), Bai (1997b),
Bai and Perron (1998), Hall et al. (2012) and Boldea et al. (2012).

This research is broadly divided into two groups which are dependent on the endogenous

3See page 46 in Hall (2005).
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regressors. First, within the GMM context as presented in this research, we refer to the
reduced form equation in (1.2) as the Jacobian Equation (JE). This is motivated by the
linear model used in this research. The Jacobian - which is the first derivative of the
moment condition - is simply the relationship between the endogenous regressors and
the instruments. We focus on the stability of this relationship between the endogenous
regressor and the instrument. If the relationship is constant as in (1.2), we refer to it as
the Stable Jacobian; otherwise, we refer to it as the Unstable Jacobian. We consider only
the case of a single break Unstable Jacobian, that is,

pt = γ0 + γ1zt + upt before the break

= γ0 + γ2zt + upt after the break.

As stated earlier, when estimating break points within the 2SLS context, Hall et al. (2012)
first of all estimate the break points in the reduced form given in (1.2) because ignoring
any break points here would lead to inconsistent estimators of the break points in the
structural equation (SE) in (1.1). Within GMM context using our proposed approach,
we estimate break points in the SE directly as we prove in this research that a stable or
unstable Jacobian has no effect on estimating a consistent break point in the SE. Thus,
a break in the relationship between the endogenous regressor and instruments anywhere
in the sample does not have any negative impact on the estimated break fractions in the
SE. This finding is vital as it reduces the break point estimation process within the IV
framework for models characterised by endogeneity.

The asymptotic properties of the break fraction estimators obtained from Stable Jacobian
models are established based on the assumption that the parameter change is of fixed
magnitude. For the Unstable Jacobian on the other hand, we consider the case where
the magnitude of change of the JE parameters shrink with the sample size. Although
the proofs for the Unstable Jacobian are not easily tractable, it is interesting to note that
the results of the Monte Carlo simulations strongly indicate a break in the JE does not
confound the estimations of a true break point in the SE.

We apply our proposed GMM method to the NKPC adopted in Hall et al. (2012). Using
2SLS, they establish two break points in the reduced form equation of the output gap and
one break point in the reduced form of the expected inflation. The location of these break
points in the reduced form was obtained first before estimating the current inflation in the
main NKPC structural equation. Using the fixed break point tests, they find no evidence
of an additional break point in the SE. Hence, they conclude the model has only two
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break points. We show that applying our estimation method directly to the main SE of the
NKPC yields the same two true break points in the model as identified in Hall et al. (2012).
Thus, our approach potentially saves computational time and also allows researchers to
focus on the main SE, as they no longer have to estimate the reduced form equation first.
Furthermore, using 2SLS presupposes the reduced form equation is correctly specified, a
requirement not necessary for GMM estimations and moreso, any instrument used in the
2SLS estimations is naturally a potential instrument for GMM estimations.

Besides these, the GMM estimation technique is appealing because it offers a way to han-
dle a broader class of models, compared to OLS, which is limited to linear regression
models only, or Nonlinear least squares4 which is confined to nonlinear regression mod-
els. Thus, in the presence of an unstable relationship between the endogenous regressors
and the instruments, the researcher does not have to check for stability in the two stages
(reduced and structural form equations), but rather, estimates break points only in the
main SE of interest. Consequently, instabilities in the JE can be ignored and consistent
break point estimators of the SE can still be obtained.

Throughout this paper,⇒ denotes weak convergence,
p→ denotes convergence in proba-

bility, d→ denotes convergence in distribution, op(1) denotes a sequence of random vari-
ables converging to zero in probability andOp(1) denotes a sequence that is stochastically
bounded. Also, for a sequence of matrices, VT is Op(1) if each of its elements is Op(1),
see White (2001).

The remaining part of this research is organised into seven chapters as follows. The first
two chapters examine models where the JE is stable. Chapter 2 deals with a model which
has a single break in the SE alone. This is a relatively simple model used to introduce our
proposed estimation procedure. Detailed proofs of the asymptotic properties of the break
fraction estimator obtained from the single break models are presented and shown to be
consistent with those existing in the literature.

Chapter 3 considers a model with multiple breaks in the SE alone. The asymptotic prop-
erties of the break fraction estimators obtained are also established and shown to be con-
sistent with those in Bai (1997a).

Chapter 4 investigates models with an unstable JE. Two main types of models with an un-
stable JE are studied. In the first, the model has one break point in the JE only, while in the
second, the model has a break point in both the JE and the SE. The asymptotic behaviour
of the break fraction estimators obtained from the unstable JE models are analysed using

4Boldea and Hall (2013) extend Bai and Perron’s (1998) method for estimating unknown multiple break
dates to nonlinear least squares estimation method.
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the shrinking break approach.

Chapter 5 provides detailed results from the Monte Carlo simulations carried out to ob-
serve the finite sample behaviour of the break fraction estimators obtained from the mod-
els used in Chapters 2 to 4. These results support the theoretical analysis carried out in
the previous chapters.

Chapter 6 discusses the determination of the true number of break points in a model.
There is the possibility that the estimation procedure discussed in Chapters 2 and 3 can
over-estimate the number of break points if there is no rule in place to terminate the
estimation process. This chapter addresses that issue and proposes a combined method
similar to Bai (1997a) for sequentially testing the significance of a break point before
estimating its location.

Chapter 7 presents results for an empirical application. Our proposed estimation method
is applied to the New Keynesian Phillips Curve model similar to that used in Zhang et al.
(2008) and Hall et al. (2012). The break points in the reduced form have been established
in Hall et al. (2012) and we only investigate to see if our proposed estimation method also
identifies the same break points in the SE.

Chapter 8 summarises the findings of this research and sets out the conclusions. For easy
reference, the relevant appendices are placed at the end of each chapter.



Chapter 2

Stable Jacobian - Single Break Model

This chapter considers issues relating to estimation of a single break point within the con-
text of a linear model. The location of the break point to be estimated is unknown in
the sample. The estimation process is based on the Wald, Lagrange Multiplier (LM) and
Difference-type statistics which are generally used in the literature for testing parame-
ter and structural change, see Andrews and Fair (1988) and Andrews (1993). However,
for simplicity, only the Difference-type statistics are used for discussions and theoretical
analyses.

The chapter is outlined as follows. Firstly, the model used alongside the assumptions
are presented. Next, a description of the estimation process is given and the test statistic
and break fraction estimator are discussed. This break fraction estimator indexes the
break point which we want to identify. We then establish the asymptotic properties of the
test statistic and break fraction estimator. Specifically, the break fraction estimators are
shown to be T -consistent which is coherent with the existing literature; see Bai (1994a),
Bai (1997a), Bai and Perron (1998), Hall et al. (2012), Boldea et al. (2012). Lastly, the
chapter concludes with detailed proofs given in the appendix at the end of this chapter.

2.1 The Model and its Assumptions

The linear model with one break is the baseline model adopted in this research. It is a
straightforward model, similar to that in Hall et al. (2012) and is presented thus,

yt = x
′

tθ
(1)
0 + ut, t = 1, 2, . . . , k0,

= x
′

tθ
(2)
0 + ut, t = k0 + 1, . . . , T,

(2.1)

26
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where yt is an observation on the dependent variable; xt is the p×1 vector of endogenous
regressors; ut is the disturbance with zero mean; θ(i)

0 , i = 1, 2 are the p × 1 unknown
parameters to be estimated; k0 = [Tλ0]; λ0 ∈ Λ ⊂ (0, 1); [ · ] indicates the greatest
integer function of the term within the square brackets and T is the total sample size. k0

is defined as the true break point and λ0 as the true break fraction. Hence, θ(1)
0 and θ(2)

0

symbolize the parameters before and after the true break point respectively. It is assumed
that θ(1)

0 6= θ
(2)
0 and by design, the break fraction, λ0, is bounded away from the end points

of the sample.

This situation is generally known in the literature as a pure structural change because all
the p parameters in the model are subject to change.

As xt is endogenous, it is correlated with the errors ut and hence Instrumental Variables
(IV) are required for the estimation. Recall these IV must be both correlated with xt and
uncorrelated with ut. The endogenous variable is now constructed simply as

x
′

t = z
′

t∆0 + v
′

t, (2.2)

where zt is the q × 1 vector of instruments satisfying E[ztut(θ0)] = 0, ∆0 is the q × p

coefficient matrix and q > p.

Throughout this research, we refer to the baseline model in (2.1) as the Structural Equation
(SE) and the endogenous regressor equation in (2.2) as the Jacobian Equation (JE).

We make the following assumptions:

Assumption 1. E[ztx
′
t] = E[ztz

′
t]∆0 = Qzz∆0, where ‖Qzz‖ <∞ and positive definite.

Also, ∆0 has rank p and ‖∆0‖ <∞.

Assumption 2. The matrices
1

j

∑k0+j
t=k0+1 ztz

′
t and

1

j

∑k0
t=k0−j+1 ztz

′
t have minimum eigen-

values bounded away from zero in probability for all λ ∈ Λ and j ≥ q.

Assumption 3. supλ∈Λ‖T−1
∑[Tλ]

t=1 ztx
′
t − λQzz∆0‖

p→ 0.

Assumption 4. supλ∈Λ‖V ar
[
T−1/2

∑[Tλ]
t=1 ztut

]
−λΩ‖ p→ 0, where Ω is a positive definite

matrix of finite constants.

Assumption 5. The true number of breaks, m0 = 1.

Assumption 1 states a constant relationship exists between the endogenous regressor and
its instruments. In Chapter 4 however, we examine a model where this stability assump-
tion of the JE is relaxed. The standard rank condition necessary for identification1 when

1See Identification Condition on page 35 in Hall (2005).
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estimating using GMM is also given. Assumption 2 guarantees there are enough obser-
vations near the true break point, so it can be identified. Additionally, it assumes the
matrices are invertible and stochastically bounded uniformly in j. Assumptions 3 and
4 present the uniform convergence across all break fractions of the partial sums of the
Jacobian and variance, respectively. These are useful in establishing the asymptotic prop-
erties of the break fraction estimator. Lastly, we impose Assumption 5 in this chapter but
consider cases when m0 ≥ 2 in Chapter 3 under the multiple break points scenario.

2.2 The Test Statistic

As mentioned earlier, for computational simplicity, the test statistic and other theoretical
analysis presented here are centred on the Difference-type test of parameter variation.
This test statistic is based on:

DT (λ) = T
{
QT (θ̄T (λ), λ)−QT (θ̂T (λ), λ)

}
, (2.3)

whereDT (λ) is the Difference test statistic,QT (θ̄T (λ), λ) andQT (θ̂T (λ), λ) are the GMM
minimands associated with the restricted and unrestricted estimations respectively. The
vector of restricted parameters, θ̄T (λ) = [θ̄1,T (λ)

′
, θ̄2,T (λ)

′
]
′ , where θ̄1,T (λ) is constrained

to be equal to θ̄2,T (λ). On the other hand, the vector of the unrestricted parameters,
θ̂T (λ) = [θ̂1,T (λ)

′
, θ̂2,T (λ)

′
]
′ , where θ̂1,T (λ) and θ̂2,T (λ) are allowed to be different. Ap-

pendices A.1 and A.2 briefly demonstrate the minimisation process by which these pa-
rameters are obtained.

The minimands are constructed in the usual way consistent with GMM framework as,

QT (θT (λ), λ) = gT (θT (λ), λ)
′
WT (λ)gT (θT (λ), λ),

where

gT (θT (λ), λ) =

[
T−1

∑T
t=1 ztut(θ1(λ))It,T (λ)

T−1
∑T

t=1 ztut(θ2(λ)){1− It,T (λ)}

]
,

WT (λ) = diag{W1,T (λ),W2,T (λ)},Wi,T (λ) is a q×q deterministic positive semi-definite
matrix and It,T (λ) is an indicator variable that takes the value one if t ≤ k and zero
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otherwise. The partial sum GMM estimators are defined as,

θ̂T (λ) = argminθ(λ)∈Θ×ΘQT (θT (λ), λ),

where Θ ⊂ <p. Consistent with GMM estimation procedure, we make some additional
assumptions about the data:

Assumption 6. E[ztut(θ0)] = 0, for θ0 = (θ
(1)
0

′

, θ
(2)
0

′

)
′
.

Assumption 7. supλ∈Λ‖θ̂i,T (λ) − θ
(i)
∗ (λ)‖ p→ 0, where supλ∈Λ‖θ(i)

∗ (λ)‖ < ∞, for i =

1, 2.

Assumption 8. supλ∈Λ‖Wi,T (λ) − Wi(λ)‖ p→ 0 for i = 1, 2, where W1(λ) = λ−1C,

W2(λ) = (1− λ)−1C and C is a nonsingular constant matrix.

Assumption 6 states the identification condition which is the basis for GMM estimations.
It infers that the population moment condition holds at the true break point and at the
true parameter values. Assumption 7 imposes the uniform convergence of the estimators
for all λ ∈ Λ. The individual structures of their limits, θ(i)

∗ (λ), are given in the relevant
sections. Assumption 8 displays the specific forms of the weighting matrices used. These
have similar structures to the weights used in Hall et al. (2012).

Under the GMM framework as proposed by Hansen (1982), the convention is to estimate
the parameters in a model using the two-step estimation procedure. In the first step, a
preliminary weighting matrix (often the identity matrix) is used to obtain the first-step
estimators. The inverses of the variances obtained from this first-step estimators are then
used as weights in the second step estimations to obtain second-step GMM parameter
estimators, which are known to be consistent and efficient. In our own estimation ap-
proach however, we consider only the first-step GMM estimators since the efficiency of
the second-step estimators are based on the first-step estimators. Hence, any break in the
model not identified by these first-step estimators would naturally undermine the estima-
tions in the second-step2. This approach of using the first step estimators is reasonable as
seen in the theoretical analysis and results of the Monte Carlo simulations.

The test statistic used for the break point estimation is constructed similar to Andrews
(1993): a sequence made up of DT (λ) as defined in (2.3) is obtained for each candidate
λ ∈ Λ. To illustrate its finite sample behaviour, two plots of DT (λ) across the full range

2Hall et al. (2012) attribute this to complications arising from centering of the estimated long run co-
variance matrix of the first-step estimators. See Hall (2005) page 125 for a detailed analysis of the impact
of unstable models on the covariance matrix estimators.
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Figure 2.1: DT (λ) for all λ ∈ Λ.
DGP has 1 break in SE (1 simulation)
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of Λ = [0.15, 0.85] for a sample size of T = 600 are presented in Figures 2.1 and 2.2.
In these plots, a break is imposed halfway through the sample, that is λ0 = 0.5. The
parameters before and after the break are θ(1)

0 = (1, 0.1)
′ and θ(2)

0 = (−1,−0.1)
′ respec-

tively3. As evidenced by the single simulation conducted in Figure 2.1, DT (λ0) is clearly
the global maximum and hence, DT (λ) peaks at this point. Repeating the estimation pro-
cedure a thousand times, the same shape is maintained as Figure 2.2 shows, highlighting
the fact that DT (λ) monotonically decreases as the estimated break moves further away
from the true break.

2.3 The Break Fraction Estimator

To obtain the break fraction estimator, the supremum of the sequence of DT (λ) is calcu-
lated and its position within the sample indicates the location of the true break point. The
break fraction estimator, λ̂, is thus defined as

λ̂ = argmaxλ∈ΛT
DT (λ), (2.4)

3More details of the simulation design can be found in Chapter 5 on Monte Carlo simulations.
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Figure 2.2: DT (λ) for all λ ∈ Λ.
DGP has 1 break in SE (1000 repetitions)
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where ΛT = λ such that λ = ki/T for i = (ε, 1 − ε)T and ε > 0. Thus, λ̂ estimates the
location of the peak of DT (λ) as seen in Figures 2.1 and 2.2.

This method of estimating break points was suggested in Andrews (1993) and has previ-
ously been used in the literature. For example, Bai (1994a) propose a supWald statistics
based on least squares to estimate the location of a break point. Conversely, minimis-
ing the residual sum of squares (RSS) across Λ has also been used in literature for OLS
estimations; see Bai (1994b), Bai (1997a), Bai and Perron (1998) and Hall et al. (2012).

2.4 Consistency and Convergence Rate of λ̂

This section presents some useful asymptotic properties of λ̂ obtained from a single break
model. Specifically, it establishes the consistency and rate of convergence of λ̂. For the
most part, our approach and propositions predominantly follow closely the arguments
in Bai (1997a) and to a lesser degree, Bai (1994a) and Bai (1994b). To the best of our
knowledge, these asymptotic properties of the break fraction estimator have not been
established within the GMM framework. To help maintain focus on the salient issues, the
detailed analysis of the proofs of lemmas used are relegated to the relevant appendices.

There are four vital things to note here before proceeding with the analysis. Firstly, the
test statistic in (2.3) can be broken down analytically and re-expressed in a more tractable



CHAPTER 2. STABLE JACOBIAN - SINGLE BREAK MODEL 32

form shown in Appendix A.3 as,

DT (λ) = T (θ̂1,T (λ)− θ̂2,T (λ))
′
M∗,T (λ)−1 (θ̂1,T (λ)− θ̂2,T (λ)), (2.5)

where M∗,T (·) = M1,T (·)−1 +M2,T (·)−1, Mi,T (·) = Gi,T (·)′Wi,T (·)Gi,T (·) and Gi,T (·) =

T−1Zi,T (·)′Xi,T (·), for i = 1, 2. In our study, we refer to (θ̂1,T (λ) − θ̂2,T (λ)) as the
'Parameter Difference' and M∗,T (λ)−1 as the 'Centre Matrix'. In other words, the test
statistic is composed of these two major parts and all our further analyses is based on this
form of DT (λ) displayed in (2.5). Also, in this form, the test statistic can be thought of as
a weighted average of the square of the Parameter Difference.

Secondly, there are only two possible regimes that can exist in a one-break model: the
first regime covers the period before the break, [1, k0), while the second regime covers
the period after the break, [k0 + 1, T ]. We occasionally refer to these as Subsample 1 and
Subsample 2 respectively. Notice the SE is stable in each regime. Furthermore, observe
that all break fractions in Subsample 1 are less than the true break, that is, λ < λ0; the
reverse is the case in the second subsample.

Thirdly, an additional assumption useful in establishing the convergence rate of the esti-
mated break fraction needs to be made:

Assumption 9. For some real number r > 2 and a constant C > 0,

E

∣∣∣∣ j∑
t=i

ztut

∣∣∣∣r ≤ C(j − i)r/2 for all 1 ≤ i ≤ j ≤ T.

As noted in Bai (1994a), this assumption is a generalisation of the Hájek and Rényi (1955)
inequality and is useful in the proof of limit theorems of independent summands seen in
the appendices.

Lastly, we specify a scaled version of the test statistic asD∗T (λ), whereD∗T (λ) = T−1DT (λ).
This scaled version is also well defined for all Λ and useful for the asymptotic analysis of
λ̂.

2.4.1 Consistency of the Break Fraction Estimator

The proof strategy of the consistency of the break fraction estimator is as follows. Firstly,
the nonstochastic limits of the test statistic are obtained for all λ ∈ Λ; secondly, we show
the test statistic uniformly converges to these nonstochastic limits; and lastly, we show
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these limits are uniquely maximised at the point where λ = λ0. These steps are stated in
the following three lemmas:

Lemma 1. Under Assumptions 1 to 8, D∗T (λ) converges uniformly in probability to a

nonstochastic function D∗(λ) on (0, 1).

This nonstochastic function, D∗(λ), exhibits three unique expressions across the range

of Λ, one in each of the two regimes and one at the true break point, k0. As detailed in

Appendix B.1, these three expressions are given as,

D∗(λ0) = λ0(1− λ0)P , when λ = λ0 (2.6)

D∗(λ) =
λ

1− λ
(1− λ0)2P , for all λ < λ0 (2.7)

D∗(λ) =
1− λ
λ

(λ0)2P , for all λ > λ0, (2.8)

where P = (θ
(1)
0 − θ

(2)
0 )

′B(θ
(1)
0 − θ

(2)
0 ) and B = QxzCQzx.

Lemma 2. Under Assumptions 1 to 8,

supλ∈Λ|D∗T (λ)−D∗(λ)| = Op(T
−1/2). (2.9)

This lemma infers that for all λ, the test statistic D∗T (λ) is uniformly close to its expected
nonstochastic function D∗(λ), with high probability. The proof of this lemma is found in
Appendix B.2 on page 44.

Lemma 3. Under Assumptions 1 to 8, there exists an E > 0 which depends on λ0, θ(1)
0

and θ(2)
0 such that

D∗(λ)−D∗(λ0) ≤ −E|λ− λ0| for all large T. (2.10)

This lemma, proved in Appendix B.3 on page 48 indicates the test statistic is uniquely
maximised at λ0. In conjunction with Lemma 2, it follows that with high probability, the
maximiser of D∗T (λ) will also be close to λ0.

Based on these three lemmas, we state the consistency of the break fraction estimator in
the following proposition followed by its proof,



CHAPTER 2. STABLE JACOBIAN - SINGLE BREAK MODEL 34

Proposition 1. Under Assumptions 1 to 8,

λ̂− λ0 = Op(T
−1/2). (2.11)

The proposition implies the estimated break fraction, λ̂, is asymptotically consistent for
the true break fraction, λ0.

Proof of Proposition 1

By adding and subtracting D∗(λ) and D∗(λ0), we can write

D∗T (λ)−D∗T (λ0) = D∗T{λ, λ0}+D∗{λ, λ0}, (2.12)

where

D∗T{λ, λ0} = {D∗T (λ)−D∗(λ)} − {D∗T (λ0)−D∗(λ0)} (2.13)

and

D∗{λ, λ0} ={D∗(λ)−D∗(λ0)}. (2.14)

Remark 1. By definition, the test statistic, D∗T (λ) is a maximum so it must be that for

D∗T{λ, λ0} in (2.13),

{D∗T (λ)−D∗(λ)} − {D∗T (λ0)−D∗(λ0)} ≤ 2 supλ∈Λ|D∗T (λ)−D∗(λ)|. (2.15)

Remark 2. Note also that D∗{λ, λ0} given in (2.14) is defined for all λ ∈ Λ and particu-

larly for the estimated break fraction, λ̂. Furthermore, the left hand side (LHS) of (2.12)

is non-negative because by definition, D∗T (λ̂) ≥ D∗T (λ0).

Combining D∗T{λ, λ0}, D∗{λ, λ0} and Remark 1 with Lemma 3, we obtain

D∗T (λ̂)−D∗T (λ0) ≤ 2 supλ∈Λ|D∗T (λ)−D∗(λ)|+ {D∗(λ)−D∗(λ0)}

≤ 2 supλ∈Λ|D∗T (λ)−D∗(λ)| − E|λ̂− λ0|. (2.16)

Hence, noting the latter part of Remark 2, it must be that

|λ̂− λ0| ≤ E−12 supλ∈Λ|D∗T (λ)−D∗(λ)|. (2.17)

This concludes the proof of Proposition 1 since the right hand side (RHS) of (2.17) is



CHAPTER 2. STABLE JACOBIAN - SINGLE BREAK MODEL 35

Op(T
−1/2) based on Lemmas 1 to 3.

2.4.2 Convergence Rate of the Break Fraction Estimator

The rate of convergence describes how fast the break fraction estimator converges to the
true value. In this section, we show this rate to be the same as the sample size, T . In our
analysis, we adopt the fixed break approach, that is, we assume the breaks are fixed as
the sample size increases. To establish this rate for λ̂, we make the following three vital
definitions.

Firstly, define V1 = {k : Tη ≤ k ≤ T (1 − η)} for a small positive number η, such that
λ ∈ (η, 1 − η). Thus, for all k ∈ V1, this ensures that λ is both away from 0 and 1 for a
positive number of the observations. From Proposition 1, since λ̂ is consistent for λ0, there
is a high probability that k̂ will fall into V1. In other words, we write, Pr(k̂ /∈ V1) < ε for
every ε > 0 and all large T .

Secondly, define V2 = {k : |k − k0| ≤ M}, whereM < ∞ is constant. To prove the
T -consistency of the break fraction, we show that k̂ eventually falls into V2 with large
probability for largeM.

Lastly, define V3 = {k : Tη ≤ k ≤ T (1 − η), |k − k0| >M}. That is, V3 = V1 ∩ V c
2 ,

where V c
2 is the complement of V2. We state in the following lemma, that the probability

of the break point to lie within this set V3 is very small,

Lemma 4. Under Assumptions 1 to 9, there existsM <∞ such that for all large T and

every ε > 0,

P

(
sup
k∈V3

DT (k)−DT (k0) > 0

)
< ε. (2.18)

With the proof of this lemma given in Appendix B.4, we now present our second propo-
sition to state the rate T convergence of the break fraction estimator,

Proposition 2. For every ε > 0, there exists a finiteM independent of T , such that for

all large T ,

P (T |λ̂− λ0| >M) < ε. (2.19)

Proof of Proposition 2
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Using Pr(A) ≤ Pr(Bc) + Pr(B ∩ A) and Lemma 4, we conclude that

P (T |λ̂− λ0| >M) = P (|k̂ − k0| >M)

≤ Pr
(
k̂ /∈ (Tη, T (1− η)

)
+ Pr

(
k̂ ∈ (Tη, T (1− η)) ∩ |k̂ − k0| >M

)
= Pr(k̂ /∈ V1) + Pr(k̂ ∈ V3)

≤ ε+ Pr

(
sup
k∈V3

DT (k) ≥ DT (k0)

)
≤ 2ε.

This proof confirms our proposition that λ̂ is T -consistent. Similar T -convergence rates
are obtained in Bai (1994a), Bai (1997a), Bai and Perron (1998) and Hall et al. (2012)
using Ordinary Least Squares (OLS).

2.5 Conclusion

In this chapter, issues relating to the estimation of a single unknown break point in a linear
model are examined. We assume a pure structural change where all the parameters in the
model are assumed to change at the same point in time. The estimation procedure is based
on the supremum of a sequence of the Difference test statistic which is normally used to
test parameter stability as given in Andrews (1993).

Additionally, the consistency and rate of convergence of the break fraction estimator
were established and shown to be consistent with existing OLS literature provided in
Bai (1994a), Bai (1997a), Bai and Perron (1998) and Hall et al. (2012). This implies
our GMM approach of using parameter variation to estimate break points in linear mod-
els yields estimators with asymptotic properties consistent with existing literature. The
detailed theoretical analysis carried out further adds to the body of literature within the
GMM framework.

The finite sample behaviour of the break fraction estimator obtained from this one break
model are presented through a series of Monte Carlo simulations in Chapter 5. In reality
however, more than one break point may exist in a model. For example, Hall et al. (2012)
find two breaks in the reduced form of the inflation forecast series between 1968 and
2001 while Hansen (2001) find three breaks in the U.S. labour productivity between 1947
to 2001. The next chapter considers models with multiple break points and the break
fraction estimators obtained from such models are examined.



Appendix A

A.1 Unrestricted GMM estimator

This appendix reviews the process of obtaining GMM parameters from the unconstrained
minimisation of the GMM minimand. Under this estimation technique1, the unrestricted
estimator solves the minimisation problem,

θ̂T (λ) = argminθ(λ)∈Θ×ΘQT (θ(λ);λ),

where Θ ⊂ <p; θ̂T (λ) = vec[θ̂1,T (λ)
′
, θ̂2,T (λ)

′
]
′; QT (θ(λ), λ) is the GMM minimand,

QT (θ(λ), λ) = gT (θT (λ), λ)
′
WT (λ)gT (θT (λ), λ);

gT (θT (λ), λ) =

[
T−1

∑T
t=1 ztut(θ1(λ))It,T (λ)

T−1
∑T

t=1 ztut(θ2(λ)){1− It,T (λ)}

]
;

WT (λ) =

[
W1,T (λ) 0

0 W2,T (λ)

]
;

Wi,T (λ) is a q × q deterministic positive semi-definite matrix; It,T (λ) is an indicator
variable that takes the value one if t ≤ k and zero otherwise.

The first order conditions for this minimisation implies ∂QT (·)/∂θ(·) = 0, which results
in the unrestricted GMM estimators:

θ̂i,T (λ) = (T−1X
′

i,TZi,TWi,TT
−1Z

′

i,TXi,T )−1T−1X
′

i,TZi,TWi,TT
−1Z

′

i,Tyi,T

= θ
(i)
0 +M−1

i,TG
′

i,TWi,TT
−1Z

′

i,Tui,T , (A.1)

where Mi,T = G
′
i,TWi,TGi,T , Gi,T = T−1Z

′
i,TXi,T for i = 1, 2 where 1 and 2 denote the

1See Hansen (1982), Andrews (1993) and Hall (2005).
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subsample before and after the break point respectively. Thus, the parameters are allowed
to be different across the two regimes.

A.2 Restricted GMM estimator

The restricted parameters on the other hand, are obtained from the constrained minimisa-
tion of the GMM minimand. That is,

θ̄T (λ) = argminθ(λ)QT (θ(λ), λ), subject to θ1(λ) = θ2(λ),

where θ̄T (λ) = [θ̄1,T (λ)
′
, θ̄2,T (λ)

′
]
′ . Forming the Lagrangean function, L(·), the first

order conditions imply ∂L(·)/∂θ = 0 and ∂L(·)/∂κ = 0, where L(·) = QT (θ(λ), λ) +

2κ
′
(θ1(λ) − θ2(λ)) and κ is the p × 1 vector of Lagrange multipliers. Denote κ̄ as the

estimator of κ, these conditions result in the restricted parameter for Subsample 1 as,

θ̄1,T (λ) = (T−1X
′

1,TZ1,TW1,TT
−1Z

′

1,TX1,T )−1(T−1X
′

1,TZ1,TW1,TT
−1Z

′

1,Ty1,T − κ̄)

= θ̂1,T −M−1
1,T κ̄, (A.2)

and that of Subsample 2 as,

θ̄2,T (λ) = θ̂2,T +M−1
2,T κ̄. (A.3)

Since θ̄1,T (λ) = θ̄2,T (λ), equating the RHS of (A.2) and (A.3) results in the expression:
κ̄ = (M−1

1,T + M−1
2,T )−1(θ̂1,T − θ̂2,T ). Substituting κ̄ back into the RHS of (A.2) and (A.3)

gives the following expressions for the restricted estimators:

θ̄1,T (λ) = θ̂1,T −M−1
1,TM

−1
∗,T (θ̂1,T − θ̂2,T ) (A.4)

θ̄2,T (λ) = θ̂2,T +M−1
2,TM

−1
∗,T
(
θ̂1,T − θ̂2,T ), (A.5)

where M∗,T = M−1
1,T +M−1

2,T .
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A.3 Analytical form of DT (λ)

This appendix shows how the analytical form of the Difference test statistic is obtained
from its main components - the restricted and unrestricted GMM minimands. For nota-
tional purposes, the dependence on T and λ are ignored.

To begin, we draw attention to two salient facts which are used in the analysis. Firstly,
based on (A.4) and (A.5), the moment condition for the restricted parameters can be
expressed in terms of the unrestricted parameters since,

T 1/2g1(θ̄1) = T 1/2Z
′

1u1(θ̄1)

= T 1/2Z
′

1y1 − T 1/2Z
′

1X1θ̄1

= T 1/2Z
′

1y1 − T 1/2Z
′

1X1θ̂1 + T 1/2Z
′

1X1M
−1
1 M−1

∗ (θ̂1 − θ̂2)

= T 1/2g1(θ̂1) +G1M
−1
1 M−1

∗ T 1/2(θ̂1 − θ̂2).

Similarly,

T 1/2g2(θ̄2) = T 1/2g2(θ̂2)−G2M
−1
2 M−1

∗ T 1/2(θ̂2 − θ̂2).

Secondly, recall that the first order conditions for the unrestricted regressions imply

G
′
1W1T

1/2g1(θ̂1) = 0 and G′2W2T
1/2g2(θ̂2) = 0.

With the GMM minimands associated with the restricted and unrestricted estimations
defined as QT (θ̄1(λ), θ̄2(λ);λ) and QT (θ̂1(λ), θ̂2(λ);λ) respectively, the test statistic is
broken down as follows,

DT (λ) = T
{
QT (θ̄1(λ), θ̄2(λ);λ)−QT (θ̂1(λ), θ̂2(λ);λ)

}
= T

{
g1(θ̄1)

′
W1g1(θ̄1) + g2(θ̄2)

′
W2g2(θ̄2)

}
− T

{
g1(θ̂1)

′
W1g1(θ̂1)− g2(θ̂2)

′
W2g2(θ̂2)

}
= T

{
g∗1(θ̄1)

′
W1g

∗
1(θ̄1) + g∗2(θ̄2)

′
W2g

∗
2(θ̄2)

}
− T

{
g1(θ̂1)

′
W1g1(θ̂1)− g2(θ̂2)

′
W2g2(θ̂2)

}
= T 1/2(θ̂1 − θ̂2)

′
M−1
∗ T 1/2(θ̂1 − θ̂2),

where g∗i (θ̄i) = gi(θ̂i) +GiM
−1
i M−1

∗ (θ̂1 − θ̂2) for i = 1, 2.
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B.1 Proof of Lemma 1

This appendix shows the uniform convergence ofD∗T (λ) to its nonstochastic limit,D∗(λ),
for all λ ∈ Λ. First, notice that in the single break model, there are three different locations
the candidate break fraction λ can be relative to the true break fraction, λ0: (i) it can
coincide with λ0; (ii) it can lie before λ0; (iii) it can lie after λ0. Thus D∗(λ) takes on
three different expressions, depending on this location. In all cases, D∗T (λ) is split into
its two main components: the Parameter Difference and the Centre Matrix. These are
separately examined in detail (starting with the Parameter Difference) and their limits
established before combining to get the form of D∗(λ) for each of the cases.

Case 1: When λ = λ0

This is a straightforward case since we get the structures of the individual parameters
directly from (A.1) as

θ̂1(λ0) = H1,T (λ0)T−1

k0∑
t=1

ztyt, (B.1)

and

θ̂2(λ0) = H2,T (λ0)T−1

T∑
t=k0+1

ztyt, (B.2)

for Subsamples 1 and 2 respectively, whereHi,T (λ0) = Mi,T (λ0)−1Gi,T (λ0)
′
Wi,T (λ0) for

i = 1, 2; yt = x
′
tθ

(1)
0 + ut in (B.1) and yt = x

′
tθ

(2)
0 + ut in (B.2).

Since H1,T (λ0)T−1
∑k0

t=1 ztut and H2,T (λ0)T−1
∑T

t=k0+1 ztut, are negligible based on
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Assumptions 1, 3 and 4 to 8, this implies,

θ̂i(λ0) = θ
(i)
0 + op(1), fori = 1, 2. (B.3)

Therefore, to obtain the limit of the Parameter Difference when λ = λ0, we write

θ̂1(λ0)− θ̂2(λ0)
p→ θ

(1)
0 − θ

(2)
0 . (B.4)

For the Centre Matrix on the other hand, M∗,T (λ0) = M1,T (λ0)−1 +M2,T (λ0)−1 and from
Assumptions 1, 3, 5 and 8,

M1,T (λ0) = G1,T (λ0)
′
W1,T (λ0)G1,T (λ0)

p→ (λ0Qxz)(λ
−1
0 C)(λ0Qzx)

= λ0(QxzCQzx).

Similarly, M2,T (λ0) = G2,T (λ0)
′
W2,T (λ0)G2,T (λ0)

p→ (1− λ0)(QxzCQzx).Therefore,

M∗,T (λ0)−1 p→ λ0(1− λ0)B, (B.5)

where B = QxzCQzx. Combining the RHS of (B.4) and (B.5), we get that when λ = λ0,
the nonstochastic limit of the test statistic is given by the following expression,

D∗(λ0) = λ0(1− λ0)P , (B.6)

where P = (θ
(1)
0 − θ

(2)
0 )

′B(θ
(1)
0 − θ

(2)
0 ).

Case 2: When λ < λ0

The parameter obtained from Subsample 1 is from a stable model and hence it is still
estimated at its true value,

θ̂1(λ) = H1,T (λ)T−1

k∑
t=1

ztyt
p→ θ

(1)
0 , (B.7)
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since yt = x
′
tθ

(1)
0 + ut. Conversely, Subsample 2 is unstable and the estimated parameter

is a weighted average of the two parameters1. This is given as,

θ̂2(λ) = H2,T (λ)T−1

T∑
t=k+1

ztyt, (B.8)

where T−1
∑T

t=k+1 ztyt = T−1
∑k0

t=k+1 ztyt + T−1
∑T

t=k0+1 ztyt.

Based on Assumptions 1, 3, 5 and 8,

H2,T (λ) = M2,T (λ)−1G2,T (λ)
′
W2,T (λ)

=
(
G2,T (λ)

′
W2,T (λ)G2,T (λ)

)−1
G2,T (λ)

′
W2,T (λ)

p→
(
(1− λ)Qxz(1− λ)−1C(1− λ)Qzx

)−1
(1− λ)Qxz(1− λ)−1C

= {(1− λ)(QxzCQzx)}−1QxzC.

Also, T−1
∑k0

t=k+1 ztyt
p→ (λ0 − λ)Qzxθ

(1)
0 and T−1

∑T
t=k0+1 ztyt

p→ (1− λ0)Qzxθ
(2)
0 .

Thus we conclude that θ̂2(λ)
p→ θ

(2)
∗ (λ), where

θ(2)
∗ (λ) = H2(λ)Ψb1, (B.9)

H2(λ) = {(1 − λ)(QxzCQzx)}−1QxzC and Ψb1 = (λ0 − λ)Qzxθ
(1)
0 + (1 − λ0)Qzxθ

(2)
0 .

Notice (B.9) can be simplified further to,

θ(2)
∗ (λ) =

1

1− λ
{

(λ0 − λ)θ
(1)
0 + (1− λ0)θ

(2)
0

}
. (B.10)

Combining θ(1)
∗ (λ) and θ(2)

∗ (λ) given in (B.7) and (B.10) respectively, we get the limit of
the Parameter Difference,

θ(1)
∗ (λ)− θ(2)

∗ (λ) =
1− λ
1− λ

θ
(1)
0 −

λ0 − λ
1− λ

θ
(1)
0 −

1− λ0

1− λ
θ

(2)
0

=
1− λ0

1− λ
θ

(1)
0 −

1− λ0

1− λ
θ

(2)
0

=
1− λ0

1− λ
(θ

(1)
0 − θ

(2)
0 ). (B.11)

On the other hand, the structure of the limit of the Centre Matrix does not vary since the
Jacobian is stable. A change in the location of λ in the estimations only affects Mi,T (λ)

1Elliot and Müller (2014) note same structure while Hall et al. (2012) use similar expressions for the
weighted combination of the parameters when they examine the performance of the GMM minimand.
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by the number of terms being summed up in Gi,T (λ) which all have identical limits based
on Assumptions 1, 3 and 8. Hence, the Centre Matrix has a similar structure to (B.5)
where we only need to replace λ0 to reflect the location of the candidate break point, that
is,

M∗(λ)−1 = λ(1− λ)B. (B.12)

Combining the limit of the Parameter Difference established on the RHS of (B.11) with
that of the Centre Matrix in (B.12), gives the limit of the test statistic when λ < λ0 as,

D∗(λ) =
{1− λ0

1− λ

}2

λ(1− λ)(θ
(1)
0 − θ

(2)
0 )

′B(θ
(1)
0 − θ

(2)
0 )

=
λ

1− λ
(1− λ0)2P . (B.13)

Case 3: When λ > λ0

This scenario can be considered the reverse of the previous case when λ < λ0; the sec-
ond regime is stable, while the first regime now exhibits instability. Consequently, the
estimated parameter in Subsample 2, θ̂2(λ)

p→ θ
(2)
0 while that in Subsample 1 is now the

weighted average. Performing a similar analysis to Case 2, we write

θ̂1(λ) = H1,T (λ)T−1

k∑
t=1

ztyt, (B.14)

where T−1
∑k

t=1 ztyt = T−1
∑k0

t=1 ztyt + T−1
∑k

t=k0+1 ztyt.

By Assumptions 1, 3, 5 and 8 we obtain,

H1,T (λ) =
(
G1,T (λ)

′
W1,T (λ)G1,T (λ)

)−1
G1,T (λ)

′
W1,T (λ)

p→
(
λQxzλ

−1CλQzx

)−1
λQxzλ

−1C

= {λ(QxzCQzx)}−1QxzC.

Likewise, T−1
∑k0

t=1 ztyt
p→ λ0Qxzθ

(1)
0 and T−1

∑k
t=k0+1 ztyt

p→ (λ − λ0)Qxzθ
(2)
0 . Thus,

the limit of the parameter before the break,

θ(1)
∗ (λ) = H1(λ)Ψa1, (B.15)

whereH1(λ) = {λ(QxzCQzx)}−1QxzC and Ψa1 = λ0Qzxθ
(1)
0 + (λ− λ0)Qzxθ

(2)
0 .
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The parameter limits on the RHS of (B.9) and (B.15) are used to deduce that the Parameter
Difference in this case is,

θ(1)
∗ (λ)− θ(2)

∗ (λ) =
λ0

λ
θ

(1)
0 +

λ− λ0

λ
θ

(2)
0 −

λ

λ
θ

(2)
0

=
λ0

λ
(θ

(1)
0 − θ

(2)
0 ). (B.16)

When combined with the Centre Matrix in (B.12) we obtain the following expression for
the limit of the test statistic when λ > λ0 as

D∗(λ) =
{λ0

λ

}2

λ(1− λ)(θ
(1)
0 − θ

(2)
0 )

′B(θ
(1)
0 − θ

(2)
0 )

=
1− λ
λ

(λ0)2P . (B.17)

B.2 Proof of Lemma 2

This appendix shows that the test statistic, D∗T (λ), is uniformly close to its limit, D∗(λ),
in all the three cases presented in Appendix B.1. This is achieved by establishing the
difference between them is Op(T

−1/2) uniformly in λ.

To ease notation, let µ∗,T (λ) = θ̂1(λ) − θ̂2(λ) and µ∗(λ) = θ
(1)
∗ (λ) − θ(2)

∗ (λ), such that
θ̂i(λ)

p→ θ
(i)
∗ (λ), then Lemma 2 can be re-expressed as

supλ∈Λ

∣∣µ∗,T (λ)
′
M∗,T (λ)−1µ∗,T (λ)− µ∗(λ)

′
M∗(λ)−1µ∗(λ)

∣∣ = Op(T
−1/2). (B.18)

By adding and subtracting µ∗,T (λ)
′
M∗,T (λ)−1µ∗(λ) and µ∗,T (λ)

′
M∗(λ)−1µ∗(λ), we get

µ∗,T (λ)
′
M∗,T (λ)−1µ∗,T (λ)− µ∗(λ)

′
M∗(λ)−1µ∗(λ) = µ̆T∗ + M̆T

∗ ,

where

µ̆T∗ = µ∗,T (λ)
′
M∗,T (λ)−1[µ∗,T (λ)− µ∗(λ)] + µ∗(λ)

′
M∗(λ)−1[µ∗,T (λ)− µ∗(λ)]

(B.19)

M̆T
∗ = µ∗,T (λ)

′
[M∗,T (λ)−1 −M∗(λ)−1]µ∗(λ). (B.20)

Notice the Parameter Differences, µ∗,T (·) and µ∗(·) are Op(1) and O(1), respectively,
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uniformly in λ because the parameters themselves are bounded. Likewise, the Centre
Matrices, M∗,T (·) and M∗(·), since their individual components, Gi,T (·) and Wi,T (·) are
bounded based on Assumptions 1, 3 and 8. We now need to show the terms in the square
brackets on the RHS of B.19 and B.20 are Op(T

−1/2) uniformly in λ. Starting with M̆T
∗ ,

we write2

M∗,T (λ)−1 −M∗(λ)−1 = M∗(λ)−1[M∗(λ)−M∗,T (λ)]M∗,T (λ)−1, (B.21)

and expanding the terms in the square brackets we obtain,

M∗(λ)−M∗,T (λ) = {M1(λ)−1 −M1,T (λ)−1}+ {M2(λ)−1 −M2,T (λ)−1}

= M1,T (λ)−1[M1,T (λ)−M1(λ)]M1(λ)−1 (B.22)

+M2,T (λ)−1[M2,T (λ)−M2(λ)]M2(λ)−1. (B.23)

As defined, the terms in the square brackets in (B.22),

M1,T (λ)−M1(λ) = G1,T (λ)
′
W1,T (λ)G1,T (λ)−G1(λ)

′
W1(λ)G1(λ),

where we have used G1(λ) = λQzx. Adding and subtracting G1,T (λ)
′
W1,T (λ)G1(λ) and

G1,T (λ)
′
W1(λ)G1(λ), we get

M1,T (λ)−M1(λ) = G1,T (λ)
′
W1,T (λ)[G1,T (λ)−G1(λ)]

+G1,T (λ)
′
[W1,T (λ)−W1(λ)]G1(λ)

+ [G1,T (λ)−G1(λ)]
′
W1(λ)G1(λ).

Now consider the terms in the square brackets which apply to the Jacobian, G1 and the
weighting matrix, W1. Without loss of generality, we state for the former,

G1,T (λ)−G1(λ) = T−1

[Tλ]∑
t=1

ztx
′

t − λQzx (B.24)

= T−1

[Tλ]∑
t=1

ztx
′

t − T−1

[Tλ]∑
t=1

Qzx (B.25)

+ T−1

[Tλ]∑
t=1

Qzx − λQzx. (B.26)

2Using matrix rule A−1 −B−1 = B−1[B −A]A−1.
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Define Hzx(λ) = T−1/2
∑[Tλ]

t=1 (ztx
′
t − Qzx), which is Op(1) by the Functional Central

Limit Theorem3 (FCLT) and Assumptions 1, 3 and 8, then it must be that the RHS of
(B.25) is Op(T

−1/2) uniformly in λ.

The RHS of (B.26) on the other hand is asymptotically negligible because T−1
∑[Tλ]

t=1 Qzx−

λQzx =
[Tλ]

T
Qzx − λQzx

p→ 0 as T → ∞. We thus conclude G1,T (λ) − G1(λ) is

Op(T
−1/2) uniformly in λ.

The difference in the weighting matrix is quite straight forward because from construc-

tion, W1,T (λ) = W1(λ) =
1

λ
C, where C is a constant matrix. Thus, W1,T (λ)−W1(λ) =

0.

A similar evaluation can be performed for the terms in the square brackets on the RHS
of (B.23) to show it is also Op(T

−1/2). Therefore we conclude M̆T
∗ given in (B.20) is

Op(T
−1/2) uniformly in λ.

The proof for µ̆T∗ in (B.19) is comparatively more involving as it involves the parameters
which are dependent on the location of the candidate and true break fractions; hence the
analysis covers the three different cases associated with a one break model introduced in
Appendix B.1. We show that multiplying the Parameter Differences by T 1/2 in each of
the three cases results in Op(1) terms and the results follows.

When λ = λ0,

T 1/2
(
µ∗,T (λ0)− µ∗(λ0)

)
= T 1/2{(θ̂1(λ0)− θ(1)

0 )− (θ̂2(λ0)− θ(2)
0 )}.

From θ̂1(λ0) given in (B.1) and (B.3), we state

T 1/2(θ̂1(λ0)− θ(1)
0 ) = H1,T (λ0)Hzu(λ0), (B.27)

whereHzu(λ0) = T−1/2
∑k0

t=1 ztut
d→ Ω1/2Bq(λ0) by the FCLT; Ω = V ar[T−1/2

∑k0
t=1 ztut]

and Bq is a q−dimensional Brownian motion. Thus, the LHS of (B.27) is bounded in
probability. An identical analysis yields a similar outcome for the second parameter
(θ̂2(λ0)− θ(2)

0 ). We conclude that in this case when λ = λ0, then µ̆T∗ as given in (B.19) is
Op(T

−1/2).

When λ < λ0,

From the limits of θ̂1(λ) established in (B.7), the Parameter Differences for the parameters
before the break are similar to the RHS of (B.27), but holds uniformly for all λ < λ0. That

3See page 176 White (2001).
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is,

T 1/2(θ̂1(λ)− θ(1)
0 ) = H1,T (λ)Hzu(λ), (B.28)

For the parameters after the break on the other hand, we use θ̂2(λ) in (B.8) and θ(2)
∗ (λ) in

(B.9) to deduce that for all λ > λ0,

T 1/2(θ̂2(λ)− θ(2)
∗ (λ))

= H2,T (λ)
{
T−1/2

T∑
t=k+1

ztut + T−1/2

k0∑
t=k+1

ztx
′

tθ
(1)
0 + T−1/2

T∑
t=k0+1

ztx
′

tθ
(2)
0

}
− T 1/2θ(2)

∗ (λ)

= H2,T (λ)
{
T−1/2

T∑
t=k+1

ztut

+ T−1/2

k0∑
t=k+1

(ztx
′

t −Qzx)θ
(1)
0 + T−1/2

T∑
t=k0+1

(ztx
′

t −Qzx)θ
(2)
0

}
+H2,T (λ)

{
T−1/2

k0∑
t=k+1

Qzxθ
(1)
0 + T−1/2

T∑
t=k0+1

Qzxθ
(2)
0

}
− T 1/2H2(λ)Ψb1

= H2,T (λ)[Hzu(1)−Hzu(λ)] (B.29)

+H2,T (λ)
{

[Hzx(λ0)−Hzx(λ)]θ
(1)
0 + [Hzx(1)−Hzx(λ0)]θ

(2)
0

}
(B.30)

+ T 1/2[H2,T (λ)−H2(λ)]Ψb1 + T 1/2ζb1, (B.31)

where ζb1 = H2,T (λ){T−1
∑k0

t=k+1Qzxθ
(1)
0 + T−1

∑T
t=k0+1Qzxθ

(2)
0 −Ψb1},

Hzx(1) = T−1/2
∑T

t=1(ztx
′
t −Qzx) andHzu(1) = T−1/2

∑T
t=1 ztut.

The terms on the RHS of (B.29) and (B.30) are Op(1) uniformly in λ. Similarly, (B.31) is
also Op(1) because

H2,T (λ)−H2(λ) = M2,T (·)−1G2,T (·)′W2,T (·)−M2(·)−1G2(·)′W2(·)

= M2,T (·)−1[G2,T (·)′ −G2(·)′ ]W2,T (·)

+ [M2,T (·)−1 −M2(·)−1]G2(·)′W2,T (·)

+M2(·)−1G2(·)′ [W2,T (·)−W2(·)],
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which is Op(T
−1/2) by similar arguments to (B.24). Lastly, ζb1 is op(1) because

ζb1 = H2,T (λ)
{T [λ0 − λ]

T
Qzx − (λ0 − λ)Qzx

}
θ

(1)
0

+H2,T (λ)
{T [1− λ0]

T
Qzx − (1− λ0)Qzx

}
θ

(2)
0

p→ 0, uniformly in λ as T →∞.

When λ > λ0

In this case, since the parameters after the break point are stable, we focus only on the
parameters from the first subsample. Using θ̂1(λ) in (B.14) and θ

(1)
∗ (λ) in (B.15), we

perform an identical analysis to the preceeding case to obtain,

T 1/2(θ̂1(λ)− θ(1)
∗ (λ))

= H1,T (λ)
{
T−1/2

k∑
1

ztut + T−1/2

k0∑
1

(ztx
′

t −Qzx)θ
(1)
0 + T−1/2

k∑
k0+1

(ztx
′

t −Qzx)θ
(2)
0

}
+H1,T (λ)

{
T−1/2

k0∑
1

Qzxθ
(1)
0 + T−1/2

k∑
k0+1

Qzxθ
(2)
0

}
− T−1/2H1(λ)Ψa1

= H1,T (λ)
{
Hzu(λ) +Hzx(λ0)θ

(1)
0 + [Hzx(λ)−Hzx(λ0)]θ

(2)
0

}
+ T 1/2[H1,T (λ)−H1(λ)]Ψa1 + T 1/2ζa1, (B.32)

where ζa1 = H1,T (λ){T−1
∑k0

1 Qzxθ
(1)
0 + T−1

∑k
k0+1Qzxθ

(2)
0 −Ψa1}, which is op(1).

This concludes the proof.

B.3 Proof of Lemma 3

Using the limits of the test statistic established in (B.6), (B.13) and (B.17), an expression
for E is obtained and shown to be positive for all λ 6= λ0.

When λ < λ0,
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Use D∗(λ) in (B.13) and multiply D∗(λ0) in (B.6) by (1− λ0)/(1− λ0) to get,

D∗(λ)−D∗(λ0) =
(
λ

(1− λ0)2

1− λ
− λ0

(1− λ0)2

1− λ0

)
P

≤ (λ− λ0)
(1− λ0)2

(1− λ0)
P (B.33)

= −|λ− λ0|(1− λ0)P

= −E|λ− λ0|, (B.34)

where E = (1 − λ0)P , P = (θ
(1)
0 − θ

(2)
0 )

′B(θ
(1)
0 − θ

(2)
0 ) and B = QxzCQzx. Since P is

positive and λ0 < 1, then it must be that E > 0.

When λ > λ0,

Multiply D∗(λ0) in (B.6) by (λ0)2/(λ0)2 and D∗(λ) in (B.17) by λ/λ to get,

D∗(λ)−D∗(λ0) =
(
λ

(1− λ)

λ2
(λ0)2 − λ0

(1− λ0)

(λ0)2
(λ0)2

)
P

≤ (λ0 − λ)
(1− λ0)

(λ0)2
(λ0)2P (B.35)

= −|λ0 − λ|(1− λ0)P

= −E|λ0 − λ|. (B.36)

B.4 Proof of Lemma 4

The analysis in this appendix is carried out with reference to the break point, k, rather
than the break fraction, λ. This does not change the fundamental structure of the previous
analysis since λ = k/T . We express the test statistic as

DT (k) =
(
θ̂1,T (k)− θ̂2,T (k)

)′
M̃∗,T (k)−1

(
θ̂1,T (k)− θ̂2,T (k)

)
,

where M̃∗,T (k) = M̃1,T (k)−1 + M̃2,T (k)−1; M̃1,T (k) =
∑k

t=1 xtz
′
tW̃1,T (k)

∑k
t=1 ztx

′
t;

M̃2,T (k) =
∑T

t=k+1 xtz
′
tW̃2,T (k)

∑T
t=k+1 ztx

′
t; W̃1,T (k) =

1

k
C and W̃2,T (k) =

1

T − k
C.

We insert '˜ ' above the terms to differentiate them from those used in previous appendices;
the distinction being the scaling factor T−1. Furthermore, without loss of generality, we
set C = Iq for this proof, where Iq is an identity matrix.

The proof is carried out in three steps. Firstly, new expressions for the test statistics,
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DT (k) and DT (k0) are obtained. Secondly, the difference between these two test statis-
tics are separated into two distinct parts - a stochastic and a nonstochastic component.
Thirdly, Lemma 4 is stated in terms of the stochastic component only in such a way that
to complete the proof we only need to show that this stochastic component is asymptoti-
cally negligible.

The following proof covers only the case when λ < λ0 but as highlighted in earlier
appendices, the analysis for the case of λ > λ0 follows a similar argument. Hence it is
omitted.

To obtain the expressions for DT (·) used in this proof, we start with the Parameter Differ-
ence. For the estimated parameter from the first subsample,

θ̂1(k) = θ
(1)
0 + H̃1,T (k)

k∑
1

ztut, (B.37)

where H̃1,T (k) = M̃1,T (k)−1
∑k

t=1 xtz
′
tW̃1,T (k). With some adjustments, the parameter

from the second subsample can be expressed as,

θ̂2(k) = H̃2,T (k)

{
k0∑

t=k+1

ztx
′

tθ
(1)
0 +

T∑
t=k0+1

ztx
′

tθ
(2)
0 +

T∑
t=k+1

ztut

}

= H̃2,T (k)

{
k0∑

t=k+1

ztx
′

tθ
(1)
0 +

T∑
t=k0+1

ztx
′

tθ
(1)
0

−
T∑

t=k0+1

ztx
′

tθ
(1)
0 +

T∑
t=k0+1

ztx
′

tθ
(2)
0 +

T∑
t=k+1

ztut

}

= θ
(1)
0 − H̃2,T (k)

T∑
t=k0+1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)
+ H̃2,T (k)

T∑
t=k+1

ztut, (B.38)

where H̃2,T (k) = M̃2,T (k)−1
∑T

t=k+1 xtz
′
tW̃2,T (k). From (B.37) and (B.38), the Parame-

ter Difference is,

θ̂1(k)− θ̂2(k) = A(k) +B(k),
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where

A(k) = H̃2,T (k)
T∑

t=k0+1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)
(B.39)

B(k) = B1(k)−B2(k) (B.40)

B1(k) = H̃1,T (k)
k∑
t=1

ztut (B.41)

B2(k) = H̃2,T (k)
T∑

t=k+1

ztut. (B.42)

An analogous analysis for the parameter estimated at the true break point yields, θ̂1(k0)−
θ̂2(k0) = A(k0) +B(k0), where

A(k0) =
(
θ

(1)
0 − θ

(2)
0

)
(B.43)

and B(k0) is identical to B(k) in (B.40), albeit evaluated at k0. Based on A(k) and B(k),
the test statistic for all λ < λ0 is expressed as,

DT (k) =
(
A(k) +B(k)

)′
M̃∗,T (k)−1

(
A(k) +B(k)

)
= A(k)

′
M̃∗,T (k)−1A(k) + 2A(k)

′
M̃∗,T (k)−1B(k) +B(k)

′
M̃∗,T (k)−1B(k).

The difference between the two test statistics is given as,

DT (k)−DT (k0) = A∗(k, k0) + h∗(k, k0), (B.44)

where

A∗(k, k0) = A(k)
′
M̃∗,T (k)−1A(k)− A(k0)

′
M̃∗,T (k0)−1A(k0) (B.45)

h∗(k, k0) = B∗(k, k0) + 2C∗(k, k0) (B.46)

B∗(k, k0) = B(k)
′
M̃∗,T (k)−1B(k)−B(k0)

′
M̃∗,T (k0)−1B(k0) (B.47)

C∗(k, k0) = A(k)
′
M̃∗,T (k)−1B(k)− A(k0)

′
M̃∗,T (k0)−1B(k0). (B.48)

We refer to A∗(k, k0) and h∗(k, k0) as the nonstochastic and stochastic parts respectively.
From Lemmas 2 and 3, A∗(k, k0) is maximised near k0.

Before we move on to the third step of the proof process, we mention two things. First,
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we define

γ(k) =
A(k0)

′
M̃∗,T (k0)−1A(k0)− A(k)

′
M̃∗,T (k)−1A(k)

|k0 − k|
(B.49)

and note that by way of its construction, γ(k) > 0 for all λ < λ0.

Second, notice that γ(k) = −
(
A∗(k, k0)/|k0−k|

)
and hence, the RHS of (B.44) can also

be expressed as,

DT (k)−DT (k0) = −|k0 − k|γ(k) + h∗(k, k0). (B.50)

Noting Remark 2 on page 34, DT (k̂) ≥ DT (k0) by virtue of the test statistic being the
maximum and hence the LHS of (B.50) must be non-negative. This implies that for the
RHS of (B.50), it must be that h∗(k, k0)/|k0 − k| ≥ γ(k). We can use this fact to deduce
that Lemma 4,

P

(
sup
k∈V3

DT (k) ≥ DT (k0)

)
≤ P

(
sup
k∈V3

h∗(k, k0)

|k0 − k|
≥ inf

k∈V3
γ(k)

)
. (B.51)

Expressing Lemma 4 in this way enables us to limit our analysis only to the stochastic
component, h∗(k, k0) which we now show to be asymptotically negligible when divided
by |k0 − k| as long as k ∈ V3.

Since infk∈V3γ(k) > 0 and bounded from Asssumptions 1, 3, 7 and 8 and Lemmas 2 and
3, it suffices to show that for any fixed F > 0,

P

(
sup
k∈V3

h∗(k, k0)

|k0 − k|
≥ F

)
< ε. (B.52)

We now analyse the two terms of h∗(k, k0) given in (B.46) and show they are very small
in probability when divided by |k0 − k|. To ease the analysis, we first obtain the order of
magnitudes of the main terms.

Notice that from Assumptions 1 to 4,
∑k

t=1 xtz
′
t is Op(T ),

1

k

∑k
t=1 ztx

′
t is Op(1) and
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∑k
t=1 ztut is Op(T

1/2) uniformly in k. Similarly,

M̃1,T (k) =
1

k

k∑
t=1

xtz
′

tI
k∑
t=1

ztx
′

t = Op(T ) (B.53)

M̃2,T (k) =
1

T − k

T∑
t=k+1

xtz
′

tI

T∑
t=k+1

ztx
′

t = Op(T ) (B.54)

M̃∗,T (k) = M̃1,T (k)−1 + M̃2,T (k)−1 = Op(T
−1) (B.55)

H̃1,T (k) = M̃1,T (k)−1 1

k

k∑
t=1

xtz
′

tI = Op(T
−1) (B.56)

H̃2,T (k) = M̃2,T (k)−1 1

T − k

T∑
t=k+1

xtz
′

tI = Op(T
−1) (B.57)

A(k) = H̃2,T (k)
T∑

t=k0+1

ztx
′

t(θ
(1)
0 − θ

(2)
0 ) = Op(1) (B.58)

B(k) = H̃1,T (k)
k∑
t=1

ztut − H̃2,T (k)
T∑

t=k+1

ztut = Op(T
−1/2). (B.59)

The same order of magnitudes apply to the counterpart terms, when k = k0. Starting with
B∗(k, k0), we use M̃∗,T (k) in (B.55) and B(k) in (B.59) to deduce

B(·)′M̃∗,T (·)−1B(·) = Op(T
−1/2)Op(T )Op(T

−1/2) = Op(1).

Therefore,

B∗(k, k0)

|k0 − k|
=

Op(1)

|k0 − k|
· (B.60)

For the second stochastic component, C∗(k, k0) given in (B.48), we rearrange and write,

C∗(k, k0) = Υ1(k, k0) + Υ2(k, k0) + Υ3(k, k0),

where

Υ1(k, k0) = A(k)
′{M̃∗,T (k)−1 − M̃∗,T (k0)−1}B(k0) (B.61a)

Υ2(k, k0) = A(k)
′
M̃∗,T (k)−1{B(k)−B(k0)} (B.61b)

Υ3(k, k0) = {A(k)− A(k0)}′M̃∗,T (k0)−1B(k0). (B.61c)
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The order of magnitudes for the individual terms are given in (B.56), (B.58) and (B.59),
hence we only examine the terms in the curly brackets. Also, note the following remark
which we employ subsequently in the proofs.

Remark 3. In this case when λ < λ0, notice that∑k0
t=1(. . .) =

∑k
t=1(. . .) +

∑k0
t=k+1(. . .) and

∑T
t=k0

(. . .) =
∑T

t=k(. . .)−
∑k0

t=k+1(. . .).

Starting with Υ1(k, k0), we break it down as follows,

M̃∗,T (k)−1 − M̃∗,T (k0)−1 = M̃∗,T (k0)−1{M̃∗,T (k0)− M̃∗,T (k)}M̃∗,T (k)−1, (B.62)

where the terms within the curly brackets,

M̃∗,T (k0)− M̃∗,T (k) = {M̃1,T (k0)−1 − M̃1,T (k)−1}+ {M̃2,T (k0)−1 − M̃2,T (k)−1}

and for i = 1, 2,

M̃i,T (k0)−1 − M̃i,T (k)−1 = M̃i,T (k0)−1{M̃i,T (k)− M̃i,T (k0)}M̃i,T (k)−1. (B.63)

With some algebra, the term within the curly brackets in (B.63),

M̃1,T (k0)− M̃1,T (k) =

k0∑
t=1

xtz
′

t

1

k0

k0∑
t=1

ztx
′

t −
k∑
t=1

xtz
′

t

1

k

k∑
t=1

ztx
′

t

= R1 +R2 +R3,

where

R1 =
1

k0

k0∑
t=1

xtz
′

t

k0∑
t=k+1

ztx
′

t (B.64a)

R2 =

k0∑
t=k+1

xtz
′

t

1

k

k∑
t=1

ztx
′

t (B.64b)

R3 =
1

k0

k0∑
t=1

xtz
′

t

1

k

k∑
t=1

ztx
′

t(k − k0). (B.64c)
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Similarly,

M̃2,T (k0)− M̃2,T (k) =
T∑

t=k0+1

xtz
′

t

1

T − k0

T∑
t=k0+1

ztx
′

t −
T∑

t=k+1

xtz
′

t

1

T − k

T∑
t=k+1

ztx
′

t

= S1 + S2 + S3,

where

S1 = − 1

T − k0

T∑
t=k0+1

xtz
′

t

k0∑
t=k+1

ztx
′

t (B.65a)

S2 = −
k0∑

t=k+1

xtz
′

t

1

T − k

T∑
t=k+1

ztx
′

t (B.65b)

S3 =
1

T − k0

T∑
t=k0+1

xtz
′

t

1

T − k

T∑
t=k+1

ztx
′

t(k0 − k). (B.65c)

Notice Ri and Si are all Op(|k0 − k|) for i = 1, 2, 3 from the order of magnitudes given
in (B.53) and (B.54). It follows from (B.53), (B.54), (B.55), and (B.64a) to (B.65c)
that M̃∗,T (k)−1 − M̃∗,T (k0)−1 in (B.62) is also Op(|k0 − k|). Consequently, Υ1(k, k0) is
Op(T

−1/2)Op(|k0 − k|) and we conclude that,

Υ1(k, k0)

|k0 − k|
= Op(T

−1/2). (B.66)

For Υ2(k, k0) in (B.61b) on page 53, we state that B(k)−B(k0) = {B1(k)−B1(k0)}+
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{B2(k)−B2(k0)} using (B.40). With some algebra,

B1(k)−B1(k0) = {M̃1,T (k)−1 − M̃1,T (k0)−1}1

k

k∑
t=1

xtz
′

t

k∑
t=1

ztut

+ M̃1,T (k0)−1

{
1

k

k∑
t=1

xtz
′

t −
1

k0

k0∑
t=1

xtz
′

t

} k∑
t=1

ztut

− M̃1,T (k0)−1 1

k0

k0∑
t=1

xtz
′

t

k0∑
t=k+1

ztut

= M̃1,T (k0)−1
{
R1 +R2 +R3

}
M̃1,T (k)−1 1

k

k∑
t=1

xtz
′

t

k∑
t=1

ztut (B.67)

+ M̃1,T (k0)−1

{
1

k

k∑
t=1

xtz
′

t −
1

k0

k0∑
t=1

xtz
′

t

} k∑
t=1

ztut (B.68)

− H̃1,T (k0)

k0∑
t=k+1

ztut. (B.69)

So also,

B2(k)−B2(k0)

= M̃2,T (k0)−1
{
S1 + S2 + S3

}
M̃2,T (k)−1 1

T − k

T∑
t=k+1

xtz
′

t

T∑
t=k+1

ztut (B.70)

+ M̃2,T (k0)−1

{
1

T − k

T∑
t=k+1

xtz
′

t −
1

T − k0

T∑
t=k0+1

xtz
′

t

} T∑
t=k+1

ztut (B.71)

+ H̃2,T (k0)

k0∑
t=k+1

ztut. (B.72)

From (B.53) and (B.64a)-(B.64c), we deduce the RHS of (B.67) is Op(T
−1)Op(|k −

k0|)Op(T
−1/2); and from (B.56), it follows that (B.69) is Op(T

−1)
∑k0

t=k+1 ztut. Simi-
lar orders are obtained for their counterparts in (B.70) and (B.72), respectively.

For the terms in the curly brackets in (B.68), we write

1

k

k∑
t=1

xtz
′

t −
1

k0

k0∑
t=1

xtz
′

t =
1

k

k∑
t=1

(xtz
′

t −Qxz)−
1

k0

k0∑
t=1

(xtz
′

t −Qxz

)
(B.73)
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and show that multiplying by T 1/2 results in terms that are bounded in probability.

T 1/2 1

k0

k0∑
t=1

(xtz
′

t −Qxz

)
=

1

λ0

{ 1

T 1/2

k0∑
t=1

(xtz
′

t −Qxz)
}

= λ0
−1Hxz(λ0) (B.74)

and

T 1/2 1

k

k∑
t=1

(xtz
′

t −Qxz

)
= λ−1Hxz(λ) (B.75)

From Appendix B.2,Hxz(·) is Op(1) uniformly in λ and consequently we say the RHS of
(B.74) and (B.75) are Op(T

−1/2) uniformly in λ. Thus, the RHS of (B.68) - and likewise
(B.71) - are both Op(T

−1).

We now combine (B.67) - (B.72) to obtain

B(k)−B(k0) = Op(T
−1)Op(|k0 − k|)Op(T

−1/2) +Op(T
−1)

+Op(T
−1)

k0∑
t=k+1

ztut.

With thus conclude,

Υ2(k, k0) = Op(|k0 − k|)Op(T
−1/2) +Op(1) +Op(1)

k0∑
t=k+1

ztut,

where the second Op(1) term is

Ξ1,T = A(k)
′
M̃∗,T (k)−1[H̃2,T (k0)− H̃1,T (k0)]. (B.76)

We state Ξ1,T = Ξ1 +Op(T
−1/2), where Ξ1 <∞, therefore,

Υ2(k, k0)

|k0 − k|
= Op(T

−1/2) +
Op(1)

|k0 − k|
+

Ξ1

|k0 − k|

k0∑
t=k+1

ztut +
Op(T

−1/2)

|k0 − k|
. (B.77)
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Lastly, for Υ3(k, k0) in (B.61c) on page 53, we write

A(k) = H̃2,T (k)
T∑

t=k0+1

ztx
′

t(θ
(1)
0 − θ

(2)
0 )

= A(k0) + {H̃2,T (k)− H̃2,T (k0)}
T∑

t=k0+1

ztx
′

t(θ
(1)
0 − θ

(2)
0 ),

where

H̃2,T (k)− H̃2,T (k0) =
{
M̃2,T (k)−1 − M̃2,T (k0)−1} 1

T − k

T∑
t=k+1

ztx
′

t

+ M̃2,T (k0)−1

{
1

T − k

T∑
t=k+1

ztx
′

t −
1

T − k0

T∑
t=k0+1

ztx
′

t

}

= M̃2,T (k0)−1
{
S1 + S2 + S3

}
M̃2,T (k)−1 1

T − k

T∑
t=k+1

ztx
′

t

(B.78)

+ M̃2,T (k0)−1

{
1

T − k

T∑
t=k+1

ztx
′

t −
1

T − k0

T∑
t=k0+1

ztx
′

t

}
(B.79)

and Si are as defined in (B.65a) - (B.65c) for i = 1, 2, 3. In union with (B.54) and
(B.65a) - (B.65c), it follows that (B.78) isOp(T

−1)Op(|k0−k|)Op(T
−1)Op(1). Similarly,

combining (B.54) and (B.73) - (B.75), it follows that (B.79) is Op(T
−3/2).

Thus, A(k)−A(k0) is Op(T
−1)Op(|k0−k|)+Op(T

−1/2) and in combination with (B.40)
and (B.55), it follows that

Υ3(k, k0)

|k0 − k|
=

Op(1)

|k0 − k|
+Op(T

−1/2). (B.80)

Combining Υ1(k, k0),Υ2(k, k0) and Υ3(k, k0) in (B.66), (B.77) and (B.80) respectively,
provides the order of the second part of the stochastic component in (B.48), that is,

C∗(k, k0)

|k0 − k|
=

Ξ1

|k0 − k|

k0∑
t=k+1

ztut +
Op(1)

|k0 − k|
, (B.81)

where we have left out the Op(T
−1/2) terms as they are asymptotically negligible.
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Finally, with the orders of B∗(k, k0) and C∗(k, k0) as given in (B.60) and (B.81) respec-
tively, we conclude the proof for the stochastic component as follows4,

P

(
sup
k∈V3

h∗(k, k0)

|k0 − k|
≥ F

)
≤ P

(
sup
k∈V3

{
|Op(1)|
|k0 − k|

+ 2

∣∣∣∣ Ξ1

|k0 − k|

k0∑
t=k+1

ztut

∣∣∣∣+ 2
|Op(1)|
|k0 − k|

}
≥ F

)

≤ P

({
|Op(1)|
M

+ 2‖Ξ1‖ sup
k∈V3

wwww 1

|k0 − k|

k0∑
t=k+1

ztut

wwww+ 2
|Op(1)|
M

}
≥ F

)
≤ Υ4 + Υ5,

where

Υ4 = P

(
|Op(1)|
M

≥ F
3

)
+ P

(
2
|Op(1)|
M

≥ F
3

)
, (B.82)

Υ5 = P

(
2‖Ξ1‖ sup

k∈V3

wwww 1

|k0 − k|

k0∑
t=k+1

ztut

wwww ≥ F3
)

(B.83)

and we have used Op(1)/|k0 − k| ≤ Op(1)/M since |k0 − k| ≥ M, whereM < ∞ as
given in Section 2.4.

Υ4 is asymptotically negligible as we can get a large enoughM such that the probabilities
will be less than ε/3. For Υ5, Wang (2007) illustrates the Hájek and Rényi (1955) inequal-
ity is as a result of choosing the correct maximal inequality for a sequence of cumulative
sums. We follow identical steps5 given in Bai (1994a) and state that by Assumption 9,

there exists an L > 0, such that for any
F
‖Ξ1‖

> 0,

P

(
sup
k∈V3

wwww 1

|k0 − k|

k0∑
t=k+1

ztut

wwww ≥ F
‖Ξ1‖

)
<

L

F rMr/2
(B.84)

which is small for largeM.

This concludes the proof of Lemma 4.

4To obtain (B.82) and (B.83), we use the fact that for α > 0 and j positive random variables, ωj , the
P (
∑j

i ωi > α) ≤
∑j

i P
(
ωi > α/j

)
for i = 1, . . . , j.

5See Lemma A.3 in Bai (1994a). We use identical generalisation of the Hájek and Rényi (1955) in-
equality in this research. More details can be found in Bai (1994a), Bai (1994b) and Wang (2007).



Chapter 3

Stable Jacobian - Multiple Break Model

In this chapter, linear models with two or more break points are examined. These types
of multiple break models are common in economic and financial time series models. For
example, to assess the constancy of the ex-ante real interest rate, Garcia and Perron (1996)
use a Markov switching autoregressive model to estimate the time path of the ex-post1

real interest rate over the period 1961 to 1986. Allowing for an arbitrary number of break
points at unknown locations in the sample, they conclude that the ex-post real interest
rate series is characterised by three states or two break points within the period. The first
break in 1973 was attributed to the sudden jump in oil prices while the second break in
1981 was due to the rise in the federal budget deficit.

Similarly, Altissimo and Corradi (2003) propose a sequential testing procedure to obtain
consistent estimation of the location and true number of break points in the mean of a
single series. Applying their method to the spot Eurodollar rate, they detect five break
points in the mean of this process between 1973 and 1995. These break points coincide
with the changes in the US monetary policy.

In an attempt to determine the impact of the Fiscal Responsibility Act2 on the fiscal per-
formance of some countries, Caceres et al. (2010) regress the country’s primary fiscal
balance on its output gap and commodity price index. Two break points were discovered
in the fiscal balance of Australia between the period 1974 to 2009.

Additionally, Banerjee et al. (2002) propose a method of estimating the location of multi-
ple break points by first estimating the breaks in marginal models before imposing these

1Garcia and Perron (1996) note that under the assumption that available information is used efficiently,
this is equivalent to analysing the ex-ante real interest rate.

2Amongst other targets, this act aims at ensuring long term economic stability, prudent management of
the nations resources as well as securing accountability and transparency in fiscal operations.
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breaks on the conditional model. Using this procedure, they detected five break points in
the relationship between money demand, log of real income and real interest rates in the
UK between 1969 and 1996.

However, for the purpose of our analysis in this chapter, we assume the true number of
break points in the model is known beforehand but their locations are unknown; hence we
focus on their estimation. However, Chapter 6 provides a method of determining the true
number of breaks in a model.

The outline of the chapter follows a similar sequence as the previous chapter. The multiple
break model is first introduced alongside the additional assumptions made. Secondly, the
multiple breaks estimation procedure is presented. Thirdly, the asymptotic properties of
the test statistic and break fraction estimators are established. Lastly, we conclude and the
the proofs are presented in the appendix at the end of the chapter.

3.1 The Model and its Assumptions

The Structural Equation (SE) of the multiple break model used is presented thus,

yt = x
′

tθ
(1)
0 + ut, t = 1, 2, . . . , k

(1)
0 ,

yt = x
′

tθ
(2)
0 + ut, t = k

(1)
0 + 1, . . . , k

(2)
0 ,

...
...

...

yt = x
′

tθ
(m+1)
0 + ut, t = k

(m)
0 + 1, . . . , T, (3.1)

where m is the total number of breaks in the model and k
(1)
0 , . . . , k

(m)
0 are the m true

break points. Correspondingly, the true break fractions are λ(1)
0 , . . . , λ

(m)
0 . Notice there

are m+ 1 regimes in an m-break model.

The endogenous regressors, xt are constructed in the same way as in the single break
model given in (2.2) on page 27. We state some additional assumptions:

Assumption 10. θ(i)
0 6= θ

(i+1)
0 for i = 1, . . . ,m.

Assumption 11. E[ztut(θ0)] = 0, for θ0 = (θ
(i)
0

′

, . . . , θ
(i+1)
0

′

)
′
.

Assumption 12. 0 < λ
(1)
0 < . . . < λ

(m)
0 < 1.

Assumption 13. inf(k
(i+1)
0 − k(i)

0 ) ≥ max{q, [Tε]} for ε > 0 and i = 1, . . . ,m− 1.

Assumption 14. There are m ≥ 2 number of breaks in the model.
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Assumption 12 allows each break point to be asymptotically distinct and bounded away
from the boundaries of the sample while Assumption 13 ensures there are enough ob-
servations for estimations in each regime. Similar assumptions are also imposed in Bai
(1997a), Bai and Perron (1998) and Hall et al. (2012).

3.2 The Multiple Break Points Estimation Procedure

In estimating multiple break points, it is common to use either the Sequential or the Si-
multaneous Estimation Method. When using the Simultaneous Estimation Method as
introduced in Bai and Perron (1998), all the m break points are estimated at the same
time across all the possible regimes in the model. Contrarily, in using the Sequential
method as presented in Bai (1997a), the m break points are individually estimated one
after the other.

In this section, we base our discussions and theoretical analysis on the Sequential Esti-
mation Method only. However, some Monte Carlo simulation results for the finite sample
behaviour of the Simultaneous Estimation Method are presented in Chapter 5. We have
demonstrated that results from both methods are comparable.

Since the m breaks are estimated one at a time, the Sequential process discussed here is
similar to that used in the single break scenario in Section 2.2; the main difference being
the part of the sample used in the estimations. In other words, the multiple break points
are obtained by simply estimating single break points repeatedly using different sections
of the sample. Hence, the break fraction estimator remains same as given in (2.4) on page
30 albeit over a different range of Λ as discussed in the estimation procedure below.

The multiple break points estimation process is carried out in distinct steps. Each step
involves a round of estimations which results in an estimated break point. In the initial
step, the first of the m break points is obtained using all the observations in the sample,
[1, T ], for the estimations. Denote this first estimated break point as k̂1, we show in the
next section that it is consistent for one of the true break points.

In the second step, we condition on k̂1 and split the sample into two subsamples, [1, k̂1] and
[k̂1 +1, T ]. The estimation procedure is then repeated separately on these two subsamples
and a second break point, k̂2, is estimated as the location of the higher of the suprema of
DT (·) obtained from both subsamples.

In the third step, the subsample which nests this second break point - say the second
subsample from the first step above - is split into two further subsamples based on k̂2 and
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the estimation procedure is again repeated on the three subsamples, [1, k̂1], [k̂1 + 1, k̂2]

and [k̂2 + 1, T ], to determine the third break point, k̂3.

Restricted by the minimum number of observations allowed in a regime as given in As-
sumption 13, the estimation process is repeated until all the m break points in the model
have been estimated (if this number is known) or until there are no more significant break
points in the model (we discuss this procedure in Chapter 6).

3.3 Consistency and Convergence Rates

The asymptotic properties of the break fraction estimators obtained from a model with
multiple breaks in its SE is examined in this subsection. The subsection is divided into two
main parts. In the first part, the consistency and convergence rates of the break fraction
estimators from a two break model are analysed. Presenting the main arguments and
theoretical analysis in terms of a two break model only simplifies the analysis and there
is no loss of generality as seen in the second part where we consider a model with more
than two break points. The approach and propositions used follow Bai (1997a) closely;
the proofs are placed in the relevant appendices.

When the Model has Two Breaks; m = 2

First, let the two true breaks be fixed at λ(1)
0 and λ(2)

0 , then the test statistic DT (λ) has
two local maxima at these two points where the true breaks are located. To illustrate this
in a finite sample, Figure 3.1 shows a single simulation of DT (λ) across all λ ∈ Λ =

[0.15, 0.85]. Using a sample size of 600, the two true breaks are imposed at λ(1)
0 = 0.33

and λ
(2)
0 = 0.67. The three true parameter values are θ(i)

0 = −1(i+1)[1, 0.1]
′ for i =

1, 2, 3. The peaks of DT (λ) at these two points is clearly seen even when the simulation
is repeated a thousand times as shown in Figure 3.2.

3.3.1 Consistency of the Break Fraction Estimator

To prove the consistency, we follow the three steps used in the one break model in Section
2.4 on page 31. First, the nonstochastic limits of the test statistic are obtained; secondly,
the uniform convergence of the test statistic to its nonstochastic limit is established and
lastly, these limits are shown to be uniquely maximised at the true break points. These are
stated in the following three lemmas:
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Figure 3.1: DT (λ) for all λ ∈ Λ.
DGP has 2 breaks in SE
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Lemma 5. Under Assumptions 1 to 4, 7 to 8 and 10 to 14, D∗T (λ) converges uniformly in

probability to a nonstochastic function D∗(λ) on (0, 1).

For a model with two breaks, the nonstochastic function D∗(λ), exhibits five unique ex-

pressions across the range of Λ: one in each of the three regimes described above and

one at each of the two true break points. These are examined in Appendix C.1 and given

as,

D∗(λ) =
λ

1− λ
{
w̃1 + w̃2

}′
B
{
w̃1 + w̃2

}
, for all λ < λ

(1)
0 (3.2)

D∗(λ
(1)
0 ) =

λ
(1)
0

1− λ(1)
0

{
w̃1 + w̃2

}′
B
{
w̃1 + w̃2

}
for λ = λ

(1)
0 (3.3)

D∗(λ) =
1− λ
λ

w∗1
′
Bw∗1 +

λ

1− λ
w̃
′

2Bw̃2 + 2w∗1
′
Bw̃2 for all λ ∈ (λ

(1)
0 , λ

(2)
0 ) (3.4)
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Figure 3.2: DT (λ) for all λ ∈ Λ.
DGP has 2 breaks in SE
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D∗(λ
(2)
0 ) =

1− λ(2)
0

λ
(2)
0

{w∗1 + w∗2}
′B{w∗1 + w∗2} for λ = λ

(2)
0 (3.5)

D∗(λ) =
1− λ
λ
{w∗1 + w∗2}

′B{w∗1 + w∗2} for all λ > λ
(2)
0 , (3.6)

where w̃i = (1− λ(i)
0 )wi, w∗i = λ

(i)
0 wi, wi = θ

(i)
0 − θ

(i+1)
0 for i = 1, 2 and B = QxzCQzx.

Lemma 6. Under Assumptions 1 to 4, 7 to 8 and 10 to 14,

supλ∈Λ|D∗T (λ)−D∗(λ)| = Op(T
−1/2). (3.7)

This lemma, which is analogous to Lemma 2 in the one break model, implies that with
high probability, D∗T (λ) is uniformly close to its nonstochastic functions given in (3.2) to
(3.6). The proof of this lemma is found in Appendix C.2 on page 79.

We now make an additional assumption about the nonstochastic limit of D∗T (λ) at the two
true break points. Notice bothD∗T (λ

(1)
0 ) andD∗T (λ

(2)
0 ) are local maxima and have an equal

chance of being estimated if the magnitude of the breaks are the same. For simplicity, we
make the following assumption to guarantee the maximum value of D∗(λ) is unique.
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Assumption 15.

D∗(λ
(1)
0 ) > D∗(λ

(2)
0 ). (3.8)

This assumption ensures D∗(λ(1)
0 ) is the global maximum and hence, λ(1)

0 dominates λ(2)
0

in terms of the relative magnitudes of the shifts between the regimes. Thus, if Assumption
15 holds, then ‖θ̂1(λ) − θ̂2(λ)‖ > ‖θ̂2(λ) − θ̂3(λ)‖. As such, the first break fraction
estimator converges in probability to λ(1)

0 . At the end of this section, we briefly look at
the two possible outcomes when this assumption is relaxed.

Lemma 7. Under Assumptions 1 to 4, 7 to 8 and 10 to 15, there exists an E > 0 depending

only on λ(i)
0 and θ(j)

0 , for i = 1, 2 and j = 1, 2, 3, such that

D∗(λ)−D∗(λ(1)
0 ) ≤ −|λ− λ(1)

0 |E for all large T. (3.9)

This lemma which is proved in Appendix C.3 is comparable to Lemma 3 in the one break
model. It impliesD∗(λ) is maximised at λ(1)

0 . Hence, with high probability, the maximiser
of D∗T (λ) will also be close to λ(1)

0 , based on Lemma 6 and Assumption 15.

This consistency of the break fraction estimator λ̂ for the true break fraction λ(1)
0 is stated

in the following proposition:

Proposition 3. Under Assumptions 1 to 4, 7 to 8 and 10 to 15,

λ̂− λ(1)
0 = Op(T

−1/2). (3.10)

Proof of Proposition 3

The proof follows similar argument to that of the one break model in (2.13) to (2.17) on
page 34, so we equally state

D∗T (λ)−D∗T (λ
(1)
0 ) = {D∗T (λ)−D∗(λ)} − {D∗T (λ

(1)
0 )−D∗(λ(1)

0 )}

+ {D∗(λ)−D∗(λ(1)
0 )}

≤ 2 supλ∈Λ|D∗T (λ)−D∗(λ)|+ {D∗(λ)−D∗(λ(1)
0 )}

≤ 2 supλ∈Λ|D∗T (λ)−D∗(λ)| − |λ− λ(1)
0 |E . (3.11)

By Remark 2 on page 34, D∗T (λ̂) ≥ D∗T (λ
(1)
0 ) so it must be that for the RHS of (3.11),

|λ̂− λ(1)
0 | ≤ E−12 supλ∈Λ|D∗T (λ)−D∗(λ)|. (3.12)
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By Lemma 5, D∗T (λ) converges to its nonstochastic limit D∗(λ). By Lemma 6, we have
that supλ∈Λ|D∗T (λ)−D∗(λ)| is Op(T

−1/2) and by Lemma 7, E is positive. Hence, Propo-
sition 3 is obtained by using Lemmas 5 to 7.

3.3.2 Convergence Rate of the Break Fraction Estimator

With the consistency of the break fraction estimator established, we now obtain the con-
vergence rate by examining a restricted range of DT (λ) for the break point, k. The ap-
proach is again similar to that adopted in the one break model in Subsection 2.4.

We make the following three definitions:

i. V ∗1 = {k : Tη ≤ k ≤ Tλ
(2)
0 (1 − η)} for a small positive number η, such that

λ
(1)
0 ∈ (η, λ

(2)
0 (1− η)). This guarantees that for all k ∈ V ∗1 , k is bounded away from

both 0 and k(2)
0 for a positive fraction of the observations. Since we have shown that

λ̂ is consistent for λ(1)
0 in Proposition 3, then there is a high probability that k̂ will

fall into V ∗1 . Hence it follows that Pr(k̂ /∈ V ∗1 ) < ε for every ε > 0 and all large T .

ii. V ∗2 = {k : |k − k(1)
0 | ≤ M}, whereM <∞ is a constant. We show that k̂ falls into

V ∗2 with high probability for largeM.

iii. V ∗3 = {k : Tη ≤ k ≤ Tλ
(2)
0 (1−η), |k−k(1)

0 | >M}. In other words, V ∗3 = V ∗1 ∩V ∗c2 ,
where V ∗c2 is the complement of V ∗2 . The probability of the estimator k̂ to be in V ∗3 ,
that is to be in V ∗1 but not in V ∗2 , is very small. We state this in the following lemma,

Lemma 8. Under Assumptions 1 to 4, 7 to 8 and 10 to 15, there existsM <∞ such that

for all large T and every ε > 0,

P

(
sup
k∈V ∗3

DT (k)−DT (k
(1)
0 ) ≥ 0

)
< ε. (3.13)

The proof of this lemma is presented in Appendix C.4. As noted in Remark 2 on page 34,
DT (k̂) ≥ DT (k

(1)
0 ) by way of definition. Hence, if k̂ lies within V ∗3 , then it must be that

supk∈V ∗3 DT (k̂) ≥ DT (k
(1)
0 ). By Lemma 8, the probability of this occurrence is arbitrarily

small. The T -consistency of λ̂ is now stated in the following proposition,

Proposition 4. Under Assumptions 1 to 4, 7 to 8 and 10 to 15, for every ε > 0, there

exists a finiteM independent of T , such that for all large T ,

P (T |λ̂− λ(1)
0 | >M) < ε. (3.14)
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Proof of Proposition 4

The proof follows similar arguments used in the one break model in Proposition 2 pre-
sented on 35. We likewise conclude,

P (|k̂ − k(1)
0 | >M) ≤ Pr(k̂ /∈ V ∗1 ) + Pr(k̂ ∈ V ∗3 )

≤ ε+ Pr

(
sup
k∈V ∗3

DT (k) ≥ DT (k
(1)
0 )

)
≤ 2ε.

This concludes the proof and confirms the T -consistency of the first break fraction esti-
mator.

The Second Break Fraction Estimator

As described in the estimation procedure in Subsection 3.2, with λ̂ obtained, the sample is
split into two subsamples - Subsample 1, made up of observations in [1, k̂], and Subsample
2, made of observations in [k̂ + 1, T ]. The same estimation technique is applied to both
subsamples to obtain an estimator for the second break fraction. Since λ(1)

0 < λ
(2)
0 , then

the estimator would lie within Subsample 2. This estimator, denoted k̂2 is itself consistent
for λ(2)

0 because it is the most dominating break3 in the model.

Relaxing Assumption 15

There are two possible outcomes if Assumption 15 on page 65 does not hold; either
D∗(λ

(1)
0 ) < D∗(λ

(2)
0 ) or D∗(λ(1)

0 ) = D∗(λ
(2)
0 ). The former is a bit more straightforward.

Since the inequality is reversed, then λ̂
p→ λ

(2)
0 because DT (λ

(2)
0 ) will now be the global

maximum. By symmetry, therefore, the same consistency arguments discussed above
follow through. To support this, we present a thousand simulations of D∗T (λ) in Figure
3.3. In this model, the magnitude of the shift at the second break point is larger which
makes λ(2)

0 the dominant break point.

3The Monte Carlo simulations support this but we do not show theoretical proofs in this research. How-
ever for OLS case, Bai (1997a) showed that k̂2 has the same limiting distribution as k̂, though asymptotically
independent of it.
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Figure 3.3: DT (λ) for all λ ∈ Λ.
DGP has 2 breaks in SE
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The latter outcome if Assumption 15 is relaxed is a bit more complicated as λ̂ converges
to either λ(1)

0 or λ(2)
0 . To prove the break fraction obtained here is still consistent and

converges at the same rate, we follow a similar procedure to that used for λ̂ above. First,
notice that Lemmas 5 and 6 are independent of Assumption 15 and as such they apply in
this case as well. We only need to provide analogous counterparts to Lemmas 7 and 8 to
complete the proof.

Define k∗0 to be any number between k(1)
0 and k(2)

0 but bounded away from both of them
for a positive fraction of observations, for example 0.5(k

(1)
0 + k

(2)
0 ). Let λ∗0 denote the

corresponding break fraction. Then we state the following lemma which is comparable to
Lemma 7,

Lemma 9. Under Assumptions 1 to 4, 7 to 8, 10 to 14 and if D∗(λ(1)
0 ) = D∗(λ

(2)
0 ), there

exists an E > 0 depending only on λ(i)
0 and θ(j)

0 , for i = 1, 2 and j = 1, 2, 3, such that for

all large T,

D∗(λ)−D∗(λ(1)
0 ) ≤ −|λ− λ(1)

0 |E uniformly in λ ≤ λ∗0, (3.15)

D∗(λ)−D∗(λ(2)
0 ) ≤ −|λ− λ(2)

0 |E uniformly in λ ≥ λ∗0. (3.16)

This Lemma proved in Appendix C.5 states that as long as k ≤ k∗0 , then with high proba-
bility, the maximiser of D∗T (λ) will be close to λ(1)

0 and analogously for λ(2)
0 if k ≥ k∗0 .
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Now, let T1 = [1, k∗0] and T2 = [k∗0 + 1, T ] and define k̂∗1 = argmaxk∈T1D
∗
T (λ) and

k̂∗2 = argmaxk∈T2D
∗
T (λ). Since k̂ is the global maximiser of DT (λ), then it must be that

k̂ =

k̂∗1 if D∗T (λ̂∗1) > D∗T (λ̂∗2)

k̂∗2 if D∗T (λ̂∗1) < D∗T (λ̂∗2),
(3.17)

where λ̂∗i = k̂∗i /T for i = 1, 2. The next proposition states the consistency of these break
fraction estimators,

Proposition 5. Under Assumptions 1 to 4, 7 to 8 and 10 to 14 and ifD∗(λ(1)
0 ) = D∗(λ

(2)
0 ),

λ̂∗i − λ
(i)
0 = Op(T

−1/2), for i = 1, 2. (3.18)

Proof of Proposition 5

Lemmas 5, 6 and 9 are used to prove Proposition 5 following similar arguments to the
proof of Proposition 3 carried out in (3.10) to (3.12) on pages 66 to 66. Thus, we con-
clude that when D∗(λ(1)

0 ) = D∗(λ
(2)
0 ), the break fraction estimators, λ̂∗1 and λ̂∗2 are also

consistent for the true break fractions, λ(1)
0 and λ(2)

0 , respectively.

To prove the T -consistency of these break fraction estimators, we define the following:

1. V̈1a = {k : Tη ≤ k ≤ k∗0},

2. V̈1b = {k : |k − k(1)
0 | ≤ M}, whereM <∞ is a constant,

3. V̈2a = {k : k∗0 + 1 ≤ k ≤ T (1− η)},

4. V̈2b = {k : |k − k(2)
0 | ≤ M},

5. V̈ (1)
3 = V̈1a ∩ V̈ c

1b, where V̈ c
1b is the complement of V̈1b,

6. V̈ (2)
3 = V̈2a ∩ V̈ c

2b

Therefore, analogous to Lemma 8, we state

Lemma 10. Under Assumptions 1 to 4, 7 to 8 and 10 to 14 and if D∗(λ(1)
0 ) = D∗(λ

(2)
0 ),

there existsM <∞ such that for all large T and every ε > 0,

P

(
sup
k∈V̈ (i)

3

DT (k)−DT (k
(i)
0 ) ≥ 0

)
< ε for i = 1, 2, (3.19)
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With this lemma proved in Appendix C.6 on page 100, we now state our proposition that
when D∗(λ(1)

0 ) = D∗(λ
(2)
0 ), the break fraction estimator would converge to either λ(1)

0 or
λ

(2)
0 at the same rate of T like the other estimators earlier discussed.

Proposition 6. Under Assumptions 1 to 4, 7 to 8 and 10 to 14 and ifD∗(λ(1)
0 ) = D∗(λ

(2)
0 ),

for every ε > 0, there exists a finiteM independent of T , such that for all large T ,

P
(
|T (λ̂− λ(1)

0 )| >M and |T (λ̂− λ(2)
0 )| >M

)
< ε. (3.20)

Proof of Proposition 6

Using Lemma 10 along with the consistency of λ̂∗i given in (3.18), this proposition is
proved in a similar way to Proposition 4 on page 67. Thus, in the presence of equal
magnitude of breaks, the break fraction estimator is still T -consistent.

Lastly, we conjecture that under Assumptions 1 to 4, 7 to 8 and 10 to 14 and ifD∗(λ(1)
0 ) =

D∗(λ
(2)
0 ), the break fraction estimator λ̂ converges to a random variable with equal mass

of 0.5 at λ(1)
0 and λ(2)

0 . Although Bai (1997a) proves this for the OLS case, we do not
provide any proofs in this study. However, the results of the Monte Carlo simulations
present reasonable evidence to conjecture it holds. This is also seen in the similarity of
the peaks of DT (λ) presented earlier in Figure 3.2 on page 65, where the magnitude of
shifts in the two breaks are equivalent.

When the Model has more than Two Breaks; m > 2

The analyses and theoretical results presented above for a two break model also extend
to models with more than two break points in their SE, albeit with more terms to manage
in the analyses. For example, the different expressions of the nonstochastic function in
Lemma 5 increases as the number of break points increase. Specifically, when looking
for the first break point in an m-break model, the nonstochastic limit of D∗T (λ) exhibits
2m+1 different expressions. In the next proposition, we present a formula to obtain these
different expressions of D∗(λ) for models with m breaks.

Proposition 7. If Assumptions 1 to 4, 7 to 8 and 10 to 14 hold, then D∗T (λ) uniformly

converges to the nonstochastic function D∗(λ) on (0,1) given below

D∗(λ) =
1− λ
λ

ΦA(j) +
λ

1− λ
ΦB(j) + ΦC(j), (3.21)
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where ΦA(j) = φA(·)′BφA(·); φA(j) =
∑j

i=1w
∗
i ; ΦB(j) = φB(·)′BφB(·); φB(j) =∑m

i=j+1 w̃i; ΦC(j) = φA(·)′BφB(·); w∗i = λ
(i)
0 wi; w̃i = (1 − λ(i)

0 )wi; wi = θ
(i)
0 − θ

(i+1)
0 ;

i is the break point being estimated; j is the number of true breaks before or at this

candidate break point and m is the total number of true breaks in the model.

This proposition which is proved in Appendix C.7 provides a generic formula by which
the nonstochastic function can be obtained uniformly for all λ ∈ Λ.

To ensure the uniqueness of the maximum value ofD∗(λ), we state the following assump-
tion:

Assumption 16.

D∗(λ
(i)
0 ) > D∗(λ

(j)
0 ), for all j 6= i. (3.22)

This assumption guarantees k(i)
0 is the dominating break point.

Proposition 8. If Assumptions 1 to 4, 7 to 8, 10 to 14 and 16 hold, the estimated break

fraction, λ̂ is T -consistent for λ(i)
0 .

We conjecture Proposition 8 holds and do not present any theoretical proofs for this.
However, the results of the Monte Carlo simulations in Chapter 5 provide strong evidence
that this conjecture is consistent with what is found in finite samples.

Generally, if a break point is estimated within a subsample [T1, T2], it must be bounded
away from T1 and T2 for a positive fraction of observations. As long as Assumption 16
holds in this subsample, the break point estimator must be T -consistent for one of the m
true breaks because it is the location at whichD∗T (λ) is maximised over the range [T1, T2].
Thus, if all the m break points are estimated, then their corresponding break fractions are
all T -consistent4 as in the two break model.

3.4 Conclusion

This chapter considers issues associated with estimating the unknown location of multiple
break points in linear models using GMM. The Sequential Estimation Method where the
multiple break points are individually estimated one at a time as proposed in Bai (1997a)
is adopted in this study. For each round of estimations, we used the Difference-type test
of parameter variation based on GMM parameters.

4Similar to Bai and Perron (1998).
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As in the single break model discussed in the previous chapter, the break fraction esti-
mators obtained from these multiple break models are also shown to be consistent for the
true break points in the model. Furthermore, the T convergence rate of the estimators are
also established. Similar rates have been proven in the literature for the OLS case; see
Bai (1997a), Bai and Perron (1998) and Hall et al. (2012). To the best of our knowledge,
these asymptotic properties of the break fraction estimators have not been done within the
GMM framework using the approach of parameter variation proposed in this study.

Series of Monte Carlo simulations carried out on multiple break models are presented
in Chapter 5. The results support the theoretical proofs in this chapter. However, these
theoretical properties are established based on the fact that the Jacobian Equation (JE) is
stable; that is, the relationship between the endogenous regressors and instruments remain
unchanged throughout the sample. In the next chapter, we consider models where this JE
changes at an unknown location in the sample.



Appendix C

C.1 Proof of Lemma 5

This appendix shows the uniform convergence of D∗T (λ) to its nonstochastic limit D∗(λ)

for all the five expressions associated with a two break model. As in the single break case,
the Parameter Difference and Centre Matrices are examined separately before combining
them together to get D∗(λ).

To simplify the analysis, we note the following three points. First, since the Jacobian is
stable, then the structure of the Centre Matrix does not change throughout the analysis. It
remains M∗(λ)−1 = λ(1− λ)B as given in (B.12) on page 43.

Secondly, we express the parameters before and after the break in all five cases as,

θ̂i(λ) = Hi,T (λ)H(i)
zy , for i = 1, 2, (C.1)

where as given in (B.1) and (B.2) on page 40,

H(1)
zy = T−1

∑k
t=1 ztyt andH(2)

zy = T−1
∑T

t=k+1 ztyt.

Thirdly, based on Assumptions 1, 3 and 8, since the Jacobian is stable, then in all five
cases1,H1,T (λ)

p→ H1(λ) andH2,T (λ)
p→ H2(λ), where

H1(λ) = {λ(QxzCQzx)}−1QxzC andH2(λ) = {(1− λ)(QxzCQzx)}−1QxzC.

Thus, only H(i)
zy changes in all five cases and so we focus on it in the proofs below to

obtain the limits of the parameter differences.

1See analysis done in the single break model for (B.8) and (B.14) on pages 42 and 43.
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Case 1: When λ < λ
(1)
0

Since λ lies within the first regime, then the parameter before the candidate break point is
estimated at the true value of the parameter in the first regime, similar to (B.7). Thus,

θ̂1(λ)
p→ θ

(1)
0 , uniformly in λ < λ

(1)
0 . (C.2)

On the other hand, the parameter after the candidate break point is a weighted average of
the three parameters in the model, hence

H(2)
zy = f2,T + f3,T + f4,T , (C.3)

where f2,T = T−1
∑k

(1)
0
t=k+1 zty

′
t, f3,T = T−1

∑k
(2)
0

t=k
(1)
0 +1

ztyt and f4,T = T−1
∑T

t=k
(2)
0 +1

ztyt.

Based on Assumptions 1, 3 and 8,

f2,T = T−1

k
(1)
0∑

t=k+1

ztx
′

tθ
(1)
0 + T−1

k
(1)
0∑

t=k+1

ztut
p→ f2,

where f2 = (λ
(1)
0 − λ)Qzxθ

(1)
0 . Similarly, f3,T

p→ f3 = (λ
(2)
0 − λ

(1)
0 )Qzxθ

(2)
0 and

f4,T
p→ f4 = (1− λ(2)

0 )Qzxθ
(3)
0 .

Define Ψa2 = f2 + f3 + f4, then the limit of the second parameter,

θ(2)
∗ (λ) = H2(λ)Ψa2 (C.4)

=
1

1− λ
{

(λ
(1)
0 − λ)θ

(1)
0 + (λ

(2)
0 − λ

(1)
0 )θ

(2)
0 + (1− λ(2)

0 )θ
(3)
0

}
,

uniformly in λ. Using the RHS of (C.2) and (C.4), we get the Parameter Difference
uniformly in λ < λ

(1)
0 as,

θ̂1(λ)− θ̂2(λ)

p→ 1

1− λ
{

(1− λ)θ
(1)
0 − (λ

(1)
0 − λ)θ

(1)
0 − (λ

(2)
0 − λ

(1)
0 )θ

(2)
0 − (1− λ(2)

0 )θ
(3)
0

}
=

1

1− λ
{

(1− λ(1)
0 )(θ

(1)
0 − θ

(2)
0 ) + (1− λ(2)

0 )(θ
(2)
0 − θ

(3)
0 )
}

=
1

1− λ
{
w̃1 + w̃2

}
, (C.5)

where w̃i = (1− λ(i)
0 )wi and wi = θ

(i)
0 − θ

(i+1)
0 for i = 1, 2.
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Combining this limit of the Parameter Difference on the RHS of (C.5) with the Centre
Matrix, we obtain the nonstochastic limit of D∗T (·) uniformly in λ for λ < λ

(1)
0 as

D∗(λ) =

(
1

1− λ

)2

λ(1− λ)
{
w̃1 + w̃2

}′
B
{
w̃1 + w̃2

}
=

λ

1− λ
{
w̃1 + w̃2

}′
B
{
w̃1 + w̃2

}
. (C.6)

Case 2: When λ = λ
(1)
0

The limit of the parameter before the break remains as in Case 1, while for the parameter
after the break, H(2)

zy = f3,T + f4,T . Define Ψb2 = f3 + f4, then the limit of the second
parameter is given as,

θ(2)
∗ (λ) = H2(λ

(1)
0 )Ψb2 (C.7)

=
1

1− λ(1)
0

{
(λ

(2)
0 − λ

(1)
0 )θ

(2)
0 + (1− λ(2)

0 )θ
(3)
0

}
.

Using (C.2) and (C.7), the Parameter Difference is obtained as,

θ̂1(λ)− θ̂2(λ)
p→ 1

1− λ(1)
0

{
(1− λ(1)

0 )θ
(1)
0 − (λ

(2)
0 − λ

(1)
0 )θ

(2)
0 − (1− λ(2)

0 )θ
(3)
0

}
=

1

1− λ(1)
0

{
(1− λ(1)

0 )(θ
(1)
0 − θ

(2)
0 ) + (1− λ(2)

0 )(θ
(2)
0 − θ

(3)
0 )
}

=
1

1− λ(1)
0

{
w̃1 + w̃2

}′
B
{
w̃1 + w̃2

}
. (C.8)

Combining the RHS of (C.8) with the Centre Matrix, the nonstochastic limit of D∗T (·) for
this case when λ = λ

(1)
0 is

D∗(λ
(1)
0 ) =

(
1

1− λ(1)
0

)2

λ
(1)
0 (1− λ(1)

0 )
{
w̃1 + w̃2

}′
B
{
w̃1 + w̃2

}
=

λ
(1)
0

1− λ(1)
0

{
w̃1 + w̃2

}′
B
{
w̃1 + w̃2

}
. (C.9)

Case 3: When λ(1)
0 < λ < λ

(2)
0

In this scenario, neither of the parameters is estimated at its true value, rather they are
both weighted averages. For the parameter before the estimated break point,
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H(1)
zy = f1,T + f5,T , where f1,T = T−1

∑k
(1)
0
t=1 ztyt and f5,T = T−1

∑k

t=k
(1)
0 +1

ztyt.

For the parameter after the estimated break point,

H(2)
zy = f6,T + f4,T , where f6,T = T−1

∑k
(2)
0
t=k+1 ztyt.

From Assumptions 1, 3 and 8, f1,T
p→ f1 = λ

(1)
0 Qzxθ

(1)
0 , f5,T

p→ f5 = (λ − λ(1)
0 )Qzxθ

(2)
0

and f6,T
p→ f6 = (λ

(2)
0 − λ)Qzxθ

(2)
0 . Thus, the limits of the parameters uniformly in λ are

given as,

θ(1)
∗ (λ) = H1(λ)Ψc2 (C.10)

and

θ(2)
∗ (λ) = H2(λ)Ψd2, (C.11)

where Ψc2 = f1 + f5 and Ψd2 = f6 + f4. The Parameter Difference is obtained by taking
the difference between the RHS of (C.10) and (C.11) as,

θ̂1(λ)− θ̂2(λ)
p→ 1

λ(1− λ)

{
(1− λ)λ

(1)
0 θ

(1)
0 + (1− λ)(λ− λ(1)

0 )θ
(2)
0

− (λ
(2)
0 − λ)λθ

(2)
0 − (1− λ(2)

0 )λθ
(3)
0

}
=

1

λ(1− λ)

{
(1− λ)λ

(1)
0 w1 + λ(1− λ(2)

0 )w2

}
=

1

λ(1− λ)

{
(1− λ)w∗1 + λw̃2

}
. (C.12)

where w∗1 = λ
(1)
0 w1. Now combine (C.12) with the Centre Matrix to get the nonstochastic

limit of the test statistic uniformly in λ for λ ∈ (λ
(1)
0 , λ

(2)
0 ) as,

D∗(λ) =

(
1

λ(1− λ)

)2

λ(1− λ)
{

(1− λ)w∗1 + λw̃2

}′
B
{

(1− λ)w∗1 + λw̃2

}
=

1− λ
λ

w∗1
′
Bw∗1 +

λ

1− λ
w̃
′

2Bw̃2 + 2w∗1
′
Bw̃2. (C.13)

Case 4: When λ = λ
(2)
0

In this case, the parameter before the estimated break point is still a weighted average
while the second parameter converges to the true parameter of the third regime. We have
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that uniformly in λ, the second parameter,

θ̂2(λ)
p→ θ

(3)
0 . (C.14)

While for the parameter before the break we have H(1)
zy = f1,T + f3,T with its limit uni-

formly in λ given as

θ(1)
∗ (λ) = H1(λ

(2)
0 )Ψe2, (C.15)

where Ψe2 = f1 + f3. The Parameter Difference using the RHS of (C.14) and (C.15) is
obtained as,

θ̂1,T (λ)− θ̂2,T (λ)
p→ 1

λ
(2)
0

{
λ

(1)
0 θ

(1)
0 + (λ

(2)
0 − λ

(1)
0 )θ

(2)
0 − λ

(2)
0 θ

(3)
0

}
=

1

λ
(2)
0

{
λ

(1)
0 (θ

(1)
0 − θ

(2)
0 ) + λ

(2)
0 (θ

(2)
0 − θ

(3)
0 )
}

=
1

λ
(2)
0

{
w∗1 + w∗2

}
. (C.16)

Therefore, combining the Parameter Difference in (C.16) with the Centre Matrix, the
nonstochastic limit of D∗T (λ) when λ = λ

(2)
0 is

D∗(λ
(2)
0 ) =

(
1

λ
(2)
0

)2

λ
(2)
0 (1− λ(2)

0 ){w∗1 + w∗2}
′B{w∗1 + w∗2}

=
1− λ(2)

0

λ
(2)
0

{w∗1 + w∗2}
′B{w∗1 + w∗2}. (C.17)

Case 5: When λ > λ
(2)
0

The candidate break point lies within the third regime, hence the parameter after the
break remains as in (C.14) in Case 4 while for the parameter before the break, H(1)

zy =

f1,T + f3,T + f7,T , where f7,T = T−1
∑k

t=k
(2)
0 +1

ztyt. From Assumptions 1, 3 and 8, it

follows that f7,T
p→ f7 = (λ− λ(2)

0 )Qzxθ
(3)
0 . Hence, the limit of the parameter before the

break,

θ(1)
∗ (λ) = H1(λ)Ψf2, (C.18)
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where Ψf2 = f1 + f3 + f7. Using the limits of the parameters as given on the RHS of
(C.18) and (C.14), we obtain the Parameter Difference uniformly in λ as,

θ̂1,T (λ)− θ̂2,T (λ)
p→ 1

λ

{
λ

(1)
0 θ

(1)
0 + (λ

(2)
0 − λ

(1)
0 )θ

(1)
0 + (λ− λ(2)

0 )θ
(3)
0 − λθ

(3)
0

}
=

1

λ

{
λ

(1)
0 (θ

(1)
0 − θ

(2)
0 ) + λ

(2)
0 (θ

(2)
0 − θ

(3)
0 )
}

=
1

λ

{
w∗1 + w∗2

}
. (C.19)

Combining (C.19) with the Centre Matrix, the nonstochastic limit of D∗T (λ) uniformly in
λ for λ > λ

(2)
0 is,

D∗(λ) =
1− λ
λ
{w∗1 + w∗2}

′B{w∗1 + w∗2}. (C.20)

C.2 Proof of Lemma 6

In this appendix, the uniform convergence of the test statistic, D∗T (λ), to its nonstochastic
function,D∗(λ), is established by showing the supremum over λ of the difference between
these two functions isOp(T

−1/2). All the five expressions ofD∗T (λ) associated with a two
break model are examined.

Our approach follows similar steps to the one break model in Appendix B.2 where Lemma
6 is re-expressed as given in (B.18) to (B.20). In this form, the uniform convergence of
the Parameter Differences and the Centre Matrices are examined separately.

Starting with the Centre Matrices in (B.20), since the Jacobian is stable, then the analysis
carried out in the one break model extends to this two break model. Hence, we only state
here that as established in (B.21) to (B.26),

supλ∈Λ‖M∗,T (λ)−1 −M∗(λ)−1‖ = Op(T
−1/2).

In what follows, we establish the Parameter Differences, µ∗,T (λ)−µ∗(λ), given in (B.19)
on page 44 are also Op(T

−1/2) uniformly over λ in each of the five cases associated with
a two break model. To do this, we follow a similar approach used in the one break model
in Appendix B.2 and equally show here that T 1/2(θ̂i(λ)− θ(i)

0 ) is Op(1) uniformly over λ
for i = 1, 2.
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When λ < λ
(1)
0

From the parameter before the break given in (C.2) on page 75, we obtain

T 1/2(θ̂1(λ)− θ(1)
∗ (λ)) = T 1/2(θ̂1(λ)− θ(1)

0 ) = Op(1). (C.21)

For the parameter after the break, we rewrite (C.3) on page 75 and express it as

θ̂2(λ) = H2,T (λ)
{
f2,zx + f3,zx + f4,zx + T−1

T∑
t=k+1

ztut

}
, (C.22)

where f2,zx = T−1
∑k

(1)
0
t=k+1 ztx

′
tθ

(1)
0 , f3,zx = T−1

∑k
(2)
0

t=k
(1)
0 +1

ztx
′
tθ

(2)
0 and

f4,zx = T−1
∑T

t=k
(2)
0 +1

ztx
′
tθ

(3)
0 .

From the limit of θ̂2(λ) on the RHS of (C.4), we write

T 1/2(θ̂2,T (λ)− θ(2)
∗ (λ))

= H2,T (λ)T−1/2
{ T∑
t=k+1

ztut +

k
(1)
0∑

t=k+1

ztx
′

tθ
(1)
0 +

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 +

T∑
t=k

(2)
0 +1

ztx
′

tθ
(3)
0

}
− T 1/2H2(λ)Ψa2.

With some rearrangements, we can write

T 1/2(θ̂2,T (λ)− θ(2)
∗ (λ))

= H2,T (λ)
{
T−1/2

T∑
t=k+1

ztut + T−1/2

k
(1)
0∑

t=k+1

(ztx
′

t −Qzx)θ
(1)
0

+ T−1/2

k
(2)
0∑

t=k
(1)
0 +1

(ztx
′

t −Qzx)θ
(2)
0 + T−1/2

T∑
t=k

(2)
0 +1

(ztx
′

t −Qzx)θ
(3)
0

}
+ T 1/2[H2,T (λ)−H2(λ)]Ψa2 + T 1/2ζa2

T ,

where ζa2
T = H2,T (λ){fQ2,zx+fQ3,zx+fQ4,zx−Ψa2} and Ψa2 is as defined on page 75. Thus,
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we conclude

T 1/2(θ̂2,T (λ)− θ(2)
∗ (λ))

= H2,T (λ)
{

[Hzu(1)−Hzu(λ)] + [Hzx(λ
(1)
0 )−Hzx(λ)]θ

(1)
0

+ [Hzx(λ
(2)
0 )−Hzx(λ

(1)
0 )]θ

(2)
0 + [Hzx(1)−Hzx(λ

(2)
0 )]θ

(3)
0

}
+ T 1/2[H2,T (λ)−H2(λ)]Ψa2 + T 1/2ζa2

T ,

(C.23)

whereHzx(λ) = T−1/2
∑k

t=1(ztx
′
t −Qzx), fQ2,zx = T−1

∑k
(1)
0
t=k+1Qzxθ

(1)
0 ,

fQ3,zx = T−1
∑k

(2)
0

t=k
(1)
0 +1

Qzxθ
(2)
0 and fQ4,zx = T−1

∑T

t=k
(2)
0 +1

Qzxθ
(3)
0 .

As in the one break case, ζa2
T is op(1) following similar arguments in (B.31) as detailed

on page 47, Hzx(·) is Op(1) by the FCLT while H2,T (·)−H2(·) is Op(T
−1/2) analogous

to (B.31). Therefore, the terms on the RHS of (C.23) are all bounded in probability
uniformly in λ < λ

(1)
0 .

When λ = λ
(1)
0

The parameter before the break point is identical to (C.21) while for that after the break
we have,

θ̂2(λ) = H2,T (λ
(1)
0 )
{
f3,zx + f4,zx + T−1

T∑
t=k

(1)
0 +1

ztut

}
. (C.24)

Its limit is identical to that derived in (C.7) on page 76. Hence combining the RHS of
(C.7) and (C.24), we have

T 1/2(θ̂2,T (λ)− θ(2)
∗ (λ))

= H2,T (λ
(1)
0 )T−1/2

{ T∑
t=k

(1)
0 +1

ztut +

k
(2)
0∑

t=k
(1)
0 +1

(ztx
′

t −Qzx)θ
(2)
0 +

T∑
t=k

(2)
0 +1

(ztx
′

t −Qzx)θ
(3)
0

}
+ T 1/2[H2,T (λ)−H2(λ)]Ψb2 + T 1/2ζb2T

= H2,T (λ
(1)
0 )
{

[Hzu(1)−Hzu(λ
(1)
0 )] + [Hzx(λ

(2)
0 )−Hzx(λ

(1)
0 )]θ

(2)
0

+ [Hzx(1)−Hzx(λ
(2)
0 )]θ

(3)
0

}
+ T 1/2[H2,T (λ)−H2(λ)]Ψb2 + T 1/2ζb2, (C.25)
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where ζb2T = H2,T (λ
(1)
0 ){fQ3,zx + fQ4,zx−Ψb2} and Ψb2 is as defined on page 76. The terms

on the RHS of (C.25) are all bounded in probability and the result follows.

When λ(1)
0 < λ < λ

(2)
0

For the first parameter, we obtain

θ̂1(λ) = H1,T (λ)
{
f1,zx + f5,zx + T−1

k∑
t=1

ztut

}
, (C.26)

where f1,zx = T−1
∑k

(1)
0
t=1 ztx

′
tθ

(1)
0 and f5,zx = T−1

∑k

t=k
(1)
0 +1

ztx
′
tθ

(2)
0 .

From the limit of θ̂1(λ) given on the RHS of (C.10) on page 77, it follows that

T 1/2(θ̂1(λ)− θ(1)
∗ (λ))

= H1,T (λ)T−1/2
{ k∑

t=1

ztut +

k
(1)
0∑
t=1

(ztx
′

t −Qzx)θ
(1)
0 +

k∑
t=k

(1)
0 +1

(ztx
′

t −Qzx)θ
(2)
0

}
+ T 1/2[H1,T (λ)−H1(λ)]Ψc2 + T 1/2ζc2

= H1,T (λ)
{
Hzu(λ) +Hzx(λ

(1)
0 )θ

(1)
0 + [Hzx(λ)−Hzx(λ

(1)
0 )]θ

(2)
0

}
+ T 1/2[H1,T (λ)−H1(λ)]Ψc2 + T 1/2ζc2T ,

(C.27)

where ζc2T = H1,T (λ){fQ1,zx + fQ5,zx −Ψc2}, fQ1,zx = T−1
∑k

(1)
0
t=1 Qzxθ

(1)
0 ,

fQ5,zx = T−1
∑k

t=k
(1)
0 +1

Qzxθ
(2)
0 and Ψc2 is defined on page 77.

Similarly, for the estimated parameter after the break,

θ̂2(λ) = H2,T (λ)
{
f6,zx + f4,zx + T−1

T∑
t=k+1

ztut

}
, (C.28)

where f6,zx = T−1
∑k

(2)
0
t=k+1 ztx

′
tθ

(2)
0 and f4,zx = T−1

∑T

t=k
(2)
0 +1

ztx
′
tθ

(3)
0 .
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Using the limit of θ̂2(λ) given on the RHS of (C.11) on page 77, we obtain

T 1/2(θ̂2(λ)− θ(2)
∗ (λ))

= H2,T (λ)
{

[Hzu(1)−Hzu(λ)] + [Hzx(λ
(2)
0 )−Hzx(λ)]θ

(2)
0

+ [Hzx(1)−Hzx(λ
(2)
0 )]θ

(3)
0

}
+ T 1/2[H2,T (λ)−H2(λ)]Ψd2 + T 1/2ζd2

T ,

(C.29)

where ζd2
T = H2,T (λ){fQ6,zx+fQ4,zx−Ψd2}, fQ6,zx = T−1

∑k
(2)
0
t=k+1Qzxθ

(2)
0 and Ψd2 is defined

on page 77. The terms on the RHS of (C.27) and (C.29) are all bounded in probability
which confirms Lemma 6 holds uniformly in λ ∈ (λ

(1)
0 , λ

(2)
0 ).

When λ = λ
(2)
0

For the first parameter, we have that

θ̂1(λ) = H1,T (λ
(2)
0 )
{
f1,zx + f3,zx + T−1

k
(2)
0∑
t=1

ztut

}
and with the limit given on the RHS of (C.15) on page 78 we obtain,

T 1/2(θ̂1(λ)− θ(1)
∗ (λ))

= H1,T (λ
(2)
0 )T−1/2

{ k
(2)
0∑
t=1

ztut +

k
(1)
0∑
t=1

(
ztx

′

t −Qzx

)
θ

(1)
0 +

k
(2)
0∑

t=k
(1)
0 +1

(
ztx

′

t −Qzx

)
θ

(2)
0

}
+ T 1/2[H1,T (λ

(2)
0 )−H1(λ

(2)
0 )]Ψe2 + T 1/2ζe2

= H1,T (λ
(2)
0 )
{
Hzu(λ

(2)
0 ) +Hzx(λ

(1)
0 )θ

(1)
0 + [Hzx(λ

(2)
0 )−Hzx(λ

(1)
0 )]θ

(2)
0

}
+ T 1/2[H1,T (λ

(2)
0 )−H1(λ

(2)
0 )]Ψe2 + T 1/2ζe2T ,

where ζe2T = H1,T (λ
(2)
0 ){fQ1,zx + fQ3,zx −Ψe2} and Ψe2 is given on page 78.

For the parameter after the break, θ̂2(λ)
p→ θ

(3)
0 . Thus, in this case when λ = λ

(2)
0 , we

again see the Parameter Differences are Op(T
−1/2) .
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When λ > λ
(2)
0

In this last scenario, the second parameter is similar to the preceding case above, while
the first parameter is,

θ̂1(λ) = H1,T (λ)
{
f1,zx + f3,zx + f7,zx + T−1

k∑
t=1

ztut

}
, (C.30)

where f7,zx = T−1
∑k

t=k
(2)
0
ztx

′
tθ

(3)
0 . From the limit of θ̂1(λ) given on the RHS of (C.18)

on page 78, we write

T 1/2(θ̂1(λ)− θ(1)
∗ (λ))

= H1,T (λ)
{
Hzu(λ) +Hzx(λ

(1)
0 )θ

(1)
0 + [Hzx(λ

(2)
0 )−Hzx(λ

(1)
0 )]θ

(2)
0

+ [Hzx(λ)−Hzx(λ
(2)
0 )]θ

(3)
0

}
+ T 1/2[H1,T (λ)−H1(λ)]Ψf2 + T 1/2ζf2

T ,

(C.31)

where ζf2
T = H1,T (λ){fQ1,zx + fQ3,zx + fQ7,zx −Ψf2}, fQ7,zx = T−1

∑k

k
(2)
0 +1

Qzxθ
(3)
0 and Ψf2

is defined on page 78. The terms on the RHS of (C.31) are all bounded as in all the other
four cases above.

This appendix shows the Parameter differences, µ∗,T (λ)− µ∗(λ) given in (B.19) on page
44, are all Op(T

−1/2) uniformly in λ for all λ ∈ Λ. In addition to the analysis of the
Centre matrix in Appendix B.2, these proofs show the test statistic, D∗T (λ), uniformly
converges to its nonstochastic limit, D∗(λ) at the rate Op(T

−1/2), thus implying Lemma
6.

C.3 Proof of Lemma 7

In this appendix, an expression for E is obtained and shown to be positive in all the five
possibilities associated with a two break model. First, notice without loss of generality,
the nonstochastic limits of the test statistics at the first and second break points given on
the RHS of (3.3) and (3.5) on page 64 can also be expressed as,

D∗(λ
(1)
0 ) =

1− λ(1)
0

λ
(1)
0

ΦA +
λ

(1)
0

1− λ(1)
0

ΦB (C.32)
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and

D∗(λ
(2)
0 ) =

1− λ(2)
0

λ
(2)
0

ΦA +
λ

(2)
0

1− λ(2)
0

ΦB (C.33)

respectively, where ΦA = φ
′
ABφA, φA = w∗1 + w∗2, ΦB = φ

′
BBφB, φB = w̃1 + w̃2,

w∗i = λ
(i)
0 wi, w̃i = (1− λ(i)

0 )wi and wi = θ
(i)
0 − θ

(i+1)
0 for i = 1, 2.

From the RHS of the two expressions in (C.32) and (C.33), the implication of Assumption
15 on page 65 is that2

1− λ(1)
0

λ
(1)
0

ΦA +
λ

(1)
0

1− λ(1)
0

ΦB >
1− λ(2)

0

λ
(2)
0

ΦA +
λ

(2)
0

1− λ(2)
0

ΦB.

Thus, it follows that

{1− λ(1)
0

λ
(1)
0

− 1− λ(2)
0

λ
(2)
0

}
ΦA >

{ λ
(2)
0

1− λ(2)
0

− λ
(1)
0

1− λ(1)
0

}
ΦB

and with a little rearrangement, we obtain the inequality,

ΦA

λ
(1)
0 λ

(2)
0

>
ΦB

(1− λ(1)
0 )(1− λ(2)

0 )
. (C.34)

When λ < λ
(1)
0

We use the RHS of (3.2) and (3.3) to deduce,

D∗(λ)−D∗(λ(1)
0 ) =

{
λ

1− λ
− λ

(1)
0

1− λ(1)
0

}
ΦB

≤

{
λ

1− λ(1)
0

− λ
(1)
0

1− λ(1)
0

}
ΦB

= (λ− λ(1)
0 )

ΦB

1− λ(1)
0

= −|λ− λ(1)
0 |E1, (C.35)

where E1 = ΦB/(1− λ(1)
0 ) > 0 since ΦB > 0 and λ(1)

0 < 1.

2Assumption 15 imposes the first break dominates the second, that is, D∗(λ(1)0 ) > D∗(λ
(2)
0 ).
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When λ(1)
0 < λ ≤ λ

(2)
0

From the limits expressed on the RHS of (3.3) and (C.32) we write,

D∗(λ)−D∗(λ(1)
0 ) =

{
1− λ
λ
− 1− λ(1)

0

λ
(1)
0

}
ΦA +

{
λ

1− λ
− λ

(1)
0

1− λ(1)
0

}
ΦB

=

{
λ

(1)
0 − λ
λλ

(1)
0

}
ΦA +

{
λ− λ(1)

0

(1− λ)(1− λ(1)
0 )

}
ΦB. (C.36)

We analyse these two terms on the RHS of (C.36). For the first term, notice the numerator
is negative because λ(1)

0 < λ. Also, since λ ≤ λ
(2)
0 , we say{

λ
(1)
0 − λ
λλ

(1)
0

}
ΦA ≤

{
λ

(1)
0 − λ
λ

(2)
0 λ

(1)
0

}
ΦA. (C.37)

Likewise, for the second term,{
λ− λ(1)

0

(1− λ)(1− λ(1)
0 )

}
ΦB ≤

{
λ− λ(1)

0

(1− λ(2)
0 )(1− λ(1)

0 )

}
ΦB. (C.38)

From the analysis in (C.37) and (C.38), it follows that the LHS of (C.36),

D∗(λ)−D∗(λ(1)
0 ) ≤

{
λ

(1)
0 − λ
λ

(2)
0 λ

(1)
0

}
ΦA +

{
λ− λ(1)

0

(1− λ(2)
0 )(1− λ(1)

0 )

}
ΦB

= (λ
(1)
0 − λ)

{
ΦA

λ
(1)
0 λ

(2)
0

− ΦB

(1− λ(1)
0 )(1− λ(2)

0 )

}
= −|λ(1)

0 − λ|E2, (C.39)

where E2 =

{
ΦA

λ
(1)
0 λ

(2)
0

− ΦB

(1− λ(1)
0 )(1− λ(2)

0 )

}
> 0, from (C.34).

When λ > λ
(2)
0

By adding and subtracting D∗(λ(2)
0 ), we write

D∗(λ)−D∗(λ(1)
0 ) = {D∗(λ)−D∗(λ(2)

0 )}+ {D∗(λ(2)
0 )−D∗(λ(1)

0 )}. (C.40)
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Taking the terms in the first curly brackets on the RHS of (C.40), we deduce from the
expressions on the RHS of (3.5) and (3.6) that

D∗(λ)−D∗(λ(2)
0 ) =

1− λ
λ

ΦA −
1− λ(2)

0

λ
(2)
0

ΦA

=
λ

(2)
0 − λ
λλ

(2)
0

ΦA

≤ λ
(2)
0 − λ
(λ

(2)
0 )2

ΦA

= −|λ− λ(2)
0 |E3, (C.41)

where E3 = ΦA/(λ
(2)
0 )2 > 0. For the terms in the second curly brackets, a similar argu-

ment to that used in (C.36) to (C.39) is followed to obtain

D∗(λ
(2)
0 )−D∗(λ(1)

0 ) = −|λ(2)
0 − λ

(1)
0 |E2. (C.42)

Therefore, when λ > λ
(2)
0 , we use the RHS of (C.41) and (C.42) to conclude that

D∗(λ)−D∗(λ(1)
0 ) ≤ −|λ− λ(2)

0 |E3 − |λ(2)
0 − λ

(1)
0 |E2

≤ −|λ− λ(1)
0 |E4,

where E4 = min{E2, E3}.

C.4 Proof of Lemma 8

The approach adopted in this proof follows closely that used in the one break model
in Appendix B.4. Expressions for DT (k) and DT (k0) are first obtained and the differ-
ence between them separated into a stochastic and a nonstochastic component. While the
nonstochastic component is maximised near the true break, the stochastic component is
shown to be asymptotically negligible as long as we are in the set V ∗3 . Again, the proof
covers only the case where λ < λ

(1)
0 ; the case of λ > λ

(1)
0 is similar and hence omitted.

We use a ' ¨ ' above the terms to differentiate them from the one break model analysed in
Appendix B.4.

Starting with the Parameter Difference, the parameter before the break is similar to that
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in the one break case given in (B.37) on page 50, that is,

θ̂1(k) = θ
(1)
0 + Ḧ1,T (k)

k∑
1

ztut, (C.43)

where Ḧ1,T (k) = M̈1,T (k)−1
∑k

t=1 xtz
′
tẄ1,T (k), M̈1,T (k) =

∑k
t=1 xtz

′
tẄ1,T (k)

∑k
t=1 ztx

′
t

and Ẅ1,T (k) = (1/k)C.

In this two break model, the parameter after the break is,

θ̂2(k) = Ḧ2,T (k)

{
T∑

t=k+1

ztut +

k
(1)
0∑

t=k+1

ztx
′

tθ
(1)
0 +

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 +

T∑
t=k

(2)
0 +1

ztx
′

tθ
(3)
0

}
.

With some arrangements we write

θ̂2(k) = Ḧ2,T (k)
T∑

t=k+1

ztut + Ḧ2,T (k)

{
k
(1)
0∑

t=k+1

ztx
′

tθ
(1)
0 +

T∑
t=k

(1)
0 +1

ztx
′

tθ
(1)
0

}

− Ḧ2,T (k)

{
k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(1)
0 −

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0

}

− Ḧ2,T (k)

{
T∑

t=k
(2)
0 +1

ztx
′

tθ
(1)
0 −

T∑
t=k

(2)
0 +1

ztx
′

tθ
(3)
0

}

= Ḧ2,T (k)
T∑

t=k+1

ztut + Ḧ2,T (k)
T∑

t=k+1

ztx
′

tθ
(1)
0

− Ḧ2,T (k)

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)
− Ḧ2,T (k)

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(3)
0

)
,

where Ḧ2,T (k) = M̈2,T (k)−1
∑T

t=k+1 xtz
′
tẄ2,T (k), Ẅ2,T (k) = (1/((T − k))C and
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M̈2,T (k) =
∑T

t=k+1 xtz
′
tẄ2,T (k)

∑T
t=k+1 ztx

′
t. With a little rearrangement, this gives,

θ̂2(k) = Ḧ2,T (k)
T∑

t=k+1

ztut + θ
(1)
0 − Ḧ2,T (k)

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)

− Ḧ2,T (k)
T∑

t=k
(2)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(3)
0

)
.

(C.44)

From θ̂1(k) and θ̂2(k) given in (C.43) and (C.44) respectively, we get the Parameter Dif-
ference as,

θ̂1(k)− θ̂2(k) = Ä(k) + B̈(k),

where

Ä(k) = Ḧ2,T (k)

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)
+ Ḧ2,T (k)

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(3)
0

)
(C.45)

B̈(k) = B̈1(k)− B̈2(k) (C.46)

B̈1(k) = Ḧ1,T (k)
k∑
t=1

ztut (C.47)

B̈2(k) = Ḧ2,T (k)
T∑

t=k+1

ztut. (C.48)

Thus, the test statistic is expressed uniformly in λ < λ
(1)
0 as

DT (k) =
{
Ä(k) + B̈(k)

}′
M̈∗,T (k)−1

{
Ä(k) + B̈(k)

}
= Ä(k)

′
M̈∗,T (k)−1Ä(k) + 2Ä(k)

′
M̈∗,T (k)−1B̈(k) + B̈(k)

′
M̈∗,T (k)−1B̈(k),

(C.49)

where M̈∗,T (k) = M̈1,T (k)−1 + M̈2,T (k)−1.
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When λ = λ
(1)
0 , the parameter before the break,

θ̂1(k
(1)
0 ) = θ

(1)
0 + Ḧ1,T (k

(1)
0 )

k
(1)
0∑
1

ztut, (C.50)

while that after the break,

θ̂2(k
(1)
0 ) = Ḧ2,T (k

(1)
0 )

{
T∑

t=k
(1)
0 +1

ztut +

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 +

T∑
t=k

(2)
0 +1

ztx
′

tθ
(3)
0

}

= Ḧ2,T (k
(1)
0 )

{
T∑

t=k
(1)
0 +1

ztut +

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 +

T∑
t=k

(2)
0 +1

ztx
′

tθ
(2)
0

}

− Ḧ2,T (k
(1)
0 )

{
T∑

t=k
(2)
0 +1

ztx
′

tθ
(2)
0 −

T∑
t=k

(2)
0 +1

ztx
′

tθ
(3)
0

}

= Ḧ2,T (k
(1)
0 )

{
T∑

t=k
(1)
0 +1

ztut +
T∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 −

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(2)
0 − θ

(3)
0

)}

= Ḧ2,T (k
(1)
0 )

T∑
t=k

(1)
0 +1

ztut + θ
(2)
0 − Ḧ2,T (k

(1)
0 )

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(2)
0 − θ

(3)
0

)
.

(C.51)

The Parameter Difference between θ̂1(k
(1)
0 ) and θ̂2(k

(1)
0 ) in (C.50) and (C.51) respectively

is,

θ̂1(k
(1)
0 )− θ̂2(k

(1)
0 ) = Ä(k

(1)
0 ) + B̈(k

(1)
0 ),

where

Ä(k
(1)
0 ) =

(
θ

(1)
0 − θ

(2)
0

)
+ Ḧ2,T (k

(1)
0 )

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(2)
0 − θ

(3)
0

)
(C.52)

and B̈(k
(1)
0 ) is identical to (C.46) but evaluated at k = k

(1)
0 .

We express the difference between the test statistic evaluated at k and k(1)
0 as,

DT (k)−DT (k
(1)
0 ) = Ä(k, k

(1)
0 ) + ḧ(k, k

(1)
0 ), (C.53)
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where

Ä(k, k
(1)
0 ) = Ä(k)

′
M̈∗,T (k)−1Ä(k)− Ä(k

(1)
0 )

′
M̈∗,T (k

(1)
0 )−1Ä(k

(1)
0 ) (C.54)

ḧ(k, k
(1)
0 ) = B̈(k, k

(1)
0 ) + 2C̈(k, k(1)

0 ) (C.55)

B̈(k, k
(1)
0 ) = B̈(k)

′
M̈∗,T (k)−1B̈(k)− B̈(k

(1)
0 )

′
M̈∗,T (k

(1)
0 )−1B̈(k

(1)
0 ) (C.56)

C̈(k, k(1)
0 ) = Ä(k)

′
M̈∗,T (k)−1B̈(k)− Ä(k

(1)
0 )

′
M̈∗,T (k

(1)
0 )−1B̈(k

(1)
0 ). (C.57)

Ä(k, k
(1)
0 ) and ḧ(k, k

(1)
0 ) are referred to as the nonstochastic and stochastic parts respec-

tively. Define

γ̈(k, k
(1)
0 ) = −Ä(k, k

(1)
0 )

|k(1)
0 − k|

(C.58)

where γ̈(k, k
(1)
0 ) > 0 uniformly in λ < λ

(1)
0 as in the one break model on page 52. Then

we have the following equality,

DT (k)−DT (k
(1)
0 ) = −|k(1)

0 − k|γ̈(k, k
(1)
0 ) + ḧ(k, k

(1)
0 ). (C.59)

By Remark 2 on page 34, the LHS of (C.59) must be non-negative, hence it must be that

ḧ(k, k
(1)
0 )

|k(1)
0 − k|

≥ γ̈(k). (C.60)

Using (C.60), we state the following relationship with Lemma 4 holds,

P

(
sup
k∈V ∗3

DT (k) ≥ DT (k
(1)
0 )

)
≤ P

(
sup
k∈V ∗3

ḧ(k, k
(1)
0 )

|k(1)
0 − k|

≥ inf
k∈V ∗3

γ̈(k)

)
, (C.61)

where infk∈V ∗3 γ̈(k) is bounded away from zero by Assumptions 1, 3 and 8.

Thus to prove Lemma 8, it suffices to show that for any fixed F > 0,

P

(
sup
k∈V ∗3

ḧ(k, k
(1)
0 )

|k(1)
0 − k|

≥ F
)
< ε. (C.62)

We now analyse the components of ḧ(k, k
(1)
0 ) given in (C.55) and show that B̈(k, k

(1)
0 )

and C̈(k, k(1)
0 ) are very small in probability when divided by |k(1)

0 − k|. First, recall the
orders of magnitudes which are uniform in λ ≤ λ

(1)
0 are similar to that of the one break

model:
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∑k
t=1 ztx

′
t = Op(T ),

1

k

∑k
t=1 ztx

′
t = Op(1) and

∑k
t=1 ztut = Op(T

1/2).

Also, from Assumptions 1, 3, 4 and 8, it follows that similar to the case of the one break
model given in (B.53) - (B.59), we have

M̈i,T (·) = Op(T ) (C.63)

M̈∗,T (·) = Op(T
−1) (C.64)

Ḧi,T (·) = Op(T
−1) (C.65)

Ä(·) = Op(1) (C.66)

B̈(·) = Op(T
−1/2). (C.67)

Secondly, as λ < λ
(1)
0 , the following equalities are used in the analysis,∑k

(1)
0
t=1(·) =

∑k
t=1(·) +

∑k
(1)
0
t=k+1(·) and

∑T

t=k
(1)
0 +1

(·) =
∑T

t=k+1(·)−
∑k

(1)
0
t=k+1(·).

Starting with B̈(k, k
(1)
0 ), use the order of magnitudes in (C.64) and (C.67) to obtain

B̈(·)′M̈∗,T (·)−1B̈(·) = Op(T
−1/2)Op(T )Op(T

−1/2) = Op(1).

Therefore,

B̈(k, k
(1)
0 )

|k(1)
0 − k|

=
Op(1)

|k(1)
0 − k|

· (C.68)

For C̈(k, k(1)
0 ) given in (C.57), we rewrite it as

C̈(k, k(1)
0 ) = Ϋ1(k, k

(1)
0 ) + Ϋ2(k, k

(1)
0 ) + Ϋ3(k, k

(1)
0 ),

where

Ϋ1(k, k
(1)
0 ) = Ä(k)

′{M̈∗,T (k)−1 − M̈∗,T (k
(1)
0 )−1}B̈(k

(1)
0 ) (C.69a)

Ϋ2(k, k
(1)
0 ) = Ä(k)

′
M̈∗,T (k)−1{B̈(k)− B̈(k

(1)
0 )} (C.69b)

Ϋ3(k, k
(1)
0 ) = {Ä(k)− Ä(k

(1)
0 )}′M̈∗,T (k

(1)
0 )−1B̈(k

(1)
0 ). (C.69c)

For all Ϋi(k, k
(1)
0 ), i = 1, 2, 3, we consider only the terms in the curly brackets as order of

magnitudes for the individual terms are already given on the RHS of (C.63) to (C.67).

For Ϋ1(k, k
(1)
0 ),

M̈∗,T (k)−1 − M̈∗,T (k
(1)
0 )−1 = M̈∗,T (k

(1)
0 )−1{M̈∗,T (k

(1)
0 )− M̈∗,T (k)}M̈∗,T (k)−1,

(C.70)
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where the terms within the curly brackets,

M̈∗,T (k
(1)
0 )− M̈∗,T (k) = {M̈1,T (k

(1)
0 )−1 − M̈1,T (k)−1}+ {M̈2,T (k

(1)
0 )−1 − M̈2,T (k)−1}.

For i = 1, 2, we have

M̈i,T (k
(1)
0 )−1 − M̈i,T (k)−1 = M̈i,T (k

(1)
0 )−1{M̈i,T (k)− M̈i,T (k

(1)
0 )}M̈i,T (k)−1. (C.71)

When i = 1, the terms within the curly brackets,

M̈1,T (k
(1)
0 )− M̈1,T (k) =

1

k
(1)
0

k
(1)
0∑
t=1

xtz
′

t

k
(1)
0∑
t=1

ztx
′

t −
1

k

k∑
t=1

xtz
′

t

k∑
t=1

ztx
′

t

=
1

k
(1)
0

k
(1)
0∑
t=1

xtz
′

t

k∑
t=1

ztx
′

t +
1

k
(1)
0

k
(1)
0∑
t=1

xtz
′

t

k
(1)
0∑

t=k+1

ztx
′

t

−
k
(1)
0∑
t=1

xtz
′

t

1

k

k∑
t=1

ztx
′

t +

k
(1)
0∑

t=k+1

xtz
′

t

1

k

k∑
t=1

ztx
′

t

= R̈1 + R̈2 + R̈3,

where

R̈1 =
1

k
(1)
0

k
(1)
0∑
t=1

xtz
′

t

k
(1)
0∑

t=k+1

ztx
′

t (C.72a)

R̈2 =

k
(1)
0∑

t=k+1

xtz
′

t

1

k

k∑
t=1

ztx
′

t (C.72b)

R̈3 =
1

k
(1)
0

k
(1)
0∑
t=1

xtz
′

t

1

k

k∑
t=1

ztx
′

t(k − k
(1)
0 ). (C.72c)
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Likewise, when i = 2,

M̈2,T (k
(1)
0 )− M̈2,T (k) =

T∑
t=k

(1)
0 +1

xtz
′

t

1

T − k(1)
0

T∑
t=k

(1)
0 +1

ztx
′

t −
T∑

t=k+1

xtz
′

t

1

T − k

T∑
t=k+1

ztx
′

t

=
T∑

t=k
(1)
0 +1

xtz
′

t

1

T − k(1)
0

T∑
t=k+1

ztx
′

t −
T∑

t=k
(1)
0 +1

xtz
′

t

1

T − k(1)
0

k
(1)
0∑

t=k+1

ztx
′

t

−
k
(1)
0∑

t=k+1

xtz
′

t

1

T − k

T∑
t=k+1

ztx
′

t −
T∑

t=k
(1)
0 +1

xtz
′

t

1

T − k

T∑
t=k+1

ztx
′

t

= S̈1 + S̈2 + S̈3,

where

S̈1 = − 1

T − k(1)
0

T∑
t=k

(1)
0 +1

xtz
′

t

k
(1)
0∑

t=k+1

ztx
′

t (C.73a)

S̈2 = −
k
(1)
0∑

t=k+1

xtz
′

t

1

T − k

T∑
t=k+1

ztx
′

t (C.73b)

S̈3 =
1

T − k(1)
0

T∑
t=k

(1)
0 +1

xtz
′

t

1

T − k

T∑
t=k+1

ztx
′

t(k
(1)
0 − k). (C.73c)

From Assumptions 1 and 3, R̈i and S̈i are Op(|k(1)
0 − k|) for i = 1, 2, 3. Consequently,

the RHS of (C.71) is Op(T
−1)Op(|k(1)

0 −k|)Op(T
−1) = Op(|k(1)

0 −k|)Op(T
−2), while the

RHS of (C.70) is Op(T )Op(|k(1)
0 − k|)Op(T

−2)Op(T ) = Op(|k(1)
0 − k|).

It follows from (C.66) and (C.67) that, Ϋ1(k, k
(1)
0 ) = Op(1)Op(|k(1)

0 − k|)Op(T
−1/2).

Thus, dividing by |k(1)
0 − k| we conclude,

Ϋ1(k, k
(1)
0 )

|k(1)
0 − k|

=
Op(|k(1)

0 − k|)Op(T
−1/2)

|k(1)
0 − k|

= Op(T
−1/2). (C.74)

For Ϋ2(k, k
(1)
0 ) given in (C.69b), we write as3

B̈(k)− B̈(k
(1)
0 ) = {B̈1(k)− B̈1(k

(1)
0 )}+ {B̈2(k)− B̈2(k

(1)
0 )}. (C.75)

3B̈1(·) and B̈2(·) are defined in (C.47) and (C.48) respectively.
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For the terms in the first curly brackets on the RHS of (C.75), we write

B̈1(k)− B̈1(k
(1)
0 ) = M̈1,T (k)−1 1

k

k∑
t=1

xtz
′

t

k∑
t=1

ztut − M̈1,T (k
(1)
0 )−1 1

k
(1)
0

k
(1)
0∑
t=1

xtz
′

t

k
(1)
0∑
t=1

ztut

=
{
M̈1,T (k)−1 − M̈1,T (k

(1)
0 )−1

}1

k

k∑
t=1

xtz
′

t

k∑
t=1

ztut

+ M̈1,T (k
(1)
0 )−1

{
1

k

k∑
t=1

xtz
′

t −
1

k
(1)
0

k
(1)
0∑
t=1

xtz
′

t

}
k∑
t=1

ztut

− M̈1,T (k
(1)
0 )−1 1

k
(1)
0

k
(1)
0∑
t=1

xtz
′

t

k
(1)
0∑

t=k+1

ztut.

From the analysis carried out in (C.71) to (C.72c), we write

B̈1(k)− B̈1(k
(1)
0 )

= M̈1,T (k
(1)
0 )−1

{
R̈1 + R̈2 + R̈3

}
M̈1,T (k)−1 1

k

k∑
t=1

xtz
′

t

k∑
t=1

ztut (C.76)

+ M̈1,T (k
(1)
0 )−1

{
1

k

k∑
t=1

xtz
′

t −
1

k
(1)
0

k
(1)
0∑
t=1

xtz
′

t

}
k∑
t=1

ztut (C.77)

− Ḧ1,T (k
(1)
0 )

k
(1)
0∑

t=k+1

ztut. (C.78)

Using a similar procedure for the second curly brackets in (C.75) yields,

B̈2(k)− B̈2(k
(1)
0 )

= M̈2,T (k
(1)
0 )−1

{
S̈1 + S̈2 + S̈3

}
M̈2,T (k)−1 1

T − k

T∑
t=k+1

xtz
′

t

T∑
t=k+1

ztut (C.79)

+ M̈2,T (k
(1)
0 )−1

{
1

T − k

T∑
t=k+1

xtz
′

t −
1

T − k(1)
0

T∑
t=k

(1)
0 +1

xtz
′

t

} T∑
t=k+1

ztut (C.80)

+ Ḧ2,T (k
(1)
0 )

k
(1)
0∑

t=k+1

ztut. (C.81)

Notice that the RHS of (C.76) to (C.81) are analogous to to their counterparts (B.67)
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to (B.72) in the one break model on page 56. Hence, the same orders of magnitudes
extend to them. The RHS of (C.76) and (C.79) are Op(T

−1)Op(|k − k0|)Op(T
−1/2), the

RHS of (C.77) and (C.80) are both Op(T
−1) while the RHS of (C.78) and (C.81) are

Op(T
−1)
∑k0

t=k+1 ztut.

From the order of magnitudes given in (C.66) and (C.64) we can deduce for Ϋ2(k, k
(1)
0 )

defined in (C.69b) and (C.75),

Ϋ2(k, k
(1)
0 ) = Op(1)Op(T )

{
Op(|k(1)

0 − k|)Op(T
−3/2) +Op(T

−1)

+Op(T
−1)

k
(1)
0∑

t=k+1

ztut
}
,

= Op(|k(1)
0 − k|)Op(T

−1/2) +Op(1) + Ξ̈1,T

k
(1)
0∑

t=k+1

ztut,

where, similar to the one break model given on page 57, Ξ̈1,T = Ξ̈1 + Ξ̈k, Ξ̈1 < ∞ is a
matrix of constants and Ξ̈k is Op(T

−1/2). Dividing by |k(1)
0 − k|, we therefore conclude

that,

Ϋ2(k, k
(1)
0 )

|k(1)
0 − k|

= Op(T
−1/2) +

Op(1)

|k(1)
0 − k|

+
Ξ̈1

|k(1)
0 − k|

k
(1)
0∑

t=k+1

ztut +
Op(T

−1/2)

|k(1)
0 − k|

k
(1)
0∑

t=k+1

ztut.

(C.82)

Lastly, for Ϋ3(k, k
(1)
0 ) given in (C.69c), we write4

Ä(k)− Ä(k
(1)
0 ) = Ḧ2,T (k)

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)
+ Ḧ2,T (k)

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(3)
0

)

−
(
θ

(1)
0 − θ

(2)
0

)
− Ḧ2,T (k

(1)
0 )

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(2)
0 − θ

(3)
0

)
.

4Ä(k) and Ä(k
(1)
0 ) are defined in (C.52) and (C.45) respectively.
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We make some rearrangements as follows,

Ä(k)− Ä(k
(1)
0 ) = Ḧ2,T (k)

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)
− Ḧ2,T (k)

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)

+ Ḧ2,T (k)
T∑

t=k
(2)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(3)
0

)
− Ḧ2,T (k)

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)

− Ḧ2,T (k
(1)
0 )

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(2)
0 − θ

(3)
0

)
− Ḧ2,T (k)

k
(1)
0∑

t=k+1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)

= Ḧ2,T (k)
T∑

t=k
(2)
0 +1

ztx
′

t

(
θ

(2)
0 − θ

(3)
0

)

− Ḧ2,T (k
(1)
0 )

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(2)
0 − θ

(3)
0

)
− Ḧ2,T (k)

k
(1)
0∑

t=k+1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)
.

Therefore we can now write,

Ä(k)− Ä(k
(1)
0 ) = [Ḧ2,T (k)− Ḧ2,T (k

(1)
0 )]

T∑
t=k

(2)
0 +1

ztx
′

t

(
θ

(2)
0 − θ

(3)
0

)
(C.83)

− Ḧ2,T (k)

k
(1)
0∑

t=k+1

ztx
′

t

(
θ

(1)
0 − θ

(2)
0

)
, (C.84)

where Ḧ2,T (k) − Ḧ2,T (k
(1)
0 ) on the RHS of (C.83) has identical orders of magnitude to

(B.78) and (B.79) in the one break model5.

Thus, we conclude the RHS of (C.83) is Op(T
−1)Op(|k(1)

0 − k|) + Op(T
−1/2) while that

of (C.84) is Op(T
−1)Op(|k(1)

0 − k|).

From the orders of magnitudes given in (C.64) and (C.67), it follows that Ϋ3(k, k
(1)
0 )

defined in (C.69c),

Ϋ3(k, k
(1)
0 ) =

{
Op(T

−1)Op(|k(1)
0 − k|) +Op(T

−1/2) +Op(T
−1)Op(|k(1)

0 − k|)
}

×Op(T )Op(T
−1/2)

= Op(T
−1/2)Op(|k(1)

0 − k|) +Op(1) +Op(T
−1/2)Op(|k(1)

0 − k|).

5This order as given on page 58 is Op(T−2)Op(|k(1)0 − k|) +Op(T−3/2).
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Hence, we conclude

Ϋ3(k, k
(1)
0 )

|k(1)
0 − k|

=
Op(1)

|k(1)
0 − k|

+Op(T
−1/2). (C.85)

Combining Ϋ1(k, k
(1)
0 ), Ϋ2(k, k

(1)
0 ) and Ϋ3(k, k

(1)
0 ) as given in (C.74), (C.82) and (C.85)

respectively, we now deduce the order of magnitude of C̈(k, k(1)
0 ) defined in (C.57) as

C̈(k, k(1)
0 )

|k(1)
0 − k|

=
Ξ̈1

|k(1)
0 − k|

k
(1)
0∑

t=k+1

ztut +
Op(1)

|k(1)
0 − k|

, (C.86)

where the Op(T
−1/2) terms are again left out as they are asymptotically negligible.

With the orders of magnitudes of B̈(k, k
(1)
0 ) and C̈(k, k(1)

0 ) given in (C.68) and (C.86) re-
spectively, the conclusion of the proofs for the stochastic component, ḧ(k, k

(1)
0 ), is iden-

tical to that of the one break model given in (B.82) and (B.83) in Appendix B.4. In
particular, one only needs to substitute k for k(1)

0 in Υ5 defined in (B.83) and the result
follows through, hence it is not repeated here.

C.5 Proof of Lemma 9

In this appendix, an E > 0 is obtained when D∗(λ(1)
0 ) = D∗(λ

(2)
0 ). This E is shown to be

positive uniformly in λ for λ ≤ λ∗0, where λ∗0 is as defined on page 69.

When k < k
(1)
0

Since λ(1)
0 is strictly less than λ(2)

0 , then the analysis carried out whenD∗(λ(1)
0 ) > D∗(λ

(2)
0 )

under Assumption 15 holds here as well when D∗(λ(1)
0 ) = D∗(λ

(2)
0 ). Hence we only state

the result which is identical to that given on the RHS of (C.35) on page 85, D∗(λ) −
D∗(λ

(1)
0 ) = −|λ− λ(1)

0 |E1, where E1 = ΦB/(1− λ(1)
0 ) > 0.

When k(1)
0 < k ≤ k∗0

When D∗(λ(1)
0 ) = D∗(λ

(2)
0 ), the inequality in (C.34) now becomes,

ΦA

λ
(1)
0 λ

(2)
0

=
ΦB

(1− λ(1)
0 )(1− λ(2)

0 )
. (C.87)
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From the RHS of (C.36), it follows that

D∗(λ)−D∗(λ(1)
0 )

=

{
λ

(1)
0 − λ
λλ

(1)
0

}
ΦA +

{
λ− λ(1)

0

(1− λ)(1− λ(1)
0 )

}
ΦB

= (λ
(1)
0 − λ)

{
ΦA

λλ
(1)
0

− ΦB

(1− λ)(1− λ(1)
0 )

}

= (λ
(1)
0 − λ)

{
λ

(2)
0

λ

(
ΦA

λ
(1)
0 λ

(2)
0

)
− 1− λ(2)

0

1− λ

(
ΦB

(1− λ(1)
0 )(1− λ(2)

0 )

)}
. (C.88)

Using the equality in (C.87), it follows that the terms in the large brackets on the RHS of
(C.88) are equal. Hence we choose either of them and write,

D∗(λ)−D∗(λ(1)
0 ) = (λ

(1)
0 − λ)

{
λ

(2)
0

λ
− 1− λ(2)

0

1− λ

}
Φ∗A

= (λ
(1)
0 − λ)

{
λ

(2)
0 − λ

λ(1− λ)

}
Φ∗A, (C.89)

where Φ∗A = ΦA/(λ
(1)
0 λ

(2)
0 ). For all k ≤ k∗0 = 0.5(k

(1)
0 +k

(2)
0 ), it implies 2λ ≤ λ

(1)
0 +λ

(2)
0 .

Thus for the terms within the curly brackets on the RHS of (C.89),

2λ
(2)
0 − 2λ

2λ(1− λ)
≤ 2λ

(2)
0 − λ

(1)
0 − λ

(2)
0

2λ(1− λ)

≤ λ
(2)
0 − λ

(1)
0

2λ
(1)
0 (1− λ(2)

0 )

Therefore, it follows that

D∗(λ)−D∗(λ(1)
0 ) ≤ −|λ− λ(1)

0 |E5, (C.90)

where E5 =
{

(λ
(2)
0 − λ

(1)
0 )/(2λ

(1)
0 (1− λ(2)

0 )
}

Φ∗A > 0.

The analysis in this appendix covers the first equation, (3.15) on page 69, in Lemma 9
where λ ≤ λ∗0. By symmetry, a similar evaluation can be carried out for the second
equation (3.16) when λ ≥ λ∗0.
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C.6 Proof of Lemma 10

The proof of this lemma is identical to that carried out for Lemma 8 in Appendix C.4.

With the consistency of the break fraction estimators λ̂∗i established for λ(i)
0 , i = 1, 2,

then (3.15) and (3.16) on page 69 in Lemma 9 are used and the same results obtained in
Appendix C.4 follow through. Hence, the proofs are not repeated here.

C.7 Proof of Proposition 7

This appendix presents the generic formula for the nonstochastic limit of D∗T (λ) in a
multiple break model. Recall the generic formula as presented in (3.21) on page 71 is

D∗(λ) =
1− λ
λ

ΦA(j) +
λ

1− λ
ΦB(j) + ΦC(j),

where ΦA(j) = φA(j)
′BφA(j); φA(j) =

∑j
i=1 λ

(i)
0 wi; ΦB(j) = φB(j)

′BφB(j); φB(j) =∑m
i=j+1(1−λ(i)

0 )wi; ΦC(j) = φA(j)
′BφB(j); wi = θ

(i)
0 −θ

(i+1)
0 ; i is the break point being

estimated; j is the number of true breaks before or at this candidate break point and m is
the total number of true breaks in the model. We prove the results below for the m = 3

case, however, the results go through for any finite m.

The break fractions and the model’s parameters are represented as λ(i)
0 and θ(j)

0 respec-
tively, for i = 1, 2, 3 and j = 1, . . . , 4. In this three break model, there are seven possible
expressions for D∗(λ) across the range of Λ and we show how each of these expressions
crystalises into the generic formula displayed above. The approach used is similar to that
used in the one break and two break models in Appendices B.1 and C.1 respectively.

First, recall the test statistic,

DT (λ) = T (θ̂1,T (λ)− θ̂2,T (λ))
′
M∗,T (λ)−1 (θ̂1,T (λ)− θ̂2,T (λ)),

where M∗,T (·) = M1,T (·)−1 +M2,T (·)−1, Mi,T (·) = Gi,T (·)′Wi,T (·)Gi,T (·) and Gi,T (·) =

T−1Zi,T (·)′Xi,T (·), for i = 1, 2.

Secondly, recall (θ̂1,T (λ) − θ̂2,T (λ)) is the Parameter Difference and M∗,T (λ)−1 is the
Centre Matrix. Thirdly, recall that since the Jacobian is stable, then the Centre Matrix
does not change in all seven cases. As given in (B.12) in Appendix B.1, M∗,T (·) =
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M1,T (·)−1 +M2,T (·)−1, where

M1,T (λ) = G1,T (λ)
′
W1,T (λ)G1,T (λ)

p→ (λQxz)(λ
−1C)(λQzx)

= λ(QxzCQzx).

Similarly, M2,T (λ) = G2,T (λ)
′
W2,T (λ)G2,T (λ)

p→ (1− λ)(QxzCQzx).

Therefore, the Centre Matrix, M∗,T (λ)−1 p→ λ(1− λ)B, where B = QxzCQzx.

Fourthly, the proofs concentrate on the asymptotic properties of the estimated parameters
before and after the candidate break point. It is worth noting that in all the seven cases
below, as given in Appendix C.1,

H1,T (λ) = M1,T (·)−1G1,T (·)′W1,T (·) p→ H1(λ) and

H2,T (λ) = M2,T (·)−1G2,T (·)′W2,T (·) p→ H2(λ), where

H1(λ) = {λ(QxzCQzx)}−1QxzC andH2(λ) = {(1− λ)(QxzCQzx)}−1QxzC.

Lastly, recall that from Assumptions 1, 3 and 8, the Jacobian,
∑k

t=1 ztx
′
t

p→ λQzx.

For simplicity, we present the proof following these four steps:

(i) The formula for the GMM parameter before the break is stated and its limiting form
derived based on Assumptions 1, 3 and 8.

(ii) Step (i) above is performed for the parameter after the break.

(iii) The limits of the Parameter Difference are obtained by subtracting the limit of the
second parameter obtained in (ii) from that of the first parameter obtained in (i).

(iv) The nonstochastic limit, D∗(λ), is now derived by combining the limit of the Param-
eter Difference obtained in (iii) with the limit of the Centre Matrix.

Remark 4. There is no true break point in the first regime when λ < λ
(1)
0 hence j = 0

and we say φA(j) = 0. Similarly, since j = m in the last regime when λ > λ
(m)
0 we say

φB(j) = 0 because no true break point exists there.

Case 1: When 0 < λ < λ
(1)
0 < λ

(2)
0 < λ

(3)
0 < 1

The parameter before the break,

θ̂1(λ) = H1,T (λ)

{
k∑
t=1

ztut +
k∑
t=1

ztx
′

tθ
(1)
0

}
p→ θ

(1)
0 .
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The parameter after the break,

θ̂2(λ) = H2,T (λ)

{
k
(1)
0∑

t=k+1

ztx
′

tθ
(1)
0 +

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 +

k
(3)
0∑

t=k
(2)
0 +1

ztx
′

tθ
(3)
0 +

T∑
t=k

(3)
0 +1

ztx
′

tθ
(4)
0

+
T∑

t=k+1

ztut

}
p→ 1

1− λ
{

(λ
(1)
0 − λ)θ

(1)
0 + (λ

(2)
0 − λ

(1)
0 )θ

(2)
0 + (λ

(3)
0 − λ

(2)
0 )θ

(3)
0 + (1− λ(3)

0 )θ
(4)
0

}
.

The Parameter Difference,

θ̂1,T (λ)− θ̂2,T (λ)

p→ 1

1− λ
{

(1− λ)θ
(1)
0 − (λ

(1)
0 − λ)θ

(1)
0 − (λ

(2)
0 − λ

(1)
0 )θ

(2)
0

− (λ
(3)
0 − λ

(2)
0 )θ

(3)
0 − (1− λ(3)

0 )θ
(4)
0

}
=

1

1− λ
{

(1− λ(1)
0 )(θ

(1)
0 − θ

(2)
0 ) + (1− λ(2)

0 )(θ
(2)
0 − θ

(3)
0 ) + (1− λ(3)

0 )(θ
(3)
0 − θ

(4)
0 )
}

=
1

1− λ

m∑
i=j+1

(1− λ(i)
0 )(θ

(i)
0 − θ

(i+1)
0 )

=
1

1− λ

m∑
i=j+1

w̃i

=
1

1− λ
φB(j).

Thus, the nonstochastic limit uniformly for λ < λ
(1)
0 ,

D∗(λ) =
λ

1− λ
φB(j)

′
B φB(j)

=
λ

1− λ
ΦB(j)

=
1− λ
λ

ΦA(j) +
λ

1− λ
ΦB(j) + ΦC(j), (C.91)

where j = 0,ΦA(j) and ΦC(j) are zero from Remark 4.
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Case 2: When 0 < {λ = λ
(1)
0 } < λ

(2)
0 < λ

(3)
0 < 1

The parameter before the break,

θ̂1(λ) = H1,T (λ
(1)
0 )

{
k
(1)
0∑
t=1

ztut +

k
(1)
0∑
t=1

ztx
′

tθ
(1)
0

}
p→ θ

(1)
0 .

The parameter after the break,

θ̂2(λ) = H2,T (λ
(1)
0 )

{
k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 +

k
(3)
0∑

t=k
(2)
0 +1

ztx
′

tθ
(3)
0 +

T∑
t=k

(3)
0 +1

ztx
′

tθ
(4)
0 +

T∑
t=k+1

ztut

}
p→ 1

1− λ(1)
0

{
(λ

(2)
0 − λ

(1)
0 )θ

(2)
0 + (λ

(3)
0 − λ

(2)
0 )θ

(3)
0 + (1− λ(3)

0 )θ
(4)
0

}
.

The Parameter Difference,

θ̂1,T (λ)− θ̂2,T (λ)

p→ 1

1− λ(1)
0

{
(1− λ(1)

0 )θ
(1)
0 − (λ

(2)
0 − λ

(1)
0 )θ

(2)
0 − (λ

(3)
0 − λ

(2)
0 )θ

(3)
0 − (1− λ(3)

0 )θ
(4)
0

}
=

1

1− λ(1)
0

{
(1− λ(1)

0 )(θ
(1)
0 − θ

(2)
0 ) + (1− λ(2)

0 )(θ
(2)
0 − θ

(3)
0 )

+ (1− λ(3)
0 )(θ

(3)
0 − θ

(4)
0 )
}

=
1

1− λ(1)
0

3∑
i=1

(1− λ(i)
0 )wi.
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Thus, the nonstochastic limit for λ = λ
(1)
0 ,

D∗(λ) =
λ

(1)
0

1− λ(1)
0

{
3∑
i=1

(1− λ(i)
0 )wi}

′B {
3∑
i=1

(1− λ(i)
0 )wi}

= (1− λ(1)
0 )λ

(1)
0 w

′

1Bw1 +
λ

(1)
0

1− λ(1)
0

{ 3∑
i=2

(1− λ(i)
0 )wi

}′
B
{ 3∑
i=2

(1− λ(i)
0 )wi

}
=

1− λ(1)
0

λ
(1)
0

{λ(1)
0 w1}

′B{λ(1)
0 w1}+

λ
(1)
0

1− λ(1)
0

φB(j)
′BφB(j) + ΦC(j)

=
1− λ(1)

0

λ
(1)
0

φA(j)
′BφA(j) +

λ
(1)
0

1− λ(1)
0

ΦB + ΦC(j)

=
1− λ(1)

0

λ
(1)
0

ΦA(j) +
λ

(1)
0

1− λ(1)
0

ΦB(j) + ΦC(j), (C.92)

where j = 1 and ΦC(j) = w∗′1 B{
∑3

i=2 w̃i}.

Case 3: When 0 < λ
(1)
0 < λ < λ

(2)
0 < λ

(3)
0 < 1

The parameter before the break,

θ̂1(λ) = H1,T (λ)

{
k
(1)
0∑
t=1

ztx
′

tθ
(1)
0 +

k∑
t=k

(1)
0

ztx
′

tθ
(2)
0 +

k∑
t=1

ztut

}
p→ 1

λ

{
λ

(1)
0 θ

(1)
0 + (λ− λ(1)

0 )θ
(2)
0

}
.

The parameter after the break,

θ̂2(λ) = H2,T (λ)

{
k
(2)
0∑

t=k+1

ztx
′

tθ
(2)
0 +

k
(3)
0∑

t=k
(2)
0 +1

ztx
′

tθ
(3)
0 +

T∑
t=k

(3)
0 +1

ztx
′

tθ
(4)
0 +

T∑
t=k+1

ztut

}
p→ 1

1− λ
{

(λ
(2)
0 − λ)θ

(2)
0 + (λ

(3)
0 − λ

(2)
0 )θ

(3)
0 + (1− λ(3)

0 )θ
(4)
0

}
.
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The Parameter Difference,

θ̂1(λ)− θ̂2(λ)

p→ 1

λ(1− λ)

{
(1− λ)λ

(1)
0 θ

(1)
0 + (1− λ)(λ− λ(1)

0 )θ
(2)
0 − (λ

(2)
0 − λ)λθ

(2)
0

− (λ
(3)
0 − λ

(2)
0 )λθ

(3)
0 − (1− λ(3)

0 )λθ
(4)
0

}
=

1

λ(1− λ)

{
(1− λ)λ

(1)
0 θ

(1)
0 − (1− λ)λ

(1)
0 θ

(2)
0 + (1− λ(2)

0 )λθ
(2)
0 − (1− λ(2)

0 )λθ
(3)
0

+ (1− λ(3)
0 )λθ

(3)
0 − (1− λ(3)

0 )λθ
(4)
0

}
=

1

λ(1− λ)

{
(1− λ)λ

(1)
0 (θ

(1)
0 − θ

(2)
0 ) + (1− λ(2)

0 )λ(θ
(2)
0 − θ

(3)
0 )

+ (1− λ(3)
0 )λ(θ

(3)
0 − θ

(4)
0 )
}

=
1

λ(1− λ)

{
(1− λ)λ

(1)
0 w1 + λ

3∑
i=2

(1− λ(i)
0 )wi

}
.

Thus, the nonstochastic limit uniformly in λ ∈ (λ
(1)
0 , λ

(2)
0 ) is,

D∗(λ) =
1− λ
λ
{λ(1)

0 w1}
′B{λ(1)

0 w1}

+
λ

1− λ
{

3∑
i=2

(1− λ(i)
0 )wi}

′B{
3∑
i=2

(1− λ(i)
0 )wi}+ ΦC(j)

=
1− λ
λ

φA(j)
′BφA(j) +

λ

1− λ
φB(j)

′BφB(j) + ΦC(j)

=
1− λ
λ

ΦA(j) +
λ

1− λ
ΦB(j) + ΦC(j), (C.93)

where j = 1 and ΦC(j) is similar to that of Case 2.

Case 4: When 0 < λ
(1)
0 < {λ = λ

(2)
0 } < λ

(3)
0 < 1

The parameter before the break,

θ̂1(λ) = H1,T (λ
(2)
0 )

{
k
(1)
0∑
t=1

ztx
′

tθ
(1)
0 +

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 +

k
(2)
0∑
t=1

ztut

}
p→ 1

λ
(2)
0

{
λ

(1)
0 θ

(1)
0 + (λ

(2)
0 − λ

(1)
0 )θ

(2)
0

}
.
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The parameter after the break,

θ̂2(λ) = H2,T (λ
(2)
0 )

{
k
(3)
0∑

t=k
(2)
0 +1

ztx
′

tθ
(3)
0 +

T∑
t=k

(3)
0 +1

ztx
′

tθ
(4)
0 +

T∑
t=k

(2)
0 +1

ztut

}
p→ 1

1− λ(2)
0

{
(λ

(3)
0 − λ

(2)
0 )θ

(3)
0 + (1− λ(3)

0 )θ
(4)
0

}
.

The Parameter Difference,

θ̂1(λ)− θ̂2(λ)

p→ 1

λ
(2)
0 (1− λ(2)

0 )

{
(1− λ(2)

0 )λ
(1)
0 θ

(1)
0 + (1− λ(2)

0 )(λ
(2)
0 − λ

(1)
0 )θ

(2)
0

− (λ
(3)
0 − λ

(2)
0 )λ

(2)
0 θ

(3)
0 − (1− λ(3)

0 )λ
(2)
0 θ

(4)
0

}
=

1

λ
(2)
0 (1− λ(2)

0 )

{
(1− λ(2)

0 )λ
(1)
0 θ

(1)
0 − (1− λ(2)

0 )λ
(1)
0 θ

(2)
0 + (1− λ(2)

0 )λ
(2)
0 θ

(2)
0

+ λ
(2)
0 λ

(2)
0 θ

(3)
0 − λ

(3)
0 λ

(2)
0 θ

(3)
0 − (1− λ(3)

0 )λ
(2)
0 θ

(4)
0

}
=

1

λ
(2)
0 (1− λ(2)

0 )

{
(1− λ(2)

0 )λ
(1)
0 w1 + (1− λ(2)

0 )λ
(2)
0 θ

(2)
0 − (1− λ(2)

0 )λ
(2)
0 θ

(3)
0

+ (1− λ(3)
0 )λ

(2)
0 θ

(3)
0 − (1− λ(3)

0 )λ
(2)
0 θ

(4)
0

}
=

1

λ
(2)
0 (1− λ(2)

0 )

{
(1− λ(2)

0 )λ
(1)
0 w1 + (1− λ(2)

0 )λ
(2)
0 w2 + (1− λ(3)

0 )λ
(2)
0 w3

}
.

Thus, the nonstochastic limit,

D∗(λ) =
1− λ(2)

0

λ
(2)
0

{
{λ(1)

0 w1}
′B{λ(1)

0 w1}+ {λ(2)
0 w2}

′B{λ(2)
0 w2}

}
+

λ
(2)
0

1− λ(2)
0

{(1− λ(3)
0 )w3}

′B{(1− λ(3)
0 )w3}+ ΦC(j)

=
1− λ(2)

0

λ
(2)
0

{
2∑
i=1

λ
(i)
0 wi}

′B{
2∑
i=1

λ
(i)
0 wi}+

λ
(2)
0

1− λ(2)
0

φB(j)
′BφB(j) + ΦC(j)

=
1− λ(2)

0

λ
(2)
0

ΦA(j) +
λ

(2)
0

1− λ(2)
0

ΦB(j) + ΦC(j), (C.94)

where j = 2 and ΦC(j) = {
∑2

i=1w
∗
2}
′Bw̃3}.
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Case 5: When 0 < λ
(1)
0 < λ

(2)
0 < λ < λ

(3)
0 < 1

The parameter before the break,

θ̂1(λ) = H1,T (λ)

{
k
(1)
0∑
t=1

ztx
′

tθ
(1)
0 +

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 +

k∑
t=k

(2)
0 +1

ztx
′

tθ
(3)
0 +

k∑
t=1

ztut

}
p→ 1

λ

{
λ

(1)
0 θ

(1)
0 + (λ

(2)
0 − λ

(1)
0 )θ

(2)
0 + (λ− λ(2)

0 )θ
(3)
0

}
The parameter after the break,

θ̂2(λ) = H2,T (λ)

{
k
(3)
0∑

t=k+1

ztx
′

tθ
(3)
0 +

T∑
t=k

(3)
0 +1

ztx
′

tθ
(4)
0 +

T∑
t=k+1

ztut

}
p→ 1

1− λ
{

(λ
(3)
0 − λ)θ

(3)
0 + (1− λ(3)

0 )θ
(4)
0

}
.

The Parameter Difference,

θ̂1(λ)− θ̂2(λ)

p→ 1

λ(1− λ)

{
(1− λ)λ

(1)
0 θ

(1)
0 + (1− λ)(λ

(2)
0 − λ

(1)
0 )θ

(2)
0

+ (1− λ)(λ− λ(2)
0 )θ

(3)
0 − (λ

(3)
0 − λ)λθ

(3)
0 − (1− λ(3)

0 )λθ
(4)
0

}
=

1

λ(1− λ)

{
(1− λ)λ

(1)
0 w1 + (1− λ)λ

(2)
0 w2 + (1− λ(3)

0 )λw3

}
.

Thus, the nonstochastic limit uniformly in λ for λ ∈ (λ
(2)
0 , λ

(3)
0 ),

D∗(λ) =
1− λ
λ

{
{λ(1)

0 w1}
′B{λ(1)

0 w1}+ {λ(2)
0 w2}

′B{λ(2)
0 w2}

}
+

λ

1− λ
{(1− λ(3)

0 )w3}
′B{(1− λ(3)

0 )w3}+ ΦC(j)

=
1− λ
λ
{

2∑
i=1

λ
(i)
0 wi}

′B{
2∑
i=1

λ
(i)
0 wi}+

λ

1− λ
φB(j)

′BφB(j) + ΦC(j)

=
1− λ
λ

φA(j)
′BφA(j) +

λ

1− λ
ΦB(j) + ΦC(j)

=
1− λ
λ

ΦA(j) +
λ

1− λ
ΦB(j) + ΦC(j), (C.95)
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where j = 2 and ΦC(j) is similar to Case 4.

Case 6: When 0 < λ
(1)
0 < λ

(2)
0 < {λ = λ

(3)
0 } < 1

The parameter before the break,

θ̂1(λ) = H1,T (λ
(3)
0 )

{
k
(1)
0∑
t=1

ztx
′

tθ
(1)
0 +

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 +

k
(3)
0∑

t=k
(2)
0 +1

ztx
′

tθ
(3)
0 +

k
(3)
0∑
t=1

ztut

}
p→ 1

λ
(3)
0

{
λ

(1)
0 θ

(1)
0 + (λ

(2)
0 − λ

(1)
0 )θ

(2)
0 + (λ

(3)
0 − λ

(2)
0 )θ

(3)
0

}
,

The parameter after the break,

θ̂2(λ) = H2,T (λ
(3)
0 )

{
T∑

t=k
(3)
0 +1

ztx
′

tθ
(4)
0 +

T∑
t=k

(3)
0 +1

ztut

}
p→ θ

(4)
0 .

The Parameter Difference,

θ̂1(λ)− θ̂2(λ)
p→ 1

λ
(3)
0

{
λ

(1)
0 θ

(1)
0 + (λ

(2)
0 − λ

(1)
0 )θ

(2)
0 + (λ

(3)
0 − λ

(2)
0 )θ

(3)
0 − λ

(3)
0 θ

(4)
0

}
=

1

λ
(3)
0

{
λ

(1)
0 (θ

(1)
0 − θ

(2)
0 ) + λ

(2)
0 (θ

(2)
0 − θ

(3)
0 ) + λ

(3)
0 (θ

(3)
0 − θ

(4)
0 )
}

=
1

λ
(3)
0

{
λ

(1)
0 w1 + λ

(2)
0 w2 + λ

(3)
0 w3

}
=

1

λ
(3)
0

3∑
i=1

w∗i

=
1

λ
(3)
0

φA(j).
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Thus, the nonstochastic limit,

D∗(λ) =
1− λ(3)

0

λ
(3)
0

φA(j)
′BφA(j)

=
1− λ(3)

0

λ
(3)
0

ΦA(j)

=
1− λ(3)

0

λ
(3)
0

ΦA(j) +
λ

(3)
0

1− λ(3)
0

ΦB(j) + ΦC(j), (C.96)

where ΦB(j) = 0 and ΦC(j) = 0 because there is no true break after the estimated break
fraction, since j = m = 3 in this case.

Case 7: When 0 < λ
(1)
0 < λ

(2)
0 < λ

(3)
0 < λ < 1

The parameter before the break,

θ̂1(λ) = H1,T (λ)

{
k
(1)
0∑
t=1

ztx
′

tθ
(1)
0 +

k
(2)
0∑

t=k
(1)
0 +1

ztx
′

tθ
(2)
0 +

k
(3)
0∑

t=k
(2)
0 +1

ztx
′

tθ
(3)
0 +

k∑
t=k

(3)
0 +1

ztx
′

tθ
(4)
0

+
k∑
t=1

ztut

}
p→ 1

λ
(3)
0

{
λ

(1)
0 θ

(1)
0 + (λ

(2)
0 − λ

(1)
0 )θ

(2)
0 + (λ

(3)
0 − λ

(2)
0 )θ

(3)
0 + (λ− λ(3)

0 )θ
(4)
0

}
.

The parameter after the break,

θ̂2(λ) = H2,T (λ)

{
T∑

t=k+1

ztx
′

tθ
(4)
0 +

T∑
t=k+1

ztut

}
p→ θ

(4)
0 .

The parameter difference,

θ̂1,T (λ)− θ̂2,T (λ)
p→ 1

λ

{
λ

(1)
0 w1 + λ

(2)
0 w2 + λ

(3)
0 w3

}
=

1

λ
φA(j).
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Thus, the nonstochastic limit uniformly in λ for λ < λ
(3)
0 is,

D∗(λ) =
1− λ
λ

φA(j)
′BφA(j)

=
1− λ
λ

ΦA(j)

=
1− λ
λ

ΦA(j) +
λ

1− λ
ΦB(j) + ΦC(j), (C.97)

where again ΦB(j) and ΦC(j) are zero since j = m = 3.



Chapter 4

Unstable Jacobian Model

The discussions in the previous chapters were premised on the assumption that a stable
relationship exists between the endogenous regressors and their instruments as presented
in the Jacobian Equation (JE) in (2.2) on page 27. However, in reality, such stability may
not always be the case as evidenced in the New Keynesian Phillips Curve model for US
data used in Hall et al. (2012) and Boldea et al. (2012), where both endogenous regressors
- expected inflation and output gap - were found to possess breaks in their reduced form
equations. In this chapter, therefore, we examine the behaviour of the test statistic and the
break fraction estimator obtained from models with an unstable JE.

Within the Two Stage Least Squares (2SLS) framework, Hall et al. (2012) suggest a three-
step methodology for estimating the break points in models with an unstable JE. In their
first step, the JE is estimated along with any break point in it using the supF type test
proposed in Bai and Perron (1998). The Structural Equation (SE) is then split based on
the break points identified in the first step and additional breaks are estimated in these
subsamples. Lastly, a fixed break point test is used to check if the break points identified
in the JE in the first step are also present in the SE. This procedure yields consistent break
fraction estimators as established in Hall et al. (2012) and Boldea et al. (2012).

In using 2SLS however, it is crucial that the break points in the JE are consistently esti-
mated in the first step. Otherwise, the resulting estimators would be inconsistent. More
recently, Perron and Yamamoto (2015) propose a method to obtain consistent break frac-
tion estimators in linear models with an unstable JE still using Ordinary Least Squares
(OLS). However, their approach needs to be applied with caution as there is the possi-
bility that spurious break points in the model would be detected due to the correlation
between the endogenous regressors and the errors.
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We show in this chapter that the GMM procedure proposed in this study still yields con-
sistent break fraction estimators in the SE of models with an unstable JE. The estimation
process follows the same Sequential Method using the Difference test statistic as carried
out in the previous two chapters. The breaks in the SE are estimated directly unlike the
2SLS; hence there is no requirement to pre-estimate the break in the JE beforehand.

First, recall the test statistic as given in (2.5) on page 32,

DT (λ) = T (θ̂1,T (λ)− θ̂2,T (λ))
′
M∗,T (λ)−1 (θ̂1,T (λ)− θ̂2,T (λ)),

where θ̂1,T (λ) − θ̂2,T (λ) is the Parameter Difference, M∗,T (λ)−1 is the Centre Matrix,
M∗,T (·) = M1,T (·)−1 + M2,T (·)−1, Mi,T (·) = Gi,T (·)′Wi,T (·)Gi,T (·) and Gi,T (·) =

T−1Zi,T (·)′Xi,T (·), for i = 1, 2.

In the previous two chapters under the Stable Jacobian, the Centre Matrices were rela-
tively simple to construct and for all λ ∈ Λ, converged in probability to λ(1−λ)B, where
B = QxzCQzx, as shown in (B.12) in Appendix B.1. When the JE is unstable, how-
ever, the analysis becomes more complicated and the limiting properties of the Centre
Matrices - and consequently, the test statistic and the break fraction estimator - are not
as straightforward to obtain. In the remaining part of this chapter, we examine the lim-
iting properties of the estimators obtained from two main types of models which exhibit
unstable JEs.

In Section 4.1, we consider a model that has a break point only in the JE and none in
the SE. This model provides a simple way to introduce the Unstable JE concept since the
estimators have the same limit for all λ ∈ Λ. In Section 4.2, we extend the analysis to a
model with two break points - one break point in the JE and the other in the SE. Through-
out the chapter, the location of the break point in the JE is assumed to be unknown. The
significance of this research and suggestions on extending this study are discussed in the
conclusion in Section 4.3. As in the previous chapter, the main derivations are placed in
the relevant appendices.

4.1 One Break in the JE but Stable SE

The presence of the break point in the JE makes it necessary to modify the model used
in Chapter 2. Hence, this section starts with a description of the Unstable JE model
alongside its assumptions. These assumptions surround the presentation of the Jacobian
when a break exists in the JE. Following this, the test statistic and the break fraction
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estimator are examined and their limiting properties established. The analysis carried out
in this section assumes the magnitude of change between the parameters in the JE are
fixed.

4.1.1 The Model and its Assumptions

Since this model has no break in the SE, we represent the SE thus,

yt = x
′

tθ0 + ut, t = 1, 2, . . . , T, (4.1)

where θ0 is the p × 1 vector of coefficients and yt and ut are the dependent variable and
error term, as defined earlier in (2.1) on page 26. On the other hand, to reflect the break
point in the Jacobian, the JE in (2.2) is rewritten as:

x
′

t = z
′

t∆
(1)
0 + v

′

t for t = 1, 2, . . . , h0 (4.2)

= z
′

t∆
(2)
0 + v

′

t for t = h0 + 1, . . . , T, (4.3)

where zt is the q × 1 vector of instruments as defined in (2.2), ∆
(1)
0 6= ∆

(2)
0 , h0 = [Tπ0],

π0 ∈ Π ⊂ (0, 1), π0 and h0 are respectively defined as the true break fraction and true
break point in the JE. Due to this break in the JE, it is crucial to change Assumptions 1 to
3 on page 27 which were used for the Stable Jacobian models,

Assumption 17.

E[ztx
′

t] = E[ztz
′

t]∆
(1)
0 = Qzz∆

(1)
0 for t ≤ h0 (4.4)

= E[ztz
′

t]∆
(2)
0 = Qzz∆

(2)
0 for t > h0, (4.5)

where ‖Qzz‖ <∞ and positive definite.

Assumption 18. rank{∆(i)
0 } = p and ‖∆(i)

0 ‖ <∞ for i = 1, 2.

Assumption 19. The matrices
1

j

∑h0+j
t=h0+1 ztz

′
t and

1

j

∑h0
t=h0−j+1 ztz

′
t have minimum eigen-

values bounded away from zero in probability for all π ∈ Π and j ≥ q.

Assumption 20. supπ∈Π‖T−1
∑h

t=1 ztx
′
t − πQzz∆

(1)
0 ‖

p→ 0.

Assumption 17 indicates the expectation of the Jacobian before and after the break point.
Assumption 18 is the standard rank condition for identification1 when estimating using

1See Identification Condition on page 35 in Hall (2005).
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GMM. Assumption 19 requires that there be enough observations near the true break
point in the Jacobian. Assumption 20 states the uniform convergence of the Jacobian and
in union with Assumption 18, it implies Qzz∆

(1)
0 in (4.4) and Qzz∆

(2)
0 in (4.5) have rank

equal to p for π ∈ Π.

4.1.2 The Test Statistic

The test statistic DT (λ) used here is identical to that used in the Stable Jacobian in Chap-
ters 2 and 3. It is constructed as a sequence comprising of values of DT (λ) for all λ ∈ Λ.
To illustrate the finite sample behaviour of DT (λ) from a model with one break point in
the JE, we present a plot of DT (λ) across the full range of Λ = [0.15, 0.85] from a sample
of size T = 600. The break in the JE is imposed at π0 = 0.5 with specific parameter val-
ues ∆

(1)
0 = (1, 0.8, 0.8, 0.8, 0.8)

′ and ∆
(2)
0 = (0.1, 0.2, 0.2, 0.2, 0.2)

′ . As seen in the one
thousand simulations displayed in Figure 4.1, DT (λ) has values very close to zero across
all λ ∈ Λ. Comparing this behaviour to the plot of DT (λ) obtained from a model with a
break in the SE displayed in Figure 2.2 on page 31, this indicates that DT (λ) is not influ-
enced by the instability in the JE. Thus, our proposed estimation method is a promising
option to estimate break points in the SE in the presence of breaks in the Jacobian.

Figure 4.1: DT (λ) for all λ ∈ Λ.
One break only in the Jacobian Equation
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4.1.3 The Break Fraction Estimator

The break fraction estimator, λ̂ and its estimation process work identically to that dis-
cussed under the Stable Jacobian in Section 2.2; after the sequence of DT (λ) is obtained,
λ̂ is estimated as the location of the supremum of this sequence.

Asymptotic Properties of the Break Fraction Estimator

In order to establish the asymptotic properties of the break fraction estimator, we first
present the nonstochastic limit of the test statistic. Unlike the Stable Jacobian case given
in Lemma 1, in this case when there is a break only in the JE, D∗T (λ) has identical non-
stochastic limits uniformly in λ for λ ∈ Λ. This is stated in the following lemma:

Lemma 11. If θ(1)
0 = θ

(2)
0 and Equations (4.1) to (4.3) and Assumptions 4, 6 to 8 and 17

to 20 hold, then D∗T (λ) converges to a nonstochastic function D∗(λ) on (0,1), given as

D∗(λ) = (θ
(1)
0 − θ

(2)
0 )

′
M∗(λ)−1(θ

(1)
0 − θ

(2)
0 ) = 0, uniformly in λ for λ ∈ Λ (4.6)

where2

M∗(λ) = M1(λ)−1 +M2(λ)−1 (4.7)

Mi(λ) = Gh
i (λ)

′
Wi(λ)Gh

i (λ), for i = 1, 2, (4.8)

Gh
1(λ) = min(π0, λ)Qzz∆

(1)
0 +max(0, λ− π0)Qzz∆

(2)
0 (4.9)

Gh
2(λ) = max(π0 − λ, 0)Qzz∆

(1)
0 +min(1− π0, 1− λ)Qzz∆

(2)
0 (4.10)

W1(λ) = λ−1C, W2(λ) = (1− λ)−1C and C is a nonsingular constant matrix.

This lemma, which is proved in Appendix D.1, implies DT (λ) converges to zero uni-
formly in λ for λ ∈ Λ. Based on this asymptotic property of DT (λ), the break fraction
estimator converges to a random variable, λ†. That is,

λ̂
p→ λ†, where λ† ∈ Λ. (4.11)

Though we do not formally prove this asymptotic behaviour of λ̂, the results of the Monte
Carlo simulations presented in Chapter 5 provide strong evidence of this random be-
haviour.

2Note that Gh
i (λ) is analogous to Gi in the Stable Jacobian model, for i = 1, 2. We use it here simply

to differentiate the Stable Jacobian from the Unstable Jacobian.
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4.2 One Break each in the JE and SE

In this section, we extend the analysis done above for the single break in the JE to a model
that includes an additional break in the SE. Having a break point in both the JE and SE
results in two possibilities: the break points may occur either at the same location or they
may occur at different locations in the JE and SE. We refer to the former as the Coinciden-
tal Break scenario and the latter as the Separate Break scenario. For the remaining part of
this chapter, the behaviour of the test statistic and break fraction estimator are examined
under these two scenarios. Additionally, it is assumed that the magnitude of the parameter
change in the JE shrinks with the sample size. Although we conjecture consistency also
holds with fixed breaks in the JE, the proofs were intractable because of the complexity
of the Centre Matrix as given in (4.7) to (4.10) on page 115. However, the Monte Carlo
simulation results presented in Chapter 5 corroborate this conjecture. Consequently, the
shrinking breaks framework adopted in this section is only required for the proofs of the
limiting properties of the break fraction estimators.

4.2.1 The Model and its Assumptions

To reflect the break in the SE, we use the model with a single break in the SE given in
(2.1) on page 26, while we use the model in (4.2) and (4.3) to indicate the break in the JE.
That is,

yt = x
′

tθ
(1)
0 + ut, t = 1, 2, . . . , [Tλ0]

= x
′

tθ
(2)
0 + ut, t = [Tλ0] + 1, . . . , T

and (4.12)

x
′

t = z
′

t∆
(1)
0 + v

′

t t = 1, 2, . . . , [Tπ0]

= z
′

t∆
(2)
0 + v

′

t t = [Tπ0] + 1, . . . , T,

where the terms are as defined previously in (2.1), (4.2) and (4.3).

4.2.2 Coincidental Break Scenario

When the break points in the SE and JE are coincidental, then λ0 and π0 in (4.12) occur at
the same point in the sample, that is, λ0 = π0. To discuss the characteristics of the break
fraction estimator in this setting, we first present the finite sample behaviour of the test
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statistic DT (λ) over the range of Λ = [0.15, 0.85] in Figure 4.2.

In this model, we impose λ0 = π0 = 0.5 and for t ≤ λ0, the parameters used are
θ

(1)
0 = (1, 0.1)

′ and ∆
(1)
0 = (1, 0.8, 0.8, 0.8, 0.8)

′; while for t > λ0, θ(2)
0 = (−1,−0.1)

′

and ∆
(2)
0 = (0.1, 0.2, 0.2, 0.2, 0.2)

′ . DT (λ) exhibits similar behaviour across the range,
for each of the one thousand simulations performed, attaining its maximum at the location
of the true break point, when λ0 = 0.5. When compared to DT (λ) obtained from a model
with a single break in the JE displayed in Figure 4.1, it indicates the peak of DT (λ) in
Figure 4.2 is due to the break in the SE and not the break in the JE. This is further con-
firmed in the theoretical analysis below and the Monte Carlo simulation results presented
in Chapter 5.

Figure 4.2: DT (λ) for all λ ∈ Λ.
One break each in the Jacobian and Structural Equations
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Some assumptions vital to establishing the limiting properties of the break fraction esti-
mator are now stated. As highlighted earlier, we adopt the shrinking breaks approach3

when dealing with the break in the JE. Under this approach, the parameter change in
the JE shrinks and converges to zero as the sample size increases. This is stated in the
following assumption,

Assumption 21.

∆
(i)
T = ∆0 + d

(i)
T , for i = 1, 2, (4.13)

3Using the fixed break approach as done in the Stable Jacobian proved intractable due to the structure
of the Centre Matrices.
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where d(i)
T = d(i)νT , d(i) is a constant term independent of T , νT = T−α and α ∈ (0, 0.5).

Assumption 22. rank{∆(i)
T } = p and ‖∆(i)

T ‖ <∞ for i = 1, 2.

The rate used for the shrinking breaks in Assumption 21 is simply a mathematical ap-
proach adopted in the literature4 to obtain the asymptotic properties of estimators. These
properties are otherwise difficult to obtain or they are obtained in complex forms using
the fixed break approach.

To ease notation, let Gh
1,T = E[ztx

′
t] when h ≤ h0 and Gh

2,T = E[ztx
′
t] when h > h0.

Then based on Assumption 21, to reflect the shrinking breaks in the JE, we write

Assumption 23.

Gh
1,T = E[ztz

′

t]∆
(1)
T = G0 +Qzzd

(1)
T for t ≤ h0 (4.14)

Gh
2,T = E[ztz

′

t]∆
(2)
T = G0 +Qzzd

(2)
T for t > h0, (4.15)

where G0 = Qzz∆0.

Assumption 23 is analogous to Assumption 17 on page 113 used for the one break in the
JE under the fixed break approach. It implies that under this shrinking breaks approach,
the expectation of the Jacobian in the Unstable case is identical to that of its counterpart
in the Stable case plus a term which is Op(νT ) that shrinks as the sample size increases.

Assumption 24.

supπ∈Π‖T−1

[Tπ]∑
t=1

(
ztx

′

t −Gh
1,T

)
‖ = op(1), when t ≤ h0 (4.16)

supπ∈Π‖T−1

T∑
[Tπ]+1

(
ztx

′

t −Gh
2,T

)
‖ = op(1), when t > h0. (4.17)

Assumption 24 states the difference between the Jacobian and Gh
i,T is very small in prob-

ability for i = 1, 2.

Consistency and Convergence Rate

This section considers issues relating to the limiting properties of the break fraction es-
timator obtained from a model with a coincidental break in the SE and JE. First, recall

4See Bai (1997a), Boldea et al. (2012) and Perron and Yamamoto (2015).
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from Assumption 1 on page 27 that when the Jacobian is stable, E[ztx
′
t] = G0. In the

following lemma, we state that the difference between G0 and the Jacobian obtained from
a model with an unstable JE is asymptotically negligible.

Lemma 12. If the model is generated by (4.12) and Assumptions 21 to 24 hold,

supπ∈Π‖T−1

[Tπ]∑
t=1

(
ztx

′

t −G0

)
‖ = op(1). (4.18)

Remark 5. As seen in the proof of Lemma 12 presented in Appendix D.2 on page 126, the

op(1) term in Lemma 12 is O(νT ) and hence, the difference between the Centre Matrix5

in a Stable and Unstable JE is at most O(ν2
T ), which is asymptotically negligible.

Based on Lemma 12 and Remark 5, the consistency of λ̂ can be proved following a similar
three-step procedure used in the Stable Jacobian case detailed in Subsection 2.4.1 on page
32. Although we do not present the theoretical proofs in this research, we conjecture in
the following remark that (based on preliminary analysis) using this shrinking breaks
approach.

Remark 6. if yt and xt are generated as given in (4.12) and Assumptions 21 to 24 hold,

then for every ε > 0, there exists a finiteM independent of T , such that for all large T ,

P (T |λ̂− λ0| >Mν−2
T ) < ε. (4.19)

This assumption infers the consistency of the break fraction estimator obtained from a
model with a break in both the SE and JE and also provides its rate of convergence to the
true break fraction in the SE. Furthermore, the results from the Monte Carlo simulations
carried out in Chapter 5 support this consistency assumption made in Remark 6.

4.2.3 Separate Break Scenario

When the break in the SE does not occur at the same point as the break in the JE, then for
the model given in (4.12), we have that λ0 6= π0. Thus there are two possible events that
can happen which we term Event 1 and Event 2. In Event 1, the break in the SE lies after
the break in the JE, that is π0 < λ0 while in Event 2, the break in the SE lies before the
break in the JE, that is λ0 < π0.

5Recall the Centre Matrix is essentially a quadratic of the Jacobian, Gh
i (·), i = 1, 2.
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In both events, there are five possible cases that can occur, dependent on the location of
the candidate break fraction. Starting with Event 1, we have

Case 1: When λ < π0 < λ0

Case 2: When λ = π0 < λ0

Case 3: When π0 < λ < λ0

Case 4: When π0 < λ = λ0

Case 5: When π0 < λ0 < λ

We show a plot of DT (λ) for Event 1 in Figure 4.3. The DGP is identical to that used
in the Coincidental Break Scenario on page 117 except that in this case, the break in the
SE, λ0 = 0.7 while the break in the JE is left at π0 = 0.5. The plot clearly shows the
supremum of DT (λ) occurs when λ = 0.7.

Figure 4.3: DT (λ) for all λ ∈ Λ.
One break each in both the JE and SE (Event 1)
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Likewise, for Event 2, the five possible cases are

Case 6: When λ < λ0 < π0

Case 7: When λ = λ0 < π0

Case 8: When λ0 < λ < π0

Case 9: When λ0 < λ = π0

Case 10: When λ0 < π0 < λ

Figure 4.4 showsDT (λ) across the range of Λ when Event 2 occurs. Apart from imposing
the break in the SE at λ0 = 0.3, the data generating process is identical to that in Event 1.



CHAPTER 4. UNSTABLE JACOBIAN MODEL 121

Yet again, the peak of DT (λ) when λ = 0.3 is clearly evident.

Figure 4.4: DT (λ) for all λ ∈ Λ.
One break each in both the JE and SE (Event 2)
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Consistency and Convergence Rate

Based on Assumptions 21 to 24, Lemma 12 and Remark 5, the asymptotic behaviour of
the test statistic and break fraction estimator obtained from a Separate Break model is
identical to those in the Coincidental Break model. Consequently, the assumption of the
consistency and convergence rate given in Remark 6 extend to both Events 1 and 2 of the
Separate Break scenario as well.

4.3 Conclusion

This chapter considered break point estimation in models with an unstable Jacobian Equa-
tion, that is, models in which the relationship between the endogenous regressor and its
instruments are not constant. Hall et al. (2012) provide a good example of this type of
problem that exists in reality. In their study of the NKPC using US data, they identified
two break points in the JE of the endogenous regressor, output gap. To determine the total
number of break points in the model, they first estimated the breaks in the JE before those
in the SE based on 2SLS. In our own estimation approach using GMM however, there is
no need to pre-estimate the break points in the JE first. Our strategy which is based on
parameter variation is focused on the main SE of interest.
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Two main types of models with an unstable JE were considered. Firstly, a model with
a single break in the JE only was examined. Using the fixed break approach, the break
fraction estimator was shown to converge to a random variable uniformly in λ for λ ∈ Λ.
Secondly, a model with a break in both the SE and JE were studied. These models were
classified as either Coincidental or Separate break models, based on the location of the
two break points in the sample. Using the shrinking breaks approach, we showed initial
steps in the proofs of consistency and convergence rate of the break fraction estimator
obtained from these models. Furthermore, the Monte Carlo simulations in Chapter 5
support the conjecture made that the break fraction obtained from the models with either
a Coincidental or Separate break in the JE and SE is consistent for the true break fraction
in the SE. This implies that an unstable relationship between the endogenous regressor
and the instruments does not confound the estimations of a true break point in the SE, if
one exists.

Thus, the estimation of a break point in the SE when the JE is unstable follows a similar
process as the Stable Jacobian outlined in Chapters 2 and 3. This proposed methodology
using GMM therefore provides fewer steps than the 2SLS approach in Hall et al. (2012).
In this way, our method enables the researcher to focus entirely on any significant break
point in the main Structural Equation of interest rather than on the Jacobian Equation.



Appendix D

D.1 Proof of Lemma 11

With the single break only in the Jacobian Equation (JE), there are three different expres-
sions D∗(λ) can take, dependent on the location of the true break fraction in the JE, π0

and the break fraction being considered, λ. The first case is when they both occur at the
same location, that is when λ = π0; the second case is when λ < π0 and the third case is
when λ > π0.

As in the Stable Jacobian proofs, DT (λ) is also analysed here based on its two main com-
ponents - the Parameter Difference and the Centre Matrix. For the Parameter Difference,
since there is no break in the Structural Equation1, then it is straightforward to see that for
all λ ∈ Λ,

θ̂1(λ)− θ̂2(λ)
p→ θ

(1)
0 − θ

(2)
0 = 0, (D.1)

since θ(1)
0 = θ

(2)
0 . This implies that irrespective of the location of π0, the Parameter

Difference is always zero as it is dependent only on a break point in the SE.

On the other hand, examining the Centre Matrix as given in (4.7) to (4.10), it is evidently
dependent on π0 and consequently, it is not invariant to the location of the break fraction

1Also by construction the estimated parameters are unaffected by only a break in the Jacobian (see
GMM estimation in Appendix A.1).
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being considered. Recall the Centre Matrix in this case is denoted as M∗(λ)−1, where

M∗(λ) = M1(λ)−1 +M2(λ)−1

Mi(λ) = Gh
i (λ)

′
Wi(λ)Gh

i (λ), for i = 1, 2,

Gh
1(λ) = min(π0, λ)Qzz∆

(1)
0 +max(0, λ− π0)Qzz∆

(2)
0

Gh
2(λ) = max(π0 − λ, 0)Qzz∆

(1)
0 +min(1− π0, 1− λ)Qzz∆

(2)
0

W1(λ) = λ−1C, W2(λ) = (1− λ)−1C and C is a nonsingular constant matrix.

This is unlike the Centre Matrix analysed earlier in models with a Stable Jacobian given
in (B.12) in Appendix B.1. Based on the limit of the Parameter Difference given in (D.1),
it is sufficient to show that the limit of the Centre Matrix is finite in order to determine
the limiting behaviour of D∗T (λ). Assumptions 17 and 182 imply that both M1(·) and
M2(·) are finite positive definite matrices with full rank. For the record, the specific forms
of Gh

1(λ) and Gh
2(λ) for all λ ∈ Λ, covering all the three cases highlighted above are

provided below.

Case 1: When λ = π0

For the Jacobian before the break, we have

T−1

k∑
t=1

ztx
′

t = T−1

k∑
t=1

ztz
′

t∆
(1)
0

p→ Gh
1(λ),

where

Gh
1(λ) = λQzz∆

(1)
0 , (D.2)

while for that after the break, we have

T−1

T∑
t=k+1

ztx
′

t = T−1

T∑
t=k+1

ztz
′

t∆
(2)
0

p→ Gh
2(λ),

where

Gh
2(λ) = (1− λ)Qzz∆

(2)
0 . (D.3)

2These assumptions state that E[ztx
′

t] = E[ztz
′

t]∆
(i)
0 = Qzz∆

(i)
0 , rank{∆(i)

0 } = p, ‖Qzz‖ < ∞ and
‖∆(i)

0 ‖ <∞ for i = 1, 2.
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Case 2: When λ < π0

The Jacobian before the break is identical to (D.2), while that after the break,

T−1

T∑
t=k+1

ztx
′

t = T−1

h0∑
t=k+1

ztz
′

t∆
(1)
0 + T−1

T∑
t=h0+1

ztz
′

t∆
(2)
0

p→ Gh
2(λ),

where

Gh
2(λ) = (π0 − λ)Qzz∆

(1)
0 + (1− π0)Qzz∆

(2)
0 . (D.4)

Case 3: When λ > π0

In this case, the Jacobian after the break is identical to (D.3) while that before the break,

T−1

k∑
t=1

ztx
′

t = T−1

h0∑
t=1

ztz
′

t∆
(1)
0 + T−1

k∑
t=h0+1

ztz
′

t∆
(2)
0

p→ Gh
1(λ),

where

Gh
1(λ) = π0Qzz∆

(1)
0 + (λ− π0)Qzz∆

(2)
0 . (D.5)

In all three cases, Gh
1(λ) for i = 1, 2 given in (D.2) to (D.5) are seen to be finite. This

confirms the Centre Matrix is finite and in combination with the Parameter Difference
given in (D.1), proves the nonstochastic limit of D∗T (λ) as presented in Lemma 11.
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D.2 Proof of Lemma 12

We consider the case where π ≤ h0. The analysis for π > h0 is similar and hence is
omitted. First, by adding and subtracting Gh

1,T , we write3,

‖T−1

[Tπ]∑
t=1

(
ztx

′

t −G0

)
‖ = ‖T−1

[Tπ]∑
t=1

(
ztx

′

t −Gh
1,T +Gh

1,T −G0

)
‖

= ‖T−1

[Tπ]∑
t=1

(
ztx

′

t −Gh
1,T

)
+ T−1

[Tπ]∑
t=1

(
Gh

1,T −G0

)
‖

≤ ‖T−1

[Tπ]∑
t=1

(
ztx

′

t −Gh
1,T

)
‖+ ‖T−1

[Tπ]∑
t=1

(
Gh

1,T −G0

)
‖.

Taking the supremum implies,

supπ∈Π‖T−1

[Tπ]∑
t=1

(
ztx

′

t −G0

)
‖

≤ supπ∈Π

{
‖T−1

[Tπ]∑
t=1

(
ztx

′

t −Gh
1,T

)
‖+ ‖T−1

[Tπ]∑
t=1

(
Gh

1,T −G0

)
‖
}

≤ Γ1,T + Γ0,T ,

where

Γ1,T = supπ∈Π‖T−1

[Tπ]∑
t=1

(
ztx

′

t −Gh
1,T

)
‖ (D.6)

and

Γ0,T = supπ∈Π‖T−1

[Tπ]∑
t=1

(
Gh

1,T −G0

)
‖. (D.7)

Recall that Assumption 24 on page 118 states,

supπ∈Π‖T−1

[Tπ]∑
t=1

(
ztx

′

t −Gh
1,T

)
‖ = op(1), when t ≤ h0.

3Using the Triangle inequality.
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This implies Γ1,T is asymptotically negligible. Also, from Assumption 23 on page 118,

Gh
1,T = E[ztz

′

t]∆
(1)
T = G0 +Qzzd

(1)
T for t ≤ h0,

and so we write

Γ0,T = supπ∈Π‖T−1

[Tπ]∑
t=1

Qzzd
(1)
T ‖ = supπ∈Π‖Qzzd

(1)T−1

[Tπ]∑
t=1

νT‖. (D.8)

Since Qzz and d(1) are both O(1) and νT is O(T−α), then

Γ0,T = supπ∈Π‖O(1)O(1)O(T−α)‖ = supπ∈Π‖o(1)‖ = o(1).

Combining Γ1,T and Γ0,T we therefore conclude,

supπ∈Π‖T−1

[Tπ]∑
t=1

(
ztx

′

t −G0

)
‖ ≤ op(1) + o(1) = op(1).



Chapter 5

Monte Carlo Simulation Results

This chapter presents detailed results of the Monte Carlo simulation experiments carried
out to examine the performance of the break fraction estimators in finite samples. These
simulation results support the underlying theory discussed in Chapters 2 to 4. Though
most of the results presented are based on the Difference test statistic,DT (λ) on which the
theoretical analysis is established, however, a few results from the simulations involving
the Wald Test, WaldT (λ) and the Lagrange Multiplier Test, LMT (λ) are also presented.
The similarities between all three tests are clearly evident, alluding to the conjecture that
similar theoretical results derived for the DT (λ) in this research may also extend to the
other two tests.

In addition, although most of the estimations from the multiple break models are carried
out using the Sequential Estimation Method on which the theory is based, for compar-
isons, we also show some results obtained from the Simultaneous Estimation Method. As
seen, both methods yield similar outcomes.

The chapter is divided into two broad sections. The first section presents results from
the Stable Jacobian models while the second presents results from the Unstable Jacobian
models. Throughout the simulations in this chapter, the true number of break points are
assumed to be known and only their locations need to be estimated. However, in the next
chapter, we investigate the break fraction estimators obtained from models where the true
number of break points is not known a priori. The fundamental Data Generating Process
(DGP) used is presented in the Stable Jacobian section and any relevant changes are made
to it in the Unstable Jacobian section.

128
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5.1 Simulation Results from Stable Jacobian models

In this section, the break fraction estimators obtained from four different models with a
Stable Jacobian are examined. We start with the simplest model which is one with no
breaks in its Structural Equation (SE), that is, a model where m0 = 0. This model forms
a good foundation in which we progress into the remaining models with one, two and
three break points in the SE. In the first three types of models considered, that is, when
m = 0, 1, 2, we sequentially estimate two break points irrespective of the true number of
breaks. This provides an expanded view of the behaviour of the break fraction estimator.

5.1.1 The DGP for Stable Jacobian models

The DGP for all the models1 is made up of two parts - the SE and the Jacobian Equation
(JE). For models with a stable JE, the SE is unique to the number of break points in the
models, hence, we present them alongside their respective models below.

Conversely, the JE is generic to all models with a Stable JE and is constructed as,

xt = [1, z
′

t]δ + vt, t = 1, 2, . . . , T, (5.1)

where (i) xt is the p × 1 endogenous regressor; (ii) zt is the q × 1 instrument vector
constructed as zt ∼ i.i.d N(0q×1, Iq), q = 4; (iii) δ is a (q + 1) × 1 vector of the JE
coefficients with specific values (1, 0.5, 0.5, 0.5, 0.5)

′ , generated to yield a population R2

of 0.5; (iv) the errors are generated thus: (ut, vt)
′ ∼ IN(02×1,Ω) where ut is the error

in the SE and Ω =

[
1 0.5

0.5 1

]
; (v) a trimming of ε = 0.15 is applied in all simulations,

that is, the range of the break fraction estimator, Λ = [0.15, 0.85] and consequently, all
estimations are performed using the central 70% of the sample; (vi) the results cover five
sample sizes of 140, 260, 300, 420 and 600; (vii) the results presented are based on 1000
repetitions; (viii) all simulations are programmed in MATLAB.

5.1.2 Simulation Results for a Model with No Break in the SE

In the next chapter, we discuss the behaviour of the test statisticDT (λ) in a model with no
breaks in either its JE or SE. However, the simulations presented in this section investigate

1The DGP adopted in this study is similar to that used in Hall et al. (2012).
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the behaviour of the break fraction estimator λ̂ obtained from such models with no breaks.
The results reported cover three sample sizes of 140, 300 and 600.

The DGP of the SE in a Model with No Breaks

The SE is generated thus,

yt = [1, xt]
′
θ0 + ut, for t = 1, 2, . . . , T, (5.2)

where yt is the dependent variable; xt and ut are as given in (5.1); θ0 is the p × 1 vector
of coefficients with specific values θ0 = [1, 0.1]

′ .

The Simulation Results

We present eight simulation results under two categories. The first category comprises
four simulation results obtained from estimating one break point only while the second
category covers results obtained from estimating two break points.

Figures 5.1 and 5.2 show the histograms of the estimated break fractions λ̂ across Λ in
models with sample sizes of 140 and 300 respectively. For comparisons, Figures 5.3
and 5.4 show the results obtained using DT (λ) and LMT (λ) respectively, both from a
sample size of 600. The similarity of λ̂ in all four plots is clearly evident. Since m0 = 0,
any break fraction within the range has an equal chance of being estimated, hence, λ̂ is
relatively diffuse over Λ.

When two breaks are estimated, the randomness of the break fraction estimators becomes
more apparent. Figures 5.5 and 5.6 show the two estimated break fractions plotted against
each other. Note that for the Sequential Estimation Method, we define k̂1 and k̂2 as the
first and second sequentially estimated break fractions2 and based on Assumption 12 on
page 61, the first estimated break fraction, λ̂1 = min{k̂1, k̂2}. From the results displayed,
it is clear that similar to the first estimated break fraction, the second is equally dispersed
across Λ.

For comparison, Figures 5.7 and 5.8 show plots of the two estimated break fractions ob-
tained through Sequential and Simultaneous Estimation Methods respectively, using the

2Note that k̂1 and k̂2 are used in these Sequential estimation simulations to define the first and second
sequentially estimated break points only and they should not be substituted with those used to denote break
points in Chapter 3.
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WaldT (λ). The computation for the Simultaneous Estimation Method is somewhat dif-
ferent. We follow a similar algorithm used in Bai and Perron (2003) and allow identifica-
tion of the two break points as global maximisers of the test statistic, DT (λ). The optimi-
sation is taken over all partitions such that the observations in each partition, inf(k

(i+1)
0 −

k
(i)
0 ) ≥ max{q, [Tε]}, as set out in Assumption 13. As seen, both break fractions are

likewise randomly estimated.

Figure 5.1: Histogram of λ̂ using DT (λ)
Estimating 1 break; DGP has no break in SE or JE (T=140)
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Figure 5.2: Histogram of λ̂ using DT (λ)
Estimating 1 break; DGP has no break in SE or JE (T=300)
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Figure 5.3: Histogram of λ̂ using DT (λ)
Estimating 1 break; DGP has no break in SE or JE (T=600)
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Figure 5.4: Histogram of λ̂ using LMT (λ)
Estimating 1 break; DGP has no break in SE or JE (T=600)
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Figure 5.5: First against second estimated break fraction using DT (λ)
Estimating 2 breaks; DGP has no break in SE or JE (T=140)
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Figure 5.6: First against second estimated break fraction using DT (λ)
Estimating 2 breaks; DGP has no break in SE or JE (T=300)
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Figure 5.7: First against second estimated break fraction using WaldT (λ)
(Sequential Estimation) Estimating 2 breaks; DGP has no break in SE or JE (T=600)
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Figure 5.8: First against second estimated break fraction using WaldT (λ)
(Simultaneous Est) Estimating 2 breaks; DGP has no break in SE or JE (T=600)
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5.1.3 Simulation Results for a Model with One Break in the SE

This section presents results from models where the true break, m0 = 1. The results
shown are based on three sample sizes of 140, 300 and 600.

The DGP of the SE in a Model with One Break

The SE is generated thus,

yt = [1, xt]
′
θ

(1)
0 + ut, for t = 1, 2, . . . , [λ0T ] (5.3)

= [1, xt]
′
θ

(2)
0 + ut, for t = [λ0T ] + 1, . . . , T, (5.4)

where θ(1)
0 and θ(2)

0 are the parameters before and after the true break point with specific
values, (θ

(1)
0 , θ

(2)
0 ) =

(
[1, 0.1]

′
, [−1,−0.1]

′). The results shown are based on two different
locations of the break fraction in the model, when λ0 = 0.5 and 0.7.

The Simulation Results

We present eight simulation results organised into four categories. The first two cate-
gories present the results obtained from estimating one break point only while the last
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two categories reports results from estimating two break points.

In the first category, the histograms of λ̂ obtained from models with sample sizes 140 and
600 are displayed in Figures 5.9 and 5.10 respectively. The break fraction estimators are
clearly concentrated around the true break of λ0 = 0.5, with the precision increasing as
the sample size gets larger. The two histograms in the second category shown in Figures
5.11 and 5.12 also display λ̂, albeit the break in the SE is moved to λ0 = 0.7. Yet again,
the histogram is clearly centred at this true break point.

In the third category, the histograms of the two estimated break fractions are displayed in
Figures 5.13 and 5.14 for sample sizes of 140 and 300 respectively. The first estimated
break fraction converges at the true break where λ = 0.5, while the second break fraction
is randomly estimated across the range of Λ.

The last category compares the two estimated break fractions obtained from the Sequen-
tial Estimation Method shown in Figure 5.15 with those obtained from the Simultaneous
Estimation Method shown in Figure 5.16. For the Sequential estimation method, the first
break fraction is always the true break fraction, shown by k̂1 = 0.5, while the second
break fraction is randomly selected, as seen by the spread of k̂2. This supports the theory
as laid out in Chapter 3 that the dominant break fraction (which is the only true break
fraction in this case) will always be estimated first.

In the Simultaneous estimations results, either of the two estimated break fractions always
identifies the true break at λ0 = 0.5. However, neither of them is consistent for it in
particular. So when one break fraction estimates the true break, the other is arbitrarily
estimated from any of the candidate break fractions within Λ.

The focus here however, should be on the fact that the true break point is always estimated
as indeed if there was a true second break point in the model, it would be consistently
estimated as the simulation results from the multiple break models show. Therefore, both
the Sequential and Simultaneous Estimation Methods yield similar outcomes as they both
convincingly estimated the location of the true break point in the model.
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Figure 5.9: Histogram of λ̂ using DT (λ)
Estimating 1 break; DGP has 1 break in SE (T=140)
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Figure 5.10: Histogram of λ̂ using DT (λ)
Estimating 1 break; DGP has 1 break in SE (T=600)
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Figure 5.11: Histogram of λ̂ using DT (λ)
Estimating 1 break; DGP has 1 break in SE (T=140)
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Figure 5.12: Histogram of λ̂ using DT (λ)
Estimating 1 break; DGP has 1 break in SE (T=600)
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Figure 5.13: Histogram of λ̂ using DT (λ)
Estimating 2 breaks; DGP has 1 break in SE (T=140)
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Figure 5.14: Histogram of λ̂ using DT (λ)
Estimating 2 breaks; DGP has 1 break in SE (T=300)
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Figure 5.15: First against second estimated break fraction using DT (λ)
(Sequential Estimation Method) Estimating 2 breaks; DGP has 1 break in SE (T=600)
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Figure 5.16: First against second estimated break fraction using DT (λ)
(Simultaneous Est) Estimating 2 breaks; DGP has 1 break in SE (T=600)
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5.1.4 Simulation Results for a Model with Two Breaks in the SE

The results reported in this section are for models wherem0 = 2. The results are split into
two broad categories. The first considers models which have equal magnitude of shifts as
displayed in DGP 1 below while the second looks at models with unequal shifts as given
in DGP’s 2 and 3. The simulation results in the first category are based on three sample
sizes of 140, 260 and 420 while those in the second category use a sample size of 300 and
600.

As highlighted earlier in the results for the one break model in Subsection 5.1.3, by def-
inition and based on Assumption 12 on page 61, we have that λ(1)

0 < λ
(2)
0 . In line with

the sequential procedure outlined in Section 3.2, we define k̂1 as the first estimated break
fraction obtained when using the whole sample for estimations since this first break frac-
tion will not always necessarily be at λ(1)

0 or λ(2)
0 . Likewise, k̂2 is defined as the sec-

ond estimated break fraction obtained from the second round of estimations using the
subsamples. Finally, we define the first and second break fraction estimators simply as
λ̂1 = min{k̂1, k̂2} and λ̂2 = max{k̂1, k̂2} respectively.

The DGP of the SE in a Model with Two Breaks

In both categories, the true break fractions are placed at λ(1)
0 = 0.33 and λ(2)

0 = 0.67.
Since the magnitude of shifts differs in both categories, we present the DGP for a generic
SE as

yt = [1, xt]
′
θ

(i)
0 + ut, for t = 1, 2, . . . , T and i = 1, 2, 3. (5.5)

Specifically,

For DGP 1: (θ
(1)
0 , θ

(2)
0 , θ

(3)
0 ) =

(
[1, 0.1]

′
, [−1,−0.1]

′
, [1, 0.1]

′).
For DGP 2: (θ

(1)
0 , θ

(2)
0 , θ

(3)
0 ) =

(
[1, 0.1]

′
, [−1,−0.1]

′
, [1, 4.0]

′).
For DGP 3: (θ

(1)
0 , θ

(2)
0 , θ

(3)
0 ) =

(
[1, 2.0]

′
, [−1,−0.1]

′
, [1, 0.1]

′).
The Simulation Results

Six simulation results are presented in the first category using DGP 1. In Figures 5.17
and 5.18, the histograms of the first and second estimated break fractions obtained from
a model with sample size 420 are respectively displayed. As conjectured on page 71,
since the breaks in the model are of equal magnitude, then no particular break fraction
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dominates the other and hence, the break fraction estimator λ̂ converges to a random
variable with equal mass at λ(1)

0 and λ(2)
0 .

Figures 5.19 and 5.20 show the histograms of the two estimated break fractions together
in a model with sample size 140 and 260 respectively. The distribution is similar in both
models with clustering around the two true break fractions.

In Figures 5.21 and 5.22, we present the bivariate histograms of the two estimated break
fractions in models with sample sizes 260 and 420 respectively. As seen, the break frac-
tion estimator is not consistent for a specific break but more importantly, they identify
either of the two true break fractions. The similarities in the heights of the histograms in
the two models indicate both break fractions are equally estimated.

For the second category, six simulations are presented to compare the break fraction es-
timators obtained from a model using DGP 1 with those obtained from DGPs 2 and
3. First, notice in DGP 2, the second break point, λ(2)

0 is the dominant break because
‖θ(2)

0 − θ
(3)
0 ‖ > ‖θ

(1)
0 − θ

(2)
0 ‖; while in DGP 3, λ(1)

0 is the dominant break fraction because
‖θ(1)

0 − θ
(2)
0 ‖ > ‖θ

(2)
0 − θ

(3)
0 ‖.

In Figures 5.23 and 5.24, we compare the histograms of the first estimated break point
using DGP 1 and DGP 2 respectively, both with a sample size of 300. For the equal shifts
in Figure 5.23, either of the two break fractions is estimated first, similar to category
one above. This is in contrast to that in Figure 5.24 where the dominant break fraction,
λ

(2)
0 = 0.67, is estimated first. Similarly, for the second estimated break fraction displayed

in Figures 5.25 and 5.26, the difference is again clearly seen. While either of the two true
breaks is identified using the equal magnitude of shifts in DGP 1, on the other hand,
λ

(1)
0 = 0.33 is always estimated when using DGP 2. These results are consistent with

Proposition 3 on page 66 because the first estimated break fraction always converges to
the dominant break fraction, which is λ(2)

0 in this case.

The last two results presented in this section compare the bivariate histograms of the
two estimators obtained from DGPs 1 and 3, both using sample sizes of 600. These
histograms immediately highlight the relationship between the first and second estimated
break fractions. From the results of the model with equal breaks displayed in Figure 5.27,
the two true break points are again equally identified by both break fraction estimators.
Conversely, using DGP 3 with unequal shifts, Figure 5.28 clearly indicates that the more
dominant break fraction, λ(1)

0 = 0.33 is always estimated first while λ(2)
0 = 0.67 is always

estimated second.

The estimation results in the second category highlights one of the advantages of the
Sequential Estimation Method; it affords the researcher the possibility of recognising
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which of the breaks in a model is more dominant if this is a feature desired.

Figure 5.17: Histogram of the first estimated break fraction using DT (λ)
First estimated break; DGP has 2 breaks in SE (T=420)
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Figure 5.18: Histogram of the second estimated break fraction using DT (λ)
Second estimated break; DGP has 2 breaks in SE (T=420)
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Figure 5.19: Histogram of the two estimated break fractions using DT (λ)
Estimating 2 breaks; DGP has 2 breaks in SE (T=140)
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Figure 5.20: Histogram of the two estimated break fractions using DT (λ)
Estimating 2 breaks; DGP has 2 breaks in SE (T=260)
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Figure 5.21: Bivariate Histogram of both break fractions using DT (λ)
Estimating 2 breaks; DGP has 2 breaks in SE (T=260)

Student Version of MATLAB

Figure 5.22: Bivariate Histogram of both break fractions using DT (λ)
Estimating 2 breaks; DGP has 2 breaks in SE (T=420)

Student Version of MATLAB



CHAPTER 5. MONTE CARLO SIMULATION RESULTS 146

Figure 5.23: Histogram of the first estimated break fraction using DT (λ)
DGP has 2 breaks of equal magnitude in SE (T=300)
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Figure 5.24: Histogram of the first estimated break fraction using DT (λ)
DGP has 2 breaks of unequal magnitude in SE (T=300)
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Figure 5.25: Histogram of the second estimated break fraction using DT (λ)
DGP has 2 breaks of equal magnitude in SE (T=300)
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Figure 5.26: Histogram of the second estimated break fraction using DT (λ)
DGP has 2 breaks of unequal magnitude in SE (T=300)
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Figure 5.27: Bivariate Histogram of both break fractions using DT (λ)
DGP has 2 breaks of equal magnitude in SE (T=600)

Student Version of MATLAB

Figure 5.28: Bivariate Histogram of both break fractions using DT (λ)
DGP has 2 breaks of unequal magnitude in SE (T=600)

Student Version of MATLAB
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5.1.5 Simulation Results for a Model with Three Breaks in the SE

The simulation results presented in this subsection where m0 = 3 are organised in two
categories. The first category presents results for models with equal magnitudes of shifts
while the second presents models with unequal magnitudes of shifts. The results are based
on three sample sizes of 140, 300 and 420.

The DGP of the SE in a Model with Three Breaks

The three true break fractions are placed at λ(1)
0 = 0.25, λ

(2)
0 = 0.50 and λ(3)

0 = 0.75.

To cover the two categories, we again present two DGPs with the generic SE given as

yt = [1, xt]
′
θ

(i)
0 + ut, for t = 1, 2, . . . , T, and i = 1, 2, 3, 4. (5.6)

Specifically,

For DGP 1: (θ
(1)
0 , θ

(2)
0 , θ

(3)
0 , θ

(4)
0 ) =

(
[1, 0.1]

′
, [−1,−0.1]

′
, [1, 0.1]

′
, [−1,−0.1]

′).
For DGP 2: (θ

(1)
0 , θ

(2)
0 , θ

(3)
0 , θ

(4)
0 ) =

(
[1, 0.1]

′
, [−1,−0.1]

′
, [1, 2.0]

′
, [−1,−0.5]

′).
The Simulation Results

We present six simulation results across both categories. The first two display results for
the first category using DGP 1 which has equal sizes of shifts. These are seen in Figures
5.29 and 5.30 where the histograms of all the three estimated break fractions obtained
from models with sample sizes of 140 and 420 are respectively displayed. Consistent
with Proposition 3 on page 66, the break fraction estimators are clearly seen to converge
towards the true break fractions (0.25, 0.5 or 0.75) as the sample size T increases.

The second category which uses DGP 2 presents four results all from a model with a
sample size of 300. First, notice the magnitudes of the breaks in DGP 2 have been ordered
so ‖θ(3)

0 − θ
(4)
0 ‖ > ‖θ

(2)
0 − θ

(3)
0 ‖ > ‖θ

(1)
0 − θ

(2)
0 ‖. Consequently, λ(3)

0 is the most dominant,
followed by λ(2)

0 . Hence in line with the theory, we expect λ(3)
0 to be estimated first before

λ
(2)
0 and then lastly, λ(1)

0 . Each of the three estimated break fractions are displayed in turn.

In Figures 5.31 to 5.33, we display the histograms of the first, second and third estimated
break fractions respectively. The results are as expected because k̂1 distinctly converges
to λ(3)

0 , the most dominant break as seen in Figure 5.31; k̂2 converges to λ(2)
0 as seen in

Figure 5.32 and k̂3 converges to λ(1)
0 as seen in Figure 5.33.
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Lastly, in Figure 5.34 we present a subplot which shows the second and third estiamted
break fraction plotted against the first estimated break fraction. The first estimated break
fraction is placed on the x axis, while the second and third estimated break fractions are
placed on the top and bottom half of the y axis respectively. This subplot provides a more
convenient way to view the three estimated breaks concurrently. One can readily see that
the first break fraction is consistently around λ = 0.75, while the second and third break
fractions are around λ = 0.5 and 0.25 respectively.

These simulation results displayed under the second category further verify Proposition 3
on page 66 because the estimated break fraction always converges to the dominant break
fraction.

Figure 5.29: Histogram of the three estimated break fractions using DT (λ)
Estimating 3 breaks; DGP has 3 breaks in SE (T=140)
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Figure 5.30: Histogram of the three estimated break fractions using DT (λ)
Estimating 3 breaks; DGP has 3 breaks in SE (T=420)
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Figure 5.31: Histogram of the first estimated break fraction using DT (λ)
DGP has 3 breaks of unequal magnitude in SE (T=300)
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Figure 5.32: Histogram of the second estimated break fraction using DT (λ)
DGP has 3 breaks of unequal magnitude in SE (T=300)
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Figure 5.33: Histogram of the third estimated break fraction using DT (λ)
DGP has 3 breaks of unequal magnitude in SE (T=300)
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Figure 5.34: Subplot of the three estimated break fractions using DT (λ)
DGP has 3 breaks of unequal magnitude in SE (T=300)
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5.2 Simulation Results from Unstable Jacobian models

This section presents the Monte Carlo simulation results from three classes of models
which have an unstable Jacobian, that is, models which have a break in the relationship
between the endogenous regressors, xt and the instruments, zt. The first class of models
has only one break in the JE and none in the SE while the second and third classes of
models have one break each in both the JE as well as the SE. The breaks in the second
class occur at the same location in the sample while those in the third class occur at
different locations in the sample. As in Section 4.2, these are respectively referred to as
Coincidental and Separate Breaks. The results cover models of different sample sizes.
As in the Stable Jacobian simulations, we also report results from estimating two break
points, irrespective of the true number of break points in the model.



CHAPTER 5. MONTE CARLO SIMULATION RESULTS 154

5.2.1 The DGP for Unstable Jacobian Models

Due to the break in the Jacobian, it is compulsory the JE given in (5.1) on page 129 has
to be modified. Throughout this section, we construct the JE with a single break as,

xt = [1, zt]
′
δ

(1)
0 + vt, for t = 1, 2, . . . , [Tπ0] (5.7)

= [1, zt]
′
δ

(2)
0 + vt, for t = [Tπ0] + 1, . . . , T, (5.8)

where (δ
(1)
0 , δ

(2)
0 ) = ([1, 0.8, 0.8, 0.8, 0.8]

′
, [0.1, 0.2, 0.2, 0.2, 0.2]

′
) and the true break frac-

tion in the JE, π0 = 0.5. All other variables are constructed as outlined in the base model
given in (5.1) on page 129.

The SE on the other hand, is presented alongside the classes of models being considered
below.

5.2.2 Simulation Results for a Model with One Break in the JE only

The models in this subsection have breaks only in the JE, as such, the SE is stable and
constructed as in the model with no breaks used in Subsection 5.1.2. We rewrite it here
for easy reference,

yt = [1, xt]
′
θ0 + ut, for t = 1, 2, . . . , T, where θ0 = [1, 0.1]

′
.

The Simulation Results

We present four results from the Monte Carlo simulation experiment carried out on mod-
els with a break existing only in the JE. Figures 5.35 and 5.36 display the histograms of
the first estimated break fraction in models with sample sizes of 140 and 600 respectively.
Clearly, these break fraction estimators are dispersed throughout the range of Λ indicat-
ing it does not identify any particular break in the model. In Figures 5.37 and 5.38, the
two estimated break fractions are plotted against each other and as expected, both break
fraction estimators randomly identify any of the candidate break fractions hence, they are
both spread across Λ.

The results in this section are similar to those obtained in the case of a model with no
breaks in the SE presented earlier in Subsection 5.1.2. Thus, the simulation results pre-
sented here support the theoretical analysis carried out in Chapter 4. That is, the behaviour
of the break fraction estimator when the model has no break in the SE is comparable to
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its behaviour when there is a break in the JE alone.

Figure 5.35: Histogram of the estimated break fraction using DT (λ)
Estimating 1 break; DGP has 1 break in JE only (T=140)
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Figure 5.36: Histogram of the estimated break fraction using DT (λ)
Estimating 1 break; DGP has 1 break in JE only (T=600)
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Figure 5.37: Plot of first and second estimated break fractions using DT (λ)
Estimating 2 breaks; DGP has 1 break in JE only (T=140)
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Figure 5.38: Plot of first and second estimated break fractions using DT (λ)
Estimating 2 breaks; DGP has 1 break in JE only (T=600)
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5.2.3 Simulation Results for a Model with a Coincidental Break

For the break in the SE, we use an identical model to that in (5.3) on page 135. That is,

yt = [1, xt]
′
θ

(i)
0 + ut, for t = 1, . . . , T and i = 1, 2,

where θ(1)
0 = [1, 0.1]

′ , θ(2)
0 = [−1,−0.1]

′ and the breaks, λ0 = π0 = 0.5.

The Simulation Results

Eight results are presented in three groups. The first group made up of Figures 5.39 to 5.42
show histograms of the first estimated break fractions obtained from models with sample
sizes 140, 260, 300 and 600 respectively. In all samples, the break fraction estimator
clearly converges to the true break, λ0 = 0.5.

The second group comprising Figures 5.43 and 5.44 display histograms of the two esti-
mated break fractions from models with sample sizes 300 and 420 respectively. While the
first estimated break fraction distinctly converges to the break in the SE in both models,
the second break fraction estimator on the other hand, is random and estimates any λ in
the acceptable range.

Similar behaviour is seen in the last group consisting of Figures 5.45 and 5.46 where
the first and second break fraction estimators are plotted against each other. It is again
obvious that the first break fraction estimator clusters around the true break λ0 = 0.5

while the second estimated break fraction is random.

These simulation results verify the diuscussions set out in Section 4.2.2 on page 116 and
hence the break fraction estimator from a model with a coincidental break in the JE and
SE will converge to the true break fraction in the SE.
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Figure 5.39: Histogram of the first estimated break fraction using DT (λ)
Estimating 1 break; DGP has Coincidental break in SE and JE (T=140)
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Figure 5.40: Histogram of the first estimated break fraction using DT (λ)
Estimating 1 break; DGP has Coincidental break in SE and JE (T=260)
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Figure 5.41: Histogram of the first estimated break fraction using DT (λ)
Estimating 1 break; DGP has Coincidental break in SE and JE (T=300)
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Figure 5.42: Histogram of the first estimated break fraction using DT (λ)
Estimating 1 break; DGP has Coincidental break in SE and JE (T=600)
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Figure 5.43: Histogram of the two estimated break fractions using DT (λ)
Estimating 2 breaks; DGP has Coincidental break in SE and JE (T=300)
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Figure 5.44: Histogram of the two estimated break fractions using DT (λ)
Estimating 2 break; DGP has Coincidental break in SE and JE (T=420)
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Figure 5.45: Plot of the two estimated break fractions using DT (λ)
Estimating 2 breaks; DGP has Coincidental break in SE and JE (T=420)
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Figure 5.46: Plot of the two estimated break fractions using DT (λ)
Estimating 2 break; DGP has Coincidental break in SE and JE (T=600)
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5.2.4 Simulation Results for a Model with a Separate Break

We present the results in this section in two groups. The first displays results from es-
timating one break only, while the second covers results from estimating two breaks.
Additionally, we consider two different break locations in the SE: when λ0 = 0.3 and 0.7.
All other parts of the DGP are left identical to the Coincidental break model discussed
previously in Subsection 5.2.3, including the break in the JE at π0 = 0.5.

The Simulation Results

We present four results in the first group and two in the second. In Figures 5.47 and 5.48,
the histograms of the first estimated break fractions are displayed for models with sample
sizes 260 and 420 respectively. These histograms converge to the true break fraction at
λ0 = 0.3. Similarly, when λ0 = 0.7, Figures 5.49 and 5.50 show the break fraction
estimators clearly gather again at this true break in the SE.

The last two figures show the simulation results when two break fractions are estimated,
using a sample size of 600. In Figure 5.51 where both break fractions are plotted against
each other, the first estimated break fraction noticeably converges to λ0 = 0.7 for all
one thousand repetitions. In Figure 5.52 which displays the histograms of the two break
fraction estimators, the first estimated break fraction is distinct while the second estimated
break fraction randomly estimates any candidate λ.

These simulation results presented for the Separate Breaks again supports the discussions
in Section 4.2, that when there is a break in both the SE and the JE, the estimated break
fraction would still be consistent for the true break in the SE. Therefore, estimating the
location of a break point in a model is unaffected by an unstable relationship between the
endogenous regressor and its instruments.
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Figure 5.47: Histogram of the first estimated break fraction using DT (λ)
Estimating 1 break; DGP has Separate breaks in SE and JE (T=260)
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Figure 5.48: Histogram of the first estimated break fraction using DT (λ)
Estimating 1 break; DGP has Separate breaks in SE and JE (T=420)
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Figure 5.49: Histogram of the first estimated break fraction using DT (λ)
Estimating 1 break; DGP has Separate breaks in SE and JE (T=260)
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Figure 5.50: Histogram of the first estimated break fraction using DT (λ)
Estimating 1 break; DGP has Separate breaks in SE and JE (T=420)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

δ1
0=(1, 0.8, 0.8, 0.8, 0.8)′; δ2

0=(0.1, 0.2, 0.2, 0.2, 0.2)′

(θ0
1, θ0

2)=([1, 0.1]′, [−1, −0.1]′)
Breaks at λ0 = 0.70 and π0 = 0.50

.

λ

F
re

qu
en

cy

Student Version of MATLAB



CHAPTER 5. MONTE CARLO SIMULATION RESULTS 165

Figure 5.51: Plot of first against second estimated break fractions using DT (λ)
Estimating 2 breaks; DGP has Separate breaks in SE and JE (T=600)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ1
0=(1, 0.8, 0.8, 0.8, 0.8)′; δ2

0=(0.1, 0.2, 0.2, 0.2, 0.2)′

(θ0
1, θ0

2)=([1, 0.1]′, [−1, −0.1]′)
Breaks at λ0 = 0.70 and π0 = 0.50

.

k̂2

k̂
1

Student Version of MATLAB

Figure 5.52: Histogram of the two estimated break fractions using DT (λ)
Estimating 2 breaks; DGP has Separate breaks in SE and JE (T=600)
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5.3 Conclusion

The finite sample properties of the break fraction estimators were examined in this chapter
through the use of Monte Carlo simulations. The results were organised into two sections
- Stable Jacobian and Unstable Jacobian. The results are based on 1000 repetitions, cov-
ering models with five different sample sizes.

Under the Stable Jacobian, models with zero, one, two and three break points in their SE
were considered. In the models with no breaks, the break fraction estimator identified
any candidate break fraction within the range and was thus randomly distributed across
the whole range of Λ. Conversely, in the other three models, the break fraction estimator
was consistent for the true breaks in the SE, as evidenced by the convergence to the true
break locations as the sample size increased. This supports the consistency theory given
in Propositions 1 and 3 on pages 33 and 66 for the break fraction estimators obtained from
models with single and multiple break points respectively.

Furthermore, when different magnitudes of shifts were imposed in the multiple break
models, the results show the first estimated break fraction is consistent for the dominant
break in the model. Thus confirming Proposition 3 on page 66.

The simulation results from the Unstable Jacobian models likewise support the theoretical
findings as set out in Chapter 4. Although there was a break in the JE, the break fraction
estimator consistently identified the break points in the SE only. In this way, the estima-
tion of a break point in the SE follows a similar process as the Stable Jacobian outlined in
Chapters 2 and 3, irrespective of the stability of the JE.

This is particularly appealing as it indicates an Unstable Jacobian does not confound
estimations of a true break in the SE. Thus, when a model has an endogenous regressor,
the reduced form does not need to be estimated first to determine its stability, neither
does the SE have to be partitioned into subsamples based on the stable reduced forms as
proposed in Hall et al. (2012) using Two Stage Least Squares. This method using GMM
thus permits the researcher to focus on and account for break points in the main SE of
interest, rather than on the JE.



Chapter 6

Determining the True Number of Break
Points

In the previous three chapters, the discussions and analyses were based on the premise
that the true number of breaks, m0, were known and only their locations needed to be
estimated. These break points were estimated one after the other until they were all ob-
tained. In reality however, knowledge of the true number of break points existing in a
model may not be known beforehand. Furthermore, by the design of the Sequential Es-
timation procedure, there will always be a value of supDT (λ) estimated. This may not
always indicate that it is a true break point. There needs to be a procedure to assess if
the break at the supremum is big enough to indicate a true break occurs at that point.
We highlight this using the case of a model with no break point in either the Structural
Equation (SE) or the Jacobian Equation (JE).

The SE and JE of such a model would have the forms,

yt = [1, xt]
′
θ0 + ut, t = 1, 2, . . . , T and

xt = [1, z
′

t]δ0 + vt, t = 1, 2, . . . , T (6.1)

respectively, where all the terms are as previously defined in (2.2) and (4.1). We examine
the asymptotic behaviour of the test statistic in the usual way by decomposing it into its
two main parts - the Parameter Difference and the Centre Matrix.

First, recall the test statistic as given in (2.5) on page 32 in the Stable Jacobian chapter,

DT (λ) = T (θ̂1,T (λ)− θ̂2,T (λ))
′
M∗,T (λ)−1 (θ̂1,T (λ)− θ̂2,T (λ)),
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where θ̂1,T (λ) − θ̂2,T (λ) is referred to as the Parameter Difference and M∗,T (λ)−1 as the
Centre Matrix. Starting with the Parameter Difference, notice that as there is no break in
the SE, then θ(1)

0 = θ
(2)
0 . Hence, similar to (D.1) on page 123, it must be that for all λ ∈ Λ,

θ̂1(λ)− θ̂2(λ)
p→ θ

(1)
0 − θ

(2)
0 = 0.

On the other hand, the limit of the Centre Matrix for all λ ∈ Λ remains as λ(1 − λ)B,
where B = QxzCQzx, as shown in (B.12) in Appendix B.1. Therefore, we can con-
clude that when there is no break in the model, DT (λ) will exhibit a similar behaviour
asymptotically for all λ ∈ Λ, that is,

D∗T (λ)
p→ λ(1− λ)(θ

(1)
0 − θ

(2)
0 )

′B(θ
(1)
0 − θ

(2)
0 )

= 0. (6.2)

Figure 6.1 shows a thousand simulations of DT (λ) to illustrate its finite sample behaviour
in these sort of models that have no true break point. We use a sample size of 600 with
parameter values θ0 = (1, 0.1)

′ and δ0 = (1, 0.5, 0.5, 0.5, 0.5)
′ . As in other simulations,

the range of Λ = [0.15, 0.85]. The simulations clearly show there is no major difference
in the values of DT (λ) across the whole range of Λ, as they are all approximately zero,
consistent with the theory presented above. Nonetheless, the break fraction estimator, λ̂,
randomly selects any of these values as the location of the break point, as seen in the
Monte Carlo simulation experiments reported in Chapter 5.

Thus, when the number of true break points is unknown, it becomes imperative to test
for the significance of each of the estimated break points, as well as develop a rule to
determine when to terminate the sequential estimations. This is useful as it ascertains
whether the estimated break points are trivial and should be ignored or nontrivial and
should be incorporated into the model.

The chapter is organised as follows. Section 6.1 presents a brief literature review of
various conventional tests for structural and parameter stability. Section 6.2 details the
method of testing for the true number of breaks adopted in this study. The finite sample
performance of the test used is reported via a series of Monte Carlo simulations in Section
6.3. Conclusions are presented in Section 6.4 while relevant details of the Data Generating
Process can be found in the appendix.
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Figure 6.1: DT (λ) for all λ ∈ Λ.
DGP has no break in Structural or Jacobian Equations
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6.1 Tests for Structural and Parameter Stability

This section reviews some frequently used tests for structural and parameter stability ex-
isting in the literature. It is divided into four main parts. The first and second parts review
tests for single and multiple break points, respectively, while the third looks at tests for
continuously varying parameters. Finally, the last part considers the Information Criteria
approach to testing.

6.1.1 Tests for a Single Break Point

A commonly used test for a single break point is the sample-split test proposed by Chow
(1960) where the sample is divided into two at a suspected break point determined by
the researcher. The timing of this break point may be selected based on some events
known beforehand such as the oil shock of 1973 or indeed any other exogenous event of
interest capable of causing a structural change. The test is essentially an F test which
compares the sum of squared residuals (SSR) of the whole sample with the combined
individual SSR’s obtained from the two subsamples. Though this test uses Ordinary Least
Squares (OLS) estimation, Andrews and Fair (1988) extend it to other estimation methods
using the Wald, Lagrange Multiplier (LM) and Likelihood Ratio (LR)-type tests. Due to
the arbitrary break point, it is possible that different researchers end up with different
conclusions from the same sample period.
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In reality, however, the location of the break point may not be known beforehand and
hence a test statistic which does not rely on a predetermined break point may be pre-
ferred. For example, Quandt (1960) LR test statistic which takes the maximal Chow
(1960) statistic calculated over each candidate break point or the optimal test for structural
change proposed by Andrews and Ploberger (1994) which uses sequences of the exponen-
tial averages of the Wald, LM and LR-like tests. Andrews (1993) focuses on instability
in the parameters using the maximum of the Wald, LM and LR-like test. We discuss this
test in detail in the next section. Comparing analytic and bootstrap procedures, Diebold
and Chen (1996) extend Andrews (1993) test to a dynamic model, providing finite sam-
ple evaluation of the size of the test. More recently, Elliot and Müller (2014) suggest an
alternative test for breaks in the means, variances and coefficients in linear and nonlinear
parametric models. These tests developed for a break at an unknown location in the sam-
ple are more complicated and have a non-standard limit distribution because the break
date is present only under the alternative hypothesis.

6.1.2 Tests for Multiple Break Points

Various methods have been proposed in the literature for testing the presence of multiple
breaks, for example, see the LR tests proposed in Bai (1999) and the tests for a shift in
mean proposed in Altissimo and Corradi (2003). Jouini and Boutahar (2005) and An-
toshin et al. (2008) provide good reviews of various hypothesis tests. We discuss the three
F -type tests proposed by Bai and Perron (1998) which are frequently used in practice.
These tests do not require the location of the break points in the sample to be known.

The first test is the sup F -type test which is designed to test the null of parameter con-
stancy against an alternative of a fixed number of break points, say k. This is suitable if
a particular choice of k break points is of interest to the researcher. However, if k is un-
known or unspecified beforehand, the second test known as the Double Maximum F -test,
DmaxFT , may be appropriate as it tests for different values of k, up to some maximum.
Bai and Perron (1998) suggests an upper limit of 5 breaks is sufficient. The DmaxFT
has some fixed weights attached to the breaks which may be a function of the asymptotic
critical values or a reflection of prior knowledge of the number of breaks. If these weights
are all set to one, then the test is known as the Unweighted DmaxFT . Otherwise, it is
referred to as the Weighted DmaxFT .

The last test, denoted as FT (l + 1|l), offers a sequential method of testing the stability of
the model by comparing the SSR of the null of l breaks with the SSR of the alternative
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hypothesis of l + 1 breaks. If the SSR obtained from the (l + 1)th break is significantly
lower than that obtained from the SSR of the lth breaks, the null of stability is rejected and
an additional break point is chosen in the subsample that produces the largest reduction in
the SSR of the whole sample. The process terminates when the stability test fails to reject
the null hypothesis. The critical values for these tests are given in Tables I and II in Bai
and Perron (1998).

These three tests, though effective, are suitable only when using OLS, where the regres-
sors are assumed to be uncorrelated with the errors. In situations where the regressors
are endogenous, OLS yields inconsistent estimators. Hall et al. (2012) extend these three
tests to models with endogenous regressors using Two Stage Least Squares (2SLS). Their
method requires splitting the structural equation into h + 1 subsamples based on the h
break points in the reduced form; thus, each of the structural equation subsamples have
stable reduced forms. The limiting properties of these tests are established and shown to
be analogous to those in Bai and Perron (1998) and therefore the same critical values are
used. Additionally, Hall et al. (2012) propose Wald-type test versions of the three F -tests
which are more robust and allow for serial correlation in the errors.

6.1.3 Tests for Continuously Varying Parameters

An interesting approach to determining instability in models using graphs was introduced
by Brown et al. (1975). The approach uses the cumulative sum (CUSUM) and CUSUM
of squares (CUSUMSQ) and plots the recursive least squares estimates of the model’s pa-
rameters which provides a means of identifying continuously changing parameters. The
recursive estimation basically involves continuously estimating regressions with a sub-
sample of the data, then sequentially adding one observation at a time and re-estimating
the regression until the end of the sample is reached. Stability of the parameters is as-
sumed if the plot shows they converge towards a common value. Nyblom (1989) extends
the CUSUM to a Lagrange Multiplier (LM) test for joint stability of time-varying pa-
rameters while Hansen (1992) proposes a transformed test that examines both joint and
individual stability of the parameters using an average of the squared CUSUM.

6.1.4 Information Criteria approach

More recently, some researchers have adapted the Information Criteria (IC), used in
econometrics for model selection, to test for model stability (see Yao (1988), Jouini and
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Boutahar (2005), Hall et al. (2013) and Hall et al. (2015)). Commonly used criteria are
Akaike (AIC), Schwarz Bayesian (BIC) and Hannan-Quinn (HQIC) IC. These IC are
made up of two terms - the model’s log likelihood1 which provides a natural assessment
of the quality of the fit of the model and a penalty term which is a function of the number
of parameters in the model. The main function of the penalty term is to avoid under and
over-fitting since the RSS must decrease with an additional break point. This makes the
IC approach a viable method to estimating the significant number of break points in a
model.

Yao (1988) considers a version of the BIC which he establishes is consistent for the es-
timation of the number of break points in the mean of an independent normal sequence.
However, Bai and Perron (2006) note Yao (1988) test performs badly under some speci-
fications, for example, when serial correlation is present in the errors. Furthermore, Yao
(1988) uses a penalty term which takes each break date estimation as an estimation of
a coefficient of the model but Hall et al. (2013) observe this penalty term may not be
sufficient to capture the impact of the break. Hence, they impose a more severe penalty
function equivalent to the estimation of 3m coefficients rather than m employed by Yao
(1988). They estimate the models using OLS and the results of their Monte Carlo sim-
ulations show their modified BIC performs well, irrespective of serial correlation in the
errors. More recently, Hall et al. (2015) note that a similar improved performance of the
modified BIC is maintained when it is extended to models with endogenous regressors
estimated using 2SLS.

The multiple break tests discussed above require the break points to be simultaneously
estimated. Thus, they are not appropriate for our sequential estimation procedure. In
estimating break points sequentially, Bai (1997a) suggests estimation should be based on
a dual process of hypothesis testing of the constancy of the model’s parameters in each
regime, alongside the sequential estimation of the break point. We adopt the combined
technique of Bai (1997a) in this research and summarise the process below.

6.2 Combined Procedure of Hypothesis Testing and Break
Point Estimation

The hypothesis test used in Bai (1997a) is the sup F -test which is based on the differ-
ence in the restricted and unrestricted SSR. The combined procedure is outlined in the

1Under normality, the log likelihood function reduces to the ln[RSS].
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following five steps below:

Step 1: Test the entire sample [1, T ] for parameter constancy. If the test statistic is greater
than the critical value2, then the null hypothesis of parameter constancy is rejected. This
implies there is at least one break point in the model which has to be estimated. Otherwise,
the model is stable and has no break points.

Step 2: Estimate one break point using all observations [1, T ] in the sample. Since this is
an estimation for a shift in the mean of a linear process, the break point estimator, k̂1, is
obtained by minimising the RSS among all candidate break points across the sample.

Step 3: Split the sample into two subsamples, [1, k̂1] and [k̂1 +1, T ] and test both subsam-
ples for constancy of their parameters. If the sup F -test is not rejected in either subsample,
then the model has only one break (the break estimated in Step 2) and the testing proce-
dure ends. However, if the sup F -test is rejected in only one subsample, then there are at
most two break points in the model; go on to Step 4. Likewise, if the sup F -test is rejected
in both subsamples, then there are at least three break points in the model and the process
goes on to Step 4.

Step 4: Estimate a break point (as done in Step 2) in any of the subsamples for which
the sup F -test is rejected. This break point will again be the location at which ST (k) is
minimised within the respective subsamples, [1, k̂1] or/and [k̂1 + 1, T ]. Note that if any
break fraction is estimated in either of the subsamples, it will have the same asymptotic
properties as if [1, k

(1)
0 ] and [k

(1)
0 + 1, T ] were used since the first break fraction estimator

λ̂1 is consistent for the true break fraction, λ(1)
0 , as shown in Proposition 3 on page 66.

Step 5: Split the subsamples again based on the location of any identified break point and
continue the testing and estimation cycle until the sup F -test fails to reject stability in any
of the m + 1 subsamples. A non rejection of the test implies the subsamples are stable
and hence the estimated number of significant break points in the model is one less than
the number of stable subsamples.

Bai (1997a) showed this combined procedure yields consistent estimates of the true num-
ber of break points in a model. Note, however, that Bai (1997a) assumes there is at least
one break in the model and so omits the first step above. Nonetheless, we include Step 1
in our estimation procedure because the estimation of the first break point is fundamental
to all further sequentially estimated break points in the model. Also, the sup F -test is de-
signed for OLS estimations and hence would not be suitable within our GMM framework.

2They assume the critical value and size of the sup F -test are based on the asymptotic distribution as
given in Table I in Bai and Perron (1998).
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6.2.1 GMM Hypothesis Tests for Stability

The various GMM-based test statistics existing in the literature are usually in the form
of a supremum, an average or an exponential of a sequence of some test statistic. For
example, Andrews and Fair (1988), Andrews (1993), Andrews and Ploberger (1994) and
Gagliardini et al. (2005). Others include Ghysels and Hall (1990), Sowell (1996) and
more recently, Elliot and Müller (2014). We discuss two tests specifically developed for
models estimated using GMM.

In the approach taken by Hall and Sen (1999), the GMM population moment condition
is decomposed into two orthogonal parts. The first, known as the identifying restrictions,
are imposed during estimation, hence they are directly linked to the constancy of the
parameters. The other, known as the overidentifying restrictions, are associated with the
structural stability of the model. They propose hypothesis tests for both components
separately which is useful in determining the source of the instability since a violation of
a specific null would indicate instability in either the parameters or in the structure of the
econometric model itself.

Still within the GMM framework, Ghysels et al. (1997) propose a Predictive test for struc-
tural change with a single unknown break point. The process involves evaluating the
moment conditions of T − k subset of observations at the parameter estimates of the ob-
servations in k. If there is no structural change, then the moment conditions predicted for
the T − k observations should be statistically insignificant and converge in probability to
zero.

All these tests are valid in their own different terms, however, the interest of this research
is on parameter variation, hence we employ the hypothesis test for parameter instability
at an unknown location in the sample as proposed by Andrews (1993). Though the test is
developed for nonlinear models, Augustine-Ohwo (2012) adapts it to the following simple
linear model,

yt =x
′

tθt + ut,

where yt is the dependent variable, xt is the endogenous regressor, θt is the parameter
vector and ut is the error term. Define zt to be the instruments satisfying E[ztut(θ0)] = 0,
where θ0 is the true parameter vector. We adopt this model and provide an overview of
the hypothesis test below.
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6.2.2 Andrews (1993) Tests for Parameter Instability

We start with the hypotheses of interest. The null is given as,

H0 : θt = θ0 for t = 1, . . . , T and θ0 = (θ
(1)
0

′

, θ
(2)
0

′

)
′

(6.3)

while the alternative hypothesis for an unknown break point is presented as,

H1(Λ) =
⋃
λ∈Λ

H1,T (λ), (6.4)

where

H1,T (λ) : θt =

θ1(λ) for t = 1, . . . , [λT ]

θ2(λ) for t = [λT ] + 1, . . . , T and θ1(λ) 6= θ2(λ).
(6.5)

Note that under the null hypothesis of parameter constancy, we have that the parame-
ters, θ(1)

0 = θ
(2)
0 and the break point λ, is present only under the alternative hypothesis.

The GMM parameters are obtained in the usual way by minimising the GMM criterion,
QT (θ(λ);λ), as given in Appendix A.1 on page 37, that is,

θ̂T (λ) = argminΘ(λ)QT (θ(λ);λ).

Although the parameters used in our estimations in previous chapters were based on the
first step GMM estimators, in these hypothesis tests however, the second step GMM pa-
rameters are used to construct the test statistics. The main difference between the first
and second step GMM estimators lies in the weighting matrix used in their construction.
Recall the first step GMM estimator3 is obtained by minimising the GMM criterion us-
ing a preliminary weighting matrix - usually the identity matrix or the instruments cross
product matrix. On the other hand, to obtain the second step GMM estimator, an optimal
weighting matrix is required. Hansen (1982) provides the choice of this optimal weighting
matrix as the inverse of the variance obtained from the first step GMM estimators, denoted
as Ω−1 where Ω = limT→∞V ar[T

−1/2
∑T

1 ztut], a finite positive definite matrix. The
uniform convergence useful in obtaining the limiting properties of the estimator as stated
in Assumption 4 on page 27 is given as supλ∈Λ‖V ar[T−1/2

∑[λT ]
1 ztut(θ0)] − λΩ‖ p→

0. These second step GMM estimators are consistent and efficient (Hansen, 1982) and
Augustine-Ohwo (2012) establish these second step GMM parameters obtained from the

3Also see page 29.
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linear model adopted in this study have the same asymptotic properties as those given in
Andrews (1993).

The Test Statistics

Andrews (1993) considers three types of test statistics based on the Wald, the Lagrange
Multiplier and the Difference-type test statistics, which we denote asWaldT (λ), LMT (λ)

and D̈T (λ) respectively. The WaldT (λ) and LMT (λ) are both constructed as quadratic
forms. WaldT (λ) is based on the difference between the unrestricted estimated value of
the restrictions and their value under the null, that is,

WaldT (λ) = T
(
θ̂1(λ)− θ̂2(λ)

)′
VW (λ)−1

(
θ̂1(λ)− θ̂2(λ)

)
, (6.6)

where θ̂1(λ) and θ̂2(λ) are the unrestricted estimators and VW (λ) is the variance-covariance
matrix of these unrestricted estimators. LMT (λ) is based on the vector of first order
conditions from the minimisation of the unrestricted estimator evaluated at the restricted
estimator, that is,

LMT (λ) = T κ̄
′
VLM(λ)−1κ̄, (6.7)

where κ̄ is the Lagrange Multiplier given in Appendix A.2 on page 38 and VLM(λ) is the
variance-covariance matrix of κ̂. D̈T (λ), on the other hand, is given as the sample size T
multiplied by the difference between the GMM minimands evaluated at the restricted and
unrestricted parameters, that is,

D̈T (λ) = T
(
QT (θ̄1, θ̄1, λ)−QT (θ̂1, θ̂1, λ)

)
, (6.8)

where QT (·) are the GMM minimands given in (2.3) on page 28. We use D̈T (λ) here to
differentiate the Difference test statistic from DT (λ) used in previous chapters to denote
the test statistic when using the first step GMM estimators.

As stated in Andrews (1993), these test statistics are also applicable to statistics of the
form g({WaldT (λ);λ ∈ Λ}), where g is an arbitrary continuous function; popular choices
of g in the literature are the supremum, average and exponential functions. Andrews
(1993) requires continuity of the criterion which is satisfied by the statistics given in (6.6)
to (6.8). Also, compactness of the parameter space is necessary as earlier fulfilled on
page 29. Other conditions given in Assumption 1(a) to 1(h) in Andrews (1993) are anal-
ogous to those used in this linear model as laid out in Assumptions 1 to 5 on page 27 and
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Assumptions 6 to 8 on page 29. Additionally, the choice of the asymptotically optimal
weight matrix, Ω−1 is similar.

To obtain the test statistic, we follow a similar process to the break point estimation pro-
cedure outlined on page 30 where we use the supremum as the choice of our continuous
function. Thus, a sequence of LMT (λ), WaldT (λ) and D̈T (λ) as given in (6.6) to (6.8)
are obtained for all λ ∈ Λ and the maximum of these sequences obtained. These maxima,
as given below, are the statistics used to test the null in (6.3) against the alternative of an
unknown break point given in (6.4). They are presented as,

supλ∈ΛWaldT (λ), (6.9)

supλ∈ΛLMT (λ), (6.10)

supλ∈ΛD̈T (λ). (6.11)

These three tests are asymptotically equivalent as established in Andrews (1993) and
Augustine-Ohwo (2012) for the linear case. They also have identical limit distributions
which are functions of independent Brownian motions. As established in Theorem 3 in
Andrews (1993),

supλ∈ΛWaldT (λ)
d→ supλ∈Λ{λ(1− λ)}−1{(Bq(λ)− λBq(1))

′
(Bq(λ)− λBq(1))},

where Bq(λ) is a q-dimensional Brownian motion. Hence, the critical values4 provided
in Table 1 in Andrews (1993) are also suitable for our purpose. Furthermore, since λ̂1 is
consistent for λ(1)

0 , then the limit distribution of the test statistic in the subsamples, say
[1, k

(1)
0 ] would be similar to that of the whole sample [1, T ] and so the critical values can

also be used.

Parameter stability is rejected for high values of supλ∈ΛWaldT (λ), supλ∈ΛLMT (λ) and
supλ∈ΛD̈T (λ); or more specifically, if the values are greater than the relevant critical value
given in Table 1 in Andrews (1993).

6.3 Finite Sample Performance

This section presents results from Monte Carlo simulations conducted to assess the per-
formance of the test outlined in the previous section. In this simulation exercise, our focus

4The critical values in Andrews (1993) cover the standard significant levels (1%, 5% and 10%) and the
whole range of Λ = [λ0, 1− λ0] for λ0 = 0.05, . . . , 0.50.
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is on the ability of the test statistics to correctly detect a true break point in the model,
hence, no results of the estimated break point is presented rather, the number of rejections
of the test statistic is analysed. We search for a maximum of three breaks as outlined in
the procedure below.

6.3.1 Monte Carlo Simulation Process

The estimation procedure follows these five steps:

Step 1: Test for parameter instability using the whole sample. We denote the whole
sample used in this first step as S0.

Step 2: If the test statistic is greater than the critical value, reject parameter stability and
go to Step 3. The number of rejections at this stage are noted against S0 in the results
presented. Otherwise, if stability is not rejected, then there is no break point in the model
and a zero rejection is recorded against S0.

Step 3: Estimate a break point as the location of the supremum of DT (λ) using the whole
sample [1, T ]. As highlighted above, this break point is not presented, but this step is
required in order to continue the estimation process.

Step 4: Based on the location of the estimated break point obtained in Step 3, split the
sample into two subsamples. Denote the subsample before and after this break point as
S1 and S2 respectively.

Step 5: Test for parameter stability in both subsamples and again reject stability in any
subsample where the test statistic is greater than the critical value. The number of rejec-
tions (or zero rejections) are noted against the respective subsamples.

This process is repeated a thousand times and the number of rejections obtained for S0, S1

and S2 are reported. These rejections determine the number of break points estimated in
each model. Note that if the process terminates in Step 2 then a zero rejection is recorded
for S1 and S2 as well.

6.3.2 The Monte Carlo Simulation Results

The results of the simulation for all three test statistics, supλ∈ΛD̈T (λ), supλ∈ΛWaldT (λ)

and supλ∈ΛLMT (λ) are presented in this section. The results are organised into two broad
categories. The first category presents the rejection frequencies of the test statistics in
each sample and subsample, while the second category presents the number of estimated
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breaks selected by the three test statistics. The results cover all the six different models
discussed in Chapter 5.

Since the second step GMM estimators are used in the test, there are two possible ways
to estimate D̈T (λ) depending on which first step GMM estimator used. When the inverse
of the variance of the unrestricted GMM estimator is used as the weighting matrix in the
second step, we denote the test statistic as supλ∈ΛD̈

U
T .

Similarly, when the inverse of the variance of the restricted GMM estimators are used, we
denote the test statistic as supλ∈ΛD̈

R
T .

The Data Generating Process (DGP)

The models examined here are constructed similar to those used in the Monte Carlo simu-
lations presented in Chapter 5. The results cover three sample sizes of 140, 300 and 600 at
the three conventional statistical levels of significance 1%, 5% and 10%. A total of 1000
replications were performed in all cases. We present results using a trimming of ε = 0.15,
that is, Λ = [0.15, 0.85] as well as when ε = 0.20, that is, Λ = [0.20, 0.80]. Other general
details about the DGP are given on page 129.

Category 1: Rejection Frequencies of the Test Statistics

The critical values used here are as given in Table 1 in Andrews (1993). When ε =

0.15, the values are 15.56, 11.72 and 10.00 at 1%, 5% and 10% level of significance,
respectively. The counterpart when ε = 0.20 are 15.09, 11.26 and 9.54 respectively. The
number of times the test statistics are greater than these critical values for the one thousand
simulations are reported in the tables.

Results for Models with a Stable Jacobian Equation

For all models in this section, the JE is constructed identical to that in (5.1) on page 129.
That is,

xt = [1, z
′

t]δ0 + vt, t = 1, 2, . . . , T,

with specific values of the JE parameters, δ0 = (1, 0.5, 0.5, 0.5, 0.5)
′ .

For the SE on the other hand, three types of models are considered: models with no break,
one break and two breaks in their SE. We present the DGP and the results from these three
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types of models below.

I. Model with No Break in the SE or JE

The SE which is identical to (6.1) on page 167 is given as,

yt = [1, xt]
′
θ0 + ut, t = 1, 2, . . . , T, where θ0 = [1, 0.1]

′
.

Since there is no break in the model, we would expect the null hypothesis of a break in
the model to be rejected at about 1%, 5% and 10% of the time at the 1%, 5% and 10%
significance levels respectively. This is equivalent to the size of the test. In this model,
the focus should be on the results obtained when the whole sample is used, that is S0.
As seen in the results displayed for ε = 0.15 across all the test statistics in Table 6.1,
the rejection frequencies converge towards the size of the test as the sample size gets
larger. A similar trend is observed when ε = 0.20 as seen in Table 6.2. Notice a reduction
in the rejection frequencies in Table 6.2 as against those displayed in Table 6.1. This
indicates the results are improved across all test statistics since there are potentially more
observations available for estimation in each partition when ε = 0.20 than when ε = 0.15.

II. Model with One Break in the SE only

The SE used here is similar to that in (5.3) on page 135. It is given as,

yt = [1, xt]
′
θ

(i)
0 + ut, for t = 1, 2, . . . , T and i = 1, 2,

where θ(1)
0 = (1, 0.1)

′ , θ(2)
0 = (−1,−0.1)

′ and the true break fraction, λ0 = 0.5.

As seen in the results of the rejection frequencies reported in Tables 6.3 and 6.4 for ε =

0.15 and ε = 0.20 respectively, all test statistics strongly reject stability in the whole
model (S0) with probability 1 for all sample sizes, signifying there is at least one break in
the model which has to be estimated. After this break is estimated and the sample split as
detailed in the procedure, the test is carried out on the two subsamples, S1 and S2. Based
on the results of the estimated break point presented in the Monte Carlo simulations given
in Chapter 5, S1 and S2 should have similar number of observations and as they both
contain no breaks, we expect the rejection frequencies to be comparable which is evident
in both tables.
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III. Model with Two Breaks in the SE only

The DGP of the SE in a model with two breaks in its SE is given as

yt = [1, xt]
′
θ

(i)
0 + ut, for t = 1, 2, . . . , T and i = 1, 2, 3,

with true parameter values, (θ
(1)
0 , θ

(2)
0 , θ

(3)
0 ) =

(
[1, 0.1]

′
, [−1;−5.1]

′
, [1;−4.1]

′) and true
break fractions, λ(1)

0 = 0.3 and λ(2)
0 = 0.70. Notice a bigger magnitude of shift is imposed

at the first break point so thatDT (λ
(1)
0 ) > DT (λ

(2)
0 ). In this way, λ(1)

0 is the dominant break
fraction and will be identified first, consistent with the theory laid out in Chapter 3 as well
as the results of the Monte Carlo simulations in Chapter 5. Thus, after estimating the first
break point, we expect the test to reject stability in only S2 because it is the subsample
within which the second break point is located.

As displayed in Tables 6.5 and 6.6, for all three sample sizes, the test statistics exhibit
strong power against the null of stability in the whole sample, S0, as well as in S2 where
the second true break point lies. Although there is no break in S1, the rejection frequencies
are relatively high especially with the smallest sample size of 140. This is understandable
since λ(1)

0 is at 0.3, leaving very few observations available for estimations in that sub-
sample. However, these rejection frequencies reduce drastically, across all test statistics,
as the sample size increases.

Results for Models with an Unstable Jacobian Equation

For all models presented in this section, the JE is constructed similar to (5.7) on page 154.
That is,

xt = [1, zt]
′
δ

(1)
0 + vt, for t = 1, 2, . . . , [Tπ0]

= [1, zt]
′
δ

(2)
0 + vt, for t = [Tπ0] + 1, . . . , T,

where (δ
(1)
0 , δ

(2)
0 ) = ([1, 0.8, 0.8, 0.8, 0.8]

′
, [0.1, 0.2, 0.2, 0.2, 0.2]

′
).

Three types of models are examined in this section. The first is one with a single break
only in the JE while the SE remains stable. The second and third have a break in both the
JE and SE. In the second, the breaks occur at the same location while they occur at dif-
ferent locations in the third. As in Chapter 4, the former is referred to as the Coincidental
Break and the latter as the Separate Break.
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I. Model with One Break in the JE only

In this model, the break in the JE is placed midway in the sample, that is, π0 = 0.5.
Conversely, as there is no break in the SE, we use an identical model as that used in the
case of a model with no breaks given above, that is,

yt = [1, xt]
′
θ0 + ut, for t = 1, 2, . . . , T, where θ0 = [1, 0.1]

′
.

As established in the theory laid out in Section 4.1 as well as the results of the Monte
Carlo simulations presented in Chapter 5, an unstable JE does not confound estimations
of a true break in the SE, if it exists. Hence, we expect the results from this model with a
break only in the JE to be similar to those obtained above for a model with no break in the
SE. Focusing again on S0, the results shown in Tables 6.7 and 6.8 are comparable to those
seen earlier in Tables 6.1 and 6.2, albeit with slightly higher rejection values. A similar
pattern is noticed across all test statistics although supλ∈ΛD̈

U
T and supλ∈ΛD̈

R
T recorded

higher rejection values than supλ∈ΛWaldT and supλ∈ΛLMT for all sample sizes.

II. Model with One Coincidental Break in the SE and JE

To construct this model, the JE given above is combined with the SE from the model with
one break discussed earlier. The break points are set at λ0 = π0 = 0.5. From the theory
set out in Chapter 4 and the Monte Carlo simulations presented in Chapter 5, any rejection
in this model is attributable to the break in the SE and hence it is expected that the results
from this model would be similar to those obtained from the model with one break in the
SE presented earlier.

As shown in Tables 6.9 and 6.10, all the test statistics reject stability in S0 with proba-
bility 1, across all sample sizes. Although there is no break in S1 and S2, the rejection
frequencies are relatively high for the small sample size of 140 but this quickly reduces as
the sample size increases. Similarities between these results and those in the model with
one break in the SE only presented in Tables 6.3 and 6.4 are clearly noticeable.

III. Model with One Separate Break in the SE and JE

The model used here is identical to the Coincidental break model except that in this case,
the break fractions occur at different locations. Firstly, we examine the case when λ0 =

0.7 and π0 = 0.5 as displayed in Tables 6.11 and 6.12. There is again a strong rejection of
stability in S0 across all the test statistics, indicating the presence of a break in the model.
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Although there is no other break in the two subsamples, the rejection frequencies in S2

are much higher than those in S1. This is because the location of the break in the SE at 0.7
implies that S2 is a much smaller subsample than S1, with fewer observations available
for estimations. For example, when the sample size of 140 is split at 0.7, there would
potentially be about 42 observations in S2. With a trimming of ε = 0.15 or ε = 0.20,
there would be less than 10 observations available for estimations in a partition which can
lead to spurious rejections of stability.

Secondly, we also examine the case when λ0 = 0.5 and π0 = 0.7 as presented in Tables
6.13 and 6.14 for ε = 0.15 and ε = 0.20 respectively. As expected, the results are similar
to those in the model with one break in the SE only given in Tables 6.3 and 6.4 since the
location of the break in the SE are identical at 0.5. As seen, stability in S0 is strongly
rejected with probability 1 across all test statistics while S1 and S2 have comparable re-
jection frequencies since they both have no breaks and have about the same number of
observations. Again, estimations using ε = 0.20 produce lower rejection frequencies than
those obtained when ε = 0.15 is used because there are potentially more observations
available for estimations in each partition. For example, using supλ∈ΛD̈

R
T , the rejection

frequency at the 1% significance level is 6.8% as against 4.5% for a sample of size 600.
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Category 2: Estimated Number of Breaks

This section presents the results of the estimated number of break points in each model,
as established by each of the four test statistics used. The estimated break point is denoted
as m̂. Based on the estimation procedure outlined in Section 6.3.1, a maximum of 3 break
points can be estimated in any model; one using the whole sample S0 and one each from
the subsamples S1 and S2. The models and critical values presented here are identical to
those used in Category 2.

Results for Models with a Stable Jacobian Equation

As in the previous category, this section also examines models with no break, one break
and two breaks in their SE.

I. Model with No Break in the SE or JE

As the model has no breaks, it is expected that for all test statistics, the number of break
points estimated, m̂, should be zero for majority of the simulations. This is indeed the
case as shown in Tables 6.15 and 6.16 for ε = 0.15 and ε = 0.20 respectively. Of the
1,000 repetitions when ε = 0.15, supλ∈ΛWaldT and supλ∈ΛLMT estimate zero breaks
96.5% and 96.3% of the time respectively, at 1% significance level for a sample size of
300. This increased slightly to 97.3% and 97.8% respectively when ε = 0.20. However,
one break point was estimated 5.1%, 2.3% and 1.3% of the time for sample sizes 140, 300
and 600 respectively using supλ∈ΛD̈

R
T when ε = 0.20.

II. Model with One Break in the SE only

The results for this model with one break are presented in Tables 6.17 and 6.18. At 1%
significance level for a sample size of 140 when using supλ∈ΛWaldT , one break point
is estimated only 47.9% of the time; this drops to 27.3% and 16% at the 5% and 10%
significance levels respectively. Using supλ∈ΛD̈

U
T and supλ∈ΛD̈

R
T for the same sample

size, one break point is estimated only 17.2% and 19.9% times respectively. Also, at
10% significance level for a sample size of 300, two break points are estimated more
often across all the test statistics. These results are consistent with the high rejection
frequencies in Category 1 presented earlier in Tables 6.3 and 6.4. However, the results
improve for the bigger sample size of 600.
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III. Model with Two Breaks in the SE only

As seen in the results displayed in Tables 6.19 and 6.20, there is a strong rejection of no
break and one break across all test statistics. The results from the sample with a size of
140 is again distorted as three break points are estimated more often across all significance
levels and all test statistics. This is attributable to the few observations in S1 which led to
spurious rejections of stability as seen in Tables 6.5 and 6.6. In contrast, the model with a
bigger sample size of 600 estimates correctly two break points more often across all test
statistics.

Results for Models with an Unstable Jacobian Equation

As in Category 1, the same three models with an Unstable JE are considered here: a model
with a break only in the JE and models with a Coincidental and Separate break in the JE
and SE.

I. Model with One Break in the JE only

With the break only in the JE, the results are expected to be similar to those obtained
from a model with no breaks presented earlier. Indeed, this is the case as seen from Ta-
bles 6.21 and 6.22. For a sample size of 300 at 1% significance level, supλ∈ΛWaldT

and supλ∈ΛLMT estimate zero break 95.4% and 95.2% of the time respectively when
ε = 0.20. Again, supλ∈ΛD̈

U
T and supλ∈ΛD̈

R
T are comparatively lower at 85.7% and 89.4%

respectively. Using supλ∈ΛD̈
R
T at 1% significance level, only a small fraction estimated

one break in the model at 5.6%, 3.3% and 1.4% for sample size 140, 300 and 600 respec-
tively.

II. Model with One Coincidental Break in the SE and JE

The results for this model are displayed in Tables 6.23 and 6.24 for ε = 0.15 and ε = 0.20

respectively. From the theory, this model should yield similar results to the model with a
single break in the SE discussed above in Tables 6.17 and 6.18. The results obtained from
the sample of size 140 is again distorted as it only estimates one break point most of the
time using supλ∈ΛWaldT and supλ∈ΛLMT at 1% significance level. For both supλ∈ΛD̈

U
T

and supλ∈ΛD̈
R
T , three breaks are estimated at both 5% and 10% significance levels for

a sample size of 140. This implies that in addition to the true break in S0, other breaks
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were obtained in S1 and S2. However, for the large sample size, a single break is correctly
estimated across all test statistics.

III. Model with One Separate Break in the SE and JE

In the first model displayed in Tables 6.25 and 6.26, the break in the SE lies at 0.7 while
that in the JE lies at 0.5. Across all sample sizes, there is a substantial estimation of two
break points, particularly for sample sizes 140 and 300. This is reasonable considering
the location of the break in the SE; as discussed earlier, the observations available for
estimation in S2 are few, giving rise to spurious rejections of stability in that subsample.
When the location of the break points are swapped, that is, when the break in the SE,
λ0 = 0.5, and that in the JE, π0 = 0.7, then there is an improvement in the estimation of
one break point across the test statistics, particularly for the large sample size, as seen in
Tables 6.27 and 6.28. For example, using supλ∈ΛD̈

R
T at 1% significance level for sample

size 600, 87% estimate one break when λ0 = 0.7 as against 91% when λ0 = 0.5.
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6.4 Conclusion

This chapter deals with the issue of determining the true number of break points in linear
models using the method proposed in Bai (1997a). This approach combines hypothe-
sis testing of parameter stability with the sequential estimation of the break point. The
chapter also presents a review of some hypothesis tests for stability that exist in literature.
Although Bai (1997a) propose the supF -test which is suitable for OLS estimations, in this
study however, we apply the three GMM-based supremum-type tests provided in Andrews
(1993) which are based on the Wald, Lagrange Multiplier (LM) and Difference-type tests.

Through a series of Monte Carlo simulations, the finite sample performance of the three
test statistics in detecting the true number of breaks in the model are examined. From the
results obtained, this combined procedure generally yields the correct number of break
points across all three test statistics for samples of sizes 300 and 600. The results for
a sample size of 140 were a bit distorted and tended to overestimate the true number
of breaks in the models mainly because the observations used in the estimations were
too few, leading to spurious rejections of the test statistics. The way the test statistic is
constructed by splitting the sample into smaller subsamples can result in few observations
in a partition. Additionally, when the break point is close to the end points of the sample,
the number of observations in a partition can be very few.

On the basis of the results obtained, the Wald and LM type tests performed comparably
better than the Difference type test statistic. However, in Appendix E.1 on page 216, we
present the results of the Monte Carlo simulation carried out at the 5% significance level to
determine the size of the test when the sample size is increased to 1000. The results seen
in Table E.1 show a similar convergence to 0.05 across all three test statistics when the
whole sample S0 is used. Consequently, as shown in Table E.2, the procedure correctly
estimates no break in the model 94.7% and 94.9% of the time when using supλ∈ΛWaldT

and supλ∈ΛD̈
R
T respectively. Both supλ∈ΛLMT and supλ∈ΛD̈

U
T indicate there is no break

94.8% of the time.

In the next chapter, we explore this combined testing and estimating procedure in an
empirical setting using the New Keynesian Philips Curve used in Hall et al. (2012).



Appendix E

E.1 Monte Carlo simulation for sample size T=1000
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Chapter 7

Empirical Application

In the previous chapter, we presented a method of estimating the true number of break
points in a linear model using simulated data in a series of Monte Carlo experiments.
This was conducted by combining Andrews (1993) test for parameter stability and our
proposed GMM break point estimation method. The results indicated that our proposed
break point estimation technique was consistent for the true break points in the model.
In this chapter, we investigate the performance of this combined testing and estimation
method using real data. We adopt the New Keynesian Phillips Curve (NKPC) model used
in Hall et al. (2012) since they found two of the endogenous regressors had unstable JE
when estimating using Two Stage Least Squares (2SLS). It thus forms a good reference
with which our proposed break point estimation approach can be compared.

The NKPC model, which is used by monetary policy makers as a good approximation
of inflation dynamics, is based mainly on previous (backward-looking) and expected
(forward-looking) inflation rates. The existing literature holds varied outlooks on the
dominance of either of these inflation rates in determining the existing inflation rate. Al-
though the focus of this research is not to form an opinion thereof, Gali and Gertler (1999),
Rudd and Whelan (2005) and Gali et al. (2005) form noteworthy references on this issue.

Furthermore, there is an ongoing debate in the literature on the preferred approach to
use when estimating the NKPC model - the traditional single equation estimation versus
the system estimation methods. In the latter, additional equations for the interest rates
and output gap are included when estimating the NKPC. Beyer et al. (2008) provides a
stimulating discussion of these two estimation options.

A strong assumption when using the NKPC model is that it is structurally stable. It
is on this basis that monetary policy makers take vital decisions. However, changes in

219
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Figure 7.1: GDP Deflator Inflation and the Federal Funds Rate
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monetary policy regimes could cause changes in economic variables which could lead
to readjustments of the relationships between these variables in the NKPC model. For
example, Figure 7.1 shows the annualised U.S. quarterly gross domestic product (GDP)
deflator inflation rate and the US Federal Funds Rate (FFR) over the period 1968:3 to
2001:4. The GDP deflator inflation rate is used as a measure of inflation while the FFR is
the interest rate which banks can lend to other institutions overnight. Figure 7.1 shows a
reduction in the inflation rate (smooth line) towards the end of the 1970s by The Federal
Reserve under it’s chairman, Paul Volcker. The rate was further reduced by his successor,
Alan Greenspan, in the late 1980s into the 1990s. The FFR (dash line) shows a similar
pattern to the inflation rate throughout the period. A comparable structure is exhibited
by the three month Treasury Bill rate (not shown). This behaviour indicates changes to
monetary policy instruments occur in response to changes in inflation. The NKPC is thus
subject to shifts and as it is a vital tool in monetary policy, it is essential to test for, and
estimate any break points existing in the model.

The chapter is outlined as follows. Section 7.1 presents the model and its data. Section 7.2
and 7.3 discuss the break point estimation using 2SLS and GMM approaches respectively.
The results are discussed alongside the two estimation approaches. Section 7.4 concludes.
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7.1 The Model and Data

The NKPC model we adopt in this paper is identical to the model in Hall et al. (2012). It
is referred to as an extended NKPC model introduced in Zhang et al. (2008) and Zhang
et al. (2009). The presence of lagged values of the changes in inflation differentiates this
NKPC model from the traditional NKPC models in the literature. The lags are included
to account for any serial correlation in the errors. They state their extended model is
sufficient to describe the empirical NKPC of the U.S. for the period under review. The
model is given as

inf t = c0 + αf inf t+1|t + αbinf t−1 + αogogt +
3∑
i=1

αi∆inf t−i + ut, (7.1)

where inf t is the measure of inflation obtained from the annualised quarterly growth
rate of the GDP deflator obtained from the Federal Reserve Bank of St. Louis, c0 is
the core or underlying (steady-state) inflation rate, ogt is the output gap obtained from
the estimates of real potential GDP as published by the Congressional Budget Office1,
inf t+1|t is the Greenbook one quarter ahead forecast of inflation2 prepared at time twithin
the US Federal Reserve Bank of Philadelphia and ∆inf t is the lagged value of the change
in inflation, obtained as ∆inf t = inf t − inf t−1. In the literature, αf and αb are referred
to as the coefficients of forward- and backward-looking inflation respectively.

The output gap, ogt, is used in the model as a measurement of the marginal cost of firms
in the economy and its behaviour over the period under review is displayed in Figure 7.2.
The fall in the mid-1970s and early 1980s is evident in the plots.

1Zhang et al. (2009) also use the Hodrick-Prescott filter as a proxy for output gap.
2Zhang et al. (2008) also employ three other measures of inflation forecasts prepared by the Survey of

Professional Forecasters and the Michigan Survey.
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Figure 7.2: Output gap (real potential GDP)
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The Greenbook inflation forecasts, inf t+1|t, is displayed in Figure 7.3. Although it is less
volatile than the GDP deflator inflation rate, inf t, seen earlier in Figure 7.1, it however
exhibits a similar behaviour. Notice inf t+1|t tends to lag inf t.

Figure 7.3: Greenbook One-quarter ahead forecasts
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As highlighted in Zhang et al. (2009), since data used for the Greenbook inflation forecast
is collected during the quarter, it may be influenced by current economic and financial ac-
tivities, and hence, it can be classified as endogenous. Similarly, since demand shocks
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may affect both the contemporaneous noise ut and the current period real variable mea-
sured by the output gap, then the output gap can also be treated as endogenous3. As a
result, Instrumental Variables (IV) need to be used in the estimations. For these IV to
be suitable, they would have to be correlated with both inf t+1|t and ogt, but uncorrelated
with the other variables in the NKPC given in (7.1). Similar to Hall et al. (2012), the
instrument set zt used in our analysis comprises of eight instruments: one lag each of the
unemployment rate, short term interest rate (in this case, the three-month Treasury Bill
rate) and the growth rate of the money aggregate M2, as well as the five exogenous vari-
ables in (7.1), that is, c0, inf t−1 and

∑3
i=1 ∆inf t−i. All the data used in this empirical

analysis are quarterly U.S. data spanning 1968.3 to 2001.4.

7.2 Estimating Break Points Using 2SLS

This section outlines the process of estimating break points using 2SLS estimation ap-
proach (within the scope of this NKPC model), as proposed in Hall et al. (2012).

Step 1: Test for break points in the Reduced Form4 (RF) of the endogenous regressors
given as,

inf t+1|t = z
′

tω1 + vt (7.2)

ogt = z
′

tω2 + vt (7.3)

In this step, the commonly used method of testing for multiple break points given in Bai
and Perron (1998) is used. Hall et al. (2012) allow for a maximum of 5 breaks and set
ε = 0.1, that is, the range of Λ = [0.1, 0.9] and hence they search for breaks using the
central 80% of the sample. Their results, as set out in Table 10 of Hall et al. (2012),
clearly indicate a rejection of parameter stability for both inf t+1|t and ogt.

Step 2: Since there is evidence of parameter variation from Step 1, they adopt a sequential
estimation strategy to determine the location of the break points. Two break points were
estimated for inf t+1|t at 1975:2 and 1981:1, while only one break point was found at
1975:2 for ogt. In their strategy, it is the combination of all the break points obtained in
the RF that is important, hence, they conclude there are two break points in the RF at
{1975:2, 1981:1}.

3Additionally, Zhang et al. (2009) confirm orthogonality of inf t+1|t and ogt with ut is rejected at
conventional significance levels.

4This is analogous to the Jacobian Equation (JE) when using our GMM method.
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Step 3: Conditioning on these two break points, the NKPC model given in (7.1) is split
into three subsamples, each of which can now be said to have a stable RF. We define those
subsamples as Sub1 for the period 1968:3 - 1975:2, Sub2 for the period 1975:3 - 1981:1
and Sub3 for the period 1981:2 - 2001:4.

Step 4: The three subsamples are then tested for any additional break points in the NKPC,
which were not obtained in the RF estimations in Step 2. As Sub1 and Sub2 are quite
small with less than 30 observations each, they test for only one break in each of them.
For Sub3, a maximum of two breaks are allowed. The test results indicate no further
breaks are in the NKPC model.

Step 5: Using the F -test and Wald test for their fixed break tests, they examine the NKPC
model to confirm if the breaks obtained in the RF in Step 2 are also present. Their results
indicate the two breaks are also present in the NKPC model5.

With these findings, they conclude that the NKPC model given in (7.1) is unstable over
the period examined having two break points at 1975:2 and 1981:1.

7.3 Estimating Break Points Using GMM

In this section, we present the estimation procedure as well as the results obtained when
the GMM method proposed in this study is applied to an identical NKPC model. It is
assumed that this model has two breaks in the Jacobian Equations (JE) of the endogenous
regressors, inf t+1|t and ogt, as established in the previous section by Hall et al. (2012).
The same data and set of instruments are maintained and a similar testing and estimation
process as laid out in Chapter 6 is followed.

The results presented cover the three test statistics: the Wald, supλ∈ΛWaldT ; the La-
grange Multiplier, supλ∈ΛLMT and the two Difference-type test statistics, supλ∈ΛD̈

U
T

and supλ∈ΛD̈
R
T . Similar results were obtained for both ε = 0.15 and ε = 0.20, hence we

report the results for only the former. As given in Table 1 in Andrews (1993), the critical
values for a model with seven parameters are 26.23, 21.84 and 19.69 for 1%, 5% and 10%
significance levels respectively. The steps and results (see Table 7.1) are discussed below.

Step 1: The whole sample is tested for evidence of parameter variation using Andrews
(1993) discussed in the previous chapter. A test statistic of 41.80, 18.57, 41.77 and 20.81
was obtained for supλ∈ΛWaldT , supλ∈ΛLMT , supλ∈ΛD̈

U
T and supλ∈ΛD̈

R
T , respectively.

5These types of breaks are similar to the Coincidental Breaks scenario under our GMM estimation
approach.
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There is a clear rejection of parameter stability for supλ∈ΛWaldT and supλ∈ΛD̈
U
T at all

levels of significance, indicating the presence of at least one break in the model. Using
supλ∈ΛD̈

R
T , stability is rejected only at 10% significance level while no break point is

detected in supλ∈ΛLMT at all levels.

Step 2: The Sequential Estimation Method proposed in this research as outlined in Section
3.2 is now applied to the whole sample, [1, T ], to obtain the first break fraction. The break
fraction is estimated at the location of the suprema of the test statistics. The first break
fraction occurs at λ = 0.21 for supλ∈ΛWaldT at all significance levels and supλ∈ΛD̈

U
T

and supλ∈ΛD̈
R
T at 10% significance level. This corresponds to the first break date k̂1 in

1975:2. Note this first estimated break point is at an identical location to that obtained in
Hall et al. (2012).

Step 3: The whole sample is now split into two subsamples [1, k̂1] and [k̂1, T ] and An-
drews (1993) test is repeated on them to determine their stability. However, from the
location of [k̂1, T ], there are too few observations to carry out this test in the first sub-
sample; in fact, there are less than thirty observations pre-1975:2. Considering the 15%
trimming, the eight instruments as well as the seven coefficients being estimated, then
Andrews (1993) test would suffer size distortions6 and spurious rejections of stability will
be recorded. Hence, only the second subsample is tested for an additional break point.

With a test statistic of 20.73, 24.70 and 21.69 obtained for supλ∈ΛWaldT , supλ∈ΛD̈
U
T and

supλ∈ΛD̈
R
T , respectively, there is evidence the NKPC is statistically unstable in the post

1975 period at 10% significance level.

Step 4: The break point estimation procedure is applied to this second subsample to ob-
tain the second break which occurs in 1988:3 for supλ∈ΛWaldT and 1981:1 for both
supλ∈ΛD̈

U
T and supλ∈ΛD̈

R
T . Again, the location of this second break in 1981:1 is identical

to that in Hall et al. (2012). Thus, applying our proposed GMM estimation method di-
rectly to the NKPC model using the Difference tests yield similar break points at 1975:2
and 1981:1 as found in Hall et al. (2012). Using the Wald test also produced evidence
of two breaks in the model, though one is at a different location to those estimated in the
Difference tests. On the other hand, the LM test showed the NKPC model was stable over
the period reviewed.

6This was also observed in the simulation experiment carried out for the small sample size in Chapter 6.
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Table 7.1: Break points estimated for the NKPC model.

Sign level supλ∈ΛWaldT supλ∈ΛLMT supλ∈ΛD̈
U
T supλ∈ΛD̈

R
T

1% 1975:2 No Break 1975:2 No Break

5%
1975:2 No Break 1975:2 No Break

No Break No Break 1981:1 No Break

10%
1975:2 No Break 1975:2 1975:2
1988:3 No Break 1981:1 1981:1

Estimation results for Λ = [0.15, 0.85]. Similar results obtained for ε = 0.20.
Test stat of 41.80 and 18.57 were obtained for supλ∈ΛWaldT and supλ∈ΛLMT resp.
Test stat of 41.77 and 20.81 were obtained for supλ∈ΛD̈

U
T and supλ∈ΛD̈

R
T resp.

Critical values are 26.23, 21.84 and 19.69 for 1%, 5% and 10% s.l. resp.

7.4 Conclusion

This chapter investigates the performance of our proposed GMM break point estimation
technique using the New Keynesian Phillips Curve model in Hall et al. (2012). The NKPC
model uses U.S. data spanning from the third quarter of 1968 to the first quarter of 2001.
Hall et al. (2012) identify two break points in the endogenous regressor, output gap and
one break point in the inflation forecast. In their approach using 2SLS, the breaks in
the JE are estimated before any additional breaks in the NKPC model. Using our GMM
approach, however, the breaks in the NKPC model are estimated directly without the need
to pre-estimate the JE. Similar to Hall et al. (2012), we also find the NKPC to be unstable
over the period. Specifically, the results indicate there are two break points at 1975:2
and 1981:1 and potentially a third at 1988:3. Identical break locations of the first two
breaks were found in Hall et al. (2012) using 2SLS. This indicates that in the presence
of an Unstable JE, our proposed method is able to detect break points in the main SE, if
they exist. Furthermore, the results from this empirical application support the theoretical
analysis and Monte Carlo simulations carried out in previous chapters.
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Conclusion

This research provides a GMM-based method of estimating break points which occur at
unknown locations in linear econometric models with endogenous regressors. When re-
gressors are endogenous, that is when the regressors are correlated with the errors, OLS
yields inconsistent estimators and hence common break point estimation tests1 in the lit-
erature are inappropriate. For models with endogenous regressors, it is usual to use In-
strumental Variables, of which Two Stage Least Squares (2SLS) and Generalised Method
of Moments (GMM) are the two common choices in the literature. For the purpose of
this research, we refer to the equation which sets out the relationship between the endoge-
nous regressor and its instruments as the Jacobian Equation (JE). This JE can be stable or
unstable and we examine both types of Jacobian structures in this research.

When the JE is stable, Hall et al. (2012) obtain inconsistent break fraction estimators using
an approach that minimises the GMM objective function over all possible break partitions.
They attribute the inconsistencies of the break fraction estimator to the structure of the
GMM minimand which is essentially a square of sums; this allows the effects of any
misspecification from the model to be offset within the minimand. Furthermore, Ghysels
and Hall (1990) establish that the J − test which is usually used in GMM literature
as a diagnostic for model stability has no power in cases of parameter instability. The
test is essentially a test of the overidentifying restrictions which are orthogonal to the
identifying restrictions that are actually used in parameter estimation within the GMM
moment conditions.

For an Unstable JE on the other hand, Hall et al. (2012) obtain consistent break fraction
estimators using 2SLS by first identifying any break points in the JE before searching

1See Bai (1994a), Bai (1994b), Bai (1997a), Bai (1997b) and Bai and Perron (1998).
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for additional break points in the Structural Equation (SE). They show this break frac-
tion estimator is consistent and Boldea et al. (2012) go further to establish the limiting
distributions of these estimators.

To our knowledge, there is no study conducted within the GMM framework to address
the issue of estimating break points in models with endogenous regressors. Our study sets
out to fill this gap. This study reveals that our GMM-based approach yields consistent
break fraction estimators in linear models with endogenous regressors. Our proposed
method focuses on parameter variation and it is based on the Wald, Lagrange Multiplier
and Difference type test statistics. Additionally, we show that the results hold irrespective
of a Stable or Unstable JE. We give a summary of the main findings below.

Chapters 2 and 3 examine models with one break and multiple breaks in the SE, respec-
tively, assuming the JE is stable. Our proposed estimation strategy was discussed and
the test statistic and break fraction estimators were examined. We present the theoretical
analysis using the Difference type test while the Sequential Estimation Method is used
in estimating the multiple breaks. The asymptotic properties of the break fraction esti-
mators obtained from both models were established, specifically, the consistency and rate
T -convergence were proved. Consequently, our GMM break point estimator has similar
properties to those that have been shown for break point estimators in other settings such
as a linear regression model with exogenous regressors estimated via OLS. Therefore, our
approach of using a statistic that is centred on parameter variation offers an improvement
to the GMM approach in Hall et al. (2012).

Chapter 4 examines the break fraction estimators obtained from models with an Unstable
JE. Two types of models were explored. The first was a model with a break point in the
JE only while the second had an additional break point in the SE. We showed that a break
in the JE did not confound the estimations of a break in the SE, as our estimators were
still consistent for the true break. Our estimation approach is applied directly to the SE,
irrespective of a break in the JE or not. This is unlike the 2SLS method in Hall et al.
(2012) where the break points in the JE had to be pre-estimated before those in the SE.
This potentially saves computing time and the researcher can focus on the SE, which is the
main interest. Some theoretical analyses still needs to be carried out to conclusively prove
the asymptotic properties of the break fraction estimators obtained when the Jacobian is
unstable, nonetheless, the extensive research carried out, as well as the results of the
Monte Carlo simulation results presented support the conjecture made.

Chapter 5 presents results from a series of Monte Carlo simulations carried out to estimate
the break points in both the Stable and Unstable Jacobian models. In the simulations,
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we assume the number of break points are known and only their locations need to be
estimated. Five different sample sizes were used in the estimations and we present a
few simulation results from all the three test statistics used, though more focus is on the
Difference type test on which the theoretical analysis is based. The results show all three
tests behave similarly in finite samples and hence, indicates that the theoretical analysis
carried out in this research may extend to them as well. It is worth noting that the results
of the simulations support the theoretical analysis carried out in Chapters 2 to 4.

Chapter 6 provides a method of testing the significance of a break point, hence, we assume
the true number of break points in the model is unknown. From the way the Sequential
Estimation Method is constructed, there will always be a break point estimated which
does not necessarily mean it is a genuine break. This, therefore, demands the derivation
of a rule that terminates the process by determining if the break estimated is large enough
to be a true break. This is done through hypothesis testing. We discuss some of the
hypothesis tests existing in the literature in this chapter. For our purpose, we adopt the
Andrews (1993) test for parameter instability and show that combining it with our esti-
mation procedure yields the true number of break points in the model. However, in small
sample sizes, the tests frequently overestimated the true number of breaks. A similar
overestimation was found when the break points were close to the ends of the sample.

Lastly, Chapter 7 provides an empirical application of our proposed methodology. We
test for parameter stability and estimate break points in the New Keynesian Phillips Curve
(NKPC) model similar to that used in Hall et al. (2012). This model is suitable because
Hall et al. (2012) established the presence of break points in the reduced form equations of
the two endogenous regressors - output gap and inflation forecast. Hence, this model is a
good reference to examine the performance of our proposed GMM estimation method. In
our case, we do not need to estimate the Unstable JE prior to the SE as done in Hall et al.
(2012), rather, the estimation method is applied directly to the NKPC model. Based on our
results, the Difference tests yields identical break dates to those found in Hall et al. (2012).
This result verifies our theoretical conclusions in an empirical setting. Thus, using our
method in the presence of an Unstable JE produces consistent break point estimators of the
main NKPC model and hence, provides an alternative break point estimation technique
when researchers are faced with unstable models with endogenous regressors.

In our estimation approach proposed in this study, we assume the break points in the
parameters in the SE occur at the same time. A similar assumption is made for the param-
eters in the JE. This is popularly referred to in the literature as a pure structural change.
With some restrictions placed on these parameters, the analyses provided in this research
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could be extended to the partial structural change case where only some of the parameters
are allowed to change. This would potentially allow more observations for estimations.

Although we establish the consistency and rate T - convergence of the break fractions
under the fixed break framework in the Stable Jacobian in Chapters 2 and 3, we do not
provide the limiting distributions in the proofs. In the existing OLS literature on break
point estimation, the limiting distributions obtained under the fixed break approach is
dependent on the data, making it not useful for inference. To develop a useful approxi-
mation, it is necessary to resort to the shrinking break framework where the magnitude of
parameter change converges to zero as the sample size grows. This is commonly used in
the literature and results in a distribution that is invariant to the underlying distribution of
the data. Although this framework is designed for small shifts, the resulting distribution
is used as an approximation for moderate and large shifts. Additionally, while the prelim-
inary studies carried out as well as the Monte Carlo simulation results are encouraging,
the asymptotic properties of the break fraction estimators obtained from the Unstable Ja-
cobian models have to be determined within the shrinking breaks approach as the fixed
break framework proved intractable. Going the shrinking breaks route will circumvent
the problems encountered with the fixed break approach, as well as establish a limiting
distribution theory that can be useful as a basis for inference. This is an interesting area
that will merit future research.
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