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Abstract: Internet Query Systems (IQS) are information systems used to query the World Wide Web by finding data 

sources relevant to a given query and retrieving data from the identified data sources. They differ from 

traditional database management systems in that data to be processed need to be found by a search engine, 

fetched from remote data sources and processed taking into account issues such as the unpredictability of 

access and transfer rates, infinite streams of data, and the ability to produce partial results. Despite the 

powerful query functionality provided by internet query systems when compared to traditional search 

engines, their uptake has been slow partly due to the difficulty of assessing and filtering low quality data 

resulting from internet queries. In this paper we investigate how an internet query system can be extended to 

support data quality aware query processing. In particular, we illustrate the metadata support, XML-based 

data quality measurement method, algebraic query processing operators, and query plan structures of a 

query processing framework aimed at helping users to identify, assess, and filter out data regarded as of low 

completeness data quality for the intended use. 

1 INTRODUCTION 

There has been an exponential growth in the 

availability of data on the web and in the usage of 

systems and tools for querying and retrieving web 

data. Despite the considerable advances in search 

engines and other internet technologies for 

dynamically combining, integrating and collating 

web data, supporting a DBMS-like data management 

approach across multiple web data sources is still an 

elusive goal. To buck this trend, internet query 

systems − IQS [Naughton, J., DeWitt, D., Maier, D., 

et al, 2001] are being developed to enable DBMS-

like query processing and data management over 

multiple web data sources, shielding the user from 

complexities such as information heterogeneity, 

unpredictability of data source response rates, and 

distributed query execution.  

The comprehensive query processing approach 

supported by IQS allows users to query a global 

information system without being aware of the sites 

structure, query languages, and semantics of the data 

repositories that store the relevant data for a given 

query [Naughton, J., DeWitt, D., Maier, D., et al, 

2001]. Despite the significant amount of work in the 

development of the data integration and distributed 

query processing capabilities, internet query systems 

still suffer from inadequate data quality control 

mechanisms to address the management of quality of 

the data retrieved and processed by the IQS. Typical 

examples of data quality issues [Olson, J., 2003] that 

need to be addressed when supporting quality aware 

query processing over multiple web data sources are: 

• Accuracy of data:  Data can have errors or 

inconsistencies in its representation. For example, 

the data values “St. Louis” and “Saint Louis” may 

not be matched in a join operation between data 

sources despite referring to the same address 

instance, due to the different representation formats. 

• Completeness of data: a data source is 

regarded as complete if all information requirements 

are modelled and stored in the database. For 

instance, data sources fed by online forms with poor 

data quality checks and optional fields often give 



 

rise to data with low completeness due to several 

attributes with null values. 

• Timeliness of data: Data can be of poor 

quality when it is not timely enough for the intended 

use. For example, data representing currency 

exchange rates generated by on-line foreign 

currency exchanges need to be delivered to the 

target information system adhering to stringent 

service level agreement targets (time intervals) to 

ensure validity of the information. 

Internet query systems support the mediator-

based approach to quality management [Wiederhold, 

G., 1992]. The mediator-based approach is 

applicable in situations where users need to 

formulate complex queries encompassing multiple 

web data sources for which there is no control over 

the data available in a data source and the 

infrastructure supporting data source site query 

processing (e.g., querying e-Science data sources 

[http://www.rcuk.ac.uk/escience]). In the mediator-

based approach, the speed of the internet limits 

transmission of relevant data, and users cannot 

reconcile and cleanse all necessary data items prior 

to query formulation as in data warehouse-based 

quality-based integration approaches [Helfert, M., 

and E. von, Maur, 2001], therefore needing dynamic 

strategies for managing accuracy, completeness, and 

timeliness data quality issues.  

In this paper we investigate how an internet 

query system can be extended to support a dynamic 

data quality aware query processing framework. In 

particular, we illustrate the completeness assessment 

method, metadata support, algebraic query 

processing operators, and query plan structures of a 

query processing framework aimed at helping users 

to identify, assess, and filter out data regarded as of 

low completeness quality for the intended use. The 

remainder of the paper is structured as follows. 

Section 2 discusses key contributions of the 

proposed approach. Section 3 presents how 

completeness measures can be associated with XML 

data. Section 4 presents the method used to annotate 

XML data with completeness information. Section 5 

describes the quality aware algebraic query 

processing framework. Section 6 provides an 

example illustrating how completeness is assessed 

during query processing. Section 7 describes related 

work. Section 8 summarizes the work and discusses 

future directions. 

2 CONTRIBUTION AND 

DISCUSSION 

The main contribution of this paper is to 

demonstrate how existing ideas in the arena of query 

processing and quality of information can be 

combined and applied in the context of Internet data 

processing, to analyse, evaluate and possibly filter 

data of unacceptable Completeness quality. The 

ideas being reused are: query engine extension, and 

data annotation with quality information. The 

approach taken in this work suggests Internet data to 

be annotated with quality information prior to query 

processing, to allow the quality information to be 

taken into consideration during query optimisation 

and execution. The data annotation can be done 

automatically by the mediator system, or by data 

providers, if these are cooperative data sources. If 

this is the case, data providers should take the 

responsibility of providing quality information along 

with the data they store, as well as ensuring that the 

quality information is also of high quality. This 

represents a situation where the mediator system has 

no other choice than to accept the provided quality 

information and assume that it is of high quality. 

This situation is mandatory for the cases where, for 

example, time related information is provided, e.g. 

date when a data item was last updated in a remote 

system.  

    In addition to annotating data with quality 

information, the query engine of the mediator 

system requires extension to enable quality 

information to be taken as input, processed along its 

corresponding data, and have an impact on the 

produced results, which should reflect what the user 

requested in his/her query. The proposed framework 

is tested over a simple, extensible, and robust 

Internet Query System [Naughton, J., DeWitt, D., 

Maier, D., et al, 2001], which receives, as input, 

Internet data in XML format and generates, as 

output, XML data representing results from 

submitted user queries. The query engine is 

implemented in a Database Management System 

fashion, i.e., as a set of algebraic operators designed 

to work together to process XML data. More 

specifically, this work shows how the query engine 

algebra can be extended with an operator 

encapsulating capabilities to deal with information 

about the Completeness quality of the data being 

processed. In addition to DBMS-like query 

processing facilities, Niagara also provides search 

engine facilities, to find relevant data sources to a 

given query.  

    The approach of query engine extension has a 

number of shortcomings, such as the ones described 

as follows: It may increase the complexity of design 

and implementation of the engine. Therefore, 



 

modularity and encapsulation are important features 

to be taken into consideration when designing a 

quality-aware query engine for any system, always 

enforcing the idea that data quality related 

functionalities must be all encapsulated within “data 

quality” operators; it may be intrusive in the point of 

view of traditional query processing, as the addition 

of new operators/functions into a pre-existing engine 

can demand the creation of new optimisation rules 

and heuristics, as well as modification of pre-

existing operators. We believe that a careful query 

engine design and implementation can avoid 

problems of intrusiveness, as it has been shown in 

previous work describing extension of engines to 

deal with parallelism in query execution [Graefe, G., 

1996]; it may be inflexible or difficult in allowing 

the user to build and incorporate into the system his 

own definition of quality based on the task he/she 

has at hand. Flexibility in allowing user input can be 

achieved by providing user interfaces to take user 

input or feedback on quality of data. However, 

allowing users to add new operators/functions into 

the engine may require from the user some expertise 

in design and implementation of engines, as well as 

familiarity with the code that implements the engine. 

    Although programming skills are required, 

extending query engines with new operators has 

proven to be a highly flexible, maintainable and 

clean approach to incorporating new functionality 

into pre-existing query processing systems, allowing 

the choice for “best”, optimal or most appropriate 

query plan to be decided automatically or semi-

automatically by means of a set of well defined 

optimisation rules. 

3 MEASURING COMPLETENESS 

OF XML DATA 

Completeness is a context-dependent data quality 

dimension that refers to “the extent to which data are 

of sufficient breadth, depth and scope for the task at 

hand” [Wang, R., and S. E., Madnick, 1989]. In the 

context of a database model, two types of 

completeness dimensions are considered: model 

completeness and data completeness. Model 

completeness refers to the measure of how 

appropriate the schema of the database is for a 

particular application. Data completeness refers to 

the measurable errors of omission observed between 

the database and its schema, checking, for example, 

if a database contains all entities/attributes specified 

in the schema. 

    Completeness issues arising in database 

applications may have several causes, for example, 

discrepancies between the intent for information 

querying and the collected data, partial capture of 

data semantics during data modelling, and the loss of 

data resulting from data exchange. Potential 

approaches to address completeness issues include 

removing entities with missing values from the 

database; replacing missing values with default 

values, and completing missing values with data 

from other sources. Irrespective of the approach 

taken to deal with poor data completeness, it is 

crucial that database users formulating queries 

across multiple data sources are able to judge if a 

particular query result is “fit” for its purpose, by 

measuring the level of completeness of the result. 

4 ANNOTATING XML DATA 

WITH COMPLETENESS 

INFORMATION 

To enable quality aware query processing, data 

should be annotated with quality information [Wang, 

R. Y., Reddy, M. P., and Kon, H. B., 1995]. 

Annotations describing simple data completeness 

information can be done automatically by the 

mediator system, as streams of data from remote 

data sources are input. The information should 

specify the number of tag elements and element 

values missing from an XML document, relative to 

the expected numbers for the document to be 

considered complete. This information can be 

obtained by simply counting the numbers, while 

parsing and analysing the structure of the document 

against its schema description or DTD. 

The annotated numbers for missing tag elements 

and element values, as well as expected numbers, 

represent quality factors that will be taken into 

account during query execution. These quality 

factors are added into an XML document as (sub) 

elements and (sub) element values associated with 

other elements specified in the schema or DTD of 

the original XML document. An example is 

illustrated in Figure 4.1, showing an XML document 

describing information about car dealers. Note that 

information to be used during query processing to 

calculate the completeness of 

carDealerInformation is attached to the original 

document, following an initial parsing of the 

document and its schema. In this example, both the 

price element and its value for car Idea are missing. 

It is also missing the price value for car Multipla. 
 



 

<carDealerInformation> 

   <dealer id="id001"> 

      <name>Audi Dealers</name> 

         <car><model>A6 Avant</model> 

              

<price>26000</price></car> 

   </dealer> 

   <dealer id="id002"> 

      <name>Fiat Dealers</name> 

      <car><model>Cinquecento</model> 

           <price>8000</price></car> 

      <car><model>Idea</model></car> 

      <car><model>Multipla</model> 

           <price></price></car> 

   </dealer> 

   <dealer id="id003"> 

      <name>Renauld Dealers</name> 

   </dealer> 

   <dataQuality><completeness> 

      

<numberElements>22</numberElements> 

      <missingElements> 

         

<numberMissingElem>1</numberMissingElem

> 

         

<elem><name>price</name><number>1</numb

er></elem> 

      </missingElements> 

      <numberValues>14</numberValues> 

      <missingValues> 

         

<numberMissingVal>2</numberMissingVal> 

         

<elem><name>price</name><number>2</numb

er></elem> 

      </missingValues> 

   </completeness></dataQuality> 

</carDealerInformation> 

Figure 4.1: Example of XML document with annotations. 

5 QUALITY AWARE 

ALGEBRAIC QUERY 

PROCESSING 

Figure 5.1 illustrates the quality aware query 

processing framework proposed in this work, which 

can be implemented as an extension to Internet 

Query Systems. 
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Figure 5.1: Query Processing and Data Search in an IQS. 

In the case of Niagara, an input XML-based query 

expression is initially transformed into two sub-

queries, a search engine query, and a query engine 

query. The first is used within the search engine to 

select data sources that are relevant to the query. 

Once data sources are selected, the process of 

fetching data takes place, and streams of data start 

flowing from the data sources to the site of the 

Internet Query System for data annotation and query 

execution. The second sub-query is optimised and 

ultimately mapped into a quality aware query 

execution plan that contains a special-purpose 

operator addressing the annotated completeness 

information. 

A description of the query engine algebra used to 

execute the query plan is detailed in Table 5.1. The 

Completeness Algebra is an XML algebra extended 

with an operator that encapsulates the capability of 

measuring completeness quality of XML data based 

on completeness factors annotated on the data. This 

operator is called Completeness and it encapsulates 

functions for measuring, inserting, and propagating 

completeness information in XML data, provided 

the data has completeness factors associated with it. 

Note that complexities relating to the ability to deal 

with streams of data, produce partial results and 

issues in synchronization are out of the scope of our 

approach, therefore, are not described in Table 5.1. 

Table 5.1: Completeness algebra. 

Logical Operators Description 

Scan(inputData)  Builds a data structure 
for each data unit and 
passes each structure 
to the next operator.  

Select(input,pred) Applies a predicate 
(pred) over the input 
and either discards or 
retains the input 
depending on whether 
the predicate 
evaluates to false or 
true.  

Project(input,listElem) Discards from the 
input all the elements 
that are not specified 
in listElem.   

Join(inputLeft, 
inputRight,pred) 

Concatenates both 
inputs, retaining all 
their elements, applies 
a predicate over the 
result.  

Completeness(input) Updates completeness 



 

information after the 
data manipulation 
performed by any 
other operator, and 
also measures the 
final completeness 
score, attaches the 
measure to query 
results, and displays 
the results to the user.  

 

6 QUERY PROCESSING 

EXAMPLE 

Consider the XML document described in Figure 

4.1, and the example XML-QL query described in 

Figure 6.1, which retrieves the model and price of 

each car offered by Fiat Dealers. Following the input 

to the Niagara System, the Query Optimiser 

generates the query plan from the query expression 

in Figure 6.1, illustrated in Figure 6.2. Note that, 

following each operator, there is a Completeness 

operator updating the completeness information at 

each step of query execution. The query results are 

shown in Figure 6.3. Note that only the model and 

price for each Fiat Dealers’ cars appear in the 

results, as specified in the query. Therefore, the 

measures for model completeness and data 

completeness, performed by the Completeness 

operator at the root of the plan, are calculated 

considering only these two elements. The formulas 

used to calculate MC and DC are illustrated in 

Figure 6.4. They were derived from the ideas 

discussed in [Pipino, L.L., Lee, Y.W. and Wang, 

R.Y., 2002], which suggest that a metric to calculate 

the completeness score for a relational database can 

be formulated using simple ratio. In the simple ratio 

method, if the number of relations and attributes that 

are missing from the database is divided by the total 

number of relations and attributes defined in the 

database schema, and the result of that is subtracted 

by 1, then what is obtained is a number in a 

continuous scale between 0 and 1, that represents the 

model completeness score for the database relative 

to its schema. To measure data completeness of a 

relational database the same method applies, but the 

ration in this case should be between the number of 

missing attribute instances and the expected number 

of attribute instances. Within the continuous scale, 1 

represents the highest completeness measure and is 

appropriate for data complying with the most strict 

completeness threshold, and 0 represents the lowest 

model completeness measure, appropriate for data 

that are unacceptable from the model completeness 

perspective. 

In Figure 6.2, there is a sequence of 2 pairs (Scan 

,Completeness) operators, omitted for space 

limitations. Each of the Scan operators in the 

sequence unnests a level of nested elements, by 

attaching a copy of each unnested element (and its 

sub-elements) to the input tuple. For example, the 

first Scan unnests the <dealer> elements, which are 

sub-elements to <carDealerInformation>. The 

second Scan unnests the <name> and <car> elements, 

which are sub-elements to <dealer>. The Construct 

operator is the physical counterpart to the Project 

operator described in Table 5.1. It projects elements 

and builds a structure to hold query results.  

    Table 6.1 illustrates the functionality of the 

Completeness operator at each execution step of the 

example query. The first Completeness operator (the 

one following the first Scan operator) receives the 

original Completeness information from the data 

sources. Then it creates a copy of the information, 

attaches it to the extended layer of elements 

unnested by Scan, and updates the information. The 

updated information relates to the unnested elements 

only.  

 
WHERE <carDealerInformation> 

         <dealer> 

            <name>$v14</> 

            <car><model>$v16</> 

                 <price>$v17</> 

            </></></> 

IN "*" conform_to "file: 

completeness.dtd",$v14 = "Fiat Dealers" 

CONSTRUCT 

<result> 

    <model>$v16</> 

    <price>$v17</> 

</> 

Figure 6.1: Example query. 

The second and third Completeness operators 

behave in a similar way, copying and updating the 

input Completeness information according to the 

changes made by the previous operator. The last 

Completeness operator follows Construct. It updates 

the number of elements and values projected by 

Construct, and, also, calculates the measures of MC 

and DC for the input document relative to the 

example query. 
 



 

 

Figure 6.2: Query plan for example query. 

<result> 

    <model>Cinquecento</> 

    <price>8000</> 

</> 

<result> 

    <model>Multipla</> 

    <price></> 

</> 

<modelCompleteness>0.66</> 

<dataCompleteness>0.50</> 

Figure 6.3: Example query results. 

MC = 1 – [(num of missing elements) / (num 

of elements)] 

 

DC = 1 – [(num of missing values) / (num of 

values)] 

Figure 6.4: Formulas used within the Completeness 

operator, to calculate model completeness (MC) and data 

completeness (DC). 

Table 6.1: Behaviour of Completeness Operators. 

Initial Information 

numberElements 22 

numberMissingElements 1 

nameMissingElem <price> 

numberTimes 1 

numberValues 14 

numberMissingValues 2 

nameElemMissingValue <price> 

numberTimes 2 

Information updated by 

1st Completeness Operator 

numberElements 21 

numberMissingElements 1 

nameMissingElem <price> 

numberTimes 1 

numberValues 14 

numberMissingValues 2 

nameElemMissingValue <price> 

numberTimes 2 

Information updated by 

Last Completeness Operator 

numberElements 6 

numberMissingElem 2 

nameMissingElem <price> 

numberTimes 1 

nameMissingElem <model> 

numberTimes 1 

numberValues 6 

numberMissingValues 3 

nameElemMissingValue <price> 

numberTimes 2 

nameElemMissingValue <model> 

numberTimes 1 

MC 0.66 

DC 0.50 

 

7 RELATED WORK 

In [Mecella, M., Scannapieco, M., Virgillito, A., 

Baldoni, R., Catarci, T., and Batini, C., 2003] an 

approach for data quality management in 

Cooperative Information Systems is described. The 

architecture has as its main component a Data 

Quality Broker, which performs data requests on all 

cooperating systems on behalf of a requesting 

system. The request is a query expressed in the 

XQuery language along with a set of quality 

requirements that the desired data have to satisfy. A 

typical feature of cooperative query systems is the 

high degree of data replication, with different copies 

of the same data received as responses. The 

responses are reconciled and the best results (based 

on quality thresholds) are selected and delivered to 

users, who can choose to discard output data and 

adopt higher quality alternatives. All cooperating 

systems export their application data and quality 

data thresholds, so that quality certification and 

diffusion are ensured by the system. The system, 

however, does not adopt an algebraic query 

processing framework and is not built on top of a 

mainstream IQS. In [Naumann, F., Lesser, U., and 

Freytag, J., 1999], data quality is incorporated into 

schema integration by answering a global query 

using only queries that are classified as high quality 

and executable by a subset of the data sources. This 

is done by assigning quality scores to queries based 

on previous knowledge about the data to be queried, 

considering quality dimensions such as 

completeness, timeliness and accuracy. The queries 
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are ranked according to their scores and executed 

from the highest quality plan to the lowest quality 

plan until a stop criterion is reached. The described 

approach, however, does not use XML as the 

canonical data model and does not address physical 

algebraic query plan implementation issues. 

8 CONCLUSIONS AND FUTURE 

WORK 

With the ubiquitous growth, availability, and usage 

of data on the web, addressing data quality 

requirements in connection with web queries is 

emerging as a key priority for database research 

[Gertz, M., Ozsu, T., Saake, G., and Sattler, K., 

2003]. There are two established approaches for 

addressing data quality issues relating to web data: 

data warehouse-based, where relevant data is 

reconciled, cleansed and warehoused prior to 

querying; and mediator-based where quality metrics 

and thresholds relating to cooperative web data 

sources are evaluated “on the fly” at query 

processing and execution time. In this paper we 

illustrate the query processing extensions being 

engineered into the Niagara internet query system to 

support mediator-based quality aware query 

processing for the completeness data quality 

dimension. We are also addressing the timeliness 

dimension [Sampaio, S. F. M., Dong, C., and 

Sampaio, P. R. F, 2005] and extending SQL with 

data quality constructs to express data quality 

requirements [Dong, C., Sampaio, S. F. M., and 

Sampaio, P. R. F., 2006]. The data quality aware 

query processing extensions encompass metadata 

support, an XML-based data quality measurement 

method, algebraic query processing operators, and 

query plan structures of a query processing 

framework aimed at helping users to identify, assess, 

and filter out data regarded as of low completeness 

data quality for the intended use. As future plans we 

intend to incorporate accuracy data quality support 

into the framework and benchmark the quality/cost 

query optimiser in connection with a health care 

application [Dong, C., Sampaio, S. F. M., and 

Sampaio, P. R. F., 2005]. 
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