
PAY-AS-YOU-GO INSTANCE-LEVEL

INTEGRATION

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2016

By

Ruhaila Maskat

Computer Science

Contents

Abstract 8

Declaration 9

Copyright 10

Acknowledgements 11

1 Introduction 12

1.1 PhD Motivation . 12

1.2 Pay-As-You-Go Data Integration Approach (Dataspaces) 14

1.2.1 Definition . 16

1.2.2 Life Cycle . 17

1.2.3 Challenges . 20

1.3 Research Questions and Hypotheses . 22

1.4 Aim, Objectives and Contributions . 24

1.4.1 Objectives . 24

1.4.2 Contributions . 24

1.5 Thesis Organisation . 26

2 Technical Context 27

2.1 Heterogeneity Problem . 28

2.2 Schema Matchings . 29

2.2.1 Schema-level Matching . 29

2.2.2 Instance-level Matching . 30

2.3 Mappings . 30

2.3.1 Mapping Definition . 31

2.3.2 Generation of Mappings . 31

2.4 Instance Integration . 32

2.4.1 Improving Effectiveness . 33

2.4.2 Improving Efficiency . 37

2.5 User Feedback . 39

2.5.1 Explicit . 39

2.5.2 Implicit . 40

2

2.5.3 Crowdsourcing . 41

2.6 Dataspace Architecture . 43

2.7 Summary and Conclusions . 46

3 Ranking (Semi-)Automatically-generated Mappings 47

3.1 Our Proposed Ranking Approach . 49

3.1.1 Using Terms from Query Logs to Rank Mappings 49

3.1.2 Term Frequency/Inverse Document Frequency 50

3.1.3 Applying TF-IDF to Score Mappings . 52

3.2 Experiments . 54

3.2.1 Experimental Setup . 54

3.2.2 Experiment 1: Effects of Varying Query Log Size 56

3.2.3 Experiment 2: Effects of Varying Query Log Skew 60

3.3 Related Work . 65

3.3.1 Ranking . 65

3.4 Discussion . 74

3.5 Summary and Conclusion . 74

4 PAYGO Clustering Config. for Instance Integration 76

4.1 Introduction . 77

4.1.1 Assumptions . 77

4.1.2 Integrating instances . 78

4.2 Technical Context . 82

4.2.1 Blocking . 82

4.2.2 Clustering . 82

4.2.3 Evolutionary search . 83

4.3 Our Approach . 87

4.3.1 Inferring user’s knowledge on similarity 87

4.3.2 Applying evolutionary search . 90

4.3.3 Objective function . 94

4.4 Identifying a Baseline . 95

4.5 Proposed Variants of Pay-as-you-go Instance Integration 99

4.5.1 No-optimisation score change (NOSC) . 99

4.5.2 Weight-only Optimisation (WOO) . 99

4.5.3 Weights-and-parameters Optimisation (WAPO) 100

4.5.4 Post-optimisation score change (POSC) 100

4.6 Experiment . 101

4.6.1 Experimental Setup . 101

4.6.2 Experiment 1: Compare Proposed Strategies with Three Feedback Levels 104

4.6.3 Experiment 2: Compare Selected Strategies with Varying Feedback Amounts106

4.7 Discussion . 108

4.8 Related Work . 108

4.9 Summary and Conclusion . 112

3

5 Scaling the Approach 114

5.1 Adopting parallelism . 115

5.1.1 Parallelising using HTCondor . 116

5.1.2 Directed Acyclic Graph Manager (DAGMan) Application 116

5.2 Pruning the Search Space . 117

5.2.1 Pruning our datasets . 119

5.3 Experiments . 121

5.3.1 Experiment 3: Compare Quality of Optimised Clusters using Pruned

Datasets . 121

5.3.2 Experiment 4: Compare Clustering Times of Complete and Pruned Data

sets . 123

5.4 Summary and Conclusion . 124

6 Conclusions 126

6.1 Review of Contributions . 126

6.2 Future Directions . 129

Bibliography 132

Appendices 152

A Rankings Graphs 153

B Rankings Graphs - Size Normalised 156

C Baseline 159

D NOSC 160

E WOO 161

F WAPO 162

G POSC 163

H Fitness Consistency 164

4

List of Tables

2.1 Explicit feedbacks with their corresponding artefacts in current proposals. [BPF+11] 40

2.2 Objects used to imply user feedback. 41

2.3 Crowdsourcing proposals regarding instance integration. 42

3.1 Comparison of df and idf values of Reuters collection [MRS08] 51

3.2 Mapping descriptions . 55

3.3 Mapping sizes based on total number of terms . 55

3.4 Mappings and their exclusivity to one or more data sources. 61

3.5 Ranks Obtained using TF-IDF Scores. 65

3.6 Ranks obtained using Normalised TF-IDF ScoresAll Mappings. 65

4.1 Parameters for instance integration . 92

4.2 Hash codes generated from two hash families for every feature. 97

4.3 Human-specified weights on each dataset’s schema 98

4.4 A summary of dimensions in variants. 100

4.5 AbtBuy dataset . 102

4.6 AmazonGoogle dataset . 102

4.7 DblpAcm dataset . 102

4.8 Feedback sizes and percentages across data sets 104

4.9 State-of-the-art pay-as-as-you-go proposals . 109

5.1 Sizes of pruned dataset in light of different amounts of feedback 120

5.2 Average speed-up obtained using pruned dataset with 300 items of feedback . . . 124

5

List of Figures

1.1 Schemas that show schematic and data heterogeneity. 13

1.2 A global schema. 14

1.3 Semantic mappings between schemas in Figures 1.1 and 1.2. 14

2.1 DSToolkit architecture [HBM+12]. 44

2.2 Revised DSToolkit architecture. 45

3.1 TF-IDF Ranking Score for All Mappings. 57

3.2 Size-Normalised TF-IDF Ranking Score for All Mappings. 58

3.3 TF-IDF scores for different levels of skew. 63

3.4 Size-Normalised TF-IDF scores for different levels of skew. 64

4.1 Formed clusters when weight is given on “Date of Birth” attribute 88

4.2 Cluster set after weight is transferred to “Last name” and “Name” attributes . . 90

4.3 Experiment 1 – Clustering fitness over three feedback sizes 105

4.4 Experiment 2 – Cluster fitness over different feedback sizes 107

5.1 A directed acyclic graph. 117

5.2 Our application of the directed acyclic graph. 117

5.3 Experiment 3 – Result . 122

A.1 TF-IDF ranking score for all mappings viewed across first and second quarters. . 154

A.2 TF-IDF ranking score for all mappings viewed across third and fourth quarters. . 155

B.1 Size Normalised TF-IDF ranking score for all mappings viewed across first and

second quarters. 157

B.2 Size Normalised TF-IDF ranking score for all mappings viewed across third and

fourth quarters. 158

C.1 Baseline – process flow. 159

D.1 No-optimisation score change (NOSC) – process flow. 160

E.1 Weights-only optimisation (WOO) – process flow. 161

F.1 Weights-and-parameters optimisation (WAPO) – process flow. 162

6

G.1 Post-optimisation score change (POSC) – process flow. 163

H.1 Fitness consistency result . 166

7

Abstract

With the growing demand for information in various domains, sharing of information from

heterogeneous data sources is now a necessity. Data integration approaches promise to combine

data from these different sources and present to the user a single, unified view of these data.

However, although these approaches offer high quality services for the managing and integrating

of data, they come with a high cost. This is because a great amount of manual effort to form

relationships across data sources is needed to set up the data integration system. A newer

variant of data integration, known as dataspaces, aims to spread the large manual effort spent

at the start of the data integration system to the rest of the system’s phases. This is achieved

by soliciting from the user their feedback on a chosen artefact of a dataspace, either by explicit

ways or implicitly. This practice is known as pay-as-you-go, where a user continuously pays to

the data integration system, by providing feedback, to gain improvements in the quality of data

integration.

This PhD addresses two challenges in data integration by using pay-as-you-go approaches.

The first is to identify instances relevant to a user’s information need, calling for semantic

mappings to be closely considered. Our contribution is a technique that ranks mappings with

the help of implicit user feedback (i.e., terms found in query logs). Our evaluation shows

that to produce stable rankings, our technique does not require large-sized query logs, and

that our generated ranking is able to respond satisfactorily to the amount of terms inclined

towards a particular data source, where we describe it as skew. The second challenge that we

address is the identification of duplicate instances from disparate data sources. We contribute

a strategy that uses explicitly-obtained user feedback to drive an evolutionary search algorithm

to find suitable parameters for an underlying clustering algorithm. Our experiments show that

optimising the algorithm’s parameters and introducing attribute weights produces fitter clusters

than clustering alone. However, our strategy to improve on integration quality can be quite

expensive. Therefore, we propose a pruning technique to select from a dataset any records

that are informative. Our experiment shows that on most of the datasets, our pruner produce

comparably fit clusters with more feedback received.

8

Declaration

No portion of the work referred to in this thesis has been submitted

in support of an application for another degree or qualification of

this or any other university or other institute of learning.

9

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns

any copyright in it (the “Copyright”) and s/he has given The University of Manchester

the right to use such Copyright for any administrative, promotional, educational and/or

teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with

the regulations of the John Rylands University Library of Manchester. Details of these

regulations may be obtained from the Librarian. This page must form part of any such

copies made.

iii. The ownership of any patents, designs, trade marks and any and all other intellectual

property rights except for the Copyright (the “Intellectual Property Rights”) and any

reproductions of copyright works, for example graphs and tables (“Reproductions”), which

may be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property Rights and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and exploita-

tion of this thesis, the Copyright and any Intellectual Property Rights and/or Reproduc-

tions described in it may take place is available from the Head of Computer Science (or

the Vice-President).

10

Acknowledgements

Deepest thanks to my parents, the rock and lighthouse in my life.

I would also like to thank my supervisors Prof. Norman W. Paton and Dr Suzanne M.

Embury for their guidance throughout this long journey. I have learnt much from both.

Last but not least, thank you to the friends and people whom I have met and gotten to

know during my stay in Manchester.

11

Chapter 1

Introduction

Sharing of information can improve understanding. Relying on a single data

source to make decisions can no longer fulfil today’s demands for information

in many commerce, scientific and leisure applications. Hence, it is necessary to

use data from a collection of data sources. Data sources include all forms of

repositories, for example, be it computer files, data streams or databases. For

example, it is important that a potential creditor accesses and collects information

of a loan applicant from several independent data sources, that are maintained

by other creditors and law enforcers, before deciding to extend credit.

This proposal of engaging with multiple data sources is widely known as data

integration. The primary goal of data integration is to collect and display data

from multiple sources making them appear to come from a single source [Hal01,

Len02]. The benefit of this is that users are relieved from having to know how

to retrieve the information they seek, and can focus on what information they

require. This research focuses on sources that are in the form of relational data

structures, but the techniques investigated can be adapted for use with other

types of source.

1.1 PhD Motivation

There are numerous challenges in data integration. This PhD tackles two of

them. The first challenge is to identify multiple representations or instances of

single real-world objects across data sources. This is known variously as instance

integration, duplicate detection, entity resolution or record linkage. In business,

heterogeneity can exist when independent organisations are merged. From the

example given in Figure 1.1, an instance is considered successfully integrated

12

CHAPTER 1. INTRODUCTION 13

when records CS1 and 45 are identified as similar. Two records are said to be

similar when they represent a common object in reality.

Often, both merging organisations store information about the same customer;

however, the records are likely to have been structured differently. For example,

the Name of a customer can be stored as a single attribute in one organisation (for

example, Full Name) but separated into two attributes by the other, (First Name

and Last Name). It is also likely that some information applies to only one of

the organisations, for example, the information about Country. Prior to merging,

an organisation’s scope of business may be local; thus, a Country attribute was

irrelevant. These are examples of schematic heterogeneity [KS91].

When viewed at the data level, heterogeneity occurs when there are differences

in the values of similar records contained in the same or different data sources.

These differences can pose a challenge when trying to identify similar instances.

Data heterogeneity found in our example are Hartley Road and Hartley Rd.,

which exhibits the use of abbreviations. Synonymous words (for example, dry

and desiccated) also add to the heterogeneity of data. Another example is the

month June which can be represented with the number 6. It is quite common

that names can be written down in more than one convention, for example, the

names John Smith and John B. Smith can refer to the same person.

Data heterogeneity is the problem that is the focus of this research; however,

other variants of data heterogeneity, for example, mirror detection and anaphora

resolution, are not. Mirror detection [CSGM00, BGMZ97] involves the identifi-

cation of similar or identical web pages, while anaphora resolution [Mit14] tries

to resolve references of a noun or pronoun. For example, the noun President of

America refers to Barack Obama.

The second challenge is in the identification of instances that can be relevant

to a user’s information need. Consider a manager in a newly-merged organisa-

tion who intends to become familiar with their recently-expanded customer base.

She posts a query, expressing what information she wishes to investigate. Her

Organisation 1: Customer
ID FirstName LastName DateOfBirth Block Level Unit Street Postcode

CS1 John Smith 3/6/75 17 2 6 Hartley Road M168PA
CS2 John Smith 6/3/75 18 2 6 Hartley Road M168PA

Organisation 2: Buyer
ID Name DOB Lot Street Postcode Country

45 John B. Smith 3 June 75 17-02-06 Hartley Rd. M16 8PA United Kingdom

Figure 1.1: Schemas that show schematic and data heterogeneity.

CHAPTER 1. INTRODUCTION 14

expectation would be to receive a set of instances/records that agrees with what

she knows about the entities in her domain of choice. Precise knowledge of what

information she expects can be guesswork, as only she knows exactly what she

requires. Therefore, a data integration system could only attempt to present to

her “relevant” results based on her posted query. A relevant result should contain

records that are closely connected to her information need.

Underlying a data integration system, hidden from the user, is a schema that

presents a reconciled view of data from multiple sources [Len02]. This schema

is generally known as a global schema (Figure 1.2). In order for data to be

retrieved, the semantic relationship between the attributes in the source schemas

and the global schema must first be established. These relationships are captured

using semantic mappings (Figure 1.3). Mappings are described using a database

view, which is effectively a virtual relation. In data integration, the number of

mappings produced can be large [Hal01], suggesting a large amount of records

returned with the result set. This not only widens the search space for finding

relevant records, but also for integrating instances. Identifying instances relevant

to a user’s information needs in data integration calls for semantic mappings to

be taken into consideration.

1.2 Pay-As-You-Go Data Integration Approach (Datas-

paces)

This section introduces the key features of pay-as-you-go data integration as a

newer variant of classical data integration. We start by defining the different

Global schema: Cust
ID FirstName LastName Block Level Unit Street Postcode Country

CS1 John Smith 17 2 6 Hartley Road M168PA UK
CS2 John Smith 18 2 6 Hartley Road M168PA UK

Figure 1.2: A global schema.

Mapping 1:

select firstname, lastname, block, level, unit, street, postcode

from customer

Mapping 2:

select name, lot, street, postcode, country

from buyer

Figure 1.3: Semantic mappings between schemas in Figures 1.1 and 1.2.

CHAPTER 1. INTRODUCTION 15

types of source that constitute a classical data integration, provide a description

of its life cycle, and state the problems that motivated our proposal for pay-as-

you-go data integration. Then, we describe pay-as-you-go data integration, its

inherited and distinguishing principles, its life cycle and challenges. We end this

section with a discussion of the gaps in pay-as-you-go data integration that our

research fills.

To manually collect and integrate data from disparate sources is a laborious

task. An extensive knowledge of each underlying data source is needed to suc-

cessfully achieve this, in both the domain area (i.e., the semantics of the schemas)

and technically (i.e., formal language expression). However, this usually results

in a great expenditure of effort on how to integrate data, instead of on what data

is required to accomplish the task at hand. Having a single view of a collection

of data sources would free users from the tedious job of accessing each source,

retrieving records using its underlying query language, and manually consolidat-

ing the results. Such a single view of data retrieval is the primary aim of data

integration.

Behind this single view of data integration lies multiple data sources. They

are known as local sources, where the actual data records are stored. Schemas in

these sources are known as local schemas. A unified view of these local sources is

presented by a global schema.

Data integration involves several phases [Lev98, DU00]:

i Register data sources. Register refers to the granting of any authorisations to

access the data and structure of local sources. In this phase, middleware (for

example, wrapper and mediator) that produces a seamless link between indi-

vidual local sources and a data integration management system is constructed

[Lev98, DU00].

ii Identify schema matchings. A schema matching represents a semantic rela-

tionship between elements across local schemas [RB01]. This includes iden-

tifying similar concepts in the real world, for example, buyer and customer,

and identifying their corresponding attributes for example, gender and sex,

county and state.

iii Form semantic mappings. While matches deal with local schemas, mappings

describe the semantic association between a set of local schemas and a global

schema. There are two well-known approaches to mapping formation: global-

as-view (GAV) and local-as-view (LAV) [Len02]. With GAV, each element

CHAPTER 1. INTRODUCTION 16

of the global schema is expressed as a view over a group of local sources. In

contrast, LAV begins with the derivation of a global schema, followed by the

modelling of local sources as views over the global schema.

iv Reformulate user query. Fundamentally, this process involves transforming

a user query posed in terms of a global schema into a set of queries exe-

cutable over local schemas [DU00]. These queries have to reflect the semantic

mappings obtained in the previous phase.

v Resolve instances/entities that belong in the real world. Access to disparate

data sources can give rise to a host of records that represent one common

instance (i.e., duplicates). However, it is no easy task to determine which

instance in the real world that a group of records actually refers to due to the

presence of semantic heterogeneity. The result of instance resolution is a set of

pairs and groups of records that are perceived by users as being semantically

similar.

vi Fuse semantically similar records. Entity resolution can leave an integration

effort with inconsistent similar records. Bleiholder [BN09] listed two causes

of this condition of inconsistency. They are attribute values that have been

left blank or null, and contradicting non-null values of a semantically similar

record pair. Once reconciled, similar records resurface as “a single, consistent

and clean representation” [BN09] of a real world instance.

A significant drawback in classical data integration is in its high cost to ini-

tialise. During initialisation, identifying schema matchings and forming semantic

mappings is costly because a great deal of human effort is needed. Such manual

exercise can determine exact semantic relationships, and hence, produce highly

accurate results; however, it is at the expense of delayed start-up time. This pro-

cess of defining the semantic relationships of schemas has been termed semantic

integration [FHM05].

1.2.1 Definition

In order to overcome the drawback of classical data integration, a newer variant of

data integration has been proposed. This variant is known as pay-as-you-go data

integration or dataspaces [HFM06]. In a dataspace, full semantic integration

at the start of a dataspace’s life is not mandatory. A dataspace can accept

partial semantic integration, where the integration is performed to a degree that

CHAPTER 1. INTRODUCTION 17

complies with any known semantic relationships. With recurring conditions, such

as addition of new local sources and obtaining of new data in registered local

sources, a dataspace lets integration to happen in increments and can be improved

whenever there is a need. As a result, the integration cost that previously was

borne upfront by a classical data integration, can now be spread throughout the

life time of a dataspace, and it is able to start operating earlier than a classical

data integration.

Another characteristic of a dataspace is in the query results that it produces

and their interplay with users. The results are aimed at being best-effort based

on current, available local sources. A dataspace uses a user’s domain knowledge

in order to produce better quality results. This knowledge comes in the form of

feedback pinned on usually two artefacts of a dataspace, which includes either

matches [JFH07, JFH08] or records of a result set [HBF+09, HBM+12, BPF+11].

In essence, feedback carries a positive or negative validation of what is suggested

by a dataspace, based on the user’s perception of truth. When more feedback is

supplied, the quality of the returned results improves, acting as an incentive to

users to continuously provide feedback.

In the next subsection, we describe the life cycle of a dataspace, where some

phases inherit from a classical data integration, and others that are specific to a

dataspace.

1.2.2 Life Cycle

Hedeler et al. [HBF+09] proposes a life cycle for dataspaces which partly ex-

tends classical data integration and in other parts is specific to dataspaces. We

alter Hedeler’s proposal by separating two essential processes to form two inde-

pendent phases; namely, instance integration and data fusion, and describe the

characteristics of each phase of the life cycle.

i Identify data sources, that have been built in various formats (i.e., structured,

unstructured and semi-structured) where each is intended for specific inter-

faces; and is located at different locations (i.e., local and distributed).

ii Design/derive a global schema that reflects data in the underlying set of iden-

tified sources. There are three approaches to achieving this. At one end of

the spectrum is where users with domain knowledge manually design a global

schema for their needs. At the other end, an algorithm searches the sources

CHAPTER 1. INTRODUCTION 18

to choose and suggest schema elements that may be relevant completely auto-

matically. In the middle, users select from existing schemas and put together a

set to form a global schema. Designing and deriving a global schema can seek

help from existing artefacts of a dataspace. They include schemas and records

of the already integrated local sources, schema matchings and semantic map-

pings. Unlike manual and semi-automatic means of global schema-forming

which can rely on users to make decisions, the fully automated approach can

be a challenge, since there are no guarantees that the produced global schema

accurately describes the domain of interest. Global schemas can be of two

types. When a global schema consists of all the elements of the underlying

local schemas but is void of any information about the semantic relationships

between them, it is a union-type schema [HBF+09]. In contrast, when there

have been processes that combine the elements from different schemas in ways

that reflect their semantics, the schema is a merged-schema [HBF+09].

iii Identifying schema matchings in dataspaces builds, in some parts, upon clas-

sical data integration’s matching identification process. Similarly, matchings

are formed from semantic relationships across elements of local schemas. Con-

versely, in dataspaces, either automatic, semi-automatic or manual types of

approach can be used to identify matchings. Such automatic techniques give

rise to uncertainty about the validity of the proposed semantic relationships,

where this uncertainty is expressed in the form of scores. From Hedeler’s sur-

vey [HBF+09], information that has so far been used to identify matchings,

irrespective of the type of approach used, are schemas, records and training

data (if machine learning algorithms are involved).

iv To derive semantic mappings, useful components of a dataspace (i.e., local

schemas and their records), a dataspace’s intermediate product such as ear-

lier identified matchings, and external resources, for example, training data,

may be used to produce mappings either by fully human effort, the use of

a suitable algorithm or by an algorithm which permits human intervention.

Like matchings, the semantic associations between elements of local schemas

and the global schema can introduce uncertainty; also, like matchings, these

semantic associations can be represented by scores. By now, a dataspace has

recognised a set of useful data sources on which user query could be posed.

v Searching or querying in dataspace can occur before or after duplicates have

been eliminated by recognising similar instances and resolving any conflicts.

CHAPTER 1. INTRODUCTION 19

Search-related operations that take place during this phase are exploratory in

nature, using keywords; while querying-operations are mostly related to the

selection, projection, joining and aggregation of record sets. In this phase,

user queries undergo reformulation [DHY09, HRO06]. Queries posed over the

global schema are translated into a form executable by local schemas, and

reflect the semantic mappings derived earlier.

vi Closely related to querying results is the process of integrating instances. This

is where semantically similar records are identified. Usually, text-matching

techniques (for example, Edit distance, Smith-Waterman distance, Soundex)

are used (in combination more than singularly) to identify potentially similar

records [BMCF03]. Despite that, false positives can still occur. To address

that, ontologies [Gru93] may be used together with the selected matching

techniques. This appears promising, if each domain has a comprehensive

set of ontologies. Instance integration in a dataspace has the capability to

operate incrementally. As changes happen in the domain from time to time, a

dataspace integration strategy incrementally accepts additional records, any

updates to existing records, and revisions to the domain’s logic. As a result,

a grouped set of similar records is produced. The latest proposal [WGM14]

on incrementally integrating instances has exploited the reusing of earlier-

produced integration results in order to remove the need for re-integration of

the entire extent of data.

vii Data fusion in dataspaces has to incrementally transform similar records into

“a single, consistent and clean representation” of a real world instance. It

is the final phase before results are available for user viewing. Recent effort

[HdACC13] involves fusing data in an incremental manner, using a special

form of provenance information kept as a series of operations, taking on the

idea of logging activities in manual data curation. This information does not

hold a history of user actions. Instead, it contains the data’s original values

carefully coordinated with their local sources.

viii Improving integration typically builds on feedback, for example from users or

crowds. User feedback, in dataspaces, can be provided either explicitly or im-

plicitly. When using the former approach, users deliberately validate artefacts

of a dataspace, such as matchings, mappings, global schema(s), reformulated

queries, results of the queries or the ranking of the query results. In contrast,

CHAPTER 1. INTRODUCTION 20

use of the latter approach means exploiting by-products of a user’s interac-

tion with the dataspace. Those that potentially could be considered are logs

of submitted queries, sequences of navigations and specific data points that

have undergone further drilling-down. Additionally, the effects of improve-

ments can be directly on the artefact on which feedback was obtained or on

other indirect artefacts.

1.2.3 Challenges

Like most data integration efforts, dataspaces too has its challenges. In this sub-

section, we discuss some of the many challenges facing dataspaces. Our discussion

is framed around the logical components of a dataspace which appear throughout

its life.

Data Sources and Semantic Relationships

In dataspace, there can be a multitude of available data sources, each with differ-

ent lifespans, depending on the continuous commitment given by their creators

[Lev98]. A dataspace has to cope with a changeable set of data sources, which

eventually would affect the global schema’s existing definition and the extent of

any integration performed thus far.

Data sources that participate in a dataspace (a.k.a. participants) need to be

discovered [FHM05]. We shall use the terms participants and data sources inter-

changeably throughout this thesis. In big organisations, especially, the number

of data sources owned can be overwhelming. Discovery is important so that re-

lationships between them can be formed, and any existing relationships can be

improved.

Each source in a dataspace, commonly, adopts one data model. A dataspace

is expected to support an array of data model types [FHM05]. The more types of

model a dataspace can support, the more participants it can accommodate, hence,

becoming more comprehensive to users. To support a variety of data models can

be a tricky business. Some issues that need to be considered are the different

query languages used with each model and the degree of structure inherent in a

data model.

Relationships between participants require discovery [FHM05]. This involves

matching source schemas and forming mappings between a global schema and

a set of source schemas [HBF+09]. Automatic generation of these relationships

is favourable, primarily because it does not engage users with the tedious job

CHAPTER 1. INTRODUCTION 21

of identifying and forming relationships. In return, it creates the presence of

uncertainty about the validity of the generated relationships.

When automatic means are used for generation of mappings, most of the time,

this results in a substantial number of records retrievable from the heterogeneous

data sources as a result of overlapping candidate mappings. Unfortunately, this

also includes false positive records. These records are uninteresting to users be-

cause they do not match the user’s expectations. This flooding of records can

lead to wasteful compute cycles when instances are being integrated. Mitigating

this flood can be a challenge.

Instance integration addresses the identification of a real world object from its

syntactic representation in multiple data sources. The challenge is these represen-

tations are commonly unique to their data sources of origin, and thus commonly

display differences in relation to the terms used, data format and stored informa-

tion. This difference is widely known as the heterogeneity problem.

More often than not, similar records from multiple sources can carry inconsis-

tent values when they are compared against one another. In this condition, they

must be transformed into a single, consistent, useful version [BN09] that agrees

with the real world object being represented before being presented to users. This

is better known as data fusion. A primary concern to be considered during fusion

would be to decide, based on some ulterior information, as to which value of the

records is more relevant. Some information about provenance can be helpful.

Queries

Query languages vary in expressiveness and processing capabilities. Queries are

generally tied to their underlying data models which vary across data sources.

Unless explicitly specified, users typically expect the query to consider all relevant

data in the dataspace, regardless of the data model in which it is stored or the

schema along which it is organised. Franklin [FHM05] categorises data models

into two extremes denoted by weak and strong characteristics. A weak data model

has a loose structure, for example, bag-of-words data model, while a strong data

model is tightly structured, for example, relational data model. Queries posed

over a dataspace’s global schema must be reformulated. It is challenging to

reformulate the complex query language of a strong data model to be used on a

weak data model, and in contrast, to reformulate the simple query language of a

weak data model for use on a strong model.

CHAPTER 1. INTRODUCTION 22

User Feedback

User feedback, either explicit or implicit in nature, relies on user’s knowledge of

objects and their interaction in the real world. Until now, there has been no formal

framework for understanding and learning from user feedback in dataspaces. The

need for a formal framework was highlighted by Halevy et al. [HFM06]. Halevy et

al. insisted that the framework be equipped with three components: a definition

of the problem that requires a human’s attention; a formalism in the form of

measurements of the elements involved in the problem (for example, similarity

distance between two schematic matchings); and a space of possible solutions.

Users interaction activities with a dataspace can be a good source of informa-

tion, especially about the relationships between sources in a dataspace [HFM06].

Methods should be developed to capture and interpret these activities. However,

this is no easy task. The implicit nature of these activities requires extensive

interpretation of the intent behind every sequence of the activities performed.

Although users are available to provide feedback in exchange for better inte-

gration quality, however, this can be expensive. The time users spent to validate

a dataspace artefact can be used for some higher cognitive tasks that cannot be

performed by a program. Hence, methods should be devised to examine existing

semantic relationships, identify artefacts that could assist in their improvement,

and ask users to specifically validate these artefacts. The aim is to fully utilise

the time users are willing to spare.

In dataspaces users are given an attractive incentive whenever they partici-

pate in the resolution of instances. The more domain knowledge, in the form of

feedback that they supply, the better the quality of integration that they get to

gain. However, users do not specify feedback to give clues to the dataspace on

the different categories of records that exist in a data set of interest, instead, they

simply specify what they know about the similarity of a specific pair of records

from the data set. The challenge is to infer knowledge from such feedback to

improve the integration.

1.3 Research Questions and Hypotheses

RQ1 How can we design an approach that identifies instances which are relevant

to a user’s information need in a dataspace?

RH1a Identification of instances that are relevant to a user’s information

need in dataspace is best viewed as a ranking of schema mappings

CHAPTER 1. INTRODUCTION 23

problem.

RH1b A user’s information need can be known from terms found in a query’s

conditional clause.

RH1c Semantic mappings can be ranked based on their relevance to a user’s

information need specified by the terms found in queries.

RH1d The rarity of terms found in a semantic mapping’s extent can indicate

how relevant the mapping is to a user’s information need.

RQ2 How much query logs is needed to produce stable rankings?

RQ3 Would the proposed ranking technique be able to track query patterns that

are data source-specific i.e., skewed?

RH3a Some data sources tend to amass a large collection of terms, forming

patterns, that may not be frequently used by other data sources.

RQ4 How can we devise a strategy to integrate instances from different large data

sources in a dataspace?

RH4a We cast instance integration of large data sources in a dataspace as

the problem of incremental clustering.

RH4b User possess valuable domain knowledge (explicit feedback) that can

be useful to continuously improve the integration.

RH4c Due to the unique characteristics of most datasets, tuning the con-

figuration parameters of the underlying incremental clustering algo-

rithm is necessary.

RH4d A useful way to handle the different information requirements from

users is to guide an objective function to reflect user’s understanding

of the domain.

RQ5 Would relying entirely on domain information supplied by user feedback be

adequate to improve instance integration in the occurrence where integra-

tion of instances is considered to be a black box?

RQ6 How effective is our approach(es) in integrating instances at different levels

of user feedback?

RQ7 For scalability reasons, how can we achieve an integration quality that is

comparable to the integration achieved with the use of a full set of data but

while using only a fraction of the data set?

CHAPTER 1. INTRODUCTION 24

RH7a Pruning a data set down to have only informative records remaining

will not compromise the produced integration quality.

RQ8 Would our pruning strategy be able to produce a higher degree of integration

than when integration is done on the full data set?

RQ9 Would the time to complete an integration process be faster with a pruned

data set produced based on hypothesis RH7a than when the complete data

set is used?

1.4 Aim, Objectives and Contributions

The aim of this thesis is to investigate the use of pay-as-you go approaches for

instance level data integration.

1.4.1 Objectives

O1 To design an approach that ranks mappings based on their relevance to a

user’s information needs.

O2 To devise a strategy to integrate instances from different large data sources,

and that takes advantage of knowledge from users, in the form of feedback,

about the domain of interest.

O3 To design a technique which could integrate large amounts of data by using

only a fraction of the complete data set when testing the fitness of candi-

dates within the evolutionary search but without compromising the integra-

tion quality achieved when the approach in O2 is used. The reason is our

instance integration strategy can be quite expensive. Repeated clustering of

the complete data set is needed during the evolutionary search. With large

data sets, this is challenging.

1.4.2 Contributions

� An approach that identifies instances relevant to a user’s information need,

by using terms commonly used to describe the instances, which can be found

in query logs. We view this as a problem of ranking mappings, since in a

dataspace, records are retrievable through generated mappings. This ap-

proach satisfies RQ1 of Section 1.3. To our knowledge, we are the first to

tackle this issue in a pay-as-you-go data integration setting.

CHAPTER 1. INTRODUCTION 25

� Two empirical evaluations of our approach. The first evaluation seeks to

answer how quickly stable rankings can be produced over a sequence of

different log sizes (RQ2). Our results show that our proposed approach can

produce stable rankings for encouragingly small log sizes.

The second evaluation investigates how the rankings track query patterns

that are skewed towards specific sources (RQ3). The ability of the ranking

to reflect skewness allows for the identification of data sources that con-

tribute to “useful” mappings, translating to which data sources that store

instances needed by users. Our evaluation was conducted on two real-life

life science data sets. From our evaluation, the generated ranking responded

satisfactorily to the level of skew inherent in the query logs.

� A strategy which works on the concept of clustering to group similar records

together in relation to their syntactic data value, using feedback to identify

which records have been correctly clustered. Weights are applied, indicating

the discriminative influence which an attribute has on the data set. Addi-

tionally, special parameters are used to configure the clustering algorithm.

In order to determine a good set of weights and configuration parameters,

we turn to evolutionary search and the use of user feedback to evaluate the

fitness of alternative clusterings. This strategy answers RQ4.

� An empirical evaluation, comparing different variants of our proposed strat-

egy against a baseline. We tested our strategy on three public data sets

commonly used by the entity resolution community. The variants explore

optimisation by weights only, weights and parameters, and post optimisation

score change. We also tested when no optimisation is conducted, but instead

similar scores of record pairs are directly changed based on user’s feedback.

We are interested to know the relative performance of these variants (RQ6).

From our results, we can see that optimisation of attribute weights and pa-

rameters of the clustering algorithm generate fitter clusters than clustering

alone with manual parameters. However, directly changing similarity scores

does not give better results. Nevertheless, optimising weights and parame-

ters of the clustering algorithm produces fittest clusters when compared to

the other variants.

� A technique that, based on user’s feedback, selects records which has feed-

back specified on it. In other words this technique prunes the complete data

set by choosing only the records that have been validated by a user. This

CHAPTER 1. INTRODUCTION 26

technique satisfies RQ7. Since we have found that optimising weights and

parameters can give fit clusters, we used that particular variant with our

pruning technique.

� A comparison between clusters generated from the pruning algorithm and

those of the complete data set (RQ8). Our evaluation shows that, on most

of the data sets, our proposed pruner produced comparably fit clusters when

larger feedback amount is used.

� A comparison of run time between pruned data sets and their complete

counterparts. We can observe that with the pruned data sets the run is

faster by several orders of magnitude than when the full data sets are used.

1.5 Thesis Organisation

The organisation of this thesis is as follows. Covered in Chapter 2 is our technical

descriptions on mappings, instance integration and user feedback, introducing

readers with some general background to our research. We present a ranking

strategy that places mappings in a precedence of relevancy to user information

need in Chapter 3. In the same chapter, we report two empirical evaluations.

Moving on to our next proposal is Chapter 4 which discusses in detail the five

different variants we proposed to conduct integration of instances, followed with

a report on the empirical evaluations conducted on them. Faced with large data

sets, our most promising instance integration proposal needs to be scaled accord-

ingly, hence, we suggest a data set pruning strategy in Chapter 5. This thesis

is completed with a review of our contributions and the future direction, both

illustrated in Chapter 6.

Chapter 2

Technical Context

In this chapter, we present the concepts and terms of relevance to this thesis. We

provide descriptions for: the heterogeneity problems that are faced by all data

integration proposals; schematic matchings and semantic mappings used in the

effort to create correspondences between heterogeneous data sources; and the in-

stance integration process that identifies similar records from the pool of records

made available through the discovered correspondences. Essential to dataspaces,

we describe the different types of user feedback, and we touch upon a newly-

introduced type of feedback, crowdsourcing. Also, we explain how our proposals

fit into a general dataspace architecture and describe their interplay with com-

mon components of a dataspace. As a general framework for dataspace, we have

chosen DSToolkit [HBM+12] because of its comprehensiveness. Then, we discuss

existing proposals for dataspace, specifically those that deal with the problems we

are addressing. For our first problem of instance integration in a pay-as-you-go

setting, we try to answer the question “do present dataspaces support instance in-

tegration?” If they do, “what is the method that was used to perform integration?”

Furthermore, “what is the role of the user in the integration?”. In contrast, with

our second problem, the identification of instances relevant to a user’s informa-

tion need in dataspaces, at the time of writing this thesis, we are the first to tackle

this problem. Addressing data relevance is not new and proposals can be found

in areas of information retrieval as well as data management. In information re-

trieval, where documents are often the concern, a relevant document is one that

is perceived by users to contain valuable information in terms of their individual

information need [MRS08]. A similar view can be found in data management

where data relevance is considered to be hard to evaluate objectively, owing to

its great dependency on how the data is used. A data item may be relevant in

27

CHAPTER 2. TECHNICAL CONTEXT 28

one task, but not in another.

2.1 Heterogeneity Problem

When heterogeneous, independently-constructed data sources are integrated, they

can give rise to the heterogeneity problem. Sources were constructed to fulfil the

information need of their own stakeholders. Their model, structure and contents

can present different degrees of uniqueness and similarity. Identifying similarity

in integration systems is not an easy task. The problem of heterogeneity can

occur at different phases of an integration system and on different aspects related

to it, from the point of communicating with a data source to the values of the

source’s contents. We describe heterogeneities [GMUW08] in this section.

� Communication heterogeneity : there are many choices of communication

protocols, such as HTTP for the web, remote procedure calls and FTP for

remote accesses. Given these, retrieving data in an integration system can

require managing a repository which spells out each source’s acceptable pro-

tocols and the necessary software.

� Query-language heterogeneity : exists as a result of a variety of data source

types (e.g., XML, relational, object, Excel spreadsheet) used by integration

systems. Each language is tailored to handle different degrees of schema and

structure, such as XQuery and SQL. Even if an integration system manages

only relational databases, SQL comes in different dialects.

� Schematic heterogeneity : even if only relational databases are used for in-

tegration, the schemas applied can differ. Attributes may be combined or

separated; concepts may be designed as a single relation or placed as an

attribute; and there can be dissimilarity in the information covered.

� Type heterogeneity : integer, boolean, character, string and date are forms

of data. For example, a serial number can be stored as either an integer

or a string, depending on the perception of the database designer and the

operations to be performed on it (e.g., concatenation, append).

� Data heterogeneity : data values describe the characteristics of a real world

object. They can be stored in a string (e.g., BLACK, BL) or represented by

an integer, like the number 1. In another data source, the string BL or the

number 1, may correspond to blue.

CHAPTER 2. TECHNICAL CONTEXT 29

2.2 Schema Matchings

A matching is created when the elements of a pair of local schemas are linked

together, and the link is postulated to represent a semantic relationship. Man-

ually constructing matchings is expensive, due to the fact that it is exposed to

human error, consumes substantial time and is laborious. Many efforts toward

improvement incline toward providing automatic support. Rahm et al. [RB01]

emphasised the importance of having a “generic, customisable implementation”

of a Match operator which is agnostic of the underlying application area to realise

this vision for automation. An automated Match can be realised in many ways;

comprehensive surveys of automatic schema matching include [RB01, SE05]. We

describe in the following subsections the classification by Rahm et al. [RB01]

based on its higher number of citations.

2.2.1 Schema-level Matching

Schema information such as name, description, data type and constraints (e.g.,

integrity and referential constraints); relationships between schema elements, such

as part-of and is-a; and schema structures, such as relational and XML models

are used by schema-level matching to identify matches between source and target

schemas. Two forms of matching techniques dominate this class of matching

approaches: element-level and structure-level. Their difference is characterised

by the granularity and cardinality of Match.

� Element-level matching techniques : advocate for a single element matching

and limits to the cardinalities of 1:1, 1:n or n:1. One major matching tech-

nique involving elements is string-based techniques which manipulate strings

in elements without ignoring their lexical structures. Lexical techniques are

another major element-level matching technique. Aimed at preprocessing

strings prior to applying string-based techniques, lexical techniques exploit

natural language processing methods to parse the string elements into indi-

vidual tokens, root words and words known to denote real-world concepts.

Besides string-based and lexical techniques, semantic-based techniques are

also deployed at the element level. The purpose is to take a step further

in estimating similarity that is by considering the meaning behind the se-

quence of characters representing each element. These techniques depend on

the semantic associations of two strings such as synonymy, hyponymy and

hypernymy.

CHAPTER 2. TECHNICAL CONTEXT 30

� Structure-level matching techniques : support matching of a combination of

elements that show some structural relation, and handle cardinalities of m:n.

A matching technique falls into one of two groups of strategies. The first

is based on scope which indicates the extent of elements in a schema over

which matching is performed. [MGMR02, TC07, DR07, TLL+06, MBR01]

permit all elements of a schema to be included in the matching process,

while [HQC08, XE06] restrict the inclusion to specifically chosen ones. The

second is neighbourhood that an element resides in, which holds the power

to influence the matched elements based on the special position that ele-

ment has against the matched elements. Works involving neighbours include

[DR07, TLL+06, MBR01, ASS09, MGMR02].

2.2.2 Instance-level Matching

An instance or record provides valuable insight into the contents and meaning

of a schema elements. This is especially true when there is a shortfall in useful

schema information or there is a complete absence of any schema. Such high-

level information can help reveal incorrect interpretations of schema even when

ample schema information is obtainable. Unlike the earlier described approaches

which suit both schema-level matching and instance-level matching, the following

approaches are especially for instance-level matching.

� Linguistic characterisation [RB01]: preferable when text elements are pre-

sented. This approach works by separating keywords and themes having a

certain amount of frequencies of occurrence of words and word combinations.

� Constraint-based characterisation [RB01]: used with numerical and string

elements. It includes ranges of numerical values or character patterns.

2.3 Mappings

Mappings describe the semantic associations between a global schema and a set

of local schemas, and are an essential component in an integration system. Fun-

damentally, a mapping is a database view or also known as a virtual relation. A

virtual relation does not store any data, but contains a description of a source

which specifies its contents, attributes, constraints, completeness and reliability,

and query processing capabilities [Lev98]. Mapping is the cornerstone of refor-

mulating user queries. User queries posed over a global schema are translated

CHAPTER 2. TECHNICAL CONTEXT 31

into a query language comprehensible by each source schema, making use of any

related mappings.

2.3.1 Mapping Definition

Three most widely investigated approaches to defining views have been proposed

for traditional data integration systems [Len02]. They are Local-As-View (LAV)

[DGL00, FW97], Global-As-View (GAV) [GMPQ+97, ACPS96, Ull97] andGlobal-

and-Local-As-View (GLAV) [FLM99, HIST03].

When LAV is used, a mapping is produced for every element in the local

schema in the form of a view to the global schema. LAV is suitable if changes

to the global schema are infrequent, while addition of new sources is relatively

common. Introduction of new (or changed) sources basically requires the cre-

ation (or adjustment) of a view, with no changes needed to the other mappings.

Unfortunately, rewriting a user query in LAV is not a straight-forward process.

An equivalence has to be sought between the views.

Conversely, in GAV, mappings are generated for each element of the global

schema as a view over some local schemas. Such mappings present clear infor-

mation on how data is to be retrieved when elements of the global schema are

evaluated. In cases where new sources are not frequently added, GAV may be a

suitable choice. The reason is that adding of new sources or changes to currently

registered ones may require changes to many other mappings. Hence, GAV is not

scalable for large applications.

Offering the best of both worlds is GLAV. Like LAV, GLAV offers indepen-

dence of a global schema, the ability to manage new sources and the complexity to

reformulate queries [XE04]. On the other hand, better than LAV and GAV which

use a restricted form of first-order logical sentences, GLAV uses flexible first-order

sentences, allowing a view over source relations to be a view over global relations

in source descriptions. Hence, with GLAV, data is derivable from views over

source relations, and it allows conjunctions of global relations.

2.3.2 Generation of Mappings

The activity of mapping generation is the consequence of substantial human ef-

fort [HRO06]. Experts in the domain area and database must work together

to construct mappings that comply with the application’s requirements. Since

the generated mappings can accurately fulfil user needs, they can be expected

CHAPTER 2. TECHNICAL CONTEXT 32

to be of high quality, but in return, startup time is increased. An ideal condi-

tion is the (semi-)automatic generation of mappings, where users do not need to

take part in the process or need not be given a central role. (Semi-)automatic

means, unfortunately, can be complicated and inherently exhibit uncertainty in

the correctness of the mapping. For positive results, many research proposals

[FHH+09, BM07, PB08] turn to full schema definitions (e.g., referential integrity)

or external resources (e.g., rich specification for the relationships of schemas) for

support. This can be impractical as these components may not always be fully

available, can be unclear or not well-defined. For example, Clio [FHH+09] takes

as input referential constraints and any relational or nesting structures in order to

form views as conjunctive queries i.e., join or union of schema elements. Similarly,

Model Management 2.0 [BM07] requires the availability of primary and foreign

keys as joins, while many rely on common elements found in local schemas; an

example is Pottinger [PB08]. Asking for a user’s validation can be helpful, how-

ever, it is only a handful of validations that a user should be appropriately asked

to offer.

Apparently, (semi-)automatic view generation is faster and cheaper than man-

ual construction of views. Less apparent is the multiple, overlapping mappings

that can be produced. As such, mappings may not accurately meet the needs of

users and hence may require several refinement processes [BPE+10].

2.4 Instance Integration

Instance integration can be described using many terms: record linkage [FS69],

data deduplication [EIV07], entity resolution [BGMK+06, KTR10], identity iden-

tification, merge-purge. All these refer to the task of identifying records in multi-

ple databases that describe a common object in reality. This is no trivial task. As

we have described earlier, the different types of heterogeneity problems that occur

at every turn of a dataspace’s life, and appear in multiple aspects, consequently

complicate instance integration. The näıve approach to instance integration is

pairwise comparison of records; however, this will give rise to the O(n2) problem

where n is the number of records and the cost of integration is O(n2) number of

comparisons. As a result, instance integration can be costly, where it can take

hours or even days to complete, depending on the size of the data set. Typi-

cally, to improve efficiency means to decrease the search space. In this section,

we provide an example of instance integration. We further discuss techniques

CHAPTER 2. TECHNICAL CONTEXT 33

used to address the two essential issues in instance integration: effectiveness and

efficiency.

2.4.1 Improving Effectiveness

Effectiveness involves the level of accuracy that can be achieved when records

from different data sources are identified to represent the same real world ob-

ject. Ideally, accuracy is measured by some ground truth, unfortunately, this

can be difficult to get. In reality, the ground truth may not be available or is

unknown at that point in time. The cornerstone of achieving effectiveness is

in identifying similarity between two records. Techniques to find similarity, in

general, compare values that describe real world objects. The intuition is that

records representing the same real world object can be expected to have the

same description. This is not always true, hence, additional information can

be provided by using ontologies. A common description of an ontology is “a

formal, explicit specification of a shared conceptualisation” [Gru93]. Effort to

leverage ontologies in data integration is present across domains. They include

[SAR+07, FDO+01, CSC04, BDPH06, CT09, BL04]. Unlike an ontology which

focuses on the semantics of concepts, our work relates concepts using textual

syntax, hence, ontology can be seen as complementary to our work. Elmagarmid

[EIV07] suggested two classes for similarity comparison techniques.

� Compares individual fields for similar contents, where each field has different

types of data that are afflicted by specific types of errors. Acting upon these

errors would require distinct similarity functions, capable of handling such

specificity. We describe here some of the available functions, narrowed to

string-based metrics; and touch upon numeric-based metrics which are less

established.

– Character-based similarity metrics : address typographical errors. A

widely-used metric, Edit Distance or also known as Levenshtein distance

[Lev66], determines similarity by calculating the total cost of using edit

operations to transform one string to another. The smaller the cost, the

more similar the strings are since not many edits are required. A cost

of 1 is assigned to every operation performed. They involve including a

character into the string, deleting a character from a string, and replac-

ing one character with another. Edit distance is effective in capturing

typographical errors, but not other types of incorrectness.

CHAPTER 2. TECHNICAL CONTEXT 34

– Token-based similarity metrics : in many conditions, typographical dif-

ferences lead to the repositioning of words. Such changes cannot be iden-

tified by simply dealing with characters, but require the participation

of tokens. One form of token-based metric is Atomic Strings [ME+96].

The basic working unit of this metric is a series of alphanumeric char-

acters separated by punctuation characters, or known as atomic strings.

When two atomic strings are equal or when one atomic string acts as

a prefix to another, they are considered to be a match. Similarity is

achieved when the number of matching atomic strings is divided by the

average number of atomic strings. The higher the calculated value, the

more similar the attributes are.

– Phonetic similarity metrics : besides having similarity in characters and

tokens, phonetically similar words such as Kageonne and Cajun can also

exist in database records and could be identified by special-purpose met-

rics. A regularly-used phonetic-based metric is Soundex [Rus18]. Fun-

damentally, Soundex uses consonants as an element for discrimination,

where similarly-sounding consonants are assigned a common numerical

code. Therefore, both Robert and Rupert will return the same code of

R163. This works well with Caucasian names, but is less effective with

East Asian names, owing to their extensive use of vowels [New67].

– Numeric similarity metrics : is reported [EIV07] to being operated upon

as strings, using the above-mentioned metrics or basic range-based queries,

in order to find similarity. A potential course for research is to take into

account the distribution and type of the numeric data in determining

similarity; or use of cosine similarity and any of its variants [KMS04].

However, there are no further advances on this subject matter found.

� Compares whole record. In reality, records are not compared by just a single

attribute. Multiple attributes are needed to determine if a record pair is

similar. Present proposals can be grouped into the following categories based

on the absence or presence of user participation.

– Proposals with user involvement : Strategies under this category have

CHAPTER 2. TECHNICAL CONTEXT 35

been applied with the involvement of a user. Validating (i.e., speci-

fying if a record pair is similar or not) and characterising data (i.e.,

labelling training data based on the ground truth) are the primary

roles given. Strategies that we describe here include probabilistic-based,

(semi-)supervised learning and active learning-based.

In essence, probabilistic-based strategies build upon the notion that in-

stance integration is a Bayesian inference problem, and these strategies

aim to categorise a record pair as being < α, β >∈ M or < α, β >∈ U ,

where M is a set of duplicates and U is a set of non-duplicates [EIV07].

Bayes theorem is used to calculate the likelihood which indicates the

probable set that record pair < α, β > should belong to. Probabilis-

tic models [FS69, New67] are driven by two aims: firstly, to minimise

the probability of incorrectly classifying a record pair. Secondly, on

the premise that misclassification may have different consequences, the

notion of assigning a cost to minimise error is introduced. The set mem-

bership probability can be calculated using training data of prelabelled

record pairs.

A set of training data which is prelabelled with the ground truth is a

prerequisite if a supervised learning technique is to be used. Such tech-

niques involve learning probabilistic models, deterministic classifiers and

characterising duplicates [CCMO11]. Unfortunately, this type of learn-

ing relies heavily on the availability of a comprehensive collection of

training data, presented with diverse cases of duplicates. The more

various the cases, the more accurately the classifiers can be tuned. In

practice, these conditions rarely exist [CCMO11].

An alternative approach (active learning-based technique) to supervised

learning is to actively select subsets of unlabelled record pairs that would

give “highest information gain” [SB02] when labelled. These special

record pairs are identified as the ones that possess uncertainty [SB02].

Given the record pairs in question, users are asked to validate their sim-

ilarity status. The labelled data are then used to re-train the learner.

– Proposals without user involvement : In some cases where training data

CHAPTER 2. TECHNICAL CONTEXT 36

and user participation are not available, both supervised and active

learning will not be useful. Techniques under this category do not re-

quire any user validation or characterisation, instead they rely on metrics

to help compare a record pair’s similarity.

Distance-based techniques treat a record as a single long string and find

similar records by using one or more distance-based metrics which we

have described earlier when comparing individual fields for similar con-

tents [EIV07]. A record pair is considered similar if it passes a sim-

ilarity threshold. A disadvantage is that attributes are considered as

non-discriminative, hence, their embedded information (e.g., data type)

is not used during identification of similar records. Another disadvan-

tage is the problem of determining the correct threshold. If training

data is used, finding an appropriate threshold value is possible. But,

this would beat the purpose of offering a “no-user-involvement” strat-

egy.

Another strategy in this category is unsupervised learning. Typically,

manual labelling of record pairs can be bypassed with the use of clus-

tering algorithms. Clustering algorithms assume that similar records

correspond to the same class. Clustering can be presented as being hi-

erarchical or partitional. Hierarchical clustering “recursively finds nested

clusters” [Jai10] by agglomerative or divisive means, depicted as a den-

dogram. Agglomerative clustering places every data within a unique

cluster and progressively merges the clusters where the containing data

are similar. Divisive clustering takes on an opposite approach, starting

with a single cluster of all data and repeatedly dividing each cluster

based on the dissimilarity of its data. Conversely, partitional clustering

finds all clusters at once as partitions of data [Jai10].

So far, there is no single technique that can be the silver bullet, since one may

handle a single dimension of similarity. Hence, a combination of techniques may

be used to achieve better effectiveness.

CHAPTER 2. TECHNICAL CONTEXT 37

2.4.2 Improving Efficiency

Efficiency is related to how quickly the detection of common representations

across a set of data sources can be achieved. The näıve approach of comparing

every record in a table to every other of another table would require |Table1 |Ö
|Table2 | number of comparisons (with |.| denoting the number of records in a

table), and this can prove to be prohibitively costly [EIV07]. At a finer granular-

ity, comparisons may also be done between attributes of different tables [EIV07].

Owing to the potentially significant number of attributes any tables can have,

the total number of comparisons that must be performed can be large. Most

techniques that are concerned with efficiency aim at reducing the number of

comparisons needed between records, in the effort to reduce the time of comple-

tion. These proposals can be grouped into the following strategies [EIV07].

Blocking aims to reduce the number of record comparisons by limiting com-

parisons only to records within the same block [WMK+09, PI12]. Blocks are non

overlapping. Fundamentally, a block is a group of records which share the same

key, and this key represents a common criterion. A key can be a single record

attribute, a concatenation of values from multiple attributes or a calculated prod-

uct of a function (e.g., a hash function). A good blocking key is one that can

group similar values together. Similarity can be specified by some measure on a

particular characteristic, for example, similar sounding words or similar looking

words, which can be found using phonetic encoding functions such as Soundex,

NYSIIS, Double-Metaphone [Chr06]. Blocking can greatly improve efficiency.

However, it can also result in false negatives (correct results that are viewed as

incorrect) due to the fact that blocking separates what is viewed to be dissim-

ilar records from the very start, which is a result from the choice of similarity

function used, or an error in the blocking step, placing records in the wrong block.

Sorted neighbourhood makes the assumption that similar records can be

sorted according to some common characteristic. It comprises three steps: create

key, sort records and merge. At the beginning, relevant attributes or parts of

attributes are harnessed to produce a sorting key. Next, records are sorted into a

list based on the key, where attributes that are more likely to discriminate records

are placed earlier in the sorting key, specifying a given higher sorting preference.

Finally, during merging, comparisons are performed between records that are

grouped together in an invisible box, shifting down the sorted list. For example,

CHAPTER 2. TECHNICAL CONTEXT 38

if the size of the box is n (where n=2) records, the box shifts to receive a fresh

record, leaving the first one, and the pair of records in the box is compared. The

efficiency of sorted neighbourhood would be disrupted if the generated sorting

key does not place duplicates near one another. In cases like this, duplicates have

a very small chance to be found.

Clustering and canopies. A cluster is a group or collection of records that

shares some commonality. Instance-wise, a cluster is in particular a set of records

that point to the same object in the space of reality. Clustering is a strategy de-

vised on top of the concept that the duplicate relationship is transitive so if record

α and record β are duplicates, any record that is a duplicate of β, for example σ,

is also a duplicate of α. In concert with this perspective of transitivity, central to

clustering is the identification of connected nodes in an undirected graph, where

these nodes represent the transitive closure of the duplicate relationship. In basic

clustering, for every cluster, a record is elected as a representative. Any compar-

ison to find similarity is performed against this representative record. Hence, the

total number of record comparisons can be greatly reduced. The success of this

approach leans upon how well a representative can deputise for its cluster. Like

blocking, basic clustering adopts hard partitioning, where no record can belong

to more than one cluster and like blocking, false negatives may occur.

A proposal by McCallum et al. [MNU00] reduces the number of record compar-

isons by initially using a cheap approach to produce overlapping groups, namely

canopies, and then applying a more expensive method(s) to improve on the re-

sults. The success of canopies depends on the presence of a fast, inexpensive

method. Cohen et al. [CR02] use Term Frequency/Inverse Document Frequency

(TF/IDF) with canopies to cheaply calculate the distance between record pairs,

while Gravano et al. [GIJ+01] proposes q-gram as the costly distance measure. An

experimental comparison conducted by Baxter et al. [BCC03] showed canopies

to have higher completion time and improved quality than basic clustering.

Balancing between achieving effectiveness and efficiency is not straight-forward.

This decision is influenced by factors such as the goal of an application, the scale

of the data and the domain in which clustering is being used.

CHAPTER 2. TECHNICAL CONTEXT 39

2.5 User Feedback

Items of feedback are annotations that a user provides [BPF+11]. Feedback car-

ries a user’s knowledge of the domain. Feedback can be explicitly acquired, by

posing a question to a user or by letting a user freely annotate a set of presented

artefacts, or implicitly collected by unobtrusive ways. Irrespectively, at present,

feedback has been used for validation [MSD08] and learning [TJM+08] purposes,

with the aim of improving the quality of integration [BPF+11].

Belhajjame [BPF+11] highlighted two common assumptions, concerning user

feedback, that are impractical and can stunt any potential gains. The first as-

sumption is that, in a data integration system, only a single user is available, or

all users are interested in the same requirement. In reality, requirements may

differ by user. Inconsistencies in user requirements can occur and can cascade

to produce inconsistencies in feedback. The second assumption is that, user re-

quirements remain persistently unchanged. With changes in an organisation’s

policy or due to government law, it is inevitable for user requirements to undergo

change. Such changes may result in a contradiction between previous and later

requirements, accordingly, impeding necessary improvements.

2.5.1 Explicit

Belhajjame et al. [BPF+11] presented a list of the various dataspace artefacts

that have been used to tap into a user’s knowledge in an explicit manner (Table

2.1). An explicit item of feedback is specified on artefacts of an integration sys-

tem such as matchings [MSD08], mappings [JFH08], queries [CQCS10] or query

results [ACM+08, BPE+10, CVDN09, TJM+08]. It can come from a controlled

vocabulary or domain ontology. For example, it is not limited only to validating

via ‘true’ or ‘false’ answers, but it can also be used to learn by re-ordering result

tuples with ‘before’ or ‘after’ information. An open-ended feedback is where,

given two attributes of a relation, users are asked to provide a set of relevant

constraints.

A primary advantage of using explicit feedback is that guesswork on what the

user wishes to convey is avoidable. The reason is in the deliberate manner by

which the user provides the feedback; a single item of feedback on a specific arte-

fact. This eliminates ambiguity and establishes confidence. Another advantage

is that explicit feedback indirectly fosters awareness in users of their contribution

and role in the integration process. Such awareness can create a greater sense of

CHAPTER 2. TECHNICAL CONTEXT 40

Table 2.1: Explicit feedbacks with their corresponding artefacts in current proposals. [BPF+11]

Proposal Artefacts on which feed-
back is given

Set of terms used for annotating
artefacts

Alexe et al. [ACM+08] an instance of a given schema
and the instance obtained by
its transformation into another
schema

{‘yes’, ‘no’} used to comment on
schema transformation

Belhajjame et al. [BPE+10]
a result tuple {‘true positive’, ‘false positive’, ‘false

negative’}
an attribute and its value {‘true positive’, ‘false positive’, ‘false

negative’}

Cao et al. [CQCS10]
a candidate query {‘true positive’, ‘false positive’}
a pair of candidate queries {‘before’, ‘after’} used for ordering

queries
Chai et al. [CVDN09] a view result tuple {‘insert’, ‘delete’, ‘update’}
Jeffery et al. [JFH08] a mapping {‘true positive’, ‘false positive’}

McCann et al. [MSD08]
a relation attribute set of attribute data types
two attributes of a given rela-
tion

set of constraints

a match {‘true positive’, ‘false positive’}

Talukdar et al. [TJM+08]
a result tuple {‘true positive’, ‘false positive’}
a pair of result tuples {‘before’, ‘after’} used for ordering re-

sults

ownership, and potentially encourages users to pay more, hence, speeding up the

maturity of the system.

Nevertheless, explicit feedback is limited in amount. Every given item of

feedback bears the cost of the time that has to be spent in its provision. For

this reason, asking for feedback should only be when necessary. This leads to the

question of what feedback and on which artefact would generate the best outcome

with the smallest cost. Asking for the right feedback is as essential as asking it

on the right artefact. Serious thinking has to be put into what information would

we like to solicit from users. Also, which artefact would deliver greater impact

on the overall quality of an integration if the opportunity is given to engage with

the knowledge of human experts.

Another form of feedback has been explored, namely implicit feedback, which

we address in Section 2.5.2. It is by no means intended to replace explicit feed-

back, instead it is complementary by providing additional information at no cost.

2.5.2 Implicit

Implicit feedback is information that can be collected in an unobtrusive manner

by observing a user’s regular behaviour and interaction with a system [KT03].

Implicit feedback has been argued to be generally less accurate than explicit feed-

back [Nic97], but others have argued that its abundance and no-payment policy

for users is an interesting alternative to explicit feedback [KT03, OK01]. Due to

CHAPTER 2. TECHNICAL CONTEXT 41

the absence of classification on implicit feedback in the literature, we propose a

classification that extends Belhajjame’s [BPF+11], but presents properties that

are relevant to implicit feedback (Table 2.2).

Table 2.2: Objects used to imply user feedback.

Proposal Objects used to imply feedback Part of the object used
Maskat et al. [MPE12] query logs terms in a query’s condition clause
Yakout et al. [YEE+10] transaction logs transaction data e.g., products bought
Iofciu et al. [IFAB11] set of tags the tag itself
Tran et al. [TMC12] list of entity descriptions the description itself

Implicit feedback is inferred from existing artefacts/objects of an integration

system. Examples include query logs [MPE12], transaction logs [YEE+10], a set

of tagging activities [IFAB11] and a list of RDF entity descriptions [TMC12].

An object can contribute information by two means. The first mean is from the

information that it holds, e.g., a term used by a query’s condition clause or the

occurrence of specific data in a transaction. The second mean is through the

object itself, e.g., the frequency of tagging, and the merging of entity descriptions

in RDF.

The advantages of using implicit feedback are a) it requires no additional ac-

tivities to be performed by the user, hence, no extra costs; b) the user is unaware

of any feedback-gathering exercises – in other words, it is unobtrusive; and c) it

is an untapped wealth of available information. Unfortunately, implicit feedback

can be imprecise, considering it is not a clear, definitive user-given answer. Using

objects that are by-products of a user’s interaction with an integration system

relies substantially on a high degree of effort to infer a conclusion from the inter-

actions.

In our work we use explicit feedback that provides information if a pair of

records are (or are not) representing the same real world object inferred. We also

use implicit feedback in the form of query logs to infer the information requirement

of users.

In the next subsection, we briefly discuss a recently introduced form of explicit

user feedback that is being explored in integration systems, namely crowdsourc-

ing.

2.5.3 Crowdsourcing

Crowdsourcing is “the process of obtaining needed services, ideas, or content

by soliciting contributions from a large group of people, and especially from an

CHAPTER 2. TECHNICAL CONTEXT 42

online community, rather than from traditional employees or suppliers”1. We

view crowdsourcing as a mass form of explicit feedback supplied by experts with

interest either in the contents of the information system (stakeholder) or in

the monetary incentives (non-stakeholder) offered. A recent survey [CFM+14]

analyses proposals that chose to engage the power of the crowd for different

data management-related tasks, such as confirming mappings [PF13], matchings

[MSD08, ZCJC13, HTMA13] and classifications [SLB12]; or providing values for

filtering [PGMP+12] and data mining [AGMS13]. In Table 2.3 we only list pro-

posals from the survey which have instance integration-related crowd tasks, and

have left the rest for interested readers.

Table 2.3: Crowdsourcing proposals regarding instance integration.

Proposal Crowd members Crowd tasks
ZenCrowd [DDCM13] non-stakeholders confirm value
Silk [IB13] stakeholders confirm value
Whang et al. [WLGM13] - confirm value
CrowdER [WKFF12] non-stakeholders confirm value

Owing to the enlisting of non-stakeholders and the offering of monetary incen-

tives, crowdsourcing has specific issues to consider. Some of them are a) how

critical is the subject to be worth having money offered to get an answer?

b) since there are costs related, how do we get the most benefits from the crowd

[DKMR13, WLGM13, JSD+13]? c) what is a good, acceptable size for a crowd

such that there is confidence in the received consensus? d) do all crowd members

have the same level of expertise and performance? If not, then how to identify

and discriminate them [JGMP13]? e) how confident are we of the result of a

crowd task, in terms of its accuracy [JGMP13, DKMR13, WLGM13]?

It is not surprising that the manner we expect a user to provide feedback in

our setting resembles that of crowdsourcing — on records and explicit in nature.

However, the incentives offered to entice feedback differ. With crowdsourcing,

money is involved apart from the expected improvement in integration quality,

whereas our users are promised only the latter. It is possible to view the type of

feedback we requested to also be obtainable from crowds with the purpose of re-

solving the similarity between entities [WKFF12, WLGM13, WMGM, GDD+14,

JSD+13, FKK+11].

1http://www.merriam-webster.com/dictionary/crowdsourcing

CHAPTER 2. TECHNICAL CONTEXT 43

2.6 Dataspace Architecture

Several proposals for dataspace architectures [JFH08, BDG+07, FHM05, HBM+12,

MCD+07, DS06] have been presented. In general, these proposals have the com-

ponents essential to a dataspace, such as schema matcher, mapping or view gen-

erator, and query reformulator. For ease of understanding, we refer to DSToolkit

as a reference architecture for a dataspace, functioning as a template. We revised

the architecture to show the interplay of the operations for ranking of mappings

and instance integration with the rest of the architecture, implying that our pro-

posal could also be useful in other dataspaces simply by mapping components

to DSToolkit. DSToolkit is the first dataspace management system built on top

of model management principles. For this reason, DSToolkit offers easy man-

agement of heterogeneous schemas; automatic initialisation, maintenance and

improvement; the ability to provide feedback on query result tuples; rewriting of

queries that users posed over a global schema; and annotation and refinement of

mappings. This makes DSToolkit a comprehensive framework to be generalised.

DSToolkit (Figure 2.1) consists of four layers: Dataspace, Connectivity, Service

and Presentation. The Dataspace layer holds data about all relevant artefacts,

i.e., schemas, matchings, mappings, user queries and user feedback, while the

Connectivity layer describes access methods and is irrelevant to our work, hence

it is not discussed here. The Service layer has all the actual functionality offered,

such as model management operators, query processor, techniques for annotating,

selecting and refining mappings with relation to a given user feedback; and the

Presentation layer is the graphical interface for the interaction with users.

DSToolkit builds on model management [ABBG09] for many of its abilities to

produce and manipulate dataspace artefacts. By extending from operators found

in model management, DSToolkit is able to offer automatic initialisation, which

includes matching of schemas (Match), inferring of correspondences (InferCorre-

spondence) and generating of views (ViewGen).

Post-initialisation in DSToolkit shows a tight connection between query ex-

pansion and mapping selection. In essence, any queries posed over one or more

global schemas must be transformed into queries executable over each relevant

data source. To do this, the posed queries are expanded by using unfolding tech-

niques [Hal01], taking into account suitable mappings. Given the availability of

multiple suitable mappings, and the absence of any knowledge of which mapping

best satisfies a user’s needs, the expansion can grow into sizeable proportions,

CHAPTER 2. TECHNICAL CONTEXT 44

Figure 2.1: DSToolkit architecture [HBM+12].

since all suitable mappings are included. Such an elaborated expansion may re-

sult in many queries to be run on local sources. Some of these queries may return

unwanted results, indicating unsuitable combination of mappings. DSToolkit

manages this by inviting users to give feedback, in the form of validation, on

the result tuples returned by such mappings. This then annotates the respective

mappings based on how well their returned tuples meet user requirements. The

gathered feedback helps in the next iteration of mapping selection decision.

We revise DSToolkit’s original architecture (Figure 2.2) to include ranking of

mappings and instance integration. Using automatic methods, mappings can be

easily generated in large numbers. As we have discussed earlier, not all mappings

are interesting to users. This may leave users with a large pool of result tuples,

where potentially a considerable amount can be viewed as noise. We proposed to

rank the mappings based on how close a mapping is to fulfilling a user’s informa-

tion need. Our assumption is that a user’s information need can be guessed from

terms that are found in a query’s conditional clauses that a user has posed (refer

RH1b of Section 1.3). Given M a set of candidate mappings, Q a set of query

logs, the operation rank mappings takes M and Q and produces a list of ranked

mappings M ′. This ‘improvement’ process can be repeated at specific intervals

or as and when a condition is met.

When a user poses a query, the returned result tuples, in most cases, will con-

tain duplicate records. To provide users with a single view of data, these dupli-

cates must be resolved. Resolving instances requires the identification of similar

CHAPTER 2. TECHNICAL CONTEXT 45

Figure 2.2: Revised DSToolkit architecture.

records which refer to the same object in the real world. Resolving instances can

be initiated by a user after they have posed a query, or it could be automatically

executed after every user query. The operation resolve instances receives R, a

set of records that contains duplicates, and generates a set of resolved records R′.

However, the degree of resolution is algorithm-dependent and may not comply

with the actual truth. Although the degree of resolution should go hand-in-hand

with the degree of compliance with the ground truth, the complete elimination

of duplicates is near to impossible. Hence, we use the term “partly-resolved set of

records” for R′ to indicate the presence of non-compliance in the record set. We

view this function as part of a usage-type of task, because resolution can occur

without any improvements being made.

In dataspaces, giving feedback is not mandatory. However, users have been

made aware that without any feedback from them, it is impossible to have im-

provements to the integration quality. An operation for this process would be to

annotate tuples which has R′, a set of partly-resolved records, and F , a set of

feedback for each relevant record pair, as input and produces RA, a set of an-

notated partly-resolved records. In order to transform R′ to be more compliant

with the ground truth, we proposed the improve integration operation which uses

information found in RA to improve R′, and produce RR, a set of further resolved

CHAPTER 2. TECHNICAL CONTEXT 46

records and increasingly compliant to the ground truth. It is favourable to have

a continuous cycle between the three operators so as to fulfil the pay-as-you-go

principles of a dataspace.

2.7 Summary and Conclusions

In this chapter, we presented the technical context of a dataspace system, per-

taining to the scope of our research. We started with a description of the many

different forms of heterogeneity problems which compromise the quality of a result

(Section 2.1). Then, we described the main artefacts of a dataspace (i.e., match-

ing, mapping) in Section 2.2 and 2.3, discussed one of its important processes

(i.e., instance integration) in Section 2.4 and illustrated a significant and useful

device, the user feedback, in Section 2.5. The effectiveness and efficiency of inte-

grating instances in dataspace are imperative to produce good and timely results

and striking a balance is proven to be a challenge. These we have described in

this chapter’s Subsections 2.4.1 and 2.4.2. User feedback, be it implicitly recov-

ered or explicitly requested, is a valuable component of dataspaces and one which

we have investigated in this PhD. The large amount of typically readily available

implicit feedback, in the form of query logs, has made it useful in finding rele-

vant instances retrieved through mappings. We explain this proposed approach

in Chapter 3. Feedback intentionally provided by a user on a dataspace’s artefact

is considered explicitly collected. With precise information from the user on their

knowledge of the domain, we applied this for validating instance match. This

is described in Chapter 4. We completed this chapter by illustrating where in a

general dataspace architecture our proposals would reside and describe the role

they play in relation to other components in a dataspace. We also described some

existing work on dataspaces.

Chapter 3

Ranking

(Semi-)Automatically-generated

Mappings

Innate to users is a need for information that is useful to them to complete

some tasks. There exist at least two paradigms that describe information needs

[Col11, Bro02]. The popular, widely-used computer science paradigm is that users

seek to obtain answers that meet their needs by posing well-defined questions, in

the form of queries, to an information system. Conversely, information science

carries the view of information need as ‘unknowable’ [Col11] and ‘unspecifiable’

[Col11] by users, much like a ‘black box’ [Col11]. In our research, we adopted

the computer science paradigm because a need for information is often triggered

from a requirement in the real world that is comprehensible by a human. This

requirement, with the help of users, motivates the very use and construction of

an information system as can be found in any system development models. The

need for information is typically maintained by the user in the form of high-level

human language and is translated into a form comprehensible by information

systems to be retrieved, which is the query language. These suggest that users

are equipped with the understanding of what information they require from an

information system – supporting the computer science paradigm on information.

We direct the reader’s attention to Section 1.1 for a working example of the

challenge in identifying instances that can be relevant to a user’s information need.

Central to satisfying information need in a dataspace is the proper handling of

semantic mappings. As described in Chapter 2, a semantic mapping represents

a correspondence between elements in a global schema to a local schema, where

47

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 48

this correspondence indicates the notion of similarity. With semantic mappings

being generated (semi-)automatically in dataspaces, the number of mappings

can become numerous, with overlapping extensions, which may not satisfy the

information need of a user.

We illustrate this condition with a näıve example. In this example we consider

the task of selecting mappings as a black box. Let us consider three mappings

that have been generated by a dataspace. The first, m1, selects all records of

European cities, while the second, m2, contains information on African cities.

Both mappings are of the type basic mappings [BPE+10]. After some time, a

refinement takes place and m3 is produced as a union of m1 and m2 (a refined

mapping can be produced by combining existing mappings using one or more of

the union, join, difference, intersection and selection operators [BPE+10]). As

a result, cross-sourced mappings and single-sourced mappings with a narrower

extent emerge. Later, a user poses a query, requesting information on European

cities which have a population of more than 35,000. Through some selection

process, m1 and m3 are selected for execution, and as a result, false positives are

deposited into the result set through m3.

Since not all mappings are relevant to a user’s need of information, we view

this problem as that of ranking mappings based on their relevance to a user’s

information need (RH1a). With ranking, a) a subset of mappings can be selected

for evaluating a user’s request [MPE12]; b) an order of evaluating mappings can be

selected, where results are incrementally produced for user inspection [MPE12];

c) the number of mappings candidates can be reduced for other forms of pay-as-

you-go manipulation of mappings, such as refinement and selection1; and d) the

search space during instance integration can be reduced, which improves perfor-

mance. Our hypotheses RH1b and RH1c (refer Section 1.3) state that semantic

mappings can be ranked based on their relevance to a user’s information need

specified by the terms found in queries.

In this chapter, we present our proposed approach, which utilises a commonly-

used relevance ranking technique, the TF-IDF which we have adapted to suit

our needs. Additionally, we have conducted two empirical evaluations to test

our approach, in order to understand i) how stable rankings can be achieved

when different log sizes are used (RQ2 of Section 1.3); and ii) how the produced

rankings track query patterns that are skewed towards specific sources (RQ3 in

Section 1.3).

1Mapping selection is an entire research area of its own and is not part of our research. Recent work includes
[BPE+10, HBP+11, FHH+09, EEL11, ABMM07, ACM+08, XE06].

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 49

This chapter is structured as follows. Section 3.1 introduces our proposal,

followed by Section 3.2 that describes experiments designed for evaluating the

feasibility of using implicit feedback to rank mappings. Section 3.3 illustrates

existing work that are related to our approach. In Section 3.4 we briefly discuss

the relationship of work in this chapter with our subsequent chapters. Section

3.5 summarises the whole chapter.

3.1 Our Proposed Ranking Approach

This research has the aim of investigating the use of pay-as-you-go approaches

for instance level data integration, particularly that involve the identification of

relevant instances and duplicates. The first of the two objectives that was formed

to achieve this aim is to design an approach that ranks mappings based on their

relevance to a user’s information needs (refer O1 of Section 1.4).

Underpinning our approach is the hypothesis that a user’s information need

can be relayed by terms discovered in queries (RH1b), and in turn, these terms

can be used to identify which mappings best fulfils this need (RH1c). Hence, this

approach aims to filter out irrelevant records by ranking these mappings, so as

to produce records that meet user’s information need.

3.1.1 Using Terms from Query Logs to Rank Mappings

A user’s request for information is assumed to be in the form of a query. A basic

Structured Query Language (SQL) query can contain one or more where clause(s)

which specify the condition(s) that a user wishes the system to adhere to. For

example,

select name, address

from physicians

where position = "doctor"

and gender = "female"

and country = "United Kingdom"

where this query asks for the name and address of female medical officers resid-

ing in the UK. The use of the logical operator AND makes certain that if any

of the conditions are not met, no records would be returned; while an OR logical

operator relaxes this rule and allows for at least one of the conditions to be sat-

isfied. The equality comparison operator suggests that the returned information

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 50

must satisfy a precise condition. Other comparison operators in SQL2 include

inequality, greater than, lesser than, list of values, inclusive of two values, pattern

matching, null test and non-null test. For this proof of concept, we have chosen

to investigate only on equality operator while the rest of the operators are left

for future work. The reason being the equality operator specifically conveys the

information that a user wants. In contrast, for example, an inequality operator

per se conveys what a user does not require but without any helpful information

about what exactly that the user needs. Hence, to use inequality necessitates fur-

ther examination of the SQL SELECT statement which embeds it and demands

a deeper understanding of their semantic association.

In principle, mappings are views that produce a set of records that satisfy

a user’s information need. In reality, this is not always true. A mapping can

produce false positives in its result that may not satisfy this need of information.

Nevertheless, we can relate terms found in queries to the results produced by

mappings and hence can use these terms to rank mappings that produce the

most relevant record set. We hypothesise that the rarity of terms found in a

semantic mapping’s extent can indicate how relevant the mapping is to a user’s

information need (RH1d). We use TF-IDF and a variant to give scores to the

mappings in order to rank them.

3.1.2 Term Frequency/Inverse Document Frequency

TF-IDF is a weighting scheme that is widely used to rank documents based on

their relevance to some search terms. A term t in document d can be assigned

different weights, depending on the following rules.

� Lowest weight when t appears in nearly all documents, implying that it has

no discriminating effect;

� Lower weight when t scarcely exists in a document or exists in many docu-

ments; and

� Highest weight when t is frequently present in a small number of documents,

which indicates the differentiating role of t.

TF-IDF builds upon two weighting schemes, the Term Frequency (Equation

3.1) and the Inverse Document Frequency (Equation 3.2), where Term Frequency

is the number of occurrences of term t in document d,

2http://www.tutorialspoint.com/sql/sql-operators.htm

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 51

tf(t, d) (3.1)

and Inverse Document Frequency is defined as,

idf(t) = log
|D|
df(t)

(3.2)

where |D| is the total number of documents in the corpus D, and df(t) is the

number of documents in D that contain t (a.k.a. document frequency). Here, idf

is used instead of regular document frequency. This is to further reveal rare terms

and award them with a high weight, and simultaneously to soften any influence

that frequent terms have, hence, a low weight is given.

In Table 3.1, we echo the example presented by Manning [MRS08]. The ex-

ample compares the effects of document frequency (df) and inverse document

frequency (idf) when seeking relevance from a collection of documents owned by

Reuters, which has a total of 806,791 documents. With df , the rare term auto re-

ceives the lowest value because it does not frequently appear in many documents,

while best was counted to occur 25,235 times; but with idf , best is not viewed to

be discriminative and does not help in narrowing down the search to documents

that are more likely to focus on it as the main subject.

Table 3.1: Comparison of df and idf values of Reuters collection [MRS08]

Term df idf
car 18,165 1.65
auto 6,723 2.08
insurance 19,241 1.62
best 25,235 1.5

By combining term frequency and inverse document frequency, TF-IDF (Equa-

tion 3.3) can be defined as,

TF–IDF (t, d) = tf(t, d)× idf(t) (3.3)

which specifies that TF-IDF is the product of the Term Frequency and the Inverse

Document Frequency. This score increases in proportion to the number of times

a word is found in the document, but is offset by the inverse frequency of the

word in the corpus, which adjusts to stop words (frequently-appearing words e.g.,

the, is, that, etc.).

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 52

3.1.3 Applying TF-IDF to Score Mappings

To apply TF-IDF in our setting, we ignore any structure in the mapping’s result

set, and represent it as an unstructured document. Terms found in query logs

which are used with an equality operator are extracted and placed as a search

string. We adopt the view that terms in queries are evidential signs of a user’s

interest in seeking them regardless of the setting. As an example, assuming a user

posts a query for S. pombe genes over a gene table, we should expect that the

user may also be interested to find S. pombe proteins in proteomics experiments,

where such an interest is expressed in a different query. Also, we disregard any

stop words, considering the values were originally collected for database attributes

where mostly were short and concise descriptions as compared to longer and fuller

sentences of the natural language. We show in equation 3.4 how we apply TF-

IDF to produce a score for each mapping. A mapping belongs to a collection of

mappings that a dataspace has, regardless by manual or (semi-)automatic method

of generation. Scoring mappings using TF-IDF involves scanning through the

extent of each mapping m (i.e., extent(m)) and calculating the frequency of each

relevant term t found in query log l. An extent of a mapping consists of a set

of instances that corresponds to the criteria defined by the mapping’s underlying

query definition.

TF–IDFScore(l,m) =
∑
t∈l

TF–IDF (t, extent(m)) (3.4)

Size-normalised TF-IDF for Scoring Mappings

An important notion relating to a mapping is its size. The size of a mapping

is the total number of terms that exists in a mapping’s extent to describe the

mapping’s condition of being larger or smaller. The portion of relevant terms

found in a mapping’s extent is relative to the mapping’s size (Equation 3.5).

Portion of relevant terms =
Total relevant terms

Mapping size
(3.5)

It is important to take into account that a larger mapping may not necessarily

contain a higher portion of relevant terms when compared to a smaller mapping.

We illustrate this condition using the following case.

Case 1 : Consider two mappings m1 and m2, where m1 has a size of 1000, indi-

cating that it contains 1000 terms. From m1 ’s size 100 are relevant terms. m2

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 53

has 50 relevant terms out of a total of 200 terms. If all terms are assumed to be

equally discriminating, and if both mappings have the same idf value, e.g. 0.1,

by using this formula the larger mapping, m1, would be ranked higher. Using the

TF-IDF formula in equation 3.4, we calculate the ranking score for mappings m1

and m2.

Scorem1 : 100× 0.1 = 10

Scorem2 : 50× 0.1 = 5

Viewing at a finer level, we could see that m1 has only 10% relevant terms while

m2 has 25%, thus ranking m1 higher than m2 is counterintuitive.

Relevancem1 :
100
1000

×100% = 10%

Relevancem2 :
50
200

×100% = 25%

To capture this fraction of relevance of a mapping’s extent, we now propose

a variation to TF-IDF, which aims to normalise the effects of a mapping’s size

on the decision to rank. We define the Size-Normalised (SN) TF-IDF (Equation

3.6) as:

TF–IDFScoreSN(l,m) =
∑
t∈l

(
TF–IDF (t, extent(m))

size(m)
× log(size(m))

)
(3.6)

where size(m) is the total number of terms, relevant or otherwise, which are con-

tained in a mapping’s result. The result that we would obtain would be in favour

of a mapping that has more relevant terms, which in our example is m2, instead

of mappings that contain more terms. The introduction of log(size(m)) in the

equation is to magnify the value of the scores to better see the subtle character-

istics of the graph. An application of using logarithm with the same purpose was

found in [KHWL93]. The difference is the values were expressed as a logarithm.

In our scenario, this approach was found unsuitable because it yielded negative

values. As a result, we use logarithm as a multiplication to the scores.

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 54

Scorem1 :
(100×0.1)

1000
× log(1000) = 0.03

Scorem2 :
(50×0.1)

200
× log(200) = 0.057

We do not claim that one scoring scheme is better than the other, but instead

the distinct features of the resulting mappings are highlighted here, leading to

the use of both scoring schemes in our experiments.

3.2 Experiments

We present an empirical evaluation that we have conducted on our proposed ap-

proach with the aim of answering the questions of a) how quickly stable rankings

can be achieved when different log sizes are used (RQ2); and b) how the produced

rankings track query patterns that are skewed towards specific sources (RQ3).

3.2.1 Experimental Setup

Data from two publicly-available life science databases were used for this inves-

tigation (the Stanford Microarray Database and ArrayExpress), which describes

experiments conducted on Saccharomyces Cerevisiae (a.k.a. bakers yeast). These

data were uploaded into a Postgres DBMS, where one table represents the experi-

ments in ArrayExpress and two tables represent the Experiment and Result tables

of the Stanford Microarray database. Additionally, another table was created to

represent a global schema.

Experimentation was conducted on ten mappings which we have manually

created, where three are basic mappings (directly map the source tables to the

global schema), and there are seven refined mappings (combine mappings using a

union, join, intersection or selection operator [BPE+10]). Resonating with exist-

ing mapping-generating tools, e.g., Clio [FHH+09, HHH+05], our mappings were

formed to exhibit a systematic exploration of alternative derivations of mappings,

where refined mappings are built from the basic mappings with the use of a col-

lection of operators. In this spirit, we have applied the difference operator in

Mappings 7 and 8 (Table 3.2) where for each mapping the first set is Mapping 4

and 5 respectively, and the second set is a collection of nameless genes stored in

an auxiliary table. These genes, to which biologists have not given any names, go

by their Open Reading Frame (ORF) identifier, e.g., YHR089C. Another manner

of producing refined mappings is by combining existing refined mappings using

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 55

Table 3.2: Mapping descriptions

Type Mapping Description
Basic 1 SELECT all experiments from Stanford Experiment table.
Basic 2 SELECT all experiments from Stanford Result table.
Basic 3 SELECT all experiments from ArrayExpress table.
Refined 4 JOIN tables Experiment and Result in Stanford and SELECT

experiments of type limit.
Refined 5 SELECT experiments of types limit, growth, genotype and time

in ArrayExpress.
Refined 6 UNION result sets from Stanford (Mapping 4) and ArrayExpress

(Mapping 5).
Refined 7 SELECT experiments in Stanford (Mapping 4) and perform a

DIFFERENCE with a relation containing nameless genes.
Refined 8 SELECT experiments in ArrayExpress (Mapping 5) and DIF-

FERENCE with a relation of nameless genes.
Refined 9 UNION Mapping 7 (Stanford) and Mapping 8 (ArrayExpress).
Refined 10 SELECT experiments conducted on yeast gene located on the

Watson strand from Mapping 9.

Table 3.3: Mapping sizes based on total number of terms

Mapping Size
1 18,047
2 36,561
3 106,876
4 199,737
5 75,379
6 255,940
7 182,213
8 73,031
9 255,201
10 126,052

the earlier stated operators [BPE+10]. We performed this by producing Mapping

6 as the union of Mappings 4 and 5, and the union of Mappings 7 and 8 to

produce Mapping 9.

Table 3.3 shows the sizes of all ten mappings based on the number of terms in

each mapping’s set of results. The sizes are in accord to the operations conducted

to form the mappings. For example, Mapping 5’s size is 75,379 as it is a subset

of Mapping 3 which has a size of 106,876. Another example is Mapping 6, having

size 255,940, is the result of a union between Mappings 4 (size 199,737) and 5

(size 75,379) with duplicates removed. Our assumption is a single data source

does not host duplicates but they exist across data sources. The decision to not

consider duplicates is because by having them the rarity of some terms would

dampen, thus influencing the resulting order of rankings. These characteristics

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 56

Algorithm 1 Query log file generator for Experiment 1

1: Create log file log if it does not exist
2: for i = 1 → 100 do
3: columnname = select random column from global schema
4: tuplelist = get all tuples from global schema where column name equals to columnname
5: value = select random tuple from tuplelist
6: append value into log
7: end for

are also inherent in Mapping 9.

Determining relevance of mappings is a difficult task. Each user has a specific

information need in the form of a ground truth that cannot be generalised over

all users. Based on this premise, we evaluate not the correctness of the ranking

(i.e., the determination of which mapping is more relevant than another), but

instead focus on evaluations that inspect a) the stability of the produced rankings

when feedback amount gradually increases (RQ2); and b) the extent to which the

rankings are able to reflect the concentration of query patterns in a particular

source (RQ3).

3.2.2 Experiment 1: Effects of Varying Query Log Size

Our first evaluation investigates the question of how different sizes of query log

affect the ranking score (RQ2). In other words, what is the amount of implicit

feedback that would produce stable ranking? We describe the expression stable

as a situation where the order of mappings, in rank, is generally consistent across

varying sizes of query logs.

To perform our evaluation, we generated synthetic queries from our homegrown

generator. The random terms injected into each of these query are extracted from

a global schema and each term simulates a literal that can be found in a query’s

conditional clause. As we have stated earlier, in our research, we only consider

equality-based conditional clauses hence the synthetic queries we have generated

are exclusively of this type. A more detailed description of this extraction process

is provided in Algorithm 1. Emulating the growth of a log file over different points

in time, we produced 10 log files to represent the different snapshots. The smallest

file has 100 values, and for each consecutive file an increment of 100 was applied,

until the largest file of 1000 values was produced.

We calculated the ranking by using both of the described scoring schemes;

each evaluation was run five times and the average of the scores was plotted in

Figures 3.1a and 3.1b. To see how precise our estimates are of the scores, we

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 57

calculated the variance and present it in Figures 3.2a and 3.2b. The following are

descriptions of the results.

(a) Rankings

(b) Variance

Figure 3.1: TF-IDF Ranking Score for All Mappings.

� From Figure 3.1a we can observe that there is an upward trend in the TF-IDF

scores for all mappings as more terms are introduced through the individual

query logs. This indicates that a TF-IDF’s score hinges upon the total of

the scores that each term in the log obtains.

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 58

(a) Rankings

(b) Variance

Figure 3.2: Size-Normalised TF-IDF Ranking Score for All Mappings.

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 59

� We could also observe that most of the mappings generally retain their sta-

bility across different log sizes and stability was achieved even from quite

small query logs, as evident from log size 500 and larger. Stability describes

the condition where the order of the rankings is generally unchanged.

� There is a noticeable surge of TF-IDF score for mappings 6, 9, 4, 7 and 10 of

Figure 3.1a, particularly between log sizes of 400 to 500. Closer inspection

revealed that the mappings uniformly contain a few terms that incidentally

appear in great numbers in the extent of the mappings, contributing to the

high term frequency score; while many of the terms in the extent have low

frequency.

� The varied TF-IDF scores of the mappings, where some are much higher

than another, highlights the dependency of term frequency on mapping size.

� Mappings that received top rankings are not influenced by the sources that

they described but by the randomly selected terms that they contained and

the number of these terms in their extents.

� From Figure 3.1b, we can observe that in general the scores of all mappings

have a small variance, suggesting a high confidence of the preciseness of our

estimates of the scores.

Figures 3.2a and 3.2b show the results of our evaluation when mapping size is

normalised.

� From Figure 3.2a we recorded a rise in the size-normalised TF-IDF score

for all mappings when increasing sizes of query logs are supplied. With

size-normalised TF-IDF, Mapping 3 is considered to be more relevant than

Mapping 6. Owning fewer relevant terms than Mapping 6, Mapping 3 how-

ever, has a higher fraction of relevant terms in relation to its mapping size

of 106,876 while Mapping 6 has a size of 255,940.

� Stability-wise, from quite small-sized query logs, this was achieved with size-

normalised TF-IDF. This is demonstrated by the steady upward trend in the

score, and in this case stability is reached slightly earlier at log size 400.

� The presence of sharp increases in the score is because of the high frequency

that some terms produce. This is also found in the non-normalised TF-IDF.

� Top ranking mappings are affected by the fraction of relevant terms found

in their extent, whereby these terms were chosen at random during query

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 60

generation. Hence, there is no correlation between a mapping’s ranking with

its underlying data source.

� In terms of how precise our estimates are of the produced scores, from Figure

3.2b we can observe that a small variance is found in all mappings. This

suggests a high confidence that our estimates of the scores are precise.

From the results obtained in Experiment 1, we can make several conclusions.

The first conclusion is that both scoring schemes produced stable rankings at

small query log sizes. The second conclusion is each scoring scheme portrayed

different features of the produced mappings, thus we make no claim that one

scheme is better than the other. The third conclusion is small variance was found

in our generated ranking scores, suggesting a high confidence in the preciseness

of our estimates from the two scoring schemes.

3.2.3 Experiment 2: Effects of Varying Query Log Skew

To fulfil the second part of our objective, we investigate how rankings track query

patterns that are skewed towards specific sources (RQ3). The premise is that

there are patterns more used in certain data sources than others, which forms a

concentration of terms. The question is whether the proposed ranking technique

would be able to reflect this skewed characteristic.

We define the skew of a query log l in relation to a source s to be the fraction

of the queries in l that feature terms that are exclusive to s (Equation 3.7):

Skew(l, s) =
Nls

Nl

(3.7)

where Nls is the number of queries in the query log that reference only terms in

s and Nl is the total number of queries in the log.

To evaluate the ranking behaviour when dealing with skew, 21 query logs were

produced from the log file generator described in Algorithm 2. Each file holds 500

queries which contain a different number of embedded terms that are exclusive

to one of the data sources, demonstrating its level of skew. For example, a log

containing 50 terms exclusive to ArrayExpress suggests an ArrayExpress-skew of

10%, complemented with 450 Stanford-exclusive terms which depicts a Stanford-

skew of 90%. We casted an interval of 5% skew across the generated 21 log files,

such that the first file presents 100% Stanford-exclusive queries, followed by a

log file of 5% ArrayExpress-exclusive queries and 95% Stanford-exclusive queries,

ending with a log file that contains 100% ArrayExpress-exclusive queries. No

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 61

Table 3.4: Mappings and their exclusivity to one or more data sources.

Mapping Exclusivity
1 Stanford
2 Stanford
3 ArrayExpress
4 Stanford
5 ArrayExpress
6 Neutral
7 Stanford
8 ArrayExpress
9 Neutral
10 Neutral

non-exclusive queries were selected. The reason behind this is the adding of non-

exclusive queries would make the controlling of skew level to become difficult.

Exclusivity to a particular data source applies not only to queries in logs but

also mappings. In Table 3.4 we list down all ten mappings and their exclusivity

to which data source. Mappings 6, 9 and 10 have a neutral exclusivity due to the

fact that their underlying data sources are both Stanford and ArrayExpress.

Algorithm 2 Log File Generator for Skewed Logs

1: Input: skew1 integer
2: Input: skew2 integer
3: Create log file log
4: for i = 1 → skew1 do
5: valuelist = get all values from the global schema produced by (Mapping 1 or Mapping 2)

but not Mapping 3
6: value = choose a value at random from valuelist
7: append value into log
8: end for
9: for i = 1 → skew2 do

10: valuelist = get all values from the global schema produced by Mapping 3 but not (Map-
ping 1 or Mapping 2)

11: value = choose a value at random from valuelist
12: append value into log
13: end for

Five runs were made and the average was calculated. Figures 3.3a and 3.4a

present the trend of the resulting rankings when each of our scoring schemes is

used, while in Tables 3.5 and 3.6 show the rankings’ order and their exclusivity

to a specific data source. We display the variance in Figures 3.3b and 3.4b. For

better viewing, we included in Appendix A Figure 3.3a divided into four quarters

across the different levels of the query logs and in Appendix B we displayed Figure

3.3a in a similar manner. The following is the full description of our obtained

result.

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 62

� We observe that the TF-IDF score for basic mappings, Mappings 1, 2 and 3,

grows steadily as the skew towards its specific source increases. This could

also be observed with refined mappings for their specific skew source.

� Neutral mappings are fairly stable in their order of rank as the query logs

become more skewed (Tables 3.5 and 3.6).

� Comparing the rankings at 50%-50% skew with our first experiment, we can

see that the TF-IDF scores are significantly lower. This is caused by the

exclusivity of terms in the query log to only one data source, reducing the

number of times a term can be found. In other words, terms shared between

both sources, which can be found in Experiment 1, are no longer present,

leaving a smaller group of terms, with lower average frequencies.

� In both the results for TF-IDF and size-normalised TF-IDF, Mapping 3,

which is biased to ArrayExpress, was ranked highest even when the skew

is towards Stanford. This can be seen with log file having ArrayExpress-

prone terms as small as 20% when TF-IDF scoring is used; and 15% for

size-normalised TF-IDF scoring. The cause in the former scoring strategy

is the presence of the largest amount of relevant data, while taking into

account that some terms are more discriminating than others; and in the

latter scoring strategy the demonstration of the highest fraction of relevant

data, also taking into account that some terms are more discriminating than

others.

Such skew is due to properties that are unique to each mapping in relation

to the range of values that the mapping contains. Other score-determining

factors include a mapping’s size and frequency of terms.

� From Figures 3.3b and 3.4b, it could be observed that we obtained a high

confidence that our estimated scores are precise from the small variance

found in all ten mappings.

Several conclusions can be drawn from the results obtained through Experi-

ment 2. Firstly, our TF-IDF ranking scheme and Size-Normalised TF-IDF rank-

ing scheme were able to reflect the skewness of the query logs. Secondly, because

of similar reasons to Experiment 1, we again do not claim that any of the scheme

is better than another in reflecting skewness. Finally, high confidence was ac-

quired as to how precise our generated estimates of ranking scores were under

both schemes.

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 63

(a) Rankings

(b) Variance

Figure 3.3: TF-IDF scores for different levels of skew.

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 64

(a) Rankings

(b) Variance

Figure 3.4: Size-Normalised TF-IDF scores for different levels of skew.

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 65

Table 3.5: Ranks Obtained using TF-IDF Scores.

Mapping Exclusivity 100%
Array
Express

50%
Stanford
50%
Array
Express

100%
Stanford

1 Stanford 7 9 6
2 Stanford 7 10 7
3 ArrayExpress 1 1 8
4 Stanford 7 7 1
5 ArrayExpress 2 4 8
6 Neutral 4 2 2
7 Stanford 7 8 3
8 ArrayExpress 3 5 8
9 Neutral 5 3 3
10 Neutral 6 6 5

Table 3.6: Ranks obtained using Normalised TF-IDF ScoresAll Mappings.

Mapping Exclusivity 100%
Array
Express

50%
Stanford
50%
Array
Express

100%
Stanford

1 Stanford 7 7 1
2 Stanford 7 10 7
3 ArrayExpress 1 1 8
4 Stanford 7 8 2
5 ArrayExpress 3 2 8
6 Neutral 4 4 5
7 Stanford 7 9 3
8 ArrayExpress 2 3 8
9 Neutral 5 5 5
10 Neutral 6 6 6

3.3 Related Work

In this section, we discuss existing work related to our proposal, with the goal

of exhibiting our contribution in filling up a gap in knowledge, specifically, the

ranking of semantic mapping in a pay-as-you-go data integration setting. For our

discussion on implicit feedback, readers are referred to Section 2.5.2.

3.3.1 Ranking

The term rank or ranking is frequently being related to search engines and web

pages. For example3, when a search is carried out on “microphones”, a website’s

3http://www.webopedia.com/TERM/R/rank.html

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 66

ranking specifies the exact position it is in the search results: e.g., within the

top 5, on the first page, the 300th page and so on. The sort of ranking that we

do in our research follows the spirit of search engine ranking but by a different

method, application and environment. An important notion is the correctness

of the produced ranking. In many cases, ranking can merely suggest possible

relevance, because only a user can determine the correctness.

Driven by the active needs of the database and information retrieval commu-

nities, ranking employs different strategies. Although the expected consequence

in both areas is a set of prioritised answers in light of a user’s request, apply-

ing a single solution to both areas is difficult. In databases, structure plays a

significant role in the ascertaining of a term’s relevance to a user’s query. If a

user searched for a term python in an attribute animal, it is irrelevant to another

user who wishes to find books on the Python programming language. In contrast,

structure is absent in information retrieval with the entire document needed to

determine a term’s relevance. Therefore, a term’s location in the document is

significant although it can be difficult to exploit.

The type of query conducted for structured data directly influences the form of

ranking that is available or that may be appropriate. To conduct keyword queries

over a structured database, current proposals [ACD02, BHN+02, HGP03, HP02]

typically engage a graph-based model to represent the underlying structured

database. Once terms have been extracted from a user’s query, the graph is

explored to seek relevant records. In most cases, posted queries necessitate the

joining of multiple tables, encouraging the formation of paths that join tuples

from more than one table, simply known as a tuple tree or join tree. Ranking of

records must be preceded by the ranking of the tuple trees, commonly involving

the calculation of joins forming the tree. While copious joins may intimate the

presence of less relevant results, a small number of joins tends to indicate higher

relevance since they are more likely to contain pertinent results [HP02]. Although

we use query logs as unstructured documents that are accessed by keyword-based

queries, our work taps into the underlying structured database through a layer

of abstraction.

Recurring problems in structured queries, but not exclusive to them, are the

Many-Answer problem and the No-Answer problem. The former happens when

the conditions of a query are too general, hence, an abundance of records is re-

turned. Meanwhile, the latter occurs when a query has very strict conditions,

and thus does not produce any result. Of the two, in our view, the Many-Answer

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 67

problem closely resembles our multitude of mapping results, in terms of the num-

ber of the produced records to be ranked. In general, ranking in structured

queries centres around solving either of these problems. Current proposals bor-

row different techniques from the information retrieval domain in their attempts

to solve the problems: a) adapting TF-IDF to harness its discriminative ability

[AEKV07]; b) adapting and applying probabilistic models to manipulate intrinsic

information of the database’s underlying structure e.g., the correlation between

attributes that were specified in a query and ones which were not (i.e., unspecified

attributes) [CDHW06] and calculating a global score which represents the global

importance of an unspecified attribute [CDHW06].

We now review existing proposals engaged in ranking using some form of

implicit user feedback.

Page ranking algorithms [DSB09] place millions of websites into an ordered

sequence based on their importance and/or relevance to a user’s search query.

In parallel to the increasing number of users, the number of queries have also

grown exponentially. Although in our case we assume the manipulation of data

by a single user, however, we expect many queries to be posted throughout the

lifetime of a dataspace, hence, it is useful to turn to page ranking algorithms for

comparison. There are a number of different proposals for ranking of web pages,

as presented in a survey by Duhan et al. [DSB09]. Some of these techniques

mine the contents of websites (i.e., Web Content Mining) to determine ranking,

while others discover hyperlinks (i.e., Web Structure Mining) or user navigation

pattern (i.e., Web Usage Mining). A similarity to mapping result sets is that

websites contain a collection of terms that are potentially relevant to users, how-

ever, a dissimilarity is the presence of hyperlinks in web pages which traditionally

function as a means for navigation. Duhan et al. differentiate between the impor-

tance of a website and its relevance. Importance is described as the popularity of

the website where a larger number of incoming links indicates greater popular-

ity; relevance is pegged to the prominence of terms found in a page with respect

to a given query. From among the algorithms in Duhan et al., only Page Con-

tent Rank (PCR) [PS05] fully regards relevance as the primary characteristic for

ranking, therefore, we focus our review on it.

Fundamental to PCR is a set of heuristics regarded essential in the analysis

of websites. Although we have stated earlier that PCR is the only surveyed

proposal which fully considers relevance, elemental to this measure of relevance

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 68

is the notion of importance. The more important a page is, the more relevant

it is to a user’s query, and hence, the higher is its ranking. Several dimensions

of importance have been adopted into the final relevance score, which we will

describe as we go along.

PCR is calculated through the execution of four processes. At the start, terms

are extracted from every page in D, where D is the set of all pages indexed by

a search engine. An inverted list of every term is built here for use in the final

process. In the second process, statistical parameters are computed. These pa-

rameters are term frequency (i.e., the number of times a term t appears across a

set of documents D. We view this definition to be close to collection frequency

rather than the earlier introduced term frequency within the context of TF-IDF),

incidence of pages (i.e., the ratio of the number of documents that contains t

over the total number of documents), frequency of words in the natural language,

synonym classes, the distance between t and the terms in a query Q (occurrence

positions), and the prominence of t’s neighbours which influences t’s prominence

i.e., neighbour’s prominence. The next process aims at determining the impor-

tance of every term found at the start. A neural network is employed as the

classifier: each parameter is associated with one input neuron, and a term’s im-

portance is specified with a single output neuron. Calculating a relevance score is

the goal of the final process. The multiple dimensions of importance are consoli-

dated here through the forming of a single relevance score. Thus, we can equate

this new score of page P as the average importance of terms found in P .

Now we discuss the set of statistical parameters used in PCR, which either

carries the different dimensions of importance or contributes to its novelty. First is

the distances of occurrences of t from occurrences of terms in Q (set of occurrence

positions). The intuition behind the use of this parameter is if t frequently occurs

or is frequently located close to terms in Q, then t is significant to the search

executed through the use of Q. Hence, the measurement that this parameter

demonstrates is the distance of t from a set of query terms posted, Q, can be

quantified by the minimum distance computed from the entire existing distances

of t with every query term in Q. The second parameter is incidence of pages,

where it seeks to know what is the fraction of pages with t (a.k.a. document

frequency) to the total number of pages. This indicates that PCR regards terms

that have high document frequency to be more important than a term that has

high term frequency. The next parameter measures the frequency of a term in the

natural language. PCR assumes that there is an available database of frequently

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 69

used words in natural language. If t is found in the database, hence, it is assigned

a lesser importance value for it is more likely to be a stop word e.g., the, this, is,

etc.

Another interesting parameter used in PCR is synonym classes. The idea is

that there exists a database that contains classes of synonymous words. Each

class has its own meaning; a single meaning is shared by members of the same

class. It is only logical that if t is a synonym to an important term s, then t

should also be regarded as being as important as s, as well as other synonymous

terms found in the class. Hence, the importance of t is the aggregated importance

of all terms in the synonym class it belongs to. The last parameter essential to

the usefulness of PCR is the importance of neighbouring term. A term t that is

constantly surrounded by important neighbours acquires importance through the

aggregation of its neighbours’ importance value.

Since PCR targets Internet pages that contain lengthy, connected text of de-

scription that is close to natural language, a hefty amount of processing was spent

on manipulating these texts. In our case, text is shorter and forms small, discrete

units of description after we removed the underlying database structure and re-

garded each mapping’s result set as an unstructured document.

Probabilistic information retrieval approach (PIRA) [CDHW06] aims at

solving the Many-Answer problem. Considering the combined number of records

that multiple mappings can produce, we presume its amount to be of the scale

associated with the Many-Answer problem, which makes PIRA potentially rele-

vant. PIRA operates by the intuition that ranking functions must take advan-

tage of information that can be gained from attributes that were not specified

in a user query (i.e., unspecified attributes), due to the fact that since in the

Many-Answer problem all user-required conditions are fully met, the discrimi-

native property that a ranking function is expected to support is absent. Such

information conveys not only the correlation between a ‘specified’ attribute and

its ‘unspecified’ counterpart but also how important an ‘unspecified’ attribute’s

value is at a global level. We illustrate both types of information using an ex-

ample taken from Chaudhuri et al. preceded by a scenario that describes a case

of correlated attributes, and followed by a scenario on how an attribute value is

perceived as globally important. Suppose a database of homes for sale has the

following structure.

(TID, Price, City, Bedrooms, Bathrooms, LivingArea, SchoolDistrict,

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 70

View, Pool, Garage, BoatDock ...)

Consider a query which requires the following conditions.

City = ‘Seattle’ and View = ‘Waterfront’

A correlation to an unspecified attribute BoatDock suggests that buyers who ask

for a waterfront view would most likely also be interested to own a boat dock.

Therefore, records with BoatDock=‘Yes’ would receive higher ranking than one

where BoatDock = ‘No’.

We continue with our second example. Consider a home located in a place which

receives,

SchoolDistrict = ‘Excellent’

This would cause that home to be highly ranked because it is globally desirable

to have a home which has school districts that are good.

Like us, each record in PIRA is treated as a “document”, suggesting that

relevance is applied on the records. To quantify the relevance of a record in

light of a user’s query, PIRA suggested the automatic generation of scores for

each record based on query workload and data analysis. A probabilistic method

commonly used in information retrieval, specifically Bayes’ Theorem, was used

to calculate the probability that a particular correlation is relevant depending on

evidence found in the workload. The record with the most probable relevance is

ranked highest.

Three main processes support the probability-determination task. In the first

process, any correlations between specified and unspecified attributes are discov-

ered. Such discovery is performed by following a simple but constrained assump-

tion (i.e., limited conditional independence) that says, given a query Q and a tuple

t, the specified attribute values, X, within t are assumed to be independent, though

dependencies between X and their unspecified attribute values, Y, are allowed.

Any functional dependencies that occur within X or Y should be brought

to attention. This concern is undertaken by the second process. Functional

dependency is an association between an attribute ai and another attribute in

the same table, aj such that which aj has the ability to determine the uniqueness

of ai. For example, “Zipcode → City”. Also here, any existence of transitive

closure related to the functional dependencies gets computed. Such information

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 71

is obtained by investigation of records in a database, and in some unspecified

cases these correlations are “tuned” by domain experts.

This final and central process addresses the numerical estimation of relevant

records sought from workloads. Often, this estimation is received from user feed-

back at query time or from some training activities, but Chaudhuri et al. propose

the use of the workload for identifying relevant records. PIRA taps into existing

information retrieval models aimed at leveraging query-log information, such as

[RJ05, STZ05], to complete this estimation exercise. The product of this process

is a two-part score, where one part measures the global importance of unspecified

values e.g., waterfront, greenbelt and street views, whereas the other measures

the correlation or dependencies between these values and the specified attribute

values, e.g., City = “Kirkland” and Price = “High”. Finally, records are ranked

based on the score they received.

PIRA’s strength in ranking records is in the availability to use reliable mass

of past information traced from queries. This supplies information in aggregated

form (i.e., query counts), necessitating a great deal of compute time and effort.

Access to logs of queries is also conducted in our work; what differs from PIRA

is that we extract single occurrences of each term found in the log file to be used

in deciding the ranking order leading to reduced compute time. Although PIRA

identifies functional dependencies automatically, to some degree, domain experts

are still sought to “tune” the correlation further. This reliance on functional de-

pendencies as part of its central processes implies that a great amount of compute

time is needed, especially when large data sets are involved. On the other hand,

our technique does not depend on any knowledge of the underlying domain due

to our assumption that prior knowledge of attribute correlations is not available

or too difficult to obtain satisfactorily.

Automated ranking approach by Agrawal et al. [ACDG03] tries to solve

the same Many-Answer problem as PIRA by making necessary extensions to

PIRA’s technique which was proposed for solving the No-Answer problem. The

technique has two variants, IDF (Inverse Document Frequency) Similarity and

QF (Query Frequency) Similarity. Both techniques employ the idea that the

more similar a record (viewed as a small document) is to a query (viewed as a set

of keywords), the better is the rank. Hence, the ranking function is defined by a

similarity measure, where in the case of IDF Similarity is the Cosine Similarity

but excluding its normalisation component. In other words, the length of the

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 72

artefacts to be matched is ignored, justified by the shortness of the record values

used by Agrawal et al.. Before the cosine similarity can be calculated, vectors for

document, or in this case record, and query must be computed. Agrawal et al.

have chosen TF-IDF for this task based on the premise that the Cosine Similarity-

TF-IDF arrangement has been successful in practice. This combination indicates

that IDF Similarity takes into account both exact and non-exact matches of

terms. An immediate advantage of IDF Similarity is the high recall (i.e., the

fraction of relevant data that is retrieved), but at the same time, it may suffer

from low precision (i.e., the fraction of retrieved data that are relevant). This

undoubtedly gives users a wider insight into possibly-related products, but at

the same time subjects users to a flood of most likely unnecessary information.

Another challenge for IDF Similarity is the decision on a threshold value to use to

define what can be considered as similar. Our technique offers exact matches of

a searched word, which filters out a good amount of records from the very start.

Also, our technique is free from any need for a similarity threshold that typically

would be domain-specific.

Agrawal et al. pointed out that IDF Similarity may not work well with categor-

ical numerical data, and thus proposed QF Similarity which, like PIRA, leverages

the implicit feedback found in query workloads. To show this drawback, Agrawal

et al. described the following example.

Example:

“In a realtor database, more homes are built in recent years such as

2000 and 2001 as compared to earlier years such as 1980 and 1981.

Thus, recent years have smaller IDF. Yet the demand for newer homes

is usually more than that for older homes”.

Based on the presented example, Agrawal et al. demonstrated their intuition

which assumes there exists more interest in recently-built houses than for earlier

ones, leading to the frequency of user queries on houses built in year 2001 to be

higher in the workload than for the year 1981. Given the frequency of queries,

a similarity value is computed; in this example, records that hold the value 2001

are perceived as being more relevant to the user query, and as a result, receive

higher ranking. It could be perceived that the essence of QF is term frequency,

save that the frequency is of queries found in the entire workload, and not terms

found in a corpus. A shortcoming of QF is when the workload is insufficient

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 73

to produce useful frequency. Our technique treats categorical numerical data

as text. Exclusively handling categorical numerical data is left for future work.

Although we too leverage query workloads, our technique does not rely on large

numbers of queries to generate a ranking. Rather, we extract unique terms from

each query in the log and ignore any redundancies.

So far, the workings of both IDF Similarity and QF Similarity have been

described within the context of solving the No-Answer problem. In the event of

the Many-Answer problem, both techniques may at times encounter a problem

where multiple records are ‘tied’ to one single similarity score and as a result

receive some arbitrary ranking order [ACDG03]. A solution [ACDG03] is to break

the ties. Basically, this process involves differentiating ‘tied’ attributes through

information solicited from attributes that were not part of a user’s query (missing

attributes). This idea is similar to the ‘unspecified attributes’ from Chaudhuri

et al. [CDHW06]. Ranking now can be reduced to the task of finding suitable

weights for the missing attribute values, which defines a value’s global importance,

and finally discriminating between records.

Knowledge about the interrelationship that may exist between attributes re-

quires familiarity with the domain of interest. Automating this is no easy task.

From the paper [ACDG03], in order to achieve this, IDF Similarity faces nu-

merous challenges and has been deemed unsuitable. Because of that, our review

shifts completely to QF Similarity. Like before, a query workload is used to gain

answers for QF Similarity. Computation of global importance is made possible

by hinging upon the intuition that positive characteristics such as important, pop-

ular and desirable typically would translate into large numbers of queries. From

this intuition, if a missing attribute has been identified (e.g., location of a home),

different weights are given to its values based on the number of queries which

contain the important value (e.g., a record that contains “California” is given

highest weight if it appears in the most number of queries). While Agrawal et

al. place substantial attention on the degree of interest that a user may have on

specific topics, our research focus is on the values of the actual data and we re-

gard all terms as comparably interesting. A benefit from our strategy is that the

dynamics of data values are immediately reflected into the ranking. Dynamics

here refers to the changes made to the existing data value as well as any additions

to the collection of values in the database.

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 74

3.4 Discussion

Implicit feedback is an interesting prospect to complement explicit feedback.

From the review of related works and the technique we proposed, we can see

the potential that lies in implicit feedback in providing information that is unob-

trusive, may not be feasible to obtain explicitly from users or may be difficult to

gather by explicit methods. However, implicit feedback can be susceptible to in-

dividual interpretations, relying on intuitions that are domain-specific. We have

demonstrated the use of implicit feedback to suggest a user’s need for some set

of instances. While in this chapter we investigated instance-level manipulation

through the use of implicit feedback, in the next chapter we cover our investi-

gation on the use of explicit feedback to directly manipulate such instances. In

Chapter 5 we address scalability issues for this proposal.

To present how we catered for scalability in our proposal in the next chapter,

we extended this thesis with another chapter.

3.5 Summary and Conclusion

This chapter has presented an approach and empirical evaluations which fulfil the

first part of our aim, that is to investigate the use of pay-as-you-go approaches

for instance level data integration, specifically identifying relevant instances. We

have also presented our first objective (O1) of designing an approach that ranks

mappings based on its relevance to a user’s information needs. Section 3.1 of

this chapter describes our proposed strategy while 3.2 provided details of the

evaluation. We have presented the following:

� An approach that identifies instances relevant to a users information need,

by using terms commonly used to depict the instances, which can be found in

query logs. This answers RQ1 (how can we design an approach that identifies

instances which are relevant to a user’s information need in a dataspace). We

view this as a problem of ranking mappings (RH1a), since in a dataspace,

records are retrievable through generated mappings. Methods devised by

Chaudhuri et al. [CDHW06] and Agrawal et al. [ACDG03] also produce

rankings based on query workloads, but place the produced ranking on each

individual record and leverage functional dependencies. The employment of

functional dependencies necessitates definitions to be clearly provided, and

in certain cases, domain knowledge may be sought. These conditions are not

CHAPTER 3. RANKING (SEMI-)AUTOMATICALLY-GENERATED MAPPINGS 75

inherent in our approach since we do not consider functional dependencies.

Unlike our approach that views all terms as equally interesting, Agrawal

et al. highlight specific topics that are potentially interesting to a user.

A consequence of this decision is the time taken to reflect on an existing

ranking. Our view is terms found in a query’s conditional clause recorded in

workloads can be a good source to identify a user’s information need (RH1b)

and can be useful for ranking mappings (RH1c). We leverage on the rarity

of terms found in a mapping’s extent to indicate the mapping’s relevance to

the information need of a user (RH1d).

� Two empirical evaluations that allow us to assess our approach. Each an-

swers RQ2 (how much query logs is needed to produce stable rankings) and

RQ3 (would the proposed ranking technique be able to track query patterns

that are data source-specific i.e., skew), respectively.

– The first evaluation is with regards to how quickly stable rankings can

be achieved over a sequence of different log sizes. Our results show that

our proposed approach can produce stable ranking for encouragingly

small log sizes.

– The second evaluation investigates how the rankings track query pat-

terns that are skewed towards specific sources. The premise is there are

patterns used more in certain data sources than others (RH3a). Hence,

would the proposed ranking technique be able to reflect this skewed

characteristic? Our evaluation was conducted on two real-life life sci-

ence data sets. From our evaluation, the generated ranking responded

satisfactorily to the level of skew inherent in the query logs.

In conclusion, implicit user feedback, especially in the form of queries posted

over a dataspace, can be a good source of identifying a user’s information need

and used in ranking semantic mappings by manner of pay-as-you-go. However, a

major challenge of using implicit user feedback for this purpose is in the extent

of interpretation which has to be carried out. This interpretation of relating

a term with its enclosing conditional clause has been explored in this work for

the equality operator. Much work is needed for other operators. This shall be

continued in the future.

Chapter 4

Pay-As-You-Go Configuration of

Clustering for Instance

Integration

This chapter describes the strategy we propose to fulfil our second objective —

to devise a technique to integrate instances from heterogeneous and large data

sources, while taking advantage of knowledge from users, in the form of feedback,

on the domain of interest (O2). This leads to the question of how can we devise

a strategy to integrate instances from different large data sources in a dataspace

(RQ4). Earlier, we presented an example, showing the integration of instances

(Section 1.1). The example showed the primary impediment to obtaining good

integration which is the existence of heterogeneity, specifically data heterogeneity.

Instance integration in dataspaces, as we have described in Section 1.2.2 of Chap-

ter 1, is a phase closely related to the querying of results. The aim of our thesis is

to investigate the use of pay-as-you-go approaches for instance level data integra-

tion. Specifically, this involves identifying relevant instances and identification

of duplicates. The product of this phase is a set of relationships, connecting

records that are semantically the same. These records are not yet in a state

viewable by users since more work needs to be conducted to produce a unique,

non-conflicting and clean version. This complicated task is known as data fusion

and is beyond the scope of our work. We cast instance integration as the problem

of incremental clustering (RH4a) because knowledge in a domain changes over

time. We adopt pay-as-you-go integration because users possess valuable domain

knowledge that can be useful for improving integration (RH4b), especially when

syntactically different words are involved. Furthermore, users are not expected

76

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 77

to identify all semantically similar records at the start, but over a period of time,

i.e., the dataspace’s life time. We deploy the pay-as-you-go approach to param-

eter tuning because each dataset has its own unique characteristics, and hence

differs in the most suitable parameter values (RH4c). The approach is guided by

a user-driven objective function because different users have different needs for

information (RH4d).

We structure this chapter to first provide an introduction to our proposal,

where we give the assumptions underlying our proposed technique. We then

provide a description of current learning approaches, highlighting the ones that

are closest to ours, and a description of the essential steps in instance integra-

tion, specifying where user feedback can be useful. In section 4.2, we present

some technical context essential to understanding our proposal, followed by the

fundamentals that underpin our proposal in section 4.3, i.e., the application of

evolutionary search and a user-driven objective function. We address the instance

integration problem in sections 4.4 and 4.5 by proposing a baseline in the former

section and in the latter four variants of a pay-as-you-go approach to integrating

instances. Section 4.6 shows the experiments we conducted to evaluate our pro-

posal and their results. Then, we discuss our findings in section 4.7 and compare

our proposal with other work in the following section. Finally, we summarise and

conclude in section 4.9.

4.1 Introduction

The objective of this section is to introduce our proposal. We start by provid-

ing two types of assumptions that we used to form our technique – system and

user-related assumptions. Considering that our proposal hinges upon domain

knowledge from users, in the form of feedback, we explored existing approaches

of the same spirit i.e., learning-based techniques and underline the one that is

nearest to ours: semi-supervised clustering with constraints. This section ends by

describing the steps to integrate instances and pinpoints where it can be beneficial

to elicit user feedback.

4.1.1 Assumptions

We introduce our proposal by starting with a set of assumptions that underlie

our technique. They are divided into system and user-related assumptions.

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 78

System-related assumptions:

� The data to be integrated has undergone a preparation process, e.g., date

and time formatting and renaming of attributes. Different locales adopt

different date and time formats, for example, dd/mm/yyyy in the UK and

mm/dd/yyyy in the US.

� Ontologies of the domains are not available, necessitating dependency on

text-based matching schemes. An ontology is known to describe concepts

formally existing in a community and their relationships [Gru01]. With

ontologies, synonymous words where most text-based matching schemes are

unable to find similar concepts, can be identified. For example, the words

dry and desiccated.

� Schema matching and semantic mapping have been conducted to produce

a set of semantic correspondences and mappings between local and global

schemas.

� There exists a working mapping selection and query component actively de-

ciding on relevant mappings and returning records after query reformulation.

User-related assumptions:

� The user has knowledge of which instance pair points to the same object of

the real world.

� Users are expected to provide feedback on only a subset of instance pairs;

� Other than user feedback, the ground truth is absent, hence, no training set

in the form of labelled records is present.

4.1.2 Integrating instances

At the very core of instance integration is the task to sort out discrepancy between

record pairs identified as duplicates and the real or correct duplicates. A näıve

approach to integrating instances is to compare each record with every other

record in the dataset to identify any similarities, and afterwards to group similar

records together. This is an expensive approach, considering that if there are n

records, then O(n2) comparisons are required.

Much effort has been spent to handle the instance integration problem, par-

ticularly by using machine learning approaches to identify matches after learning

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 79

from a labelled subset, considering manually identifying all matches is infeasible.

Some current learning approaches include the following [EIV07, CSZ06].

Supervised learning relies on training data to “learn” how to match records us-

ing machine learning techniques which involves training a classifier to distinguish

between similar and dissimilar record pairs. Because of its substantial reliance on

a training set, the set must provide enough covering as well as challenging train-

ing pairs able to reveal the subtle features of the deduplication function [SB02].

However, putting together such a training set involves tedious manual labour.

Unsupervised learning is an alternative to supervised learning. No set of

labelled data is needed with this learning approach. Most unsupervised learning

approaches for instance integration adopt the idea of similar vectors corresponding

to the same class [EIV07], where each vector represents a record, and each class

represents an object in the real world. Hence, it is only natural to have clusters of

records that refer to the same real world object. This approach depends heavily

on generic distance metrics to group together records or separate them.

Semi-supervised learning (SSL) lies between fully supervised learning and

learning without supervision. With most data in SSL unlabelled, SSL still enjoys

some supervision information although not necessarily for all examples [CSZ06].

Hence, we could divide the data into two groups: points Xl = {x1, ..., xl}, having
labels Yl = {y1, ..., yl}, and points Xu = {xl+1, ..., xl+u}, possessing labels which

are not known. A label signifies that two records point to the same object in

reality. Chapelle et al. [CSZ06] reported the possibility of SSL assuming other

forms, and thus, holding different interpretations. Most of the forms see SSL as

supervised learning supported with information about the distribution of exam-

ples. This interpretation shares not only its goal with supervised learning, but

is also susceptible to the same problem: it is less applicable when the number

and nature of the classes are unknown and have to be inferred from data. One

particularly interesting form of SSL which is not exposed to such problems is

semi-supervised clustering with constraints.

Semi-supervised clustering with constraints [BBBM06]. This approach

handles the problem of clustering a set of data points into separate groups with

limited supervision in the form of pairwise constraints. There are two types of

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 80

constraint: cannot-link which indicates dissimilarity between instances in a pair,

and must-link that represents similarity. Unlike labels that require a domain

expert and prior knowledge about corner cases in the dataset, constraints can be

specified by someone who is not an expert and has no significant prior knowledge

of a dataset’s classification. Proposed methods for semi-supervised clustering fall

into two general types.

1. Constraint-based methods use the given supervision information to achieve

a set of data partitions inclined towards respecting constraints.

2. Central to distance-based approaches, is the employment of a distance func-

tion. This function is expected to be parameterised and the corresponding

values are learned to further separate cannot-link points and increasingly

tighten must-link points together.

Our proposal shares several features with semi-supervised clustering with con-

straints : a) user feedback carries validation about the similarity of an instance

pair; b) a set of user feedback is not a set of categorised records which provides

covering and challenging record pairs, or corner cases; and c) a clustering algo-

rithm is used. A feature that is specific to our current proposal is we do not

attempt to mine any criteria of beneficial or informative records from users, and

have left this for future work.

Active learning is a form of semi-supervised learning. Rather than using a

static training set, an active learner selects the most “informative” instances

for labelling, where an informative instance is one that would provide highest

information gain to user. This decision as to which records are most suitable for

annotation is performed by an algorithm which is typically based on some set of

heuristics, where it is assumed that there is a known and plausibly agreed criteria

for “informative” instance pair.

Steps to integrate instances Regardless of the type of approach, instance

integration can be generalised into three steps. They take place in the following

order.

1. Blocking. The aim of this process is to reduce the comparison space for

instance pairs by limiting comparison to individual blocks. Blocking assumes

that similar instances tend to gather in the same block. Generally, the

formation of blocks is through the use of a function capable of bringing

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 81

out similar features across a set of records, tying similar records together.

An example is the use of Soundex on one or more highly discriminative

attributes. As a result, a set of small-sized comparison units is produced

i.e., blocks. We present a formalisation for blocking in subsection 4.2.1.

2. Pairwise comparison. Identifying pairs of semantically similar instances

is the primary goal for this step. To do this, similarity metrics are used,

in combination or alone, to syntactically compare instances. Comparing

instances is not trivial. Concerns include the effectiveness of the chosen

metric to capture hidden features of instances. We have discussed the issue

of effectiveness and presented existing metrics in section 2.4.1. The output

of this step is a set of scores that represent the degree of similarity between

each pair of instances.

3. Clustering uses the similarity scores produced from comparing pairs of in-

stances to group together instances that describe the same object in the real

world, and to separate instances that represent different objects. In general,

there are two forms of clustering: hierarchical and partitional. Hierarchical

clustering performs repeated clustering of instances by splitting and merging

clusters to produce a series of nested clusters [Jai10]. Partitional clustering

takes each instance and decides its suitable cluster based on how “agreeable”

the instance is with a cluster [GCBR05]. The output for this step is a set

of clusters that contain one or more similar instances, denoting that each

cluster represents a single real world object. In subsection 4.2.2 we lay out

the formalisation for clustering.

There are many artefacts that when supplied with user feedback can bene-

fit an integration system. Central to instance integration is the artefact that

characterises the relationship between two records. A user’s knowledge of simi-

lar records can be directly applied to the integration process [WKFF12, JFH07,

JFH08, JSD+13, TMC12] by changing the similarity score of a record pair, or

used as an input to a process which performs integration [CR02, ?, SD06, TKM01,

BM03a, BM03b]. Using user feedback in instance integration is beneficial in that

the received domain knowledge is used to improve the integration. Unfortunately,

acquiring user feedback can be costly, hence, the amount of feedback obtained

is best kept at a minimum. In this thesis, we refer to this method of applying

user’s knowledge simply as score change (SC). An absolute score of 1.0 is given

for a matching pair to denote semantically similar records, while a score of 0.0

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 82

for an unmatching pair. It is interesting to change scores directly. It could help

us to answer the question: If information from user feedback alone is sufficient to

improve instance integration where the integration process is viewed as a black

box (RQ5).

4.2 Technical Context

We start the presentation of our proposal with a formalisation of important no-

tions and terms to help with the explanation of our proposal later in the chapter.

4.2.1 Blocking

Definition 1. Given a dataset D = {d1, d2, ..dM}, the aim is to produce a

set of blocks {B1, B2, ..., BN}, where
∪N

i=1 Bi = D; subsequently, any instance

comparisons are limited to just those instances in a block.

The nature of blocking can be distinguished into two forms: disjoint and non-

disjoint blocking. In disjoint blocking, each instance appears in only one block,

where

∀i,jBi ∩Bj = ∅ with i = 1, . . . , N, j = 1, . . . , N, and i ̸= j

while in non-disjoint blocking, an instance di can appear in multiple blocks, such

that

∃i,jBi ∩Bj ̸= ∅ with i = 1, . . . , N and j = 1, . . . , N

and thus gets compared with every instance in each block that di resides in.

Definition 2. A transformation function f(dk) is used to derive an instance’s

blocking representation so that two instances, dk and dl, that share the same

representation can be placed in the same block Bi. These representations consti-

tute the set of index keys, Ind, typically used to retrieve V , a set of candidate

duplicates of dk. A widely-used transformation function is the hash function,

Hash(dk) = h, where h is a hash key associated with a single block Bi.

4.2.2 Clustering

Clustering characterises a datasetD by separating dissimilar instances and group-

ing similar ones. A common determinant of this decision is with a measure of

similarity between an instance pair. However, the number and choice of instances

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 83

to compare is subject to the blocking strategy adopted. We can formalise this as

follows.

Definition 3. Given dataset D, a set of clusters C = {C1, C2, .., CS} is generated

after the similarity of each instance pair (dk, dl) residing in each block Bi is

calculated. Conditions to be met are,

(i). Cx ̸= ∅ for x = 1,....,S;

(ii). For overlapping clusters, Cx ∩ Cy ̸= ∅;
For non-overlapping clusters Cx ∩ Cy = ∅;
where x = 1,..,S; y = 1,...,S and x ̸= y;

(iii).
∪S

x=1Cx = D

Definition 4. A similarity function Sim(dk, dl) which compares two instances,

dk and dl, should be symmetrical. Sim(dk, dl) produces a large value when dk

and dl are similar, generates its largest value if the instances are identical and

has a target range of [0,1].

Often, a similarity function relies on a threshold to distinguish between the

notions of similarity and dissimilarity which contributes to the decision to place

two instances together in the same cluster or apart.

4.2.3 Evolutionary search

Algorithm 3 An Evolutionary Algorithm in General [ES15]

1: INITIALISE population with random candidate solution
2: EVALUATE each individual in population
3: repeat
4: SELECT parents from population
5: CROSSOVER pairs of parents to produce offsprings
6: MUTATE offsprings
7: JOIN offsprings to generate new population
8: EVALUATE each individual in new population
9: until TERMINATION CONDITION is fulfilled

Individuals as a representation

An evolutionary search starts with the mapping of a real world problem into the

space of problem-solving: the encoding of phenotypes into genotypes. Phenotype

is a term used to refer to an instance of the candidate solution offered for a given

problem, and genotype refers to the individual algorithmic representation of the

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 84

proposed solution, or simply individuals . For example, consider a problem to

optimise integers. Hypothetically, to find an optimal solution, it is necessary to

convert these integers into binary codes. In this case, the phenotype is identified

as a set of integers and the genotype is the representations of the integers in

binary. Towards the end of the evolution process, the search finally converges to

find an “optimum” genotype, though there is no guarantee that this will occur.

Depending on where an optimum resides, it can be local or global. A local op-

timum can be found at a local region, while if the coverage is the entire search

space then it is recognised as a global optimum. Often, there can be multiple

local optima with only a single global optimum.

Forming a population from individuals

Often the initialisation of a population is randomly seeded. With different set of

seeds, different individuals are placed together, which eventually would produce

different results; hence, the stochastic manner of the evolutionary search. At

every generation, a population is assembled, serving as a placeholder for indi-

viduals of some chosen amount. A “good” amount of individuals can be difficult

to determine. It should be large enough to allow diversity to be included when

selecting members of the next population. This amount that translates to the

size of the population remains invariable at every generation, throughout the evo-

lution process. A population presents a single unit of evolution — with constant

shifting of members — in contrast with the actual individuals that are static in

nature.

Parents selection

Selecting parents from an existing population is to meet two purposes: i) to

open the opportunity for high quality individuals to transfer their good traits to

the next generation; and ii) to avoid greedy search from occurring, where a search

cannot escape a local optimum. Parent selection has the authority to direct the

evolution process towards improving. An individual successfully becomes a par-

ent when it has been chosen to be put through several variation operations.

Operations of variation

Variation is applied to individuals found to have properties fit for use across

generations. From these operations, new individuals emerge to populate the next

generation, amounting to the production of new candidate solutions, if viewed

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 85

from the plane of phenotypes. There are two operations that deal with variation:

crossover and mutation.

Crossover, a binary operator, accepts a pair of genotypes and merges their

eligible traits to form one or more new individuals — their offsprings — in the

hope of inheriting only the good traits. Being stochastic, randomness plays a

central role in the choice of what traits are combined and how they are combined.

It is commonplace for an offspring with combinations of traits less favourable

than their parents to occasionally appear. An example [ANd06] of a simple

crossover, namely one-point crossover, is to randomly choose a point in a genotype

to perform the crossover, then copy over from one genotype the part in front of

the point to an offspring, and the part behind the point of a second genotype to

the same offspring. The symbol | indicates the point of crossover.

Genotype A: 11111 | 00100110110

Genotype B: 10011 | 11000011110

Offspring A: 11111 | 11000011110

Offspring B: 10011 | 00100110110

Mutation, unlike a crossover, is a unary operator. It accepts a single geno-

type and slightly modifies it to produce an offspring. Like a crossover, mutation

is stochastic, suggesting that the formation of its mutant offspring relies on the

component of randomness which in turn relies on a specified rate of probability.

Typically, a low rate is used because a high probability rate risks the search being

catapulted to distant regions, resulting in a greatly modified offspring. This con-

dition is unfavourable if an optimal solution lies within the local region, deeming

it to never be found. Nevertheless, escaping a local region can form “fresher”

individuals if the optimal solution is outside the local region. Depending on the

type of data used to represent a candidate solution, the process of mutation is

conducted accordingly. For example, if the genotype is a vector of type Boolean,

a bit-flip mutation would be suitable [MBWB99, Luk13]. This form of mutation

basically moves through the vector and decides based on probability to flip the

bit at the current position. If instead the genotype is a float value, one way is to

use Gaussian convolution [MBWB99, Luk13]. Fundamentally, each value in the

genotype is injected with random noise taken from a Gaussian distribution with

a mean µ = 0. Although largely the produced noise would flock around 0, the

rare incident of obtaining a big value can occur.

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 86

Crepinsek et al. [CLM13] conducted a survey on current evolutionary algo-

rithms to investigate their take on the longstanding view, first discussed by Eiben

and Schippers [ES98], which suggest that the exploration of a search space is

obtained through mutation and crossover, whereas exploitation is achievable

through selection. Exploitation is an essential process since it is the process of vis-

iting newly explored regions in the vicinity of already found regions. Conversely,

Wong [WLLH03] considers exploration is achieved through mutating individuals,

and crossover lends a hand in exploiting useful traits of eligible individuals. De-

spite such differing opinions, these abilities to explore and exploit lay the chance

for a global optimum to be found, if enough time is given [Luk13].

The JOIN operation

Together with the variation operations, JOIN makes it possible to distinguish be-

tween evolutionary algorithms [Luk13] since the choosing of individuals to con-

tinue the lineage happens at this stage: be it a new individual (child) or an

old individual (maybe a parent). JOIN is also known as the “replacement”

operator, owing to its task of replacing a population of individuals with their

(hopefully) more qualified successors.

Fitness function

This is a function that is used to evaluate the quality of a candidate solution

— genotype. Every measured genotype is assigned a value that represents its

fitness, or quality, based on a preconceived definition embodied into the fitness

function. In other words, its origin is in the phenotype space, but its application

is in the genotype space [ES15]. It is good to know that this function not only

defines fitness but also the meaning of improvement by creating a benchmark

to be achieved [ES15]. Typically, a fitness function promotes to an evolutionary

task the reaching of a maximum value (maximisation), or a minimum value

(minimisation). The fitness function is also known as an objective function.

Conditions for termination

Evolutionary searches are stochastic in nature. A guarantee of achieving an opti-

mum fitness level as defined through an objective function or finding an optimum

individual is absent. Therefore, several more achievable stopping conditions can

be used instead, preventing an endless running of the evolutionary algorithm.

Eiben and Schipper [ES15] reported the following stopping conditions.

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 87

1. The maximally allowed CPU time elapses;

2. The total number of fitness evaluations reaches a given limit;

3. For a given period of time (i.e., for a number of generations or fitness eval-

uations), the fitness improvement remains under a threshold value;

4. The population diversity drops under a given threshold.

The approach to use stopping conditions depends on the availability of a spec-

ified optimum fitness level. In the case that one exists, a disjunction is used as

such — optimum value reached OR condition x is met. However, if no optimal is

available, any one of the listed conditions can be used.

4.3 Our Approach

Presented in this section are three cornerstones that our approach is founded on.

Firstly, the use of user’s knowledge to infer similarity between records. Secondly,

the manner by which we manipulate an evolutionary search to be applicable to

our domain of choice. Finally, the definition of an objective function to guide the

evolutionary search.

4.3.1 Inferring user’s knowledge on similarity

Users have unique information needs, and only they know if these needs are

exactly satisfied. We assume a user of a dataspace has knowledge, to a certain

degree, about objects of the real world, and thus is able to specify, to some extent,

if a pair of records describes the same object or otherwise. To expect users to

manually specify this knowledge on every record pair is typically infeasible, and

indeed all explicit feedback-giving can be considered to be costly.

It is useful to be able to propagate the scarce knowledge on similarity learnt

from the subset onto the entire dataset. We use a method of inferring whereby a

similarity measure is learnt in light of the subset of user feedback, which is used

for clustering the rest of the dataset in the same manner. Parameterisation is

installed to allow this learning. An evolutionary search is used, which explores a

search space through guidance by user feedback, to find a set of parameters (at

this point, weights) which nears an optimum.

We reuse our example in Figure 1.1 to show how weights on attributes can

help to discriminate instances. Weights are a simple yet powerful method to dis-

tinguish instances based on attribute importance as perceived by users. Assume

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 88

we have two records, CS1 and CS2 that are undergoing deduplication. A typical

text matching algorithm may find the two records to be very similar, however, a

user may know otherwise and indicates the discriminative property of the “date

of birth” attribute with weights. As a result, these records are identified as non-

duplicates and are separated into different clusters. In the case that record 45 is

included in the deduplication process, assuming it has undergone data prepara-

tion, the weight on attribute “date of birth” would highlight its similarity with

record CS1, resulting in the pair of records being clustered together.

Local schema 1: Customer
ID FirstName LastName DateOfBirth Block Level Unit Street Postcode

CS1 John Smith 3/6/75 17 2 6 Hartley Road M168PA
CS2 John Smith 6/3/75 18 2 6 Hartley Road M168PA

Local schema 2: Buyer
ID Name DOB Lot Street Postcode Country

45 John B. Smith 3 June 75 17-02-06 Hartley Rd. M16 8PA UK

Based on a global schema: Cust
Cluster 1:

ID FirstName LastName Block Level Unit Street Postcode Country

CS1 John Smith 17 2 6 Hartley Road M168PA
45 John B. Smith 17 2 6 Hartley Road M168PA UK

Cluster 2:
ID FirstName LastName Block Level Unit Street Postcode Country

CS2 John Smith 18 2 6 Hartley Road M168PA

Figure 4.1: Formed clusters when weight is given on “Date of Birth” attribute

In this exercise, for simplicity, we regard number values as strings and demon-

strate the use of a single similarity measure, n-gram (Equation 4.2). This practice

of considering number values as strings is not especially rare as stated in [EIV07].

In our approach, we define similarity as a degree of match between every

semantically-corresponding attribute of two records. We decided that comparing

every attribute with every other is unnecessary in our case due to the following

reasons.

1. We made the assumption that the matchings between schemas are correct:

mappings involving one-to-one (i.e., a single attribute maps to another single

attribute) and one-to-many (i.e., a single attribute maps over to multiple

attributes) associations have been appropriately managed.

2. Our datasets largely contain attributes that carry discrete information e.g.,

the attributes {id, name, description, price}. Although name and descrip-

tion may share some common textual description, but the number are small

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 89

if compared with the number of attribute permutations that do not have

overlapping text.

3. The information on attributes with overlapping contents is not available.

4. Weights specify the degree of importance an attribute has when discriminat-

ing instances. They are attribute-specific. Comparatively, cross-attribute

comparison would suggest a different meaning to the weights.

Consider two records r1 and r2 with a set of attributes {ar11, ar12, . . . , ar1N}
and {ar21, ar22, . . . , ar2N} respectively. The similarity between r1 and r2 can

be obtained through the total match value of their corresponding attributes over

the number of attributes (Equation 4.1).

similarity(r1, r2) =

∑N
i=1(match(ar1i, ar2i))

N
(4.1)

Match is a function that divides every text into grams and uses the Dice coefficient

[Kon05] to calculate the similarity (Equation 4.2). The Dice coefficient highlights

the portion of n-grams that overlap between two text strings X and Y over all

n-grams generated from X and Y , where ar1i contains X while ar2i contains Y .

match(X,Y) =
2× |ngrams(X) ∩ ngrams(Y)|
|ngrams(X)|+ |ngrams(Y)|

(4.2)

Weights can be easily incorporated into the similarity definition (Equation

4.3). Weights are specific to each attribute, hence weight wi applies to only the

i-th attribute. The larger the value of the weight, the more important is its role

in distinguishing instances.

weightedSimilarity(r1, r2) =

∑N
i=1(wi × (match(ar1i, ar2i)))

N
(4.3)

It is good to note that changing an attribute’s weight value can initiate the

movement of instances from one cluster to another. We use our previous example

(Figure 4.1) to show that changing of attribute weights can influence the member-

ship of clusters. In Figure 4.2, we illustrate this by transferring the weight from

the “date of birth” attribute to the “last name” attribute of local schema 1 and

“name” attribute for local schema 2, considering this “one-to-many” relationship

has been handled and that “Smith” was successfully extracted. The result is that

record CS2 no longer appears in a singleton cluster but joins records CS1 and

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 90

45 in their cluster, leaving only one cluster in the set of clusters. This suggests

weight-changing can be employed to find “optimal” clusters. A set of clusters is

optimal when similar records are grouped together and dissimilar records are sep-

arated apart, based on some criteria. Finding optimal clusters requires numerous

tries with different combinations of weight set. Evolutionary search is suitable

for such a task. We discuss the application of evolutionary search in the next

subsection.

Local schema 1: Customer
ID FirstName LastName DateOfBirth Block Level Unit Street Postcode

CS1 John Smith 3/6/75 17 2 6 Hartley Road M168PA
CS2 John Smith 6/3/75 18 2 6 Hartley Road M168PA

Local schema 2: Buyer
ID Name DOB Lot Street Postcode Country

45 John B. Smith 3 June 75 17-02-06 Hartley Rd. M16 8PA UK

Based on a global schema: Cust
Cluster 1:

ID FirstName LastName Block Level Unit Street Postcode Country

CS1 John Smith 17 2 6 Hartley Road M168PA
45 John B. Smith 17 2 6 Hartley Road M168PA UK
CS2 John Smith 18 2 6 Hartley Road M168PA

Figure 4.2: Cluster set after weight is transferred to “Last name” and “Name” attributes

4.3.2 Applying evolutionary search

We start this subsection by justifying our use of evolutionary search in the context

of our problem, then describe how we apply it as a solution.

Depending on the number of attributes chosen for data integration and the

amount of parameters used for resolving duplicates, the space for parameter com-

bination in instance integration can be wide. In our setting, relevant parameters

include weights for attributes and configurations for a clustering algorithm. Each

candidate solution represents one parameter combination.

An evolutionary search is able to support our “discrete and differently typed”

parameters. At the coarser level, we host two distinct and semantically unrelated

groups of parameters. The first group consists of attribute weights while the

second holds configurations for the underlying clustering algorithm. Moving to

the finer level, each group has a value set which is a mix of integer and float

(shown in Table 4.1 on page 92).

The generational nature of evolutionary search permits the notion of survival

of the fittest where good candidates are given a higher chance to spawn the next

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 91

generation of candidates than the less fit ones. Through this iterative process of

evolution, beneficial variation is gathered and made more pronounced by means

of “trial and error” [Bro11].

In a search space, closely-located candidates tend to have near-to-similar traits.

A search which concentrates at one particular area would eventually offer “stale”

candidates. Through exploration, distinct regions of the search space can be

visited by making small changes to every search point and by combining properties

of two or more search points [Cor14]. Visiting closely-located candidates is not

always a disadvantage: in the case that a “good” candidate is found, finding a

“better” candidate could simply mean to exploit such available proximity.

Evolutionary search offers independent processing of individuals of a popula-

tion. With individuals able to undergo processing simultaneously, an evolutionary

search can quickly traverse through the search space to find an acceptable result.

We describe here how the components of the evolutionary search (i.e., GA)

are applied to our proposal. We present,

� a genotype, the basic unit of searching through evolution, to consist of

values from multiple data types. Our genotype represents a single parameter

combination. Table 4.1 lists the parameters used for instance integration. It

includes weights and configuration for the clustering algorithm we employed.

Further explanation on the role of these parameters will be covered in the

next section.

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 92

Table 4.1: Parameters for instance integration

Parameter Description Type Optimisation Range

numKeys Number of keys per tuple in

Hash

Integer 1 ≤ numKeys ≤ 9

keyComponents Number of values contributing

to a key in Hash

Integer N/A – keyComponents = 1

q Size of q-gram in Hash Integer N/A – q = 3

k Nearest neighbours returned by

kNearestNeighbours

Integer 1 ≤ k ≤ 20

similarityThreshold Maximum distance between

candidate duplicates in kNear-

estNeighbours

Float 0 ≤ similarityThreshold ≤
1.0

membershipThreshold Voting threshold in MostLike-

lyCluster

Float 0 ≤ membershipThreshold

≤ 1.0

wi Attribute weights in Distance,

such that there is one weight per

attribute

Float 0 ≤ wi ≤ 1.0

� a population to hold a group of genotypes, in other words a collection of

parameter combinations;

� a selection strategy taken from a popularly-used technique in GA, the Tour-

nament Selection [ES15, Luk13, MG95]. This technique works by running

λ number of “tournaments” to select λ members for breeding. Each tour-

nament typically has a size of 2 [ES15, Luk13, MG95]. A larger size would

indicate a greater possibility that there will be highly fit members selected,

removing more low-fitness members, thus showing a behaviour that is more

deterministic and less stochastic [ES15, Luk13]. Competing members are

randomly picked and their fitness compared. The fitter member will “win”

the tournament and will have the chance to mate.

Using tournament selection has the benefits of a) simplicity, hence can be

easily applied [MG95, ES15], b) suitability for use when processing occurs in

parallel or otherwise [MG95], and c) support for selection pressure [MG95,

ES15], to fine-tune in accordance with a domain’s needs.

An increase in the selection pressure means an introduction of higher compe-

tition into the next generation, pressing the evolution to reach better fitness

faster, and as a result, quicker convergence with the risk of being prema-

ture. Convergence is an event where a (potentially local) optimum solution

is found. Selection pressure is boosted by inflating the tournament size.

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 93

� a crossover approach which takes into consideration a multi-type geno-

type. Existing crossover strategies are one-point, two-points and uniform

crossovers. We have described one-point crossover earlier. Different from

a one-point crossover, which chooses one same point in two genotypes and

swapping their genes located after that point, a two-point crossover selects

two positions. The genes between this position pair are swapped to form

an offspring. Uniform crossover crosses genes at “each point independently

of one another” [Luk13]. Every gene bears the chance to be selected for

crossover. Imagine visiting every gene in the genotype, and at every posi-

tion stopping to toss a coin. If heads appears, the gene at the current position

is swapped. Such a strategy agrees with our discrete, multitype parameters.

We use uniform crossover at two levels: genotype and gene. Crossover at the

genotype has the role of determining which of the parameters will be chosen

for the task. The actual crossover process occurs at the gene. By limiting

crossover to happen within a group that contains the same representation,

for example all weights of genotype A and B, or groups of numbers that share

the same range, in this case similarity and voting thresholds, the meaning

behind every parameter is preserved.

� a mutation approach that relies on the type of data used by the genotype.

With only integers and floats used, our mutation utilises a uniform mutation

for integers and Gaussian mutation for floats. Basically, a uniform mutation

randomly chooses a value within a pre-specified number range and assigns

it to the gene [Luk13]. Earlier, we have described Gaussian mutation in

section 4.2.3. For parameters that represent threshold values (i.e., similarity

threshold, voting threshold), we specified a probability rate of 0.05, intended

for combing closeby areas. This exercise is expected to result in the finding

of a “just enough” threshold value. However, with weights-filled parameters,

a rate of 0.1 is given. The intention is for each parameter to explore various

distant regions. The intuition is a set of attributes with near similar weights

would not be very useful.

� a JOIN operation of new individuals with the addition of elites. Elitism is

a strategy that includes fittest individuals from the most recent population,

namely elites, into the next generation [Luk13]. Its aim is to ensure the

continuation of good quality individuals throughout the evolution process

[BC95]. When preparing a new generation, we replace the entire population

minus a specified number with new individuals, and invite the same number

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 94

of elites to join.

� two conditions for terminating an evolutionary search. In the first

condition, if a candidate solution reaches a desired fitness level. In other

words an ideal individual has been found — in our case, the maximisation

of our objective function. In the event that no solution fulfils the expected

quality, the search resorts to a second condition, which is the maximum

number of generations to be produced.

This scheme is commonly used in conjunction with age-based and stochastic

fitness-based replacement schemes, to prevent the loss of the current fittest

member of the population. In essence a trace is kept of the current fittest

member, and it is always kept in the population. Thus if it is chosen in

the group to be replaced, and none of the offspring being inserted into the

population has equal or better fitness, then it is kept and one of the offspring

is discarded.

4.3.3 Objective function

We dedicate this subsection to explaining our objective function. This objective

function is driven by the assumption that fitness should be expressed from the

user’s point of view. Different users have different information needs, and it is

not always easy to accurately produce the desired information. Hence, it is a

good idea to guide the result-searching process from as early as possible down a

path that a user prefers.

At the core of our objective function (Equation 4.4) is the feedback given by

the user on the similarity and dissimilarity of a subset of instances. The aim

of this function is to indicate to the evolutionary process what portion from the

present cluster set corresponds to what the user knows as duplicate instances and

non-duplicate instances. The numerator of the objective function describes the

total number of instance pairs “correctly” clustered, be they placed together or

separated apart. “Correctness” depends on the user’s knowledge of the actual

object(s) that the instance pair represents. The denominator is the sum of all

located instance pairs in the cluster set, both correctly clustered or otherwise.

MM + UU

MM +MU + UU + UM
(4.4)

� MM is the number of matched instance pairs which user also views as a

match.

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 95

� UU is the number of unmatched instance pairs which agrees with the user’s

view of unmatching pairs.

� MU is the number of matched instance pairs which disagrees with the user’s

view.

� UM is the number of unmatched instance pairs which the user views as a

match.

Here, we have described our implementation of evolutionary search to suit

our context. In the next two sections, we describe a baseline technique we have

identified and our proposed variants of instance integration through pay-as-you-go

means.

4.4 Identifying a Baseline

Before we could commence with our experiments, we need a baseline to provide

a foundation on which we can build our strategies. Our selection of a baseline

is based on a set of criteria which can be applicable to any proposal aiming to

integrate instances by pay-as-you-go. To integrate instances by pay-as-you-go,

our baseline should be able to:

� handle incrementality. Incrementality is essential in handling the introduc-

tion of new instances without redoing previous integration effort. With re-

gard to our proposal, incrementality should be over a clustering algorithm.

� manage the O(n2) condition. With the abundance of records in public

datasets, the time taken for integrating two sets of data can be enormous.

For n records, matching every pair of records equals to O(n2) comparisons.

It is vital for our baseline to adopt strategies to mitigate this problem.

� adaptable to the insertion of weights. Since our proposal leverages distin-

guishing attributes through the use of weights, our baseline should be easily

adaptable to the inclusion of weights.

We have found an incremental clustering algorithm proposed by Costa et al.

[CMO10] to meet our criteria as a baseline (algorithm 4). We refer to this al-

gorithm as ICA for short. ICA is incremental because of its ability to handle

instances new to a dataset (line 5). Besides that, ICA does not remove any in-

stances from a cluster but instead adds them hence preserving old integrations

(lines 8 to 13).

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 96

Algorithm 4 Incremental clustering algorithm [CMO10]

1: Input: C Clusters
2: Input: I Index
3: Input: NewTuples Set<Tuple>
4: Input: P Parameters
5: for t ∈ NewTuples do
6: Nn = get set of nearest neighbours for t based on I and P
7: c = find most suitable cluster for t from C, depending on Nn, based on P
8: if c == null then
9: newCluster = create a new cluster that contains t

10: append newCluster to C
11: else
12: append t to c
13: end if
14: end for

To enable scalability, ICA resorted to the use of a two-level hashing strategy

for blocking, utilising min-hashing [Ind01]. In principle, min-hashing utilises an

overlap formed between two similar records by projecting their common “fea-

tures” exhibited as short integers. Unlike traditional hashing, min-hashing hosts

a set of hash functions known as a hash family and transforms a record using

each family member into an array of “representing” short integers. ICA takes it

further with a second level of hashing at which the short integer representatives

are themselves hashed. Similarly, the smallest hash numbers are chosen and per-

manently appointed as keys in an index. A feature is basically a 3-gram of the

words contained in an instance with its attribute fields ignored. In other words,

an instance is regarded as a single long string. Costa et al. reasoned that with

each instance mapped to a key, finding instances with high syntactic similarity

can be contained to the collection of instances that share the same key, which

are referred to as neighbours. This reduces the number of pairwise comparisons

to be conducted.

We present an example to demonstrate the principles of min-hashing behind

its application. Given, a record u = {Jeff, Lynch} and its extracted features,

{Jef, eff, Lyn, ync, nch}. Using a family of hash functions, hash codes are

generated for each feature. In this example, we illustrate using only two hash

families (Table 4.2). Selecting an array of representative hash codes for record

u involves, identifying the smallest-valued hash code for each word from every

hash family. Here, from the first hash family, 54 and 19 were chosen to represent

the words John Lynch. From the second hash family, 42 and 31 were chosen,

resulting in the following representatives.

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 97

Representatives1 = { 54, 19 }

Representatives2 = { 42, 31 }

Table 4.2: Hash codes generated from two hash families for every feature.

Jef eff Lyn ync nch
Hash family 1 76 54 19 112 201
Hash family 2 81 42 99 98 31

Index key formation can be inclined either towards blocking for precision or

for recall. Precision is the fraction of returned instances that are correct; whilst

recall describes the fraction of correct instances that are returned. In Table 4.1

the corresponding variables are numKeys and keyComponents. In principle, a

higher value of numKeys reflects a larger recall, and higher precision comes from

a larger valued keyComponents. Determining their values is a matter of realising

the characteristics of individual datasets.

Clustering in ICA involves the interplay of three components: a function that

calculates similarity, the selection of nearest neighbours based on a value k, and

the promotion of a most suitable cluster according to the voting of these neigh-

bours. When a new instance t is available, a set of k of its nearest neighbours

(Nn) is established from the hash index (line 6). This decision is made by in-

voking a function to assign a similarity value between t and every one of its

neighbours. Costa et al. suggested a similarity threshold of 0.8 and a maximum

nearest neighbours (k) of 10. After some test runs with our dataset, we identified

that the suggested threshold was too high to result in any neighbours for certain

instances, instead, a threshold of 0.25 produces a more substantial amount. We

allow up to 10 nearest neighbours to be gathered for t. Our goal is to permit the

establishment of enough neighbours for the clustering to reach its voting stage

with the individuals required to obtain good results.

Voting takes place with the single aim of finding a most suitable cluster for

t (line 7). Once we arrive at this stage, each neighbour votes for its containing

cluster using a normalised similarity measure (Equation 4.5),

votingScore(t, nn) =
1

1− similarity(t, nn)
(4.5)

with nn ∈ Nn and similarityThreshold = 0.25 (see Table 4.1 for the list of

parameters). To compare which cluster from set C of all clusters receives the

most votes, the score of a cluster c is the sum of the voting score of all t’s

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 98

neighbours in cluster c (Equation 4.6).

Scorec =
∑

votingScore(t, nni) (4.6)

given nni ∈ Nn ∧ nni ∈ c; D = {all neighbours of t in c} ; i = 1, . . . , |D|.
ICA uses a threshold for voting (i.e., membershipThreshold) at 0.5. According to

Costa et al. the use of values other than 0.5 for membershipThreshold could cause

ICA to become inclined towards creating new clusters as opposed to finding the

most suitable cluster from the existing cluster pool. Two conditions must be met

to qualify a cluster to be the most suitable. First, a cluster must have the highest

voting score and second, it must be above the specified membershipThreshold.

ICA is agnostic to the use of weights on attributes. Therefore, we have installed

this function ourselves. Earlier, we have illustrated how weights can be a simple

yet powerful means to distinguish which attributes can help to group or separate

instances. Considering the assignment of weights requires some understanding of

the real world, our baseline is created by a human in order to make comparison

with our variants possible. We list the schema of each experimental data set

and its manually-specified weights in Table 4.3. AbtBuy1 and AmazonGoogle2

contain information of e-commerce products while DblpAcm3) holds bibliographic

records.

Table 4.3: Human-specified weights on each dataset’s schema

Dataset Attributes with human-specified weights
AbtBuy { product name: 0.6; description: 0.8; price: 0.2 }
AmazonGoogle { product name: 0.8; description: 0.4; manufacturer: 0.6; price: 0.2 }
DblpAcm { title: 0.8; authors: 0.4; venue: 0.6; year: 0.7 }

From a bird’s eye view, the baseline goes through a process flow as shown in

Figure C.1 (Appendix C), starting from its invocation and finally to its evaluation.

Configuration parameters used were discussed throughout this section, which are,

� weights.

� similarity threshold.

� voting threshold.

� maximum number of nearest neighbours.

� length of gram.
1dbs.uni-leipzig.de/file/Abt-Buy.zip
2dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
3dbs.uni-leipzig.de/file/DBLP-ACM.zip

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 99

� a set of hash families.

In a sensitivity analysis across the data sets, three of the parameters show a con-

stant incline towards specific values when best results are of concern. They are

q = 3, numKeys = 9 and keyComponents = 1. Due to this, these parameters

have been excluded from any optimisation exercises. Once all instances are clus-

tered, the fitness of the obtained set of clusters is measured. The measurement

which involves ground truth is detailed in Section 4.6.

4.5 Proposed Variants of Pay-as-you-go Instance Integra-

tion

Our variants are extensions of the baseline. They exhibit one or more of the

following dimensions:

1. the adoption of optimisation,

2. the configuration parameters that are subject to optimisation,

3. the direct changing of similarity scores by user feedback.

For variants which observe optimisation with configuration parameters, an evo-

lutionary search is implemented to find a favourable set of parameters. Its im-

plementation using parallelism is explained in detail in the next chapter.

4.5.1 No-optimisation score change (NOSC)

This variant, abbreviated as NOSC for No Optimisation Score Change (Figure

D.1 in Appendix D), directly applies the user’s knowledge about objects in reality

onto relevant record pairs. We avoid any optimisation for this variant in order

to form an understanding of the benefit that results from directly changing the

associations among records. NOSC adopts the same configuration parameters as

our baseline.

4.5.2 Weight-only Optimisation (WOO)

WOO investigates optimisation through an evolutionary search, specifically using

a genetic algorithm (GA). The only configuration parameters fed into WOO for

optimisation are weights (see Figure E.1 of Appendix E). For every set of weights

proposed by the optimiser, all records are clustered and the resulting cluster set

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 100

is evaluated using the fitness function described in section 4.3.3. This process is

iterated a number of times (red loop in figure E.1), translating into the number

of generations to complete in the GA.

4.5.3 Weights-and-parameters Optimisation (WAPO)

Extending from WOO, WAPO optimises not only weights but all the configura-

tion parameters needed by ICA. Innate to every dataset is its individual charac-

teristics, therefore, it can be expected that to assume constant parameters and

weights to apply to all datasets is unsuitable. Figure F.1 in Appendix F illustrates

the flow of processes in WAPO.

4.5.4 Post-optimisation score change (POSC)

Our final variant tests an alternative path to determine if directly changing scores

can have some benefits on integration (refer Figure G.1 in Appendix G). This

is accomplished by conducting direct changes after optimisation has completed.

The intuition is if direct-score changing is effective, then there would be areas

of the integration landscape that would exclusively gain from it and not from

optimisation alone. Hence, POSC should produce fitter clusters than WAPO.

In Figure G.1 we show where in the process flow direct-score changing occurs.

We divide POSC into two phases. The first aims at finding an optimised set of

weights and parameters, which executes as WAPO. In the second phase, we reuse

NOSC to cluster records by direct score changing. Then, the produced cluster

set is evaluated against the ground truth.

We summarise in Table 4.4 the dimensions adopted by each of our variants.

Table 4.4: A summary of dimensions in variants.

Variants Optimisation Parameters optimised Score change
Baseline No N/A No
NOSC No N/A Yes
WOO Yes Weights only No
WAPO Yes All but q, numKeys, keyComponents No
POSC Yes All but q, numKeys, keyComponents Yes

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 101

4.6 Experiment

We seek to understand what is the effect of user feedback on improving instance

integration when the integration is viewed as a black box (RQ5) and to answer

the question of how effective is our approaches in integrating instances at differ-

ent levels of user feedback (RQ6). To obtain this, we conducted two experiments

which test on different amounts of feedback from users. Prior to this pair of

experiments, we conducted a series of runs for two of our data sets using WAPO:

AbtBuy and AmazonGoogle. The purpose of these runs is to test on the consis-

tency of the produced fitness values when different random seeds are used. We use

WAPO to execute the runs considering that it possesses all that we hypothesised –

incremental clustering, evolutionary search, optimisation of attribute weights and

parameters of the underlying clustering algorithm and takes advantage of user’s

knowledge of a domain. Further details of the tests are presented in Appendix

H. In summary, the result showed a consistent level of fitness across five runs,

using five unique sets of random seeds with a feedback amount of 250. From this

test, we learnt that even with random sets of seeds our technique produces values

that centre around a single point. Therefore, for the following experiments, we

ran each variant once for every data set.

4.6.1 Experimental Setup

Dataset

All three datasets (AbtBuy, AmazonGoogle and DblpAcm) contain real data

and have been made available by the University of Leipzig. We have found

other studies [WKFF12, LLH11, KTR10] to have also used them for instance

integration investigations. We list the details of these datasets in the Tables 4.5,

4.6 and 4.7.

.

Evolutionary search

We adopted the ECJ evolutionary computing system4 to execute our evolu-

tionary search. In the light of experiments with various values, we came to learn

that a population size of 50 and a generation size of 70 produced comparably ac-

ceptable and stable results as when more searching is done. This is not surprising

considering a population size as small as 30 has been shown through empirical

studies to be quite adequate in many cases [SCED89, Gre86].

4cs.gmu.edu/˜eclab/projects/ecj/

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 102

Table 4.5: AbtBuy dataset

Attributes { product name, description, price }
E.g., record 6493, “Denon Stereo Tuner - TU1500RD”, “Denon Stereo Tuner -

TU1500RD/RDS Radio Data System AM-FM 40 Station Random Mem-
ory Rotary Tuning Knob Dot Matrix FL Display Optional Remote”,
$375.00

Total records 2173
Total record pairs 2,359,878
Total duplicates 1097

Table 4.6: AmazonGoogle dataset

Attributes { product name, description, manufacturer, price }
E.g., record http:www.google.combasefeedssnippets12244614697089679523, “produc-

tion prem cs3 mac upgrad,adobe cs3 production premium mac upgrade
from production studio premium or standard”, “adobe software”, 805.99

Total records 4589
Total record pairs 10,527,166
Total duplicates 1300

Table 4.7: DblpAcm dataset

Attributes { title, authors, venue, year }
E.g., record 672969, “An Effective Deductive Object-Oriented Database Through

Language Integration”, “Maria L. Barja, Norman W. Paton, Alvaro A.
A. Fernandes, M. Howard Williams, Andrew Dinn”, “Very Large Data
Bases”, 1994

Total records 4910
Total record pairs 12,051,595
Total duplicates 1083

Feedback generation and ground truth

We view feedback as a subset of the ground truth. In practice, the portion

of non-match record pairs is often very much larger than match pairs [WLYF11,

WKFF12, GC06]. We distinguish between unmatch and non-match pairs: the

former describes two records that hold the possibility to be semantically similar

but were not identified to be so; the latter holds a more definitive position of two

records being semantically dissimilar. Being publicly available for duplicate de-

tection studies, all three datasets were provided with predetermined match pairs.

Our task now is to generate ground truth and choose from it a group of match

and unmatch pairs that comply with the feedback size requested. Considering

there is no evidence that users have any tendencies to prefer annotating matches

over unmatches, our experiments allocate equal numbers of both feedback types

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 103

in every batch. We use the following formula to produce the total record pairs

for R records which also represents the population of the ground truth for the

data set in question (Equation 4.7).

R× (R− 1)

2
(4.7)

Each pair is then labelled based on its type. Then, we randomly choose from

the collection of match ground truth a subset for feedback. Since total match

ground truth is inherently small in size, randomly selecting pairs seems unprob-

lematic. However, this is not the case for unmatch ground truth. Because of

its magnitude, we have to be more selective. Hence, it is more advantageous to

select syntactically similar but unmatched record pairs than obviously dissimilar

ones. Unmatch feedback is generated by: a) executing a blocking algorithm and

pairing up records that share the same block and b) randomly selecting pairs that

are specified as unmatch in the ground truth.

The fitness of a cluster set can be determined by comparing it with the ground

truth. We define fitness of a cluster set in regard to ground truth (Equation 4.8)

as,

(
MGM

MGM +MGU
+

UGU

UGU + UGM
)× 1

2
(4.8)

where

� MGM represents the number of record pairs found to match in the cluster

set and that also match in the ground truth,

� UGU indicates the total number of unmatch record pairs that the cluster set

has where ground truth sets them as unmatch as well,

� MGU is the number of record pairs which the final clusters identify as a

match but the ground truth perceives otherwise,

� UGM is the number of record pairs in a cluster set that are not duplicates

but where the ground truth distinguishes them as duplicates,

The fitness measure makes use of the fractions of all record pairs in agreement

with the ground truth for both match and unmatch entries. The fitness measure

gives equal weight to the evidence from matched and from unmatched entries, to

avoid the risk that the effect of matching entries is swamped by the number of

unmatches, which is often a great deal more than matches.

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 104

In the following subsections we describe our experiment design and share the

results generated. These experiments are based on this definition of fitness. In

both our experiments, at the point where feedback is not available, this is analo-

gous to a run of our Baseline.

4.6.2 Experiment 1: Compare Proposed Strategies with Three Feed-

back Levels

This experiment has the objective of understanding how our proposed variants

would respond when feedback at three different levels (i.e., 5, 150, 300) is intro-

duced. Knowing this would allow our subsequent experiment to execute with the

most encouraging variants. The smallest level of feedback is 5, which translates

into less than 1% of every data set. 300 is the largest level and it represents 6%

of AmazonGoogle and DblpAcm each, whereas for AbtBuy, this level constitutes

14% of its total records. Table 4.9 displays the different levels of feedback and

the percentage they represent for each data set.

Table 4.8: Feedback sizes and percentages across data sets

Data set Total records Feedback %

AbtBuy 2,173
5 <1

150 6.9
300 14

AmazonGoogle 4,589
5 <1

150 3.3
300 6.5

DblpAcm 4,910
5 <1

150 3.0
300 6.1

We expect some performance improvement with the presentation of feedback.

Our experiment yields the results in Figure 4.3. The following can be observed:

� In the absence of any feedback, all variants show comparable cluster fitness

with the baseline; however, improvement in the level of fitness is obtained

when feedback is presented.

� The direct application of user feedback (score change), as could be observed

in NOSC, produces limited improvements regardless of the amount of feed-

back introduced.

� In contrast, when user feedback is reflected in the weights and parameters of

the algorithm using WAPO or POSC, we could observe improvement in the

performance even with small amounts of feedback. Although this is less ap-

parent in WOO when AmazonGoogle and AbtBuy are used, this is attributed

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 105

(a) AbtBuy

(b) AmzonGoogle

(c) DblpAcm

Figure 4.3: Experiment 1 – Clustering fitness over three feedback sizes

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 106

to the higher complexity of these datasets as compared to DblpAcm. Both

AmazonGoogle and AbtBuy have long text embedded with descriptions that

do not overlap, while text in DblpAcm is shorter and permuted.

� Besides for DblpAcm, WOO consistently shows lower performance than

WAPO, indicating that in cases where the dataset is more “varied” [IRV13]

(e.g., contains permutation, under-specified words or synonyms) it may be

beneficial to include configuration parameters into the optimisation process.

� At feedback level 150, the performance of all optimisation-based strategies

(WOO, WAPO and POSC) has levelled off, showing no further changes in

the fitness.

� POSC exhibits very similar performance to WAPO, implying WAPO’s capa-

bility to cluster data items pegged with feedback correctly in general, even

in conditions void of any evidence from changing of scores.

4.6.3 Experiment 2: Compare Selected Strategies with Varying Feed-

back Amounts

Extending Experiment 1, this experiment runs our promising variant, WAPO,

against a set of feedback with smaller increments (i.e., 5, 25, 75, 150 and 300).

These finer intervals of feedback size allow us to know more precisely the rate

by which the quality of a clustering can be expected to improve with the growth

in feedback. We chose WAPO for its encouraging results. However, we have

included NOSC into this experiment for the sole purpose of comparison, serving

as the variant which feedback is introduced with the absence of any optimisation.

The results can be observed in table 4.4.

� We can see a positive result with WAPO which produced fitness scores from

small amounts of feedback that are close to when larger amounts of feed-

back is supplied. This feedback represents just 0.1% from the total records,

equalling to feedback level 5 in both AmazonGoogle and DblpAcm. The

same positive result can be seen in AbtBuy where the 5 items of feedback

represent 0.2% of its total records.

� However, WAPO produces a slightly less fit result at feedback amounts 25

and 75 in comparison with feedback level 5 (Figures 4.4a and 4.4b). This

may seem counter intuitive but is actually not especially surprising. The

reasons are:

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 107

(a) AbtBuy

(b) AmzonGoogle

(c) DblpAcm

Figure 4.4: Experiment 2 – Cluster fitness over different feedback sizes

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 108

– At all levels, the generated feedback represents a tiny subset of our

ground truth. This means fitness scores may be susceptible to fluctua-

tions as a result of the varying characteristics of the specific data that

the feedback was drawn from.

– Individual runs of the evolutionary search cover specific, plausibly non-

overlapping areas of the search landscape, obtaining unique candidates,

which results in variations in result quality.

4.7 Discussion

From the evaluation, we learn that clustering alone does not necessarily produce

a good integration. Some domain knowledge is needed. However, asking users to

apply their knowledge on every record pair is infeasible for most real data sets;

nevertheless, users may not find providing feedback troublesome if it involves

only a small proportion of record pairs. We have learnt from our evaluation that

simply applying user feedback through direct score changing does not produce

satisfying results. A better approach is to infer knowledge from this small sub-

set, and to apply this knowledge to the entire data set. Our evaluation shows

this inference to be possible. We tested using a method of inference whereby a

similarity measure is learnt in light of user feedback, and then used to cluster

the rest of the data set. The result shows an improvement in the integration

fitness against a chosen baseline. We extended our evaluation by adding param-

eters, used by the underlying clustering algorithm, to the search. The extension

shows further improvement to the integration fitness, indicating the benefits ob-

tainable from explicit user feedback. Our second evaluation investigated whether

directly applying user feedback may cover a different integration landscape that

cannot be identified by the optimiser. However, this is not observable with the

selected datasets. This shows that optimisation with weights and configuration

parameters generally clusters the data items for which there is feedback correctly,

without the additional evidence that comes from changed scores.

4.8 Related Work

Many surveys on each step of instance integration have been published. Christen

[Chr12] presents a survey on indexing/blocking techniques for instance resolution

in large datasets. [KSS06, EIV07, DGdSM11, WLYF11] describe and compare

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 109

techniques to identify matching instances. Surveys on clustering instances for

integration include [Rok10, HCLM09, XW05, JMF00]. Due to the presence of

these extensive surveys, instead of producing yet another survey, in this section,

we review state-of-the-art pay-as-you-go proposals related to our work by exploit-

ing the following dimensions.

1. Pay method

Pay-as-you-go for instance integration delivers more than one interpretation

notably to the method by which the “payment” is made. One view regards pay-

ment in the form of computational resource usage [WMGM13] whilst another

view being the feedback from users about the correctness of one or more arte-

facts. This dimension describes the form of payment acceptable: user feedback

or compute resource.

2. Touch points

PAYGO data integration has multiple stages where typically the use of user

feedback could be found in one of these stages. Nevertheless, there are proposals

that manipulate feedback in more than one stage. With more touch points along

these lines of stages that can benefit from user feedback, this implies generally

the extensiveness of feedback manipulation. Hence, this dimension bears the cat-

egories of single or multiple.

3. Method of inference

A user’s knowledge of a domain is valuable but costly to collect. To apply this

knowledge on every record pair is infeasible. Hence, the ability to infer similarity

information based on a small subset of the data set that can be applied to the rest

of the data set is a useful characteristic of an instance integration proposal. This

dimension describes whatever method for inference is implemented by a proposal,

if any.

Table 4.9: State-of-the-art pay-as-as-you-go proposals

Proposal Pay method Touch points Method of inference

Corleone [GDD+14] user feedback multiple trains a classifier using a small number

of labelled data

CrowdEr [WKFF12] user feedback single none

Whang et al. [WMGM13] computer resource multiple none

Xiong et al. [XAF14] user feedback single automatically forms new constraints

based on constraints which have re-

ceived vetting by user

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 110

We found four proposals of pay-as-you-go for integrating instances which ma-

nipulates domain information from user feedback.

Corleone [GDD+14] taps into a crowd to assist with integration decisions at

multiple touch points. Upholding the notion of hands-off crowdsourcing (HOC),

Corleone lifts entirely any reliance on a developer to complete any task to inte-

grate instances and hence promotes complete crowdsourcing. Stages which get

crowdsourced in Corleone include a) blocking to reduce the number of pairwise

comparisons, b) training of a learning-based matcher, and c) integration improve-

ment for difficult cases. Corleone is interesting because it seizes user involvement

as early as the blocking stage and at a greater extent than our proposal. While we

propose an indirect user participation to blocking through the manipulation of a

fitness function, Corleone directly includes users in the production of “machine-

readable blocking rules” [GDD+14] by choosing rules that they perceive useful,

and in the evaluation of the selected rules by assessing their precision. To infer

similarity information, Corleone turns to the use of a classifier. The crowd’s par-

ticipation here is in labelling a small number of examples, fashioned from active

learning, to train this classifier. Conversely, our proposal adopts an unsupervised

learning approach, which works in the absence of a training set, and weights to

infer similarity, delaying user’s involvement until a cluster set has been obtained.

For Corleone, improvement in the integration is supported by iterating through

the stages with the addition of either making changes to an under-performing

classifier or through the creation of a new specialised one.

CrowdEr [WKFF12] is another crowd-based proposal. Hinging upon the use

of machine-based and user-based methods to identify matching entities, CrowdEr

positions itself as a hybrid solution. CrowdEr consists of two primary phases. It

starts by finding duplicates by way of machine, i.e., comparing text descriptions.

Then, where matches exceed a decided threshold, they are presented to the crowd

for clarity. In CrowdEr, matches that are to be validated by the crowd are for-

mulated into Human Intelligence Tasks (HITs). A HIT is a “microtask” that

a crowd participant is assigned to provide feedback. HITs come in two forms:

pair-based and cluster-based. Multiple feedback is expected to be given with

every cluster-based HIT, considering that it contains more than just a pair of

records. Although most of the time the number of feedbacks equals the number

of records in a HIT cluster, we view CrowdEr to be having a single touch point

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 111

as the feedback occurs in one stage. Since monetary payment is often involved in

crowdsourcing, minimising the number of HITs is preferable, however, Wang et

al. have shown that generating the minimum number of cluster-based HIT is an

NP-hard problem, and thus sought the use of heuristics. We noticed that Crow-

dEr does not infer any similarity information from the set of feedback it receives.

The assumption is most of the records have been resolved by the “machine” part

of the proposal, and only a small number is left for the crowd. Hence, there is no

need for any inference to be conducted. In contrast to our proposal, feedback is

introduced as part of the integration process and not in some subsequent phase.

Another difference is we do not specify which record pair needs clarifying. We

allow a user to independently select the record pair to give feedback.

Whang et al. [WMGM13] is a pay-as-you-go proposal with compute resource

as the payment type. In this proposal, hints are introduced which hold useful

information for integrating instances. Hints can be either of the three forms:

sorted list of record pairs, hierarchy of partitions or sorted list of records. Basi-

cally, hints are auxiliary data structures aimed at conducting record comparisons

in the most profitable manner, defined here as “with pairs that are most likely

to match” [WMGM13]. In other words, Whang et al. try to avoid comparing

randomly ordered records because they can increase compute cost. Due to their

heuristic nature, hints may or may not work with every entity resolution algo-

rithm. There is an unavoidable tradeoff between the overhead of producing hints

and the benefits obtained from using hints. No similarity information is inferred

here.

Xiong et al. [XAF14] use a semi-supervised clustering approach to resolve

instances while satisfying user-specified constraints. These constraints can be

either a must-link, indicating two records are duplicates, or a cannot-link for

non-duplicate record pairs. Xiong et al. perform iterative refinement to the cur-

rent clustering model by dynamically consulting users for their knowledge. This

exhibits a behaviour of a pay-as-you-go data integration. The key concern of

this proposal is in the selection of informative record pairs worthy to take up

the role of “labelled examples” in the cluster that they are to reside. Xiong et

al. follow the intuition that improperly-selected labelled examples can impede

the performance of a clustering effort. Probability and uncertainty are used to

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 112

calculate how informative a pair is. Xiong et al. adopt the concept of neighbour-

hoods. A neighbourhood is a special subset of a cluster. It is special because

it contains record pairs that have received user vetting. We could view them to

be representatives of the cluster whereby any decision for membership must first

be evaluated against them. Once an informative record pair has been identified,

users’ knowledge (in the form of constraints) is sought to decide on which neigh-

bourhood the pair should belong to. Calculation of similarity information takes

place automatically between the pair and every existing member of the chosen

neighbourhood after its inclusion. Comparing to Xiong et al., feedback in our

proposal is completely manual. This is because feedback in our proposal is given

at the user’s choice. Clustering membership in Xiong et al. depends entirely on

users, whereas we opt for distance calculation as the determinant.

4.9 Summary and Conclusion

In this chapter, we have fulfilled the second part of our aim, i.e., to investigate

the use of pay-as-you-go approaches for instance level data integration, especially

the identification of duplicates, and accomplished our second objective of devising

a strategy to integrate instances from different large data sources, and that takes

advantage of knowledge from users, in the form of feedback, about the domain of

interest (O2).

We answered RQ4 (how can we devise a strategy to integrate instances from dif-

ferent large data sources in a dataspace) by proposing a pay-as-you-go technique

to integrate instances from different large data sources. This technique builds

upon the hypotheses that instance integration is the problem of incremental clus-

tering (RH4a); user’s valuable knowledge of the domain can be useful to improve

integration (RH4b); data sets are unique in their characteristics, requesting for

parameters tuning of the underlying incremental clustering algorithm (RH4c);

and due to the different needs from users on information, it is beneficial to have

an objective function that is guided by user’s domain understanding (RH4d).

Our technique works on the concept of clustering to group similar records to-

gether in relation to their syntactic data value. Weights are applied, indicating

the discriminative influence which an attribute has on the data set. In order to

determine a good set of weights, we turn to evolutionary search and the use of

user feedback to guide the search.

Two experiments were conducted as we sought to understand: firstly, is by

CHAPTER 4. PAYGO CLUSTERING CONFIG. FOR INSTANCE INTEGRATION 113

relying on just domain information elicited from user could yield good integration

quality if integration is viewed as a black box (RQ5) and secondly, how effective

is our strategies in integrating instances as the amount of user feedback varies

(RQ6). The following describes our evaluation.

� The first empirical evaluation compares different variants of our proposed

strategy against a baseline. All variants assume the underlying instance inte-

gration process as a black box. With regards to this, we explore optimisation

of parameters of weights only, weights and an incremental clustering algo-

rithm’s configuration, and post optimisation score change. We also tested

the case when no optimisation is conducted, but instead similar scores of

record pairs are directly changed based on user feedback to give a point of

comparison. We were interested to know the relative performance of these

variants. From our results, we can see that optimisation of attribute weights

generates fitter clusters than clustering without weights. However, directly

changing similarity scores does not give better results. Nevertheless, opti-

mising weights and parameters of the clustering algorithm together produces

the fittest clusters when compared to the other variants.

� From the result of the first experiment, a second experiment was conducted

on the best performing variant to understand the rate at which the quality of

a clustering can be expected to improve as the amount of feedback collected

grows. The results show that depending on the characteristics of the data

set, there are differences in the fitness of the produced cluster. But fitness

is better than the baseline across all data sets and in the cases we studied

only a very small amount of feedback was needed to effect an improvement

in the matching results.

We can conclude that using pay-as-you-go approach to integrate instances

in a dataspace can produce fit clusters. This is achievable by putting together

incremental clustering, tuning of parameters, and user-driven evolutionary search.

Through this approach, it is possible for users to provide feedback only on a small

amount of record pairs and has the integration taking affect onto the rest of the

records in the dataspace. Nevertheless, scalability is a primary concern. This

approach requires lengthy run time, making it less than practical. In the next

chapter, we propose a pruning strategy to overcome this scalability issue.

Chapter 5

Scaling the Approach

A primary concern in our instance integration by pay-as-you-go approach is scal-

ability. A prolonged time is needed to complete the run of our approach. This

necessitates a more efficient strategy to be introduced. We investigated two forms

of scalability strategies, parallelism and pruning, to handle efficiency. We use par-

allelism to simultaneously execute multiple instances of our clustering algorithm.

Each instance receives as input a set of configuration parameters, randomly pro-

duced, initially, and subsequently, specially bred configuration parameters from

carefully selected parents. On top of that, we performed pruning of our dataset

and conducted a re-run of the integration to compare the fitness of clusters pro-

duced with and without pruned datasets.

In the first section of this chapter, we describe how we adopted parallelism

into our work and which part of our proposal it was used for. We then continue

to describe the platform that we employed, the HTC Condor (HTCondor)1, in

particular, its parallel-based application manager, the Directed Acyclic Graph

Manager (DAGMan). The second section describes our pruning strategy which

builds upon RH7a (removing uninformative records to form a pruned data set

used for integrating instances will not substantially degrade the quality of the

integration) and answers RQ7 (how could a comparable integration quality be

achieved by using only a fraction of a data set) – while the third section presents

two experiments that address RQ8 (would we see a substantial improvement in

the quality of integration if we use a pruned data set produced from our pruning

strategy in place of a full data set) and RQ9 (are there any improvements in the

time to complete when integration is conducted on our pruned data set in contrast

to on a full data set). This chapter ends with a summary and conclusion of our

1https://research.cs.wisc.edu/htcondor/

114

CHAPTER 5. SCALING THE APPROACH 115

work.

5.1 Adopting parallelism

Existing works on matching of records involving parallelism include [KTR12,

KR13, KL07, CZH+02]. These works distribute the task of comparing records for

any similarity to different compute units of a parallel-computing platform to be

run simultaneously. The primary aim is to reduce the total processing time and

hence improve efficiency.

We use parallelism to implement our evolutionary search component. The idea

behind parallelism is the simultaneous running of many independent processes on

multiple available machines, fully utilising all resources an organisation has, in

particular, the ones that tend to sit idly, for example, when office hours end.

In our work, we aimed at running our population in parallel. As a recap, from

our previous work in Chapter 4, we have adopted the use of a genetic algorithm

to produce optimised configuration parameters and weight attributes; and after

several tries, we have consequently decided upon a generation size of 70 and a

population size of 50.

Depending on the complexity of the dataset, the time taken to execute a single

run of the underlying clustering algorithm varies. Assuming an instance of the

clustering algorithm requires, as an example, 10 minutes to run, a total clock

time needed to run 50 individuals and 70 generations is

10 minutes x 50 individuals x 70 generation size = 35,000 minutes.

This equals to 24.3 days, which is too long. Therefore, by adopting parallelism,

we estimate the time to now be

10 minutes x 70 generation size = 700 minutes,

equalling to just approximately 12 hours. This is more acceptable than when no

parallelism is used. In our estimation, all 50 individuals would complete their

runs at about the same time, which is equivalent to one individual.

Our proposal does not perform parallelism at the record comparison level

nor at the blocking level. Since the longest single run of a clustering that we

experienced with our chosen datasets is only up to 5 minutes, we do not see this

as a necessity at the time of the research but would so in the future.

CHAPTER 5. SCALING THE APPROACH 116

5.1.1 Parallelising using HTCondor

In the previous chapter, we have described our variants of pay-as-you-go instance

integration. Here, we explain our employment of the HTCondor batch system

to implement the optimisation component of our variants. HTCondor was de-

veloped at the University of Wisconsin-Madison (UW-Madison) by the Centre

for High Throughput Computing. Its first installation, 15 years ago, was as a

production system for the UW-Madison Computer Sciences department. Since

then, HTCondor has evolved to finally become what it is today, a specialised

batch system for managing compute-intensive jobs. Often, batch systems require

the use of dedicated machines for job runs, however, HTCondor is designed to

harness the resources of idle, non-dedicated machines in a specified pool. For

our work, we have utilised a university-wide HTCondor run by the University of

Manchester.

5.1.2 Directed Acyclic Graph Manager (DAGMan) Application

HTCondor offers several applications to manage parallel-running jobs. One that

is a meta-scheduler for job execution is DAGMan. HTCondor has the primary

responsibility of finding machines for program execution and yet does not per-

form any job scheduling, especially that which involves dependencies, hence, HT-

Condor relies on applications, like DAGMan, to submit programs to it in some

user-preferred order. Besides bearing the task of a scheduler, DAGMan is also

responsible for recovery and reporting on the submitted programs.

At its core, DAGMan performs a sequence of dependent tasks, whereby the

input, output or execution of one job is dependent on the input, output or execu-

tion of another, and hence, a job would commence only after all its dependencies

are satisfied. This sequence is represented in DAGMan as a directed acyclic graph

(DAG), whereby the nodes identify the jobs, and the edges are the dependencies.

Figure 5.1 shows a diamond DAG with four jobs represented by four nodes (i.e.,

A, B, C, D) and dependencies describing how jobs B and C would only execute

after A has completed, while node D depends on the results of nodes B and C.

Using DAGMan, we too have a diamond-shaped graph with the middle level

representing a collection of dynamically-populated nodes that runs independent

instances of our clustering algorithm (refer Figure 5.2). In the beginning, the

root node (i.e., node A) has the task of populating an initial set of individuals

and at the end of each iteration the node is responsible for delivering a new set of

configuration parameters and attribute weights that it receives from the breeder

CHAPTER 5. SCALING THE APPROACH 117

Figure 5.1: A directed acyclic graph.

node at the bottom of the loop, i.e., node C. There would be 50 instances of B

node, representing the 50 individuals in the population. Leveraging DAGMan’s

splice, HTCondor iterates through the graph 70 times, and information is passed

from one iteration to the next. The 70 times represent the number of generations

Figure 5.2: Our application of the directed acyclic graph.

5.2 Pruning the Search Space

Through parallelism we were able to improve on the total time taken to complete

the integration. We echo the calculation here for without parallelism used and

when it is used. Without parallelism, we obtained

10 minutes x 50 individuals x 70 generation size = 35,000 minutes,

which equals to 24.3 days. While with parallelism, it has improved to

10 minutes x 70 generation size = 700 minutes,

equalling to just 12 hours.

In practice, the amount of data continuously increases with time. We should

then expect that our approach, even with parallelism, will eventually produce a

CHAPTER 5. SCALING THE APPROACH 118

gradual uptrend of processing time. The reason is although our approach was

able to produce fit clusters with the help from user feedback, however, the task of

tuning the parameters requires numerous runs of the entire instance identification

process. In conjunction with adopting parallelism, we propose a pruning strategy

to reduce the search space. Fundamentally, pruning involves removing from a

dataset records that, with some evidence, would not contribute to the resolution

of entities. Hence, their removal poses no serious effects but instead can be

beneficial to performance.

Another well-used scaling strategy that may not share the same spirit as prun-

ing, but is not entirely unrelated, is sampling. Generally, sampling is the activity

of carefully selecting items from a typically larger original collection, known as

a population, with the purpose of representing the most number of unique items

that can be found in that collection. In contrast, pruning typically engages in

the removal of items, viewed to be useless, from a collection, leaving only useful

ones. This difference is due to their different uses. Sampling can be found used in

fully-supervised learning approaches [LC94, XL10] to form a static training set,

and in active learning proposals [SB02, IAZ00, AED99, MMK00, SC00] to pro-

duce a more interactive training set. Uses of pruning have been found to include

datasets [Hoy98], trees [MD97, MRA95, Nob02], and rules [Coh95, TKR+95].

Placing the issue of scalability into our perspective, we propose a pruning

strategy to mitigate costly executions of clustering over large datasets. Itemis-

ing the total cost that our proposal has to bear reveals the multiplication of the

population size, the number of generations and the cost of a single execution of

clustering. Many optimisation efforts use a model to estimate the fitness of can-

didate solutions in place of the actual task, like what can be found in a query

optimiser, thus, avoiding the high cost that the running task could incur. How-

ever, in our case, obtaining a model would require us to be able to estimate, in

advance, the effects of parameter changes. This is difficult to attain. As a result,

we are left with a single alternative, that is to run the actual clustering and cal-

culate the results for each candidate configuration. Such an approach has been

adopted by others. For example, iTuned [DTB09] which is a tool that automates

the tuning of database configuration parameters is triggered by the same mo-

tivation. In iTuned, different parameters responsible for its overall performance

require the design of different experiments for their effects to be fully understood.

Such a condition removes any possible deployment of an analytical cost model and

CHAPTER 5. SCALING THE APPROACH 119

resorts to the running of the actual system. This is known as closed-looped opti-

misation, first used by Box [Box57]. Closed-looped optimisation is also utilised

outside computing, ranging from analytical biochemistry performing instrument

setup optimisation to improvements in chocolate production [Kno09].

We discuss in this chapter our proposal of a pruning technique aimed at re-

ducing resource usage and response time. The application and evaluation of this

technique fulfils our third objective (O3) — to design a technique which could

integrate large amounts of data by using only a fraction of the complete dataset

but without compromising the integration quality achieved when the approach in

O2 is used.

5.2.1 Pruning our datasets

Although pruning may appear to be a straightforward task, it is not spared from

inheriting complexity. Complexity can be found when deciding on what item to

prune. Failure to identify relevant items may result in poor integration quality.

We define our pruned dataset as,

prunedDataset = {r|r ∈ dataset, hasFeedback(r)}

where r is a record in dataset, which refers to the original dataset, and r has been

found to have been annotated. During optimisation, the pruned dataset is used

in the same fashion as a full dataset, with the same dependence on syntactical

distance of two records when calculating their degree of matching. However, the

cluster fitness produced is based on just a subset of the complete dataset, and

by clustering on the portion of the dataset which has obtained feedback, any

weights and parameters produced represent estimates of the values that would

be produced when used on the full dataset.

To reduce resource usage and response time, we devised a strategy which re-

moves uninformative records. An informative record contains evidence that can

be useful for the integration exercise. In our scenario, a distinction of an informa-

tive record is association with a user feedback. Generally, a user has knowledge

about items in a particular domain, therefore, records with user feedback contain

relevant information for use, establishing the suitability of configuration param-

eters, as they provide a subset of the ground truth. Building on this notion,

our pruning technique leaves out records that are without feedback. Algorithm 5

provides its details in pseudo code.

CHAPTER 5. SCALING THE APPROACH 120

Algorithm 5 Pruning strategy

1: allFeedback = get all user feedback

2: originalDataset = get all records of full dataset

3: for i ∈ originalDataset do

4: if i ∈ allFeedback then

5: append i into prunedDataset

6: end if

7: end for

This special association with user feedback is parallel with our fitness measure-

ment of clusters. We recall Section 4.3.3 which shows how our estimation of

quality is derived from user’s annotation on a subset of record pairs, marking

what user perceive to be a match or a non-match.

Two concerns arise in connection with the formation of the pruned set. The

first concern is the change in the collection of neighbours. This has the impact of

altering the cluster membership of a record, which leads to the second concern —

the ability to produce comparable quality to the original set. By having a smaller

collection of data in order to speed up clustering, it offers a limited amount of

information to find good configuration parameters. Eventually, a final cluster set

is produced which is less fit than without pruning.

Pruning the original dataset involves assembling records that collectively are

around twice the size of the given feedback at any point in time because a single

item of feedback typically relates two records together. Where the number of

records in the pruned dataset is less than twice the number of items of feedback,

this is attributed to some records having more than one item of feedback. For

example, records A and B are annotated as similar but record A is dissimilar with

C and also receives an annotation. Thus, we have two items of feedback across

three records instead of four. Table 5.1 displays the sizes of all pruned datasets.

The smallest feedback is 5, while the largest is 300 which across all datasets is at

most 25% of the total records in each dataset.

Table 5.1: Sizes of pruned dataset in light of different amounts of feedback

Dataset Total Number Feedback Amount

of Records 5 25 75 150 300

AbtBuy 2173 10 50 146 28 535

AmazonGoogle 4589 10 50 149 295 578

DblpAcm 4910 10 50 150 292 572

CHAPTER 5. SCALING THE APPROACH 121

For the very same reason as in earlier evaluations, every pruned dataset has the

same amount of positive and negative feedback as the complete set except for

feedback size 5 where the amount was randomly selected.

5.3 Experiments

The experiments presented in this section are in addition to the experiments

conducted in Chapter 4. All aspects of the experimental setup from Chapter 4 is

repeated here with the single difference of the data set used. In these experiments,

our pruned data sets are used in place of the original full data sets. The underlying

goal of conducting these experiments is to measure the degree of integration

achievable through our proposed pruning strategy. These experiments help us

to answer RQ8 (would our pruning strategy be able to produce a higher degree of

integration than when integration is done on the full data set) and RQ9 (would the

time to complete an integration process be faster with a pruned data set produced

based on hypothesis RH7a than when the complete data set is used).

5.3.1 Experiment 3: Compare Quality of Optimised Clusters using

Pruned Datasets

We conducted this experiment to understand the differences in the quality of

clusters when pruned datasets are used with the optimiser instead of the com-

plete dataset, where a pruned dataset almost always hosts a set of neighbours

unlike that of the complete set. In ICA, neighbours participate in determining

an instance’s cluster membership. A cluster with the most neighbours similar to

an instance will successfully include it. This is considered to be the “preferred”

cluster for that instance (line 7 of Algorithm 4 in page 96). Intuitively, by having

a large set of data, the pool of neighbours for an instance is more likely to be

wider, giving the instance a better chance to find its “preferred” cluster. With

a smaller neighbour pool, this perk may not always be available. Therefore, it

is important to know if this change in neighbours will reduce the quality of the

resulting clusters.

This experiment has the expectation to reach a comparable degree of quality

with Experiments 1 and 2. The same set of feedback as these earlier experiments

is used. Considering that WAPO has shown the most encouraging result with

optimisation, this experiment has placed its focus on it. The following result can

be observed.

CHAPTER 5. SCALING THE APPROACH 122

(a) AbtBuy

(b) AmzonGoogle

(c) DblpAcm

Figure 5.3: Experiment 3 – Result

CHAPTER 5. SCALING THE APPROACH 123

� In general, the result shows that optimising with the pruned dataset does

not immediately provide quality equal to the complete dataset. However,

quality improves as more feedback is received.

� In the beginning, the fitness markedly differs between the pruned and un-

pruned datasets, at feedback levels 5 and 25. DblpAcm shows the largest

fitness difference, while the next largest difference is the pruned Amazon-

Google. AbtBuy with pruning fares slightly better than the other two

datasets. This large gap demonstrates the insufficiency of information pro-

vided through the tiny amount of records of the pruned dataset.

� A turning point can be observed at feedback size 75, where an increase in

fitness can be obtained with the pruned dataset across all cases. DblpAcm

with pruning shows the largest improvement in fitness at feedback size 25.

This is followed by pruned AmazonGoogle and pruned AbtBuy. These im-

provements are interesting because for AmazonGoogle and DblpAcm, the

feedback amount of 75 represents only 2% of its full dataset, while for Abt-

Buy it represents 4%. Another interesting aspect is the increased fitness very

nears the fitness received by the unpruned datasets. This jump in fitness in-

dicates that the chosen feedback was able to provide the needed information

to help the optimiser to search for better configuration parameters, leading

to the improvement.

5.3.2 Experiment 4: Compare Clustering Times of Complete and

Pruned Data sets

The purpose of this experiment is to ascertain the efficiency of the clustering run

when the pruned dataset is used. We use WAPO in this experiment due to its

effectiveness. Clustering of complete datasets practically consumes differing time

range at each run. This difference can reach levels of up to around a factor of 3.

Behind this phenomenon is the different collection of neighbours produced from

the different sets of configurations continuously being churned from the optimiser.

As such, we calculated the average speedup for each pruned dataset and define

the total run time as a mean over 5 runs. We expect to gain faster clustering

completion time than clustering with the full dataset.

CHAPTER 5. SCALING THE APPROACH 124

Table 5.2: Average speed-up obtained using pruned dataset with 300 items of feedback

Dataset Speedup

AbtBuy 27

AmazonGoogle 31

DblpAcm 63

From this experiment, we acquired the following results (see Table 5.2).

� Overall, all three datasets when pruned present speedups of several orders of

magnitude compared with optimising with a complete dataset.

� The costly calculation of evaluating fitness of clusters can be substantially

lowered by pruning, even when using large datasets.

5.4 Summary and Conclusion

Presented in this chapter is an integration technique that we have designed that

accepts a fraction of a data set and allows for integration across large data sources

without compromising the integration’s quality obtained from O2 (O3), hence an-

swering RQ7. We have presented in this chapter, a technique that, based on

user’s feedback, selects records on which feedback has been provided. In other

words, this technique prunes the complete data set by choosing only the records

that have been validated by a user. We hypothesise that this manner of pruning

will not compromise the quality of an earlier integration (RH7a). Since we have

found that optimising weights and parameters can give fit clusters, we used that

particular variant with our pruning technique.

Also presented in this chapter are two experiments. The first experiment

answers RQ8 by comparing clusters generated through the pruning algorithm

against those of the complete data set. Our evaluation shows that on most of

the data sets, our proposed pruner produced comparably fit clusters at larger

feedback amounts. The second experiment deals with the question of time to

complete the integration process when the data sets are pruned (RQ9). From

our evaluation, we found that the average run time with the pruned data sets is

speedier by several orders or magnitude than with the complete data sets.

As a conclusion, pruning by removing uninformative records in a dataspace

can produce fit clusters with more amounts of feedback. This deals with the

scalability issue that was found in our instance integration technique described

CHAPTER 5. SCALING THE APPROACH 125

in Chapter 4. Additionally, by pruning a data set, the run time performance also

shows an improvement.

Chapter 6

Conclusions

In this chapter we review the contributions of our work and discuss future direc-

tions.

6.1 Review of Contributions

1. An approach that ranks mappings based on their relevance to a

user’s information needs

We have contributed an approach to addressing the challenge of mapping

proliferation attributed to the (semi-)automatic generation of mappings in

dataspaces, by diagnosing it as a mapping ranking problem (RH1a). By tack-

ling this proliferation, we obtained two benefits. Firstly, the search space

during instance integration can be reduced, and secondly, we can expect to

be presented with more accurate results. Our method tackled accuracy by

identifying instances that are relevant to a user’s information need (RQ1).

These needs are interpreted from implicitly-provided feedback supplied by

users, via the query logs. We held the view that a query’s conditional clause

provides terms that indicate a user’s information need (RH1b). These terms

can be used to rank semantic mappings (RH), whereby relevancy is calcu-

lated based on the rarity of terms found in a semantic mapping’s extent

(RH1d). Implicit feedback is not only abundant, but is also unobtrusive.

This places it to be a very interesting candidate for further exploration.

In this research effort, we have interpreted the conditional clauses of SQL

queries that contain the equality operator. Other operators are left for future

work. Our approach, to the best of our knowledge, is the first to address this

challenge. We presented a ranking strategy which rests upon a widely-used

126

CHAPTER 6. CONCLUSIONS 127

ranking scheme, the TF/IDF. In addition, we have suggested a variant to the

TF/IDF to normalise the size of mappings, identified as the size normalised

TF/IDF (snTF/IDF).

2. Empirical evaluations of the potential use of our approach in rank-

ing mappings

We have designed experiments to know how different sizes of query logs affect

the ranking score (RQ2), and to investigate how the rankings track query

patterns that are skewed towards specific sources (RQ3). We view skewness

to occur when some data sources contain a high frequency of terms that are

not frequently found in the rest of the data sources (RH3a). Our experi-

ments were not aimed at finding correct rankings, rather, we investigated

properties of stability and skewness, because we took up the assumption

that ground truth is innate to users, and hence we do not have easy ac-

cess to such information. Both experiments yielded interesting results. For

the first experiment, our approach was able to yield stable ranking even

with rather small-sized query logs. The sizes are 400 when ranked using

snTF/IDF and 500 for TF/IDF. In the second experiment, the rankings we

produced exhibited sensitivity to the changes in skewness towards distinct

data sources.

3. A pay-as-you-go strategy to entity resolution introduced through

disparate sources

To answer RQ4, we have designed and developed four variants of a pay-as-

you-go strategy in resolving entities: No-optimisation score change (NOSC),

Weight-only Optimisation (WOO), Weights-and-parameters Optimisation

(WAPO) and Post-optimisation score change (POSC). These variants ex-

tended from a carefully chosen baseline and exhibited one or more of three

interesting dimensions: first, adoption of optimisation, second, configuration

parameters subjected to optimisation, and third, the direct changing of sim-

ilarity scores by user feedback. Underlying our strategy are the following

premises: i) instance integration in dataspace is the problem of incremental

clustering (RH4a), ii) user possesses valuable domain knowledge which could

improve integration (RH4b), iii) tuning the parameters of the underlying in-

cremental clustering algorithm is necessitated by the unique characteristics

of individual data sets (RH4c), and iv) to deal with the different information

needs of users, a good approach is to use an objective function guided by

CHAPTER 6. CONCLUSIONS 128

user’s domain knowledge (RH4d). To implement optimisation, we used an

evolutionary search, particularly, a genetic algorithm. By applying a genetic

algorithm, the search effort receives guidance from a user on what are simi-

lar/dissimilar records. We modelled this guidance from a user as an objective

function, which calculates the portion of records that comply with the user’s

perception. The obtained solution from the search and which had the great-

est fitness than other solutions gets to form the final cluster set. To apply

the genetic algorithm, we implemented operators that define the algorithm,

i.e., mutation, crossover and selection. We have also designed the phenotype

and genotype. We deployed our optimiser-based variant on a compute-grid

environment, hinging upon parallelism. To understand the effectiveness of

direct score changing, we used feedback from users to override any existing

score produced from the underlying clustering algorithm. We identify an

effective direct score-changing effort by how well it uncovers values located

on the search space which the optimiser was not able to discover.

4. Two evaluations which empirically examined the effectiveness of

our instance integration proposal at two different levels of details

Two related experiments were designed to examine the effectiveness of our

four variants when feedback is introduced. Through these experiments, RQ5

and RQ6 were answered. The first experiment aimed at identifying the most

promising variant to be further evaluated in the second experiment. We

opted for three levels of feedback for our first experiment, and use finer

intervals of feedback levels in the second experiment to ascertain more closely

the rate by which the quality of a clustering can be expected to improve

with the growth in feedback. From the experiments, we found that user’s

domain knowledge plays an important role in the improvement of instance

integration and combined with optimisation of algorithm-specific parameters

produce fit clusters. Out of the four variants, WAPO was found to be the

most promising, producing fit clusters even with a small amount of feedback.

5. A pruning strategy that scales large data sets by removing unin-

formative records

We devised a pruning strategy that reduces the size of a large data set and

yet able to maintain acceptable integration quality under certain conditions

(RQ7). This strategy is aimed at reducing resource usage and response time,

by emphasising informative records (RH7a). Such records have acquired

CHAPTER 6. CONCLUSIONS 129

feedback from the user about their similarity and dissimilarity with one

or more records. This is valuable information. Uninformative records are

discarded with the confidence that they would not contribute to the quality of

the produced cluster set. The reason is, in our setting, our pruning strategy

reflects our evaluation formula, which in turn drives the evolutionary searchs

objective function.

6. An empirical investigation into the effectiveness and performance

of our pruning strategy

We conducted two experiments aimed at comparing the level of effectiveness

and efficiency achievable when pruned data sets substitute the complete data

sets. Each experiment answers RQ8 and RQ9 respectively. Our description

of this method can be found in Chapter 5. Pruned AbtBuy, AmazonGoogle

and DblpAcm were used for these experiments, while the competing results

of the complete data sets were taken from our earlier experiments. Addition-

ally, from these experiments we re-used the same set of feedback to maintain

constancy. Due to its encouraging results, we have employed WAPO for our

pruning tests. The results show that the pruned data sets were not compara-

ble in quality to their full counterparts when small amounts of feedback are

supplied. Nevertheless, an improvement in the fitness can be seen as feed-

back number grows, starting from feedback size 75 for all pruned data sets.

Impressively, this point of change represents from 2% to 4% of the full data

sets. We could conclude that due to its dependence on user feedback, our

pruning strategy is capable of producing a data set that, as more feedback

is received through time, would assist the optimiser to produce a cluster set

with a fitness that nears to a fitness obtained when a complete data set is

used. With the pruned data sets requiring such a small percentage of the

original data sets to trigger improvement in fitness (i.e., 2% to 4%), our test

on the level of efficiency achievable with the use of pruned data sets reveals

speedups of several orders of magnitude higher than when optimising with

the complete data sets.

6.2 Future Directions

From our research, in this section, we describe open issues related to our propos-

als.

1. From the first part of our study, where we investigated the effect of varying

CHAPTER 6. CONCLUSIONS 130

query log sizes to schema mappings ranking, we have learnt as more queries

are issued by users, the more stable the ranking of mappings become. This

shows implicit feedback to be a potentially reliable source of evidence for

ranking schema mappings. However, we do need to take into account that

the ranking is based on static result tuples from the mapping, which in

reality is not always the case. One way is to capture a snapshot of the

highly-ranked mappings’ extent. Re-ranking can be conducted periodically

to update changes.

2. Closely related to (1) is that we have defined three forms of mappings: a) ba-

sic, b) refined and c) neutral, which span two data sources. Over time, some

mappings evolve through a dataspace’s refinement phase and potentially af-

fect a current ranking. In some cases, a basic mapping may transform into

a refined mapping, and others may get deleted. Additional to the possi-

ble method proposed in (1), provenance information can be used prior to

re-ranking. A recent work on provenance and mappings is Glavic et al.

[GAMH10]. This work proposed two forms of provenance to firstly describe

the association between transformed data and the relevant transformations,

and secondly describe mappings that produced that data. Unlike both forms

of proposed provenance, what we have in mind is more mapping-centric. We

imagine provenance information should contain a history of expressions that

a mapping previously assumed.

3. Provide meaning to other, more complex types of conditional expressions

found in query logs besides “equality”. SQL is the instrument for users

to specify information they wish to find, and it is also typically used for

putting across specific information to be avoided. An example is the use of

set difference, e.g., NOT IN. Another commonly-used SQL component is the

BETWEEN operator. Future work could simply involve parsing an operator

and populating it with relevant values. For example, the BETWEEN oper-

ator’s value range would parse into a set of meaningful data items, which in

our approach would emerge as a collection of terms to be discriminated.

4. Our experiments have been limited to relational databases. In reality, there

are other forms of data model being actively used, for example object-

oriented, XML, etc. Hence, it is only proper to expand our method to

accommodate them.

5. Because of the direct dependency that our pruning strategy has on feedback

CHAPTER 6. CONCLUSIONS 131

amount, the results we received from the use of pruned data sets have shown

low fitness when feedback size is small. This fitness gradually improves as

more feedback is supplied. However, in practice, the time needed to secure

a good amount of feedback is not determinable. A possible approach is

to adopt probabilistic methods to estimate the gains obtainable by which

record and include that record into the pruned data set. Another candi-

date approach is to utilise available implicit feedback, which is plentiful and

unobtrusive.

6. A particularly interesting work for the future is conducting data fusion for

dataspaces. In this research, we have presented ways to find duplicate records

from multiple disparate databases, but have not handled how these distinct

versions of the same object are to be consolidated. A pay-as-you-go feedback

for data fusion may implement the collection of strategies suggested by Blei-

holder et al. [BN09]. However, it must consider the changeable nature of

domains, in particular their data items, that have found the pay-as-you-go

paradigm to be suitable. None of the strategies [BN09] has taken into ac-

count future updates to an already fused record pair. Such a characteristic

is likely to warrant adjustments to the presented strategies.

7. Besides query logs, a host of other database artefacts can become implicit

feedback. An especially useful implicit feedback for ranking of schema map-

pings is a user’s clickthroughs. Often users would view a record which inter-

ests them, usually by clicking on either its hyperlink to expand viewing, by

scrolling through the record; or downloading, printing, marking or tagging

it. Statistics on clickthroughs could help infer relevant mappings.

8. Extend the depth of parallelism for our pay-as-you-go instance integration

proposal to a finer granularity as can be seen done by [KTR12, KR13, KL07,

CZH+02] — comparing records at each compute unit. A benefit expected is

further improvement in efficiency.

Bibliography

[ABBG09] Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, and Giorgio

Gianforme. MISM: A Platform for Model-Independent Solutions to

Model Management Problems. Journal on Data Semantics XIV,

5880:133–161, 2009.

[ABMM07] Yuan An, Alexander Borgida, Robert J. Miller, and John Mylopou-

los. A Semantic Approach to Discovering Schema Mapping Expres-

sions. In 23rd International Conference on Data Engineering, pages

206–215. IEEE, 2007.

[ACD02] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer:

A System for Keyword-based Search over Relational Databases. In

18th International Conference on Data Engineering, pages 5–16.

IEEE, 2002.

[ACDG03] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, and Aristides

Gionis. Automated Ranking of Database Query Results. In 1st

Biennial Conference on Innovative Data Systems Research. CIDR,

2003.

[ACM+08] Bogdan Alexe, Laura Chiticariu, Renée J. Miller, Daniel Pepper,

and Wang-Chiew Tan. Muse: A System for Understanding and

Designing Mappings. In Proceedings of the International Conference

on Management of Data, pages 1281–1284. ACM, 2008.

[ACPS96] Sibel Adali, Kasim Seluk Cuk Candan, Yannis Papakonstantinou,

and VS Siva S. Subrahmanian. Query Caching and Optimization in

Distributed Mediator Systems. In Proceedings of the International

Conference on Management of Data, volume 25, pages 137–146.

ACM, June 1996.

132

BIBLIOGRAPHY 133

[AED99] Shlomo Argamon-Engelson and Ido Dagan. Committee-based Sam-

ple Selection for Probabilistic Classifiers. Journal of Artificial Intel-

ligence Research, 11:335–360, 1999.

[AEKV07] Rakesh Agrawal, Alexandre Evfimievski, Jerry Kiernan, and Raja

Velu. Auditing Disclosure by Relevance Ranking. In Proceedings of

the International Conference on Management of Data, pages 79–90.

ACM, 2007.

[AGMS13] Yael Amsterdamer, Yael Grossman, Tova Milo, and Pierre Senellart.

Crowd Mining. In Proceedings of the International Conference on

Management of Data, pages 241–252. ACM, 2013.

[ANd06] Ajith Abraham, Nadia Nedjah, and Luiza de Macedo Mourelle. Evo-

lutionary Computation: from Genetic Algorithms to Genetic Pro-

gramming. In Genetic Systems Programming: Theory and Expe-

riences, volume 13 of Studies in Computational Intelligence, pages

1–20. Springer, 2006.

[ASS09] Alsayed Algergawy, Eike Schallehn, and Gunter Saake. Improving

XML Schema Matching Performance using Prüfer Sequences. Data

& Knowledge Engineering, 68(8):728–747, 2009.

[BBBM06] Sugato Basu, Mikhail Bilenko, Arindam Benerjee, and Raymond J.

Mooney. Probablistic Semi-supervised Clustering with Constraints.

Semi-supervised Learning, pages 71–98, 2006.

[BC95] Shumeet Baluja and Rich Caruana. Removing the Genetics from

the Standard Genetic Algorithm. In Proceedings of the 12th In-

ternational Conference on Machine Learning, pages 38–46. Morgan

Kaufmann Publishers Inc., 1995.

[BCC03] Rohan Baxter, Peter Christen, and Tim Churches. A Comparison

of Fast Blocking Methods for Record Linkage. In Conference on

Knowledge Discovery and Data Mining, pages 25–27. ACM, 2003.

[BDG+07] Lukas Blunschi, Jens-Peter Dittrich, Olivier René Girard, Shant Ki-

rakos Karakashian, and Marcos Antonio Vaz Salles. A Dataspace

Odyssey: The iMeMex Personal Dataspace Management System

(Demo). In 3rd Biennial Conference on Innovative Data Systems

Research, pages 114–119. CIDR, 2007.

BIBLIOGRAPHY 134

[BDPH06] Ladjel Bellatreche, Nguyen Xuan Dung, Guy Pierra, and Dehain-

sala Hondjack. Contribution of Ontology-based Data Modeling to

Automatic Integration of Electronic Catalogues within Engineering

Databases. Computers in Industry, 57(8):711–724, 2006.

[BGMK+06] Omar Benjelloun, Hector Garcia-Molina, Hideki Kawai, Tait Eliott

Larson, David Menestrina, Qi Su, Sutthipong Thavisomboon, and

Jennifer Widom. Generic Entity Resolution in the SERF Project.

Technical report, Stanford InfoLab, 2006.

[BGMZ97] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Ge-

offrey Zweig. Syntactic Clustering of the Web. Computer Networks

and ISDN Systems, 29(8):1157–1166, 1997.

[BHN+02] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen

Chakrabarti, and S. Sudarshan. Keyword Searching and Brows-

ing in Databases using BANKS. In 18th International Conference

on Data Engineering, pages 431 –440. IEEE, 2002.

[BL04] Shawn Bowers and Bertram Ludäscher. An Ontology-driven Frame-

work for Data Transformation in Scientific Workflows. In Data In-

tegration in the Life Sciences, Lecture Notes in Computer Science,

pages 1–16. Springer Berlin Heidelberg, 2004.

[BM03a] Mikhail Bilenko and Raymond J. Mooney. Adaptive Duplicate De-

tection using Learnable String Similarity Measures. In Proceedings

of the 19th International Conference on Knowledge Discovery and

Data Mining, pages 39–48. ACM, 2003.

[BM03b] Mikhail Bilenko and Raymond J. Mooney. On Evaluation and

Training-set Construction for Duplicate Detection. In Proceedings

of the Knowledge Discovery and Data Mining Workshop on Data

Cleaning, Record Linkage and Object Consolidation, pages 7–12.

ACM, 2003.

[BM07] Philip A. Bernstein and Sergey Melnik. Model Management 2.0:

Manipulating Richer Mappings. In Proceedings of the International

Conference on Management of Data, pages 1–12. ACM, 2007.

[BMCF03] M. Bilenko, R.J. Mooney, P. Cohen, and S.E. Fienberg. Adaptive

Name Matching in Information Integration. IEEE Intelligent Sys-

tems, 18(5):16–23, 2003.

BIBLIOGRAPHY 135

[BN09] Jens Bleiholder and Felix Naumann. Data Fusion. ACM Computer

Surveys, 41(1):1:1–1:41, January 2009.

[Box57] George E. P. Box. Evolutionary Operation: A Method for Increasing

Industrial Productivity. Journal of the Royal Statistical Society.

Series C (Applied Statistics), 6(2):81–101, 1957.

[BPE+10] Khalid Belhajjame, Norman W. Paton, Suzanne M. Embury, Alvaro

A. A. Fernandes, and Cornelia Hedeler. Feedback-based Annota-

tion, Selection and Refinement of Schema Mappings for Dataspaces.

In Proceedings of the 13th International Conference on Extending

Database Technology, pages 573–584. ACM, 2010.

[BPF+11] Khalid Belhajjame, Norman W. Paton, Alvaro A. A. Fernandes,

Cornelia Hedeler, and Suzanne M. Embury. User Feedback as a First

Class Citizen in Information Integration Systems. In 5th Biennial

Conference on Innovative Data Systems Research, 2011.

[Bro02] Andrei Broder. A Taxonomy of Web Search. Special Interest Group

on Information Retrieval Forum, 36:3–10, September 2002.

[Bro11] Jason Brownlee. Clever Algorithms: Nature-Inspired Programming

Recipes. Jason Brownlee, 2011.

[CCMO11] Gianni Costa, Alfredo Cuzzocrea, Giuseppe Manco, and Riccardo

Ortale. Data De-duplication: A Review. In Learning Structure and

Schemas from Documents, pages 385–412. Springer, 2011.

[CDHW06] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard

Weikum. Probabilistic Information Retrieval Approach for Rank-

ing of Database Query Results. ACM Transactions on Database

Systems, 31:1134–1168, September 2006.

[CFM+14] Valter Crescenzi, Alvaro A. A. Fernandes, Paolo Merialdo, Nor-

man W. Paton, and Disheng Qiu. Crowdsourcing for Data Manage-

ment: A Survey. 2014.

[Chr06] Peter Christen. A Comparison of Personal Name Matching: Tech-

niques and Practical Issues. In The 6th International Conference on

Data Mining - Workshops, pages 290–294, Dec 2006.

BIBLIOGRAPHY 136

[Chr12] Peter Christen. A Survey of Indexing Techniques for Scalable Record

Linkage and Deduplication. IEEE Transactions on Knowledge and

Data Engineering, 24(9):1537–1555, September 2012.

[CLM13] Matej Crepinsek, Shih-Hsi Liu, and Marjan Mernik. Exploration

and Exploitation in Evolutionary Algorithms: A Survey. ACM Com-

puter Surveys, 45(3):35, 2013.

[CMO10] Gianni Costa, Giuseppe Manco, and Riccardo Ortale. An Incremen-

tal Clustering Scheme for Data De-duplication. Data Mining and

Knowledge Discovery, 20(1):152–187, 2010.

[Coh95] William W. Cohen. Fast Effective Rule Induction. In Proceedings

of the 12th International Conference on Machine Learning, pages

115–123. Morgan Kaufmann Publishers Inc., 1995.

[Col11] Charles Cole. A Theory of Information Need for Information

Retrieval that Connects Information to Knowledge. Journal of

the American Society for Information Science and Technology,

62(7):1216–1231, 2011.

[Cor14] Paolo Cortez. Modern Optimization with R. Springer International

Publishing, 2014.

[CQCS10] Huiping Cao, Yan Qi, K. Selçuk Candan, and Maria Luisa Sapino.

Feedback-driven Result Ranking and Query Refinement for Explor-

ing Semi-structured Data Collections. In Proceedings of the 13th

International Conference on Extending Database Technology, pages

3–14. ACM, 2010.

[CR02] William W. Cohen and Jacob Richman. Learning to Match and

Cluster Large High Dimensional Data Sets For Data Integration.

In Proceedings of the 8th International Conference on Knowledge

Discovery and Data Mining. ACM, 2002.

[CSC04] Isabel F. Cruz, William Sunna, and Anjli Chaudhry. Semi-

automatic Ontology Alignment for Geospatial Data Integration. In

Geographic Information Science, pages 51–66. Springer, 2004.

[CSGM00] Junghoo Cho, Narayanan Shivakumar, and Hector Garcia-Molina.

BIBLIOGRAPHY 137

Finding Replicated Web Collections. In Proceedings of the Interna-

tional Conference on Management of Data, pages 355–366. ACM,

2000.

[CSZ06] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-

Supervised Learning. MIT Press, 2006.

[CT09] Xiaomeng Chang and Janis Terpenny. Ontology-based Data Inte-

gration and Decision Support for Product e-Design. Robotics and

Computer Integrated Manufacturing, 25(6):863–870, 2009.

[CVDN09] Xiaoyong Chai, Ba-Quy Vuong, AnHai Doan, and Jeffrey F.

Naughton. Efficiently Incorporating User Feedback into Informa-

tion Extraction and Integration Programs. In Proceedings of the

35th International Conference on Management of Data, pages 87–

100. ACM, 2009.

[CZH+02] Peter Christen, Justin Zhu, Markus Hegland, Stephen Roberts,

Ole M. Nielsen, Tim Churches, and Kim Lim. High-performance

Computing Techniques for Record Linkage. In Australian Health

Outcomes Conference, 2002.

[DDCM13] Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudr-

Mauroux. Large-scale Linked Data Integration using Probabilistic

Reasoning and Crowdsourcing. The Very Large Database Journal,

22(5):665–687, 2013.

[DGdSM11] Carina Dorneles, Rodrigo Gonalves, and Ronaldo dos Santos Mello.

Approximate Data Instance Matching: A Survey. Knowledge and

Information Systems, 27:1–21, 2011.

[DGL00] Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Re-

cursive Query Plans for Data Integration. The Journal of Logic

Programming, 43(1):49–73, 2000.

[DHY09] Xin Dong, Alon Halevy, and Cong Yu. Data Integration with Un-

certainty. The Very Large Databases Journal, 18:469–500, 2009.

[DKMR13] Susan B. Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy.

Using the Crowd for Top-k and Group-by Queries. In Proceedings

of the 16th International Conference on Database Theory, page 225.

ACM Press, 2013.

BIBLIOGRAPHY 138

[DR07] Hong-Hai Do and Erhard Rahm. Matching Large Schemas: Ap-

proaches and Evaluation. Information Systems, 32(6):857 – 885,

2007.

[DS06] Jens-Peter Dittrich and Marcos Antonio Vaz Salles. iDM: A Uni-

fied and Versatile Data Model for Personal Dataspace Management.

In Proceedings of the 32nd International Conference on Very Large

Data Bases, pages 367–378. VLDB Endowment, 2006.

[DSB09] Neelam Duhan, A. K. Sharma, and Komal K. Bhatia. Page Ranking

Algorithms: A Survey. In International Conference on Advance

Computing, pages 1530–1537. IEEE, March 2009.

[DTB09] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning

Database Configuration Parameters with iTuned. In Proceedings of

the Very Large Databases Endowment, volume 2, pages 1246–1257.

VLDB Endowment, 2009.

[DU00] Jeffrey D. and Ullman. Information Integration using Logical Views.

Theoretical Computer Science, 239(2):189 – 210, 2000.

[EEL11] Hazem Elmeleegy, Ahmed Elmagarmid, and Jaewoo Lee. Leveraging

Query Logs for Schema Mapping Generation in U-MAP. In Proceed-

ings of the International Conference on Management of Data, pages

121–132. ACM, 2011.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S.

Verykios. Duplicate Record Detection: A Survey. IEEE Transac-

tions on Knowledge and Data Engineering, 19:1–16, 2007.

[ES98] Agoston E. Eiben and C. A. Schippers. On Evolutionary Explo-

ration and Exploitation. Fundamenta Informaticae, 35(1-4):35–50,

1998.

[ES15] Agoston E. Eiben and James E. Smith. Introduction to Evolutionary

Computing. Springer Berlin Heidelberg, 2015.

[FDO+01] Dieter Fensel, Ying Ding, Borys Omelayenko, Ellen Schulten, Guy

Botquin, Mike Brown, and Alan Flett. Product Data Integration in

B2B e-Commerce. IEEE Intelligent Systems, (4):54–59, 2001.

BIBLIOGRAPHY 139

[FHH+09] Ronald Fagin, Laura Haas, Mauricio Hernandez, Renee Miller, Lu-

cian Popa, and Yannis Velegrakis. Clio: Schema Mapping Creation

and Data Exchange. In Conceptual Modeling: Foundations and Ap-

plications. Springer Berlin Heidelberg, 2009.

[FHM05] Michael Franklin, Alon Halevy, and David Maier. From Databases

to Dataspaces: A New Abstraction for Information Management.

ACM SIGMOD Record, 34:27–33, December 2005.

[FKK+11] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti

Ramesh, and Reynold Xin. CrowdDB: Answering Queries with

Crowdsourcing. In Proceedings of the International Conference on

Management of Data, pages 61–72. ACM, 2011.

[FLM99] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. Navigational

Plans For Data Integration. In American Association for Artifi-

cial Intelligence / Innovative Applications of Artificial Intelligence,

pages 67–73, 1999.

[FS69] Ivan P. Fellegi and Alan B. Sunter. A Theory for Record Linkage.

Journal of the American Statistical Association, 64(328):1183–1210,

Dec 1969.

[FW97] March Friedman and Daniel S. Weld. Efficiently Executing

Information-gathering Plans. In Proceedings of the International

Joint Conference of Artificial Intelligence, 1997.

[GAMH10] Boris Glavic, Gustavo Alonso, Renée J Miller, and Laura M Haas.

TRAMP: Understanding the Behavior of Schema Mappings through

Provenance. In Proceedings of the Very Large Data Bases Endow-

ment, number 1-2, pages 1314–1325, 2010.

[GC06] Karl Goiser and Peter Christen. Towards Automated Record Link-

age. Proceedings of the Fifth Australasian Conference on Data Min-

ing and Analystics, pages 23–31, 2006.

[GCBR05] Nizar Grira, Michel Crucianu, Nozha Boujemaa, and Inria Roc-

quencourt. Unsupervised and Semi-supervised Clustering : A Brief

Survey. A Review of Machine Learning Techniques for Processing

Multimedia Content 1 (2005): 9-16., pages 1–12, 2005.

BIBLIOGRAPHY 140

[GDD+14] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton,

Narasimhan Rampalli, Jude Shavlik, and Xiaojin Zhu. Corleone:

Hands-off Crowdsourcing for Entity Matching. In Proceedings of the

International Conference on Management of Data, pages 601–612.

ACM, 2014.

[GIJ+01] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas,

S. Muthukrishnan, and Divesh Srivastava. Approximate String Joins

in a Database (Almost) for Free. In Proceedings of the 27th In-

ternational Conference on Very Large Data Bases, pages 491–500.

Morgan Kaufmann Publishers Inc., 2001.

[GMPQ+97] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass,

Anand Rajaraman, Yehoshua Sagiv, Jeffrey Ullman, Vasilis Vas-

salos, and Jennifer Widom. The TSIMMIS Approach to Mediation:

Data Models and Languages. Journal of Intelligent Information

Systems, 8(2):117–132, 1997.

[GMUW08] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.

Database Systems: The Complete Book. Prentice Hall Press, 2 edi-

tion, 2008.

[Gre86] John J. Grefenstette. Optimization of Control Parameters for Ge-

netic Algorithms. IEEE Transactions on Systems, Man and Cyber-

netics, 16(1):122–128, 1986.

[Gru93] Thomas R. Gruber. A Translation Approach to Portable Ontology

Specifications. Knowledge Acquisition, 5(2):199–220, 1993.

[Gru01] Thomas Gruber. What is an Ontology? http://www-

ksl.stanford.edu/kst/whatis-an-ontology.html, 2001. accessed on 01-

09-2013.

[Hal01] Alon Y. Halevy. Answering Queries using Views: A Survey. The

Very Large Databases Journal, 10:270294, 2001.

[HBF+09] Cornelia Hedeler, Khalid Belhajjame, Alvaro Fernandes, Suzanne

Embury, and Norman Paton. Dimensions of Dataspaces. In Datas-

pace: The Final Frontier, volume 5588 of Lecture Notes in Computer

Science, pages 55–66. Springer Berlin Heidelberg, 2009.

BIBLIOGRAPHY 141

[HBM+12] Cornelia Hedeler, Khalid Belhajjame, Lu Mao, Chenjuan Guo, Ian

Arundale, Bernadette Farias Lóscio, Norman W. Paton, Alvaro

A. A. Fernandes, and Suzanne M. Embury. DSToolkit: An Architec-

ture for Flexible Dataspace Management, pages 126–157. Springer

Berlin Heidelberg, 2012.

[HBP+11] Cornelia Hedeler, Khalid Belhajjame, Norman W. Paton, Al-

varo A.A. Fernandes, Suzanne M. Embury, Lu Mao, and Chenjuan

Guo. Pay-as-you-go Mapping Selection in Dataspaces. In Proceed-

ings of the International Conference on Management of Data, pages

1279–1282. ACM, 2011.

[HCLM09] Oktie Hassanzadeh, Fei Chiang, Hyun Chul Lee, and Renée J.

Miller. Framework for Evaluating Clustering Algorithms in Du-

plicate Detection. 2:1282–1293, August 2009.

[HdACC13] Carmem Satie Hara, Cristina Dutra de Aguiar Ciferri, and Ri-

cardo Rodrigues Ciferri. Incremental Data Fusion Based on Prove-

nance Information. In In Search of Elegance in the Theory and

Practice of Computation, volume 8000 of Lecture Notes in Com-

puter Science, pages 339–365. Springer, 2013.

[HFM06] Alon Y. Halevy, Michael Franklin, and David Maier. Principles

of Dataspace Systems. In Proceedings of the 25th Symposium on

Principles of Database systems, pages 1–9. ACM, 2006.

[HGP03] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Ef-

ficient IR-style Keyword Search over Relational Databases. In

Proceedings of the 29th International Conference on Very Large

Databases, volume 29, pages 850–861. VLDB Endowment, 2003.

[HHH+05] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa,

and Mary Roth. Clio Grows Up: From Research Prototype to In-

dustrial Tool. In Proceedings of the International Conference on

Management of Data, pages 805–810. ACM, 2005.

[HIST03] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov.

Schema Mediation in Peer Data Management Systems. In Pro-

ceedings of the 19th International Conference on Data Engineering,

pages 505–516, 2003.

BIBLIOGRAPHY 142

[Hoy98] Tetsuya Hoya. Graph Theoretic Techniques for Pruning Data

and Their Applications. IEEE Transactions on Signal Processing,

46(9):2574–2579, 1998.

[HP02] Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER: Key-

word Search in Relational Databases. In Proceedings of the 28th In-

ternational Conference on Very Large Data Bases, pages 670–681,

2002.

[HQC08] Wei Hu, Yuzhong Qu, and Gong Cheng. Matching Large Ontologies:

A Divide-and-conquer Approach. Data & Knowledge Engineering,

67(1):140 – 160, 2008.

[HRO06] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data Integra-

tion: The Teenage Years. In Proceedings of the 32nd International

Conference on Very Large Databases, pages 9–16. VLDB Endow-

ment, 2006.

[HTMA13] Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Zoltán Miklós, and

Karl Aberer. On Leveraging Crowdsourcing Techniques for Schema

Matching Networks. In Database Systems for Advanced Applica-

tions, pages 139–154. Springer, 2013.

[IAZ00] Vijay S Iyengar, Chidanand Apte, and Tong Zhang. Active Learning

using Adaptive Resampling. In Proceedings of the 6th International

Conference on Knowledge Discovery and Data Mining, pages 91–98.

ACM, 2000.

[IB13] Robert Isele and Christian Bizer. Active Learning of Expressive

Linkage Rules using Genetic Programming. Web Semantics: Sci-

ence, Services and Agents on the World Wide Web, 23:2–15, 2013.

[IFAB11] Tereza Iofciu, Peter Fankhauser, Fabian Abel, and Kerstin Bischoff.

Identifying Users Across Social Tagging Systems. In Proceedings

of the 5th International Conference on Weblogs and Social Media.

Association for the Advancement of Artificial Intelligence, 2011.

[Ind01] Piotr Indyk. A small approximately min-wise independent family

of hash functions. Journal of Algorithms, 38(1):84–90, 2001.

BIBLIOGRAPHY 143

[IRV13] Ekaterini Ioannou, Nataliya Rassadko, and Yannis Velegrakis. On

Generating Benchmark Data for Entity Matching. Journal on Data

Semantics, 2(1):37–56, 2013.

[Jai10] Anil K. Jain. Data Clustering: 50 Years Beyond K-means. Pattern

Recognition Letters, 31(8):651–666, 2010.

[JFH07] Shawn Jeffery, Michael Franklin, and Alon Y. Halevy. Soliciting User

Feedback in a Dataspace System. Technical Report UCB/EECS-

2007-38, EECS Department, University of California, Berkeley, Mar

2007.

[JFH08] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-

you-go User Feedback for Dataspace Systems. In Proceedings of the

International Conference on Management of Data, pages 847–860.

ACM, 2008.

[JGMP13] Manas Joglekar, Hector Garcia-Molina, and Aditya G.

Parameswaran. Evaluating the Crowd with Confidence. In

Proceedings of the 19th International Conference on Knowledge

Discovery and Data Mining, pages 686–694. ACM, 2013.

[JMF00] Anil Kumar Jain, M. Narasimha Murty, and Patrick J. Flynn. Data

Clustering: A Review. ACM Computing Surveys, 31(3):264–323,

2000.

[JSD+13] Shawn R. Jeffery, Liwen Sun, Matt DeLand, Nick Pendar, Rick

Barber, and Andrew Galdi. Arnold: Declarative Crowd-Machine

Data Integration. In 6th Biennial Conference on Innovative Data

Systems Research. CIDR, 2013.

[KHWL93] AH Kendrick, CM Higgs, MJ Whitfield, and G Laszlo. Accuracy of

perception of severity of asthma: patients treated in general prac-

tice. BMJ, 307(6901):422–424, 1993.

[KL07] Hung-sik Kim and Dongwon Lee. Parallel Linkage. In Proceedings of

the 16th Conference on Information and Knowledge Management,

pages 283–292. ACM, 2007.

[KMS04] Nick Koudas, Amit Marathe, and Divesh Srivastava. Flexible String

Matching against Large Databases in Practice. In Proceedings of the

BIBLIOGRAPHY 144

13th International Conference on Very Large Databases, volume 30,

pages 1078–1086. VLDB Endowment, 2004.

[Kno09] Joshua Knowles. Closed-loop Evolutionary Multiobjective Opti-

mization. Computational Intelligence Magazine, IEEE, 4(3):77–91,

2009.

[Kon05] Grzegorz Kondrak. N-gram Similarity and Distance. In Proceed-

ings of the 12th International Conference on String Processing and

Information Retrieval, pages 115–126. Springer, 2005.

[KR13] Lars Kolb and Erhard Rahm. Parallel Entity Resolution with De-

doop. Datenbank-Spektrum, 13(1):23–32, 2013.

[KS91] W. Kim and J. Seo. Classifying Schematic and Data Heterogeneity

in Multidatabase Systems. Computer, 24(12):12 –18, dec 1991.

[KSS06] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record Link-

age: Similarity Measures and Algorithms. In Proceedings of the

International Conference on Management of Data, pages 802–803.

ACM, 2006.

[KT03] Diane Kelly and Jaime Teevan. Implicit Feedback for Inferring User

Preference: A Bibliography. Special Interest Group on Information

Retrieval Forum, 37:18–28, September 2003.

[KTR10] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of En-

tity Resolution Approaches on Real-world Match Problems. In Pro-

ceedings of the Very Large Databases Endowment, volume 3, pages

484–493. VLDB Endowment, 2010.

[KTR12] Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: Efficient

Deduplication with Hadoop. In Proceedings of the Very Large

Databases Endowment, volume 5, pages 1878–1881. VLDB Endow-

ment, 2012.

[LC94] David D. Lewis and Jason Catlett. Heterogeneous Uncertainty Sam-

pling for Supervised Learning. In Proceedings of the 11th Inter-

national Conference on Machine Learning, pages 148–156. Morgan

Kaufmann Publishers Inc., 1994.

BIBLIOGRAPHY 145

[Len02] Maurizio Lenzerini. Data Integration: A Theoretical Perspective.

In Proceedings of the 21th Symposium on Principles of Database

Systems, pages 233–246. ACM, 2002.

[Lev66] Vladimir I. Levenshtein. Binary Codes Capable of Correcting Dele-

tions, Insertions and Reversals. In Soviet Physics Doklady, vol-

ume 10, pages 707–710, 1966.

[Lev98] Alon Y. Levy. The Information Manifold Approach to Data Inte-

gration. IEEE Intelligent Systems, 13:12–16, 1998.

[LLH11] Sanghoon Lee, Jongwuk Lee, and Seung-won Hwang. Scalable En-

tity Matching Computation with Materialization. In Proceedings of

the 20th International Conference on Information and Knowledge

Management, pages 2353–2356. ACM, 2011.

[Luk13] Sean Luke. Essentials of Metaheuristics. Lulu, 2013.

[MBR01] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic

Schema Matching with Cupid. In Proceedings of the 27th Interna-

tional Conference on Very Large Data Bases, pages 49–58. Morgan

Kaufmann Publishers Inc., 2001.

[MBWB99] D.G. Mayer, J.A. Belward, H. Widell, and K. Burrage. Survival

of the FittestGenetic Algorithms Versus Evolution Strategies in the

Optimization of Systems Models. Agricultural Systems, 60(2):113–

122, 1999.

[MCD+07] Jayant Madhavan, Shirley Cohen, Xin Luna Dong, Alon Y. Halevy,

Shawn R. Jeffery, David Ko, and Cong Yu. Web-Scale Data Inte-

gration: You Can only Afford to Pay as You Go. In 3rd Biennial

Conference on Innovative Data Systems Research, pages 342–350.

CIDR, 2007.

[MD97] Dragos D. Margineantu and Thomas G. Dietterich. Pruning Adap-

tive Boosting. In Proceedings of the 14th International Conference

on Machine Learning, volume 97, pages 211–218. Morgan Kaufmann

Publishers Inc., 1997.

BIBLIOGRAPHY 146

[ME+96] Alvaro E. Monge, Charles Elkan, et al. The Field Matching Prob-

lem: Algorithms and Applications. In Proceedings of the 2nd In-

ternational Conference on Knowledge Discovery and Data Mining,

pages 267–270. ACM, 1996.

[MG95] Brad L Miller and David E Goldberg. Genetic Algorithms, Tour-

nament Selection, and the Effects of Noise. Complex Systems,

9(3):193–212, 1995.

[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity

Flooding: A Versatile Graph Matching Algorithm and Its Applica-

tion to Schema Matching. In Proceedings of the 18th International

Conference on Data Engineering, pages 117–128. IEEE, 2002.

[Mit14] Ruslan Mitkov. Anaphora Resolution. Routledge, 2014.

[MMK00] Ion Muslea, Steven Minton, and Craig A. Knoblock. Selective Sam-

pling with Redundant Views. In Proceedings of the 17th National

Conference on Artificial Intelligence and 12th Conference on Inno-

vative Applications of Artificial Intelligence, pages 621–626. AAAI

Press, 2000.

[MNU00] Andrew McCallum, Kamal Nigam, and Lyle H Ungar. Efficient

Clustering of High-dimensional Datasets with Application to Refer-

ence Matching. In Proceedings of the 6th International Conference

on Knowledge Discovery and Data Mining, pages 169–178. ACM,

2000.

[MPE12] Ruhaila Maskat, Norman W. Paton, and Suzanne M. Embury. Pay-

as-You-Go Ranking of Schema Mappings using Query Logs. In Data

Integration in the Life Sciences, volume 7348 of Lecture Notes in

Computer Science, pages 37–52. Springer Berlin Heidelberg, 2012.

[MRA95] Manish Mehta, Jorma Rissanen, and Rakesh Agrawal. MDL-Based

Decision Tree Pruning. In Proceedings of the 1st International Con-

ference on Knowledge Discovery in Databases and Data Mining, vol-

ume 21, pages 216–221. AAAI Press, 1995.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze.

Introduction to Information Retrieval. Cambridge University Press,

2008.

BIBLIOGRAPHY 147

[MSD08] Robert McCann, Warren Shen, and AnHai Doan. Matching Schemas

in Online Communities: A Web 2.0 Approach. In 24th International

Conference on Data Engineering, pages 110 –119. IEEE, april 2008.

[New67] Howard B Newcombe. Record Linking: The Design of Efficient

Systems for Linking Records into Individual and Family Histories.

American Journal of Human Genetics, 19(3 Pt 1):335, 1967.

[Nic97] David M. Nichols. Implicit Rating and Filtering. In Proceedings of

5th Workshop on Filtering and Collaborative Filtering, pages 31–36.

ERCIM, 1997.

[Nob02] Andrew B Nobel. Analysis of a Complexity-based Pruning Scheme

for Classification Trees. IEEE Transactions on Information Theory,

48(8):2362–2368, 2002.

[OK01] Douglas Oard and Jinmook Kim. Modeling Information Content

Using Observable Behavior . Proceedings of the Association for In-

formation Science and Technology Annual Meeting, 38:481, 2001.

[PB08] Rachel Pottinger and Philip A. Bernstein. Schema Merging and

Mapping Creation for Relational Sources. In Proceedings of the

11th International Conference on Extending Database Technology:

Advances in Database Technology, pages 73–84. ACM, 2008.

[PF13] Norman W. Paton and Alvaro A.A. Fernandes. Crowdsourcing

Feedback for Pay-as-you-go Data Integration. In 1st Very Large

Databases Workshop on Databases and Crowdsourcing, page 32.

VLDB Endowment, 2013.

[PGMP+12] Aditya G. Parameswaran, Hector Garcia-Molina, Hyunjung Park,

Neoklis Polyzotis, Aditya Ramesh, and Jennifer Widom. Crowd-

screen: Algorithms for Filtering Data with Humans. In Proceedings

of the International Conference on Management of Data, pages 361–

372. ACM, 2012.

[PI12] George Papadakis and Ekaterini Ioannou. Beyond 100 million enti-

ties: Large-scale blocking-based resolution for heterogeneous data.

In Proceedings of the 5th International Conference on Web Search

and Data Mining, 2012.

BIBLIOGRAPHY 148

[PS05] Jaroslav Pokorny and Jozef Smizansky. Page Content Rank: An

Approach to the Web Content Mining. In Proceedings of Interna-

tional Conference on Applied Computing, volume 1, pages 289–296.

IADIS, 2005.

[RB01] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to

Automatic Schema Matching. The Very Large Databases Journal,

10(4):334 – 350, 2001.

[RJ05] Filip Radlinski and Thorsten Joachims. Query Chains: Learning to

Rank from Implicit Feedback. In Proceedings of the 11th Interna-

tional Conference on Knowledge Discovery in Data Mining, pages

239–248. ACM, 2005.

[Rok10] Lior Rokach. A Survey of Clustering Algorithms. In Data Min-

ing and Knowledge Discovery Handbook, chapter 14, pages 269–298.

Springer US, 2010.

[Rus18] Robert C Russell. Index, 1918. US Patent 1,261,167.

[SAR+07] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard,

William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck,

Amelia Ireland, Christopher J. Mungall, et al. The OBO Foundry:

Coordinated Evolution of Ontologies to Support Biomedical Data

Integration. Biotechnology, 25(11):1251–1255, 2007.

[SB02] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive Dedupli-

cation using Active Learning. In Proceedings of the 8th International

Conference on Knowledge Discovery and Data Mining, pages 269–

278. ACM, 2002.

[SC00] Greg Schohn and David Cohn. Less is More: Active Learning

with Support Vector Machines. In Proceedings of the 17th Inter-

national Conference on Machine Learning, pages 839–846. Morgan

Kaufmann Publishers Inc., 2000.

[SCED89] J. David Schaffer, Richard A. Caruana, Larry J. Eshelman, and

Rajarshi Das. A study of control parameters affecting online per-

formance of genetic algorithms for function optimization. In Pro-

ceedings of the 3rd International Conference on Genetic Algorithms,

pages 51–60. Morgan Kaufmann Publishers Inc., 1989.

BIBLIOGRAPHY 149

[SD06] Parag Singla and Pedro Domingos. Entity Resolution with Markov

Logic. In The 6th International Conference on Data Mining, pages

572–582. IEEE, 2006.

[SE05] Pavel Shvaiko and Jrme Euzenat. A Survey of Schema-Based Match-

ing Approaches. In Journal on Data Semantics IV, volume 3730 of

Lecture Notes in Computer Science, pages 146–171. Springer Berlin-

Heidelberg, 2005.

[SLB12] Joachim Selke, Christoph Lofi, and Wolf-Tilo Balke. Pushing the

Boundaries of Crowd-enabled Databases with Query-driven Schema

Expansion. In Proceedings of the Very Large Databases Endowment,

volume 5, pages 538–549. VLDB Endowment, 2012.

[STZ05] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Context-sensitive

Information Retrieval using Implicit Feedback. In Proceedings of

the 28th Annual International Conference on Research and Devel-

opment in Information Retrieval, pages 43–50. ACM, 2005.

[TC07] Naiyana Tansalarak and Kajal T Claypool. QMatch–Using Paths to

Match XML Schemas. Data & Knowledge Engineering, 60(2):260–

282, 2007.

[TJM+08] Partha Pratim Talukdar, Marie Jacob, Muhammad Salman

Mehmood, Koby Crammer, Zachary G. Ives, Fernando Pereira, and

Sudipto Guha. Learning to create data-integrating queries. In Pro-

ceedings of the Very Large Databases Endowment, volume 1, pages

785–796. VLDB Endowment, August 2008.

[TKM01] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning

Object Identification Rules for Information Integration. Information

Systems, 26(8):607–633, 2001.

[TKR+95] Hannu Toivonen, Mika Klemettinen, Pirjo Ronkainen, Kimmo

Hätönen, and Heikki Mannila. Pruning and Grouping Discovered

Association Rules. In Machine Learning Workshops on Statistics,

Machine Learning, and Discovery in Databases. European Confer-

ence on Machine Learning, 1995.

[TLL+06] Jie Tang, Juanzi Li, Bangyong Liang, Xiaotong Huang, Yi Li, and

Kehong Wang. Using Bayesian Decision for Ontology Mapping. Web

BIBLIOGRAPHY 150

Semantics: Science, Services and Agents on the World Wide Web,

4(4):243–262, 2006.

[TMC12] Thanh Tran, Yongtao Ma, and Gong Cheng. Pay-less Entity Consol-

idation: Exploiting Entity Search User Feedbacks for Pay-as-you-go

Entity Data Integration. In Proceedings of the 3rd Annual Web

Science Conference, pages 317–325. ACM, 2012.

[Ull97] Jeffrey D Ullman. Information integration using logical views. In

Proceedings of the International Conference on Database Theory,

pages 19–40. Springer, 1997.

[WGM14] Steven Euijong Whang and Hector Garcia-Molina. Incremental En-

tity Resolution on Rules and Data. The Very Large Databases Jour-

nal, 23(1):77–102, 2014.

[WKFF12] Jiannan Wang, Tim Kraska, Michael J Franklin, and Jianhua Feng.

CrowdER: Crowdsourcing Entity Resolution. In Proceedings of

the Very Large Databases Endowment, volume 5, pages 1483–1494.

VLDB Endowment, 2012.

[WLGM13] Steven Euijong Whang, Peter Lofgren, and Hector Garcia-Molina.

Question Selection for Crowd Entity Resolution. In Proceedings of

the Very Large Databases Endowment, volume 6, pages 349–360.

VLDB Endowment, 2013.

[WLLH03] Yuk-Yin Wong, Kin-Hong Lee, Kwong-Sak Leung, and C.-W. Ho.

A Novel Approach in Parameter Adaptation and Diversity Mainte-

nance for Genetic Algorithms. Soft Computing, 7(8):506–515, 2003.

[WLYF11] Jiannan Wang, Guoliang Li, Jeffrey Xu Yu, and Jianhua Feng. En-

tity Matching: How Similar Is Similar. In Proceedings of the Very

Large Databases Endowment, volume 4, pages 622–633, 2011.

[WMGM] Steven Euijong Whang, Julian McAuley, and Hector Garcia-Molina.

Compare Me Maybe: Crowd Entity Resolution Interfaces. Technical

report, Stanford University.

[WMGM13] Steven Euijong Whang, David Marmaros, and Hector Garcia-

Molina. Pay-as-you-go Entity Resolution. IEEE Transactions on

Knowledge and Data Engineering, 25(5):1111–1124, 2013.

BIBLIOGRAPHY 151

[WMK+09] Steven Euijong Whang, David Menestrina, Georgia Koutrika, Mar-

tin Theobald, and Hector Garcia-Molina. Entity Resolution with

Iterative Blocking. In Proceedings of the 35th International Confer-

ence on Management of Data, pages 219–232. ACM, 2009.

[XAF14] Sicheng Xiong, Javad Azimi, and Xiaoli Z. Fern. Active Learning of

Constraints for Semi-supervised Clustering. IEEE Transactions on

Knowledge and Data Engineering, 26(1):43–54, 2014.

[XE04] Li Xu and David W. Embley. Combining the Best of Global-as-View

and Local-as-View for Data Integration. In The 3rd International

Conference of Information Systems Technology and its Applications,

pages 123–136, 2004.

[XE06] Li Xu and David W. Embley. A Composite Approach to Automat-

ing Direct and Indirect Schema Mappings. Journal of Information

Systems, 31:697–732, December 2006.

[XL10] Shasha Xie and Yang Liu. Improving Supervised Learning for

Meeting Summarization using Sampling and Regression. Computer

Speech & Language, 24(3):495 – 514, 2010.

[XW05] Rui Xu and Donald Wunsch. Survey of Clustering Algorithms. IEEE

Transactions on Neural Networks, 16(3):645–78, May 2005.

[YEE+10] Mohamed Yakout, Ahmed K Elmagarmid, Hazem Elmeleegy,

Mourad Ouzzani, and Alan Qi. Behavior based Record Linkage.

In Proceedings of the Very Large Databases Endowment, volume 3,

pages 439–448. VLDB Endowment, 2010.

[ZCJC13] Chen Jason Zhang, Lei Chen, H.V. Jagadish, and Chen Caleb Cao.

Reducing Uncertainty of Schema Matching via Crowdsourcing. In

Proceedings of the Very Large Databases Endowment, volume 6,

pages 757–768. VLDB Endowment, 2013.

Appendices

152

Appendix A

Graphs of Ranking Result across

Different Levels of Skewed Query

Logs

153

APPENDIX A. RANKINGS GRAPHS 154

(a) Rankings: First quarter

(b) Rankings: Second quarter

Figure A.1: TF-IDF ranking score for all mappings viewed across first and second quarters.

APPENDIX A. RANKINGS GRAPHS 155

(a) Rankings: Third quarter

(b) Rankings: Fourth quarter

Figure A.2: TF-IDF ranking score for all mappings viewed across third and fourth quarters.

Appendix B

Graphs of Size Normalised

Ranking Scores with Skewed

Query Logs

156

APPENDIX B. RANKINGS GRAPHS - SIZE NORMALISED 157

(a) Rankings: First quarter

(b) Rankings: Second quarter

Figure B.1: Size Normalised TF-IDF ranking score for all mappings viewed across first and
second quarters.

APPENDIX B. RANKINGS GRAPHS - SIZE NORMALISED 158

(a) Rankings: Third quarter

(b) Rankings: Fourth quarter

Figure B.2: Size Normalised TF-IDF ranking score for all mappings viewed across third and
fourth quarters.

Appendix C

Process flow for Baseline of

Pay-as-you-go Instance

Integration

Figure C.1: Baseline – process flow.

159

Appendix D

Process flow for No-optimisation

score change (NOSC)

Figure D.1: No-optimisation score change (NOSC) – process flow.

160

Appendix E

Process flow for Weight-only

Optimisation (WOO)

Figure E.1: Weights-only optimisation (WOO) – process flow.

161

Appendix F

Process flow for

Weights-and-parameters

optimisation (WAPO)

Figure F.1: Weights-and-parameters optimisation (WAPO) – process flow.

162

Appendix G

Process flow for

Post-optimisation score change

(POSC)

Figure G.1: Post-optimisation score change (POSC) – process flow.

163

Appendix H

Testing consistency in fitness

across different runs

The aim of this set of runs is to observe the consistency in the fitness of the

generated cluster set when different groups of random seeds are used to run the

optimiser. We used WAPO for this test because of the following reasons:

� NOSC does not offer optimisation, hence it is not affected by random seeds.

Furthermore, its underlying clustering algorithm is deterministic in light of

the data set used and the sequence of new records introduced (this motivates

the “incremental” characteristic of the clustering algorithm).

� WOO and POSC shares the same optimising component as WAPO, with

the difference in the set of parameters to be optimised and the addition of

directly changing similarity scores of record pairs. These differences, how-

ever, have no affect on the behaviour of the optimiser in the search of a

good solution; WOO simply optimises a smaller subset of parameters than

WAPO and the score change in POSC is executed after the entire run of

the optimiser. We could consider POSC as WAPO followed by direct score

changing. Hence, choosing any of the three optimiser-based variants would

not make any difference in the consistency of the output.

For these runs, we used only two of our chosen data sets, AbtBuy and Amazon-

Google, reason being that both host complex data with much use of synonymous

words and long, non-overlapping text. Five runs were conducted for each data

set with a feedback amount of 250. This set of feedback was collected separately

from the batches of feedback used in the experiments in Chapter 4 and thus may

164

APPENDIX H. FITNESS CONSISTENCY 165

guide the optimiser to a region different from what would be found in the exper-

iments. The amount of 250 was chosen in order to have a size that has enough

domain knowledge to make guiding of the optimiser fruitful.

The results (Figures H.1a and H.1b in page 166) show that across the five runs,

for both data sets, there is consistency in the fitness produced. This implies that

even with the use of random seeds the optimiser was able to learn from the

provided user feedback and utilise the information to find good genotypes.

APPENDIX H. FITNESS CONSISTENCY 166

(a) AbtBuy

(b) AmzonGoogle

Figure H.1: Fitness consistency result

