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Abstract

We’re witnessing the era of Data-Oriented Science, where investigations routinely in-
volve computational data analysis. The research lifecycle has now become more elab-
orate to support the sharing and re-use of scientific data. To establish the veracity of
shared data, scientific communities aim for systematising 1) the process of analysing
data, and, 2) the reporting of analyses and results. Scientific workflows are a prominent
mechanism for systematising analyses by encoding them as automated processes and
documenting process executions with Workflow Provenance. Meanwhile, systematic
reporting calls for discipline-specific Experimental Metadata to be provided outlining
the context of data analysis such as source/reference datasets and community resources
used, analytical methods and their parameter settings. A natural expectation would be
that investigations, which adopt a systematic, workflow-based approach to the analy-
sis can be advantageous at the time of reporting. This premise holds weakly. While
workflow provenance supports streamlined enactment of analyses, their auditability
and verifiability, we conjecture that it has limited contribution to reporting.

This dissertation focuses on eliciting the apparent disconnect of Workflow Prove-
nance and Experimental Metadata as the provenance gap. We identify complexity,
mixed granularity, and genericity as characteristics of workflow provenance that un-
derlie this gap. In response we develop techniques for provenance abstraction, analysis
and annotation. We argue that workflow provenance is accompanied with implicit in-
formation, that can be made explicit to inform these techniques. Through empirical
evidence we show that workflow steps have common functional characteristics, which
we capture in a taxonomy of Workflow Motifs. We show how formally defined Graph
Transformations can exploit Motifs to identify causes of complexity in workflows and
abstract them to structurally simpler forms. We build on insight from prior research
to show how execution and provenance collection behaviour of a workflow system
can anticipate the granularity characteristics of provenance. We provide declarative
anticipatory rules for the static-analysis of workflows of the Taverna system. We ob-
serve that scientific context is often available in embedded form in data and argue that
data can be lifted to become metadata by discipline-specific metadata extractors. We
outline a framework, that can be plugged with extractors and provide operators that
encapsulate generic procedures to annotate workflow provenance. We implement our
techniques with technology-independent provenance models and we showcase their
benefit using real-world workflows.
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Chapter 1

Introduction

In this thesis we focus on categories and roles of provenance information within the
lifecycle of workflow-based scientific analyses. We take the first step in identifying
similarities and differences between provenance as Experimental Metadata and Work-
flow Provenance collected from trailed workflow executions. We identify generic-

ity, complexity and mixed-granularity as characteristics of Workflow Provenance that
block the exploitation this information for the creation of Experimental Metadata. We
report four investigations aimed to tackle the identified characteristics. As a founda-
tion, we describe an empirical analysis of workflows that reveals common functional
characteristics of computations that workflows embody. We outline graph abstrac-
tion techniques that exploit functional characteristics of computations to reduce work-
flow complexity. We outline a rule-based static-analysis technique to check whether
workflows would result in mixed-granularity provenance upon execution. Finally we
describe a process-oriented approach that also exploits functional characteristics of
computations to decorate generic provenance with domain-specific annotations.

1.1 Data-Oriented Science

Computing is transforming the practice of science. The so-called “Fourth Paradigm
of scientific research” [HTT09] refers to the current era, where scientists utilise com-
putational tools and technologies to manage, share, federate, analyse, visualise data to
underpin scientific findings. Within this dissertation we use the term Data-Oriented

Science to refer to this scientific practice1. The objective in Data-Oriented Science

1“Data Science” and “Data-Intensive Science” are two other terms commonly used in literature. We
refrained from using them as they often bear the following connotations. “Data Science” is commonly
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Figure 1.1: Sharing and Re-use of Scientific Work-Products

is to create a richer research ecosystem in which emphasis is given not only to the
build-up of scientific knowledge, but also to the build-up and dissemination of other
work-products of research such as data, protocols, models and tools. The value propo-
sition of this new approach is that the pace and the quality of science can be improved
through re-use of work-products, most notably data, from previous studies. Real-life
emergencies such as disease outbreaks [LHL13] or accelerating discoveries in cancer
treatment [Gob11] are the most compelling cases for data-oriented science. Beyond
these examples, data-oriented and computation assisted exploration have become an
inseparable part of science in all fields and at all scales.

Traditionally, research has been seen as a “value-chain of activities” [PMBVdS10],
that lead to the generation of knowledge disseminated via the scholarly publication. In
the Data-Oriented science view, there are multiple value-chains, not just for scholarly
publications, but also for other outputs of research. Value-chains are created through
publishing and (re)use as depicted in Figure 1.1. The set of work-products generated
in data-oriented investigations can be viewed in two spaces; the local and the shared.
All products generated during the course of an investigation make-up the local space,
whereas selected products made available as resources in dedicated (often distributed)
repositories make up the shared space. Scientists are both the supplier and ultimate
consumer of shared resources. An important objective for Data-Oriented Science, then,
is the necessity to systematically support value-chains for data, tools and other work-
products similar to scholarly publications.

The paradigm of building research on shared products brings challenges in addi-
tion to its benefits. One challenge lies in resource (re)use. In recent years there has

used to refer to extraction of new information from raw data, typically using data mining techniques.
Whereas “Data-Intensive Science” is commonly used to refer to analyses performed over very large
(terabyte/petabyte scale) datasets. We opted for “Data-Oriented Science” as we wanted to avoid any
implication over the analysis techniques or data size.
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been a sharp increase in the number of web-accessible scientific resources. The scien-
tists’ challenge is in finding relevant resources, i.e. data and tools, and accessing and
integrating them in a way to serve the purpose of their investigation. In this context
Scientific Workflow Systems have emerged as a solution for systematising resource
exploitation. Using workflows scientists weave resources into analysis pipelines, com-
prised of data analysis activities connected by dataflow dependencies. An example
workflow that is from the Biomedical informatics domain and that has been developed
using the Taverna system [MSRO+10] is given in Figure 1.2. This pipeline [Min13],
is part of a larger study [BZG+15], which combines publicly available genomic and
epigenetic datasets to better understand molecular processes involved in Huntington’s
Disease. The workflow in Figure 1.2 decorates a given list of genes with the biomedical
concepts that they’re associated with, such as a molecular processes or diseases. More
specifically, this is done by invoking web services providing access to a Biomedical
literature mining tool called Anni [JSV+08]. Alongside service invocations the work-
flow involves several other steps needed for data adaptation. These steps transform
(extract, re-format) results from one service and feed it to the follow-on service.

Scientific workflows systems have enjoyed notable adoption in disciplines such as
Genomics, Astronomy and Environmental sciences. The benefits of workflows are
particularly in the following:

• They ease exploitation of heterogeneous resources by providing a readily avail-
able and extensible resource-access/client infrastructure. E.g. Taverna requires
minimal (near zero) effort when introducing external resources with standard ac-
cess interfaces, such as web services, into pipelines. In addition workflows also
ease the exploitation of local resources such as scripts and command line tools.
E.g. The adapter steps in Figure 1.2 come from Taverna’s local library of script
based adapters.

• They bring rigour to a data oriented investigation by capturing an explicit
and runnable codification of the analysis process. This is of crucial importance
when scientists need to establish and explore a parameter space for an analysis,
where they (re)run workflows with changing input datasets or parameters and
later compare and contrast these results.

• They provide transparency and efficiency into an analysis by recording prove-
nance from workflow executions. Provenance in this context corresponds to an
execution trail documenting input datasets, the step-wise invocations of analysis
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Figure 1.2: Workflow for Annotation of Genes with Associated Concepts
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activities and the intermediary and final analysis results. Common use for these
traces is for debugging workflows or to enable an external reviewer to audit the
analysis to confirm that it has occurred as claimed by the scientist. Provenance
can also be used to make runs of workflows more efficient by re-using results
selected from previous runs.

Another challenge of sustaining value-chains lies in publishing. Recent years have
witnessed a surge in wider data sharing practices where data coming from a broad
range of disciplines is shared through repositories in a manner inclusive of all sizes
(big or small) and all publishers (from major databases to single labs) [nat15]. In
areas such as Medicine there are established practices for the reporting, the CONSORT
initiative’s reporting guidelines [SAM10] or the ADaM model for structuring results
of clinical trials [Con16] are examples. A similar attempt at establishing practices is
now underway in other domains, most notably in life sciences. Wider sharing practices
have brought the responsibility of Experiment Reporting [TFS+08] to scientists. For
reporting, scientists are tasked with

• the selection of data subsets to be published from a pool of results obtained
through various parameter explorations, trials and re-runs

• the creation of rich experimental metadata describing the data’s provenance and
the context in which the data is obtained.

This category of provenance, as experimental metadata, is considered crucial informa-
tion that helps other scientists to interpret data, understand the background processes,
reproduce results and do new research with the data [GST+02]. Experimental metadata
is expected to describe, amongst other aspects:

• the sources used, where sources could be both physical artefacts such as tissue
samples or digital artefacts such as data files, or external databases.

• the context in which the results were generated, which corresponds to experi-
mental parameters or configurations.

• the methods used, where methods could both be physical such as lab protocols,
or computational such as workflows.

Furthermore, such descriptions are expected to be in a structured, machine pro-
cessable form to allow precise accumulation, cross-linking and search in data repos-
itories. In current practice, experimental metadata is created by a manual curation
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Figure 1.3: Input and output data values for a particular execution of Huntington’s
annotation pipeline.

process by scientists. To assist scientists in curation, scientific communities have
developed Reporting Guidelines [TFS+08][SRSF+12], Domain-Specific Vocabular-
ies [FAJS05][WDG+15], and Annotation Tools [WOH+12] [SKAC14]. Repositories
such as GBIF in environmental sciences [gbi15], GigaDB and Metabolights in bio-
logical sciences [SZE+14][HSC+13] are accumulation points of scientific data and
along with metadata created with aforementioned models, tools and vocabularies. As
of today the majority of experimental metadata in repositories describe experiments
involving physical processes (based on lab-work or instrument use). However, we
are observing emerging examples of reports from experiments comprised entirely of
computational processes [BOHS07].

1.2 A Glimpse of the Provenance Gap

Against this setting a natural expectation would be that studies, which adopt an
upfront systematic approach to the computational analysis, such as those using
workflows, could save-up on experiment reporting effort later at the time of pub-
lishing data. This premise holds, albeit weakly. Let’s illustrate by reviewing informa-
tion available at the workflow-end and then projecting requirements from the reporting-
end on to this information using the Huntington’s pipeline as an example.

The first piece of information is the Workflow Descriptions as the one given in
Figure 1.2. Workflow languages provide constructs for the conceptual definition of a
workflow (often) as a Directed Acyclic Graph of activities, their data communication



24 CHAPTER 1. INTRODUCTION

ports, and dataflow links among ports. In addition to being a conceptual description
a workflow is an executable (meta)programme. Workflow systems embody execu-
tion engines that coordinate the enactment of activities and the communication of data
among activities. Workflow systems are also coupled with execution trailing capabil-
ities that can observe and record metadata about the execution. This historical record
of the process, called provenance, is typically represented with standard models, such
as the Open Provenance Model [MCF+11] or the W3C PROV Data Model[BDG+12].
Conceptually provenance information is a Directed Acyclic Graph (DAG) comprised
of activities and data as nodes, and a number of well-defined relations among these
nodes, such as usage and generation of data by activities, and the lineage (or descen-
dancy) relations among data. In addition to recording provenance, workflow systems
also record the values of data. A subset of provenance information obtained from
one particular execution of Huntington’s pipeline is given in Figure 1.3. For brevity
only the data nodes and their relations are depicted. Provenance documents input and
output data, which are denoted with opaque nodes in the provenance graph. In our
example inputs are a number of experimental parameters: gene IDs, about which the
related concepts are to be obtained, the cuto f f threshold determining the number of
concepts to be returned, the prede f ined concept set id determining that what kind
of concepts should be obtained and the database name designating the kind of gene
identifiers used. The outputs are results as computed by the Anni literature mining ser-
vice, the concept ids retrieved and the scores that quantify how strongly the retrieved
concepts are related with input genes. The data values (depicted in call-outs in Figure
1.3) typically reside in a separate storage layer.

In short on the workflow-end we have workflow descriptions, execution prove-
nance and data values. Projecting requirements from the reporting-end reveals the
following gaps:

Reporting origins. For investigations based on the exploitation of external resources
(databases, web services), it is critical for the credibility of results that any external re-
sources used are cited [Dat11] as origin or contributor. For our example these would
be the endpoint and version of the Anni web service and the literature database back-
ing that service. Workflow systems record lineage among data encountered by the
workflow engine, henceforth they document origin from a localised viewpoint. Work-
flow provenance traces contain no explicit information on the ultimate (often external)
origin of the results.
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Reporting experimental context. Contextual information must be supplied when
reporting to help data’s interpretation and re-use by others [RBR+05] [dOSM15]. For
our example contextual information would be the subject of the analysis such as the
genes for which the literature has been mined, or attributes of results such as the cate-
gory of concepts retrieved. As workflow provenance models data and activities in an
observed process as opaque nodes, it provides no explicit information on what the data
is about, or what kind of data processing occurs in an activity or whether a data node
corresponds to a parameter or some result.

Reporting data selectively. During reporting not all enactments of an experimental
processes and not all results may get reported. Scientists typically perform an analysis
several times to test their experimental set-up, to calibrate their configuration param-
eters, or to understand the effect of parameter change. Workflow provenance comes
across as crucial information here as it provides traceability among input parameters
and results through lineage, this way provenance can potentially allow scientists to se-
lect results based on parameters or other results they are descend from. For instance,
the scientist may want to report concept associations obtained from the Huntington’s
pipeline, and she may be interested in concepts that are associated with certain genes
and also those that have an association score greater than a certain value. Analysing
the provenance record in Figure 1.3 reveals that not all traceability requirements can
be met. As the analyses are undertaken by external resources, in this case using the
Anni web service, there are (lineage) relations beyond those tracked by the workflow
engine. In Figure 1.3 the outputs of the workflow are five concepts that are associated
with input gene ids, and the scores of association for each concept. Also note that
these outputs are modelled in a coarse-grained manner as single data artefacts, and
there are no explicit and fine-grained relations that link each concept to its score. The
fine grained association is documented outside of workflow provenance, within results
returned from a single invocation of the Anni service. To make this relation more
apparent in an adhoc manner the scientist has extracted concepts and corresponding
scores into same length lists, which are in turn converted into a single string represen-
tation. So the order of scores and concepts in respective strings provides an implicit
traceability among the two results.

Reporting methods. Workflows provide the biggest benefit in reporting the method
as they capture the entire computational process followed for an analysis. Meanwhile
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Figure 1.4: Experiment Sketch Depicting Methods used in Huntington’s Disease Study

the use of workflows in reporting is not immediate. Scientists report methods by apply-
ing abstraction over workflow descriptions. Figure 1.4 depicts the “experiment sketch”
[BZG+15], which is as abstraction mechanism used by scientists when reporting work-
flows [HWB+12]. Here the entire gene annotation pipeline in Figure 1.2 is designated
as a single step, one of three major steps involved in the study, which is implemented
with a comprehensive workflow involving three sub-workflows.

The above identified gaps can be attributed to known characteristics of workflow
provenance. These characteristics and the existing coping mechanisms can be sum-
marised as follows:

Complexity of Workflows. The primary function of workflows as integrators of
(heterogeneous) resources can have a disruptive effect on their role as documenters
of the scientific method followed for the analysis [GAB+12]. Workflows systematise
resource integration by making explicit the effort needed to deal with resource het-
erogeneity, such as with adapter steps (recall from Figure 1.2). This however results
in complexity, which is a previously observed characteristics of scientific workflows
in literature [BCBDH08] [ABL10]. Reporting calls for eliciting the report-worthy
activities of the analysis from the unimportant ones, such as adapters. A common
solution adopted by scientists for elicitation is to design workflows in layers using sub-
workflows, where lower layers contain the detail of resource integration, and the upper
layers abstract away from it. Layered design is a best practice in scientific workflow
development [HWB+12] and also instrumental in reporting the method. Meanwhile it



1.2. A GLIMPSE OF THE PROVENANCE GAP 27

remains a largely manual, scientist-driven activity.

Genericity of Provenance. In order to cater for heterogeneity in external resources
and to allow for diverse scientific analyses workflow systems make minimal assump-
tions on the structure and type of data and the inner workings of analytical activi-
ties. This is commonly known as the black-box assumption in provenance collection
[CJ10]. Due to this assumption, workflow provenance can only provide generic infor-
mation, in the form of activity occurrences and the data consumed/produced. Scientists
cope with genericity by relying on descriptive information available in adhoc means;
such as the names of workflow elements (activities and ports), or the data values. The
common mechanism for obtaining domain-specific information is by manual annota-
tion. All workflow systems allow workflow elements to be annotated in various forms
(e.g. key value pairs or semantic annotations). While annotating workflow descriptions
is a manageably sized task for scientists, annotating data artefacts created from runs is
a prohibitively big task due to iterative analyses for parameter explorations.

Granularity Discrepancies in Provenance. In order for scientists to exploit prove-
nance for data selection it is crucial that elements that make up an experiment’s design,
i.e. the parameters and the activities configured with those parameters, get modelled in
provenance with suitable granularities. As reviewed in Chapter 2, most workflow lan-
guages provide constructs to enable such modelling within a workflow description. In
the context of this dissertation we refer this capability as a workflow system’s support
for factorial design (Outlined in Section 2.5.3 ). With such features analyses can be
repetitively executed with differing parameters and over differing datasets. A crucial
requirement for having traceability is for factorial design to be reflected in workflow
execution provenance. This is challenged by the provenance architectures of work-
flow systems and the realities of workflow development in a heterogeneous resource
environment:

• While factorial design may be encoded in a workflow description, it may not
get reflected to execution provenance fully. Provenance collection in workflow
systems is performed by add-on components that record processes through ex-
ternal observation. Due to this decoupled design, the granularity of observation
(of data or activities) is a factor affecting the faithful reflection of factorial de-
sign in provenance. In provenance research there have been case/system-specific
definitions of this as fine-grained [MPB10] or collection-oriented provenance
[BMWL07]. Meanwhile there is no systematic understanding on what it means
for workflow provenance to represent factorial design.
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• Considering that a workflow system supports constructs for factorial design,
which in turn get faithfully reflected to provenance, this is not a guarantee of
traceability among parameters and results. When a study makes use of exter-
nal resources, concerns such as reducing resource access cost, or the nature of
resource interfaces may lead to coarse-grained provenance (as illustrated with
the gene annotation workflow’s outputs). As a result fine-grained parameter-to-
result or result-to-result traceability may not be recorded explicitly. Also, when
encoding data adaptation among analytical steps scientists may inadvertently
create workflow designs that would generate coarse grained provenance.

The main idea pursued in this thesis is that workflows and provenance collected
from workflow executions can be treated to address the above limitations surfacing in
the context of experiment reporting. We investigate and develop techniques towards
tackling genericity, complexity and granularity-discrepancy aspects. Our approach is:

• inspired by the current practice of scientists in using annotation and abstraction
as solutions towards the respective shortcomings.

• is built on additional information that comes from 1) assumptions that scientific
workflows in their current empirically observable state allow us to make 2) the
exploitation of the well-defined execution behaviour, and predictable provenance
collection behaviour of Taverna workflow system.

We briefly discuss these assumptions in the following section.

1.3 A Grey-Box Provenance Approach

A prerequisite to the development of computational solutions to address the short com-
ings of provenance is to have extra information on characteristics of provenance ele-
ments (activities and data) and their granularities. As discussed earlier within standard
workflow provenance there is no indication on the scientific characteristics and/or the
significance of computations and the data, henceforth in the current workflow tooling
this information needs to be manually added (with annotation) or manually elicited (by
abstraction).

Our dissertation research can be characterised as a grey-box approach as it brings
the following additional information onto provenance:
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• Based on extensive empirical analysis, we deduce that computations within sci-
entific workflow activities are not entirely arbitrary and a high-level classification
of activity functionality is possible [GAB+14]. We put this extra information to
use in three ways.

– we use activity function as an indicator of (in)significance of an activity
from a scientific perspective. We exploit this information for workflow
abstraction.

– we use activity function as an indicator of scientifically significant data
processing, which corresponds to a context binding parameters with result
data. We exploit this information for provenance annotation. The input and
output data values of such activities can be used to build domain specific
provenance annotations to describe the context explicitly.

– we use activity function for certain categories of adapter activities as an
indicator of a certain kind of lineage designating data derivation by value-
copying. We exploit this information to expand the reach of domain spe-
cific annotations to close derivatives of data (created by value-copying) in
a workflow provenance trace.

• Based on a systematic review of existing workflow systems in terms of their
support for factorial design (presented in Chapter 2) we identify that Taverna
provides strong support for factorial design and reflects it faithfully to execution
provenance. We identify the well-defined behaviour of Taverna in executing
workflows as additional information that can be used to anticipate the granularity
characteristics of provenance traces that a workflow’s execution will produce.

1.4 Research Objectives

The overall aim of this dissertation is to identify the shortcomings of workflow prove-
nance in the context of experiment reporting and to devise techniques to tackle these
shortcomings. More specifically our objectives are:

O1 To understand the requirements that the emerging practice of experiment report-
ing brings in terms of the provenance information as experimental metadata ac-
companying shared datasets.
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O2 To revisit the characteristics of workflow provenance in light of the requirements
identified in O1 and to identify points of overlap as opportunities and the points of
mismatch as challenges for research within the threads of workflow provenance
Annotation, Analysis and Abstraction (AAA).

O3 To review the existing practice of scientists in workflow development to under-
stand whether there exist patterns that can be generalised to break the black-box
assumption over workflow activities.

O4 To devise techniques in AAA that exploit the information revealed in O3.

O5 To implement solution techniques using technology-independent workflow and
provenance representation models.

O6 To assess the effectiveness of techniques with real-world workflows.

O7 To understand how our solutions compare to existing and related work.

We revisit these objectives in the final chapter of the dissertation (Chapter 8) to
asses how we have met them.

1.5 Research Hypotheses and Methods

We will now outline our research hypotheses and our methods. Our first hypothesis is
concerned with determining the points of overlap and the points of difference between
the two categories of provenance: 1) experimental metadata required for reporting and
2) provenance collected from workflow-based analyses.

H1 Workflow provenance is a potential information source that can support in-
formation requirements of experiment reporting.

Based on findings of research in response to this hypothesis we have observed
overlaps that can warrant further research focusing on differences/gaps. The follow-on
hypothesis is geared to test whether workflows in their current state allow us to go
beyond the black-box view of workflow activities.

H2 Computations within scientific workflows are not entirely arbitrary; existing
practices in workflow development exhibit common patterns that would al-
lows us to obtain a categorisation of functions undertaken by activities (most
specifically data adapters).
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Our third hypothesis is geared to test whether the information available in the form
of activity categorisations can be used to tackle the complexity of workflow prove-
nance.

H3 We can abstract workflow descriptions, by using activity functional categori-
sations as an indicator of activity significance.

With our fourth hypothesis we investigate how information on the execution be-
haviour of a workflow system can be used to tackle granularity discrepancies of work-
flow provenance.

H4 We can analyse Taverna workflows to anticipate the structure of the prove-
nance traces that their execution will produce. Specifically the analysis can
reveal whether or not the granularity characteristics of provenance allows
for traceability between designated input parameters and results.

Our final hypothesis has driven our research on tackling genericity of workflow
provenance. We investigate whether context within a workflow-based analysis can
be made explicit with annotations and whether activity characteristics can inform the
annotation process.

H5 The experimental context found in an implicit form in workflow descrip-
tions, execution provenance and data values can be turned into explicit form
as annotations over data. This task of annotation can be informed by ac-
tivity characteristics and can be separated into domain specific and generic
layers, where the generic layer can be provided as a framework, which when
plugged with the domain-specific layer can create annotations on experimen-
tal context.

We use the following methods in research, the mapping of methods to correspond-
ing hypotheses is given in Table 1.1:

• Comparative Literature Surveys: This dissertation provides systematic and
comparative surveys of literature for two areas; first for provenance support
in scientific data processing systems and secondly on provenance abstraction.
These two areas contain multiple closely related efforts allowing comparison.
On the other hand our surveys in the area of provenance annotation, workflow
analysis are system-by system descriptions of related work, as work in these
areas are highly heterogeneous and distinct.
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• Theoretical modelling: We exploit established theoretical approaches to ground
our work. Specifically; we model our solutions in Algebraic Graph Transforma-
tions for workflow abstraction, we use a Functional notation to represent Tav-
erna’s operation, and we use Declarative Logic Programming to denote work-
flow analysis as a set of rules. These are supplemented with basic set-theoretic
descriptions as necessary.

• Experimental Evaluation: We utilise experimental evaluation with real-world
workflows to understand the effect of abstraction primitives and to compare ab-
stractions generated by our framework to abstractions created by users.

• Empirical Survey: We empirically analyse a cohort of real-world workflows as
part of our effort to characterise workflow activities. Quantitative measurements
are made on observations to understand the extent and frequency of activity char-
acterisations.

• Case-based Assessment: We utilise a case involving the querying of workflow
provenance to select data subsets of interest. We use the case to showcase the
benefits of provenance annotation and workflow analysis. We also use the case
to understand the vulnerability points of our provenance annotation approach.

Table 1.1: Hypotheses and the methods used in research.

Method H1 H2 H3 H4 H5
(base) (analysis) (abstraction) (analysis) (annotation)

Survey X X
Theoretical Modelling X X
Experimental Evaluation X
Empirical Survey X
Case-based Assessment X X

1.6 Research Contributions

We will now describe specific research activities performed, the contributions resulting
from each activity. We view our research to fall under three main themes: Provenance
Analysis, Abstraction and Annotation. Concepts used in discussion of research activi-
ties and their relations are depicted in Figure 1.5.
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1.6.1 Understanding Provenance in Data-Oriented Science

In response to hypothesis H1, we have performed a review of selected experiment re-
ports, which resulted in a set of observations on their information requirements. We
have also reviewed provenance support in workflow systems to reveal their common
characteristics, assumptions and provenance collection and management architectures.
We have then projected requirements from experiment reports onto workflow prove-
nance, which revealed overlaps (in support of H1), and also gaps. This projection led
to the following contribution:

C1.1 A formulation of the gap between provenance as experimental metadata
and provenance from workflows.

This formulation is in the form of a set of requirements from experiment reports
that highlight a set of characteristics of workflow provenance. We have then used this
formulation to assess the level of support that state of the art workflow systems (those
with provenance tracking features) provide for experiment reporting. This has resulted
in the following contribution:

C1.2 A comparative survey of workflow systems assessing fitness of their prove-
nance for use in reporting.

1.6.2 Challenging the Black-Box Assumption with Analysis

We have approached hypothesis H2 through a manual analysis of workflow descrip-
tions to check whether they involve recurring and recognisable (or non-arbitrary) data
processing. We performed an empirical survey that encompassed 260 workflows from
4 systems and 10 domains. The survey showed that activities within workflows can be
characterised at a high-level in terms of their functionality. The Survey also resulted
in a categorisation of non-functional, implementation-related patterns of workflow de-
velopment. We called this characterisation Workflow Motifs and represented it as a
taxonomy of concepts in an OWL 2 [HKP+09] ontology, which makes up our second
contribution:

C2 Workflow Motif taxonomy.

Our survey has also produced the quantification of motif occurrences in workflows,
which makes up our third contribution:
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C3 Empirical quantification of Motif occurrences in scientific workflows.

These results revealed that majority of activities in workflows perform data adap-
tation, identifying them as the prime contributor to workflow complexity. Our survey
has also unearthed the current workflow design practices that scientists use to manage
complexity.

1.6.3 Tackling Workflow Complexity with Abstraction

The extent of adapter activities revealed in our empirical survey allowed us to formu-
late workflow abstraction (hypothesis H3) as the elimination of adapters from work-
flow descriptions. As provenance abstraction is a recent and active area of research we
have performed a comparative survey of existing approaches. We provide a blueprint
that organises the common elements in computationally-assisted provenance abstrac-
tion approaches. We have used this blueprint to comparatively analyse state of the art
systems, which has resulted in our fourth contribution:

C4 Abstraction Systems Survey.

The blueprint identifies as common elements the graph-based modelling of prove-
nance, and the use of policies 1) to drive abstraction and 2) to understand and con-
trol the impact of abstraction on the integrity of resulting provenance graphs. In
our approach we exploit Graph Transformation as a methodology and provide three
declaratively-specified transformations, we call primitives for abstracting workflows.
Primitives are provided as part of a framework, which comprises our fifth contribution:

C5 Workflow Summaries Framework.

This is a prototypical framework which is configured by abstraction policies that
identify activities with motifs and prescribe how they should be abstracted with prim-
itives. Outputs of abstraction are called workflow summaries. Our framework is in-
dependent from any particular workflow technology as it adopts the abstract Wfdesc
model [BZG+15] for representing workflows and workflow summaries. We assess our
approach using real-world Taverna workflows in a two part evaluation process. We first
compare the abstractive effect of primitives by comparing the reduction they create in
workflows’ structural elements. We also use scientists’s manual reporting practices as
groundtruth and assess the abstraction accuracy of a set of default abstraction policies
that encode common sense reporting heuristics.
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1.6.4 Understanding the Requirements in Data Reporting

In order to reveal specific challenges in the use of provenance for reporting data we per-
formed a case study that involved provenance queries from literature and provenance
from Taverna system. This study highlighted the characteristics of workflow prove-
nance in general and Taverna provenance in particular that hamper its use for data
selection. More specifically we observed that genericity of provenance causes prove-
nance queries to be implemented partially or in an adhoc manner. On the other hand
we observed that mixed granularity traces can have a negative impact on provenance
queries and rendering provenance minimally useful for data selection.

1.6.5 Tackling Granularity Discrepancies with Analysis

In response to hypothesis H4 we exploit Taverna’s well-defined execution behaviour
and faithful representation of factorial design in provenance to detect granularity dis-
crepancies before they occur. We build on a prior insight into Taverna provenance
[MPB10] to define a set of static analysis rules to detect broken factorial design in
Taverna workflows, which makes up our sixth contribution:

C6 Taverna Workflow Analysis Rules.

We use Datalog to implement rules, where a Taverna workflow is represented as an
extensional database of facts; and where rules infer intentional facts on the granularities
of data and activities anticipated for the execution of that workflow as.

1.6.6 Tackling Provenance Genericity with Annotation

Our observations on Motifs has prompted us to define annotation as a process that
mirrors the process of the scientific workflow, where we seek to provision annotations
from traces of scientifically significant computations and we propagate annotations
whenever data adaptation occurs. In response to hypothesis H5 we have developed a
framework, named LabelFlow, which embodies a set of labelling operators that encap-
sulate this behaviour, which comprises our final contribution:

C7 Provenance Labelling Operators.

Operators embody generic procedures that perform the middle man duty of ac-
cessing PROV compliant traces of scientific workflows, provision metadata from data
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Figure 1.5: Research Threads and Proposed Concepts in each Thread.
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Figure 1.6: Structure of thesis.

values though the help of domain-specific functions and then decorate the PROV trace
with that metadata. We represent metadata in the form of simple attribute-value pairs,
we call Labels. Operators are agnostic to the content of labels, therefore they can be
used to annotate traces of workflows from different domains. We exploit the structure
of the scientific workflow to induce simple processes, called Labelling Pipelines that
coordinate the execution of labelling operators.

1.7 Publications

The research described in this dissertation has led to the following peer-reviewed pub-
lications.

• D. Garijo, P. Alper, K. Belhajjame, et al. Common motifs in scientific work-
flows: An empirical analysis. In Proceedings of the 8th eScience Conference,
pages 1-8, Chicago Illinois USA, October 2012, IEEE.

• D. Garijo, P. Alper, K. Belhajjame, O. Corcho, Y. Gil, and C. Goble. Com-
mon motifs in scientific workflows: An empirical analysis. Future Generation
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Computer Systems, 36:338351, 2014, Elsevier.

Above two papers describe our empirical analysis over workflows, which resulted
in the Motif categorisation. The initial analysis, described in the first paper, has been
performed over a corpus limited to the Taverna [MSRO+10] and Wings [GRK+11]
workflow systems. We have later expanded the analysis to include Vistrails [CFS+06]
and Galaxy [GRH+05] systems and have demonstrated how workflows can be anno-
tated with their Motifs. Text from the second paper describing the extended analysis
has been used in Chapter 3 of this dissertation.

• P. Alper, K. Belhajjame, C. A. Goble, and P. Karagoz. Enhancing and abstracting
scientific workflow provenance for data publishing. In Proceedings of BigPROV,
International Workshop on Managing and Querying Provenance Data at Scale,
Joint with EDBT/ICDT, pages 313-318, Genoa Italy, March 2013, ACM.

This is a position paper that described our early observations on the provenance
gap and outlined a preliminary research agenda. Observations on workflow prove-
nance from this paper have been recited and expanded in Chapter 2 of this thesis. The
initial research agenda proposed annotation of provenance with a restricted but set of
transparent data processing activities and restrictive assumptions on data structures.
In our research we have adopted for a grey-box approach in which we use workflow
Motifs and assume partial transparency over activity functions.

• P. Alper, K. Belhajjame, C. A. Goble, and P. Karagoz. Small is beautiful: Sum-
marizing scientific workflows using semantic annotations. In Proceedings of the
2nd International Congress on Big Data (BigData 2013), pages 318-425, Santa
Clara, CA, USA, June 2013, IEEE.

In this paper we describe our workflow abstraction primitives informally and pro-
vide an initial evaluation with a limited workflow cohort. Text from this paper have
been used in Chapter 4 of this dissertation, where we formally specify primitives and
provide an extended experimental evaluation. In this extended evaluation a larger
workflow cohort has been used moreover abstractions created by users in workflow
designs has been used as groundtruth in assessing abstractions.

• P. Alper, C. A. Goble, and K. Belhajjame. On assisting scientific data curation in
collection-based dataflows using labels. In Proceedings of the 8th Workshop on
Workflows in Support of Large-Scale Science (WORKS 13), pages 716, Denver,
Colorado, November 2013, ACM.
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• P. Alper, K. Belhajjame C. A. Goble, and P. Karagoz. LabelFlow: Exploiting
Workflow Provenance to Surface Scientific Data Provenance. In Proceedings
of the 14th International Annotation and Provenance Workshop (IPAW), pages
84-96, DLR Cologne Germany, June 2014, Springer.

Above two paper describe our provenance annotation techniques. First one in-
troduces LabelFlow architecture and the labelling operators. In the second paper we
describe our case study on querying of provenance in the presence and absence of la-
bels and provide a comparative assessment. Text from this latter paper has been used
in Chapters 5 and 7 of this dissertation.

In addition to publications the thesis author has presented her dissertation research
as an invited speaker at the “Scientific Workflows and Provenance” working group
meeting of DataONE [dat15] project 2013 plenary meeting.

1.8 Thesis Organisation

The thesis outline is presented in Figure 1.6. Chapter 2 provides background and
literature review on provenance. This chapter also presents our formulation of the
provenance gap and the survey of workflow systems’ in terms of their provenance
support against the requirements of reporting.

Chapter 3 presents our empirical survey of scientific workflows, we present the
motif taxonomy, motif occurrence statistics and discuss the ways motifs inform our
provenance treatment techniques.

Chapter 4 presents our research on workflow abstraction. Here we present the com-
parative survey of provenance abstraction systems. We describe our algebraic graph
transformation primitives and workflow abstraction framework and its evaluation.

Chapter 5 presents our case-study, introduces the queries we use to understand how
provenance can be used to report data. We discuss the negative impact that genericity
and mixed-granularity characteristics has to provenance query accuracy. Chapter 5
also presents the architecture overview of our solutions tackling mixed-granularity and
genericity with Taverna Workflow Analysis and LabelFlow respectively.

Chapter 6 presents our research on workflow analysis to reveal provenance granu-
larity characteristics. Here we present Taverna’s constructs to support factorial design,
its execution behaviour and the implications of this behaviour on provenance structure.
We present our analysis rules and illustrate their deductions with an example.
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Chapter 7 presents our research on provenance annotation. We present Labelling
Operators and how Labelling pipelines are generated for scientific workflows. We re-
visit the case study to showcase the benefits of labels and to highlight the vulnerabilities
of our annotation approach.

Chapter 8 revisits the contributions presented and discusses future work.



Chapter 2

Provenance in Data Oriented Science

2.1 Chapter Introduction

In this chapter we provide the background and the primary motivation for our disserta-
tion research. We begin in Section 2.2 by providing the basic definition for provenance
and discussing its general application areas including Data-Oriented Science. In Sec-
tion 2.3 we zoom into the Data-Oriented Investigation Lifecycle identified earlier in
Chapter 1 to understand the role and forms of provenance in it. For the purposes of
this dissertation we focus on two types of provenance from this lifecycle. One is exper-
iment reports, which are distilled forms of provenance that are curated by scientists
and that get published alongside the investigation’s results (data). The other is pro-
cessing trails, which gets automatically collected from computational data processing
systems, most specifically scientific workflow systems. Our dissertation research
takes motivation from two observations we make on these categories of prove-
nance:

• There is an apparent gap between the two types of provenance. While trail type
provenance (from workflows) is used to support a variety of activities during
the collection and processing of data, it has limited use in publishing and the
creation of experiment reports.

• Trail-type provenance from workflows has potential to be exploited for reporting.

Chapter 2 is dedicated to substantiating these observations and incrementally refin-
ing them using the data-oriented investigation lifecycle as a roadmap. From Sections
2.3.1 through to 2.3.3 we make a high-level introduction to trail-type provenance by

41
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first identifying the role of workflows in the investigation lifecycle, followed by a dis-
cussion on the fundamental motivations for trail-type provenance in workflows as well
as other computational instruments. Finally we observe the provenance gap in a fine
grained manner by assessing the current uses of workflow provenance in the lifecycle.

Our dissertation research introduces techniques (described in follow-on chap-
ters) to overcome shortcomings of workflow provenance that arise in reporting
scenarios. In order to understand these shortcomings underlying the provenance gap,
in this chapter we illustrate closely the two categories of provenance in disconnect. As
a prerequisite we provide the basic intuition for provenance in Section 2.4 followed
by detailed analyses of Experiment Reports and Workflow Provenance in Sections 2.5
and 2.6 respectively. In Section 2.7 we formulate the gap between two categories of
provenance by mapping observations on experiment reports as a set of challenges over
workflow provenance.

The chapter is finalised in Section 2.8.2 with a comparative survey of the state of
the art in workflow provenance, where we assess to what degree provenance from these
systems meet reporting requirements. Note that this final part presents a generalised
survey aiming to motivate our research. Specialised surveys that compare our research
to related work are given inline in Chapters 3, 4, 6 and 7.

2.2 Provenance Definition

The Merriam-Webster dictionary defines provenance as “the origin or source of some-
thing; the history of ownership of a valued object, or work of art or literature” [Mer15].
Pedigree or Lineage are other common terms used synonymously with provenance. In
the field of art, where the dictionary definition is drawn from, knowing the history of an
object is crucial in establishing its authenticity. Provenance as such gives the interested
parties an assurance [Gro05] of the object’s value, and may further be an indicator of
the object’s quality.

In recent years research in computing has paid significant attention to the topic of
provenance in the interest of tracking the origins of digital data artefacts. The World
Wide Web Consortium (W3C) defines provenance as [Ge13]:

“information about entities, activities, and people involved in producing a piece of data
or thing, which can be used to form assessments about its quality, reliability or trustwor-
thiness”.

Another definition that is widely cited in literature on computational provenance is
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given by Simmhan [SPG05] identifying it as:

“a kind of metadata that pertains to the derivation history of a data product starting from
its original sources”.

In the areas of Web Information Sharing, Data Archival and most notably Data-Oriented
Science there are emerging requirements that call for transparency into the derivation
processes of data artefacts [GGCM12]. Following from Table 2.1 we discuss a few
illustrative examples. Note that provenance is a massively overloaded term [Gob02].
The overloading stems from the conflated use of the term for both provenance infor-
mation itself and the diverse end-uses enabled by provenance.

Table 2.1: Provenance End-Uses

Area Used For
Web Information Sharing Data Trust and Quality scores.

Source attribution and credit
Data Archival Version tracking.

Custodianship and copyright tracking.
Data-Oriented Science Interpretation and re-use of data.

Reproducibility of investigation.
Justification, audit of the analytical method.

The World Wide Web has become the prime medium for sharing information. In or-
der to make the web’s deluge of information more accessible to users, a recent trend is
to use aggregator services that compile information from multiple sources (e.g. blogs,
tweets, news syndicates). The provenance requirement in such value-added services
is to keep track of which provider supplies which part of aggregated content. This
way aggregators can attribute back to sources and providers can get credit. A further
application of provenance in web scenarios is to use the quality, trustworthiness and
reliability scores associated with individual sources to compute likewise characteristics
for aggregated content [Gol06] [GG14].

Another example area is the practice of data preservation, which has developed
as a response to the fast pace of technological development in data storage formats,
mediums and data access software. In preservation a data artefact goes through various
revisions as a result of consequent archival actions applied to it, such as migrations,
edits or digital restoration. Here capturing provenance metadata is a prescribed best-
practice, and it is expected to document the migration path of data through versions,
the chain of custody and associated copyright restrictions [fSDSC02].
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Data-oriented science, which comprises the broad context for this dissertation,
builds on cycles of sharing and (re)using datasets [GDRB13]. In order for data con-
sumers to interpret data it is required that provenance is supplied in the form of discipline-
specific know-how describing the context in which data was collected and analysed
[Gob02]. Examples of contextual know-how are source characteristics (e.g. a source
gene sequence obtained from mice), description of analytical protocols (e.g. use of
genetic sequence alignment) and protocol configurations (e.g. version of sequence
alignment tool used). Another role for provenance is for justification of the working
methods of scientists. When scientists provide sufficiently detailed context one may
hope that results can be independently reproduced, hence verified by interested par-
ties [GST+02][Dav11]. However contextual metadata alone does not prove that the
investigation occurred as the scientists claim it did. A common approach to verify
claims is to provide a historical trail documenting the study, providing snapshots of
intermediary states, values of configurations and of traceability of stepwise analytical
processing [BF05][SPG05]. Such trails could allow an independent reviewer to audit
the investigation.

We will now introduce a lifecycle model for data-oriented investigations and iden-
tify the categories of provenance in this lifecycle.

2.3 Data-Oriented Investigation Lifecycle

The prime commodity in Data-Oriented science is data. The process of obtaining
scientific data and its exploitation towards scientific findings is captured in lifecy-
cle models. Pepe and Borgman have identified a model for environmental science
[PMBVdS10], Green and Guttman for Social Sciences [GG07], and Matthews large
scale facility science [MBJC14]. In Figure 2.1 we provide a simplified version of Pepe
and Borgman’s model, as it is inclusive of other models. The lifecycle is comprised of
Data Collection, Data Analysis and Publishing activities. Note that in reality activities
rarely occur in the order implied in Figure 2.1. Investigation are often undertaken in
two modes, the exploratory (or tinkering) mode [MRHBS06] [GGW+09], followed by
a routine or production mode. All three activities in the lifecycle can be performed in
these two modes, therefore modes are not depicted separately in Figure 2.1. During ex-
ploration scientists are in the process of shaping their study, they might iterate through
cycles of data collection and analysis in tinkering mode. When the study design is
finalised, it is then enacted in production mode to generate (publishable) results upon
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Figure 2.1: Simplified Lifecycle for Data-Oriented Research.

which scientific findings are predicated.

Collection refers to the gathering or capture of source datasets. First-hand data col-
lection happens through wet-lab experiments, observations or field studies. It is also
possible that scientists re-use data collected by others, in such cases data collection
is second-hand, by accessing shared data from repositories [CDS+07], [BWMP07],
[GWCS09]. Analysis corresponds to a broad range of activities including data groom-
ing such as cleaning, filtering, integrating and format normalisation [GAB+14], or
analytical processing, which may range from running simulations, mining data for pat-
terns, or computing and visualising data statistics.

An innate practice in scientific investigations is recording metadata about the pro-
cess as it happens. This commonly takes two forms:

• Records manually created by the scientists in electronic/paper lab notebooks
[PG07]. These are loosely structured documentation (depicted as Category (1)
in Figure 2.1), which describe research hypotheses, design of the study, findings,
and conclusions. Such records are intended for the scientist’s own use when re-
fining study designs through iterations, or to communicate their findings with
other resident scientists. Such records are also an important input to the publish-
ing process.
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• Records automatically created by trailing computational instruments scientists
use during data collection and analysis (depicted as Category (2) in Figure 2.1)
[SPG05]. Workflows alongside tools, scripts and databases are the most promi-
nent types of such instruments. Trail-type provenance records typically include
logs of computational processing including timestamps, software versions, data
content hashes and environmental configurations.

The lifecycle comes to fruition with the publishing phase. Traditionally, publish-
ing amounts to narrating the study’s scientific contributions in the scholarly article,
and explaining how it was undertaken in the article’s materials and methods section.
Recall from Chapter 1 that in data-oriented science the output of investigations include
not only the scientific findings but also the datasets supporting those findings. As a
consequence publishing has become a more elaborate process involving, in addition
to narrative descriptions, the creation of metadata providing experimental context to
shared datasets [SLN+09][fSDSC02]. In this thesis we refer to these (semi)structured
metadata artefacts as “Experiment Reports” (depicted as Category (3) metadata in Fig-
ure 2.1). In the early days of Data-Oriented science, curators of large-scale institutional
repositories had sole responsibility for evaluating submissions and creating experimen-
tal metadata. Nowadays data submitting scientists are also expected to perform cura-
torial duties and reporting is to happen (locally) as part of the investigation lifecycle.
In order to assist scientists in describing their experiments, community-initiatives in
several domains provide tools [WOH+12] [SKAC14], models [SRSF+12] [FAJS05]
and reporting guidelines [BBB+15] [TFS+08]. Currently this happens through a man-
ual, publishing-time curation process, where earlier mentioned categories of metadata
are used as inputs. Scientists sift through ad hoc metadata (lab notes, file names, file
contents), or inspect experiment execution trails to select relevant data subsets and use
curation vocabularies and tools to create experimental metadata.

2.3.1 Role of Scientific Workflows

Within the lifecycle scientists are faced with complexities in two dimensions. The
first is the diversity of scientific resources available for use. Community databases or
analytical tools exposed via web services, compute clusters or grids are examples of re-
sources. Use of locally developed scripts, analysis programs, simulations further adds
to resource diversity. During the exploratory mode of an investigation scientists find
resources [BTN+10] [gbi15], explore their interfaces to determine how they should
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be accessed. Once individual resource selection and configuration is determined, the
next challenge lies in bringing resources together into an overall study design that can
be used in production mode. In production mode the systematic compositions of re-
sources is a necessity for various reasons. Scientific Methodologies [Mon06] identify
replication, comparison and factorial design as desired characteristics for an experi-
ment. An analysis is rarely enacted once, it needs to be repeated to check whether
replication is achieved, it needs to be parameterised and re-enacted so that the impact
of changing multiple factors can be observed and compared with each other.
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In recent years Scientific Workflow Systems [DF08] have been adopted in many
disciplines to weave data access and analysis functions into workflows. DiscoveryNET
[CGG+02], and Triana [Tay06a] are earlier, Wings [GRK+11], Pegasus [DShS+05],
Kepler [LAB+06], Taverna [MSRO+10], Vistrails [CFS+06], Galaxy [GRH+05], Loni
Pipeline [DLP+10], Nipype [GBM+11], KNIME [BCD+07], and Pipeline Pilot [pip15]
are current examples of workflow systems. An example workflow from environmental
sciences implemented with the Taverna system is given in Figure 2.2. The workflow
[Gio13] is part of a study on the computational modelling and projection of the habita-
tion of invasive species in the Baltic Sea [BOHS07]. The study involves a data analysis
protocol named Ecological Niche Modelling of species, hereon referred to as ENM.
The main principle in ENM is to feed geo-referenced species occurrence and environ-
ment data into a prediction model to obtain a probable species distribution. The ENM
workflow addresses the above outlined challenges as follows:

• Workflows bring rigour to a data oriented investigation by capturing an explicit
and runnable codification of the analysis process as a set of analytical steps con-
nected by dataflow links. Workflow designs not only capture analysis activities
but also capture the experimental parameters (or factors) that can be set up per
execution. The ENM workflow is run several times for different input species
and layers to compare and discuss the effectiveness of the prediction model.
Note that workflows often represent the computationally coordinated parts of the
analytical process, which might also involve off-line processes (e.g. field/lab-
work ). The benefit of rigour and the ability to re-run analyses with differing
parameters are factors that motivate scientists to adopt workflows as instruments
of data analysis.

• Access mechanisms to resources are highly heterogeneous. The ENM example
combines calls to the OpenModeller projection service [dSMGdS+11], with runs
of local scripts and the invocations of an interactive data visualisation and clean-
ing application called BioSTIF [Kul15]. Workflow systems act as a super-client
by providing a ready-to use resource access layer for standard interfaces like
command-line invocations, script execution or web service calls, furthermore,
they allow extending this layer by plugging in custom interfaces to reach, for
instance, applications, such as BioSTIF, or scalable computing platforms such
as compute clusters or grids [TMN+10] [DShS+05].

• Workflow systems provide the basic trailing of workflow executions. Recall
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from earlier we mentioned the importance of such trails for the audit and veri-
fication of analyses. Trailing can be done on the resource side or on the client
(workflow) side. Resources in scientific domains either support no trailing of
their execution or they provide heterogeneous custom trails, which in itself is a
challenge to bring together. In the ENM workflow one of the resources is the
Open Modeller web service and projection modelling is performed through a se-
ries of calls to this service. Meanwhile, this service does not document or corre-
late the multiple requests made by a client per modelling effort. Another resource
is the BioSTIF application. The spreadsheet libraries underpinning BioSTIF al-
lows the tracing/recording or user actions per data cleaning session [OFC+15]
yet these records comprise an isolated, and tool-specific representation of a part
of the analytical process. The trailing capabilities in workflows allow for basic
documentation of the analytical process holistically using uniform representa-
tions and models.

2.3.2 Promise of Trail-Type Provenance

Workflows are one of many computational instruments that scientists use. Bose et
al [BF05] have identified these instruments as: Workflows, (Web) Services, Database
Queries, Scripts/Programmes, and Tools. For each instrument the approach to obtain
provenance differs so does the potential use of this information.

Workflows have found acceptance as a methodology to design scientific analyses
top-down with provenance in mind. The basic promise of workflow provenance is to
have transparency into the experiment in a holistic way identifying it as a process com-
prised of sub-steps, where each step is documented with basic provenance represented
in uniform models and representations (As outlined in Section 2.3.1). This way an
experiment acquires transparency needed to support scientific audit and peer review.
Workflows require data processing capabilities to be organised and made accessible as
resources exploitable by workflow tooling. Workflow designs act as plans that specify
how individual resources should be composed and how the overall composition can be
configured or parameterised. When compared to provenance from other instruments,
workflow provenance has the highest maturity as techniques here have made their way
as features into scientist’s tooling (reviewed in Section 2.3.3). On the other hand work-
flows incur a significant cost of adoption for scientists [Pla11]. The ENM workflow
has been developed over a 3 year period with a 3 person team comprised of domain



2.3. DATA-ORIENTED INVESTIGATION LIFECYCLE 51

scientists and workflow system experts.

Scripting platforms such as R [R C13], MATLAB [MAT10] and Python [Ros95]
are commonly used by scientists to access statistics, numeric analysis or visualisation
libraries. Provenance support for scripts has been a recent area of research, where the
intent is to collect information about scientific data processing in a way that is not
disruptive to existing working practices of scientists, i.e. without the scientist needing
to refactor their existing scripts into more structured forms like scientific workflows.
Despite their popularity and widespread use, scripts are considered to have weaker
abstraction power, or a lower-level mechanism to document an experimental process
[DBK+15].

Command-Line Tools are another widely used category of instrument for scientific
data processing. The EMBOSS [RLB00] in Genomics or STILTS [Tay06b] in As-
tronomy are two prominent conmand-line tool sets. Similar to scripts the intent in
collecting provenance from tool executions is to be non-intrusive to working-practices
while collecting provenance of analytical processing. During the exploratory stages of
investigations scientists interact with tools to figure out suitable analytical steps or cor-
rect configurations. A distinct motivation here is to record those exploratory activities
so as to be able to convert past actions into data analysis recipes (such as workflows)
[BKC+01]. Tool provenance is gathered by system-level provenance collection tech-
niques. Hi-Fi [PMMB12], SPADE [GT12], PASS [MRHBS06] and PLUS [CAB+10]
are frameworks that embody such techniques.

Databases While prior identified categories are used to realise experimental pro-
cesses, databases are used for a different purpose. In fields such as Biodiversity
[gbi15], Astronomy [WOE+99] and Genomics [MGBRS+15] community data repos-
itories are backed by relational databases. Using these, scientists manage and search
over metadata regarding scientific resources. Unlike the other categories provenance
in databases is focused on data and seeks to rigorously define the relationship between
data in a database and the results of queries over that database. This well-defined re-
lation is used to show how the existence and characteristics of source data justifies the
existence and characteristics of query answers.

Characterising our research: In a way that parallels the above identified instrument-
oriented view of provenance, the research on provenance is typically categorised in
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three schools [CAB+14], namely, Database, Systems, and Workflow schools [CCT09]
[MRHBS06] [DF08]. The Database school originates from investigations on the mate-
rialised view maintenance problem [CCT09] where the objective is to bring precision
and selectivity to view updates. The Systems school focuses on techniques for the cap-
ture of provenance from technological substrates that host computational processes.
The Operating System shell [TF08], File systems [MRHBS06] or Program Instru-
mentation frameworks [SGB14] are examples of such substrates. Outputs of research
from the systems school has been applied for provenance collection from Scripts and
Command-Line Tools. The Workflow school corresponds to a large and recent area of
investigation focusing on the documentation of any process that involves the generation
of data. Standard, interoperable models of provenance [MCF+11] [BDG+12], prove-
nance access mechanisms [BCBDH08] and user interfaces [ABL10] have emerged
from the workflow school of research. Against this landscape our dissertation re-
search can be characterised as an approach in the workflow school, that is in-
spired from solutions the Database and Systems schools.

2.3.3 Uses of Workflow Provenance

In this section we outline the current uses of workflow provenance within data-oriented
investigations and observe the gap in reporting. During data collection and analysis
scientists interact intensively with data processing instruments (workflows, tool and
scripts) to shape the analytical process and obtain results from its execution. This
interaction is defined to have a lifecycle of its own. Goble et al [GWG+07] and Mattoso
et al [MWT+10] have broken it down into stages of Design, Execution and Result
Analysis. We illustrate each stage with sample questions that can be answered with
provenance. Throughout the examples we use the term workflow, which may equally
be replaced with script or tool. The narrative is summarised in Table 2.2. (We use
circles to denote whether workflow provenance is exploited in any stage of lifecycle.
Fully-filled circle denotes exploitation, half-filled circle denotes partial exploitation
and empty circle denotes no exploitation.)

Design: One key requirement for scientists is to track the evolution of experimen-
tal designs; capturing of workflow versions and revisions are examples of evolution
provenance. The requirements for it originate from domains, where workflow de-
sign is a particularly complex, lengthy, and exploratory process [CFS+06]. During
the exploratory stages of an investigation workflow designs may evolve rapidly due
to refinement of analyses or due to changes in external dependencies or computation
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Investigation
Lifecycle

Sub-Stages End Use Degree
Of Use

COLLECTION
& ANALYSIS

WORKFLOW DESIGN Evolution

WORKFLOW EXECUTION

Monitoring
Validation-Debugging
Smart Re-runs
Verification

RESULT ANALYSIS
Visualization
Comparison

PUBLISHING

REPORTING DATA Interpretation &
(Re)use

REPORTING METHOD Interpretation &
(Re)use

BUNDLING EXPERIMENT Audit, Peer Review,
Preservation

Table 2.2: End-Use Analysis for Trail-Type Provenance

infrastructures. In Figure 2.3 an example is given from the Vistrails system. On the
left a version tree for a medical image processing pipeline is given. On the right the
version named “aliases” selected from the tree is displayed. Examples inquiries over
evolution provenance are as follows:

1. Which are the workflows that have been derived from this workflow?

2. At which version of the workflow has this step been added?

3. Which other workflows include calls to this (extinct) service endpoint?

Execution: Achieving seamless execution of computational analyses is by far the
most prominent motivation for having trail-type provenance. Documenting the execu-
tion of an analytical step and the data consumed and produced by it is useful for: mon-

itoring executions, verification of executions against designs [MDB+13], step-wise
validation and debugging [DShS+05] [dOCVSaM14] of analyses, making runs more
efficient by re-using prior results [ABJF06], or remembering optimal configurations of
steps [HGB+13]. To illustrate in Figure 2.4 displays Taverna systems “workflow exe-
cution panel”, where statistics on the health of a particular workflow’s run is displayed.
Sample inquiries at execution stage can be:
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Figure 2.3: Workflow Evolution Tracking in Vistrails

Figure 2.4: Workflow Execution Statistics Collected by Taverna

1. Has this workflow generated the expected number of output files in the last run ?

2. What are the workflow runs with failed invocations of this service ?

3. What are the average execution times for all runs of this workflow ?

4. Re-run this branch of the workflow by re-using upstream results from this morn-
ing’s run.

5. Obtain all downstream data artefacts in my workspace generated using this erro-
neous input data.

Both Design and Execution stage inquiries have significant level of support in ex-
isting workflow tooling, hence depicted with full-circles in Table2.2.
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Figure 2.5: Comparing Results of Different Runs in Vistrails

Analysis: Science is exploratory, and so are scientific data analyses. Scientists will
run analyses several times with differing parameters. At the result analysis stage sci-
entists may use provenance to select data subsets of interest among the larger pool of
results [dPHG+13]. Selected results are then inspected, compared or analysed to gain
scientific insights, validate hypotheses or to (re)define study scopes [GWG+07]. Sci-
entists may ask for results that fall into a particular context, a particular time frame, or
those obtained with a particular parameter setting. Figure 2.5 displays the “parameter
sweep” interface of the Vistrails system [CFS+06], here the workflow is configured to
run repeatedly using a collection of parameters and results per parameter are visualised
side-by-side for comparison. Further illustrative inquiries that support this stage can
be:

1. List all projection results that are obtained from the ENM workflow, where input
environmental layers contains water salinity.

2. Has the ENM projection result obtained for species Alexandrium minutum stayed
the same for the last three runs.

3. Launch the output of ENM workflow per input species using BioSTIF visualiser.

These inquiries follow an access pattern over provenance, which we identify as
Provenance Driven Data Selection (described in detail in Section 2.4.6). Briefly, these
inquiries use provenance as a scaffold to reach data, moreover they often transcend
provenance information by placing selective criteria not only on provenance but also
on data values. Due to a number of factors in collecting and representing trail-type
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provenance, these inquiries are not fully supported by scientific workflow tooling. We
discuss factors in Section 2.7.

Publishing: As introduced in Chapter 1 data-oriented science has put emphasis on
publishing as it now involves the creation of experimental metadata. Trail-type prove-
nance is an information source that scientists can use to create experimental metadata.
We analyse the publishing stage in terms of three categories of experimental metadata.

First category is Experimental Bundles. Bundling is a mechanism to package
(where possible) all resources used within an experiment to enable its preservation
for future re-enactment or audit by external parties. Bundles include data processing
instruments (workflows, scripts, tools); provenance collected from instrument execu-
tion; datasets; narrative documentation describing hypotheses and findings; and finally
metadata annotations over packaged artefacts. Support for bundles exists in state of
the art scientific tooling. ReproZip [CSF13] is a system used to package command-
line tool based scientific analyses. The Research Objects toolkit [BCG+12] and the
History Publishing feature of Galaxy [GNT10] system allow packaging of experimen-
tal artefacts, generated in workflow-based analyses. We provide the screen shot of a
Galaxy published history in Figure 2.6. Here the analytical workflow and its step-wise
execution logs and result data are presented through a set of interlinked web pages,
which scientists use as online supplementary material to their manuscripts.

The second and third categories are the earlier mentioned Experiment Reports,
which are curated metadata shared alongside datasets. The primary purpose of this
metadata is to inform the scientist on the experimental context and help in interpre-
tation of shared datasets. It is for the creation of experiment reports, where we
observe the impacted (or limited) use of trail-type provenance, which we call the
provenance gap. Detailed illustration of experiment reports will be given in Section
2.5 and a detailed formulation of the reasons underlying the provenance gap will be
given in 2.7. Due to the provenance gap there is no push-button solution in scientific
tooling for the creation of experiment reports, which typically take two forms:

• Reports on Method: The analytical method followed for data collection and
analysis is an important piece of metadata that provides context. Guidelines on
reporting [nat15] state that whenever scientists use a novel or previously un-
seen protocol they are expected to document it. Intuitively this corresponds to
outlining analytical sub-steps, their dependencies and possible configurations.
Workflow-based investigations are advantageous as they provide a codification
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of the analytical method. In recent years there has been a proliferation on pub-
lishing of workflows both as tools of data processing and as documentation
of method followed in scientific studies [RG10] [GG11]. Workflows are pub-
lished in workflow repositories. Examples are CrowdLabs [MSFS11], the public
Galaxy portal [gal13] and myExperiment [DRGS08], which is the largest pub-
lic repository of workflows. Despite the availability of infrastructure for both
building and sharing workflows, using workflows for reporting is not instanta-
neous (hence depicted as partially supported in Table 2.2). The primary reason
is workflows operate at a lower (computational data-processing) level, hence
they are abundantly detailed to use in reporting. Scientists adopt two manual
solutions for obtaining simpler reporting-friendly descriptions. One is designing
workflows modularly and in a layered fashion using the workflow tooling and
then employ the higher (abstracted) workflow layers for reporting. In certain
cases however layered designs might still be too complex to convey the method-
ology, such as the case in the ENM workflow. In these circumstances scientists
create further simplified depictions of the analytical method through experiment
sketches (exemplified earlier in Chapter 1).

• Reports on Data: The experimental parameters is crucial contextual metadata
required for interpretation of result datasets. This is of particular importance
in cases where parameters are varied within the scope of an analysis; such as
the parameter sweep interface of Vistrails in Figure 2.5. Intuitively a data re-
port is a record containing descriptions of selected analysis results presented in
association with descriptions of parameters and parameter values used for ob-
taining those results. Here analyses based on workflows are clearly advantaged
over adhoc approaches as workflow execution provenance records and links up
parameters and results. That said, to our knowledge there is no support in ex-
isting workflow-based data analysis tooling for the automated generation of data
reports. The reasons that underlie this disconnect are several and has common
roots with Provenance Driven Data Selection exemplified earlier. In current
practice scientists manually inspect execution trails (through user interfaces ex-
emplified earlier), they select report-worthy results and configuration values and
transfer them to reports. To enable unambiguous interpretation scientists typi-
cally associate metadata with each transferred value.

To this end we introduced the investigation lifecycle and the roles that workflows
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Figure 2.6: A Galaxy History Page
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and workflow provenance play in it. We also surveyed the current end-uses of work-
flow provenance, and noted its use is limited in reporting. We will now take a closer
look at this disconnect. We first provide the basic intuitions for provenance (Section
2.4), and later use these intuitions to observe the characteristics of experiment reports
as provenance records (Section 2.5). We then use the same intuitions to understand
workflow provenance (Section 2.6).

2.4 Provenance Basics

We will now identify fundamental characteristics of provenance information and prove-
nance collection mechanisms. While doing this we establish terminology used through-
out the dissertation. Some of our characterisations are drawn from an early, but land-
mark taxonomy by Simmhan [SPG05], and a follow-on extension of it by Serra da Cruz
[dCCM09]. Freire [FKSS08] and Carata [CAB+14] provide more compact and recent
surveys, which analyse representative provenance systems with the goal of understand-
ing major clusters of provenance-enabled computational systems. In this section we
provide basic background on the following:

• the information captured in provenance

• the granularity of provenance

• the approaches in collecting provenance that affect its accuracy and informative-
ness, namely black and white-box provenance

• the perspectives of describing a process in provenance, namely prospective and
retrospective perspectives

• models/vocabularies for provenance

• the major means of provenance representation and access

2.4.1 Subject of Provenance

Provenance is the documentation of a process starting from origins (sources) through
to results obtained within that process [SPG05]. Consequently provenance has two
components; process and data. A basic provenance record outlining data, processes
and their relations is given in Figure 2.7. The trace here states that a Filter process
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Figure 2.7: Basic Provenance of a Filtering Process

has occurred, which has used two data artefacts, d1, a list of layer names used in
Biodiversity 1, and d2, a string value (in this case empty string). Process has generated
one output d3, which is another list of layer names comprised of items that do not
match the criteria. Provenance records qualify the role that data plays with respect to
processes. This way we know that d1 acts as the InputList to the process, d2 is the
Criteria. A follow-on process called Flatten has used the output of filtering and has
converted this list of layer names into a single coalesced string of layer names. A key
relation that is implied from such a basic record is data lineage [SPG05] (depicted with
dashed lines in Figure 2.7):

Data Lineage corresponds to the ancestry relations among data artefacts that are linked
via a process execution. The inputs used by a process make up the data ancestry for the
process’s outputs.

In this dissertation we further categorise lineage in two: as Opaque and Trans-

parent. Opaque lineage informs us that there is an ancestry relation among two data
artefacts but does not provide any further information on what kind of relation it is.
The trace in Figure 2.7 contains opaque lineage. Transparent lineage on the other hand
provides additional information about the nature of ancestry. For instance, for the case
in Figure 2.7, lineage stating that the output list in is copied f rom the input list, or,
for a web page editing scenario, lineage stating that an edited page is a revision o f the
older page are examples of transparent lineage.

The data artefacts generated by one process may later be used by another, as de-
picted in Figure 2.7 where Flatten has used the data generated by Filter. This results
in linking of processes, which we refer to as process causality [MGM+08a].

1Taken from the ENM example.
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Process Causality corresponds to a causation relation between two processes that are
linked via an information flow (or communication) among them.

Provenance information is conceptually a Directed Acyclic Graph (DAG) com-
prised of processes and data as nodes, and the usage, generation, and the induced
lineage and causality relations as links among nodes. Note that the trace in Figure
2.7 conveys the most basic information about a (computational) process. Meanwhile
there is no explicit information indicating that input/output data are lists of Environ-

mental Layer Names or the activity is a kind of String Filtering. Bose and Frew identify
this additional information as Fundamental Metadata [BF05], which is of importance
when making use of provenance information. In this dissertation we adopt the term
Domain-Specific Metadata.

Domain Specific Metadata corresponds to additional information that further charac-
terises data and processes documented in a provenance trace using domain-specific terms.

Such Information can be found in implicit and explicit, hence machine processable,
forms. An example of implicit information is, for instance, the values of data artefacts,
e.g. layer name values, consumed and produced by the filtering activity. Domain spe-
cific information can explicitly be specified in different forms such as key-value pairs
[PNNJ05], textual markup attached with generic Annotation Ontologies [COGC+11],
or domain-specific semantic characterisations [MSZ+10] using ontologies from re-
spective scientific domains.

2.4.2 Granularity of Provenance

Provenance can be collected at varying granularities for both data and processes. Par-
ticularly the granularity with which data is represented and its lineage probed is a
critical factor in determining the informativeness of provenance. Scientific datasets
are often of a granular nature. Data can be found in Collections (e.g. the input collec-
tion of different environmental layers to the ENM workflow ). Furthermore individual
items in such data collections may also have granular structures (e.g. Raster-Vector
based representation of environmental layer information).

With regards to granularity the provenance record filtering (in Figure 2.7) is coarse.
The input and output of the process are modelled with singular items in provenance
even though they are collections of strings. Similarly the entire filtering activity is
recorded as a single process. An alternative recording of the same process where data
is captured at a fine-grain is given in Figure 2.9. Here the collection structure of layer
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Figure 2.8: Granular Process Provenance For List Filtering

Figure 2.9: The n−by−m situation

data is reflected to provenance and where each layer in the collection is modelled with
a distinct data node in the provenance graph.

Processes can also be recorded at finer granularities depending on the layer in the
software stack that provenance collection occurs. The provenance of Figure 2.7 is a
coarse documentation created at the level of the workflow that uses the filtering data
adaptation tool (from the local library of the Taverna workflow system). The underly-
ing implementation for the tool is a Beanshell script [bea15] that iterates over the input
list and conditionally transfers items to the output list. In case provenance were to be
recorded at the (lower) script level, then execution of each control-flow block in the
script, i.e. the iterations(loops) and the conditionals within), could be documented as
(sub)processes (as illustrated in Figure 2.8).

When data is modelled in fine-grain, and yet the processes are documented coarsely,
we may get to the situation known as the n-by-m problem [CAB+14]. Based on our
study of provenance literature, in this dissertation we further categorise this problem
into two:
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• Role-wise n-by-m [GCP13] [DBK+14]: This is the problem of determining
whether inputs of all different roles have actually contributed to outputs of all
roles. In both examples in Figures 2.7 and 2.9 lineage would be induced from
data items in role Out putList to Criteria as well as Out putList to InputList. For
this case those inferences would not result in inaccurate lineage, i.e. both the
input list and criteria are actually used to produce the output. Imagine, however
a variant of the filtering activity, which produces an output filtered list, but also
produces a copy of the original list (say for debug purposes). In such a case the
copy of original list would not have a dependency to the filtering criteria.

• Data-wise n-by-m [MPB10]: This corresponds to determining whether individ-
ual data items in a particular input role do actually contribute to individual items
in an output role. For the example in Figure 2.9 lineage would be induced be-
tween all items in input layer list (d.1.1, d1.2,..) and all items in output list
(d3.1, d3.2, ...) ( n×m lineage relations omitted for simplicity). As we know
that the process is a list filtering, clearly not all of those lineage relations are ac-
curate. When activities consume and produce data collections, in the worst case
the n-by-m pattern causes lineage to be inaccurate in the order of size of input
data collection(s).

Data and process granularity is highly dependent on the purpose of provenance
collection. From the perspective of an experiment auditor/reviewer, a coarse grained
depiction of input-output lists may suffice as evidence of successful execution for a
scientific workflow. However from the perspective of a developer debugging Taverna
library tools, or for a user who is interested in downstream products of a particular
environmental layer (as in ENM) a more fine-grained provenance may be required.
Besides these benefits fine-grained capture of provenance does have the side effect of
making provenance more complex, and more costly to collect [dCCM09].

2.4.3 Black and White Box Provenance

A characterisation commonly made in literature for provenance collection is black-

box versus white-box provenance [CJ10] [ADD+11]. These two categories differ in
their assumptions on the (un)availability of actionable information regarding the inner-
workings of the computational process, for which provenance is collected.

The black-box approach makes no assumptions on the inner execution details of
processes, where provenance is collected by observation, documenting the inputs and
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outputs of a process. Earlier traces given in Figures 2.7 and 2.9 exemplify this ap-
proach. The advantage of this approach is that it is a flexible mechanism for the track-
ing of arbitrary (or unrestricted) computations. The disadvantage is that the lineage in
black-box provenance is opaque lineage. Furthermore, for the cases of n-by-m data
artefacts connected by a black-box process, the accuracy of lineage relations are not
guaranteed.

In the white-box approach it is assumed that information on the inner-workings
of the computational process is available to the provenance collection infrastructure.
Consider that we know that the running example, the filtering process, is realised by a
script that iterates over the input list, transferring the terms different than the criteria
to the output list. Availability of such information means we can build an “inversion
procedure” [SPG05], that we can use to trace every possible execution of the filtering
process to record white-box provenance. Such provenance could go beyond black-box
provenance in the following respects:

• accurate lineage that links items in the output layer list only to the equal data-
valued items in the input layer list (rather than n×m number of relations)

• transparent lineage that denotes that each item in the output list has been
copied f rom corresponding items from the input list.

According to the characteristics identified herein, provenance in workflows,
command-line tools, and scripts fall into the black-box category, whereas database
provenance is white-box. Relational queries are built on operators that have well-
defined set (or bag) theoretic semantics, such as Selection, Projection, Join or Union
(SPJU) [AHV95]. Thanks to this exposition, even-though queries get executed over
entire tables (with millions of records) it is possible to trace query results back to in-
dividual source records [CCT09]. Database provenance is studied in three categories.
The core capability, i.e. the creation of fine-grained and accurate lineage between
query result records and source records is called Why Provenance. On top of this
comes Where and How provenance which add further resolution and qualification to
lineage. Where provenance pushes lineage granularity to the level of individual cells
in records. As relational query operators build result records by copying values of
source records, where provenance qualifies cell-level lineage as value copying. How
Provenance corresponds to specifying the nature of the process, individual SPJU op-
erations that has led to the creation of result records.

Another important difference between black-box and white box provenance is in
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their end-uses. In black-box, provenance is treated as a structure, a DAG, that can
be traversed, queried or compared with other DAGs, yet not interpreted. When lin-
eage is transparent, i.e. it is informative on the nature of relation between source and
result data, as in where and how provenance, it becomes possible to interpret prove-
nance. This way one could build value-added capabilities over provenance traces. As
reviewed in detail in Appendix A, database provenance has diverse end uses. Where
provenance has been used to propagate attributes of source records to their copies in
results [BCTV04] [WM90]. The extra information in How provenance, in the form
of query operators has been used to create more sophisticated attribute propagation
capabilities. Examples are computing confidentiality, quality [KIT10] or uncertainty
scores [ABS+06] for query results. An apparent drawback of database provenance
is its restrictive assumption on the kinds of data processing steps that are supported.
Clearly not all data is in relational form, and not all scientific data processing can be
represented with relational queries.

There are also a number of approaches, characterisable as grey-box provenance.
These approaches use “weak inversion” [WS97] [SBD+09] procedures to compute
lineage, accuracy of which is less than 100% percent correct white-box provenance,
but better than n−by−m black-box lineage.

2.4.4 Prospective and Retrospective Provenance

A common categorisation of provenance, originally observed by Clifford et al [CFV+08]
is retrospective versus prospective. Provenance is, by its nature, historical or backward
looking. The example trace for list filtering given earlier in Figure 2.7 is a retrospective
(or historical) provenance record. Such records can sometimes be accompanied with a
prospective counter-part, called a “plan”[BDG+12], a “recipe” [CFV+08] or “method”
[RG10]. Recipes outline the intended process; process’s sub-steps, their dependencies
and possible configurations. A query, a script or programme, a workflow description,
or a lab protocol are examples of recipes. Returning to our example the beanshell script
used for filtering corresponds to prospective provenance.

When compared to other application areas prospective provenance has had partic-
ularly strong adoption in data-oriented science due to the following benefits:

• the credibility of scientific results rely heavily on the transparency of working
methods, prospective provenance is used to capture the method adopted in data
processing. [RG10].
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• when prospective provenance captures the method of data processing with a suit-
able abstraction (e.g. workflows) this abstraction can be used as a guide/roadmap
to browse or query retrospective provenance traces [BCBDH08] [ABL10].

• prospective provenance can be used to verify retrospective traces and to check
whether data processing has occurred as intended [MDB+13] [MG11].

Provenance is of increased utility when it is provided in an agreed upon and ma-
chine processable form, we review efforts in this direction in the next section.

2.4.5 Provenance Models

Providing models for provenance has been an active topic of study in recent years
[GCG+10]. The purpose of having provenance models is:

• to have a commonly agreed upon vocabulary for stating provenance,

• to have structured machine processable representations,

• to have formal foundation for the inference of refined provenance (such as data
lineage or process causality) from basic/crude observations,

• the ability of validating or checking provenance traces for consistency.

Models can be broadly viewed in two categories: (1) generic ones that attempt to
capture the very essence of provenance and target widespread cross-domain applica-
bility and (2) specialised ones that cater for the requirements of a use case or domain.
Early EU Pasoa [MGM+08b] and EU Provenance [VSK+08] projects followed by a
series of “Provenance Challenge” events have given way to the development of the
pioneer generic model of provenance, namely the Open Provenance Model (OPM)
[MCF+11]. Alongside OPM other models have emerged from specialised domains.
Examples are the Provenir Ontology [SNB+11] for representing e-Science experi-
ments, The Proof Markup Language [dSMRD08] for representing answer explanations
in intelligent systems, the PREMIS model [pre11] for representing preservation meta-
data or the VOID vocabulary [ACHZ09] to reveal relations among interlinked datasets
on the web. All these models, which are shown to have partial mappings with each
other [GCG+10], have been input to the development of the next generation generic
model of provenance, namely PROV. Similar to OPM, PROV is a technology indepen-
dent model and is particularly targeted for interoperable provenance exchange. While
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PROV and OPM’s majority applications have been in the documentation of computa-
tional processes, these specifications can also be used for documenting physical pro-
cesses such as lab protocols, or field work. Note that all models mentioned above are
targeted to specify retrospective provenance.

In parallel to retrospective models, vocabularies have emerged for prospective prove-
nance most specifically for the case of workflow provenance. OPMW [GG11], P-Plan
[GG12], D-PROV [MDB+13] and Wfdesc [BCG+12] are such models that describe
workflows in a manner abstracted away from workflow-system-specific details. These
abstract descriptions are used in conjunction with retrospective provenance (PROV or
OPM compliant traces) collected from execution of workflows.

For the purposes of this dissertation two models have significance: PROV for
retrospective, and Wfdesc for prospective provenance. We selected these as the
substrate over which we built our provenance abstraction and annotation techniques
(described in Chapters 4 and 7 respectively). PROV is the state of the art standard,
and a W3C recommendation for modeling provenance [GCG+10]. On the other hand
the Wfdesc model [BZG+15], an output of the EU Wf4Ever project, has originated
from efforts in creating experimental bundles for workflow based studies. This model
is now being used as a foundation for the development of a Common Workflow Lan-
guage (CWL) for scientific data analysis [AT15]. PROV and Wfdesc are the models
of choice for representing provenance in the Taverna workflow system, which is the
primary source of the analysis and test cohort for our techniques in this dissertation.
We postpone the discussion of the details of these models till Section 2.6 where we
illustrate Taverna provenance.

2.4.6 Provenance Representation and Access

An area of development that is orthogonal to provenance modelling and collection is
choosing a provenance representation model and query language [HBM+08]. Various
data models such as XML, RDF or the Relational Model have been used for this pur-
pose. Due to the Directed Acyclic Graph (DAG) nature of provenance information,
graph data models have found particular applicability. Graph databases [Neo12] or
RDF stores [CLFF10] are commonly used due to their native support for representing
the transitive relations in a provenance graph (e.g.lineage) and querying these relations.
Such capabilities are often realised with complex/non-intuitive queries and demanding
query execution times in non-graph representations [ABML09].

Access to provenance information often happens the following ways:
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• Querying: Node(s) of interest may be located by graph queries outlining de-
sired patterns in provenance. Gadelha et al [GMWF11] have identified that
application-independent provenance queries involve the following basic patterns:

– seeking nodes based on their attributes. e.g. Process nodes of a particular
name, Data nodes that have a designated value.

– seeking nodes that are involved in relationship(s) (consumption, genera-
tion). e.g. Data generated by a particular Process.

– seeking a sub-graph of interest. These are advanced queries that may
involve regular path queries [DCVK+13].

• Traversal: When a node of interest is identified, a typical follow-on pattern is
to then recursively traverse lineage and causal dependency relations in the graph
to obtain all descendants/antecedents of a data or process node.

An access pattern that is of importance for the purposes of this dissertation is
achieved by a combination of Querying and Traversal. In this dissertation we call
the access pattern of this type Provenance Driven Data Selection.

2.5 Experiment Reports

The increased emphasis given to the publishing of datasets has given rise to the pro-
liferation of reporting guidelines and models for representing metadata. At the time
of writing the UK’s Digital Curation Centre (DCC) [RBR+05], which is a cross dis-
ciplinary hub for guidance on data publishing, lists 34 vocabularies and 50 tools.
Whereas a similar resource dedicated to bio-sciences, namely the Biosharing por-
tal [MGBRS+15] lists 339 domain-vocabularies, 71 guidelines, and 179 models and
formats for scientific data. Ecological Metadata Language in environmental science
[FAJS05], DarwinCore in Biodiversity [WDG+15], ISA-Tab in life-sciences [SRSF+12],
are some prominent examples in their respective areas. Davenhall [Dav11] argues that
metadata associated with scientific data supports three primary functions:

1. Search and discovery of data in a repository.

2. Programmatic reading or extracting of data from its physical representation.

3. Understanding and interpretation of data by (re)users.
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Some metadata standards cover multiple functions whereas others focus on a par-
ticular function. Our focus, i.e. metadata providing experimental context, is primarily
targeted for the third category above. A thorough review of all metadata standards is
out of scope for this dissertation. Instead in the following two subsections we illustrate
experimental metadata with two real-world examples. The first one depicts standards-
compliant reporting using the ISA-Tab specification. The second one presents how a
study involving workflow-based analytical processes has been reported.

2.5.1 Reporting with ISA-Tab

Arguably the most mature approach in experiment reporting is the ISA-Tab specifica-
tion. ISA-Tab is a widely adopted flexible standard used in Biological and Biomedi-
cal domains [SRSF+12]. ISA-Tab is also the curation model for several life-science
data repositories such as GigaDB [SZE+14] and Metabolights [HSC+13], and most
recently adopted as such by Nature Publishing Group’s interdisciplinary data journal
“Scientific Data” [nat15]. We have therefore chosen this standard as an illustrator of
experimental metadata used for the reporting of data.

ISA-Tab describes experiments through hierarchical Investigation (I), Study(S),
and Assay (A) entities, where the Assay represents the smallest unit of experimenta-
tion. Figure 2.10 provides both the high-level process, and the corresponding ISA-Tab
compliant tabular metadata for a DNA Microarray experiment (Assay) [GBMSRS14].
A distinctive aspect of ISA-Tab is its end − to− end modeling capability covering
processes over material entities, such as lab-work, as well as computational processes
over data. Recall from Simmhan’s definition that provenance had an origin and a
derivation history component. ISA-Tab is significant as it highlights the importance
of origin. Primary scientific data is often obtained from the physical world, in our
example data comes from samples belonging to a human source of certain age and
gender. These characteristics regarding data’s ultimate source are also key differen-
tiators for the data itself. These characteristics of the origin become a provenance
liability on the primary data obtained such that every downstream data to be derived
shall also be characterised with these attributes.

Another point of emphasis in ISA-Tab is the capturing of experimental variation
and protocol configurations and the ability to discretely trace variation or configura-
tions to resulting datasets. In Figure 2.10 some samples are labeled whereas others are
not and using ISA-Tab metadata we can tell whether a result (scan file) originates from
a labeled or unlabelled sample.
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Figure 2.10: Reporting a Microarray analysis in ISA-Tab

The structural and semantic interpretation of the values in an ISA-Tab spreadsheet
is enabled by extra (meta) information given in Study files. This extra information
describes sources, samples, protocols, and their expected properties (e.g. inputs, out-
puts are attributes of a procedure). This information allows identifying the boundary
between columns of information in an Assay spreadsheet to denote where description
of one step finishes and the next begins. This way the standard allows each domain to
define their own schema for a spreadsheet. In order to help in interpretation of attribute
values ISA-Tab allows (optionally) qualifying values presented in the spreadsheet with
a term in a domain-specific controlled vocabulary. This qualification is itself presented
as an attribute, in the ISA spreadsheet. See the TermSourceREF column in Figure
2.10. The values in this column denote that each labeled extract is a material classified
as biotin with respect to the definition for it given in CHEBI ontology [dMDE+10].

ISA-Tab is a generic framework which does not prescribe what should be re-
ported, but instead, helps scientists structure and annotate experimental informa-
tion that is deemed report-worthy. Experiment Reporting Guidelines we mentioned
earlier advise scientists on what to report. For our example in Figure 2.10, this is de-
termined with the Minimum Information About a Microarray Experiment (MIAME)
Reporting Guideline [BHQ+01]. MIAME prescribes what columns of information
need to exist in an ISA-Tab spreadsheet to report an experiment involving Microarray
analysis.

As experiments reported with ISA-Tab could spread across lab work and com-
putational analysis, the primary method for creating ISA-Tab compliant metadata is
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manual curation. However if scientists adopt strict record keeping, by recording each
experimental activity and their inputs/outputs into a database, then such records can
be exported as ISA-Tab spreadsheets [GPS+14]. In fact, the authors of the ISA-Tab
specification state that if an experimental process that has occurred can be provided as
a DAG of activity and entity nodes, then they provide a tool that can map the graph
into an ISA-Tab spreadsheet, where each path in the experimental process is mapped
into a row in the spreadsheet [BKSRS12]. Furthermore there is emerging work on in-
tegrating scientific databases, with workflow systems, where the former contains data
collected from lab-work and the latter facilitates computational downstream analyses
[GBLZ+15][GPS+14]. These efforts are all evidence of momentum building towards
the exploitation of provenance to generate experiment reports.

2.5.2 Reporting Workflow-Based Experiments

Our second example is the earlier introduced ENM workflow, which is representative
of an emerging set of data-oriented investigations, where the data analysis is com-
prised entirely of computational processes [BZG+15][PCB+14]. In the published ar-
ticle on ENM Obst et al [BOHS07] provide semi-structured information as experi-
mental metadata to report both the method followed and the result data obtained. The
method report for ENM is an informal flow diagram, an experiment sketch, given in
Figure 2.11. This diagram presents a highly abstracted depiction of what is otherwise
a complex and novel data analysis pipeline. The executable ENM workflow contains
several sub-workflows, when expanded makes up 54 steps in total. Meanwhile, in the
sketch (Figure 2.11), the protocol is depicted coarsely in terms of main analysis phases
(Create model, Test model, Pro ject model) and the high-level activities involved per
phase. Note that the ENM workflow has 2 inputs and 19 outputs, whereas only a single
input and output has been depicted in the sketch.

The data report of the ENM study is a metadata table given in Figure 2.12. The
prime output of ENM is distribution maps for species. When each result map is intro-
duced it is accompanied by row of metadata, comprised of contributing input factors,
and outputs characteristics. This metadata organisation is very close in spirit to the
ISA-Tab specification, although here there is no controlled structuring of data (multi-
ple values are presented in a single cell) or there are no explicit semantic annotations
(no taxa specified in table for species names). The first row in Figure 2.12 states that
source occurrence data belonging to Alexandrium minutum of size of 3077 records has
been subjected to the filtering protocol which has resulted in a dataset of 79 records,
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Figure 2.11: Workflow sketch depicting the ENM protocol

this filtered data, combined with 6 layers of environmental data has been provided as
input to modelling, where the protocol has been configured to use the Mahalonobis

Algorithm. The result of this particular projection has a mean accuracy value of 0.60

and it is visualised as a distribution map. An important aspect of this metadata table
is that it is curated using the data generated during the execution of the workflow.
For instance, the species names are extracted from first cell of each occurrence record
input to workflow, whereas the record counts correspond to intermediary statistics gen-
erated as part of the workflow.

2.5.3 Observations on Experiment Reports

Drawing from the two examples just presented we make the following observations on
experiment reports.

Observation 1 Reports describe the factorial aspects of an experiments design.

For the purposes of this dissertation we adopt the term Factorial Design to refer to two
patterns of experimentation:
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Figure 2.12: Results and corresponding inputs from a run of ENM Protocol
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• Parameter explorations, which corresponds to the repeated enactment of an ex-
periment by using parameters from a multi-dimensional parameter space. (Dif-
ferent combinations of input layers or algorithm selections in the ENM study or
the host gender and age in the ISA-Tab study are examples of parameters).

• Dataset sweeps, which corresponds to the repeated enactment of an experiment
(with fixed parameters) over different datasets. (The enactment of the ENM
analysis for different species data is an example).

The metadata tables in both the ENM and ISA-Tab examples reflect elements of facto-
rial design. Input parameters, analytical steps and output data outline a column struc-
ture for the table. Meanwhile each individual enactment of the analytical process (cor-
responding to the exploration of a point in the parameter space, or a dataset sweep)
populates the tables with rows.

Observation 2 Reporting abstracts away the details of an experiment’s design.

This principle applies to reports on both data and the method. When reporting data
not all elements of an experimental process are reported. The ENM workflow contains
several outputs such as temporarily urls and execution logs. Such results, however,
have not made their way into the report as extra columns of information. Similarly
in the Microarray example, the scanning instruments not only generate “.cel” files
but they also generate logs of scanning completion stati, such details are deliberately
omitted by the curator of the ISA-Tab table. Similarly a parameter can be omitted
from a report if it stays constant for each enactment of the experiment. The abstraction
principle also applies when reporting methods [LAB+06][HWB+12]. As the ISA-Tab
example involves the application of standard (lab)protocols the report simply refers to
them by name, and this is sufficient for common understanding among the scientific
data publisher and consumer. In the ENM Workflow the data analysis protocol is novel
hence needs further describing. The scientist has the option of using the workflow
description for this task. As the ENM workflow is way too detailed for conveying the
scientific method followed, the scientists has produced an informal sketch (diagram)
depicting a simplified view of the workflow.

Observation 3 Reporting is selective.

The factorial designs of experiments aid scientists in their explorations. Consider
the ENM case where scientists run the analysis over multiple datasets belonging to
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different species. Results for all explored species, however, may not get reported.
Some of these results may be deemed low-quality or they might simply be a test-
benchmark aiding in the calibration of experimental parameters.

Observation 4 Reports describe parameters and results with their domain-specific at-
tributes to facilitate their understanding and interpretation by report consumers.

This principle applies to reports on data. Some attributes are inherent to an exper-
iment’s design, such attributes have a descriptive scope for all actual parameters and
result obtained through the enactment of that design. For instance, stating that one
output of the ENM protocol is a model accuracy statistic named Area Under Curve

(AUC), or stating that the output of labelling is a material named biotin are examples
of these characterisations. While ENM adopt adhoc domain descriptions (embedded
in column names or similar), ISA-Tab provides structural ontology based descriptions.
Some attributes are inherent to individual elements produced by enactments of the ex-
periment. For instance each taxonomic name in the species column in the ENM table,
or each group of environmental layers are examples of such attributes.

To this end we have presented provenance as experiment reports. The ISA-Tab
and ENM examples hopefully illustrated the content and structure of this category of
provenance.

2.6 Workflow Provenance

As experiment reports make up one side of the provenance gap, workflow provenance
makes up the other. We will now give general background on workflow provenance,
followed by the description of Taverna system and its provenance features. Figure
2.13 presents the archetypal architecture for provenance-enabled workflow systems.
In the discussions that follow we make references to this architecture and its impact on
workflow provenance.

2.6.1 Characteristics of Scientific Workflow Systems

The contribution of scientific workflows to provenance is in two forms:

• Workflow descriptions provide the codification of a data analysis process as an
executable program. As such they provide the prospective provenance (or the
recipe) of an experiment.
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• Workflow systems can trail a particular execution of a workflow to create ret-

rospective provenance documenting the derivation process for results obtained
from a particular enactment of an experiment.

These two forms of provenance are ultimately shaped by two factors 1) the require-
ments of data-oriented science as an application-area and 2) characteristics of shared
scientific resources. We will now outline characteristic of scientific workflow systems
that have significance in the context of our dissertation research. When discussing each
characteristic we refer to the underlying reasons and how that characteristic shapes
workflow provenance.

The key contribution of workflows to scientific data processing is the systematic
coordination of dataflow among analytical steps underpinned by external, and
often heterogeneous resources. As we exemplified with the ENM study workflows
can bring together analytical capabilities delivered from web-services, command line
tools, or local libraries. The internal details of an analytical step realised by such
resources are opaque to the workflow system.

Impact for provenance: Outsourcing data processing to external opaque resources
result in black-box provenance collection, opaque data lineage for which accuracy
guarantees cannot be given.

Workflow systems contain add-on components for provenance collection. Sci-
entists build workflows using the design interfaces in workflow systems (see Figure
2.13). Workflows are executed by execution engines, which exploit local or remote
resources through appropriate accessors. During execution the workflow engine gen-
erates events (such as start and completion of each analytical step, creation and transfer
of data). Provenance collection framework observes events fired and records this in-
formation as retrospective provenance.

Impact for provenance: As workflow execution and provenance collection are de-
coupled via an event layer there can be variations on the granularity of representations
of processes and data depending on how closely the execution of workflows are mon-
itored [MG11]. We refer to this potential differences as the granularity discrepancies
between execution provenance and workflow design (prospective provenance).

Workflows are built on data-oriented programming models. Traditionally a pro-
gram is comprised of a set of statements bound by a control specification prescribing
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statement execution order. What sets scientific workflows apart from conventional pro-
grams is their data-orientation. Informally a scientific workflow is a network of data
Processor steps 2 that are related by dataflow dependencies, where processor invoca-
tion order is determined by the availability of data. Data driven execution is what sets
workflows apart from traditional business process languages such as BPEL [LR06] and
YAWL [vdAH05]. Scientific workflow systems lack the majority of complex control-
flow constructs, found in process languages such as branching to alternate execution
paths, splitting or synchronisation of parallel executions [MGRtH35].

Impact for provenance: Data-orientation of workflows results in a determinis-
tic structure of computation, consequently workflow execution trails can have a pre-
dictable structure [MG11]. This brings the possibility of using the workflow descrip-
tions (prospective provenance) as a structure to query over the execution traces (retro-
spective provenance).

Workflow languages provide constructs for supporting factorial-designs. These
can be identified in three categories:

• modelling constructs for parameters and data.

• structured (collection) data-types for the modelling of data/parameter collec-
tions.

• control constructs to enable the repetitive enactment of analyses. Earlier we
mentioned that scientific workflow languages lack complex control constructs.
On the other hand they often provide, basic control-like features, most notably it-
eration (looping) constructs targeted to realise parameter explorations and dataset
sweeps.

Given a workflow system supports all these constructs, then encoding factorial de-
sign within a workflow description may be possible [LPVM15] [DF08]. This way the
workflow system becomes an infrastructure for defining parameter spaces and param-
eter space exploration strategies. In this dissertation we focus on this case. Meanwhile
for systems weakly supporting above constructs, factorial design is to be represented
and managed outside of the workflow. Here factorial design is either entirely un-
dertaken by resources or this task is delegated to the users, who are expected to run
workflows with changing parameters and keep track of each parameter configuration

2Here we adopt the terminology Processor from the Taverna system
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Figure 2.13: The archetypal architecture for provenance-enabled workflow systems

and each corresponding result. An comparative assessment of provenance-enabled
workflow systems in this regards is given in Section 2.8.

Impact for provenance: We would expect factorial design in a workflow descrip-
tion to manifest itself also in execution provenance as fine-grained lineage linking
each results back to individual input data and parameter combinations that are used in
data’s derivation. Note however, as provenance is collected by observation, there can
be granularity discrepancies between workflow execution provenance and workflow
descriptions. These discrepancies can affect the truthful representation of the factorial
design in workflow execution provenance.

Workflow systems with an open-world resource perspective adopt loose data typ-
ing. A workflow system with an open-world viewpoint is one that offers the flexibil-
ity of incorporating a prior unseen resource into a workflow. In such cases, the amount
of data type restrictions that can be imposed at the workflow language are minimal.
Scientific resources are typically exposed on the web via (SOAP or REST) services
that consume and produce data as textual message attachments (commonly typed as
text/plain MIME type). Or similarly, command line tools consume string parameters
and return strings, or f iles. This loose typing approach checks superficially whether
the inputs are of the correct shape e.g. whether a parameter is indeed a string instead
of, say, binary. However it does not impose further constraints on the validity of data
values. Taverna is the most prominent example of open-world workflow systems.

Impact for provenance: Loose typing means that the workflow engine is oblivious
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to the data it carries around, consequently workflow provenance provides no extra
information on data. Loose typing combined with black-box collection means that
provenance automatically collected from workflow executions is generic, lacking in
domain-specific metadata regarding processes or data.

Workflow systems in a controlled resource environment can impose stricter data
typing. For certain domains of science the kinds of shared resources can be enu-
merable. This allows the workflow systems to assume a set of domain-specific types
for representing data and analytical steps. In state of the art workflow systems stricter
typing is realised in two ways. The first approach is having types in the workflow spec-
ification language and type checking data values during workflow execution [GNT10]
[CFS+06]. Another approach is to have loose typing in the workflow language but
impose domain types as an additional layer of information, often in the form of se-
mantic annotations over elements of a workflow description [WKM+10] [GRD+06].
Additional type information is used to check at workflow design time for validity of
combinations of data processing steps (e.g. a step expecting a genomic sequence as
input can only be preceded by a step producing one).

Impact for provenance: The additional type information in the workflow descrip-
tion can be transferred to provenance traces as domain-specific metadata, characteris-
ing what the actual data and processes documented in provenance are [MSZ+10].

Most Workflow Systems adopt a separated scheme for storing provenance and
data. Scientific data comes in diverse forms and sizes. Workflow systems, espe-
cially those that are oblivious to data content during workflow execution use external
storage facilities for data. The file system, content repositories or opaque BLOBs
in databases are common approaches [CF12] [MRHBS06]. Note that in non-workflow
approaches, such as biomedical software systems, joint storage of provenance and data
is a recommended practice [CMD+14]. Therefore our observation here is exclusively
on scientific workflow systems.

Impact for Provenance: In a separated scheme data values are absent from the
provenance graph, they’re represented by proxy, with identifiers that are pointers to
data in its associated storage system.

To this end we highlighted characteristics of workflow languages or workflow sys-
tems. The next two items are characteristics observed on existing workflow sets.
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Heterogeneity of resources cause workflows to be complex. Complexity is a com-
monly observed attribute of workflow descriptions [BCBDH08] [ABL10]. The work-
flow for the ENM study illustrates the extent complexity can reach. Complexity is
rooted in the role of workflows as integrators of heterogeneous resources [GAB+12].
Workflows systematise resource wrapping and integration by making explicit the effort
needed to deal with heterogeneity through adapter steps. These data grooming pro-
cesses are commonly referred to as “shims” in literature [HSL+04]. The abundance of
adapters significantly increases complexity of the workflow description [LRL+12].

Impact for provenance: complex workflow descriptions lead to complex execution
provenance. There are two basic manifestations of complexity in workflow execution
provenance (discussed in detailed in Chapter 4). The first is having long/deep lineage
traces, and the second is having several distinct traces. Deep traces are often a man-
ifestation of complexity of the workflow descriptions, which can be attributed to the
abundance of adapter steps in workflows. Another consequence of adapters is that not
only is resulting lineage deep, but also it connects multitude intermediary datasets,
which are often content-wise redundant (e.g. a list of layer names followed by the
same list with empty lines removed, followed by the same list coalesced into a single
string and so on).

Opaqueness of resources hinders the end-to-end encoding of factorial designs
into workflows. Earlier we identified that iteration constructs and collection types in
workflow languages are intended to be used for encoding factorial design. Resources
that underpin analytical steps also have such features built-in. E.g. An analysis web
service may accept multiple parameters and data all at once, perform sweeping analy-
ses and return results all at once. Such coarse integration of resources into workflows
are particularly favoured to reduce resource access costs or improve performance of
workflow. However, as the inner workings of resources are opaque, the sweeps within
the resource are invisible to workflow execution engine.

Impact for provenance: Iteration constructs and collection typed parameters allow
for fine grained modelling of processes and data in provenance and allows lineage to
be used to trace from parameters to resulting datasets. However coarse integration of
resources causes the earlier identified n−by−m pattern to occur in workflow execution
provenance.

To this end we identified certain characteristics of scientific workflows. Note that
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these observations are intended to motivate our research rather than provide a com-
plete and rigorous characterisation of workflows. Scientific workflows as computa-
tional artefacts have distinctive features in their scheduling, fault tolerance mechanisms
[YB05], design constructs [CG08] or design patterns [MGRtH35], which are beyond
the scope of our background discussion.

2.6.2 Taverna Workflow System

Herein we will describe the Taverna system. The research described in Chapters 3, 4
and 6 and 7 of this dissertation introduce solutions with applicability to workflows in
general, as well as solutions specific to Taverna system. Taverna provides an important
part of our analysis cohort in Chapter 3 and our entire evaluation cohort for Chapters
4 and 5 and 7. Our reasons for choosing Taverna are:

• Taverna is a significant contributor to the publicly available scientific workflows.
The myExperiment repository lists more than 2000 Taverna workflows at the
time of writing of the thesis.

• Taverna adopts standard, technology independent vocabularies rather than cus-
tom representations for provenance [BDG+12] [BZG+15].

• The dissertation author is co-located with The Taverna development team. This
provides easy access to local knowledge and tooling.

Taverna [MSRO+10] is an open-source and domain-independent workflow sys-
tem used in several domains, such as genomics, environmental science, chemistry and
astronomy. In its default configuration Taverna adopts an open-world approach allow-
ing the access and composition of shared resources into analysis pipelines. Taverna
workflows are represented in the t2 f low format which has its roots in the Simplified
Conceptual Unified Flow Language (Scufl) [AFG+03]. t2 f low has an XML based
syntax that allows the definition of the following structural elements for a workflow
(pictorially depicted in Figure 2.14):

• A set of Processors. Processors are granules of data processing capability that
ingest data from input ports and produce data to output ports.

• Ports for processors and workflows. Ports are named placeholders for data, they
define a structure and type for the data they are expected to hold during execu-
tion. The Taverna environment (in its default configuration) provides a loose-
typing approach, where a port can hold data of following types:
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– Singleton values of a set of MIME types (text/plain, image/*).

– Nested collections of singletons.

• DataLink definitions, that designate how data flows among steps of analytical
processing. In Taverna datalinks can connect workflow or processor ports to
each other.

• Technical grounding information for Processors, known as Processor Types.
Processor Types inform the workflow execution engine on the kind of resources
that underpin Processors. During execution workflow engine is responsible for
delegating the execution of the Processor to the suitable resource accessor, the
selection of which is done using Processor Type information. SOAP and REST

services, Command Line tools, Beanshell scripts, Subwork f lows, String Constant

emitters, R scripts [R C13] are examples of Processor Types. In addition to en-
tirely computational steps, a processor may be underpinned by a Human Interaction,
where the user performs the data processing.

• Control specifications in the form of:

– Run− a f ter links among two processors that control execution order by
delaying the start of the latter until the completion of former.

– Iterations specification for processors that configure the repeated applica-
tion of processor over input collections. This feature is in wide use among
Taverna workflows and is the powerful feature to specify factorial designs.
When a processor accepts multiple inputs that are collections, Taverna
gives the possibility of configuring selection of input combinations from
lists using list Dot and Cross product operators. These operators help the
workflow designer to outline a strategy to explore the parameter space.

The distinguishing feature of Taverna that also underlies its widespread adoption is
its openness in resources (data and analysis steps) allowed into workflows. The default
Processor Types of Taverna allows access to any resource that supports a standard
access interface (such as command-line or web service). Taverna’s domain neutral
typing (comprised only of basic MIME types) and very basic data-structuring (through
collections-items) renders any kind of data potentially processable via workflows. In
addition to the (default) open approach, Taverna supports the development of con-
trolled resource approach through Plugins and Components.
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Figure 2.14: Constituent of a Simple Taverna 2 Workflow

Taverna allows extending the set of supported Processor Types, through Plug-ins
[MSRO+10] and Components 3. These serve a multitude of purposes:

• They enable easy integration of specialized resources such as Grid job submis-
sion interfaces into the workflow environment [TMN+10] [KMB08].

• They enable controlled typing to be imposed over processors. Plug-in based pro-
cessors are marked up, with domain-specific vocabularies to denote their func-
tion and the types of data they produce and consume. Using this information the
plug-in infrastructure emulates a strongly-typed environment during workflow
design by performing validation of processor compositions [WKM+10].

The Taverna system provides user interfaces for designing and executing work-
flows. In Figure 2.15 we provide a screenshot of Taverna Results Panel displaying
execution information for the earlier workflow of Figure 2.14. Execution is initiated
by the assignment of data values to workflow input ports. Each such assignment and
subsequent execution is consider a particular Run of that workflow (Box 1 in Figure
2.15). Depending on iteration configurations, each processor in a workflow may ex-
ecute a different number of times within one run of the workflow. Taverna allows

3The primary difference between plug-ins and components is that the former is implemented with
local Java libraries, whereas the latter with sub-workflows.
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the user to view the number of iterations per processor, their completion status and
statistics (Box 2). The port names and port types, and the values of data that appears
are delivered through those ports can be seen (Box 3). Through the result pane users
are given the ability to save result data and export execution provenance in various
representations including the OPM [MCF+11] and PROV [BDG+12] models.
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The formal syntax and semantics for Taverna was first given by Turi et al [TMG+07]
using Computational Lambda Calculus. In this formalisation a workflow is defined in
functional terms, where each data processing step is represented by an opaque function
accompanied by constructs for list building, applications of functions to items in lists.
Sroka et al [SHMG10] have later provided custom formalism for the Taverna version 2
system to cater for its data streaming capability. Finally in [MPB10] Missier et al have
provided a more practical functional notation for selected parts of Taverna’s behaviour.
For the purposes of our research, in Chapter 6 we will adopt Missier’s approach to de-
note the operational behaviour of Taverna and show how our workflow analysis rules
exploit this behaviour.

2.6.3 Provenance Traces from Taverna

Taverna uses technology independent vocabularies, namely PROV [BDG+12] and
Wfdesc [BZG+15] to represent its provenance. We provide an illustration with our
running example. When list filtering is realised as a processor in a Taverna work-
flow, the provenance recorded for a particular invocation of this processor would be
as given in Figure 2.16. The figure follows W3C’s layout conventions for presenting
PROV graphs [Gro12] that dictates shapes for different provenance elements, and an
order for their layout. PROV builds on the core elements of Activity, Entity and Agent

(corresponding shape conventions are given as legend in Figure 2.16). A processor’s
invocation is documented as an Activity with designated start and end times. Data is
recorded as Entities. The usage and generation relationships, are further qualified by
specifying the role that the each has played in the computation ( d1 and d2 have ful-
filled the roles of criteria and inList and d3 has fulfilled the role of outList). Note
that these role qualifications come from the input/output port names of the filtering
processor in the workflow description.

An important benefit of using PROV for modelling is its well-defined set of con-
straints and inference rules that allow validating provenance and inferring refined prove-
nance such as process causalities and data lineage. PROV provides the wasIn f luencedBy

relation to assert opaque lineage among (data) entities (depicted with dashed arrows in
Figure 2.16).

The trace in Figure 2.16 also informs us who performed the activity through PROV’s
Agent construct. Here the filtering activity is undertaken by the Taverna workflow en-
gine. It is also stated that Taverna engine performed filtering using a plan named
FilterEmpty. The Plan construct of PROV corresponds to prospective provenance.
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Figure 2.16: Retrospective Provenance of List Filtering represented in PROV

Figure 2.17: Prospective Provenance of List Filtering represented in Wfdesc
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Note that PROV provides the Plan as an atomic construct and has no further vocabu-
lary to outline plan details. This is where the Wfdesc model comes in. Wfdesc allows
the abstract specification of a workflow’s details through the use of Process, Input,
Out put and DataLink constructs. The Wfdesc representation of the list filtering pro-
cessor is given in Figure 2.17. The figure displays a “node and directed arc” diagram,
a method adopted for visualising RDF graphs [WLC14], where an RDF statement is
denoted with a “node-arc-node” pattern in the graph. Note, however, for brevity we
use a more contact depiction of information in Figure 2.17. RDF statements denoting
type information are given in compact form as additional labels over nodes (in bold
font). This compact form has also been adopted by the developers of the Wfdesc model
[BZG+15].

As this processor is realised with a Beanshell script, its details are not further elab-
orated, for information purposes only the source script is given as a literal (see Figure
2.17). In cases a process is realised with a sub-workflow, Wfdesc allows us to model
its sub-processes as distinct nodes in the RDF graph with their own properties.

Within Taverna system there are no granularity discrepancies between prospective
and retrospective provenance. Data appearing at workflow/activity ports of collection
type are modelled in execution provenance as entities that are PROV Collections linked
to their items with PROV hadMember relation. Similarly for processes, execution
provenance is recorded at a fine grain reaching into iterations and sub-workflows.

To sum up, Taverna inherits all characteristics identified in Section 2.6.1. It pro-
vides:

• prospective and retrospective provenance,

• opaque data lineage,

• fine-grained modelling of data and processes in provenance,

• generic provenance, without any domain specific metadata characterising the
data and processes,

• a separated storage scheme for data and provenance.

In addition, when we look at provenance cohorts from Taverna [BZG+13] we observe
they exhibit the complexity characteristic, and the coarse integration of resources into
workflow design.
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2.7 Formulating the Provenance Gap

To this end we introduced characteristics of provenance on either side of the gap,
namely Experiment Reports and Workflow Provenance. We now revisit earlier ob-
servations on reports, take them as requirements and discuss the opportunities and
challenges that workflow provenance has in meeting these requirements.

Observation 1. Reporting Factorial Designs.

• Opportunities: When identifying workflow systems’ general characteristics we
stated that they (in varying levels of support) provide constructs to support fac-
torial designs. This creates an opportunity to use workflow execution traces in
reporting data.

• Challenges: Note however, we also stated that granularity discrepancies be-
tween prospective and retrospective provenance may affect the truthful repre-
sentation of factorial design in workflow execution traces.

• Our Challenge here lies in understanding the varying levels of support in sci-
entific workflow systems, and to identify which systems support a truthful rep-
resentation of factorial design. A comparative survey aiming to provide an un-
derstanding of the level of support in different workflow systems is provided in
Section 2.8.

Observation 2. Selectivity in Reporting.

• Opportunities: Assuming that we have the constructs in place for encoding fac-
torial designs and its truthful representation in workflow execution provenance,
then provenance provides traceability among experimental parameters or input
datasets to results. This provides an opportunity to selectively create reports via
(the earlier mentioned) Provenance Driven Data Selection (PDDS). This is a
provenance access pattern, which involves (1) Identification of parameter/data
node(s) of interest (2) Using lineage to reach to result nodes descending from
identified data or parameter.

• Challenges: Existing workflow systems have weak support for PDDS. The rea-
sons are two-fold. First obstacle comes from separate storage scheme of data/-
parameters and provenance. This blocks the immediate accessibility of values
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of data or parameter nodes, hindering their identification in a provenance graph.
The second challenge is the coarse integration of external scientific resources
into the workflow, which hinders the end-to-end modelling of factorial designs.
Such integration causes the n− by−m pattern in lineage reducing its accuracy
in linking parameters with descendant results. There exists no capabilities in
workflow tooling to detect or anticipate such patterns.

• Our Challenge here is two fold. First is to assess the fitness of standard workflow
provenance in supporting PDDS. In Chapter 5 we provide a case study that aims
to provide such an assessment. The second challenge is for a particular system,
specifically Taverna, 1) to understand the circumstances in which the n-by-m
pattern affects PDDS, and 2) to develop techniques to detect broken factorial
design in a workflow description. Chapter 6 describes analysis techniques that
target this challenge.

Observation 3. Abstraction in Reporting.

• Opportunities: Workflow descriptions due to their simple data-oriented program-
ming models have the potential to be used as reports on experimental method.
Workflow descriptions also provide an anticipated structure, a blueprint for all
future execution traces to be obtained per workflow execution.

• Challenges: We identified that workflows, especially those operating in open
resource environments can be complex due to heterogeneity of resources, and
the data adapter steps involved. One common solution adopted by scientists for
abstraction, in Taverna as well as other systems we later review in Section 2.8.2
is to design workflows in layers (of sub-workflows), where lower layers contain
the detail of resource integration, and the upper layers abstract away from detail.
Meanwhile, abstraction through layered design is a manual, scientist-driven
activity. The lack of support in tools for automated abstraction is due to the
black-box nature of individual steps in workflows. As steps are black-boxes the
workflow system has no actionable indicator on the (in)significance of steps.

• Our Challenge here is twofold; first is to understand in detail the contributors to
complexity by analysing existing workflow sets and to understand whether we
can break the black-box assumption so as to obtain indicators of activity signif-
icance. We tackle this challenge with an empirical analysis reported in Chapter
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3. The second challenge is to see whether additional (grey-box) information on
workflow activities can be used in computationally assisted workflow abstrac-
tion. We describe our abstraction techniques in Chapter 4.

Observation 4. Using Domain-specific Attributes in Reporting.

• Opportunities: Earlier we identified that due to loose typing and black-box prove-
nance collection, workflow provenance is inherently generic. Workflow descrip-
tions provide a vocabulary of analytical processors, data and parameters, as well
as low-level implementation-oriented type information for those. A similarly
generic viewpoint is adopted in workflow execution provenance. This charac-
teristic of provenance stands as an important blocker for its use in reporting.
When we look beyond provenance we observe that domain-specific information
is often implicitly available, it is buried in processor names or data values.

• Challenges: Domain specific information is needed for various purposes, not
just reporting. We identified that one way (in the context of workflow validation)
to supply this information is to semantically annotate processors, and ports in a
workflows description to denote their domain-specific types [WKM+10]. And as
we surveyed existing workflow tooling in Section 2.8.2 this annotation process
is primarily manual. Such annotations make explicit the information implicit
within the workflow description (e.g. processor names). For reporting, these an-
notations could be used as attributes that are inherent to the experiment’s design.
Note, however a second category of attributes we identified in reports are those
inherent to entities that get created per enactment of experiments. This infor-
mation is typically buried in parameter or data values. Making this information
explicit would mean annotating individual results produced from workflow exe-
cution by interpretation of parameter and data values. In our survey of workflow
systems we were not able to find any manual annotation features that tar-
geted workflow execution provenance. Understandably so, as the number of
elements within a workflow design are fixed and poses a manageably sized task
for a user to annotate. Whereas the number of elements in an execution trace can
be very large (considering parameter explorations and data sweeps) prohibiting
their manual annotation.

• Our challenge here is the provision of domain-specific attributes that describe
elements in a workflow execution provenance. Due to the voluminous nature
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of this layer of provenance any potential solution should minimise human in-
volvement. Any automated solution would require 1) indicators on the sources
of implicit domain-specific information and 2) an annotation logic that would
make this information explicit. Consequently our challenge here is to devise
techniques to systematically obtain these two pieces of information and to devise
an automation approach and architecture that uses this information to annotate
workflow provenance.

2.8 State of the Art in Workflow Provenance

In the literature review provided herein we survey state of the art workflow systems
to assess their level of provenance support against the requirements of reporting. For
completeness we also surveyed provenance in other data processing instruments [BF05],
namely Scripts, Command-Line Tools and Databases. In order not to disrupt the flow
of text the non-workflow categories are in given in AppendixA. We assess workflow
systems against the following:

• What are the distinctive aspect of each system, and how is provenance currently
used?

• What is the level of support for encoding factorial designs? What are relevant
constructs? At which granularity are processes and data represented? Are there
granularity discrepancies between retrospective and prospective provenance?

• Is provenance driven data selection supported? Is the data-wise n−by−m pat-
tern observed in traces? What are the storage schemes for data and provenance?

• Is there support for the addition of domain-specific metadata to provenance and
how it is achieved?

• Are there and what are the abstraction mechanisms for provenance in these sys-
tems?

2.8.1 Workflow Systems

We review workflow systems with provenance support, namely Taverna, Kepler, Galaxy,
Wings/Pegasus and Vistrails. The KNIME system is notably excluded as, despite hav-
ing provenance-like features, such as execution monitoring and result caching, it does
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not provide any means to export or access provenance information. Also notably ex-
cluded are KARMA [SPG08] and PASOA [MGM+08b]. These are pioneer prove-
nance systems with particular focus on workflows in Service-Oriented environments.
KARMA can trace execution of BPEL workflows [LR06], and can record message ex-
changes among services participating in a workflow [Apa09]. We excluded KARMA
due to BPEL not being a workflow language of choice for most scientists. PASOA,
on the other hand, is not a workflow system per se. It provides a protocol for collect-
ing and collating provenance from multiple disparate parties involved in service-based
computing scenario. Very brief overviews of the surveyed systems, other than Taverna
(which was given in Section 2.6.2) are as follows. The survey’s narrative follows from
Table 2.3. (We use circles to denote level of support for reporting requirements. Full
circle denotes full-support, half circle denotes partial support and empty circle denotes
no support.)

Wings [GRK+11] is a “semantic” workflow system that has found use in Life Sci-
ences, Text Analytics and Geo-science domains. Wings adopts a tightly controlled
world-view of resources as it requires them to be made part of a catalogue prior to
use. During cataloging Wings expects semantic descriptions and constraints about re-
sources to be provided. An example description could state that an analytical step is a
BayesianClassi f ier, a constraint could state that input and output data of the classifier
should be about the same study subject. Wings combines semantic resource descrip-
tions, with workflow descriptions to check for validity of resource compositions in
workflows.

Galaxy [GRH+05] is a web/cloud-based data-analysis platform used widely in
biomedical disciplines. Galaxy facilitates the combination of analytical command line
tools with datasets in workflows. Similar to Wings, Galaxy has a tightly controlled
resource environment and is similarly backed by a catalogue. During catalogue intro-
duction, Galaxy expects scientists to supply domain-specific, structured descriptions
denoting dataset types or tool functions. Galaxy utilises these descriptions when pub-
lishing workflow execution histories as online supplementary material (experimental
bundles discussed in Section 2.3.3).

Vistrails [CFS+06] supports workflows for Scientific Visualisation. An inherent
characteristic of such workflows is that they are the output of an iterative and ex-
ploratory design process. The distinctive feature of Vistrails is the tracking of this
exploratory process. By keeping track of all intermediate designs Vistrails allows sci-
entists to compare and contrast execution results of different design alternatives to
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further progress with the design.Vistrails adopts a partially-controlled resource envi-
ronment. It provides a built-in library of visualisation functions and also supports the
incorporation of prior unseen functions (e.g. web service base analyses) into work-
flows.

Kepler [LAB+06] is another workflow system that has found use in multiple sci-
entific domains. Kepler uses Ptolemy II as its execution engine, which is a frame-
work with support for various (sub)modes of computation under the umbrella of the
Dataflow Architecture [NLG99]. Each flavour of dataflow computation is manifested
in Kepler as a Director, that dictates the mechanics of dataflow among analytical steps
(e.g. streaming vs synchronised clock). Similar to Vistrails, Kepler adopts a hybrid
perspective on resources by providing a built-in library as well as allowing incorpo-
ration of external resources. Kepler utilises provenance to perform smart workflow
re-runs [ABJF06], where sub-parts of a workflow can be selectively re-executed using
cached outputs of upstream portions of the workflow.
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2.8.2 Assessing Systems Against Reporting Requirements

2.8.2.1 Support for Factorial Designs

A common observation for all systems is that they record process provenance at the
level of granularity of individual analytical steps embodied in the workflow. These
are called Processors in Taverna, Actors in Kepler, Modules in Vistrails, Components

in Wings and Steps in Galaxy. In addition, provenance collection in all systems can
see into control constructs, be it iteration, or sub-workflows and record the provenance
of steps within. Meanwhile, the granularity of modelling of data within workflow
descriptions differ as well as its representation in execution provenance, and it is a
critical factor in determining a system’s support for encoding factorial designs.

Taverna provides full support in this category. As discussed earlier in Section 2.6.2
Taverna supports fine-grained modelling of workflow inputs and outputs as nested col-
lections both at prospective and retrospective provenance layers. Collections are the
main driver of iteration in Taverna. Input cardinalities determine whether a Processor

is to iterate or not. Iterations over multiple input collections can be configured via dot

and cross product operations, which gives scientists the flexibility to define their own
strategies to explore a parameter space. Taverna does not differentiate between param-
eters and data, which means both dataset sweeps and parameter explorations are built
using the same language constructs.

Wings provides partial support in this category. Wings permits fine-grained mod-
elling of input data as Files and FileCollections and supports (coarse-grained) param-
eters as first class modelling elements in workflow design. Granularity of modelling
data is uniform across workflow specification and execution traces in Wings. This
system provides ComponentCollections for iteration and uses this feature primarily
for dataset sweeps. Unlike Taverna, parameter exploration strategies cannot be imple-
mented as parameters are coarse entities and iterations are not configurable.

Vistrails provides partial support in this category. Vistrails system has parameter
exploration capability built-in. More specifically it supports the definition of a multi
dimensional parameter space, upon which the entire workflow is iterated. On the other
hand custom strategies for exploring the parameter space is not possible. In addition
to parameter collections, Vistrails supports structured typing for data with list types.
Iteration (within a workflow) over lists is supported by using higher-order modules
such as map and f old that encapsulate analysis modules and input lists to be swept.
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While both components of factorial design, i.e. the dataset sweeps and parameter ex-
plorations are possible in workflow design, this does not get fully reflected to execution
provenance as list typed data is recorded coarsely.

Kepler’s support in this category changes depending on different Directors used.

• Kepler with its default set of Directors provides weak support for encoding fac-
torial design into a workflow specification. As the workflow language Kepler
supports structured types (arrays) for data, however, such structured data gets
modelled coarsely in execution provenance. Kepler supports the modelling of
Parameters as distinct workflow design elements, however collection typed pa-
rameters are not supported. Kepler provides iterated analyses via ramp, repeat

and f eedback− loop constructs, however as both data and parameters are mod-
elled coarsely, this capability is insufficient on its own to represent factorial de-
signs.

• The Collection-Oriented Modelling and Design (COMAD) director of Kepler
provides improved, yet partial support for factorial designs. COMAD approach
is intended to improve data granularity modelling of Kepler by providing sup-
port for nested collections of datasets to be recognised as first class elements in
Kepler workflows. The COMAD director provides a very simplistic model for
modelling analytical steps, lacking constructs for iterations or sub-workflowing
[BMWL07]. On the other hand alternative mechanisms, called databindings are
in place. In this approach inputs, intermediary and final output data is to kept
in one single hierarchical data structure that is passed through every analytical
step in the workflow in an assembly line manner. Each analytical step has a data
binding specification (somewhat similar to an XPATH query over XML) that
specifies the data of interest for that step. When a binding specification is bound
to multiple data sub-hierarchies this can be used to sweep a particular analysis
over collections of input data. While data is modelled at a fine-granularity, pa-
rameters are coarsely represented, hence parameter explorations cannot defined
and managed within workflows.

Galaxy system does not provide support for encoding factorial design into work-
flow descriptions. Here data/parameters are modelled coarsely at both the workflow
description and workflow execution levels. Galaxy also lacks control-constructs such
as iteration or sub-workflows.
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2.8.2.2 Support for Provenance Driven Data Selection (PDDS)

The level of support in PDDS corresponds to the ability of the provenance consumer to
1) locate data/parameter nodes of interest and 2) access data products that are derived
from the designated parameters/data via lineage. These two capabilities are dependent
on storage schemes, and factorial design support respectively.

We observe that level of support for factorial designs becomes a double-edged
sword when it comes to PDDS. Systems that support factorial design within work-
flows, such as Taverna, Wings, Kepler (COMAD) and Vistrails bear the potential of
creating fine grained lineage linking parameters/data to result data. On the other hand,
in systems like Wings, Taverna, Kepler (COMAD) factorial design is to be created by
the user, and there are no restrictions in place that would prevent the user from coarsely
integrating resources into a workflow design. As discussed earlier, coarse integrations
cause the data-wise n− by−m pattern to occur in provenance. Meanwhile Vistrails
does not leave the encoding of factorial design to the user, instead it provides this as
a built-in and restricted feature, thereby guaranteeing that, for parameter explorations,
the n-by-m pattern is avoided within the execution provenance of a workflow. Due to
their lack of support for factorial design, the Galaxy and Kepler systems are not prone
to the data-wise n−by−m issue (within workflows).

Another determinant of PDDS support is the storage scheme adopted. This is most
critical for storing parameters. When parameter values are stored jointly with prove-
nance, these values can be predicated on in provenance queries. All workflow systems
support unified storage schemes when it comes to parameter values. Taverna system
presents a disadvantage here. Despite having support for collection-typed parameters,
values of those are not stored together with provenance.

2.8.2.3 Support for Abstraction

Complexity manifests itself in both workflow descriptions and workflow provenance.
Our comparative survey shows that Taverna, Kepler, Vistrails systems support the sub-
workflowing construct to allow the user to manually create abstractions in the form of
layered workflow designs. Abstraction at the design level helps cope with complex-
ity of workflow execution traces. Note from earlier that we discussed the complexity
of execution provenance manifesting as 1) long lineage traces or 2) multiple distinc-
t/interlinked traces among results. Workflow systems provide interfaces ( often called
execution or result panels) to display result datasets and their lineage as captured in
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workflow provenance. In these interfaces the workflow descriptions is typically used
as a layer of abstraction (a browsing guide or an access index) over traces. Such inter-
faces are available in Taverna, Wings, Vistrails and Galaxy systems.

In addition to the support built into workflow tooling. There has been research-
oriented efforts on provenance abstraction in the context of scientific workflows. The
Provenance Browser [ABL10] and ZOOM [BCBDH08] are the two notable systems in
this regard. Provenance Browser exploits, in addition to lineage, the hierarchical struc-
ture present in (nested) data collections and nested processes to give dimensionality to
visual exploration workflow provenance graphs. Capabilities of Provenance Browser
has been showcased over traces of the Kepler (COMAD) workflow system. ZOOM
on the other hand focuses on creating on computationally assisted creation of layered
designs and showcases how layering leads to shorter lineage traces. The state of the
art in provenance abstraction in general is provided in detail in Chapter 4, where we
discuss our workflow abstraction techniques.

2.8.2.4 Support for Domain-Specific Information

Domain-specific information can be provided with workflow provenance in two lay-
ers; the workflow description and the execution trace. At the description layer metadata
outlines the design-bound aspects of experimental elements. Examples of such char-
acteristics are the type of function performed by an analytical step or the domain types
of parameters and of prospective input/output datasets. Domain specific information
at the workflow description layer is conveyed in three basic ways 1) via built-in type
information, 2) by add-on annotations, 3) by capturing design-bound (static) parameter
values. Vistrails and Kepler systems provide a comprehensive type space that allows
domain specific typing of workflow elements. All workflow systems support annota-
tion of workflow descriptions. These annotations range from basic textual mark-up
as in Taverna and Vistrails to semantic mark-up created with domain-ontologies, as in
Taverna, Kepler and Wings systems. Workflow systems, with the exception of Tav-
erna and Kepler (COMAD), mandate that all parameter values are hardcoded into a
workflow design. These values also contribute as domain-specific information at the
workflow description layer.

A distinctive aspect of Galaxy and Wings is their mandate on domain-specific
metadata due to their controlled viewpoint on resources. Here, both the input datasets
and analytical tools carry annotations created prior, during resource introduction (to
respective catalogues). A mandate on metadata can be seen a drawback as metadata
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creation requires scientist’s time and effort, both limited resources [TF08]. On the
other hand, while collecting descriptive metadata about resources these systems also
collect configurations/constraints regarding metadata that resources should have when
brought in composition with other resources. Wings and Galaxy puts this information
to semi-automate resource annotation. During the execution of workflows annotations
on input datasets are propagated to newly created output datasets.

Galaxy supports the propagation of annotations from input datasets to derivative
datasets (depending on tool configurations). The motivation for having domain-specific
metadata in Galaxy is to be able to later use it when publishing decorated provenance
traces together with output data. Whereas in Wings annotations on workflow descrip-
tion is used for validation of processor compositions, or processor vs input data com-
patibility. We survey the provenance annotation problem and the state of the art closely
in Chapter 5.

2.9 Chapter Conclusion

In this chapter we introduced the backdrop for our dissertation research. We elaborated
on data-oriented investigation lifecycle and identified the different categories of prove-
nance in it. We identified that Experiment Reports and Workflow Provenance are
the two types of provenance information that have gained increased research and de-
velopment attention. Experiment reports are a by-product of efforts to systematise the
reporting of datasets, meanwhile workflows and workflow provenance result from ef-
forts that systematise the way computational data analyses are performed. Even though
both attempt at systematisation, reporting makes limited use workflow provenance.

We then looked closely to both categories of provenance. We observed that al-
though both attest to the same philosophy of provenance (i.e. describing the origin
and derivation history) they operate over different levels of abstraction. Experiment
reports require a domain-oriented high level view point whereas workflows adopt a
generic implementation oriented view point.

We projected characteristics of experiment reports on to workflow provenance. We
observed overlaps between characteristics as opportunities and differences in char-
acteristics as challenges. We then performed a much detailed analysis by assessing
provenance capabilities of individual scientific workflow systems against reporting re-
quirements.



Chapter 3

Scientific Workflow Motifs

3.1 Chapter Introduction

This chapter reports the results of an empirical analysis of real-world workflows. The
major output of this analysis is Workflow Motifs which can be defined as:

a domain-independent, non-exhaustive taxonomic categorisation of the nature of activi-
ties and data within workflows. Motifs characterise activity function, role of data, and
high-level workflow design patterns.

The analysis depicts the current landscape of workflow-based scientific data processing
and provide empirical evidence that a) substantiates some of the observations made on
workflow provenance in Chapter 2 and b) informs the techniques that we present in
Chapters 4, 6 and 7 on the kind of treatment workflow provenance requires to overcome
its shortcomings. We layout the analysis setting in Section 3.4 by introducing the study
cohort and methodology. This is followed by the introduction of Motifs and Motif
occurrence statistics in Section 3.5. Related work is given in Section 3.9. Finally we
revisit our observations on workflow provenance from Chapter 2 in light of Motifs in
Section 3.8 and discuss how Motifs could inform techniques on workflow provenance
abstraction and annotation.

Parts of work described herein has been published as a conference and a journal
paper.

• D. Garijo, P. Alper, K. Belhajjame, et al. Common motifs in scientific work-
flows: An empirical analysis. In Proceedings of the 8th eScience Conference,
pages 1-8, Chicago Illinois USA, October 2012, IEEE.
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• D. Garijo, P. Alper, K. Belhajjame, O. Corcho, Y. Gil, and C. Goble. Com-
mon motifs in scientific workflows: An empirical analysis. Future Generation
Computer Systems, 36:338351, 2014, Elsevier.

The conference paper reports our analysis over a cohort limited to workflows from
the Taverna [MSRO+10] and Wings [GRK+11] systems. This analysis has later been
extended to include workflows from Galaxy [GRH+05] and Vistrails [CFS+06] and
has been published as a journal paper. Both papers share equal joint contribution of
authors P.Alper and D. Garijo, the journal paper has been marked explicitly to denote
joint first authorship.

3.2 Motivation for Motifs

From a technical stand-point, the prime cause of provenance genericity and also the
major bottleneck in the development of automated solutions for provenance annotation
and abstraction is the black-box assumption in workflow provenance collection.

For the development of computational techniques to aid in provenance annotation
and abstraction, one would require actionable information on the inner workings of
activities. This information is required;

• during abstraction to elicit whether an activity documented in a provenance
trace is report-worthy or not. Workflow descriptions constitute experimen-
tal metadata that outlines the analytical method/protocol followed. In cases of
analyses involving heterogeneous resources from distributed and autonomous
providers the workflow’s integration role becomes too elaborate (with several
adaptation steps required for gluing together resources or preprocessing datasets)
to the degree that it overwhelms the scientific data analysis protocol, making it
less apparent in the workflow description. In a black-box approach there is no
differentiation between an adapter versus a scientifically significant analysis step
in a workflow.

• during annotation to identify which (data/activity) elements in a provenance
trace hold information on data’s creational context. The creational context
refers to the parameter values, activity configuration settings used in conception
data produced from workflow executions. Workflows are a medium that wit-
nesses first-hand the process of creation or collection of scientific datasets. Yet
their ignorance to the inner workings of activities provides a dry documentation
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lacking any explicit (domain specific) descriptors of context. Ignorance also pre-
vents us from understanding whether all data artefacts within a trace are minted
afresh or whether they are copies of some other data.

This thesis is comprised of investigations on the treatment of workflows and their
provenance towards provisioning experimental metadata [ABGK13]. More specifi-
cally, we investigate in Chapter 4 the use workflow descriptions themselves as source
of experimental metadata and tackling complexity with workflow abstraction and in
Chapter 7 the use of workflow provenance as a medium to collect and propagate
domain specific annotations over data.

A pre-requisite for the development of such solutions is to have an understanding
of data processing inside workflows that is beyond the black-box. Breaking the black-
box assumption has been an attractive topic in workflows and provenance research.
We shall also comment here on our chosen path to break the black-box. Two main
strategies can be adopted here:

• Assuming white-boxes, where data is processed with a restricted but well-defined
set of operations, such as relational queries or dataflow operators [ADD+11]
[ICF+12]. Operations, whose execution semantics are known by a provenance
collection framework allow precise tracing procedures to be built. A major
downside of this approach is that it is highly restrictive on the structure of data
and the kinds possible operations. As shall become apparent from our empiri-
cal findings such a restrictive assumption is clearly not possible over real-world
workflows.

• Assuming grey-boxes, which is our chosen approach where data processing is
partially characterised by an abstraction of activity function and for certain cases
implied relations among inputs and outputs, but leaving out details as to the
specific execution semantics. Note that such a transparency may not guarantee
accurate fine-grained traceability or may not fully qualify every possible lin-
eage relation in a provenance trace. However it may be used to characterise a
wider variety of activities that have a visible footprint in real-world workflows.
More importantly the transparency provided may permit the detection of points
in provenance from which metadata can be provisioned and also the propagation
of such metadata among datasets, which are interlinked with partly qualified re-
lations.
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To this end we identified above our own motivations in breaking the black-box
assumption. As the analysis reported in this chapter was done in collaboration with
other scientists (we elaborate in Section 3.4.1), we shall also briefly comment here on
their motivations. Workflows as automation artefacts are the outcome of a non-trivial
design process that requires significant user expertise and effort. As a consequence
a common aspiration in workflow research is for workflow design to be incremental,
where users build on or re-use workflow descriptions of scientists within their domain
of study [SBCBL14] [GFG+09]. In order to devise techniques that could help users
in finding similar workflows one needs evidence of commonly encountered activities
and activity combinations and evidence of incremental development and insight into
how it happens in practice. Our collaborators [GCG13] were seeking such evidence
and insight in the joint analysis.

3.3 Anticipating Motifs

Our empirical analysis has not occurred without precedent. As observed earlier data-
oriented investigations build on the exploitation of shared heterogeneous resources,
which bring scientists the responsibility to glue together these resources. Interviews
with scientists have shown that this effort takes up to 50% to 80% of scientist’s time
[Loh14]. And as mentioned earlier the need to automate this integration is an impor-
tant motivation for scientists for having workflows. Note however, that this particu-
lar role that workflows fill strongly determines how workflows are shaped. Hull has
been first to characterise these gluing (adapter) activities in workflows (in bioinformat-
ics) as “Shims” [HSL+04]. Adapter activities are required for “resource plumbing”
[LAB+09] and “data grooming”. From a high level perspective:

• resource integration corresponds to the effort required in accessing a resource;
differences in access requirements need to be catered for here, such as messaging
formats (e.g. JSON, XML, text), or access protocols (e.g. grid job submission
protocols, or REST-based web services) [LAB+09].

• data grooming corresponds to all efforts that groom data prior to its use in a
scientific analysis. Guo [Guo13] observes that this preparatory stage involves
formatting, cleaning, partitioning datasets.

We therefore performed our analysis with anticipation to observe and to understand
in more detail above kinds of activities in scientific workflows. More specifically our
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objectives were:

• Do analytical and adapter type data processing manifest as separate activities in
workflows?

• What kinds of adapter steps are there and what is their extent in workflows?

• Is an enumeration of activity function possible?

• What is the current practice of encoding experimental context (factorial designs,
configuration settings) into workflow design?

• What is the current practice of scientists in dealing with workflow complexity?

3.4 Analysis Setting

The analysis corpus is comprised of workflows from Taverna [MSRO+10], Wings
[GRK+11], Galaxy [GNT10] and Vistrails [CFS+06] systems. The choice of these
systems as our cohort is due to the availability of shared workflows through reposito-
ries [MSFS11] [DRGS08] and portals [gal13]. A workflow is shaped by several factors
including 1) the design constructs available in the workflow language 2) the world-
view of available resources, i.e. data and analytical tools composed by the workflow
system 3) the scientific domain(s) where the system is used. In this chapter we are aim-
ing to investigate the characteristics of workflows that are imposed by external factors
rather than the innate characteristics that come with the supported workflow modelling
language. Consequently we introduce the four systems in our cohort by discussing the
world-view adopted and the domains in which they operate. A summarised view of the
discussion is given in Table 3.1.

Table 3.1: Cohort Workflow Systems’ Characteristics

Workflow
System

Open
Environment

Controlled
Environment

Taverna Data & Activity Activity
Wings - Data & Activity
Galaxy - Data & Activity
Vistrails Data & Activity Activity
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All cohort workflow systems were introduced in Section 2.6 while surveying the
state of the art in workflow provenance. Here we recite their certain characteristics for
text coherency.

Taverna [MSRO+10] is a widely-used cross-domain workflow system applied in
bioinformatics, astronomy, medicine, high-energy physics, chemistry, solar physics,
ecology and digital library domains. The distinguishing feature of Taverna that also
underlies its widespread adoption is its openness in both the data and the analysis activ-
ities that can be incorporated into workflows. On the activity side, any tool with a stan-
dard invocation interface such as a web service endpoint or a command-line tool can
be integrated into a workflow. On the data side, Taverna’s domain neutral typing (com-
prised only of basic MIME types) and very basic data-structuring (through collections-
items) renders any kind of data potentially processable via workflows. Most typically
scientists adopt this open approach to integrate (remote) third party resources with lo-
cal ones to build analysis pipelines. An alternative to openness is to exert control over
resources. With control, one could restrict the kinds of analysis tools and datasets that
can be used. Taverna allows creation of controlled environments with a component
framework. A component family defines a world view of all allowed activities and the
types of data that can be consumed and produced by those activities. The advantage of
having control is the simplification of workflow development for the scientist and the
prevention of design errors.

Wings [GRK+11] is a “semantic” workflow system that allows workflow develop-
ment by combining activities (called components) and datasets selected from respec-
tive catalogues. Wings adopts a controlled world-view to both activities and datasets
as it requires these resources to be made part of a catalogue prior to use. The defin-
ing feature of Wings is the ability to store semantic descriptions and constraints about
resources during cataloging. Whenever those resources are composed in workflows,
constraint checking is performed to ensure valid combinations. The Wings system
has been used in Life Sciences, Text Analytics and Geosciences domains. A notable
feature of Wings is its ability to delegate the execution of validated workflows to the
Pegasus [DShS+05] system. Pegasus specialises in the execution of workflows on grid
environments or compute clusters.

Galaxy [GRH+05] is a web-based data-analysis platform specifically designed for
use in biomedical disciplines. Galaxy tightly controls resources, analysis activities
called tools, and dataset by necessitating that they are made part of the Galaxy backend
prior to use. Hence a common pattern in use of the Galaxy system is to have customised



3.4. ANALYSIS SETTING 107

Galaxy deployment for each sub-discipline it is used in. During the introduction of
resources to catalogues, Galaxy prompts scientists to supply domain-specific resource
metadata. Galaxy only supports basic dataflow definitions and lack support for any
any further design construct. On the other hand, Galaxy backends can be deployed on
cloud computing infrastructures where compute-intensive analyses can be effectively
executed.

The Vistrails [CFS+06] system supports the creation of workflows for scientific vi-
sualisation in Medical Informatics and Environmental Sciences and Physics domains.
Vistrails workflows can be built by composing activities in the open, such as web ser-
vices and also controlled such as modules from a rich embedded visualisation library.
While both modes are supported the defacto approach is the controlled approach where
activities are annotated to denote their accepted input/output types (e.g. geometric
shapes, numeric types) and further domain specific characteristics. Similar to Wings
annotations are later used for validity checking of module compositions.

3.4.1 Methodology

We performed a bottom-up and primarily manual analysis regarding both activities

and the data consumed and produced by activities. As summarised in Table 3.2 the
identification of activity motifs and the measurement of their occurrences in the work-
flow cohort was performed jointly by three analysts, namely Pinar Alper (dissertation
author), Daniel Garijo and Khalid Belhajjame. The identification of data motifs has
been exclusively performed by Pinar Alper. All three analysts are computer scientists
who have familiarity with Hull’s categorisations of Shim services in bioinformatics
[HSL+04] and basic dataflow constructs, such as relational query operators [CCT09].
None of these analysts have in-depth information or affinity to any particular scientific
domain. P. Alper has analysed the Taverna cohort, K. Belhajjame has analysed the
Vistrails cohort, and D. Garijo has analysed the Wings and Galaxy cohorts.

The activity analysis was done in two dimensions 1) Functional, where we out-
line what kind of data-processing occurs within a workflow activity and 2) Non-
functional, where we identify how activities or workflows are realised. E.g. a vi-
sualisation step can be implemented in different ways: via a stateful multi-step invo-
cation, through a single stateless invocation, or as a sub-workflow. We categorised
each activity with at most one functional motif. This restriction has emerged from our
observations on the cohort rather than being set upfront in our analysis method. We
observed that it is rarely the case that an atomic activity had multiple functional motifs.
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Table 3.2: Work performed by each analyst

Analysis Of Workflow System Performed By
Data Motifs All Systems P. Alper

Activity Motifs &
Motif Occurences

Taverna P. Alper
Galaxy D. Garijo
Wings D. Garijo
Vistrails K. Belhajjame
Cross-Validation w/
Selected Taverna
Astronomy WFs

P. Alper & D. Garijo

Analysis was based on manual inspection of workflow descriptions. In addition to
workflow descriptions, additional documentation in the form of workflow annotations
and textual descriptions and the underlying implementations of workflow activities
such as scripts were also inspected as necessary to determine motifs. The only au-
tomated part of the data collection was associated to the workflow size statistics for
Taverna workflows. The myExperiment repository that hosts workflow descriptions
from several workflow systems provides a REST API that allows retrieving detailed
information on Taverna workflows. Using this facility we were able to automate the
collection of statistics regarding the number of workflow steps and the number of in-
put/output parameters of Taverna workflows.

The analysis was bottom-up in the sense that rather than hypothesising a catalogue
of expected motifs up front, analysts accumulated the set of observed motifs and their
number of occurrences as they progressed with the analysis. In order to minimise
misinterpretation and human error, categorisation made by P. Alper over a selected
subset of workflows (43 Astronomy workflows in Taverna) has been cross-validated
by D. Garijo. A cross validation of K. Belhajjame’s categorisation with other analysts’
has not been performed.

Workflow cohort has been obtained from the following sources at the time of the
analysis (January 2013):

• Taverna workflows were obtained from myExperiment [DRGS08], which is the
largest repository of scientific workflows. myExperiment contains workflows
from a multitude of domains. We determined the target domains for workflows
by browsing the myExperiment group tags [mye13]. These tags correspond to
either generic concepts such as “workflow”, “example” or “component” or to
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specific domains such as “text mining”. We eliminated generic tags and aggre-
gated specific tags into the domains they signify. Taverna system has the largest
public collection of workflows, in order to obtain a feasible subset for manual
analysis, we made random selections.

• Galaxy workflows constituted a subset of those that were publicly available at
the Galaxy deployment [gal13] at the time of the analysis. A selection was made
to eliminate those lacking documentation.

• Vistrails workflow systems comes pre-packed with a set of tutorial type work-
flows that provide commonly used visualisation pipelines, additionally the Crowd-
Labs portal [MSFS11] allows Vistrails users share workflows. We have made a
selection based on the availability of documentation for workflows.

• Wings system does not have a public repository of workflows. For Wings, we
used a subset of workflows known by the Wings developer team at the time of
analysis. The selection was made based on the availability of basic workflow
documentation.

Table 3.3: Number of workflows analyzed from Taverna (T), Wings(W), Galaxy (G),
Vistrails (V)

Domain No. of workflows Source
T W G V

Drug Discovery 7 0 7 0 0
Astronomy 51 51 0 0 0
Biodiversity 12 12 0 0 0
Cheminformatics 7 7 0 0 0
Genomics 90 38 28 23 1
Geo-Informatics 6 6 0 0 0
Text Analysis 45 11 31 3 0
Social Network Analysis 5 0 5 0 0
Medical Informatics 7 0 0 0 7
Domain Independent 30 0 18 0 12

TOTAL 260 125 89 26 20

3.4.2 Workflow Cohort

The domains of analysis and number of workflows from each domain are given in Ta-
ble 3.3. We have chosen 260 workflows from various domains. This workflow set
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can be downloaded from the supplementary material pack we shared in myExperi-
ment [Alp13]. Note that the distribution of workflows to domains is not even, as it is
also the case in myExperiment for Taverna workflows. When selecting the workflows
we included those developed with the intention of backing actual scientific investiga-
tions. We refrained from including toy or dummy workflows, which are developed to
demonstrate a workflow system’s design constructs. The workflows analysed are as
follows (we use a convention “X out of Y workflows” where Y denotes the number of
all workflows available from a particular system available at the time of analysis):

• 89 out of 132 Wings workflows were analysed. The domains constituted Drug
discovery, Text mining, Generic (domain-independent), Genomics and Social
Network Analysis.

• 125 out of 874 Taverna workflows (those compatible with Taverna version 2)
were analysed. The domains constituted Cheminformatics, Genomics, Astron-
omy, Biodiversity, Geo-Informatics and Text Mining.

• 26 out 145 Galaxy workflows were analysed. Since Galaxy has wide application
in the biomedical sciences, most of the workflows are from Genomics, although
a few are designed for generic Text Mining capabilities.

• 20 out of 274 Vistrails workflows were analysed. Majority of workflows in Vis-
trails are generic pipelines that could be used in any scientific domain involv-
ing visualisation based investigation. Additionally we included workflows from
Medical Informatics and Genomics domain.

3.5 Motifs

This section introduces motifs identified in our analysis. Motifs are divided in three
categories: Activity Functional Motifs (given in Section 3.5.1), the Workflow Non-
Functional (given in Section 3.5.2) and the Data Motifs (given in Section 3.5.3). An
overview of all motifs is provided in Table 3.4. Throughout the introduction of motifs
we will use two illustrative workflows:

• The Taverna workflow given in Figure 3.1 is from the Metabolomics domain
[AHM10], and it analyses data obtained via Mass Spectrometry instruments that
captures the unique chemical fingerprints that specific cellular processes leave
behind. The workflow follows a process of data transfer to a remote server and
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preparation of input parameters needed for the analysis, running the analysis
by invoking a remote stateful web-service, which requires multiple invocations
for the completion of a single analysis. The final step in the workflow is the
downloading of results from the server.

• The Wings workflow fragment given in Figure 3.2 is from the Drug Discovery
domain [GKX+11], and involves an analysis known as sMAP that can quan-
titatively characterize the geometric properties of proteins. In our example a
comparison analysis is performed on two different input datasets. The results
are then sorted and merged.

3.5.1 Activity Functional Motifs

Data Retrieval Certain activities are responsible for bringing-about the data into the
workflow pipeline. Data from both local and remote sources can be obtained through
relational queries, imports of tabular data (e.g. CVS, XLS files), or through web ser-
vice invocations. Recall from our discussion of the data-oriented investigation lifecycle
in Chapter 2 that some investigations re-use data from previous studies shared in com-
munity databases. Web services is the primary access mechanism for obtaining shared
datasets. Parameters of such data-access services allow scientists to define a scope
for the data of interest (a particular geographic location, a time frame or a particular
subject). Data access could also be incremental and dynamically parameterised. For
instance a first retrieval activity could result in a set of data items, which are then used
as parameters to retrieve further data. Such linked retrieval activities form the so called
“Data Integration” chains [MPL11].

Data Analysis This motif is a rough categorisation for those activities that perform
some form of analysis over data. Analysis may be as basic as creating data statistics or
as complicated as running data mining algorithms or simulations. A key differentiator
for this category is that analysis activities mint data afresh, i.e. the results from these
activities are previously not existent as activity inputs. The Taverna workflow in Fig-
ure 3.1 exemplifies this motif with its activity named warp2D. This activity accepts
as input Mass Spectrometry data that contains indicators of the amount and type of
chemicals found in a specimen. Using indicators warp2D computes various statistics
and runs correction models to address shifts in data.
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Table 3.4: Scientific Workflow Motifs

Activity Functional Motifs
Data Preparation

Format Transformation
Augmentation
Extraction
Filter
Group
Sort
Split
Combine

Combine-Heterogeneous
Combine-Homogeneous
Merge

Data Analysis
Data Cleaning
Data Movement
Data Retrieval
Data Visualisation

Workflow Non-Functional Motifs
Inter-Workflow Motifs

Atomic Workflow
Composite Workflow
Overloaded Workflow

Intra-Workflow Motifs
Internal Macro
Human Interaction
Statefull (Asynchronous) Invocation

Data Motifs
Promoted
Intermediary
Configuration Parameter
Data Value
Data Reference
Design-Bound Value
Execution-Bound Value

Data Cleaning Datasets may require cleaning prior to their use. A cleaning step
essentially preserves the primary content of data but improves data quality through re-
moving noise data points, or fixing ill-formed data values. Cleaning can be automated
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Figure 3.1: Motifs in a Taverna workflow from functional genomics.

(e.g. preprocessing a text corpus to remove punctuation) or it could be human-driven.

Data Visualisation In data-oriented science visualising a result dataset is often as
important as obtaining/deriving that dataset. Visualisation has become a key ingre-
dient of the analytical reasoning process that scientists employ [RFP09] as insights
over data are often made during scientists inspecting and comparing visualisations.
Moreover scientists use visualisations to understand the impact of experimental pa-
rameters and to re-iterate the workflow design process as necessary. Another use is
in the communication of findings (in manuscripts or reports). Activities with the data
visualisation motif typically create plots/charts from input datasets. Visualisation can
be realised using both local and remote resources (e.g. R, Matlab libraries or web
accessible resources such as Google charts).

Data Movement Certain analysis activities that are performed via external tools such
as command line scripts or web services require the submission of data to a location
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accessible by the tool. In such cases the workflow contains dedicated step(s) for the
upload/transfer of data to these locations. The same applies to the outputs, in which
case a data download step is used to feed the data to the follow-on steps of the work-
flow. In Figure 3.1, the DataUpload and DownloadResults activities ship data to and
from the server prior to and after the warp2D analysis.

3.5.1.1 Data Preparation Motifs

(Input) Augmentation Data retrieval and analysis activities that are handled by ex-
ternal services or tools typically require as input well formed query strings or formatted
requests such as web service input messages. Some activities in workflows aggregate
multiple input parameters together with a format padding to create well-formed queries
or service requests. In Figure 3.1 for each service invocation (e.g. getJobState) there
are steps (e.g. getJobState Input) that are responsible for creating the correctly format-
ted inputs for the service.

(Output) Extraction Raw outputs of data retrievals and analyses are typically in
structure and form adopted by the external resources. Some activities in workflows are
responsible for extraction of data from raw outputs by stripping of resource-specific
padding and leaving data in a resource-neutral form. This motif can be considered
the functional inverse of the augmentation motif. An example is given in Figure 3.1,
where extraction activities (e.g. getJobState output) are responsible for parsing the
result XML message returned from the service (getJobState) to return a singleton value
containing solely the job state.

Format Transformation Heterogeneity of data formats is a known issue in many
scientific disciplines [Li11] [MMH+15]. Workflows that bring together multiple ac-
cess or analysis activities have an obligation to cater for format heterogeneity. This is
achieved by format transformation. This motif could be observed as a combination of
extraction and augmentation motifs where the padding around data for one format is
stripped only to be replaced by padding required by another format.

Combine This category refers to activities that combine multiple threads of data dur-
ing the execution of scientific workflows. Separate threads can originate from iterated
and parameterised execution of activities or from execution of parallel branches in-
side the workflow. As motifs are a high-level characterisation, we cannot ascertain the
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structure of data nor the semantics adopted by the activity. This means that when an
activity has the combine motif we can only assume that it relays the data at its input
port(s) to its output port. We observe three sub-motifs in this category

• Combine-Heterogeneous This motif can be likened at a high level to relational
Join operator. Recall that this operator (with the exception of self-join) is used to
combine data from two tables typically representing distinct relations (differing
information). Similarly the Combine-Heterogeneous motif is an abstraction to
represent activities that combine data of different nature.

• Combine-Homogeneous Activities with this motif bring together data threads
of similar nature. At a high-level this can be likened to the relational Union op-
erator. Appending one CSV dataset to the end of another is a common example
for this motif.

• Merge/Flatten Recall from Chapter 2 that workflow systems like Taverna and
Wings support the structuring of data in the form of nested collections. This
motif refers to a specific form of data combination where an activity un-nests
collections. A flattening activity would take as input a collection with nesting
level and n and would return a data with nesting level n−1, the un-nesting would
coalesce all items at level n in to a singleton data item.

Filter In scientific workflows the primary scoping of data, i.e. acquiring the data
of interest, is typically done during Data Retrieval. Meanwhile datasets may require
further narrowing especially in the cases of eliminating erroneous/invalid data. In this
regard Filtering is a specialised data cleaning activity used by scientists. Examples are
eliminating punctuation characters prior to text mining, or clearing empty lines from a
CSV dataset.

Group/Aggregate Rare as they are (as we shall see in Section 3.6) certain activities
in workflows organise data into groups so as to compute group-wise aggregates or to
expand data items by calculating simple aggregate attributes out of existing ones.

Sort To cater for the expectations of data analysis or organisation activities input
datasets may need to be sorted prior to use. Figure 3.2 shows an example where the
data resulting from the SMAPV 2 analysis are sorted with the SMAPResultSoterV 2
component prior to their merging in a subsequent step.
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Split Activities with the split motif perform the inverse of the Merge motif. Our
analysis has shown that many steps in the workflows separate an input into different
outputs. For example, the splitting of a dataset in different subsets to be processed in
parallel in a workflow, or a dataset of nesting level n may further be split into a dataset
of nesting level n+1.

3.5.2 Workflow Non-Functional Motifs

We divide this category in two sub-groups, namely Inter- and Intra-Workflow motifs
depending on whether motifs are observed by analysing the relations among multiple
workflows, or within one workflow.

3.5.2.1 Inter Workflow Motifs

Atomic Workflows Our review observed that certain workflows perform an atomic,
self-contained unit of functionality, which effectively requires no dependence on or
derivation from another workflow. Typically these workflows are designed to be in-
cluded in other composite workflows. Atomic workflows are the main mechanism of
modularising functionality in scientific workflow development.

Composite Workflows Scientists re-use other workflows to create increasingly com-
plex units of function, and eventually, whole-analysis pipelines. The Composite Work-
flow motif refers to those workflows that build-upon other workflows. There are two
mechanisms of composition.

• Through the use of sub-workflowing construct provided in certain workflow sys-
tems (e.g. Taverna and Vistrails systems). This is an explicit way of creating
composite workflows and results in nested workflow designs.

• By using adhoc methods of incremental development. In Galaxy and Wings sys-
tems the sub-workflow construct is not supported, therefore the only mechanism
to build upon other workflows is to transfer these workflows into larger workflow
designs via copying and pasting workflow scripts.

Workflow Overloading Our analysis has shown that authors tend to deliver variants
of a workflow, each performing similar function, but operating over different input data
formats. An example is performing a text mining analysis over an input of PDF or
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T XT file. Informally this motif can be likened to method overloading in programming
languages, where multiple methods of the same name (denoting similar function) can
be written and where each overloaded method differs from others by input parameter
arity or supported input formats. Overloading is a way to deal with heterogeneity of
data formats and it is adopted by developers, who aim for maximum uptake/reuse of
their workflows.

3.5.2.2 Intra Workflow Motifs

Internal macros This category refers to repeated patterns of activity combinations
(fragments) within workflows. This is achieved in a way similar to adhoc compos-
ites. A workflow design with the internal macro motif is one that has copied-pasted
fragments within. The Wings workflow in Figure 3.2 has this motif. There are two
branches of the workflow that contain the same fragment ( SMAPV 2 followed by
SMAPResultSorterV 2).

Human interactions Workflow systems increasingly involve human-interaction driven
activities in addition to traditional entirely-computational activities. Human interac-
tions are typically needed for data cleaning or for the dynamic/run-time selection of
activity configuration parameters.

Stateful/asynchronous invocations One way to realise data-analysis activities is
through creation of stateful analysis jobs. Such job-based analyses are typically long
running and compute intensive and are often undertaken in grid environments, compute
clusters or cloud environments. A stateful analysis require multi-step interactions to
allow data submission, job initiation, job status inquiry, and result access. The Taverna
workflow in Figure 3.1 has the stateful invocation motif, where the service invocation
warp2D causes the creation of a warping job. The call then returns a JobID, which is
used to inquire about the job status (getJobStatus), and to retrieve the results (Down-

loadResults). Note that the alternative to stateful invocations is stateless-invocations,
in which a data analysis or retrieval function is performed in a single step.

To this end we have described the activity motifs which are descriptive of the na-
ture of data processing inside otherwise opaque (black-box) workflow activities. We
will now introduce Data Motifs; these are characterisations informative on either the
innate nature of data or those characteristics of data only observable in the context of
a workflow.
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Figure 3.2: Motifs in a Wings workflow fragment for drug discovery.

3.5.3 Data Motifs

Configuration Parameter vs Data The data artefacts that are input to activities can
be viewed in two major categories, 1) the actual data to be processed and 2) the config-
uration parameters. This separation is empirically evident in all systems’ workflows.
Wings and Galaxy and Vistrails allow this separation to be explicitly modelled as part
of workflow design, whereas in Taverna and Vistrails implicit mechanisms are in place.
In Vistrails users are given the option to supply default values for activity inputs. Our
observation in Vistrails is that default values are most commonly used for inputs of
configuration type. Taverna users are provided with a constant value emitting activity,
which is commonly used for modelling configuration parameters; in the example of
Figure 3.1, the inputs samplePeakListFile and re f erencePeakList are carriers of data
whereas all other inputs such as slack value, or winSize Value are configuration pa-
rameters. In the Wings example in Figure 3.2 rather than encoding each configuration
as an input to SMAP, the activity has been designed to accept the location for a file,
input named con f igurationFile, which contains all the configurations for the SMAP

analysis.
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Collection and Item In our comparative review of workflow systems in Chapter 2
we identified that most of them, in our study cohort Wings, Kepler and Taverna, sup-
port the modelling of data as (nested) collections. The Collection and Item motifs
conceptualises this feature of workflow languages. The purpose of including this fea-
ture as a motif is to be able capture the characteristics of data in a manner that is
independent from any particular workflow language. Note that in addition to Data,
Con f iguration Parameters can also be collections (as illustrated in Taverna and Vis-
trails systems in Chapter 2).

Reference vs Value Recall from the activity motifs, we described DataMoving, for
those that move data between the workflow execution environment and external envi-
ronments, such as remote servers, or the file system. When the data is processed in an
external environment its referred to by reference inside the workflow. The input of the
DataU pload activity in the example of in Figure 3.1 has the Value motif, whereas its
output has the Re f erence motif.

Intermediary Within a workflow a dataflow link among two activities denotes that
the output of one activity will be used as input of another. Data artefacts that fulfil the
roles of both being generated by an activity and being consumed by another have the
intermediary motif.

Promoted In addition to activities having inputs and outputs workflows themselves
can have inputs and outputs. Workflow Inputs/Outputs are design constructs facil-
itating the communication of data in and out of a workflow execution context. A
workflow typically contains several activities and those activities may have multiple
outputs. Among all data generated by activities within a workflow, some can be pro-
moted to become outputs of the overall workflow. In the Taverna workflow in Figure
3.1 we can see that the output of DownloadResults activity has been promoted to be-
come a workflow output. Among the cohort systems Galaxy and Wings do not have a
separate modelling constructs for workflow inputs/outputs, whereas Vistrails and Tav-
erna does. This difference in modelling constructs appear to be closely related to the
workflow system’s ability to manage multiple nested execution contexts. Recall that
Galaxy and Wings do not support sub-workflows, whereas Taverna and Vistrails does.
The capability in the Galaxy system for promoting activity outputs is the ability for
users to mark uninteresting outputs as hidden, even though during execution data gets
generated at these ports they will be hidden from view when displaying results.
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Constant vs Dynamic The values of inputs to activities may be bound to a constant
value by-design or may take dynamic values per execution. When discussing the Con-
figuration Parameter motif we mentioned string constant inputs in the Taverna system
or default values of Vistrails, these are examples of the Constant motif for inputs. Note
that even though the Constant and Configuration Parameter motif is most commonly
observed together on inputs, they are not mutually dependent. Through the use of
human interactions or by reading from files parameter values may be determined at
workflow execution time.

In the following section we present the occurrence statistics for activity motifs in
our study cohort.

3.6 Motif Occurrences

Figure 3.3 illustrates the distribution of Activity Functional motifs across domains.
The figure shows the predominance of the data preparation motif, which accounts
for 57% of all functional motifs in the entire dataset (labeled “all domains” ). Note
that this measurement is, to our knowledge, the first such quantification of the extent
of data preparation within workflows. In each domain this category is the most com-
mon, surpassing those that perform a scientifically-significant function such as analysis
or visualisation. When Data Preparation is considered jointly with the Data Movement
motif, these steps account for 63% of all functional motifs in scientific workflows. The
Social Network Analysis workflows (from the Wings system) stand out as an excep-
tion, with no occurrence of data preparation. This is because these workflows make
strict assumptions on the input data structure, the data model, and the protocols with
which to access data so that the need for data grooming prior to analysis is eliminated.
Another observation is that Data Retrieval operations are as common as visualisations
and analysis. Within domains such as Genomics, Astronomy, Medical Informatics or
Biodiversity, where curated common scientific databases exist, workflows are used as
data retrieval clients against these databases.

Drilling down to Data Preparation, Figure 3.4 shows the dominance of Augmenta-
tion and Extraction motifs for most domains. These activities can be seen as adapters
that help plug data analysis capabilities into workflows. Their occurrence is more
visible in domains relying on third party services, most notably, in Taverna domains
such as Biodiversity, Cheminformatics and Geo-Informatics, Genomics, and Astron-
omy. Format Transformation, the most widely mentioned example of data grooming
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Figure 3.3: Distribution of Activity Functional Motifs per domain

accounts for (on average) 20% of such activities. Looking at the varying need for for-
mat transformation in Figure 3.4, we observe that in a domain where a widely used
common data format exists, such as the VOTable [OWD+04] format in Astronomy,
this reduces the need for such data grooming. Filtering appears as another motif that
is as common as format transformation. While filtering is commonplace, other data
organisation motifs such as sorting or grouping are much rare.

Nature of workflow systems and their environment have their effect on motifs.
In order to analyse this effect in a manner undisturbed by differences of domains, we
focus on a particular subset of the data belonging to a meta-domain, called the Life Sci-
ences, which includes Genomics, Drug discovery, Biodiversity, Chemical Informatics
and Medical Informatics. This meta-domain is common in all systems, and constitutes
a significant share of workflows in each (50+%). The number of workflows in each
life science sub-domain is given in Table 3.5.

Recall from Section 3.4 that an important differentiating aspect of Galaxy and
Wings systems is that they adopt the controlled-data approach, where they expect data
to be made part of the workflow environment prior to processing. As a result in Figure
3.5 we observe that Wings and Galaxy workflows contain minimal-to-none data re-
trieval or movement steps, as data is pre-integrated into the workflow environment. On
the other hand in the Taverna and Vistrails systems workflows carry dedicated steps
for retrieving data from external sources (10+% in Taverna and 10% in Vistrails).
The Data Moving motif is also visible in Taverna workflows but absent in Vistrails, as
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Figure 3.4: Distribution of Data Preparation motifs per domain. The Social Network
Analysis domain is not included, as it doesn’t have any data preparation motifs.

Figure 3.5: Activity Functional Motifs in the Life Sciences Workflows

Taverna is open in terms of analysis activities involved and has to ship data to loca-
tions accessible by third-party analysis tools. Vistrails adopts a library of controlled
activities, so once data is retrieved for analysis, further moving is not necessary.

Another observation we make from Figure 3.5 is on data visualisation. Finding the
right visualisation for results is often a challenge in itself. The Vistrails system allows
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Table 3.5: Distribution of workflows from Taverna (T), Wings(W), Galaxy (G) and
Vistrails (V) in the Life Sciences domain

Domain No. of workflows Source
Drug Discovery 7 W
Biodiversity 12 T
Cheminformatics 7 T
Genomics 90 T (38), W(28), G (23), V (1)
Medical Informatics 7 V

TOTAL 123

scientists to captures this exploratory process ( in search of a suitable/acceptable visu-
alisation) with workflows, consequently this motif has a large occurrence in Vistrails
workflows (almost 40%). The Galaxy toolkit, on the other hand, utilises an interactive
visualisation tool [GCT+12], separate from the workflow environment. Scientists use
this tool to find the correct visual presentation for their data. Once this visualisation
is found, it can be incorporated as a visualisation activity into the analysis pipeline,
around 5% activities in Galaxy workflows have this motif. Taverna and Wings sys-
tems do not have dedicated mechanisms for the exploratory or interactive search for
a right visualisation, yet they allow scientists to apply a pre-determined visualisation
operations to their findings within workflows, the percentage in these systems is 2%
and 10% respectively.

Figure 3.6: Data Preparation Motifs in the Life Sciences Workflows
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The percentage distribution of Data Preparation motifs for the Life Science domain
is given in Figure 3.6. We observe that the distribution for this domain is similarly af-
fected by difference of workflow environments (open vs controlled). Augmentation
and Extraction motifs account for the largest share of data grooming activities in Tav-
erna (almost 50%), and less so in Wings (30%), Galaxy (20%) and Vistrails (20%).

Figure 3.7: Percentage of Atomic versus Composite Workflows

We now move on to the analysis of workflow non-functional motifs. We provide
numbers on a frequency/possibility per workflow basis rather than percentage distri-
bution among motifs. The reasons for this presentation are: the non-functional motif
category is not particularly tied to activities but mostly observable over workflows.

We begin with Composite Workflows, which are those that build on other work-
flows either with the sub-workflow construct or by adhoc means such as copy-pasting
fragments. The Taverna dataset exhibits the sub-workflow approach whereas Wings,
Vistrails and Galaxy datasets exhibit the adhoc approach. Figure 3.7 provides the per-
centage of atomic versus composite workflows in each system. Our manual analysis
over 128 Taverna workflows showed that 73% of workflows are atomic (flat), i.e. con-
tains no sub-workflows, whereas the remainder 23% are composite (nested). Because
Taverna workflows exhibit explicit sub-workflowing, an occurrence analysis over the
entire dataset is possible using the myExperiment query interface. Our inquiry via
this interface over the entire Taverna-2 workflow set revealed 25% composite and 75%
atomic workflows (given in Figure 3.8), which showed that, for this motif, our sample
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set is representative of the whole set. Figure 3.8 also shows us that the majority among
nested workflows are only 1 and 2 levels deep and it is very rare for workflow designs
to have nesting levels greater than 2.

Figure 3.8: Nesting Levels of Taverna Workflows in myExperiment repository.

For the other systems, that adopt the adhoc composition approach, manual analysis
over the cohort shows 46% to 54% composite to atomic distribution as for Wings, 15%
to 85% for Galaxy and 25% to 75% for Vistrails. Among all the Taverna workflows in
our manually analysed sample 58% are modular components designed to be included
in other workflows (note that it is not possible to automate this analysis over the entire
Taverna set due to a lack of unique identification and referencing of workflows in
the Taverna system). This result combined occurrence of Composite Workflow motif
shows that modular design of workflows and building workflows by re-using parts of
other workflows for development [GFG+09] have become an empirically observable
practice in scientific workflows.

The sub-workflow construct, i.e. the ability to create nested workflows, is a critical
factor in managing workflow size. The difference in resource environments affects
sizes of workflows in respective environments. Systems that adopt an open resource
approach have larger workflows that are crowded with adapter steps needed. This affect
is presented in Table 3.6. Here we review the size of workflows in our study cohort
in terms of number of minimum, maximum and average activities per workflow. (In
Table 3.6, for Taverna, the size depicts the number of activities at the top-most layer of
design (where workflows are nested). From Table 3.6 we observe that the total average
size for each system’s workflows (bottom row) is close to the human working-memory
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limit of 7(+/-2) [Mil56]. In the first outlook Taverna systems workflows, even though it
adopts an open resource environment, seems close in size to workflows from controlled
systems like Wings and Galaxy. On the other hand the high upper bound on the size of
Taverna workflows shows us how complex workflows can get. For the Taverna cohort
the simpler workflows are intended as components to be included in larger workflows.

The difference of controlled versus open environment becomes more stark when
we expand nested Taverna workflows and count the total number of activities within.
This is presented in Table 3.7. This table also shows us how very complex work-
flows in the domains of Astronomy and Biodiversity have been scaled down to levels
of workflows from controlled-resource systems through the use of sub-workflowing
constructs (recall the Taverna domains that displayed the composite workflow motif in
Figure 3.7)

Among the Taverna domains that use sub-workflowing, we can clearly observe a
negative correlation between the rate of occurrence of the composite workflow mo-
tif and (top-level) workflow size. In Figure3.7 we can see that Biodiversity and Text
Mining domains have composite workflow motif more frequently than any other Tav-
erna domain. Accordingly in Table 3.6, we see that these two domains have the most
compact (top-level) workflow designs in Taverna. The ability to create layered work-
flow designs is also dependent on the capabilities of workflow designers. Due to our
close-connections with Taverna user base, we are aware that workflows in Biodiversity
or Text mining domains are developed by the help of computation-savvy expert work-
flow designers rather than pure domain scientists. Meanwhile in Genomics workflows
are often developed by domain-scientists, and therefore workflow complexity remains
unmanaged (intact).

The Stateful Invocation motif is observed only in the Taverna system, given in
Figure 3.9 and absent in others. This motif is representative of single analyses that
are performed by executing multiple consecutive activities. Systems with a controlled
approach like Wings and Galaxy each have specialised activity scheduling/queuing
frameworks [DShS+05] [Sta06] that perform job creation, monitoring and result access
under the hood, hence such details are absent from workflow design. In Taverna the
activity execution at disparate providers may differ and the workflow design has to
cater for these mechanisms. Note, however that stateful interactions is a rare motif in
Taverna workflows, only in Genomics, Cheminformatics, Biodiversity and Astronomy
this motif is observed with rate 0.13 occurrence per workflow .

Our analysis revealed that Human-Interactions are increasingly used in workflows,
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Table 3.6: Minimum, Maximum and Average number of activities per workflow, in
different domains and workflow systems.

Domain Source
Taverna Wings Galaxy Vistrails

Mn Av Mx Mn Av Mx Mn Av Mx Mn Av Mx
Drug Discovery 11 8 18
Astronomy 1 7 33
Biodiversity 1 4 12
Cheminformatics 1 8 20
Genomics 1 11 53 1 5 17 1 7 29 7 7 7
Geoinformatics 3 8 14
Text Analysis 1 4 6 1 4 15 4 6 11
Social Network Analysis 3 6 7
Medical Informatics 8 14 29
Domain Independent 1 2 5 4 11 20

TOTAL 1 8 53 1 5 18 1 7 29 4 12 29

Table 3.7: Minimum, Average and Maximum number of activities in expanded com-
posite workflows in Taverna (T)

Domain Number of Activities
Mn Av Mx

Astronomy 1 11.1 65
Biodiversity 1 12.16 78
Cheminformatics 1 9 23
Genomics 1 13.8 53
Geoinformatics 3 8.5 14
Text Analysis 1 6.6 19

TOTAL 1 11.45 78

most typically observed over data cleaning activities or workflow configurator activi-
ties for the selection of run parameters. Biodiversity makes extensive use of human-
interactions (see Figure 3.10), this motif is observed almost once (0.83) per workflow.
The interaction interface may be as simple as a multi-choice list generated by an ac-
tivity script or it may be as elaborate as the spreadsheet editing interface of a data
refinement tool [vHVDW13]. This motif is absent in Wings and Vistrails workflows.
Galaxy is an environment that is heavily based on user-driven configuration and in-
vocation of analysis tools (some parameters and inputs of the workflows can even be
overridden even after the execution of the workflow has started). However, based on
our definition of Human Interactions, i.e. analytical data processing or decision under-
taken by a human, the Galaxy workflows also lack this motif.
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Figure 3.9: Occurrence of Stateful Invocation Pattern

The Workflow Overload motif is observed in all Wings domains and the Biodi-
versity and Text Mining workflows of Taverna. Similar to the layered workflow de-
signs observed in these domains the ability to create overloaded workflow designs is
also dependent on the computation-savvyness of workflow designers. An alternative
approach to overloading would be to have single workflows with polymorphic param-
eter(s). We did not observe this approach in our analysis dataset, yet we observed
very few cases [McW08] from Taverna system’s earliest (now obsolete) releases. In
the polymorphism case the workflow is generic and within it contains multiple distinct
implementations that handle each differing input type. While we observe overloading
as a good practice, use of polymorphic parameters is a poor practice as it complicates
workflow designs.

3.7 Motif Ontology and Annotations

The first step in operationalising the information coming out of our empirical analysis
is to capture it in a formal representation. Ontologies are a good match here as they
allow the definition of “formalised vocabularies of terms” [W3C12]. We use the W3C
Standard Web Ontology Language (OWL) [HKP+09] to capture motif categorisations
in the Workflow Motif Ontology [GAB13]. Structurally OWL provides three major
categories of definitions:

• It allows the definition of Classes, Individuals that belong to classes, and Properties
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Figure 3.10: Occurrence of Human Interaction Pattern

that individuals can have. Properties either connect individuals together (Ob ject

Properties) or they connect an individuals to a literal values (Datatype Properties).

• As a knowledge representation mechanism that has its roots in Description Log-
ics [KSH12], OWL allows classes to be described rather than simply asserted.
A class description, also known as a Class Expression outlines the necessary
features an individual has to have in order for it to belong to a class. Class ex-
pressions are built incrementally from simpler ones through use of primitives
such as conjunction, disjunction and existential and universal quantification.

• It allows the specification of what is accepted as true in a domain through Axiom

definitions. Axioms can be about other structural elements including classes
and properties. Most typical examples are the Sub Class or Class Equivalence

axioms for denoting relations among classes.

In addition to structural definitions, OWL comes with semantics that allow for
reasoning over those definitions. Reasoning can provide new information, such as
the inferred hierarchy of described classes. Or it could also be used for consistency
checking by inferring whether a described class is satisfiable, in other words whether
it is possible for this class to have individuals or not.

From these panoply of features that come with OWL we use a restricted subset in
our motif ontology. More specifically, we define asserted classes for each motif, and
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Figure 3.11: Occurrence of Workflow Overload Pattern

we use sub-class axioms to define a taxonomy of these classes as per Table 3.4. In
addition to class definitions we define three object properties

• hasDataOperationMoti f to associate activities with their functional motifs

• hasWork f lowMoti f to associate workflows/activities with their non-functional
motifs

• hasDataMoti f to associate ports with their data motifs

We also define a more general property hasMoti f and make it a super property for
those above using sub-property axioms. A common practice when defining properties
is to define domain and range restrictions. A domain restriction allows us to pinpoint
which classes of individuals can be the source (holder) of the property in question. Re-
call from our review in Chapter 2 that there are several vocabularies for representing
scientific workflows in an abstract manner as with the OPMW [GG11], P-Plan [GG12],
D-PROV [MDB+13] and Wfdesc [BCG+12] models. In order for our motif ontology
to be used in conjunction with several alternative workflow representations, both ab-
stract and concrete, we refrained from putting domain restrictions on our properties.

Annotation is our chosen mechanism to convert activity black-boxes into grey-
boxes. We use the motif ontology to annotate workflows and constituent activities and
ports. The choice for annotation as a mechanism to bring transparency into activities
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has certain advantages. First of all it is non-intrusive, which allows our dissertation
research, i.e. the development of experimental metadata provisioning techniques, to
be at peace with real-life practices and to be applicable to existing workflows. Non-
intrusiveness, combined with minimal restrictions on class and property definitions
in the motif ontology allows annotations to be made over workflows from different

systems. Secondly, annotating activities with their domain specific function and anno-
tating activity input/outputs with their the domain-specific types of is already a widely-

adopted approach for the solution of problems in workflow research. The most com-
mon use of annotations is for discovery of analysis activities, as in Taverna [LAWG05],
and, data as well as activities, as in Wings [GRD+06] and Galaxy [GRH+05]. Another
common use is the prevention [GRD+06] [WKM+10] or fixing of invalid activity com-
positions [CFS+06].

Figure 3.12: Subset of the annotations of the Taverna workflow shown in Figure 3.1
using the Wfdesc model.

A sample annotation of the earlier Taverna Metabolomics workflow is given in
Figure 3.12. While providing an abstract and consistent representation of the workflow
is not a pre-requisite to the usage of the Motif Ontology, we consider it a best-practice
to use a model that is independent from any specific workflow language or technology.
In this example the Taverna workflow is represented in the Wfdesc model describing
its constituent elements (activities and ports on the left-hand side of figure). The object
properties defined in the Motif ontology are used to link-up workflow elements with
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their associated Motifs (on right-hand side of figure).

3.8 Revisiting Anticipations and Goals

We now revisit analysis goals and expectations in light of the our findings.

By manual analysis of workflow descriptions we were able to arrive at a domain-
independent categorisation of activity functions, and their implementations in
scientific workflows, called Motifs. Motif occurrences show that a certain minor-
ity group of activities perform the scientific heavy lifting in workflows. These steps
mint data through Data Analysis or Data Visualisations or Data Retrieval. The re-
mainder activities can be broadly categorised as Data Preparation steps, which are
data adapters that strive to format or organise the data in a way consumable by the
scientifically-significant steps. Adapters do not mint scientific data afresh, instead they
are relayers.

The analysis showed that workflows are rife with Data Preparation steps, which
account up to 70% of all activities. This substantiated our observation from Chap-
ter 2 that workflows are artefacts of implementation/automation as they systematically
make explicit the effort needed to deal with resource heterogeneity. Another finding
is: while a workflow system’s controlled approach to resources and datasets may re-
duce the need for certain types of adapters (Format Trans f ormation, Data Movement

steps) it does not eliminate the need for adaptation entirely. We observed that Wings
and Galaxy and Vistrails workflow cohorts, which are both from controlled-resource
workflow systems included Data Preparation motifs nearly as much as other systems.

Experimental context is captured in workflows, albeit context is spread-out and
sometimes indirect and dynamically determined. Recall from Chapter 2 that part
of what is considered experimental metadata is domain-specific attributes of datasets,
describing the context in which data is obtained. These attributes are expected to de-
scribe data origin, such as the external repository, or the local tool it comes from; data
subject, such as a particular species or a stellar object, that the data is about; or values
of experimental parameters used for data’s derivation. It is apparent that the scientif-
ically significant activities in the workflow, i.e. Data Retrieval, Data Analysis and



3.8. REVISITING ANTICIPATIONS AND GOALS 133

Data Visualisation activities and their inputs of Con f iguration Parameter motif are
the hotspots for collecting such experimental metadata. Meanwhile:

• Our observation showed that while parameters are modelled individually in a
workflow description these distinct parameters are not immediately co-located
with the analytical activities that make use of those parameters. Distinct param-
eters are often bundled-up, wrapped with resource-specific protocol padding in
Augmentation steps before reaching their point of use in an analytical step.

• Contextual information may be indirectly captured when activity inputs and out-
puts are Re f erences instead of Values. Consider for instance the case where
an analytical task is configured with parameters accessed from a file, here the
workflow description and its execution provenance will not be able to record the
parameters that contributed to data, but will instead record the name of parameter
file.

• With the Dynamic data motif we observed that parameters of analytical activi-
ties may not always be encoded as constant values in workflow design and they
get determined at run-time. A typical example of this is the Data Integration
chains comprised of multiple Data Retrieval activities, where the output of one
becomes a parameter for the follow on activity.

We observed that scientists use layered designs to manage workflow complexity.
The high upper bound on the size of workflows (recall Taverna workflows in Table 3.6)
shows that analyses can be large and complex, due to the presence of Data Preparation

and Data Movement. State f ul Invocations is another factor contributing to complex-
ity where a single analysis is done through the invocation of multiple calls to external
services. These steps dealing with the technical detail of resource access or data or-
ganisation obfuscate the scientifically significant/critical operations of the workflow.
Obfuscation degrades reportability of the scientific intent embedded in the workflow.
In our analysis we observed that a common way to overcome obfuscation, adopted
by scientists, is to group related steps within sub-workflows to build up higher-order
Composite Work f lows. Another practice towards abstraction is to use the Promoted

motif where selected intermediary results are made workflow outputs.

3.8.1 Using Motifs for Abstraction

We argue that motifs can be utilised in abstraction in the following ways:
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• Motifs reveal the prime cause of complexity in workflows as the adapter steps,
thereby signalling that these activities should be the target of abstraction.

• Motif categories reveal that adapter or significant steps are not entirely arbi-
trary in terms of their function. Our motif categorisation provides one high-level
enumeration of functions of activities. This provides potential for developing
abstraction mechanisms that operate at the level of characterisations rather than
individual workflows and individual steps within those workflows.

• Motifs have surfaced from the current user practices on abstraction (sub-workflows
or promoting intermediaries). These practices have two potential uses 1) we can
develop abstraction mechanisms informed by these practices 2) the set of ab-
stractions created by scientists in existing can be used as a benchmark on what a
user desired abstractions should be.

3.8.2 Using Motifs for Grey-Box Provenance

To this end we have identified Motifs without having a critical discussion of the trans-
parency they would bring to lineage. We will now discuss this by 1) identifying what
information the motifs lack that would have been needed for white-box [CCT09] trans-
parency, 2) identifying the grey-box transparency that certain motifs bring by compar-
ing Motifs to Hull’s categorisation of “Shim” activities [HSL+04] and 3) highlighting
a unique characteristic of workflow-based scientific data processing that makes a grey-
box approach plausible.

Motifs provide only a partial understanding of the inner workings of activities. The
following information is notably excluded from Motifs:

• The Activity Functional Motifs provided herein is a task-oriented characterisa-
tion that tells us what gets done in an activity. The core Motif ontology does not
explicitly describe what the activity function implies in terms of relationships
between the activity’s inputs and outputs. However later in this Section we dis-
cuss the kinds of relations certain Motifs imply. In Chapter 7 we exploit these
relations in annotation propagation.

• With the Collection Data Motif we capture the high-level organisation of sci-
entific datasets. Beyond collections Motifs do not put any restrictions on the
structure and format of data We intentionally left such a characterisation out of
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scope of our analysis as our observations revealed a innumerable amount of for-
mats (CSV, XML, unstructured text, binary, various text-based domain specific
formats).

• The Activity Functional Motifs also do not specify the detail on the inner work-
ings of activities. Especially for the case of the data preparation motifs, where
our classification is more specific (deep), we do not enumerate all possible pro-
cedures to Filter or Combine data. This is due to the diversity of data formats
and the endless variation in procedures in such data preparation activities (e.g.
coalescing two text fragments, line-wise join of two CSV files, value based fil-
tering of an XML dataset using XPATH).

Due to the above omissions Motifs do not provide the transparency for a white-box
approach, which we earlier characterised (in Section 2.4.3) as one in which 1) assump-
tions can be made on the structure of data and 2) each activity (e.g. matrix operations,
relational select/join) has a fixed and well-defined semantics that wold allow accurate
and qualified lineage relations among activity input(s) and output(s) (in the case of
relational queries the qualification is value-copying from inputs to outputs). Recall
from Chapter 2 that the accuracy and lineage qualification that white-box database
provenance brings can be exploited in building provenance-enabled capabilities, such
as propagation of annotations from source to result records

Despite the omissions, motifs still has the power to identify an anticipated lineage
between the inputs and outputs of certain activities. Hull et al [HSL+04] has been the
first to study common activities in workflows and the input-output relations inferred
from activity functions. In this work authors have identified the existence of mediator
type activities (they call “shims”) used when gluing together analytical activities in
bioinformatics workflows. Table 3.8 provides Shim categories, Shim-implied relations
as identified by Hull et al, and our corresponding Motifs. Note that some shims map to
Data Preparation motifs, more notably some map to DataAnalysis or Data Retrieval,
which are activities we categorise as non-adapter type. Hull et al have identified rela-
tions implied by some of the shims as follows (the authors have represented relations
in a custom ontology no longer available, here we cite more recent literature that caters
for these relations):

• semantic equivalence of biological identifiers or differently formed but equiva-
lent data [SL08],
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• part-whole relations among data outputs built up by copying extracted part of
inputs [AFGP96] ,

• identifier-to-data relations among biological identifiers and corresponding data
[MBL+14].

Rather than representing these relations as qualified lineage, the main focus of Hull
et al has been on categorising shim input/output types and using this information for
discovering suitable adapter activities during workflow design, where activities with
mismatched input/output types need to be linked-up.

Table 3.8: Shims and Corresponding Motifs

Shim Example Shim Implied Relations Motif
Dereferencer GenBank ID replaced

with GenBank record
I uniquelyIdenti f ies O Data Movement,

Data Retrieval
Syntax translator SeqRet translates be-

tween representations of
sequence data.

I and O are representations of
the same thing

Format Transfor-
mation

Semantic translator Translate DNA into pro-
tein

– Data Analysis

Mapper Maps between IDs. E.g.
GenBank to EMBL

I isEquivalentTo O Data Retrieval

Parser Parse BLAST report. – Format Transfor-
mation

Iterator Iterate over members of
a given set

– Not Motif,
WF Language
Construct

Comparer Comparing BLAST re-
ports notifies of new se-
quences

– Data Analysis

Accessor/Extractor Access a subset I hasPart O Extraction

When we perform a similar exercise to determine implied relations for our data
preparation motifs we obtain the result presented in Table 3.9. The most prominent
relation is the part-whole relation [AFGP96]. We also have a reference-value relation
for the Data Moving motif. For the Group or Sort motifs, while we can assume that
there is some value-copying from the inputs of the activity to the outputs, we cannot
confidently identify the resulting relation as a part-whole relation.

Motifs provide transparency into workflow provenance 1) by differentiating be-
tween scientifically significant activities and adapter steps and 2) by providing qualified
lineage for adapter steps. We argue that this partial (grey-box) transparency presents a
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Table 3.9: Data Preparation Motifs and Implied Relations

Motif Motif Implied Relations
Format Transformation I hasPart interim isPartO f O
Augmentation I isPartO f O
Extraction I hasPart O
Combine I isPartO f O
Filter I hasPartO
Group –
Sort –
Split I hasPart O
Data Movement I isRe f erenceFor O

case worth exploring whether it can be exploited in building a provenance-enabled an-
notation generation and propagation capability (described in Chapter 7). More specif-
ically:

• Scientifically significant activities with the Data Analysis Data Retrieval and
Data Visualisation motifs, and their Con f iguration Parameter inputs signal a
source of information to be used to provision domain-specific metadata.

• Adapter activities with the Data Preparation and Data Moving motif signal a
partonomy-type lineage relation among derivative datasets linked-up in a work-
flow execution trace. This information can then be used to propagate domain-
specific annotations among derivative datasets in a provenance trace.

3.9 Related Work

Some of our motifs (non-functional ones) can be seen as higher-level patterns ob-
served in scientific workflows. ”Workflow patterns” have been extensively studied
[vdAtHKB03], where inventories of possible patterns are developed based on work-
flow constructs that are possible in different languages, along with the ways to com-
bine those constructs. Scientific workflows typically use a dataflow paradigm rather
than a control flow paradigm that is more typical of business workflows. As observed
by a recent study [MGRtH35], scientific workflow systems largely support data-flow
patterns1 and even bring-about new patterns with their varied handling of data tokens.

1http://www.workflowpatterns.com/patterns/data/
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Data-flow patterns outline ways of managing data resources during workflow execu-
tion, such as data visibility and transfer methods. These patterns, which are in essence
mechanisms to steward data among activities, are orthogonal to the data-oriented func-
tion of those activities within workflows. Our work with motifs largely focuses on
this latter orthogonal aspect (i.e. the data-oriented nature of activities) and therefore
complements the workflow patterns research. Our work is also based on an analysis
of empirical evidence of how data-intensive activities have been implemented against
different environments, rather than specifying what is theoretically possible with the
given constructs.

In Software Engineering, the term “pattern” refers to established best practices
to solve recurring problems. In this regard patterns represent good and exemplary
practice. In [CBCM+13] authors outline anti-patterns in scientific workflows, namely
redundancy and structural conflicts. The authors go on to provide a solution to address
the redundancy anti-pattern. Particularly due to this perception of the term “pattern”,
in this thesis we opted to use the term “motif” for our classification of tasks. Our
objective is to take a snapshot of the existing set of activities in workflows, rather than
try to prescribe a best practice.

Our Activity Functional motifs can be seen as a domain-independent classification
of tasks within scientific workflows. Similar analyses have been done in a domain-
specific manner in areas such as bioinformatics, based on user studies [SGBB01].
Combined with such-domain specific classifications, motifs can make way for specifi-
cation of abstract workflow templates, which can be elaborated to concrete workflows
prior to their execution [GGRF09].

Another work, somewhat closer to our study in spirit, is an automated analysis
of workflow scripts from the Life Science domain [WVW+09]. This work aims to
deduce the frequency of different kinds of technical ways of realising workflow steps
(e.g. service invocations, local ”scientist-developed” scripting, local ”ready-made”
scripts, etc.). This work also drills down into the category of local ready-made scripts,
to outline a functional breakdown of their activity categories such as data access or data
transformation. While this provides an insight into the kind of activities undertaken in
workflows, it focuses on characterising local task types. Our approach is different from
this work as we focus on detecting multi-step activities with many realisations (not just
individual steps).

Finally, Problem Solving Methods (PSMs) is another area of related work. PSMs
describe the reasoning process to achieve the goal of a task in an implementation and
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domain-independent manner [PB99]. Some libraries aim to model the common pro-
cesses in scientific domains [GPEG+10], which could be further refined with the mo-
tifs proposed in this work.

3.10 Chapter Conclusion

In this chapter we reported on the results of an empirical study performed over 260
workflows from a cohort of workflows from 4 systems and 10 scientific domains. The
analysis has resulted in a domain-independent classification of workflow elements,
namely activity and data motifs. We introduced the Motif ontology that can be used to
annotate workflow elements with their associated motifs. The identification of motifs
in this Chapter is a pre-requisite to the development of experimental metadata provi-
sioning techniques on Workflow Abstraction in Chapter 4 and Provenance Annotation
in Chapter 7.



Chapter 4

Workflow Abstraction

4.1 Chapter Introduction

In this chapter we present our investigations towards tackling provenance complexity,
and show how the activity characterisations identified in Chapter 3 can be put to use
for abstracting workflows.

We begin in Section 4.2 by recalling the dual role of workflows as both docu-
menters of analytical protocols and implementers of protocols in heterogeneous re-
source environments. We illustrate with an example that the implementer role inher-
ently embodies complexity while the documenter role requires simplicity. In this dis-
sertation research we target a specialised case of provenance complexity, more specif-
ically we target structural complexity of workflow descriptions. In Section 4.2.1 we
depict the landscape of provenance complexity in our context and identify how com-
plexity of workflow provenance affects complexity of experiment reports. In Section
4.3 we revisit the two design practices, earlier identified as Motifs in Chapter 3, that
scientists use to encode abstraction into workflow designs. Abstraction, particularly
for the purpose of security, is an area active of research. In Section 4.4 we provide
a generic blueprint to outline what constitutes the defining characteristics of a prove-
nance abstraction system. We use this blueprint in Section 4.5 to comparatively review
the state of the art.

Our approach to abstraction is based on the manipulation of workflow description
graphs with well-defined primitives so as to reduce them to structurally simpler forms.
We introduce required formal background on graph based representation of workflows
and the algebraic notation to represent graph transformations in Section 4.6. In Sec-
tion 4.7 we declaratively specify three primitives for transforming workflow graphs.

140
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This is followed in Section 4.8 by the characterisation of our approach against the ab-
straction blueprint, and details on its procedural realisation. In Section 4.9 we discuss
the results of our assessment of the reductive capabilities of our primitives and our
assessment on how much abstractions created automatically overlap with abstractions
created manually by scientists.

Earlier versions of work described herein has been published as a conference paper:

• P. Alper, K. Belhajjame, C. A. Goble, and P. Karagoz. Small is beautiful: Sum-
marizing scientific workflows using semantic annotations. In Proceedings of the
2nd International Congress on Big Data (BigData 2013), pages 318-425, Santa
Clara, CA, USA, June 2013, IEEE.

4.2 Motivation

In Chapter 2 we discussed that the transparency provenance brings into analytical pro-
cesses is a desired property and facilitates understandability, experimental audit and
repeatability. On the other hand transparency can be a double-edged sword when
provenance traces are too revealing or too detailed. Provenance Abstraction is a cur-
rent and active thread of research [CP14]. When we look at literature from this area
we observe two major motivations for abstraction. First one is privacy and security,
where exposing the entire provenance record may compromise data confidentiality, or
may degrade the security of a system by exposing vulnerabilities [CP14]. The sec-
ond driver is simplicity [BCBDH08]. Provenance records, especially those automati-
cally collected from instrumented or monitored execution of systems -be they curated
databases, workflow engines or file systems- are known to be complex, often to the
degree that the size of the provenance metadata far surpasses the data itself [CJR08].

Simplicity is also the driver of abstraction in our context, when reporting workflow
based experiments. Here scientists are expected to provide a truthful but not over-
whelmingly detailed account of their analysis and results. The experiment reports we
studied in Chapter 2 showed that abstraction is needed when reporting both the data
and the method. When formulating the provenance gap we identified workflow de-
scriptions as an important opportunity for scientists to report the scientific method,
on the other hand our analysis of existing workflow sets in Chapter 3 showed us that
workflows are also artefacts of implementation, and they therefore contain an abun-
dant number of steps dealing with resource integration and data grooming. Empirical
evidence showed the average proportion of such steps may be as much as 70% for the
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case of the Taverna workflows. Figure 4.1 illustrates a typical example of a workflow
abundant in adapter steps. This workflow is part of the Huntington Disease (HTTD)
case study previously introduced in Chapter 1. HTTD workflow uses the Anni web
services for its analysis. First a set of gene ids is mapped to a set of concepts from a
community-agreed vocabulary. Afterwards the Anni literature mining service is used
to obtain association scores between these gene concepts, and a pre-determined meta-
concept of interest (such as the diseases concept). For each matching disease con-
cept, the underlying literature references that contribute to the association score are
retrieved; finally the details on each matched concept, i.e. particular disease, is also
retrieved. These are four high-level tasks performed by four web-service calls to an
Anni end-point. Meanwhile the scientist has used an additional 27 adapter activities in
order to cater for the protocol and format expectations of these web services. While it
is necessary to have these steps so as to deal with heterogeneity in a systematic manner,
they obfuscate the scientific methodology implemented with the workflow.

Abstraction is desired here as the sheer number of adapters obfuscate the scien-
tific intent of the analysis [GAB+14]. Adapters not only complicate the process, they
also complicate the result data space when a workflow is exected. For example data
grooming steps lead to several content-wise redundant data artefacts. On the other
hand external resources, such as analytical tools or web services have a resource spe-
cific footprint in the result space, such as status logs, timestamps, protocols specific
wrapping, attachments, which are crucial in debugging analyses but needs to be ab-
stracted away during reporting. In short, without any abstractions workflows and their
execution traces are ill-fit for use in reporting.

In the following subsections we first outline what provenance complexity stands
for in our research context, and afterwards we identify possible strategies for dealing
with complexity.

4.2.1 Layers of Provenance Complexity

Prior to discussing abstraction, we need to establish an understanding of the objective
of abstraction, which is reducing complexity. Complexity of an artefact is a quality
characteristic, that is often defined with respect to a particular end-use scenario such
as the artefact’s ease of maintenance, or its understandability. Our focus in this dis-
sertation is provenance in the form of workflow provenance and experiment reports;
therefore we need to establish our understanding of complexity for these artefacts. We
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Figure 4.1: The Gene Annotation Pipeline of the Huntington’s Disease Study
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depict the layers of provenance information and the dependencies among their com-
plexity in Figure 4.2.

The Experiment Reports we exemplified were tables outlining experimental re-
sults and metadata, or diagrams outlining the analytical process. In addition to these,
scientific workflows in their raw (workflow-system specific) or technology-independent
forms published in experimental bundles [HDZ+14] or in repositories [DRGS08] also
stand-in as reports on method. Artefacts at this layer are to be inspected and anal-
ysed by scientists to make sense of experimental outputs. Therefore their understand-
ability is critical. Prior research has shown that there is a negative correlation be-
tween the structural complexity of diagrams1 and their understandability [CLMG+10]
[MCGP08]. Therefore structural complexity is an important target for our research.

Workflow descriptions are both documenters of analytical method, and they are
executable programmes. Complexity for workflows can therefore be defined in the
context of these two roles. As documentations of the method to be analysed and un-
derstood by users the structural complexity of workflow descriptions is important. The
structural complexity can be defined in term of the elements that make a workflow de-
scription graph, such as of number of steps, ports, dataflow links, dataflow paths. The
structural complexity of workflow descriptions is also determinant in the structural
complexity of provenance traces obtained from workflows. A structurally complex
workflow will ultimately yield a structurally complex execution trace where each port
foretells data artefacts, analytical steps foretell activities and the anticipated lineage
among output and inputs of activities. A second type of complexity for workflows is
their cyclomatic or control-flow complexity, which is used to assess the ease of main-
tainability of a program. This is a well-studied topic particularly for artefacts that
adhere to the traditional Von Neumann (i.e. control-flow) architecture of computing;
such as software programs [McC76] or business processes [GL06] [Car05]. Despite
having few control constructs, those few constructs in workflow descriptions (such as
iteration, looping features) is a significant determinant of the structural complexity of
provenance traces obtained from their execution. e.g. Consider two workflow descrip-
tion graphs that involve the same number of steps, ports and dataflow connections,
but one involving an iteration configuration over the activity, whereas the other not.
In this case the workflow with the control-flow construct would result in structurally
more complex traces. Depending on the type of iteration constructs, lineage can be
longer/deeper (the unfolding of each execution a feedback loop construct as in Kepler)

1Specifically, UML state-chart and class diagrams
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Figure 4.2: Layers of Provenance Artefacts and Dependencies among their Complexity

or there could be multiple lineage relations among fine-grained data artefacts (as in
collection driven iterations of Taverna).

Finally the structural complexity of execution provenance can be a determinant of
experiment reports especially for the reports on data. Recall from Chapter 2 that there
are already tools [BKSRS12] for mapping of provenance DAGs into spreadsheets. In
these approaches distinct entity and activity types becomes columns of the table and
each path in a provenance trace becomes a row.

For such mapping structurally complex lineage would result in complex tables,
more specifically deep lineage will correspond to several columns in the table and
multiple lineage paths will lead to several rows. Our dissertation research focuses
on the structural complexity of workflow descriptions, henceforth in abstraction
we aim to reduce this complexity. Specific measures of this complexity we use are
presented in the Evaluation section.

4.2.2 Strategies for Abstraction

Broadly, there can be two strategies for abstraction:

1. Preempting complexity by encoding abstractions into the design of the com-
putational instrument used for data processing. As our motif analysis showed,
this strategy is adopted by scientists when designing workflows. Scientists en-
code abstractions into workflow design, and later exploit these abstractions in



146 CHAPTER 4. WORKFLOW ABSTRACTION

accessing workflow results or in reporting the method. A distinctive character-
istic of encoded abstractions is that they are design-bound and static, in other
words they are encoded once and used several times over all invocations of the
same workflow. In Section 4.3 that follows we discuss the different motives that
abstractions serve.

2. Devise abstractions post-hoc, either over the workflow designs or over execution
provenance traces. All of the state of the art research on (semi)automated prove-
nance abstraction, which we review in Section 4.5 adopts this approach. Unlike
encoded pre-hoc abstractions, post hoc abstractions are not design-bound they
therefore can be shaped dynamically using an abstraction policy.

In Section 4.3 that follows we briefly review the state of the art in the first strategy.
Following that, in Section 4.4 we provide a blueprint for computation assisted abstrac-
tion. We use this blueprint as a guide to explain our approach in Section 4.7 and also
to compare it to related work in Section 4.5.

4.3 Encoding Abstraction in Workflow Design

When building workflows, scientists utilise workflow design constructs towards sim-
plifying the analytical process and designating data points of significance in the
workflow. These two abstractions correspond to the Composite Work f low and Promoted

motifs identified earlier Chapter 3. We revisit these motifs to understand the motivation
of scientists in using these mechanisms.

4.3.1 Using Sub-Workflows

Managing the complexity of a design artefact through introduction of hierarchies/lay-
ers is a well-known technique in various fields, such as software engineering [GB84],
business process modelling [RM08]. Similarly in the field of scientific workflows lay-
ering is encouraged as a best-practice [HWB+12] for designing workflows.

The sub-workflow construct allows pushing down a group of selected activities to
a lower layer of design, therefore simplifying the upper layer. Workflows that exploit
web-based resources, such as the HTTD example contain several adapter activities and
heavily use sub-workflow mechanism. In a layered workflow design the top-most level
provides a coarse view of implementation, which more closely resembles the scientific



4.3. ENCODING ABSTRACTION IN WORKFLOW DESIGN 147

method followed in the analysis. Figure 4.1 illustrates how the scientist has created
four sub-workflows so as to encapsulate the four significant data analysis tasks. The
motives for using sub-workflows is various:

• Functional Modularity: In Chapter 3 we introduced Component Workflows,
where scientists modularise the smallest, meaningful, re-usable unit of function-
ality as sub-workflows. The four sub-workflows in Figure 4.1 are examples of
such design, where scientific tasks are grouped with the boilerplate tasks needed
to facilitate their execution, such as input preparation and output extraction. Mul-
tiple layers of nesting, is also a common design pattern to create modules of
composite functionality. Component workflows are of re-use potential and they
are often shared in workflow repositories for incorporation into other studies.

• Experimental Documentation: Sub-workflows may be used to impose a tem-
poral “experimental phase” perspective on to the study; a design practice com-
monly used for documentation purposes. In such cases the overall experimen-
tal workflow is comprised of a chain of Phase Sub-Workflows. In the ENM
workflow given earlier in Chapter 2 there were sub-workflows named such as
Run Cross Validation, Run Projection etc. These category of sub-workflows of-
ten build on component type sub-workflows. Another notable characteristic is
that “phase” sub-workflows may contain multiple parallel threads of data pro-
cessing. Sub-workflows created for phase documentation are highly context/-
experiment dependent, consequently, such workflows are rarely shared with the
purpose of re-use in other studies.

• Implementation Concerns: Realities of implementation may also direct scien-
tists to group selected tasks into sub-workflows. More specifically, ‘Sub-workflow
interoperability” [AIG12] [PWH+11] refers to the ability of a workflow system
to delegate the execution of a sub-workflow to the execution environment of an-
other workflow system. Consequently scientists may group tasks that they wish
to be executed on a particular external run-time into a sub-workflow. Another
example is workflow systems that lack constructs looping a body of activities,
like the Taverna system. Here sub-workflows are used as a means to enable the
iterated execution of a collection of activities, bundled into a sub-workflow in
the main workflow.

• Aesthetic Simplification: Sub-workflows may also be used solely for aesthetic
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simplification. In these cases, the sub-workflow does not correspond to a modu-
lar functional unit, an experiment phase, or a sub-part that needs to be run on a
different execution environment.

4.3.2 Promoting Intermediary Values

In practice when a workflow is modularised using sub-workflows, some activities and
their input/output ports are pushed back (hidden). This way the design at the top
level becomes simpler and contains less number of activities, ports, and when ex-
ecuted results in a more compact data lineage. Scientists may also abstract work-
flows by lifting up certain intermediary ports, ones they deem significant (report-
worthy). The design practice enabling this selection, as we identified in Chapter 3
is the promotion of intermediary ports to become workflow output ports. We re-
fer to this practice as lineage bookmarks, others have referred to such behaviour as
“trace links” [CBCG+14]. In the HTT workflow in Figure 4.1 the outputs named
“Matched Concept Id”, “Query Concept Id” and “Summed Similarity Score” are ex-
amples of such bookmarks. Bookmarking provides a quick and easy way to collect
report-worthy data of interest from the experiment run, without having to rely on prove-
nance collection and querying capability.

In short, encoding abstraction into workflow design is a non-trivial design pro-
cess with several drivers. There exist significant research and tool support in aid-
ing scientists to discover and integrate resources from respective registries [BTN+10]
[MKRI15], and assist their composition in workflows [WKM+10]. On the other hand
there is little support in assisting scientists on organising or refactoring a workflow
design. Consequently pre hoc abstraction is an established, yet predominantly manual
process.

4.4 Blueprint for Automated Abstraction

The state of the art in computation-assisted provenance abstraction is comprised of a
number of recent research systems. A common characteristic among all is that they’re
designed for abstracting provenance post- hoc i.e. post-collection; and, for most, in-
formation privacy is the main driver. A recent paper by Cheney and Perera [CP14]
provides an excellent survey of security-motivated provenance abstraction. The au-
thors provide a meta-categorisation identifying the features of systems in terms of 1)
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Figure 4.3: The Abstraction Blueprint

functional aspects, such as the level of granularity with which a provenance graph can
be sanitised, the notion of integrity of sanitised graphs and 2) non-functional aspects,
such as the (non)existence of an underlying formalism and whether conflict-checking
or traceability of the abstraction process is possible. In this chapter we expand on
the functional aspects identified by Cheney and Perera, and provide a blue-print for
provenance abstraction machinery. We discuss and compare related work in Section
4.5 using this template and later present our system accordingly in Section 4.8. Figure
4.3 presents the blueprint as a high-level process. At the core of the process exists
an Abstraction Machinery, which takes as input provenance and an abstraction policy

and produces abstracted provenance. The machinery may commit to a set of integrity

policies, which may be fixed/built-in or configurable.

Provenance information outlines a network of objects with various relations among
them, such as ancestry or causality. As such, the most popular representation for prove-
nance is the graph-based representation. In our blueprint the input to the abstraction
process and its output are graph structured provenance. Informally; the process of
abstraction is an act of creating a reduced provenance graph G′ out of the given prove-
nance graph G. Depending on the approach taken for abstraction it may be possible to
define a formal relationship between the G and G′. One example is the subgraph rela-
tion, in cases where the abstraction is comprised of elimination of elements (vertices
and edges) from G. Another example is the quotient graph relation. Here the output
graph represents a view over the input graph, and it is obtained by the partitioning
the input graph into distinct subsets and inducing a coarser output graph using these
partitions [CP14].
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4.4.1 Abstraction Policy

Abstraction is driven by the abstraction policy. This designates what needs to be hid-
den, or abstracted out, from the provenance graph, in secure provenance literature this
is referred to as the obfuscation policy [CP14]. In this thesis we use the term Ab-

straction Policy to avoid any connotations with the word “obfuscation”. In addition to
hiding, the abstraction policy may also specify what needs to be retained/kept during
abstraction, this is known as the disclosure policy [CP14].

The elements in the graph that are to be subjected to abstraction are often identi-
fied by a graph query, this allows for selecting nodes of interest/disinterest with the
possibility of identifying structural organisation patterns among nodes. Nodes may
be identified directly by pinpointing them with unique node identifiers or indirectly
by referring to attributes associated with graph elements (e.g. data artefacts nodes
generated by a certain type of agent). Policies with direct reference to nodes can be
considered input-dependent policy, whereas those based solely on attributes can be
considered input-independent. Depending on the approach taken, the abstraction pol-
icy may be thick or thin. A thick policy would not only identify which elements should
be acted upon but it would also specify how they should be acted upon, i.e. how the
provenance graph should be manipulated. The manipulation operations are captured
by abstraction primitives. In addition to specification of manipulations, in a thick pol-
icy the policy designer may be expected to specify the order with which manipulations
should take place.

4.4.2 Integrity Policies

Provenance abstraction machinery may commit to a set of integrity policies. These
are characteristics that help us understand the informativeness of the abstraction result,
its validity and well-formedness. We have compiled a set of policies compiled from
provenance abstraction literature [CP14][DZL11]. In the following sections we dis-
cuss these characteristics informally, the formal characterisation of each policy for the
particular formalism chosen to represent our approach is given in Appendix B.

4.4.2.1 Dataflow Preservation (Completeness)

Cheney and Perera define an abstraction to be path preserving if for any existing
path among two nodes in the original graph there exists a path among correspond-
ing nodes in the abstracted graph (where a path denotes a direct or indirect dataflow
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dependency or lineage). Biton et al [BDKR09] identifies the same characteristic as
provenance view completeness. As we shall see in our literature review later, com-
promising dataflow completeness only occurs in abstraction approaches motivated by
security. In such cases lineage relations are deliberately redacted out from provenance
graphs. In the context of abstracting for simplicity, existing automated approaches are
dataflow preserving. The layered workflow designs created by users are also dataflow
preserving abstractions.

4.4.2.2 Dataflow Reflection (Soundness)

Biton et.al. [BDKR09] state that an abstracted workflow (a workflow view) is sound if
it includes only those dataflow dependencies in the original workflow. In other words
a sound abstraction does not introduce false dataflow dependencies. Most typically
in the context of abstractions of the quotient kind i.e. inducing a coarser provenance
graph by grouping nodes, it is possible that false dependencies are introduced, and the
resulting provenance is unsound. We depict an example in Figure 4.4. Here there are
two activities a, and b. In the original graph all data nodes except the ones pointed
with arrows has lineage relations among them, inferred from traversing data usage
and generation relations. The two highlighted nodes however are not reachable from
each other, hence they do not have a lineage relation among each other. When a view
over this graph is generated, by grouping two activity nodes, and a shared data node
among them, the resulting view is unsound. The composite activity node now creates a
reachability between the prior mutually unreachable data artefacts. Note that unsound
views are not necessarily an undesired result. The sub-workflow abstractions created
by scientists during workflow design may create non-sound dataflow dependencies
among input/output ports of analytical steps.

4.4.2.3 Validity

Validity corresponds to the recognisability of the abstraction result with respect to stan-
dard provenance models/vocabularies such as PROV[BDG+12] or OPM[MCF+11].
Models bring restrictions on the kinds of nodes that can occur in a provenance graph
and their allowed relationships.

In abstractions based on free-style grouping of nodes, a result may contain a false-

structure (as termed by Dey et al [DZL11]), or a type violation (as termed by Missier
et al [MBG+14] ). Here a group of heterogeneously typed nodes are replaced with
a single node, without adjusting the incoming and outgoing relations of the group
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Figure 4.4: An unsound view created by grouping nodes in a retrospective provenance
trace.

members, where, for instance, a replacement activity may appear to be used by another
activity. Validity result abstractions is often a desired characteristic as it allows both
provenance and provenance abstractions to be processable with the same provenance
tools and libraries.

We now move onto well-formedness characteristics, these corresponds to charac-
teristics of abstracted graphs, where - in a certain context - their existence (or absence)
may be desired, but the contrary case would not invalidate the provenance graph. In
our context, we identify acyclicity and bipartiteness as relevant wellformedness char-
acteristics.

4.4.2.4 Acyclicity

Cycles can occur in provenance in the following layers:

• Cyclic definitions in prospective provenance: Most workflow systems, includ-
ing Taverna, Galaxy, Wings, Pipeline Pilot, KNIME generate workflows with di-
rected acyclic dataflow dependencies. The Kepler system stands out as it allows
cyclic dataflow dependencies, more specifically, these feedback loops, used for
iterating groups of activities over incrementally supplied/refined data. A work-
flow description containing a feedback loop is given in left-hand side of Fig-
ure 4.5. Upon execution, a feedback loop unfolds into an acyclic account of
execution including repeated invocations of activities within the loop. This is
illustrated in right-hand side of Figure 4.5.
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• Cyclic definitions in retrospective provenance: From a provenance modelling
perspective cycles are not banned. It is possible, for instance, with a vocabulary
like PROV, to give account of a long running activity p (given in left hand side
of Figure 4.7) that creates an interim data artefact, which is used by another pro-
cess q, which generates another artefact in turn used by p. While modelling such
an account of a process is possible, it is not possible to encode such a process
as a workflow description. The setting we just described would require a work-
flow activity to initiate execution on partial input availability. While workflow
systems support input streams from individual ports, they expect data expected
at all of the input ports of activity to be available (to have started streaming) so
that the execution can start. In short while cycles at this level are theoretically
permitted, they are a very rare sight in actual provenance traces.

• Cycles created during provenance abstraction (retrospective/prospective):
It is very well possible that cycles are introduced to provenance during abstrac-
tion with node groupings. A cycle occurs when a group of nodes is not a Convex
Hull: indicating that there exist path, that originates from a node in the group,
visits a node outside the group, and, then arrives back at a node in the group
[DZL11]. In our literature review of existing systems we observed that the large
majority of them avoid cycles. This avoidance lies in the inherent complexity
in querying, traversing cyclic provenance. Also when reporting data, as with
the ISA-Tab mappings of graphs to spreadsheet, only acyclic provenance graphs
are supported. An exception is the ZOOM system [BCBDH08], which allows
cyclic views over workflow descriptions to be generated. A graphical depiction
of this is given in Figure 4.7. We speculate that allowing cycles may be intended
for making abstraction approaches more aggressive. On the other hand as we
discussed, as the execution scheme in workflow systems expects data in all in-
put ports to be available to some degree, such abstractions would not have a
correspondence in real-life workflows.

4.4.2.5 Bipartiteness

Often, there is a high-level semantics that is involved in the (first-hand) creation of
provenance e.g. workflow languages or file system operations. Source system se-
mantics imply certain characteristics or patterns in the provenance graph, for instance,
provenance graphs originating from workflow executions are bipartite [DZL12]. In
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Figure 4.5: Left: A feedback loop specification in prospective provenance. Right: Its
unfolding in retrospective provenance.

Figure 4.6: Cyclic lineage in retrospective provenance caused by process supporting
partial input availability at start.
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Figure 4.7: An activity grouping in workflow description that could cause a cyclic view
over retrospective provenance as in Figure 4.6.

these graphs edges link nodes from disjoint sets of activity and data nodes. By travers-
ing a bipartite provenance graph one receives an account for the creation of a result
with the data

generatedBy
=======⇒ activity used

==⇒ data pattern. This way of exposing provenance
is needed in several scenarios. When provenance is used for debugging, one needs
to understand whether an erroneous input truly affects its descendent data by inspect-
ing the process that link those data. Presenting provenance in a bipartite account, is
also a recommended practice in reporting scientific data. The ISA-Tab specification,
puts protocols at the heart of its conceptual model, and state that ISA-Tab compliant
spreadsheet should present results by stating the protocol that generated that result and
its input, and configurations.

On the other hand bipartite accounts are not the only way employed for represent-
ing and consuming provenance. The opaque lineage relations among data are often
used for basic traceability. For instance, while ISA-Tab recommends a presentation
that is inherently bipartite when we look at the use of ISA-Tab compliant metadata
published in data repositories [SZE+14] [nat15] we observe that the protocol com-
ponent can be missing, and results of an investigation may simply be presented with
respect to their lineage to input configurations of the overall experiment.
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4.5 Related Work

We now survey the state of the art with dimensions outlined in the abstraction blueprint.
More specifically we seeks answers to the following in each system:

• what is the objective of abstraction, security or simplicity?

• does the system operate over retrospective or prospective provenance graphs?

• what comprises the abstraction policy? Does it refer to elements of graph gener-
ally by mentioning attributes (attr), individually by giving identifiers id? Does it
involve the specification graph patterns (qry), to select elements to be abstracted?
Does it require elements of an abstraction policy to be ordered (order)? Does the
abstraction policy state how abstraction should occur (prim) or is it determined
internally by the system?

• what kinds of primitives are supported for abstracting the provenance graph?

• which of the integrity policies (namely (Dataflow) Completeness, (Dataflow)
Soundness, Acyclicity, Bipartiteness and Validity) are supported by the system’s
abstraction primitives?

We review seven systems comparatively, namely ZOOM [BCBDH08], ProPub [DZL11],
ProvAbs [MBG+14], TACLP [DCMB15], SecProv [CSL+08], Provenance Redaction
[CKKT11] and Surrogates [BCS+11]. For the reader to follow Table 4.1 provides the
comparative view of characteristics of each system.

ZOOM [BCBDH08] is designed for scaling down results of lineage queries over
provenance via creating dynamic user views over workflow descriptions. An abstrac-
tion policy is simply a set of ids for activities that a user deems important/relevant
in the workflow. This policy is then used to produce an abstracted workflow by al-
gorithmically partitioning activities into groups, where each group contains at most
one important activity. The dynamic nature is the ability to generate different views
over a workflow description based on different input policies. This capability is an
alternative to the static (hard-wired) sub-workflow abstractions that scientists employ
during workflow design. The need for such dynamic views over workflow descriptions
is yet to be documented with user studies or real-world use-cases. In the case of ex-
periment reporting, for instance, we have not observed the use of changing user views,
instead the static workflow abstraction encoded into the design has been used for re-
porting all executions of that workflow. In addition to the user-specified significant
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activities, ZOOM uses structural cues in the workflow as indicators of significance:
overall workflow inputs, outputs are treated as significant items. ZOOM treats all
significant items as breakpoints in provenance, and approaches grouping in a manner
that preserves soundness of dataflow dependencies among breakpoints. The effect of
this integrity policy is that a new partition is initiated whenever a fresh workflow input
joins the data processing stream, similarly a partition is finalised whenever either a
dataflow link outgoing to a workflow output (i.e. the lineage bookmarking pattern) or
a new significant activity is encountered.

ProvAbs [MBG+14] provides a framework for abstracting PROV compliant prove-
nance graphs that uses grouping as the prime abstraction construct. The target use-case
for ProvAbs is confidentiality protection of provenance. In this approach an abstraction
policy is a set of rules which decorates nodes of a provenance graph (confidentiality)
sensitivity values. The annotated graph is then abstracted with respect to end-consumer
clearance level. During abstraction the system hides away those nodes, whose sensi-
tivity is above the designated clearance level, by using node grouping. Two specialised
grouping operators are introduced, one for replacing a group with an entity, another
with an activity. The grouping constructs of ProvAbs are semi-autonomous so as to
guarantee integrity aspects such as validity and acyclicity. Acyclicity is achieved by
enlarging a group to include the convex hull of lineage among its members, whereas
validity is ensured by expanding a group until all boundary nodes are of the same
type (activity or entity). Due to the autonomy of grouping, nodes not intended to be
abstracted away may indeed be abstracted when grouping. ProvAbs measures the pro-
portion of unintended groupings as a combined utility metric to provide as feedback to
the abstraction policy designer.

TACLP [DCMB15] approach has been developed by the same team that has devel-
oped ProvAbs. TACLP stands for Transformation-Oriented Access Control Language
for Provenance, and it is an extension of an earlier XML based language [NXB+09]
for the specification of access-control policies (e.g. permit/deny ) over provenance
graphs. The policy identifies provenance nodes through semantic attributes and how
they should be abstracted through transformation operations. Transformations are
based on the partitioning of nodes of an OPM compliant graph, for which access is
restricted based on the evaluation of an input policy. The focus of this approach is
in obtaining 1) node partitions that preserve the soundness of causal relations and 2)
node partitions that are minimal in number for a given input graph. These two goals
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are formalised with the notions of Causality Preserving Partition and Optimal Causal-

ity Preserving Partition. Both notions are predicated on the existence of a particular
node in a partition, that can be characterised as the defining node of that partition.
Each node in a partition has an associated external Cause/Effect set, which is the set of
nodes out of the partition and that are linked with the designated node through causal
relations. The defining node of a partition is one whose Cause/Effect set is the superset
of Cause/Effect sets of all other nodes in the partition. The existence of such a node
not only makes the partitions sound, it also prevents the introduction of cyclic causal
relations. TACLP approach provides two graph manipulations: the Removal of a par-
tition, or, the Replacement of a partition with an abstract node. Authors extend the
OPM specification to define 1) a higher level abstract node, from which all other OPM
node types (e.g. Agent, Process) descend and 2) a general was caused by relation that
can link any type of provenance node. Resulting abstractions are valid against this
extended model.



4.5. RELATED WORK 159

O
bj

ec
tiv

e
D

efi
ne

d
O

n
A

bs
tr

ac
tio

n
Po

lic
y

Pr
im

iti
ve

In
te

gr
ity

Po
lic

y
M

ea
su

ri
ng

E
ff

ec
to

fA
bs

tr
ac

tio
n

Va
l

Sn
d

C
m

p
A

cy
c

B
ip

Pr
ov

A
bs

Se
cu

ri
ty

R
et

ro
sp

ec
tiv

e
〈q

ry
,a

tt
r,

id
〉,

or
de

r
N

od
e

G
ro

up
in

g
Y

N
Y

Y
Y

R
et

ai
ne

d
no

de
%

TA
C

L
P

Se
cu

ri
ty

R
et

ro
sp

ec
tiv

e
〈a

tt
r,

or
de

r,
pr

im
〉

R
em

ov
e

Y
a

Y
Y

Y
N

M
in

im
um

nu
m

be
r

of
pa

rt
i-

tio
ns

.
R

ep
la

ce
Y

a
Y

Y
Y

N
Su

rr
og

at
es

Se
cu

ri
ty

A
ny

gr
ap

h
at

tr
N

od
e

Su
rr

og
at

in
g

w
.

as
-

so
ci

at
ed

pa
th

su
rr

og
at

io
n

Y
Y

N
Y

N
%

of
R

et
ai

ne
d

pa
th

s
L

os
tn

od
e

ut
ili

ty

R
ed

ac
tio

n
Se

cu
ri

ty
R

et
ro

sp
ec

tiv
e

〈q
ry
,a

tt
r,

id
,p

ri
m
〉

E
dg

e
C

on
tr

ac
t

N
N

N
Y

N

%
of

R
et

ai
ne

d
tr

ip
le

s
V

er
te

x
C

on
tr

ac
t

N
N

N
Y

N
Pa

th
C

on
tr

ac
t

N
N

N
Y

N
N

od
e

R
el

ab
el

Y
Y

Y
Y

Y
Se

cP
ro

v
Se

cu
ri

ty
Pr

os
pe

ct
iv

e
at

tr
,i

d
Fi

lte
rL

in
ea

ge
&

w
rt

Po
lic

y
Y

N
N

Y
Y

-

Z
O

O
M

Si
m

pl
ifi

ca
tio

n
Pr

os
pe

ct
iv

e
id

C
om

po
se

A
ct

iv
iti

es
Y

Y
b

Y
N

Y
R

ed
uc

tio
n

in
lin

ea
ge

qr
y

re
-

su
lts

Pr
oP

ub
B

ot
h

R
et

ro
sp

ec
tiv

e
〈id

,p
ri

m
〉,

or
de

r

A
no

ny
m

iz
e

N
od

e
Y

Y
Y

Y
Y

-
H

id
e

N
od

e
Y

Y
N

Y
Y

H
id

e
D

ep
en

de
nc

y
Y

Y
N

Y
Y

N
od

e
G

ro
up

in
g

N
N

Y
N

N

W
or

kfl
ow

Su
m

m
ar

ie
s

Si
m

pl
ifi

ca
tio

n
Pr

os
pe

ct
iv

e
〈a

tt
r,

or
de

r,
pr

im
〉

E
lim

in
at

e
A

ct
iv

ity
Y

c
Y

Y
Y

N
%

R
ed

uc
tio

n
in

W
f

St
ru

ct
ur

al
E

le
m

en
ts

C
om

po
se

A
ct

iv
iti

es
Y

N
Y

Y
Y

C
ol

la
ps

e
A

ct
iv

ity
Y

N
Y

Y
Y

a
TA

C
L

P
ab

st
ra

ct
io

ns
ar

e
va

lid
w

ith
re

sp
ec

tt
o

a
m

od
el

th
at

is
an

ex
te

ns
io

n
of

O
PM

.
b

Z
O

O
M

ab
st

ra
ct

io
ns

pr
es

er
ve

so
un

dn
es

s
am

on
g

se
le

ct
ed

no
de

s
in

th
e

w
or

kfl
ow

.
c

W
or

kfl
ow

Su
m

m
ar

ie
s

ab
st

ra
ct

io
ns

ar
e

va
lid

w
ith

re
sp

ec
tt

o
a

m
od

el
th

at
is

an
ex

te
ns

io
n

of
W

fd
es

c.

Ta
bl

e
4.

1:
C

om
pa

ra
tiv

e
Ta

bl
e

of
Pr

ov
en

an
ce

A
bs

tr
ac

tio
n

R
es

ea
rc

h



160 CHAPTER 4. WORKFLOW ABSTRACTION

ProPub [DZL11] is a framework abstracting over OPM-compliant provenance
graphs, where both abstraction and integrity policies are taken as inputs to abstraction.
ProPub provides a large range of primitives: node grouping, elimination, anonymiza-
tion, i.e. sanitisation of attributes, and distinctively, a retain primitive for keeping
designated nodes during abstraction. In addition, ProPub enumerates a set of integrity
policies similar to those identified in Section 4.4.2. The user is expected to program
the ProPub machinery by providing an ordered set of abstractions and also an ordered
set of preferred integrity policies. The ability to specify both abstraction and integrity
policies brings flexibility but also brings the possibility of conflicts. During abstraction
ProPub greedily performs the following, checks whether all desired integrity policies
can be satisfied against all designated graph manipulations, in cases of conflict, the
system attempts at local repairs (such as expanding groups), if a repair is not possible
the system compromises/drops an abstraction request (or an integrity policy), and con-
tinues until non-conflicting solution is found. A use-case for ProPub in a real-world
setting/domain is not provided.

Secprov [CCL+10] demonstrates how role-based access control can be applied to
nested workflows, when answering provenance queries. The part of the provenance to
be abstracted out from a query result is specified through 1) an access-control policy
in the form of triples associating eligibility and roles with workflow elements (activi-
ties, ports and dataflow links) and 2) a boolean policy designating whether nested/sub-
workflow details should be visible or not. These policies esentially act as a filter, an
ineligible element is either anonymised or eliminated; the choice of action is made in a
manner that preserves bipartiteness of provenance. As elements can be eliminated from
a trace, original dataflow dependencies are not preserved in this approach, whereas as
grouping is not used as an abstraction primitive, lineage soundness is preserved.

Provenance Redaction [CKKT11] is an approach that uses graph rewriting for
redacting OPM compliant provenance assertions in the form of RDF statements. Here
graph re-write rules identify sensitive parts (subgraphs) in the provenance and replace
those with opaque (censored) nodes. The authors state that they provide a “high-level”
policy specification for encoding redaction rules, yet, we observe that elements of
this policy language straightforwardly map to generic components of graph rewrite
systems, such as rule, left-hand-side, right-hand-side and gluing instructions. So es-
sentially, a graph rewrite system is at the disposal of provenance redactor. A number
of most characteristic redaction rules have been narratively described as edge contrac-
tion (replacing two connected nodes), vertex contraction (grouping two disconnected
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nodes), path contraction (replacing a path with a single edge) and node anonymisation
(relabelling). Actual rules are omitted from the paper. The authors acknowledge that it
is possible to encode integrity guarantees into rules, yet they fall short of demonstrat-
ing how this can be done. For the characteristic rules described, integrity aspects such
as avoiding cycles or redundant edges are hinted at but not illustrated or proven. An
important aspect, which is the ordering (programming) rules is achieved via dynamic
(but costly) (re-)ordering phase prior to each rule application. Order is determined by
rule impact on the provenance graph, where impact is the number of statements a rule
redacts. As part of evaluation two strategies are explored, first one that priorities the
high impact rules, and the second one that priorities low impact rules. Because high-
impact rules are more likely to disable other rules from matching, overall abstraction
process becomes quicker in the first strategy.

The Surrogates [BCS+11] approach promotes the protection of sensitive (confi-
dential) parts of graphs via surrogation (anonymisation) as opposed to a naive elimi-
nation. Here the abstraction policy is specified as annotation over the graph nodes and
edges. Nodes bear information on consumer privileges necessary for their visibility.
Edges have markers on both sides (source/target) designating whether they should be
surrogated deleted or kept action should be taken, in case the (target/source) node is
subject to some abstraction (elimination or surrogation). Two utility metrics related
are defined: one in terms of the percentage of paths preserved, and the other as the loss
of information content (say attributes) associated with nodes that are surrogated. The
authors outline an algorithmic approach that exploits the annotations for surrogation
of nodes and edges, which they claim is maximally informative (with respect to their
second metric).

We make the following observations on the state of the art:

• Level of Abstraction ZOOM and SecProv systems commit to a particular prove-
nance source, i.e. workflow executions. One advantage of this commitment is
they allow specification of abstraction policies on prospective provenance, i.e.
workflow descriptions, which are much more intuitive and simple than their ret-
rospective counter parts i.e. execution traces. Other systems like ProPub and
ProvAbs have the ability to operate over (any) retrospective provenance graphs
regardless of the source it comes from. While this makes the resulting system
more generic, it reduces its usability as it expects policy designers to encode
node selection and graph manipulation at a lower level of abstraction.
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• Policy Re-usability ProPub, ZOOM and SecProv systems necessitate the spec-
ification of abstraction policies by referring to specific nodes in the provenance
graph (via node ids). Such input dependent policies are clearly not re-usable,
or applicable to different input provenance. A particular disadvantage of ap-
proaches like ProPub, is that their policies are both thick and input-dependent,
necessitating significant effort in policy (re)design.

• Level of User-Control Control over abstraction can be an essential requirement
in certain contexts, such as experiment reporting. As scientists are account-
able for the workflow designs and results they publish, they would like to be
in control of which parts of their workflow are retained which are hidden dur-
ing abstraction. Furthermore recall that both process abstraction and data-wise
abstractions are needed. Against such settings the output of machinery with cer-
tain abstraction autonomy - autonomy stemming from various reasons, such as
to keep the policy simple, as in ZOOM; or to auto-fix integrity violations, as in
ProvAbs- may be of limited use. We provide an illustrative example Figure 4.8,
where shaded areas are the manual sub-workflow based abstractions created by
the scientist and the areas denoted with thick dashed lines are the groups created
by the ZOOM system (The names for ZOOM groups are direct outputs of this
tool). We can see that the boundaries of groupings are at a discord between the
manual abstraction and the ZOOM abstraction. This workflow lacks the data-
bookmarking design practice, consequently ZOOM’s autonomous grouping re-
lies only only positions of significant activities to determine group boundaries.
Moreover as all workflow inputs are deemed significant by ZOOM the abstrac-
tion generates groups (those named NR-* in Figure4.8) that are devoid of a sci-
entifically significant activity, yet they exist for the sake of preserving soundness
among breakpoints (some of which can be insignificant configuration-type in-
puts). This example shows that semi-autonomous abstractions such as that of
ZOOM’s may not be usable as-is for scientific reporting. Against this setting
there can be two possible remedies:

– we can either perform abstraction under complete user control: pre hoc as
in the current manual practice, or post-hoc through a system like ProPub,
which gives increased control to the user

– another possibility is to make use of abstractions like that of ZOOM not as
ultimate end-products but as suggestions to the workflow designer while
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she is encoding abstraction into design.

• Cross-Purpose Use The end-purpose for which the abstraction machinery is to
be used is the critical factor shaping the machinery’s integrity policies. Consider
redaction, where sensitive node(s)/statements are replaced with opaque nodes
that do not even bear type information. This example shows how a strong re-
quirement for information privacy may compromise even the most basic in-
tegrity aspects such as the validity of result graph. In ZOOM , which is designed
for debugging, there is a built-in policy for guaranteeing a truthful (sound) ac-
count of dependencies among significant provenance elements. An observation
we make here is the difficulty in cross-purpose use of abstraction machinery.
The previous bullet point demonstrated that ZOOM’s abstractions can be ill-fit
for reporting-use, whereas it is clear that an abstraction approach which does
not even preserve validity would be hard to use in any context other than pri-
vacy. Among all systems reviewed ProPub stands out as a generic foundational
approach, upon which abstraction machinery shaped for particular use can be
built.

Notably excluded from our survey are work on workflow/provenance analytics
[ESLF09] [Mor15]. These works were excluded as their focus is not on proposing
provenance graph manipulation techniques. Instead these approaches focus on iden-
tifying information sources (e.g. textual information, structural patterns) in a prove-
nance graph and identifying how that information can be exploited to generate ana-
lytical characterisations (e.g. most frequent process branch, frequently co-occurring
activities). In [ESLF09] authors describe techniques to generate workflow snippets in
response to text-based workflow search requests in repositories. Whereas in [Mor15]
techniques are given for efficiently identifying and quantifying patterns in provenance.

4.6 Algebraic Graph Re-Writing

In this section we introduce basics in algebraic graph transformation, which we use as
a formal notation to depict workflow summarisation primitives. The majority of this
section is adopted from the textbook material available in [Roz97, Ch. 3] The origins of
algebraic graph re-writing lie in the generalisation of Chomsky Grammars from strings
to graphs. The idea is to generalise string concatenation, which is the main enabler
of grammar productions, to a gluing construct for graphs. The “algebraic”-ness of the
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Figure 4.8: The abstraction created by scientist in terms of sub-workflows versus the
abstraction generated by the ZOOM system.
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approach comes from its use of categorical notions to define graph transformation rules
over graphs. In this formalisation directed graphs are seen as special kinds of algebras.

Definition 4.1. (Graph) A graph represented with the six-tuple G = (V,E,src : E →
V, trgt : E → V, lE , lV ) where V , and E are vertices and edge sets with two unary op-

erations that map edges to their source and target vertices, and labelling functions for

vertices and edges.

At the heart of all graph transformations systems lies a graph transformation rule,
called a production.

Definition 4.2. (Graph Production) p : L R, where graphs L and R are called the

left- and right-hand-side respectively. An application of a rule is called a direct deriva-

tion, denoted with G
p,m
==⇒ H, states that production p is applied to G leading to the

derived graph H. During the derivation H is obtained by replacing an occurrence of L

in G with R. An occurrence is formally represented with a match m : L→G, which is a

graph homomorphism. A homomorphism is a label and adjacency preserving mapping

m from vertices of a source graph, L, to a target graph, G, such that if an edge con-

nects two vertices in v1 and v2 in L then there exists a similar labeled edge connecting

mapped vertices m(v1) and m(v2) in G. Note that vertices mapping is also expected to

be label preserving.

Direct derivations are represented with a category-theoretic construct, called the
pushout depicted below:

L
p−−→ R

m

y
y m∗

G
p∗−−→ H

Elements in graph G that do not match the left hand side L of p need to be preserved
during the application of p. This is addressed with the co-production p∗ : G→ H that
links the given graph G to the derived graph H. Consequently, for each occurrence
(match) m there will be an occurrence (co-match) m∗ that is a homomorphism from
right-hand side R to the resultant graph H. Note that in algebraic graph transformation
the pushout construct has a number of variations and a number of formally established
characteristics such as the commutativity of its constituent morphisms where p∗ ◦
m = m∗ ◦ p. While these are important in the formal study of graph grammars in
the context of this dissertation they are not of interest, hence we do not elaborate on
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such characteristics. The key intuition is that the pushout provides us with a model of
computation for graph productions [Roz97, Ch. 3] .

We will illustrate this computation with an example. Figure 4.9 displays a sample
production p1 : L1 R1, which, informally, is a rule for replacing an indirect con-
nection among particular vertices with a direct connection. As with all productions
p1 defines a partial correspondence between the elements of its left- and right-hand
sides determining, during p1’s application, which vertices are to be kept, which are to
be deleted and which vertices are to be added (this correspondence can be defined by
identities of elements in the graph). When a match m1 is found, in order to obtain H1:

• we need to delete every element from G1, which is mapped-to by an element
of L1, and that element does not have a correspondent in R1. Consequently the
vertice a1 and the edges that connect it to d1 and d2 are deleted.

• we need to add to G1 the fresh element in R1, i.e. those that do not have a
correspondent in L1

• we need to preserve all remaining elements of G1, these could informally be
described as un-referred and explicitly-retained elements. Un-referred ones are
those elements in G1 that do not have an element in L1 that map to them. The
explicitly-retained ones are those elements that do have an L1 element mapping
to them where that L1 element has a correspondent in R1.

The set-theoretic representation of the above computation is H1 = G1\(L1\R1)∪
(R1\L1).

The advantages of using the algebraic approach to denote graph manipulations are
several: first of all it provides us with an intuitive, visual yet formal representation,
secondly it provides several formal characterisations such as type graphs, functional

behaviour and negative application conditions, which we use to describe our abstrac-
tion machinery, and facilitates the proofs of integrity policies adopted in our approach.
There exist several generic graph transformation tooling [TB94] [Ren03] [GBG+06]
based on the algebraic formalism. In this thesis we use the GROOVE graph transfor-
mation system [Ren03] to showcase our primitives.

4.6.1 Types and Attributes

In order to customise the above outlined formalism to our domain of workflows, we
make use of Type Graphs [Hec13] and Attributes [Roz97, Ch. 3].
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Figure 4.9: Sample production p1

Definition 4.3. (Typed Graph) A type graph T G is a fixed graph that contains nodes

and edges that are representative of allowable kinds of nodes and edges for a set of

graphs [Men00]. Note that definition wise a type graph is not different than a graph

as per definition 4.1. A graph G is said to be typed by a type graph T G if there exist a

homomorphism g : G→ T G.

The type graph is a meta graph which allows us to put restrictions on the kinds of
graphs allowed. Which in our case is workflow description graphs input to and out-
put from our abstraction machinery. As we shall see later we adopt attributed graphs
to represent characteristics of elements in a workflow description. Attribute types are
represented with corresponding attribute nodes in a graph G, where in a graph type
morphism g : G→ T G these nodes are mapped to nodes in T G with labels correspond-
ing toabstract data types such as Integer or String or Boolean.

4.6.2 Programming Productions

Graph transformations systems are built using graph productions (such as the one in
Figure 4.9). The simplest way to build a system is by defining it as a set of productions
Mu = {p1, p2, p3..., pn}. Mu is unordered in the sense that during its execution, the
system would pick up the next direct derivation randomly from a set of matching pro-
ductions [Men05]. Another way to define a graph transformation system is to introduce
order to derivations through a control specification. An ordered graph transformation
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system, is then a defined set of productions and a control specification defining a par-
tial or complete order over productions Mo = ({p1, p2, p3..., pn},�)[BFG96]. A third
mechanism in organising rules is nesting [Kup07], where a productions is comprised
of sub-productions, the application of which can be quantified universally and existen-
tially.

Depending on the interrelations of the productions, such as causal dependencies,
conflicts, a graph transformation system may show functional (deterministic), or non-
deterministic behaviour. Functional behaviour implies that a transformation system
behaves like a function i.e. that for each input graph there exist a unique output graph.
Whereas non-deterministic behaviour means there can be multiple possible outputs
depending on the sequence of derivations taken. There are two main strategies to
guarantee functional behaviour, one can either design rules in a conflict a causality
free manner, or one can use control constructs for ordering rules.

Different behaviours may be suitable for different use cases of graph transforma-
tion. For instance in [HKT02] graph productions are used for transformations of mod-
els among languages, such as UML to(from) XMI or BPMN to BPEL. In this case
functional behaviour is crucial for an unambiguous mapping. Whereas in [HHRV15]
productions are used to create and explore a space of multiple (candidate) designs. In
our context, i.e. the abstraction of scientific workflows to assist in reporting of their
results, we argue that both behaviours may find applicability. We further elaborate on
this in Section 4.8.3.

4.6.3 Negative Application Conditions

Recall our example production p1 in Figure 4.9. The application of the rule leaves a
previously connected vertice d3, disconnected as a result. In a more mindful design
of this rule one could eliminate activity a1 only in cases it is solely connected to d1
and d2 and not to d3. These additional patterns in the left hand-side of a rule are
restrictions called negative application conditions (NAC).

Definition 4.4. (NAC) A negative application condition (NAC) is a morphism n : L→
N. Where for a match m : L→G We say that a match m satisfies a NAC n if there is no

morphism n′ : N→ G such that n′ ◦n = m. A rule is applicable to a graph G if there is

a match satisfying all NACs.

Intuitively a negative application condition represents a graph pattern, which re-
stricts the applicability of a graph production. The extended version of production p1
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Figure 4.10: Sample negative application condition in p2

including a NAC pattern is given in Figure4.10 as p2. The NAC pattern is depicted
with dotted lines shown jointly with the left hand side L2 of the production.

4.6.4 Workflow Description Graphs

Definition 4.5. (Workflow Description Graph) A scientific workflow is a directed,

acyclic, attributed, typed graph W comprised of a vertice and edge set W = 〈V,E〉.
There are four types of vertices V = (VACT IV ITY ∪VINP ∪VOUT P ∪VAT T R), these are

respectively: the workflow operations , the input and output ports and data vertices

representing values of motif attributes associated with ports and operations. Nodes

are connected using four types of edges E = (EinputO f ∪EhasOut ∪Ed f ∪Eidd f ): link-

ing input ports to the operations they belong, linking operations to their output ports,

and linking ports to ports denoting either the direct dataflow among them or indirect

influence relation among them. Note that an executable workflow description, which

is the input to the abstraction process only contains direct dataflow relations. We use

the influence relation in our abstracted workflow descriptions.

The type graph TW we use for representing workflows and a sample instance graph
representing a fragment of the HTT workflow are given in Figures 4.11 and 4.12 re-
spectively. Both diagrams are screenshots from the GROOVE system.

We will now move onto description of our primitives for abstracting workflow
graphs. We specify each primitive formally as a graph production that operates on
graphs of type TW .

4.7 Productions for Workflow Abstraction

Our presentation of primitives follows a common structure, where provide:

• An intuitive overview of the effect of the primitive,
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Figure 4.11: Type Graph describing allowed node and edge types in the Left- and
Right-Hand sides of our Workflow Abstraction rules

Figure 4.12: Graph based representation of a fragment of the Huntington’s Disease
Workflow
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• An example application of the primitive with a before and after view of a small
workflow fragment,

• The formal specification of the primitive as a graph production and discussion
of its integrity features

We shall note that these formal depiction of primitives have the following assump-
tions and restriction:

• our primitives operate over flat workflows, sub-workflows and its impact of ab-
straction primitives is left for future work .

• the iteration constructs of workflows have not been modelled, similarly left for
future work.

• in our productions we assume workflows that have been cleared of intermediary
bookmarking patterns, where an output of an activity is forwarded to a workflow
output port in addition to another activity’s input port.

• we do not specify the motif related behaviour of primitives in our formal nota-
tion. We provide information on how motifs drive abstraction in the description
of the procedural implementation of abstraction machinery (in Section 4.8).

4.7.1 Elimination

Overview Elimination primitive removes a designated activity, and its input and out-
put ports from the workflow description graph. When an activity is removed the in-
coming and outgoing dataflow links (df) would become dangling. In elimination we
remove these dangling links and replace them by indirect dataflow links (idd f ). The
indirect dataflow link is a placeholder for some “eliminated” data processing occurring
between two ports. If an activity has lm incoming and ln outgoing links we introduce
lm× ln number of indirect dataflow links upon its elimination.

Example A particular application of the elimination rule is given diagrammatically
in Figure 4.13. The left hand side displays the Host graph to which the elimination
production is applied, and right hand side show the result graph after activity Z is
eliminated.
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Figure 4.13: Before-After view of a sample application of Eliminate primitive.

Production Before presenting the productions we shall note the conventions adopted
by the GROOVE system in presenting graph productions. In GROOVE both the LHS
and the RHS of the rule are shown in a single graph. The following line visualisation
conventions are adopted to differentiate between matches and morphisms:

• Medium solid (color black): can occur on both LHS and RHS, elements that are
matched and preserved by a production.

• Medium solid dashed (color blue) : can occur on LHS, elements that are matched
and eliminated by the production.

• Thick solid (color green): can occur on RHS, elements that are created by the
production.

• Thick dashed (color red): these correspond to negative application conditions
(NACs).

• Thin dashed (color red): these correspond to quantifications of sub-productions
with universal or existential quantification.
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Figure 4.14: The encoding of the Eliminate production in GROOVE graph grammar
system.

Definition 4.6. (Eliminate) We define the production eliminate : L→ R as one, which
matches activities with a designated motif attribute and eliminates them from the host
graph. The GROOVE screenshot given Figure 4.14 depicts the eliminate production.
In the GROOVE system elements in a rule may be associated with a quantifier. The in

links among quantifiers allow the rule to be of a nested structure. The elements that are
not explicitly linked to a quantifier is considered to be linked to the (unseen) top-level
existential quantifier. A semi-formal reading of the rule in Figure 4.14 can be done
based on quantifier hierarchy as follows:

(∃) Exists match of node of type activity that is linked to a datatype node with value
“DataPreparation”, this matched activity node is to be removed.

(∀) For all input port and output port combination for the (prior matched ) activity,
matched port nodes are to be removed

(∀) For all link combinations of d f (or idd f ) link incoming to the input port
and d f (or idd f ) link outgoing from the output port of the (prior matched) port
combination, a new idd f link shall be added from the source of the incoming
link to the target of the outgoing link.

As per the definitions given in Section 4.4.2 for integrity policies, the eliminate
primitive preserves Validity, Soundness, Completeness and Acyclicity but it does not
preserve Bipartiteness. Basic proof argumentations for these are given in Appendix B.
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4.7.2 Collapsing

Composition, or the grouping together of activities is a well-known abstraction ap-
proach for workflow descriptions. The sub-workflows created manually by users, or
the Views in the earlier described ZOOM system [BCBDH08] are all based on com-
posites. Our Collapse primitive is a derivative of composition. Collapsing an activity
is a way to abstract that activity from a workflow graph by composing it with its imme-
diate upstream of downstream activiti(es) with which it shares a dataflow link. Com-
posites, in the ZOOM or the sub-workflow approaches are n−ary, i.e. they are groups
of multiple activities. Our collapse primitives define binary groupings, but when ap-
plied iteratively they have the ultimate effect of creating n− ary groups. We provide
Collapse in two forms. Collapse- Up and Collapse-Down, described in the following
sub-sections.

4.7.2.1 Collapse-Up

Overview The Collapse up primitive abstracts away a designated activity from the
graph by composing it with an upstream activity. Note that an activity can have mul-
tiple upstream activities, as per the definition of collapse up, we compose the activity
with only one designated upstream activity. As a result the collapse up primitive is a
binary composition primitive.

Example A particular application of the collapse up rule is given diagrammatically
in Figure 4.15, where activity Z is collapsed up onto activity Y . Here activities Z and Y

and their associated elements i.e. port nodes, incoming and outgoing links, are deleted
from the graph to replaced with Y ′ and associated elements. A number of dataflow
links and ports associated with Z and Y , which we call interface elements are carried
forward to Y ′ by clone nodes. (These are named after their originals with the addition
of the prime (’) suffix.). The interface elements are the following:

• inputs ports of Y : i2.

• outputs ports of Z: o4, o5.

• input ports of Z that have an incoming link from some port not belonging to Y :no
such ports in our example.

• output ports of Y that have an outgoing link to some port not belong in to Z: o3.
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Figure 4.15: Before-After view of a sample application of the Collapse-Up primitive.
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Definition 4.7. (Collapse-Up) We define the productioncollapse up : L→ R as one,
which matches an activity with a designated motif attribute and composes it with its
upstream processor. The GROOVE screenshot for this production is given in Figure
4.16. When discussing integrity policies we identified acyclicity as a desirable prop-
erty. On the other hand, as we discussed in related work [DZL11] that node grouping
is known to result in cycles. In the collapse up primitive we use Negative Application
Conditions (NACs) to prevent the application of rule to cases where activity composi-
tion would result in a cycle. The detailed discussion is provided in Appendix B. The
reading for the production given in Figure 4.16 is as follows:

(∃) Exists a match for a pair of activities (upstream and downstream), with 1) a direct
dataflow dependency between them, and 2) a link from the downstream activity to a
datatype node with value “DataPreparation”, and 3) there exists no NAC match for
the activity pair i.e. no indirect dataflow path (passing via a third activity) between the
matched pair, then activities in the matched pair are to be deleted, and a new activity
(composite) is to be added.

(∀) For all output ports of upstream activity in the (prior matched ) pair, and for all
input ports of the downstream activity in the (prior matched) pair these ports are to
be deleted.

(∀) For all input ports of the upstream activity with an incoming dataflow link from
some source port, the input port is to be be deleted and a new input port should be
added to the composite activity with an incoming link originating from the same
source port.

(∀) For all output ports of the downstream activity with an outgoing dataflow link
to some target port, the output port is to be be deleted and a new output port should
be added to the composite activity with an outgoing link from the arriving at the
same target port.

(∀) For all output ports of the upstream activity with an outgoing dataflow link to
some target port that is no the input port of the downstream activity, a new output
port should be created and added to the composite activity with an outgoing link
arriving at the same target port.

(∀) For all input ports of the downstream activity with an incoming dataflow link
from some source port that is not the output port of the upstream activity, a new
input port should be created and added to the composite activity with an incoming
link originating from the sam source port.
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Figure 4.16: The encoding of the Collapse-Up production in GROOVE graph grammar
system

The Collapse-Up primitive preserves Validity, Completeness, Acyclicty, and Bi-
partiteness but it does not preserve Soundness. Simple proof argumentations are given
in Appendix B.

4.7.2.2 Collapse-Down

Overview Collapse down primitive abstracts away a designated activity from the
graph by composing it with its downstream activities. Note that an activity can have
multiple downstream activities. Unlike the collapse-up primitive in collapse down we
create multiple composites. This is akin to the imaginary case where in the workflow
description we do not have the activity to be collapsed, instead we have its copies (as
many as the number of the original to-be-collapsed activity’s successors in the original
graph). Each such copy activity has dataflow links exclusively with one successor
activity. The collapse-down primitive creates multiple composites by grouping each
copy with its successor.
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Figure 4.17: Before-After view of a sample application of the Collapse-Down primi-
tive.

Example A particular application of the collapse down rule is given diagrammati-
cally in Figure 4.17, where activity Z is collapsed up onto activities T and U . As can
be seen from the figure, the primitive has created two composites: of Z and T as T ′,
and of Z and U as U ′. The composition rule has differences when compared to the
collapse-up primitive.

Production

Definition 4.8. (Collapse-Down) We define the productioncollapse down : L→ R as
one, which matches an activity with a designated motif attribute and composes it ex-
clusively with all of its downstream processors. The GROOVE screenshot for this
production is given in Figure 4.16. The reading for the production given in Figure 4.18
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Figure 4.18: The encoding of the Collapse-down production in GROOVE graph gram-
mar system

is as follows:

(∃) Exists a match for a to-be-collapsed activity that has a link to a datatype node with
value “DataPreparation”, and 2) a direct dataflow dependency to at least one follow-
on successor activity, then the to-be-collapsed activity is to be deleted, the input port
and the output ports of this activity are to be deleted.

(∀) For all input ports and outport nodes of the to-be-collapsed activity these port
nodes are to be deleted.

(∀>0) For all matching successor activity nodes these nodes are to be deleted.

(∃) For each such matched successor activity node a new composite activity is to
be added.

(∀) For all input ports of the matched successor node these nodes are to be deleted.

(∀) For all input ports of the matched successor node with an incoming datalink
from an external node (a node that is not the output of the to-be-collapsed) activity
a new input port should be added to the composite activity.

(∀) For all output ports of the matched successor node with an outgoing dataflow
link to some target port, a new output port should be added to the composite
activity with a dataflow link to the same target port.
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(∀) For all input ports of the to-be-collapsed activity with an incoming dataflow
link from some source port, a new input port should be added to the composite
activity with a dataflow link from the same source port.

Similar to Collapse Up, the Collapse-Down primitive preserves Validity, Complete-
ness, Acyclicity, and Bipartiteness but it does not preserve Soundness. Simple proof
argumentations are given in Appendix B.

To this end we have formally presented three primitives to abstract workflow de-
scription graphs. We will now describe our approach, named Workflow Summaries. In
the following section we discuss the general characteristics of our approach, the inner
workings of our abstraction machinery and relevant implementation details.

4.8 The Workflow Summaries Approach

4.8.1 General Characteristics

In this Section we outline the characteristics of our Workflow Summaries using the
abstraction blueprint given in Section 4.4. The reader can follow our approach’s char-
acteristics and its comparison to related work in Table 4.1.

Our abstraction machinery operates over prospective provenance specifications, in
other words workflow descriptions [BCG+12]. This decision comes from observa-
tion2 on what scientists primarily perceive as provenance. Scientists are fairly fluent
in devising workflow descriptions [HWB+12], and they have high familiarity with the
conceptualisation (vocabulary) that workflow systems provide to represent their ana-
lytical processes. Meanwhile they perceive retrospective provenance, i.e. execution
traces, often as a specialised form of technical metadata, that is at a lower-level of the
scientific tooling. When compared to their familiarity to workflow descriptions scien-
tists have very limited familiarity with retrospective provenance models. Note that the
workflow abstractions generated by our productions are not intended to be executable
workflows, but instead intended to be abstracted depictions of the analytical method or
intended to be used as views over retrospective provenance traces.

2Based on interactions with Astronomers and Bioinformaticians participating in the EU Wf4Ever
project.
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Recalling the pre hoc vs post hoc strategies outlined in Section 4.2, we argue that
our abstractions may find use for both cases. For the pre hoc case abstractions could be
used as modularisation suggestions to scientists who develop workflows. For the post
hoc case abstractions can be used as filters over lineage traces that are to be reported.

Our abstraction policies are in the form of an ordered list of < attribute, primitive >

pairs. Each such pair in the policy designates that activities with the designated
attribute should be abstracted away from the workflow graph, using the mecha-
nism of the designated primitive.

• For the attributes we use the activity functional motifs described earlier in Chap-
ter 3. Note that our abstraction machinery is not tied to motifs, and if desired
so, other activity characterisations can be used. Note that using activity char-
acteristics in the abstraction policy, means the policy is general, it is not tied to
individual workflows, and it can be reused across workflows that bear the activity
attributes (e.g. motif annotations).

• For the primitives we use the three declaratively specified graph transformation
productions Eliminate, Collapse Up and Down. Primitives allow abstraction
policies to be specified at a high level, while behind the scenes the system cas-
cades this to lower-level graph manipulations while obeying certain integrity
guarantees.

The integrity policy of our abstraction machinery is drawn from the primitives it
supports. In our three primitives Completeness, Acyclicity and Validity aspects are
un-compromised, whereas Bipartiteness (in Eliminate) and Soundness (in Collapse
Up) can be compromised. In the scope of this dissertation we do not make a detailed
assessment of which integrity policy may suit a particular provenance application sce-
nario. However based on our observations on 1) existing experiment reports and 2)
the manual abstractions encoded in workflow descriptions (discussed inline in Section
4.4.2), we hope our approach provides an appropriate selection of integrity guarantees
in the context of experiment reporting.

4.8.2 Abstraction Procedure

In Section 4.6 we represented our abstraction primitives using declarative specifica-
tions, which allowed us to more intuitively discuss their integrity guarantees (Appendix
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B). This exercise also made us aware of an important notion, called confluence, that
characterises the behaviour of a graph transformation system in terms of its output.
Confluence refers to a system’s deterministic behaviour: meaning, that given the same
input abstraction rules and same input graph, the system produces the same output
graph.

A graph transformation system is considered not confluent when transformations
(matched productions) are in conflict [TB94] with one another, henceforth the order
of application affects the ultimate output. The most common case of conflicts is the
“delete-use” conflict, where the RHS of one rule deletes the nodes matched by the LHS
of another rule. Our declarative specification showed us that our three productions (due
to their reductive nature) cause delete-use conflicts. A very simple example is shown in
Figure 4.19. Let us assume that an abstraction machinery is configured with two rules
that state activities with attribute (motif) y can be abstracted either by collapsing up or
down. When these rules are fed into a declarative graph transformation system with a
simple input (start) graph as given in left of Figure 4.19, there will be two matches m1
and m2. The matches are in conflict as the application of one disables the application
of the other. So if we choose to apply m1, then m2 is disabled and vice verse. And
depending on choice the result abstractions would be different.

This conflicting nature of productions is interesting as it brings the possibility of
alternative abstractions. Systems like GROOVE allow for the simulation of all possible
application orders of rule matches (state-space exploration). Though the size of a state-
space is exponential in the number of matches, it presents an opportunity to create and
explore alternative workflow abstractions. We have left this study for future work,
discussed in conclusions.

While we use the declarative specification for presenting primitives, in our imple-
mentation we realised them procedurally as a set of custom Java API methods. Each
method contains an implementation of the graph production readings given in Section
4.7. This choice in implementation is an engineering decision to enable easier inter-
operation of our abstraction machinery with real-world models of provenance and as-
sociated provenance management and querying infrastructures. We will now describe
the main procedure that coordinates the execution of individual productions with re-
spect to a given abstraction policy. Following the procedure description we will revisit
our discussion on confluence. Our abstraction machinery M operates a brute-force
procedure given in Algorithm 1.
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Figure 4.19: Two conflicting rule matches. And results of different application order.
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• The MainLoop of M receives as input 1) an abstraction policy and 2) a work-
flow graph to be abstracted. Within this procedure we iterate over the list of
rule pairs (< moti f , primitive >) in the abstraction policy. Per pair we call the
ExhaustRule procedure to apply all matches of the rule to the workflow graph.
We reiterate over the rule list, until there are no further changes made to the
graph by the application of any rule in the list.

• The ExhaustRule procedure receives as input 1) the workflow graph being ab-
stracted 2) the motif of a rule pair 3) the primitive of a rule pair. Similar to
the main loop it adopts a brute-force approach. Recall that our abstraction
policy is specified in terms of motif attributes, and does not refer to individ-
ual activities in the workflow graph. This procedure first obtains a materi-
alised list of activities that are a potential match for the given rule by calling
the GetActivitiesWithMoti f function. For each activity in this list we call the
MatchAndApplyProduction function, which performs the following: 1) obtains
the true match for the rule, by checking for the existence of the LHS pattern for
the designated graph primitive (as outlined in Section 4.7) 2) applies the match
if exists and 3) returns true or false depending on whether a match has been ap-
plied. We continue iterating over the activities with matching motifs until we
apply one match for that motif. Once a rule application (hence manipulation of
the work f lowGraph) occurs, then we refresh the list of activities with the des-
ignated motif and iterate over it to try to find another match. If we encounter the
case where no application occurs for the list of activities, then it means this rule
(motif-primitive pair) has been exhausted for the time being.

Due to its procedural implementation, our abstraction machinery, M, shows de-
terministic behaviour. To argue for this we need to establish that whenever inputted
the same abstraction policy and same workflow graph our procedure creates the same
unique order of matchAndApplyProduction(w f Graph, primitive,activity) calls. As
per the iterative nature of the procedure the factors that determine procedure call order
are the order of (rule and activity) lists that are iterated on. We assume that the rule
list in the abstraction policy is ordered. To ensure that the list of activities that match a
given motif, i.e. the result of function getActivitiesWithMoti f (w f Graph,moti f ) func-
tion is the same for the same state of the w f Graph, we use ordering construct in the
RDF Queries that underpin this function.

Finally we discuss how we handle motif information during abstraction. The be-
haviour of our primitives in this regard is as follows:
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Algorithm 1 Brute-Force procedures for applying an input abstraction policy to a
workflow graph.

procedure SUMMARISER MAIN LOOP(abstractionPolicy,w f Graph)
do

changesMade← f alse
for Each pair R in abstractionPolicy do

changesMadePerRule← EXHAUSTRULE(w f Graph,R.moti f ,R.primitive)
if changesMadePerRule then

changesMade← true
end if

end for
while changesMade

end procedure

procedure EXHAUSTRULE(w f Graph,moti f , primitive)
ruleApplied← f alse
ruleExhausted← f alse
do

Activities← GETACTIVITIESWITHMOTIF(w f Graph,moti f )
aMatchApplied← f alse
for Each activity in Activities do

applied← MATCHANDAPPLYPRODUCTION(w f Graph, primitive,activity)
if applied then

aMatchApplied← true
ruleApplied← true
break

end if
end for
ruleExhausted←¬aMatchApplied

while ¬ruleExhausted
return ruleApplied

end procedure
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• Elimination simply removes activities from the graph, so motif handling is not
required.

• For the collapse case new activities, that replace a binary group of activities, are
introduced. Here the new activity inherits the motifs of both activities it replaces.

Our primitives are designed to abstract away designated activities in the workflow
graph. The abstraction policy is therefore a specification of uninteresting activities.
The others, i.e. those do not have the designated motifs, or do not have any motif
information at all, are considered landmarks (significant steps). The abstraction proce-
dure is therefore designed to abstract away uninteresting activities but keeps landmarks
intact. As per the behaviour identified above, an insignificant activity may be collapsed
onto a landmark activity, and the resulting activity would have the motifs of both. To
prevent abstraction machinery from sweeping away this group, which involves a land-
mark, but also bears the motif of an uninteresting activity, we note this group as a
landmark.

4.8.3 Implementation

We have used the Wfdesc [BZG+15] ontology for representing workflows in an ab-
stract technology independent manner. For testing we used the Scu f l to W f desc con-
verter utility 3 to convert Taverna workflows into Wfdesc representations. The outputs
of abstraction are also specified in Wfdesc model. One of our primitives (Eliminate)
introduces a modelling construct not directly available in Wfdesc, which is the indirect
dataflow idd f . We have added this modelling element by extending the Wfdesc ontol-
ogy. We have used the Jena library for storing Wfdesc RDFs. For querying we have
used SPARQL [PS08] queries and for graph manipulation we have used the Jena API.
The abstraction policies have been represented with a simple XML configuration file,
example policy files used in our evaluation are given in Appendix C. The sources for
the abstraction framework can be found in the code repository at [Alp15b].

4.9 Evaluation

We assess Workflow Summaries from two main perspectives:

3Developed by the Wf4Ever project [SRHB14].
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1. We showcase and compare the capabilities of the Elimination and Collapse prim-
itives in reducing structural complexity of workflow description graphs, as well
as their capability in reducing the structural complexity of retrospective prove-
nance views (in case the abstracted workflow used as a view over workflow exe-
cution traces).

2. We asses whether our approach of building abstraction policies on activity char-
acteristics, where we capitalise on the frequently recited “ adapters/shims are
uninteresting” assumption, can be sustained against real-world abstractions of
users.

In our evaluations we use two different workflow cohorts, and three different ab-
straction policies. We will now describe these before discussing individual assess-
ments.

4.9.1 Workflow Cohort

We have used two different workflow cohorts:

• Set 1: These are a group of 27 Taverna-2 workflows. In terms of their num-
ber of activities these workflows are medium sized (An average of 14 activities
per workflow ), and they are flat (contain no sub-workflows). All workflows
in this set have narrative summaries in their landing page in the myExperiment
workflow repository.

• Set 2: These are a group of 78 Taverna-2 workflows. This set corresponds to
workflows slightly larger than those in Set-1 (Average 17 activities per work-
flow). Distinctively, these workflows have sub-workflows, and they are 1-level
deep; meaning that the sub-workflows they contain do not contain any further
sub-workflows. To obtain this set we have inquired the myExperiment reposi-
tory for workflows that are 1-level deep and contains significant amount of ab-
straction, which we translated to the following filters: 1) at the top level (level-0)
these workflows embody more than one sub-workflow 2) the number of activi-
ties found in sub-workflows (i.e. activities at level-1) are greater than or equal to
the number of activities at level- 0.



188 CHAPTER 4. WORKFLOW ABSTRACTION

All 105 workflows have been manually annotated with activity functional motifs
using the Taverna’ systems textual workflow annotation feature and a custom repre-
sentation, which have programmatically converted into well-formed RDF based an-
notations as the ones exemplified in Section 3.7. Workflows in test set and all sup-
plementary material for this chapter can be downloaded from the myExperiment pack
[Alp15a].

4.9.2 Abstraction Policies

Abstraction policies are used to define behaviour for abstraction machinery. Policies
are comprised of a motif component and a primitive component. With regards to the
primitive, in the scope of this evaluation we have used policies based either entirely on
Elimination or entirely on Collapse. We have not explored the effects and outcomes of
using the combination of primitives (left for future work). With regards to the motif,
we have targeted shim or adapter steps in workflows, which corresponds to those that
have the Data Movementand Data Preparation motif (or sub-motifs) with respect to
our motif ontology. We believe this policy is reasonable to be explored as a default
policy as the insignificance of adapter steps have been underlined several times in
literature [BCBDH08] [DZL11]. Moreover for the workflow Set-1, when we inspected
the textual descriptions of 27 workflows, all descriptions referred to DataRetrieval,
Data Analysis or Data Visualisation capabilities within workflows. Meanwhile the
adapter functions were all transparent in the descriptions. Only in 4 out of 27 workflow
descriptions were there one specific reference to adapter steps in workflows.

We used the following two policies for evaluation (respective configuration files
are given in Appendix C):

• Abstract-All-Adapters-By-Elimination: This policy states that all activities
with the
Data Preparation or Data Movement motif, should be eliminated.

• Abstract-All-Adapters-By-Collapse: This policy states that all activities with
the
Data Preparation or Data Movement motif, should be collapsed either up or
down. We establish this by providing rules first for collapsing up followed by
rules for collapse down.

Additionally we use a third policy, named Abstract-Selected-Adapters-By-Collapse,
to showcase that we can replicate the user’s abstraction behaviour for certain classes
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of workflows. This policy is intended to abstract less aggressively, more mindfully
based not only the functional characteristics of adapters but also the characteristics of
their inputs and outputs. Here we encode a rule-of-thumb in the policy regarding the
reporting-friendliness of data:

• Data that is stripped of resource specific padding is preferable. Consider as
example the result of an analysis in raw web service XML response form, versus
a form stripped of tags and padding. To implement this preference the policy
states that Augmentation steps should be collapsed down (input preferred), and
Extraction steps should be collapsed up (output preferred).

• Data with reduced cardinality is preferable. More specifically a singleton item
instead of a collection is preferred, due collection being more structural complex.
To implement this preference the policy states that Flattening steps should be
collapsed up (output preferred), and Splitting steps should be collapsed down
(input preferred).

4.9.3 Understanding Reductive Effect of Primitives

When presenting the Workflow Summaries approach we anticipated that workflow ab-
stractions can have two possible uses: 1) to stand-in as simplified depictions of the
analytical method or 2) to be used as views over execution provenance traces. To as-
sess the reductive effect of primitives we measure the change in the following structural
features:

• At the workflow description level we measure the decrease in the number of
Steps and Dataflow Links (d f or idd f ) among steps.

• When an abstracted workflow is used as a view over the execution provenance,
an important feature is the reduction in the data derivation account(s) obtained by
traversing this view. As an indicator of structural simplification we measure the
reduction in the number of distinct Data Artefacts and distinct Activities that
one would encounter when traversing the execution provenance using abstracted
workflows. Workflows often have a particular dataflow path that represents the
main branch of data processing, main path may be supported by several other
auxiliary paths. In this assessment we considered the path in workflows with the
largest number of significant activities as the main path. So, therefore we look
at the reduction of elements in the data derivation account for the main path.
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The percentage reduction in structural elements for workflows of Set-1 using the
Collapse-All and Eliminate-All policies is given in Figure 4.20. A sample workflow
from this set and the result of application of Eliminate-All and Collapse-All is given in
Figures 4.22, 4.23, and 4.21 respectively. We can make the following observations on
these results:

• The amount of abstraction that will occur is dependent on the occurrence of
motifs that have been targeted in the abstraction policy. As our test cohort is
comprised of Taverna workflows. It is unsurprising that reduction obtained in
the number of steps (63 in Collapse, 68 in Eliminate in Figure 4.20) is close the
rate of occurrence of adapter motifs in Taverna workflows.

• Elimination can abstract away steps at a slightly higher level than Collapse (68 vs
63). Cycle prevention prohibits certain collapse abstractions, the adapterGroups
in Figure 4.21 have remained separate groups due to cycle prevention, whereas
in Eliminate no such preventions needed.

• The dataflow links are reduced at a percentage lower than that of steps (38 vs 63
for Collapse, 36 vs 68 for Eliminate). This is simply due to links that exclusively
connect steps in workflows, account for only a part of all links. There are also
those that link workflow inputs to steps and those remain intact during abstrac-
tion. Elimination can result in an increase in the number of dataflow links in
cases where the product of incoming and outgoing links of an activity is greater
than their sum (Recall from Section 4.7.1). Such a case would occur for activi-
ties that have multiple unlinks fanned-in and multiple out-links fanned out. We
observed such an increase in a few abstractions in our results. However the small
difference between the average link reduction among two strategies (i.e. 38 for
Collapse, 36 for Eliminate ) show that activities with the fan-in & fan-out pattern
are a rare sight in our test cohort.

• To understand what abstraction implies in terms of execution provenance we
look at the number of processes and data on the main path (the account of deriva-
tion from output through to contributing input). The reduction in the number of
steps in workflow description finds reflection as reduction of processes on deriva-
tion path (63% to 62% in Collapse, 68% to 68% in Eliminate in Figure 4.20).
When we look at the reduction of data artefacts, we see that in Collapse pro-
cess reduction implies data reduction (55%), but for Elimination, data reduction
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Figure 4.20: The structural reduction in provenance obtained by using the Eliminate
All and Collapse All policies.

is rather limited (32%). This is due to the idd f data links. Inspect the ab-
straction created by Eliminate-All in Figure 4.23. Here the reduced (abstracted)
account of derivation involves entirely idd f links. Each end of an idd f link
corresponds to a distinct data artefact, because each end represents data input
to and output from some abstracted computation. Therefore, the derivation path
for Found genes by xre f involves 3 idd f links and 6 data artefacts. Whereas
in the Collapse-All abstraction (Figure 4.21), there are d f , direct dataflow links
among activities. Each such link manifests as a single data artefact in execution
provenance. Therefore, even though the derivation path is process-wise longer
in Collapse-All abstraction it is more compact data wise. It contains 4 d f links
and therefore derivation contains 4 data artefacts.

4.9.4 Matching Against User Abstractions

We now assess how much our abstractions agree with the abstractions manually created
by users (during workflow design). We use Set-2 (nested workflows) for this assess-
ment. We take the user abstractions as ground truth: this involves the ports that the user
has chosen to retain (keep visible at top level) in an abstraction, which corresponds to

1. output ports of activities at the level-0 (i.e. ports of activities that have been kept
at top level, not pushed back to sub-workflows),
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Figure 4.21: Abstraction generated by Collapse-All policy

Figure 4.22: A sample workflow from Set-1 with abstractions of Collapse-All policy
superimposed.

Figure 4.23: Abstraction generated by Eliminate-All policy
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2. ports of activities in the sub-workflows that have been promoted from level-1 to
level-0.

Against this ground-truth, the average F1 scores of abstraction policies for cor-
rectly retaining the ports that the user has retained is 0.36 for Eliminate-All, 0.60 for
Collapse-All, and 0.70 for Collapse-Selected (given in Figures 4.26, 4.24 and 4.25
respectively). We can make the following observations on these results:

• Given that abstraction is a binary categorisation task determining whether an ac-
tivity (and its ports) should be abstracted or retained, even a random categorisa-
tion would yield half (0.50) a correct answer. The low F1 score of Eliminate-All
primitive shows us that, for a large number of workflows the way this abstrac-
tion primitive works represents an anti-pattern in reporting. More specifically
that the (immediate) outputs of significant activities are not reported. A signifi-
cant activity and its report worthy output may be separated by multiple activities
in a workflow. Consider as an example the HTTD workflow (Figure 4.1). While
the four web service calls are the activities with the significant Data Analysis

or Data Retrieval motifs, in neither of these calls the output data is visible
at the top level of workflow design. Instead these activities are grouped with
(Out put) Extraction type adapter that strip results from their service specific
XML packaging. Therefore it is the output of these activities that gets reported.

• The Collapse primitive is based on the grouping of tasks, so unlike Eliminate-
All, Collapse-All abstractions do not represent an anti pattern for most work-
flows. However abstractions in this category barely exceeds the expected min-
imum level of agreement, stands at 0.60. This shows us that partitioning the
workflow description indiscriminately around significant steps does not yield
the abstractions that scientists would make.

• As an alternative to Collapsing or Eliminating indiscriminately, in the Collapse-
Selected policy we have taken influence from the scientists’ abstraction be-
haviour we observed in workflows from Life Science domain (which account
for 50% of workflows in Set-2). Here the policy targets specific adapter steps,
and abstracts them away depending on the reporting-friendliness of their input
and output. We observe that abstractions with this policy has significant overlap
with user abstractions (see Figure 4.25).
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Figure 4.24: Mean F1 Score of Collapse-All Abstractions against User Abstractions,
and its frequency distribution

Figure 4.25: Mean F1 Score of Collapse-Selected Abstractions against User Abstrac-
tions, and its frequency distribution

Figure 4.26: Mean F1 Score of Eliminate-All Abstractions against User Abstractions,
and its frequency distribution
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Figure 4.27: F1 Score versus Percentage Reduction in Number of Steps in Workflows,
for all policies.

4.9.5 Discussion

Based on our observations from the evaluation we will now have a critical discussion
on whether and how our abstraction approach may find use. Our primitives cater for
two different means of abstraction.

First is by retaining significant activities (and their input/output ports), while
eliminating others. An important finding from our evaluation was that in real-word
workflows a report-worthy activity may not always be co-located with the reporting-
friendly version of its input/output data. Because our Elimination approach operates
under the such an assumption, while it can create workflow abstractions, these ab-
stractions poorly overlaps with user abstractions. In fact early work on traversing or
querying provenance traces have often operated with similar assumptions [MPB10]
[ABML09], allowing as part of a view/filter definition, to denote either data or activ-
ity points of interest, but not separated activity and data elements in relation to one
another. The ZOOM approach reviewed earlier is also affected by this reality of work-
flows, as it puts the boundary to a group right when it encounters a significant activity.
The mismatch between our assumption in designing the Eliminate primitive and the
realities of workflows reduces its applicability for reporting data, where abstraction is
used as a view over execution provenance.
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Despite restrictions, there can be room for using elimination based abstractions
when sharing workflows in workflow repositories. Recall from Chapter 3 that a large
number of workflows shared in repositories are flat, and these have limited narrative de-
scriptions, within which only references to significant activities are made. Abstraction
can find use as a post hoc simplification mechanism to generate simplified depictions of
the experimental process, snippets [ESLF09], to go along with narrative descriptions.

Second mechanism of abstraction is by grouping. Our observation over existing
workflows showed that grouping is a versatile mechanism as it not only simplifies the
process by creating clusters around significant activities, but also acts as the contextual
glue that links a significant activity with the reporting-friendly version(s) of its input
and output data. In our approach we achieve the creation of groups with the collapse
primitive. Note however that our policies do not specify top-down the groups and the
activities that should go into groups. Instead we build groups bottom-up by giving a
certain cohesiveness to adapter activities by associating with them a preference to be
part of an upstream or downstream group. Larger groups then become a byproduct of
repeated application of cohesiveness-based binary groupings. Our evaluation showed
that using the collapse primitive we can abstract workflows, and abstraction can overlap
significantly with user abstractions for certain cases, where the grouping decisions can
be translated into an adapter cohesiveness based policy (the Life Science domain).
There are obviously certain limitations with this approach

• Our means of grouping indirectly by sweeping adapters onto nearby landmark
(significant) activities does not cater for several cases where groups can be based
on the contextual relatedness of two (or more activities). An example is the
State f ul Invocation motif, where multiple adapter, or non-adapter activities may
take place to serve one high-level function. Another example is groups com-
prised entirely of adapter steps, representing an adapter component. Our sim-
plistic way of achieving groups would not cater for the creation of such group-
ings.

• While we demonstrated that simple grouping rules-of-thumb were encodable for
Life Science workflows, we need to check whether encodings for other domains
are possible. Our experience with workflows show that grouping preferences dif-
fer starkly among domains. While in web-service based life science workflows
the datasets wrapped in XML padding are rarely reported, in the Astronomy
domain the XML wrapping for the data is a standardised domain format called
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the VOTable format [OWD+04], and this form of the data is preferred for other
forms occurring within the same workflow.

Despite these limitations, we see use for collapse based abstractions as sub-workflow
suggestions to scientists during workflow design.

In designing the Workflow Summaries approach we paid particular attention to
having thin and mobile abstraction policies. We strive for a thin policy, not demanding
too much input from user, because the effort that goes into designing a thick policy
may as well be used to encode those abstractions into workflow designs. Similarly
designing a fixed (immobile) policy, that refers to specific activities in workflow cannot
be reused across multiple workflows. The cost of having thin policies is

• having imperfect abstractions, or those that do not overlap fully with what users
would have devised. We saw that abstractions can (in cases) be improved by
specialising the abstraction rules in the policy to denote how specialised adapter
activities ((Input) Augmentation, (Out put) Extraction) should be acted upon.

• the requirement to have attributes of activities, in our case motif annotations, to
be able to refer to those attributes in the policy. For our evaluation we annotated
the workflow cohort manually using the motif ontology. Overall effort amounted
to 40 person-hours, corresponds to 0.5 person-hour annotation effort per work-
flow. Recall from the ENM workflow that the effort that goes into the design of
workflows can be significant, when compared to design, the cost of annotation
is minor. It is also possible to make annotations over description of activities in
registries or module libraries and then propagate those annotations to activities’
occurrences in workflows.

In our default policies and evaluation datasets we refer to Motifs to identify activities
to be abstracted. Meanwhile our abstraction framework has no particular dependency
on the Motif vocabulary. In case activities have characteristics (attributes) that can be
referred to these can be used in the abstraction policies.

4.10 Chapter Conclusion

In this chapter we described our approach to tackle provenance complexity. We out-
lined the complexity problem in the context of experiment reporting, and identified
the various categories of artefacts for which complexity can be defined. Among these
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categories we have chosen to tackle structural complexity of workflow descriptions
through a graph transformation based approach. We provided a comparative review of
the state of the art on computationally-assisted abstraction of provenance.

In our approach we view workflows as graphs, and abstraction as a graph transfor-
mation activity. Therefore we first provided formal background necessary to represent
workflows as graphs and the workflow abstractions as algebraic graph productions.
Using the formalism introduced, we described three primitives (productions) for ab-
stracting workflows. We showed how primitives, as building blocks, can be used in
conjunction with activity functional motifs to encode abstraction policies. We assessed
the effectiveness of our approach through experimental evaluation using real-world
workflows from the Taverna system. The future work will be discussed in Chapter 8.



Chapter 5

Provenance Driven Data Selection

5.1 Chapter Introduction

When outlining the Provenance Gap in Chapter 2 we observed that in order for work-
flow provenance to support reporting:

• the factorial-design of a computational scientific analysis gets reflected in work-
flow descriptions (prospective provenance) and execution provenance (retrospec-
tive provenance),

• both prospective and retrospective provenance is exploited to support result ac-
cess, comparison [CFS+06], and presentation [ABML09][BDKR09].

In Chapter 2 we identified complexity, genericity and mixed-granularity as char-
acteristics that hamper provenance exploitation. We tackled complexity with work
presented in earlier Chapters 3 and 4. Where we identified the cause and extent of
complexity in Chapter 3 and provided abstraction techniques for workflow descrip-
tions, which are commonly used as views when presenting provenance.

In this chapter we take the initial step in tackling genericity and mixed-granularity

by identifying the how these characteristics hamper provenance exploitation for result
access. More specifically we provide a concrete case of result access through querying
of provenance, which we earlier identified as Provenance Driven Data Selection. Using
this case we identify concrete problems in mixed-granularity and genericity, for which
solutions techniques are provided in follow-on Chapters, 6 and 7 respectively.

We start in Section 5.2 by briefly recalling the Provenance Gap. In Section 5.3.3
we provide a case study using a real-world workflow, where we explore the utility
of standard-provenance to answer provenance driven data selection queries. The case
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study shows us that workflows are of limited use for reporting results, in part because
traces do not comprise domain-specific annotations needed for explaining results, and
the granularity of provenance may not match up to the granularity of experimental
parameters, which are important reporting anchors. The architectural overview of our
solutions to these problems is presented in Section 5.4.

5.2 Motivation

When reporting their analyses scientists are expected to make available the datasets
used and produced and provide information on the context and source of data.

• Reporting origin Emerging reporting guidelines state that data shall be de-
posited to respective repositories, and data reports (metadata tables describing
data) shall have citations in them pointing to those repositories [nat15]. More-
over guidelines also state that if any data product from an investigation is a
derivative of, or built using prior shared data then citations to those original
datasets should also be provided [Dat11].

• Reporting context For the datasets produced in an investigation the data’s con-
text, i.e. the conditions under which it has been generated needs to be pro-
vided [fSDSC02]. This requirement involves identifying experimental parame-
ters, configurations, input datasets, how parameters have been combined to con-
figure the experiment [TFS+08].

In our review of existing experiment reports in Chapter 2 we saw that these two
high level requirements break-down into lower level requirements on how analyses are
to be represented (factorial design), how analysis traces are to be used (provenance
driven data selection), and the expected nature of descriptions of data (domain-specific
information). We briefly recall challenges that workflow provenance poses in each
category:

Factorial Design Scientific workflow systems provide constructs, with which fac-
torial aspects of experiments can be encoded within a workflow. Our comparative
review in Section 2.8.2 showed that workflow systems like Taverna provide high level
of support in this regards, with the ability to 1) model data and parameters as collec-
tions not only in workflow descriptions, but also consistently so in workflow execution
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provenance 2) iteratively apply analysis over collections, 3) to configure iterations over
multiple collections, thereby enabling the exploration of the data/parameter space cre-
ated by multiple collections of parameters. The high-level of support and flexibility
brings certain challenges. Systems like Taverna give users full control over factorial
design, meanwhile it has no restrictions in place to check whether such a design is
encoded end-to-end in a workflow. Scientists may cause breaks in factorial design
when they configure the workflow in a way that would cause an analysis activity
consume at once multiple data generated with multiple points in the input param-
eter space. In such cases it is no longer possible to differentiate result data products
based on the parameters they descend from. A broken factorial design would man-
ifest itself with the data-wise n− by−m pattern in the execution provenance traces.
Factorial designs may be compromised either.

• intentionally, when external analytical resources are coarsely integrated into work-
flows. Scientists may submit data from multiple parameters to an external re-
source all at once to reduce resource access cost.

• inadvertently, by errors in design.

A method to guarantee health of factorial designs could be being restrictive, an ap-
proach we observed in the Vistrails workflow system [CFS+06]. Vistrails supports a
restricted form of factorial design, by 1) outlining the parameter space in terms of a
cross product of a pre-determined set of parameter lists, and 2) re-running the entire
workflow with parameters from this space. This way Vistrails guarantees that all out-
puts generated from a particular run of a workflow are traceable to a pre-determined
parameter combination.

Provenance-Driven Data Selection (PDDS) PDDS is used to select data subsets of
interest for reporting. Given that constructs are in place for factorial design, and that
analyses within the workflow are repeated per input/configuration then one can per-
form PDDS using workflow execution provenance. Data lineage is the key enabler
of PDDS as it allows provenance consumers to trace experimental configurations/pa-
rameters through to corresponding results. PDDS implies the following access pattern
over provenance graphs:

1. seek input parameter/data nodes of interest,

2. traverse lineage to reach outputs derived from selected inputs.
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When illustrating workflow models with Wfdesc [BZG+15], and provenance mod-
els with PROV [BDG+12], we mentioned their generic nature. These models present
a world view comprised of processes and their ports at the workflow description level;
and similarly talk about activities and data at the execution provenance level. Given
a workflow execution trace captured by a generic provenance model, Step 1 of PDDS
needs to differentiate between opaque data nodes in the graph. To do this one re-
quires attributes to predicate on, to define nodes of interest. The common way to refer
to nodes is predicating on generic attributes such as names (e.g. names associated with
port nodes in a workflow description or roles that qualify a data node’s involvement
with an activity in execution provenance) [ZSM+11] [SKS+08] [KDG+08]. Another
way to pinpoint data nodes is to refer to data values. As discussed in Section 2.8.2, such
value-based node identification is only possible when data values are stored jointly
with provenance information, a data management pattern not adopted by all workflow
systems. The success of Step 2 of PDDS depends on the health of the encoding of
factorial designs, ensuring discrete traceability from parameters to respective results.

Domain-specific information In Chapter 2 we observed that domain specific infor-
mation is a quintessential part of an experiment report. We observed that scientists
supplied such information either using structured annotations (e.g. ontologies, vocab-
ularies as in ISA-Tab example) or using unstructured annotations (e.g. column and cell
descriptions in the ENM example). On the workflow provenance side, explicit domain
specific information is by default absent. Workflow provenance models are generic and
aim to capture the computational process that has led to the derivation of an artefact.
These models pose no obligation on documenting what the domain specific character-
istics of the activities and the data are. Therefore the common mechanism of obtaining
these description is by manual annotation. Also note that domain specific information
is typically available implicitly in (above described) generic attributes like names and
roles, or found in data values.

In the following section we will illustrate a PDDS scenario with a real-world work-
flow and sample queries. Our aim in giving this example is to

• provide a glimpse into capabilities of Taverna system for factorial design

• illustrate a case of broken factorial design and show how this affects the precision
of answers to PDDS queries
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• motivate the need for domain-specific descriptors for data, which in their ab-
sence are substituted by generic attributes, data values, and structural patterns in
provenance.

5.3 Case Study

5.3.1 Factorial Design in Taverna

Figure 5.1 illustrates a simplified version of a workflow from Astronomy [Exp12] that
takes as input a set of galaxy names (list cig name), and outputs extinction/reddening
calculations per galaxy (data internal extinction). The workflow starts by retriev-
ing data, including coordinates, for each galaxy through a service based lookup from
the Sesame astronomical database (Step-1- SesameXML). Coordinates are used to
query the Visier Database to retrieve further data regarding galaxies (Step-2- V II 237).
Galaxy morphology information is extracted from the Visier results, which is input to-
gether with coordinates into a local tool that computes galaxy extinction values (Step-
3-calculate internal extinction). The scientifically significant activities in this work-
flow are the data retrievals and the local extinction calculation. The remaining activ-
ities are adapters, which perform (Out put) Extraction, Format Trans f ormation and
Data Moving. In Figure 5.2 we provide an illustration of the execution of this workflow
with two input galaxies.

Following from the two figures, we can summarise the factorial design constructs
provided by Taverna as follows:

• Factorial design depends on the ability to define a parameter space for the ex-
periment. In our example the input list of galaxy names defines such a space.
The intent is to repeat the analysis per input galaxy. Our example also illus-
trates the case where the parameter space gets expanded during the execution
of the workflow. From Figure 5.1 we see that the output of the coordinate re-
trieval operation (Step-1) is used as a parameter for the follow-on activities, the
retrieval of galaxy information (Step-2) and the calculation of Galaxy extinction
values (Step-3). The coordinate retrieval operation (Step-1) expands the param-
eter space comprised of galaxy names, into a space of galaxy coordinates.

• Taverna implements parameter spaces by supporting structured types, more specif-
ically nested collections for data. In the workflow description (Figure 5.1) the
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Figure 5.1: Sample workflow from Astronomy developed by the Wf4Ever project.
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workflow input list cig name is defined to be a List of depth 1. Note that this
fine grained modelling is consistently reflected to workflow execution traces,
meaning that for a particular execution of the workflow the actual input list of
galaxy names will be a Collection type entity, and it will have member entities
representing each input galaxy name (see input list comprised of strings M31
and M33 in Figure 5.2).

• Taverna allows the exploration of the parameter/data space (identified by input
lists) through its configurable iteration capability. Iteration (or repeated applica-
tion of analyses) is achieved by exposing an analysis operation with input that
is of bigger cardinality than its expected input. The SesameXML activity in
Figure 5.2 represent the simplest case of iteration. By definition SesameXML

processor accepts and returns singleton items. But in the execution illustrated it
is exposed to an input collection with two galaxy names. This is called Iterated

Composition in Taverna, and as per its execution semantics the analysis activity
will be iteratively applied to each item in the input list resulting in an output list
with two galaxy information strings. A more complex case of iteration is in case
when an activity accepts input from multiple input ports, then, how iteration will
occur over these lists can be configured via Dot product and Cross product con-
figurations. This is illustrated with the V II 237 processor, which by definition
accepts two singleton inputs (coordinates) and returns a singleton output (galaxy
info) (Figure 5.1). The iteration configuration for this processor states that in
case it encounters lists at its ports rather than singletons it should find its input
pairs by creating dot product of input lists, consequently in our example run
(Figure 5.2) we see that this activity consumes same indexed items from each
input list.

Let us now look at how factorial design is broken by inspecting Figure 5.2. The
scientist intends to repeat the analysis for each input galaxy, and in turn for each co-
ordinate associated with that galaxy. So, by adopting iteration, the workflow is able to
obtain galaxy coordinates in an XML form (SesameXML step), and then extract galaxy
coordinates per XML file (Extracting RA and Extracting DEC steps). Up until this
point we are able to trace every data artefact back to the corresponding galaxy name
parameter. At the Flatten List step however, factorial design breaks. At this step all
coordinates for all galaxies are bundled into a single list via a single invocation of the
Flatten List step. By inspecting the follow-on structure of execution we understand
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that the workflow designer has inadvertently created this design mishap. Because we
observe the follow on Visier DB lookup step (V II 237) is iterated over the bundled up
list of coordinates. So if the designer iterated the Visier DB lookup over the nested lists
instead of the flattened list, we would be able to tell which output(s) of Visier lookup
correspond to which input galaxy name.

Note that the occurrence of broken factorial design in execution traces is not just
observable in Taverna provenance. As identified in our survey of workflow systems
in Chapter 2, Kepler COMAD and Wings workflow systems provide constructs for
factorial design (i.e. modelling of parameter/data collections and iterated analyses),
meanwhile, they provide no restrictions on how those constructs are put together. As a
similar patterns may occur in traces from these systems.

5.3.2 Provenance Queries for Data Reporting

Provenance Driven Data Selection (PDDS) corresponds to exploitation of provenance
for the exploration of result space of a workflow-based analyses. The “seek node
and traverse lineage” pattern of PDDS identified in Section 5.2 uses provenance as a
scaffold to reach results of interest. Provenance applications exemplified in Chapter 2
such as the result comparison feature of Vistrails [CFS+06], or the Provenance Browser
of Kepler [ABL10] all rely on provenance query scenarios involving the pattern of
PDDS.

In order to obtain a set queries representative of the PDDS pattern we consulted
the provenance literature. The work of Zhao et al [ZSM+11] and the Provenance
Challenge [MLA+08] stood out as systematic query collections.

• Zhao et al [ZSM+11] enriches workflow provenance by 1) semantic annota-
tions regarding domain-types of data and activities and 2) external community-
accumulated information on scientific subjects (e.g. a gene, a galaxy, a species)
for which data analysis has occurred. Authors provide seven queries; Four of
them are focused on reaching out to external information available as Linked
Open Data (LOD) for the life science community. The remainder three are fo-
cused on querying workflow traces; more specifically they exploit lineage to
reach results that are obtained for certain scientific subjects and or the origin
of data/parameters that have been supplied from external repositories through a
Data Retrieval step. We have made an adaptation of these latter group of queries
when building our case study queries.
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Figure 5.2: A fragment of execution illustrated for the Astronomy workflow.
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• Provenance Challenge [MLA+08] is a joint effort of computer scientists to es-
tablish a case that can be used to understand the capabilities of different prove-
nance systems. The case involves a Medical Imaging workflow and nine queries.
Three of those are focused on process and seeks process structure and details
from provenance. Two queries focus on joint querying of user-added annota-
tions and provenance, another one focuses on workflow-evolution and involves
provenance graph comparison. Finally three of them focus on data. Similar
to Zhao’s queries these focus on selecting results based on the parameters they
are derived from. In devising our queries we have made adaptation from these
queries (particularly Query #6) of provenance challenge.

We illustrate PDDS with three queries. Q1, Q2 are adapted from [ZSM+11], and
Q3 is an adaptation of from of challenge Query #6 [MLA+08].

Q.1 Which of the results are coordinates obtained from the Sesame database, from which
source catalogs are the coordinates obtained.

Q.2 Select all results that have been obtained with inputs belonging to the Andromeda
Galaxy.

Q.3 Select extinction calculation results that are obtained with inputs belonging to the
Andromeda Galaxy, where the morphology parameter setting was 0.45.

Table 5.1: Sample Queries for Provenance Driven Data Selection

We will now analyse if and how these queries can be implemented with PDDS
and their effectivity. To measure effectivity we use Contextual-Precision, which we
define as:

# o f Contextually-Accurate results
Total # o f results

We define Contextual Accuracy as the results actually belonging to the scope
implied by the query (e.g. for Q1 the results that actually contain data that is retrieved
from the Sesame database, or for Q2 the results that do indeed belong to galaxy M31).

We refer to our realisations of queries with the “-P” suffix denoting that they have
been implemented over PROV-compliant traces obtained from the Taverna system.
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Figure 5.3: Contextual-Precision of provenance driven data selection queries.

These are generic traces capturing activity invocations, data artefacts and the usage and
generation relations among data and activities (as exemplified in Section 2.6.3). Used
traces do not contain any explicit domain specific characteristic of data or activities.

Q1-P This query is in two parts; first part seeks data by its origin second part seeks
detailed information on the origin. We can realise this query partially:

• for the first part the intent is to obtain data that represents a result from the
Sesame database or its local copies generated by adapter steps. Here we use
lineage as a pseudo (replacement) mechanism to denote data origin. We seek
data artefacts, whose derivation path includes the activity named SesameXML,
which we know accesses the Sesame database. Roughly one third of the results
whose derivation path includes a Sesame DB lookup actually contain data that is
retrieved from Sesame (See Q1 precision in Figure 5.3). Remaining two thirds
of results are those that are computed through analyses by using the data
obtained from Sesame. As workflow activities are observed as black-boxes
by provenance collection framework we have opaque lineage that tells us there
is some influence relation among data artefacts but falls short of differentiating
between:

– a derivation relation based on value-copying.

– a derivation relation based on any other analytical computation

Designating origin via path based linkage to an element identified in workflow
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design is weakly precise, yet it is robust to increases in the workflow inputs.
Increasing the number of galaxies in a workflow run does not alter the fact that
only one thirds of outputs are copies of data from the Sesame Database.

• the source catalog information sought in the second part of query is available
within some of the data values, i.e. in the XML output of the SesameXML

activities, there is a field that specifies the catalog (the relevant subpart in Sesame
DB) that the result comes from. However when these results are stripped of
their XML padding the catalog information is no longer associated with retrieved
coordinates (outputs of the Extract RA and Extract DEC steps). Therefore this
part of the query cannot be implemented.

Q2-P Given that the workflow designer has attempted to parameterise the workflow
with a list of galaxy names, this query seeks to find all (intermediary and final) results
that descend from one parameter, i.e. M31, Andromeda Galaxy. We realise this query
by seeking the input data node with value M31 and then traversing the execution trace
to find all downstream data products that are derived from it. Figure 5.3 shows the
contextual precision for this query. In response to this query, for data generated post
Flatten List, we would get results obtained for all galaxies rather than just M31, as
all results are linked to M31 via a single invocation of Flatten List. Due to broken
factorial design provenance (lineage) becomes a weakly precise index for selecting
data when the workflow is ran with increasing number of parameters.

Q3-P This query seeks results of a particular activity, extinction calculation. This
activity takes 3 input parameters: the two parts of a coordinate and a path to the file
containing the morphology information for the galaxy. This query can be realised
only partially. The predicate stating that morphology parameter should be 0.45 re-
quires access to morphology parameter’s values. On the other hand, the extinction
calculation activity accepts as input a configuration parameter file name, rather than
the actual parameter value. This value is available in outputs of upstream adapter
steps, or in the output of extinction calculation. However within these data values,
the morphology information is present in tab delimited texts where multiple numeric
values are present. This prohibits to build a mechanism to systematically predicate
over a fragment of those texts. Therefore we implement this query partially, without
the morphology value predicate, only seeking extinction values computed for a partic-
ular galaxy’s coordinates. As extinction calculation activity accepts inputs, which are
no longer accurately traceable to input galaxy names(post Flatten List), the resulting
query precision is as equally bad as Q2-P (see Figure 5.3).
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5.3.3 Outcomes of Case Study

Our illustrative case for PDDS highlights the following issues:

Correct implementation of factorial design is key for PDDS being possible. The
way scientists design Taverna workflows determines whether factorial design will be
successfully reflected in execution provenance. Queries that seek results descending
from a particular input parameter require discrete reachability between designated pa-
rameters and results that depend on those parameters. When factorial design is broken,
this renders provenance minimally useful for certain types of queries in PDDS. A cru-
cial requirement, then, is the ability to anticipate breaks in factorial design by inspect-
ing workflow descriptions and prevent them (before they occur). Results from such a
check can be provided as feedback to workflow designers in order for them to under-
stand whether they will later be able to use provenance for data selection. For instance,
for the astronomy workflow the feedback would be “The results of this workflow are
not discretely traceable to the galaxy name input parameter. Discreteness is broken
at the Flatten List step”. Such feedback could be useful in re-factoring workflows by
users (where possible).

Domain specific information is needed for PDDS. We realised PDDS queries with
the assumption of them operating on generic provenance. In order to find nodes of
interest over such a provenance graph, we are forced to put selective criteria on data
values (Q2-P and Q3-P), or in attributes like name (Q1-P). This approach proved to
have the following disadvantages:

• Most workflow systems including Taverna, adopt a separated storage scheme
for data and provenance. As a result it is not possible to seamlessly implement
PDDS queries. In fact for queries Q2-P and Q3-P, as a precursor, we identified
which data node in the provenance graph corresponds to the M31galaxy by first
scanning through the data values stored in the file system.

• The selective criteria in our queries contains predicates over domain-specific
information implicitly available in data values, and attributes. Our implementa-
tions of these queries can therefore be considered adhoc, as there are no struc-
ture or vocabulary restrictions on query criteria targets. The informativeness of
a name for a workflow port or activity is at the disposal of workflow designer.
Names can be freely given and the same activity (e.g. Sesame database lookup)
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can have different names across workflows. Similarly in Q3-P we were unable
to implement morphology criteria part of query as the data values were not self-
describing and structured enough to allow a systematic implementation of this
criteria.

An alternative to using generic provenance is to first annotate provenance with do-
main specific information and then place query predicates over those annotations. The
Taverna system, and related tooling [HDZ+14], provides means to annotate workflows.
Using this annotation feature we can identify characteristics of workflow elements. For
instance using semantics annotations and an ontology from the respective domain we
can state that a processor is an instance of a Sesame Database lookup. These design-
bound characteristics can be propagated to workflow provenance, each invocation of
that activity would then be considered an object of the same semantic type. While
such an approach would help systematise Q1-P, it would not help with Q2-P or Q3-P.
In these queries, we are interested in dynamic characteristics of data nodes that get
determined at runtime. For instance, each input data node containing a galaxy name is
an object of the same semantic type, yet each such node contains information about a
different galaxy. In order to unearth these dynamic characteristics we would have to
annotate elements in the provenance trace. Unlike annotating workflow descriptions
[MSZ+10] [WKM+10], annotating workflow provenance quickly ceases to be a man-
ageably sized task when workflows are parameterised with input parameters. For our
example, for a single galaxy, a total of 17 final results are generated. The number of
outputs increases linearly with the number of input parameters. For a list of 6 galaxy
names supplied as input, we get 20+ extinction result , the number is 100+ when con-
sidering intermediary results as well. This illustrates how workflows as automation
tools proliferate data generation and makes apparent that any approach for annotating
provenance would require automation support.

Qualified lineage is needed for PDDS. One of our queries (Q1-P) was seeking data
based on its origin. In our implementation we represented this with a query where we
sought nodes that have some lineage relation to designated origin node. Our answers
to this query was partly correct. This is because of we were using opaque lineage rela-
tions, a typical result of black-box workflow provenance. These relations are inform us
that there is some influence relation among data artefacts, but do not capture the spe-
cific nature of relations. On the other hand query requires lineage in a stronger (more
specific) sense, it seeks those data artefacts that descend from an origin by means of a
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particular derivation, i.e. value-copying.

In the following section we introduce the approach we take in addressing require-
ments derived from the case study.

5.4 Our Approach

We aim to improve the conditions that hamper PDDS by providing:

1. A mechanism to detect breaks in factorial design. The technique we provide
is specific to Taverna workflows. We capitalise on two aspects 1) that Taverna
has well-defined execution behaviour [MPB10], 2) that there are no discrepan-
cies in the level of granularity of modelling processes and data within a Taverna
workflow description and its execution provenance. These two allow us to de-
vise rules that can anticipate the structure of workflow provenance by analysing
the workflow description. We encode these rules in a deductive database envi-
ronment, and use them to determine whether multiple lineage traces originating
from parameters will be joined up at any point in the workflow’s execution.

2. The LabelFlow framework for creating explicit domain-specific metadata, which
is tailored to provide hooks for data selection, thereby replacing ad hoc means (
selecting nodes by referring to implicit information.) We adopt a semi-automated
approach which as input expects functions that encapsulate the ability to make
explicit the domain specific information embedded in data values. We adopt
simple attribute-value pairs, we call Labels to capture explicit domain specific
information. We provide a generic set of Labelling Operators that perform the
middle-man duty of transferring the execution trace of an activity to its associ-
ated labelling function, and then transferring labels obtained from the labelling
function back on to provenance. Our operators are generic in the sense that
they are oblivious to the content of Labels they carry around, and they can
operate over PROV compliant standard workflow provenance traces. Our ap-
proach maximises the coverage of labels by propagating them where possible.
We take inspiration from “Where- Provenance” in databases where lineage based
on value-copying brings the possibility of propagating attributes of a data to its
copied descendants [BCTV04]. In particular, we exploit the Moti f characterisa-
tion of workflow activities (described earlier in Chapter 3) to determine lineage
relations that are based on value-copying and for such cases we perform label
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Figure 5.4: Labelling System Architecture.

propagation. We exploit the structure of the scientific workflow to induce sim-
ple processes that coordinate the execution of labelling operators associated with
activities in the scientific workflow.

A common characteristic of both of the above solutions is that they are non-intrusive
to the existing practices of workflow development and existing architecture of prove-
nance capture and access. Figure 5.4 provides the overall architecture of our approach.
The first part of our solution is workflow analysis, where we process, through rules,
Taverna workflow descriptions to compute the anticipated provenance structure that
will come out of its execution, and the health of factorial design (Step B1 in Figure
5.4). The second part is labelling with LabelFlow. We undertake labelling as an offline
process, where we do not interfere with the established process of scientific workflow
design (Step A1) and execution (Step A2). Workflow runs result in the generation
of data artefacts and generic workflow provenance. These two make up our primary
sources of information for obtaining labels.

We bundle all label generation/propagation capability for a scientific workflow into
a corresponding Labelling Pipeline. Using 1) workflow descriptions that contain la-
belling specifications over analytical steps (processors) and a 2) repository of labelling
functions we generate a labelling pipeline for a given scientific workflow (Step C1).
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This pipeline can in-turn be used to decorate all execution traces coming out of that
workflow with labels (Step C2). Once labels are generated they can be used in con-
junction with generic workflow provenance to support PDDS (Step C3).

5.5 Chapter Conclusion

In this chapter we presented a case study on provenance driven data selection (PDDS).
This case highlighted two particular problems in using workflow provenance for re-
porting data:

• first was the negative impact of broken factorial design (in Taverna workflows)
to PDDS queries. We illustrated that broken factorial design corresponds to
the case where not all activities in the workflow are repeated for all the points
in the input parameter space of the workflow. We showed that the provenance
traces from these workflows are a poor index to be used to select result datasets,
because lineage traces do not discretely link workflow parameters to resulting
data, instead they get joined up.

• second was the need to refer to domain specific characteristics of parameters/data
to be able to refer to nodes of interest in a provenance graph within a PDDS
query. We illustrated that in the absence of domain specific characteristics as it
is the case with standard workflow provenance, we would have to place selective
criteria on data values, which:

– for certain workflow systems, including Taverna, are stored separately from
provenance, therefore not co-queryable with provenance.

– expresses characteristics implicitly, therefore is an adhoc mechanism to
define data selection criteria.

In response to these problems we introduced two solutions:

• A workflow static analysis approach that aims to detect breaks in factorial de-
sign.

• A framework to facilitate the systematic and fine-grained annotation of work-
flow provenance traces.

These two solutions are described in the follow on chapters, Chapter 6 presents our
workflow analysis approach, and Chapter 7 presents provenance annotation.



Chapter 6

Workflow Analysis

6.1 Chapter Introduction

In this chapter we describe our static analysis technique aimed at detecting broken
factorial design in Taverna workflows. Earlier we informally defined Broken Facto-
rial Design as the existence of an activity record in provenance, where the activity
consumes input descending from multiple parameters. As a prerequisite to formally
represent this pattern we start in Section 6.2 by introducing how collections drive iter-
ation in Taverna:

• In Section 6.2.1 we illustrate the footprint of iterated activity executions in prove-
nance, and show how well-defined behaviour of Taverna in iteration provides us
with rules to anticipate data characteristics and lineage among collections of
data in a prospective fashion, without executing the workflow. We outline these
as depth prediction and depth mapping rules.

• In Section 6.2.2 we introduce Taverna’s Dot and Cross product operators and
show how they are used to build up input parameter spaces from multiple collec-
tions of inputs.

• In Section 6.2.3 we illustrate that the break in factorial design corresponds to a
discontinuation of Depth Mappings.

In Section 6.3 we break down Taverna’s execution behaviour into a set of known
computations and we give the functional specifications for each. We also specify what
the depth mappings are for each functional specification.

216
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We use Datalog to implement our rules. In Section 6.4 we provide an overview of
our solution approach and Datalog rule modules. From Section 6.4.3 through to Sec-
tion 6.4.6 we outline each module and illustrate its operation over a running example.
We discuss our implementation in Section 6.5.

In Section 6.6 we review related work that aims to improve provenance through
analysis of workflows or source code. In Section 6.7 we discuss how the outputs of
our analysis can be utilised. We conclude in Section 6.8

6.2 Modeling Taverna Workflows

Throughout this section we build on the formal representation provided by Missier et al
[MPB10] for representing Taverna workflows and their execution behaviour. As stated
earlier Taverna allows for structuring of data artefacts as nested collections. More
specifically;

Definition 6.1. (Taverna type designators) Tname denotes the set of possible type des-
ignators for data processed in Taverna workflows. Tname is comprised of derivations
with the following syntax rule:

τ ::= s|L(τ) where;

s denotes the basic string type and L(τ) denotes list types. s, L(s), L(L(s)) ∈ Tname

are example type designators. We denote nesting of lists with a superscript numbered
shorthand; L(L(s)) is denoted as L2(s). We use T to denote the set of data values that
conform to any type in Tname.

Definition 6.2. (Taverna workflow) is denoted with the triple w = 〈PRO,POR,LINK〉
and the functions in, out, src and snk where;
PRO is the set of processor names,
POR is the set of port names,
LINK is the set of dataflow links among ports,
in : PRO→ 2POR×N×Tname and out : PRO→ 2POR×Tname are two interface functions that
maps processors to their ordered inputs and to their outputs with type designators. Each
port within a signature of a processor has a unique name. For a particular a input/output
port ∈ POR of a processor proc ∈ PRO we use the combination of proc.port to refer
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to it.
src : LINK→ PRO×POR and snk : LINK→ PRO×POR are two functions that map
links to their source and sink ports.
For the purposes of this chapter we extend the core workflow model with the following
functions:
procFun : PRO→ S, where S ⊆ T denotes the set of strings, is a function that maps
processors to their underlying functions. Multiple processors in a workflow may be
underpinned by the same function (recall multiple list fattening processors in the case
study workflow).
lhb : PRO→ E is a list handling behaviour function which maps processors to their
corresponding iteration strategy expressions obeying the following syntactic rule:

ε ::= (ε⊗ ε)|(ε� ε)|〈portname〉

Expressions can be specified using binary Cross (⊗) and Dot (�) product operators
and port names. Each port appears once in the expression and expressions can be
comprised of subexpressions. Iteration strategy expressions encode crucial information
on how a processor is to be executed with multiple input collections.

Figure 6.1: Two sample Taverna processors, their port types and list handling be-
haviour.
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Example 6.3. (Workflow) In the left hand side of Figure 6.1 we depict two sample pro-
cessors with their defined input and output types. The concat4Str processor accepts
four inputs eachof type s, and produces one output of type s. The List To String pro-
cessor accepts an input of type L(s) and returns s created by coalescing all items in the
input list. The specification of the workflow fragment in Figure 6.1 as per Definition
6.2 is as follows:

PRO = {concat4Str,List To String}
POR = {str1,str2,str3,str4,outstr, inlist}

LINK = {l1}

in(concat4Str) = {〈str1,1,s〉,〈str2,2,s〉,〈str3,3,s〉,〈str4,4,s〉}
out(concat4Str) = {〈outstr,s〉}
lhb(concat4Str) = {(str1⊗ (str2� str4))⊗ str3}

in(List To String) = {〈inlist,1,L(s)〉}
out(List To String) = {〈outstr,s〉}
lhb(List To String) = (str1)

src(l1) = {concat4Str,outstr}
snk(l1) = {List To String, inlist}

In right hand side of Figure 6.1 and throughout the rest of the chapter we denote
processor’s iteration strategy expressions with an intuitive diagrammatic view using a
List Handling Behaviour (LHB) formula tree. Note that the tree-based representation
in Figure 6.1 is compact in the sense that operators are not binary, they have multi-
ple parameters. This compact form can be expanded into a binary-operator-only tree
through addition of nesting in a left associative manner.

Dataflow links among processors is the mechanism of processor composition in
Taverna. At the design interface Taverna allows the composition of processors with
mismatching nesting-levels of input output types. At the workflow specification back-
end Taverna automatically infers the dataflow adjustments required for a successful
execution of the workflow. These adjustments can be informally described as follows:

• Simple Composition: This is the straightforward case where the input of a pro-
cessor is of expected depth expected by the processor, requiring no adjustment.

• Wrapped Composition: Represents the case when the data supplied to a proces-
sor is of a lesser depth than expected. In this case Taverna infers that a wrapping

dataflow adjustment is necessary, and prepends as many outer lists as necessary
around a processor’s input port so that during execution the inputs will be of
depth acceptable by the processor.
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• Iterated Composition: Represents the case where input supplied is of depth
greater than expected, here Taverna requires information in the LHB to deter-
mine how to consume inputs. There are two sub cases of iterated composition.

– Single-Input Iterated Composition: This is the case where the processor
has a single input. The LHB for the List To String operation in Figure 6.1
is an example. In this case Taverna is prescribed to traverse down the input
list structure until the it encounters an item that is of depth acceptable by
the processor.

– Multi-Input Iterated Composition: When a processor accepts multiple col-
lections as inputs, Taverna gives the possibility of configuring selection of
input combinations from lists with Dot and Cross operators. The LHB for
the concat4Str processor is an example.

In iteration because the processor is exposed to inputs with depth greater than
expected, the output(s) from the iterated execution of processor will also be of
depth greater than the defined depth of processor’s outputs. The impact of depth
differences of inputs to the output depends whether iteration is a single or multi
input one, and also depends on the structure of the LHB formula. When the
predicted depth of a port is greater than its defined depth this creates a ripple
effect for the downstream portions of the workflow. Based on Taverna execution
semantics Missier et al [MPB10] have provided formulas and an algorithmic
approach to make predictions on port depths for a limited case of processors,
which has a restricted kind of LHB formula. We highlight differences between
our work and Missier’s work in the next section after discussing Taverna iteration
behaviour in detail.

Example 6.4. (Processor Composition) In Figure 6.2 we illustrate how the processors
given earlier in Figure 6.1 are composed as part of a larger workflow. The workflow
has 4 input ports which are connected with dataflows to inputs of the concat4Str pro-
cessor. Note that three of workflow’s input ports are of type L(s), as a result dataflows
from these ports to concat4Str correspond to iterated composition, with adjustment
consequences for the output of this processor. The amount of depth adjustment for the
output of concat4Str (the calculation of which we will show later) is 2. Hence while
a single invocation of this processor results in a single string (as by its definition), in
its composed occurrence in the workflow the overall (iterated) execution of this pro-
cessor will result in a list of list of strings, L2(s) at output port outstr, designated with
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Figure 6.2: Depth adjustments and iterated compositions inferred for a workflow de-
scription.

call-out in Figure 6.2. As a ripple effect the iteration of concat4Str will cause iteration
of List To String, which will be exposed to an input of depth L2(s), greater than its
defined depth L(s). As a result of iteration List To String will generate an output of
type L(s) greater than its defined type L(s). Note here that as a result of iteration of
List To String, its downstream processor List To String 2 will encounter an input that
matches exactly its defined input type, henceforth the very last step in the workflow,
List To String 2 will not be iterated and will be executed just once.

We will now present an abstract model for representing information generated
through workflow analysis. We will outline iteration behaviour of Taverna workflows,
and how anticipations of iteration and data generated from iterations are represented
in this abstract model. We will also outline how the well-defined execution behaviour
Taverna allows us to have rules that can be used to populate our abstract model.
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6.2.1 Footprint of Iteration in Provenance

Definition 6.5. (Predicted Provenance Model) Analysis based predicted provenance
PP for a workflow w is denoted is with the tuple PP = 〈w,D,M,R〉 where;
D represent relations outlining iteration characteristics of processors and predictions
on depths of processor input/outputs.
M represent relations on predicted patterns in provenance.
R denotes a set of Taverna workflow analysis rules that populate relations in D and M

using relations in w, D and M.

Definition 6.6. (Depth Predictions Model) The information model D for representing
depth predictions is comprised of the following relations:
de f inedDepth : 〈PRO×POR〉 → N is a function that maps a processor port to the
depth-wise size of the data structure that it is defined to consume/produce as per its
type designator. Defined depth is a numerical characterisation of type designators of
ports. Given 〈p, t,n〉 ∈ de f inedDepth we denote this with dDep(p.t) = n.
predictedDepth : 〈PRO×POR〉 → N is a function that maps a processor’s port to the
depth-wise size of the data structure that the port is predicted to hold during workflow
execution. Given 〈p, t,n〉 ∈ predictedDepth we denote this with pDep(p.t) = n.
∆Depth : 〈PRO×POR〉→N is a function that maps a processor’s port to the difference
(delta) between the predicted and defined depths. Given 〈p, t,n〉 ∈ ∆Depth we denote
this with ∆Dep(p.t) = n.
∆Proc : PRO→ N is a function that designates whether a processor is predicted to it-
erate or not. Given 〈p,v〉 ∈ ∆Proc, v = 0 denotes that p is predicted to execute once,
v > 0 denotes that p is predicted to iterate. We denote this tuple with ∆Proc(p) = v.
∆Link : LINK→Z is a function that designates the kind of composition that a dataflow
link represents. Given 〈l,v〉 ∈ ∆Link, v = 0 denotes simple, v < 0 denotes iterated, and
v > 0 denotes wrapped composition. We denote this tuple with ∆Link(l) = v.

Example 6.7. Consider processor List To String ∈ PRO the interface definition of
which were given earlier in Example 6.3. Depth predictions for List To String due
to its composition with other processors in the workflow were illustrated in Figure
6.2. Using Definition 6.13 a subset of predictions (the computation of which we will
discuss later) is denoted as follows:
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dDep(List To String.inlist) = 1
pDep(List To String.inlist) = 2
∆Dep(List To String.inlist) = 1

We will now move on to illustrating how the exposition of Taverna’s execution be-
haviour allows for the definition of rules to populate PP. We denote Taverna execution
behaviour (as exemplified in Equation 6.1) using the notation initially given by Missier
et al [MPB10]. Our adopted notation has the following characteristics:

• Execution behaviour is given in terms of recursive functions that are comprised
of a conditional body. The conditions are comprised of 1) a base case and 2) a
recursive case.

• Conditional test expressions of each case are given with the infix notation.

• Body of each case is a function call given with the prefix notation similar to most
functional programming languages.

• The recursive case involves the use of map function, well-known from functional
programming languages. For any other utility function used in the body we
provide inline definitions.

Taverna achieves iteration by encapsulating processor functions within a recursive
evaluator.

Definition 6.8. (eval function) eval : N×S×T → T is a function that applies a des-
ignated processor function over a given input data value. The specification of eval is
as follows:

(evall f v) =

{
(map (evall f ) v) |v|> l

( f v) |v|= l
(6.1)

eval uses the following utility function in its conditional expressions:

Definition 6.9. (| |) depthwiseSize : T → N is a function that returns the depth-wise
size of a data value that is of type T . We denote this function with “| |” as a shorthand.
Example applications would be, | [“a”,“b”,“c”] |= 1, | [[“x”,“y”, ], [“z”,“t”]] |= 2, | “a” |= 0.

When executing a single input processor p ∈ PRO with input i ∈ POR Taverna
instantiates the eval with l, f , and v, where l = de f inedDepth(〈p, i〉), f = procFun(p)

and v is the data value appearing at port i. eval traverses down the input list structure
until it encounters an item that is of a depth that is acceptable by the processor, given
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with l. A sample execution of the List To String processor with eval would be as
follows:

(eval1 List To String [[“11”,“12”], [“21”,“22”], [“31”,“32”]]) =
(map(eval1 List To String) [[“11”,“12”], [“21”,“22”], [“31”,“32”]]) =

[(eval1 List To String [“11”,“12”]),(eval1 List To String [“21”,“22”]),(eval1 List To String[“31”,“32”])] =
[(List To String [“11”,“12”]),(List To String [“21”,“22”]),(List To String [“31”,“32”])] =

[“11−12”,“21−22”,“31−32”] =

During execution each invocation of the processor function (the base case of eval

in Equation 6.1 ) fires an event, which gets caught by Taverna’s provenance framework
and gets logged. For the iterated List To String processor, there will be three such
event logs, that record explicitly the lineage between the inputs and outputs of the
processor function (depicted with solid lines in Figure 6.3). Note that Taverna does
not explicitly record lineage among output lists created in response to traversing down
input lists (the recursive case of eval in Equation 6.1). In Figure 6.3 we illustrate
explicitly recorded lineage with solid lines and implicit lineage (only among lists) with
dashed lines.

Observation on eval The exposition of how a processor is executed (Equation 6.1)
and how iteration occurs allows us to anticipate the structural characteristics of data
and lineage before a workflow gets executed. Because the evaluator is recursive and
exploits the map function, this gives us a rule of thumb stating that:

a. for each enclosing list structure that we travel down (to find inputs that are of depth
acceptable by a processor) a corresponding output list will be generated. As a result
each extra (delta) depth for the input will become an extra (delta) depth for the
output.

b. each enclosing output list (generated due to a corresponding one in input), will have
the same size (number of items) as the corresponding input list.

We will now provide the formal encoding of these rules. Throughout Sections
6.2 and 6.3 we denote rules with implications in the form of “if... then ...” state-
ments where each statement is a Horn clause (a conjunction of literals implying a
single literal) [AHV95]. Each literal represents information in relations of Predicted
Provenance Model (Definition 6.5). In Section 6.4 we present how these rules are
implemented in Datalog.

Definition 6.10. (Delta Depth Calculation Rules) Given a port r of processor p the
following apply:
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Figure 6.3: Explicit and Implicit provenance in an iterated processor execution.

If dDep(p.r) = n, pDep(p.r) = m then ∆Dep(p.r) = m−n
If dDep(p.r) = n, ∆Dep(p.r) = d then pDep(p.r) = d +n.

The delta depth of a port is the difference between its predicted and defined depths.

The delta depth calculated for the input port of a processor can be used to predict
whether the processor will be iterated or not and also to predict the processor’s output
depth.

Definition 6.11. (Depth Prediction Rules - Single Input Processor) For a single input
processor p, where in(p) = {〈i,1, t〉} executed with eval the following apply:

If ∆Dep(p.i) = n then ∆Proc(p) = n.

The delta depth of the single input determines whether the processor will be
iterated or not.

Definition 6.12. (Depth Prediction Rules - Processor Outputs) Using the delta depth
of a processor we can predict the depth of its outputs. For each output of processor p,
〈o, t〉 ∈ out(p) the following holds:

Definition 6.13. (Depths, Depth Mappings) The information model M for represent-
ing predicted patterns in execution provenance of a workflow w is comprised of the
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If ∆Proc(p) = n, dDep(p.o) = m then pDep(p.o) = m+n.

A delta depth associated with a processor becomes delta depth its outputs.

following relations:

Depths D ⊆ PRO×POR×N+ is the set of possible nesting levels for lists that
appear at a designated port during workflow execution. We denote a particular depth
〈p,r,m〉 ∈ D as dp.r

m , where m denotes a depth index. m can range over values in [1..k]
where pDep(p.r) = k. Depth indices start from 1, which corresponds to the nesting
level of 0. A depth with index 1 refers to the top level collection at nesting level 0,
whereas a depth with index 2 refers to all collections at nesting level 1.

Depth Mappings DM ⊆ D×D is the set of predictions on the existence of discrete
lineage relations among list items within collection structured data to appear at desig-
nated ports. We denote a depth mapping 〈dp1.r1

m1 ,dp2.r2
m2 〉 ∈ DM with dp1.r1

m1 → dp2.r2
m2 . If

there is such a mapping we can be assured that for any execution of workflow w there
will be discrete lineage relations among list items at nesting levels designated by each
depth.

Example 6.14. Intuitively, if we were to think of list structured data of type Ln(s) as
an n-dimensional array, a depth would correspond to a particular dimension of that
array. Imagine that within workflow w we have a processor p with input port in where
pDep(p.in) = 2. During a particular execution of that workflow data of type L2(s) (as
predicted) would appear at port in. An example such value could be:

v1 = [ [“11”, “12”], [“21”, “22”], [“31”, “32”] ]

The depth dp.in
1 would refer to the 1st dimension of this array. dp.in

1 is an address
for lists at nesting level 0, which for v1 is a single list comprised of the set of items
{[“11”, “12”], [“21”, “22”], [“31”, “32”]}. Meanwhile dp.in

2 is the second dimen-
sion, an address for all lists at nesting level 1, for v1 these are 3 particular lists, first



6.2. MODELING TAVERNA WORKFLOWS 227

comprised of items {“11”, “12”}, second comprised of items {“21”, “22”} and so on.

Definition 6.15. (Depth Definition Rule) For a processor p with input/output port r:

If pDep(p.r) = n, i ∈ N, 1 < i≤ n then dp.r
i .

The number of possible depths for a port is bound by the predicted depth of that port.
Whenever the predicted depth of a port is calculated this can be used to define depths
for this port with indices ranging from 1 up to the port’s predicted depth.

Our earlier observation on eval allows us to model anticipated implicit lineage
relations among collections in the form of mappings among depths.

Definition 6.16. (Depth Mapping Rule - Single Input Processor Evaluation) For a sin-
gle input processor p executed with eval, where in(p) = {〈i,1, t1〉} out(p) = {〈o, t2〉}
the following apply:

If ∆Dep(p.i) = m, k ≤ m, k ∈ N+, dp.i
k , dp.o

k then dp.i
k → dp.o

k .

This rule creates mappings among same indiced depths of input and output ports
from 1 up to delta depth of the input.

Intuitively this rule states that lists at depth n of the processor’s output will be
shaped by corresponding lists at depth n of the input. In other words, if there is such a
mapping between two depths, we can be assured that there are discrete lineage relations
among each item within lists at corresponding depths. This assurance brought by the
existence of depth mappings provides the foundation of our static analysis.

Example 6.17. Using rule in 6.16 a single depth mapping will be inferred for the
List To String processor, which is din

1 → dout
1 (we omit processor name prefix for

brevity). We know that this mapping implies similar structure so if the workflow were
to be run with an input list of (three) items, where each item is itself a list (of two).
Then as per rules outlined thus far we can expect the output to be a list of (three)
items, where each list item will be string with depth 0 equal to the defined depth of
List To String.outstr.
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Missier et al [MPB10] have provided the pioneer insight into the impact of Tav-
erna’s iteration on provenance. This insight has allowed us to anticipate implicit
lineage (among lists) with the notion of depth mappings. Meanwhile Missier et al
[MPB10] have used it to anticipate explicit lineage relations, with a mechanism they
call Index Projection. Such that, for a given prospective location of an output data
item, the location of the contributing input item can be calculated. Note that, both
depth mapping and Index Projection calculations would be independent from any par-
ticular input data size, or data value.

The ability to make predictions on provenance can have several potential uses:

• Missier et al [MPB10] have shown that Index Projection can be utilised in prove-
nance query optimisation. When iteration occurs throughout a workflow with
long dataflow paths one can shortcut lineage traversal by relying on location
calculations.

• Mappings/Projections essentially provide formulas to compute provenance on
demand, and eliminate the need to record explicit lineage relations at workflow
execution time. It could be exploited for efficient provenance storage, which has
been studied in the context of workflow systems [CJR08].

What sets apart our work from earlier work of Missier et al [MPB10] is as fol-
lows. Missier et al provide depth prediction and Index Projection formulas for multi
input processors, where the iteration strategy is represented with a flat LHB formula
restricted to a single Cross product operator. We provide functional specification of
the Dot product as well as the Cross product. Furthermore, we provide declarative
rules for depth mapping inference for multi-input processors with complex iteration
strategies (nested LHB formula trees), which covers the entire spectrum of Taverna
workflows. Finally we formalise the notion of broken factorial design anti-pattern in
provenance and provide declarative rules to detect it.

To this end we have analysed processor execution with a single input, where the
processor did not have an associated LHB formula. While iteration in the case of
single inputs may come across as an adjustment feature, iteration in the case of multi-
input processors with LHB formulas is Taverna’s key mechanism for realising factorial
designs, i.e. parameter explorations. We will now illustrate the role of LHB formulas
in factorial design.
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6.2.2 Factorial Designs with Multi-Input Iteration

We will now introduce Dot and Cross product operations with examples (formal spec-
ifications will be given in Section 6.3). Both operations creates tuples out of items they
encounter in lists, which could themselves be tuples. Note that in a repeated applica-
tion of these operations, n-ary tuples will be generated. Note however in the formal
representation of Taverna workflows there is no separate type for tuples. To adhere
to this restriction we assume that Dot and Cross product operations are underpinned
by functions that accept and return string types, where the result is a string based
representation of a tuple.

Cross product is a cartesian product function that adheres to the nested structure
of the lists, similar to the recursive evaluator given earlier, when the cross product
encounter lists it will traverse down to find items of appropriate depth. So unlike the
traditional cartesian product, which creates a list out of two lists, the Cross product
will create an output of type L2(s) when applied over two inputs of type L(s).

(cross [“a”, “b”, “c”] [“1”, “2”]) =
[[“a×1”, “a×2”], [“b×1”, “b×2”]], [“c×1”, “c×2”]]

Dot product is similar to the zip function found in many programming languages.
It will pair up items at same positions in each list. Similar to Cross product the Dot
product also obeys the nested structure of lists. So the Dot product of two inputs of
type L2(s) will result in an output of type L2(s).

(dot [“x”, “y′”], [“z”, “t”], [“u”, “v”]] [[“1”, “2”], [“3”, “4”], [“5”, “6”]]) =
[[“x×1”, “y×2”], [“z×3, “t×4”], [“u×5”, “v×6”]]

In the previous section we saw that the driver of iteration is the depth difference,
delta, between the expected and encountered depth of input i of a processor p. An intu-
itive way to think about delta depth is to think of it as a space of dimension ∆Depth(p.i)

to be explored. In the case of multiple inputs, the application of the processor to in-
put lists is preceded by step(s) that are responsible for creating an overall input space
from individual spaces supplied for each input. This process of input space creation
is informed by the LHB formula. We provide the intuition for parameter spaces with
three examples and identify depth mappings that will be inferred by our analysis rules.
In Section 6.3 we will provide a functional exposition of input space calculation and
provide the rules that underpin the deduction of such mappings.
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Example 6.18. Consider the case in Figure 6.4. concat3Str is defined to be a proces-
sor that has three input ports, each accepting singleton strings (input port type s), and
returns their concatenation. In this example each input port is instead exposed to a list
of strings L(s). Each such list represents a 1-dimensional space for respective input
parameters. The LHB formulas are left-associative in Taverna the Cross product of
three lists will be created by first creating the cross product of the first two lists and
then crossing the result with the third. As a result of this operation a 3-dimensional
input space (nested list of depth 3) comprised of input triples will get generated. These
triples represent all possible combinations of inputs from respective input lists. Once
the input space is prepared Taverna will explore this space by configuring the recursive
evaluator given earlier in (6.1). An output per item in the input space will be generated.
The mappings between the dimensions of individual inputs and the output depends on
the order of inputs in the LHB formula, and the operator that combines them. For
concat3Str the mappings that will be inferred based on the analysis of workflow de-
scription will be : dal phabet

1 → dresult
1 , dsymbols

1 → dresult
2 , dnumbers

1 → dresult
3 .

Example 6.19. Note that the space to be explored per input can be of n-dimension. The
is exemplified in Figure 6.5. Here we have a processor concat2Str, which concats two
strings. One of its inputs, sur f ace is a 2-dimensional input space, whereas the other is
1-dimensional. Such a setting also results in a cube of possible input combinations to
be explored. In this case the 2-dimensional input (i.e. the one with delta depth of 2)
will contribute two dimensions to the output space. The mappings for concat2Str will
be as follows: dsur f ace

1 → dresult
1 , dsur f ace

2 → dresult
2 , dnumbers

1 → dresult
3 .

Example 6.20. We exemplify the use of Dot product in Figure 6.6. As discussed
before, this operator expects its inputs to be of same size, and returns an output that
is of same size as the inputs. Here the LHB prescribes a Dot product of input spaces
for str2 and str4. Here the delta for both of these inputs is 1, hence a Dot product
is possible, which creates a single input space that is representative for both inputs.
This space is then combined with the input space for str1 with a cross product. Note
that the formula also prescribes how input spaces for str3 should contribute to the
overall space. However, as the input for the ports is of expected depth, i.e. has no
delta depth. There is no input space to be explored for str3. As a result each input
quadruple in the overall input space that will be prepared with respect to the LHB
formula will have the same value for str3. In other words str3 is not a parameter that
drives the iteration of concat4str. The inferred depth mappings will be as follows:
dstr1

1 → dresult
1 , dstr2

1 → dresult
2 , dstr4

1 → dresult
2 .
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Figure 6.4: Illustration of input space resulting from Cross product of three parameters.

In all our examples in Figures 6.4, 6.5 and 6.6 the defined depth for the output of
(string concatenation) processors is 0 (each invocation produces a single string). As a
result the application of the processors will result in an output list structure that is of
the same depth as the dimension of the overall input parameter space.

6.2.3 Breaks in Factorial Design

So far we outlined the elements of workflow analysis on a per processor basis. Our
ultimate goal is to perform the analysis over a workflow comprised of multiple proces-
sors. As illustrated with the Astronomy workflow Chapter 5 broken factorial design
(informally) corresponds to an activity record in execution provenance where the ac-
tivity consumes data descending (via multiple activities) from distinct workflow input
parameters. In this section we illustrate and formalise this pattern as a discontinuation
of depth mappings.

Example 6.21. Figure 6.7 there are two processors, composed by a dataflow link.
concatStr processor explores an input space of 2-dimension (based on the cross prod-
uct of its inputs). As per rules that will be given in Section 6.3 ∆Proc(concatStr) = 2.
Two depth mappings will be created for this processor.

For concatStr: dal phabet
1 → doutStr

1 , dnumbers
1 → doutStr

2
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Figure 6.5: Illustration of input space using Cross product of two parameters.

Figure 6.6: Illustration of input space using a combination of Cross and Dot over four
parameters.
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Figure 6.7: A broken factorial design illustrated with discontinued depth mapping at
the List To String step.

As per rules that will be given in Section 6.3 when the data from the output of one
processor is transferred to the input port of a follow on processor via a dataflow link,
depth mappings will be created among the link source and sink.

For the dataflow link: doutStr
1 → dinList

1 , doutStr
2 → dinList

2

Based on the predicted output depth of concatStr processor, List To String pro-
cessor will be exposed to L2(s), greater than its defined input type L(s). As a result
we’ll have ∆Dep(List To String.inlist) = 1 and ∆Proc(List To String) = 1 denoting
this processor will be iterated. Note that as the delta for this processor is 1, it will
traverse down only one level to find data of acceptable depth. One such item that
will be consumed per execution is [“X1”, “X2”]. Per execution a single string rep-
resenting the flattened version of items in the input list will be generated. By doing
so List To String will consume data all at once from the second dimension (depth) of
the output of concatStr. As per rule in Definition 6.16 the following mappings will be
generated:

For the List To String processor: dinlist
1 → doutStr

1

Note here that we are unable to create a mapping for dinlist
2 as this depth is beyond

the delta depth for inlist. In other words this depth is part of the data we consume,
rather than a dimension we explore. This inability to map an input depth (which is the
target of a prior mapping) to any output depth represents the break in factorial design,
which can be defined as follows:

Definition 6.22. (Broken Factorial Design) Let reachesDepths : D→ 2D be a function
that accepts an input depth and returns the set of depths that are reachable from the
given depth by traversing the depth mapping relations in w. We state that workflow
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w has broken factorial design for depth dp.t
i if the set {dq.r

j ∈ reachesDepths(dp.t
i )| j >

∆Depth(〈q,r〉)} is non-empty.

6.3 A Model of Taverna’s Operation

To this end we have only exemplified how input spaces look like in several multi-input
iteration scenarios, and what the depth mapping is for each example. We will now
outline a high-level model for the process that Taverna follows to prepare input spaces,
to apply processors onto these input spaces and to carry data among data links. After
that we will provide (in functional terms) the formal specification of each step of this
process. Based on these specifications we will provide depth prediction and depth
mapping rules for each step. We will later show how we implement these rules with a
Datalog based intentional database.

A convenient way to model the process that Taverna adopts in executing workflows
is to break it down to a set of known computations. We illustrate these for the execution
of concat4Str processor in Figure 6.8. There are different four types of computations
involved:

• the carrying of data through a dataflow link. Depicted with link boxes in Fig-
ure 6.8.

• the initialisation of a processor’s (multiple) inputs and identifying whether there
exists an input space to be explored or a single input. Depicted with init boxes
in Figure 6.8.

• the build up of the space of input tuples from the individual input spaces using
the LHB formula as a guideline. Depicted with dot and cross boxes in Figure 6.8.

• applying the processor to each input tuple in this space. Depicted with the eval

box in Figure 6.8.

We will now describe the behaviour of each kind of computation as function fol-
lowed by corresponding depth prediction and mapping rules for that function. Tav-
erna’s execution behaviour for a dataflow link is given with the link function.

Definition 6.23. (link function) link : 〈N× T 〉 → T is a function accepts an input
value and a target depth and returns an output data value with depth wise size equal to
the target depth. link ensures that the nesting level of the result is equal to the target
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Figure 6.8: Illustration of iterated execution of concat4Str over multiple input lists
with respect to its LHB definition.
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depth by wrapping the input with as many enclosing lists as necessary and returns. The
specification of link is as follows (bracket [ ] represents list constructor):

(linkd v) =

{
(v) if d ≤ |v|

(linkd [v]) if d > |v|
(6.2)

When realising a dataflow link l ∈ LINK, where src(l) = 〈p1,o〉 and snk(l) =

〈p2, i〉, Taverna instantiates the link function with the data value v appearing at the
link source, port o of processor p1, and the defined depth of the link’s target port
d = de f inedDepth(〈p2, i〉). In Figure 6.8 each four links’s targets correspond to input
ports of the multi-input concat4Str processor. The responsibility of link is to ensure
that its result depth is no less than the target’s defined depth, note that inputs with depth
greater than the targets defined depth will be forwarded as is.

Definition 6.24. (Depth Prediction and Mapping Rules - link) For a dataflow link l ∈
LINK, where src(l) = 〈p1,o〉 and snk(l) = 〈p2, i〉 realised with the link function (as
per Definition 6.23) and the following apply:
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If pDep(p1.o) = n, dDep(p2.i) = m then ∆Link(l) = m−n

Difference between the link target’s defined and link source’s predicted depth is the
delta for the link. It’s value determine the type of composition for the link.

If ∆Link(l) = d, dDep(p2.i) = m, d > 0 then pDep(p2.i) = m.
If ∆Link(l) = d, pDep(p1.o) = n, d ≤ 0 then pDep(p2.i) = n.

A positive delta represents wrapped composition and the predicted depth of target
would be the same as its defined depth. A negative delta represents iterated,
a zero delta represents simple composition. In these latter cases no wrapping occurs
hence the predicted depth of the link’s target would be the same as its source.

If ∆Link(l) = d, d > 0, dp1.o
n , dp2.i

n+d then dp1.o
n → dp2.i

n+d .
If ∆Link(l) = d, d ≤ 0, dp1.o

n , dp2.i
n then dp1.o

n → dp2.i
n .

If the link represents wrapped composition, then each depth of the source map to
depths of the target with an index shift factor equal to delta of the link. For simple
or iterated composition, no wrappings are made, so all depths of source map to same
indiced depths of target.

Next we outline the init, dot, cross product steps. As illustrated in Figure 6.8 the
composition of these with the earlier introduced eval function allows for the modelling
of multi-input processor invocation. In order to calculate depth mappings for composi-
tions we provide depth mappings for each individual step, by assuming that these steps
are specialised Taverna processors that are evaluated with their corresponding func-
tion. A straightforward way to model specialised processors is to exploit the procFun

relation ( introduced earlier in Definition 6.2) to inform the Taverna engine on which
function shall be used for a step’s execution.

Definition 6.25. (init function) init : N×T → T is a function that replaces items (that
are of a designated depth) within a (nested) input collection with their string-based
representation. init can be realised using eval by passing makeStr (defined next) as the
processor function parameter.

(initl v) = (evall makeStr v) (6.3)
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Definition 6.26. (| |) makeStr : T → S is a function that returns the string-based rep-
resentation of a given input value. If the input is a string than the result is simply equal
to the input. If the input is a (nested) collection than we assume the result is some
string-based representation of this collection.

Note that init is single input processor and depth predictions and mappings for
given eval in Definition 6.16 also apply to init.

The purpose of init is to truncate depths within data collection that correspond to
data values that will be consumed by the follow-on processor evaluation step (eval

in Figure 6.8), for which an input space is being prepared. We assume such a be-
haviour for our convenience as it simplifies depth mappings for follow-on (Dot and
Cross product) steps. As a result of truncation, depth wise size of init’s output repre-
sents the dimension of the input space for an individual one of multiple inputs that will
be consumed by the by the follow-on processor evaluation step.

cross and dot product steps are responsible for building the overall input space out
of individual input spaces. The LHB formula associated with a processor (as given
earlier in Figure 6.1) is a recipe for Taverna for building the input space. Taverna
will evaluate a formula in a left associate and bottom-up manner. Meaning that if
in a formula a dot or cross product operator has more than two operands Taverna
will take the dot/cross of the first two and then use this result to dot/cross with the
remaining operands. Bottom-up evaluation means that an operand can itself be sub-
formula, in those cases Taverna will first evaluate the sub-formula. The mapping of the
LHB formula of concat4Str processor is the mini-process comprised of dot and cross

product steps in Figure 6.8. In our specifications of dot and cross product, given next,
we use the utility function makeTuple.

Definition 6.27. (| |) makeTuple : S× S → S is a function that accepts two strings
representing data values or tuples of values and returns a string represention of a tuple
of the two input values. Example tuples created while preparing the input space for the
concat4Str are given in Figure 6.8.

Definition 6.28. (cross function) cross : T ×T → T is a cartesian product function
for nested lists. The functional specification for cross given below is comprised of a
two phased evaluation based on the use of an additional function cross2 : S×T → T .
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(cross b a) =

{
[(map (cross b) a)] if |a|> 0
[(map (cross2 a) b)] if |a|= 0

(cross2 a b) =

{
(makeTuple a b) if |b|= 0

[(map (cross2 a) b)] if |b|> 0

(6.4)

In the first phase we traverse down the first input collection until a string item is
reached. Afterwards the second phase (cross2) starts, where using the item located in
the first phase we traverse down the second collection until a string item is reached. A
tuple is created out of the two string items located.

Definition 6.29. (Depth Prediction and Mapping Rules - cross product) For a two-
input processor p with in(p) = {〈a,1,s〉,〈b,2,s〉} out(p) = {〈c,s〉} realised with cross

the following apply:

If ∆Dep(p.a) = n, ∆Dep(p.b) = m then ∆Proc(p) = n+m.

The sum of the delta depths on the two inputs of cross becomes a delta for the cross
product step.

If dp.a
j , dp.c

j then dp.a
j → dp.c

j .

The depths of the first input will map to same indiced depths of its output.

If ∆Dep(p.a) = n, dp.b
j , dp.c

j+n then dp.b
j → dp.c

j+n.

The depths of the second input will map to depths of the output with an index shift
factor equal to the delta depth of the first input.

Definition 6.30. (dot function) dot : T ×T → T is a zip function for nested lists. The
functional specification for dot is as follows (note here that we map dot function onto
two lists).

(dot a b) =

{
(makeTuple a b) if |a|= |b|= 0
[(map dot a b)] if |a|= |b|> 0

(6.5)
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Definition 6.31. (Depth Prediction and Mapping Rules - dot product) For a two-input
processor p with in(p) = {〈a,1,s〉,〈b,2,s〉} out(p) = {〈c,s〉} realised with dot func-
tion the following apply:

If ∆Dep(p.a) = n, ∆Dep(p.b) = n then ∆Proc(p) = n.

The delta depths on the two inputs of dot becomes a delta for the dot
product step.

If dp.a
j , dp.c

j then dp.a
j → dp.c

j .
If dp.b

j , dp.c
j then dp.b

j → dp.c
j .

In terms of depth mappings depths of both the first and second input will map to
same indiced depths of the output.

Once the input space is prepared then the we apply the processor by using a single
input recursive evaluator eval, for which depth predictions and mappings were given in
Definition 6.16. This evaluator will simply traverse down each list until it finds non-list
items (tuples), then invokes the function associated with the multi-input processor (e.g.
concat4Str) using this tuple. As eval is preceded with the preparation of the overall
input space. In terms of depth mappings each depth in the input space will be mapped
to same indiced depth of the output of processor evaluation.

The fine-grained modelling of Taverna’s behaviour in executing workflows pro-
vides us with the following guidelines for devising analysis rules:

• Depth mappings would need to be adjusted in cases of dataflow links that corre-
spond to wrapped iteration.

• Determining the range of depths that will get truncated at processor input initial-
isation are key in detecting breaks in factorial design. As these depths will not
be mapped to any depth in the output of processor application.

• If we find the mappings of depths from the individual input spaces to the overall
input space then this mapping could also be used as the mappings from each
individual input space to the output. (Note that eval imposes no shifts on depths).
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• The mappings from individual input space to the overall input space amounts to
computing the mappings for the LHB formula structure.

6.4 Rule-Based Workflow Analysis

6.4.1 Approach Overview

We adopt a declarative logic programming approach for the static analysis of Taverna
workflow descriptions. The analysis is static, as it is performed solely over the work-
flow description, without running the workflow. We use Datalog [dat12] programmes
to represent the analysis. Programs are comprised of 1) the extensional database
(EDB), which is a collection of facts, and 2) the intensional database (IDB), which
is a set of rules used to deduce facts. A modular view of the programme structure of
our analysis is given in Figure 6.9.

• We represent the Workflow Description as a set of EDB facts.

• We provide Depth Prediction rules, which, for a given depth configuration for a
workflow’s input’s, will deduce the following predictions for its execution: what
kinds of composition each dataflow link will imply, what the (depthwise) size
of the input space for each processor will be, what will the (depthwise) size of
each processor output be and also the (depthwise) size of workflow outputs. The
Depth Prediction Rules utilise facts produced by a sub-module of rules that are
dedicated to the calculation of processor input space, and the mapping from their
input space to output according their respective LHB Formulas.

• We allow users to define an experimental Context by specifying it as an exten-
sional fact, which is a combination of a workflow input port and a depth. A con-
text definition represents a named parameter space that will be used to drive it-
eration in a workflow, a context therefore represents the collection of parameters
which are later to be used in PDDS queries as indices to reach results of interest
for a workflow. An example of a context is the galaxy name list (list cig name)
parameter of our case study workflow.

• We provide Reaching Rules that compute depth mappings for a given context.
Reaching rules check whether mapping can be sustained throughout the work-
flow, or is discontinued.
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Figure 6.9: Modules of rules used for our analysis and their dependencies.

The rules given as part of our predicted provenance model PP (Definition 6.5)
map to a number of rules in the Datalog implementation. In the following section we
discuss Datalog rules in rule blocks that make-up each module. For reference in Table
6.1 we provide mappings from rules in the abstract (predicted provenance) model PP

to Datalog rule blocks.

Rule Definition in PP Datalog Rule Block
6.10. (Delta Depth Calculation Rules) DP3
6.11. (Depth Prediction Rules - Single Input Processor) LHB1
6.12. (Depth Prediction Rules - Processor Outputs) DP4
6.15. (Depth Definition Rule) R1
6.16. (Depth Mapping Rule - Single Input Processor Evaluation) LHB2, R4
6.24. (Depth Prediction and Mapping Rules - link) DP1, DP2, R2
6.29. (Depth Prediction and Mapping Rules - cross product) LHB1
6.31. (Depth Prediction and Mapping Rules - dot product) LHB1
6.22. (Broken Factorial Design) R3

Table 6.1: Mappings from Abstract Model Rules to Datalog Rule Blocks.

6.4.2 Datalog Rule Structure

Several researchers have previously used Datalog for provenance representation and
querying [dat12] and consistency checking [MDB+13]. Moreover, in the field of
workflow verification there exists research on modelling workflows with well-studied
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process formalisms such as Petri Nets [VDA98] or π-calculus [CGG09] and using
temporal-logic based analyses over these process representations. We have opted for
Datalog for modelling analysis rules as the broken factorial design pattern we were
trying to detect does not have a temporal dimension. Datalog programs are collections
of rules, which are Horn clauses or if-then expressions [AHV95]. A Datalog program
consists of a finite set clauses of the form:

A0 :− A1, ... ,Am (m≥ 0) (6.6)

where each Ai is a positive atom of the form r(t1, ..., tk) where each ti is a variable
or a constant. :− is read as “i f ”. There can be two forms of clauses:

• facts, that correspond to the case when m = 0

• rules, that correspond to the case when m > 0

A rule is comprised of a head and a body. The RHS of the rule clause is the
body, the LHS is the head. Rule Head is an atom and the Body is comprised of the
conjunction (AND) of zero or more atoms. The rule implies that atom A0 is true if
atoms A1 to Ak are true.

6.4.3 Workflow Description Facts

For illustration a fragment of the workflow given earlier in Figure 6.2 that includes
the concat4Str processor and the corresponding EDB facts are given in Table 6.2. We
adopted the vocabulary from Wfdesc [BZG+15] model for naming predicates in our
extensional database. With our facts we represent, workflows, their input and output
ports. Workflow involve processes (Taverna’s processors), processes also have input
and output (ports). The EDB also provides the defined depths for all ports. As a
kickstart to the depth prediction rules (described in the next section), the EDB also
involves predicted depth for the input ports of the workflow, which equal their defined
depths.

For each processor the EDB contains facts that represent the hierarchical structure
of the LHB formula. Note that the siblings nodes in a LHB tree are ordered according
to their order of appearance in the LHB formula.
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workflow(w1).
workflowInput(w1,alphabet). workflowInput(w1,symbols).
workflowInput(w1,cons). workflowInput(w1,numbers).

definedDepth(w1,alphabet,1). predictedDepth(w1, alphabet,1).
. . . . . . . . . . . . . . . . . . . . . . . . . . .

process(concat4Str).
processInput(concat4Str,str1). processInput(concat4Str,str2).
processInput(concat4Str,str3). processInput(concat4Str,str4).
processOutput(concat4Str,outstr).

dataLink(dl1,w1,alphabet,concat4Str,str1).
dataLink(dl2,w1,symbols,concat4Str,str2).
dataLink(dl3,w1,cons,concat4Str,str3),
dataLink(dl4,w1,numbers,concat4Str,str4).

%LHB FORMULA TREE STRUCTURE
hasLhbRoot(concat4Str,uid1).

lhbNode(uid1, cross, concat4Str).
lhbNode(uid21, str1, concat4Str).
lhbNode(uid22, dot, concat4Str).
lhbNode(uid23, str3, concat4Str).
lhbNode(uid31, str2, concat4Str).
lhbNode(uid32, str4, concat4Str).

hasChild(uid1, uid21, 0).
hasChild(uid1, uid22, 1).
hasChild(uid1, uid23, 2).
hasChild(uid22, uid31,0).
hasChild(uid22, uid32,0).

Table 6.2: A fragment of workflow and its representation with Datalog predicates.

6.4.4 Depth Prediction Rules

Depth prediction, the rules of which is given in Table 6.3 occurs incrementally, through
dataflow links and processors.
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• Rule Block DP-1: As the predicted depths of workflow input ports have been
provided as part of the EDB, this will initiate the rules that determine the com-
position types of links from these input ports to processors’ input ports. As per
depth prediction rules given earlier (Definition 6.24), what determines a compo-
sition (link) type is the difference between the defined depth of the link’s target
and the actual depth encountered at the source (i.e. the predicted depth of the
source). The facts inferred for our example workflow are depicted in Figure
6.10, the predicates wrapped, iterated and smooth are used to assert the com-
position type of each dataflow link.

• Rule Block DP-2: The kinds of composition for each dataflow link informs what
the predicted depth of the target of the dataflow link will be. For iterated and
simple composition the predicted depth of the target will equal the predicted
depth of source. For wrapped composition a depth adjustment occurs so that the
predicted depth of target is equal to the defined depth of target.

• Rule Block DP-3: When we have information on the predicted depths of a pro-
cessor’s input ports, then we can determine per rules outlined earlier (Definition
6.10) whether an input port is initialised with a single input or a space of inputs.
The deltaDepth facts deduced for each port of concat4Str is given in Figure
6.10.

• Rule Block DP-4: In order to make a prediction for the output port of a processor,
we need to sum up two pieces of information (recall Definition 6.12). First is
the defined depth of the processor’s output port, this information is available in
the EDB. The second is the size of the overall input space, this information is
produced by rules in the LHB Formula module. There are two rules in Rule
Block DP-4 (see Table 6.3). One is designed to handle the cases with processors
that have inputs, and the other is designed for processors without inputs. For
the latter case the defined depth of the output becomes also the predicted depth.
Rules in block DP-4 infer the predicted depth for output outstr of concat4Str as
2 (see Figure 6.11) as the defined depth of outstr is 0, and the size of input space
is 2 (we will present the rules for its calculation next).
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Figure 6.10: Illustration of Deductions of the Depth Prediction rules.

6.4.5 List Handling Formula Rules

List Handling Behaviour (LHB) Formula rules, which are given in Table 6.4 perform
two computations, 1) the calculation of the overall size of the input space, and 2)
the calculation of the mappings from depths in individual input parameter spaces to
the depths in overall input space. We make use of the LHB Formula tree for each
processor given in the EDB as guidelines to perform these computations. Equations
(6.29) and (6.31) given earlier for cross and dot product provide the formulas for what
the size of their output will be depending on the size of input. Normally, if we apply
these formulas bottom up to the LHB tree, the output size of the top node will be the
size of the overall input space. Note that the equations also provide us with a formula
to compute mappings from depths of inputs these operators to outputs. In order to
compute the input space size and the mappings simultaneously for a formula tree, our
rules (Rule Block LHB-1) in Table 6.4 prescribe a depth-first pre-order traversal of the
LHB tree as illustrated in Figure 6.11.

We use two predicates to accumulate the input space size throughout the traversal,
these are sizeLhs and sizeCumulative predicates. sizeLhs represents the size of the in-
put space as defined by the portion of the formula to the left of the node. sizeCumulative

represents the size of lefthand side combined with the size of space of the current node.
The first child of each node inherits sizeLhs from their parent. Note that the (leaf) port
nodes represent an individual input space that is of size deltaDepth computed for that
port. When sizeLhs reaches a port node sizeCumulative is inferred by adding sizeLhs

with the deltaDepth for the (port) node.

sizeLhs for a non-first child is computed with information from its left sibling de-
pending on the parent operator node the siblings belong.

• Recall from Definition 6.29 that the size of output of binary cross product is the
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DP-1: Determine the kind of composition for data links.

wrapped(ID,D):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO, SNK_POR),
predictedDepth(SRC_PRO,SRC_POR,Z),
definedDepth(SNK_PRO,SNK_POR,Y), Z<Y, D=Y-Z.

iterated(ID,D):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO, SNK_POR),
predictedDepth(SRC_PRO,SRC_POR,Z),
definedDepth(SNK_PRO,SNK_POR,Y), Z>Y, D=Z-Y.

smooth(ID):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO, SNK_POR),
predictedDepth(SRC_PRO,SRC_POR,Z),
definedDepth(SNK_PRO,SNKPOR,Y), Z=Y.

DP-2: Propagate predicted depth through a dataflow link, there is only an adjustment in the case of wrapped
composition.

predictedDepth(SNK_PRO, SNK_POR,RES):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO, SNK_POR),
wrapped(ID,D),
predictedDepth(SRC_PRO,SRC_POR,Z),
RES=D+Z.

predictedDepth(SNK_PRO, SNK_POR,Z):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO,SNK_POR),
iterated(ID,_),
predictedDepth(SRC_PRO,SRC_POR,Z).

predictedDepth(SNK_PRO, SNK_POR,Z):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO,SNK_POR),
smooth(ID),
predictedDepth(SRC_PRO,SRC_POR,Z).

DP-3: Calculate the delta depth for a port.

deltaDepth(PRO, POR,Z):-
definedDepth(PRO, POR,DEFD),
predictedDepth(PRO, POR, PREDD),
Z= PREDD-DEFD.

DP-4: Calculate the predicted depths for outputs of activity using the total size of the input space.

predictedDepth(PRO,O_POR,Z):-
hasLhbRoot(PRO,R),sizeCumulative(R,RT),
processOutput(PRO,O_POR),
definedDepth(PRO,O_POR,DD),Z=DD+RT.

predictedDepth(PRO,O_POR,DD):-
hasLhbRoot(PRO,null),
processOutput(PRO,O_POR),
definedDepth(PRO,O_POR,DD).

Table 6.3: Rules for predicting the iterated executions and the corresponding depth
adjustment.

sum of the sizes of its inputs. Therefore, in our rules if the parent is a cross

product then the sizeCumulative of the left sibling becomes the sizeLhs of the
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right sibling to reflect the additive nature of cross product.

• Recall from Definition 6.31 that the size of output of binary dot product is equal
to the individual size of either input. Therefore in our rules if the parent is a
dot product then the sizeLhs of the left sibling becomes the sizeLhs of the right
sibling.

Finally the sizeCumulative of some parent (operator) is computed when sizes for
all its children have been computed. The maximum size computed for a child becomes
the sizeCumulative of parent. As a result of traversal, the sizeCumulative for the top
operator node becomes the size of the overall input space.

The sizeCumulative that we have computed for each leaf (port) node is also an
indicator of its depth mapping. With the rules in Rule Block LHB-2 we make this
information more explicit using depthMapping predicate. Note that if the deltaDepth

for a port is zero then the input is comprised of a single value and when a space of tuples
is built up from multiple inputs the same value for this input will be used for the entire
set of tuples. So this input maps to the entire input space. We denote this asserting
that its depthMapping is 0. If deltaDepth is greater than zero then its dimensions
(depths) will map to depths in the input space. The value of sizeCumulative for a port
node denotes the size of the input space inclusive of that port node exclusive of others
that come after it in a formula. Therefore we can deduce that the depth with indice
deltaDepth for the individual input pace maps to the depth with indice sizeCumulative

in the overall space. Depth mapping information are used in reaching rules, which we
describe next.

6.4.6 Context and Reaching Rules

We use a predicate named context to allow users define experimental contexts in the
EDB. A context can be seen as a named depth definition. For our running example let
us assume that we define each input item (parameter) in lists of alphabet and symbols
to be contexts (Each item is of type s, therefore of depth 0). This represented with the
ground facts context(ctxA,w1,al phabet,0). and context(ctxS,w1,symbols,0).

By building on such definitions the reaching rules presented in Table 6.5 can be
described as follows:

• Rule Block R-1: We use context definitions to kickstart the computation of the
reach of contexts. By default a context reaches the port it is defined on. As
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Figure 6.11: Illustration of Deductions of the List Handling Formula rules.

illustrated in Figure 6.12 context ctxA reaches depth indiced 1 at the workflow
input port al phabet and similarly ctxS reaches depth indiced 1 at workflow input
port symbols.

• Rule Block R-2: We propagate reaching from the source of a dataflow link to
its target by taking into account the composition types of links. For simple and
iterated composition, reaching propagates to the same indiced depths at the target
port. For wrapped composition reaching propagates to depths of target with a
positive indices shift equal to the amount of the wrapping adjustment made by
the link.

• Rule Block R-3: When a context reaches a processor input port depending on
the depth it reaches we can determine whether it will reach processor outputs.
Recall that while performing depth prediction we calculated depthMappings for
each depth in the input spaces of individual input ports. So at this stage we need
to check whether the depth that a context reaches is a depth within the input
space. If it is within input space it will be preserved (or mapped to outputs), if it
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#const dotnode = dot.
#const crossnode = cross.

LHB-1: Computing the overall size of input space.

sizeLhs(R,0):- hasLhbRoot(P,R), R != null.

sizeLhs(FIRSTCHILD,VAL) :-
lhbNode(PARENT,_,_),
hasChild(PARENT, FIRSTCHILD, 0),
sizeLhs(PARENT,VAL).

sizeCumulative(NODEID,Z) :-
lhbNode(NODEID, NAME, PROC),
NAME != dotnode,
NAME != crossnode,
sizeLhs(NODEID,VAL),
deltaDepth(PROC, NAME, NDEL),
Z=NDEL+VAL.

sizeLhs(SIBLING2, VAL):-
lhbNode(PARENT,dotnode,_),
hasChild(PARENT, SIBLING1, N),
hasChild(PARENT, SIBLING2, NEXT),
sizeLhs(SIBLING1,VAL), NEXT= N+1.

sizeLhs(SIBLING2, VAL):-
lhbNode(PARENT,crossnode,_),
hasChild(PARENT, SIBLING1, N),
hasChild(PARENT, SIBLING2, NEXT),
sizeCumulative(SIBLING1,VAL), NEXT= N+1.

sizeCumulative(PARENT, VAL):-
hasChild(PARENT, LASTCHILD, X),
#max{V : hasChild(PARENT,_,V)} =Y,
sizeCumulative(LASTCHILD,VAL), X==Y.

LHB-2: Computing depth mappings from each individual input to overall input space.

depthMapping(PROC, PORT, 0):-
lhbNode(NODEID,PORT,PROC),
sizeCumulative(NODEID, VAL), deltaDepth(PROC, PORT, 0).

depthMapping(PROC, PORT, VAL):-
lhbNode(NODEID,PORT,PROC), sizeCumulative(NODEID, VAL),
deltaDepth(PROC, PORT, ND), ND>0.

Table 6.4: Rules calculating the overall size of input space and the depth adjustments
per input based on LHB formula.

reaches a depth beyond delete depth it will be truncated/discontinued. In Figure
6.12 both ctxA and ctxS reach respective processor input ports at depth indice 1,
note that this is an indice within the boundary of the deltaDepth for the input
ports, which is also 1, therefore both contexts will be preserved at the processor
concat4Str, and they will be propagated to this processor’s output ports.
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• Rule Block R-4: We determine to which depth in a processor’s output port a
context reaches by using the depthMapping information associated with input
ports. Note that the depthMapping for the input port str1 is 1, therefore ctxA

reaches depth 1 in the port outStr. On the other hand the mapping for str2 is 2,
hence ctxS is forwarded to depth 2 in outStr. Note now our example contexts
are mapped to different depths at the same port.

The case when reaching cannot be propagated occurs when a context reaches a
depth that is beyond the input space, which denotes that it is not a driver of itera-
tion but a part of data value to be consumed by one invocation of processor. At the
List To String step in Figure 6.12 ctxS reaches depth 2 of the input port. Meanwhile
deltaDepth for this port is 1, in other words List To String will iterate over a list in-
puts it can consume. As a result ctxS get truncated/discontinued at the List To String

step.

Figure 6.12: Illustration of Deductions of the Reaching rules.

To this end we described our rules that for a set of given input depths calculate
what the predicted depths of workflow’s outputs will be and what the mappings among
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R-1: Kickstart reaching definition.

reaches(CTX,PRO, PORT,Z):-
context(CTX,PRO,PORT,RMPOS),
predictedDepth(PRO,PORT,PRED_DEP),
Z=PRED_DEP - RMPOS.

R-2: Propagate the reach of a context through a dataflow link.

reaches(CTX,SNKPRO, SNKPOR,Z):-
reaches(CTX, SRCPRO, SRCPOR, Z),
smooth(DL1),
dataLink(DL1, SRCPRO,SRCPOR, SNKPRO, SNKPOR).

reaches(CTX,SNKPRO, SNKPOR,Z):-
reaches(CTX, SRCPRO, SRCPOR, Z),
iterated(DL1,_),
dataLink(DL1, SRCPRO,SRCPOR, SNKPRO, SNKPOR).

reaches(CTX,SNKPRO, SNKPOR,Y):- reaches(CTX, SRCPRO, SRCPOR, Z),
wrapped(DL1,X),
dataLink(DL1, SRCPRO,SRCPOR, SNKPRO, SNKPOR),
Y=X+Z.

R-3: Determine whether a context reaching a processor input will reach an output depth or is discontinued.

contextTruncated(CTX,PRO, PORT,Z):-
processInput(PRO,PORT),
reaches(CTX, PRO, PORT, CTX_POS),
deltaDepth(PRO, PORT, LMPOS),
CTX_POS > LMPOS, Z= CTX_POS - LMPOS.

contextPreserved(CTX,PRO, PORT,Z):-
processInput(PRO,PORT),
reaches(CTX, PRO, PORT, CTX_POS),
deltaDepth(PRO, PORT, LMPOS),
CTX_POS <= LMPOS, Z= LMPOS - CTX_POS.

R-4: Propagate the reach of a context from inputs ports of an of an activity to its output ports.

reaches(CTX,P1, OUT1,Z):-
processInput(P1,IN1),
processOutput(P1,OUT1),
contextPreserved(CTX,P1,IN1,CDEL),
depthMapping(P1,IN1,FFAC),
Z= FFAC-CDEL.

Table 6.5: Rules for inferring the reach of a context throughout workflow.

depths will be for processor’s inputs and outputs. We also described reaching rules, that
check whether a named depth in the workflow input port can be mapped continuously
throughout the processors in the workflow or whether there exists a processor at which
mapping is discontinued. Our rules encapsulated the formulas laid out in the Taverna
execution model given in Section 6.3.
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6.5 Implementation

We have implemented analysis rules using the DLV Datalog implementation [LPF05].
We have developed a tool that converts workflow descriptions in Wfdesc [BZG+15]
into a set of EDB facts. Note that Wfdesc supports an abstract dataflow viewpoint of
workflows and it does not model information needed to execute workflows. As a result
the LHB Formulas of processors are note captured in Wfdesc. We have extended
Wfdesc with a simple property to carry LHB formulas from their representation in
Taverna Scufl language through to EDB facts. The source for the converter tool can be
accessed from the code repository at [Alp15b]. The EDB facts for the simple workflow
(given earlier in Figure 6.2) and all inferred IDB facts by our rules are provided in
Appendix D. A trace which illustrates that a context defined for the galaxy name input
parameter for the case study workflow and the deductions that show that this context
is truncated at the Flatten List step are can be found in the source code repository at
[Alp15b].

We will now review related work on workflow and provenance analysis, which will
be followed by a discussion of the use of our workflow analysis results.

6.6 Related Work

As mentioned earlier Missier et al [MPB10] have provided the initial insight that, for
Taverna workflows, we can pre-compute anticipated lineage based on locations of data
in nested input and output collections, as Taverna provides us with its iteration se-
mantics. This work exploits the definitions of the cross product and the iterative pro-
cessor evaluator to provide a location mapping formula among indices of prospective
input/output data collections. Authors have shown that the cost of answering lineage
queries using location-mappings would be resilient to increases in workflow size, when
compared to the naive query answering based on traversal of lineage. In [DKBL15]
Dey et al describe a similar approach for the Kepler workflow system [LAB+06]. Ke-
pler supports a number of different dataflow mechanics to coordinate the execution
of analytical steps and their communication. Different mechanics are represented by
different workflow execution Directors. The Synchronous Dataflow (SDF) is one such
director in which activities consume/produce data tokens to/from containers (similar
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to ports) with defined rates. Authors provide a location-based lineage computation for-
mula based on token consumption/production rates associated with each activity. Sim-
ilar to Missier, Dey et al demonstrate that location-based provenance provides benefits
in lineage query answering in settings where the workflow size increases.

The benefit of both Missier’s [MPB10] and Dey’s [DKBL15] location-based prove-
nance approaches is demonstrated in cases where workflows are very large (100+ steps)
and all workflow steps are iterated over respective input collections. As a result authors
demonstrate gains with synthetic datasets. In our approach we have focused on what
can go wrong in querying the provenance of real-world workflows. Our case study
has shown that when the iteration structure is not sustained it significantly effects the
accuracy of provenance query results. Therefore we have focused on eliciting the case
to the contrary of Dey and Missier.

Within a workflow the flow of data among modules is explicit. Recent research
in provenance explores the use of static analysis and/or dynamic instrumentation tech-
niques in cases where the flow is implicit in programmes or scripts. One motivation
is obtaining a provenance abstraction capturing data’s flow or the process’s dependen-
cies. In noWorkflow [MBC+14] authors analyse Python scripts to extract function-call
hierarchies, which they use to create a view over provenance traces collected by run-
time instrumentation of the functions’ reads and writes to the file system. In [SGB14]
authors employ a taint tracking framework, which instruments programme executions
and records which computations are affected by tainted data sources. Here the authors
use names of files read by programmes as taint marks and show how such an approach
can create fine grained lineage among files, where the programme during its execution
writes to one file the data read from another file. In [GCP13] authors apply source code
analysis to programmes that underpin each analytical activity in workflows. The mo-
tivation here is obtaining provenance that is of finer-granularity than what is available
in standard black-box workflow provenance. Through such analysis authors create a
record of prospective provenance where each statement in a programme is modelled
as a transformational process and the variables read and updated by the transformation
are its inputs and outputs.

The focus of these works is having some basic provenance for a system that has
not been designed with such features. As the focus is on collecting provenance, these
works do not focus how that provenance can be used or what the patterns (fine grained
lineage coming from iterations) or anti-patterns (broken factorial design) in provenance
can be. Whereas in our work, we have a provenance capability, and we focus on
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these patterns to increase the fitness of provenance for a particular querying scenario
(PDDS).

A technique used in optimising compilers, named data-flow analysis [ASU86], is
method-wise similar to our approach. Data-flow analysis is a systematic way of collect-
ing information about a program’s states (possible variable values) for distinct points
in the control-flow graph. Compilers utilise a number of well-know data-flow analy-
sis types such as “Reaching definitions” or “live variable analysis”. Here programme
statements are associated with transfer functions that encapsulate if/how the statement
alters programmes state information (e.g. variable definitions). A join operation is
defined to compute state, when multiple programme branches come together. The
outcome of data-flow analysis is used to optimise compilation, as in dead-code elim-
ination, which excludes from compilation those statements that assign to a variable,
which is never read afterwards.

6.7 Discussion

As a first remedy to the problems unearthed in our PDDS case study we presented a
static analysis approach to detect broken factorial design in Taverna workflows. We
demonstrated that if Taverna iterates over a collection of input items, it creates a cor-
responding output collection and that this correspondence between collections is an
assurance that no output is created using multiple items from the input collection. We
have formulated this correspondence as a depth mapping rule among input and outputs
of workflow processors. We have broken down Taverna’s execution behaviour into a
set of restricted classes of computations for which we can define depth mapping rules.
We have provided a set of Datalog rules, that are built on the mappings outlined for
each class of restricted computation. We illustrated with a small example

• how our rules deduce the predicted depths of data for a given input depth con-
figuration

• how we create depth mappings from inputs to output ports of processors

• how for a particular input depth we can traverse the workflow to determine
whether mapping is possible throughout all downstream processors or it is dis-
continued at a particular processor.

The discontinued depth mapping detected by our analysis rules may not always
be pointing to a problem to be fixed. The Flatten List processor in our case study
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workflow, which presents the break point in factorial design is a commonly used data
adapter step in Taverna workflows. The nested collection structure created through
iterated analyses are represented as nested folder structures and files in Taverna work-
flow system’s data storage layer. In order to reduce the complexity of this physical
representation, scientists often create coarser grained data items by flattening nested
lists into a single list or a single string to facilitate easier integration of data into tex-
tual reports or experimental bundles. In cases where the flattening is a terminal step
in a workflow which is intended for reporting it would not have a derogatory affect on
PDDS queries. It remains part of our future work to detect how often broken factorial
design occur in workflows and whether it has been encoded intentionally as in cases of
generating reporting friendly data representations.

A notable aspect of our analysis approach is that it allows the search for an n−
by−1 pattern in provenance at the workflow level rather than at the individual activity
level. If we are to inspect an individual activity by looking at the defined depths of
their inputs/outputs, and observe that it consumes a collection and produces a single
item or another collection, then we can simply deduce that it would create an n−by−1
or n−by−m pattern by its execution. On the other hand this information alone is not
sufficient to deduce this pattern poses a threat to PDDS in the context of the overall
workflow and workflow input parameters which are query anchor point for PDDS. Our
analysis allows for this check to be done at the workflow level.

The intended use for our workflow analysis capability is to provide feedback to
workflow designers. On the other hand a prerequisite for such feedback to be appreci-
ated is wider use of workflow provenance, i.e. scientists actually using provenance for
PDDS. Lack of tools that exploit workflow provenance, in Taverna and also in other
workflows systems, is an important factor that limits the use of provenance. Our anec-
dotal interactions with scientists in the EU Wf4ever project [HDZ+14] [GSRRS13]
has shown that scientists perceive workflow provenance as an esoteric form of techni-
cal metadata that is a dump/export of workflow execution. In this viewpoint the only
use that they attribute to workflow provenance is for experimental audit, where the
dump/export of a particular analysis may be viewed and inspected by a reviewer of
the investigation. In the dissertation’s conclusions we discuss emerging regulations
and practices in scientific data sharing that we think is creating momentum towards
increased use of provenance traces of computational data processing.

An apparent limitation of our approach is its specificity to Taverna’s way of re-
alising factorial designs (collections and iterations). As reviewed in Chapter 2, the
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level of support in scientific workflow systems for factorial design is variable, and the
mechanisms with which this support is implemented is highly diverse. Therefore it is
a challenge to devise an analysis approach that would fit multiple systems. There are,
however, emerging efforts that aim to capture the common core in scientific workflow
languages in a Common Workflow Language [AT15]. Investigating whether our ap-
proach can be generalised, to such languages remains part of our future work, which
we discuss in Chapter 6.

6.8 Chapter Conclusion

We described a static analysis technique over Taverna workflow descriptions to detect
breaks in factorial design. We showed how we exploit the well-defined execution se-
mantics of Taverna system to anticipate the structure of provenance traces, and detect
whether there are cases where multiple inputs descending from multiple points in the
parameter space will get processed together, thereby breaking factorial design. We will
discuss future research in the final chapter of dissertation.



Chapter 7

Provenance Annotation

7.1 Chapter Introduction

In this chapter we describe our solution in bringing domain-specific descriptions into
provenance. We begin in Section 7.2 by outlining our scope: what we aim to annotate,
what kind of information the annotations can contain, from where that information can
be sourced. In our approach to annotation, we make a number of assumptions based on
Workflow Motifs (reported in Chapter 3). In Section 7.3 we revisit workflow Motifs
discuss that they reveal

• the activities that encapsulate scientifically significant computation producing
data with embedded domain specific descriptions.

• the activities that perform data adaptation causing several copies of data to be
present within a provenance trace.

Consequently Motifs hint us on how annotation can occur, where the workflow activi-
ties’ data creation and copying behaviour, can be matched up with annotation creation
and propagation behaviour.

In Section 7.4 we provide an overview of our approach with configurable generic
operators for the creation of annotations where the operators perform a middle-man
duty by transferring data indexed through provenance to external label creator func-
tions, and then transfer those labels as decoration on to the provenance trace, and also
for the propagation of labels among data derivatives created via data adapter steps. In
Section 7.4.1 we outline the simple Label model we adopt for carrying domain-specific

258
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annotations. In Section 7.4.2 we provide the procedural specification of labelling oper-
ators, and their configuration. In Section 7.4.3 we discuss how labelling behaviour as-
sociated with activities in scientific workflows can be organised into labelling pipelines
that are built using the activity composition structure of the scientific workflow. We
outline a basic procedure for creating Labelling Pipelines for Scientific Workflows.

In Section 7.6 we revisit the provenance driven data selection case-study presented
earlier in Chapter 5. We observe the improvement that labels brings in realising PDDS
queries, we assess the implications of label propagation on the accuracy of labels. The
related work is reviewed in Section 7.7.

Our work on provenance annotation has been published in the following papers:

• P. Alper, C. A. Goble, and K. Belhajjame. On assisting scientific data curation in
collection-based dataflows using labels. In Proceedings of the 8th Workshop on
Workflows in Support of Large-Scale Science (WORKS 13), pages 716, Denver,
Colorado, November 2013, ACM.

• P. Alper, K. Belhajjame C. A. Goble, and P. Karagoz. LabelFlow: Exploiting
Workflow Provenance to Surface Scientific Data Provenance. In Proceedings
of the 14th International Annotation and Provenance Workshop (IPAW), pages
84-96, DLR Cologne Germany, June 2014, Springer.

7.2 Our Scope in Annotation

Annotation has been adopted as a solution to bring domain specific description onto
provenance, on either side of the provenance gap.

Annotation of experiment reports. This is achieved primarily by manual curation,
where the scientist uses domain vocabularies, reporting guidelines and tools to create
domain specific descriptions upon shared datasets [WOH+12][SKAC14][SRSF+12]
[FAJS05] [TFS+08]. The responsibility that the scientist has is recollecting the details
of how the analysis was set up and enacted. For this, the scientist sifts through data
files, file names, lab notebooks to recollect experimental context and represents this
information (often in a structured form) as annotations.

Annotation of experimental bundles. Bundles contain resources (data, tools, work-
flows) used within an experiment to enable its preservation for future re-enactment
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or audit by external parties. Recalling from Chapter 2, the Research Objects toolkit
[BCG+12] Galaxy’s Published Histories [GNT10] are examples of bundles. The frame-
works that support the creation of bundles also support their annotation. Typically
these annotations are intended to create a broader contextual boundary for the exper-
iment. This is achieved by creating groups/aggregates with annotation that bind re-
sources locally found within the bundle with resources outside the bundle (pdf manuscripts
hosted on publisher sites, 3rd party analytical resources utilised such as community
databases or web services).

Annotation of workflow provenance. The importance of domain-specific metadata
has been acknowledged early-on in provenance research; The Provenance Challenge,
which adopts a workflow-based data processing scenario, provides 9 queries to assess
the capabilities of provenance systems [MLA+08]. 5 out of 9 of those queries are based
on restrictions on either data values or annotations, which are assumed to exist. Do-
main specific annotations on workflow provenance can be the categorised as Static and
Dynamic. This is illustrated in Figure 7.1, where at the top layer we have a fragment
of a workflow description (depicting a Taverna processor) in the Wfdesc model. At the
middle layer we have the execution provenance for this processor in PROV. For dis-
playing Wfdesc and PROV we utilise the notations described earlier in Section 2.6.3.
Specifically Wfdesc is displayed as a “node and directed-arc” RDF graph [WLC14]
in compact form where type information per node is displayed as bold labels over the
node. PROV is displayed as a graph where nodes denote PROV’s Activity, Agent and
Entity concepts with shape conventions [Gro12]. Other elements of the PROV model,
such as usage and generation and association are denoted with arcs. At the data layer
in Figure 7.1 we have data values stored within files (denoted with the disk shape) in
the file system. We denote domain specific metadata informally with grey-shaded note
boxes in Figure 7.1 at both the workflow description and execution provenance layers.

At the workflow description layer we have provided two sample annotations as ex-
amples of static metadata, over ports of a processor denoting the domain specific types
of information that will appear at those ports. E.g. Specifying that an input parameter
is a galaxy id. These represent fixed characteristics of the actual data and actual anal-
ysis activities that will appear upon workflow execution. When the workflow is run,
activity and data records will be generated at the execution provenance layer. Note
that multiple executions of the same workflow will share the same workflow descrip-
tion, and static metadata has validity across all executions. The annotation features in
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Figure 7.1: Illustration of Static and Dynamic Metadata at different layers of workflow
provenance.

workflow systems, we reviewed earlier in Chapter 2, primarily capture static metadata.

At the execution provenance layer we have provided two sample annotations, as
examples of dynamic metadata, denoting characteristics of a particular output data
generated a via sesame database lookup activity. Dynamic metadata corresponds to at-
tributes of data (or activities) that can change from run to run. For instance depending
on the input parameters used to configure the invocation of a sesame database lookup,
each result will contain data about a different galaxy. While there is ample support
for static metadata in workflow systems there is much less support for dynamic meta-
data. Only in systems that adopt controlled resource environments like Galaxy and
Wings are there capabilities that allow users to manually annotate input datasets, and
at workflow run-time some of those annotations are propagated to results. Our PDDS
case-study illustrated that because workflow proliferate the analyses through repeti-
tions and data collections, obtaining dynamic annotations manually quickly becomes
infeasible.

In the scope of this research we focus on:

• creating dynamic domain specific metadata over workflow provenance,
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• creating metadata on fine-grained data nodes in provenance,

• obtaining on metadata that can be provisioned from in situ resources, i.e. values
of data nodes in execution provenance.

7.3 Revisiting Motifs

Our empirical analysis reported in Chapter 3 showed that workflow activities can be
categorised with Motifs that denote activity functionality. In our annotation approach
we:

• operate with the assumptions that existing workflows and the Motif categorisa-
tions allow us to make.

• devise solutions that cater to existing realities of workflows.

We use the characterisation brought by Motifs to determine 1) where in a prove-
nance trace we have data artefacts that could be used to create domain specific metadata
and 2) to which data artefacts in the provenance trace that metadata can be extend-
ed/propagated.

We revisit the case-study workflow of Chapter 5 here in Figure 7.2 to understand
how Motifs can inform annotation. The workflow in Figure 7.2 has been annotated
(with callout boxes) to denote Activity Functional Motifs. Table 7.1 lists all Activ-
ity Functional Motifs, which can be associated with an annotation behaviour. The
scientifically significant activities are hotspots of data that can be used for provision-
ing domain specific metadata. For our example workflow the steps for obtaining of
Galaxy information from external repositories (those having the Data Retrieval Mo-
tif) and the local extinction calculation (Data Analysis Motif) are examples of such
hotspots in our case-study workflow. Therefore metadata generation can occur using
the traces of these steps.

The Motif analysis and also the PDDS case-study illustrated that data’s point of
creation within a workflow and subsequent use by a follow-on scientifically signifi-
cant step can be separated by several adapter steps. In Chapter 3 (in Section 3.8.2)
we identified that for a subset of adapter Motifs, activity functionality implies certain
transparency over the relation between activity inputs and outputs. We identified that
adapter steps commonly build their outputs by copying (parts of) inputs, further, for
most adapter steps input-output can be viewed as a part-whole relation. We enumerated
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Figure 7.2: Case-Study workflow from Astronomy domain with Motif annotations
over activities.
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what the implied relations for those value-copying data adapters would be (reiterated
here in Table 7.1). We identified that these implied relations convert certain black-box
activities into grey-boxes in terms of lineage. We exploit this grey-box transparency to
extend the reach of annotations over a data artefact to its copies, through propagation
of metadata.

We assume that activities both scientifically significant and adapter can be associ-
ated with an extended form of Motif annotation, we call Labelling Specification, that
can inform the annotation behaviour that shall be taken for that activity. We further
make the following assumptions:

• We assume that the ability to create domain-specific metadata out of data values
is available in the form of external annotator functions. Therefore we assume the
labelling specification for scientifically-significant activities points to the activ-
ity’s associated annotator function.

• For the adapter steps the labelling specification states among which input and
output ports of activity the value copying occurs.

The detailed model for Labelling Specifications and how they can be created by ex-
tending Motif annotations has been left out of scope of our research.

Using the information available in workflow provenance, data values, and assumed
annotation functions our research seeks answers to the following:

• At what granularity should metadata extraction operate?

• How can we systematically apply metadata extraction functions over workflow
provenance traces containing multiple activities connected by dataflow links?

• If we liberally propagated annotations to data copies created by adapters and
also among data collections and items, what would the implication be in terms
of accuracy of annotations?

7.4 Approach Overview

We associate labelling behaviour with activities. This choice is intentional so as to
create metadata that captures the experimental context. An activity presents us with
a contextual boundary: the activity’s inputs are parameters used to obtain the outputs,
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Motif Value-Copying Example in Figure 7.2 Labelling
Data Analysis
Data Retrieval
Data Visualization

N/A “SesameXML”,
“VII 237”,
“calculate int extinction”

generate

Augmentation I m−1−−→O
I isPartO f O

Not present in example. propagate

Extraction I 1−m−−→ O
I hasPart O

“Extract DEC”,
“Extract RA”

propagate

Split I 1−1−−→ O
I hasPart O

Not present in example. propagate

Merge I 1−1−−→ O
I isPartO f O

“Flatten List” propagate

Filter I 1−1−−→ O
I hasPartO

“Select logr25 Mtype” propagate

Combine I m−1−−→ O
I isPartO f O

Not present in example. propagate

Table 7.1: Workflow Motifs, whether they imply Value Copying, and the correspond-
ing Labelling Behaviour

so therefore the inputs represent the context, or the experimental setting for the gener-
ation of outputs. Scientifically significant activities in workflows often generate data
in standardised data formats from respective domains. The VOTable in Astronomy
[OWD+04] or the GBIF format in Biodiversity [gbi15] are just a few examples. These
formats commonly carry the context for the data within. For instance, if we query the
GBIF repository for a certain species record, the result provided in GBIF format will
contain the query, species name, location etc we used in our query. An alternative ap-
proach, for us, then could have been associating labelling capability with the ports of a
workflow, which we know during execution will carry data in such standardised meta-
data rich formats. We have opted to operate at the activity level for two reasons. First;
standardised formats often contain extensive metadata, most of which do not map to
any configuration or input parameter of the workflow. Second; we need a generalised
solution that also caters for cases where a data (output) does not carry the context value
within itself, but instead another data (input) represents the context for it.

We capture core labelling behaviours with MINT and PROPAGAT E operators.
From a high level perspective:
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• MINT obtains labels by invoking the external labelling function associated with
a workflow activity. The label generator function expects all data artefacts that
were used and generated by a particular invocation of the activity. Mint operator
is responsible for accessing the PROV compliant provenance trace to obtain the
inputs and outputs of an activity and forward these to the labelling function.
The labelling function will create labels by extracting metadata from data values
and return them to the mint operator, which in turn attaches those labels with
designated output data artefacts of the activity.

• PROPAGAT E transfers labels from designated inputs of an activity to designated
outputs by creating clones of labels. Note that labels may need to be transferred
from multiple input ports to an output port. In this case the propagate operator
will create a union set of labels from multiple inputs.

These two operators have been designed with re-usability in mind. They operate
over PROV complaint traces, and can potentially be used to decorate the traces of
workflows (from different systems) that adhere to the simple dataflow model. In such
workflows the data derivation structure in the provenance trace is deterministically
shaped by dataflow structure in the workflow. Therefore if we enact labelling behaviour
associated with workflow steps in the (topological) order they appear in the workflow
DAG, then we can effectively decorate the entire trace.

In addition, we provide two Taverna specific operators also for label propagation,
namely the DIST RIBUT E and GENERALISE operators. These have been designed
to maximise the reach of labels in a provenance trace. These operators cater for the
collection-oriented nature of data, and Taverna’s ability to compose activities with mis-
matched structured data types, which may result in iterated and wrapped composi-
tions discussed earlier in the Chapter. While the MINT and PROPAGAT E operators
are associated with activities, DIST RIBUT E and GENERALISE are associated with
dataflow links that link-up two ports, which by definition produce and consume data of
mismatching structured types. In cases where the activity at one end of a dataflow link
produces a collection, and the other end consumes an item, DIST RIBUT E is responsi-
ble for propagating labels from the top-level collection to each item at specified depth.
In cases where the activity at one end produces individual items in a collection, and
the other end consumes the collection GENERALISE is responsible for propagating
labels from items to the enclosing collection at a specified depth.

Before introducing operators in detail we describe the Label model we adopt for
carrying domain-specific metadata.
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7.4.1 Label Model

The information model for labels is given in the UML [BRJ05] class diagram in Figure
7.3. Formally;

Definition 7.1. (Label) A label is an information object that is an instance of class
LabelInstance depicted in Figure 7.3. Labels bear a de f inition, target and a value

attribute. The target and value both of type String represent a simple key-value based
metadata structure. The target uniquely identifies a data artefact, which the label de-
scribes and the value holds the annotation content. A label refers to its kind through
the de f inition attribute, which is of type LabelDe f inition.

Definition 7.2. (Label Definition) A label definition is an information object that is an
instance of class LabelDe f inition depicted in Figure 7.3. A label definition bears a
name attribute, of String type, which uniquely identifies a particular label kind.

Note that the only information that is known by operators about labels when trans-
porting them is their definition. Otherwise operators are oblivious to the actual meta-
data (value) carried by labels. Operators use label definitions when gathering labels
from multiple sources prior to propagation for computing label equality. A label’s
identity is determined by a combination of its definition and value hash. This identity
information is used when aggregating multiple labels through a Union function. We
have kept LabelDe f inition as a separate class to cater for extensibility. For the pur-
poses of this dissertation labels can have String values only and we use set Union for
aggregating them. In future extensions other data types for label values (e.g. Integer or
Date), and other operations for aggregation can be supported by additional attributes
in the LabelDe f inition class.

Definition 7.3. (Label Vector) A Label Vector is an information object that is an in-
stance of class LabelVector depicted in Figure 7.3. A label vector bears a name at-
tribute of type String and a collection of label definitions that comprise the vector.

We use label vectors to configure the execution of labelling operators. A label
vector informs label propagation operators to the kinds of labels they should pick up
from parts of a provenance graph and propagate to other parts. Label and label vector
definitions would be specific to each scientific domain or investigation, and can be
used to decorate workflows from these domains. A label vector could be seen as a
primitive localised metadata profile akin to data tagging profiles adopted in various
scientific domains [HCW08] [gbi15]. In the following section we detail our labelling
framework, LabelFlow and its constituent operators.
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Figure 7.3: UML Class Diagram denoting information model of Labels.

7.4.2 LabelFlow Framework

LabelFlow is a generic framework, which requires configuration for use in a particular
domain. Formally;

Definition 7.4. LabelFlow is the tuple < O,T >, where:
O= {MINT,PROPAGAT E,GENERALISE,DIST RIBUT E} is the set of labelling op-
erators.
T is a tool that can take as input a scientific workflow w and generate a labelling
pipeline for that workflow Πw.

Definition 7.5. A particular configuration of LabelFlow is the 8-tuple
< O,T,F,w,Πw,Pw,Dw,Lw > where in addition to the above definitions:
F is a set of domain-specific labelling functions.
w is a Motif annotated scientific workflow.
Πw is the labelling pipeline for w.
Pw is a provenance store that contains a particular execution of w.
Dw is a data store that contains data artefacts generated during a particular execution
of w.
Lw is an initially empty label store that supports the information model given in Section
7.4.1 to hold labels generated during execution of Πw .

In order to describe the behaviour of the labelling operators and labelling pipelines
that are comprised of those operators we use UML Activity diagram notation [BRJ05].
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Figure 7.2 provides a subset of elements from this notation and their definitions as per
UML reference model.

We will now describe MINT , PROPAGAT E, GENERALISE, DIST RIBUT E op-
erators in detail. We adopt the following presentation method: (1) We give a high-level
behavioural view of operators as UML activity diagrams. (2) Each activity involves an
atomic action that is realised by a call to corresponding labelling operations (concrete
implementation of the labelling behaviour). We provide signatures for these labelling
operations using UML’s operation syntax. (3) We give the procedural specification of
each operation as algorithms. (4) We describe the auxiliary methods utilised by al-
gorithms to access the provenance, data and label stores, also using UML’s operation
syntax.

Definition 7.6. (MINT Operator) is a computational process, whose behaviour is given
in Figure 7.4 (a) as a UML activity that accepts as input a processorId and a f unctionId,
which are of type String, and a targetList which is a set of Strings. The processorId is
the identifier of a (scientifically significant) processor 1, whose provenance trace and
associated data artefacts will be exploited to provision labels. The f unctionId is the
identifier for the domain-specific label provisioning function. targetList contains iden-
tifiers of those output ports of the designated processor, that will be the target of labels
provisioned.

All inputs to the MINT activity, as seen in Figure 7.4 (c), are forwarded to the
Mint action, which is realised by an operation call with the interface given in Table
7.3. In addition to inputs this action reads data store Dw and provenance trace Pw, and
upon execution submits the labels it generates to the label store Lw. The procedure
that underpins the Mint action, provided in Algorithm 2, is as follows: we obtain all
invocation records of the processor designated by the processorId, for each invocation
record we obtain all data related to that invocation (inputs/ outputs)2. We submit data
to the labelling function named f unctionId. The function returns a set of labels that
are to be associated with the target outputs, finally we associate these labels with all
data artefacts that have appeared at a port in the targetList.

Definition 7.7. (PROPAGATE Operator) is a computational process, whose behaviour
is given in Figure 7.4 (b) as a UML activity that accepts as input a processorId of type
String, and a srcList and a targetList which are sets of Strings. The processorId is

1In workflow w, for which LabelFlow has been configured.
2As Taverna uses the file system for its data storage layer, these are references to files.
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An activity diagram is a graph of nodes denoting a process comprised of steps of
computation and flows of (primarily) control (and optionally) data among steps.

An action/activity node (rounded rectangle) denotes a computational step. An action
is an atomic step which is not further broken into sub-steps, whereas an activity is a
group of actions or sub-activities.

Start node (solid circle) is a control node at which flow starts when an activity is
invoked.

End node (hollow circle with solid circle inside) is a control node that stops all flows
in an activity.

Fork node (thick line segment) is a control node that has one incoming edge and
multiple outgoing edges and is used to split incoming flow into multiple concurrent
flows. Join node is a control node that has multiple incoming edges and one outgoing
edge and is used to synchronise incoming concurrent flows.

Control flow edge (arrow) is an edge denoting flow of control from one activity to
another.

Object node (rectangle) is an edge denoting flow of data from one activity to another.

A data store nodes (rectangle) are stereotyped object nodes, which denote non-
transient data that is persisted during the computational process.

Object flow edge (arrow) is an edge denoting flow of data during a computational
process. An object flow edge is one that connects two nodes, where at least one is
an object node. A value pin is special kind of input pin defined to provide constant
values as input.

Pins (small rectangle at edge of rounded rectangle) are object nodes used to denote
inputs/outputs to activities. A value pin is a special kind of input pin, which denotes
constant-valued inputs to an activity.

Table 7.2: UML Activity Diagram elements notation and definitions.
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Figure 7.4: UML Activity Diagrams denoting behaviour of Labelling Operators.
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Mint(processorId:String, functionId:String,
targetList:String[1..n])

Propagate(processorId:String, srcList:String[1..n],
targetList:String[1..n])

Generalise(processorId:String, src:String,
depthDifference:Integer)

Distribute(processorId:String, src:String,
depthDifference:Integer)

Table 7.3: Signatures for labelling operations.

Algorithm 2 Procedural Specification of Mint Operation.
procedure Mint(processorId, f unctionId, targetList)

labellingFunction← getFunctionFromRegistry( f unctionForPro)
for each activity in getInvocations(processorId, provStore) do

activityData← getAllActivityData(activity, provStore,dataStore)
Labels← labellingFunction.invoke(activityData)
for each out put in targetList do

outData← getActivityOutData(activity,out put)
BoundLabels← bindLabelsToData(outData,Labels)

end for
submitLabels(BoundLabels, labelStore)

end for
end procedure
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the identifier of an (adapter) processor, which has a Moti f implying a value copying
relation from its inputs to its outputs (recall Table 7.1). The srcList contains identifiers
of those input ports of the designated processor, from which labels are to be picked up.
The targetList contains identifiers of output ports to which labels shall be propagated.

All inputs to the PROPAGAT E activity, as seen in Figure 7.4 (b), are forwarded to
the Propagate action, which is realised by an operation call with the interface given
in Table 7.3. In addition to inputs this action reads the label and provenance stores
Lw and Pw and updates the label store Lw with propagated labels. The procedure that
underpins the Propagate action, provided in Algorithm 3 is as follows: the invocation
record of processors with designated processorId are obtained, for each invocation
record we obtain the labels of data nodes at a source port in the srcList , we aggregate
them with set Union and , finally we associate these labels with all data artefacts that
have appeared at a port in the targetList.

Algorithm 3 Procedural Specification of Propagate Operation.
procedure Propagate(processorId,srcList, targetList)

for each activity in getInvocations(processorId, provStore) do
LabelDe f s← getLabelVector()
for each out put in targetList do

for each outData in getActivityOutData(activity,out put, provStore) do
Labels←∅
for each inputin srcList do

for each inData in getActivityInData(activity, input, provStore) do
Labels← Labels∪getLabels(inData,LabelDe f s, labelStore)

end for
end for
CloneLabels← clone(Labels)
BoundLabels← bindLabelsToData(outData,CloneLabels)

end for
submitLabels(BoundLabels, labelStore)

end for
end for

end procedure

Definition 7.8. (DISTRIBUTE/GENERALISE Operators) are computational processes,
whose behaviour is given jointly in Figure 7.4 (c) as a UML activity that accepts as
input a processorId and an src of type String and a depthDi f f erence which is of
type Integer. DIST RIBUT E / GENERALISE operators are designed to propagate
labels up and down the structure hierarchy of collection-typed data artefacts in prove-
nance. While the MINT and PROPAGAT E are labelling proxies for processors, these
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are labelling proxies for dataflow links in the workflow, specifically those links with
data type structure mismatches between the ports at two ends of the datalink. The
processorId and src parameters jointly identify an output port of a particular proces-
sor (the source end of a mismatched datalink). The level of mismatch is specified with
the depthDi f f erence.

Consider the case where one processor by definition produces an output of type
L2(s) and is linked to a follow-on processor that consumes input of type s. This case
corresponds to a depthDi f f erence of 2 among two ends of a dataflow link. In order
to adjust for this mismatch we would have to push down the labels associated with
the output collection occurring at port src of the designated processor to the collec-
tion’s items that are two-level deep in the data structure. We achieve this by using
the DIST RIBUT E operator. The reverse procedure of pulling up labels is performed
by the GENERALISE operator. All inputs to the DIST RIBUT E / GENERALISE ac-
tivity, as seen in Figure 7.4 (c), are forwarded to the corresponding action, which is
realised by an operation call with interface(s) given in Table 7.3. Note that similar
to the PROPAGAT E operator these processes read the label and provenance stores Lw

and Pw and update the label store Lw. The procedures that underpin the Distribute and
Generalise actions are given in Algorithm 4 and 5 respectively. Note that when gener-
alising, we gather labels from multiple child items, we therefore perform set union on
those labels prior to associating with a parent collection.

Algorithm 4 Procedural Specification of Distribute Operation.
procedure Distribute(processorId,src,depthDi f f erence)

LabelDe f initions← getLabelVector()
for each outData in getAllGeneratedOut puts(processorId,src, provStore) do

Labels← getLabels(outData,LabelDe f initions, labelStore)
for each item in getItems(outData,depthDi f f erence, provStore) do

CloneLabels← clone(Labels)
BoundLabels← bindLabelsToData(item,CloneLabels)
submitLabels(BoundLabels, labelStore)

end for
end for

end procedure

7.4.3 Labelling Pipelines

In order to put the capability encapsulated by operators into action we use labelling
pipelines. We formally define the elements of pipeline generation as follows:
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getInvocations(processorId:String, provStore:String):String[0..n]
Obtains identifiers of all the PROV : activity nodes in the trace that are documented
to have occurred using processorId as a PROV : plan.
getAllGeneratedOutputs(processorId:String, port:String,
provStore:String):String[0..n]
Obtains identifiers of all the PROV : entity (data) nodes in the trace that have been
in a qualified PROV : generation relationship with some activity, where the activity
has occurred according to a PROV : plan of identifier processorId and the generated
data had role (PROV : hadRole) port.
getAllActivityData(activityId:String, provStore:String)
:String[0..n]
Obtains identifiers all the PROV : entity (data) nodes in the trace that have been in
a PROV : usage or a PROV : generation relationship with the designated activityId.
getActivityOutData(activityId:String, port:String,
provStore:String):String[0..n]
Obtains identifiers of the PROV : entity (data) nodes in the trace that are in a PROV :
generation relation with the designated activityId, where the generation is qualified
stating that the data node played the role (PROV : hadRole) identified with port.
bindLabelsToData(dataId:String, labels:LabelInstance[0..n])
:LabelInstance[0..n]
Returns a copy of the labels, where the target of each copy is set to the designated
data record.
clone(labels:LabelInstance[0..n]):LabelInstance[0..n]
Creates a copy of all the labels in the input set .
submitLabels(labels:LabelInstance[0..n], labelStore:String)
Stores all the label instances in the designated label space.
getItems(coll:String, depthDifference:Integer,
provStore:String):String[0..n]
Obtains identifiers of PROV : entity (data) nodes in the trace that are con-
tained (PROV : hadMember) by the designated PROV : Collection coll at
depthDi f f erence level deep.
getLabels(item, labelDefinitions, labelStore:String)
:LabelInstance[0..n]
Obtains all the labels, whose target is the designated item.
getEnclosingCollections(items:String[0..n],
depthDifference:Integer, provStore:String):String[0..n]
Obtains the identifiers of PROV : Collection nodes in the trace, which at
depthDi f f erence level deep contain (PROV : hadMember) the designated items.

Table 7.4: Procedures utilised by labelling operators to access and update the prove-
nance, data and label spaces.
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Algorithm 5 Procedural Specification of Generalise Operation.
procedure Generalise(processorId,src,depthDi f f erence)

LabelDe f initions← getLabelVector()
OutData← getAllGeneratedOut puts(processorId,src, provStore)
for each coll in getEnclosingCollections(OutData,depthDi f f erence, provStore) do

Labels←∅
for each item in getItems(coll,depthDi f f erence, provStore) do

Labels← Labels∪getLabels(item,LabelDe f initions, labelStore)
end for
CloneLabels← clone(Labels)
BoundLabels← bindLabelsToData(coll,CloneLabels)
submitLabels(BoundLabels, labelStore)

end for
end procedure

Definition 7.9. (Annotated Workflow) In Definition 6.2 of Chapter 6, a workflow was
defined with the triple w =< PRO,POR,LINK >, where PRO denoted the set of pro-
cessors, POR the set of ports, and LINK the set of dataflow links among ports. We ex-
tend this definition to represent an annotated workflow as w=<PROann,POR,LINK >

where PROann denotes a set of annotated processors. Each processor pann ∈ PROann

is denoted with pann =< id,mp >, where mp denotes the annotation, i.e. the Labelling
Specification for processor pann.

Definition 7.10. (Labelling Specification) is an information object that is an instance
of concrete classes given in Figure 7.5. Note that among these classes MintSpec and
PropagateSpec encapsulate information passed as input to MINT and PROPAGAT E

operators given earlier (Figure 7.4), whereas the Ad justSpec encapsulates inputs to
Generalise and Distribute operators. A labelling specification mp of an annotated
processors pann ∈PROann in a workflow w can be of types MintSpec or PropagateSpec

only.

Definition 7.11. (Labelling Pipeline Generator) T is a tool provided as part of La-

belFlow that accepts as input an annotated workflow w and produces as output a la-
belling pipeline Πw for w.

Definition 7.12. (Labelling Pipeline) is a specification for a computational process
comprised of (1) sub-processes based on calls to MINT , PROPAGAT E, GENERALISE

and DIST RIBUT E operators (as per Definitions 7.6, 7.7, 7.8) and (2) control-flow re-
lations among those processes. So Πw =< OP,CT RLINK >
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Figure 7.5: UML Class Diagram denoting information model of Labelling Specifica-
tions.

We will first illustrate labelling pipelines and later discuss how pipeline generator
works.

7.4.3.1 Example Labelling Pipeline

For the case-study workflow given earlier in Figure 7.2 the labelling pipeline is given in
Figure 7.6 using UML Activity Diagram notation. For each of the three scientifically
significant activities in the workflow, namely SesameXML, V II 237 and calculate

internal extinction (in Figure 7.2) there is a corresponding MINT process in the la-
belling pipeline (in Figure 7.6). This is because all three processors had associated
labelling specifications (extended Motif annotations) of type MintSpec (in Figure 7.5).
Label specifications of these processors have become sets of constant-valued inputs
(denoted with value-pins ) for each corresponding MINT process in the pipeline. For
example for the SesameXML step in the workflow, the corresponding MINT process
is configured with:

• String value of “SesameXML” for the processorId input parameter.

• String value of “SesameLabeller” for f unctionId input parameter,

• a Set containing the String value “return” for targetList input parameter.

Using this input triple the MINT process is undertaken by calling the operation detailed
in Algorithm 2, which will decorate data outputs that appear at the port named “re-
turn” of processor “SesameXML” with labels obtained through invocation of domain-
specific function “SesameLabeller”. Recall from the specification of MINT process
(in Figure 7.4) that that it reads from data and provenance stores Dw and Pw and writes
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to the label store Lw. And, unlike all other operators, MINT does not read from the
label store as it generates labels in the first place. As a result MINT processes can start
simultaneously upon the start of labelling pipeline (denoted with a fork of control links
from start node to all three MINT processes).

For some of the data adapter steps in our case-study workflow, namely Extract RA,
Extract DEC, Select logr Mtype, Flatten List, Flatten List 2, we have PROPAGAT E

processes in the labelling pipeline. The labelling specifications, of type PropagateSpec,
associated with these adapter processors, has become input configurations for the
PROPAGAT E processes in the pipeline. The labelling specifications denote from
which input ports (srcList) to which output ports (targetList) label propagation should
occur. Note that the Format conversion step in our workflow, despite being a data
adapter having the FormatTrans f ormation Motif, does not have a corresponding la-
belling process in the pipeline. This is because, as per Table 7.1, FormatTrans f ormation

is not a Motif for which a labelling behaviour has been defined. Consequently Format

conversion step does not have an associated labelling specification and therefore has
no footprint in the labelling pipeline. As per its specification (in Figure 7.4) the
PROPAGAT E process reads from and write to the label store Lw. In order for a
PROPAGAT E process to run, all other processes in the pipeline that decorate data
at ports in the srcList parameter of that PROPAGAT E process shall be completed.
This requirement is represented with control flow links among relevant processes in
the pipeline.

The pipeline in Figure 7.6 also contains a GENERALISE and DIST RIBUT E pro-
cesses to propagate labels along data structure hierarchies in cases of mismatched data
types at the two ends of a dataflow link. One example is the GENERALISE process,
which is configured to propagate labels of the nodeList output of Extract RA processor
one level up to their enclosing collection, as it is these collections that get consumed by
the follow-on processor Flatten List in the workflow. There is a difference in the way
GENERALISE / DIST RIBUT E processes are included in a labelling pipeline when
compared to the way MINT and PROPAGAT E processes are included. MINT and
PROPAGAT E processes are directly informed by annotations in the form of labelling
specifications (either a MintSpec or a PropagateSpec) associated with processors in
the workflow. On the other hand there is no such annotation for the GENERALISE

/ DIST RIBUT E processes. Their inclusion happens through an analysis of dataflow
links in the workflow and the corresponding creation of labelling specifications of type
Ad justmentSpec (Figure 7.5). We discuss the details of labelling pipeline creation in
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the next section.

7.4.3.2 Pipeline Generation Procedure

The procedure followed by the Labelling Pipeline Generator is given in Algorithm 6.
Inputs w f Processors and w f Datalinks are the set of Processors and Datalinks that
make up a workflow w. The procedure initialises two empty collectionspipelineOps

and pipelineCtrlLinks to hold the Labelling Operators and the Control Links within
the result pipeline Πw. The procedure is comprised of two phases for populating these
two collections.

The first phase begins by traversing all processors of w to check whether that have
associated with them a labelling specification. If that is the case then the labelling
specification is transferred to Πw, more specifically it will be added to thepipelineOps

collection. In case a processor in the workflow has no labelling specification asso-
ciated, then it will simply be skipped. As a follow-on step we eliminate dangling
PROPAGAT E operators. Dangling operators are those that are configured to obtain la-
bels from source ports, where no labelling operator is configured to populate. The final
step in creation of labelling operators is the addition of GENERALISE or DIST RIBUT E

type adjustment operators. We do this by iterating over every datalink in workflow w

(items of w f Datalinks). We check whether the source of the datalink is being labelled
by any of the MINT or PROPAGAT E type operators. If that is the case, and if the
datalink is one which is unbalanced due to mismatched datatypes of ports at its two
ends then we create a corresponding adjustment specification either DIST RIBUT E or
GENERALISE and add it into thepipelineOps collection.

In the second phase we create control flow links. We do this by iterating over op-
erators in the pipeline, finding each the operator’s predecessor operators and creating
control links among them. The predecessors of a PROPAGAT E operator can be multi-
ple and they are those that have as their labelling target a port that is in the source port
list of PROPAGAT E. Adjustment type operators GENERALISE or DIST RIBUT E

have a single predecessor, which is the one that has as labelling target the source port
of adjustment operator.
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We represent the labelling pipeline from this procedure with the Wfdesc workflow
model [BZG+15]. Note that the pipeline is comprised of operators and control flow
links. The repetitive application of labelling for multiple invocations of processors and
for multiple label kinds in a label vector are handled within the labelling operators.
Therefore the basic model of Wfdesc in representing processes and their dataflows is
sufficient for us in representing our pipeline. The details of how this abstract represen-
tation is mapped to a concrete executable form is provided in the following Section.

7.5 Implementation

The auxiliary functions we use to access the provenance store (given in Table 7.4) sup-
ports a PROV-O [BCC+12] based RDF representation of workflow execution prove-
nance. Consequently we have chosen an RDF based representation of labels to facil-
itate their integration with provenance. Each label definition is represented with an
OWL Datatype property. Label instances are RDF statements where the subject corre-
sponds to the target of the label, the predicate is the datatype properties and objects are
metadata values of type xsd : string.

The labelling operators and the auxiliary provenance access functions are imple-
mented as Java API methods. The labelling pipelines are represented in an abstract
manner with Wfdesc. This abstract representation can be converted to a concrete ex-
ecutable form using any workflow language that supports a simple data flow among
activities, and can access resources exposed through Java APIs. For our case-study
tests we interpret the abstract Wfdesc specification by traversing the activities in the
topological order of their respective workflow elements in the scientific workflow, and
make API calls to invoke respective operators. Note that the pipeline is only responsi-
ble for coordinating the execution of labelling operators, whereas the core of labelling
takes place within operators.

7.6 Revisiting case-study

In order to assess the utility of labels in PDDS we have used LabelFlow to annotate
execution traces of our case-study workflow. As prerequisite to obtaining a labelling
pipeline for this workflow we performed the following:

• we implemented three simple domain-specific labelling functions, one for each
scientifically significant step in the workflow (as discussed in Section 7.4.3.1).
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Algorithm 6 Procedure followed by the pipeline generator tool.
procedure convert(w f Processors,w f Datalinks)

pipelineOps←∅
pipelineCtrlLinks←∅
. PHASE 1: Create Labelling Operators
for each processor in wfProcessors do

if hasLabellingSpec(processor) then
pipelineOps← getLabellingSpec(processor)

end if
end for
do

f ound← f alse
danglingOperator← null
for each op in pipelineOps do

if isPropagate(op) and isDangling(op) then
danglingOperator← op
f ound← true
break

end if
end for
if found then

remove(pipelineOps,op)
end if

while f ound
for each link in wfDatalinks do

if isLinkSourceLabelled(link, pipelineOps) and isImbalanced(link) then
pipelineOps← createAd justmentSpec(link)
break

end if
end for
. PHASE 2: Create Control Links
for each op in pipelineOps do

if isPropagate(op) then
for each src in getSrcList(op) do

predecessorOp← getOperationWithTarget(src)
if predecessorOp <> null then

pipelineCtrlLinks← createCtrlLink(predecessorOp,op)
end if

end for
else if isGeneralise(op) OR isDistribute(op) then

predecessorOp← getOperationWithTarget(getSrc(op))
pipelineCtrlLinks← createCtrlLink(predecessorOp,op)

end if
end for

end procedure
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Figure 7.7: Contextual-Precision of label-based data selection queries.

These functions can parse the data consumed/generated by these activities and
create labels that correspond to either input configurations (context) or data
origin.

• we associated Labelling Specs with workflow activities according to the infor-
mation model given in Figure 7.5. For the data adapter activities, for which a cor-
responding labelling behaviour is given (Table 7.1), we created PropagateSpecs
and for the scientifically significant activities, we created MintSpecs, pointing to
the labelling functions.

This time we implement the queries in Table 5.1 using labels (hence denoted with
the “-L” suffix). The precision in obtaining relevant results for each query is given in
Figure 7.7.

Q1-L Rather than using lineage as a pseudo mechanism to seek coordinates re-
trieved from Sesame Database, we now inquire about data origin directly using la-
bels. We use case : re f erenceURI, case : re f erenceCatalog datatype properties cre-
ated for test purposes. Note we are now able to fully implement the query and seek
the source catalog information about the coordinates. As Figure 7.7 shows, with label-
based queries we are able to retrieve with 100% accuracy the data that comes from the
Sesame database and its local copies.

Q2-L In this query we use the case : hasSub ject label to seek results about a partic-
ular Galaxy. Note that a typical characteristics of scientific data repositories is that they
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use heterogeneous identification schemes. So, in Astronomy a Galaxy has several iden-
tifiers from respective databases. The Visier and Sesame databases accesses within our
example workflow use different identifiers. Therefore in our query, we need to refer to
all possible identifiers of a Galaxy. As seen from Figure 7.7, the precision deteriorates
as it was the case when the query was implemented using lineage. A combination of
broken factorial design (at the Flatten List step) and liberal label propagation causes
inaccurate labels to be created. While each output from “SesameXML” bears the cor-
rect label denoting the associated galaxy, all items in the output of “Flatten List” would
bear a set of labels (for all galaxies), even though each contains the data of one. Recall
from our case-study that iteration is not sustained at the Flatten List step, in other
words it is executed only once consuming all galaxy coordinates. Meanwhile as per
its Motif, we know that this steps build its output by coalescing all items in the input
collection. As a result our labelling pipeline will first generalise all labels and compute
a label for the top-level collection element consumed by Flatten List. This label will
get propagated to Flatten List’s output, which is a list. On the other hand, this list
is not consumed as a whole by downstream activities, instead each item in it is used.
Therefore each item inherits the labels from the enclosing list (through a distribute
operator). As a result, we end up with inaccurately labelled items.

Q3-L By using labels we are now able to fully represent Q3. The labelling function
for the calculate internal extinction step creates labels of type case : hasMorphology

to capture the context represented by the morphology input parameter. When we look
at the precision of this query result it also deteriorates with increasing inputs. This
is because the coordinate inputs to the extinction calculation are inaccurately labelled
due to upstream Flatten List step.

We will now review related work on provenance annotation, after that we will
provide a critical discussion of the above presented results of label-based PDDS.

7.7 Related Work

LabelFlow brings together two capabilities:

• the provisioning of domain-specific annotations by promoting parts of data val-
ues to become metadata.

• the propagation of annotations to other (close derivative) data nodes in the prove-
nance trace.
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We therefore review related work in these two categories.

7.7.1 Obtaining Annotations

In pioneer works on provenance annotation [MSZ+10] [ZWG+04], the primary focus
has been on capturing (through manual annotations) the static metadata, characterising
elements of a workflow description and propagating those characteristics to execution
provenance.

Cao et al [CPS+09] has been the first to focus on dynamic metadata. This work
brings annotation capabilities to a desktop application that allows users to perform
analyses by interacting with remote services available on a Grid. The authors propose
the use of specialist Annotators that crawl over data nodes in a provenance graph
that are known to be of a specific domain type (e.g. a BLAST [AGM+90] report).
Annotators can parse data values in known formats and can create annotations using
data values. Here the objective is to create metadata exhaustively by exploiting all
possible metadata headers/fields in a data file. On the other hand the authors do not
discuss how this rich metadata will be utilised by the application.

In [SSH08] Sahoo et al describe the SPADE system, where they highlight dynamic
metadata, and they too exploit data artefacts as the source of metadata. The authors
propose using “semantic provenance modules”, similar to Cao’s domain-specific anno-
tators to create elaborate metadata. They propose such modules be inserted in-between
analytical steps in workflows. Similar to Cao’s work, SPADE focuses on providing one
particular domain-specific ontology and elaborate metadata conforming to that ontol-
ogy. Note that this approach requires altering the original scientific workflow to denote
points of interruption, where the annotator will execute.

In a recent paper De Oliviera et al [dOSM15] question “how much domain data
should be in provenance?”. Their answer is that it should be under the control of the
user. De Oliviera cites and takes influence from our work LabelFlow in building a dy-
namic metadata provisioning capability tailored to support parallel scientific workflow
systems. Similar to our labelling functions, they associate user-designed Extractor

classes with outputs of selected workflow activities. Similar to SPADE, De Oliviera’s
approach requires alterations to the original workflow to denote the extractor class for
activities. The need to embed the metadata generation capability into the workflow is
justified by a need to have and query this metadata while the workflow is still running.
In the parallel workflow setting workflow activities are long running, and one way to
detect anomalies in the execution is to retrieve intermediary results based on domain
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specific characteristics and to inspect them.
The distinctive aspects of LabelFlow against these approaches are:

• its non-intrusiveness to the execution of workflow. As the metadata is sourced
from the data, as long as the data values are kept, annotation can take place as an
offline process any later time.

• its focus on capturing the context that surrounds a particular analytical activity.
All prior approaches focus on extracting metadata from the value of a data node
and associating metadata with that data node. We focus on the cases where
the context is spread out among input parameters and result datasets. As we
use labelling functions that consume all data (input/output) associated with an
activity, we provide a mechanism to weave back this spread out context.

7.7.2 Propagating Annotations

Attribute propagation has been first studied in the context of part-whole relations
in Object-Centered systems and in Description Logics [AFGP96], where attributes
of parts can be considered attributes of wholes and vice versa. In [HGP93] authors
describe an attribute propagation mechanism in Object-Oriented databases that ex-
ploits the part-whole relations. Two types of propagation is outlined invariant and
trans f ormational, where the latter is typically used to aggregate attributes of parts to
obtain an attribute for the whole (e.g. a car’s weight is the sum the weight of all its
components). Note that it is the same part-whole relation implied by a subset of our
Motifs (discussed earlier in Chapter 3) that we exploit to perform annotation propaga-
tion.

Metadata propagation has been explored in digital library research. In [Gre09] au-
thors accelerate the curation of shared research work products through propagation of
basic metadata, such as authorship, subject, or publication date, from the research ar-
ticles to their supplementary material (data, visualisations, charts). Such propagation
may result in incorrect annotations (e.g. not all charts of a paper may have been au-
thored by the same person). Authors propose that inaccuracies are later corrected via
manual curation.

Propagating annotations of data artefacts to other data artefacts by exploiting prove-
nance has been studied in the context of databases. Recall from Chapter 2 that database
provenance was concerned with tracking Why, How and Where. Why explains which
source tuple(s) cause a particular record to appear in a query result; How explains by
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which relational operators the source tuples are combined; and Where explains from
which source cells are the data values copied to the result. DBNotes [BCTV04] ex-
ploits Where provenance to propagate annotations on source cells to results of Select-
Project-Join-Union queries. DBNotes uses set union to gather all annotations of source
cell values to obtain an annotation set for the result. Why and How provenance have
recently been applied to dataflows comprised only of data-querying modules, imple-
mented with relational queries [ICF+12] or PigLatin programs [ADD+11]. In [BL06]
authors describe a logic-based approach, which exploits How provenance to propa-
gate of schema-level semantic annotations through relational query based activities.
Rules for propagation of annotations through each relational operator is represented as
a logic constraint. Authors speculate that such an approach can find applicability in
semi-automated annotation of workflows.

What sets LabelFlow apart from annotation propagation over white-box database
provenance is that it operates over grey box provenance. In a scientific workflow
setting, data structures and computations are diverse, hence we cannot make the re-
strictive assumptions on the structure of data (as relations and tuples), and the kinds
of data-processing (relational queries). On the other hand our empirical analysis on
workflows and the Motif categorisation has shown that certain types of computation
(data adapters) are not entirely arbitrary, and their operation can be made explicit in
a rough-cut manner through semantics annotations specifying, from which inputs to
which outputs value-copying occurs. We will discuss the implications of the grey-box
in the next section.

7.8 Discussion

The revisit of the case-study revealed that the combination of liberal label propaga-
tion with broken factorial design can lead to inaccurate labels, which shows that this
(anti)pattern not only degrades the standalone use of provenance traces but also de-
grades the operation of provenance enhancement applications, as our annotation ap-
proach.

Our propagation of labels is liberal as it is a combination of the following be-
haviours:

• We act on partial information (grey-box transparency denoting some value-copying
occurring between inputs and outputs of an activity). When an activity invoca-
tion consumes a collection of items with distinct labels, and produces another
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collection of items, grey-box transparency does not allow us to accurate propa-
gate labels item-wise. So instead we first GENERALISE labels to the top level
input collection and PROPAGAT E them to the top level output collection.

• To further expand the reach of labels we DIST RIBUT E labels at the top level
collection to each item.

Other provenance annotation approaches do not have the inaccuracy issue either
because:

• they do not support propagation of labels as in SPADE [SSH08] or De Oliviera’s
[dOSM15] approach,

• they do not support a fine-grained provenance capability where annotations from
distinct fine grained sources need to be managed as in the Galaxy workflow
system metadata propagation features [GRH+05].

• or they require the user to not only supply the initial annotations but also the
rules of propagation per workflow activity as in the Wings workflow system
[GRK+11].

Rather than having these restrictions, a promising solution could be integrating
workflow analysis with labelling. The workflow analysis rules can deduce whether
lineage traces from multiple sources will be joined up at an activity invocation or not.
We anticipate that by superimposing the label generation and propagation capabili-
ties of activities as additional rules, the tool can also inform us whether labels from
disparate sources will be joined up or not. This research falls in scope of our future
work.

The cost involved in adapting our system is the manual annotation of workflow
activities with labelling specifications and developing labelling functions for the focal
data generation points in workflows. These are one-time costs. Both labelling specs
and labelling functions can be reusable as the activities are underpinned by common
components from local libraries or service catalogues [BTN+10] [MKRI15]. Conse-
quently a labelling spec generated for a component is re-usable for all its occurrences
in workflows.

Earlier we mentioned that we designed MINT and PROPAGAT E operators with re-
usability in mind. Given that our operators decorate standard PROV traces, they have
the potential to be used for labelling traces of workflow systems other than Taverna.
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Assessing the re-usability of our operators remains part of our future work discussed
in Chapter 6.

As we saw in related work, any attempt at automating the generation of dynamic
metadata has to assume the existence of a metadata extraction capability, i.e. labelling
functions. The cost of developing such functions can be minimised by exploiting ex-
isting libraries in parsing and transforming standardised scientific data formats.

With labels we have adopted a very simplistic model to represent metadata. This
can be viewed as a middle-ground between having no explicit metadata and having
fully-fledged ontology based representations that conceptually describe provenance
artefacts [HKP+09], and interlink them with information shared elsewhere [BBR+13].
As evidenced by existing experiment bundling approaches [BZG+15] rich annotations
created manually by users are more suited to a coarse grained annotation approach,
where the entire workflow or its entire inputs, outputs get annotated as part of a bun-
dle. In our case we are attempting at annotation at a very fine grain. Our labels can
be seen as taints over data created due to data’s association with an activity or another
data in a provenance trace. We have therefore opted for a simple representation.

7.9 Chapter Conclusion

We described an architecture where 1) we use workflows and provenance traces associ-
ated with annotation behaviour as a roadmap to collect and propagate domain specific
metadata and 2) we use data values as the source of domain specific metadata in the
form of labels. We described two generic operators obtaining labels and propagating
it to data’s close derivatives created through data adapter steps. We also described
two Taverna specific operators that cater for the Collection-Item structure of data, and
allowed propagation of labels from Collections to Items and vice versa.

We assessed the utility of the proposed architecture and labels using the PDDS
case-study. We observed that labels allow to fully implement PDDS queries, which
in the absence of metadata were only partially implemented. On the other hand we
observed that broken factorial-design impacts the accuracy of labelling, as the prop-
agation of labels among data derivatives is predicated over partial (grey-box) lineage
information coming from the Motif’s of workflow activities. We will discuss future
research in the final chapter of the dissertation.



Chapter 8

Conclusions and Future Work

8.1 Brief Summary

Scientific Workflows help systematise data-oriented analyses by several means.
They alleviate resource heterogeneity by providing established resource access mech-
anisms, they automate computational parts of analyses, thereby enabling systematic
exploration of experimental variation and repetition. Moreover, workflow systems are
equipped with execution tracing capabilities that capture provenance information doc-
umenting each step of analysis, and the data consumed and generated in each step.
Provenance features of workflow systems bring step-wise transparency into investi-
gations; enabling their monitoring, debugging and end-to-end audit-ability. All these
capabilities result in streamlined, credible and repeatable data analysis processes for
scientists [DF08]. In parallel to the systematisation of how analyses are done, there
are emerging efforts that aim to systematise how analyses are reported when anal-
ysis outputs are to be shared. Systematisation in reporting signals a move from tra-
ditional narrated descriptions of experiments, as in Materials and Methods sections of
articles to more structured forms of experimental metadata, describing the experimen-
tal set-up including configurations, varied parameters and methods. To assist scientists
in the creation of such metadata there are emerging efforts in providing vocabular-
ies, reporting frameworks and guidelines [SRSF+12] [TFS+08]. A natural expectation
would be that investigations that are systematic in their encoding and enactment of
the analysis, as with workflows, could equally be advantageous in reporting. In this
dissertation we observe that this premise holds weakly. While workflows and their
provenance finds use during workflow design and enactment activities, this infor-
mation is rarely used to support experiment reporting. The work described in this
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thesis is based on a formulation of this disconnect as the provenance gap, where we
identify challenges of workflow provenance that hinders its use in reporting.

More specifically, experiment reporting poses the following requirements for work-
flow provenance, which highlight challenges we tackle in this dissertation research:

• Represent Factorial Design: corresponds to the ability to represent experimen-
tal parameters and encode experimental variation into workflows, and to record
provenance in a granularity that can capture distinct parameters and enactment
of the analysis with those parameters. The challenge here is in understanding
the level of support that workflow systems and their provenance infrastructures
support such granularity of provenance recording.

• Support Data Selection: corresponds to the ability to pose queries over prove-
nance traces to seek parameter nodes of interest and to traverse traces to access
results that are obtained using those parameters. The first challenge here is un-
derstanding whether workflow provenance traces lend themselves to such a seek
and access pattern and understanding the factors that hamper the realisation of
such queries. The challenges that lie in provenance querying are:

– the representation of data and analyses as opaque nodes in provenance lack-
ing in attributes/characteristics that could facilitate their filtering.

– the existence of coarse-grained analytical steps in provenance, which pro-
hibit discrete traceability between distinct experimental parameters and re-
sults.

• Embody Domain-Specific Information: corresponds to having descriptions
that characterise the parameters, the analyses and the results in a discipline-
specific manner. These descriptions are required to make shared results under-
standable by others, they are also required as attributes with which provenance
traces can be queried (for data selection). The challenge here is the genericity of
workflow provenance, which stems from the generic nature of standard prove-
nance models and the black-box nature of provenance collection in workflow
systems. While manual annotation of workflows by scientists is a common way
of obtaining domain-specific descriptions over workflows, manual annotation is
hard to scale execution traces, requiring automation.

• Be Abstracted From Details: corresponds to the ability to distinguish between
elements of the analysis that are report-worthy and those that can be considered a
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detail. The challenge here arises from the dual role of workflows as automators
of resource integration on one hand and as documenters of scientific analyses
on the other. Integrator role causes workflows to be complex, a side-effect of
the heterogeneity of the shared scientific resources. Workflows contain several
steps dedicated to data adaptation among the analytical steps underpinned by
heterogeneous resources. These steps are an experimental detail required for
implementation undesired for reporting. Scientists tackle complexity by eliciting
abstractions in workflow designs, which is a manual process.

In this dissertation we developed mechanisms that tackle these challenges. In the
next section we summarise our research hypotheses, contributions, how we have met
each research objective. A traceability table among these is given in Table 8.1 Our
summary in Section 8.2 follows from this table.

8.2 Hypotheses and Contributions

Formulation of Provenance Gap (C1.1) and Survey of Workflow Systems (C1.2):
Our focus here has been exploring our overarching hypothesis (H1) to check whether
workflow provenance is a potential information source that can support require-
ments of experiment reporting. We approached this by making observations on ex-
periment reports and projecting those onto workflow provenance, as reported in Chap-
ter 2. This projection revealed commonalities, which is in support of our hypothesis but
also revealed gaps. The gaps were attributable to common assumptions and common
provenance modelling and management techniques adopted by workflow systems. The
black-box assumption, the granularity and the consistency of modelling processes and
data and parameters at the workflow description and workflow provenance layers, the
data storage schemes of workflow systems are among the characteristics that underlie
the gap. We enumerated these characteristics to comparatively survey workflow sys-
tems to understand the level of support they provide against reporting requirements.
Contributions (C1.1) and (C1.2) meet our objectives in understanding requirements of
Experiment Reporting (O1) and identifying a set of research challenges in threads of
Analysis, Abstraction and Annotation of workflow provenance (O2). Work presented
in Chapters 3 and 5 have supported us in meeting these objectives. More specifically
high level challenges presented in Chapter 2 have been elicited into more concrete
problems with:
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• empirical workflow analysis presented in Chapter 3. This work has revealed
reasons of workflow complexity and provided hints for a solution.

• the case study on querying of workflow provenance presented in Chapter 5.
This work has identified the characteristics of workflow provenance (generic-
ity) and the patterns it contains (broken factorial design), which are bottlenecks
for querying.

Motif Taxonomy (C2) and Quantified Motif Occurrences (C3): A common factor
contributing to the challenges of workflow provenance against reporting is the black-
box assumption that allows modelling arbitrary computations abstracted as analysis
activities in workflows and allows their provenance to be recorded by external obser-
vation of the activity’s inputs and outputs. While this assumption allows basic prove-
nance to be provided for diverse computations, it limits actionable information over
provenance, thereby is a bottleneck for any approach that aims to exploit provenance.
In our second hypothesis (H2) we pointed that computations in scientific workflows
are not entirely arbitrary and existing practices in workflow development exhibits
common patterns that would allows us to categorise analytical activities. In sup-
port of this we performed an empirical analysis of 260 workflows from 4 workflow
systems and 10 domains, and as presented in Chapter 3:

• we have shown that a high-level categorisation of activity functionalities, data
characteristics and design practices in workflows is possible. Moreover we have
shown that data adaptation steps show common patterns of functionality allow-
ing a more detailed characterisation to be made. We have captured these cate-
gorisations in the Workflow Motif taxonomy.

• we have quantified occurrences of motifs in the analysis cohort. Our survey
has revealed that data adapter steps on average account for 63% of activities
in workflows. This percentage reaches 70% in workflow systems like Taverna
where workflows are built by combining resource in a heterogeneous open en-
vironment. These adapter steps have been identified as the prime contributor to
workflow complexity. Our survey also revealed the current practices scientists
adopt in abstracting workflows, which were creating composite (layered) work-
flows and bookmarking significant intermediary data points in the workflow.

• by comparing data adapter Motifs to Hull’s early work on Shims [HSL+04] we
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have demonstrated that Motifs allow us to make a grey-box assumption on work-
flow activities by not only characterising activity function but also implying lin-
eage transparency among inputs and outputs of certain adapters. We discussed
that this relation is primarily a part-whole relation.

With contributions (C2) and (C3) we have met objective (O3) in being able to
break the black-box assumption in scientific workflows with observations made over
real-world practices and patterns.

Hypotheses Contributions Presented In Meets Objectives
H1 (base) C1.1, C1.2 Chapter 2,

Chapter 3 (supportive),
Chapter 5 (supportive)

O1, O2

H2 (analysis) C2, C3 Chapter 3 O3, O7
H3 (abstraction) C4, C5 Chapter 4 O4, O5, O6, O7
H4 (analysis) C6 Chapter 6 O4, O6, O7
H5 (annotation) C7 Chapter 7 O4, O5, O6, O7

Table 8.1: Hypotheses, Contributions and Research Objectives.

In Chapters 4, 6 and 7 of this dissertation we have presented techniques for Ab-
straction, Analysis and Annotation (AAA) of workflow provenance. In doing so we
have met our objective (O4) for finding solutions in AAA. In implementing solutions
we have paid attention to meeting our cross-cutting objectives in providing technology-
independent solutions (O5), assess solutions with real-world workflows where possible
(O6) and compare our work against the state of the art (O7). We will now discuss our
contributions in AAA and how we have met cross-cutting objectives.

Abstraction System Survey (C4) and Workflow Abstraction Framework (C5):
With the availability of actionable information on workflow activities in the form of
Motifs we have first tackled the complexity challenge of workflow provenance (re-
ported in Chapter 4). As computational provenance abstraction is a recent and active
area of research we have performed a review of existing approaches. To do this we have
reverse-engineered a blueprint from existing systems identifying the main components
of computationally-assisted provenance abstraction. Using this blueprint, along re-
search objective O7, we have provided a comparative survey of the state of the art in
provenance abstraction (C4).

We have shown that algebraic graph re-writing is a suitable formalism to repre-
sent transformations, which we called primitives, for abstracting workflow description
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graphs. Using this formalism we have represented primitives that either eliminate ac-
tivities or create activity groups. This formal presentation was also used to discuss
integrity guarantees of each primitive. Our abstraction techniques operated over a
workflow-system independent graph-based representation of workflows in line with
objective O5.

In support of hypothesis (H3) we have developed a workflow abstraction frame-
work (C5) that is driven by user specified policies that identify insignificant ac-
tivities based on their motifs and identify how such activities shall be abstracted
away with primitives.

We have evaluated the abstraction framework with real world Taverna workflows,
in line with objective O6. The evaluation has allowed us to compare and understand
the different abstractive effects of primitives. We observed that while elimination can
fully abstract away activities denoted as insignificant it would not reduce length of an
analysis’s main data derivation path with the same ratio. Meanwhile grouping activ-
ities has a levelled reductive affect on the number of activities and the length of data
derivation path.

We have assessed how much abstractions generated with a default set of policies
agree with abstractions generated by users. An important finding here was that a
report-worthy activity may not always be co-located with the report-worthy copy of
that activity’s input/output data. This highlighted that grouping activities as opposed
to eliminating them is a more versatile/suitable approach for abstraction. We demon-
strated that simple grouping rules-of-thumb were encodable for Life Science work-
flows, where abstractions generated by the framework were in high agreement with
user’s abstractions.

In order to understand the level of support that workflow provenance gives to data
selection we have performed a case study that involved selected provenance queries
from literature and workflow execution provenance from Taverna system (reported in
Chapter 5). This study highlighted the characteristics of provenance in general and
Taverna provenance in particular that hamper its use for data selection. We observed
that:

• Data selection queries require domain specific attributes of data and activities,
which in their absence (due to the genericity of provenance) cause queries to
be implemented partially or in an adhoc manner by referring to data values or
(substitute) generic attributes.

• Taverna’s approach in giving workflow designers the full control of encoding



296 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

factorial design into workflows can have negative side effects on usability of
provenance for data selection. Scientists may cause breaks in factorial design
when they configure the workflow in a way that would cause an analysis activ-
ity consumes multiple data artefacts descending from distinct input parameters.
Such breaks mean that accuracy of query results becomes the reciprocal of the
input size, rendering provenance minimally useful for data selection.

• Data selection queries seek data by its origin, which requires transparency over
lineage relations found in a workflow provenance trace.

These findings served as the seeds of our follow-on hypotheses and research on
provenance analysis and annotation.

Taverna Workflow Analysis Rules (C6) Our observations on Taverna’s constructs
to support factorial design, its well-defined execution behaviour, its modelling of data
and processes at consistent granularities both at the workflow description and exe-
cution provenance layers have led to hypothesis (H4), where we stated that we can
analyse Taverna workflows to anticipate structure of the provenance traces that
the workflow execution will produce. This analysis can check for the existence of
prospective coarse grained activity invocations, which break factorial design.

To do this, as reported in Chapter 6, we have exploited an insight that has been
given by Missier et al [MPB10] that shows how iteration leads to a correspondence
among input and output collections of activities, which in turn is a guarantee of dis-
crete lineage traces among items in corresponding collections. We have called this
correspondence a depth mapping. We have adopted the functional formalism used by
Missier to represent Taverna’s operational behaviour as a set of known computations.
We have shown that depth mapping rules can be provided for each such computation.
We have used a declarative logic programming language, specifically Datalog, to rep-
resent depth mapping rules, which, when combined with ground facts representing a
particular workflow description, inform us of the workflow’s provenance characteris-
tics. In line with objective O6, we have analysed astronomy workflow used earlier in
Chapter 5. This example analysis trace (given in full in Appendix D showed how our
rules correctly identify the point in workflow design (activity and input port) that is
observed earlier in Chapter 5 as the break in factorial design. In line with objective
O7 we have reviewed the state of the art in workflow provenance analysis. We have
observed that this field of work is only emerging and existing approaches [DKBL15]
[MPB10] primarily identify patterns potentially observable in provenance traces and
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show how such patterns can be exploited in optimising provenance query evaluation.
Against this setting we have observed that our techniques focus on detecting the bro-
ken factorial design pattern that is actually observed in real-world traces and that can
seriously hamper provenance querying accuracy.

Provenance Labelling Operators (C7) Our motivation for bringing domain-specific
metadata onto provenance stems from the findings of our case study on provenance
driven data selection. Specifically the case study showed that lack of domain specific
information, and the opacity of lineage relations in workflow provenance resulted in
partial or adhoc implementation of PDDS queries. Therefore our approach to annota-
tion has been shaped to tackle these shortcomings. More specifically, as reported in
Chapter 7, we focused on annotations that capture the context as defined by the input
parameters and activity configurations of a workflow in which scientific data sets are
collected, analysed and visualised. Furthermore we have focused on fine-grained and
dynamic metadata, as parameters, and therefore context can change through iterated
activity executions in workflows.

Our findings in the case study pointed that context is implicitly captured in data
values, or in values of generic attributes of workflows and provenance. In response
to this we have sought to devise a mechanism that can make explicit this implicitly
captured context in the form of domain-specific labels. In support of hypothesis (H5)
we have developed the LabelFlow framework which embodies four labelling op-
erators that encapsulate the generic portions of domain-specific annotation pro-
visioning and propagation capability. We have shown how Motifs due to the trans-
parency they bring to activity functions and (in the case of certain Data Adapters) to
lineage can be used to determine where in a provenance trace we have data with im-
plicit domain-specific descriptions and to which other data artefacts those descriptions
can be propagated. In line with objective O5, our labelling operators operate over
standard PROV compliant provenance traces and adopt a domain-independent generic
model Label model to decorate provenance.

In line with objective O6, to assess the framework we have used it to annotate
the provenance traces of our case study (astronomy) workflow. We have shown how
labels allow us to implement case-study queries systematically replacing prior adhoc
means. On the other hand our assessment has shown that liberally propagating labels
from inputs to outputs of data adapters and also among items and collections may lead
to inaccurate labelling. For our case study where a point of broken factorial design
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also corresponded to a point where labels were propagated the accuracy (for dynamic
labels created per input) became the reciprocal of the size of input parameters. This
has prompted us that workflow analysis and provenance annotation may be integrated
to foresee inaccurate labelling. In line with objective O7 we have reviewed the state of
the art in provenance annotation. Our review revealed that focus on dynamic metadata,
non-intrusiveness to existing practices of workflow design and execution as aspects
that distinguish our technique from others.

8.3 Future Research

In our work presented in this dissertation we have only scratched the surface of the
work needed to bridge the provenance gap. We see several directions for future re-
search.

Workflow Motifs. Our work on Motifs and empirical findings has already been
recognised as:

• concrete evidence for the dominance of data adaptation steps in workflows and
therefore has served as motivation for work that aims to reduce the need for
such activities by providing some of those functions at the point of publish-
ing of data [HG13] or as motivation for workflow simplification by refactoring
[CBCM+14].

• a method as well as a base classification to understand workflow tasks ran on
distributed computing infrastructures [OJK+13] or workflows in the specific sci-
entific domains [PBR+14].

Classifications of tasks and data within scientific data analysis processes can be
found in domain-specific ontologies. The SWO Ontology [MBL+14] in the biomedical
domain is one prominent example. Investigating whether the Motif classification can
be aligned with existing domain-specific classifications, or whether it is suited as an
upper-level classification is a possible future direction for research.

Workflow Abstraction. Given that scientists are held accountable for their findings
and shared work products including the data and the experiment reports, we view work-
flow/provenance abstraction as a process in which the user is involved and has the final
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say on the abstraction created. Given that scientists have the means to encode abstrac-
tions into workflow designs, the role for computationally generated abstractions could
be in supporting the user throughout the design process. In this regards we see a future
research direction in creating abstraction alternatives and provide them as abstraction
suggestions for users to choose from.

Relaxing the assumptions under which an abstraction machinery operates such as
supporting an unordered abstraction policy, or the ability to override abstraction poli-
cies can give way to abstraction alternatives. Our experience with the GROOVE graph
grammar system [Ren03] has shown that this system can be used to create the state
space, i.e. all possible intermediary and final derivations implied by a graph and a set
of graph transformations. Meanwhile the size of that space would grow exponentially
with the size of system modelled. Therefore as part of future research the following
can be investigated:

• is it possible to define the problem of creating abstraction alternatives at a scale
suitable for the application of state space exploration?

• can abstraction alternatives be scored and can there be strategies for exploring or
sorting abstraction alternatives?

Workflow Analysis. In our research by analysing a workflow description we were
able to anticipate whether its execution will lead to the pattern where fine-grained (it-
erated) activity invocation is followed by a coarse grained invocation, which joins up
lineage traces, thereby breaks factorial design. We see potential for future research on
extending workflow analysis to involve correction suggestions for the design. Suggest-
ing corrections would require more information than what is available in the workflow
description. Consider our case-study workflow, where list flattening, which is a data
adapter step was causing the break in factorial design. By augmenting the workflow
description with semantic descriptions denoting the types of the inputs and outputs of
activities, one may infer the input and output types of adapter steps, due to composition
[BEP+06], and one can suggest that a step such as list flattening, which consumes and
produces same typed data, yet breaks factorial design may as well be eliminated.

Provenance Annotation. We foresee two directions of future work on Provenance
Annotation. First is integrating our labelling approach with workflow analysis. In such
an approach we preserve propagation behaviour and use the analysis to raise warnings
about label accuracy, or for computing confidence information for labels.
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The second area of work is investigating the use of labels beyond PDDS. We ob-
serve that emerging initiatives and practices in scientific data sharing, which we discuss
in the next section, is creating requirements on the granularity and content experimen-
tal metadata such that the current practice of scientist-driven metadata creation needs
to change towards automation.

8.4 Prospect of Impact

In the introduction to our dissertation we outlined that Data-Oriented science embodies
multiple value-chains, not only for the creation and dissemination of scientific knowl-
edge, but also for the creation and dissemination of other research outputs, most no-
tably data [BWMP07]. As a result the practice of science has become more elaborate
and demands systematisation in performing data-oriented analyses as well as system-
atisation in reporting those analyses. In this dissertation we have observed that the
efforts of systematisation on both sides are at a disconnect. To help scientists in coping
with increasing demands of data-oriented science [TA+11] we hope that real-world
applications will be developed to bridge the disconnect. We anticipate two directions
of development.

Applications that support workflow development. Throughout the thesis we illus-
trated desired characteristics for workflow provenance that facilitate its potential use in
reporting. A common pattern observed throughout our solutions was that workflow de-
signs are a key enabler in obtaining those characteristics. Therefore we argue that the
process of workflow design needs to become provenance-aware to pre-emptively
strive for those characteristics. One mechanism could be workflow tooling providing
feedback/tips to designers on the anticipated characteristics of provenance. Tooling
can inform users on whether traces will be discrete or not, signalling whether traces
can later be used for data selection. Or tooling can report the anticipated complexity
of provenance and suggest abstraction. In support of this vision we communicated our
findings to the Taverna development team in a two-part technical report [Alp14]. We
also provided pointers to relevant findings of state of the art provenance research.

Applications that support data publishing. A crucial requirement in the data value
chain is to track the usage and generation of shared data and so as to ensure that 1) data
providers get credit for their contributions and 2) the origin and the provenance for an
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investigations source and result datasets are captured to ensure the understandability of
findings and the reproducibility of investigations. Data Citation is the emerging mech-
anism to meet these requirements [MN12]. A recent declaration by Force11 [FOR14],
a community of data publishers, scientists and librarians, states that Data Citations
should support a set of core capabilities, which amongst others include:

• Access to metadata describing the conditions under which data has been gen-
erated. This metadata may itself involve a citation to the source/origin datasets
that has been used for the generation of shared data.

• Identification and access to relevant granules of data that supports a particular
claim. So, if a claim is to be made with respect to a particular experimental
setting among a series of settings, then each data output from each setting shall
be shared and citable distinctly.

We observe these requirements as indicators that future Experiment Reports will
describe data-oriented analyses at finer granularities and at greater detail. As a result
experimental metadata creation will become more elaborate, which we believe will re-
quire that origin and context information bleeds-through computational processes
used for data analysis. Therefore we believe the area of data publishing and the
semi-automated creation of data citations is a potential application area for workflow
provenance.
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Paul T. Groth, Joshua Moody, and Ewa Deelman. Wings: Intelligent
workflow-based design of computational experiments. IEEE Intelli-

gent Systems, 26(1):62–72, 2011.

[Gro05] Paul Groth. The Origin of Data Enabling the Determination of Prove-

nance in Multi-institutional Scientific Systems through the Documen-

tation of Processes. PhD thesis, University of Southampton, UK,
September 2005.

[Gro12] W3C Provenance Working Group. PROV Graph Layout Conventions.
W3C, https://www.w3.org/2011/prov/wiki/Diagrams, decem-
ber 2012.

[GSRRS13] Julian Garrido, Stian Soiland-Reyes, Jose Enrique Ruiz, and Susana
Sanchez. Astrotaverna: tool for scientific workflows in astronomy.
Astrophysics Source Code Library, 1:07007, 2013.

[GST+02] Jim Gray, Alexander S. Szalay, Ani R. Thakar, Christopher Stoughton,
and Jan Vandenberg. Online scientific data curation, publication, and
archiving. In SPIE Astronomy Telescopes and Instruments, number
MSR-TR-2002-74, page 6, August 2002.



320 BIBLIOGRAPHY

[GT12] A. Gehani and D. Tariq. SPADE: Support for Provenance Auditing in
Distributed Environments. In Middleware 2012 - ACM/IFIP/USENIX

13th International Middleware Conference, Montreal, QC, Canada,

December 3-7, 2012. Proceedings, pages 101–120, 2012.

[Guo13] Phillip Guo. Data Science Workflow: Overview
and Challenges. Communications of the ACM
Blogs, http://cacm.acm.org/blogs/blog-cacm/

169199-data-science-workflow-overview-and-challenges/

fulltext, October 2013.

[GWCS09] Jane Greenberg, Hollie C. White, Sarah Carrier, and Ryan Scherle. A
Metadata Best Practice for a Scientific Data Repository. Journal of

Library Metadata, 9(3-4):194–212, November 2009.

[GWG+07] Carole Goble, Katy Wolstencroft, Antoon Goderis, Duncan Hull, Jun
Zhao, Pinar Alper, et al. Knowledge Discovery for Biology with Tav-
erna. In ChristopherJ.O. Baker and Kei-Hoi Cheung, editors, Seman-

tic Web, pages 355–395. Springer US, 2007.

[GWMF12] Luiz M. Gadelha, Jr., Michael Wilde, Marta Mattoso, and Ian Fos-
ter. Mtcprov: A practical provenance query framework for many-task
scientific computing. Distrib. Parallel Databases, 30(5-6):351–370,
October 2012.

[HBM+08] David A. Holland, Uri Braun, Diana Maclean, Kiran-Kumar
Muniswamy-Reddy, and Margo Seltzer. Choosing a data model and
query language for provenance. In Proceedings of the 2nd Interna-

tional Provenance and Annotation Workshop, Salt Lake City, Utah,
June 2008 2008.

[HCW08] Robert L. Hurt, Adrienne Gauthier Lars Lindberg Christensen, and
Ryan Wyatt. Sharing images intelligently: The Astronomy Vizualisa-
tion Metadata standard. In Communicating Astronomy with the Pub-

lic, page 450, June 2008.

[HDZ+14] Kristina Hettne, Harish Dharuri, Jun Zhao, Katherine Wolstencroft,



BIBLIOGRAPHY 321

Khalid Belhajjame, Stian Soiland-Reyes, Eleni Mina, Mark Thomp-
son, Don Cruickshank, Lourdes Verdes-Montenegro, Julian Gar-
rido, David de Roure, Oscar Corcho, Graham Klyne, Reinout van
Schouwen, Peter A ’t Hoen, Sean Bechhofer, Carole Goble, and
Marco Roos. Structuring research methods and data with the re-
search object model: genomics workflows as a case study. Journal

of Biomedical Semantics, 5(1):41, 2014.

[Hec13] Reiko Heckel. Foundations of Model Transformations: A Lambda
Calculus for MDD? http://www.mimuw.edu.pl/˜globan08/

content/GlobanReiko.pdf, 2013. Slides of a talk given at the
GLOBAN Summer School Warsaw, 22-26 Sept. 2008.

[HG13] Rinke Hoekstra and Paul Groth. Linkitup: Link Discovery for Re-
search Data. In Discovery Informatics: AI Takes a Science-Centered

View on Big DataAAAI Fall Symposium Series, 2013.

[HGB+13] Sonja Holl, Daniel Garijo, Khalid Belhajjame, Olav Zimmermann,
Renato De Giovanni, Matthias Obst, and Carole Goble. On specifying
and sharing scientific workflow optimization results using research
objects. In Proceedings of the 8th Workshop on Workflows in Support

of Large-Scale Science, WORKS ’13, pages 28–37, New York, NY,
USA, 2013. ACM.

[HGP93] Michael Halper, James Geller, and Yehoshua Perl. Value propaga-
tion in object-oriented database part hierarchies. In Proceedings of

the Second International Conference on Information and Knowledge

Management, CIKM ’93, pages 606–614, New York, NY, USA, 1993.
ACM.

[HHRV15] Abel Hegedus, Akos Horvath, Istvan Rath, and Daniel Varro. A
model-driven framework for guided design space exploration. Au-

tomated Software Engineering, 22(3):399–436, 2015.
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[PG07] Fernando Pérez and Brian E. Granger. IPython: a system for inter-
active scientific computing. Computing in Science and Engineering,
9(3):21–29, May 2007.

[pip15] BIOVIA Pipeline Pilot Overview. http://accelrys.

com/products/datasheets/pipeline-pilot/

pipeline-pilot-overview.pdf, 2015. Accessed October
2015.

[Pla11] Beth Plale. Challenges and Opportunities of Workflow Systems in
Environmental Research. In Water Information Research and Devel-

opment Alliance (WIRADA) Science Symposium, Melbourne, AU, 08
2011.

[PMBVdS10] Alberto Pepe, Matthew Mayernik, Christine L. Borgman, and Herbert
Van de Sompel. From artifacts to aggregations: Modeling scientific
life cycles on the Semantic Web. Journal of the American Society for

Information Science and Technology, 61(3):567–582, March 2010.

[PMMB12] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. Hi-Fi: Col-
lecting High-fidelity Whole-system Provenance. In Proceedings of

the 28th Annual Computer Security Applications Conference, ACSAC
’12, pages 259–268, New York, NY, USA, 2012. ACM.

[PNNJ05] A. Powell, M. Nilsson, A. Naeve, and P. Johnston. Dublin core meta-
data initiative - abstract model, 2005. White Paper.

[pre11] PREMIS Data Dictionary for Preservation Metadata. version 2.1 edi-
tion, January 2011.



BIBLIOGRAPHY 331

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Lan-
guage for RDF. W3C Recommendation, http://www.w3.org/TR/
rdf-sparql-query/, 2008.

[PWH+11] Beth Plale, Eran Chinthaka Withana, Chathura Herath, Kavitha
Ch, Yuan Luo, and Felix Terkhorn. Strengths and Weaknesses
of Sub-workflow Interoperability. Indiana Uuniversity Ttech-
nical Report, https://www.cs.indiana.edu/ftp/techreports/

TR699.pdf, 2011. TR699.

[R C13] R Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria,
2013.

[RBR+05] Chris Rusbridge, Peter Burnhill, Seamus Ross, Peter Buneman, David
Giaretta, Liz Lyon, and Malcolm Atkinson. The Digital Curation Cen-
tre: a vision for digital curation. Paper for From Local to Global Data.
In InteroperabilityChallenges and Technologies: 20 th - 24 th June

2005, Sardinia, Italy. IEEE Piscataway, NJ, USA, pages 31–41, 2005.

[Ren03] Arend Rensink. The GROOVE simulator: A tool for state space gen-
eration. In Applications of Graph Transformations with Industrial

Relevance, Second International Workshop, AGTIVE 2003, Char-

lottesville, VA, USA, September 27 - October 1, 2003, Revised Se-

lected and Invited Papers, pages 479–485, 2003.

[RFP09] William Ribarsky, Brian Fisher, and William M. Pottenger. Science
of analytical reasoning. Information Visualization, 8(4):254–262, De-
cember 2009.

[RG10] David De Roure and Carole Goble. Anchors in shifting sand: the
primacy of method in the web of data. Event Dates: 26-27 April,
2010, March 2010.

[RLB00] Peter Rice, Ian Longed, and Alan Bleasby. Emboss: the euro-
pean molecular biology open software suite. Trends in Genetics,
16(6):276–7, 2000.



332 BIBLIOGRAPHY

[RM08] Hajo Reijers and Jan Mendling. Modularity in Process Models: Re-
view and Effects. In Business Process Management, volume 5240
of Lecture Notes in Computer Science, pages 20–35. Springer Berlin
Heidelberg, 2008.

[Ros95] Guido Rossum. Python reference manual. Technical report, Amster-
dam, The Netherlands, The Netherlands, 1995.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and

Computing by Graph Transformation: Volume I. Foundations. World
Scientific Publishing Co., Inc., River Edge, NJ, USA, 1997.

[SAM10] Kenneth F Schulz, Douglas G Altman, and David Moher. Consort
2010 statement: updated guidelines for reporting parallel group ran-
domised trials. BMJ, 340, 2010.

[SBCBL14] Johannes Starlinger, Bryan Brancotte, Sarah Cohen-Boulakia, and Ulf
Leser. Similarity search for scientific workflows. Proceedings of the

VLDB Endowment, 7(12):1143–1154, August 2014.

[SBD+09] Michael Stonebraker, Jacek Becla, David J. DeWitt, Kian Tat Lim,
David Maier, Oliver Ratzesberger, and Stanley B. Zdonik. Require-
ments for science data bases and scidb. In CIDR 2009, Fourth Bien-

nial Conference on Innovative Data Systems Research, Asilomar, CA,

USA, January 4-7, 2009, Online Proceedings, 2009.

[SGB14] Manolis Stamatogiannakis, Paul T. Groth, and Herbert Bos. Looking
inside the black-box: Capturing data provenance using dynamic in-
strumentation. In Provenance and Annotation of Data and Processes -

5th International Provenance and Annotation Workshop, IPAW 2014,

Cologne, Germany, June 9-13, 2014. Revised Selected Papers, pages
155–167, 2014.

[SGBB01] Robert D. Stevens, Carole A. Goble, Patricia Baker, and Andy
Brass. A Classification of Tasks in Bioinformatics. Bioinformatics,
17(2):180–188, 2001.

[SHMG10] Jacek Sroka, Jan Hidders, Paolo Missier, and Carole Goble. A formal
semantics for the Taverna 2 workflow model. Journal of Computer

and System Sciences, 76(6):490 – 508, 2010.



BIBLIOGRAPHY 333

[SKAC14] Carly Strasser, John Kunze, Stephen Abrams, and Patricia Cruse.
DataUp: A tool to help researchers describe and share tabular data.
F1000Research, 3(6), 2014.

[SKS+08] Carlos Scheidegger, David Koop, Emanuele Santos, Huy Vo, Steven
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Appendix A

Extended Provenance Literature

Earlier we discussed that Scripts and Command-Line tools are established modes in
data processing. Provenance support here is designed to be non-intrusive to existing es-
tablished mechanisms. We discuss the implications of non-intrusiveness, and observe
the additional challenges it would bring to using provenance from these categories in
reporting. On the other hand Database queries represent a restricted class of compu-
tation that yields white box provenance. Our intent in reviewing database provenance
here is to understand what are the implication of having white-box provenance to the
potential end-uses.

A.1 Tool Provenance

Provenance collection from command-line tools for scientific data processing is stud-
ied in Sumatra [DMST14], Galaxy [GRH+05], and ES3 [TF08] systems. In this cate-
gory process provenance is collected

• by making command line tools invocations via a layer of wrapping, as in the
Sumatra and Galaxy systems

• by monitoring the computational environment to pick events related to scientific
tooling that is traced, as in the ES3 system

When a tool invocation is traced the information collected typically contains the
name of executable, command line arguments, the environmental settings (OS version,
hardware platform) at the time of invocation, file checksums. Tool provenance records
data at the granularity of files, though those files often contain multiple data records.

338
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Tool provenance can be prone to the data-wise n-by-m problem. A common char-
acteristics of command line tools is a batch mode of operation. Often these tools can
be run at once over collections of files/folders, which results in the generation of cor-
responding collections of files. As the provenance collection framework has no means
to observe the underlying computation other than logging file reads and writes, the use
of tools in batch mode would result in the n-by-m pattern .
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The Galaxy system is not an interception based system like others. It is both a
workflow system and a command-shell front-end that is widely-used in bioinformat-
ics. Galaxy differs in its collection approach by requiring that tools as well as datasets
are wrapped so that they become part of the Galaxy analysis environment. Galaxy
acts as a front end for tool invocations and tracks provenance such as invocation pa-
rameters and the consumed and produced datasets (physically represented as files). As
mentioned in the previous section the Galaxy system mandates the creation of domain-
specific metadata during tool wrapping and data upload. On the other hand the ES3 and
Sumatra systems provide key-value type placeholders for such metadata, and expect it
to be manually supplied by scientists.

A distinct application are for tool provenance is the ability to convert historical in-
teractions with tools into analysis recipes that could be used in future. This feature is
supported in Galaxy which converts series of tool invocations into a workflow. Galaxy
can create workflows out of tool invocation provenance. Another important application
is comparison. During exploratory phases of investigations scientists try to decide on
the correct parameter settings or to locate data subsets that they will later use exhaus-
tively. Tool provenance is helpful in comparing input settings for selected outputs or
vice versa. Galaxy’s increased emphasis on domain-specific metadata pays of in data
publishing. Tool execution histories can be published as online supplementary material
sections for articles reporting data-oriented investigation built with Galaxy.

A.2 Script Provenance

An emerging approach in trail-type provenance is prospective provenance collection
from scripts and retrospective provenance collection from script executions. Script
provenance has been studied in RDataTracker [LB14] and CXXR [SR10], noWork-
flow [MBC+14], yesWorkflow [MSK+15], and MTCProv [GWMF12] systems. Ap-
proaches can be broadly categorised as intrusive and non-intrusive depending on whether
they require change to existing scripts.

The RDataTracker and yesWorkflow systems make up the intrusive category. RData-
Tracker provides an R library that scientists can use to extend scripts with logging state-
ments reporting the structure and the runtime characteristics of analytical computation.
When the script gets executed RDataTracker library calls log when a block of process-
ing (that the users wants to trail) begins and ends, the variable assignments consumed
and created by these blocks. A similar approach focused to prospective provenance is
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taken in yesWorkflow, which allows the user to superimpose workflow like computa-
tional elements (in the form of portS, computational blocks, and data channels among
blocks) onto scripts through annotating R and Matlab scripts. Unlike RDataTracker
yesWorkflow annotations are not executable statements, instead they are directives to
generate structured documentation, e.g. workflow-like diagrams for scripts.

The CXXR, noWorkflow, and MTCProv systems make up the non-intrusive cate-
gory. These systems collect provenance through an execution interception approach.
Script execution can be intercepted at the level of commands/statements directed the
programming language shell as in the CXXR systems, which tracks R command shell
statements. Another way is to intercept function calls; the MTCProv system traces
function calls in the Swift parallel scripting language [WHW+11], whereas NoWork-
flow traces calls made to user defined functions in Python.
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Unlike the dataflow paradigm, scripting languages follow the control flow paradigm
where statements are bound by control flow constructs. This poses significant chal-
lenge for the modelling power of scripts as conceptualisations of data-oriented sci-
entific analyses [DBK+15]. Process provenance in this realm is fine-grained in the
granularity of program shell command, as in the RDataTracker ad CXXR systems, or
functions in the case of MTCProv and NoWorkflow systems.

Data is commonly modelled at a fine-grain in the form of values of variable bind-
ings at the time of occurrence of processes. Contrary to workflow provenance where
typical queries ask for downstream or upstream lineage of data artefacts that bind to
particular ports (variable) at run time, provenance in this category is not intended for
lineage traversal over variables. This is because variables can be updated to have dif-
ferent values during the execution of a script. (The Swift language is an exception as it
only allows single-assignment variables). Instead the information collected is intended
to give outline dependencies of function or statement invocations and an understand-
ing of the environment (in terms of variable values ) when a particular invocation has
occurred. To cater for most basic data lineage the noWorkflow system intercepts file
I/O of functions (similar to tool provenance) in order to record dependency among
function invocations and files.

Retrospective provenance from scripts is eagerly collected during script execution.
Interception based approaches are non intrusive yet they may result in an overwhelm-
ing amount of trace information. The script re-engineering approach of RDataTracker
is intrusive to script development , on the other hand it allows tracing selectively and
nesting/layering process provenance.

Script provenance is intended to be used as a debugging aid. In CXXR, noWork-
flow and RDataTracker systems authors emphasise the visualisation of provenance as
audit plots to help script developer have a better understanding of script executions

A.3 Database Provenance

Research on database provenance has shown that lineage can be accurately tracked for
standard relational algebra operators, Select, Project, Join and Union (SPJU) [BCTV04]
and extended ones such as aggregation [CW01]. Cui and Widom [CW01] have been
the first to provide such procedures for tracking why-provenance in data warehouse
transformations. An alternative of inversion is to eagerly record tuple dependencies
while executing queries. This approach requires queries to be customised to cater for
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provenance, this is achieved either by SQL query rewriting as in Polygen [WM90]
or DBNotes [BCTV04], or having specialised query languages such as the TriQL of
Trio [ABS+06] system or the ProQL of the ORCHESTRA system [KIT10]. The pri-
mary application area of fine-grained lineage ( why provenance) is debugging queries
or datasets. One could check for validity and consistency of datasets by tracing the
source records that contribute to an unexpected or erroneous record (e.g. a spike value
in a database view) [CW01].

In DBNotes authors exploit where-provenance to propagate annotations through
SPJU queries. In addition to tuple annotations, provenance liabilities might come from
innate characteristics of data such as the origin/host database or schema it belongs to.
Polygen is an early system that also adopts a query-rewriting approach for annota-
tion propagation, this time in multi-source data integration scenarios. Here whenever
records from a source database are retrieved they are tainted with their “origin”, and
those taints get propagated during query evaluation. A notable capability in Polygen
is tracking the intermediate sources, i.e. those that contribute to the computation- for
instance with joins- but do not supply data values to the result record i.e. their contri-
butions later get projected out.

Trio and ORCHESTRA systems use how provenance also for annotation propaga-
tion. However this time the additional information regarding nature of dependencies
(joint witnesses, alternative witnesses) is used to create annotation algebras to be taken
into account during annotation propagation. So rather than simply forwarding annota-
tions, new annotations can be computed from existing ones based on algebraic opera-
tors associated with each dependency type. The Trio system on the other hand provides
one particular (hard-coded) annotation algebra for computing uncertainty scores for re-
sults using source scores.
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A common observation on query provenance is that not all (scientific) data pro-
cessing can be restricted to querying, and similarly that not all scientific data is in
relational form. Science-specific databases and dataflow programming have been used
as extended modes of database-oriented scientific computing. A commonality in all
systems we review, namely SciDB, Tioga, Lipstick and Panda is their inclusion of
arbitrary computations, termed User Defined Functions (UDF), as well as white-box
steps. The impact of having both kinds of computations is that lineage accuracy cannot
be guaranteed for black-box operations.

Provenance for extended computations, such as matrix operations over array-based
data structures has been studied in SciDB [SBD+09] and Tioga systems [WS97].
SciDB is a scientific database system tuned to store array structured data, a format
common in Astronomy. An important feature of SciDB is to create chains of data
transformations including UDFs as well as matrix operations, for which cell-level and
accurate why provenance can be provided by inversion. SciDB employs a combination
of eager and lazy strategies to efficiently handle provenance of voluminous array struc-
tured data. The Tioga system allows scientists to create image-processing pipelines,
comprised entirely of UDF steps using array structured imagery data. Tioga is no-
table in its treatment of “inversion functions”, as first-class entities. Tioga maintains a
registry of inversion functions and allows pipeline developers to associate each image-
processing step with an inversion function. This information is then used to lazily
compute provenance of (fragments of) result imagery. Provenance from computations
over scientific databases has been primarily used for debugging transformations and
datasets.

Recently a “dataflow” model of data processing has emerged, which combines the
traditional black-box workflow approach with white-box query operations [SWKH10]
[ADD+11]. These approaches formally build on Nested Relational Calculus (NRC)
to represent computations [BNTW95]. NRC provides a richer programming model
and data structure than basic SQL queries over flat relations. NRC embodies queries
over nested relations, user defined functions, looping and conditionals. Techniques for
tracking why and how provenance in NRC computations have been recently studied.
The Lipstick system is one example of such dataflow systems where each processor is
a mini program written in the PigLatin language (a more user friendly procedural alter-
native to the SQL language, which is formally mappable to NRC) Lipstick combines
white-box how provenance tracking with the tracking of for nested/layered composi-
tions of NRC-based processors. Lipstick demonstrates a what if analysis capability,
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a unique application area of how-provenance that checks whether the deletion of an
input record from the dataflow inputs have a changing-effect on a selected output.
Panda [ICF+12] is another dataflow system comprised of SPJ white-boxes and black
box steps. Instead of eagerly collecting all provenance Panda has lineage mappings
automatically generated via static analysis of queries. These mappings could be lazily
evaluated whenever the lineage of a dataflow result is probed. Another advantage of
mappings is that they can be composed.which allows lineage tracking to skip over
intermediary computations for efficiency.



Appendix B

Abstraction Primitives Integrity
Guarantees

B.1 Dataflow Preservation (Completeness)

Definition B.1. A workflow production p : L→ R for workflow graphs (as per Defini-

tion 4.5) is dataflow preserving if for any path among two port nodes in L there exist a

path among corresponding nodes in R. (Correspondence based on node-id attribute).

Proposition B.2. Eliminate production is dataflow preserving.

Proof The matched and retained nodes for the eliminate production in Figure4.14
are external port nodes (n4 and n7). So we need to check preservation of paths among
these nodes. The rule includes a delete specification for all dataflow paths that link
among these two nodes that pass via the activity to be eliminated (n0). On the other
hand for each such path the rule introduces an idd f , henceforth it is dataflow preserv-
ing.

Proposition B.3. Collapse-Up production is dataflow preserving.

Proof There are four groups of matched an retained nodes in Figure4.16. Specifi-
cally

• ports (n16) that are sources of dataflow into inputs (n13) of upstream activity
(n0)

• ports (n4) that are targets of dataflow from outputs (n23) of upstream activity
(n0)

349
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• ports (n20) that are sources of dataflow into inputs (n22) of to-be-collapsed ac-
tivity (n1)

• ports (n18) that are targets of dataflow from outputs (n14) of to-be-collapsed
activity (n1)

There are 3 possible flow cases among these 4 groups, (a) from n16 to n4 (b) from
n20 to n18 and (c) n16 to n18. Clearly, case (a) is addressed as the paths connecting
n16 to n4 passing via n0, more specifically n16→ n13→ n0→ n23→ n4 are replaced
by new dataflow paths that pass via newly introduced activity n5, more specifically
n16→ n6 → n5→ n12→ n4. Cases (b) and (c) are addressed similarly.

Proposition B.4. Collapse-Down production is dataflow preserving.

Proof Similar to Collapse Up, Collapse Down is based on activity composition.
The matched and retained nodes for this production are (from Figure4.16):

• ports (n20) that are sources of dataflow into each input (n13) of activity to-be-
collapsed (n0). Note that this path is not designated with reference to n0, but
designated indirectly with reference to n1 in order to be able to qualify this rule
for multiple copies to be created one per downstream activity i.e. n1.

• ports (n15) that are sources of dataflow into inputs (n22) of downstream activity
(n1)

• ports (n10) that are targets of dataflow from outputs (n7) of downstream activity
(n1)

Here there are two possible paths that need preserving (a) from n20 to n10, and (b)
n15 to n10. Case (a) is addressed by replacing all possible path instances of the pattern
n20→ n13→ n1→ n7→ n10 with the pattern n20→ n18→ n5→ n12→ n10. Case
(b) is addressed as pattern n15→ n22→ n1→ n7→ n10 is replaced with n15→
n11→ n5→ n12→ n10. Note that this primitive preserves dataflows, only in some
cases redundantly. For the case of collapsing onto multiple downstream activities a
dataflow path in the original graph may map to multiple paths in the result graph.

B.2 Dataflow Reflection (Soundness)

Definition B.5. A workflow production p : L→ R is dataflow reflecting (or sound) if

for any path among two port nodes in R there exist a path among corresponding nodes

in L. (Correspondence based on node-id attribute).
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With respect to this definition :

Proposition B.6. Collapse Up production is not dataflow reflecting.

Proof The composition primitive may introduce false dependency relations among
ports. Inspect the rule in Figure4.16. Among the nodes retained by the application
of this rule; n20 represent those that are the sources of dataflow arriving at the inputs
of the activity to be collapsed up. n4 represent those that are the targets of dataflow
originating from the outputs of the upstream activity. In L here is no path from n20 to
n4 1, on the other hand in R the newly introduced nodes and links create a path pattern
n20→ n11→ n5→ n12→ n4.

Proposition B.7. Collapse-Down production is dataflow reflecting.

Proof As we inspect the rule in Figure 4.18 we see that there are no extra paths
introduced by RHS among retained nodes 15, n10, and n20. Both RHS and LHS of
the rule contains paths from 15 to n10, and from n20 to n10. Despite being based
on composition lie the collapse-up primitive, the collapse down primitive is dataflow
preserving because it discards all outputs of the activity to be collapsed n0.

Proposition B.8. Eliminate production is dataflow reflecting.

Proof Inspecting the rule in Figure4.14, the retained ports are n4 and n7, theintroduction
of an indirect dataflow dependency between these ports is achieved in a sub-rule that
executes only if its outer rule executes which matches and discards a dataflow path
among these nodes. Hence this production is sound.

B.3 Validity

The guarantee of validity depends on the underlying mechanism of obtaining the output
graph from the input. In our graph transformation based approach where productions
may add new nodes and edges to the graph, we achieve this simply, by the use of
type graphs. Type graphs identify allowed graph vocabulary (nodes and edges) in the
LHS and RHS of a production, so naturally excluding false/invalid representations.
The multiplicity feature of type graphs further define allowed structures, such as the
necessity of an output port node to belong to a single activity.

Proposition B.9. Collapse Up, Collapse Down and Eliminate productions are valid

with respect to the type graph TW .
1there cannot be if L is a directed acyclic valid workflow description graph
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B.4 Acyclicity

Definition B.10. A workflow production p : L→ R for workflow graphs is acyclicity

preserving if both L and R designates an acyclic patterns, i.e. where no node in L or R

is reachable from itself. Given p satisfies this property, the for any acyclic input graph

G the application of p on G would result in an acyclic graph H.

Proposition B.11. Eliminate production is acyclicity preserving.

Proof follows from this simple argument. The eliminate production can be broken
down into two stages, 1) the saturation of the workflow graph with all inferred indirect
(transitive) data flow dependencies and 2) the elimination of activities with designated
motif attributes. Clearly, stage one preserves acyclicity as it corresponds to the compu-
tation of transitive closure of dataflow relations in a DAG , and at stage 2 we’re simply
eliminating nodes and edges from an acyclic graph, which preserves its acyclicity.

Proposition B.12. Collapse Up production is acyclicity preserving.

Proof Abstraction by grouping of nodes is known to result in cycles when the group
is not a convex hull, i.e. there are directed paths that goes outside the group and then
arrives back in to a node in the group [DZL11]. More specifically for the rule in Figure
4.16the grouping of two activities, one upstream n0, and the other to-be-collapsed up
n1, the group comprised of n0 and n1

1. is not a convex hull, when there exists a path that starts at n0, visits some node
outside the group matched in the rule by n8 and arrives at n1.

2. is guaranteed to be a convex hull, when there exists no such path as defined in
(1).

In the Collapse-up production we guarantee a convex-hull group by encoding case
(1) above as a negative application condition (NAC), thereby guaranteeing case (2).

Proposition B.13. Collapse Down production is acyclicity preserving.

For this production we no longer need to have a prevention (NAC) for cycles (See
Figure 4.18). Recall from our introduction of this primitive in Chapter 4 that in collapse
down we (may) create multiple composites (groups), when the activity to be collapsed
down matched by n0, has multiple downstream activities matched by a universally
quantified pattern of n1. In such cases we do not need to worry about dataflow paths
that start n0 and visit some node outside the group, because have groups exclusive
groups containing a copy of n0 and each matched successor n1.
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B.5 Bipartiteness

Bipartiteness of provenance corresponds to having the data used⇐=== activity generatedBy⇐=======
data pattern in retrospective provenance. Note however our abstraction primitives op-
erate over prospective provenance. A bipartite pattern in retrospective provenance is
enabled by the following pattern in prospective provenance: port df

==⇒ port inputOf
=====⇒

activity hasOut
====⇒ port df

==⇒ port. This is the general pattern matched in our productions
for activity elimination and collapse. Note that the illustrated path here is the big pic-
ture. This big pictures is broken down into smaller pictures (inputs of activity, incom-
ing links of inputs, outputs of activity, outgoing links of outputs etc.). Each sub-picture
are handled by separate universally quantified (optionally matched) sub-rules.

A workflow description that is comprised of such and (only such) patterns can be
used as a view over workflow execution provenance to give a bipartite account of data
derivation. The ports in prospective provenance foretell data artefacts and their roles
in retrospective provenance, similarly inputO f relation foretells usage relation (used)
and hasOut foretells generation relation (generatedby). Note that the d f relation and
the ports at its two ends, manifests as one data artefact being fulfilling roles identified
both ports. Henceforth the d f relation is idempotent for bipartiteness of provenance.

Proposition B.14. Eliminate production does not result in workflow abstractions that

can be used as views capable of giving bipartite accounts of data derivation.

Proof This is simply due to the idd f relation introduced by Eliminate in Figure
4.14. Unlike the d f relation the ports at the two ends of an idd f relation will manifest
as two distinct artefacts, we know for a fact, because one is the input of the activity
eliminated an the other is the output. When using a workflow abstraction with an idd f

relation in it, we would have to result to using lineage ( wasIn f luencedBy) relation
among two artefacts as the data processing activity linking the two has been abstracted
out. This additional third relation (lineage) means the account of data derivation that
we give is no longer bipartite.

Proposition B.15. Collapse (Up &Down) productions result in workflow abstractions

that can be used as views capable of giving bipartite accounts of data derivation.

Proof If we look at the rules for these productions in Figures 4.16 & 4.18 respec-
tively we can see that the the entire rule (LHS+RHS) is comprised of the d f , hasInput,
and out putO f relations. Hence the result of these production are capable of giving bi-
partite accounts.
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Default Abstraction Policies

< r e w r i t e R u l e s configName=” c o l l a p s e N o S t r a t e g y ”>
< r u l e m o t i f =” h t t p : / / p u r l . o rg / n e t / wf−m o t i f s # D a t a P r e p a r a t i o n ”

p r i m i t i v e =” c o l l a p s e U p ” />
< r u l e m o t i f =” h t t p : / / p u r l . o rg / n e t / wf−m o t i f s #DataMovement ”

p r i m i t i v e =” c o l l a p s e U p ” />
< r u l e m o t i f =” h t t p : / / p u r l . o rg / n e t / wf−m o t i f s # D a t a P r e p a r a t i o n ”

p r i m i t i v e =” co l lapseDown ” />
< r u l e m o t i f =” h t t p : / / p u r l . o rg / n e t / wf−m o t i f s #DataMovement ”

p r i m i t i v e =” co l lapseDown ” />
< / r e w r i t e R u l e s>

< r e w r i t e R u l e s configName=” c o l l a p s e W i t h S t r a t e g y ”>
< r u l e m o t i f =” h t t p : / / p u r l . o rg / n e t / wf−m o t i f s # O u t p u t E x t r a c t i o n ”

p r i m i t i v e =” c o l l a p s e U p ” />
< r u l e m o t i f =” h t t p : / / p u r l . o rg / n e t / wf−m o t i f s # F l a t t e n ”

p r i m i t i v e =” c o l l a p s e U p ” />
< r u l e m o t i f =” h t t p : / / p u r l . o rg / n e t / wf−m o t i f s # I n p u t A u g m e n t a t i o n ”

p r i m i t i v e =” co l lapseDown ” />
< r u l e m o t i f =” h t t p : / / p u r l . o rg / n e t / wf−m o t i f s # S p l i t ”

p r i m i t i v e =” co l lapseDown ” />
< / r e w r i t e R u l e s>

< r e w r i t e R u l e s configName=” el imShims ”>
< r u l e m o t i f =” h t t p : / / p u r l . o rg / n e t / wf−m o t i f s # D a t a P r e p a r a t i o n ”

p r i m i t i v e =” e l i m i n a t e ” />
< r u l e m o t i f =” h t t p : / / p u r l . o rg / n e t / wf−m o t i f s #DataMovement ”

p r i m i t i v e =” e l i m i n a t e ” />
< / r e w r i t e R u l e s>

354



Appendix D

Sample Run of Analysis Rules

P i n a r−ALPERs−MacBook−P r o : d a t a l o g p i n a r p i n k \$ . / d l v − s i l e n t
−N=99999 . / prog−i n p u t −2/ ax ioms dep th−2
. / prog−i n p u t −2/ ax ioms fo rmu la−2
. / prog−i n p u t −2/ a x i o m s r e a c h i n g −2
. / t e s t −d a t a / Ch5 Example . edb

p r o c e s s ( c o n c a t S t r ) , p r o c e s s ( f l a t t e n L i s t ) , p r o c e s s ( f l a t t e n L i s t 2 ) ,
p r o c e s s O u t p u t ( c o n c a t S t r , o u t s t r ) , p r o c e s s O u t p u t ( f l a t t e n L i s t , o u t s t r ) ,
p r o c e s s O u t p u t ( f l a t t e n L i s t 2 , o u t s t r ) ,
p r o c e s s I n p u t ( c o n c a t S t r , s t r 1 ) , p r o c e s s I n p u t ( c o n c a t S t r , s t r 2 ) ,
p r o c e s s I n p u t ( c o n c a t S t r , s t r 3 ) , p r o c e s s I n p u t ( c o n c a t S t r , s t r 4 ) ,
p r o c e s s I n p u t ( f l a t t e n L i s t , i n l i s t ) , p r o c e s s I n p u t ( f l a t t e n L i s t 2 , i n l i s t ) ,
hasLhbRoot ( c o n c a t S t r , u id1 ) , hasLhbRoot ( f l a t t e n L i s t , u i d f 1 ) ,
hasLhbRoot ( f l a t t e n L i s t 2 , u i d f 3 ) ,
d a t a L i n k ( dl1 , w1 , a l p h a b e t , c o n c a t S t r , s t r 1 ) ,
d a t a L i n k ( dl2 , w1 , symbols , c o n c a t S t r , s t r 2 ) ,
d a t a L i n k ( dl3 , w1 , cons , c o n c a t S t r , s t r 3 ) ,
d a t a L i n k ( dl4 , w1 , numbers , c o n c a t S t r , s t r 4 ) ,
d a t a L i n k ( dl5 , c o n c a t S t r , o u t s t r , f l a t t e n L i s t , i n l i s t ) ,
d a t a L i n k ( dl6 , f l a t t e n L i s t , o u t s t r , f l a t t e n L i s t 2 , i n l i s t ) ,
d a t a L i n k ( dl7 , f l a t t e n L i s t 2 , o u t s t r , w1 , r e s u l t ) ,
lhbNode ( uid1 , c r o s s , c o n c a t S t r ) , lhbNode ( uid21 , s t r 1 , c o n c a t S t r ) ,
lhbNode ( uid22 , dot , c o n c a t S t r ) , lhbNode ( uid23 , s t r 3 , c o n c a t S t r ) ,
lhbNode ( uid31 , s t r 2 , c o n c a t S t r ) , lhbNode ( uid32 , s t r 4 , c o n c a t S t r ) ,
lhbNode ( u i d f 1 , c r o s s , f l a t t e n L i s t ) , lhbNode ( u i d f 2 , i n l i s t , f l a t t e n L i s t ) ,
lhbNode ( u i d f 3 , c r o s s , f l a t t e n L i s t 2 ) , lhbNode ( u i d f 4 , i n l i s t , f l a t t e n L i s t 2 ) ,
h a s C h i l d ( uid1 , uid21 , 0 ) , h a s C h i l d ( uid1 , uid22 , 1 ) ,
h a s C h i l d ( uid1 , uid23 , 2 ) , h a s C h i l d ( uid22 , uid31 , 0 ) ,
h a s C h i l d ( uid22 , uid32 , 1 ) , h a s C h i l d ( u i d f 1 , u i d f 2 , 0 ) ,
h a s C h i l d ( u i d f 3 , u i d f 4 , 0 ) ,
c o n t e x t ( ctxA , w1 , a l p h a b e t , 0 ) , c o n t e x t ( c txS , w1 , symbols , 0 ) ,
workf low ( w1 ) ,
w o r k f l o w I n p u t ( w1 , a l p h a b e t ) , w o r k f l o w I n p u t ( w1 , symbols ) ,
w o r k f l o w I n p u t ( w1 , cons ) , w o r k f l o w I n p u t ( w1 , numbers ) ,
workf lowOutpu t ( w1 , r e s u l t ) ,
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d e f i n e d D e p t h ( w1 , a l p h a b e t , 1 ) , d e f i n e d D e p t h ( w1 , symbols , 1 ) ,
d e f i n e d D e p t h ( w1 , cons , 0 ) , d e f i n e d D e p t h ( w1 , numbers , 1 ) ,
d e f i n e d D e p t h ( c o n c a t S t r , s t r 1 , 0 ) , d e f i n e d D e p t h ( c o n c a t S t r , s t r 2 , 0 ) ,
d e f i n e d D e p t h ( c o n c a t S t r , s t r 3 , 0 ) , d e f i n e d D e p t h ( c o n c a t S t r , s t r 4 , 0 ) ,
d e f i n e d D e p t h ( c o n c a t S t r , o u t s t r , 0 ) , d e f i n e d D e p t h ( f l a t t e n L i s t , o u t s t r , 0 ) ,
d e f i n e d D e p t h ( f l a t t e n L i s t , i n l i s t , 1 ) , d e f i n e d D e p t h ( f l a t t e n L i s t 2 , o u t s t r , 0 ) ,
d e f i n e d D e p t h ( f l a t t e n L i s t 2 , i n l i s t , 1 ) ,
d e l t a D e p t h ( w1 , a l p h a b e t , 0 ) , d e l t a D e p t h ( w1 , symbols , 0 ) ,
d e l t a D e p t h ( w1 , cons , 0 ) , d e l t a D e p t h ( w1 , numbers , 0 ) ,
d e l t a D e p t h ( c o n c a t S t r , s t r 1 , 1 ) , d e l t a D e p t h ( c o n c a t S t r , s t r 2 , 1 ) ,
d e l t a D e p t h ( c o n c a t S t r , s t r 3 , 0 ) , d e l t a D e p t h ( c o n c a t S t r , s t r 4 , 1 ) ,
d e l t a D e p t h ( c o n c a t S t r , o u t s t r , 2 ) , d e l t a D e p t h ( f l a t t e n L i s t , o u t s t r , 1 ) ,
d e l t a D e p t h ( f l a t t e n L i s t , i n l i s t , 1 ) , d e l t a D e p t h ( f l a t t e n L i s t 2 , o u t s t r , 0 ) ,
d e l t a D e p t h ( f l a t t e n L i s t 2 , i n l i s t , 0 ) ,
p r e d i c t e d D e p t h ( w1 , a l p h a b e t , 1 ) , p r e d i c t e d D e p t h ( w1 , symbols , 1 ) ,
p r e d i c t e d D e p t h ( w1 , cons , 0 ) , p r e d i c t e d D e p t h ( w1 , numbers , 1 ) ,
p r e d i c t e d D e p t h ( w1 , r e s u l t , 0 ) , p r e d i c t e d D e p t h ( c o n c a t S t r , s t r 1 , 1 ) ,
p r e d i c t e d D e p t h ( c o n c a t S t r , s t r 2 , 1 ) , p r e d i c t e d D e p t h ( c o n c a t S t r , s t r 3 , 0 ) ,
p r e d i c t e d D e p t h ( c o n c a t S t r , s t r 4 , 1 ) , p r e d i c t e d D e p t h ( c o n c a t S t r , o u t s t r , 2 ) ,
p r e d i c t e d D e p t h ( f l a t t e n L i s t , o u t s t r , 1 ) , p r e d i c t e d D e p t h ( f l a t t e n L i s t , i n l i s t , 2 ) ,
p r e d i c t e d D e p t h ( f l a t t e n L i s t 2 , o u t s t r , 0 ) , p r e d i c t e d D e p t h ( f l a t t e n L i s t 2 , i n l i s t , 1 ) ,
s i z e C u m u l a t i v e ( uid1 , 2 ) , s i z e C u m u l a t i v e ( uid21 , 1 ) ,
s i z e C u m u l a t i v e ( uid22 , 2 ) , s i z e C u m u l a t i v e ( uid23 , 2 ) ,
s i z e C u m u l a t i v e ( uid31 , 2 ) , s i z e C u m u l a t i v e ( uid32 , 2 ) ,
s i z e C u m u l a t i v e ( u i d f 1 , 1 ) , s i z e C u m u l a t i v e ( u i d f 2 , 1 ) ,
s i z e C u m u l a t i v e ( u i d f 3 , 0 ) , s i z e C u m u l a t i v e ( u i d f 4 , 0 ) ,
i t e r a t e d ( dl1 , 1 ) , i t e r a t e d ( dl2 , 1 ) , i t e r a t e d ( dl4 , 1 ) , i t e r a t e d ( dl5 , 1 ) ,
smooth ( d l 3 ) , smooth ( d l 6 ) , smooth ( d l 7 ) ,
l h f ( uid1 , 0 ) , l h f ( uid21 , 0 ) , l h f ( uid22 , 1 ) , l h f ( uid23 , 2 ) , l h f ( uid31 , 1 ) ,
l h f ( uid32 , 1 ) , l h f ( u i d f 1 , 0 ) , l h f ( u i d f 2 , 0 ) , l h f ( u i d f 3 , 0 ) , l h f ( u i d f 4 , 0 ) ,
depthMapping ( c o n c a t S t r , s t r 1 , 1 ) , depthMapping ( c o n c a t S t r , s t r 2 , 2 ) ,
depthMapping ( c o n c a t S t r , s t r 3 , 0 ) , depthMapping ( c o n c a t S t r , s t r 4 , 2 ) ,
depthMapping ( f l a t t e n L i s t , i n l i s t , 1 ) , depthMapping ( f l a t t e n L i s t 2 , i n l i s t , 0 ) ,
r e a c h e s ( ctxA , w1 , a l p h a b e t , 1 ) , r e a c h e s ( ctxA , c o n c a t S t r , s t r 1 , 1 ) ,
r e a c h e s ( ctxA , c o n c a t S t r , o u t s t r , 1 ) , r e a c h e s ( ctxA , f l a t t e n L i s t , o u t s t r , 1 ) ,
r e a c h e s ( ctxA , f l a t t e n L i s t , i n l i s t , 1 ) , r e a c h e s ( ctxA , f l a t t e n L i s t 2 , i n l i s t , 1 ) ,
r e a c h e s ( c txS , w1 , symbols , 1 ) , r e a c h e s ( ctxS , c o n c a t S t r , s t r 2 , 1 ) ,
r e a c h e s ( c txS , c o n c a t S t r , o u t s t r , 2 ) , r e a c h e s ( ctxS , f l a t t e n L i s t , i n l i s t , 2 ) ,
c o n t e x t T r u n c a t e d ( ctxA , f l a t t e n L i s t 2 , i n l i s t , 1 ) ,
c o n t e x t T r u n c a t e d ( ctxS , f l a t t e n L i s t , i n l i s t , 1 ) ,
c o n t e x t P r e s e r v e d ( ctxA , c o n c a t S t r , s t r 1 , 0 ) ,
c o n t e x t P r e s e r v e d ( ctxA , f l a t t e n L i s t , i n l i s t , 0 ) ,
c o n t e x t P r e s e r v e d ( ctxS , c o n c a t S t r , s t r 2 , 0 )


