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This thesis introduces a selection of models for optimal execution of financial as-
sets at the tactical level. As opposed to optimal scheduling, which defines a trading
schedule for the trader, this thesis investigates how the trader should interact with
the order book. If a trader is aggressive he will execute his order using market orders,
which will negatively feedback on his execution price through market impact. Alter-
natively, the models we focus on consider a passive trader who places limit orders into
the limit-order book and waits for these orders to be filled by market orders from other
traders. We assume these models do not exhibit market impact. However, given we
await market orders from other participants to fill our limit orders a new risk is borne:
execution risk.

We begin with an extension of Guéant et al. (2012b) who through the use of
an exponential utility, standard Brownian motion, and an absolute decay parameter
were able to cleverly build symmetry into their model which significantly reduced the
complexity. Our model consists of geometric Brownian motion (and mean-reverting
processes) for the asset price, a proportional control parameter (the additional amount
we ask for the asset), and a proportional decay parameter, implying that the symmetry
found in Guéant et al. (2012b) no longer exists. This novel combination results in
asset-dependent trading strategies, which to our knowledge is a unique concept in
this framework of literature. Detailed asymptotic analyses, coupled with advanced
numerical techniques (informing the asymptotics) are exploited to extract the relevant
dynamics, before looking at further extensions using similar methods.

We examine our above mentioned framework, as well as that of Guéant et al.
(2012b), for a trader who has a basket of correlated assets to liquidate. This leads to a
higher-dimensional model which increases the complexity of both numerically solving
the problem and asymptotically examining it. The solutions we present are of interest,
and comparable with Markowitz portfolio theory. We return to our framework of a
single underlying and consider four extensions: a stochastic volatility model which
results in an added dimension to the problem, a constrained optimisation problem
in which the control has an explicit lower bound, changing the exponential intensity
to a power intensity which results in a reformulation as a singular stochastic control
problem, and allowing the trader to trade using both market orders and limit orders
resulting in a free-boundary problem.

We complete the study with an empirical analysis using limit-order book data which
contains multiple levels of the book. This involves a novel calibration of the intensity
functions which represent the limit-order book, before backtesting and analysing the
performance of the strategies.
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Chapter 1

Introduction

1.1 Context of problem

This study focuses on one of the main services that a sell-side firm provides to investors,

namely in providing liquidity. Market liquidity refers to the extent to which a market

allows assets to be bought and sold at stable prices. Sell-side firms assist with helping

investors access liquidity by two mediums:

• Brokers: Act on behalf of investors and consume liquidity in the market. The

revenue generated is through commission.

• Market makers: Provide liquidity in the market by simultaneously buying and

selling assets. Revenue is generated when assets are bought at a lower price and

sold at a higher price.

Advances in technology have resulted in trading becoming essentially electronic through

the use of automated strategies, known as algorithmic trading.

Algorithmic trading has exploded in recent years, with reports of 50-77% of trading

volume in the US coming from computerised algorithms, see SEC (2010). Various

algorithms have been investigated extensively by both academics and institutional

traders; these algorithms focus on being the most profitable, the least risky, or a

trade-off between the two. In this thesis we focus on algorithmic trading from the

point of view of a sell-side firm, that is providing liquidity to an investor.

We shall now give a brief introduction to how equity markets work, and outline the

need for quantitative methods as they progress towards a more electronic environment.

15
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1.1.1 Market microstructure

Historically markets were centralised in primary exchanges (London Stock Exchange,

New York Stock Exchange, etc.). With the advances in both technology and compe-

tition, markets have become fragmented. This means participants now have a choice

of exchanges, each with its own matching rules, fee structure and transparency. The

three main types of exchanges are primary exchanges, multilateral trading facilities

and dark pools.

Primary exchanges provide pre-trade transparency and serve as a reference for

prices for other exchanges. Multilateral trading facilities compete directly with pri-

mary exchanges, but have unique attributes characterised by their fee structure or

latency regulations. One such fee structure is known as the maker-taker fee structure.

Its basic structure gives a transaction rebate to market makers who provide liquidity

(the makers); and charges a transaction fee to customers who take liquidity out of the

market (the takers). Dark pool is an ominous-sounding term for private exchanges or

forums for trading securities. Unlike public exchanges, dark pools are not accessible

by public investors and do not provide pre-trade transparency. In dark pools, unlike

other exchanges, investors can indicate their interest to trade with other investors in

the dark pool, which is not publicly available prior to the trade occurring. This allows

large institutions to offload positions without being gamed by high-frequency traders,

among others. The trade is known only to the two parties involved until it is actually

executed, thus the public is unaware of the shift in supply and demand of the large

players. Primarily, the price at which these transactions occur is the mid-price of the

primary exchange as this would be a reference for the ‘fair’ price at which the stock is

currently trading.

In this thesis we consider a lit venue, which could be a primary exchange or multi-

lateral trading facility. We do not consider dark pools as they are not available to all

investors and thus inclusion would limit the applicability of our models to those with

dark pools available to them.
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1.1.2 Auction mechanisms

For primary exchanges, two main auction phases exist during the trading day: fixing

auctions and continuous auctions. Fixing auctions have orders that are matched after

being accumulated on a book during a certain period, which usually happens at the

beginning and/or end of the day. This determines opening and closing prices. Contin-

uous auctions have orders that are matched continuously as they appear on the order

book. Most of the volume is traded during the continuous phase. In this study we will

consider only continuous auctions.

During the continuous auction there is a ledger of unexecuted trades known as the

limit-order book. There are two primary methods to interact with this book, that is

through the use of market orders or limit orders.

• Market orders: Orders in which a quantity (to buy or sell) are specified to be

immediately executed. In this case the trader consumes liquidity at the (best)

available price.

• Limit orders: Orders in which a quantity and the price to trade are specified.

These orders wait in the book until a market order arrives as a counterparty at

this price, or until they are cancelled.

The order book is spilt into a bid side and an ask side. The bid side contains limit

orders which are to buy at a specified price, and are filled by market orders looking to

sell. Likewise, the ask side contains limit orders which are to sell at a specified price,

and filled by market orders looking to buy. The highest proposed bid price is known

as the best-bid price and the lowest proposed ask price is known as the best-ask price.

The difference between the best bid and best ask is known as the spread, and the

average of the best bid and best ask is known as the mid-price.

The limit-order book contains orders at the best-bid price, the best-ask price, and

all orders lower than the best-bid and higher than the best-ask. All this information is

available to the trader when he comes to the market. This is represented graphically in

figure 1.11. It can be seen that it not only contains the prices, but also the number of

assets available at each level. This is known as the market depth and is an important

concept when considering algorithmic strategies. In equity markets orders are filled

1Taken from www.maths.ox.ac.uk/groups/ociam/research/finance
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Figure 1.1: Graphical representation of a limit-order book.

by price priority, and for orders at the same price, by time priority. This is in contrast

to some asset classes, for example interest rate products, which have a pro-rata limit-

order book model. In this thesis we consider only the price/time priority structure.

Orders, limit and market, arrive to the book randomly and thus the best ask, best

bid and mid-price change randomly. These changes are discrete as equity markets have

a minimal unit of price, known as the tick size.

The use of market orders is known as aggressive trading, while the use of limit

orders is known as passive trading. Aggressive trading exists when a trader buys or

sells a large quantity of an asset which requires immediate execution, unbalancing

supply and demand and thus having a feedback effect on the asset price, known as

market impact. This is in contrast to passive trading where a dealer places his order

in the limit-order book and waits for an opposite aggressive trade to fill his order.

The majority of this thesis focuses on a passive trader who liquidates using only

limit orders. Although this is extended in chapter 8 to a trader who can trade using

both passive and aggressive methods, i.e. using limit orders and market orders.
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1.2 A random walk down Wall Street

Since Black and Scholes (1973) and Merton (1973) published their seminal papers

on the pricing of options, the area of mathematical finance has grown enormously as

their work showed that the models developed by mathematicians could be used on

Wall Street. However, this image was first damaged with the downfall of Long Term

Capital Management, a hedge fund in which Merton and Scholes were on the board

of directors, and second with the credit crisis of 20082.

Currently the use of mathematics to develop trading strategies, especially in high-

frequency trading, is under scrutiny. It is argued that trading has become a race

with the winners being those with the fastest computers, or with servers closest to the

exchange. It is also argued it causes market instability and, since the flash crash (see

Easley et al., 2011), is a source of controversy. The flash crash was a stock market crash

on May 6, 2010 which lasted approximately 36 minutes during which the Dow Jones

Industrial Average had its biggest intra-day point drop, plunging 998.5 points (about

9%), mostly within minutes, only to recover a large part of the loss (see figure 1.2).

However there are counter arguments for the use of algorithmic trading given they act

as market makers and thus provide liquidity, even in times of a depressed economy (see

Rijper et al., 2011). Empirical studies (e.g., Hendershott et al. (2011) and Menkveld

(2013)) and a recent review (Grillet-Aubert, 2010) from AMF, the French regulator,

point out this renewed competition among liquidity providers causes reduced market

spreads, and therefore reduced indirect costs for final investors. For an interesting and

easy read on high-frequency trading, including the flash crash, see Lewis (2014).

Since the financial crisis the number of banks focusing on derivatives pricing, and

the size of the teams within those banks, has shrunk dramatically. Prior to the fi-

nancial crisis, many exotic financial instruments were sold which were not completely

hedged due to a lack of understanding of the full complexity of the models, which

also led to mispricing. Post-crash, much stricter regulations are now in place for in-

vestment banks, e.g. Dodd-Frank law and Basel Accords, and as such there has been

2A quote from the Financial Times on March 20th, 2009 reads “Markets + Maths = mayhem”.
This is in relation to a report wrote by Lord Turner, former Chairman of the Financial Services
Authority, in which he blamed “misplaced reliance on sophisticated math” easing money managers
into a false sense of security about the risks they were taking (see Turner, 2009). A statement like
this did not go without rebuttals and the author recommends Johnson (2009) and Thomas (2008) to
the interested reader.



CHAPTER 1. INTRODUCTION 20

Figure 1.2: Dow Jones Industrial Average index on May 6, 2010. This was the day
the flash crash occurred in which the market dropped over 9% in a few minutes only
to recover a few minutes later.

a shift away from derivatives pricing and more towards either algorithmic trading

and limit-order book modelling, or market-risk and credit-risk modelling. One of the

main consequences of the evolution in trading automation is the increasing need for a

quantitative approach to its analysis and optimisation. This thesis is thus using math-

ematical methods applied to an area which is currently very topical in mathematical

finance, with academics and institutions alike.

1.3 Outline and contribution

This thesis uses a combined approach of asymptotic methods and accurate numerical

techniques to examine the problem of optimal execution for a one-sided market maker.

Using asymptotic and numerical methods we are able to contribute to knowledge and

extend the current literature, notably Guéant et al. (2012b), which was originally

derived from Avellaneda and Stoikov (2008), by introducing more general diffusion

processes and modelling assumptions, which arguably result in more realistic solutions,

as we will see in the coming chapters.

We begin in chapter 2 by giving an introduction to some of the relevant mathemat-

ics needed for an understanding of this thesis, including stochastic calculus, optimal
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control theory, numerical methods and asymptotic analysis.

Chapter 3 is a detailed review of the optimal trading literature and a discussion

of the contribution this work will make to it. We provide a detailed analysis of the

framework of Guéant et al. (2012b), as it will be central in all of the following chapters

in this thesis. We also contribute to the work of Guéant et al. (2012b) by showing an

analytic solution can be derived from the differential-difference equation which they

solve numerically.

Chapter 4 extends the current literature by introducing general diffusion processes

for the asset price, as well as introducing a (more realistic) decay rate for the limit-

order book which is proportional to the asset price, rather than constant for all asset

prices which is the case in the base framework to which we are developing. We examine

this problem both asymptotically and numerically, with each approach confirming and

informing the other. The trading strategies are asset-price dependent, which to our

knowledge is a unique concept in the passive optimal trading literature at a tactical

level. In the steady-state limit we find a parameter constraint which is a necessary

condition for a solution to exist.

The original framework of Guéant et al. (2012b) uses standard Brownian motion for

the diffusion process for the asset price. In chapter 5 we extend the original framework

to trading with multiple correlated underlying assets, examining it analytically in

several limits, complementing the analysis with numerical methods, and discussing

the resultant trading strategies. The resultant trading strategies relate to Modern

Portfolio Theory (see Markowitz, 1959) due to the introduction of the correlation.

Chapter 6 develops chapter 4 by examining the case of multiple underlyings (which

are driven by correlated geometric Brownian motions). This leads to a higher-dimensional

model which increases the complexity of both numerically solving it and asymptotically

examining it. We perform a thorough comparative analysis of the trading strategies

found using numerical methods, before turning to analytic (asymptotic) solutions.

In certain limits the multiple underlying problem is reduced to the single asset case

and thus we can refer back to the single asset case for reassurance in our methods.

We find the steady-state regime to be of particular interest from an analytic analysis

perspective, and we perform a detailed study of the solution.

Chapter 7 extends the work of chapter 4 by replacing the constant volatility with



CHAPTER 1. INTRODUCTION 22

stochastic volatility, which is often seen as a more realistic assumption. We solve the

system numerically, examine the financial implications of the results, before (again)

asymptotically examining the system in several limits. The parameter constraint found

in chapter 4, which was necessary for a solution to exist, was based on the (constant)

volatility and thus examining the existence of a similar constraint under stochastic

volatility is of interest.

Chapter 8 also extends the work of chapter 4 in three independent directions. We

first consider an optimisation problem which constrains the admissible strategy space

for the control, under the exponential intensity function originally proposed. Next

we examine more general intensity functions for the filling process of orders, namely

a power intensity function. Under a power intensity function a singular stochastic

control problem results and we must reformulate the problem accordingly. Lastly, we

follow a similar framework to chapter 4 but allow the trader to trade using both limit

orders and market orders. The majority of the thesis examines a passive trader who

can use only limit orders to trade. Allowing the trader to trade using both limit orders

and market orders results in a free-boundary type problem, similar to that found with

American options, as using a market order can be viewed in a similar light to early

exercising an option.

In the chapters thus far we gain an understanding of the underlying problem using

asymptotic and numerical methods. The parameter values used in the numerical

solutions were exaggerated so as to give the reader insight into the properties and

behaviour of the solutions and trading strategies. In chapter 9 we use empirical limit-

order book data to calibrate and backtest some of the models discussed. Although the

data is limited, due to the difficulty in obtaining limit-order book data (as financial

institutions seek to protect their ‘trade secrets’), this chapter gives an insight into how

such modelling could be done with ‘real-world’ data, and an initial analysis of the

performance of the models developed. We also discuss calibration methods used by

other authors for a similar class of problems, and outline the novelty of the method

we propose.

We conclude in chapter 10 and discuss some future potential work and research

that may be of interest to undertake in this area.



Chapter 2

Background Material

In this chapter we discuss some of the relevant theory suggested for an understand-

ing of this thesis. We begin by introducing some of the stochastic processes we use

throughout and their application to financial mathematics. We follow this with a dis-

cussion of utility functions, what they are and why they are used. Next we discuss

optimisation, in particular optimal control and some of the associated theory. We

then introduce the methods we use in this thesis, introducing asymptotic methods

and finishing with a discussion on the relevant numerical methods.

2.1 Stochastic processes

As we model in continuous time throughout this study, we shall focus on stochastic

calculus in continuous time only, and follow Shreve (2004a); Zukerman (2013); Cont

and Tankov (2004). For the interested reader we recommend Shreve (2004b) as a

textbook on stochastic calculus in discrete time with applications in finance.

Let us first define a probability space (Ω,F ,P) with a filtration, (Ft, t ∈ [0, T ]),

where Ω denotes a continuous sample space. We define the σ-algebra F on Ω as a

family of subsets with the following characteristics

• ∅ ∈ F ,

• F ∈ F ⇒ F c ∈ F where FC = Ω \ F is the complement of F in Ω,

• A1, A2, · · · ∈ F ⇒ A = ∪∞i=1Ai ∈ F .

23
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The pair (Ω,F) is called a measurable space. A probability measure P on (Ω,F) is a

function P : F → [0, 1] such that

• P (∅) = 0, P (Ω) = 1,

• if A1, A2, · · · ∈ F and {Ai}∞i=1 are disjoint subsets then

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai) .

Before continuing our discussion on stochastic processes, we will introduce two impor-

tant definitions that are used throughout the financial mathematics literature.

Definition: Martingale A stochastic process X (t) : t ≥ 0 is a martingale if X (t)

is Ft-measurable, E [|X (t) |] <∞ and

E [X (t) |Fs] = X (s) for s < t.

Martingales are stochastic processes where the expectation of a future value given

the current information is simply the current value. We define a semimartingale as

a stochastic process that can be decomposed into the summation of martingales and

adapted processes of finite variation. We next consider an important property used in

mathematical finance which is the Markov property:

Definition: Markov Process A Ft-measurable process X (t) : t ≥ 0 is Markov iff

P (X (t+ h) ∈ B|Ft) = P (X (t+ h) ∈ B|X (t)) ∀ t, h > 0

where B ∈ B (R) is a Borel set, which is the smallest σ-algebra containing all open

sets.

Simply stated, a stochastic process has the Markov property if the conditional proba-

bility distribution of future states of the process depends only upon the present state,

and as such is memoryless. The Markov property is one that is assumed in much of

the mathematical finance literature. It relaxes a lot of the complexities that otherwise

would be present and very difficult to work with.
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2.1.1 Wiener process

We will now introduce a simple stochastic process known as a Wiener Process (also

know as a Brownian motion). In 1827 the Scottish botanist Robert Brown (see Brown,

1828) gave his name to the random motion of small particles in a liquid. However, it

was Wiener (1923) who developed a rigorous theory for Brownian motion, including

proving existence.

Definition: Brownian motion An adapted stochastic process (W (t) : t ≥ 0) is called

a P-Brownian motion, under the probability measure P, if:

• W (0) = 0, P− a.s.

• W has independent increments

• Increments are normally distributed

• W has continuous trajectories.

A Brownian motion W (t) : t ≥ 0 has mean zero and variance t. A stochastic process

X (t) = W (t) is Markovian and is a martingale. Brownian motion (either geometric

or standard), along with a drift term, are the most common stochastic processes used

for modelling asset values.

2.1.2 Point process

A point process is a sequence of events that occur at increasing random points in

time ti, where i = 1, 2, . . . , with ti+1 > ti. A point process can be defined by its

corresponding counting process N (t) , t ≥ 0 where N (t) is the number of events

within [0, t). The following properties hold for the counting process N (t):

1. N (0) = 0

2. N (t) ∈ Z

3. If t > s then N (t) ≥ N (s) and N (t)−N (s) is the number of occurrences within

the period [s, t)
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4. Orderliness: The probability that two of more events happen at once is negligible;

lim
∆t→0

P (N (t+ ∆t)−N (t) > 1|N (t+ ∆t)−N (t) ≥ 1) = 0

Two well-known processes that belong to the class of discrete-space point processes

are the discrete-time Bernoulli process and the continuous-time Poisson process. In

this thesis we use the latter process, particularly of the inhomogeneous (non-constant

intensity) kind, and thus will discuss that next. The interested reader should see

Zukerman (2013) for information on the Bernoulli process.

2.1.3 Poisson process

A Poisson process models jumps. It can be used to model processes such as queues or

sales, or can be used in asset pricing to model jumps in price. In this thesis it is used

to model sales of assets, also referred to as trades.

Definition: Poisson process Let (τi)i≥0 be a sequence of independent exponentially

distributed random variables with rate (intensity) parameter λ (t) and Tn =
∑n

i=1 τi.

The process (N (t) , t ≥ 0) defined by

N (t) =
∑
n≥1

1t≥Tn

is a Poisson process.

An inhomogeneous Poisson process is a counting process and the following must hold

true:

• N (t) is finite P-a.s.

• N (t) follows a Poisson distribution with parameter m (s, t) =
∫ t
s
λ (u) du:

P (N (t)−N (s) = n) = e−m(s,t)m (s, t)n

n!
,

• N (t) has independent increments,

• N (t) is Markovian.
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It is inhomogeneous as the intensity, λ (t), is non-constant. We have that E[N (t)] =

m (0, t). We can define a compensating Poisson process as Ñ (t) = N (t) − m (0, t),

which is a martingale with E[Ñ (t)] = 0.

The orderliness property of the Poisson process leads to the following small interval

conditions:

1. P (N (t+ ∆t)−N (t) = 0) = 1− λ (t) ∆t+O (∆t2),

2. P (N (t+ ∆t)−N (t) = 1) = λ (t) ∆t+O (∆t2),

3. P (N (t+ ∆t)−N (t) ≥ 2) = O (∆t2).

Alternatively one can express the Poisson process in the form

dN (t) = lim
∆t→0

N (t+ ∆t)−N (t)

which has dynamics

dN (t) =

0 with probability 1− λ (t) ∆t+O (∆t2) ,

1 with probability λ (t) ∆t+O (∆t2) .

Therefore, for the case of two uncorrelated Poisson processes, N1 (t) and N2 (t), the

probability that a jump occurs in both at the same instant is O (∆t2) and is therefore

negligible as ∆t→ 0. In this thesis we consider uncorrelated jump processes and thus

neglect the probability of a jump occurring in both processes at the same instantaneous

time.

2.1.4 Itô’s formula for jump-diffusion processes

We shall now extend our discussion of stochastic processes to Itô processes.

Definition: Itô process A stochastic process (X (t) : t ∈ [0, T ]) is called an Itô pro-

cess, if it is of the form

X (t) = X (0) +

∫ t

0

γ (X, s) ds+

∫ t

0

φ (X, s) dW (s) , (2.1)

where (γ (X, t) : t ∈ [0, T ]) and (φ (X, t) : t ∈ [0, T ]) are adapted stochastic processes

satisfying linear growth and Lipschitz conditions.
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Often for an Itô process of the form of (2.1) the shorthand notation:

dX (t) = γ (X, t) dt+ φ (X, t) dW (t) ,

is used. In this thesis Itô processes are primarily used for the modelling of asset prices.

Let X (t) be an n-dimensional jump-diffusion process such that

Xi (t) = Xi (0) +

∫ t

0

γi (Xi, s) ds+

∫ t

0

φi (Xi, s) dWi (s) +

∫ t

0

∆XidNi (t) , (2.2)

for i = 1, . . . , n. (γi (Xi, t) : t ∈ [0, T ]) and (φi (Xi, t) : t ∈ [0, T ]) are adapted stochas-

tic processes and ∆Xi = Xi (t) − Xi (t−). We assume a correlation between the

Brownian motions with E[Wi (t)Wj (t)] = ρijt with ρij = ρji and ρii = 1, and as dis-

cussed above we assume the jump components are uncorrelated, both with the other

jump components and with the Brownian motions.

Definition: Itô formula (lemma) For any C1,2 function f : [0, T ] × Rn → R, i.e.

continuous first derivative in time and first and second derivative in space, the process

Y (t) = f (t,X (t)) can be represented as:

f (t,X (t))− f (0, X (0)) =

∫ t

0

∂f

∂s
(s,X (s)) ds+

∫ t

0

n∑
i=1

∂f

∂Xi

(s,X (s−)) dXc
i (s)

+
1

2

∫ t

0

n∑
i,j=1

∂f

∂Xi,j

(s,X (s−)) d[Xi, Xj]
c (s) (2.3)

+

∫ t

0

n∑
i=1

(f (s,Xi (s−) + ∆Xi)− f (s,Xi (s−))) dNi (s) ,

where [Xi, Xj]
c (s) is the quadratic (co)variation of the purely continuous part of Xi,

Xc
i , which is defined as

[Xi, Xj]
c (t) = Xc

i (t)Xc
j (t)−Xc

i (0)Xc
j (0)−

∫ t

0

Xc
i (s) dXc

j (s)−
∫ t

0

Xc
j (s) dXc

i (s) .

We have just discussed some of the fundamental elements in stochastic calculus

which are needed for understanding of this thesis. If the reader would like a more

thorough understanding the author recommends Shreve (2004a) for a general textbook

on stochastic calculus in finance and Cont and Tankov (2004) for more of an insight

into the applications of stochastic calculus in finance, with emphasis on jump processes.
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2.2 Diffusion processes for asset prices

In this thesis we build on previous frameworks from the optimal trading literature by

introducing diffusion processes that are used in other areas of mathematical finance,

and are arguably more realistic from a modelling point of view, but, prior to this study,

were yet to be implemented in the framework we examine. We shall introduce some of

the more common diffusion processes and discuss their properties. Before beginning,

let (Ω,F ,P) be a probability space with a filtration, (Ft, t ∈ [0, T ]). Unless specified,

we assume that all stochastic processes in this section are Ft measurable.

2.2.1 Standard Brownian motion

Standard Brownian motion was the first stochastic process implemented in financial

mathematics. The use of standard Brownian motion for asset pricing and option

valuation was introduced by Bachelier (1900). His thesis, which discussed the use

of Brownian motion to evaluate stock options, is historically the first paper to use

advanced mathematics in the study of finance. As such, Bachelier is considered a

pioneer in the study of financial mathematics and stochastic processes.

An asset S (t) following standard Brownian motion with drift is defined as

dS (t) = µdt+ σdW (t) , (2.4)

where µ is the drift, σ is the volatility and W (t) is a Wiener process. Equation (2.4)

has solution

S (t) = S (0) + µt+ σW (t) . (2.5)

Equation (2.5) implies that S (t) is normally distributed such that:

E[S (t)] = S (0) + µt, (2.6)

V ar[S (t)] = σ2t. (2.7)

It is clear from (2.5) that an asset following standard Brownian motion can obtain

negative values, a property which is highly criticised from a financial perspective.

2.2.2 Geometric Brownian motion

Geometric Brownian Motion (GBM) gained popularity in mathematical finance liter-

ature following the seminal work of Black, Scholes and Merton (see Black and Scholes,
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1973; Merton, 1973) and is now the dominant diffusion process in mathematical fi-

nance literature. A geometric Brownian motion process is defined for positive values,

just like real stock prices and is therefore often favoured. Empirical evidence indicates

that asset returns are normally distributed, rather than the asset prices themselves.

This was first suggested by Osborne (1959) and first implemented in financial models

by Samuelson (1965). Osborne (1959) argues a geometric Brownian motion process

shows the same kind of ‘roughness’ in its paths as we see in real stock prices.

For an asset following geometric Brownian motion the diffusion process is defined

as:

dS (t) = µS (t) dt+ σS (t) dW (t) . (2.8)

with µ the constant relative drift and σ the constant relative velocity. For a geometric

Brownian motion process the returns are normally distributed and the asset price is

log-normally distributed. This transformation is made using Itô’s lemma. Under this

transformation we find

S (t) = S (0) e

“
µ−σ

2

2

”
t+σW (t)

(2.9)

which has the following properties:

E[S (t)] = S (0) eµt (2.10)

V ar[S (t)] = S (0)2 e2µt
(
eσ

2t − 1
)

(2.11)

Despite its general acceptance, geometric Brownian motion has received some criti-

cism. In particular it falls short of reality because of the following: in real stock prices,

volatility changes over time (possibly stochastically), but in geometric Brownian mo-

tion, volatility is assumed constant, and, returns are usually not normally distributed.

Real stock returns have higher kurtosis, or ‘fatter tails’, which means there is a higher

chance of large price changes. In addition, returns have negative skewness. The former

criticism has led to several extensions of geometric Brownian motion. One assumes

a non-constant, but deterministic function of stock price and time for the volatility.

The second assumes a stochastic process for the volatility, the most well-known being

the Heston (1993) model which assumes a mean-reverting process for the volatility,

namely the Cox et al. (1985) process, which we discuss next.
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2.2.3 Cox-Ingersoll-Ross (CIR) model

It has been argued that mean-reverting processes are more suitable for asset pricing,

see for example Metcalf and Hassett (1995), than the alternative geometric Brownian

motion that is typically used. Lund (1993) argues strongly against the use of geometric

Brownian motion as a price process as it is unbounded above and as such it has

the potential for infinite growth in time. Empirical studies have shown that mean-

reverting processes are suitable for modelling prices of common stocks (see Poterba and

Summers, 1988), futures (see Schwartz, 1997), currencies (see Cheung and Lai, 1994),

interest rates (see Cox et al., 1985) and commodities (see Linetsky, 2004; Skorodumov,

2008), to name a few.

The CIR model was first suggested by Cox et al. (1985) as an extension to the

Vasicek (1977) model. The attractiveness of the CIR model is its avoidance of the

possibility of negative values, under certain regimes, which we shortly discuss. It was

originally suggested for the modelling of interest rates but has since been suggested

for other models such as commodities (see Linetsky, 2004). In our modelling we shall

use it as the underlying process for the asset in section 4.4, as well as the process for

the volatility when examining a stochastic volatility model in chapter 7.

An asset S (t) following the CIR process solves the follow SDE

dS (t) = κ
(
S̄ − S (t)

)
dt+ σ

√
S (t)dW (t) , (2.12)

with κ as the mean-reversion speed, S̄ is the long-run mean asset price and σ
√
S (t)

is the absolute volatility. This process has an expected value and variance

E[S (t)] = S (0) e−κt + S̄
(
1− e−κt) , (2.13)

V ar[S (t)] = S (0)
σ2

κ

(
e−κt − e−2κt

)
+
S̄σ2

2κ

(
1− e−2κt

)2
. (2.14)

The CIR process has a conditional non-central chi-squared distribution. The boundary

behaviour of (2.12) has been studied in great detail by Feller (1951) in which he found

that (2.12) is defined on a positive domain if

2κS̄ ≥ σ2,

else it is defined on a non-negative domain. There are a number of other mean-

reverting processes used in mathematical finance, however they are not examined in
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this thesis. These include the Uhlenbeck and Ornstein (1930) process

dS (t) = κ
(
S̄ − S (t)

)
dt+ σdW (t) ,

the Dixit and Pindyck (1994) process

dS (t) = κ
(
S̄ − S (t)

)
S (t) dt+ σS (t) dW (t) ,

and the Schwartz (1997) process

dS (t) = κ
(
log
(
S̄
)− log ((t))

)
dt+ σS (t) dW (t) ,

to name but a few. The author recommends the named references for further reading

on these mean-reverting processes.

2.3 Utility functions

Utility functions represent preferences of some good or service in relation to another

good or service. We define a utility function U : R→ R as a concave, increasing, twice

differentiable function. The utility function has the following properties: first, it has

the property of non-satiation, which means the investor is never satisfied. This means

the investor always wants more wealth, W . Mathematically, this property is defined

as
∂U (W )

∂W
> 0. (2.15)

The second property is that the investor is risk-averse. This means the investor dislikes

risk and will sometimes accept a lower expected payoff over a higher expected payoff

if the lower expected payoff has less risk. Mathematically, this property is defined as

∂2U (W )

∂W 2
< 0. (2.16)

We also note that for a risk-averse investor

U (E[W ]) > E[U (W )], (2.17)

meaning he would rather except a guaranteed payoff then take a gamble; this will be

discussed by example below.

Under the von Neumann-Morgenstern utility theorem, (see von Neumann and Mor-

genstern, 1947), four axioms of relativity must exist for an investor to have a utility
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function. These four axioms are completeness, transitivity, continuity, and indepen-

dence.

1. Completeness: Consider an investor who has two choices a or b, one of the

following must hold: a ≺ b (b is preferred over a), a � b (a is preferred over b)

or a ∼ b (the investor is indifferent between a and b).

2. Transitivity: If the same investor has a third choice c with a ≺ b and b ≺ c

then a ≺ c.

3. Continuity: If a ≺ b ≺ c then there exists a p ∈ (0, 1) such that pa+(1− p) c ≺
b.

4. Independence: If a ≺ b then for any c there exists p ∈ (0, 1) such that pa +

(1− p) c ≺ pb+ (1− p) c.

For a utility function U (w), we define Arrow-Pratt absolute risk-aversion (see

Arrow, 1965; Pratt, 1964), as:

A (w) = −UWW (w)

UW (w)
, (2.18)

where the subscript denotes the derivative. We can also define the relative risk-aversion

as

R (w) = A (w)w = −wUWW (w)

UW (w)
. (2.19)

The utility functions we focus on in this thesis are exponential utility functions

which take the form of the negative exponential such that

U (w) = a− e−γw (2.20)

which has risk-aversion parameter γ. The constant a is chosen arbitrarily and is an

upper bound for the utility function. Throughout this thesis, unless specified, a = 0.

Exponential utility functions exhibit Constant Absolute Risk-Aversion (CARA) and

are often referred to as CARA utility functions. This is the case as, from (2.18), we

see that

A (w) = γ. (2.21)

In option pricing, the exponential utility function has the property of initial wealth

independence (see Cont and Tankov, 2004). This means that the ‘fair’ option price
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is chosen independently of the initial wealth and as such two investors with different

levels of initial wealth both find the same ‘fair’ option price if both investors utility

is described by an exponential utility function with equal risk-aversion. The same

property is present when finding the optimal trading strategy in limit-order books.

The optimal sell/buy price is initial wealth independent and this property will be

implemented throughout this thesis.

2.3.1 Certainty equivalent

Consider an investor who is risk-averse and consider the possible outcomes for one coin

toss. This can be described by the sample space Ω = {heads, tails}. A real-valued

random variable W : Ω → {0, 100} that models a $100 payoff for a successful bet on

heads is defined as

W (ω) =

$100, if ω = heads,

$0, if ω = tails.

Assuming the coin is equally likely to land on either side, then W has a probability

mass function f : R→ R+ given by:

f (w) =


1
2
, if ω = heads,

1
2
, if ω = tails,

so E[W ] = $50. We have three examples of investors: risk-averse, risk-neutral and

risk-seeking. A risk-neutral investor is indifferent in tossing the coin or receiving $50.

A risk-seeking investor would prefer to toss the coin while the risk-averse investor

would prefer the $50 payoff.

Consider now the case where W is no longer modelling a coin toss but is instead

modelling the value of a portfolio of assets driven by a stochastic process (which may

be a vector of stochastic processes). For a utility function U we define the certainty

equivalent, WC , as the amount to which an investor is indifferent between having for

certain or holding the portfolio with random outcome W , such that:

U (WC) = E[U (W )]⇒ WC = U−1 (E[U (W )]) .

WC is interpreted as the compensation that a risk-averse investor with utility function

U requires in order to assume the risk incurred by holding W . An investor who uses
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the expected utility as a criterion is then indifferent between holding the random

portfolio W or the lump sum WC . Consider again the case of the coin toss. Under

an exponential utility with risk-aversion parameter γ we have the equation for the

certainty equivalent as

−e−γWC = −1

2

(
e−γ100 + e−0

)⇒ WC = −1

γ
ln

(
1

2

(
e−γ100 + e−0

))
,

where γ > 0 determines the degree of risk-aversion. It can be seen in table 2.1

how sensitive this simple example is to the choice of γ, with a relatively large γ

corresponding to a high degree of risk-aversion and thus the willingness to accept a

much lower compensation. It can also be seen how the risk-aversion constraint (2.17)

is satisfied, given all elements in the fourth column are greater than the corresponding

elements in the third column.

γ WC U (WC) = E[U (W )] U (E[W ])
0.01 37.98 -.68399 -.60653
0.05 13.73 -.50337 -.08208
0.10 6.93 -.50003 -.00674
0.20 3.47 -.50000 -4.54 ×10−5

0.50 1.38 -.50000 -1.39 ×10−11

Table 2.1: Certainty equivalent for various values of risk-aversion parameter, γ

2.3.2 St. Petersburg paradox

There have been some arguments for the use of expected utility theory in finance.

One such argument arises when attempting to solve the St. Petersburg paradox. This

paradox is named after Daniel Bernoulli’s presentation of the problem and his solution,

published in the Commentaries of the Imperial Academy of Science of Saint Petersburg

(see Bernoulli, 1954). Consider a game in which a fair coin is tossed until the outcome

of a tail occurs. The pot starts at £2 and is doubled every time a head appears.

Letting X denote the payoff from this game, the expected value of the payoff is given

as

E[X] =
1

2
× 2 +

1

4
× 4 +

1

8
× 8 + . . .

= 1 + 1 + 1 + . . .

=∞. (2.22)
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Therefore, people should pay an infinite amount to play this game. However, the

paradox is the discrepancy between what people seem willing to pay to enter the game

and the infinite expected value.

A common method for solving the above problem is the use of expected utility

theory. Bernoulli (1954) suggests the use of logarithmic utility, such that

U (w) = ln (w) ,

for some positive wealth w. Defining c > 0 as the cost of playing the game, the

expected utility of the game converges to a finite value and can be expressed as

E[U (X)] =
∞∑
k=1

(
ln
(
w + 2k−1 − c)− ln (w)

)
2k

<∞. (2.23)

Equation (2.23) gives an implicit relationship between the wealth, w, and how much

the player should be willing to pay to play, c. For example, with log utility a millionaire

should be willing to pay up to £10.94, a person with £1000 should pay up to £5.94,

and a person with £2 should pay up to £2.

For a more in-depth read on utility theory the author recommends Föllmer and

Schied (2011) and Merton (1990).

2.4 Optimisation

In this section we shall discuss the optimisation techniques used in this thesis, as well as

some of the complementary techniques that are used in continuous time optimisation.

In this thesis we focus only on continuous time and as such we shall keep our discussion

in this section to continuous time optimisation. We must distinguish between static

optimisation problems and dynamic optimisation methods. The former consists of

solving for a single optimal choice for each control variable, such as the optimal level

of output per week or the optimal price to charge for a product, regardless of time.

In contrast, dynamic optimisation poses the question of what is the optimal solution

for a chosen variable at each point in time over a given time interval [0, T ] (with the

infinite horizon case of T = ∞ being possible). In this thesis, and in this section,

we deal with dynamic optimisation only. However, static optimisation problems have

previously appeared in the literature of optimal trading, which we discuss in the next

chapter.
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In dynamic optimisation the objective is to maximise or minimise a functional,

rather than a function. Consider the time paths x : [0, T ] → R, which are functions

in their own right. Let J : x → R represent the associated path value, in which

the general notation we use for this mapping is J (x). It should be noted that this

fundamentally differs from the composite-function g (f (t)) where g is a function of f

which in turn is a function of t and thus in the final analysis g is a function of t. For

the case of the functional, x (t) represents the time path and as such we should not

take J as a function of t, rather that it is a change in the position of the entire x path,

as opposed to the change in time, hence the use of our notation J (x).

A simple type of dynamic optimisation problem should contain:

1. A given initial point, x (0), and terminal point, x (T )

2. A set of admissible paths x : [0, T ]→ R

3. A set of path values, J (x), indicating some performance such as cost, profit etc

4. A specific objective: to choose the optimal path, x∗ (t), that either maximises or

minimises J (x∗).

There are three predominant approaches used to tackle the problem of dynamic optimi-

sation: the calculus of variations, optimal control theory, and dynamic programming.

Although it is dynamic programming we use predominately in this thesis, we shall

briefly discuss the other methods and the interconnection between the three. In our

discussion, we shall focus on the case of maximisation, as this is what is used through-

out the thesis, although extending to minimisation is quite trivial. The notes below

are based on Chiang (2000); Øksendal and Sulem (2005); Fleming and Soner (2006);

Bardi and Capuzzo-Dolcetta (2008)

2.4.1 Calculus of variations

Consider the objective functional J (x) that we seek to maximise, for which x : [0, T ]→
R is an admissible trajectory (path). The fundamental problem can be stated as:

max J (x) =

∫ T

0

F (t, x (t) , x′ (t)) dt, (2.24)
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subject to

x (0) = x0,

x (T ) = xT ,

where x0, xT ∈ R are constants and are known a priori. The integrand function F

depends on the time t ∈ [0, T ], the state x (t) and the direction of the path x′ (t).

The calculus of variations requires the use of the first and second derivatives and

as such we shall restrict the set of admissible paths to those with continuous curves

with continuous derivatives, and so assume that the integrand function F is twice

differentiable. A smooth path x that is the maximum of J (x) is called a maximal.

For the case of terminal time utility maximisation, the objective function often

takes the form:

max J (x) = G (T, x (T )) , (2.25)

subject to

x (0) = x0,

x (T ) = xT ,

where the function G is based on what happens at the terminal time only. It should

be noted that it is possible to transform an objective function of the form of (2.25) to

that of (2.24) using

z (t) ≡ G (t, x (t)) with initial conditions z (0) = 0, (2.26)

as ∫ T

0

z′ (t) dt = z (t)
∣∣∣T
0

= z (T )− z (0) = G (T, x (T )) .

The basic first-order necessary condition in the calculus of variations is the Euler

equation, i.e. it can be shown that the optimal trajectory x∗ (t) that satisfies (2.24)

also satisfies

Fx − d

dt
Fx′ = 0, (2.27)

which when expanded gives

Fx′x′x
′′ (t) + Fxx′x

′ (t) + Ftx′ − Fx = 0. (2.28)
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The expanded version shows the Euler equation is a non-linear second-order partial dif-

ferential equation (PDE), in which we have an initial and terminal boundary condition

as given above in (2.24).

Although the calculus of variations is the classical method for tackling problems of

dynamic optimisation, it has two drawbacks. The first is that it requires continuously

differentiable functions for its applicability. The second is that only interior solutions

can be handled; a more modern development that overcomes the latter restriction is

found in optimal control theory which we shall discuss next. For more on the calculus

of variations the author recommends Chiang (2000).

2.4.2 Optimal control theory

The optimal control formulation of a dynamic optimisation problem focuses on finding

the control variables that act as the instrument of optimisation. Whereas in the

calculus of variations approach our goal was to determine the optimal path in time for

a state variable x, in optimal control theory our goal is to determine the optimal path

in time for a control variable, u (t) ∈ U for t ∈ [0, T ], where U ⊂ R is some bounded

control set, which, as an advantage over the calculus of variations approach, can be a

closed bounded set.

The fundamental problem in optimal control theory reads:

max
u∈U

J =

∫ T

0

F (t, x (t) , u (t)) dt+G (x (T )) , (2.29)

subject to

x′ (t) = f (t, x (t) , u (t)) ,

x (0) = x0,

u (t) ∈ U for all t ∈ [0, T ],

where F : [0, T ]×R×U→ R is the running cost, G : R→ R is the terminal time cost,

x0 ∈ R and f : [0, T ] × R × U → R. Relating to the calculus of variations, we notice

that x′ (t) has been replaced by u (t) inside the cost functionals. Once the optimal

control path u∗ (t) has been found, we can also find the optimal state path x∗ (t). The

presence of the control variable u necessitates a linkage between u and x to tell us

how u will specifically affect the course taken by the state variable x. This linkage is
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given through the constraint equation x′ (t) = f (t, x (t) , u (t)), which is referred to as

the equation of motion for the state variable. Note when we set x′ (t) = u (t), optimal

control theory reduces precisely to the calculus of variations.

It should be noted that a feature of optimal control theory is that the control

path need not be continuous in order to be admissible, it need only be piecewise

continuous, and as such is allowed jump discontinuities. Also the state path need not

be continuous but only piecewise differentiable, allowing for corners or sharp points.

These two properties, along with the property of the control set having the ability to

be a closed, bounded, convex set, make optimal control theory advantageous over the

calculus of variations.

Optimal control and the Bellman principle

As stated in Bellman and Dreyfus (1962):

The Principle of Optimality: An optimal policy has the property that what-

ever the initial state and the initial decision are, the remaining decisions

must constitute an optimal policy with regard to the state resulting from the

first decision.

Consider the fundamental problem (2.29). Let us examine this using the Bellman

Principle approach. Let t ∈ [0, T ] and define J (t, x (t) , u (t)) as the remaining reward

between time [t, T ] when the control policy is u : [t, T ]→ R. This may be written as

J (t, x (t) , u (t)) =

∫ T

t

F (s, x (s) , u (s)) ds+G (x (T )) . (2.30)

We can then define the value function

V (t, x (t)) = max
u∈U

J (t, x (t) , u (t)) . (2.31)

Consider the small increment ∆t, then applying Bellman’s Principle of Optimality

to (2.31) results in:

V (t, x (t)) = max
u∈U

{∫ t+∆t

t

F (τ, x (τ) , u (τ)) dτ + V (t+ ∆t, x (t) + ∆x)
}
. (2.32)

As F is continuous, we can approximate the integral in (2.32) to leading order as

F (t, x (t) , u (t)) ∆t so (2.32) becomes

V (t, x (t)) = max
u(τ)∈U

{
F (t, x (t) , u (t)) ∆t+V (t+ ∆t, x (t) + ∆x)

}
+O

(
∆t2
)
. (2.33)
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As we assume that V is a continuously differentiable function, we use a Taylor series

expansion of V with respect to ∆t and obtain:

V (t+ ∆T, x (t+ ∆t)) = V (t, x (t)) + Vx (t, x (t))x′ (t) ∆t+ Vt (t, x (t)) ∆t+O
(
∆t2
)

(2.34)

which when substituted into (2.33), dividing by ∆t and taking the limit as ∆t→ 0 we

obtain the Hamilton-Jacobi-Bellman (HJB) equation

0 = max
u∈U

{
F (t, x (t) , u (t)) + Vx (t, x (t)) f (t, x (t) , u (t)) + Vt (t, x (t))

}
, (2.35)

remembering from (2.29) that x′ (t) = f (t, x (t) , u (t)). Equation (2.35) must be solved

backwards in time with some known final condition

V (T, x (T )) = G (x (T )) . (2.36)

Equation (2.35) is generally non-linear with respect to the value function V . The

solution obtained from the HJB equation is equivalent to the solution obtained using

Pontryagin’s Maximum Principle. Although it is not used directly in this thesis it is

arguably the most important result in optimal control theory and therefore we shall

discuss it briefly.

Pontryagin’s maximum principle

Pontryagin’s maximum principle, also known as the maximum principle, is a first-order

necessary condition for optimality and was formulated in 1956 by Russian mathemati-

cian L.S. Pontryagin and his colleagues (see Pontryagin, 1987), although an American

mathematician M.R. Hestenes produced comparable results in a RAND corporation

report a few years previously (see Hestenes, 1950).

Consider the system (2.29). The objective is to find the optimal control u∗ (t)

(and hence the optimal path x∗ (t)) that maximises J subject to the given constraints.

The constraints on the system can be implemented by introducing the time-dependent

Lagrange multiplier λ (t), with λ (t) termed the costates of the system. The vehicle

through which the costate variable gains entry into the optimal control problem is

through the Hamiltonian H, defined as:

H (t, x (t) , u (t) , λ (t)) ≡ F (t, x (t) , u (t)) + λ (t) f (t, x (t) , u (t)) (2.37)
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The costates variable has the equation of motion

dλ

dt
= −∂H

∂x
, (2.38)

while the equation of motion for x is given by

dx

dt
= −∂H

∂λ
. (2.39)

Pontryagin’s Maximum Principle states that if the optimal control trajectory u∗ (t)

maximises J then it also maximises H. As such we have

u∗ (t) = arg max
u

H (t, x (t) , u (t) , λ (t)) ,

dλ

dt
= −∂H

∂x
, (2.40)

dx

dt
= −∂H

∂λ
,

with H given by (2.37). Depending on the problem we attempt to solve, an additional

condition might be required. This condition is known as the transversality condition,

and it sets the value of λ at time T . This arises as the system (2.29) has a fixed terminal

time T but free terminal-state condition x (T ). An example of a free terminal state

condition could be a trader who is looking to profit as a market maker but with no

constraint on the amount of inventory held, x, at the terminal time T . Hence we must

set the value of λ (T ) as

λ (T ) = 0.

If the terminal state was to be specified we would replace the transversality condition

with the terminal condition

x (T ) = xT .

For varying terminal conditions and terminal states the value of λ (T ) has varying

values and constraints and the reader is referred to Chiang (2000) for more insight.

Finally, in order to apply the maximum principle, we first must solve the equations

of motion (2.40) for a general solution. Using the transversality condition we obtain

particular solutions for λ∗ (t) and x∗ (t). We can then evaluate the optimal trajectory

u∗ (t) that maximises H, and hence J .
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2.4.3 Stochastic optimal control

So far we have discussed optimal control in the deterministic setting. In this thesis we

deal with stochastic optimal control, as throughout we consider a stochastic setting,

rather than a deterministic one.

Consider the problem outlined above in section 2.4.2. In a stochastic setting the

state variable, previously x for the deterministic case, is now a stochastic process. We

define the stochastic state variable as X(t) : t ∈ [0, T ] as a jump-diffusion of the form

X (t) = X (0)+

∫ t

0

γ (X, s) ds+

∫ t

0

φ (X, s) dW (s)+

∫ s

0

δ (X, s, u (s)) dN (s) , (2.41)

which is a single dimension case of (2.2), and in shorthand notation can be expressed

as

dX (t) = γ (X, t) dt+ φ (X, t) dW (t) + δ (X, t, u (t)) dN (t) , (2.42)

with N (t) being Poisson distributed with rate λ (u (t)), where u (t) is the Markov

control process. We can conclude there exists a unique solution to (2.42) assuming it

satisfies the following conditions

• At most linear growth: There exists a constant C1 such that

|γ (x, t) |+ |φ (x, t) |+ |δ (x, t, u (t))λ (u (t)) | ≤ C1 (1 + |x|) .

• Lipschitz continuity: There exists a constant C2 such that

|γ (x, t)− γ (y, s) |+ |φ (x, t)− φ (y, s) |+
|δ (x, t, u (t))λ (u (t))− δ (y, s, u (s))λ (u (s)) | ≤ C2 (1 + |x− y|+ |t− s|) ,

with

E
[
|X (t) |

]
<∞ ∀t.

For more on existence and uniqueness of stochastic differential equations see Øksendal

(2003).

Given our state variable is now a stochastic process, our objective is to maximise

the expectation of the reward functional. Define:

J (t,X (t) , u (t)) = E
[ ∫ T

t

F (s,X (s) , u (s)) ds+G (X (T ))
]
, (2.43)
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which is the total expected reward over time [t, T ]. Our value function is the maximum

of the total expected reward and takes the form:

V (t,X (t)) = max
u∈U

J (t,X (t) , u (t)) , (2.44)

to which we know a solution exists given the existence and uniqueness shown for

the underlying stochastic differential equation. Through the use of Itô calculus and

Bellman’s Principle of Optimality we can derive an HJB equation for this problem,

assuming the following conditions are satisfied

• The reward functional satisfies a polynomial growth condition, i.e. there exists

constants C ∈ R+ and k ∈ Z+ such that

|J (t, x, u) | ≤ C
(
1 + |x|k) , ∀ (t,X) ∈ [0, T ]× R+, and u ∈ U.

• The value function V (t, x) ∈ C1,2 ([0, T ),R+).

Applying Bellman’s Principle to (2.44) we have

V (t,X (t)) = max
u∈U

E
{∫ t+h

t

F (τ,X (τ) , u (τ)) dτ + V (t+ h,X (t+ h))
}
. (2.45)

Assume u (s) = u for some s ∈ [t, t+ h] so

V (t,X (t)) ≥ E
{∫ t+h

t

F (τ,X (τ) , u) dτ + V (t+ h,X (t+ h))
}
, (2.46)

and subtracting V (t,X (t)) and dividing by h arrives at

0 ≥ 1

h
E
{∫ t+h

t

F (τ,X (τ) , u) dτ + V (t+ h,X (t+ h))− V (t,X (t))
}
. (2.47)

In the limit as h→ 0 we have

0 ≥ E
{
F (t,X (t) , u) dt+ dV (t,X (t))

}
. (2.48)

Applying Itô calculus to dV , as discussed in section (2.1.4), we have

dV (t,X (t)) =
∂V (t,X)

∂t
dt+

∂V (t,X)

∂X
dXc (t) +

1

2

∂2V (t,X)

∂X2
d[X,X]c (t)

+ λ (u) (V (t,X + δ (X, t, u))− V (t,X)) dt

+ (V (t,X + δ (X, t, u))− V (t,X)) dÑ (t) , (2.49)
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with d[X,X]c (t) = φ (X, t)2 dt and Ñ (t) being a compensating Poisson process. Sub-

stituting (2.49) into (2.48) and dividing across by dt we arrive at

0 ≥
{∂V (t,X)

∂t
+ γ (X, t)

∂V (t,X)

∂X
+

1

2
φ (X, t)2 ∂

2V (t,X)

∂X2

+ F (t,X, u) + λ (u) (V (t,X + δ (X, t, u))− V (t,X))
}
. (2.50)

If we were to choose the control optimally we would have chosen u (s) = u∗ for s ∈
[t, t+h] such that (2.50) would be strictly equal to zero, rather than less than or equal

to. Therefore choosing the optimal control we have

0 = max
u∈U

{∂V (t,X)

∂t
+ γ (X, t)

∂V (t,X)

∂X
+

1

2
φ (X, t)2 ∂

2V (t,X)

∂X2

+ F (t,X, u) + λ (u) (V (t,X + δ (X, t, u))− V (t,X))
}
, (2.51)

which is the HJB equation that solves (2.44) with terminal condition:

V (T,X) = G (X (T )) . (2.52)

A verification theorem (see Bremaud, 1981) is used to prove that the solution we obtain

from the HJB equation (2.51) is indeed the solution of the optimal control problem

(2.44) we wish to solve. In this thesis we will derive the HJB equations we use which

may give more of an insight for the reader into the derivation for a particular problem.

We also provide verification theorems to show that the solutions we obtain from the

HJB equations are equivalent to the solutions from the fundamental problems.

In the case where the smoothness assumptions (continuously differentiable) do not

hold, it is not possible to find classical solutions to the HJB equation. In this case

one may look towards non-smooth analysis such as viscosity solutions. Although this

is outside the scope of this thesis, the author recommends Fleming and Soner (2006);

Bardi and Capuzzo-Dolcetta (2008) for further reading. For a more in-depth read on

stochastic optimal control the reader is referred Bertsekas et al. (1995) and Øksendal

and Sulem (2005).

2.5 Asymptotic methods

When a PDE is to be solved, an analytic solution is generally preferred to a numerical

solution; however, analytic solutions are not always available, particularly in high-

dimensional non-linear PDEs. We can, however, use perturbation methods to examine
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the limiting behaviour of a variable (or small/large parameter behaviour) which may

lead to analytic solutions which are confined to specific regions. These methods have

been rigorously implemented in the fluid mechanics literature (see Van Dyke, 1964)

and are well suited for implementation in this thesis. Other areas of mathematical

finance have relied on the use of asymptotic methods to gain a deeper understanding

of the problem, for which an analytic solution is not available. These include: Duck

et al. (2014) examining the limiting behaviour of a perpetual option with multiple

underlyings, Widdicks et al. (2005) applying singular perturbation techniques to the

Black-Scholes PDE used to price European, American, and barrier options, Whal-

ley and Wilmott (1997) using asymptotic analysis for option pricing with transaction

costs, and Schied and Schöneborn (2009) deriving asymptotic solutions for the opti-

mal scheduling problem under varying utility functions, to name a few. This list is

far from exhaustive, but a brief few examples to emphasis the range of topics (and

power) in financial mathematics to which asymptotic analysis is used, especially on

problems which are either non-linear and/or multi-dimensional. It is non-linear multi-

dimensional problems that we examine in this thesis.

2.5.1 Perturbation theory

Perturbation theory comprises the use of mathematical methods for finding an ap-

proximate solution to a problem. Perturbation theory expands a solution in a power

series involving the variable, the limit of which we are examining. This power series is

substituted into the PDE and the coefficients of the series are solved for. The resulting

solution becomes an approximation to the actual solution, valid in the limiting region.

As defined by Bender and Orszag (1999), the power series
∑∞

n=0 an (x− x0)n is said to

be asymptotic to the function f (x) as x→ x0 and we write y (x) ∼∑∞n=0 an (x− x0)n

as x → x0 if y (x) −∑N
n=0 an (x− x0)n � (x− x0)N as x → x0 for every integer N .

Thus a power series is asymptotic to a function if the remainder after N terms is much

smaller than the last retained term as x → x0. By this definition a series may be

asymptotic to a function without being convergent. Often an asymptotic approxima-

tion is required close to boundaries, for example either at zero or plus/minus infinity.

For the former case we have x0 = 0 so y (x) ∼ ∑∞n=0 anx
n. The above definition for

the latter case of x → ∞ corresponds to y (x) ∼ ∑∞n=0 anx
−n. We note that not all
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functions can be expanded this way. For example, ex has power series expansions

ex ∼ ∑∞n=0 x
n as x → 0. However the form of y (x) ∼ ∑∞n=0 anx

−n does not hold for

y (x) = ex as x → ∞ because ex grows more rapidly than any power of x as x → ∞.

If y (x) can be expressed as y (x) ∼∑∞n=0 an (x− x0)n then the coefficients an can be

determined uniquely as

ai = lim
x→x0

y (x)−
i−1∑
n=0

an (x− x0)n

(x− x0)i
.

2.5.2 Method of dominant balance

The method of dominant balance is often used to identify those terms in an equation

that may be neglected. This is particularly helpful in the case of non-linear equations

in which, for some limit, the non-linear term may be neglected such that a power series

expansion may be found for the solution. For the method of dominant balance the

technique we use consists of dropping all terms that appear small (this may be con-

firmed numerically) and we approximate the exact equation by an asymptotic relation,

which is valid in the particular limit being examined. We should be able to verify that

the neglected terms are in fact small by substituting the solution for the asymptotic

relation into the neglected term. This method is used throughout this thesis and we

refer to it as ‘asymptotic balancing’.

For a more detailed discussion on asymptotic methods the author refers the reader

to Bender and Orszag (1999); Van Dyke (1964), and for an analysis within the frame-

work of PDEs the author refers the reader to Evans (2010).

2.6 Numerical methods

The vast majority of PDEs, along with many ordinary differential equations (ODEs),

do not have analytic solutions and thus require a numerical approach to find solutions.

In this section we discuss the main methods we use to solve the PDEs and ODEs dis-

cussed in this thesis. We begin by introducing finite-difference methods, in particular

direct methods to solve PDEs and ODEs. This is followed by a discussion on iterative

methods that are also used. Unless specified for a given method, in this section we

follow Smith (1965).
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2.6.1 Finite-difference methods

Physicists and applied mathematicians have for years been applying finite-difference

methods to PDEs and that has strongly influenced the area of financial mathematics.

It is well-known that the Black-Scholes PDE (see Black and Scholes, 1973) has a closed

form solution for vanilla European call and put options; however this is not always the

case. For more complex problems in financial mathematics, such as American options,

exotic options or problems involving multiple underlyings, analytic solutions are gen-

erally not available. Merton et al. (1977) were the first authors to suggest applying

finite-difference methods in financial mathematics, in this case to price an American

put option in which they used the explicit method, and Brennan and Schwartz (1978)

demonstrates its link to the trinomial lattice method (see Cox et al., 1979, for more

on lattice methods).

There are various finite-difference methods, each with unique characteristics, in

which we have a wealth of knowledge on given their previous use in other areas of

science and engineering. Those available include the explicit, implicit, Crank-Nicolson

(semi-implicit) and alternating-direction-implicit (ADI) schemes. For each we know

the stability and convergence and shall discuss the first three below. The ADI scheme

is not used in this thesis and we refer the interested reader to Peaceman and Rachford

(1955).

Finite-differencing requires discretisation of the problem. A rectangular grid is

formed which is usually equally spaced, although this need not always be the case.

Let us consider a simple case in which we have one variable in space, S, and one in

time, t. We are aiming to solve for the value function V (τ, S), with τ = T − t, which

is a solution of the general PDE which takes the form

− ∂V (τ, S)

∂τ
+ µ (τ, S)

∂V (τ, S)

∂S
+ σ (τ, S)

∂2V (τ, S)

∂S2
+ g (τ, S)V (τ, S) = 0. (2.53)

with some given initial condition.

We divide the S grid into n+ 1 points and the τ grid into m+ 1 points. We may

then write (with Smin = 0 and t = 0)

∆τ =
T

m
τk = k∆τ

∆S =
Smax
n

Si = i∆S
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in which Smax is an approximation for S →∞, which is implemented at the boundary.

We can write the value function’s numerical approximation v as

V (τk, Si) = vki

Explicit method

The explicit method is popular in financial literature (Brennan and Schwartz, 1978;

Hull and White, 1990) possibly due to its ease of implementation rather than its

efficiency or accuracy. For the explicit method we approximate the derivatives as

∂V

∂τ
(τk, S) =

vk+1
i − vki

∆τ
+O (∆τ) , (2.54)

∂V

∂S
(τk, S) =

vki+1 − vki−1

2∆S
+O

(
∆S2

)
, (2.55)

∂2V

∂S2
(τk, S) =

vki+1 − 2vki + vki−1

∆S2
+O

(
∆S2

)
, (2.56)

which are found by a Taylor series expansion on V when small deviations in τ and S, of

size ∆τ and ∆S respectively, occur. Equation (2.54) is known as a forward difference

while (2.55) and (2.56) are known as central differences. From (2.54)-(2.56) we expect

the method to have O (∆τ,∆S2) convergence. At time k+ 1, vki is known for all i and

as such the system we are solving is effectively a trinomial tree. One problem with this

method is its stability. For the case of the general PDE (2.53) we have the constraint

∆τ ≤ ∆S2

2σ (τ, S)

which requires the time interval to decrease with a decrease in the number of points

in space or an increase in the σ (τ, S) coefficient. Although ∆S convergence is second

order, reducing ∆S by half means we must reduce ∆τ by a factor of four, thus for four

times the accuracy computation time increases eight fold. As such we now turn to the

implicit method.

Implicit method

The implicit method is unconditionally stable, although it has the same order of ac-

curacy as the explicit method. For the implicit method we approximate V and the

derivatives as
∂V

∂τ
(τk + ∆τ, S) =

vk+1
i − vki

∆τ
+O (∆τ) , (2.57)
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∂V

∂S
(τk + ∆τ, S) =

vk+1
i+1 − vk+1

i−1

2∆S
+O

(
∆S2

)
, (2.58)

∂2V

∂S2
(τk + ∆τ, S) =

vk+1
i+1 − 2vk+1

i + vk+1
i−1

∆S2
+O

(
∆S2

)
, (2.59)

where we note that the space derivatives of (2.58) and (2.59) are calculated at time

k + 1 rather than at time k as is the case for the explicit scheme, and (2.57) is a

backward difference. We now are not confined in choosing the size of the space step,

although the scheme is only still O (∆τ,∆S2) accurate. However using the implicit

scheme does increase the computational expense as, for PDEs of the form (2.53), it

requires the solving of a tridiagonal system of linear equations. However, there are

methods such as Thomas algorithm or LU decomposition which exploit the tridiagonal

structure of the system (see Smith, 1965).

Crank-Nicolson method

The following scheme is as simple to implement (for linear PDEs) as the implicit

method and offers higher rates of convergence. It is thus often the method of choice for

solving parabolic PDEs. The method was devised by Crank and Nicolson (1947) and

has convergence O (∆τ 2,∆S2), conditional on smoothness of the boundary conditions.

The approximations for V and the derivatives are

V

(
τ +

1

2
∆τk, S

)
=
vk+1
i + vki

2
+O

(
∆τ 2

)
, (2.60)

∂V

∂τ

(
τk +

1

2
∆τ, S

)
=
vk+1
i − vki

∆τ
+O

(
∆τ 2

)
, (2.61)

∂V

∂S

(
τk +

1

2
∆τ, S

)
=

1

2

(
vk+1
i+1 − vk+1

i−1

2∆S
+
vki+1 − vki−1

2∆S

)
+O

(
∆S2

)
, (2.62)

∂2V

∂S2

(
τk +

1

2
∆τ, S

)
=

1

2

(
vk+1
i+1 − 2vk+1

i + vk+1
i−1

∆S2
+
vki+1 − 2vki + vki−1

∆S2

)
+O

(
∆S2

)
,

(2.63)

which when substituted into a PDE of the form of (2.53) results in a similar tridiagonal

linear system as is the case of the implicit method, however the right-hand-side is now

time-dependent.
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2.6.2 Runge-Kutta method

When solving ODEs numerically we may require higher-order methods, over a stan-

dard Euler scheme (see Euler, 1768), which will reduce computational expense while

increasing the convergence. For this we use the Runge-Kutta method (see Press et al.,

2009). Consider the initial value problem

f ′ = g (t, f) f (t0) = f0. (2.64)

Rather than having a grid we are only solving in a single domain, t, with t ∈ [t0, T ].

The time is discretised into N intervals of equal length (equality of intervals can be

relaxed) such that we have N + 1 points. Let

h =
T − t0
N

.

At time point tn we define the order s Runge-Kutta method as

fn+1 = fn +
s∑
i=1

biki,

with

tn+1 = tn + h

where

k1 = hg (tn, yn) ,

k2 = hg (tn + c2h, fn + a21k1) ,

k3 = hg (tn + c3h, fn + a31k1 + a32k2) ,

...

ks = hg (tn + csh, fn + as1k1 + as2k2 + · · ·+ as,s−1ks−1) .

and fn = f (tn). To specify a particular method, one needs to provide the integer s (the

number of stages), and the coefficients aij (for 1 ≤ j < i ≤ s), bi (for i = 1, 2, . . . , s)

and ci (for i = 2, 3, . . . , s). The matrix [aij] is called the Runge-Kutta matrix, while

the bi and ci are known as the weights and the nodes. The Runge-Kutta method is

consistent if
i−1∑
j=1

aij = ci for i = 2, . . . , s.
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The method we use is the fourth-order explicit Runge-Kutta method which is

O (h4) accurate. Consider again the system (2.64); the fourth-order explicit Runge-

Kutta method, also known as the classical Runge-Kutta method, is defined as

fn+1 = fn + h
6

(k1 + 2k2 + 2k3 + k4) (2.65)

with

k1 = g (tn, fn) , (2.66)

k2 = g
(
tn + h

2
, fn + h

2
k1

)
, (2.67)

k3 = g
(
tn + h

2
, fn + h

2
k2

)
, (2.68)

k4 = g (tn + h, fn + hk3) . (2.69)

This is much more favourable than the Euler method, which is equivalent to the first

order Runge-Kutta Scheme, and has convergence O (h).

2.6.3 Iterative methods

In this thesis we often need to solve equations iteratively, whether they are non-

linear ODEs, using Crank-Nicolson to solve non-linear PDEs, or solving free-boundary

problems. We shall first discuss the method we use for solving a non-linear ODE as

it is frequently used in this thesis, before examining the Successive-Over-Relaxation

(SOR) method which is used to verify results when examining higher-order problems.

Newton’s iterative method

Consider the second-order non-linear ODE for the value function V :

g (S, V, V ′, V ′′) = 0 (2.70)

which has linear boundary conditions. We can approximate all derivatives using central

differences which will result in the non-linear system of equations

G (V) = 0. (2.71)

Given a starting value V(0) we can approximate the kth + 1 iterative solution from the

kth iterative solution as

V(k+1) = V(k) + ε(k) (2.72)
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in which ε(k) is the correction at iteration k. The system is non-linear in both V(k)

and ε(k). We can linearise in ε(k) by taking the limit up to O
(
ε(k)
)

as ε(k) → 0. This

results in a linear system of equations for ε(k). To calculate ε(k) we solve the system

J
(
V(k)

)
ε(k) = −G (V) , (2.73)

where

J (V) =
∂G

∂V
(V) =

(
∂Gi

∂Vj
(V)

)
0,≤i,j≤N

(2.74)

is the Jacobi matrix of G. As Gi is independent of Vj with |i − j| > 1, the matrix

J
(
V(k)

)
is tridiagonal for the class of problems we will solve in this thesis. Conse-

quently, each step of the Newton iteration involves the solution of a system of linear

equations with a tridiagonal matrix; this may be accomplished by using the Thomas

algorithm. We repeat until some tolerance criteria is satisfied, namely that the sum of

squares of the error are less than some tolerance, in which the tolerance should depend

on the order of magnitude of V.

Successive-over-relaxation method

We shall now discuss the SOR method (see Cryer, 1971). In this thesis we use this

method for PDEs which have dimension higher than one space and one time variable.

We shall thus examine it in a similar framework as (2.53) but with two space variables,

S1 and S2

− ∂V

∂τ
+

2∑
i=1

µi (τ, S1, S2)
∂V

∂Si
+

2∑
i=1

2∑
j=1

σij (τ, S1, S2)
∂2V

∂Si∂Sj
+ g (τ, S1, S2)V = 0,

(2.75)

with V = V (τ, S1, S2). With appropriate boundary conditions (2.75) would be used

for the value of an option dependent on two underlyings.

Let V k
i,j = V (k∆τ, i∆S1, j∆S2). Using implicit finite-differences we have a resulting

linear system AV = b at each time-step. The matrix A is an (n×m)×(n×m) sparse-

banded matrix which consists of m+ 1 subdiagonals and m+ 1 superdiagonals, where

n and m are the number of grid points in S1 and S2 respectively. It consists of a main

diagonal of parameters, a main superdiagonal of parameters, a main subdiagonal of

parameters, m − 3 superdiagonals of zeros followed by three rows of parameters and

m− 3 subdiagonals of zeros followed by three rows of parameters.
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For the system AV = b we can use an iterative scheme. Let V k,p
i,j be the pth

iteration of V k
i,j. For the SOR method we then have

yi,j =
1

βi,j

(
bi,j − αi,jV k+1,p+1

i−1,j − γi,jV k+1,p
i+1,j − δi,jV k+1,p+1

i,j−1 − εi,jV k+1,p
i,j+1

− νi,j
(
V k+1,p+1
i−1,j−1 − V k+1,p

i+1,j−1 − V k+1,p+1
i−1,j+1 + V k+1,p

i+1,j+1

))
, (2.76)

V k+1,p+1
i,j = V k,p

i,j + ω
(
yi,j − V k+1,p

i,j

)
, (2.77)

where β is the main diagonal of A, α is the main subdiagonal, γ is the main su-

perdiagonal, the lower band has main diagonal δ and superdiagonal and subdiagonal

ν, and the upper band has main diagonal ε and superdiagonal and subdiagonal ν.

Beginning by setting V k+1,0
i,j = V k

i,j, we iterate over these two equations until the dif-

ference between successive iterations is sufficiently small. There are various methods

for deciding how small your tolerance between successive terms should be and these

essentially relate to the order of magnitude of your solution (see Smith, 1965). The

over-relaxation parameter ω has a range 0 < ω < 2 and for 0 < ω < 1 is known as

under-relaxation. It has been shown, (see Young, 1971), that an optimal value of ω

exists and this optimal value results in more rapid convergence than any other value

of ω. There are means of calculating or estimating the optimal value of ω analytically.

However, these typically take so many calculations that it is often quicker to adjust

the value of ω at each time step so that it converges to an approximation of the op-

timal. This minimises the number of iterations it takes to solve the above equations.

The method is outlined in pseudocode in algorithm 1. Given we are using implicit

differences we expect the convergence to be O (∆τ,∆S2
1 ,∆S

2
2).

Algorithm 1 Finding the approximate optimal ω for SOR
1: eps← 1.e− 16
2: omega← 1
3: domega← 0.01
4: loops = sorsolver(A,b,f,omega,eps)
5: if loops > oldloops then
6: domega← domega×−1.

7: omega← max(1.0,min(1.99,omega+domega))
8: oldomega← omega
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Projected successive-over-relaxation method

An extension to the above SOR method is the Projected Successive-Over-Relaxation

(PSOR) method. This is often used in the case of free-boundary problems. Consider

again (2.75) but with condition

V (τ, S1, S2) ≥ f (τ, S1, S2) . (2.78)

This is a free-boundary that is present for the lifetime of the problem. Equation (2.75)

can be solved with the free-boundary condition (2.78) by amending the SOR method

(2.76, 2.77) to

yi,j =
1

βi,j

(
bi,j − αi,jV k+1,p+1

i−1,j − γi,jV k+1,p
i+1,j − δi,jV k+1,p+1

i,j−1 − εi,jV k+1,p
i,j+1

− νi,j
(
V k+1,p+1
i−1,j−1 − V k+1,p

i+1,j−1 − V k+1,p+1
i−1,j+1 + V k+1,p

i+1,j+1

))
, (2.79)

V k+1,p+1
i,j = max

(
V k,p
i,j + ω

(
yi,j − V k+1,p

i,j

)
, fk+1
i,j

)
, (2.80)

where fki,j = f (k∆τ, i∆S1, j∆S2).

Crank (1984) notes that although the PSOR method has been used heuristically

as far back as Christopherson and Southwell (1938), convergence was not proved rig-

orously until Cryer (1971).

2.7 Summary

In this chapter we have discussed the prominent mathematical theory and techniques

that are used in this thesis. When deriving our models we will first develop them in

a stochastic framework. As trading is a search problem (a buyer searching for a seller

and vice-versa), we use techniques from the theory of optimisation to formulate the

problems. As most of the problems we encounter are highly non-linear, the probability

of obtaining analytic solutions is small. Therefore, we use a combined approach of

accurate numerical techniques and asymptotic approximation methods, all which have

been discussed above, to find solutions to the problems.



Chapter 3

Literature Review of Optimal

Trading

Optimal trading refers to the design of trading strategies and tactics by means of

quantitative methods. There are two layers to this problem: the first is a strategic

one, also known as a macro-trader, which is linked to time-scheduling, meaning, how

to define the optimal trading rate. The second is a tactical one, also known as a

micro-trader, which deals with the way we should interact with the market in order to

obtain the desired number of shares, once a strategy from the macro-trader has been

decided. In this thesis we focus on the tactical layer. However, we cannot develop an

understanding of one without discussing the other1.

Optimal scheduling of large orders to control trading costs was originally proposed

for aggressive trading (trading using market orders) to find an optimal balance (and

hence trading strategy) between reducing market impact (by trading slow) and reduc-

ing market risk (by trading fast).

Brokers face the problem of controlling all the transaction costs related to the

liquidation of large orders. Among these costs, market impact deserves particular at-

tention. Market impact is a specific type of liquidity risk which describes the risk of not

being able to execute a trade at a specific price due to the feedback effect the execution

of that trade has on the market. The rate of trading feedbacks negatively onto the

price at which assets are sold, through some market impact function which depends

1It could be argued that a third layer exists; that layer being the smart order routing layer which
focuses on which venue to send your order to. In this thesis we assume only one venue is available to
the trader. For smart order routing we refer the interested reader to Lehalle and Laruelle (2013).
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on the volume traded through the market. In order to reduce market impact, brokers

split their parent orders into smaller child orders which are executed throughout a

pre-allocated time. Their goal becomes to find the optimal rate at which to liquidate

the order: if too fast, they face higher market-impact costs; if too slow, they risk

market prices moving in an unfavourable direction, resulting in a worse-than-expected

execution price at the end of the allocated period.

The first models were developed around the turn of the millennium by Bertsimas

et al. (1999) and Almgren and Chriss (2001). These models focus on trading in the

market book (i.e. using market orders only), in which some function of the trader’s

wealth, the objective function, is optimised. Both models use linear impact functions

for discrete-time trading and static trading strategies are found. This means the

strategies are known before trading begins and thus are independent of the asset price,

which is driven by a standard Brownian motion with drift. This is further developed

to continuous time by Almgren (2003).

Schied and Slynko (2011) argue that due to high-frequency trading, the models

developed by Almgren and Chriss do not capture the full impact of trading when the

time spans are short. We refer to the Almgren and Chriss framework as aggressive

market-order models, given they do not consider the limit-order book structure. The

framework of Almgren and Chriss (2001) is further developed for trading in the limit-

order book, which is a better replication of real-life trading than trading in the market

book as market depth and bid/ask prices are considered. Obizhaeva and Wang (2013),

which has been a preprint paper since 2004, introduce aggressive trading in the limit-

order book in which a block shaped density for the limit-order book was assumed. The

temporary market impact function used in market-book models, in which only one

trade was affected, was replaced by a transient market impact function, a decreasing

function of time representing the limit-order book refilling post trades. These models

shall be referred to as aggressive limit-order models.

Tactical trading on the other hand does not involve the trade-off between market

impact and market risk. Market impact is replaced by a new type of risk: the risk

of non-execution. In tactical trading, the trader interacts with the limit-order book

by passively placing orders into the limit-order book which are only filled when met

by an aggressive trader’s order. The further into the limit-order book the trades are
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placed, the higher the payoff for the trader but with a lower probability of the order

being filled. Given this trading scenario, the filling of an order is not guaranteed prior

to the terminal time, and hence there is a risk of non-execution. As the trader can

continuously amend his asking price, the price at which the asset is sold is controlled

by the trader. However, the trader cannot control the ‘fair’ price of the asset, which

is driven by a stochastic process, and thus market risk is still present. This type of

model was first suggested by Ho and Stoll (1981) but lay dormant in the literature

for some time until Avellaneda and Stoikov (2008) revisited this problem with some

modifications, with the task of a market maker in mind. More recently, strategies

that use a combination of trading orders, both passive and aggressive, have been

investigated so we will briefly discuss these also.

For the remainder of the chapter we shall give a detailed review of the optimal

trading literature. We begin with a discussion on optimal scheduling problems using

only aggressive market orders, in which the structure of the limit-order book is not

considered. Next we discuss various methods for modelling the limit-order book, in-

cluding dynamically modelling each level, and modelling the whole book statistically.

The latter method is used in this thesis given that in terms of dimension it is more

amenable to work it. This is followed by examining optimal scheduling in a limit-order

book structure with aggressive market orders, which predominately assumes statisti-

cal properties of the limit-order book rather than modelling it directly. After this we

discuss the literature which focuses on trading at a tactical level, which includes trad-

ing with passive limit orders or aggressive market orders, again assuming statistical

properties of the limit-order book. We conclude by describing the framework and re-

sults of Guéant et al. (2012b), a similar framework to that of Avellaneda and Stoikov

(2008) and Cartea and Jaimungal (2013b) but in a single-sided order book, which was

a strong motivation for the work of this thesis.

3.1 Aggressive optimal scheduling with market or-

ders

Bertsimas et al. (1999), working in discrete time, minimise the expected value of the

mean cost of trading, in which they define the cost of trading as the difference between
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the initial value of the portfolio prior to trading and the amount of money held post

trading. They consider only a permanent price impact function, which is linear with

respect to the rate of trading. The price at which assets are sold during a trade is

the ‘fair’ price, driven by a standard Brownian motion, and some additional amount

which is dependent on the rate of trading. This additional amount remains added

to the ‘fair’ asset price for the remainder of the duration, indicating the indifference

between supply and demand post trade.

Around the same time, Almgren and Chriss (2001) develop a similar model in which

their objective is to minimise a mean-variance trade-off of the cost of trading while

introducing a temporary impact function, as well as the permanent impact function

introduced by Bertsimas et al. (1999). This temporary impact function is also linear

with respect to the rate of trading but is different in that it only affects the current

trade. Minimising the efficient frontier, a linear combination of the mean and variance

of the cost of trading, Almgren and Chriss (2001) produce analytic expressions for

the trading strategy, i.e. the amount of the portfolio sold at each discrete time step.

These trading strategies are termed ‘static’ in the literature as they only consider

the information available at the initial time step. The strategies found consisted of

splitting the order into equally sized, equally time spaced trades.

There have been various extensions to this framework. Almgren (2003) further

develops the Almgren and Chriss (2001) method to account for non-linear impact

functions and examines the model in continuous time. Almgren and Lorenz (2007)

allow for one update of the asset price at a fixed time, which is fixed before trading,

and from this creates dynamic strategies based on this update. Lorenz and Almgren

(2011) allow continuous updates of the share price to develop dynamic trading strate-

gies. Almgren (2012) introduces stochastic liquidity and volatility. Labadie et al.

(2012) derive explicit recursive formulas for Target Close (strategy that aims to exe-

cute a certain amount of shares as near as possible to the closing auction price) and

Implementation Shortfall (strategy that aims to minimise the difference between the

decision price and the final execution price) in the Almgren-Chriss framework. Cartea

and Jaimungal (2015a) consider order-flow from other market participants (which is

assumed to be stochastic) and how that affects the temporary and permanent impact.

Schied et al. (2010) take a different approach in which they wish to maximise the
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expected utility of the revenues, rather a mean-variance trade-off, while using the

same Almgren & Chriss approach as above for the dynamics of the asset price and

impact functions. This is examined for a basket of correlated assets following standard

Brownian motion. The problem is modelled as a finite fuel control problem, in which

the control variable, the amount of assets held (fuel), is bounded. They assume the

trader’s utility is defined by CARA and as such the utility function has the form of

a negative exponential function. Using this they derive an HJB equation and prove a

unique solution exists. Asymptotic methods are discussed by Schied and Schöneborn

(2009) for deriving solutions to the HJB equation for utility functions that do not follow

the form of an exponential function. Haugh and Wang (2014) examine liquidating a

fixed number of shares in multiple stocks while introducing stochasticity to the linear

temporary and permanent impact. Bayraktar and Ludkovski (2011) consider a trader

who submits orders discretely and solve a control problem corresponding to when to

send market orders, and how large these should be.

Gatheral and Schied (2011) examine the risk-neutral framework of Bertsimas et al.

(1999) but under geometric Brownian motion with zero drift driving the asset price. It

was found that using the expected cost of trading as the objective function the optimal

trading strategy is found to be static and is identically that of the trading strategy

found by Bertsimas et al. (1999) when using standard Brownian motion. Forsyth

(2011) considers numerical methods to solve the optimal trade execution problem for

an asset following geometric Brownian motion under the Almgren and Chriss (2001)

framework. The objective is to find the optimal trading strategy under a mean-variance

objective function. In this model the asset exhibits both permanent and temporary

price impact. Two PDEs are derived, one classical PDE for the expected value and

one HJB equation for the variance. Using the semi-Lagrangian method Forsyth (2011)

solves the HJB equation for the variance, and using the optimal trading strategy the

classical PDE is solved giving the solution for the efficient frontier. In the numerical

schemes Forsyth (2011) finds his solutions are similar to that developed in Almgren and

Lorenz (2007), in which adaptive strategies are developed based on updated knowledge

of the asset price, as opposed to stochastic dynamic programming. Forsyth et al. (2012)

examine the optimal trading strategies of an asset under both standard Brownian

motion and geometric Brownian motion, using a mean-variance cost function as the
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risk criterion. They find that under the standard Brownian motion case the optimal

strategies are the same as that under the Almgren and Chriss (2001) framework,

and that the optimal trading strategy under standard Brownian motion is a good

approximation for the optimal trading strategy under geometric Brownian motion,

even under large volatility.

More recently, the concept of dark pools has been introduced into the literature.

Kratz and Schöneborn (2013) consider a trader who can trade in the market book

(with price impact) and in a dark pool (no price impact), with execution occurring

randomly in the dark pool according to a Poisson process. Buti et al. (2011) examine

a trader who can trade in a limit-order book and a dark pool, in which orders in the

dark pool are randomly filled at the terminal time. They find that the introduction of

a dark pool that competes with an illiquid order book is on average associated with

trade creation, but also a deterioration of market quality and welfare.

Execution has also been studied from the point of view of complex products, such

as derivatives and accelerated share repurchases (ASR). ASR occurs when a firm wants

to repurchase their own shares. The firm often enters into such a contract with a bank.

The bank buys the shares for the firm and is paid the average market price over the

execution period, the length of the period being decided upon by the bank during the

buying process. Guéant et al. (2015), working in discrete time, examine the problem of

ASR when market impact is present. They determine the optimal stopping time and

the optimal buying strategy for the bank. Guéant (2014) extends Guéant et al. (2015)

by considering ASR for a fixed notional. Guéant and Pu (2013) examine the pricing

and hedging of a call option when liquidity is considered. Rather than a frictionless

market, as assumed under the original Black-Scholes model, buying and selling when

hedging incurs permanent market impact and thus it becomes an optimal execution

problem.

3.2 Dynamics of limit-order books

The behaviour of the limit-order book has been modelled both dynamically and statis-

tically. It is the latter case that we consider in this thesis as it is more mathematically

tractable due to its reduced dimension. However, we shall discuss some of the literature
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of both frameworks.

3.2.1 Explicit representation of limit-order books

Given we focus on optimal trading strategies in limit-order books, it is necessary to

consider some of the frameworks for which they are modelled. The stochastic dynam-

ics of the limit-order book has been studied in some detail, supported by empirical

evidence. Whereas most of the empirical analysis, e.g. Bouchaud et al. (2009), focuses

on unconditional distributions of various features of the limit-order book, Cont and

De Larrard (2013) focus on the conditional distributions and thus the idea of forecast-

ing becomes logical. This is extended by Cont et al. (2013) who derive a model for

the dynamics of the limit-order book, which we briefly describe.

In Cont et al. (2013) the state of the limit-order book is described by a continuous-

time process:

X(t) = (sb(t), qb(t), qa(t)), (3.1)

which takes values on the discrete space δZ×N2, where δ is the size of one tick, with

sb(t) as the best-bid price at time t, qb(t) as the size of the best-bid queue, and qa(t)

as the size of the best-ask queue. Equation (3.1) is a reduced form of its original

form, which was a four-dimensional process. This reduction is a result of assuming

the bid-ask spread is equal to one tick, which was shown to be the case on empirical

data over 98% of the time. This assumption reduces the process from four dimensions

to three, as the best-ask price need not be modelled explicitly.

Considering orders, which may be cancellations, of size V b
i and V a

i for the bid and

ask side respectively, the dynamics of the process are given as:

• If an order (limit or market) or cancellation, of size V a
i , occurs on the ask side

at time t:

(sb(t), qb(t), qa(t)) = (sb(t−), qb(t−), qa(t−)− V a
i )1{qa(t−)>V ai }

+(sb(t−) + δ, Rb
i , R

a
i )1{qa(t−)<V ai }.

(3.2)

• If an order (limit or market) or cancellation, of size V b
i , occurs on the bid size at

time t:

(sb(t), qb(t), qa(t)) = (sb(t−), qb(t−)− V b
i , q

a(t−))1{qbt−>V bi }

+(sbt− − δ, R̄b
i , R̄

a
i )1{qbt−<V bi },

(3.3)
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where (Rb
i , R

a
i ) and (R̄b

i , R̄
a
i ) are independent and identically distributed random vari-

ables with joint distribution functions f and f̄ respectively. It is assumed all market

events occur according to a Poisson process with market orders occurring at a rate µ,

limit orders occurring at a rate λ, and cancellations occurring at a rate θ. Therefore

the process has the following dynamics:

• (T ai )i≥0, the durations between two consecutive orders at the best-ask queue, is

a sequence of exponentially distributed random variables with rate λ+ θ + µ.

• (T bi )i≥0, the durations between two consecutive orders at the best-bid queue, is

a sequence of exponentially distributed random variables with rate λ+ θ + µ.

• (V a
i )i≥0 is a sequence of independent random variables with:

Pr[V a
i = 1] =

λ

λ+ µ+ θ
and Pr[V a

i = −1] =
µ+ θ

λ+ µ+ θ
. (3.4)

• (V b
i )i≥0 is a sequence of independent random variables with:

Pr[V b
i = 1] =

λ

λ+ µ+ θ
and Pr[V b

i = −1] =
µ+ θ

λ+ µ+ θ
. (3.5)

Using this model, Cont et al. (2013) derive analytic solutions based on conditional

probabilities for the duration between price movements, and the probability of price

changes. They also examine the distribution of price movements, their auto-correlations

and the volatility of the price. The method they use to estimate the parameters

µ, λ and θ is power law extrapolation and is described in their previous paper Cont

et al. (2010). In Cont et al. (2010) the method keeps track of all the queues in the

system. When one queue is depleted the value of the next is known, rather than gen-

erated randomly as above. Using this method the authors derive numerical solutions

for the same quantities which are found analytically in Cont et al. (2013).

3.2.2 Statistical properties of limit-order books

One method that dominates the literature is to not explicitly consider the limit-order

book, but instead to consider the statistical properties of its liquidity, reducing the

dimension of the problem to a level that is more amenable to work with. In the

literature, and throughout this thesis, asset sales are modelled as a Poisson process in
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which the liquidity of the limit-order book is encapsulated by the inhomogeneous rate

of the Poisson process. As we will see, the majority of the literature models the rate

as a negative exponential function, decreasing the further into the limit-order book

we place the order. However, power intensity functions are also examined, such as in

Bayraktar and Ludkovski (2012). In this thesis we shall examine both, and the trading

strategies that result.

These models assume limit orders are filled by significantly large incoming market

orders of size Q. It is assumed that market orders to buy will fill all sell limit orders

within I (Q), and vice versa. These large orders cause a change of price, ∆S, propor-

tional to Q. It is argued the distribution of the size of market orders has been found

to obey a power law, i.e. the density, fQ, of the order sizes, Q, obeys

fQ (q) ∝ q−α−1, (3.6)

where the power α was found to be 1.53 by Gopikrishnan et al. (2000) for U.S. stocks,

1.4 by Maslov and Mills (2001) for the NASDAQ and 1.5 by Gabaix et al. (2006) for

the Paris Bourse. There is less agreement on how price changes due to these market

orders. Some authors find the change in price of an asset, ∆S, following a large market

order, Q, is given by

∆S ∝ Qβ (3.7)

with Gabaix et al. (2006) finding β = 0.5 and Weber and Rosenow (2005) finding

β = 0.76. Others, most noticeably Potters and Bouchaud (2003), find a better fit to

be

∆S ∝ ln (Q) . (3.8)

Under (3.8) it is possible to derive a Poisson intensity, dependent on the distance from

the reference price, as

Λ (δ) = C Pr (∆S > δ)

= C Pr (ln (Q) > Kδ)

= C Pr
(
Q > eKδ

)
= C

∫ ∞
eKδ

q−α−1dq

= λe−lδ, (3.9)
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where λ = C/α, l = Kα and C and K are constants. The parameter l describes

the exponential decay of the limit-order book, i.e. how quickly or slowly the demand

changes as we move further into the limit-order book and thus how quickly or slowly

the probability of execution decreases. Similarly, under (3.7) we derive

Λ (δ) = C Pr (∆S > δ)

= C Pr
(
Qβ > Kδ

)
= C Pr

(
Q > (Kδ)1/β

)
= C

∫ ∞
(Kδ)1/β

q−α−1dq

=
λ

δα/β
, (3.10)

with λ =
CKα/β

α
. This form of intensity function is examined in chapter 8, with the

exponential intensity used elsewhere in this thesis.

3.3 Aggressive optimal scheduling with limit or-

ders

Obizhaeva and Wang (2013) argue that on a finer time-scale the temporary market

impact implemented first by Almgren and Chriss (2001) is in fact transient. For tran-

sient market impact an order creates some immediate price impact that subsequently

decays over a certain, but short, period of time; this concept is known as resilience.

A survey of empirical studies on the resilience of market microstructure is covered in

Bouchaud (2010) and we refer to the references therein for more detail.

In the market-book models it was assumed that liquidity was encapsulated in the

price. The introduction of limit-order book models by Obizhaeva and Wang (2013)

coincided with a period when liquidity was examined through limit-order books. The

original idea behind this is to examine liquidity as a dynamic process which represented

supply and demand, rather than a static cost function that encapsulates spread and

market depth. The novelty of the approach is to include the resilience of the limit-

order book, which is the evolution of the limit-order book for future times under current

trades. The optimal strategies found are dependent on the properties of the limit-order

book and consists of large and small trades, which is in contrast to previous studies
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by Bertsimas et al. (1999) and Almgren and Chriss (2001) that found the optimal

strategy to be splitting the trade into equal sized, equally time spaced trades.

Obizhaeva and Wang (2013) use a similar framework as Bertsimas et al. (1999)

and Almgren and Chriss (2001) in that their objective is to find a trading strategy

that minimises the cost of trading. Rather than permanent and temporary market

impact functions they include permanent and transient market impact functions. They

assume that the limit-order book has a simple block-shaped density in which there is

a constant amount of shares on offer at each price. When a trade occurs the order will

‘eat into’ the limit-order book by filling the cheapest orders first. This raises (lowers)

the best-ask (best-bid) price for the case of buying (selling), which is unfavourable for

the trader. It is assumed the trade has both a transient and permanent impact on the

best-ask (best-bid) price. For the case of buying it permanently increases the best-

ask price according to some linear (in order size) impact function. It also increases

the price by some linear (in order size) impact function which is a decaying function

of time, known as transient impact, which disappears as time increases. Obizhaeva

and Wang (2013) allow for a combination of discrete and continuous trading, and find

that the optimal strategy is a combination of both discrete and continuous trades,

with a large trade at the initial and final time, and the rest of the trades spread out

continuously between the initial and final time exclusively.

The work of Obizhaeva and Wang (2013) has since been developed. Alfonsi et al.

(2008) introduce a time-dependant resilience parameter due to the daily U-shaped

or W-shaped pattern in which trading volume typically occurs. The U-shaped (W-

shaped) volume pattern indicates there is more volume at the beginning, end (and

middle) of the day (see, for example, Wood et al., 1985; Harris, 1986; Jain and Joh,

1988). Alfonsi et al. (2010) consider general shape functions for the limit-order book

and tackle the problem through the use of Lagrange multipliers, rather than through

the use of dynamic programming as done by Obizhaeva and Wang (2013). Alfonsi

et al. (2010) find a closed form solution for a broad class of limit-order books and

show the suggested optimal strategies are similar to those derived by Obizhaeva and

Wang (2013) for the block density function. Alfonsi and Schied (2010) continue the

work of Alfonsi et al. (2008) and Alfonsi et al. (2010) by considering price manipulation

of an asset which comes in the form of the exponential resilience. Price manipulation
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is when a trader starts with nothing, and through a strategy of buying and selling

shares, ends up with zero shares and a positive amount of wealth, i.e a profit. Alfonsi

and Schied (2010) allow for trading times to be stopping times rather than equidistant

discrete times. Alfonsi et al. (2012) combine three forms of linear impact which they

suggest coincide better with empirical models than the other literature as they disal-

low price manipulation. The three impacts are temporary, transient and permanent.

Using linear price impact functions they examine resilience functions that prelude

price manipulation strategies. They find that for total exclusion of price manipula-

tion it is necessary that price impact decay as a convex function of time. Kharroubi

and Pham (2010) consider a continuous time setting but, to better replicate real life,

allow only for discrete time trading by introducing a lag variable tracking the time

interval between successive trades. This paper was followed by Guilbaud et al. (2010)

which discusses numerical (finite-difference) methods used to solve this type of prob-

lem. Bouchard et al. (2011) examine the use of different algorithms, depending on the

preferences of the trader. A novel approach is devised by Predoiu et al. (2011) in which

the shape of a single-sided limit-order book is the determinant of price impact, rather

than making assumptions about price impact directly. They only consider transient

price impact but allow for the limit-order book to be discrete, continuous or to have

gaps. In contrast to previous solutions such as Obizhaeva and Wang (2013) where the

optimal trading strategy consists of a discrete lump trade at the beginning and ending

and continuous equal sized trading within, Predoiu et al. (2011) find that the optimal

trading strategy consists of an initial lump trade, then trading continuously at a rate

which matches the resiliency of the limit-order book, then another lump trade, then

trading continuously again matching the resiliency. This procedure is repeated until

trading is complete, with a final lump trade at the end. Cartea et al. (2015b) examine

the execution of a basket consisting of co-moving assets which exhibit temporary and

permanent price impact.

Schied and Slynko (2011) and Cartea et al. (2015c) are recommended for a full

review of the optimal scheduling literature. The latter text is also recommended for a

more in-depth discussion on the material of the following section, that being optimal

trading at the tactical level.
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3.4 Optimal trading at the tactical level

The problem posed by Ho and Stoll (1981) considers a trader who has cash from selling

assets, an inventory of an asset, and a base wealth which can be used to purchase assets,

all following stochastic processes. The former two follow jump processes and the latter

follows a Wiener process. The objective is to maximise the trader’s expected terminal

utility which is some transformation of his total wealth, by choosing the optimal

trading strategy which is the additional amount the trader asks for the asset when

placing your order in the limit-order book. This problem results in a multi-dimensional

HJB equation in which the authors note that to the best of their knowledge there is

no analytic solution to this problem.

The next time this problem is examined is 25 years later by Avellaneda and Stoikov

(2008) in which they make some modifications as to be consistent with modelling a

market maker. They assume the asset price is stochastic, rather than given exogenously

as in Ho and Stoll (1981). Inventory takes unitary values and follows a jump process

and the wealth changes accordingly each time a jump occurs. Under the objective of

maximising the trader’s utility, Avellaneda and Stoikov (2008) derive an HJB equation

which they examine asymptotically, before numerically solving the problem (in its

original form) using Monte Carlo methods. Guéant et al. (2012a), implementing an

upper and lower bound on the inventory, reduce the HJB equation to a system of

ODEs. Guéant et al. (2012b) examine this framework for a single-sided limit-order

book, in which assets can only be sold, and a terminal time penalty is introduced.

The framework for optimal liquidation with limit orders, as examined by Guéant

et al. (2012b), is very close to market-making as we can consider that liquidation,

at a tactical level, is a one-sided market maker. Guéant et al. (2012b) explicitly

examine the case of liquidating a portfolio but extending it to filling a portfolio is

quite straightforward. It is the framework of Guéant et al. (2012b) that this thesis

develops and therefore we shall discuss the problem in more thorough detail below.

In addition to the above mentioned models, other contributions have been made

to the literature. Bayraktar and Ludkovski (2012) develop a framework for port-

folio liquidation for a risk-neutral trader in which the objective is to maximise the
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expected revenue of sales. These authors consider a one-sided limit-order book, sim-

ilar to Guéant et al. (2012b), but introduce a power-law intensity, as opposed to

the negative exponential intensity which has dominated the literature. They derive

an HJB equation which is reduced to an semi-analytic solution involving a recursive

term. Guéant and Lehalle (2013) develop the framework of the previous paper Guéant

et al. (2012b) by considering general intensity shapes for the Poisson process. In the

appendix Guéant and Lehalle (2013) discuss the use of multiple correlated assets, de-

riving an HJB equation and providing a verification theorem. However they do not

examine solving the problem and no asymptotic or numerical work is carried out.

Cartea and Jaimungal (2013b) use a similar set-up to Guéant et al. (2012a) but under

a high-frequency trading framework. Their objective is to maximise terminal wealth

while penalising inventory deviations from zero and terminal inventory holdings, prop-

erties which comply with institutional high-frequency trading as outlined by Brunetti

et al. (2011). This is one of the only papers to study the audit trail tape of a limit-order

book. Brunetti et al. (2011) note that the net position of a high-frequency trader is

zero at the beginning and the end of the day and his portfolio is always between -3000

and 3000 contracts, which is small compared to the average of -20000 to 30000 for

ordinary traders. Using these two key points, that a high-frequency trader starts and

ends with zero inventory and their inventory is relatively low during the day, Cartea

and Jaimungal (2013b) derive trading strategies that are applicable for high-frequency

traders. They consider a trader who wants to maximise his terminal wealth, while

penalising and constraining inventories. Inventory feeds into the optimisation in three

ways. Firstly, the amount a trader can hold is between an upper and lower bound.

Secondly, deviations away from zero inventory are penalised throughout the trading

horizon. Third, positions that are held at the terminal time are sold/bought at a

discount as to guarantee immediate trade. The reference price of the asset is affected

by both new information (standard Brownian motion) and the arrival of market or-

ders (Poisson process) which has a permanent price impact on the asset. The authors

derive an HJB equation which they reduce to a system of ODEs to obtain first-order

solutions for the optimal trading strategies and value function, before examining var-

ious limiting regimes. Laruelle et al. (2011) examine the optimal splitting of an order

across several trading venues, and especially dark pools, using an approach similar to
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Avellaneda and Stoikov (2008) as a starting point. Cartea and Jaimungal (2015c) ex-

amine how a trader, using limit orders at the best bid/ask, adjusts his trading strategy

under the assumption that the trader has the ability to observe order flow and knows

how this affects the drift of the reference price.

Contrasting frameworks for obtaining optimal trading strategies have also been

developed. To name a few, Cartea and Jaimungal (2013a) develop a hidden Markov

model to understand the key behaviour of stock dynamics resulting in an optimal tick-

by-tick trading strategy that a trader who uses limit orders to profit from the bid-ask

spread should follow. Hult and Kiessling (2010) model the entire limit-order book as a

high-dimensional Markov chain. Optimal trading strategies are discussed in the theory

of Markov decision processes, and a value iteration procedure is presented that enables

optimal strategies to be found numerically. Cartea et al. (2015a) build a measure of

volume imbalance using data from the Nasdaq exchange and devise a trading strategy

that demonstrates that including the volume imbalance process considerably boosts

the strategy’s progress.

3.4.1 Combining passive and aggressive trading

Some of the recent literature has turned to examining the use of various sources of

liquidity, such as trading aggressively in the limit-order book (using market orders)

while simultaneously passively trading in the limit-order book (using limit orders).

Huitema (2013) derives a model where a trader, whose assets follow standard Brow-

nian motion, can trade in both the market book (with the rate of trading impacting

the price) and the limit-order book (with a Poisson process with controlled intensity

driving the execution of orders), and solves the resulting partial integro-differential

equation numerically. Guilbaud and Pham (2013b) develop a model where passive

and aggressive trading is possible. Limit orders can be placed at the best quote or the

best quote improved by one tick and are filled according to a Cox process, while aggres-

sive trading can only occur at discrete times. This is further developed in Guilbaud

and Pham (2013a) by examining a pro-rata micro-structure (which is found for certain

securitised products), rather than the usual price/time priority structure (found in eq-

uities). Kühn and Stroh (2010) solve Merton’s portfolio optimisation problem (see

Merton, 1969, 1971) in the case where the trader can choose between market orders or
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limit orders at the best bid or best ask. In Veraart (2011) the possibility to use market

orders in addition to limit orders is also taken into account, in the context of market

making in the foreign-exchange market. Cartea and Jaimungal (2015b) examine exe-

cution in a single-sided limit-order book framework, with the modelling assumptions

similar to Cartea and Jaimungal (2013b), but where the trader can use both market

orders and limit orders.

In chapter 8 we extend our framework to include market orders, which thus al-

lows trading with limit orders and market orders. This work was done in parallel

to Cartea and Jaimungal (2015b) in which it is treated as a free-boundary problem.

Our novel contribution is (again) through the use of more general diffusion processes

and modelling assumptions which require more complex numerical methods to obtain

solutions.

3.5 Framework of Guéant et al. (2012b)

In this section we will give an outline of the framework of Guéant et al. (2012b), as

it will be central in all of the following chapters in this thesis. This problem focuses

on a trader wanting to liquidate an amount of an asset, who trades passively in the

limit-order book. The framework is identical to that of a one-sided market maker.

3.5.1 Formulation of the problem

We consider a trader who wishes to maximise his expected utility, given a portfolio

of assets to liquidate, before a specified terminal time, T . We assume at time t = 0

that the trader starts with an initial inventory of q(0) assets, in which q takes positive

integer values, and an initial wealth X(0). Let (Ω,F ,P) be a probability space with

a filtration, (Ft, t ∈ [0, T ]). We assume the asset’s reference price2 S(t) follows a

standard Brownian motion, and so the diffusion process is defined as

dS(t) = µdt+ σdW (t) (3.11)

2We use ‘reference price’ here as given the limit-order book structure the price at which assets are
sold and bought is not the same, as there are various bid and ask prices, with the best bid and ask
differing by the spread. The reference price may refer to the best-ask/bid price or mid-price.
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where µ is the drift, σ is the volatility and W (t) is a Wiener process which is Ft
measurable. It is clear from (3.11) that an asset following standard Brownian motion

can obtain negative values, a property that is often criticised from a financial aspect.

The trader will continuously post orders into the ask side of the limit-order book

for price Sa(t) which is δ = δ(t,X, q, S) greater than the reference price S(t),

Sa(t) = S(t) + δ. (3.12)

Asset sales follow a Poisson process, N(t), with time-dependent intensity, which is

Ft measurable and independent of W (t)

dq(t) = −dN(t). (3.13)

For each occurrence of a jump (trade), the trader’s wealth increases by the amount

that asset was sold for, so the dynamics of the wealth is given by

dX(t) = (S(t) + δ) dN(t), (3.14)

where N(t) is the same Poisson process as before. Therefore, when a trade occurs,

the values of q(t) and X(t) change simultaneously, according to (3.13) and (3.14)

respectively. It is thus assumed trades are of unitary size, which may refer to the size

of one lot (bundle of 100) or one trade of the average trade size (ATS). This is because

assets are primarily sold in bundles rather than individually. N(t) has intensity Λ(δ)

which takes the form:

Λ(δ) = λe−l(S
a−S) = λe−lδ (3.15)

for some positive constants λ and l. The liquidity of the market is described by the

intensity of the Poisson process. If no additional amount is added to the reference

price then the rate at which the assets are sold is Λ(0), which for the case of (3.15)

is equal to λ. Given the negative exponential form of (3.15) there is less liquidity for

assets sold for prices higher than their reference price and as such the probability of

execution is lower. The parameter l can be interpreted as the exponential-decay factor

for the fill rate of orders placed away from the reference price, i.e. how quickly or

slowly the demand changes as we move further into the limit-order book and thus how

quickly or slowly the probability of execution decreases.

The objective is to liquidate this portfolio before some final time T . Assets that

are not liquidated before this time will be sold in the market at a discount, which
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assumes immediate sale. The discount is such that the assets are sold for the current

asset price S(T ) minus some penalty b per asset, for which b is a positive constant.

The utility we seek to maximise takes the form of a negative exponential function and

as such the trader has CARA defined by (2.18), which for the case of the exponential

utility family is constant and equal to the risk-aversion parameter, γ > 0. We define

our value function, u(t,X, q, S), as the maximum expected utility at time t

u(t,X, q, S) = sup
δ(t)∈A

E
[−e−γ(X(T )+q(T )(S(T )−b))] , (3.16)

where A is the set of admissible trading strategies.

Given the optimisation problem of (3.16), an HJB equation can be derived by

applying the Bellman (1957) principle of optimality and using Itô’s lemma:

ut(t,X, q, S) + µuS(t,X, q, S) +
1

2
σ2uSS(t,X, q, S)

+sup
δ

[
λe−lδ (u(t,X + S + δ, q − 1, S)− u(t,X, q, S))

]
= 0, (3.17)

with subscript denoting the partial derivative (which is used throughout this thesis),

and conditions:

u(T,X, q, S) = −e−γ(X+q(S−b)), (3.18)

u(t,X, 0, S) = −e−γX . (3.19)

The derivation of (3.17), along with a verification theorem, can be found in Guéant

et al. (2012b).

Reduced form solution

Guéant et al. (2012b) derive a solution of (3.17) that can be written in the form

u (t,X, q, S) = − exp (−γ (X + qS))w(q, t)−
γ
l (3.20)

where w(q, t) solves

wt(q, t) = (
l

2
γσ2q2 − lµq)w(q, t)− λ

(
1 +

γ

l

)−(1+ l
γ )
w(q − 1, t), (3.21)

with conditions

w(q, T ) = e−lqb and w(0, t) = 1, (3.22)
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and the optimal ask quote having solution

δ∗(q, t) =
1

l
ln

(
w(q, t)

w(q − 1, t)

)
+

1

γ
ln
(

1 +
γ

l

)
. (3.23)

Equation (3.21) can be solved numerically using standard ODE solvers such as the

Euler method or higher-order methods such as the Runge-Kutta method. We discussed

the general Runge-Kutta method for an ODE in section 2.6.2. However we now have a

system of q ODEs, rather than just one ODE, so we must adjust the numerical method

accordingly. We can write the system (3.21) as

wt (q, t) = g (t, w (q, t) , w (q − 1, t)) with w (q, T ) = e−lqb w (0, t) = 1. (3.24)

Discretising time into N − 1 intervals of length h, such that we have N time points,

we can solve using the fourth-order Runge-Kutta method at time n by solving

wn+1 (q) = wn (q) + h
6

(k1 (q) + 2k2l (q) + 2k3 (q) + k4 (q)) (3.25)

with

k1 (q) = g (tn, wn (q) , wn (q − 1)) , (3.26)

k2 (q) = g
(
tn + h

2
, wn (q) + h

2
k1 (q) , wn (q − 1) + h

2
k1 (q − 1)

)
, (3.27)

k3 (q) = g
(
tn + h

2
, wn (q) + h

2
k2 (q) , wn (q − 1) + h

2
k2 (q − 1)

)
, (3.28)

k4 (q) = g (tn + h,wn (q) + hk3 (q) , wn (q − 1) + hk4 (q − 1)) . (3.29)

with ki (q = 0) = 0 for i = 1, . . . , 4. This method has O (h4) convergence, as can be

seen in table 3.1.

Table 3.1: Convergence of Runge Kutta fourth-order scheme for underlying

N h
(
= T−t0

N−1

)
w (t = 0, q = 1) Difference (10−7) ratio

11 0.10000 0.524295209007592 NA NA
21 0.05000 0.524295151753517 0.572540743704053 NA
41 0.02500 0.524295148277688 0.034758290690107 16.47
81 0.01250 0.524295148063584 0.002141045118975 16.23
161 0.00625 0.524295148050299 0.000132847066681 16.12

N is the number of time points with h as the length of the intervals between respective
points. We have set T = 1, µ = 0.05, σ = 3, γ = .5, λ = 0.3 and l = 0.3. For a scheme
of order p the ratio between successive differences should be 2p, so for fourth-order
convergence we expect a ratio of 24 = 16.
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Figure 3.1: Optimal trading strategy under standard Brownian motion framework
with q(0) = 6. These results were found using (3.23). The parameter values used
are consistent with that of Guéant et al. (2012b) and take the values T = 300, µ =
0.0, σ = 0.3, λ = 0.1, l = 0.3, γ = 0.05 and b = 3. We can see that as the number of
shares increases the optimal strategy decreases.

It is noticeable here that δ∗(t, q), as plotted in figure 3.1, is independent of both the

asset price S and wealth X. This was one of the significant results that tempted us to

further examine this problem. Consider the results found in figure 3.1. With one asset

remaining, q = 1, and t = 0.5, the optimal strategy is to sell the asset for an additional

7 price units, be it pounds, pence, dollars or euros. Under the model assumptions this

will happen with equal probability regardless of the asset price. Realistically, for an

asset priced at 10 units, selling it at 17 units seems less likely than an asset priced at

1000 units selling at 1007. However, the model treats this as having equal probability

as the exponential-decay factor of the limit-order book, l, the risk-aversion parameter,

γ, the volatility of the asset, σ, and the drift of the asset, µ, are all independent of the

asset price. This is something we take into consideration when extending the model.

It is also worth mentioning, but not discussed in the original paper of Guéant et al.

(2012b), that a solution of (3.21), and thus (3.17), can be solved analytically using

recursion. Although this is tedious as q increases, it can be advantageous to gain

further insight into the solution. For the case of q = 1 equation (3.21) has solution

w (q = 1, t) =

(
e−lb − λ

(
1 + γ

l

)−(1+l/γ)

1
2
lγσ2 − lµ

)
e−( l2γσ2−lµ)(T−t) +

λ
(
1 + γ

l

)−(1+l/γ)

l
2
γσ2 − lµ , (3.30)
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which results in the solution for the optimal strategy

δ∗(q = 1, t) =
1

l
ln

((
e−lb − λ

(
1 + γ

l

)−(1+l/γ)

l
2
γσ2 − lµ

)
e−( l2γσ2−lµ)(T−t) +

λ
(
1 + γ

l

)−(1+l/γ)

l
2
γσ2 − lµ

)
+

1

γ
ln
(

1 +
γ

k

)
. (3.31)

This gives us analytic insight into the sensitivity of the solution with respect to the

underlying parameters of the model.

3.5.2 Steady-state solution

It was also shown by Guéant et al. (2012b) that as time tends to infinity both the

value function and thus the optimal trading strategy tend to a perpetual (steady-

state) solution. This perpetual solution is found in terms of w(q, t) by setting the time

derivative to zero in (3.17), and is given by

lim
T→∞

w(q) =
ηq

q!

q∏
j=1

1

αj − β (3.32)

with w (q) now being t-independent, η = λ
(
1 + γ

l

)−(1+ l
γ )
, α = lγσ2

2
, and β = lµ. For

a solution to exist the constraint

β < α (3.33)

must be satisfied which is equivalent to

µ <
γσ2

2
. (3.34)

This results in an optimal trading strategy of the form

δ∗(q) =
1

l
ln

(
λ

l + γ
× 1

1
2
γσ2q2 − µq

)
(3.35)

which gives insight into the behaviour of the steady-state trading strategies, and the

relationship between them and the parameters of the model.

3.5.3 Advantages of the model

The model of Guéant et al. (2012b), derived originally from Avellaneda and Stoikov

(2008), is a successful attempt at a mathematically tractable model of a trading algo-

rithm which liquidates orders passively in the order book. It encapsulates the two most
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important aspects of an algorithm interacting with the order book seeking to liquid

remaining inventory, these being controlling the short-term probability of execution,

as well as the price risk.

Its mathematical tractability, which simultaneously integrates price and liquidity,

is very appealing from a mathematical perspective. Firstly, liquidity appears as a

statistical model with low dimensionality, with the parameters characterising intra-

day features of the stock liquidity on a given exchange. Secondly, the stochastic

behaviour of the price process is driven by a Brownian motion, which keeps consistent

with classical models. Although the model is not an attempt to describe, in general,

the processes arising in markets, it provides an insight into what concerns a trading

algorithm’s performance.

3.6 Summary

In this chapter we have given an overview of the literature related to optimal trading

from the perspective of a sell-side firm. We paid particular attention to the framework

of Guéant et al. (2012b) which models trading at the tactical level when liquidating

assets, which can also be seen as modelling a market maker working in a single-side of

the order book (which is the ask side in the case of liquidating). By choosing CARA

utility functions, standard Brownian motion and an exponential intensity function with

an absolute decay parameter, Guéant et al. (2012b) are able to cleverly build symmetry

into the model from the start which allowed them to reduce the HJB equation to a

system of ODEs.

In this thesis we expand on the framework of Guéant et al. (2012b) by introducing

a different (and perhaps more realistic) concept to the optimal trading literature,

that being the use of more general diffusion processes for the asset price, and more

general intensity functions for the filling of orders in the limit-order book. Using

more general diffusion processes and intensity functions will result in asset-dependent

trading strategies, which to our knowledge are novel in the optimal trading literature

at the tactical level (asset-dependent strategies have been found at the scheduling

level, as discussed above, indicating they should also be present at the tactical level).

We are also able to make a significant contribution by expanding the dimensionality of
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the problem (multiple assets, stochastic volatility model), as well as examine a trader

who can trade using both limit orders and market orders.



Chapter 4

Tactical Level Trading under

General Diffusion Processes

The work in this chapter has recently been submitted for review:

Blair, J., Johnson, P., and Duck, P. (2015). Analysis of optimal liquidation in limit-order

books. http://eprints.ma.man.ac.uk/2299.

In this chapter we extend the framework of Guéant et al. (2012b) by introducing

more general diffusion processes for the asset price, and an exponential decay for the

limit-order book which is relative to the asset price. It was over a decade after Almgren

and Chriss (2001) published their seminal paper that Forsyth et al. (2012) examine the

same problem under geometric Brownian motion. It is been argued through empirical

evidence that geometric Brownian motion is favourable in modelling asset prices over

standard Brownian motion (see Osborne, 1959). An important point here is to note

that geometric Brownian motion can be used over any time scale, for both long and

short trading horizons, and avoids the fallacy of negative price scenarios that can

appear in standard Brownian motion (over longer time scales). Although it is true

that under small-time horizons standard Brownian motion approximates geometric

Brownian motion, many of the problems in optimal execution consider infinite horizon

problems, for example Guéant et al. (2012b), Cartea and Jaimungal (2013b), Bayraktar

and Ludkovski (2012) and Schied and Schöneborn (2009) to name a few, for which

this approximation is no longer valid.

By choosing CARA utility functions, standard Brownian motion and an absolute

decay parameter for the intensity function Guéant et al. (2012b) are able to cleverly

79
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build symmetry into the model from the start which allows them to reduce the HJB

equation to a system of ODEs. However, we attempt to build a model with geometric

Brownian motion (and mean-reverting processes) for the asset price, a CARA utility

function, a proportional control parameter (the additional amount we ask for the

asset), and a proportional decay parameter, meaning that this symmetry no longer

exists. This not only complicates the model but produces interesting (and arguably

more realistic) results while doing so. Having an asset-dependent control parameter

will induce some transparency in our results, given the optimal trading strategy will

be expressed as a percentage of the asset. This novel combination will result in asset-

dependent trading strategies, which to our knowledge is a unique concept in this

framework of literature. This also results in not selling the asset for a negative price

(effectively paying someone to take the asset), which can occur in the work of Guéant

et al. (2012b), amongst others.

Although the equations are more complex to solve, which could be a reason ge-

ometric Brownian motion and more general diffusion processes were avoided in the

initial framework, having more complex equations allows us to consider a richer set

of solutions than has shown to be the case in the previous literature. We are able

to carry out interesting analytic (asymptotic) analysis, finding analytic solutions in

various limits, and the development of a singularity when considering a steady-state

framework. We have thus taken a combined approach in solving the problem which

involves both theoretically (analytically/asymptotically) examining the problem and

using numerical methods to obtain solutions, with each approach informing and con-

firming the other. As we will see shortly, the methods we introduce are not constrained

to the use of geometric Brownian motion as the driving process for the asset price, as

we extend to a CIR process in section 4.4.

4.1 Problem formulation

We consider a trader who wishes to maximise his expected utility, given a portfolio of

assets to liquidate, before a specified terminal time, T . We assume at time t = 0 that

the trader starts with an initial inventory of q(0) assets, with q (t) ∈ Z+, and an initial

wealth X(0). Let (Ω,F ,P) be a probability space with a filtration, (Ft, t ∈ [0, T ]). We
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assume the reference price (which may refer to the best-bid price, best-ask price or

mid-price) of the asset, S(t), follows a geometric Brownian motion, and so the diffusion

process is defined as

dS(t) = µS(t)dt+ σS(t)dW (t), (4.1)

with µ as the constant relative drift, σ as the constant relative volatility and W (t) as

a Wiener process which is Ft measurable.

The trader will continuously post orders into the ask side of the limit-order book

for price Sa(t) which is δ = δ(t,X, q, S) percent greater than the asset value S(t),

Sa(t) = S (t) (1 + δ) . (4.2)

This is another distinct aspect to our approach as Guéant et al. (2012b) do not model

the control as a percent of the asset price but instead have asking price Sa(t) = S (t)+δ.

Asset sales follow a Poisson process, N(t), with time-dependent intensity, which is

Ft measurable and independent of W (t)

dq(t) = −dN(t), (4.3)

for q (t) > 0, thus assuming the trader becomes inactive after liquidating and does not

short sell. We assume trades are of unitary size, which are assumed to be lots or of the

average trade size, consistent with that of previous literature as discussed in section

3.5. For each occurrence of a trade, the trader’s wealth increases by the amount that

asset was sold for, and thus the dynamics of the wealth is given by

dX(t) = S(t) (1 + δ) dN(t), (4.4)

whereN(t) is the same Poisson process as before. Therefore, the values of q(t) andX(t)

change simultaneously, according to (4.3) and (4.4) respectively. N(t) has intensity

Λ(δ) which takes the form:

Λ(δ) = λe−l(
Sa−S
S ) = λe−lδ (4.5)

for some positive constants λ and l. We notice (4.5) is contrasting in its derivation

to (3.15) given the optimal control is proportional to the asset price and thus the

exponential decay of the order book, l, is also proportional to the asset price. We

discuss this comparison in more detail in section 4.1.2.
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The objective is to liquidate this portfolio before some final time T . Assets that

are not liquidated before this time will be sold in the market for their current value.

In some of the literature, such as Guéant et al. (2012b), a terminal penalty is included

such that the assets are sold at a discount of their actual price at the terminal price,

which is a constant per asset and thus independent of the asset price. Others, such

as Avellaneda and Stoikov (2008) and Guéant et al. (2012a), neglect inclusion of this

terminal penalty. We believe the arguments of the latter studies are more profound. If

the reference price was the best bid or mid-price then it could be argued that execution

at the terminal time should be immediate. If the reference was the best ask, given the

rate at which orders are filled at the best ask (as found in empirical results in chapter

9) it should be viable to liquidate the remaining position (which should be relatively

small) almost immediately. We were considering adding a penalty, which we would

make as a percent of the asset rather than a fixed amount which is independent of the

asset price. We believe the former would be more realistic as the asset would never

be sold for a negative price, effectively paying someone to take it. Inclusion of the

penalty is quite trivial, and we outline its potential impact throughout the chapter.

In terms of both solving this problem numerically and investigating it asymptotically,

the terminal penalty would make little difference to both the difficulty of the methods

used and the results obtained, given a realistic value for the (relative) penalty would

be quite small. We have therefore chosen to neglect it.

The utility we seek to maximise takes the form of a negative exponential function,

consistent with the previous literature of Avellaneda and Stoikov (2008) and Guéant

et al. (2012b), the properties of which have been discussed in section 2.3. We define

our value function, u(t,X, q, S), as the maximum expected utility at time t

u(t,X, q, S) = sup
δ(t)∈A

E
[−e−γ(X(T )+q(T )S(T ))

]
, (4.6)

where γ > 0 is the risk-aversion characterising the trader and A ⊆ (−1,∞) is the set

of admissible trading strategies. Assuming the trader starts with some non-negative

wealth and with some positive quantity of inventory the term γ (X + qS) is strictly

positive. Therefore the objective function, and by definition the value function, is

bounded in the set [−1, 0). We should note that the lower bound of the admissible

strategy occurs naturally due to the trader never wanting to sell his asset for a negative
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price, implying he would be paying someone to take the asset from him, and hence

it does not have to be explicitly implemented. Using the form of the asking price

Sa = S + δ, under a standard Brownian motion, trading strategies are independent of

the asset price and hence selling for a negative price can occur, which is a fundamental

flaw of previous models.

Given the optimisation problem of (4.6), an HJB equation can be derived by ap-

plying the Bellman (1957) principle of optimality and using Itô’s lemma:

ut(t,X, q, S) + µSuS(t,X, q, S) +
1

2
σ2S2uSS(t,X, q, S)

+sup
δ

[
λe−lδ (u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S))

]
= 0, (4.7)

with conditions

u(T,X, q, S) = −e−γ(X+qS), (4.8)

u(t,X, 0, S) = −e−γX . (4.9)

We will now discuss the derivation of the HJB equation (4.7), followed by a verification

theorem which is used to prove that the solution we obtain from the HJB equation

(4.7) is in fact the solution of the optimal control problem (4.6) we wish to solve.

4.1.1 Derivation of HJB equation and a verification theorem

Deriving HJB equation using Bellman principle

Let (Ω,F ,P) be a probability space with a filtration, (Ft, t ∈ [0, T ]). Define the

stochastic processes adapted to the filtration Ft as:
dS(t)

dq(t)

dX(t)

 =


µS (t)

0

0

 dt+


σS (t) dW (t)

−dN(t)

S(t) (1 + δ) dN(t)

 , (4.10)

which satisfies linear growth and Lipschitz continuity conditions and as such unique

solutions exist, as discussed in section 2.4.3. We define the value function u(t,X, q, S)

as

u(t,X, q, S) = sup
δ(t)∈A

E [Φ(X(T ), q(T ), S(T ))] , (4.11)
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where A ⊆ (−1,∞) is the set of admissible trading strategies and Φ (·) is the form

of the utility function. A unique solution of (4.11) exists given the existence and

uniqueness of the underlying stochastic differential equations (4.10).

Bellman’s Principle of Optimality reads:

u(t,X, q, S) = sup
δ(t)∈A

E [u(t+ h,X(t+ h), q(t+ h), S(t+ h))] . (4.12)

The intuition behind Bellman’s Principle is that the supremum of the value function

is found over [t, T ] if we find the supremum over [t, t+ h] and then continue optimally

over [t+ h, T ] with the state values at time t+ h as the initial values.

To derive the dynamic programming equation we will first assume δ(s) = δ for

s ∈ [t, t + h], i.e. the control parameter is constant over the interval [t, t + h]. From

(4.12) we have:

u(t,X, q, S) ≥ E [u(t+ h,X(t+ h), q(t+ h), S(t+ h))] . (4.13)

Subtracting u(t,X, q, S) from both sides gives

0 ≥ E [u(t+ h,X(t+ h), q(t+ h), S(t+ h))− u(t,X, q, S)] . (4.14)

Assuming u ∈ C1,2 ([0, T ),R+) in t and S respectively, we now apply Itô’s lemma to

u(t+ h,X(t+ h), q(t+ h), S(t+ h))− u(t,X, q, S), such that

u (t+ h,X (t+ h) , q (t+ h) , S (t+ h))− u (t,X (t) , q (t) , S (t)) =∫ t+h

t

(
ut (s,X (s) , q (s) , S (s)) + µS (s)uS (s,X (s) , q (s) , S (s))

+
1

2
σ2S (s)2 uSS (s,X (s) , q (s) , S (s)) +

(u (s,X (s) + ∆X (s) , q (s) + ∆q (s) , S (s))− u (s,X (s) , q (s) , S (s))) Λ (δ)
)
ds

+

∫ t+h

t

σS (s)uS (s,X (s) , q (s) , S (s)) dW (s)

+

∫ t+h

t

(
u (s,X (s) + ∆X (s) , q (s) + ∆q (s) , S (s))− u (s,X (s) , q (s) , S (s))

)
dÑ (s) ,

(4.15)

ignoring quadratic variation terms which equal zero, with Ñ(t) denoting a compensat-

ing Poisson process with intensity Λ (δ) = λe−lδ. Here we are assuming continuity in

the value function, and not the underlying processes, and for further insight we refer

the reader to Øksendal and Sulem (2005).
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Substituting (4.15) into (4.14), taking the expectation, dividing by h and letting

h→ 0 we obtain:

0 ≥ Lu(t,X, q, S) + Λ(δ) (u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S)) , (4.16)

where we define the generator L of the geometric Brownian motion as

Lu(t,X, q, S) = ut(t,X, q, S) + µSuS(t,X, q, S) +
1

2
σ2S2uSS(t,X, q, S). (4.17)

Here we assume the final two integrals are martingales, which we will show to be true

in the verification theorem below.

Equation (4.16) holds through for any δ ∈ A. Assume now that the optimal control

is given by the Markov control policy δ∗ = δ∗(s,X∗(s), q∗(s), S(s)). Here X∗(s) and

q∗(s) denote the optimal state process controlled under δ∗. Using the optimal policy

and making the same assessment as above we obtain

0 = Lu(t,X, q, S) + Λ(δ∗) (u(t,X + S (1 + δ∗) , q − 1, S)− u(t,X, q, S)) . (4.18)

Combining (4.16) and (4.18) we obtain

0 = sup
δ∈A

[Lu(t,X, q, S) + Λ(δ) (u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S))]. (4.19)

As u(t,X, q, S) is already defined as a supremum, defined by (4.11), we can take the

generator process outside the supremum so (4.19) becomes

0 = Lu(t,X, q, S) + sup
δ∈A

[Λ(δ) (u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S))] (4.20)

with

u(T,X, q, S) = Φ(X, q, S), (4.21)

u(t,X, 0, S) = Φ(X, 0, S). (4.22)

Verification theorem

We shall now show that the solution we obtain from solving (4.20) is in fact the solution

of (4.11). Define

φ (t,X, q, S) := E [Φ(X(T ), q(T ), S(T ))] , (4.23)

with φ ∈ C1,2 ([0, T ),R+) in t and S respectively. Φ(X, q, S) = −e−γ(X+qS) for q ∈ Z+,

γ,X, S ∈ R+ and hence Φ is bounded in [−1, 0). By definition φ is also bounded in
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[−1, 0) and hence it satisfies a polynomial growth condition, i.e. there exists constants

C ∈ R+ and k ∈ Z+ such that

|φ (t,X, q, S) | ≤ C
(
1 + |X + qS|k) , ∀ (t,X, q, S) ∈ [0, T ]× R+ × Z+ × R+,

Let φ∗ (t,X, q, S) be the solution of

0 = Lφ(t,X, q, S) + sup
δ∈A

[Λ(δ) (φ(t,X + S + δ, q − 1, S)− φ(t,X, q, S))], (4.24)

with L as the generator process defined by (4.17). We now want to show that

φ∗ (t,X, q, S) is identical to the solution obtained by solving (4.11). We begin by

applying a Taylor’s expansion to φ∗ (T,X, q, S) which gives

φ∗ (T,X, q, S) = φ∗ (t,X, q, S) +

∫ T

t

dφ∗ (s,X, q, S) . (4.25)

Since φ ∈ C1,2 ([0, T ),R+) in t and S we have for all (t,X, q, S) ∈ [0, T )×R+ × Z+ ×
R+, r ∈ [t, T ), and any stopping time τ valued in [t,∞), by Itô’s formula

φ∗(r ∧ (t+ h) , X(r ∧ (t+ h)), q(r ∧ (t+ h)), S(r ∧ (t+ h)))− φ∗(t,X(t), q(t), S(t)) =∫ r∧(t+h)

t

(
φ∗t (s,X, q, S) + µS (s)φ∗S(s,X, q, S) +

1

2
σ2S (s)2 φ∗SS(s,X, q, S)+

(φ∗(s,X(s) + ∆X(s), q(s) + ∆q(s), S(s))− φ∗(s,X(s), q(s), S(s))) Λ (δ)
)
ds

+

∫ r∧(t+h)

t

σS (s)φ∗S(s,X(s), q(s), S(s))dW (s)+∫ r∧(t+h)

t

(φ∗(s,X(s) + ∆X(s), q(s) + ∆q(s), S(s))− φ∗(s,X(s), q(s), S(s))) dÑ(s),

with x ∧ y = max (x, y). We choose

τ = τn = inf

(
r ≥ t :

∫ r

t

|σS (s)φ∗S(s,X(s), q(s), S(s))|2ds ≥ n

)
and notice that τn →∞ when n goes to infinity. The stopped process∫ r∧τn

t

σS (s)φ∗S(s,X(s), q(s), S(s))dW (s), t ≤ r ≤ T,

is then a martingale with

E
[ ∫ T

t

(σS(s)φ∗S(s,X(s), q(s), S(s)))2 ds
]
<∞.

As the value function is bounded between -1 and 0, and noticing that δ is bounded

from below and hence Λ (δ) is bounded we have that

E
[ ∫ T

t

|φ∗(s,X(s) + ∆X(s), q(s) + ∆q(s), S(s))|Λ (δ) ds
]
<∞,
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and

E
[ ∫ T

t

|φ∗(s,X(s), q(s), S(s))|Λ (δ) ds
]
<∞,

so the final integral is a martingale with expectation zero.

We take the expected value of both sides of (4.25). The first integral goes to zero

given it is identical to (4.24), as do the final two integrals as they have been shown to

be martingales. This results in

E [Φ (X∗, q∗, S)] = φ∗ (t,X, q, S) , (4.26)

as φ∗ (T,X, q, S) = Φ (X∗, q∗, S). If δ was chosen arbitrarily we would have

E [Φ (X, q, S)] ≤ φ∗ (t,X, q, S) . (4.27)

Thus we have

sup
δ∈A

E [Φ(X(T ), q(T ), S(T ))] = E [Φ (X∗, q∗, S)] = φ∗ (t,X, q, S) = u(t,X, q, S).

(4.28)

We have thus shown that the solution found in the HJB equation (4.7) is the solution

of the original optimisation problem (4.6). For further reading on the theory of optimal

control the authors recommend Øksendal and Sulem (2005) and Pham (2009).

4.1.2 Reduction of the problem

The problem as stated in (4.7) is a four-dimensional HJB equation. Guéant et al.

(2012b) and Cartea and Jaimungal (2013b) both reduce their (similar) problems to

a system of ODEs by suggesting an ansatz form of the solution which assumes the

solution can be separated into two functions. One function involves variables X,

S and q, and the other involves variables q and t, with the PDE being reduced to

a t-dependent ODE, thus arriving with trading strategies independent of X and S.

Due to the use of geometric Brownian motion, as opposed to the standard Brownian

motion used by Guéant et al. (2012b) and Cartea and Jaimungal (2013b), reducing

the problem to a system of ODEs is no longer possible. However, we can still make use

of the form of the utility function to make a significant reduction to the complexity of

the problem.
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We begin by assuming an ansatz solution

u (t,X, q, S) = e−γXf (τ, q, S) , (4.29)

where we also use a change in the time variable τ = T − t so that we are now solving

forward in τ rather than backward in t. Using this form of the solution we obtain:

−e−γXfτ (τ, q, S) + µSe−γXfS (τ, q, S) +
1

2
σ2S2e−γXfSS (τ, q, S)

+sup
δ

[
λe−lδ

(
e−γ(X+S(1+δ))f (τ, q − 1, S)− e−γXf (τ, q, S)

)]
= 0. (4.30)

We can solve for the optimal control by differentiating the supremum with respect

to the control, δ, and setting the result equal to zero which locates the stationary

point. Solving this we obtain:

δ∗ (τ, q, S) =
1

Sγ
ln

(
(γS + l) f (τ, q − 1, S)

lf (τ, q, S)

)
− 1, (4.31)

which we notice is independent of X, hence confirming the use of our ansatz solution.

We did the second derivative test of the supremum to confirm this was in fact the

maximum. We also notice the optimal strategy is a function of S which is a unique

addition to the literature for this general class of problem. Using the form of (4.31)

we find the asking price of the asset to be

Sa∗ (τ) =
1

γ
ln

(
(γS + l) f (τ, q − 1, S)

lf (τ, q, S)

)
. (4.32)

To confirm with previous literature, notably Guéant et al. (2012b), we will primarily

keep our focus on the optimal control, δ∗, when examining our results.

Substituting (4.31) into (4.30) and cancelling common factors we obtain the fol-

lowing non-linear PDE

−fτ (τ, q, S) + µSfS (τ, q, S) +
1

2
σ2S2fSS (τ, q, S)

−λe
lγSf (τ, q, S)

Sγ + l

(
lf (τ, q, S)

(Sγ + l) f (τ, q − 1, S)

) l
Sγ

= 0, (4.33)

with

f (0, q, S) = −e−γqS, (4.34)

f (τ, 0, S) = −1. (4.35)

When discussing results we shall now refer to f (τ, q, S) as the value function.
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If we were to follow the framework of Guéant et al. (2012b) and use an absolute con-

trol parameter, so our asking price would be Sa(t) = S (t) + δ, but still a proportional

exponential decay parameter, which would take the form

Λ(δ) = λe−l(
Sa−S
S ) = λe−

lδ
S , (4.36)

we would still have an asset-dependent trading strategy, given by

δ∗ (τ, q, S) =
1

γ
ln

(
(γS + l) f (τ, q − 1, S)

lf (τ, q, S)

)
− S. (4.37)

If we were to not use a proportional exponential-decay parameter, i.e.

Λ(δ) = λe−l(S
a−S) = λe−lδ, (4.38)

the trading strategies we obtain would take the form

δ∗ (τ, q, S) =
1

γ
ln

(
(γ + l) f (τ, q − 1, S)

lf (τ, q, S)

)
− S, (4.39)

which would lead to a non-linear PDE analogous to (4.33) with trading strategies

that are asset-price dependent. As discussed in section 3.5, Guéant et al. (2012b) use

asset independent parameters and thus arrive with trading strategies which are asset-

price independent, making them arguably unrealistic from a practical viewpoint. The

inclusion of the asset proportional exponential-decay parameter provides a dynamic

shape for the limit-order book, evolving as the asset price changes, becoming wider for

higher asset prices and thinner for lower asset prices. This is emphasised in figure 4.1

which is a plot of (4.36) for various values of S, which portrays the wider limit-order

book for increasing S.

The works of Avellaneda and Stoikov (2008), Cartea and Jaimungal (2013b) and

Huitema (2013), to name a few, use the form of (4.38) for the intensity of the Poisson

process, all allowing for negative δ, as do we in this thesis. Guéant and Lehalle (2013)

have a twofold argument for the use of negative δ. The first being that it can be seen

as indirectly introducing execution costs for liquidity taking orders, given we want

execution to occur quicker than the average rate. Secondly, high-frequency traders

have the ability to rapidly cancel orders and as such fill and/or kill orders, along with

other limit orders, are used rather than market orders as these market orders may be

retracted rapidly. It is also these two arguments they use against the use of a power
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Figure 4.1: Limit-order book widens for proportional exponential-decay parameter as
S increases, according to (4.36), with asking price taking the form Sa(t) = S (t) + δ

intensity function, as examined by Bayraktar and Ludkovski (2012), which blows up

at δ = 0, indicating infinite liquidity. However, this is a two sided argument. If you are

a liquidity consumer, then you should be guaranteed execution at some price, which

is not the case under exponential intensity. It is for this reason that we extend the

framework in chapter 8 to power intensity functions.

4.1.3 Rescaling of the PDE

We shall now perform a rescaling (effectively a non-dimensionalisation) of this PDE

to eliminate several of the parameters. We use the following change of variables:

τ̃ = λτ, S̃ = Sγ, µ̃ =
µ

λ
, σ̃ =

σ√
λ
. (4.40)

Interestingly, the scaling of time with the rate λ came about when investigating the

small-time solution, which we examine below in section 4.2. We noticed the length

of time in which the small-time solution was valid was inversely proportional to the

parameter λ, hence the above rescaling. Rescaling µ and σ we eliminate λ from the

equation. When examining the numerical solutions, which we do below in section

4.1.5, we found the scaling which was present between S and γ, thus allowing us to

rescale out the γ parameter. S̃ is now the risk-adjusted asset price, given that it is S

scaled on γ. From now we will refer to S̃ as the asset price, dropping ‘risk-adjusted’.

All the new variables of (4.40) are then dimensionless. This results in the non-linear
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PDE:

−fτ̃
(
τ̃ , q, S̃

)
+ µ̃S̃fS̃

(
τ̃ , q, S̃

)
+

1

2
σ̃2S̃2fS̃S̃

(
τ̃ , q, S̃

)

−
elS̃f

(
τ̃ , q, S̃

)
S̃ + l

 lf
(
τ̃ , q, S̃

)
(
S̃ + l

)
f
(
τ̃ , q − 1, S̃

)


l
S̃

= 0, (4.41)

with

f
(

0, q, S̃
)

= −e−qS̃, (4.42)

f
(
τ̃ , 0, S̃

)
= −1. (4.43)

Equation (4.41) is now dimensionless as are the conditions (4.42) and (4.43). The

optimal trading strategy in dimensionless form is then

δ∗
(
τ̃ , q, S̃

)
=

1

S̃
ln


(
S̃ + l

)
f
(
τ̃ , q − 1, S̃

)
lf
(
τ̃ , q, S̃

)
− 1, (4.44)

and the risk-adjusted asking price is

S̃a∗ (τ̃) = ln


(
S̃ + l

)
f
(
τ̃ , q − 1, S̃

)
lf
(
τ̃ , q, S̃

)
 . (4.45)

The optimal strategy at τ̃ = 0 can be confirmed by substituting (4.42) into (4.44)

which results in:

δ∗
(
τ̃ = 0, q, S̃

)
=

1

S̃
ln


(
S̃ + l

)
l

 . (4.46)

As discussed above, if we were to include a penalty at τ̃ = 0 we would make it

a proportional penalty, b, as to neglect the possibility of selling for a negative value.

The initial condition (4.42) would then take the form

f
(

0, q, S̃
)

= −e−qS̃(1−b), (4.47)

with the optimal strategy at τ̃ = 0 taking the form

δ∗
(
τ̃ = 0, q, S̃

)
=

1

S̃
ln


(
S̃ + l

)
l

− b. (4.48)

The same boundary conditions derived below would be suitable given a realistic value

for b would be b� O (1), and the trading strategies would still have the same form as

they diffuse from the initial time, but would be shifted to slightly lower values.
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Boundary conditions

To make this problem well-posed we must consider boundary conditions for S̃ = 0 and

S̃ →∞. For S̃ = 0 we take the limit of (4.41) which results in

∂f

∂τ̃

(
τ̃ , q, S̃ = 0

)
= 0. (4.49)

Given (4.49) and (4.42) the S̃ = 0 boundary condition we arrive at is

f
(
τ̃ , q, S̃ = 0

)
= −1, (4.50)

and so

δ∗(τ̃ , q, S̃ → 0) = fS̃(τ̃ , q, 0)− fS̃(τ̃ , q − 1, 0) +
1

l
− 1. (4.51)

For S̃ → ∞, f
(
τ̃ , q, S̃

)
→ 0 although for numerical purposes we assume a (softer)

Neumann boundary condition

∂f

∂S̃

(
τ̃ , q, S̃ →∞

)
→ 0, (4.52)

which, from investigation, we found to be satisfactory. From a financial perspective

we can interpret this as the trader not being able to become any more satisfied when

he has an asset worth an infinite amount of money.

4.1.4 Numerical methods

To solve (4.41) we use a finite-difference scheme. We have tested both implement-

ing implicit differences on the derivative terms while taking the non-linear term as

an explicit term, and using an iterative Crank-Nicolson scheme, with each method

confirming the other.

Using implicit differences and an explicit non-linear term we negate the need to

use an iterative scheme as the non-linear terms remain on the right-hand-side of the

linear system Af = b. We can thus use a direct solver such as the Thomas algorithm

at each time step.

Solving using Crank-Nicolson is a bit trickier as we need to use an iterative scheme,

given the non-linearity of (4.41). Assume we are calculating the solution, fn+1, at

time-step n+ 1. At the kth + 1 iteration we have:

fn+1,(k+1) = fn+1,(k) + ε(k) (4.53)
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in which a reasonable guess for the initial solution fn+1,(0) is the solution at time-step

n, fn. Implementing Crank-Nicolson finite-differences in (4.41) results in

−f
n+1
i,q − fni,q

∆τ̃
+ µ̃i∆S̃

(
fn+1
i+1,q − fn+1

i−1,q

4∆S̃
+
fni+1,q − fni−1,q

4∆S̃

)

+
1

2
σ̃2i2∆S̃2

(
fn+1
i+1,q − 2fn+1

i,q + fn+1
i−1,q

2∆S̃2
+
fni+1,q − 2fni,q + fni−1,q

2∆S̃2

)

−e
li∆S̃fn+1

i,q

i∆S̃ + l

 lfn+1
i,q(

i∆S̃ + l
)
fn+1
i,q−1

 l
i∆S̃

− eli∆S̃fni,q

i∆S̃ + l

 lfni,q(
i∆S̃ + l

)
fni,q−1

 l
i∆S̃

= 0,

(4.54)

where fni,q = f
(
n∆τ̃ , q, i∆S̃

)
. We substitute (4.53) into (4.54) for fn+1. Now the

unknowns we are solving for is ε. The system is still non-linear in f , and non-linear

in ε. To linearise in ε we take the limit of the non-linear term up to O (ε), using a

Taylor expansion, as ε→ 0. Rearranging we have a linear system of equations which

can be wrote in the form Aε = b and solved directly for ε. The right-hand-side b

contains terms of fn and fn+1,(k) which are all known. At each iteration we update

fn+1 according to (4.53) and repeat until some specified tolerance criteria is satisfied.

For the former we expected our method to exhibit O
(

∆τ̃ ,∆S̃2
)

convergence which

we found was the case; for the latter we expected O
(

∆τ̃ 2,∆S̃2
)

convergence which we

also confirmed, where ∆τ̃ and ∆S̃ are the grid sizes in τ̃ and S̃ respectively. This can

be seen in table 4.1. A number of calculations were performed on a transformed grid

Y = ln S̃, which did have some advantages for certain calculations, such as the steady-

state problem, but also exhibited some disadvantages (including the need for two,

rather than one, domain truncation parameters). However the results thus obtained

did provide a useful check of the results from the untransformed (S̃) grid. We will

return to the transformed grid when we examine the perpetual case in section 4.3.

4.1.5 Numerical examples

We shall focus mainly on the behaviour of the optimal trading strategy, δ∗, given that

it is a transformation of the value function and, from a financial perspective, is more

transparent than examining the value function per se. Unless specified, the parameter

values used are: µ̃ = 0.04, σ̃ = 0.4, l = 25 and τ̃ = 2. In chapter 9 we will calibrate
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Table 4.1: Convergence of finite-difference scheme for single underlying

n m fI−E

(
τ̃ = 2, q = 1, S̃ = 5

)
ratio fC.N.

(
τ̃ = 2, q = 1, S̃ = 5

)
ratio

501 2001 -0.012105020201 NA -0.012104988415 NA
1001 2001 -0.012104875712 NA -0.012104843964 NA
2001 2001 -0.012104839554 4 -0.012104807874 4
4001 2001 -0.012104830584 4 -0.012104798766 4
8001 2001 -0.012104828267 4 -0.012104796598 4

8001 501 -0.012104922072 NA -0.012104796606 NA
8001 1001 -0.012104859753 NA -0.012104796514 NA
8001 2001 -0.012104828237 2 -0.012104796591 4
8001 4001 -0.012104812371 2 -0.012104796485 4
8001 8001 -0.012104804444 2 -0.012104796484 4

n and m are the number of space and time points respectively. We have set
S̃max = 20, µ̃ = 0.04, σ̃ = 0.4 and l = 25. fI−E is the value corresponding to the
implicit derivatives-explicit non-linear term finite-difference scheme and fC.N. is the
value corresponding to the Crank-Nicolson scheme. The ratio gives the ratio of the
change in errors for successive grids.

the model using real world data. However the values used in this chapter are used to

highlight the properties and behaviour of the solutions.

The results can be seen in figure 4.2 for q = 1. Looking first at the optimal strategy

over time, figure 4.2(a), for various values of S̃ we notice that the general behaviour

of the optimal strategy is decreasing for increasing S̃. This is due to the CARA

characteristic of the utility function. Given the trader is risk-averse, the trader will

dislike the higher absolute volatility present as S̃ increases. He will thus opt to sell

the asset quicker, so as to lock in the current price and avoid the risk of the asset price

moving against him. What is particularly vivid for larger values of S̃ but also true for

smaller values, is that as τ̃ increases the optimal trading strategy tends to a perpetual

(time-independent) type solution. This can be seen in the dot-dash line tending to a

constant value around τ̃ ∼ 0.3. It can also be seen in figure 4.2(b) that the solution

is tending to a perpetual-type solution as we can see the values for τ̃ = 1 are close

to those at τ̃ = 2, with the two lines are almost identical for S̃ > 10. We notice in

both figure 4.2(a) and figure 4.2(b) that as we perturb away from the terminal time

solution there is interesting behaviour and as such a small-τ̃ solution is also of some

interest. Near the terminal time, the optimal strategy is increasing as τ̃ increases in

the small S̃ regime while decreasing as τ̃ increases for larger values of S̃. This is due
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to the drift prospect outweighing price-movement risk for small S̃ while for larger S̃

the volatility risk outweighs the drift prospect.

Given the optimal strategy, δ∗, is a transformation of f
(
τ̃ , q, S̃

)
the function f

exhibits similar behaviour as the optimal strategy, δ∗, does in figure 4.2. Therefore

in the following sections we shall investigate both the small-τ̃ solution and perpetual

solution for f .

We have also included a plot of the asking price, S̃a∗ (τ̃), given by (4.45). This

can be seen in figure 4.3, and the results are corresponding to the optimal trading

strategies in figure 4.2. In figure 4.3(a) we see the solution at S̃ = 0 is graphically

indistinguishable from the horizontal axis. This is because S̃a∗ → 0 as S̃ → 0, as can

be seen in figure 4.3(b). We also notice that although the optimal trading strategy

at τ̃ = 1 and τ̃ = 2 are distinguishable from each other (see figure 4.2(b)), when

examining the asking price we notice they are relatively indistinguishable from each

other (see figure 4.3(b)), given in monetary terms the difference is actually relatively

small.

The remainder of this section consists of examination of the trading strategies for

varying amounts of inventory, q, and varying parameter values. We examine these at a

time close to the terminal time, τ̃ = 0.01, and at (an earlier time), τ̃ = 2. The reason

for doing so is that the solution varies rapidly as τ̃ initially increases before tending

to a perpetual solution. Therefore, showing the solutions at both times give a good

insight into the overall behaviour of the solution.

The properties of the optimal trading strategy for q > 1 are similar to those of

q = 1. Figure 4.4 gives an indication of how the optimal trading strategy behaves for

various values of q for a single time step around the terminal time (τ̃ = 0.01, figure

4.4(a)) and at an earlier time (τ̃ = 2, figure 4.4(b)). The optimal trading strategy is

not dependent on q at τ̃ = 0, as shown in (4.46). We have included a plot of (4.46) in

figure 4.4(a) to highlight the significant difference in solutions from a small deviation

in time, and as q is increased.

Figure 4.5 shows the value function corresponding to the optimal trading strategies

in figure 4.4. It can be seen that for the value function there is almost an indistin-

guishable difference (graphically) between the three curves for τ̃ = 0.01 and τ̃ = 2.

However, the difference between the results of the optimal strategy at the two times
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(a) Optimal strategy for various values of S̃

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

S̃

O
pt

im
al

St
ra

te
gy

:
δ

 

 

τ̃ ≈ 0
τ̃ ≈ 1
τ̃ ≈ 2

(b) Optimal strategy for various values of τ̃

Figure 4.2: Optimal strategy for trader with one asset remaining, with µ̃ = 0.04, σ̃ =
0.4 and l = 25.
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Figure 4.3: Asking price for trader with one asset remaining, with µ̃ = 0.04, σ̃ =
0.4 and l = 25.
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(a) Optimal strategy at τ̃ = 0.01
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Figure 4.4: Optimal strategy at various times for numerous assets remaining. The
parameter values used are µ̃ = 0.04, σ̃ = 0.4 and l = 25.
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Figure 4.5: Value function at various times for numerous assets remaining. The pa-
rameter values used are µ̃ = 0.04, σ̃ = 0.4 and l = 25.

is quite transparent. It is for this reason that we focus our attention on the optimal

trading strategy when examining results, rather than the value function.

To conclude the discussion on the numerical examples we shall briefly describe how

the optimal trading strategy changes in relation to changes to the various parameters

in the model. In figure 4.6 the optimal strategy for various times has been plotted with

each parameter, µ̃, σ̃ and l being varied, as well as a ‘base’ case which is calculated

using the same parameters as stated above. As can be seen, the properties which we

now discuss hold at both ends of the time spectrum for a given parameter variation.

As the drift, µ̃, increases the trader will be more happy to hold on to the asset as he
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(a) Optimal strategies at τ̃ = 0.01
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(b) Optimal strategies at τ̃ = 2

Figure 4.6: Optimal strategy under varying parameters. The base case has parameter
values: µ̃ = 0.04, σ̃ = 0.4 and l = 25.

expects the price to rise and thus his wealth to rise. He therefore asks for a higher price

for the asset over assets with lower drift. As the volatility, σ̃, increases the trader’s

asking price decreases. Understandably, a trader who is risk-averse dislikes higher

volatility as it brings a greater level of risk in stock price movement and thus will wish

to sell quicker than if volatility was lower. As we decrease l, the exponential-decay

parameter for the limit-order book, we see the trader asks for a higher price when

his asset price is low and a lower price when his asset price is high. This switch is

centred around whether the trader is selling the asset above par or at a discount, i.e. δ∗

greater than zero or less than zero, which occurs as S̃ is increased. When selling above

par a lower l signifies that the trader can place his asset further into the limit-order

book without significantly reducing his probability of sale. When the trader is eager

to sell he will sell the asset for a discount. In order to do so under lower l the trader

must sell at a high discount in order to increase his probability of sale by a significant

amount. The opposite is true for larger l; when selling above par the probability

of selling significantly decreases while the probability of selling significantly increases

when selling at a discount; this can be seen in figure 4.6(b). However if we were to

plot our graph at τ̃ = 0.01 for higher values of S̃ we would see the curve representing

lower l cross the curve representing the ‘base’ case eventually for large enough S̃.

It is interesting to observe the preferences of the trader for constant wealth but

with varying asset quantities and respective asset price, i.e. does the trader prefer one
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asset worth £100 or 10 assets worth £10. We shall consider this at a time τ̃ � 0

as close to the terminal time it is optimal to have as least assets as possible in order

to liquidate before the terminal time1. It was found from numerical investigate that

in certain parameter regimes the trader prefers more assets with less value per asset

than less assets with greater value while in other parameter regimes the trader prefers

less assets with higher value per asset than more assets with less value (assuming

constant wealth). This has to do with his risk-aversion. In the case of larger drift,

µ̃, and lower volatility σ̃, the trader prefers a greater number of assets over a lower

number as the optimal strategy is to ask for an above par value for the assets as their

growth prospects outweigh the risk. However, for lower values of µ̃ and higher σ̃, in

which risk outweighs the growth prospects, the trader will ask for a below par value

for the assets and prefers to have a lower number of assets, as to have more control

over the inventory. This relates to the parameter constraint found when examining

the perpetual solution, as discussed in section 4.3.

4.2 Small-time-to-termination solution

In the light of the results from section 4.1.5 we now visit the concept of a small-τ̃

solution. From the numerical results we see that there is a lot of ‘activity’ (which

mirrors financial interest) taking place around τ̃ = 0. Indeed, it is well-known that

options priced using the Black-Scholes-Merton framework close to expiry (see Evans

et al., 2002) can also exhibit rapid changes in value.

In this regime the trader is more worried about not being able to sell the asset for

any price higher than its current price or, when the asset is already at a high price,

the trader is worried that volatility could cause a decrease in his asset price before the

terminal time. This is a property of the trader’s risk-aversion.

To examine the small-time-to-termination solution we shall expand f
(
τ̃ , q, S̃

)
as

follows

f
(
τ̃ , q, S̃

)
= f0

(
q, S̃
)

+ τ̃ f1

(
q, S̃
)

+ τ̃ 2f2

(
q, S̃
)

+O
(
τ̃ 3
)
, (4.55)

which is a power-series expansion in τ̃ up to O (τ̃ 3). The O (τ̃ 0) term, f0

(
q, S̃
)

, is

1This was found to be the case for all the parameter regimes tested and intuitively is what we
would expect.
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merely equal to the terminal condition given by (4.42). By substituting (4.55) into

(4.41) we can find an analytic solution for f1

(
q, S̃
)

by collecting the O (τ̃ 0) terms

f1

(
q, S̃
)

=

(
−µ̃S̃q +

1

2
σ̃2S̃2q2 − S̃

S̃ + l

(
l

S̃ + l

) l
S̃

)
f0

(
q, S̃
)
, (4.56)

and from the O (τ̃ 1) terms

f2

(
q, S̃
)

=
1

2

(
µ̃S̃f1S̃

(
q, S̃
)

+
1

2
σ̃2S̃2f1S̃S̃

(
q, S̃
)
− 1

S̃ + l

(
l

S̃ + l

) l
S̃

(4.57)

×
((

l + S̃
)
f1

(
q, S̃
)
− lf1

(
q − 1, S̃

)
e−S̃
))

.

f1S̃ and f1S̃S̃ are the first and second derivative of f1 respectively which can both be

easily calculated analytically, as given by

f1S̃

(
q, S̃
)

= −qf1

(
q, S̃
)

+

−µ̃q + σ̃2q2S̃ +

(
l

S̃ + l

)( l
S̃

+1)
 log

(
l

l+S̃

)
S̃

 f0

(
qS̃
)
, (4.58)

and

f1S̃S̃

(
q, S̃
)

= −qf1S̃

(
q, S̃
)

− q2
(
σ̃2
(

1− qS̃
)
− µ̃

)
f0

(
q, S̃
)

− 1

S̃2

(
l

l + S̃

) l
S̃

+1
(

S̃

l + S̃
+
(
qS̃ − 2

)
log

(
l

l + S̃

)

+
l

S̃
log2

(
l

l + S̃

))
f0

(
q, S̃
)
. (4.59)

Therefore (4.56) and (4.57) have fully analytic solutions. In the limit as S̃ → 0, both

f1 and f2 go smoothly to a constant and hence are finite. This characteristic will guide

us when examining the steady-state solution.

We shall now discuss the accuracy of this asymptotic expansion, along with its

limitations. The values we use for our parameters are the same as that of section 4.1.5

but with l = 5, for reasons that will be explained later. In figure 4.7 we have plotted

the solution of the optimal trading strategy along with its asymptotic approximations

for two values of S̃ which was calculated by substituting (4.55) into (4.44). We can

see that in both figures the three-term approximation is a good approximation for



CHAPTER 4. TRADING UNDER GENERAL DIFFUSION PROCESSES 101

0 0.5 1 1.5 2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

τ̃

O
pt

im
al

St
ra

te
gy

:
δ

 

 

Full Numerical
2−term Asymptotic
3−term Asymptotic

(a) S̃ = 0
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(b) S̃ = 10

Figure 4.7: Comparison of full-numerical optimal trading strategy and asymptotic
expansion for S̃ near zero and S̃ near 10 using a two-term and three-term model, with
parameters µ̃ = 0.04, σ̃ = 0.4 and l = 5.

the solution for τ̃ of O (1) while the two-term approximation is valid for smaller τ̃ .

We have tested this for various q values and these observations still hold true. We

mentioned in section 4.1 that the rescaling of λ and τ came about when examining

the small-time solution. In the original dimensions, for λ = 1 we arrive with similar

plots as that in figure 4.7. If we increased λ by a factor of two, the time for which the

small-time solution was valid would decrease by a factor of two and so forth. Thus

the rescaling of λ against τ was deemed appropriate.

This approximation is surprisingly accurate for a range of parameter values. How-

ever, there are restrictions to how well the model holds depending on the parameter

values used. For higher values of S̃ and l the solution of f
(
τ̃ , q, S̃

)
diverges faster

from the small-time-to-termination solution due to the stronger presence of the non-

linear term, hence the use of the smaller l in our numerical example, compared to

the l used in the non-steady state. In figure 4.8 we have plotted the optimal strategy

against S̃ for increasing τ̃ . We can see that as τ̃ increases the range of S̃ for which the

approximation is accurate decreases. It can also be seen that for τ̃ = 0.1 the difference

between the full numerical and three-term asymptotic approximation is negligible. If

l were to be reduced even further the asymptotic approximation remains valid for a

larger range of τ̃ values.



CHAPTER 4. TRADING UNDER GENERAL DIFFUSION PROCESSES 102

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3

S̃

O
p
ti
m
a
l
S
tr
a
te
g
y
:
δ

 

 

Full Numeircal
3−term Asymptotic

τ̃ increasing

Figure 4.8: Comparison of full-numerical optimal trading strategy and three-term
asymptotic expansion for increasing τ̃ , with τ̃ = {0.1, 0.5, 1} and parameter values
µ̃ = 0.04, σ̃ = 0.4 and l = 5.

It is worth noting the original investigation of this problem was done in the orig-

inal dimensional space, before transforming to the non-dimensional space, which was

performed in section 4.1.3. It was through examining the small-time-to-termination

solution that we found the relationship between time remaining, τ , and the rate at

which assets are sold at their reference price, λ, and as such scaled τ̃ = λτ . Examining

the accuracy for various parameters and values of S also led us to the scaling S̃ = γS.

Thus this is evidence that asymptotic analysis can add insight into a problem.

We shall now move on to examine what happens when τ̃ →∞, i.e. the “perpetual”

state.

4.3 Perpetual solution

We saw from figure 4.2 that it is possible that perpetual (time-independent) solutions

exist. Indeed, Guéant et al. (2012b) also find such solutions (in certain parameter

regimes). In this section we shall study the perpetual solution in some detail. For the

perpetual solution we require fτ̃

(
τ̃ , q, S̃

)
→ 0 as τ̃ →∞. In making this assumption,

we are implicitly assuming that the terminal time in which the assets must be sold is

sufficiently distant for us to neglect the time variation. Then (4.41) becomes

µ̃S̃fS̃

(
q, S̃
)

+
1

2
σ̃2S̃2fS̃S̃

(
q, S̃
)
−
elS̃f

(
q, S̃
)

S̃ + l

 lf
(
q, S̃
)

(
S̃ + l

)
f
(
q − 1, S̃

)


l
S̃

= 0, (4.60)
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(b) Optimal strategy

Figure 4.9: Value function and optimal strategy for perpetual solution for various q,
with parameter values: µ̃ = 0.04, σ̃ = 0.4 and l = 25.

with

f
(

0, S̃
)

= −1. (4.61)

To solve this non-linear ODE (4.60) we must consider two boundary conditions,

one for S̃ = 0 and one for S̃ →∞. We know from the non-steady-state problem that

f
(
∀τ̃ , q, S̃ = 0

)
= −1 and thus f

(
q, S̃ = 0

)
= −1 for the perpetual case. For S̃ →∞

we use the same boundary condition as used in section 4.1.3 for the full problem, that

being a Neumann boundary condition as given by (4.52). We solve (4.60) using a

Newton iterative method, see section 2.6.3. The optimal trading strategy takes the

form

δ∗
(
q, S̃
)

=
1

S̃
ln


(
S̃ + l

)
f
(
q − 1, S̃

)
lf
(
q, S̃
)

− 1. (4.62)

We plot the value function (figure 4.9(a)) and optimal trading strategy (figure

4.9(b)) for q ∈ {1, 2, 3, 4} with the same parameter values as used in section 4.1.5.

This solution was tested against the full numerical solution for the non-perpetual

(time-varying) case. We notice that the optimal strategy for the perpetual case is

larger for small S̃ than for the full problem. This is for two reasons. The first being

that δ∗τ̃ > 0 for small S̃ (as can be seen in figure 4.7(a)) which is due to the prospect of

the drift increasing the value of the asset dominating over the prospect of the volatility

decreasing the value. The second is due to the presence of a singularity about S̃ = 0,

which we will now discuss.
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4.3.1 Analytic analysis

We found that there are convergence issues for certain parameter values. Examining fS̃

for small S̃ it appeared that a singularity was present for S̃ � 1. On closer inspection

using asymptotic balancing suggests that in this limit, the solution behaves as

f
(
q, S̃
)
≈ −1 + c(q)S̃β (4.63)

for some positive constant β and c(q) ≥ 0, and so the solution is bounded, provided

β = 1− 2µ̃

σ̃2
> 0, (4.64)

which gives us the requirement that

µ̃ <
σ̃2

2
(4.65)

is necessary for a solution to exist, given β > 0. We have verified this constraint nu-

merically (later in this section we address the issue of parameters outside this region).

This constraint is analogous to that found by Guéant et al. (2012b) in which they

derived (in their notation)

µ <
γσ2

2
(4.66)

to be a necessary condition for a solution to exist for the perpetual case under standard

Brownian motion. We notice there is a lack of the γ parameter in our constraint in

comparison to Guéant et al. (2012b). Although we have scaled out γ in our model,

even without this rescaling we still arrive at a constraint that is independent of γ.

As can be seen in figure 4.9(b) we notice a singularity is apparently present in the

optimal trading strategy. We can make an asymptotic approximation for the optimal

trading strategy for S̃ � 1 given as:

δ∗
(
q, S̃
)
≈ K(q)S̃β−1 (4.67)

which is found by taking the limit of (4.62) as S̃ → 0+, using the form (4.63) for the

value function, and noting that c(q) > c(q−1). Given the latter point we expect K(q)

to be a decreasing function of q, tending to zero as q →∞, which can be seen in figure

4.10.
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Figure 4.10: K(q) variation with q for S → 0 with parameter values: µ̃ = 0.04, σ̃ =
0.4 and l = 1. We set Ymin = −20.

Rescaling to log-space

Examining the small-S̃ region can be computationally expensive as we need to have a

very fine grid around small S̃ and given we are using uniform grids this means that the

whole grid will be quite fine. A way of working around this is to transform the variable

to the log of S̃, such that we set Y = ln
(
S̃
)

. Y has a double infinite domain and given

S̃ = eY we can choose Ymin such that |Ymin| is large and thus a good approximation

for small S̃. The grid need not be as fine as that of the S̃ grid and thus relieves us of

some numerical expense. The log transformation is often used in finance mathematics

under the Black-Scholes framework when transforming the Black-Scholes PDE to the

heat equation (see Wilmott, 1995).

Taking Y = ln
(
S̃
)

we transform (4.60) to

(
µ̃− 1

2
σ2

)
fY (q, Y ) +

1

2
σ̃2fY Y (q, Y )− el+Y (q, Y )

eY + l

(
lf (q, Y )

(eY + l) f (q − 1, Y )

)le−Y
= 0,

(4.68)

with

f (0, Y ) = −1. (4.69)

For the large Y boundary condition, we transform the Neumann in S̃-space given by

(4.52) and arrive with a similar Neumann in log-space, given as

∂f

∂Ỹ

(
q, Ỹ →∞

)
→ 0, (4.70)

For the negative infinity boundary condition we transform (4.63) to log-space and
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Figure 4.11: Examining the solution of the value function under log-transform and
numerically confirming the boundary condition behaviour assumed, with parameter
values: µ̃ = 0.04, σ̃ = 0.4 and l = 25.

arrive at

f (q, Y ) ≈ −1 + c(q)eβY (4.71)

to which we have the Robin condition

∂f (q, Y )

∂Y
− βf (q, Y ) = β as Y → −∞. (4.72)

To numerically validate our assumption of the behaviour of the small-S̃ regime we

have examined the numerical value of β, against its actual as depicted by (4.64). We

can numerical examine β as

β =
fY (q, Y )

f (q, Y ) + 1
(4.73)

which is simply a rearrangement of (4.72).

Figure 4.11 shows a plot of the value function (figure 4.11(a)) as well as a plot

of β (figure 4.11(b)), which is calculated from (4.73). In figure 4.11(b) we see the

numerical value of β, found from (4.73), is identical to that of the analytic value (4.64)

for Y ∼ O (1), confirming our solution assumption (4.63) for the small-S̃ limit. K (q)

from equation (4.67), was also verified using the log-transform method, as seen in

figure 4.10.

Development of singularity

In the following we return to the S̃ space and have set l = 1; larger values of l lead

to a general dominance of the non-linear term, and rapid valuation variations close to
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S̃ = 0, both of which conceal valuation behaviours, and thereby make insights thereof

more difficult to discern.

It is of some interest to inspect how (quickly) the time-varying solution approaches

the perpetual state (assuming (4.64) is satisfied). Figure 4.12(a) shows sample results

for the difference between the former and latter states, indicating a quite rapid asymp-

totic approach in this case (which, indeed, generally was a canonical observation found

in most calculations). However, although this difference is diminishing, quite rapidly,

it is clear that there is a maximum deviation at decreasing values of S̃ as τ̃ increases.

It is clear that the O(S̃β) in the perpetual state as S̃ → 0 leads to singular behaviour,

whilst the numerical results of the time-varying solution very strongly point to the

non-linear term in (4.41) being negligible in this regime. Therefore, we examined the

linearised PDE

− fτ̃
(
τ̃ , q, S̃

)
+ µ̃S̃fS̃

(
τ̃ , q, S̃

)
+

1

2
σ̃2S̃2fS̃S̃

(
τ̃ , q, S̃

)
= 0, (4.74)

which is valid in the small-S̃ regime, and has initial conditions given by (4.42) and

(4.43). Assuming a power series expansion of f
(
τ̃ , q, S̃

)
about S̃ as S̃ → 0 we obtain

a series solution of the linearised form of this PDE which takes the form

f
(
τ̃ , q, S̃

)
=
∞∑
n=0

(−1)n+1

n!

(
qS̃
)n
e(nµ̃+ 1

2
n(n−1)σ̃2)τ̃ . (4.75)

Although this is clearly a divergent series (for sufficiently large n), nonetheless it does

highlight the likely occurrence of (very) short S̃ scales as τ̃ increases (and suitable

truncations of this series does lead to results consistent with the full numerical system).

The n = 1 term leads to the result that

fS̃(τ̃ , q, 0) = qeµ̃τ̃ , (4.76)

which clearly suggests the development of an (exponentially thin) region close to S̃ = 0,

together with an increasing magnitude for this derivative (as opposed to a diminishing

value for |f |), which we surmise leads ultimately with a connection to (4.63). Outside

of this region, the valuation is effectively that predicted by the perpetual solution.

It is possible to find an exact solution to this linear system (4.74), satisfying the

appropriate conditions at τ̃ = 0. Returning to the log-transformation, we obtain a

linearised PDE

− f (τ̃ , q, Y ) +

(
µ̃− 1

2
σ2

)
fY (q, Y ) +

1

2
σ̃2fY Y (q, Y ) = 0, (4.77)
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Figure 4.12: Figure 4.12(a) is the solution of (4.41), f
(
τ̃ , q, S̃

)
, minus the solution

of the (4.60), f
(
q, S̃
)

, for τ̃ = {5, 10, 15, 20, 25} with µ̃ = 0.04, σ̃ = 0.4 and l = 1.

Figure 4.12(b) is the solution of (4.41), f
(
τ̃ , q, S̃

)
, for τ̃ = {20, 40, . . . , 200} with

q = 1, µ̃ = 0.06, σ̃ = 0.25 (β = −.92) and l = 1.

with

f (0, q, Y ) = −e−qeY , (4.78)

f (τ̃ , 0, Y ) = −1. (4.79)

Equation (4.77) is essential the heat equation with an advection term and can be

solved using a Fourier transformation. This yields the solution

f (τ̃ , q, Y ) =
−1

σ
√

2πτ̃

∫ ∞
−∞

exp

(
−qe(Y−p) −

(
µ̃− 1

2
σ̃2
)
τ̃

2σ̃2
+ p(

1

2
− µ̃

σ̃2
)− p2

2σ̃2τ̃

)
dp.

(4.80)

We have not been able to find an analytic expression for the integral in (4.80) but we

can solve it numerically using a quadrature method (see Press et al., 2009). Up to

some large τ̃ the solutions of (4.41), (4.74) and (4.77) agree in the S̃ → 0 (Y → −∞)

limit.

A natural question that arises is what is the situation if the values of µ̃ and σ̃ do not

comply with (4.65)? Figure 4.12(b) shows such a case (corresponding to β = −.92),

and it is very clear (particularly when compared with previous results), that a time-

independent state is not being approached, rather that the non-negligible valuation is

confined to a diminishingly small regime, close to S̃ = 0.
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4.3.2 Perpetual solution for large q

To conclude our examination of the perpetual problem we shall look at the case of

large q. Examination of figure 4.9 suggests that as q is increased the solutions tend to

collapse on to a single distribution (a conclusion supported by a number of numerical

experiments conducted). We have seen in figure 4.10 that K (q) → 0 as q → ∞.

Further to that, examining the non-linear term we find

lim
q→∞

 f
(
q, S̃
)

f
(
q − 1, S̃

)
→ 1, (4.81)

which was backed up numerically. Using (4.81) we can reduce (4.60) to a linear ODE

which is now independent of q,

µ̃S̃fS̃

(
S̃
)

+
1

2
σ̃2S̃2fS̃S̃

(
S̃
)
−
elS̃f

(
S̃
)

S̃ + l

(
l

S̃ + l

) l
S̃

= 0, (4.82)

in which we shall refer f
(
S̃
)

as the q → ∞ solution, with boundary conditions

f
(
S̃ = 0

)
= −1 and fS̃

(
S̃ →∞

)
→ 0, as used on the non-linear ODE previously. We

have been unable to find an analytic solution for (4.82) but it is straightforward to solve

numerically using finite-difference methods (for example). Remembering the explicit

form of the optimal control given by (4.62), we can see that under the assumption of

(4.81) the optimal trading strategy is given by

δ∗
(
S̃
)

=
1

S̃
ln


(
S̃ + l

)
l

− 1. (4.83)

The solution is shown in figure 4.13. In figure 4.13(a) we can see that as q is increased

the value function solutions tend to the q →∞ solution. The optimal trading strategy

is given by (4.83) and can be seen in figure 4.13(b). We notice how, as with the value

function, the solutions of the optimal trading strategies converge to the q →∞ optimal

trading strategy as q is increased. It can be seen that the solution for δ∗ at S → 0+ is

near zero for the q → ∞ solution while singular for the solutions for finite q. This is

expected given

δ∗
(
S̃ → 0

)
= lim

S̃→0+

 1

S̃
ln


(
S̃ + l

)
l

− 1

 =
1

l
− 1. (4.84)

If we were to increase q significantly, the coefficient of the singularity (4.67) in this

limit decreases towards zero, in line with our observations above regarding K(q →∞).
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Figure 4.13: Perpetual solution for large q. In figure 4.13(a) the solid line represents
the solution of (4.82) while the broken lines represent the solutions of (4.60) for q =
{10, 20, 30, 40, 50}, beginning with q = 10 which is furthest from the q →∞ solution.
We can see that as q is increased the solutions converge to the q → ∞ solution. The
same can be seen for the optimal strategy in figure 4.13(b). The parameter values
used: µ̃ = 0.04, σ̃ = 0.4 and l = 1.

4.4 Optimal liquidation of mean-reverting assets

In this section we consider using a mean-reverting diffusion process for the asset price,

so as to emphasise the adaptability and advantages of using numerical methods to

solve this class of problem. The process we shall use is the CIR process, which was

first suggested in 1985 by Cox et al. (1985) as an extension to the Vasicek (1977)

model. The attractiveness of the CIR model is its avoidance of the possibility of

negative values, assuming the Feller (1951) condition is satisfied (which we discuss

below). It was originally suggested for the modelling of interest rates but has since

been suggested for other models such as stochastic volatility models and, of particular

interest to us for this framework, commodities (see Linetsky, 2004) and futures (see

Schwartz, 1997).

4.4.1 Formulating model for asset driven by CIR process

An asset S(t) following the CIR process solves the following stochastic differential

equation

dS(t) = κ (ζ − S(t)) dt+ σ
√
S(t)dW (t) (4.85)
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with κ as the mean-reversion speed, ζ is the long-term mean asset price and σ
√
S(t) is

the absolute volatility. Following the same problem formulation as we have in section

4.1 but with the CIR process for the asset price, we can derive a similar HJB equation

ut(t,X, q, S) + κ (ζ − S)uS(t,X, q, S) +
1

2
σ2SuSS(t,X, q, S)

+sup
δ

[
λe−lδ (u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S))

]
= 0, (4.86)

with initial conditions (4.8) and (4.9).

Using the same ansatz form of the solution as used for geometric Brownian motion,

given by (4.29), and the change of variables

τ̃ = λ (T − t) , S̃ = Sγ, ζ̃ = ζγ, κ̃ =
κ

λ
, σ̃ = σ

√
γ

λ
(4.87)

we can find the optimal strategy in terms of the value function, and thus reduce (4.86)

to the dimensionless non-linear PDE:

−fτ̃
(
τ̃ , q, S̃

)
+ κ̃

(
ζ̃ − S̃

)
fS̃

(
τ̃ , q, S̃

)
+

1

2
σ̃2S̃fS̃S̃

(
τ̃ , q, S̃

)

−
elS̃f

(
τ̃ , q, S̃

)
S̃ + l

 lf
(
τ̃ , q, S̃

)
(
S̃ + l

)
f
(
τ̃ , q − 1, S̃

)


l
S̃

= 0, (4.88)

with initial conditions (4.42) and (4.43). Note that the optimal trading strategy takes

the same form as (4.44).

For the CIR model it is necessary to be careful when establishing boundary con-

ditions as the concept of positivity and non-negativity come into play, the difference

being the inclusion of zero to the asset-price domain. Under certain conditions the

CIR model is defined on a strictly positive domain, while when these conditions are

not satisfied the CIR model has a positive probability of reaching zero. The boundary

behaviour of (4.85) has been studied in great detail by Feller (1951) in which he found

that the CIR model is defined on a positive domain if (in our notation)

2κ̃ζ̃ ≥ σ̃2. (4.89)

Equation (4.89) is satisfied for most realistic parameter values applicable to finance,

and as such we shall focus only on this regime in this thesis. However, it has been

found in previous studies, namely Aquan-Assee (2009), that when the Feller condition
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is not satisfied the boundary conditions for zero and infinite boundary conditions are

still appropriate and provide consistent and convergent solutions.

For the boundary condition at S̃ = 0 we implement the degenerate form of the

PDE (4.88) resulting in

− fτ̃ (τ̃ , q, 0) + κ̃ζ̃fS̃(τ̃ , q, 0) = 0, (4.90)

which could be seen as the boundary behaviour, as S̃ never reaches zero. Indeed, (4.90)

implies that f(τ̃ , q > 0, S̃ = 0) approaches zero as τ̃ increases since fS̃(τ̃ > 0, q, 0) > 0,

then as S̃ → 0, δ∗ = O( 1
S̃

), which we will see shortly is consistent with the numerics.

For the case of S̃ → ∞ we found from numerical investigation that the same

boundary condition as used for the geometric Brownian motion case, that being a

Neumann condition given by (4.52), is consistent and satisfactory.

4.4.2 Numerical results

Several of the properties found in the results for the geometric Brownian motion model

are mirrored in the CIR model and thus we shall not repeat them. However a unique

property for the mean-reverting process not found in the geometric Brownian motion

case was that of a trader becoming risk-seeking. If we examine the graph of the

value function given in figure 4.14(a) we see that the function is not strictly concave.

Interestingly this occurs when the asset price increases past the long-term mean, ζ̃. In

this case the asset price is expected to return back to ζ̃, with some volatility of course.

As the asset price is due to decrease the trader will try to sell the asset before it does

so. His trading strategy is thus to change the asking price drastically in comparison to

the geometric Brownian motion model where the asset value was always expected to

increase in the long run. This results in a negative δ∗ which implies selling the asset

at a discount, but at a price higher than ζ̃. This change in asking price results in the

risk-seeking behaviour we observe around the long-term mean; this trading strategy

can be seen in figure 4.14(b).

We can observe that the optimal trading strategy grows significantly as S̃ ap-

proaches zero (in line with our comments above). This is due to the mean-reverting

characteristic of the asset price. When S̃ is near zero the trader expects the future

value of the asset to revert to the long-term mean, ζ̃. He will thus ask for a large
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Figure 4.14: Value function and optimal trading strategy under CIR process at time
τ̃ = 2. The parameters take the values: q = 1, ζ̃ = 10, κ̃ = 2.5, σ̃ = 0.8 and l = 25.
Note the value function is not concave over the whole domain and as such the trader
switches from being risk-averse to risk-seeking.

multiple of the current asset price. Figure 4.16, which is the solution of (4.88) for

S̃ = 0, reinforces the explanation of why the optimal trading strategy increases in this

region and also as τ̃ increases.

The risk-seeking behaviour observed in figure 4.14(a) is more pronounced for higher

values of the exponential-decay parameter, l, and the speed of reversion, κ̃. This is

due to the trader decreasing his asking price more predominantly as the probability

of execution decreases more rapidly for larger l and the asset price decreases faster

to the long-term mean ζ̃ for large values of κ̃. This can be seen in figure 4.15 which

compares the results of varying the parameters ζ̃, κ̃ and l, against a base case of

ζ̃ = 10, κ̃ = 2.5, and l = 25, for the value function (figure 4.15(a)) and asking price

(figure 4.15(b)). As noted above we see the sharp change in asking price about the

long-term mean, ζ̃. We also see the asking price as S̃ → 0 is near the long-term mean

and as such the optimal strategy, δ∗, is asymptotically large, as discussed previously.

The risk-seeking behaviour is also more pronounced for larger values of the time-to-

expiry, τ̃ , as the asset has more time to revert back to the long-term mean, κ̃.

Similar to the case under geometric Brownian motion, the CIR model has inter-

esting characteristics close to the terminal time which we shall investigate in the next

section. This is of particular interest as Bhave and Libertin (2013) empirically find
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Figure 4.15: Value function and asking price under varying parameters for CIR process
at time τ̃ = 2. The base case parameters take the values: q = 1, ζ̃ = 10, κ̃ = 2.5, σ̃ =
0.8 and l = 25.

mean-reverting patterns in equities over short-time scales. However, unlike the ge-

ometric Brownian motion model, the CIR model does not tend to a perpetual-type

solution as τ̃ →∞, but rather the value diminishes towards zero, as evidenced by fig-

ure 4.16. Therefore we cannot construct a non-trivial perpetual solution in the same

sense as we could for the geometric Brownian motion case. From a financial perspec-

tive, when S̃ is small (and less than ζ̃) the trader asks for a relatively high price for

the asset given it is expected to increase and revert back to the its long-term mean, ζ̃.

The trader’s value function thus approaches zero as τ̃ increases.

4.4.3 Small-time-to-termination solution

To examine the small-τ̃ solution we use the same perturbation method as used in

section 4.2. Substituting (4.55) into (4.88) we collect the O (τ̃ 0) and O (τ̃ 1) terms in

which we find the values for f1

(
q, S̃
)

and f2

(
q, S̃
)

to be

f1

(
q, S̃
)

=

(
−κ̃
(
ζ̃ − S̃

)
q +

1

2
σ̃2S̃q2 − S̃

S̃ + l

(
l

S̃ + l

) l
S̃

)
f0

(
q, S̃
)

(4.91)
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Figure 4.16: Value function at S̃ = 0. The parameters take the values: q = 1,

ζ̃ = 10, κ̃ = 2.5, σ̃ = 0.8 and l = 25. Notice the approach of f
(
τ̃ , q, S̃ = 0

)
to zero as

τ̃ increases, which reinforces the growth in δ∗ as S̃ → 0 as seen in figure 4.14(b).

and

f2

(
q, S̃
)

=
1

2

(
κ̃
(
ζ̃ − S̃

)
f1S̃

(
q, S̃
)

+
1

2
σ̃2S̃f1S̃S̃

(
q, S̃
)
− 1

S̃ + l

(
l

S̃ + l

) l
S̃

(4.92)

×
((

l + S̃
)
f1

(
q, S̃
)
− lf1

(
q − 1, S̃

)
e−S̃
))

As for the case of geometric Brownian motion, f1S̃ and f1S̃S̃ are the first and second

derivative of f1 respectively which can both be easily calculated analytically; therefore

(4.91) and (4.92) have fully analytic solutions. In the limit as S̃ → 0, both f1 and f2

go smoothly to a constant and hence are finite. A comparison of the full numerical

solution against a two-term and three-term asymptotic can be found in figure 4.17.

We see the asymptotic approximation is accurate for τ̃ ∼ O (1). Note that in this

case, both |f1| and |f2| are numerically large, which explains the initial rapid variation

in values close to the terminal time, especially as S̃ → 0. It is also found (verified

numerically) that as S̃ increases the signs of f1 and f2 change, as do the signs of the

first derivatives with respect to S̃, which explains the risk-seeking behaviour observed

previously (given a risk-averse trader’s value function should have strictly negative first

derivative, as discussed in section 2.3). This does not occur under geometric Brownian

motion.
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Figure 4.17: Comparison of full-numerical value function and optimal trading strategy
against a two-term and three-term asymptotic expansion for S̃ = ζ̃ for the CIR model.
The parameters take the values: ζ̃ = 10, κ̃ = 2.5, σ̃ = 0.8 and l = 5.

4.5 Summary

In this chapter we have developed a novel approach to the problem involving optimal

trading at the tactical level. We suggest using geometric Brownian motion as the driv-

ing process for the asset along with an asset proportional control parameter (trading

strategy) and asset proportional exponential-decay parameter. This is distinct from

the standard Brownian motion and non-proportional control and exponential-decay

parameter used by Guéant et al. (2012b). The trading strategies we found were vari-

able with respect to the asset price, as opposed to the trading strategies found by

Guéant et al. (2012b) which were found to be constant for all asset values. The former

is a novel characteristic we feel would be more realistic in the finance industry.

Focusing on the problem, we reduced the four-dimensional HJB equation to a

three-dimensional non-linear PDE with explicit non-linear term by finding an explicit

form of the optimal control in terms of the reduced variable function. We also used

a change of variables (non-dimensionalisation) which eliminated two parameters from

the model. We used numerical methods to solve this problem, noting that the three-

dimensional PDE approach is much less computationally expensive than solving the

full HJB equation and is thus much more attractive from an algorithmic trading per-

spective.

We investigated both the small-time-to-termination solution and the perpetual

solution, which provided us with a deeper understanding of the solution topology.
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The small-τ̃ solution provided trading strategies which could be calculated extremely

quickly and thus would be especially useful for a high-frequency trading framework

in which little time is left to liquidate the portfolio and a quick solution is needed.

The perpetual solution on the other hand provided trading strategies which could

be implemented for a trader with a long time remaining before expiry. We found a

constraint for the perpetual case similar (but different from) that found by Guéant

et al. (2012b) under standard Brownian motion.

Solving this problem numerically has led to the development of a methodology

which can easily be generalised. This was highlighted in section 4.4 by changing

the diffusion process for the asset price from a geometric Brownian motion to a

mean-reverting process, that being the CIR process. Implementing other such mean-

reverting processes such as the Uhlenbeck and Ornstein (1930) process, the Dixit and

Pindyck (1994) process or the Schwartz (1997) process would also be straightforward

using our numerical methods. As well as changing the stochastic process driving the

asset price, numerical methods allow us to expand on this problem in many forms to

make it more mathematically interesting and financially realistic. This will be seen in

the coming chapters.



Chapter 5

Extension of Guéant et al. (2012b)

to Multiple Underlyings

In this chapter we shall extend the framework of Guéant et al. (2012b), who consider

liquidation for a single underlying, to a trader who has a basket of correlated assets to

liquidate. Considering multiple underlyings, in which the correlation is accounted for,

is critical in optimal trading from a risk-management perspective. Many algorithmic

trading strategies prefer to have little or no risk overnight or over weekends. With

correlated assets the risk in portfolios can sometimes be diversified or theoretically

eliminated completely, resulting in reduced risk even if positions are held outside of

market hours.

Guéant and Lehalle (2013) suggest the use of multiple correlated assets in the

appendix of their paper, simply deriving an HJB equation, leaving much room for

analytic and numerical analysis. Our contribution lies in reducing an HJB equation

to a system of non-linear ODEs before further reducing it to a system of linear ODEs

by introducing a novel parameter constraint. We solve these numerically and discuss

the resultant solutions. After solving a small-time solution, we examine the perpetual

case in which the non-linear ODE is simply a non-linear difference equation, while the

linear ODE is a simple linear difference equation. Albeit tedious and time consuming,

the latter difference equation can be solved analytically by recursion. We can thus

verify our numerics with the analytic counterpart.

118
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5.1 Problem formulation for N underlyings

We follow the same problem formulation as discussed in section 3.5 but developed

for multiple assets. We consider a trader who wishes to maximise his expected utility,

given a portfolio of assets to liquidate, which contains various assets, before a specified

terminal time, T . We assume at time t = 0 that the trader starts with an initial inven-

tory of qi(0) assets of asset i, in which qi takes positive integer values, and an initial

wealth X(0). Let (Ω,F ,P) be a probability space with a filtration, (Ft, t ∈ [0, T ]).

We assume the asset’s reference price, Si(t), for asset i follows a standard Brownian

motion, and so the diffusion process is defined as

dSi(t) = µidt+ σidWi(t) (5.1)

where µi is the drift of asset i, σi is the volatility of asset i, and Wi(t) is a Wiener

process which is Ft measurable with

E[Wi (t)Wj (t)] = ρijt, (5.2)

in which ρij = ρji, −1 ≤ ρij ≤ 1, and ρii = 1, implying the various assets are corre-

lated for ρij 6= 0.

Correlated assets are seen throughout finance and are used every day by investors,

traders and hedge funds for risk-management. We have included figure 5.1 for a

reference of typical correlation between bonds and stocks1. We can see a strong pos-

itive correlation of 0.96 between LT.NS (Larsen and Toubro Ltd which is an Indian

company that specializes in the engineering, I.T. and shipbuilding industries) and

SBIN.NS (State Bank of India). This strong correlation means that these assets will

likely move in a similar direction. A strong negative correlation of -0.80 can be seen

between SUNPHARMA.NS (Sun Pharmaceutical Ltd which is a manufacturer of sun

care products in India) and ONGC.NS (Oil and Natural Gas Corporation Ltd which

is an Indian state-owned oil and gas company). We expect these assets to have op-

posite movements. A very weak (almost negligible) correlation of 0.02 can be seen

between MARUTI.NS (Maruti Suzuki India Ltd which is India’s largest passenger car

company) and ONGC.NS (Oil and Natural Gas Corporation Ltd). These companies

1Obtained from http://www.marketcalls.in/trading-lessons/correlation-study-on-nifty-
stocks.html on 30/09/14



CHAPTER 5. GUÉANT ET AL. (2012B) WITH MULTIPLE UNDERLYINGS 120

Figure 5.1: Examples of correlation between securities and bonds.

would be expected to move independently of each other and a movement in one would

be almost useless in forecasting a movement in the other.

The trader will continuously post orders into the ask side of the limit-order book.

For asset i he will post orders for price Sai (t) which is δi = δi(t,X, q1, . . . , qN , S1, . . . , SN)

greater than the asset value Si(t), such that

Sai (t) = Si (t) + δi, (5.3)

which is similar to that as used previously by Guéant et al. (2012b), rather than

Sai (t) = Si (t) (1 + δi) as used previously in chapter 4.

Asset sales follow a Poisson process, Ni(t), for asset i, with time-dependent inten-

sity, which is Ft measurable and independent of both Wj(t) and Nj (t). The inventory

process is thus

dqi(t) = −dNi(t). (5.4)

The Poisson processes are uncorrelated and, as discussed in section 2.1, the probability

of more than one jump occurring in any infinitesimal small instant ∆t is O (∆t2) and

thus negligible to leading order. The dynamics of the wealth is given by

dXi(t) =
N∑
i=1

(Si(t) + δi) dNi(t), (5.5)

where Ni(t) is the same Poisson process as before. Ni(t) has intensity Λi(δi) which

takes the form:

Λi(δi) = λie
−li(Sai −Si) = λie

−liδi (5.6)

for some positive constants λi and li. This is consistent with that previously used by

Guéant et al. (2012b) but varies from the intensity implemented in chapter 4.



CHAPTER 5. GUÉANT ET AL. (2012B) WITH MULTIPLE UNDERLYINGS 121

The objective is to liquidate this portfolio before some final time T while maximis-

ing the trader’s utility. The utility we seek to maximise takes the form of a negative

exponential function and as such the trader has CARA. We define our value function

u(t,X, q1, . . . , qN , S1, . . . , SN) = sup
δ(t)∈A

E
[
−e−γ(X(T )+

PN
i=1 qi(T )Si(T ))

]
, (5.7)

with δ = [δ1, . . . , δN ]>.

Given the optimisation problem of (5.7), an HJB equation can be derived by ap-

plying the Bellman (1957) principle of optimality and using Itô’s lemma:

ut +
N∑
i=1

µiuSi +
N∑
i=1

N∑
j=1

1

2
ρijσiσjuSiSj+

N∑
i=1
qi>0

sup
δi

[
λie
−liδ (u(t,X + Si + δi, q1 . . . , qi − 1, . . . , qN , S1, . . . , SN)− u)

]
= 0, (5.8)

with u = u(t,X, q1, . . . , qN , S1, . . . , SN) and conditions

u(T,X, q1, . . . , qN , S1, . . . , SN) = −e−γ(X(T )+
PN
i=1 qi(T )Si(T )), (5.9)

u(t,X, qi = 0, S1, . . . , SN) = −e−γX(T ) ∀ i. (5.10)

Guéant and Lehalle (2013) provide a derivation of (5.8) and a verification theorem.

We cannot implement the same methodology as used in Guéant et al. (2012b) for

a single underlying, as discussed in section 3.5, to reduce the HJB equation (5.8) to a

linear ODE unless we impose stricter conditions. Therefore, we shall first investigate

the general case before introducing a case involving a novel parameter constraint.

For the general case we assume an ansatz form of the solution

u (t,X, q1, . . . , qN , S1, . . . , SN)) = −e−γ(X(T )+
PN
i=1 qi(T )Si(T ))f (t, q1, . . . , qN) (5.11)

Writing f = f (t, q1, . . . , qN) we use this ansatz solution to reduce (5.8) to:

ft +

(
N∑
i=1

N∑
j=1

1

2
ρijσiσjqiqjγ

2 −
N∑
i=1

µiqiγ

)
f

−
N∑
i=1
qi>0

λiγf

γ + li

(
lif (t, q1, . . . , qN)

(γ + li) f (t, q1, . . . , qi − 1, . . . , qN)

) li
γ

= 0 (5.12)

by finding the form of the optimal strategy

δ∗i =
1

γ
ln

(
(γ + li) f (t, q1, . . . , qi − 1, . . . , qN)

lif (t, q1, . . . , qN)

)
, (5.13)
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and substituting it into the HJB equation (5.8). Equation (5.12) has initial conditions:

f (t = T, q1, . . . , qN) = 1, (5.14)

f (t, qi = 0) = 1 ∀ i. (5.15)

If we restrict the exponential-decay factor li such that li = l ∀ i we can further

reduce the HJB equation (5.8) to a linear ODE. In the single asset case, studied by

Guéant et al. (2012b), there is one limit-order book and thus one exponential-decay

parameter. In making the restriction li = l ∀ i we assume the decay of each order

book is equal, which could be the case for similar stocks, such as constituents of an

index.

Let us assume li = l ∀ i. We can then introduce the ansatz solution

u (t,X, q1, . . . , qN , S1, . . . , SN)) = −e−γ(X(T )+
PN
i=1 qi(T )Si(T ))g (t, q1, . . . , qN)−

γ
l . (5.16)

Using this ansatz solution we can reduce (5.8) to:

−gt +

(
N∑
i=1

N∑
j=1

1

2
ρijσiσjqiqjγl −

N∑
i=1

µiqil

)
g (t, q1, . . . , qN)

−
N∑
i=1
qi>0

λi

(
l

(γ + l)

)1+ l
γ

g (t, q1, . . . , qi − 1, . . . , qN) = 0, (5.17)

by finding the form of the optimal strategy

δ∗i =
1

l
ln

(
g (t, q1, . . . , qN)

g (t, q1, . . . , qi − 1, . . . , qN)

)
+

1

γ
ln

(
(γ + l)

l

)
, (5.18)

with

g (t = T, q1, . . . , qN) = 1, (5.19)

g (t, qi = 0) = 1 ∀ i. (5.20)

For the case of the non-linear ODE (5.12), if we were to set li = l ∀ i and introduce

a function such that

g (t, q1, . . . , qN) = f (t, q1, . . . , qN)−
γ
l (5.21)

we could reduce the non-linear ODE (5.12) in f to a linear ODE (5.17) in g. Thus

(5.21) is the link between the functions f and g. The focus of the remainder of this

chapter is on the two-dimensional, N = 2, case.
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5.1.1 Problem formulation for two underlyings

For N = 2 and τ = T − t, so we are now working forwards in τ rather than backwards

in t, equation (5.12) and (5.17) reduce to

−fτ (τ, q1, q2) +
γ

l
β (q1, q2) f (τ, q1, q2)− λ1γf (τ, q1, q2)

γ + l1

(
l1f (τ, q1, q2)

(γ + l1) f (τ, q1 − 1, q2)

) l1
γ

−λ2γf (τ, q1, q2)

γ + l2

(
l2f (τ, q1, q2)

(γ + l2) f (τ, q1, q2 − 1)

) l2
γ

= 0

(5.22)

and

gτ (τ, q1, q2) + β (q1, q2) g (τ, q1, q2)− λ1

(
l

(γ + l)

)1+ l
γ

g (τ, q1 − 1, q2)

−λ2

(
l

(γ + l)

)1+ l
γ

g (τ, q1, q2 − 1) = 0 (5.23)

respectively, with the restriction of l1 = l2 = l needed for (5.23) to exist, with

β (q1, q2) =
1

2
σ2

1q
2
1γl +

1

2
σ2

2q
2
2γl + ρσ1σ2q1q2γl − µ1q1l − µ2q2l (5.24)

and boundary conditions

f (τ = 0, q1, q2) = g (τ = 0, q1, q2) = 1, (5.25)

f (τ, q1 = 0, q2 = 0) = g (τ, q1 = 0, q2 = 0) = 1, (5.26)

for both (5.22) and (5.23). If either q1 = 0 or q2 = 0 the respective qi − 1 term in

the ODE is neglected. When solving the non-linear ODE (5.22) the optimal trading

strategies take the form

δ∗1 (τ, q1, q2) =
1

γ
ln

(
(γ + l1) f (τ, q1 − 1, q2)

l1f (τ, q1, q2)

)
, (5.27)

δ∗2 (τ, q1, q2) =
1

γ
ln

(
(γ + l2) f (τ, q1, q2 − 1)

l2f (τ, q1, q2)

)
, (5.28)

while for the linear ODE (5.23) the optimal strategies take the form

δ∗1 (τ, q1, q2) =
1

l
ln

(
g (τ, q1, q2)

g (τ, q1 − 1, q2)

)
+

1

γ
ln

(
(γ + l)

l

)
, (5.29)

δ∗2 (τ, q1, q2) =
1

l
ln

(
g (τ, q1, q2)

g (τ, q1, q2 − 1)

)
+

1

γ
ln

(
(γ + l)

l

)
. (5.30)
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As far as we are aware analytic solutions for these ODEs do not exist and thus they

must be solved numerically. For (5.22) we used the iterative procedure as outlined in

section 2.6.3 for each {q1, q2}. This iterative method is constrained to O (∆τ) which is

why it can be unfavourable. For (5.23) we used the classic fourth-order explicit Runge-

Kutta method, as outlined in section 2.6.2 and discussed further in section 3.5.1 for

systems of ODEs. This method has an error O (∆τ 4) which is more favourable over

the iterative method, however we are constrained to l1 = l2 = l for this method. Both

O (∆τ) for the iterative method and O (∆τ 4) for the Runge-Kutta method were found

for (5.22) and (5.23) respectively, as can be seen in table 5.1.

‘

Table 5.1: Convergence of iterative scheme and Runge-Kutta fourth-order scheme

N ∆τ f (τ = 1, q1 = 1, q2 = 1)−γ/l ratio g (τ = 1, q1 = 1, q2 = 1) ratio

11 0.100000 10.4662419795 NA 8.1917520759 NA
21 0.050000 9.17979422942 NA 8.1917946177 NA
41 0.025000 8.65506463578 2.45 8.1917971298 16.94
81 0.012500 8.41641215446 2.20 8.1917972824 16.46
161 0.006250 8.30242508412 2.09 8.1917972918 16.23
321 0.003125 8.24670021424 2.05 8.1917972924 16.11

N is the number of time points with ∆τ as the length of the intervals between respective
points. We have set τ = 1, µ1 = µ2 = 0.05, σ1 = σ2 = 3, γ = 0.5, λ1 = λ2 =
0.3 and l1 = l2 = l = 0.3. We can see the iterative scheme exhibits linear convergence
while the Runge-Kutta scheme exhibits quartic convergence.

5.1.2 Numerical results

In the case of q1 > 0, q2 = 0 or q1 = 0, q2 > 0 the system simplifies down to the single

asset problem in q1, S̃1 and q2, S̃2 respectively, in which the results of Guéant et al.

(2012b), discussed in section 3.5, hold. Thus we shall numerically examine the case

of q1, q2 > 0. In the next chapter we extend the framework of chapter 4 to multiple

underlying assets. We do a thorough comparative analysis when parameter values are

asymmetric. Many of the results in the standard Brownian motion case are analogous

to that of the geometric Brownian motion case (in terms of how they behave for varying

parameters) as discussed in the next chapter and thus we will not examine them here.

Here we shall focus on the effect of the correlation.

Having a portfolio of correlated assets to reduce risk was first examined by Markowitz
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(1959) in what became known as Modern Portfolio Theory (MPT). Markowitz intro-

duced the concept of ‘efficiency’ and ‘market portfolios’ in which he showed that a

combination of correlated assets could provide a higher expected return with less

volatility than holding individual assets. From MPT we expect a trader with nega-

tively correlated assets to want a balance of assets in his portfolio, such that q1 = q2,

while for positively correlated assets the trader would seek an unbalanced portfolio.

We will focus our attention to the optimal trading strategy for the various regimes

of the correlation parameter, ρ. For symmetric parameter regimes

δ∗1 (τ, q1, q2) = δ∗2 (τ, q1, q2)

and so we only need to focus on either δ∗1 or δ∗2. The main interest is how the optimal

strategy varies for various values of the inventory, {q1, q2}, under different correlation,

ρ, regimes. The parameters we choose are analogous to those of the single asset case

of Guéant et al. (2012b), but used for both assets (given we examine a symmetric

regime).

For the case of ρ = 0, numerical simulations indicated conclusively that there is

no difference in the optimal trading strategies for asset one, δ∗1, for various q2 (and

vice-versa). This was pre-supposed given the randomness driving the asset prices, as

well as the jump process driving asset sales, are independent for asset one and two.

We shall return to this below with analytic analysis when examining the steady-state.

For non-zero ρ, the portfolio is more risky for positive ρ and less risky for negative

ρ. We thus expect lower optimal trading strategies for ρ > 0 and higher optimal

trading strategies of ρ < 0. This can be seen in figure 5.2. Here we have plotted

curves of δ∗1 against time for various {q1, q2}. The curves that initially group together

correspond to constant q1, with q2 being varied which corresponds to their divergence.

If ρ was zero than we would see only two curves, one corresponding to q1 = 1 for

various q2 (which lie on top of each other) while the other would correspond to q1 = 2,

again for various q2.

We see in figure 5.2(a) how the optimal trading strategies of asset one, δ∗1, increase

in q2 for constant q1 = 1 (top three curves) as well as increase in q2 for constant q1 = 2

(bottom three curves) when ρ is negative. This is because the trader can now hedge

his risk so a more balanced portfolio is preferred. In the case of ρ > 0, as in figure
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(a) δ∗1 against time for ρ < 0
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(b) δ∗1 against time for ρ > 0

Figure 5.2: Optimal trading strategy for asset one, δ∗1, against time for various com-
binations of assets for various correlations. Negative ρ results in higher asking prices
while positive ρ results in lower asking prices, with the differences between asking
prices diverging as time remaining increases. The parameter values used are symmet-
ric, taking the values µ1 = µ2 = 0.0, σ1 = σ2 = 0.3, λ1 = λ2 = 0.1, l = 0.3, γ = 0.05
and ρ = ±0.75.

5.2(b), the opposite is true. The trader now wants to sell his inventory of asset one

quicker if he holds more of asset two as to reduce the risk in the portfolio given the

positive correlation of the portfolio. We see that the solutions are similar near the

terminal time and diverge as the time remaining increases. Similar results occur if we

were to examine δ∗2.

As with the single underlying case, discussed in section 3.5, we see the trading

strategies are asset-price independent. This means the additional amount we add to

the asset does not dependent on its current price, which was one of the motivations

for extending the framework discussed in section 3.5, that of Guéant et al. (2012b).

5.2 Small-time-to-termination solution

In this section we shall examine the small-time-to-termination solution of (5.23). We

choose the l1 = l2 = l case as the l1 6= l2 case leads to the non-linear ODE (5.22) and

small-time-to-termination investigation of this problem is similar (in terms of the non-

linear term) to that we will perform in section 6.3, which is a multiple asset extension

of chapter 4 (geometric Brownian motion driving the asset price). Given what we have
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learnt from previous small-time-to-termination examination of this kind of problem,

see section 4.2, we decide to perform a non-dimensionalisation. We did not perform a

non-dimensionalisation previously as we wanted our solutions to be comparable with

Guéant et al. (2012b) who do not work with dimensionless variables.

The non-dimensionalisation we use is

τ̃ = λ1τ, µ̃i =
µi

Si,0λ1

, σ̃i =
σi

Si,0
√
λ1

, λ =
λ2

λ1

, S̃i = Siγ, l̃ =
l

γ
(5.31)

with Si (0) = Si,0 for i ∈ {1, 2}, which is assumed known. Using (5.31) with (5.23) we

arrive at

gτ̃ (τ̃ , q1, q2) + β̃ (q1, q2) g (τ̃ , q1, q2)−
 l̃(

1 + l̃
)
1+l̃

g (τ̃ , q1 − 1, q2)

−λ
 l̃(

1 + l̃
)
1+l̃

g (τ̃ , q1, q2 − 1) = 0 (5.32)

with

β̃ (q1, q2) =
1

2
S̃2

1,0σ̃
2
1q

2
1 l̃+

1

2
S̃2

1,0σ̃
2
2q

2
2 l̃+ρS̃1,0S̃2,0σ̃1σ̃2q1q2l̃− S̃1,0µ̃1q1l̃− S̃2,0µ̃2q2l̃, (5.33)

in which we have eliminated the parameters γ and λ1 from the equations.

We perform a small-time perturbation in τ̃ which is a power series in τ̃ and takes

the form

g (τ̃ , q1, q2) = g0 (q1, q2) + τ̃ g1 (q1, q2) + τ̃ 2g2 (q1, q2) +O
(
τ̃ 3
)

(5.34)

with g0 (q1, q2) = g (τ̃ = 0, q1, q2) which is given by (5.25). Substituting (5.34) into

(5.32) we arrive with a recursive system for gi (q1, q2) which takes the form

gi (q1, q2) =− 1

i

(
β̃ (q1, q2) gi−1 (q1, q2)−

 l̃(
1 + l̃

)
1+l̃

gi−1 (q1 − 1, q2)

− λ
 l̃(

1 + l̃
)
1+l̃

gi−1 (q1, q2 − 1)

)
(5.35)

with gi (q1 > 0, q2 < 0) = gi (q1 < 0, q2 > 0) = 0 for i ≥ 1.

Figure 5.3 shows a comparison of the accuracy of the small-time solution, for various

numbers of terms, against the full-numerical solution of (5.23) solved using the Runge-

Kutta method. This is done for both g (τ̃ , q1, q2) (figure 5.3(a)) and δ∗1 (τ̃ , q1, q2) (figure
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(b) Asymptotic approximation for δ∗1 (τ̃ , q1, q2)

Figure 5.3: Examination of asymptotic approximation for small-time solution verses
the full-numerical solution for g (τ̃ , q1, q2) and δ∗1 (τ̃ , q1, q2). We compare a two-term,
three-term and four-term approximation against the numerical solution. The param-
eters we use are symmetric and correspond to those of figure 5.2, taking the values
q1 = q2 = 1, µ̃1 = µ̃2 = 0, σ̃1 = σ̃2 = 1.27, l̃ = 0.6, λ = 1, S̃1,0 = S̃2,0 = 1 and τ̃ = 30.

5.3(b)). We can see this is a very good approximation for τ̃ up to O (10). However,

this is parameter dependent which we now discuss.

Let us refer back to the single asset case which was solved analytically for q = 1.

This has solution (3.30) as discussed in section 3.5.1. It can be seen that this solution

grows exponentially in time, and the rate of its growth depends on the combination

1

2
lγσ2 − lµ, (5.36)

which is equal to β (1, 0) = β (0, 1), assuming symmetric parameters. Given the ODE

(5.23) has a similar form as the single asset case, as given by (3.21), but with a second

difference term, we would expect the solution of (5.23) to be of similar form (but more

complicated) to that of (3.31), with a similar exponential-growth term. Assuming this

true, the larger the value of (5.36) the worse we expect the accuracy of the power

series expansion in τ̃ . This is what we are finding (numerically) is the case and hence

the reason for the accurate solution found in figure 5.3(a) and figure 5.3(b) for τ̃ ≈ 30.

5.3 Steady-state case

The steady-state solution has previously been examined for the single asset case by

Guéant et al. (2012b). In this section we shall focus on the steady-state case but with



CHAPTER 5. GUÉANT ET AL. (2012B) WITH MULTIPLE UNDERLYINGS 129

the novel constraint li = l ∀ i as so we can relate it back to the single asset case of

Guéant et al. (2012b), and for that reason we also return to the dimensional variables

of section 5.1.1, rather than dimensionless that were just discussed in section 5.2.

We did consider the case of l1 6= l2 which results in a non-linear algebraic equation.

As neither an analytic solution can be found, nor interesting asymptotic analysis be

performed, it is of little benefit or interest to us.

The steady state of (5.23) is given by

β (q1, q2) g (q1, q2) = λ1

(
l

(γ + l)

)1+ l
γ

g (q1 − 1, q2) + λ2

(
l

(γ + l)

)1+ l
γ

g (q1, q2 − 1)

(5.37)

with

g (q1 = 0, q2 = 0) = 1 (5.38)

and β (q1, q2) given by (5.24). As with the non-steady case, if either q1 = 0 or q2 = 0

the respective qi − 1 term in the ODE is neglected. For the single asset case Guéant

et al. (2012b) find analytic solutions for the difference and as such we can implement

that to the case when either q1 = 0 or q2 = 0. If q1 > 0 and q2 = 0, equation (5.37)

has solution

g (q1, 0) =
ηq11

q1!

q1∏
i=1

1
lγσ2

1

2
i− lµ1

, (5.39)

while if q1 = 0 and q2 > 0, equation (5.37) has solution to

g (0, q2) =
ηq22

q2!

q2∏
i=1

1
lγσ2

2

2
i− lµ2

, (5.40)

with

ηi = λi

(
l

(γ + l)

)1+ l
γ

. (5.41)

It was found by Guéant et al. (2012b) for the single asset case, which is analogous to

our finding in section 4.3, that for a steady-state solution to exist

µ <
1

2
σ2γ (5.42)

must be satisfied. We find an analogous constraint for the multiple asset case, that

being

µi <
1

2
σ2
i γ for i ∈ {1, 2}. (5.43)
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For the multiple asset case another constraint was found, notably

β (q1, q2) =
1

2
σ2

1q
2
1γl +

l

2
σ2

2q
2
2γl + ρσ1σ2q1q2γl − µ1q1l − µ2q2l 6= 0. (5.44)

From (5.39) and (5.40) we can find an analytic expression for δ∗1 (q1, 0) and δ∗2 (0, q2)

which take the form

δ∗1 (q1, 0) =
1

l
ln

(
η1

l
2
γσ2

1q
2
1 − lµ1q1

)
+

1

γ
ln

(
γ + l

l

)
, (5.45)

δ∗2 (0, q2) =
1

l
ln

(
η2

l
2
γσ2

2q
2
2 − lµ2q2

)
+

1

γ
ln

(
γ + l

l

)
, (5.46)

respectively. From (5.45) and (5.46) we see that the optimal strategy is increasing in

λi and µi, decreasing in γ, q and σi and can be increasing or decreasing in l, depending

on whether δ∗i is positive or negative, as described in chapter 4.

We are yet to find a fully analytic solution for (5.37), however we can use recursive

methods to calculate analytic solutions at each {q1, q2}, albeit this can be quite tedious

and become quite complicated as {q1, q2} grow. We shall consider the case of {q1 =

1, q2 = 1}. From (5.37) we find

g (1, 1) =

(
η1η2

l
2
γσ2

1 − lµ1 + l
2
γσ2

2 − lµ2 + ρσ1σ2γl

)(
1

l
2
γσ2

1 − lµ1

+
1

l
2
γσ2

2 − lµ2

)
(5.47)

which results in

δ∗i (1, 1) =
1

l
ln

(
ηi

l
2
γσ2

i − lµi
×

1
2
γσ2

1 − µ1 + 1
2
γσ2

2 − µ2

1
2
γσ2

1 − µ1 + 1
2
γσ2

2 − µ2 + ρσ1σ2γ

)

+
1

γ
ln

(
γ + l

l

)
(5.48)

for i ∈ {1, 2}. Notice that if ρ = 0

δ∗i (1, 1) =
1

l
ln

(
ηi

l
2
γσ2

i − lµi

)
+

1

γ
ln

(
γ + l

l

)
=

1

l
ln

(
λi
l + γ

× 1
1
2
γσ2

i − µi

)
(5.49)

which is identical to the single asset case for q = 1, i.e. (5.45) with q1 = 1. This

indicates that δ∗1 (1, 0) = δ∗1 (1, 1) when ρ = 0 and thus when selling asset one the

trader asks for the same price regardless of whether he has one or no assets of asset

two remaining. Numerical simulations indicated conclusively that δ∗1 is independent of

q2, and δ∗2 is independent of q1, when ρ = 0. Considering again (5.48) but now for the
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case of ρ 6= 0. When ρ is positive this results in higher risk as there is less ability to

hedge, and from (5.48) we can see this lowers the value of δ∗i (1, 1). Contrastingly, for

ρ < 0 the trader can hedge his risk and as such (as seen in (5.48)) the trader asks for

a higher price for the asset. This is similar to the unsteady case, as seen in figure 5.2.

5.4 Summary

In this chapter we developed the work of Guéant et al. (2012b) and examined the

optimal trading strategy of a trader with various amounts of various assets (rather

than an amount of one asset) in which the assets are driven by correlated standard

Brownian motions. We began by deriving a general model for N correlated assets

before examining in detail the case of N = 2.

We reduced the resulting HJB equation to a non-linear ODE, and, with a novel

constraint that the exponential-decay factor of both limit-order books are equal, were

able to further reduce it to a linear ODE with a difference term. To solve the non-

linear ODE we used a standard iterative solver, while for the linear ODE we used a

higher-order Runge-Kutta method which results in O (∆t4) convergence (the standard

iterative solver had O (∆t) convergence). We found the correlation term generates

some interest, with results relating back to Modern Portfolio Theory (see Markowitz,

1959), in which a trader with positively correlated assets wants an unbalanced portfolio

in order to reduce risk while a trader with negatively correlated assets wants a balanced

portfolio so as to diversify the risk.

We preformed some interesting asymptotic analysis. We first examined a small-

time solution (which was not considered in the single asset case by Guéant et al.

(2012b)). Performing a non-dimensionalisation, in order to reduce the number of

parameters by two, we found a small-time-to-termination solution which was fully

analytic, easily calculated, and, for parameter regimes analogous to those examined

in Guéant et al. (2012b) for a single asset, resulted in highly accurate solutions. We

next examined a perpetual solution which can be solved analytically using recursion.

This solution provided analytic insight into the relationship between the strategy of

one asset and the amount of inventory of the other asset being held.



Chapter 6

Tactical Level Trading with

Multiple Underlyings under

Geometric Brownian Motion

The work in this chapter is in preprint format and ready for submission for review:

Blair, J., Johnson, P., and Duck, P. (2015). Analysis of optimal liquidation in limit-order

books for portfolios of correlated assets with stochastic volatility.

http://eprints.ma.man.ac.uk/2325.

In this chapter we expand on the work of chapter 4 by considering the case of

multiple correlated underlyings. Although the case of a single underlying asset is

dominant in the optimal trading literature, multiple underlyings were briefly discussed

in the appendix of Guéant and Lehalle (2013) in which they derived the HJB equation

for the case of standard Brownian motion for the asset price, as examined in the

previous chapter. Furthermore, in the optimal scheduling literature, Schied et al.

(2010) and Cartea et al. (2015b) both consider liquidation for a basket of assets with

multiple underlyings, as discussed in chapter 3.

Aside from the optimal trading literature, multiple underlyings have been examined

in some detail in other areas of financial mathematics. For example, the problem of

multiple underlyings under the Black and Scholes (1973) option pricing framework

is now well established (see for example Wilmott, 1998). Duck et al. (2014) extend

this further by examining perpetual options with multiple underlyings, using both

numerical and asymptotic analysis, and it is a similar framework which we use to

132
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examine the perpetual multi-dimensional case.

We shall thus extend our framework of chapter 4, firstly for the time-dependent

problem before examining the asymptotic characteristics of the steady-state problem.

6.1 Problem formulation for N underlyings

We follow a similar framework as discussed in chapter 4 but for the case of multiple

underlyings, as derived under standard Brownian motion in the previous chapter.

We consider a trader who wishes to maximise his expected terminal time utility,

given a portfolio of assets to liquidate, before a specified terminal time, T . We assume

at time t = 0 the trader starts with an initial inventory of qi(0) assets of asset i, in which

qi takes non-negative integer values implying we cannot short sell, and an initial cash

holding X(0). Let (Ω,F ,P) be a probability space with a filtration, (Ft, t ∈ [0, T ]).

We assume the reference price Si(t) of asset i follows a geometric Brownian motion,

and so the diffusion process is defined as

dSi(t) = µiSi(t)dt+ σiSi(t)dWi(t), (6.1)

with µi as the constant relative drift, σi as the constant relative volatility and Wi(t)

as a Wiener process which is Ft measurable, with

E[Wi (t)Wj (t)] = ρijt, (6.2)

in which ρij = ρji, −1 ≤ ρij ≤ 1, and ρii = 1, implying the various assets are corre-

lated for ρij 6= 0.

As in chapter 4, the trader will continuously post orders into the ask side of

the limit-order book. For asset i he will post orders for price Sai (t) which is δi =

δi(t,X, q1, . . . , qN , S1, . . . , SN) percent greater than the reference price Si(t), such that

Sai (t) = Si (t) (1 + δi) . (6.3)

Here we are using the same distinct approach as used in chapter 4 of modelling the

control as a percent of the asset price rather than an absolute amount, as implemented

in chapter 5.

Asset sales follow a Poisson process, Ni(t), for asset i, with time-dependent inten-

sity, which is Ft measurable and independent of Wj(t), for all j. The inventory process
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for asset i is thus

dqi(t) = −dNi(t). (6.4)

The Poisson processes are uncorrelated and, as discussed in section 2.1, the probability

of more than one jump occurring in any infinitesimal small instant ∆t is O (∆t2) and

thus negligible to leading order.

Each time an asset is sold, the trader’s cash increases by the amount that asset

was sold for, such that the dynamics of the cash is given by

dX(t) =
N∑
i=1

Si(t) (1 + δi) dNi(t), (6.5)

where Ni(t) is the same Poisson process as before. Therefore, when a trade occurs,

the values of qi(t) and X(t) change simultaneously, according to (6.4) and (6.5) re-

spectively. Ni(t) has intensity Λi(δi) which takes the form:

Λi(δi) = λie
−li
„
Sai −Si
Si

«
= λie

−liδi , (6.6)

for some positive constants λi and li. This is consistent with that of chapter 4 but

distinct from that of chapter 5.

The objective is to liquidate this portfolio before some final time T while maximis-

ing the trader’s utility, which takes the form of a CARA (negative exponential) utility

function. We define our value function

u(t,X, q1, . . . , qN , S1, . . . , SN) = sup
δ(t)∈A

E
[
−e−γ(X(T )+

PN
i=1 qi(T )Si(T ))

]
, (6.7)

where δ = [δ1, . . . , δN ]>, γ > 0 is the risk-aversion characterising the trader and

A ⊆ (−1,∞) is the set of admissible trading strategies. By the same argument as

discussed in section 4.1 the objective function, and by definition the value function, is

bounded in the set [−1, 0).

Given the optimisation problem of (6.7), an HJB equation can be derived by ap-

plying the Bellman (1957) principle of optimality and using Itô’s lemma:

ut +
N∑
i=1

µiSiuSi +
N∑
i=1

N∑
j=1

1

2
ρijσiσjSiSjuSiSj

+
N∑
i=1
qi>0

sup
δi

[
λie
−liδ (u(t,X + Si (1 + δi) , q1 . . . , qi − 1, . . . , qN , S1, . . . , SN)− u)

]
= 0,

(6.8)
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with u = u(t,X, q1, . . . , qN , S1, . . . , SN) and conditions:

u(T,X, q1, . . . , qN , S1, . . . , SN) = −e−γ(X(T )+
PN
i=1 qi(T )Si(T )), (6.9)

u(t,X, qi = 0, S1, . . . , SN) = −e−γX(T ) ∀ i. (6.10)

The derivation of (6.8) is analogous to the derivation of the single asset case which is

outlined in section 4.1.1, in which a verification theorem is shown, and thus shall not

be reiterated.

The above problem has dimension 2N + 1. The focus of the remainder of this

chapter will be the N = 2 case.

6.2 Problem formulation for two underlyings

For N = 2, let u = u (t,X, q1, q2, S1, S2). The HJB equation given by (6.8) is reduced

to

ut + µ1S1uS1 +
1

2
σ2

1S
2
1uS1S1 + µ2S2uS2 +

1

2
σ2

2S
2
2uS2S2 + ρσ1σ2S1S2uS1S2

+ sup
δ1

[
λ1e

−l1δ1 (u (t,X + S1 (1 + δ1) , q1 − 1, q2, S1, S2)− u (t,X, q1, q2, S1, S2))
]

+ sup
δ2

[
λ2e

−l2δ2 (u (t,X + S2 (1 + δ2) , q1, q2 − 1, S1, S2)− u (t,X, q1, q2, S1, S2))
]

= 0,

(6.11)

with

u (t = T, q1, q2, S1, S2) = −e−γ(X+q1S1+q2S2), (6.12)

u (t, q1 = 0, q2 = 0, S2, S2) = −e−γX . (6.13)

If qi = 0 and qj > 0 equation (6.11) reduces to

ut + µjSjuSj +
1

2
σ2
jS

2
j uSjSj

+ sup
δj

[
λ2e

−ljδj (u (t,X + Sj (1 + δj) , qi, qj − 1, S1, S2)− u (t,X, qi, qj, S1, S2))
]

= 0,

(6.14)

as we cannot short sell and thus the derivative terms with respect to Si are zero as

Si has no impact on the solution. Equation (6.14) is identical to the single asset case

examined in chapter 4.
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6.2.1 Reduction and rescaling

We can now make a similar reduction as was performed for the single asset case in

section 4.1.21. We introduce the ansatz

u(t,X, q1, q2, S1, S2) = e−γXf(t, q1, q2, S1, S2), (6.15)

which factors out the cash of the trader, and we then use the following change of

variables

τ̃ = λ1 (T − t) , S̃i = γSi, µ̃i =
µi
λ1

, σ̃i =
σi√
λ1

, λ̃ =
λ2

λ1

, (6.16)

noting that S̃i is now the risk-adjusted asset price for asset i, given that it is Si scaled

on γ. From now we will refer to S̃i as the asset price of asset i, dropping ‘risk-adjusted’.

Substituting (6.15) and (6.16) into (6.11) we can solve for the optimal controls, δ∗i , by

differentiating the supremum with respect to the controls and setting the result equal

to zero, which locates the stationary point. Solving this we obtain

δ∗i

(
τ̃ , q1, q2, S̃1, S̃2

)
=

1

S̃i
ln


(
S̃i + li

)
f
(
τ̃ , qi − 1, qj, S̃1, S̃2

)
lif
(
τ̃ , qi, qj, S̃1, S̃2

)
− 1, (6.17)

which we notice is independent of X, hence confirming the use of our ansatz solution.

We perform the second derivative test to ensure the stationary point we find is indeed

the maximum.

Substituting (6.17), and using (6.15) and (6.16), we can transform (6.11) to

− fτ̃ + µ̃1S̃1fS̃1
+ µ̃2S̃2fS̃2

+
1

2
σ̃2

1S̃
2
1fS̃1S̃1

+
1

2
σ̃2

2S̃
2
2fS̃2S̃2

+ ρσ̃1σ̃2S̃1S̃2fS̃1S̃2

− el1S̃1f

S̃1 + l1

 l1f
(
τ̃ , q1, q2, S̃1, S̃2

)
(
S̃1 + l1

)
f
(
τ̃ , q1 − 1, q2, S̃1, S̃2

)


l1
S̃1

− λ̃el2S̃2f

S̃2 + l2

 l2f
(
τ̃ , q1, q2, S̃1, S̃2

)
(
S̃2 + l2

)
f
(
τ̃ , q1, q2 − 1, S̃1, S̃2

)


l2
S̃2

= 0, (6.18)

with f = f
(
τ̃ , q1, q2, S̃1, S̃2

)
and

f
(
τ̃ = 0, q1, q2, S̃1, S̃2

)
= −e−q1S̃1−q2S̃2 , (6.19)

1Note this can also be performed for the general N assets case
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f
(
τ̃ , q1 = 0, q2 = 0, S̃1, S̃2

)
= −1. (6.20)

For qi = 0 and qj > 0 equation (6.14) can similarly be transformed to

−fτ̃ + µ̃jS̃jfS̃j +
1

2
σ̃2
j S̃

2
j fS̃j S̃j −

λelj S̃jf

S̃j + lj

 ljf
(
τ̃ , q1, q2, S̃1, S̃2

)
(
S̃j + lj

)
f
(
τ̃ , qi, qj − 1, S̃1, S̃2

)


lj

S̃j

= 0,

(6.21)

with λ = 1 if j = 1 or λ = λ̃ if j = 2. We note here not only have we reduced the

number of input parameters by two but also factored out one of the variables. When

discussing results we shall now refer to f
(
τ̃ , q1, q2, S̃1, S̃2

)
as the value function.

6.2.2 Boundary conditions

To solve (6.18) we need boundary conditions in the asset prices, S̃1 and S̃2, which must

be imposed along lines (rather than points given the extra dimension).

For S̃1 = S̃2 = 0 equation (6.18) reduces to

∂f

∂τ̃

(
τ̃ , q1, q2, S̃1, S̃2

)
= 0. (6.22)

Using this, and (6.19), we have

f
(
τ̃ , q1, q2, S̃1 = 0, S̃2 = 0

)
= −1. (6.23)

Next we look at the case of S̃i = 0 while S̃j 6= 0, for which (6.18) reduces to the single

asset case in S̃j given by (6.21). Boundary conditions and numerical methods for (6.21)

were discussed in chapter 4. Equation (6.21) has the S̃j = 0 boundary condition given

by (6.23). For large S̃j we use a Neumann boundary condition of the form

∂f

∂S̃j

(
τ̃ , q1, q2, S̃1, S̃2

)
→ 0 as S̃j →∞, (6.24)

which is used for both (6.18), for all values of S̃i, and hence also (6.21).

We examined using a cross-derivative boundary condition as both asset prices

tended to infinity, S̃1, S̃2 →∞, of the form

∂2f

∂S̃1∂S̃2

(
τ̃ , q1, q2, S̃1 →∞, S̃2 →∞

)
→ 0. (6.25)

However this gave similar results to using a Neumann in both S̃1 and S̃2 for the

infinite limits given the smooth, exponential-decay form of the solution as S̃1, S̃2 →∞.

Therefore, for large S̃1 and S̃2 the boundary condition we use is a Neumann condition.
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6.2.3 Numerical method

To solve the system (6.18) we use a finite-difference scheme using implicit differences

for the derivatives in S̃1 and S̃2 and explicit differencing for the non-linear terms. This

results in a linear system Af = b for each combination of variables q1, q2 as well as

each time-step, in which all the non-linear terms are on the right-hand-side, i.e. in

b. The matrix A is an (n×m)× (n×m) sparse-banded matrix, where n and m are

the number of grid points in S̃1 and S̃2 respectively. It consists of a main diagonal of

parameters, a main superdiagonal of parameters, a main subdiagonal of parameters,

m− 3 superdiagonals of zeros followed by three rows of parameters and m− 3 subdi-

agonals of zeros followed by three rows of parameters. The matrix A is τ̃ and {q1, q2}
independent. We exploit this by using LU decomposition, in which the matrices L and

U only need to be calculated once, and, having been stored, can be used repeatedly

for all τ̃ and {q1, q2}. We further exploit the sparseness of the matrix by using a NAG

(see NAG, 2014) routine nag dgbtrf which takes O
(
(n×m)2) floating point opera-

tions which is an order of magnitude smaller than standard Gauss-Elimination which

takes O
(
(n×m)3) floating point iterations. The NAG routine is also storage efficient

as it neglects the zero subdiagonals below the mth + 1 subdiagonal, as these remain

zero after LU decomposition. After using nag dgbtrf to calculate A = PLU, the NAG

routine nag dgbtrs is then used to solve the system Af = b which solves PLY = B

and then Uf = Y. For further reading on LU decomposition the reader is referred

to Smith (1965). We expect this routine to be O
(

∆τ̃ ,∆S̃2
1 ,∆S̃

2
2

)
convergent which

was found to be the case, as can be seen in table 6.1. We confirmed our numerics by

solving this problem using the successive-over-relaxation (SOR) method, as discussed

in section 2.6. However, implicit differences with explicit non-linear terms was the

scheme we used primarily.

6.2.4 Numerical results

In the case of q1 > 0, q2 = 0 or q1 = 0, q2 > 0 equation (6.18) simplifies down to the

single asset problem (6.21) in q1, S̃1 and q2, S̃2 respectively. It is the case, which is

confirmed numerically, that ∂/∂S̃i ≡ 0 when qi = 0. Therefore the results of chapter 4

then hold. Thus we shall numerically examine q1, q2 > 0 which is governed by (6.18).
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Table 6.1: Convergence of finite-difference scheme for multiple underlyings

n = m k fLU ratio fSOR ratio

51 1001 -0.0002609054341644 NA -0.0002609054342111 NA
101 1001 -0.0002593726011118 NA -0.0002593726011122 NA
201 1001 -0.0002589897564976 4.00 -0.0002589897564976 4.00
401 1001 -0.0002588935201294 3.98 -0.0002588935201297 3.98
801 1001 -0.0002588691542179 3.95 -0.0002588691542196 3.95

401 251 -0.0002592484453679 NA -0.0002592484453682 NA
401 501 -0.0002590119089189 NA -0.0002590119089192 NA
401 1001 -0.0002588935201294 2.00 -0.0002588935201297 2.00
401 2001 -0.0002588342956051 2.00 -0.0002588342956053 2.00
401 4001 -0.0002588046758120 2.00 -0.0002588046758121 2.00

n = m and k are the number of space and time points respectively. fLU and fSOR
are the solution of (6.18) at τ̃ = 1, q1 = 1, q2 = 1, S̃1 = 5, S̃2 = 5. We have set
S̃1,max = S̃2,max = 10, µ̃1 = µ̃2 = 0.04, σ̃1 = σ̃2 = 0.4, ρ = 0.5, λ = 1 and l1 = l2 = 10.
The ratio is the ratio of the change in errors for successive grids.

We shall first examine the effect of the correlation before examining the case of

asymmetric parameters. As discussed in chapter 5, from Modern Portfolio Theory

(see Markowitz, 1959) we expect a trader with negatively correlated assets to want

a balance of assets in his portfolio, such that q1 = q2, while for positively correlated

assets the trader would seek an unbalanced portfolio. Figure 6.1 shows the value

function for various values of the correlation parameter, ρ, with otherwise constant

parameters, for q1 = q2 = 1 which is a slice of the main diagonal, corresponding to

S̃1 = S̃2. It can be seen how the value is monotonically decreasing as the correlation,

ρ, increases, indicating a preference for a negatively correlated portfolio.

We will now shift our attention to the optimal trading strategy for the various

regimes of the correlation parameter, ρ. We investigate the optimal trading strate-

gies rather than the value function as these are simply transformations of the value

function and, from a financial perspective, are more transparent than examining the

value function per se. This can be quite difficult to show graphically given we have

δ∗1

(
τ̃ , q1, q2, S̃1, S̃2

)
and δ∗2

(
τ̃ , q1, q2, S̃1, S̃2

)
, which is a function of five variables, with

q1 and q2 taking discrete values. To investigate the optimal trading strategies we will

take a slice of the optimal trading strategies δ∗1, δ
∗
2 for a single value of time-to-expiry,

τ̃ , the price of asset one, S̃1, and the price of asset two, S̃2, with τ̃ = 1 and S̃1 = S̃2 = 6.

We shall then plot the optimal strategy for asset one, δ∗1, and the optimal strategy for
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Figure 6.1: This is a plot of the value function for various values of ρ, to which we can
see the value function is a decreasing function for increasing ρ. The parameters are
µ̃1 = µ̃2 = 0.03, σ̃1 = σ̃2 = 0.6, l1 = l2 = 10, λ̃ = 1 and varying ρ.

asset two, δ∗2, on the vertical axis, with the number of asset two we have remaining, q2,

on the horizontal axis, for various values of inventory for asset one, q1, with q1 ≥ q2 for

ease of graphically interpretation. In a corresponding figure, we also plot the optimal

strategy of asset one, δ∗1, and asset two, δ∗2, on the vertical axis, with the inventory for

asset one, q1, on the horizontal axis, for various values of q2, with q2 ≥ q1. Although

we are plotting discrete points for improved presentation we connect these with lines

to show lines of constant q1 for the former case and q2 for the latter case, as can be

seen in figure 6.2.

We begin by investigating the case of negative ρ, in which the optimal strategies

can be seen in figure 6.2. In figure 6.2(a) the point at which the lines of δ∗1 and δ∗2 meet

corresponds to q1 = q2. For each point corresponding to q1 = q2 we can see that the

adjacent line corresponding to the values of the optimal trading strategy for asset one,

δ∗1, increase for increasing inventory of asset two, q2, while the lines corresponding to

the optimal trading strategy of asset two, δ∗2, decrease for increasing inventory of asset

two, q2. This is due to having more of asset two than asset one as when this is the

case the trader seeks to sell asset two faster than asset one so as to balance the risk

in his portfolio, and hence δ∗2 > δ∗1. The same pattern, but with δ∗1 and δ∗2 switched,

due to the symmetry, can be seen in figure 6.2(b).

For positively correlated assets, ρ > 0, the trading strategies take lower values than
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Figure 6.2: Optimal trading strategy δ∗1, δ
∗
2 against q2 (figure 6.2(a)) and q1 (figure

6.2(b)) at τ̃ = 1, S̃1 = S̃2 = 6 for negative correlation (ρ = −0.75). The parameters
used are µ̃1 = µ̃2 = 0.03, σ̃1 = σ̃2 = 0.1, l1 = l2 = 10, λ̃ = 1 and ρ = −0.75.

that seen in figure 6.2 as the trader would like to sell quicker to de-risk his portfolio.

Positive ρ increases the risk for a risk-averse trader and as such the more assets he

holds the more he would like to sell them, thus he decreases his asking price. This can

be seen in figure 6.3. Having an unbalanced portfolio is also evident in these results.

Looking at figure 6.3(a) we can see that the optimal trading strategy of asset two, δ∗2,

is much lower for q1 = q2 = 2 than it is for q1 = 1, q2 = 2. This indicates the trader

would rather hold an unbalanced portfolio as it is not as risky. The same can be seen

for other values of the inventory, q1, q2, as well as for the optimal strategy in asset one,

δ∗1 (in figure 6.3(b)).

In chapter 5, through analytic and numerical verification, we found the trading

strategies of one asset was independent of the other asset for zero correlation, ρ = 0.

Although we cannot perform the same analytic analysis in this framework, numerical

computations indicated conclusively that the same property is present.

We shall now discuss varying parameters such that the symmetry is lost. We shall

do this by modifying each parameter (or parameter pair) individually such that we see

its specific impact. The base case for comparison is seen in figure 6.2.

If the ratio of intensities at the best ask, λ̃, is increased the values of the optimal

strategy of asset two, δ∗2, increase, while that of asset one, δ∗1, decrease. Increasing λ̃

implies the rate at which asset two is sold, assuming all else equal, is a multiple of

that of asset one. This can be seen in figure 6.4, in which the intensity of asset two
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Figure 6.3: Optimal trading strategy δ∗1, δ
∗
2 against q2 (figure 6.3(a)) and q1 (figure

6.3(b)) at τ̃ = 1, S̃1 = S̃2 = 6 for positive correlation (ρ = 0.75). The parameters used
are µ̃1 = µ̃2 = 0.03, σ̃1 = σ̃2 = 0.1, l1 = l2 = 10, λ̃ = 1 and ρ = 0.75.

has been doubled so λ̃ = 2.

When the exponential decay of the limit-order book, li, is decreased the optimal

trading strategy of asset i, δ∗i , increases when the asking price is above par value and

decreases when the asking price is below par value. When selling above par a lower li

signifies that the trader can place his asset further into the limit-order book without

significantly reducing his probability of sale. When the trader is eager to sell, he will

sell the asset at a discount. In order to do so under lower li the trader must sell at

a higher discount in order to increase his probability of sale by a significant amount.

The opposite is true for larger li. Figure 6.5 shows the case of altering the exponential-

decay parameter l2 such that l2 > l1 with l2 = 20 and l1 = 10. Given the optimal

strategies are positive, it can be seen that the optimal strategy of asset two, δ∗2, has

increased. This also leads to a decreases in the optimal strategy of asset one, δ∗1.

Figure 6.6 shows the case of increasing the drift in one asset while the rest of the

parameters remain constant, such that µ̃2 > µ̃1 with µ̃2 = 0.1 and µ̃1 = 0.03. We see

in figure 6.6(a) and 6.6(b) that the values of the optimal strategy of asset two, δ∗2, and

asset one, δ∗1, are greater in comparison to the case of equal drifts, µ̃1 = µ̃2, as seen

in figure 6.2. This is expected given an asset with a higher expected growth is more

valuable than an asset with lower expected growth. The trader is thus not as keen

to selling in comparison to the asset with lower growth as he wants to relinquish the

higher growth prospect of the asset while he still holds it.
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Figure 6.4: Optimal trading strategy δ∗1, δ
∗
2 against q2 (figure 6.4(a)) and q1 (figure

6.4(b)) at τ̃ = 1, S̃1 = S̃2 = 6 when one asset has a higher base intensity than the other
(λ̃ = 2). The parameters used are µ̃1 = µ̃2 = 0.03, σ̃1 = σ̃2 = 0.1, l1 = l2 = 10, λ̃ = 2
and ρ = −0.75.
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Figure 6.5: Optimal trading strategy δ∗1, δ
∗
2 against q2 (figure 6.5(a)) and q1 (figure

6.5(b)) at τ̃ = 1, S̃1 = S̃2 = 6 when one of the asset’s limit-order book has a higher
exponential-decay than the other (l2 > l1). The parameters used are µ̃1 = µ̃2 =
0.03, σ̃1 = σ̃2 = 0.1, l1 = 10, l2 = 20, λ̃ = 1 and ρ = −0.75.



CHAPTER 6. MULTIPLE UNDERLYINGS UNDER GBM 144

1 2 3 4

0.3

0.35

0.4

0.45

0.5

q
2

δ

 

 

←q
1
 = 1

←q
1
 = 1

←q
1
 = 2

←q
1
 = 2

←q
1
 = 3

←q
1
 = 3

←q
1
 = 4

←q
1
 = 4

δ
1

δ
2

(a) δ∗1 , δ
∗
2 against q2

1 2 3 4
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

q
1

δ

 

 

←q
2
 = 1

←q
2
 = 1

←q
2
 = 2

←q
2
 = 2

←q
2
 = 3

←q
2
 = 3

←q
2
 = 4

←q
2
 = 4

δ
1

δ
2

(b) δ∗1 , δ
∗
2 against q1

Figure 6.6: Optimal trading strategy δ∗1, δ
∗
2 against q2 (figure 6.6(a)) and q1 (figure

6.6(b)) at τ̃ = 1, S̃1 = S̃2 = 6 when one asset has a higher drift rate than the other
(µ2 > µ1). The parameters used are µ̃1 = 0.03, µ̃2 = 0.1, σ̃1 = σ̃2 = 0.1, l1 = l2 =
10, λ̃ = 1 and ρ = −0.75.

Unlike the drift, if the volatility, σ̃i, of asset i is increased it will decrease the asking

price of that asset. An asset with a higher volatility is more riskier than an asset with

lower volatility. The trader thus wants to sell the riskier assets faster than the less

risky assets. Figure 6.7 shows the case of increasing the volatility in asset two, σ̃2,

while keeping the volatility in asset one, σ̃1, the same as previous, such that σ̃2 > σ̃1

with σ̃2 = 0.2 and σ̃1 = 0.1. We see in figure 6.7(a) and 6.7(b) that the values of the

optimal strategy of asset one, δ∗1, are greater while that of asset two, δ∗2, are lower, in

comparison to the σ̃1 = σ̃2 case as seen in figure 6.2.

Similar to the single asset case explored in chapter 4, there is interesting behaviour

in the small-time-to-termination regime and thus we examine this next.

6.3 Small-time-to-termination solution

Using asymptotic analysis we can find a fully analytic solution which is valid in the

regime as τ̃ → 0. This could be especially relevant for a high-frequency trading

framework given the time remaining would be small and thus analytic expressions

would be preferred over numerical solutions.

To examine the small-time-to-termination solution we anticipate a perturbation
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Figure 6.7: Optimal trading strategy δ∗1, δ
∗
2 against q2 (figure 6.7(a)) and q1 (figure

6.7(b)) at τ̃ = 1, S̃1 = S̃2 = 6 when one asset has a higher volatility than the other
(σ2 > σ1). The parameters used are µ̃1 = µ̃2 = 0.03, σ̃1 = 0.1, σ̃2 = 0.2, l1 = l2 =
10, λ̃ = 1 and ρ = −0.75.

series about the parameter τ̃ , for τ̃ � 1, of the form

f
(
τ̃ , q1, q2, S̃1, S̃2

)
= f0

(
q1, q2, S̃1, S̃2

)
+ τ̃ f1

(
q1, q2, S̃1, S̃2

)
+ τ̃ 2f2

(
q1, q2, S̃1, S̃2

)
+O

(
τ̃ 3
)
, (6.26)

which is an extension to the perturbation series we used in chapter 4 when examining

trading with a single underlying (see (4.55)), which gave very satisfactory results.

The O (τ̃ 0) term, f0

(
q1, q2, S̃1, S̃2

)
, is merely equal to the terminal condition given

by (6.19). By substituting (6.26) into (6.18) we can find an analytic solution for

f1

(
q1, q2, S̃1, S̃2

)
by collecting the O (τ̃ 0) terms

f1

(
q1, q2, S̃1, S̃2

)
=

(
−

2∑
i=1

µ̃iS̃iqi +
1

2

2∑
i=1

σ̃2
i S̃

2
i q

2
i + ρσ̃1σ̃2S̃1S̃2q1q2

−
2∑
i=1

S̃i

S̃i + li

(
li

S̃i + li

) li
S̃i

)
f0

(
q1, q2, S̃1, S̃2

)
, (6.27)
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and from the O (τ̃ 1) terms

f2

(
q1, q2, S̃1, S̃2

)
=

1

2

(
2∑
i−1

µ̃iS̃if1S̃i
+

1

2

2∑
i=1

σ̃2
i S̃

2
i f1S̃iS̃i

+ ρσ̃1σ̃2S̃1S̃2f1S̃1S̃2

− 1

S̃1 + l1

(
l1

S̃1 + l1

) l1
S̃1
((
l1 + S̃1

)
f1

(
q1, q2, S̃1, S̃2

)
− l1f1

(
q1 − 1, q2, S̃1, S̃2

)
e−S̃1

)
− 1

S̃2 + l2

(
l2

S̃2 + l2

) l2
S̃2
((
l2 + S̃2

)
f1

(
q1, q2, S̃1, S̃2

)
− l2f1

(
q1, q2 − 1, S̃1, S̃2

)
e−S̃2

))
,

(6.28)

with

f1

(
q1 = 0, q2, S̃1, S̃2

)
= f1

(
q1, q2 = 0, S̃1, S̃2

)
= 0.

In (6.28) f1S̃i
and f1S̃iS̃j

are the first and second derivative of f1, which as we

see from (6.27), can be calculated analytically and as such we have a fully analytic

expression for (6.26). We neglect the analytic solutions of the derivatives due to the

complexity of the equations but they are simple extensions to (4.58) and (4.59) which

were found in chapter 4 for the case of a single underlying asset. We could include

higher-order terms, although this would become increasingly complex. As analogous

to the PDE, if qi − 1 = 0 the corresponding f1 term in (6.28) is zero.

The approximation (6.26) is quite accurate even for τ̃ of O (1) for a range of pa-

rameter values, an example of which can be seen in figure 6.8. This figure shows

the full-numerical solution compared to the two-term and three-term asymptotic ap-

proximation, for both the value function (figure 6.8(a)) and optimal trading strategy

(figure 6.8(b)). As in the single asset case, for which the reader is referred to section

4.2, there are restrictions to how well the expression holds depending on the parameter

values used. For higher values of S̃i and li the solution of f
(
τ̃ , q1, q2, S̃1S̃2

)
diverges

faster from the small-time-to-termination solution due to the stronger presence of the

non-linear terms.

6.4 Perpetual problem

Numerical simulations positively indicated the possibility that perpetual (time-independent)

solutions exist, as expected given the analysis of a single underlying in chapter 4. It
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Figure 6.8: The two above figures show the small-time approximation (using a first-
order and second-order expansion in time) against the solution obtained using the
full-numerical scheme. This can be seen for both the value function (figure 6.8(a))
and optimal trading strategy (figure 6.8(b)). The parameter values used are µ̃1 =
µ̃2 = 0.04, σ̃1 = σ̃2 = 0.4, ρ = −0.4, l1 = l2 = 5 and λ = 1, at a point along the main
diagonal of the solution, with q1 = q2 = 1 and S̃1 = S̃2 = 1.

is thus of interest to examine these for the multi-dimensional case, by requiring

∂f

∂τ̃

(
τ̃ , q1, q2, S̃1, S̃2

)
= 0 as τ̃ →∞.

In making this assumption, we are implicitly assuming that the terminal time in which

the assets must be sold is sufficiently distant for us to neglect the time variation.

6.4.1 Problem formulation for steady-state

For non-zero {q1, q2} the steady-state PDE we examine is

µ̃1S̃1fS̃1
+ µ̃2S̃2fS̃2

+
1

2
σ̃2

1S̃
2
1fS̃1S̃1

+
1

2
σ̃2

2S̃
2
2fS̃2S̃2

+ ρσ̃1σ̃2S̃1S̃2fS̃1S̃2

− el1S̃1f

S̃1 + l1

 l1f
(
q1, q2, S̃1, S̃2

)
(
S̃1 + l1

)
f
(
q1 − 1, q2, S̃1, S̃2

)


l1
S̃1

− λ̃el2S̃2f

S̃2 + l2

 l2f
(
q1, q2, S̃1, S̃2

)
(
S̃2 + l2

)
f
(
q1, q2 − 1, S̃1, S̃2

)


l2
S̃2

= 0, (6.29)

with

f
(
q1 = 0, q2 = 0, S̃1, S̃2

)
= −1. (6.30)
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We use the same boundary conditions for the perpetual problem as discussed in section

6.2.2 for the non-steady-state problem, these being (6.21) (with time-derivative equal

to zero), (6.23) and (6.24). When the inventory for asset i is zero, qi = 0, the derivatives

with respect to the asset price of asset i, S̃i, are zero everywhere as S̃i has no impact on

the solution. As such the problem reduces to the single asset case which was examined

thoroughly in chapter 4. Thus we an interested in the case of q1, q2 > 0.

Numerical method

To solve the steady-state problem we use the Newton-iteration method described for

an ODE in section 2.6.3, but now for a PDE, while using the same NAG routine as

described in section 6.2.3. Consider the non-linear PDE for fixed {q1, q2}

G
(
S1, S2, f, fS̃1

, fS̃2
, fS̃1S̃1

, fS̃2S̃2
, fS̃1S̃2

)
= 0, (6.31)

for value function f which has linear boundary conditions. Using central differences

for the derivatives, we can solve the algebraic system by iteratively solving

J
(
f (k)
)
ε(k) = −G (f) , (6.32)

with

f (k+1) = f (k) + ε(k), (6.33)

where f (k) and ε(k) are the value function and correction at iteration k respectively.

Here we have taken a first-order approximation of ε, as detailed in section 2.6.3. The

Jacobi matrix of G

J (f) =
∂G

∂f
(f) =

(
∂Gi

∂fj
(f)

)
0,≤i,j≤N

, (6.34)

has the same banded structure as the matrix A discussed in section 6.2.3. We therefore

have a similar system to Af = b and as such we use the same NAG routine, nag dgbtrf

to calculate the LU decomposition before using nag dgbtrs to solve the system.

Unlike the non-steady-state case, which has a matrix A that is τ̃ and qi independent

for all i, the Jacobian matrix J is a function of f given the non-linear structure of the

PDE and as such is updated at each iteration. Therefore we must calculate A = PLU

using the NAG routine nag dgbtrf at each iteration which can be quite computationally

expensive for fine grids.
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Numerical results

Many of the results for the non-steady-state case are quantitatively similar to the

perpetual case and thus we will not discuss them in detail. We will however examine

two solutions which are included for use of reference later in this chapter.

Figure 6.9(a) shows contours of constant value of the value function. The symmetry

in the asset prices of asset one, S̃1, and asset two, S̃2, is clear to see, and is on account

of the symmetry of the chosen parameters. A second example presented in figure

6.9(b) shows an analogous contour plot to that of figure 6.9(a) but with the asset

price, S̃1, S̃2, symmetry broken by an asymmetric parameter choice.

It was found in chapter 4 that there was quite interesting behaviour around the

small S̃ region for the perpetual problem. This is also (unsurprisingly) the case for

the multiple underlying problem. For zero inventory in asset j, qj = 0, the system

is reduced to the single asset case in asset i and thus the same singular behaviour as

found in chapter 4 is present. It is also of interest to examine the case of positive

inventory for both assets, q1, q2 > 0. We shall therefore next examine the small asset

price, S̃1, S̃2, solutions.

6.4.2 Asymptotic analysis of the asset prices

Since the PDE (6.29) appears to have no analytic solutions, we find it useful to use

the complementary approach of asymptotic and numerical methods. Examining figures

6.9(a) and 6.9(b) suggests the use of polar coordinates will be advantageous in gaining

analytic insight. A similar examination is performed by Duck et al. (2014) for the case

of American options with multiple underlyings in which converting to polars proved

quite insightful and more efficient.

To transform to polar conditions we assign

S̃1 = R cos θ, S̃2 = R sin θ, (6.35)

with R =
(
S̃2

1 + S̃2
2

) 1
2
. Under this transformation f

(
q1, q2, S̃1, S̃2

)
= f (q1, q2, R, θ)
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(b) Asymmetric case

Figure 6.9: Contours of constant value for the f
(
q1 = 1, q2 = 1, S̃1, S̃2

)
for the sym-

metric case (µ̃1 = µ̃2 = 0.04, σ̃1 = σ̃2 = 0.4, l1 = l2 = 1, λ̃ = 1 and ρ = −0.4) and
asymmetric case (µ̃1 = 0.03, µ̃2 = 0.06, σ̃1 = 0.5, σ̃2 = 0.7, l1 = 1, l2 = 2, λ̃ = 2 and
ρ = −0.4)

and as such (6.29) is transformed to

R2

(
1

2
σ̃2

1 cos4 θ + ρσ̃1σ̃2 cos2 θ sin2 θ +
1

2
σ̃2

2 sin4 θ

)
fRR

+R cos θ sin θ
(−σ̃2

1 cos2 θ + ρσ̃1σ̃2

(
2 cos2 θ − 1

)
+ σ̃2

2 sin2 θ
)
fRθ

+ cos2 θ sin2 θ

(
1

2
σ̃2

1 − ρσ̃1σ̃2 +
1

2
σ2

2

)
fθθ

+R

(
cos2 θ sin2 θ

(
1

2
σ̃2

1 − ρσ̃1σ̃2 +
1

2
σ2

2

)
+ µ̃1 cos2 θ + µ̃2 sin2 θ

)
fR

+ cos θ sin θ
(
σ̃2

1 cos2 θ − ρσ̃1σ̃2

(
2 cos2 θ − 1

)− σ̃2
2 sin2 θ − µ̃1 + µ̃2

)
fθ

− el1fR cos θ

R cos θ + l1

(
l1f (q1, q2, R, θ)

(R cos θ + l1) f (q1 − 1, q2, R, θ)

) l1
R cos θ

− λ̃el2fR sin θ

R sin θ + l2

(
l2f (q1, q2, R, θ)

(R sin θ + l2) f (q1, q2 − 1, R, θ)

) l2
R sin θ

= 0, (6.36)

with

f (q1 = 0, q2 = 0, R, θ) = −1. (6.37)

When θ = 0 the PDE reverts to the single asset case in q1 and S̃1. Similarly when

θ = π
2

the PDE reverts to the single asset case in q2 and S̃2. We are therefore interested

in the behaviour of θ 6= {0, π
2
}, as well as the asymptotic properties as R→ 0. To solve

numerically we need to impose boundary conditions as R → 0,∞. As R → 0,∞ we

have from the boundary conditions in Cartesian coordinates (6.23) and (6.24) (with
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time-derivative equal to zero)

f (q1, q2, R = 0, θ) = −1, (6.38)

and
∂f

∂R
(q1, q2, R→∞, θ)→ 0. (6.39)

In the case of the single asset problem we found quite interesting behaviour around

the small asset price, S̃ → 0, regime, as discussed in section 4.3. We will thus begin

by examining this region for the multiple underlying case, first in polar coordinates,

and then transforming back to Cartesian coordinates in S̃1 and S̃2 space to confirm

our asymptotic approximations.

The limit of R→ 0

For the single asset case in asset j, i.e. (6.21) with the time-derivative equal to zero, we

found in the limit of the small asset price, S̃j → 0, the non-linear term was negligible

and the solution behaved like

f
(
q, S̃j

)
≈ −1 + cj(q)S̃

β
j , (6.40)

in which

β = 1− 2µ̃j
σ̃2
j

> 0⇒ µ̃ <
σ̃2

2
, (6.41)

with the value of cj (q) found numerically, see section 4.3.1. Asymptotic balancing for

the multiple asset case, confirmed with numerical computations, indicates a similar

behaviour in the limit as R → 0 and thus (6.36) is reduced to a linear PDE of the

form

R2

(
1

2
σ̃2

1 cos4 θ + ρσ̃1σ̃2 cos2 θ sin2 θ +
1

2
σ̃2

2 sin4 θ

)
fRR

+R cos θ sin θ
(−σ̃2

1 cos2 θ + ρσ̃1σ̃2

(
2 cos2 θ − 1

)
+ σ̃2

2 sin2 θ
)
fRθ

+ cos2 θ sin2 θ

(
1

2
σ̃2

1 − ρσ̃1σ̃2 +
1

2
σ2

2

)
fθθ

+R

(
cos2 θ sin2 θ

(
1

2
σ̃2

1 − ρσ̃1σ̃2 +
1

2
σ2

2

)
+ µ̃1 cos2 θ + µ̃2 sin2 θ

)
fR

+ cos θ sin θ
(
σ̃2

1 cos2 θ − ρσ̃1σ̃2

(
2 cos2 θ − 1

)− σ̃2
2 sin2 θ − µ̃1 + µ̃2

)
fθ = 0. (6.42)

In the limit as R → 0 it is found that (6.42) emits two families of solutions, both a

homogeneous family of solutions and an inhomogeneous family of solutions, both of

which we will investigate.
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Inhomogeneous family of solutions

We shall consider first the inhomogeneous family of solutions, both for the symmetric

and asymmetric scenarios. For asymmetric parameters, asymptotic balancing suggests

that (6.42) admits solutions of the form:

f = −1 +Rα̂1 f̂1 (θ) +Rα̂2 f̂2 (θ) , (6.43)

assuming α̂1, α̂2 > 0. This results in the linear family of ODEs

cos2 θ sin2 θ

(
1

2
σ̃2

1 − ρσ̃1σ̃2 +
1

2
σ2

2

)
f̂iθθ

+

(
cos θ sin θ

(
σ̃2

1 cos2 θ − ρσ̃1σ̃2

(
2 cos2 θ − 1

)− σ̃2
2 sin2 θ − µ̃1 + µ̃2

)
+ α̂i cos θ sin θ

(−σ̃2
1 cos2 θ + ρσ̃1σ̃2

(
2 cos2 θ − 1

)
+ σ̃2

2 sin2 θ
))

f̂iθ

+

(
α̂i (α̂i − 1)

(
1

2
σ̃2

1 cos4 θ + ρσ̃1σ̃2 cos2 θ sin2 θ +
1

2
σ̃2

2 sin4 θ

)

+ α̂i

(
cos2 θ sin2 θ

(
1

2
σ̃2

1 − ρσ̃1σ̃2 +
1

2
σ̃2

2

)
+ µ̃1 cos2 θ + µ̃2 sin2 θ

))
f̂i = 0, (6.44)

for i ∈ {1, 2}. The next step is to consider the limit of f̂1 and f̂2 as θ → 0 and θ → π
2
.

Consider first the solutions of f̂1, examining (6.44) at θ = 0 we see it reduces to(
α̂1 (α̂1 − 1)

1

2
σ̃2

1 + α̂1µ̃1

)
f̂1 = 0, (6.45)

which for non-zero f̂1 and non-zero α̂1 results in

α̂1 = 1− 2µ̃1

σ̃2
1

> 0⇒ µ̃1 <
σ̃2

1

2
, (6.46)

which is analogous with that of the single asset case (see (6.40),(6.41)), in which a

parameter constraint is also present. With θ = 0, which is equivalent to the limit of

the small asset price of asset one, S̃1 → 0, with S̃2 = 0, the solution of (6.43) should

match with the single asset case in S̃1 space and be independent of S̃2. For this we

need that f̂1 (θ = 0) = c1 (q1) and f̂1

(
θ = π

2

)
= 0.

Turning now to (6.44) for i = 2 we can apply similar analysis. As above, examining

(6.44) at θ = π
2

we find

α̂2 = 1− 2µ̃2

σ̃2
2

> 0⇒ µ̃2 <
σ̃2

2

2
. (6.47)
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Figure 6.10: Figure 6.10(a) shows the solution of f given by (6.43) as R→ 0 alongside
the full-numerical solution, along the line θ = π

4
, with parameter values corresponding

to that of figure 6.9(b). Figure 6.10(b) shows the solution of f̂1 (θ) and f̂2 (θ), which is
the solution of the ODEs (6.44) for i = 1 and i = 2 respectively, again with parameter
values corresponding to that of figure 6.9(b). Although figure 6.10(b) looks symmetric
we stress it is not.

Referring to the single asset case, at θ = π
2
, which is equivalent to the limit of the small

asset price of asset two, S̃2 → 0, with S̃1 = 0, the solution of (6.43) should match with

the single asset case in S̃2 space and be independent of S̃1. Therefore we need that

f̂2 (θ = 0) = 0 and f̂2

(
θ = π

2

)
= c2 (q2).

We can solve (6.44) using a central finite-difference approach. In (6.43) it is clearly

the least positive of α̂1, α̂2 that will dominate in the limit as R → 0. The solution f ,

given by (6.43), for q1 = q2 = 1 along the line θ = π
4

can be seen in figure 6.10(a) along

with the solution of (6.44) which can be seen in figure 6.10(b).

If we consider the symmetric parameter case, with σ̃1 = σ̃2 = σ̃ and µ̃1 = µ̃2 = µ̃,

(6.43) can be reduced to

f = −1 +Rα̂f̂ (θ) , (6.48)

and rather than a family of ODEs (6.44) reduces to a single ODE, with boundary

conditions

f̂ (θ = 0) = f̂ (θ = π/2) = c (q1, q2) . (6.49)

The value of α̂ and the boundary conditions of f̂ (θ) can be deduced in a similar fashion

as above, with

α̂ = 1− 2µ̃

σ̃2
> 0⇒ µ̃ <

σ̃2

2
, (6.50)
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Figure 6.11: Figure 6.11(a) shows the solution of f given by (6.48) as R→ 0 alongside
the full-numerical solution, along the line θ = π

4
, with parameter values corresponding

to that of figure 6.9(a). Figure 6.11(b) shows the solution of f̂ (θ), again with parameter
values corresponding to that of figure 6.9(a).

in which we see the same parameter constraint as in the single asset case (6.41) is

present. The solution f of (6.48) for q1 = q2 = 1 along the line θ = π
4

can be seen in

figure 6.11(a) along with the solution of f̂ (θ) which can be seen in figure 6.11(b).

Homogeneous family of solutions

Let us now consider the family of solutions which correspond to the homogeneous case,

i.e. with boundary conditions

f (θ = 0) = f (θ = π/2) = 0, (6.51)

for the PDE (6.42). This PDE emits solutions of the form

f = Rα̃f̃ (θ) , (6.52)

which results in the same ODE as (6.44), with α̂i replaced with α̃, with homogeneous

boundary conditions of the form

f̃ (θ = 0) = f̃ (θ = π/2) = 0. (6.53)

This implies the problem is a non-linear (quadratic) eigenvalue problem for α̃. In order

to address this non-linearity we can introduce a new variable (in the standard way)

f ∗ = α̃f̃ , (6.54)
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and this renders the eigenvalue problem in the system
(
f̃ , f ∗

)
a linear one (see Tisseur

and Meerbergen, 2001). Equation (6.44) can thus be wrote in the form

cos2 θ sin2 θ

(
1

2
σ̃2

1 − ρσ̃1σ̃2 +
1

2
σ2

2

)
f̃θθ

+ cos θ sin θ
(
σ̃2

1 cos2 θ − ρσ̃1σ̃2

(
2 cos2 θ − 1

)− σ̃2
2 sin2 θ − µ̃1 + µ̃2

)
f̃θ

+

((
cos2 θ sin2 θ

(
1

2
σ̃2

1 − ρσ̃1σ̃2 +
1

2
σ̃2

2

)
+ µ̃1 cos2 θ + µ̃2 sin2 θ

)

−
(

1

2
σ̃2

1 cos4 θ + ρσ̃1σ̃2 cos2 θ sin2 θ +
1

2
σ̃2

2 sin4 θ

))
f ∗

= −α̃ cos θ sin θ
(−σ̃2

1 cos2 θ + ρσ̃1σ̃2

(
2 cos2 θ − 1

)
+ σ̃2

2 sin2 θ
)
f̃θ

− α̃
(

1

2
σ̃2

1 cos4 θ + ρσ̃1σ̃2 cos2 θ sin2 θ +
1

2
σ̃2

2 sin4 θ

)
f ∗. (6.55)

Using second-order differencing on (6.55), with boundary conditions given by (6.53),

coupled with (6.54) we can write the system as

AX = α̃BX, (6.56)

with α̃ as the eigenvalues and the corresponding eigenvectors being X, which contains

both f̃ and f ∗. The numerical set-up is such that if we discretise f̃ into n grid points,

the matrices A and B will be size 2n × 2n, with corresponding elements alternating

between the parameter values of f̃ and f ∗. This can be seen in (6.57), (6.58) and

(6.59), with the parameters corresponding to f̃ labelled ã, b̃, c̃, d̃, ẽ and h̃ while the

parameters corresponding to f ∗ are labelled b∗ and e∗. Superscript > denotes the

transpose.

A =



b̃0 b∗0 c̃0 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

ã1 0 b̃1 b∗1 c̃1 0 . . . 0 0

0 0 0 1 0 0 . . . 0 0

0
. . . . . . . . . . . . . . . 0 0 0

...
. . . 0 ãkmax−1 0 b̃kmax−1 b∗kmax−1 c̃kmax−1 0

0 . . . 0 0 0 0 1 0 0

0 . . . 0 0 0 ãkmax 0 b̃kmax b∗kmax

0 . . . 0 0 0 0 0 0 1



, (6.57)
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B =



ẽ0 e∗0 h̃0 0 0 0 . . . 0 0

1 0 0 0 0 0 . . . 0 0

d̃1 0 ẽ1 e∗1 h̃1 0 . . . 0 0

0 0 1 0 0 0 . . . 0 0

0
. . . . . . . . . . . . . . . 0 0 0

...
. . . 0 d̃kmax−1 0 ẽkmax−1 e∗kmax−1 h̃kmax−1 0

0 . . . 0 0 0 1 0 0 0

0 . . . 0 0 0 d̃kmax 0 ẽkmax e∗kmax

0 . . . 0 0 0 0 0 1 0



, (6.58)

X =
[
f̃0 f ∗0 f̃1 f ∗1 . . . . . . f̃kmax f ∗kmax

]>
. (6.59)

Given this problem formulation we can treat the problem as an algebraic generalised

eigenvalue problem, using a QZ algorithm. We use the NAG QZ algorithm f02bjc.

The QZ algorithm takes two asymmetric matrices A and B and finds the generalized

eigenvalues and eigenvectors such that (6.56) is satisfied and α̃ obeys det (A− α̃B) =

0. The QZ decomposition factorises both matrices as

A = QSZ>, B = QTZ>, (6.60)

where Q and Z are unitary and S and T are upper triangular. The generalised

eigenvalues can then be computed as

α̃i = Sii/Tii. (6.61)

For more on QZ decomposition the author recommends Golub and Van Loan (2012).

Computations indicated conclusively that no complex eigenvalue α̃ exist, although

both positive and negative values were found. For this problem it is the positive

eigenvalues that are of interest for R→ 0, particularly the smallest positive eigenvalue

as this will exhibit the slowest decay in this region. Figure 6.12(a) shows results for

the smallest positive value of α̃ for a range of values of the drift of asset one, µ̃1, one

curve for µ̃2 = µ̃1, the other for µ̃2 = 0.05. Other parameters are those used previously

in figure 6.9(a), namely volatility σ̃1 = σ̃2 = 0.4 and correlation ρ = −0.4. Numerical

results indicate that there are a (likely infinite) discrete set of eigenvalues α̃. A plot
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Figure 6.12: Variation of smallest positive α̃ with µ̃1 (figure 6.12(a)), and f̃ (θ) for
smallest positive α̃ = 2.17 (figure 6.12(b)). The parameters match that of figure
6.9(a), that being µ̃1 = µ̃2 = 0.04, σ̃1 = σ̃2 = 0.4 and ρ = −0.4.

of the eigenvector f̃ (θ) corresponding to the smallest positive α̃ can be seen in figure

6.12(b).

Given the inhomogeneous and homogeneous solutions we have discussed we con-

clude in the limit as R → 0 the solution can be wrote as an infinite series of the

form

f = −1 +Rα̂1 f̂1 (θ) +Rα̂2 f̂2 (θ) +
∞∑
i=0

Rα̃i f̃i (θ) , (6.62)

with the hat terms being solutions of the inhomogeneous problem and the tilde terms

being the solutions of the homogeneous (eigenvalue) problem. As R → 0 it is the

smallest positive value of α̂1, α̂2, α̃i that will have the corresponding dominant be-

haviour. For the parameter values used in the example shown in figure 6.9(a) we have

α̂1 = α̂2 = 0.5 and the smallest positive eigenvalue α̃i takes the value α̃+
min = 2.17. For

this example it is thus the inhomogeneous family of solutions which dominate.

The limit as S̃1, S̃2 → 0

Given the above analytic analysis in polar coordinates we shall confirm these by exam-

ining the zero limit of the asset price in Cartesian coordinates, S̃1 and S̃2. In Cartesian

coordinates we are examining (6.29) in the limit as S̃1, S̃2 → 0. In this limit, asymp-

totic balancing suggests the non-linearity is negligible and as such we examine the
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linear PDE

µ̃1S̃1fS̃1
+ µ̃2S̃2fS̃2

+
1

2
σ̃2

1S̃
2
1fS̃1S̃1

+
1

2
σ̃2

2S̃
2
2fS̃2S̃2

+ ρσ̃1σ̃2S̃1S̃2fS̃1S̃2
= 0. (6.63)

Firstly, we shall examine the inhomogeneous solution. It was found (6.63) emits

solution of the form

f = −1 + S̃α̂1
1 f̂1

(
S̃2

S̃1

)
+ S̃α̂2

2 f̂2

(
S̃2

S̃1

)
, (6.64)

which is analogous to the polar coordinate form given by (6.43). Substituting the form

of (6.64) into (6.63) results in the linear family of ODEs

ζ2

(
1

2
σ̃2

1 +
1

2
σ̃2

2 − σ̃1σ̃2ρ

)
f̂ ′′1

+ ζ
(−µ̃1 + µ̃2 − σ̃2

1 (α̂1 − 1)− σ̃1σ̃2ρ (α̂1 − 1)
)
f̂ ′1

+

(
µ̃1α̂1 +

1

2
σ̃2

1 (α̂1 − 1) α̂1

)
f̂1 = 0, (6.65)

and

ζ2

(
1

2
σ̃2

1 +
1

2
σ̃2

2 − σ̃1σ̃2ρ

)
f̂ ′′2

+ ζ
(−µ̃1 + µ̃2 + σ̃2

1 + σ̃2
2α̂2 + σ̃1σ̃2ρ (α̂2 + 1)

)
f̂ ′2

+

(
µ̃1α̂2 +

1

2
σ̃2

2 (α̂2 − 1) α̂1

)
f̂2 = 0, (6.66)

with ζ = S̃2/S̃1, which is the ratio of the price of asset two to asset one. We use

similar methods as used for the polar coordinates, by referring to the single asset

case, to derive boundary conditions and solve for values of α̂1, α̂2. Two boundary

conditions are needed for both f̂1 (ζ) and f̂2 (ζ), as ζ → 0 and ζ → ∞. For ζ = 0,

which is equivalent to the limit of the small asset price of asset one, S̃1 → 0, with

S̃2 = 0, the solution of (6.64) should match with the single asset case in S̃1 space and

be independent of S̃2. For this we need that f̂1 = c1 (q1) and f̂2 = 0 at ζ = 0. In this

limit we can obtain values of α̂1 and α̂2 which are given by:

α̂1 = 1− 2µ̃1

σ̃2
1

, α̂2 = 1− 2µ̃2

σ̃2
2

, (6.67)

which are identical to those found in polar coordinates, (6.46) and (6.47).

Similarly, as ζ → ∞, which is equivalent to the limit of the small asset price of

asset two, S̃2 → 0, with S̃1 = 0, the solution of (6.64) should be independent of S̃1,

for which we need that f̂1 = 0 and f̂2 = c2 (q2) as ζ →∞.
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Full numerical solution

(a) f as S̃1, S̃2 → 0 along ζ = 1
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Figure 6.13: Figure 6.13(a) shows the solution of f from (6.64) along ζ = 1 as
S̃1, S̃2 → 0 alongside the full-numerical solution, with parameters values corresponding
to that of figure 6.9(b). Figure 6.13(b) shows the solution of f̂1 (ζ) and f̂2 (ζ), which is
the solution of the ODEs (6.65) and (6.66) respectively, again with parameter values
corresponding to that of figure 6.9(b).

The solution f , given by (6.64), for q1 = q2 = 1 along the line ζ = 1 can be seen in

figure 6.13(a), and the solutions of (6.65) and (6.66) can be seen in figure 6.9(b).

Similar to when using polar coordinates form, when symmetry is present due to a

symmetrical choice in parameters, (6.64) can be reduced to

f = −1 +
(
S̃α̂1 + S̃α̂2

)
f̂

(
S̃2

S̃1

)
, (6.68)

in which f̂ solves the ODE

ζ2
(
1 + ζ α̂

)
σ̃2 (1− ρ) f̂ ′′ + ζ

(
(α̂ + 1) ζ α̂ − (α̂− 1)

)
σ̃2 (1− ρ) f̂ ′

+
(
1 + ζ α̂

) (
µ̃α̂ + σ̃2 (α̂− 1) α̂

)
f̂ = 0, (6.69)

with boundary conditions

f̂ (ζ = 0) = f̂ (ζ →∞) = c (q1, q2) (6.70)

Examining (6.69) at ζ = 0 we find

α̂ = 1− 2µ̃

σ̃2
> 0⇒ µ̃ <

σ̃2

2
, (6.71)

which is consistent with that of (6.50) as found when using polar coordinates.

The solution (6.68) for q1 = q2 = 1 along the line ζ = 1 can be seen in figure

6.13(a), as well as the solutions of (6.69) which can be seen in figure 6.9(a).
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Figure 6.14: Figure 6.14(a) shows the solution of f from (6.68) along ζ = 1 as S̃1, S̃2 →
0 alongside the full-numerical solution, with parameters values corresponding to that
of figure 6.9(a). Figure 6.14(b) shows the solution of f̂ (ζ), which is the solution of the
ODE (6.69), again with parameter values corresponding to that of figure 6.9(a).

Next we examine the solutions found when examining the homogeneous PDE, i.e.

(6.63) with homogeneous boundary conditions. This PDE emits solutions of the form

f =
(
S̃1S̃2

)α̃
f̃

(
S̃2

S̃1

)
, (6.72)

which results in an ODE for f̃ of the form

ζ2

(
1

2
σ̃2

1 +
1

2
σ̃2

2 − σ̃1σ̃2ρ

)
f̃ ′′ + ζ

(
µ̃2 − µ̃1 − σ̃2

1 (α̃− 1) + σ̃2
2α̃− σ̃1σ̃2ρ

)
f̃ ′

+

(
µ̃1α̃ + µ̃2α̃ +

1

2
σ̃2

1 (α̃1 − 1) α̃ +
1

2
σ̃2

2 (α̃− 1) α̃ + σ̃1σ̃2ρα̃
2

)
f̃ = 0, (6.73)

with

f̃ (ζ = 0) = f̃ (ζ →∞) = 0. (6.74)

Equation (6.73) is similar to (6.55) in that it is a non-linear (quadratic) eigenvalue

problem α̃. We thus use a similar method for solving as discussed above which involves

introducing the new function

f ∗ = α̃f̃ , (6.75)

so we now have an eigenvalue problem for the system
(
f̃ , f ∗

)
with

ζ2(
1

2
σ̃2

1 +
1

2
σ̃2

2 − σ̃1σ̃2ρ)f̃ ′′ + ζ
(
µ̃2 − µ̃1 + σ̃2

1 − σ̃1σ̃2ρ
)
f̃ ′ + (µ̃1 + µ2 − 1

2
σ̃2

1 −
1

2
σ̃2

2)f ∗

= α̃

((
σ̃2

1 − σ̃2
2

)
f̃ ′ −

(
1

2
σ̃2

1 +
1

2
σ̃2

2 + σ̃1σ̃2ρ

)
f ∗
)
. (6.76)
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Figure 6.15: f̃ (θ) for smallest positive α̃. The parameters match that of figure 6.9(a),
that being µ̃1 = µ̃2 = 0.04, σ̃1 = σ̃2 = 0.4 and ρ = −0.4.

Using second-order differencing (6.76) can be discretised and, along with (6.74), can

be wrote as:

AX = α̃BX

and solved using the QZ method discussed above. As with the polar coordinate case,

it is the smallest positive eigenvalue α̃ we are interested in as this will be dominant

over the larger α̃’s for S̃1, S̃2 → 0. In figure 6.15 we have plotted the eigenvector

f̃ (ζ) corresponding to the smallest positive α̃ for µ̃1 = µ̃2 = 0.04, σ̃1 = σ̃2 = 0.4 and

ρ = −0.4. Numerical computations similarly suggested a (likely infinite) set of discrete

eigenvalues.

Given the homogeneous and inhomogeneous solutions examined we conclude in the

limit S̃1, S̃2 → 0 the solution takes the form

f = −1 + S̃α̂1
1 f̂1

(
S̃2

S̃1

)
+ S̃α̂2

2 f̂2

(
S̃2

S̃1

)
+
∞∑
i=0

(
S̃1S̃2

)α̃i
f̃i

(
S̃2

S̃1

)
, (6.77)

with the hat terms being solutions of the inhomogeneous problem and the tilde terms

being the solutions of the homogeneous (eigenvalue) problem. This solution is the

same as that of the polar coordinates as given by (6.62).

6.4.3 Large inventory solution

We can investigate a large inventory solution for the multiple asset case such that q1

and/or q2 become large (both together and individually).
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Similar to the single asset case, numerical simulations and asymptotic analysis lead

us to conclude

lim
qi→∞

 f
(
q1, . . . , qi, . . . , qN , S̃1, . . . , S̃N

)
f
(
q1, . . . , qi − 1, . . . , qN , S̃1, . . . , S̃N

)
→ 1. (6.78)

For the case of only one amount of inventory tending to infinity, say q2 → ∞ and

q1 ∼ O (1) equation (6.29) reduces to

µ̃1S̃1fS̃1
+ µ̃2S̃2fS̃2

+
1

2
σ̃2

1S̃
2
1fS̃1S̃1

+
1

2
σ̃2

2S̃
2
2fS̃2S̃2

+ ρσ̃1σ̃2S̃1S̃2fS̃1S̃2

− el1S̃1f

S̃1 + l1

 l1f
(
q1, S̃1, S̃2

)
(
S̃1 + l1

)
f
(
q1 − 1, S̃1, S̃2

)


l1
S̃1

− λ̃el2S̃2f

S̃2 + l2

 l2(
S̃2 + l2

)


l2
S̃2

= 0, (6.79)

with f = f
(
q1, S̃1, S̃2

)
and boundary conditions analogous to those discussed in sec-

tion 6.2.2. For q2 →∞, we only consider the case of the inventory of asset one being

positive, q1 > 0, as q1 = 0 is identical to the single asset case examined in chapter 4.

Equation (6.79) is still a non-linear PDE and thus an iterative method must be used

with appropriate boundary conditions in the asset prices, S̃1 and S̃2. To solve (6.79)

we use a similar iterative method as described above for the perpetual case when the

inventory was of order one, q1, q2 ∼ O (1), and use the same boundary conditions in

the asset prices, S̃1 and S̃2. A solution for (6.79) can be seen in figure 6.16, in which

figure 6.16(a) is a surface plot of f(q1 = 1, q2 →∞, S̃1, S̃1), along with a contour plot

in figure 6.16(b). Figure 6.16(a) shows the rapid decay to zero as the price of asset

two, S̃2, increases, while at S̃2 = 0 we see the more gentle decay, corresponding to

q1 = 1. This is also portrayed in figure 6.16(b), which we can compare to figure 6.9(a)

which is the case of q1 = q2 = 1.

We can also examine the case of when both the inventory of asset one and asset

two are large, q1, q2 → ∞, in which the non-linear PDE (6.79) reduces to the linear

PDE:

µ̃1S̃1fS̃1
+ µ̃2S̃2fS̃2

+
1

2
σ̃2

1S̃
2
1fS̃1S̃1

+
1

2
σ̃2

2S̃
2
2fS̃2S̃2

+ ρσ̃1σ̃2S̃1S̃2fS̃1S̃2

− el1S̃1f

S̃1 + l1

 l1(
S̃1 + l1

)


l1
S̃1

− λ̃el2S̃2f

S̃2 + l2

 l2(
S̃2 + l2

)


l2
S̃2

= 0, (6.80)

with f = f(S̃1, S̃2) with the same boundary conditions to those above for inventory

of order one, q1, q2 ∼ O (1). As this is a linear PDE we need not use an iterative
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(b) f(q1 = 1, q2 →∞, S̃1, S̃1) contour plot

Figure 6.16: Plot of q1 = 1 with q2 → ∞ as a surface plot and contour plot with
parameter values µ̃1 = µ̃2 = 0.04, σ̃1 = σ̃2 = 0.4, l1 = l2 = 1, λ̃ = 1 and ρ = −0.4

method. A solution of (6.80) can be seen in figure 6.17. In figure 6.17(a) we show

the convergence of increasing q1, q2. This figure shows curves along the main diagonal

of the asset prices, i.e. S̃1 = S̃2, for f(q1 = q2, S̃1, S̃2) (solid line), f(q1 = 1, q2 →
∞, S̃1, S̃2) (dot-dash line) and f(q1 → ∞, q2 → ∞, S̃1S̃2) (broken line). We see the

solution of f(q1, q2, S̃1S̃2), for q1, q2 ∼ O (1), converges to f(q1 = 1, q2 → ∞, S̃1S̃2)

which converges to f(q1 → ∞, q2 → ∞, S̃1S̃2). Figure 6.17(b) is a contour plot of

f(q1 →∞, q2 →∞, S̃1, S̃2), which is comparable to figure 6.16(b) and figure 6.9(a).

6.5 Summary

In this chapter we examined the trading strategy of a trader with various amounts

of various assets, rather than just one asset as examined in chapter 4. We derived a

general model for N correlated assets before examining in detail the case of N = 2.

We first examined the case of N = 2 numerically before examining the solution in

several limits. We used a tactical LU decomposition scheme in which the LU matrices

only had to be calculated once, greatly reducing computational time. We examined the

optimal trading strategies under various parameter regimes and found the correlation

term generates some interest, with results relating back to Modern Portfolio Theory

(see Markowitz, 1959), in which a trader with positively correlated assets wants an

unbalanced portfolio in order to reduce risk while a trader with negatively correlated

assets wants a balanced portfolio as to diversify the risk.
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(b) f(q1 = q2 →∞, S̃1, S̃1) contour plot

Figure 6.17: Figure 6.17(a) shows curves of the main diagonal of the asset price for
f(q1 = q2, S̃1, S̃2) (solid line), f(q1 = 1, q2 → ∞, S̃1, S̃2) (dot-dash line) and f(q1 →
∞, q2 → ∞, S̃1, S̃2) (broken line). Figure 6.17(b) shows the solution of (6.80) as a
contour plot. The parameter values are µ̃1 = µ̃2 = 0.04, σ̃1 = σ̃2 = 0.4, l1 = l2 = 1, λ̃ =
1 and ρ = −0.4

After producing some interesting numerical solutions we let the numerics, and

indeed the single asset case, guide us to which limits are of interest. We examined a

small-time-to-termination solution which in the small-time limit has a fully analytic

solution. This may be of use in a high-frequency trading framework where the time

remaining is small and analytic solutions are preferred over numerical solutions.

In contrast, we examined a perpetual-type solution in which the time-to-termination

tends to infinity. We investigated the small S̃1, S̃2 regime in terms of the original co-

ordinates as well as in polar coordinate form, as guided by the numerics. We found

the existence of an inhomogeneous and homogeneous family of solutions, the former

of which resulted in solving a family of ODEs, while the latter resulted in solving

a non-linear (quadratic) eigenvalue problem. It is clear the polar coordinate case is

advantageous given the semi-infinite domain for the S̃2/S̃1 case whereas the polar co-

ordinate case has a finite domain. When using numerical boundary conditions we can

use more precise Dirclet boundary conditions rather than the need to approximate as

S̃2/S̃1 →∞.

Finally we examined the limit as the number of assets held, {q1, q2}, went to infinity,

both together and separately. This is beneficial as it reduces the problem from a non-

linear PDE to a linear PDE which is numerically easier and quicker to solve.



Chapter 7

Extension of Single Underlying: A

Stochastic Volatility Model

The work in this chapter is in preprint format and ready for submission for review:

Blair, J., Johnson, P., and Duck, P. (2015). Analysis of optimal liquidation in limit-order

books for portfolios of correlated assets with stochastic volatility.

http://eprints.ma.man.ac.uk/2325.

In the previous chapters we have considered volatility to be constant. We shall

now extend that work to include stochastic volatility. Stochastic volatility has been

implemented rigorously in other areas of mathematical finance, most notably option

pricing, but, to the best of our knowledge, has yet to be consider in the optimal trading

literature for a trader at the tactical level. It has however been examined under the

framework of optimal scheduling by Almgren (2012). Thus it seems appropriate that

we extend the tactical level framework in a similar light.

One of the strongest arguments for the use of stochastic volatility is the implied

volatility surface which is found to have a smile or skew shape and thus is non-

constant1. Originally this problem was investigated in Merton (1973) for deterministic

functions of time in an option pricing framework. This was further investigated by

Derman and Kani (1994) and Rubinstein (1994) who introduce a local volatility model

which depends on time and the underlying state variable. It was finally suggested that

volatility should itself be stochastic, with the pioneering work including that of Hull

1Implied volatility is the volatility which if used in the Black-Scholes option pricing formula will
provide the value at which that contract is traded in the market (see Wilmott, 2007).
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and White (1987) and Heston (1993), among others. While Hull and White (1987)

suggest the volatility squared (variance) should follow a geometric Brownian motion

correlated with the asset price, Heston (1993) assumes a mean-reverting process for

the variance with a correlation between the variance and the underlying asset. The

Heston (1993) model stands out as a dominant model as not only does it explain the

mean-reverting nature of the volatility smile, it also allows for only positive values,

assuming the Feller (1951) condition is satisfied (the Schöbel and Zhu, 1999 model was

similar to that of Heston, 1993 but with an Uhlenbeck and Ornstein, 1930 process for

the variance, and as such allowed for negative values). We shall therefore contribute to

knowledge by examining the previous framework of chapter 4 under a Heston (1993)

stochastic volatility model.

7.1 Problem formulation

We shall now examine when the trader has a quantity q (0) of a single underlying asset

to liquidate, but for which the volatility of this underlying is assumed stochastic. We

shall consider a similar framework as previous in which a trader wishes to maximise his

expected terminal time utility. Let (Ω,F ,P) be a probability space with a filtration,

(Ft, t ∈ [0, T ]). We follow Heston (1993) by assuming the asset follows

dS (t) = µS (t) dt+
√
ν (t)S (t) dW (t) , (7.1)

which is a geometric Brownian motion, with the square-root of the variance,
√
ν (t),

(which is the volatility) following an Uhlenbeck and Ornstein (1930) process

d
√
ν (t) = −β

√
ν (t)dt+ αdB (t) . (7.2)

It can be shown through Itô’s lemma that the variance ν (t) follows the process

dν (t) =
(
α2 − 2βν (t)

)
dt+ 2α

√
ν (t)dB (t) , (7.3)

which can be represented as a mean-reverting square-root process

dν (t) = κ (θ − ν (t)) dt+ σ
√
ν (t)dB (t) , (7.4)

with E[W (t)B (t)] = ρt, such that the asset price and variance are correlated. Heston’s

model has the idea that both high and low values of volatility (variance) are temporary
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and will tend to lead to an average specified value over time. The average value of the

variance is denoted θ and the speed that the variance reverts to the average is denoted

κ. When the variance is higher than the average it will decrease towards it. Similarly

when the variance is lower than the average it will increase towards it.

The value function we define is now a function of the variance, ν, and is defined as

u(t,X, q, S, ν) = sup
δ(t)∈A

E
[−e−γ(X(T )+q(T )S(T ))

]
. (7.5)

In a similar framework to previous chapters we have the inventory and wealth following

dq(t) = −dN(t), (7.6)

and

dX(t) = S(t) (1 + δ) dN(t), (7.7)

respectively, where N (t) is a Poisson process, independent of W (t) and B (t), and has

intensity

Λ(δ) = λe−l(
Sa−S
S ) = λe−lδ. (7.8)

Using a similar formulation we can define the HJB equation as

ut + µSuS +
1

2
νS2uSS + κ (θ − ν)uν +

1

2
σ2νuνν + ρσνSuSν

+sup
δ

[
λe−lδ (u (t,X + S (1 + δ) , q − 1, S, ν)− u (t,X, q, S, ν))

]
= 0, (7.9)

with u = u(t,X, q, S, ν) and initial conditions

u(T,X, q, S, ν) = −e−γ(X+qS), (7.10)

u(t,X, 0, S, ν) = −e−γX . (7.11)

The derivation of this HJB equation is a relatively straightforward extension to that of

the constant volatility case and the reader is referred to the description in section 4.1.1

for further details. Extending the verification theorem from the constant volatility case

is also straightforward and is thus not detailed here.

As similar to that performed in section 4.1, let us choose an ansatz of the form

u (t,X, q, S, ν) = e−γXf (τ, q, S, ν), with τ = T − t. Performing a change of variables

τ̃ = λτ, S̃ = Sγ, ν̃ =
ν

λ
, θ̃ =

θ

λ
, µ̃ =

µ

λ
, (7.12)
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we can non-dimensionalise (7.9), such that all the tilde variables are dimensionless.

Examining the supremum term of (7.9) and using the ansatz we find the optimal

trading strategy is given by

δ∗
(
τ̃ , q, S̃, ν̃

)
=

1

S̃
ln


(
S̃ + l

)
f
(
τ̃ , q − 1, S̃, ν̃

)
lf
(
τ̃ , q, S̃, ν̃

)
− 1. (7.13)

This results in the non-linear dimensionless PDE

− fτ̃ + µ̃S̃fS̃ +
1

2
ν̃S̃2fS̃S̃ + κ

(
θ̃ − ν̃

)
fν̃ +

1

2
σ2ν̃fν̃ν̃ + ρσν̃S̃fS̃ν̃

− elS̃f

S̃ + l

 lf
(
τ̃ , q, S̃, ν̃

)
(
S̃ + l

)
f
(
τ̃ , q − 1, S̃, ν̃

)


l
S̃

= 0, (7.14)

with f = f
(
τ̃ , q, S̃, ν̃

)
and initial conditions

f
(

0, q, S̃, ν̃
)

= −e−qS̃, (7.15)

f
(
τ, 0, S̃, ν̃

)
= −1, (7.16)

in which we have factored out the variable X, as well as the γ and λ parameter.

To solve (7.14) we require two boundary conditions in each of the two semi-infinite

domains of the asset price, S̃, and variance, ν̃. As S̃ → 0, equation (7.14) reduces to

−fτ̃ + κ
(
θ̃ − ν̃

)
fν̃ +

1

2
σ2ν̃fν̃ν̃ = 0. (7.17)

Similarly, as ν̃ → 0, equation (7.14) reduces to

−fτ̃ + µ̃S̃fS̃ + κθ̃fν̃ − elS̃f

S̃ + l

 lf
(
τ̃ , q, S̃, ν̃

)
(
S̃ + l

)
f
(
τ̃ , q − 1, S̃, ν̃

)


l
S̃

= 0. (7.18)

As both S̃ → 0 and ν̃ → 0, equation (7.17) and (7.18) reduce to

∂f

∂τ̃

(
τ̃ , q, S̃ → 0, ν̃ → 0

)
= 0 ⇒ f

(
τ̃ , q, S̃ → 0, ν̃ → 0

)
= −1, (7.19)

which arises from the initial condition (7.15). Similar to previous cases, as S̃ →∞ we

use a Neumann condition of the form

∂f

∂S̃

(
τ̃ , q, S̃ →∞, ν̃

)
= 0. (7.20)
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We use a similar condition for the case of the variance tending to infinity which takes

the form
∂f

∂ν̃

(
τ̃ , q, S̃, ν̃ →∞

)
= 0. (7.21)

Intuitively, the higher the volatility the lower the trader’s value function as he is risk-

averse. Thus the derivative of the value function with respect to ν̃ is decreasing which

can be approximated as zero when ν̃ →∞.

7.1.1 Numerical results

To solve this problem numerically we use a similar implicit-explicit finite-difference

scheme to that as used in the multiple underlying case, described in section 6.2.3.

This involves taking the derivative terms in the asset price, S̃, and variance, ν̃, as

implicit finite-differences and taking the non-linear term as explicit, allowing us to

use LU decomposition in which the LU matrices are τ̃ and q independent, thus only

needing to perform the LU decomposition once. We expect O
(

∆τ̃ ,∆S̃2
)

convergence,

which we see in table 7.1 is the case.

Table 7.1: Convergence of finite-difference scheme for stochastic volatility model

n = m k fI−E

(
τ̃ = 1, q = 1, S̃ = 5, ν̃ = 5

)
ratio

51 1001 -0.2097362454 NA
101 1001 -0.2076657046 NA
201 1001 -0.2070685831 3.47
401 1001 -0.2069097475 3.76
801 1001 -0.2068696183 3.96

401 251 -0.2068153647 NA
401 501 -0.2068782465 NA
401 1001 -0.2069097475 2
401 2001 -0.206925513 2
401 4001 -0.2069333995 2

n = m and k are the number of space and time points respectively. We have set
S̃max = ν̃max = 10, τ̃ = 1, l = 10, µ̃ = 0.02, κ = 0.75, θ̃ = 0.46, σ = 2.78 and ρ = −0.64.
fI−E is the value corresponding to the implicit derivatives-explicit non-linear term
finite-difference scheme. The ratio is the ratio of the change in errors for successive
grids.

The solution of the value function, f , from (7.14) can be seen in figure 7.1. It

can be seen that the value function, f , is increasing in asset price, S̃, as is always the
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Figure 7.1: The above figures shows the value function, f , plotted against S̃ (figure
7.1(a)) and against ν̃ (figure 7.1(b)). The parameter values used are τ̃ = 1, l = 10, µ̃ =
0.02, κ = 0.75, θ̃ = 0.46, σ = 2.78 and ρ = −0.64.

case, and decreasing in the variance, ν̃. The corresponding optimal trading strategies

can be in found in figure 7.2. The properties of the optimal trading strategy mirror

that of the value function. As the risk-adjusted asset price increases the trader would

like to sell quicker to lock in profit. Similarly, a higher variance represents a riskier

portfolio for the trader and given the trader is risk-averse he would have preference

over a lower variance. The trader thus opts to sell quicker under higher volatility.

This was also observed in chapter 4 for constant volatility when we examined how the

solutions varied with respect to the parameters. We found that as we increased the

volatility of the geometric Brownian motion the optimal strategy decreased due to the

risk-aversion of the trader.

To gain further insight into how the solutions depend on the parameters of the

stochastic volatility process we shall consider the optimal trading strategies while

keeping all but one parameter constant. We exclude varying µ̃ and l as this has been

done in the constant volatility model, examined in chapter 4, and the results found

are similar to the stochastic volatility case.

We first investigate altering the speed of reversion, κ. For larger values of κ the

speed of reversion to the long-term mean, θ̃, is faster. It can be seen in figure 7.3,

for κ = {0.05, 0.75, 2.0}, that when ν̃ < θ̃ the variance is expected to increase and as

such a lower value of κ is preferred so it increases slowly. In contrast, when ν̃ > θ̃
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Figure 7.2: The above figures shows the optimal trading strategy, δ∗, plotted against
S̃ (figure 7.2(a)) and against ν̃ (figure 7.2(b)). The parameter values used are τ̃ =
1, l = 10, µ̃ = 0.02, κ = 0.75, θ̃ = 0.46, σ = 2.78 and ρ = −0.64.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

S̃

O
p
ti
m
a
l
T
ra
d
in
g
S
tr
a
te
g
y
:
δ

 

 

κ = 0.05
κ = 0.75
κ = 2.0
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(b) δ∗ against S̃, varying κ with ν̃ > θ̃

Figure 7.3: The above figures shows the optimal trading strategy, δ∗, plotted against S̃
for various values of κ with ν̃ = 0.25 < θ̃ (figure 7.3(a)) and ν̃ = 2.5 > θ̃ (figure 7.3(b)).
The parameter values used are τ̃ = 1, l = 10, µ̃ = 0.02, κ = {0.05, 0.75, 2.0}, θ̃ =
0.46, σ = 2.78 and ρ = −0.64.
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Figure 7.4: The above figure shows the optimal trading strategy, δ∗, plotted against
ν̃ for various values of κ, with S̃ = 2.5. The parameter values used are τ̃ = 1, l =
10, µ̃ = 0.02, κ = {0.05, 0.75, 2.0}, θ̃ = 0.46, σ = 2.78 and ρ = −0.64.

the variance is expected to decrease and as such a higher value of κ is preferred so it

decreases quickly. It is also portrayed in figure 7.4 that as ν̃ increases past θ̃ the curves

for various speeds of reversion, κ, intersect, indicating the change in preference.

Next we investigate the change in the long-term mean level of variance, θ̃. This

can be seen in figure 7.5, with each figure having three curves for the long-term mean,

corresponding to θ̃ = {0.04, 0.46, 0.92}. It can be seen that for all values of the asset

price, S̃, and variance, ν̃, it is favourable to have the smallest value of the long-

term mean, θ̃. This is an expected result as smaller volatility is preferred over higher

volatility for a risk-averse trader.

Next we investigate the change in correlation parameter, ρ, between the asset price,

S̃, and the variance, ν̃. Figures 7.6(a) and 7.6(b) each have three curves corresponding

to different values of the correlation parameter, ρ = {−0.64, 0.00,+0.64}. In both we

can see there is a switch in preference of whether a positive or negative correlation

is preferred. A positive correlation is preferred when the variance, ν̃, is small and

expected to increase back to its long-term mean. If the variance, ν̃, is expected to

increase then it is preferable to have the asset price, S̃, correlated positively to the

variance as so it is also expected that the asset will increase in value. The opposite

is true for large variance, ν̃. A negative correlation is preferred when ν̃ is large and

expected to decrease back to its long-term mean. If the correlation, ρ, is negative
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Figure 7.5: The above figures shows the optimal trading strategy, δ∗, for various values
of θ̃ plotted against S̃ (figure 7.5(a), with ν̃ = 0.26) and against ν̃ (figure 7.5(b), with
S̃ = 5.). The parameter values used are τ̃ = 1, l = 10, µ̃ = 0.02, κ = 0.75, θ̃ =
{0.04, 0.46, 0.96}, σ = 2.78 and ρ = −0.64.
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Figure 7.6: The above figures shows the optimal trading strategy, δ∗, for various values
of ρ plotted against S̃ (figure 7.6(a), with ν̃ = 1.25) and against ν̃ (figure 7.6(b), with
ν̃ = 5.00). The parameter values used are τ̃ = 1, l = 10, µ̃ = 0.02, κ = 0.75, θ̃ =
0.46, σ = 2.78 and ρ = {−0.64, 0.0,+0.64}.
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(a) δ∗ against S̃, varying σ
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Figure 7.7: The above figures shows the optimal trading strategy, δ∗, for various values
of σ plotted against S̃ (figure 7.7(a), with ν̃ = 0.5) and against ν̃ (figure 7.7(b), with
S̃ = 5). The parameter values used are τ̃ = 1, l = 10, µ̃ = 0.02, κ = 0.75, θ̃ = 0.46, σ =
{0.5, 2.78, 5.0} and ρ = 0.0.

and if the variance, ν̃, is expected to decrease then it is expected the asset price, S̃,

will increase and this is favourable to the holder of that asset. If the correlation was

positive then it would be expected that the asset would decrease in value and this is

obviously not favourable to the trader. It is generally accepted that asset prices and

volatility have a negative correlation. As asset prices fall a company becomes riskier,

and hence more volatile, as the relative value of debt to equity rises. This is known as

the leverage effect (see Black, 1976; Christie, 1987). However, research has also shown

that declines in stock prices are accompanied by larger increases in volatility than the

decline in volatility that accompanies rising stock markets (see Nelson, 1991; Engle

and Ng, 1993).

Investigation of the effect of σ, the volatility of the variance, proved quite inter-

esting. We investigate three values, σ = {0.5, 2.94, 5.0}, which can be seen in figure

7.7. It was found that in certain regimes a smaller σ was preferred, such as when

the variance was below the long-term mean, θ̃, as being risk-averse the trader prefers

more certainty. However, when the variance, ν̃, was above the long-term mean, θ̃, a

higher value of σ resulted in a higher value function for the trader as the variance

would change more rapidly. These results are consistent with those found in other

areas of finance where stochastic volatility is concerned and the reader is referred to
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Yang (2010) for an analysis of option pricing under a Heston (1993) framework. There

is little literature regarding the noise of volatility, despite the vast amount of litera-

ture on volatility itself. Wilmott (2007) suggests “the volatility of volatility is large”

without further development or explanation. There is a volatility index that is traded

on the Chicago Board of Options called the CBOE Volatility Index, or VIX for short.

It a popular measure of the implied volatility of the S&P 500 index options. It rep-

resents one measure of the annualised market’s expectation of stock market volatility

over the next 30 day period. Table 7.2 represents some of the statistical properties of

the volatility of variance as calculated using the VIX for 22 years of data, from Feb.

9, 1990 through Feb. 3, 2012 (see Moran, 2012). This data represents the statistical

properties of α, see (7.2). α is the volatility of
√
ν (t) whereas σ is the volatility of

ν (t). Using Itô’s lemma it is found that σ = 2α.

Table 7.2: Properties for the VIX

α σ (= 2α)

Maximum 2.45 4.90
Minimum 0.344 0.688
Average 0.931 1.862
Median 0.862 1.724

7.2 Small-time-to-termination solution

We found from the numerics that there was a lot of interesting behaviour occurring

around τ̃ = 0, which is the termination time. This is similar to the case of constant

volatility, as discussed in section 4.2. For that reason we shall investigate a small-

time-to-termination solution.

From the previous analysis of similar models we expect to be able to derive a small-

time-to-termination solution which is fully analytic. To examine the small-τ̃ solution

we use a perturbation series of the form

f
(
τ̃ , q, S̃, ν̃

)
= f0

(
q, S̃, ν̃

)
+ τ̃ f1

(
q, S̃, ν̃

)
+ τ̃ 2f2

(
q, S̃, ν̃

)
+O

(
τ̃ 3
)
, (7.22)

which is a power series expansion in τ̃ of f
(
τ̃ , q, S̃, ν̃

)
up to O (τ̃ 3). We found using

a solution of this form successful in previous chapters, such as the constant volatility

case in chapter 4 (see (4.55)) and with multiple underlyings in chapter 6 (see (6.26))
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We can find a fully analytic expression for each term of (7.22) by substituting

(7.22) into (7.14) and matching the terms of similar order in τ̃ . Before doing this, we

examine (7.22) at τ̃ = 0 to which we have

f
(
τ̃ = 0, q, S̃, ν̃

)
= f0

(
q, S̃, ν̃

)
= −e−qS̃, (7.23)

which is from the initial condition (7.15). Upon substituting (7.22) into (7.14), we find

f1

(
q, S̃, ν̃

)
=

(
−µ̃S̃q +

1

2
ν̃S̃2q2 − S̃

S̃ + l

(
l

S̃ + l

) l
S̃

)
f0

(
q, S̃
)
, (7.24)

by collecting the O (τ̃ 0) terms and

f2

(
q, S̃, ν̃

)
=

1

2

(
µ̃S̃f1S̃ + κ

(
θ̃ − ν̃

)
f1ν̃ +

1

2
ν̃S̃2f1S̃S̃ +

1

2
σν̃2f1ν̃ν̃ + ρν̃σS̃f1S̃ν̃

− 1

S̃ + l

(
l

S̃ + l

) l
S̃
((
l + S̃

)
f1

(
q, S̃, ν̃

)
− lf1

(
q − 1, S̃, ν̃

)
e−S̃
))

, (7.25)

by collecting the O (τ̃ 1) terms. Given the expression (7.24) of f1

(
q, S̃, ν̃

)
, the deriva-

tives of f1

(
q, S̃, ν̃

)
can be calculated analytically and hence (7.25) can be expressed

analytically. We neglect the analytic solutions of the derivatives due to the complexity

of the equations but they are simple extensions to (4.58) and (4.59) which were found

in chapter 4 for the case of a single underlying asset with constant volatility.

A comparison of the accuracy for the two-term and three-term asymptotic expan-

sion can be seen in figure 7.8, in which we have shown a comparison for two values

of the asset price, small S̃ (figure 7.8(a)) and larger S̃ (figure 7.8(b)). We examined

these at a value of the variance, ν̃, near the long term mean, θ̃. It can be seen that

the three-term asymptotic expansion is a strong approximation to the full-numerical

solution for τ̃ ∼ O (1). It is of interest to observe that, as was the case under constant

volatility, the value function is increasing in τ̃ in the small S̃ regime (figure 7.8(a)),

while decreasing in τ̃ for larger values of S̃ (figure 7.8(b)).

It is also worth noting that there are restrictions to how well the expansion approx-

imates the full-numerical solution. The larger we make the asset price, S̃, the faster

the expansion deviates as an approximation for the full-numerical solution. This is

also the case as the variance, ν̃, is increased. Figure 7.9 shows the same figures as

figure 7.8 but for a larger value of the variance, with ν̃ doubling from ν̃ = 0.4 to

ν̃ = 0.8. It can be seen that for both small S̃ (figure 7.9(a), S̃ = 0.5) and larger S̃
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Figure 7.8: The above figures shows the comparison of the full-numerical solution
and the two-term and three-term asymptotic expansion of the value function, for
S̃ = 0.5 (figure 7.8(a)) and S̃ = 4 (figure 7.8(b)). The parameter values used are
l = 1, µ̃ = 0.05, κ = 0.75, θ̃ = 0.46, σ = 0.5 and ρ = −0.64.

(figure 7.9(b), S̃ = 4) the asymptotic solution deviates faster from the full-numerical

solution in comparison to the smaller value of the variance, ν̃. Finally, relatively large

parameter values can lead to a quicker deviation of the asymptotic expansion solution

from the full-numerical solution, hence the use of the smaller σ in figure 7.8.

This section has investigated when the time remaining until termination is small.

We shall now change from examining a small-time-to-termination solution to exam-

ining the case in which the time horizon is so large that we can approximate it as

infinite and thus the change in time in negligible. This is known as the perpetual

(steady-state) solution which was investigated thoroughly under constant volatility

(see section 4.3) and with multiple underlyings (see section 6.4). Both investigations

gave in-depth insight into the solution topology and provided parameter constraints for

the existence of solutions. Some of these constraints involved the (constant) volatility

(see, for example, (4.65)) and it is thus of interest to see if similar constraints exist

under a stochastic volatility framework.
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Figure 7.9: The above figures shows the comparison of the full-numerical solution and
the two-term and three-term asymptotic expansion of the value function, for S̃ = 0.5
(figure 7.9(a)) and S̃ = 4 (figure 7.9(b)), for larger ν̃ in relation to figure 7.8. The
parameter values used are l = 1, µ̃ = 0.05, κ = 0.75, θ̃ = 0.46, σ = 0.5 and ρ = −0.64.

7.3 Perpetual case

Let us now examine a perpetual-type solution which was shown to be of asymptotic

interest in previous chapters. Assuming a steady-state, and thus setting

∂f

∂τ̃

(
τ̃ , q, S̃, ν̃

)
= 0 as τ̃ →∞,

the non-linear PDE (7.14) reduces to

µ̃S̃fS̃ +
1

2
ν̃S̃2fS̃S̃ + κ

(
θ̃ − ν̃

)
fν̃ +

1

2
σ2ν̃fν̃ν̃ + ρσν̃S̃fS̃ν̃

− elS̃f

S̃ + l

 lf
(
q, S̃, ν̃

)
(
S̃ + l

)
f
(
q − 1, S̃, ν̃

)


l
S̃

= 0, (7.26)

with f = f
(
q, S̃, ν̃

)
and initial condition

f
(
q = 0, S̃, ν̃

)
= −1. (7.27)

The optimal strategy for the steady-state solution takes the form

δ∗
(
q, S̃, ν̃

)
=

1

S̃
ln


(
S̃ + l

)
f
(
q − 1, S̃, ν̃

)
lf
(
q, S̃, ν̃

)
− 1. (7.28)

To solve (7.26) we require two boundary conditions in each of the two semi-infinite

domains of the asset price, S̃, and variance, ν̃. These are analogous to the time-

dependent case above, given by (7.17),(7.18),(7.20) and (7.21), but with the time
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Figure 7.10: Contour plot of stochastic volatility steady-state solution for value func-
tion (figure 7.10(a)) and optimal trading strategy (figure 7.10(b)). The parameter
values used are l = 1, µ̃ = 0.02, κ = 0.75, θ̃ = 0.46, σ = 2.78 and ρ = −0.64.

derivative set to zero. We solve (7.26) using an iterative numerical method similar to

that described in section 6.4. Figure 7.10 shows contour plots of the value function

(figure 7.10(a)) and the optimal trading strategy (figure 7.10(b)). In figure 7.10(a) we

can see the contours curve as the variance, ν̃, increases indicating the value function

is a decreasing function of ν̃. This is confirmed in figure 7.10(b), as we see the optimal

trading strategy is a decreasing function of the variance, ν̃.

7.3.1 Limit of small asset price

Let us now consider the limit of (7.26) when the asset price is small, S̃ → 0, which

previously has shown to give us insight into the parameter regimes to which solutions

exist. In the single asset case with constant volatility it was found that for a steady-

state to exist the constraint

µ̃ <
σ̃2

2
, (7.29)

had to be satisfied, where σ̃ is the volatility of the geometric Brownian motion process

driving the asset price, i.e. ν̃ (τ) = σ̃2 ∀ τ . This is not to be confused with σ, which

in this chapter is the volatility of the variance, ν̃ (τ). Given now we have stochastic

volatility it is of interest to examine if similar constraints exist.



CHAPTER 7. STOCHASTIC VOLATILITY FOR A SINGLE UNDERLYING 180

In the limit as S̃ → 0 asymptotic balancing suggests the non-linear term is negli-

gible and thus a solution of the form

f
(
q, S̃, ν̃

)
= −1 + c (q) S̃βeαν̃ , (7.30)

solves the linear PDE

µ̃S̃fS̃ +
1

2
ν̃S̃2fS̃S̃ + κ

(
θ̃ − ν̃

)
fν̃ +

1

2
σ2ν̃fν̃ν̃ + ρσν̃S̃fS̃ν̃ = 0, (7.31)

with initial condition (7.16). Substituting (7.30) into (7.31) we obtain

α = − µ̃

κθ̃
β (7.32)

and
1

2
β (β − 1) + ρσβα +

1

2
σ2α2 − κα = 0, (7.33)

by collection the O (ν̃0) and O (ν̃1) terms respectively. For the solution to be bounded

we need β > 0 and α < 0. Solving (7.33) gives

β =

(
1− 2µ̃

θ̃

)
(

1− 2ρσµ̃

κθ̃
+
(
σµ̃

κθ̃

)2
) , (7.34)

which can be substituted into (7.32) to obtain

α = −
µ̃

κθ̃

(
1− 2µ̃

θ̃

)
(

1− 2ρσµ̃

κθ̃
+
(
σµ̃

κθ̃

)2
) . (7.35)

Examining β we see that the denominator of (7.34) is always positive; this is clear

when ρ = 0. At the extremes, when ρ = ±1 the denominator of (7.34) becomes(
1∓

(
σµ̃

κθ̃

))2

> 0.

Therefore, from the numerator of (7.34), we have the constraint

1− 2µ̃

θ̃
> 0⇒ µ̃ <

θ̃

2
, (7.36)

which is analogous to the constraint of the constant volatility case (7.29) given θ̃ is

the long-term mean of the variance. For α < 0 we need µ̃

κθ̃
> 0, given β > 0, which

sets the restriction

µ̃ > 0, (7.37)
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Figure 7.11: Above we compare the small S̃ asymptotic solution against the full-
numerical solution. We do this for small ν̃ (figure 7.11(a)) and relatively large ν̃ (figure
7.11(b)). The parameter values used are l = 1, µ̃ = 0.02, κ = 0.75, θ̃ = 0.46, σ = 2.78
and ρ = −0.64.

which is another parameter constraint, that was not present in the constant volatility

framework. Figure 7.11 shows the comparison of the asymptotic solution given by

(7.30), for small variance (figure 7.11(a)) and larger variance (figure 7.11(b)). We

can see the solution is approximated well in the small asset price, S̃, regime, before

diverging away from the solution, for both small and larger variance, ν̃.

Given β mainly takes non-integer values, singular behaviour is present. In the

small asset price limit, S̃ → 0, the optimal trading strategy is found, to leading order,

to take the form

δ∗ ≈ K (q) S̃β−1eαν̃ , (7.38)

in which K (q) is a decreasing function of q. This is similar to that found under

constant volatility (4.67), discussed in section 4.3.1.

7.3.2 Large number of assets

We shall now investigate (briefly) the limit as the number of assets held becomes large,

i.e. q →∞. It is found (confirmed by numerical investigation) that as q →∞

lim
q→∞

f
(
q, S̃, ν̃

)
f
(
q − 1, S̃, ν̃

) → 1, (7.39)
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Figure 7.12: Above we compare the q →∞ solution against the solutions of increasing
values of q. We plot q = {1, . . . , 5} which are represented by the increasing solid lines
and converging to the q →∞ solution, represented by the broken line. We do this for
small ν̃ (figure 7.12(a)) and large ν̃ (figure 7.12(b)). The parameter values used are
l = 1, µ̃ = 0.02, κ = 0.75, θ̃ = 0.46, σ = 2.78 and ρ = −0.64.

which when substituted into (7.26) yields

µ̃S̃fS̃ +
1

2
ν̃S̃2fS̃S̃ + κ

(
θ̃ − ν̃

)
fν̃ +

1

2
σ2ν̃fν̃ν̃ + ρσν̃S̃fS̃ν̃

− elS̃f

S̃ + l

 l(
S̃ + l

)
 l

S̃

= 0, (7.40)

with f = f(S̃, ν̃). This results in an optimal trading strategy which takes the form

δ∗
(
S̃, ν̃

)
=

1

S̃
ln


(
S̃ + l

)
l

− 1, (7.41)

which we notice is independent of the variance, ν̃. Intuitively this makes sense, given

that a trader with a large number of assets will receive a large amount of cash regardless

of the asset price. The variance of the asset is thus not of concern to him.

To solve (7.40) we use a second-order finite-difference scheme, implementing the

same boundary conditions as used for the q ∼ O (1) case as discussed above in section

7.3. We examine the convergence of increasing the inventory, q, towards the large

inventory, q →∞, solution. This can be seen in figure 7.12 for the value function and

figure 7.13 for the optimal trading strategies. We have included two figures in each,

one for small variance, ν̃, and one for relatively large ν̃. In each figure, we have curves
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Figure 7.13: Above we compare the q →∞ solution against the solutions of increasing
values of q for the optimal trading strategy, corresponding to those of figure 7.12. We
plot q = {1, . . . , 5} which are represented by the increasing solid lines and converging
towards the q → ∞ solution, represented by the broken line. We do this for small ν̃
(figure 7.13(a)) and relatively large ν̃ (figure 7.13(b)). The parameter values used are
l = 1, µ̃ = 0.02, κ = 0.75, θ̃ = 0.46, σ = 2.78 and ρ = −0.64.

representing increasing values of inventory, q, (solid curves) which converge towards

the broken curve representing the large inventory, q → ∞, solution. The values of

the inventory we use are q = {1, . . . , 5}. This convergence corroborates with our

approximation of the ratio of the value function for subsequent inventory, q, values,

given by (7.39). The singular behaviour (7.38) can be observed in figure 7.13 for the

optimal trading strategies for finite q as S̃ → 0. As q increases it tends to the q →∞
solution which is not singular as S̃ → 0, as from (7.41) we have

δ∗
(
S̃ → 0, ν̃

)
= lim

S̃→0+

 1

S̃
ln


(
S̃ + l

)
l

− 1

 =
1

l
− 1. (7.42)

7.4 Summary

In this chapter we returned to investigating the optimal trading strategy of a trader

who holds an amount of a single asset, but now the volatility of the asset is driven

by a stochastic process, correlated to the stochastic process driving the asset price.

This is the Heston (1993) framework in which the asset follows geometric Brownian

motion and the variance is driven by a stochastic mean-reverting process. We begin by

deriving an HJB equation and providing an ansatz and non-dimensionalisation which
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reduces this five-dimensional HJB equation to a four-dimensional non-linear PDE with

explicit non-linear term in which the number of input parameters reduced by two.

We first examined the PDE numerically before examining the solution in several

limits. We used a similar LU decomposition scheme as used for the multiple asset

case, see chapter 6, in which the LU matrices only had to be calculated once, greatly

reducing computational time. We examined the optimal trading strategies under var-

ious parameter regimes to get a full understanding of the effect of the mean-reverting

stochastic volatility on the trading strategies.

After producing some interesting numerical solutions we let the numerics, and

indeed the single asset case, guide us to which limits are of interest. We examined a

perpetual-type solution in which the time-to-termination tends to infinity. This led

to an interesting small S̃ solution which explained the singular behaviour that was

developing as S̃ → 0, and also provided us with parameter constraints necessary for a

steady-state solution to exist. We had already found an analogous constraint for the

constant volatility case (section 4.3) so it was of interest to see if a similar constraint

existed when the volatility was a variable rather than a parameter.

Finally we examined the limit as the number of assets held, q, went to infinity.

This is beneficial as it reduces the problem from a non-linear PDE to a linear PDE

which is numerically easier and quicker to solve.



Chapter 8

Extension of Single Underlying:

Various Intensity Functions and

Trading with Market Orders

In this chapter we focus on three extensions to chapter 4. The first is imposing a

constraint on the admissible strategy space that the control may take for an exponential

intensity. The second is to replace the negative exponential intensity function with a

power intensity function. The third is to return to the original setting of chapter 4

but allow for trading using both limit orders and market orders. Doing such analysis

exemplifies the significance (and usefulness) of solving the underlying problem using

asymptotic and numerical methods, the latter of which is prominent in this chapter.

In previous chapters we have focused on the intensity function of the Poisson

process having a negative exponential form, with the values taken by the optimal

strategy naturally bounded from below, with δ ∈ (−1,∞). Having δ < 0 implies we

are selling at a discount. It can be argued that in crossing the reference price we

are being charged a commission. This could correspond to the maker-taker fee (see

section 1.1) which occurs in practice on some exchanges, including the NYSE and

NASDAQ. It could also correspond to temporary market impact (see chapter 3) as

introduced by Almgren and Chriss (2001). Guéant and Lehalle (2013), who extend

their original model in Guéant et al. (2012b) by constraining δ, argue that setting

185
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δ < 0 is equivalent to using marketable limit orders1. To avoid marketable limit

orders/crossing the reference price, we introduce a constrained optimisation problem,

using a negative exponential intensity function with δ > δmin (with δmin = 0 being the

most obvious case).

An alternative model, implemented by Bayraktar and Ludkovski (2012) in a risk-

neutral setting and backed empirically by the work of Gopikrishnan et al. (2000),

Maslov and Mills (2001) and Gabaix et al. (2006) to name a few, is to use a power

intensity function. Bayraktar and Ludkovski (2012) argue that if selling at the refer-

ence price we should be able to execute almost certainly, and this is not the case using

the exponential intensity function. A power intensity function, with the power taking

a negative value, would tend to infinity as δ → 0, and they argue that this is a more

realistic assumption. Not only does this result in interesting and contrasting trading

strategies, given the instantaneous liquidity available as δ → 0, but also results in an

interesting problem from a mathematical perspective. As δ → 0 the Hamiltonian may

tend to infinity resulting in a singular stochastic control problem. The problem can

thus not be solved in a similar manner as the negative exponential intensity case.

Thus far in this thesis we have considered a trader who can trade explicitly using

only limit orders2. Posting limit orders has the usual trade-off between price risk and

non-execution risk. Posting market orders eliminates the latter risk but the trader

must pay for this privilege. The price the trader pays comes in the form of selling

the asset for a discount which in practice could represent market impact. Although

we are viewing immediate execution as a market order, it could also be interpreted as

selling to a central-risk desk in which a premium must be paid for this service. We

thus study the strategy of a trader who can post both limit orders and market orders

throughout the trading period. In our framework, given the trader has the ability to

execute immediately, the problem will be formulated as a free-boundary problem and

can be viewed similar to that as an American option which allows for early exercise.

This problem is of particular interest given the trader is risk-averse and thus before

examining the results we expect the trader will take advantage of having the ability

1Harris (2002) defines a marketable limit order as a buy order with a price at or above the lowest
offer in the market or a sell order with a price at or below the highest bid in the market

2Using the best bid as a reference price, liquidation at the terminal time, or under power intensity
as δ → 0, could be interpreted as trading with market orders.
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to early execute (using market orders), resulting in solutions contrasting to that of

chapter 4.

8.1 Constraining the trading strategy

In previous chapters δ was allowed to take any value (however naturally it was bounded

by δ ∈ (−1,∞)). In this section we shall impose a constraint δ ≥ δmin ≥ 0, which

avoids selling for a price lower than the reference price (although any value could be

set for δmin). Firstly, we will briefly recap the model.

8.1.1 Formulating the problem

We begin with an initial formulation as derived in chapter 4. Let (Ω,F ,P) be a

probability space with a filtration, (Ft, t ∈ [0, T ]). We assume the asset reference price

S(t) follows a geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dW (t), (8.1)

with µ as the constant relative drift, σ as the constant relative volatility and W (t) as

a Wiener process which is Ft measurable. The trader posts orders into the ask side of

the limit-order book for price Sa(t) which is δ = δ(t,X, q, S) ≥ δmin percent greater

than the reference price S(t)

Sa(t) = S (t) (1 + δ) . (8.2)

Asset sales and the trader’s wealth follow the same Poisson process, N(t), with

time-dependent intensity, which is Ft measurable and independent of W (t):

dq(t) = −dN(t), (8.3)

and

dX(t) = S(t) (1 + δ) dN(t), (8.4)

accordingly. Therefore, when a jump (trade) occurs, the values of q(t) and X(t)

change simultaneously, according to (8.3) and (8.4) respectively. As previous, N(t)

has intensity Λ(δ) which takes the form:

Λ(δ) = λe−lδ, (8.5)



CHAPTER 8. EXTENSION: INTENSITY FUNCTION & MARKET ORDERS 188

for some positive constants λ and l.

The objective is to liquidate this portfolio before some final time T while maximis-

ing the terminal time utility which takes the form of a negative exponential function.

We define our value function

umin(t,X, q, S) = sup
δ(t)∈Amin

E
[−e−γ(X(T )+q(T )S(T ))

]
, (8.6)

where γ > 0 is the risk-aversion characterising the trader, Amin is the set of admissible

trading strategies bounded below by δmin, and the value function’s superscript min

referring to the constraint δ ≥ δmin being imposed.

Given the optimisation problem of (8.6), an HJB equation can be derived by ap-

plying the Bellman (1957) principle of optimality and using Itô’s lemma:

umint (t,X, q, S) + µSuminS (t,X, q, S) +
1

2
σ2S2uminSS (t,X, q, S)

+ sup
δ≥δmin

[
λe−lδ

(
umin(t,X + S (1 + δ) , q − 1, S)− umin(t,X, q, S)

)]
= 0, (8.7)

with conditions:

umin(T,X, q, S) = −e−γ(X+qS), (8.8)

umin(t,X, 0, S) = −e−γX . (8.9)

The derivation of (8.7) is similar to that of (4.7) which is shown in section 4.1.1, and a

similar verification theorem (also described in section 4.1.1) can then be used to show

that the solution obtained from solving (8.7) is in fact the solution of (8.6).

8.1.2 Reduction of problem

Using the same techniques as in previous chapters (see section 4.1.2), we assume an

ansatz solution (4.29)

umin (t,X, q, S) = e−γXfmin (τ, q, S) , (8.10)

and use the change of variables (4.40)

τ̃ = λτ, S̃ = Sγ, µ̃ =
µ

λ
, σ̃ =

σ√
λ
, (8.11)
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where we also use a change in the time variable τ = T − t, so that we are now solving

forward in τ̃ rather than backward in t. Using this form of the solution we obtain:

−fminτ̃

(
τ̃ , q, S̃

)
+ µ̃S̃fmin

S̃

(
τ̃ , q, S̃

)
+

1

2
σ̃2S̃2fmin

S̃S̃

(
τ̃ , q, S̃

)
+ sup
δ≥δmin

[
e−lδ

(
e−S̃(1+δ)fmin

(
τ̃ , q − 1, S̃

)
− fmin

(
τ̃ , q, S̃

))]
= 0, (8.12)

with

fmin
(

0, q, S̃
)

= −e−qS̃, (8.13)

fmin
(
τ̃ , 0, S̃

)
= −1. (8.14)

Let us define the Hamiltonian

Hmin
(
τ̃ , q, S̃, fmin

)
= sup

δ≥δmin

[
e−lδ

(
e−S̃(1+δ)fmin

(
τ̃ , q − 1, S̃

)
− fmin

(
τ̃ , q, S̃

))]
= sup

δ≥δmin
Lmin

(
f, τ̃ , q, S̃, δ

)
. (8.15)

For fixed
(
τ̃ , q, S̃

)
, a unique maximiser for Lmin

(
f, τ̃ , q, S̃, δ

)
was found in chapter 4

for the unconstrained problem. This means that Lmin
(
f, τ̃ , q, S̃, δ

)
is strictly increas-

ing on (−1, δ∗] and strictly decreasing on [δ∗,∞). Hence for the constrained problem

the unique maximiser over δ ≥ δmin is max (δmin, δ∗). We note that this leads to sub-

optimal strategies when δ∗ < δmin. We thus treat two cases of the Hamiltonian (8.15),

one when δ = δ∗ and one when δ = δmin. This results in

Hmin
(
τ̃ , q, S̃, fmin

)
=



sup
δ

[
e−lδ

(
e−S̃(1+δ)fmin

(
τ̃ , q − 1, S̃

)
− fmin

(
τ̃ , q, S̃

))]
if δ ≥ δmin,

e−lδ
min
(
e−S̃(1+δmin)fmin

(
τ̃ , q − 1, S̃

)
− fmin

(
τ̃ , q, S̃

))
if δ ≤ δmin.

(8.16)

We know from chapter 4 that in the unconstrained case we can explicitly find the

optimal strategy in terms of the value function, which is given by

δ∗ =
1

S̃
ln


(
S̃ + l

)
fmin

(
τ̃ , q − 1, S̃

)
lfmin

(
τ̃ , q, S̃

)
− 1. (8.17)

This holds for δ∗ ≥ δmin and hence

δmin∗ = max

δmin, 1

S̃
ln


(
S̃ + l

)
fmin

(
τ̃ , q − 1, S̃

)
lfmin

(
τ̃ , q, S̃

)
− 1

 . (8.18)
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From (8.18) and (8.16) we have

Hmin
(
τ̃ , q, S̃, fmin

)
=



−
elS̃fmin

(
τ̃ , q, S̃

)
S̃ + l

 lfmin
(
τ̃ , q, S̃

)
(
S̃ + l

)
fmin

(
τ̃ , q − 1, S̃

)


l
S̃

if δ∗ ≥ δmin,

e−lδ
min
(
e−S̃(1+δmin)fmin

(
τ̃ , q − 1, S̃

)
− fmin

(
τ̃ , q, S̃

))
if δ∗ ≤ δmin.

(8.19)

The problem is thus to solve

−fminτ̃

(
τ̃ , q, S̃

)
+ µ̃S̃fmin

S̃

(
τ̃ , q, S̃

)
+

1

2
σ̃2S̃2fmin

S̃S̃

(
τ̃ , q, S̃

)
+Hmin

(
τ̃ , q, S̃, fmin

)
= 0, (8.20)

with initial conditions (8.13) and (8.14), and Hmin given by (8.19). The boundary

conditions used are the same as those used in chapter 4, namely

f
(
τ̃ , q, S̃ = 0

)
= −1, (8.21)

and
∂f

∂S̃

(
τ̃ , q, S̃ →∞

)
→ 0. (8.22)

8.1.3 Numerical method

To solve (8.20) we use a similar method as used for the unconstrained problem in sec-

tion 4.1.5, but with a slight modification to allow for the constraint to be implemented.

We use finite-differences to solve (8.20), implementing implicit differences for the

derivatives while taking the non-linear term, Hmin
(
τ̃ , q, S̃, fmin

)
, explicitly. Dropping

the min superscript, and letting fmin
(
j∆τ̃ , q, i∆S̃

)
= f qi,j we can approximate (8.20)

as

−f
q
i,j+1 − f qi,j

∆τ̃
+ µ̃i∆S̃

f qi+1,j+1 − f qi−1,j+1

2∆S̃
+

1

2
σ̃2
(
i∆S̃

)2 f qi+1,j+1 − 2f qi,j+1 + f qi−1,j+1

∆S̃2

+H
(
j∆τ̃ , q, i∆S̃, f

)
= 0, (8.23)
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Table 8.1: Convergence of finite-difference scheme for constrained optimisation

n m f
(
τ̃ = 1, q = 1, S̃ = 2.5

)
ratio

1001 1001 -0.064119345463 NA
2001 1001 -0.064119247917 NA
4001 1001 -0.064119223433 3.984002
8001 1001 -0.064119217263 3.968233
16001 1001 -0.064119215696 3.937878

1001 501 -0.064120717188 NA
1001 1001 -0.064119345463 NA
1001 2001 -0.064118660074 2.001382
1001 4001 -0.064118317498 2.000691
1001 8001 -0.064118146240 2.000346

n and m are the number of space and time points respectively. We have set S̃max =
5, τ̃ = 1, l = 25, µ̃ = 0.04 and σ̃ = 0.4. The ratio is the ratio of the change in errors.

with

H
(
j∆τ̃ , q, i∆S̃, f

)
=


−e

li∆S̃f qi,j

i∆S̃ + l

 lf qi,j(
i∆S̃ + l

)
f q−1
i,j

 l
i∆S̃

if δ∗ ≥ δmin

e−lδ
min
(
e−i∆S̃(1+δmin)f q−1

i,j − f qi,j
)

if δ∗ ≤ δmin.

(8.24)

and conditions (8.13) and (8.14).

At each
(
τ̃ , q, S̃

)
we must examine whether the constraint is satisfied or not, and

hence which case of (8.19) we use. For the former case we need (from (8.18))

1

S̃
ln


(
S̃ + l

)
fmin

(
τ̃ , q − 1, S̃

)
lfmin

(
τ̃ , q, S̃

)
− 1 ≥ δmin (8.25)

which is equivalent to the constraint

fmin
(
τ̃ , q, S̃

)
≥ e−S̃(1+δmin)

(
S̃ + l

)
fmin

(
τ̃ , q − 1, S̃

)
l

. (8.26)

Therefore, if (8.26) is satisfied, we use the former case of (8.24), otherwise we use the

latter. As we are employing explicit differences for the non-linear term we use the

explicit terms in checking the constraint (8.26), thus eliminating the need of iteration.

The above method should exhibit O
(

∆τ̃ ,∆S̃2
)

convergence, which we see in table

8.1 is the case. In the next section, in which we replace the exponential intensity with

a power intensity, we shall discuss a novel numerical method (see section 8.2.4) in
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Figure 8.1: Comparing the value function and optimal strategy of the constrained
and unconstrained model against values of S̃ for a trader with one asset remaining, at
τ̃ = 1. The parameter values take µ̃ = 0.04, σ̃ = 0.4 and l = 25.

which the PDE, including the non-linear term, is taken implicitly, and the control is

found numerically. We will use this implicit method to verify the above method.

8.1.4 Numerical examples

We shall briefly discuss how the solutions of the constrained model vary from those of

the unconstrained model of chapter 4.

As mentioned, solutions of the constrained optimisation problem are suboptimal

compared to those of the unconstrained optimisation problem. We therefore expect the

value function of the constrained problem to be less than that of the unconstrained

value function. In figure 8.1 we have plotted the value function (figure 8.1(a)) and

optimal strategy (figure 8.1(b)) against S̃, at the initial time, τ̃ = 1. In figure 8.1(a)

we can observe the value function of the unconstrained problem being greater than

that of the constrained problem. Although it is only graphically observable for larger

S̃ values, it should be noted that the unconstrained value function is greater than the

constrained value function for all values of S̃ due to the diffusive nature of the PDE.

Figure 8.1(b) shows the difference in the optimal strategy for the constrained and

unconstrained problem. It is clear where the constraint kicks in and the two solutions

diverge. However, like the value function, the optimal strategies differ for all S̃ values

due to the diffusion.

The transition to the constraint can be seen in figure 8.2 which shows the value
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Figure 8.2: Comparing the value function and optimal strategy of the constrained
and unconstrained model against values of τ̃ for a trader with one asset remaining, at
S̃ = 3. The parameter values take µ̃ = 0.04, σ̃ = 0.4 and l = 25.
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Figure 8.3: Comparing the intensity function of the Poisson process for the constrained
and unconstrained model values of S̃ (figure 8.3(a)) and τ̃ (figure 8.3(b)). This is for a
trader with one asset remaining. The parameter values take µ̃ = 0.04, σ̃ = 0.4 and l =
25.



CHAPTER 8. EXTENSION: INTENSITY FUNCTION & MARKET ORDERS 194

function (figure 8.2(a)) and optimal strategy (figure 8.2(b)) against τ̃ at a particular

S̃ value; the divergence of the solutions as τ̃ increases is vivid.

It is also of interest to see how the constraint affects the intensity of the Poisson

process, which is given by (8.5). Figure 8.3 is a plot of (8.5) using the constrained and

unconstrained optimal control, with figure 8.3(a) showing the intensity against S̃ and

figure 8.3(b) showing the intensity against τ̃ .

We shall now turn our attention to a similar framework but under power intensity,

which naturally encapsulates a lower bound of zero for the optimal trading strategy.

8.2 Introducing a power function intensity

In this section we examine changing the form of the intensity function from a negative

exponential function to a power function with the power taking a negative value. This

self imposes the constraint δ ∈ (0,∞).

Implementing this change highlights the power of using a combined approach of

asymptotic and numerical methods. We have shown in chapter 4 that we are not

constrained by the underlying process driving the asset while in chapters 6 and 7 we

highlighted that our methods are still applicable for higher-dimensional problems. In

this section we demonstrate that our (numerical) methods can still be used even when

we are unable to reduce the HJB equation to a non-linear PDE with explicit non-

linear term and indeed need to solve the optimal solution numerically. Bayraktar and

Ludkovski (2012) use a combination of a linear utility function, and a power intensity

function, to reduce the problem to a recurrence relation. However in our formulation

we cannot reduce the resulting HJB equation to a non-linear PDE with explicit non-

linear term (as in previous cases, e.g. chapter 4) and thus must rely completely on

numerical methods to find both the optimal strategy and solve the PDE.

8.2.1 Formulating the problem

The formulation of the problem is similar to that of section 8.1. We assume the

asset price S(t) follows a geometric Brownian motion given by (8.1). The trader will

continuously post orders into the ask side of the limit-order book for price Sa(t) given

by (8.2). Asset sales and the trader’s wealth follow a Poisson process, N(t), with
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time-dependent intensity, given by (8.3) and (8.4) respectively. The intensity Λ(δ)

takes the form:

Λ(δ) =
λ

δα
, α > 1 (8.27)

which is distinct from (8.5) which has the negative exponential form. The derivation

of (8.27) was discussed in section 3.2.2. The constraint α > 1 is necessary for a unique

solution to exist, which we discuss further in section 8.2.4.

The objective is to liquidate this portfolio before some final time T . We define our

value function

u(t,X, q, S) = sup
δ(t)∈A

E
[−e−γ(X(T )+q(T )S(T ))

]
, (8.28)

where A is the set of admissible trading strategies bounded below by zero.

Given the optimisation problem of (8.28), an HJB equation can be derived by

applying the Bellman (1957) principle of optimality and using Itô’s lemma:

ut(t,X, q, S) + µSuS(t,X, q, S) +
1

2
σ2S2uSS(t,X, q, S)

+sup
δ∈A

[
λ

δα
(u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S))

]
= 0, (8.29)

with initial conditions (8.8) and (8.9). However, unlike the case of the exponential

intensity, the Hamiltonian

H (t,X, q, S, u) = sup
δ∈A

[
λ

δα
(u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S))

]
= sup

δ∈A
L (δ, t,X, q, S, u) (8.30)

may tend to infinity in some domain of (t,X, q, S, u) as δ → 0. In such a case, as

discussed in Pham (2009), from the arguments leading to the derivation of the HJB

equation (see section 8.2.2), we introduce a continuous function G (t,X, q, S, u) such

that

H (t,X, q, S, u) <∞⇐⇒ G (t,X, q, S, u) ≤ 0. (8.31)

This results in

ut(t,X, q, S) + µSuS(t,X, q, S) +
1

2
σ2S2uSS(t,X, q, S)+H (t,X, q, S, u) ≤ 0, (8.32)

G (t,X, q, S, u) ≤ 0. (8.33)

For the problem stated here we have

G (t,X, q, S, u) = u (t,X + S, q − 1, S)− u (t,X, q, S) , (8.34)
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which represents when the asset is sold at its reference price, which we assume occurs

instantaneously given the intensity of the Poisson process tends to infinity as δ → 0.

If (8.33) has a strict inequality for some (t,X, q, S), then there exists a neighbourhood

of (t,X, q, S, u) for which H is finite. Then from a similar argument that led to the

derivation of the HJB equation we should have equality in (8.32). This results in a

variational inequality for the dynamic programming equation

max
[
ut(t,X, q, S) + µSuS(t,X, q, S)+

1

2
σ2S2uSS(t,X, q, S) +H (t,X, q, S, u) ,

u (t,X + S, q − 1, S)− u (t,X, q, S)
]

= 0,

(8.35)

with conditions (8.8) and (8.9), and H (t,X, q, S, u) given by (8.30).

8.2.2 Derivation of HJB equation and verification theorem

This derivation is an extension to that shown for the case of the negative exponential

intensity as described in section 4.1.1 and the reader is referred to that section for

further insight.

Let (Ω,F ,P) be a probability space with a filtration , (Ft, t ∈ [0, T ]). We define

the stochastic processes adapted to the filtration Ft as:
dS(t)

dq(t)

dX(t)

 =


µS (t)

0

0

 dt+


σS (t) dW (t)

−dN(t)

S(t) (1 + δ) dN(t)

 , (8.36)

and the value function u(t,X, q, S) as

u(t,X, q, S) = sup
δ(t)∈A

E [Φ(X(T ), q(T ), S(T ))] , (8.37)

where A ⊆ R+ is the set of admissible trading strategies and Φ (·) is the form of the

utility function. Bellman’s Principle of Optimality reads:

u(t,X, q, S) = sup
δ(t)∈A

E [u(t+ h,X(t+ h), q(t+ h), S(t+ h))] . (8.38)

To derive the dynamic programming equation we will first assume δ(s) = δ for s ∈
[t, t+ h], i.e. the control parameter is constant over the interval [t, t+ h]. From (8.38)

we have:

u(t,X, q, S) ≥ E [u(t+ h,X(t+ h), q(t+ h), S(t+ h))] . (8.39)
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Subtracting u(t,X, q, S) from both sides gives

0 ≥ E [u(t+ h,X(t+ h), q(t+ h), S(t+ h))− u(t,X, q, S)] . (8.40)

Assuming u ∈ C1,2 ([0, T ),R+) in t and S respectively, we now apply Itô’s lemma to

u(t+h,X(t+h), q(t+h), S(t+h))−u(t,X, q, S), which when divided by h and letting

h→ 0 results in (this is shown in more detail in section 4.1.1)

0 ≥ Lu(t,X, q, S) +
λ

δα
(u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S)) (8.41)

where we define the generator L of the geometric Brownian motion as

Lu(t,X, q, S) = ut(t,X, q, S) + µSuS(t,X, q, S) +
1

2
σ2S2uSS(t,X, q, S). (8.42)

We define the Hamiltonian as

H(t,X, q, S) = sup
δ(t)∈A

λ

δα
(u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S)) . (8.43)

If

λ

δα
(u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S)) > 0 as δ → 0⇒ H(t,X, q, S)→∞.

Similarly, if

λ

δα
(u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S)) ≤ 0 as δ → 0⇒ H(t,X, q, S) <∞.

Therefore

H (t,X, q, S, u) <∞⇐⇒ G (t,X, q, S, u) = u (t,X + S, q − 1, S)− u (t,X, q, S) ≤ 0.

(8.44)

If the inequality of (8.44) is strictly unequal then the optimal control is given by the

non-zero Markov control policy δ∗ = δ∗(s,X∗(s), q∗(s), S(s)). Using the optimal policy

and making the same assessment as above we obtain

0 = Lu(t,X, q, S) +
λ

(δ∗)α
(u(t,X + S (1 + δ∗) , q − 1, S)− u(t,X, q, S)) , (8.45)

and so we can conclude

0 = Lu(t,X, q, S) + sup
δ∈A

[Λ(δ) (u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S))]. (8.46)
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If the inequality of (8.44) is strictly equal we have

u (t,X, q, S) = u (t,X + S, q − 1, S) , (8.47)

and hence we can conclude

max
[
ut(t,X, q, S) + µSuS(t,X, q, S) +

1

2
σ2S2uSS(t,X, q, S) +H (t,X, q, S, u) ,

u(t,X + S, q − 1, S)− u(t,X, q, S)
]

= 0,

(8.48)

with initial conditions (8.8) and (8.9), and H (t,X, q, S, u) given by (8.43). This prob-

lem is known as a singular stochastic control problem and the reader is referred to

Pham (2009) and Øksendal and Sulem (2005) for further insight.

Using the same methods as section 4.1.1 a verification theorem can be derived to

show that the solution from the variational inequality (8.48) is indeed the solution of

(8.37).

8.2.3 Reduction of the problem

As with the negative exponential intensity case (see section 8.1) we are able to perform

both a reduction of variables and a reduction of parameters on the power intensity

case. Using the ansatz solution (8.10) with τ = T − t and the non-dimensionalisation

(8.11) we can rewrite (8.29) as

−fτ̃
(
τ̃ , q, S̃

)
+ µ̃S̃fS̃

(
τ̃ , q, S̃

)
+

1

2
σ̃2S̃2fS̃S̃

(
τ̃ , q, S̃

)
+sup
δ∈A

[
1

δα

(
e−S̃(1+δ)f

(
τ̃ , q − 1, S̃

)
− f

(
τ̃ , q, S̃

))]
= 0, (8.49)

with initial conditions (8.13) and (8.14). The Hamilton, H, previously defined by

(8.30) can be expressed as

H
(
τ̃ , q, S̃, f

)
= sup

δ∈A

[
1

δα

(
e−S̃(1+δ)f

(
τ̃ , q − 1, S̃

)
− f

(
τ̃ , q, S̃

))]
= sup

δ∈A
L
(
δ, τ̃ , q, S̃, f

)
, (8.50)

and the function G, given by (8.34) can be expressed as

G
(
τ̃ , q, S̃, f

)
= e−S̃f

(
τ̃ , q − 1, S̃

)
− f

(
τ̃ , q, S̃

)
. (8.51)
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We can therefore rewrite the variational inequality (8.35) as

max
[
− fτ̃

(
τ̃ , q, S̃

)
+ µ̃S̃fS̃

(
τ̃ , q, S̃

)
+

1

2
σ̃2S̃2fS̃S̃

(
τ̃ , q, S̃

)
+H

(
τ̃ , q, S̃, f

)
,

e−S̃f
(
τ̃ , q − 1, S̃

)
− f

(
τ̃ , q, S̃

) ]
= 0, (8.52)

along with initial conditions (8.13) and (8.14), boundary conditions (8.21) and (8.22),

and H
(
τ̃ , q, S̃, f

)
given by (8.50).

8.2.4 Numerical method

When examining the case of an exponential intensity function we were able to reduce

the HJB equation to a non-linear PDE with explicit non-linear term by finding the

optimal control in terms of the value function, given by (8.17), and substituting it back

into the HJB equation. For the case of the power intensity function we are unable

to use similar methods and must approach the problem with a different numerical

method.

We use a method based on the SOR scheme (the SOR scheme is discussed in section

2.6.3) as now we must also use numerical methods to find the optimal control, δ∗, by

numerically finding the supremum of the (8.50).

Letting f
(
j∆τ̃ , q, i∆S̃

)
= f qi,j we can approximate (8.49) using implicit differenc-

ing as

−f
q
i,j+1 − f qi,j

∆τ̃
+ µi∆S̃

f qi+1,j+1 − f qi−1,j+1

2∆S̃
+

1

2
σ2
(
i∆S̃

)2 f qi+1,j+1 − 2f qi,j+1 + f qi−1,j+1

∆S̃2

+H
(

(j + 1) ∆τ̃ , q, i∆S̃, f
)

= 0, (8.53)

with

H
(

(j + 1) ∆τ̃ , q, i∆S̃, f
)

= sup
δ∈A

[
1

δα

(
e−i∆S̃(1+δ)f q−1

i,j+1 − f qi,j+1

)]
= sup

δ∈A
L
(
δ, (j + 1) ∆τ̃ , q, i∆S̃, f

)
. (8.54)

At each iteration we must recalculate the optimal strategy by finding

δ∗ = argH
(

(j + 1) ∆τ̃ , q, i∆S̃, f
)
. (8.55)

Once this is calculated we substitute it into

L∗
(
δ∗, (j + 1) ∆τ̃ , q, i∆S̃, f

)
=

1

(δ∗)α

(
e−i∆S̃(1+δ∗)f q−1

i,j+1 − f qi,j+1

)
, (8.56)
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so now we have a PDE to solve and then perform another iteration. To find the

supremum of (8.54), and thus the value of (8.55), we must specify a discrete range of

δ to search over. This range cannot contain zero as this will result in computational

error (given there is division by some positive power of δ). We thus set a range for δ

which has a lower bound, δ, near to zero (say 10−12). We then search over the range

of δ, the method of which is described next. If we find the optimal control, δ∗, is

equal to the lower bound of the discrete space of δ, then it is assumed it should in fact

be zero in which case the Hamiltonian would be infinite and thus the second term in

the variation inequality (8.52) becomes active. We thus modify the numerical (SOR)

scheme appropriately.

When we are solving the HJB equation part of the variational inequality (8.53) we

can write it in the form of Af = b, where A is a tridiagonal matrix. Defining f q,pi,j as

the pth iteration of f qi,j we can formulate a scheme based on the SOR method as

y =
1

βi

(
bi − αif q,p+1

i−1,j+1 − γif q,pi+1,j+1

)
(8.57)

f q,p+1
i,j+1 =

f
q,p
i,j+1 + ω

(
y − f q,pi,j+1

)
if δ∗ 6= δ

e−i∆Sf q−1
i,j+1 if δ∗ = δ

(8.58)

where β is a vector containing the main diagonal of A, α is a vector containing the

subdiagonal of A and γ is a vector containing the superdiagonal of A. We iterate over

these two equations until the difference between successive iterations is sufficiently

small, beginning by setting f q,0i,j+1 = f qi,j, and recalculating (8.55) during each iteration.

When δ∗ is recalculated the values of b and β must be recalculated as they contain

the q and q − 1 components of (8.56) respectively. Convergence of the above method

is discussed by Huang et al. (2012), and the reader is referred to this article for more

insight.

Finding the supremum

In each of the SOR iterations we must find the optimal strategy by solving (8.55)

for each
(
τ̃ , q, S̃

)
. We must first show that L

(
δ, τ̃ , q, S̃, f

)
is a unimodal function in

δ. A unimodal function is defined as follows: a function g (x) is a unimodal function

if for some value m, it is monotonically increasing for x ≤ m and monotonically

decreasing for x ≥ m. In that case, the maximum value of g (x) is g (m) and there
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are no other local maxima. It was shown that under a negative exponential intensity

function L
(
δ, τ̃ , q, S̃, f

)
is a unimodal function, given we were able to find unique

maximum explicitly in terms of the value function. We cannot explicitly find the

unique maximum under a power intensity function however we can still show that one

exists.

Over a domain δ ∈ (0,∞) we have

∂L

∂δ

(
δ, τ̃ , q, S̃, f

)
= Λ′ (δ)

(
e−S̃(1+δ)f

(
τ̃ , q − 1, S̃

)
− f

(
τ̃ , q, S̃

))
− S̃Λ (δ)

(
e−S̃(1+δ)f

(
τ̃ , q − 1, S̃

))
(8.59)

where Λ (δ) is defined by (8.27), and Λ′ (δ) denotes its derivative. A maximum of

L
(
δ, τ̃ , q, S̃, f

)
exists at

δ∗ − 1

S̃
ln

(
1− S̃Λ (δ∗)

Λ′ (δ∗)

)
=

1

S̃
ln

f
(
τ̃ , q − 1, S̃

)
f
(
τ̃ , q, S̃

)
+ 1. (8.60)

We define the strictly increasing function

h (x) = x− 1

S̃
ln

(
1− S̃Λ (x)

Λ′ (x)

)
, (8.61)

which we know is strictly increasing given

h′ (x) =
−S̃Λ (x) Λ′ (x)

Λ′ (x)2 − S̃Λ (x) Λ′ (x)
+

2Λ′ (x)2 − Λ (x) Λ′′ (x)

Λ′ (x)2 − S̃Λ (x) Λ′ (x)
(8.62)

is strictly positive under the condition Λ (x) Λ′′ (x) ≤ 2Λ′ (x)2. This is also a condition

found by Bayraktar and Ludkovski (2012), and to which (8.27) for α > 1, and the

exponential intensity (8.5), satisfy. Given (8.61) is strictly increasing, δ∗ satisfying

(8.60) for fixed
(
τ̃ , q, S̃

)
is unique and a unique maximum of L

(
δ, τ̃ , q, S̃, f

)
exists.

The algorithm to solve for a coordinate m, corresponding to the maximum g (m),

of a unimodal function g (x), in a domain x ∈ [xmin, xmax] is as follows:

1. Choose a tolerance level ε, and from this calculate the number of iterations m

(see below). Set counter = 0.

2. Set ∆x =
xmax − xmin

n
.

3. Discretise the domain into n+ 1 values {x0, . . . , xn} with xi = xmin + i∆x.
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4. Calculate g (xi) for i ∈ {0, . . . , n} and find x∗ = arg max{g (xi) : i ∈ {0, . . . , n}}.

5. If x∗ = xmin, xmax = xmin + ∆x, else if x∗ = xmax, xmin = xmax − ∆x, else

xmin = x∗ −∆x, xmax = x∗ + ∆x.

6. If counter < m increment counter and return to step 2. Else finish.

Optimal number of sections

A question arises now as to what value n should take. Using the optimal bisection

algorithm requires a different approach than when using a standard root finding algo-

rithm. In the root finding algorithm we can use one division to go from the interval

[xmin, xmax] to either [xmin, (xmin+xmax)/2] or [(xmin+xmax)/2, xmax]. However when

searching for a maximum we do not know if the maximum is contained in the left or

right interval. If we divide the interval into n sections, in each iteration we can only

narrow down to the interval [xi− (xmax− xmin)/n, xi + (xmax− xmin)/n] where xi was

the result that gave the value of the maximum.

If we seek to reduce a starting interval [xmin, xmax] by some relative tolerance ε,

such that the length of the interval is reduced to less than (xmax− xmin)× ε, then the

number of iterations m required for fixed n is

m =
log (ε)

log (2/n)
.

So if the work done in the algorithm at each stage is proportional to n, we can write

the cost function to achieve an accuracy of ε as

f(n) = An
log (ε)

log (2/n)
+B.

Differentiating with respect to n gives

df

dn
(n) = A log (ε)

log (2/n) + 1

log2 (2/n)
,

so the minimum cost is achieved at

n = 2e.

Obviously we must choose an integer, and it appears as though n = 5 gives a slightly

lower cost than n = 6. To find the number of iterations m in the algorithm for a

required tolerance we choose

m =
log (ε)

log (0.4)
.
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For example, consider the interval [0,1]. If we want to reduce it to 5% of its original

space, we find the number of iterations to be

m =
log (0.05)

log (0.4)
= 3.27

which we round to 4 as it must be an integer. In the first search we reduce the interval

to [x1
i − 0.2, x1

i + 0.2], where the superscript on x represents it is the optimal value

found in that search. In the next search we reduce the interval to [x2
i −0.08, x2

i +0.08].

The third and fourth search reduce the interval to [x3
i − 0.032, x3

i + 0.032] and [x4
i −

0.0128, x4
i + 0.0.0128] respectively, in which the interval is now of size 0.0256 which is

within the absolute tolerance.

Other methods for finding the maximum of a unimodal function include the Golden

Section Search algorithm developed by Kiefer (1953) which derives its name from the

fact that the algorithm maintains the function values for triplets of points whose

distances form a golden ratio; the above numerical techniques are outlined in Press

et al. (2009).

The above numerical scheme should exhibit O
(

∆τ̃ ,∆S̃2
)

convergence which we

can see from table 8.2 is the case. To further confirm our numerical method we returned

to the problem examined in chapter 4, for which we can solve using a direct solver.

We solved (4.30), which requires the supremum to be found numerically (rather than

directly), and compared the results to those found when the supremum is calculated as

an explicit function of the value function, as in (4.33). We also verified the numerics by

solving the constrained optimisation problem discussed in section 8.1 using the above

method.

8.2.5 Numerical examples

We shall briefly discuss how the solutions under a power intensity function vary from

that under an exponential intensity (as was previously discussed in chapter 4).

Figure 8.4 shows the optimal strategy as a function of S̃ for various values of

the inventory, q. This can be seen at times-to-expiry τ̃ = 0.05 (figure 8.4(a)) and

τ̃ = 1 (figure 8.4(b)). We notice these plots have similar characteristics to those of

the exponential model (see figures 4.2 and 4.4). The optimal strategies are decreasing

in q and decreasing in S̃. However, there is a contrast to the exponential model.
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Table 8.2: Convergence of SOR scheme under power intensity

n m f
(
τ̃ = 1, q = 1, S̃ = 5

)
ratio

251 1001 -0.001469455352 NA
501 1001 -0.001469320629 NA
1001 1001 -0.001469286931 3.997988
2001 1001 -0.001469278515 4.003909
4001 1001 -0.001469276376 3.934555

1001 251 -0.001503341513 NA
1001 501 -0.001480462120 NA
1001 1001 -0.001469286931 2.047338
1001 2001 -0.001464036210 2.128315
1001 4001 -0.001461615175 2.168791

n and m are the number of space and time points respectively. We have set S̃max =
10, τ̃ = 1, α = 2, µ̃ = 0.04 and σ̃ = 0.4. The ratio is the ratio of the change in errors.

The exponential model had increasing optimal strategy as time-to-expiry increases

for certain S̃ regimes (small S̃), and decreasing optimal strategy as time-to-expiry

increases for other S̃ regimes. On the other hand, numerical calculations indicated

conclusively that the optimal strategy increases for all S̃ regimes as time-to-expiry

increases. This can be seen in figure 8.5. As τ̃ → 0 the optimal trading strategy

δ∗ → 0. However, it will always stay greater than zero as the trader will try making

some revenue from selling above the reference price. We believe this is due to the effect

of having the option of selling immediately by sending δ → 0 if the trader so chooses,

and as such has less liquidation risk than that of the exponential model. Bayraktar

and Ludkovski (2012) also find (analytically) that δ remains strictly positive, under

their framework.

Finally, we discuss the effect of varying parameters. Changing µ̃ and σ̃ has the

same properties as the exponential intensity model, which was discussed in chapter 4,

so we will not reiterate . We will thus focus on the different regimes of the parameter

α. Firstly, let us consider the properties of the intensity function (8.27) for varying α.

For smaller α, equation (8.27) will tend to infinity slower as δ → 0, while tending to

zero faster as δ → ∞. We see similar behaviour in figure 8.6. In figure 8.6(a) we see

the optimal strategy decreasing in α for larger values of δ∗ while increasing in α for

smaller values of δ∗. This indicates that for larger values of δ∗ the trader has preference

over smaller α while when he wants to liquidate quicker (and thus have smaller δ∗) he
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(b) Optimal strategy against S̃ at τ = 1

Figure 8.4: Comparing the optimal strategy of the power intensity model against values
of S̃ for various assets remaining, at two different times-to-expiry. The parameter
values take µ̃ = 0.04, σ̃ = 0.4 and α = 2.
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Figure 8.5: Comparing the optimal strategy for various S̃ values at different time-to-
expiry for a trader with one asset remaining. The parameter values take µ̃ = 0.04 and
σ̃ = 0.4 and α = 2.
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Figure 8.6: Comparing the optimal strategy and intensity function for various α against
values of S̃ for a trader with one asset remaining, at τ̃ = 1. The parameter values take
µ̃ = 0.04 and σ̃ = 0.4.

prefers a higher value of α. The corresponding intensities can be seen in figure 8.6(b).

We shall now turn our attention to the exponential intensity, under a framework

which allows the trader to trade with both market orders and limit orders, thus also

allowing for immediate execution.

8.3 Including market orders

In this section we shall examine the strategy of a trader who can post both limit orders

and market orders throughout the trading period.

This analysis is in parallel with the recent work of Cartea and Jaimungal (2015b),

who through standard Brownian motion, exponential intensity function with absolute

decay parameter and linear utility function were able to cleverly build symmetry into

the model from the start which allowed them to reduce the HJB equation to an ODE

within the variational inequality equations. Our novel contribution is the use of more

general diffusion processes and intensity functions, which lead to more complex equa-

tions that require accurate numerical schemes to solve. The solutions are significant

as they are asset-price dependent, unlike the independent strategies found by Cartea

and Jaimungal (2015b). A more in-depth discussion on studies that focus on trading

using both limit and market orders can be found in section 3.4.1.
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8.3.1 Formulating the problem

We begin with a similar set-up to that of the opening section of this chapter, section

8.1. We have a trader with wealth X and inventory q of an asset with price S which

follow the stochastic processes (8.4), (8.3) and (8.1) respectively. The intensity of the

Poisson process, N (t), driving (8.4) and (8.3) is a negative exponential intensity of

the form (8.5). The objective is to maximise the expected terminal time utility

u(t,X, q, S) = sup
δ(t)∈A

E
[−e−γ(X(T )+q(T )S(T ))

]
, (8.63)

which results in the HJB equation (8.7) with initial conditions (8.8) and (8.9)

Let us now assume the trader can place market orders of unitary size, at a discount

of p relative to the asset price, so the assets are sold at S (1− p). Here p could be seen

as the temporary market impact that only affects the current transaction, or could

be seen as the commission, spread, maker-taker fee, or some combination, again only

affecting the current transaction.

We can model execution using market orders as a free-boundary problem. When

the trader feels he can profit using limit orders his value function is greater than that

if he were to liquidate using a market order, which equates to

u (t,X, q, S) ≥ u (t,X + S (1− p) , q − 1, S) . (8.64)

When (8.64) is not satisfied, it is optimal for the trader to use a market order to

liquidate. Let (τn) represent a series of stopping times representing the market-order

decision times of a trader. At times τn the cash holdings and inventory follow

q (τn) = q
(
τ−n
)− 1, (8.65)

and

X (τn) = X
(
τ−n
)

+ S(τ−n ) (1− p) , (8.66)

with τ−n representing the instantaneous time prior to τn.

From (8.64) and the HJB equation (8.7) we have

ut(t,X, q, S) + µSuS(t,X, q, S) +
1

2
σ2S2uSS(t,X, q, S)

+sup
δ

[
λe−lδ (u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S))

] ≤ 0, (8.67)

u (t,X + S (1− p) , q − 1, S)− u (t,X, q, S) ≤ 0. (8.68)
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Thus the revised dynamic programming equation associated with the free-boundary

problem can be formulated as a variational inequality

max

(
ut(t,X, q, S) + µSuS(t,X, q, S) +

1

2
σ2S2uSS(t,X, q, S)

+sup
δ

[
λe−lδ (u(t,X + S (1 + δ) , q − 1, S)− u(t,X, q, S))

]
,

u (t,X + S (1− p) , q − 1, S)− u (t,X, q, S)

)
= 0, (8.69)

with initial conditions (8.8) and (8.9). The derivation of (8.69) is analogous to that

of (8.35) which was discussed in section 8.2.2. Using the same methods as section

4.1.1 a verification theorem can be derived to show the solution from the variational

inequality (8.69) is indeed the solution of (8.63) subject to the free-boundary (8.64).

For the interested reader, Jaillet et al. (1990) examine theoretical properties of

variational inequality problems related to finance, in particular that of the American

option, which is analogous to (8.69).

Reduction and transformation

We can use the same transformation as used in chapter 4 to non-dimensionalise the

problem and reduce the number of variables and parameters. Using the ansatz solution

(8.10) with τ = T − t and the non-dimensionalisation (8.11) we can reformulate (8.69)

as

max

(
− fτ̃

(
τ̃ , q, S̃

)
+ µ̃S̃fS̃

(
τ̃ , q, S̃

)
+

1

2
σ̃2S̃2fS̃S̃

(
τ̃ , q, S̃

)

−
elS̃f

(
τ̃ , q, S̃

)
S̃ + l

 lf
(
τ̃ , q, S̃

)
(
S̃ + l

)
f
(
τ̃ , q − 1, S̃

)


l
S̃

,

e−S̃(1−p)f
(
τ̃ , q − 1, S̃

)
− f

(
τ̃ , q, S̃

))
= 0, (8.70)

with initial conditions (8.13) and (8.14), by finding the optimal strategy when early

execution is not optimal as

δ∗ =
1

S̃
ln


(
S̃ + l

)
f
(
τ̃ , q − 1, S̃

)
lf
(
τ̃ , q, S̃

)
− 1. (8.71)
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Table 8.3: Convergence of PSOR scheme for trader using market orders

n m f
(
τ̃ = 1, q = 1, S̃ = 5

)
ratio

1001 1001 -0.078174679282 NA
2001 1001 -0.078174709111 NA
4001 1001 -0.078174717568 4.000032
8001 1001 -0.0781747181432 3.999966
16001 1001 -0.078174718898 4.00017

1001 501 -0.078174052374 NA
1001 1001 -0.078174679282 NA
1001 2001 -0.078174992632 2.000666
1001 4001 -0.078175149281 2.000333
1001 8001 -0.0781752287599 2.000166

n and m are the number of space and time points respectively. We have set S̃max =
10, τ̃ = 1, l = 5, µ̃ = 0.04 and σ̃ = 0.2. The ratio is the ratio of the change in errors.

To solve (8.70) we use the PSOR method as described in section 2.6.3, with bound-

ary conditions (8.21) and (8.22). The PSOR scheme should exhibit O
(

∆τ̃ ,∆S̃2
)

convergence, which we see in table 8.3 is the case.

8.3.2 Interpreting trading strategies with numerical examples

In this section we shall use the numerical results to examine some properties of the

trading strategies when the trader can liquidate with market orders, and how these

strategies compare to those devised in chapter 4.

We can examine analytically when it is optimal to execute early, through the

optimal trading strategy, δ∗. When early execution is optimal

f
(
τ̃ , q, S̃

)
= e−S̃(1−p)f

(
τ̃ , q − 1, S̃

)
. (8.72)

Substituting (8.72) into (8.71) we have

δee =
1

S̃
ln


(
S̃ + l

)
l

− p, (8.73)

where the superscript ee indicates early execution. Thus when

δ∗ < δee (8.74)

it is optimal to sell using a market order rather than placing a limit order.
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Equation (8.73) has some interesting properties. Firstly, we notice it is both q

and τ̃ independent. It depends only on the risk-adjusted asset price, S̃, the decay

parameter of the limit-order book, l, and the temporary market impact, p. This

means that the lower bound to place a limit order at, before switching to a market

order, is independent of the number of assets the trader has remaining and the time

remaining. However, the value of the optimal control, δ∗, that we compare this lower

bound against will be a function of q and τ̃ , as well as the previously mentioned

variables and parameters.

Figure 8.7 indicates how the trading strategy differs when the trader can liquidate

using both limit and market orders. In figure 8.7(a) we see the comparison of trading

strategies when market orders can be used, compared to when they cannot be used (as

discussed in chapter 4). For small S̃ (before it is optimal to liquidate using a market

order) both strategies are approximately the same (but not identical, which we will

discuss momentarily). However, as S̃ increases, and the risk increases, the trader will

liquidate using a market order. This is portrayed when the strategy hits, and sticks,

to the cut-off δee, indicating the trader has liquidated with a marker order.

We mentioned that before the trader chooses to liquidate with a marker order his

strategy is similar to a strategy if he was unable to liquidate with market orders. It is

indeed similar, but it is not exact. Given the trader has the ability to liquidate with

market orders, his value function will be higher than if he was unable to liquidate with

marker orders. This is not only the case in the space where he chooses to liquidate,

but also throughout the whole space given the diffusive nature of the PDE. Not only

is his value function higher, but having the option to liquidate using market orders

will also lead to higher values of the optimal trading strategy in areas that he chooses

not to liquidate with market orders (given the optimal trading strategy is a functional

of the value function). This can be seen in figure 8.7(b) which is a magnification of

figure 8.7(a). Interestingly, and as expected, this is the opposite of what we saw in

section 8.1, in which the constraint δ > δmin resulted in suboptimal strategies and a

value function less than the unconstrained problem. Here, the introduction of marker

orders has led to trading strategies that are more favourable over those in which market

orders cannot be used.

The behaviour of the trading strategy for various values of the inventory q can be
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Figure 8.7: Comparing optimal strategy for trader with one asset remaining who can
or can’t liquidate with market orders at τ̃ = 1, with µ̃ = 0.04, σ̃ = 0.2, l = 5 and p =
0.01,.
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Figure 8.8: Optimal strategy for trader with varying amounts of inventory remaining
who can liquidate using market orders, with µ̃ = 0.04, σ̃ = 0.2, l = 5 and p = 0.01.
Figure 8.8(a) has τ̃ = 1 while figure 8.8(b) has S̃ = 2
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Figure 8.9: Heat map of early execution region, with µ̃ = 0.04, σ̃ = 0.2, l = 5 and p =
0.01. The area shaded white corresponds to using limit orders while the area shaded
grey corresponds to market orders, with the free-boundary in black.

seen in figure 8.8. This is plotted against the risk-adjusted asset price, S̃, in figure

8.8(a), and against the time-to-expiry, τ̃ , in figure 8.8(b). In both we notice the trader

chooses to use market orders if he has a larger amount of inventory, or the asset price

is larger. This is due to him being characterised by a risk-averse utility function. We

also notice that as the time-to-expiry tends to zero, the trader chooses to use limit

orders over market orders given over shorter time frames he is not as concerned about

the riskiness of his portfolio and is looking to profit. This is also portrayed in figure 8.9

which shows a heatmap for when it is optimal to use market orders over limit orders,

plotted against the risk-adjusted asset price, S̃, and time-to-expiry, τ̃ , for q = 1 (figure

8.9(a)) and q = 3 (figure 8.9(b)).

Lastly we shall examine how the behaviour of the trading strategies change in

different parameter regimes. We previously examined this in chapter 4 for the case of

a trader who can liquidate using limit orders only. Given the behaviour found, and

that the trader is risk-averse, we fully expect that as the riskiness increases the trader

will choose to use market orders more often than in a less riskier scenario. Figure 8.10

shows the varying trading strategies for varying parameter regimes. In figure 8.10(a)

we examine how the strategy changes if the drift, µ̃, and the volatility, σ̃, are doubled.

For the former case the trader uses market orders less often compared to the base

case, as he will hold on to the asset in the hope that he can enjoy its higher expected
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Figure 8.10: Comparing parameter sensitivity of optimal strategy for trader with one
asset remaining who can liquidate with market orders. Base Case: µ̃ = 0.04, σ̃ =
0.2, l = 5 and p = 0.01.

rate of growth. In the latter case we see that when the volatility is doubled the trader

will use market orders more frequently, given his aversion to risk. We notice that the

lower bound to which a limit order should be placed, δee, is independent of both these

parameter changes; it is however dependent on the decay factor of the limit-order book,

l. Hence we have examined the sensitivity of this parameter in a separate figure, figure

8.10(b). It can be seen that as l is doubled, the lower bound δee decreases, and the

trader will use market orders more frequently in comparison to the base case. This is

because as l increases, the intensity of filling orders using a limit order decreases more

rapidly for positive values of δ∗. Thus the trader decreases his value of δ∗ respectively,

which in doing so results in hitting the early execution level, δee.

8.4 Summary

In this chapter we extended the work of chapter 4 in three aspects. Firstly, we in-

vestigated a constrained optimisation model. Secondly, we investigated replacing the

negative exponential intensity function with a power intensity function. Finally, we

introduced the concept of trading explicitly with both limit orders and market orders.

Having the constraint δ > 0 can be seen as more realistic than the unconstrained

model (however there are also arguments for a negative δ). In either case implementing



CHAPTER 8. EXTENSION: INTENSITY FUNCTION & MARKET ORDERS 214

the constraint allows us to examine how the trading strategies change, and indeed

how this constraint alters the trader’s value function. It was shown (as expected) the

constraint led to a suboptimal value function compared to the unconstrained problem.

The model under a power intensity had a self-contained constraint as the problem

was defined only for positive δ. We had to tackle the derivation of this problem

differently, as well as modify the numerical methods used. The previous HJB equation

derived under the exponential intensity became a variational inequality problem, given

the fact that the trader could liquidate immediately by sending δ → 0. With this

modified form, we could no longer perform the transformation from an HJB equation

to a non-linear PDE with explicit non-linear term. We thus had to use a numerical

method to find the optimal, and then solve the PDE, as well as checking the variational

inequality constraint. The numerical solutions both had similarities and differences to

those found with the negative exponential intensity.

Introducing the concept of trading explicitly with both limit orders and market

orders allows the trader to execute his order immediately but at a discount to the

current price, if he so chooses. Mathematically this led to an interesting problem in

the form of a free-boundary problem, which can be related back to other areas of

mathematical finance such as in American options. It also led to the need of using a

PSOR method. From a financial perspective, the solutions obtained were intriguing. In

the introduction of this chapter we hypothesised that the trader would take advantage

of having the ability to ‘early exercise’ given he is risk-averse. This hypothesis was

based on the observations of the trading strategies we found in previous chapters. In

our numerical examination we found this hypothesis to be correct. The trader would

execute with a market order when his position was becoming more risky, such as when

the asset price was larger (and thus the absolute volatility was larger), his inventory

holdings was larger, or when the time-to-expiry was not near zero, as the asset would

have a higher probability of moving against him. Finally, we note that the problem of

including market orders is of interest to us under negative exponential intensity but

not under power intensity. Under a power intensity, as the optimal control approaches

zero the rate of trading approaches infinity and thus immediate execution occurs at

the reference price. Thus the trader would never choose to sell at a discount when he

can obtain a sale at the reference price.



Chapter 9

Calibration Techniques and

Backtesting

In the thesis thus far we took as a baseline the model of Guéant et al. (2012b) and

derived various extensions, which were examined theoretically using a combined ap-

proach of asymptotic and numerical techniques. In this chapter we shall first look at

calibration techniques for the model proposed in chapter 4, as well as for the extension

of the intensity function to a power function as discussed in section 8.2. In the second

part of this chapter we will backtest the strategies. This will consist of three tasks:

firstly, we use limit-order book data to estimate parameters for the intensity of the

Poisson process. Secondly, we use the estimated parameters in the PDE and solve for

the optimal strategies. Finally, we backtest the optimal strategies on market data to

analyse their performance.

Given the statistical nature of the problem, interpreting the different variables is

far from trivial. This is due to the model having a continuous intensity for each side

of the order book, as well as the price process being continuous, as opposed to a

tick-by-tick representation which is present in practice.

Calibration of the model of Guéant et al. (2012b) is discussed in Fernandez-Tapia

(2015), which is the PhD thesis of one of the authors of Guéant et al. (2012b), in

which methods for parameter estimation using level-one order-book data are exam-

ined. Level-one order-book data refers to the data at the best-bid/ask level. The

improvement in our analysis is the use of order-book data which includes levels higher

than level one. Thus the data we have consists of the best bid/ask, the second best

215
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bid/ask and so on up to the tenth queue (level) at each side. Having more levels gives

us more quantitative insight into the behaviour of the limit-order book. However, as

mentioned in chapter 1, obtaining such data is difficult and thus in this study we only

have a limited amount to work with. As such this chapter outlines the methods that

can be used when the whole book is considered. An area of future work could be to

revisit this problem when more data is available.

9.1 Calibration of parameters

In the modelling thus far we have considered two different aspects to model, the price

process and the liquidity. The former is driven by a geometric Brownian motion (in

this analysis), which is continuous in space, and the latter by a Poisson Process, which

is discrete in space. Both are continuous in time; this is an issue we shall first address.

In practice trading is both discrete in space (due to tick size) and discrete in time.

Orders sit in a queue at a particular level and changing position too often reduces the

actual chance to be reached by a market order as we would be moved to the back of

the queue each time an order is changed. Therefore we must consider our model in a

discrete way. In terms of prices, our asking price must not be between two ticks; we

shall round the optimal quotes to the nearest tick. In terms of time, an order is sent

to the market and is not cancelled nor modified for a given period of time ∆t, unless

a market order fills the order. If a trade occurs and changes the inventory or when an

order stays in the order book for longer than ∆t, then the optimal quote is updated

and, if necessary, a new order is inserted.

Let us first focus on the calibration of the intensity function of the Poisson process,

and later in this chapter revisit the discrepancy between the continuous modelling of

the geometric Brownian motion and the discrete world in which trading occurs.

9.1.1 Calibration of λ, l and α

In our modelling we assume assets in the limit-order book, at a price S × (1 + δ), are

filled at a rate Λ (δ). S refers to the reference price of the asset and we take it as the

best-ask price. It could also be taken as the best-bid or the mid-price. The intensity
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Λ (δ) is defined by (4.5) for exponential intensity, which takes the form

Λ (δ) = λe−lδ, l > 0,

and (8.27) for power intensity, which takes the form

Λ (δ) =
λ

δα
, α > 1.

In our calibration we assume the intensity function to be constant over an interval

∆T for fixed δ. This indicates that the change in price over this interval ∆T , and thus

the change in instantaneous probability of being executed as the price moves towards

or away from our limit order, is encapsulated within. This is in contrast to the model

of calibration derived by Fernandez-Tapia (2015) who accounts for the change in price

over the interval ∆T , and thus the change in intensity over the interval ∆T , which we

shall discuss later in the chapter.

For the case of exponential intensity we have

Λ (δ, t, t+ ∆t) =

∫ t+∆T

t

λe−lδdt ≈ λe−lδ∆T, (9.1)

from which we can deduce

log (Λ (δ, t, t+ ∆t)) = log (λ)− lδ + log (∆T ) . (9.2)

Given Λ has units per unit time, we can estimate Λ for a given unit of time and scale

it accordingly to another unit of time. Thus, setting the unit of time equal to ∆T , we

can reduce (9.2) to

log (Λ (δ, t, t+ ∆t)) = log (λ)− lδ. (9.3)

Denoting Λ̂ (δ) as an estimate for Λ (δ, t, t+ ∆t), we can formulate the problem as a

least squares problem (see Friedman et al., 2001) such that

r (λ, l) =
∑
δi

(
log
(

Λ̂ (δi)
)
− log (λ) + lδi

)2

, (9.4)

where the objective is to choose λ and l such that r (λ, l) is minimised. A similar

approach can be taken for the power intensity which results in minimising

r (λ, l) =
∑
δi

(
log
(

Λ̂ (δi)
)
− log (λ) + α log (δi)

)2

, (9.5)

with Λ̂ (δ) as an estimate for

Λ (δ, t, t+ ∆t) ≈ λ

δα
. (9.6)
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9.1.2 Estimate of Λ̂ (δ)

We now compute the intensity of the Poisson process defining the number of market

orders arriving at a price S × (1 + δ). Under the hypothesis that the events taking

place in each interval are independent from the events taking place on the next one,

the problem reduces to estimating the intensity of a Poisson process. As suggested

by Fernandez-Tapia (2015), there are two methods to calibrate this problem, as an

external observer, or as a participant:

• As an external observer we do not consider our trades in the market. We use

purely historical data from the limit-order book to examine the frequency that

other participant’s trades were filled at given distances from the reference price.

• As a participant we can observe if our trades are executed or not, under certain

assumptions. We ignore other participant’s orders and assume their trading is

encapsulated in the movement of the asset price. We can then place orders as

we please in the limit-order book and observe the waiting time until they are

filled, which occurs when the reference price hits our asking price. We assume

the waiting time for orders that are not filled is equal to the duration of the time

remaining since placed.

We thus have two methods to calculate Λ̂ (δ). The first counts the number of events,

the second is based on waiting times.

For both approaches Fernandez-Tapia (2015) uses level-one order-book data. For

the second approach only the reference price is needed and thus level-one data is

sufficient. However, we can extend the first approach by including more levels of the

limit-order book.

Estimation by counting trades

This corresponds to being an external observer. Over an interval ∆T , we can count

the number of trades that occur which were entered into the limit-order book at price

S× (1 + δ) for a fixed δ, and stayed in the book until filled or cancelled. Note we only

count filled trades and not cancelled orders. Thus let Xδ
k represent the total number

of shares traded that occurred over the interval [k∆T, (k − 1) ∆T ] which were entered
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at a price δ percent higher than the reference price at the time the order was placed.

The estimator Λ̂ (δ) is given by

Λ̂ (δ) =
1

n

n∑
k=1

Xδ
k . (9.7)

By the strong law of large numbers, it converges almost surely towards Λ (δ), and it

was shown in Fernandez-Tapia (2015) to be unbiased.

Estimation by waiting times

In this approach level-one limit-order book data is used to estimate the waiting time

τ δn for a trade to occur which was entered into the limit-order book at price S× (1 + δ)

for a fixed δ. We can enter the trade into the limit-order book and observe whether

the order is executed by following the path of the reference (best-ask) price, which is

by definition the level-one data we have. Let T be the size of the time window for

which we have data for, in units corresponding to those we want to estimate Λ̂ (δ).

Let τ δ1 , . . . , τ
δ
n be a sequence of stopping times which correspond to orders being filled.

We define Xδ
n = min

(
τ δn,∆T

)
. The maximum likelihood estimator for Λ̂ (δ) is given

by

Λ̂ (δ) =

∑n
i=1 1Xδ

i <∆T × ATS∑n
i=1 X

δ
i

, (9.8)

where ATS is the Average Trade Size. As we only know when orders are filled, and

do not know the trade size, we assume the trades are the ATS. Shares are rarely

sold individually and normally in bundles of 100, thus we can assume each time a

sell occurs it is a bundle of 100, or whatever the ATS is. Using this, (9.7) and (9.8)

should be approximately equal. It was shown in Fernandez-Tapia (2015) that (9.8) is

the maximum likelihood of Λ (δ), converges towards Λ (δ) as n → ∞, and is a biased

estimator.

Discussion

The key issues we will discuss here include how our model compares to that in

Fernandez-Tapia (2015), and the assumptions we make on the filling of orders when

calculating Λ̂ (δ).

It was mentioned above that Fernandez-Tapia (2015) accounts for the change in

price during the interval ∆T which affects the probability of the order being filled,
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while we assume this is encapsulated in the intensity. For the model of Fernandez-

Tapia (2015) the intensity over a period ∆T (under the case of exponential intensity)

is given as

Λ (δ, t, t+ ∆t) =

∫ t+∆T

t

λe−lδ+l(Su−St)dt, (9.9)

whereas we have it defined by (9.1). The expectation of the stochastic term in (9.9),

which is not present in (9.1), can be found explicitly for standard Brownian motion

(which is what is used in the model of Fernandez-Tapia, 2015). In terms of doing

the regression (see (9.4)) the expectation of the stochastic term acts as an additional

intercept and thus does not change the remainder of the calibration methodology.

If we were to use the formula (9.9), adjusted for relative δ and geometric Brownian

motion, we would also be able to formulate an explicit solution for the expectation of

the stochastic term. However under power intensity, the expectation is undefined for

α > 1. As discussed in section 8.2, α > 1 are the values this problem is defined for

and, as we will shortly see, are the values that we find empirically. Therefore, given

we cannot use the same method as Fernandez-Tapia (2015) for both the exponential

intensity and power intensity, we make the assumption of constant intensity over the

interval ∆T so we can examine both intensity functions together, on a comparative

level.

For the estimation by counting trades method, Fernandez-Tapia (2015) estimates

Λ̂ (δ) by counting all trades within the interval ∆T that are filled at a distance δ from

the initial reference price. However, it is not necessarily true that all those orders were

entered a distance δ from the initial price as they may have been entered within the

interval ∆T in which the price is not constant and may have moved. In our approach

we include higher levels of the limit-order book which allows us to see exactly the

distance from the reference price that the trade was entered, and thus count exactly

how many orders were filled over an interval ∆T that were placed a (relative) distance

δ from the reference price.

For the estimation by waiting times method, we use the same method as discussed

in Fernandez-Tapia (2015). The flaw in this method is that it does not consider

position in the queue, and thus we need to make an assumption on when the order is

filled. We consider two methods, an optimistic approach and a pessimistic approach.

The optimistic approach is to assume the order is filled once the reference price hits
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the asking price, indicating our order is in the front of the queue. The pessimistic

approach is to assume our order is at the end of the queue and is only filled when

the entire queue is filled, which corresponds to the reference price hitting an order in

the next queue, which has a price higher than our asking price. We found the former

approach is more in line with the results found in the estimation by counting trades

method, as the latter method effectively does not hit any orders at the best ask which

is where the majority of orders are filled. Thus we use the optimistic approach, as also

used by Fernandez-Tapia (2015).

9.1.3 Calibration of price process parameters

So far we have considered the calibration of the intensity function. In this section we

discuss the calibration of the price process parameters.

Firstly, given the short time-scales we work over, we set µ = 0. If we were to find

the annual drift rate of a stock and rescale it to the time-frame we were examining

we would find it be to negligible in most cases. This is also the case implemented by

Fernandez-Tapia (2015).

Secondly, the problem of estimating volatility using limit-order tick data is far

from trivial and there is still ongoing research into the best approach. The main

issue arising when estimating the volatility using limit-order data is that the standard

realised volatility estimator,

σ̂2 =
1

tN − t0
N∑
i=1

(S (ti)− S (ti−1))2 , (9.10)

is affected by microstructure noise and does not converge to an accurate proxy for

risk (see Bacry et al., 2013). A popular approach for dealing with this is to model

microstructure noise using the concept of latent price. Rather than being able to

observe the efficient price, S (t), driven by some sort of Brownian motion, the trader is

able to observe a noisy version, S̃ (t). Gloter and Jacod (2001a,b) suggest an additive

microstructure noise model which has been examined in the context of financial data

by Aı̈t-Sahalia et al. (2005); Zhang et al. (2005, 2006) to name a few. The goal is

to separate the noise from the true signal, as the volatility of the true signal can be

calculated using (9.10).
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An alternative method, implemented by Fernandez-Tapia (2015), is to extend the

work of Garman and Klass (1980) who develop an estimation of the volatility by using

daily high, low, open and close data. The extension is adapting it to the frequencies of

several minute intervals, where the high, low, open and close is found in each interval.

Given our lack of limit-order book data, we use daily data (which is widely available

online, e.g. https://uk.finance.yahoo.com/) to calculate the realised volatility using

(9.10). We adjust this to our given time frame by using the square-root-of-time rule,

which assumes normality.

Lastly, we come to setting a value for γ, the risk-aversion parameter. This is a

mathematically derived parameter and in practice cannot be calibrated using standard

methods. As such, deciding its value is subjective. We set γ = 0.05 which is the value

chosen by Guéant et al. (2012b).

We stress that the significance of this chapter is to calibrate the intensity functions

using higher-level limit-order book data. For a more in-depth discussion on calibrating

the price process parameters using tick data we refer to the references above.

9.1.4 Data

The data we obtained is limit-order book data with ten levels on each side of the book,

i.e. ten levels in the ask side and ten levels in the bid side. However, it is only the ask

side we focus on in this analysis as we are only considering liquidation. Repeating for

the case of acquiring an order (i.e. buying) would be trivial.

The data was obtained from LOBSTER (2015) which provides limit-order book

data on Nasdaq listed stocks. The format of the data can be seen in figure 9.1, with

an explanation of variables given in table 9.1. The data we have is one trading day

worth of data for five different names, those being Amazon Inc. (AMZN), Google Inc.

(GOOG), Microsoft Corporation (MSFT), Intel Corporation (INTC) and Apple Inc.

(AAPL). Although it is only one day’s data for each name, the number of trades are

in the order of magnitude of O (106) for each name. However, given we only have one

day for each name we must assume stationarity of the intensity throughout the trading

day. An interesting extension, which would require more data, would be to examine

various trading times such as morning, midday and evening, and examine the U-shape

or W-shape intra-day volume curve that has been found in empirical literature (see,
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Figure 9.1: Order-book data for AMZN on 21/6/2012.

for example, Wood et al., 1985; Harris, 1986; Jain and Joh, 1988).

Data manipulation

As we are considering the sell side only we first removed all buy orders, i.e. those

corresponding to +1. A buy market order filling a sell limit order is labelled as -1.

As we are only interested in orders that are filled, we remove cancelled orders (both

fully and partial). As we cannot tell when hidden orders were inserted into the book

we remove these also. Given the lack of data, we did not encounter any trading halt

indicators, which occur when the exchange suspends trading.

We calculate δ by looking at the difference in price to which a sell limit order

was placed and the current best ask (and divide this by the current best ask, given

it is relative). We then need to find the orders that were filled; this is doable given

each order has a reference number. By matching reference numbers, we can observe

whether the order was filled or cancelled, or if it remained in the book until the end

of the trading day (which for our analysis can be consider unfilled/cancelled).

For the ATS we instead use the median which is equivalent to 100, which is the

same for all names and so makes the results comparable. The mean of all names is

close to 100, but not exact.
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Variable Meaning
Time: Seconds after midnight
Type:

1: Submission of a new limit order
2: Cancellation (partial deletion of a limit order)
3: Deletion (total deletion of a limit order)
4: Execution of a visible limit order
5: Execution of a hidden limit order
7: Trading halt indicator

Reference Unique order reference number
Size Number of shares
Price Price corresponding to order, times 10000

Buy/Sell +1 buy limit order, -1 sell limit order
Best Ask Best-ask price, times 10000

Size Size of best-ask queue
Best Bid Best-bid price, times 10000

Size Size of best-bid queue

Table 9.1: Variable explanation for Lobster Data (figure 9.1)

Calibration

Using the methods discussed above we fit exponential and power intensity functions

to the data we have available. We consider an hourly time unit for this analysis so

the unit for the intensity is per hour. The intensity is also normalised to the ATS

(which as we discussed above is in fact the median trade size). We do this for both the

method of a participant (part) in the market, and that of an external observer (obs)

in the market.

The calibrated parameters can be seen in table 9.2. We see that the parameters

found using each of the methods are similar for a given name, but not exactly equal.

This is because using the observation method (9.7) we find the exact amount of shares

that were executed for each trade, while using the participation method (9.8) we

assume the volume of each trade is equal to the ATS. We can see from the results of

table 9.2 that this assumption is plausible.

We include a plot of the intensity functions fitted to the data, using least squares

as discussed above. We do this for the parameters obtained from the observation

method, given we find it of more interest as it requires higher levels of limit-order

book data. However both methods give comparable results, as seen in table 9.2. The

plots are shown in figure 9.2 for Amazon Inc (AMZN). The original plot is shown in
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AMZN GOOG INTC AAPL MSFT
Method Part Obs Part Obs Part Obs Part Obs Part Obs
λexp 152 119 355 306 1226 1837 313 494 3173 4219
lexp 1631 2428 5978 6311 3331 1565 2723 4551 1725 1857
R2
exp 0.71 0.72 0.74 0.85 0.73 0.54 0.64 0.66 0.66 0.65

λpow 0.30 0.02 0.39 0.09 0.04 1.41 0.33 0.04 3.34 3.42
αpow 1.56 1.76 1.49 1.59 1.78 1.59 1.59 1.76 1.55 1.55
R2
pow 0.62 0.52 0.85 0.75 0.9 0.66 0.84 0.53 0.71 0.62

Table 9.2: Calibrated parameters for various names using both the participation (part)
method, and external observer (obs) method

figure 9.2(a) with a close-up, excluding the first point, in figure 9.2(b). We see that the

first point is an order of magnitude greater than the second, with the first point value

approximately 3000 and second approximately 125. This is because the majority of

limit orders are placed at the best ask as they have a much higher probability of being

executed, given anyone trading with a market order will fill a trade at the best-ask

queue until the queue is depleted.

Given this property we come to a discussion on which intensity function is more

suitable. Given the evidence in figure 9.2 there are arguments for and against both.

The R-squared of the regression on AMZN for the exponential intensity is 0.7095

while the R-squared for the power intensity is 0.6184. The higher R-squared of the

exponential intensity is due to it having a better fit to points excluding the first (best-

ask) point; it does not approximate the best-ask intensity well. In contrast, although it

has a lower R-squared, and does not fit the majority of the data very well in comparison

to the exponential intensity, the power intensity function fits the best-ask point, in

which most trading occurs, very well. It tends to infinity as δ → 0 which is a reasonable

approximation given the change in orders of magnitude between the first point, and

the remaining points as we look to trade further in the book. Thus, one conclusion

is that the power intensity is a better fit for a passive trader who trades a lot at the

best ask while the exponential intensity could be better suited to a passive trader who

trades using queues other than the best ask. However, as can be seen in table 9.2, it

is not always the case that the exponential intensity R2 is higher than the R2 of the

power intensity. We believe more data is required before a significant conclusion can

be reached.
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Figure 9.2: Intensity functions fitted to AMZN data, with parameters in table 9.2

Given the difference in orders of magnitude between the best ask and the remaining

points, one future development could be to look at relaxing the least-squares assump-

tion of equal importance on all points and use weighted least-squares. More weight

would be given to the best-ask point and the weight would decrease as we move further

down the book. For a discussion on weighted least-squares see Friedman et al. (2001).

9.2 Historical simulation

In this section we look at backtesting our model. We mentioned in the introduction

of this chapter that this consists of three tasks

1. Calibrate the necessary parameters,

2. Find the optimal trading strategies,

3. Backtest the strategies on historical data.

The calibration of these parameters was discussed in the previous section. Once these

parameters are found we substitute them into the code for solving the model developed

in chapter 4 (with the extension to power intensity discussed in section 8.2). This

process will return to us the optimal trading strategies which are functions of time,

asset price and inventory. With these we can use the methods discussed in this section

to backtest the model.

We shall begin by examining some of the properties of the expected inventory,

before concluding with a study of a trading simulation.
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9.2.1 Expected inventory and trading rate

It is of interest to investigate the expected inventory and trading rate of our calibrated

models, as this will give us insight into the contrasting behaviour between them. If we

first calculate the expected inventory, we can calculate the expected trading rate as

its derivative. We use Monte Carlo simulations to calculate this expectation. Given

the trading rate is taken as the derivative of a simulation, it will not be smooth due to

the numerics, but should be smooth as the number of simulations, N , becomes large.

From section 2.1.3 we have that our process follows a Poisson distribution

P (N (t)−N (s) = n) = e−m(s,t)m (s, t)n

n!
, (9.11)

with m (s, t) =
∫ t
s
λ (u) du. We previously noted that trading is a discrete time prob-

lem. In this case the intensity is constant over an interval ∆t, with m (t, t+ ∆t) =

λ (t) ∆t. Therefore (9.11) reduces to

P (N (t+ ∆t)−N (t) = 1) = e−λ(t)∆tλ (t) ∆t = λ (t) ∆t+O
(
∆t2
) ≈ λ (t) ∆t (9.12)

ignoring O (∆t2) terms. Assuming the control, δ, is constant over an interval ∆t,

given we cannot update our orders continuously, we can use Monte Carlo simulation

to calculate the expected inventory.

Assuming our inventory follows a Poisson process with intensity Λ̂ (δ) we can cal-

culate the probability of a jump occurring over the interval ∆t as

P (N (t+ ∆t)−N (t) = 1) ≈ Λ̂ (δ) ∆t, (9.13)

where δ is fixed in the interval ∆t. We thus calculate the expected inventory as follows:

• Repeat N times:

– While q(t) > 0 and t < T

1. Generate uniform random variable X ∼ U (0, 1)

2. If X < Λ̂ (δ (t, q, S)) ∆t increment q(t) = q(t)− 1

3. Increment time: t = t+ ∆t

• Average q (t) over N simulations resulting in expected inventory q̂ (t)
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Figure 9.3: Expected Inventory and Trading Rate fitted to AMZN data, with param-
eters found in table 9.2, for S = 5

As the optimal strategy is a function of S, we will assume S is constant over the

time frame we examine. We can thus examine the expected inventory and trading rate

for various values of S. We outline how the solutions vary for various S, which was

indeed one of the motivations for carrying out this study, given the previous work of

Guéant et al. (2012b) has asset-independent trading strategies.

Figure 9.3 is a plot of the expected inventory (figure 9.3(a)) and expected trading

rate (figure 9.3(b)) for S = 5. It can be seen that the expected inventory under

exponential intensity decreases almost linearly, while under power intensity the trader

initially trades slower as he has the ability to liquidate quickly at the terminal time, in

which indeed he does. Turning to the expected trading rates, we see the exponential

intensity trading rate is approximately linear with a slight negative slope. For the

power intensity we see the rate is approximately linear up to some time when the

trader decides he should start liquidating more quickly and his trading rate increases

exponentially fast.

We can see contrasting behaviour for a larger value of S, remembering the trader is

risk-averse. Figure 9.4 is a plot of the expected inventory (figure 9.4(a)) and expected

trading rate (figure 9.4(b)) for S = 100. Under the exponential intensity we see

the trader starts trading fast, and his rate of liquidation decreases as he approaches

the terminal time, and as his inventory decreases. Under the power intensity we

see a comparable and contrasting strategy. Initially the trader trades fast as in the
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Figure 9.4: Expected Inventory and Trading Rate fitted to AMZN data, with param-
eters found in table 9.2, for S = 100
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Figure 9.5: Expected Inventory and Trading Rate fitted to AMZN data, with param-
eters found in table 9.2, for varying σ
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exponential intensity case. He then slows down to a rate which is slower than that

under the exponential intensity case. However, towards the end of the trading period,

as was the case for S = 5, the trader rapidly increases his rate of liquidation to ensure

he has completely unwound his position by the terminal time.

Finally we will examine how the expected inventory and trading rate differ for

various volatility regimes, with σ taking one of the three values σ = 0.001, 0.01,

0.05 per hour1/2. We do this for the exponential intensity only, as a similar analysis

under power intensity yields analogous conclusions. The resultant expected inventory

and trading rate can be seen in figure 9.5. As expected, increasing the volatility has

comparable results to examining the differences between increasing values of S, given

the trader is risk-averse. For higher volatility levels the trader liquidates at a much

quicker rate, compared to lower volatility levels.

9.2.2 Trading simulation

In this trading simulation we use the calibrated parameters as found in section 9.1

to calculate the optimal trading strategies. Once these are found we can use them to

decide where to place orders in the limit-order book, examine if these trades get filled,

and analyse the performance of the strategy.

First we must make some assumptions about the trading algorithm. Some of

the same assumptions that were used in the calibration must hold for the trading

simulation. In terms of prices, our asking price must not be between two ticks and

we shall round the optimal quotes to the nearest tick. In terms of time, an order is

sent to the market and is not cancelled nor modified for a given period of time ∆t,

unless a market order fills our order. If a trade occurs and changes the inventory, or

when an order stays in the order book for a period ∆t, the optimal quote is updated

and, if necessary, a new order is inserted. We assume that the entire order is filled

when a trade occurs at or above the quoted price 1. We must also note that given the

limitation of data we have there is a bias in our simulation. This is because we use

the same data for calibration as we do for testing the simulation. Ideally we would

1Changing this assumption to strictly above the quoted price (so we assume the order is at the
back of the queue) was something we examined. It is trivial to change in the simulation if we so
please. Another extension to be considered would be to assign a probability to an order being filled
at the quote price, such as a Bernoulli random variable to establish the outcome. We deem this
outside the scope of this study but may be considered as future work.
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prefer to perform an out-of-sample test in which the in-sample is used for calibration

and the out-sample is used for testing.

Given the above assumptions we can discuss the framework of this simulation. The

data we need is the best-ask (reference) price for the asset we are considering, which

will be Amazon Inc (AMZN). We consider two different time frames for the simulation.

The first is liquidating a portfolio of 4 units of the asset, with each unit representing

the ATS, thus q (0) = 4. We seek to liquidate this position before the terminal time of

15 minutes, so T = 0.25. We examine this under the exponential intensity and power

intensity. Next we look at liquidating a larger portfolio consisting of 20 units of the

asset, thus q (0) = 20. We seek to liquidate this position before the terminal time of

two hours, so T = 2. The length of time ∆t discussed above is equal to 60 seconds, so

∆t = 1
60

given the unit of time is an hour; consistent with Fernandez-Tapia (2015).

For each simulation we show a plot containing the evolution of the best-ask price,

the evolution of our asking price and the execution of our trades. We also show a plot of

the inventory process in time (with the curve of the expected inventory superimposed),

as well as a plot of the revenue accumulated from implementing the strategy. This

is seen in figure 9.6 under exponential intensity and figure 9.7 under power intensity

for liquidation for q (0) = 4 assets in 15 minutes. We see that the trading curves are

approximately similar, with the exponential intensity model generating more revenue.

Figure 9.8 shows the plots for the larger simulation in which the trader is aiming

to liquid 20 units of an asset over a period of two hours. We see the trader begins

by selling rapidly, with his inventory curve following closely the curve of his expected

inventory. On a per asset basis this is not the most profitable part of his strategy but

as he has a large market inventory, and is risk-averse, he wants to liquidate quickly.

Approximately half his inventory is unwound in the first 15 minutes. After this period

the rate of trading decreases substantially. He places limit orders further from the

best ask as to try profit from the strategy given the remaining time he has. During

the bullish (market rally) period between 11:15am and 11:30am we see he is able to

sell at prices significantly higher than the best ask given the price is increasing and

hitting his orders. He generates approximately the same revenue in this period from

three orders as he did in the first 15 minutes from ten orders. During the bearish

(market decline) period that follows he is unable to liquidate. However, given he has
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Figure 9.6: Backtest example with q (0) = 4 under exponential intensity

only a few units remaining, his asking price would be substantially above the current

best ask. As time remaining decays he is able to unwind a few more positions, given

he drops his asking price as he approaches the terminal time, and is left with only one

asset remaining at the terminal time.

We performed the same analysis on the other names and obtained similar results.

This is expected given they are all highly liquid, large capitalisation names, which are

all constitutions of the S & P 500 index. What would be of interest in a future study

(if the data was available) would be to consider the performance of the strategy for

less liquid names.

9.3 Summary

In this chapter we studied the model developed in chapter 4, and extended in chapter

8, from the point of view of its statistical calibration. As opposed to using only level-

one order-book data as used in Guéant et al. (2012b), discussed in Fernandez-Tapia



CHAPTER 9. CALIBRATION TECHNIQUES AND BACKTESTING 233

10:00 10:05 10:10 10:15
223.5

224

224.5

225

S

time

 

 

S × (1 + δ)
Best Ask
Sales

(a) Evolution of price processes

10:00 10:05 10:10 10:15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
e
v
e
n
u
e

time

(b) Evolution of revenue

10:00 10:05 10:10 10:15
0

0.5

1

1.5

2

2.5

3

3.5

4

In
v
en
to
ry

time

 

 

Expected Inventory
Simulaton

(c) Evolution of inventory

Figure 9.7: Backtest example with q (0) = 4 under power intensity

(2015), we take the new approach of calibrating the intensities using ten levels of the

order book at each side.

Several issues were discussed in the chapter. Firstly, we addressed the issues of

examining our model, which is continuous in time and space, in a discrete way. Sec-

ondly, we studied various methods for calibration of the intensity functions, including

counting trades and estimating waiting times. The former involved counting trades

obtained from historical limit-order book data, while the latter involved placing orders

into the book and observing whether or not these orders were executed by observing

the empirical price process of the reference price. We also briefly discussed calibration

of the price process parameters which is not trivial when considering tick data. Fi-

nally, we presented the results of backtesting the calibrated model, which portrayed

successful liquidation strategies.

As mentioned previously, the data needed for the calibration outlined in this chap-

ter is difficult to obtain for academics. Financial institutes are hesitant in providing

it and data service providers often charge considerable amounts given the demand of
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Figure 9.8: Backtest example with q (0) = 20 under exponential intensity

financial institutions in developing their own models. The lack of access to data was

a topical subject at the Market Microstructure: Confronting Many Viewpoints confer-

ence held in Paris, December 2014. This conference was attended by both academics

and practitioners. A key talking point was the need from practitioners for solutions

to problems in optimal execution but the unwillingness to provide academics with the

data needed to solve these problems.

We thus conclude the chapter by outlining that although the statistical methods

within this chapter have been implemented on data, the amount of the data we used

is far too less to deem the results statistically significant. An area of future work is

to do a more in-depth statistical analysis of the problem, if a larger data set becomes

available to allow us to do so.



Chapter 10

Conclusions and Future Work

In this chapter we discuss the main ideas that this work was intended to convey,

highlighting the scientific contributions presented, before suggesting some possible

directions for future research.

10.1 Conclusions

This thesis has developed the framework posed by Guéant et al. (2012b), who extend

the original framework of Avellaneda and Stoikov (2008), by introducing more general

diffusion processes and modelling assumptions. By choosing CARA utility functions,

standard Brownian motion and an absolute decay parameter for the intensity function

Guéant et al. (2012b) are able to cleverly build symmetry into the model from the

start, which allow them to reduce the HJB equation to a system of ODEs. In this

thesis we used a combined approach of asymptotic analyses and accurate numerical

techniques that allowed us to gain insight into solutions when this symmetry was no

longer present.

The reduction from an HJB equation to an ODE by Guéant et al. (2012b) allow the

authors to solve the resultant differential-difference equation using numerical methods.

When we introduced the framework of Guéant et al. (2012b) in chapter 3 we were able

to contribute to their original framework by finding an analytic solution for the case

of one asset remaining, q = 1, which provided insight into the solution that was not

realised by Guéant et al. (2012b) in their original study of the problem.

To first extend the framework of Guéant et al. (2012b) we built a model with

235
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geometric Brownian motion (and mean-reverting processes) for the asset price, a pro-

portional control parameter (the additional amount we ask for the asset), and a pro-

portional decay parameter, meaning the symmetry found in Guéant et al. (2012b) no

longer existed. This novel combination resulted in asset-dependent trading strategies,

which to our knowledge is a unique concept in this framework of literature. This also

resulted in not selling the asset for a negative price, which can occur in the work of

Guéant et al. (2012b), amongst others. We reduced the resulting four-dimensional HJB

equation to a novel three-dimensional non-linear PDE with explicit non-linear term,

as well as rescaling the variables to reduce the number of input parameters by two.

We carried out interesting analytic (asymptotic) analyses, finding analytic solutions in

various limits, and the development of a singularity when considering a steady-state,

as well as a complementary parameter constraint necessary for a solution to exist.

We extended the framework of both Guéant et al. (2012b) and that discussed

above (chapter 4) to a trader who has a basket of correlated assets to liquidate. This

is studied both under standard Brownian motion (chapter 5) and geometric Brownian

motion (chapter 6). Under both frameworks we solve the problem numerically and

asymptotically, and discuss the resultant trading strategies. We found the correlation

term generates some interest, with results relating back to Modern Portfolio Theory

(see Markowitz, 1959). For negatively correlated assets the trader aimed for a balanced

portfolio while for a positively correlated portfolio the trader aimed to unwind faster

(in comparison to negatively or uncorrelated assets) as the positive correlation led to

increased market risk. Furthermore, under geometric Brownian motion in the per-

petual limit, a change of variables to polar coordinates gave insight into a parameter

constraint necessary for a solution to exist, as well as confirming singular behaviour

which the numerical results were indicating.

In chapter 7 we extended the work of chapter 4 by replacing the constant volatil-

ity with stochastic volatility. Solving numerically, we examined the optimal trading

strategies under various parameter regimes to get a full understanding of the effect

of the mean-reverting stochastic volatility on the trading strategies. The parameter

constraint of chapter 4 contained the (constant) volatility; therefore, we were inter-

ested in investigating a similar constraint now that the volatility was stochastic. Using

asymptotic analysis we indeed found an analogous parameter constraint.
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Chapter 8 examined three extensions of the original model derived in chapter 4. We

first introduced a constraint in the value the optimal strategy may take, with δmin = 0,

which does not allow the trader to trade at a discount. This resulted in a reformulation

of the problem, with interesting (and contrasting) trading strategies. These strategies

were suboptimal to those found for an unconstrained strategy. Secondly, we replaced

the exponential intensity function with a power intensity function. We had to tackle

the derivation of this problem differently, given it is a singular stochastic control prob-

lem, as well as modifying the numerical methods used. We compared the resultant

trading strategies with those of the exponential intensity model. The strategies were

contrasting given, under power intensity, a trader can instantaneously liquidate by

sending δ → 0. Finally, we studied the strategy of a trader who can post both limit

orders and market orders throughout the trading period. In this framework, given

the trader has the ability to execute immediately, the problem was formulated as a

free-boundary problem and could be viewed similar to that of an American option

which allows for early exercise. From a financial perspective, the solutions obtained

were intriguing. We hypothesised that the trader would take advantage of having the

ability to execute with market orders given he is risk-averse, which was the case.

In chapter 9 we calibrated the model under geometric Brownian motion, for both

exponential and power intensity functions. The improvement in our analysis was the

use of order-book data which includes levels higher than level one, as having more levels

gives us more quantitative insight into the behaviour of the limit-order book. We first

addressed the issues of examining our model in a discrete way, given it is continuous

in time and space. Secondly, we studied various methods for calibrating the intensity

functions, discussing the methods already proposed by Fernandez-Tapia (2015), and

the contribution we made through the use of multiple levels of the limit-order book.

Finally, we presented the results of backtesting the calibrated model, which portrayed

successful liquidation strategies.

10.2 Future work

In this thesis we have considered various extensions that could be examined further in

a future study.
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The first relates to changing the intensity function such that the Poisson process

is instead a Hawkes (1971) process. A Hawkes process is a self-exciting point process

with intensity function

λ (t) = µ (t) +
∑
ti<t

ν (t− ti) ,

where µ (t) is a deterministic base intensity and ν (t− ti) expresses the positive influ-

ence of the past events ti on the current value of the intensity process. The original

study of Hawkes (1971) proposes an exponential kernel of the form

ν (t) =

p∑
j=1

αje
−βjt.

Hawkes processes have been implemented previously in the optimal scheduling lit-

erature for the price process (see Alfonsi and Blanc, 2014) and the order flow (see

Bacry and Muzy, 2014), to name a few examples, and would make for an interesting

extension to the tactical trading literature. The Hawkes process could model bursts

of volume, such that the probability of being executed increases directly after a trade

occurs. This could be seen as a more accurate representation of reality, rather than

having the independence assumption of a Poisson process.

The second relates to the framework of section 8.3 in which the trader can trade

using both market orders and limit orders. In section 8.3 we included an instantaneous

penalty for trading using market orders which could be seen as the spread, temporary

impact, or both. An interesting extension would be to include permanent and/or

transient market impact which would result in a jump in the asset price every time an

order is executed using a market order, similar to the market impact assumptions of

Almgren and Chriss (2001) and Obizhaeva and Wang (2013).

Finally, if data were to become available, a more extensive calibration study would

be of interest. This includes studying whether it is more advantageous for the trader

to trade in periods of the day when there is more volume, such as morning or evening,

verses periods when there is less volume, such as in the middle of the day, as found

empirically by the U-shaped volume curve (see Wood et al., 1985; Harris, 1986; Jain

and Joh, 1988). If this was found to be the case, it could be adapted in the model

by introducing a local, or indeed stochastic, intensity function to represent this non-

stationary intra-day volume.
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Cartea, Á., Donnelly, R. F., and Jaimungal, S. (2015a). Enhancing trading strategies

with order book signals. Available at SSRN 2668277.
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Cartea, Á. and Jaimungal, S. (2015b). Optimal execution with limit and market

orders. Quantitative Finance, (ahead-of-print):1–13.
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Guéant, O., Pu, J., and Royer, G. (2015). Accelerated share repurchase: pricing and

execution strategy. International Journal of Theoretical and Applied Finance, page

1550019.

Guilbaud, F., Mnif, M., and Pham, H. (2010). Numerical methods for an optimal

order execution problem. arXiv preprint arXiv:1006.0768.

Guilbaud, F. and Pham, H. (2013a). Optimal high-frequency trading in a pro rata

microstructure with predictive information. Mathematical Finance.

Guilbaud, F. and Pham, H. (2013b). Optimal high-frequency trading with limit and

market orders. Quantitative Finance, 13(1):79–94.

Harris, L. (1986). A transaction data study of weekly and intradaily patterns in stock

returns. Journal of financial economics, 16(1):99–117.

Harris, L. (2002). Trading and exchanges: Market microstructure for practitioners.

Oxford University Press.

Haugh, M. and Wang, C. (2014). Dynamic portfolio execution and information relax-

ations. SIAM Journal on Financial Mathematics, 5(1):316–359.

Hawkes, A. G. (1971). Point spectra of some mutually exciting point processes. Journal

of the Royal Statistical Society. Series B (Methodological), pages 438–443.

Hendershott, T., Jones, C. M., and Menkveld, A. J. (2011). Does algorithmic trading

improve liquidity? The Journal of Finance, 66(1):1–33.

Hestenes, M. R. (1950). A general problem in the calculus of variations with applica-

tions to paths of least time. DTIC Document.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with

applications to bond and currency options. Review of financial studies, 6(2):327–343.

Ho, T. and Stoll, H. R. (1981). Optimal dealer pricing under transactions and return

uncertainty. Journal of Financial economics, 9(1):47–73.



BIBLIOGRAPHY 247

Huang, Y., Forsyth, P. A., and Labahn, G. (2012). Combined fixed point and pol-

icy iteration for Hamilton–Jacobi–Bellman equations in finance. SIAM Journal on

Numerical Analysis, 50(4):1861–1882.

Huitema, R. (2013). Optimal portfolio execution using market and limit orders. Avail-

able at SSRN 1977553.

Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatil-

ities. The journal of finance, 42(2):281–300.

Hull, J. and White, A. (1990). Valuing derivative securities using the explicit finite

difference method. Journal of Financial and Quantitative Analysis, 25(01):87–100.

Hult, H. and Kiessling, J. (2010). Algorithmic trading with Markov chains. PhD thesis,

Stockholm University, Sweden.

Jaillet, P., Lamberton, D., and Lapeyre, B. (1990). Variational inequalities and the

pricing of american options. Acta Applicandae Mathematica, 21(3):263–289.

Jain, P. C. and Joh, G.-H. (1988). The dependence between hourly prices and trading

volume. Journal of Financial and Quantitative Analysis, 23(03):269–283.

Johnson, T. (2009). Paying the price. https://plus.maths.org/content/paying-price.

Kharroubi, I. and Pham, H. (2010). Optimal portfolio liquidation with execution cost

and risk. SIAM Journal on Financial Mathematics, 1(1):897–931.

Kiefer, J. (1953). Sequential minimax search for a maximum. Proceedings of the

American Mathematical Society, 4(3):502–506.
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