ADAPTIVE METHODOLOGIES FOR REAL-TIME SKIN SEGMENTATION AND LARGE-SCALE FACE DETECTION

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2015

By
Michael Taylor
School of Computer Science
Contents

Abstract 11
Declaration 12
Copyright 13
Acknowledgements 14

1 Introduction 15
 1.1 Research Overview ... 15
 1.2 Research Hypothesis and Objectives ... 20
 1.3 Research Challenges ... 21
 1.4 Research Contributions .. 22
 1.4.1 Publications .. 23
 1.5 Thesis Outline .. 24

2 Literature Review 25
 2.1 Face Detection .. 25
 2.1.1 The Viola-Jones Face Detection System 32
 2.1.2 Recent Detection Advancements ... 36
 2.1.3 Face Detection Enhancement Methods 43
 2.2 Colour-Based Skin Segmentation .. 44
 2.2.1 Colour Spaces for Skin Modelling .. 45
 2.2.2 Colour Distribution Modelling Approaches 49
 2.2.1.1 Explicit Skin Colour Cluster Models 49
 2.2.1.2 Non-Parametric Skin Colour Modelling 50
 2.2.1.3 Parametric Skin Colour Modelling 52
 2.2.4 Skin Colour Model Adaptation ... 53
 2.2.4.1 Face Detection-Based Skin Colour Modelling 55
 2.3 Review Summary ... 56
3 Adaptive Skin Segmentation via Feature-Based Face Detection

3.1 Segmentation Problem Definition ... 58
 3.1.1 Analysis of Existing Techniques .. 61
 3.1.1.1 Explicit RGB Cluster Model... 68
 3.1.1.2 Explicit Normalised RG Cluster Model... 70
 3.1.1.3 Explicit HSV Cluster Model.. 72
 3.1.1.4 Explicit YCbCr Colour Model.. 74
 3.1.1.5 Bayes’ Theorem-Based Look-Up Table ... 76
 3.1.1.6 Gaussian Distribution Function ... 81
 3.1.2 Results Comparison and Discussion ... 86

3.2 Segmentation System Design and Development ... 91
 3.2.1 Image Sampling ... 92
 3.2.1.1 Feature-Based Face Detection .. 92
 3.2.1.2 Sub-Region Sampling ... 98
 3.2.1.3 Pixel Filtering .. 100
 3.2.2 Skin Colour Distribution Modelling ... 106
 3.2.2.1 Modelling Approach Selection ... 107
 3.2.2.2 Generated Model Validation ... 111
 3.2.3 Segmentation System Application ... 116
 3.2.4 Segmentation System Optimisation ... 121
 3.2.4.1 Mahalanobis Distance-Based Classification 123
 3.2.4.2 Efficiently Discarding Zero-Likelihood Pixels 125
 3.2.4.3 Colour Range-Based Classification .. 131

3.3 Segmentation System Evaluation ... 134
 3.3.1 Lecture Theatre-Based Imagery ... 138
 3.3.1.1 Discrete Classifier Analysis ... 138
 3.3.1.2 Receiver Operating Characteristic Analysis 143
 3.3.1.3 Precision-Recall Analysis .. 148
 3.3.1.4 Qualitative Analysis of Additional Images ... 152
 3.3.2 Annotated Arbitrary Image Database ... 154
 3.3.2.1 Complete Dataset Evaluation ... 156
 3.3.2.2 Detection-Facilitating Image Evaluation .. 163
 3.3.2.3 Partial Dataset Performance Improvements 169
3.3.3 Adaptive Methodology Comparison ... 172
 3.3.3.1 Adaptive Lecture Theatre Imagery Analysis 174
 3.3.3.2 Adaptive Arbitrary Imagery Analysis ... 178
3.3.4 Segmentation Efficiency Evaluation .. 180
 3.3.4.1 Offline Performance Analysis ... 180
 3.3.4.2 Real-Time Performance Analysis ... 183
3.3.4.3 Interval-Based Face Detection .. 187

4 Adaptive Framework for Enhanced Large-Scale Face Detection 192
4.1 Framework Design and Development ... 192
 4.1.1 Face Detection Collation .. 194
 4.1.2 PCA-Based Size Filtering .. 196
 4.1.2.1 Size Distribution Model Derivation .. 198
 4.1.2.2 Sized-Based Detection Elimination ... 202
 4.1.3 Retained Detection Consolidation .. 210
 4.1.4 Score-Based Face Candidate Classification 217
 4.1.5 Colour-Based Face Candidate Classification 227
4.2 Framework Evaluation .. 235
 4.2.1 Lecture Theatre Imagery Analysis .. 237
 4.2.1.1 Default Configuration Analysis .. 238
 4.2.1.2 Precision-Recall Analysis .. 240
 4.2.2 Arbitrary Imagery Analysis ... 244
 4.2.2.1 Default Configuration Analysis .. 245
 4.2.2.2 Precision-Recall Analysis .. 246
 4.2.3 Detection Efficiency Evaluation .. 248

5 Discussion and Conclusions 258
 5.1 Synoptic Discussion .. 258
 5.2 Itemised Conclusions .. 268
 5.3 Potential Extensions .. 273

Bibliography 276

Word Count: 77,775
List of Tables

3.1 Analysis of RGB segmentations ... 69
3.2 Analysis of normalised rg segmentations ... 71
3.3 Analysis of HSV segmentations ... 73
3.4 Analysis of YCbCr segmentations ... 75
3.5 Analysis of Bayes segmentations ... 80
3.6 Analysis of Gaussian segmentations ... 85
4.1 Specification of face detection parameter configurations 241
List of Figures

1.1 A typical lecture theatre scene ... 16
1.2 Detection results achieved by an existing face detector 17
1.3 Samples of undetected faces .. 17
1.4 Detection results achieved using greater sensitivity 18
2.1 A knowledge-based face detection scheme .. 26
2.2 Feature-invariant detection method using an edge map 27
2.3 Multiscale segmentation approach to face detection 28
2.4 Face detection scheme using template-matching 29
2.5 A face detector utilising shape and grey-level information 30
2.6 Approximation of a face using different numbers of eigenpictures 31
2.7 Neural network-based face detection system .. 32
2.8 Examples of Haar-like features used to identify faces 33
2.9 A visualisation of the integral image scheme .. 34
2.10 Haar-like features selected through AdaBoost training 35
2.11 Attentional cascade classification process ... 35
2.12 Flexible Haar-like features ... 37
2.13 Multi-block LBP detection technique .. 38
2.14 Fast-training method for boosting processes 39
2.15 An example of deformable parts modelling of a face 40
2.16 DCNN-based face detection system ... 41
2.17 Face likelihood heat map generated by a neural network 42
2.18 Skin colour variation given a range of illuminants 45
2.19 Representation of the RGB colour space ... 46
2.20 Representation of the HSV colour space ... 47
2.21 Representation of the YCbCr colour space...48
2.22 An HSV skin colour cluster model...49
3.1 An example of a lecture theatre scene with strong illumination..........................59
3.2 A second example of a well-illuminated lecture theatre scene...........................59
3.3 An example of a poorly illuminated environment...61
3.4 Manually annotated skin of Fig. 3.1 ..62
3.5 Manually annotated skin of Fig. 3.2 ..63
3.6 Segmentations achieved by RGB model ...69
3.7 Segmentations achieved by normalised rg model..71
3.8 Segmentations achieved by HSV model..73
3.9 Segmentations achieved by YCbCr model...75
3.10 Non-skin training samples ..78
3.11 Positive skin training samples ...78
3.12 Segmentations achieved by Bayes model...80
3.13 Segmentations achieved by Gaussian model...84
3.14 Quantitative comparison of the achieved segmentations.................................86
3.15 Normalised rg representations of skin within input images90
3.16 An overview of our proposed skin segmentation system91
3.17 Face detection results achieved over a range of sensitivities............................95
3.18 The results of precise face detection...97
3.19 Demonstration of background elimination using sub-regions.........................99
3.20 Comparison of intensity distributions of two different sub-regions...............103
3.21 Results of luma filtering using different tolerance levels.................................103
3.22 Optimisation of the luma filter tolerance...105
3.23 Sample of results of luma filtering ..106
3.24 Overview of our sampling and colour modelling process...............................110
3.25 Comparison of annotated and sampled colour distributions...........................111
3.26 Validation of Gaussian distribution modelling...114
3.27 Generation of an intermediary skin likelihood image117
3.28 The variation of skin likelihood with mean deviation.......................................118

7
3.29 Example segmentations using different likelihood thresholds
3.30 Relative process time expenditure comparison
3.31 The variation of Mahalanobis distance with mean deviation
3.32 The definition of "possible skin" ranges to limit calculations
3.33 Visualisation of the effects of optimisation
3.34 The use of "possible skin" ranges to classify inputs
3.35 The relative efficiency of the use of classification ranges
3.36 Segmentations produced by our system over original inputs
3.37 Comparison of our results with those of the existing techniques
3.38 ROC analysis of lecture theatre segmentations
3.39 ROC AUC for lecture theatre segmentations
3.40 PR analysis of lecture theatre segmentations
3.41 PR AUC for lecture theatre segmentations
3.42 Additional lecture theatre segmentations
3.43 Samples of annotated arbitrary image dataset
3.44 ROC analysis of arbitrary image segmentations
3.45 ROC AUC for arbitrary image segmentations
3.46 PR analysis of arbitrary image segmentations
3.47 PR AUC for arbitrary image segmentations
3.48 Sample arbitrary images with visible but undetectable faces
3.49 ROC analysis of arbitrary face image segmentations
3.50 ROC AUC for arbitrary face image segmentations
3.51 PR analysis of arbitrary face image segmentations
3.52 PR AUC for arbitrary face image segmentations
3.53 Observed improvements between sets of segmentations
3.54 Segmentations achieved by existing adaptive system
3.55 Comparison of adaptive approach results with those of our system
3.56 ROC analysis of adaptive lecture theatre segmentations
3.57 PR analysis of adaptive lecture theatre segmentations
3.58 ROC analysis of adaptive arbitrary image segmentations
3.59 PR analysis of adaptive arbitrary image segmentations .. 179
3.60 Segmentation throughput times achieved over dataset .. 182
3.61 Input stream sample frame depicting user interaction .. 184
3.62 Frame rates achieved over different image stream sizes .. 186
3.63 Frame rates achieved using different face detection intervals 188
4.1 An overview of our face detection framework ... 193
4.2 A sample input image depicting a lecture theatre ... 194
4.3 Collated high-sensitivity face detection results ... 196
4.4 Results of precise face detection .. 198
4.5 Visualisation of results within three-dimensional space ... 199
4.6 The first principal component plotted against data points ... 201
4.7 The plane derived from our first two principal components 202
4.8 Collated detections plotted against our planar model ... 203
4.9 Projections of the detections onto the model ... 205
4.10 Optimisation of our size error bounds ... 207
4.11 Collated detections plotted against error bounds ... 208
4.12 Elimination of detections based upon size ... 208
4.13 Detections retained after size filtering .. 209
4.14 Demonstration of simple consolidation .. 211
4.15 Example of complex consolidation problem .. 211
4.16 Scaling technique to achieve consolidations .. 212
4.17 Problems caused by overly sensitive consolidation .. 215
4.18 Optimisation of detection scaling factor ... 216
4.19 The results of detection consolidation .. 217
4.20 The scores assigned to candidates and the distribution of them 218
4.21 Scores observed given a lower quality input image .. 220
4.22 Optimisation of score threshold for face classification ... 222
4.23 Faces identified through score-base classification ... 224
4.24 Low-score candidates retained for further processing .. 225
4.25 Candidates retained after elimination of score-of-1 candidates 226
4.26 Skin rating calculated for each candidate .. 231
4.27 Optimisation of skin rating threshold for face detection 232
4.28 Faces identified through colour-based classification 233
4.29 Final output of our system .. 234
4.30 Samples of our lecture theatre imagery dataset 238
4.31 Quantitative and qualitative default configuration detection results 239
4.32 PR analysis of lecture theatre detections ... 242
4.33 PR AUC for lecture theatre detections .. 243
4.34 Sample images within arbitrary image dataset 244
4.35 Quantitative default configuration detection results 245
4.36 PR analysis of arbitrary image detections .. 246
4.37 PR AUC for arbitrary image detections ... 247
4.38 Dataset detection throughput time comparison .. 249
4.39 Framework component time expenditure comparison 251
4.40 Throughput times achieved using single cascade for collation 252
4.41 Comparison of component efficiency using single cascade 253
4.42 Lecture theatre detection results achieved using single cascade 254
4.43 Arbitrary image detection results achieved using single cascade 256
Abstract

ADAPTIVE METHODOLOGIES FOR REAL-TIME SKIN SEGMENTATION AND LARGE-SCALE FACE DETECTION
Michael Taylor
A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy, 2015

In the field of computer vision, face detection concerns the positive identification of the faces of people within still images or video streams, which is extremely useful for applications such as counting, tracking, and recognition. When applied in large-scale environments, such as lecture theatres, we have found that existing technology can struggle greatly in detecting faces due primarily to the indiscernibility of their features, caused by partial occlusion, problematic orientation, and a lack of focus or resolution. We attempt to overcome this issue by proposing an adaptive framework, capable of collating the results of numerous existing detection systems in order to significantly improve recall rates. This approach uses supplementary modalities, invariant to the issues posed to features, to eliminate false detections from collated sets and allow us to produce results with extremely high confidence. The properties we have selected as the bases of detection classification are size and colour, as we believe that filters that consider them can be constructed adaptively, on a per-image basis, ensuring that the variabilities inherent to large-scale imagery can be fully accounted for, and that false detections and actual faces can be accurately distinguished between on a consistent basis. The application of principal component analysis to precise face detection results yields planar size distribution models that we can use to discard results that are either too large or too small to realistically represent faces within given images.

Classifying a detection according to the correspondence of its general colour tone to the expected colour of skin is a more complex matter, however, as the apparent colour of skin is highly dependent upon incident illumination, and existing techniques are neither specific nor flexible enough to model it as accurately as we believe possible. Therefore, we propose another system, which will be able to adaptively model skin colour distributions according to the Gaussian probability densities exhibited by the colours of precise face detections. Furthermore, it will be suitable for independent application to real-time skin segmentation tasks as a result of considerable optimisation.

This thesis details the design, the development, and the implementation of our systems, and thoroughly evaluates them with regards to the accuracy of their results and the efficiency of their performances, thereby establishing fully the suitability of them for solving certain types of presented problems.
Declaration

No portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.
Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual property (the “Intellectual Property”) and any reproductions of copyright works in the thesis, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations deposited in the University Library, The University Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regulations) and in The University’s policy on Presentation of Theses.
Acknowledgements

Despite being ultimately rewarding, conducting research towards the completion of this degree has been a journey fraught with trials and tribulations, the likes of which I would not have been able to overcome without the support of a multitude of people. I would firstly like to thank my supervisor, Dr. Tim Morris, for his unending guidance and advice. Without his feedback and the constructive criticism of my work, the results that my project has yielded would not be nearly as encouraging as they have been.

My sincerest gratitude also goes towards all the members of the faculty, the school, and the Advanced Interfaces Group that have helped to support my research and my professional development over the past four years. Furthermore, I would like to thank the funding bodies that have not only provided me with the resources necessary to carry out my work, but also afforded me excellent opportunities to travel in order to present my work and meet numerous experts within the field.

The support of my friends, both those within Manchester and those further afield, has been invaluable to me, as the stresses and strains put upon me by the rigours of research would not have been manageable without their help. I would also like to thank the numerous fellow researchers that I have had the pleasure of sharing an office with during my time at the school for their geniality, as even the most casual of mid-afternoon conversations has helped to keep me motivated.

Of course, none of my achievements would have been possible without the continual support and encouragement of my family, including that of my grandparents, who sadly passed away before my research could come to its conclusion.

Finally, my everlasting appreciation goes to my beloved Lauren. For the innumerable and immeasurable sacrifices you have made, I will forever be grateful.
Chapter 1

Introduction

As computer systems and electronic devices become increasingly ubiquitous and capable, the development of more sophisticated and useful human-computer interfaces becomes significantly more viable. Computer vision, which provides an extremely broad platform for such interfaces, has been subject to great advancements over recent years, and the efficacy and accessibility of applications developed within the field has been improved upon enormously. A fundamental and extremely prominent aspect of these technologies is face detection, which pertains to the capacity of a machine to positively identify the existence of faces within still images or video streams. Detecting faces is a critical precursor to a vast range of applications, including, amongst many others, face recognition [149], verification and authentication [69], tracking and surveillance [30], expression analysis [102], and demographic analysis [33]. Developing methodologies with the capacity to yield accurate face detection results, therefore, is of great importance.

1.1 Research Overview

Given an arbitrary image, it is the objective of a face detection algorithm to ascertain whether or not any faces are present within it, and, if so, to return information pertaining to the apparent size and location of each of them [159]. This is not a trivial problem to solve for computers, because of the extreme variabilities involved in such a process [165]. Even two separate instances of an individual face can exhibit changes in scale, illumination, focus, occlusion, location, orientation, and expression, meaning that
achieving robust detection can become extremely complex. Of course, approaches to
detection will typically be designed to be invariant to such issues [163], but there will
always be some limit on the extent to which this can be the case. Face detection can
become particularly complex where “large-scale” imagery is concerned, as it will depict
environments within which the presence of large numbers of people is entirely expected.
This is problematic for any ambition to achieve accurate face detection results because
the prevalence of the aforementioned issues, and combinations of them, will often be
significant. A lecture theatre would be an archetypal example of such an environment,
and Fig. 1.1 depicts a typical image of people that may be captured within one.

![Figure 1.1: An image taken within a lecture theatre, depicting a large number of people
that exhibit numerous obstacles to successful detection, and constituting a large-scale
problem. This image (and many similar that we will be making use of) was provided by
P. Touloupos [142].](image_url)

As can be seen, many of the faces within Fig. 1.1 represent examples of the types of
problems we have highlighted, such as partial occlusion, problematic orientation, and a
lack of focus. Some of these issues are inherently particularly prevalent where such
imagery is concerned. For instance, larger numbers of people being depicted will mean
that there are greater numbers of objects to actually cause occlusion, and people being
distributed over large environments will lead to the faces of individuals being great
distances away from the point of image capture, resulting in insufficient resolution and
focus to positively identify them. Numerous specialised technologies have been
developed in efforts to overcome some of these suboptimal circumstances [34,36,138],
but we are yet to discover a detection approach flexible enough to account for all that our large-scale imagery presents. To demonstrate the detrimental effects of the issues we are concerned with, Fig. 1.2 depicts the results achieved by an off-the-shelf detection system - the seminal work of Viola and Jones [147], which is implemented using its default configuration through OpenCV.

Figure 1.2: The result of using the Viola-Jones face detector to identify faces within the lecture theatre scene depicted by Fig. 1.1. The image contains 44 visible faces, and the detector has yielded 21 true positives, 4 false positives, and 23 false negatives.

As can be discerned from Fig. 1.2, the detector has failed to positively identify more than half of the faces within the scene, which cannot be considered a satisfactory result. A number of the faces that have not been identified in this instance are depicted by Fig. 1.3.

Figure 1.3: A selection of the faces within Fig. 1.1 that the Viola-Jones face detection system has failed to positively identify, because of a range of detection-inhibiting issues.

Even though the face samples shown by Fig. 1.3 represent just a fraction of those that the detector has failed to detect, they strongly indicate how problematic issues such as
occlusion and blur can be to successful face detection, as they can severely impact the discernibility of facial features. Of course, it could be argued that an increase to the sensitivity of the detector would yield improved results, as it would increase the probability of “weak” faces (those with weakly expressed features) being identified. However, as the detector has already generated a number of false positives using its default configuration, lowering the positive classification threshold is likely to result in further degradation to overall result quality. To investigate this matter, Fig. 1.4 illustrates the results achieved by the Viola-Jones detector using a more sensitive configuration than previously.

Figure 1.4: The results yielded by the Viola-Jones face detector, having greatly increased its sensitivity. In this instance, the detector has returned 26 true positives, 12 false positives, and 18 false negatives.

The results of Fig. 1.4 indicate that there have been numerous false positives generated in addition to those produced previously, which is detrimental to the reliability of the results. However, we can also note that a number of the faces originally undetected have now been identified, although there is still clearly room for improvement where detection rate is concerned. Because of the variabilities involved, it is actually entirely possible that the positive classification criteria implemented by the Viola-Jones detector that we are using here would not actually allow for every face within Fig. 1.1 to be found, no matter the level of sensitivity enforced. Furthermore, a different set of features searched for by the Viola-Jones detection system may result in, at best, the identification of a different
subset of the faces we are attempting to find. Combined, however, these sets of detections may actually account for a considerable proportion of the faces within the image, granting us a satisfactory detection rate.

Nevertheless, the results depicted by Fig. 1.4 suggest that using a framework to collate the results of high-sensitivity feature-based detection processes in such a manner would produce a set that contains a significant number of false positive results. Whilst features are extremely strong indicators of the presence of faces [39], the inconsistent discernibility of them is clearly a prevalent and harmful issue where large-scale imagery is concerned. If the proposed framework were to consider supplementary modalities, however, we believe that we could distinguish between the detected faces and the false positives represented by collated detection sets. This would allow us to ultimately yield enhanced overall results, consisting of more positively identified faces than any of the original detection sets would contain as well as smaller numbers of false positives.

There is precedence for the use of alternative visual properties in reinforcing the results of the Viola-Jones detector [11,93,117,123,125], but the techniques proposed by those works would not necessarily solve the issues we face with large-scale imagery. The modalities our framework utilises should allow for consistent differentiation between face and non-face image regions, and we believe that size and colour are two that could satisfy this requirement. By verifying face candidates according to their sizes and colours, we can still confidently identify faces even when their features are expressed particularly weakly. Where size is concerned, predetermining acceptable detection size ranges would be failing to adequately consider relevant variabilities, but if we were to sample input images, we could derive representative face size distribution models, which could be used to eliminate detections either too large or too small to realistically represent faces within those images.

With regards to colour, there are a multitude of approaches to modelling skin colour distributions [145], but the apparent colour of skin is remarkably dependent upon incident illumination [136], and general lighting conditions are greatly variable where our large-scale imagery is concerned. Only the adaptive derivation of models, therefore, will allow us to accurately represent skin colours on a consistent basis. Several adaptive approaches to skin colour modelling do exist [41,78,92,151], but the specific issues these techniques
overcome do not correlate entirely with those that we face. We will, therefore, be developing our own adaptive skin colour modelling methodology, specifically with the variabilities of large-scale images in mind. If we can derive the means to intelligently interpret image samples, we could build representative skin colour models and use them to determine the skin likelihood of pixels, allowing us to effectively utilise colour as a discriminator between faces and non-face image regions.

Aside from assisting in the detection of faces, such a system would, in theory, also be entirely capable of independently performing skin segmentation. Similarly to face detection, skin segmentation is a process that enables a broad range of computer vision-based applications [54], so developing an exceptional methodology would have benefits even beyond the scope of our face detection framework, especially if we were to achieve real-time performance. We will, therefore, be initially regarding the development of our skin colour modelling approach as an entirely isolated endeavour, and only during the subsequent construction of our framework will we be fully exploring its potential to classify face candidates.

1.2 Research Hypothesis and Objectives

The central hypothesis of our research, which we will be exploring within this thesis, can be expressed thusly:

The results of existing feature-based face detection approaches can be consistently improved upon, in terms of both recall and precision, through the consideration of the supplementary properties of size and colour, without the introduction of prohibitive computational costs.

The main objectives we will be meeting in order to produce evidence pertaining to this hypothesis can be summarised by the following:

- Develop a methodology capable of adaptively generating representative skin colour models given images of people within complex lecture theatre scenes.
• Design a framework that can intelligently filter the results of existing face detection systems, according to input-specific size and skin colour models, in order to improve results over large-scale imagery.

• Demonstrate the flexibility of our techniques by additionally analysing performances over generic datasets, and establish the computational efficiency with which our results are achieved.

1.3 Research Challenges

There are a number of inherent challenges to the type of research we will conduct towards the meeting of our outlined objectives. Firstly, defining a method for image sampling requires careful calibration, as we attempt to ensure that we minimise the risk of false positive samples being generated whilst also trying to maximise the amount of useful information we obtain. Subsequently using those samples to derive representative skin colour models is an issue that requires careful consideration of both our choice of colour space and our choice of modelling approach, as certain combinations of them will naturally work more effectively than others. This is especially true where our large-scale images are concerned, as they are liable to exhibit atypically broad distributions of skin colours. Optimising the application of derived skin colour models to images is also non-trivial, as it necessitates the precise determination of where time expenditure is most significant, and the development of creative solutions to the discovered inefficiencies.

Where the construction of our face detection framework is concerned, the main difficulties to overcome pertain to the calibration of the filters used to discriminate between faces and non-face regions. Each of the classification processes we develop will, of course, be applied with some degree of error tolerance, but it would be entirely remiss of us to use arbitrary tolerances without any real appreciation for the precise effects that they are likely to have on our sets of data points. If applied error bounds are too permissive, for instance, false positive detections may not be fully eliminated, but if they are too strict, actual faces may also be discarded, and it for these reasons that the careful calibration of our filters is critically important to the efficacy of the system.
1.4 Research Contributions

The main contributions we feel we have made to the field of computer vision with our research can be described by the following:

- High-confidence image sampling through the feature-based detection of large numbers of faces, enabling the adaptive generation of models to be used for data point classification. (Chapter 3)

- The derivation of representative skin pixel sets through subjecting face detection results to background elimination and luma-based filtering, which we use to distinguish between skin and non-skin facial features. (Chapter 3)

- The use of Mahalanobis distances to define “possible skin” colour ranges for pixel classification, which can drastically reduce image throughput times by efficiently discarding zero-likelihood pixels. (Chapter 3)

- A skin segmentation system that combines these advancements with other current techniques in order to achieve levels of accuracy and efficiency that are superior to those of a broad range of existing approaches. (Chapter 3)

- The use of principal component analysis in deriving multidimensional face size distribution models that can discriminate between faces and non-faces based upon their sizes and locations. (Chapter 4)

- The combination of the results of separate face detection systems in order to derive overall facial feature discernibility measures for face candidates, allowing for precise classification. (Chapter 4)

- The application of our skin modelling approach to face detection regions in order to distinguish between actual faces and non-face regions according to their general colour tones. (Chapter 4)
• A framework for enhancing the results of face detection systems, which is achieved by combining initial results to boost detection rates and applying filters that consider adaptively generated size and colour models to eliminate false positives. (Chapter 4)

1.4.1 Publications

The research that has been conducted throughout the course of this project has yielded the following publications:

• Abstract accepted for poster presentation
 Counting faces for the blind, through skin segmentation and head size distribution modelling
 M. J. Taylor and T. Morris
 BMVC 2012 Student Workshop

• Peer-reviewed paper accepted for poster presentation
 Adaptive skin segmentation via feature-based face detection
 M. J. Taylor and T. Morris
 SPIE Photonics Europe 2014: Real-Time Image and Video Processing

• Peer-reviewed paper accepted for oral presentation
 Enhanced face detection: An adaptive cascade-mixture approach for large-scale detection
 M. J. Taylor and T. Morris
 BMVC 2014 Doctoral Consortium

It should be noted that the methodologies described by these publications have been enhanced upon substantially since the times that they were disseminated, and the evaluations of them made decidedly more comprehensive, and it is these improved versions of our work that are presented within this thesis.
1.5 Thesis Outline

The subsequent chapters of this thesis can be described by the following:

- **Chapter 2**: We present an extensive review of existing face detection and skin segmentation technology relevant to the problems we are attempting to solve over the course of this project.

- **Chapter 3**: We analyse the shortcomings of existing skin segmentation approaches then describe the design, development, and optimisation of our own adaptive system, the accuracy and efficiency of which is then thoroughly evaluated.

- **Chapter 4**: We detail the entire developmental process of our adaptive face detection framework, and then present a comprehensive evaluation that explores its efficacy and its efficiency.

- **Chapter 5**: In our final chapter, we summarise the research we have conducted and our findings, and offer a number of suggestions for potential extensions to our work.
Chapter 2

Literature Review

As we discussed in Chapter 1, the research that we will be conducting during the course of this project pertains to the disciplines of face detection and skin segmentation. In this chapter, we will be describing the foundations of these fields and examining a broad range of the existing works relevant to them.

2.1 Face Detection

There exist many different approaches to detecting faces. In 2002, Yang et al. [159] defined four categories to describe the nature of early detection techniques, although it should be noted that the specific terminology they used for their definitions is not applied consistently within the field today, and many of the approaches discussed could be legitimately ascribed to more than one of the categories. Furthermore, they broke down the problem of face detection to specify that certain types of systems were somewhat limited in scope and suitable primarily for localising faces in images known to contain just one face.

Knowledge-based methods use decision rules that are derived from knowledge pertaining to human faces in order to classify image regions and localise faces. These decision rules would be simple to define, and would concern, for instance, the positions of the eyes, mouth, and nose of a face, and the relative distances between them. A hierarchical approach was proposed by Yang and Huang [154] that would first apply...
general faces rules across low resolution versions of inputs in order to identify candidate regions. These would then be classified at higher resolutions according the edges they exhibit and the appearance of the features within them. Although this method struggled to yield high detection rates, its hierarchical nature proved to be rather efficient, and was built upon by Kotropoulos and Pitas [66], as they initially applied a projection-based localisation technique [57] to inputs for the purpose of identifying face candidates, which would then be classified according to decision rules pertaining to facial features. A representation of the face model they applied at the “quartet image” resolution level (where the main part of a given face would occupy an area of 4-by-4 cells) is depicted by Fig. 2.1. Knowledge-based methods were shown to work well given frontal faces in uncluttered scenes, but the approach cannot be easily extended to faces in different poses [159]. Furthermore, defining sound decision rules is a complex matter, as conditions too strict are likely to result in faces being negatively classified, but false positives will instead be prevalent if they are too general.

![Figure 2.1: A knowledge-based face model used by Kotropoulos and Pitas [66] to detect face regions at low resolutions.](image)

Feature-invariant methods are based upon the identification of structural features that are invariant to pose, viewpoint, and illumination variations, which can be used to locate faces. The underlying philosophy of such methods is that there must exist certain face properties that are invariant over all variabilities as humans are capable of successfully identifying faces under wide ranges of conditions [159]. Several researchers attempted to identify invariance in facial features themselves. Graf et al., for instance, proposed a method [37] for localisation that involved the band-pass filtering of gray scale input images, the results of which would then be morphologically dilated in order to enhance regions that contain features. The histogram of the resulting image would typically exhibit a prominent peak, and the width and height of that peak would dictate the threshold values used to create two binary images. Connected components within those
images signify candidate feature regions, and combinations of these areas would be evaluated with classifiers in order to determine the presence of a face. Sirohey developed an approach [131] that used a Canny detector [12] to generate an edge map and then applied heuristics to remove grouped edges, as it was assumed they would pertain to a cluttered background. As Fig. 2.2 illustrates, an ellipse would then be fitted to the boundary between the preserved facial feature edges and the background that would define the shape, size, and orientation of the given face.

Leung et al. proposed a system [74] for locating quasi-frontal faces in cluttered scenes. The approach worked by combining local feature detectors with a statistical model that described the typical distances between identified features, and was invariant to variations in translation, rotation, scale, and partial occlusions. Yow and Cipolla suggested that the assumptions made by existing detection approaches, including that of Leung et al. [74], made them too specialised to be used for general problems [161], and promoted the use of a probabilistic framework to reinforce large amounts of image evidence with model knowledge in order to achieve robustness. The algorithm they devised would detect feature points using spatial filters, and then group them according to geometry and intensity constraints to form face candidates. The framework would then be applied to these candidates, whereby model knowledge is used to update the likelihoods of them representing faces, and they are evaluated using a Bayesian network.

Facial features were not the only properties modelled in the development of invariant methods. Augusteijn and Skufca, for instance, proposed a system that could infer the presence of faces through the analysis and identification of face-like textures [1]. More
specifically, these textures would pertain to hair and skin regions. Representations of textures were derived from the use of co-occurrence matrices over second-order statistics, and these characteristics would then be subjected to supervised classification through the usage of a cascade-correlation neural network [23]. The identified textures are then clustered using a Kohonen self-organising feature map [62]. Although this approach demonstrated encouraging classification performance, it yielded only the results of texture classification, rather than actually identified faces.

For the same purpose of detecting faces, many works have explored the potential of colour to be used as an invariant property [38,156,157], and we will fully examine skin segmentation techniques in Section 2.2. Several approaches to localisation and detection proposed the combination of different types of invariant features. Typically, global properties such as colour, size, and shape were used to initially identify face candidates, and these would then be classified according to the presence of detailed facial features such as eyes, nose, and mouth. Yang and Ahuja, for instance, developed a system [157] that would use multiscale segmentation to extract homogeneous regions within images, as in Fig. 2.3. Subsequently, a Gaussian skin colour model would be applied in order to identify regions that exhibit compelling skin tones, which are then grouped into ellipses. A face would then be positively identified if specific facial features can be detected within an elliptical region.

Figure 2.3: Multiscale segmentation scheme proposed by Yang and Ahuja [157], whereby an input image (a) will be segmented at a range of homogeneity levels (b)(c)(d).
Wu et al. proposed a method [153] for face detection that utilised fuzzy colour models to describe the appearance of skin and hair regions. Given an input image, these models are used to extract potential faces regions, which would then be compared to prebuilt head shape models through fuzzy pattern-matching in order for face candidates to be derived. Verification of candidates is then based upon the horizontal edges of facial features. The main weakness of feature-invariant methods is that the features being considered can be severely degraded by variations in illumination, noise, and occlusion, and the existence of shadows can produce strong visual edges that undermine grouping and classification algorithms [159].

Template-matching methods compare input images to stored patterns of standard whole faces and facial features in order to achieve both localisation and detection. Correlations between a given input and the patterns representing whole faces, mouths, noses, eyes, and other features are determined independently, and classifications are made based upon the calculated values. Craw et al. proposed a localisation system [18] that would first use a Sobel filter to extract edges from gray scale inputs, which would then be grouped and compared to stored patterns. Once the template for a head had been matched, those relating to facial features could be searched for on smaller scales, whereby successful matching would result in positive classification. Miao et al. developed a hierarchical template-matching method [90] that would rotate input images through a range of orientations, which was intended to account for orientation variations exhibited by faces. In order to improve efficiency over traditional techniques, the system would make use of a processing hierarchy, whereby the gravity-centred results of mosaic template-matching (as in Fig. 2.4) would first be verified according to gray-level checks, and the results of that process would be subjected to edge-level checks for faces to be classified.

Figure 2.4: Miao et al. [90] proposed a system whereby input images would be rotated and gravity-centre template matching results would constitute face candidates to be filtered by gray-level and edge-level checks.
Although simple to implement, such methods have been shown to be inadequate for global face detection as they are incapable of dealing with significant variations in scale, pose, and shape [159]. Towards solving these issues, many researchers attempted to utilise deformable templates. For instance, Yuille et al. described features of interest by parameterised templates [162], and then used an energy function to link edges, peaks, and valleys in image intensity to properties of the templates. The parameter values of the templates can then be adjusted in order to minimise the energy function, achieving best fits through a process of deformation. The derived final values can then be used to describe the appearance of features. Lanitis et al. also used flexible representations [72], as they modelled the shape and intensity appearance of human faces. Their models would be controlled by small numbers of parameters, which could be adjusted for image compression and classification purposes. A face shape point distribution model, derived from training samples, would be applied to input images in order to find potential faces through active shape model search [17]. As in Fig. 2.5, the returned regions would be deformed to an empirically average shape, and would then be classified based upon their intensity parameters.

Figure 2.5: An overview of the detection process developed by Lanitis et al. [72] that would use flexible models to represent the shape and grey-level appearance of faces.

Appearance-based methods detect faces through the use of representative face models that have been learned from training data sets, which convey the variabilities of the appearance of faces [159]. This is in contrast to the models used for template-matching, which have been explicitly described by researchers themselves, rather than derived through a training process utilising machine learning techniques. Some appearance-based approaches work probabilistically, and use Bayesian classification to identify faces, but such methods can be complex to implement because of the high dimensionality of face
descriptors. Other appearance-based systems use discriminant functions (in the form of differentiating hyperplanes or thresholds, for instance) to distinguish between faces and non-faces and achieve classification using large numbers of parameters. An instance of the latter type is the use of eigenvectors to recognise human faces, under which circumstances they are referred to as “eigenfaces” [62]. Kirby and Sirovich demonstrated that principal component analysis (PCA) [51] can be employed to linearly encode images of faces into a small number of basis images [61]. Their experimentation, for example, showed that 50 basis images (“eigenpictures”) could be linearly combined to reconstruct a set of 100 images with 95% likeliness (as the selected principal components described 95% of variance within the original set), thereby providing solid evidence that PCA could successfully identify discriminant face properties. Fig. 2.6 illustrates how effectively different numbers of basis images can approximate original images.

![Figure 2.6: Approximations of a face image (far right) derivable from (left to right) 10, 20, 30, 40, and 50 eigenpictures, as demonstrated by Kirby and Sirovich [61].](image)

Turk and Pentland applied similar methods to training data in order to generate face and non-face clusters within a face space (parameterised by principal components) [144]. To determine the presence of a face within a scene, input image regions would be projected into the face space, and the difference between its distance to the face cluster and its distance to the non-face cluster could be used as a classifiable characteristic.

Neural networks have also been successfully applied to the problem of appearance-based face detection. Since it can be rightly regarded as a two-class (face and non-face) pattern recognition problem, various neural network architectures have been proposed [82,108]. The most noteworthy of these, however, is arguably the work of Rowley et al. [112], as they devised the system illustrated by Fig. 2.7.
Figure 2.7: System diagram of the neural network-based face detection approach developed by Rowley et al. [112].

Their method detects faces within images by first scaling inputs and extracting 20-by-20 pixel windows from within them, which are then lighting-corrected and subjected to histogram equalisation, in order to make the boundaries between contiguous regions more distinguishable. The results of this preprocessing are then passed into the neural network itself, which was trained using over a thousand manually labelled face samples that expressed different orientations, positions, and intensities. The output of the network would be a score within the range -1 (non-face) to 1 (face) that could be used to determine whether the given image region contained a face or not. One drawback of the initial implementation of this system was that it could only effectively detect upright frontal faces, but Rowley et al. went on to extend their work to also consider the orientation and rotation of faces [113]. Several other learning schemes have also been applied to face detection, such as support vector machines (SVM) [101,104], naive Bayes classifiers [111,121], and hidden Markov models [110,118]. Despite the reported accuracy of many early appearance-based methodologies, they could not be effectively applied to real-world problems that presented unconstrained conditions, which was compounded by hardware limitations of the time limiting their efficiency [163].

2.1.1 The Viola-Jones Face Detection System

The first face detection system to demonstrate considerable applicability to real-world problems was that of Viola and Jones [146] (which was later revised [147]), as they presented three primary innovations that would allow for accurate detections to be made
with exceptional efficiency. The first of these was the integral image, which was an image representation scheme that enabled the rapid summation of pixel intensities within image sub-windows. The process was first proposed for the efficient generation of mipmap [19], but Viola and Jones applied it to the computation of Haar-like features. These simple features, consisting of combinations of rectangular regions, were based upon Haar basis functions [103], and three different types were used, which are illustrated by Fig. 2.8.

![Figure 2.8: Examples of the three types of Haar-like features used by Viola and Jones, relative to enclosing detection windows. A and B are two-rectangle features, C is a three-rectangle feature, and D is a four-rectangle feature.](image)

The value of a feature is calculated as the difference between the sum of pixel intensities within the grey regions and the sum of pixel intensities within the white regions. Given that a detection window will be moved across the entirety of any given input image multiple times (at multiple scales), using a traditional method of pixel intensity summation in order to evaluate feature regions would be extremely time-consuming. However, using an integral image, feature evaluation can be carried out with remarkable efficiency. Every location within an integral image \(ii(x,y)\) inclusively contains the sum of the pixels above and to the left of the location within the original image \(i(x,y)\), as Eq. 2.1 describes.

\[
ii(x, y) = \sum_{x' \leq x, y' \leq y} i(x', y')
\] (2.1)

If every integral image point \(ii(x,y)\) contains the sum of the pixels between itself and the top-left origin, then the evaluation of any given rectangular region within an image can be carried out by considering the integral image value stored at each of its four corners, as Fig. 2.9 visualises.
Figure 2.9: The value of rectangle D can be calculated by considering the integral image values at points 1, 2, 3, and 4. 1 represents the sum of the pixels within A, 2 the sum of A + B, 3 the sum of A + C, and 4 the sum of A + B + C + D. The value of D, therefore, can be computed as 4 – 2 – 3 + 1.

The method described by Fig. 2.9 would clearly be more efficient than summing each and every pixel within the region of interest, as it requires only four array references. Furthermore, given the nature of the Haar-like features being used, where the regions being considered will have common corners, a two-rectangle feature will require only six references, a three-rectangle feature only eight, and a four-rectangle feature just nine. Of course, the generation of the integral image itself will necessitate a non-zero amount of computational effort, but this time expenditure will be absolutely minimal in comparison to the total time saved avoiding the isolated summation of regions.

The second major advancement presented by Viola and Jones was the use of adaptive boosting (AdaBoost [31]) to construct classifiers by selecting small numbers of important features. They noted that the exhaustive set of rectangle features that could be applied across a 24-by-24 pixel detection window would contain more than 180,000 of them, and even though each could be computed rather efficiently, processing an entire set of that size would be prohibitive to any sense of real-time application. It was postulated, however, that a very small proportion of these features could actually be combined to form an effective classifier, and it was through AdaBoost that these features could be selected and a classifier trained with them. In its original form, AdaBoost is used to progressively improve the performance of a weak classifier through the identification of errors and the adjustment of input weights in order to emphasise and correct those errors. Viola and Jones modified this procedure so that each stage of the learning process would return a classifier of just a single feature, and successive stages would identify features that could minimise remaining error in training data points. Their boosting algorithm,
therefore, could be regarded as a feature selection process, and could be utilised to establish sets of features that optimally describe the appearance of faces, a sample of which is depicted by Fig. 2.10.

![Fig. 2.10: The first two features selected by AdaBoost, which respectively observe that eye regions are often darker than cheeks and that the bridge of a nose will often be lighter than eye regions.](image)

The third innovation of Viola and Jones was the **attentional cascade** structure approach they employed to apply classifiers to input image regions. Based upon the notion that the possible existence of an object can be rapidly determined [143], the core concept behind the cascade structure is that simpler, more efficient boosted classifiers can be applied to quickly reject regions that exhibit little-to-no face resemblance. This means that the application of more complex, less efficient classifiers that can discriminate between non-faces that express some face likeliness and actual faces can be reserved for the regions that necessitate such accurate differentiation. The attentional cascade structure is visualised by Fig. 2.11.

![Fig. 2.11: The classifier cascade structure devised by Viola and Jones for the efficient rejection of image regions that definitely do not contain a face, whereby more complex discriminators are reserved for regions that express some degree of face likeliness.](image)
As can be seen, a negative classification being made by any of the boosted classifiers will result in the given region of interest being rejected. Given that any typical input image will be dominated by such regions, avoiding the use of more complex classifiers to discard them helps greatly in minimising image throughput times. Regions that are positively identified by a classifier will be retained and processed by the next classifier, and those that are positively classified by every detector within the given cascade will be considered faces. In practice, the application of the Viola-Jones detector can result in certain regions being positively classified multiple times, as the given input image will be processed across a range of scales in order to find faces of different sizes. Building a set of output faces, therefore, will involve applying a threshold to the number of positive detections existing within a neighbourhood. Groups of detections larger in size than the given applied minimum neighbour threshold will be positively classified, and those smaller will be discarded.

2.1.2 Recent Detection Advancements

Thanks to the dramatic expansion of storage and computation resources and the groundwork laid down by Viola and Jones [146], appearance-based methods have dominated the scene of face detection over recent years [163]. As a methodology, appearance-based face detection involves the collection of large sets of face and non-face samples from which representative face models can be derived (through the application of a machine learning technique) and used for classification. Zhang and Zhang break down this process to highlight two primary issues that recent works have attempted to solve: what features to extract from training samples, and what learning approach to apply [165].

Towards the identification of more generalised and representative feature sets, Lienhart and Maydt [79] introduced 45-degree rotations to the rectangular Haar-like features used by Viola and Jones, which were designed to counteract perceived weaknesses of the original features where orientation variability was exhibited by input images. Li et al. [77] noted that the original Haar-like feature set was limited where multi-view face detection was concerned, and proposed a scheme that would allow for flexible combinations of rectangular regions to be formed, as in Fig. 2.12. It was argued that the
non-symmetrical features that this technique could produce would be more effective in identifying the non-symmetrical features of non-frontal faces.

![Diagram](image)

Figure 2.12: Flexible distances were introduced to Haar-like features by Li et al. [77], whereby the values of features would be determined through the weighted sums of pixels within the rectangles.

Jones and Viola themselves went on to suggest improvements to their initial system. Firstly, they proposed the use of diagonally arranged features to enhance multi-view detection rates [53], although this differed from the previously proposed rotated features [80] in that the rectangles themselves would maintain orthogonality. Furthermore, Viola et al. extended the Haar-like feature set so that it could be applied to the problem of video-based pedestrian detection [148], where motion information could be combined with intensity information in order to identify people across consecutive input frames. In an effort to better represent the complex characteristics of human faces, Mita et al. proposed joint Haar-like features [91], which would be based upon the co-occurrence of multiple basic Haar-like features and would, they claimed, make it possible to build more effective classifiers.

By virtue of Haar-like features relating to image region intensities, robustness can be a serious issue where inputs exhibit extreme lighting conditions [165]. It is for this reason that numerous other types of features have been proposed and applied to face detection. A particularly prominent example of these is the local binary patterns (LBP) [96], which are highly efficient texture operators that consider the neighbourhoods of input pixels, making them robust to illumination variations [114]. It has been demonstrated that LBPs can effectively detect faces within images given Bayesian [50] and boosting [167] (through the image representation scheme illustrated by Fig. 2.13) frameworks. Other examples of utilised features include anisotropic Gaussian filters [89], local edge
orientation histograms [75], histograms of oriented gradients (HoG) [20], and shape-based techniques that use contour fragments [100,127].

As Zhang and Zhang alluded to, as well as exploring different types of features to work with, many researchers have attempted improve upon the learning processes that build classifiers [165]. An early enhancement to AdaBoost was the development of RealBoost [119]. This classifier training scheme differed from the original in two key ways. Firstly, the weak feature classifiers yield likelihood values rather than binary classifications. Secondly, the selection of successive classifiers is not based upon the performances of them when considered in isolation, but rather their contributions to the overall classification system. Whilst this scheme allows for the construction of detectors with less internal redundancy, more complete datasets are required than would be necessitated by AdaBoost [16], but RealBoost has been shown to achieve superior results [8,79]. Another noteworthy modification of AdaBoost was Floatboost, as proposed by Li et al. [77] in conjunction with their flexible features. The primary innovation of this training technique was the incorporation of floating search methodology [109], whereby the sequential fashion of feature selection was rejected in order for insignificant features to be retrospectively removed from sets, supposedly resulting in more optimal classifiers.

To complement attempts to improve upon the efficacy of feature selection processes, a number of works have developed techniques to increase the efficiency of them, as training a face detector through boosting can be extremely time-consuming [159]. Brubaker et al., for instance, investigated filter schemes that could reduce the sizes of possible feature sets prior to boosting by identifying and discarding spurious features [8], which would prove to be more effective than reducing the number of training examples.
used. Rather than modifying feature sets, Pham and Cham proposed a fast-training process [105] (as described by Fig. 2.14) that would evaluate features against global training data statistics derived from weighted samples rather than against training inputs on an individual basis.

Figure 2.14: The process designed by Pham and Cham [105] that would allow for classifiers to be trained over dataset statistics.

Furthermore, research has been conducted towards reducing the time expenditure involved in the application of boosted classifiers and the detection of faces using them. A system developed by Schneiderman [120] presents a “feature-centric” alternative to the “window-centric” attentional cascade used by Viola and Jones. The main benefit of the proposed method was in its capacity to re-use feature evaluations across overlapping detection windows by pre-computing them, and although it was reported that computation time over frontal face images could be reduced by an order of magnitude, implementation of the approach required the use of a special form of additive classifier [70], and, as such, it did not see wide-spread use.

Away from boosting-based methodologies, another form of approach that has recently been very successfully applied to face detection is deformable parts modelling (DPM). Research in this area has been based upon the notion of pictorial structures [29], whereby objects could be described by distinct visual properties and the “spring-like” connections between them. Felzenszwalb and Huttenlocher popularised the application of this concept to the problem of object recognition, and also presented an efficient process for learning object models from training sets [28]. Fig. 2.15 illustrates their methodology as it applies directly to the problem of face modelling.
Figure 2.15: A sample from a face training set used by Felzenszwalb and Huttenlocher [28], the structure of the learned model, and a representation of the uncertainty (denoted by ellipses) of the locations of certain parts (2, 3, and 4) given the fixed location of a connected part (1).

There exist both weakly supervised and strongly supervised learning schemes where DPM is concerned. In the case of weakly supervised learning, only negative samples and the bounding boxes of positive object samples would be required to build a detector, and the locations of parts themselves would be revealed during training [163]. Treating this information as latent has the benefit of allowing the labeling process to select its own optimal parts [26]. Strongly supervised learning, on the other hand, involves the training of a model with a set of fully annotated positive samples, whereby all parts have been labelled by hand and there are no latent variables to be estimated. Although this may allow for more effective training, the amount of manual effort required to produce a fully labelled set of faces cannot be underestimated, as hundreds of hours may be required for the generation of a few thousand samples [163]. Interestingly, there is considerable contradiction in the results of studies that have compared the results achieved by each type of training scheme, as evidence has been presented of the superiority of both weakly supervised learning processes [169] and strongly supervised learning processes [87]. Despite the excellent results that DPM-based detection can achieve, there are considerable computational costs involved with its implementation that can make it unsuitable for real-time problems [163], although there have been many efforts made towards improving its efficiency, such as the utilisation of cascade-style hypothesis (configuration of parts) evaluation schemes [27].

Deep convolutional neural networks (DCNNs) have also demonstrated very encouraging results in recent times. The convolution layers of DCNNs were once considered impossible to train, but recent advancements in the availability of huge volumes of labelled samples and the parallel processing capabilities of modern GPUs have allowed
for significant breakthroughs in their application to object classification problems [163], as demonstrated by a state-of-the-art performance over the ImageNet database [22] by a DCNN with 60 million parameters, 650,000 neurons, and five convolutional layers, which was developed by Krizhevsky et al. and dubbed “AlexNet” [68]. Zhang and Zhang also worked with DCNNs, as they applied the architecture directly to the problem of multi-view face detection [166]. Their proposed scheme would firstly employ a cascade-based face detector to identify potential face regions within input images. The results of this would then be scaled and preprocessed, as in Fig. 2.16(a), with histogram equalisation, linear lighting removal, and intensity normalisation utilised to prepare regions of interest for classification through the DCNN. The neural network itself, as illustrated by Fig. 2.16(b), consisted of three separate branches, each of which was designed to return classifications on different face properties. The first of these would yield a face / non-face decision, the second would learn the pose of the face (in terms of it being frontal, profile, half-profile etc.), and the third would determine the locations of various facial landmarks, such as eyes, noses, and the corners of mouths. Each of these branches also made use of the “dropout” technique [40] for reducing network overfitting, as previously employed for AlexNet [68], which worked by setting the output of hidden neurons to zero with a probability of 0.5. This would ensure that different architectures were sampled for each input presented, which would reduce the complex co-adaptation of neurons. This approach to face detection achieved state-of-the-art detection results over the FDDB dataset [47].

![Image](figure2.16.png)

(a) (b)

Figure 2.16: The face detection approach of Zhang and Zhang [166] would (a) preprocess image regions of interest before passing them into (b) their DCNN, which consisted of three separate classification branches.

Farfade et al. [24] also attempted to solve multi-view face detection with DCNNs. They noted that the requirement of annotating facial landmarks and face poses, and the necessity to train numerous models to fully capture all face orientations, were large issues
with existing approaches to multi-view detection. Their solution to this issue, Deep Dense Face Detector (DDFD), would not require such annotations, and would also be able to detect faces of many orientations using just a single model. DDFD was based upon the fine-tuning of AlexNet for face detection, which was achieved using training samples from the AFLW database [65]. The resulting network was applied in a low-complexity sliding window fashion across input images in order to produce heat maps (an example of which can be seen in Fig. 2.17), wherein each point would describe the likelihood of a face existing within the 227x227 pixel window surrounding the corresponding pixel of the input image, as determined by the network. This response could be used to directly discriminate between face and background regions, and the input image would be processed at multiple scales in order to detect faces of different sizes. Over a range of datasets, including FDDB [47] and AFW [169], the authors were able to demonstrate performances similar to or better than those of state-of-the-art approaches.

![Fig. 2.17: The DCNN developed by Farfade et al. [24] would process input images using a sliding window scheme, assigning face existence likelihoods to 277x277 pixel windows of the given input.](image)

The prohibitive computational costs typically associated with effective and robust face detection are tackled by Li et al. [76], as they propose a cascade architecture for their implementation of CNNs. Their system would consist of six networks, three for face / non-face discrimination and three for bounding box calibration (designed to eliminate overlapping detections and optimise the sizes and locations of those remaining), whereby the results of discrimination and calibration using efficient 12x12 pixel windows would be further filtered using 24x24 pixel windows, before finally be processed using highly accurate 48x48 pixel windows. This approach produced exceptional results over public benchmarks [47,169] and also demonstrated excellent runtime efficiency. Kalinovskii
and Spitsyn similarly proposed a cascade-based neural network scheme [56], noting that although the approach of Li et al. [76] significantly reduced the computational complexity of detection, it could not achieve the real-time processing of HD video streams. Their “compact” system was based upon a number of key concepts: the use of only three cascade stages; compact network design; asynchronous execution of cascade stages, whereby the results of the GPU-executed first stage will be immediately passed on to the CPU-executed subsequent stages; and optimisation through hardware technologies, such as SIMD expansion of CPUs, CUDA, and OpenCL. Evaluation of this approach demonstrated levels of detection accuracy comparable to state-of-the-art techniques over FDDB [47] and AFW [169], and proved that it was capable of processing 4K video streams in real-time (up to 27fps) on mobile platforms.

2.1.3 Face Detection Enhancement Methods

As well as improvements being made to feature-based learning, modelling, and classification methodologies, a number of researchers have harnessed certain visual properties of images in the direct enhancement of the capabilities of the Viola-Jones face detector [147], much in the way we have proposed in Chapter 1. Here, we will highlight a selection of these works, but also touch upon the general unsuitability of them for solving the specific problems we are concerned with.

Burgin et al. [11], for instance, combined face detection results with context and depth information in order to improve human-computer interaction in robots, but this methodology would not necessarily be applicable to our single-image problem. Nanni et al. [93] proposed the adoption of a pre-trained colour classifier to filter detections, as well as the use of a depth map to investigate the unevenness of those regions, creating a process that takes multiple properties into account in an attempt to improve overall detection accuracies, but we do not believe this technique would be flexible enough to account for the variabilities that the inputs we are concerned with are liable to exhibit. Seguí et al. [123] found that integrating content-based face detection information with contextual body part information could yield significant improvements to accuracy, although such information would clearly not be available in the case of our lecture theatre-based imagery.
Employing a different form of approach, Shieh and Hsieh [125] used the IR information provided by a Microsoft Kinect sensor in order to refine detection results through structured light analysis. Alternative hardware was also utilised by Ruiz-Sarmiento et al. [117], as they initially identified face candidates by using the Viola-Jones detector on intensity data provided by a time-of-flight camera, then filtered the results of that process according to three-dimensional information, such as region flatness and size-to-distance ratio. Whilst interesting, these solutions requiring additional pieces of hardware severely limits their general applicability to problems. Furthermore, the success of the works that have not made use of external devices leads us to believe that enough information already exists within typical input images for the issues we have identified to be overcome without them, given the sound derivation and implementation of models pertaining to supplementary modalities.

2.2 Colour-Based Skin Segmentation

Systems that can accurately discriminate between skin and non-skin pixels on a consistent basis are extremely valuable, as the segmentation of skin regions enables many types of applications, such as face detection [67], face tracking [134], gesture analysis [6], and content-based image retrieval [126]. It is colour-based methodologies that have become predominant in the field of skin segmentation, as colour, as a low-level property, allows for efficient classifications and is invariant to issues concerning rotation, scaling, and subject occlusion [54].

This is not to say that colour-based approaches do not have their limitations, however, as the apparent colour of skin within an image is greatly dependent upon a number of factors, adding complexity to any proposed modelling approach. As well as varying considerably with the ethnicity of individuals and the characteristics of camera sensors, illumination will play a near-decisive role in how skin appears [54]. The appearance of any region of skin can, naturally, tend towards absolute black or absolute white depending upon the intensity of incident light, but Storring et al. also demonstrated that the specific correlated colour temperature (CCT) of a light source will also be greatly
influential, as even two near-white light sources with different CCTs can lead to entirely different representations for skin regions [136], as Fig. 2.18 illustrates.

![Figure 2.18](image)

Figure 2.18: Storring et al. [136] demonstrated that light source CCT will greatly influence the chromaticity of skin regions, even more so than the ethnicity of an individual.

Because the effects of illumination variability are so significant, they of primary concern to the development of any colour-based skin classification methodology. There are a number of considerations to be made when conceptualising a colour-based segmentation approach capable of accounting for influential factors [54], including the colour space to be worked with, the means by which colour distributions will be modelled, and the way in which models will be applied to inputs (including potential adaptation).

2.2.1 Colour Spaces for Skin Modelling

A colour space is a specification for the mathematical representation of colours, whereby a certain set of parameters will be used to define appearance. A wide variety of spaces exist, which will have been developed to emphasise certain usage characteristics (such as efficiency or illumination invariance), and many of them have been applied to the problem of skin colour modelling [46]. **RGB** is the most commonly utilised space for digital image processing, largely because it linearly combines red, green, and blue colour components (as illustrated by Fig. 2.19), which made it easy to implement for early CRT technology, giving its usage a considerable historical basis. Its simplicity also means that it allows for the rapid classification of input pixels, making it attractive for real-time systems [145], and its use has been investigated by a number of works [5,67,164].
The usage of the RGB colour space in skin classification is not broadly suggested, however, as it intrinsically associates illumination information with chromatic information, meaning that even minor changes in lighting conditions can result in significant changes to colour representation [86], making consistent classification with RGB models largely infeasible. To overcome this dependency, the space can be normalised to only consider the proportions of colour components, as in Eq. 2.1, Eq. 2.2, and Eq. 2.3.

\[
\begin{align*}
 r &= \frac{R}{R+G+B} \quad (2.1) \\
 g &= \frac{G}{R+G+B} \quad (2.2) \\
 b &= \frac{B}{R+G+B} \quad (2.3)
\end{align*}
\]

Given that these components would always sum to unity (1), a dimension can be discarded without any actual loss of information, which is how the normalised rg colour space comes to be derived. Not only does this conversion provide significant resistance to variations in illumination intensity, but the reduction in dimensionality makes modelling and classification processes less complex [145]. Furthermore, it has been demonstrated that skin colour clusters within the normalised rg space have much lower variance than distributions within RGB space [155] and that the skin tones of people from various ethnicities will be tightly clustered [136] (as Fig. 2.18 illustrated), making it a popular choice for skin classification tasks [7,98,122,134].
Another prominent colour space for image analysis, HSV, represents colours as combinations of hues, saturations, and values. The hue of a colour will specify its dominant tone (such as red or blue), its saturation will specify its purity (which would define the difference between red and pink, for instance), and its value will specify its brightness [54]. It should be noted, however, that there is considerable contention where these definitions are concerned, and that specifications such as HSI and HSL forego the use of value, and instead represent colours using intensity and lightness, respectively (which are also contentiously defined). Regardless, this family of colour spaces was designed to be perceptually intuitive [145], and Fig. 2.20 depicts a visualisation of the HSV space that evidences this.

![Figure 2.20: Within the HSV colour space, colours are defined by the perceptually intuitive hue, saturation, and value parameters. Visualisation courtesy of The Qt Company.](image)

The main benefit this space offers to developers of colour-based systems is its explicit discrimination between chrominance (hue and saturation) and illumination (value) information, which means that it allows for skin colour models invariant to changing lighting conditions to be derived. However, its cyclical nature does lead to rather sparse, weakly clustered skin colour distributions, making parametric modelling largely infeasible [145]. Despite this, numerous works have utilised the HSV colour space in the segmentation of skin to great effect [45,97,132,168].

An encoding of the RGB space used widely within the field of digital image and video compression is YCbCr, whereby Y represents luma (a human vision-inspired brightness parameter) and Cb and Cr represent the chrominance values calculated by subtracting Y from B and R, respectively. As there is significant inter-channel correlation where RGB is
concerned [60], visual media represented by it cannot be stored efficiently. As Fig. 2.21 illustrates, YCbCr was developed with orthogonality in mind, whereby its parameters would be maximally statistically independent, and the redundancy of the RGB space would be eliminated upon conversion [54].

![Figure 2.21: The YCbCr colour space, which is an encoding of RGB, consists of three statistically independent, orthogonal parameters. Visualisation courtesy of Intel.](image)

Although YCbCr is decidedly less intuitive in nature than HSV, it does have the benefit of isolating the influence of illumination on colour representations in common with that space, affording significant resistance to variations in incident lighting. In addition, it has been shown that the skin tones of people of various ethnicities will cluster rather tightly when represented through YCbCr [130]. For these reasons, it has been a particularly popular choice where colour-based segmentation approaches are concerned [13,43,106,152].

Perceptually uniform spaces have also been experimented with extensively, and are based upon the notion that colour representations that are similar in sensitivity to human colour perception should allow for high-performance classification systems [141]. A number of colour specifications of this type have been used for skin segmentation, such as CIELAB [59] and CIELUV [158], but the transformations from RGB required to work with them are generally prohibitively computationally expensive [145].
2.2.2 Colour Distribution Modelling Approaches

Even with a sound selection of colour space to work with, the way in which a representative skin colour model is derived will mean the difference between accurate and inaccurate segmentations. There exist numerous approaches to modelling, and each will offer its own set of advantages and potential drawbacks, so the choice of which to apply will depend upon the requirements of the problem to be solved.

2.2.1.1 Explicit Skin Colour Cluster Models

The colour distributions exhibited by regions of skin can be defined by piecewise linear decision rules that pertain to the parameters of colour spaces. Such models are derived manually, based upon observations made of the appearance of skin over large sets of positive samples. An example of such a model was developed by Sobottka and Pitas [132], whereby hue and saturation parameters were used to discriminate between skin and non-skin pixels. The rules they developed are described by Eq. 2.4, where H represents the hue of the input pixel and S represents its saturation.

\[
pixel = \begin{cases}
 \text{skin}, & 0 \leq H \leq 50 \text{ and } 0.23 \leq S \leq 0.68 \\
 \text{non-skin}, & \text{otherwise}
\end{cases}
\]

(2.4)

As can be discerned, this approach will yield binary discrete classifications, whereby any pixel that exhibits a hue and saturation within the defined bounds of the model would be classified as skin, and any that does not would be discarded. This explicit colour cluster can also be visualised, as in Fig. 2.22.

![Figure 2.22: The HSV skin colour model derived by Sobottka and Pitas [132] dictates that any pixel with a hue and saturation within the shaded cluster will be positively classified.](image)

The primary benefit of using explicit clusters is that they allow for extremely rapid classifications [145], and since they necessitate no upfront training process, they can be implemented trivially and potentially save significant amounts of time, which has made them attractive to a number of works [150,152,160]. There are, however, a number of issues inherent to such models. Firstly, the empirical nature of the derivation of the decision rules can result in models being “overfitted” to experimental data [145]. This may cause issues for adopters if their potential inputs are not adequately represented by the training samples used, as significant numbers of misclassifications may ensue. Furthermore, as the appearance of skin is so dependent upon its illumination, explicitly defined clusters are liable to be inaccurate under weaker lighting conditions [54].

2.2.1.2 Non-Parametric Skin Colour Modelling

Non-parametric modelling approaches estimate the probabilities that certain colours represent skin through the statistical analysis of large skin and non-skin training sample sets. A typical form for such a model is a skin probability map, which will attribute skin likelihoods to colours without the derivation or definition of specific skin colour cluster parameters [35]. To build such a representation, a colour space must first be quantised into a certain number of histogram bins, each of which will uniquely correspond to a specific colour component combination. The number of bins used must be decidedly upon with care, as too few bins will result in classification oversensitivity and poor accuracy, but too many can lead to models being overly specific to training samples [52]. In order to derive a simple look-up table, the occurrence of certain colours within a set of positive skin samples can be tallied according to the defined bins, then normalised according to the greatest observed frequency [164], but this resulting in an accurate classifier would require perfectly representative training data to be used.

A more complete representation can be constructed through the application of Bayes’ theorem, whereby individual skin and non-skin probability mass functions (normalised according to the total numbers of used samples) can be used to build a probability map that accounts for the colour distribution of non-skin entities. The potential efficacy of this methodology has resulted in it being adopted by many researchers [13,129,135]. The calculation of skin likelihoods using this approach is conducted according to Eq. 2.5,
where $P(x)$ represents the probability of x occurring and $P(x|y)$ represents the probability of x occurring given that y is known to be true.

\[
P(\text{skin}\mid\text{colour}) = \frac{P(\text{colour}\mid\text{skin})P(\text{skin})}{P(\text{colour}\mid\text{skin})P(\text{skin}) + P(\text{colour}\mid\neg\text{skin})P(\neg\text{skin})}
\] (2.5)

In general, the main strength of such methods is the speed with which they can be trained and applied to pixels across images. Additionally, the nature of probability map-based distribution modelling negates the issue of models having to accurately fit training data samples [145], as skin likelihoods are attributed to individual colours rather than colour clusters as wholes. However, depending upon the complexity and dimensionality of the colour space being used, the maps can often require significant storage space [54]. Furthermore, non-parametric methods are inherently incapable of generalising or interpolating data or colours, which means that the representativeness of training samples will be critical to performance.

Neural network-based approaches have also been widely applied to colour-based skin classification [2]. Multilayer perceptrons (MLPs) are feed-forward networks that map input data points to appropriate outputs (classifications) using a supervised training technique called “back-propagation” [54], which updates network weights according to their contributions to observed output errors. Examples of the use of MLPs in segmenting skin can be seen in the works of Phung and et al. [107], whereby a network was trained to identify people of all ethnicities using CbCr chrominance, and Seow et al. [124], who proposed a three-layered network that would model skin color in three-dimensional RGB space. Self-organising maps (SOMs), another form of neural network that make use of competitive, unsupervised learning in order to build low-dimensional representations of inputs [63], have also seen prominent use in the colour-based classification of skin [54]. Brown et al., for instance, demonstrated that SOMs could achieve accurate results across a range of colour spaces given training using either positive skin samples exclusively or both positive and negative samples [7].
2.2.1.3 Parametric Skin Colour Modelling

Contrary to non-parametric approaches, it is the general objective of parametric methods to derive compact representations of colour distributions, such that they can be described by a small number of parameters. By comparison, parametric modelling offers a number of benefits [145], such as the significantly reduced storage capacity requirements and the ability to generalise training data, meaning that representativeness of samples is far less of a concern. Model validation is an important issue, however, as whether or not a representation accurately fits training samples will depend upon the modelling methodology applied and the colour space used [140]. Skin colour clusters can often be accurately modelled according to multivariate Gaussian distribution [54], which allows for the estimation of the skin likelihoods of colours through the application of the unnormalised density function described by Eq. 2.6

\[
p(skin|c) = e^{-\frac{1}{2}(c-\mu_s)^T\Sigma_s^{-1}(c-\mu_s)}
\]

(2.6)

Here, \(p(skin|c) \) represents the skin likelihood of the input colour vector \(c \), and \(\mu_s \) and \(\Sigma_s \) represent, respectively, the mean colour vector and covariance matrix that have been derived from positive skin samples and that constitute the skin colour model \(s \). It has been shown that unimodal Gaussian functions can adequately model elliptical skin colour distributions in normalised colour spaces (including normalised rg) [139], which has made their use popular [32,42,155], but for distributions with more complex shapes, this is not necessarily the case. It is for this reason that Gaussian mixture models (GMMs) have also been extensively utilised [145], whereby colour clusters are represented through the combination of multiple Gaussian functions. Given such a model, the probability that a given colour represents skin is estimated through the weighted sum of the constituent functions, as in Eq. 2.7, where \(p_i(skin|c) \) represents the likelihood returned by the \(i \)th Gaussian function, \(w_i \) represents the mixing weight of the given function (defining its overall contribution), and \(k \) represents the total number of functions that the model consists of.

\[
p(skin|c) = \sum_{i=1}^{k} w_i \cdot p_i(skin|c)
\]

(2.7)
The training of a GMM is conducted according to an expectation maximisation algorithm, but the number of individual functions it will consist of must be defined beforehand. Similarly to the choice of number of bins used to build a non-parametric model, the specific number of components to use to build a GMM is extremely important [54], as too small a number will result in datasets not being effectively represented, and too large a number may result in overfitting. Results have been reported on the efficacy of models trained using as few as two functions [158] and as many as 16 functions [52]. Although GMMs have been shown to represent training samples very accurately, the iterative training processes necessary to build them can be computationally expensive, and their implementation can also be rather inefficient, as numerous functions must be evaluated for skin likelihoods to be determined [54]. Lee and Yoo proposed an efficient alternative to GMMs that they termed “elliptical boundary models” [73]. Although favourable results, relative to those of a GMM and a unimodal Gaussian function, were presented over a range of colour spaces, one major drawback of the approach was that it could not preserve continuous probability information, and could yield only binary classifications.

2.2.4 Skin Colour Model Adaptation

Whilst colour models that have been derived using the methodologies we have discussed can certainly be successfully applied in a static context (whereby there is no specific consideration made for the appearance of individual inputs), several adaptation techniques exist that are capable of extending the efficacy of models by accounting for the ever-influential effects of illumination variation at the point of application. Kakumanu et al. [54] categorised such techniques into two classes: colour constancy-based approaches; and dynamic adaptation approaches.

One way in which the effects of variable lighting can be negated is through the consideration of colour constancy, which relates to the capacity for vision systems (be they natural or artificial) to discount spectral variation and assign constant colours to objects [84]. Skin segmentation approaches that apply this concept will analyse inputs in order to estimate the colour and intensity of illuminants, and then transform them through pixel-wise adjustments in an effort to correct and normalise the colours of skin regions
and bring them in line with the expectations of the utilised models [54]. One such method, the “Gray World” algorithm, was proposed by Buchsbaum [10], whereby it is assumed that, within all given colour channels, the average appearance of the objects within a typical image would be representative of gray. The deviations from gray within each channel could then be combined to characterise the effects of the illuminants present, which could then be adequately corrected for. An alternative approach is the white patch algorithm (based upon retinex theory [71]), which will search within an image to find the brightest region of pixels, which will then be considered representative of white for that input. The chromaticity of the identified white patch is then regarded as indicative of the chromatic influence of the illuminants [54], according to which the colours of input pixels can be adjusted prior to classification. In addition to these traditional techniques, a number of works have also utilised neural networks to learn the relationships between the colours exhibited by images and the characteristics of light sources [55,94], which have the advantage of not being based upon significant assumptions (i.e. the average of colours being gray and the brightest region within a given image being representative of white) that may not actually hold true in all cases.

Rather than normalising inputs, some works have developed methods for the **dynamic adaptation** of skin colour models. Such techniques will involve the transformation of previously derived models through the consideration of image illumination characteristics [54]. There are a broad range of model adaptation methodologies that researchers have proposed. Cho et al., for instance, devised a process [15] that could update the parameters of an HSV skin colour cluster that had been derived from samples. Their scheme would compare the saturation-value distributions of input pixels with hue components within the bounds of the model to an empirical distribution, and then shift the saturation and value classification thresholds based upon the distance between those distributions. Sun proposed a system [137] whereby a trained skin likelihood look-up table would firstly be used to gather high-probability skin samples from input images. These samples could then update and refine the global detector through the use of an incremental expectation maximisation algorithm, and final segmentation of the input would then be performed using the adapted model. Whilst effective at accounting for variations in lighting conditions [128], such methods can have the potential to lose to track of positive samples and instead become representative of non-skin regions [54].
2.2.4.1 Face Detection-Based Skin Colour Modelling

As well as methodologies for updating existing models based upon the sampling of images, there are numerous approaches that build skin colour representations directly from sampled data. The main benefit of this is that applied models can be entirely specific to given inputs, which maximises the likelihood of accurate segmentation. Image sampling towards this end can be performed using a face detector, which will allow for representative regions of skin to be identified on a consistent basis. Here, we will look at a number of works that make use of face detection technology for skin colour modelling, but also discuss reasons as to why they make not solve our problems effectively.

Mittal et al. [92] proposed a hand detection approach that involved the combination of the results of a global, generalised skin detector, with those derived from the Viola-Jones face detector [147]. The approach then uses spatial information in order to complete the segmentation. Although they claim segmentation accuracies greater than accepted state-of-the-art methods, the use of spatial techniques renders the approach rather unsuitable for real-time applications, as the processing of a single 640x360-pixel image would reportedly take in the region of two minutes. Wimmer and Radig [151] developed a system that utilises the same face detector, but uses detection region of interest (ROI) data to extract a small set of pixels with a skin mask. A skin mask is derived from a threshold applied to an empirically determined probability map, which has been trained to estimate the likelihood of specific coordinates of a detected face ROI representing skin. Extracted pixels are then used to build a parametric colour model to be applied to the entire image. While interesting, we do not believe that the pixel extraction process of this approach is ideal, and it may be prone to undersampling in some cases, and oversampling in others (especially when a subject has hair that may be occluding their forehead, for instance), both of which are capable of harming the efficacy of any generated skin colour model.

Again using the Viola-Jones detector, Hsieh et al. [41] developed a system that would allow for accurate hand detection, by generating skin colour models from detected face data. Given a square detection region, an inner face region is defined as being a square centred on the same point, but being only 0.6 of the size of the original in both width and height (granting a sample of 36% of the pixels of the detection). The pixels within this
region are then filtered according to their luminance, whereby the symmetric property of Gaussian distributions is applied to remove “dark” pixels from the set. The remaining pixels are then used to build decision rules in the hybrid normalised rg/R (r,g,R) space, which will simply classify a given pixel as skin if it is within two standard deviations of the mean value for all three components. Given what we know of the elliptical clustering of skin colours in the normalised rg space [139], however, we do not believe that orthogonal, binary decision boundaries are the ideal choice for the accurate segmentation of skin.

A new face detection algorithm, based upon directional Sobel edges, was developed by Liao and Chi [78]. Within detected face regions, they sample pixels from a small, predefined window, the location of which has presumably been empirically derived, in an effort to consistently extract “good” skin pixels from the right-hand cheeks of subjects. A histogram of the extracted pixels within the hue domain is then computed, and non-zero local minima, both greater and smaller than the peak hue, are found. These minima stand as the upper and lower bounds of skin segmentation, respectively, as every pixel in the given image is classified according to their hue value. The window used by this approach samples only 4% of the given detected face, which we believe could cause critical undersampling in a high proportion of cases. Additionally, we do not believe that hue alone is sufficient for accurate skin colour modelling in anything but the most ideal illumination conditions, a belief reinforced by the sheer number of works that have combined hue information with saturation information at the very least [54].

2.3 Review Summary

In this chapter, we initially examined a large amount of the research conducted within the field of face detection. Although a wide array of techniques had been proposed that could demonstrate accurate detection results under constrained conditions, it was not until the seminal work of Viola and Jones [146] and the dramatic expansion of the capabilities of electronic devices that face detection systems could be applied effectively to real-world problems [165]. Because of the high complexity of the problem of face detection, the number of disparate approaches experimented with in recent years has been vast, with
DCNNs and DPMs demonstrating increasingly exceptional performances and the traditional boosting-based techniques also being improved upon [163]. Furthermore, we have noted the recent development of systems that enhance the results of existing face detectors with supplementary information, which we believe is a methodology that could prove effective where our large-scale detection problem is concerned.

We have also reviewed the field of colour-based skin segmentation. As the apparent colour of skin is so greatly dependent upon incident illumination [136], accurately and consistently identifying skin within images is a considerable challenge. The success of a segmentation system will hinge primarily upon the selection of an appropriate colour space, the availability of representative training data, the suitability of the applied modelling methodology, the utilisation of an adaptation algorithm, and the definition of an effective input classification scheme [163]. Existing works have experimented with various combinations of options for the above, and demonstrated great success under certain conditions. More recently, a number of approaches have modelled skin colour distributions directly from the results of face detectors, which is a concept that may allow us to consistently achieve accurate segmentations over lecture theatre imagery.
Chapter 3

Adaptive Skin Segmentation via Feature-Based Face Detection

In this chapter, we will explore the deficiencies of a range of existing colour-based skin segmentation techniques, describe the developmental process of our own adaptive approach, and then present an extensive evaluation of its capabilities.

3.1 Segmentation Problem Definition

In order for us to successfully incorporate colour-based classification into our face detection system, we need to use a modelling methodology that meets the requirements of our input. Although colour is a useful property for us to examine because it is invariant to many of the issues that degrade feature discernibility, large-scale imagery will often exhibit illumination that is influenced by numerous light sources, which can have variable hues, intensities, orientations, and distributions. All of these factors can have dramatic effects upon the apparent colour of skin within an image [136], which, of course, could majorly impact the segmentation consistency of certain classifiers when used over multiple images.

In this section, we will investigate the efficacy of a number of existing segmentation methodologies when applied to images of lecture theatres, and attempt to ascertain the reasons for their successes and their shortcomings. We will be using two different sample images, which have been captured under entirely different circumstances. As well as
containing separate sets of people, the images pertain to markedly different environments, with rather dissimilar illumination tones. What is important to note, however, is that we believe both images represent fairly favourable circumstances for segmentation, with each being of high general quality (in terms of focus and resolution) and exhibiting relatively intense and even illumination. These images can be seen in Fig. 3.1 and Fig. 3.2.

Figure 3.1: Our first input image. It depicts the visible faces of 31 individuals of various ethnicities, and a number of light sources contributing to a generally even illumination.

Figure 3.2: Our second input image. It contains 37 visible faces of individuals from a wide range of ethnicities, and has a strong general illumination, which is whiter in tone than the one depicted by Fig. 3.1.
We believe these inputs will prove sufficient in providing us with the information that we need to successfully incorporate a skin detector into our face detection system. Given the exposure of a broad range of skin colours to the same illumination conditions, we will be able to discern the consistency with which individual segmentation methodologies identify different skin tones. For instance, a detector may generally be more effective at segmenting Caucasian skin than African skin, and this trait should become apparent during our experimentation across different illuminations. Additionally, the specific illumination tones being worked with are important, as it is entirely possible that the tone of one of our images more closely reflects the illumination present within the training data of a given classifier, which could have quite a dramatic effect on its segmentation consistency.

It should be noted that it is critical our sample images are indeed of high quality, as it will allow us to discern how liable existing techniques are to failure given even advantageous conditions, giving us the best possible sense of how much room there is for improvement. Inputs of lesser quality would simply not yield the same amount of information, as the root causes of failures may not always be obvious. For instance, the failure of a classifier to properly segment a skin region may be attributed to a lack of intense light incident on that skin, but the classifier actually being too insensitive may be obfuscated by that circumstance. Furthermore, multiple classifiers may fail to segment the same poorly illuminated skin region, but, of course, that does not imply all of them would have been successful had the lighting conditions been better, so some potential insight into the differences between those classifiers is lost. For the sake of exemplifying the relative quality of our two inputs, we present an image of much lower quality, which can be seen in Fig 3.3.
Figure 3.3: An example of a poor quality input. The light sources within the environment are arranged such that the illumination is extremely uneven. While some individuals are illuminated rather favourably, many others, especially those near the front, are decidedly less so.

The illumination presented by Fig. 3.3 being greatly uneven is a particularly problematic circumstance. While a colour-based classifier could be designed specifically for the segmentation of skin as it appears under weak illumination, the existence of different degrees of illumination within the same image is almost certain to result in an inconsistent performance. The potential for such circumstances to occur further reinforces the suitability of the images we have chosen to use for this experimentation.

3.1.1 Analysis of Existing Techniques

We will now implement a broad range of the existing colour-based segmentation methodologies we identified in Chapter 2, and analyse how well they perform when tasked with segmenting the skin from within our test images. Our segmentation analysis will be two-fold, as we assess outputs both quantitatively and qualitatively.

With regards to our quantitative analysis, we will be presenting results using a range of different statistics. Not only will this type of analysis provide us with a wealth of useful information, it will also allow us to compare the results of different detectors simply and effectively. This objective analysis will involve the pixel-wise comparison of produced
segmentations to the ground truth data of our inputs, which we have produced manually. We can actually ascertain information pertinent to our analysis from the annotations themselves. Through the manual classification of every pixel within our two images, we have established exactly how prevalent skin pixels are within them. Understanding prevalence is extremely important, as imbalances between pixel classes can affect the reliability of certain metrics [9]. Prevalence can calculated through the application of Eq. 3.1 to the pixel sets of a given image.

\[
Prevalence = \frac{\sum \text{number of pixels belonging to positive class}}{\sum \text{total number of pixels}} \tag{3.1}
\]

We have used the expression described by Eq. 3.1 to determine a precise skin pixel prevalence for each of our two input images, which we present along with the annotations themselves in Fig. 3.4 and Fig. 3.5.

![Figure 3.4: The manual annotation of Fig. 3.1, wherein the visible skin of every individual has been segmented, and all non-skin, background pixels have been discarded. Skin pixel prevalence of Fig. 3.1 = 0.0239 (2.39%).](image-url)
At this time, we will be evaluating skin segmentation technique performance using five different (although intrinsically related) metrics, which can be derived from the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) yielded by the process of segmentation. It is vitally important that we do use a range of different types of statistics, as certain metrics, when used in isolation, can give false impressions of how a given classifier has actually performed.

Recall (also **Sensitivity**, **True Positive Rate**) represents the proportion of all skin pixels present within the given image that have been segmented by the process of detection, and can be described by Eq. 3.2.

\[
Recall = \frac{\sum \text{number of skin pixels segmented}}{\sum \text{total number of skin pixels in image}} = \frac{TP}{TP+FN} \tag{3.2}
\]

Maximising recall is extremely important to any detection system, as it represents the capacity of the given classifier to actually detect the class of pixels it has been trained to detect. Without the capacity to achieve high recall rates, the actual usefulness of a given detection system could potentially be called into question. In isolation, this metric can be misleading, however, as a skin detector designed to indiscriminately positively classify
every pixel within a given image would achieve a recall rate of 100% during any given trial.

Precision (also Positive Predictive Value) is defined as the proportion of all pixels positively classified by a detector that actually belong to the skin class, and can be described by Eq. 3.3.

\[
\text{Precision} = \frac{\sum \text{number of skin pixels segmented}}{\sum \text{total number of pixels segmented}} = \frac{TP}{TP+FP} \tag{3.3}
\]

Achieving a high precision is paramount to building confidence in a classifier, as the higher the precision of a result, the more likely a positive classification actually represents a skin pixel. Precision can also give a false impression of the performance of a classifier, however, as a precision of 100% can be achieved through the positive classification of only a single pixel, as long as that one pixel does indeed represent skin. Although this is a scenario that would probably have to be quite specifically engineered, it does remain a possibility, and implies that recall should always be taken into consideration in conjunction with precision.

Specificity (also True Negative Rate) is defined as the proportion of non-skin pixels present within the given image that have been negatively classified, and can be described by Eq. 3.4.

\[
\text{Specificity} = \frac{\sum \text{number of non-skin pixels not segmented}}{\sum \text{total number of non-skin pixels in image}} = \frac{TN}{TN+FP} \tag{3.4}
\]

Achieving a high specificity is the result of successfully avoiding false positive classifications. This is distinct from precision, which relates specifically to pixels that have been classified as skin, because it considers all pixels within the given image that belong to the non-skin class, and, as such, it can be considered the recall rate of non-skin pixels. Similarly to the previous metrics, specificity alone can mislead if used to assess the quality of a segmentation or model. For instance, if a skin classifier were to indiscriminately negatively classify every pixel within a given image, and not segment a single one, then a specificity of 100% would be achieved.
Accuracy quantifies overall segmentation quality, and is defined as the proportion of all pixel classifications that are actually correct [64]. Accuracy can be described by Eq. 3.5

\[
\text{Accuracy} = \frac{\text{number of correct classifications}}{\text{total number of pixels}} = \frac{TP + TN}{TP + TN + FP + FN} \tag{3.5}
\]

Accuracy can simply be regarded as the rate of correct classification, so, naturally, it is strongly related to the general quality and usefulness of a given model or process. Inherently, the accuracy achieved by a segmentation technique cannot be manipulated quite as simply as the previous metrics, but its reliability can vary significantly and will be determined by the nature of the given input [9]. If an input image exhibits a large pixel class imbalance (that is to say, a large disparity between the number of pixels that should be positively classified and the number that should be negatively classified, in the case of binary classification problems), accuracy becomes a less reliable metric for determining classifier quality [9]. As described by Eq. 3.6 below, accuracy can also be defined as the weighted sum of the sensitivity and specificity exhibited by a result – weighted by the prevalence of pixels belonging to the positive class and the prevalence of pixels belonging to the negative class, respectively.

\[
\text{Accuracy} = \text{Sensitivity} \cdot \text{Prevalence} + \text{Specificity} \cdot (1 - \text{Prevalence}) \tag{3.6}
\]

It is clear to see, therefore, that accuracy will be skewed by imbalances in the pixel classes, but this is to be expected as the accuracy relates to overall segmentation success, and if the negative class is considerably bigger than the positive class, for instance, then it stands to reason that the segmentation accuracy will be more heavily determined by the specificity achieved than the sensitivity achieved, as it is the former that represents the majority of the pixels within the given image. However, skin detection cannot be considered such a general case, as it is the effective segmentation of pixels belonging to the positive “skin” class that we are primarily concerned with, but as skin pixels will very often constitute the minority class of a problem, accuracy will naturally be weighted towards specificity, placing more emphasis on the class we are, in fact, less interested in.

The inputs we will be experimenting with both exhibit a very low prevalence of positive skin pixels to be segmented (this is true of Fig. 3.1 in particular, as it demonstrates a prevalence of skin pixels of only 2.39%, although the prevalence of 10.65% presented by
Fig. 3.2 cannot be considered large either), meaning that accuracy alone is insufficient for determining overall segmentation quality. This is such an extreme case, in fact, that the concept of the “accuracy paradox” is very much applicable. This states that a model of zero predictive power (and, hence, no actual value or use) can actually achieve higher accuracies than those that do actually employ some form of intelligent decision-making process [9]. For example, if we were to apply a model that simply classified every single pixel as “non-skin” to Fig. 3.1, it would achieve a remarkable accuracy of 97.61% (with zero sensitivity and absolute specificity, our accuracy simply becomes equal to 1 – prevalence, as per Eq. 3.6), or 89.35% if it were applied to Fig. 3.2. However, such a model is naturally useless, and would have no potential application to any classification problem. Furthermore, over such inputs, a well-developed model that has some predictive power – some overall potential to correctly differentiate between skin and non-skin pixels – will almost certainly yield a lower overall accuracy, but will be infinitely more useful. Therefore, even though it is far from entirely useless, accuracy alone cannot convey enough reliable information for us to properly determine the efficacy of the skin classification approaches we will be looking at when used to detect skin within our low-prevalence images.

The F-score (also F$_1$-score, F-measure) is the harmonic mean of the achieved precision and recall for the given segmentation, and conveys the degree of balance between the two metrics. F-score can be described by Eq. 3.7.

$$F-score = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} \quad (3.7)$$

The F-score of a result can be regarded as another measure of overall accuracy, although it is clearly derived from values that exclusively relate to the classification of positive skin pixels. Given the extreme class imbalance present within the images we are experimenting with at this time, accuracy is an insufficient evaluation metric, but it is under these circumstances that the F-score of a segmentation becomes extremely useful [49,85,99]. As the positive class of our binary classification problem (and, therefore, the more interesting class), metrics that relate specifically to “skin” are of the utmost value, which is why precision and recall are the foundation of the F-score measure. Whilst accuracy would be skewed by variations in skin pixel prevalence, by focusing solely on
the positive class performance instead of accounting for all pixels within a given image, the F-score will remain invariant to class imbalance. This can be imagined rather simply, as the number of true negative results yielded by the segmentation of an image would clearly have no effect whatsoever on its F-score (regardless of whether they are much more numerous, or much less), but would play a large role in the determination of its accuracy. F-score, therefore, will be regarded as our primary metric for measuring overall segmentation quality during this experiment.

We believe that these statistics will assist greatly in determining the strengths and weaknesses of the segmentation approaches we will be discussing, and will allow us to compare them in a straightforward and meaningful manner. As we have established, no individual metric will provide us with all the information we require, but we believe the combination of those that we have identified will allow us to draw accurate conclusions that will assist greatly in the search for our solution.

Furthermore, in addition to the quantitative analysis we have described, we will also be assessing segmentations visually. Whilst statistics are undeniably useful for gauging holistic performance, they are insufficient for identifying the root causes of successes and failures. Through the careful qualitative inspection of results, we will be able to determine the circumstances under which certain classifiers may have failed to segment certain regions of skin, for instance, or identify the characteristics of certain non-skin regions that may have lead to them being positively classified. Through this process, we hope to ascertain information that will prove useful in the implementation of a skin segmentation system.

Of course, even though we are primarily concerned with faces, the capacity for a skin segmentation technique to detect skin pixels will also extend to the segmentation of other skin regions we could reasonably expect to be on display given a lecture theatre environment, such as necks and hands. This is of little concern to us at this stage, however, as our focus is merely upon the accurate classification of pixels that represent either skin or non-skin.

Our evaluation will concern six different static segmentation techniques. The first four will utilise explicit cluster models, whereby decision rules that pertain to the parameters
of certain colour spaces will dictate whether input pixels are segmented or discarded. We will then be looking at a non-parametric modelling approach and an instance of a parametric technique, both of which we will be training using our own datasets.

3.1.1.1 Explicit RGB Cluster Model

The first explicit cluster modelling approach we will be experimenting with is the RGB model presented by Kovac et al. [67], which is defined by the decision rules of Eq. 3.8, where R, G, and B represent, respectively, the red, green, and blue colour components of pixels in the RGB colour space.

$$
\text{pixel} = \begin{cases}
\text{skin}, & R > 95 \text{ and } G > 40 \text{ and } B > 20 \text{ and } \max\{R,G,B\} - \min\{R,G,B\} > 15 \text{ and } |R - G| > 15 \text{ and } R > G \text{ and } R > B \\
\text{non-skin}, & \text{otherwise}
\end{cases}
$$

(3.8)

The results that the RGB model of Kovac et al. [67], as described by Eq. 3.8, has achieved over our two input images can be seen in Fig. 3.6, and are quantified by Tab. 3.1.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

Figure 3.6: The result of segmenting skin from (a) Fig. 3.1 and (b) Fig. 3.2, having applied the RGB model of Kovac et al. [67].

<table>
<thead>
<tr>
<th>Input</th>
<th>Recall</th>
<th>Precision</th>
<th>Specificity</th>
<th>Accuracy</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3.6(a)</td>
<td>75.1%</td>
<td>12.0%</td>
<td>86.6%</td>
<td>86.3%</td>
<td>0.207</td>
</tr>
<tr>
<td>Fig. 3.6(b)</td>
<td>82.1%</td>
<td>38.9%</td>
<td>84.7%</td>
<td>84.4%</td>
<td>0.528</td>
</tr>
</tbody>
</table>

Table 3.1: Quantitative analysis of the results depicted by Fig. 3.6.

With regards to Fig. 3.6(a), as can be ascertained, the model has been successful in segmenting the majority of the skin present in the scene. However, this has come at a huge cost, as a precision of only 12.0% signifies that the vast majority of the pixels classified as skin are, in fact, false positives. From inspection of Fig. 3.6(a), we can see that a number of faces have indeed been fully segmented by the model, although this is not the case for individuals with darker skin. Additionally, the wooden surfaces of the theatre have been incorrectly segmented in their entireties due to their skin-like colour, as well as a number of clothing items.

From Fig. 3.6(b), we can ascertain that the model is indeed effective at segmenting skin pixels given good illumination, although, again, less so wherever darker skin tones are concerned. On the other hand, although the precision of this result is superior to the previous one, the majority of the pixels segmented in this instance are actually false positives, largely because the furniture in the room has a skin-like appearance according
to the model used. According for the F-score for the two segmentations, however, the one achieved for Fig. 3.6(b) is substantially more accurate than the previous one.

3.1.1.2 Explicit Normalised RG Cluster Model

Using the normalised rg space, Soriano et al. [133] developed the skin colour cluster defined by Eq. 3.9 to segment skin, whereby r and g respectively represent the proportion of red and the proportion of green in the RGB representation of the colour of the given pixel.

$$
\text{pixel} = \begin{cases}
 \text{skin}, & g < (-1.8423r^2 + 1.5294r + 0.0422) \text{ and } \\
 & g > (-0.7279r^2 + 0.6066r + 0.1766) \text{ and } \\
 & (r - 0.33)^2 + (g - 0.33)^2 > 0.004 \\
 \text{non – skin}, & \text{otherwise}
\end{cases}
$$

The results that the normalised rg model of Soriano et al. [133], as described by Eq. 3.9, has achieved over our two input images can be seen in Fig. 3.7, and are quantified by Tab. 3.2.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

Figure 3.7: The result of segmenting skin from (a) Fig. 3.1 and (b) Fig. 3.2, having applied the normalised rg model of Soriano et al. [133].

<table>
<thead>
<tr>
<th>Input</th>
<th>Recall</th>
<th>Precision</th>
<th>Specificity</th>
<th>Accuracy</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3.7(a)</td>
<td>81.2%</td>
<td>14.3%</td>
<td>88.1%</td>
<td>87.9%</td>
<td>0.243</td>
</tr>
<tr>
<td>Fig. 3.7(b)</td>
<td>36.6%</td>
<td>43.6%</td>
<td>94.4%</td>
<td>88.2%</td>
<td>0.398</td>
</tr>
</tbody>
</table>

Table 3.2: Quantitative analysis of the results depicted by Fig. 3.7.

Despite the models defined by Eq. 3.8 and Eq. 3.9 representing markedly different approaches to skin segmentation, the result illustrated by Fig. 3.7(a) is remarkably similar to that achieved previously, with a respectable recall rate again coming at huge costs to classification precision. Although the faces and hands of many individuals have been extracted almost entirely, some large wooden surfaces have also been segmented by the normalised rg model, but it has positively classified fewer clothing items than the RGB model.

Contrary to the result achieved on the previous image, Fig. 3.7(b) demonstrates a significant difference in the behaviours of the RGB and normalised rg models we are investigating. Furthermore, this result illustrates how a variation in lighting conditions can severely degrade the performance of a classifier. Rather than the arguable oversensitivity of Fig. 3.7(a), we now see a much lower skin pixel recall rate, although a natural consequence of this is improvements to precision and specificity. Through inspection, we can see that very few faces are close to being fully extracted, and some are
almost entirely negatively classified. In some of these cases, it would seem that the cause is the model not segmenting large regions of skin because they are tending towards white in appearance. Even though one would not reasonably expect skin to appear white under normal circumstances, lighter skin tones can often appear extremely white wherever strong illumination and specular reflections are present. This can be evidenced especially well by the faces closer to the camera. Despite this shortcoming, the model has yielded far fewer false positives than in the previous instance, as the particular colour of the furniture in the theatre depicted by Fig. 3.2 is not defined as skin by the model described by Eq. 9. This has resulted in almost half of the segmented pixels actually being skin, which, while still far from ideal, represents a dramatic improvement, the overall effects are which are reflected by the increased F-score.

3.1.1.3 Explicit HSV Cluster Model

Using the HSV colour space, Sobottka and Pitas [132] developed the decision rules described by 3.10 to define the appearance of skin, where H represents hue and S represents the saturation of the given colour.

$$
\text{pixel} = \begin{cases}
\text{skin}, & 0 \leq H \leq 50 \text{ and } 0.23 \leq S \leq 0.68 \\
\text{non-skin}, & \text{otherwise}
\end{cases}
$$

The results that the HSV model of Sobottka and Pitas [132], as described by Eq. 3.10, has achieved over our two input images can be seen in Fig. 3.8, and are quantified by Tab. 3.3.
Figure 3.8: The result of segmenting skin from (a) Fig. 3.1 and (b) Fig. 3.2, having applied the HSV model of Sobottka and Pitas [132].

<table>
<thead>
<tr>
<th>Input</th>
<th>Recall</th>
<th>Precision</th>
<th>Specificity</th>
<th>Accuracy</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3.8(a)</td>
<td>85.8%</td>
<td>9.0%</td>
<td>78.8%</td>
<td>79.0%</td>
<td>0.163</td>
</tr>
<tr>
<td>Fig. 3.8(b)</td>
<td>55.4%</td>
<td>32.5%</td>
<td>86.3%</td>
<td>83.0%</td>
<td>0.410</td>
</tr>
</tbody>
</table>

Table 3.3: Quantitative analysis of the results depicted by Fig. 3.8.

Given the lighting conditions presented by Fig. 3.1, we can see in Fig. 3.8(a) that the HSV model of Sobottka and Pitas has successfully detected the vast majority of the skin present within the image. A large number of faces within the image have been completely segmented, although this is not consistently the case where individuals with darker skin
are concerned. This generally impressive recall rate of 85.8% has come at a significant cost, as the apparent segmentation of walls, doors, wooden surfaces, and certain items of clothing has resulted in a precision of merely 9.0%, signifying an extremely high propensity for generating false positive results.

The output that can be seen in Fig. 3.8(b) signifies large variation in the capacity for the HSV model to accurately segment skin given a change in illumination conditions. The recall rate of the technique is significantly lower in this instance, as it has struggled to fully classify even the lighter skin tones that it competently extracted previously. Similarly to our findings using the normalised rg model, it would seem that specular reflections of skin regions are the primary cause of the increased rate of false negatives. Fig. 3.8(b) represents a significantly improved level of achieved precision, largely because the colour of the furniture of this lecture theatre is not defined as skin by the HSV model, although some sections of the rear wall of the room have been incorrectly segmented.

3.1.1.4 Explicit YCbCr Colour Model

Working with the YCbCr colour space, Hu et al. [43] derived the decision rules described by Eq. 3.11, where Cb and Cr represent, respectively, the blue and red chroma components that are generated upon conversion from RGB to YCbCr.

$$\begin{align*}
\text{pixel} = \begin{cases}
\text{skin}, & 137 < Cr < 177 \text{ and } \\
77 < Cb < 127 \text{ and } & 190 < Cb + 0.6Cr < 215 \\
\text{non-skin}, & \text{otherwise}
\end{cases}
\end{align*}$$

(3.11)

The results that the YCbCr model of Hu et al. [43], as described by Eq. 3.11, has achieved over our two input images can be seen in Fig. 3.9, and are quantified by Tab. 3.4.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

Figure 3.9: The result of segmenting skin from (a) Fig. 3.1 and (b) Fig. 3.2, having applied the YCbCr model of Hu et al. [43].

<table>
<thead>
<tr>
<th>Input</th>
<th>Recall</th>
<th>Precision</th>
<th>Specificity</th>
<th>Accuracy</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3.9(a)</td>
<td>93.7%</td>
<td>22.9%</td>
<td>92.3%</td>
<td>92.3%</td>
<td>0.368</td>
</tr>
<tr>
<td>Fig. 3.9(b)</td>
<td>73.3%</td>
<td>47.2%</td>
<td>90.2%</td>
<td>88.4%</td>
<td>0.574</td>
</tr>
</tbody>
</table>

Table 3.4: Quantitative analysis of the results depicted by Fig. 3.9.

What can be ascertained from Fig. 3.9(a) is that the recall rate of the model under the conditions posed by the depicted environment is extremely admirable, as 93.7% of the skin pixels present within the image have been positively classified, yielding an overall F-score that is decidedly superior to that of any other technique we have looked at so far.
for Fig. 3.1. Although this recall rate has been achieved with a precision of only 22.9%, we can see that many of the skin-coloured surfaces that have previously been entirely segmented by other approaches are decidedly less so in this instance. What may also be observed is that the model has been effective in segmenting darker skin tones almost as consistently as it has lighter tones.

Not too dissimilarly to the previous image, Fig. 3.9(b) illustrates that the model has been rather successful in correctly classifying skin pixels, as most faces have been segmented to a reasonably high degree, regardless of their tone. At 47.2%, the precision of this result is also considerably higher than many of the previous outputs we have seen, although it is still far from ideal, as the case remains that the majority of segmented pixels are actually non-skin. As can be seen, the primary cause of these false positives is the furniture within the room, with some walls also being partially segmented.

3.1.1.5 Bayes’ Theorem-Based Look-Up Table

Skin colour distributions can be modelled non-parametrically, whereby the probabilities that certain colours represent skin can be determined by through the statistical analysis of training datasets. Bayes’ theorem, as described by Eq. 3.12, can be used to perform this analysis, in order for representative look-up tables to be constructed. Here, \(P(x) \) represents the probability of \(x \) occurring and \(P(x|y) \) represents the likelihood of \(x \) occurring given that we already know \(y \) to be true.

\[
P(\text{skin}|\text{colour}_i) = \frac{P(\text{colour}_i|\text{skin})P(\text{skin})}{P(\text{colour}_i)} \tag{3.12}
\]

According to the law of total probability, we can expand the term \(P(\text{colour}_i) \) to give us the expression described by Eq. 3.13, which defines the probability of \(\text{colour}_i \) occurring as the combination of the probability of it occurring when the given pixel represents skin and the probability of it occurring when the given pixel represents non-skin – a set of events that are mutually exclusive and jointly exhaustive.

\[
P(\text{colour}_i) = \sum_n P(\text{colour}_i|\text{class}_n) = P(\text{colour}_i|\text{skin})P(\text{skin}) + P(\text{colour}_i|\neg\text{skin})P(\neg\text{skin}) \tag{3.13}
\]
Taking this expanded expression and substituting it into Eq. 3.12 gives us the overall expression we will be using to build our own probability look-up table, which is described by Eq. 3.14.

\[P(\text{skin}|\text{colour}_i) = \frac{P(\text{colour}_i|\text{skin})P(\text{skin})}{P(\text{colour}_i|\text{skin})P(\text{skin}) + P(\text{colour}_i|\neg\text{skin})P(\neg\text{skin})} \]

This conditional probability expression is sufficient for the construction of a skin colour classifier. The term \(P(\text{skin}) \) is the prior probability of our problem, representing our initial belief that the given pixel is skin, without any regard for its colour. The value of this probability can be estimated empirically from training samples, although the accuracy of that estimation can be considered largely inconsequential [145], as long as the training sets themselves effectively represent potential inputs and the estimation is not orders of magnitude away from actuality. Henceforth, we shall be using 0.1 as our prior probability, which expresses a belief that the likelihood of any arbitrarily selected pixel being skin in the images we are interested in is 1 in 10.

The terms \(P(\text{colour}_i|\text{skin}) \) and \(P(\text{colour}_i|\neg\text{skin}) \) are further conditional probabilities that represent how likely colour \(i \) is to occur given that the pixel in question is skin or non-skin, respectively, giving the likelihood of colour \(i \) occurring across the entire probability space. These quantities can be determined for all discretised colour component combinations \(i \in I \) of the given colour space through the construction of probability mass functions that characterise the skin and non-skin training sample sets.

For the purposes of experimentation, we have created our own training data sets, which pertain directly to the lecture theatre environments we are chiefly concerned with. Our non-skin sample set consists of images depicting typical clothing of a range of colours, furniture, and surfaces within rooms, and is made up of a total of 7,029k pixels. Meanwhile, our skin sample set consists of a large number of skin regions (primarily foreheads and cheeks) from people of various ethnicities under numerous lighting conditions, and is made up of a total of 498k pixels. Fig. 3.10 and Fig. 3.11 illustrate the nature of our non-skin and skin sample sets, respectively.
Before the training of the model, we must decide upon a suitable colour space in which to work. For the purposes of this experiment, we have chosen to use normalised rg, primarily because its two dimensions will allow for simplified modelling, and they can be easily quantised (as they represent fractions on a 0.0 to 1.0 scale). For our model, we will be quantising each dimension into 100 bins (each of which will represent a 0.01 interval), granting a total of 10,000 colour component combinations. We feel that this is a sufficient number for accurate classifications, but not so many as to introduce issues of potential training data inadequacies.

Constructing the model itself is a fairly straight-forward process, which first involves building two probability mass functions, one for each of our training sample sets. These are built by firstly counting the numbers of times individual colour component combinations occur within the given training set, then by dividing those tallies by the total number of pixels within the set, resulting in a normalised probability function (wherein all likelihods sum to 1). Building the probability map that constitutes our classifier is then as simple as using the expression described by Eq. 3.14 to calculate a skin probability $P(skin|colour_i)$ for each of the 10,000 colours i our model will represent, whereby $P(colour_i|skin)$ and $P(colour_i|\neg skin)$ are defined for every $i \in I$ by the skin and non-skin probability mass functions, respectively.

Given that our Bayes’ model defines the probability of a given colour being skin as a continuous value within a $[0,1]$ interval, rather than providing a binary classification in
the manner of the explicit cluster models we have looked at, its application to the pixels of a given image requires the definition of a probability threshold, which will represent the minimum skin likelihood required for positive classification. Although using a single threshold value to assess the performance of a continuous classifier will not fully reveal its capabilities, we believe it will be sufficient for our current purposes, which are simply to establish general efficacy. That being said, we will be applying a threshold value of 0.5 in order to achieve segmentations with our Bayes classifier, as any likelihood above that value will signify that the pixel of that colour is more likely to be skin than not, according to the model, and vice-versa. Our pixel classification rule, therefore, can be described by Eq. 3.15.

$$\text{pixel} = \begin{cases} \text{skin}, & P(\text{skin} | \text{colour}_{\text{pixel}}) \geq 0.5 \\ \text{non-skin}, & \text{otherwise} \end{cases}$$

(3.15)

We can now apply the constructed model to the two lecture theatre images we have used to test the methodologies we have previously looked at. The achieved results can be seen in Fig. 3.12, and are quantified by Tab. 3.5.
Figure 3.12: The result of segmenting skin from (a) Fig. 3.1 and (b) Fig. 3.2, having applied the Bayes’ theorem-based model that we have constructed.

<table>
<thead>
<tr>
<th>Input</th>
<th>Recall</th>
<th>Precision</th>
<th>Specificity</th>
<th>Accuracy</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3.12(a)</td>
<td>25.0%</td>
<td>30.6%</td>
<td>98.6%</td>
<td>96.9%</td>
<td>0.275</td>
</tr>
<tr>
<td>Fig. 3.12(b)</td>
<td>39.4%</td>
<td>58.6%</td>
<td>96.7%</td>
<td>90.6%</td>
<td>0.471</td>
</tr>
</tbody>
</table>

Table 3.5: Quantitative analysis of the results depicted by Fig. 3.12.

The most striking aspect of the result depicted by Fig. 3.12(a) is the low recall rate it demonstrates. We see that only a small number of faces have been significantly segmented, as the majority are largely negatively classified. This would suggest that the skin tones present within this image were underrepresented by the training samples. Given the nature of the methodology, however, the probability threshold for positive skin classification could be trivially adjusted for greater recall, although this would have detrimental effects upon the number of false positive classifications made. On those terms, the precision of 30.0% achieved by the Bayes’ model in this instance, is an improvement over previous results, although is still far from perfect. This would appear to be largely a consequence of the classifier correctly identifying that the wooden surfaces within the room do not actually represent skin, which previous approaches have failed to do. By virtue of only a small fraction of the pixels within Fig. 3.1 being skin, this low-sensitivity output actually yields a very high accuracy of 96.9%, but, intuitively, we know that such a low recall rate renders the output not particularly useful.
The recall rate of the segmentation depicted by Fig. 3.12(b) is clearly superior to that achieved for the previous image, although it remains inferior to the rates other approaches have yielded. Again, however, we could adjust the probability threshold being used to improve the recall, but this would be at a cost to specificity. At 58.6%, the precision of the output has also been drastically improved, to the extent of our Bayes model being more precise than any other method we have experimented with thus far. It is clear to see this precision in effect, as numerous skin regions have been segmented rather extensively, whereas the furniture of the room has not been so consistently extracted. In contrast with the previous result, we can determine that the specific skin tones on display in this image have greatly superior representation within the positive training samples, and that the non-skin training data may also be more suited to this environment.

3.1.1.6 Gaussian Distribution Function

Parametric modelling techniques allow for compact representations of skin colour models to be derived, such that they can be described by practically efficient numbers of parameters. In order for us to experiment with parametric methodologies, we will be building a multivariate Gaussian classifier of our own, the density function of which can be described by Eq. 3.16.

\[
p(c_i \mid \text{skin}) = \frac{1}{(2\pi)^{d/2}|\Sigma_s|^{1/2}} \cdot e^{-\frac{1}{2}(c_i - \mu_s)^T \Sigma_s^{-1}(c_i - \mu_s)} \quad (3.16)
\]

Here, \(d\) represents the dimensionality of the problem, \(c_i\) represents the \(d\)-component colour vector (a particular combination of colour component values) of pixel \(i\), \(\mu_s\) and \(\Sigma_s\) are the Gaussian distribution parameters (representing the \(d\)-component mean colour vector and the \(d\)-by-\(d\) covariance matrix, respectively) of skin colour model \(s\). These parameters are determined through the analysis of the given training data, and \(|\Sigma_s|\) is the determinant of the covariance matrix, constituting part of the normalisation factor of the function, which ensures that the entire volume of the distribution integrates to 1.

Determining the skin likelihoods of pixels cannot be achieved directly through Eq. 3.16, as it merely returns densities pertaining to the probability of skin pixels being of colour \(c_i\), but from it we can derive an expression that will allow for the calculation of actual
skin likelihoods. Eq. 3.17 describes the relationship between \(p(\text{skin}|\text{colour}) \) and \(p(\text{colour}|\text{skin}) \), as defined by Bayes’ theorem.

\[
p(\text{skin}|\text{colour}) = \frac{p(\text{colour}|\text{skin})p(\text{skin})}{p(\text{colour})} \tag{3.17}
\]

If we were to assume \(p(\text{skin}) \) and \(p(\text{colour}) \) being constant, which signifies that all pixels are equally likely to be skin before we consider their colours and that all colours are equally likely to occur, then the probability of a pixel representing skin, given its colour, is directly proportional to the probability of a pixel being of a certain colour, given that it represents skin, as in Eq. 3.18, where \(k \) represents the constant of proportionality.

\[
p(\text{skin}|\text{colour}) = k \cdot p(\text{colour}|\text{skin}) \tag{3.18}
\]

If we consider the definition of \(p(\text{colour}|\text{skin}) \) given by Eq. 3.16, we can rewrite the above expression to give Eq. 3.19.

\[
p(\text{skin}|c_i) = k \cdot \frac{1}{(2\pi)^{d/2}|\Sigma_s|^{1/2}} \cdot e^{-\frac{1}{2}(c_i-\mu_s)^T\Sigma_s^{-1}(c_i-\mu_s)} \tag{3.19}
\]

The normalisation factor of this expression will be a constant for any given density function, as it is variant only on the determinant of the covariance matrix and dimensionality of the given colour model, rather than any individual input colour vector. If we were to equate the constant of proportionality \(k \) to the reciprocal of the normalisation factor, as in Fig. 3.20, then we could eliminate the constants and derive an expression to directly calculate the skin likelihoods of input colour vectors, as described by Eq. 3.21, which would allow for the segmentation of skin.

\[
k = (2\pi)^{d/2}|\Sigma_s|^{1/2} \tag{3.20}
\]

\[
p(\text{skin}|c_i) = e^{-\frac{1}{2}(c_i-\mu_s)^T\Sigma_s^{-1}(c_i-\mu_s)} \tag{3.21}
\]

As it has been show to perform well given Gaussian representation [139], we will be using the normalised rg colour space in conjunction with a unimodal function, as we believe this combination will maximise our likelihood of segmentation success with this particular methodology, without introducing superfluous degrees of complexity. Generating a parametric skin colour model necessitates the existence of a set of positive
training samples, and we will be reusing the data that was previously used to build the positive skin probability mass function of the Bayes classifier.

Training the model is a simple process, and requires only the determination of the mean colour component values and the covariance matrix of the training samples, which will allow for Eq. 3.21 to be used for classification, when combined with a probability threshold. Calculating the mean colour vector, which defines the centre point of the elliptical distribution, can be accomplished through the application of Eq. 3.22 to the training data, whereby the colour components of every pixel $i \in I$ are summarised and normalised.

$$
\mu_s = \frac{1}{n} \sum_{i=1}^{n} c_i
$$

(3.22)

Here, μ_s represents the mean colour vector we are interested in ascertaining, c_i represents the colour of the ith pixel in the dataset, and n represents the total number of pixels within that set.

Generating the covariance matrix for the training data, which will define the shape, size, and orientation of the distribution, can be achieved through the application of Eq. 3.23, whereby the deviations of the colours of all pixels $i \in I$ from the mean colour vector are summarised and normalised.

$$
\Sigma_s = \frac{1}{n-1} \sum_{i=1}^{n} (c_i - \mu_s)(c_i - \mu_s)^T
$$

(3.23)

Above, Σ_s represents the covariance matrix we will be created, μ_s represents the mean colour vector of the training samples, c_i represents the colour of the ith pixel in the dataset, and n represents the total number of pixels within that set.

Similarly to the implementation of the Bayes look-up table, classifying pixels using our trained Gaussian function requires the definition of a probability threshold, which can be applied to the continuous skin likelihoods that are calculated through the use of Eq. 3.21. Again, this means that the results we achieve will not be entirely representative of what our Gaussian classifier has the potential to accomplish, but they will give a strong indication. In the case of the Bayes classifier, we used a threshold value of 0.5 because it segregates pixels that are more likely to be skin than not from those for which the
opposite holds true, and we will be doing likewise in this case, giving us the pixel classification rule described by Eq. 3.24.

\[
pixel = \begin{cases}
 \text{skin}, & P(\text{colour}_{\text{pixel}} | \text{skin}) \geq 0.5 \\
 \text{non-skin}, & \text{otherwise}
\end{cases} \tag{3.24}
\]

We can now apply our unimodal Gaussian skin colour model to our two test images. The achieved results can be seen in Fig. 3.13, and are quantified by Tab. 3.6.

![Figure 3.13: The result of segmenting skin from (a) Fig. 3.1 and (b) Fig. 3.2, having applied our trained unimodal Gaussian function.](image)
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

Table 3.6: Quantitative analysis of the results depicted by Fig. 3.13.

<table>
<thead>
<tr>
<th>Input</th>
<th>Recall</th>
<th>Precision</th>
<th>Specificity</th>
<th>Accuracy</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3.13(a)</td>
<td>83.6%</td>
<td>13.2%</td>
<td>86.5%</td>
<td>86.4%</td>
<td>0.228</td>
</tr>
<tr>
<td>Fig. 3.13(b)</td>
<td>52.6%</td>
<td>50.1%</td>
<td>93.7%</td>
<td>89.4%</td>
<td>0.513</td>
</tr>
</tbody>
</table>

As can be discerned from Fig. 3.13(a), like most of the segmentations of Fig. 3.1 we have seen previously, our Gaussian function has produced a multitude of false positive results, leading to a precision of only 13.2%. This has been caused almost entirely by the wooden surfaces within the lecture theatre, the skin-like colour of which has, seemingly, either been represented by the training data or interpolated through the derivation of our model. The recall rate of 83.6% achieved by the classifier is impressive, although it having been achieved with such a low precision has resulted in a rather low F-score of only 0.228. It can also be noted the darker skin tones have been segmented almost as effectively as the lighter tones, reinforcing the notion that unimodal Gaussian functions can sufficiently model all skin tones given a normalised colour space.

In comparison with the previous result, we have achieved a relatively high precision in Fig. 3.13(b), with just over half of the pixels segmented actually representing skin. Although our classifier has avoided segmenting significant portions of the environment, the skin-like colours of the hair and the clothes of a number of individuals have been wrongly classified as skin. Demonstrably, however, we have a significantly reduced recall rate. Although, again, we see a reasonably consistent degree of segmentation across various ethnicities, there are a number of faces, especially those closer to the point of capture, that have not been very well segmented, and, given their large relative size, the overall sensitivity achieved has been significantly impacted by them. It would appear that the cause of this has again been the misclassification of skin regions that exhibit specular reflection, as their colours tend towards white to such a degree that they no longer appear skin-like.
3.1.2 Results Comparison and Discussion

Having experimented with a broad range of existing skin segmentation techniques, we can now compare their results in an effort to draw useful conclusions. Although we have been able to identify where individual approaches have succeeded and failed, by collating the results we have produced, we will be able to ascertain information that should pertain directly to the nature of our inputs, which will help us greatly in finding an adequate segmentation solution.

For this purpose, we present Fig. 3.14, which illustrates the recall, precision, and F-score achieved by each detector we have looked at for each of our two images. We have decided to focus on these three metrics at this time in an effort to more easily interpret our data, and because it is these statistics relating to the positive skin class that are the most relevant to us (as we discussed at the start of Section 3.1.1). As we have mentioned previously, the results of the Bayes and Gaussian classifiers may not represent their most optimal performances, as thresholds other than 0.5 may have yielded objectively better results, but we believe that they are close enough that the conclusions we draw from them can be considered entirely valid.

![Figure 3.14: A collation of the segmentation results we have achieved during our experimentation, presented on a per-approach basis. The three metrics we are concerned with at this time (recall, precision, and F-score) are represented by their fractional scores.](image-url)
The data presented by Fig. 3.14 is interesting to us in a number of ways. Firstly, we can note the rather significant lack of consistency with which skin pixels have been recalled by the classifiers. Kovac et al.’s RGB model [67] is the only one of our six approaches that has demonstrated a high level of sensitivity for both images. Four of the remaining five (with the Bayes model being the exception) have demonstrated substantially better recall rates for Fig. 3.1 than Fig. 3.2, although Hu et al.’s YCbCr model [43] has still performed rather well on the latter. As we have noted previously, the cause of failure for a number of techniques on Fig. 3.2 seems to have been the presence of specular reflections. These have caused skin regions to appear extremely light, and it would seem many models do not define such white-like colours as skin. Whilst this is not entirely unreasonable, it is clear that it is indeed a potential scenario given the common presence of strong, artificial illumination within indoor environments such as lecture theatres, and so, ideally, would be handled effectively by the skin segmentation approach we will ultimately be using. The sensitivity demonstrated by our Bayes model for both images is rather disappointing, and suggests that a positive skin sample set designed to cover the skin tones of multiple illumination conditions is self-defeating. This is understandable given the normalisation that a sample set goes through during the training of a Bayes’ theorem-based model, as the probability of skin representation ascribed to a certain colour will be diminished for every other colour that is present within the set.

Secondly, the lack of consistency in segmentation precision is also clear to see. Every single one of the classifiers we have experimented with has demonstrated great disparity in the levels of precision they have achieved over the two images. However, having achieved a much greater precision in Fig. 3.2 than in Fig. 3.1 is common to all of them, again suggesting the differing nature of the inputs, and the segmentation approaches’ lack of adaptation to them, is the cause of the issue. As we have alluded to previously, the wooden surfaces within the lecture theatre depicted by Fig. 3.1 have been a consistent and significant source of false positive classifications, and would appear to be the main reason for the low levels of precision achieved for that image across every methodology. The most extreme case, however, has been produced by Sobottka and Pitas’ HSV model [132], which has also positively classified many beige-coloured wall regions and items of clothing, resulting in the lowest precision of all twelve segmentations. The small number of skin pixels present within Fig. 3.1 is also a factor where segmentation precision is
concerned, as there are many more pixels within the image constituting the skin-like surfaces than there are belonging to the actual skin regions, which will, inevitably, have an adverse effect on the precisions achieved. Visually, we can see that the surfaces are indeed of a similar colour to many of the skin regions visible within the image, but we believe a model specific enough to the colour of those skin regions would be able to differentiate between them and the wooden surfaces effectively. Of course, such a model would only be useful for the image in question (or any other depicting extremely similar illumination), and would perform poorly given most other images, such as Fig. 3.2.

Although the general precision achieved for Fig. 3.2 is superior, which can be at least partially attributed to there being a greater proportion of skin pixels to skin-like non-skin pixels than in Fig. 3.1, there is a rather large degree of variation within those results. It would seem the primary cause of this is the existence of separate significant non-skin regions that are markedly different in appearance. Our Gaussian model, for instance, has segmented a large number of pixels that actually represent hair and clothing, but, a single region of wall aside, has avoided falsely positively classifying large segments of the environment itself. Kovac et al.’s RGB model [67], on the other hand, has successfully refrained from segmenting some of those same regions, but has instead segmented huge portions of the red furniture and beige walls within the room, and Hu et al.’s YCbCr model [43] has done similarly, although to a lesser extent.

Since different pre-trained approaches have different, fixed definitions for the appearance of skin, and will, therefore, be liable to produce false positives from different non-skin sources, it is clear to see how such an image would yield such inconsistent results. This is somewhat inevitable where approaches designed to be globally applicable are concerned, as they must account for broad ranges of potential skin tones. However, as demonstrated by some of our data, the colours that represent the positive skin tones of one image may often only represent false positives in another. Dissimilarly to the situation of Fig. 3.1, the inspection of Fig. 3.2 would indicate that the colour of many of the non-skin regions falsely segmented is not actually too similar to the colour of the vast majority of the skin regions within the image. This suggests that a model that could differentiate between them successfully would not be too difficult to construct. It also reinforces our belief that
the methodologies we have been working with define the colour of skin too broadly to be consistently accurate given our form of inputs.

Finally, while the F-scores themselves cannot offer significant insight into how our results have come to be, they are very useful for assessing the overall efficacy of the approaches. As the harmonic mean of recall and precision, the F-score of a given segmentation represents the balance achieved between the two metrics. A balance between precision and recall is important, as one can be trivially inflated at the cost of the other (as we explained at the start of Section 3.1.1), but improving both simultaneously can speak volumes for the quality of a classifier. As Fig. 3.14 illustrates, every segmentation approach has, overall, performed significantly better on Fig. 3.2 than on Fig. 3.1, which is a direct result of the markedly superior precisions achieved for that image. Having yielded the most impressive results for each image, through a combination of respectable recall rates and relatively high levels of precision, the YCbCr model of Hu et al. [43] can be regarded as the best approach for detecting skin within our inputs of those we have looked at. As we have already discussed, however, the segmentations it has produced have indicated plenty of room for improvement. The results of the remaining detectors are relatively similar overall, although it could be noted that the normalised rg model of Soriano et al. [133] and the HSV model of Sobottka and Pitas [132] have performed marginally worse than the RGB model of Kovac et al. [67] and the Bayes and Gaussian models we have trained ourselves.

It would seem that the main issue that the skin segmentation approaches we have looked at have struggled with is consistency. Although we have seen good individual segmentations, we have not found a detector that can consistently produce high quality results even over just the two input images we have been experimenting with so far. To determine the cause of this, we must look back at the images themselves, and, most importantly, the skin regions within them. Although both images depict well-illuminated regions, as we have stressed all along, the general colour tone within each is different, which means the colour of the skin regions within each is also different. In order to establish the extent to which this is true, we can compare the colour distributions of the skin regions of the two images mathematically. To that end, Fig. 3.15 illustrates the respective distributions of the segmented pixels of Fig. 3.3 and Fig. 3.4 (which represent
our manual skin annotations) within the normalised rg colour space. We have chosen the normalised rg space for analysis at this time because it represents relatively basic properties of the colours in question (i.e. RGB component proportions), and its low dimensionality will make comparison of the distributions straightforward.

![Colour distributions of the visible skin regions within (a) Fig. 3.1 and (b) Fig. 3.2, as represented within the normalised rg colour space. NB: These plots visualise just a small proportion of the entire space in order for the cluster dissimilarities to be better perceived.](image)

As can be seen, the disparity between the two distributions is rather stark. Whilst both sets of pixels produce tight, elliptical clusters within the space, the sizes, orientations, and locations of those clusters differ greatly. In fact, there is virtually no overlap between the clusters whatsoever, as there are very few skin pixels represented by Fig. 3.15(a) that have a proportion of red that is less than 0.42, whereas the exact opposite is true of the distribution depicted by Fig. 3.15(b). This situation is not exclusive to the normalised rg colour space, though, as similar experimentation with the HSV and YCbCr colour spaces yielded similar result disparity. It is again important to note that our images are of relatively high quality, because it emphasises that this phenomenon can be the result of even non-extreme circumstances. Given all of these points, we can only conclude that the approaches we have investigated, and any other pre-trained techniques like them, are inherently incapable of yielding high quality segmentations for our lecture theatre imagery on a consistent basis.
As we discussed in Chapter 2, certain skin segmentation approaches make use of adaptive methods in order to improve image-to-image consistency. As opposed to the static models we have looked at so far, adaptive skin detectors will generally be capable of adjusting certain parameters at run-time, meaning that pixel classification rules can be tailored to given inputs, and segmentation accuracy can be maximised for any given image. It would appear that the utilisation of such methodologies is necessary in order for us achieve accurate results over our lecture theatre imagery.

3.2 Segmentation System Design and Development

Although we highlighted a number of existing adaptive skin colour modelling systems in Chapter 2, we do not feel that the specific issues they were designed to overcome can be entirely equated to those that we are trying to solve. Therefore, we will be developing our own adaptive segmentation system, capable of sampling images in order to generate truly representative models by which input pixels can be classified. An overview of the system we are proposing is illustrated by Fig. 3.16.

As Fig. 3.16 makes clear, the system we will be constructing consists of a number of individual components. In brief, our approach will involve sampling images through the adoption of an existing face detection system, filtering the results to build a set of pixels that represent the skin within the given image, deriving a unimodal Gaussian model from that set, then applying the model across the entire image in an attempt to segment skin. Throughout this section, we will be detailing the implementation of each stage of this process.
3.2.1 Image Sampling

In order for a process to adapt to given inputs, it must employ a method of sampling those inputs for relevant and useful information. In our case, it is necessary to sample the skin colours of individuals within a given image. For a colour-adaptive system such as ours, it stands to reason that we would want to utilise a colour-invariant sampling method, so that representative samples could be acquired on a consistent basis, regardless of the circumstances presented by individual inputs. A sampling process based upon image features would, therefore, be very much suitable. Additionally, it could be asserted that arbitrary pictures of people are more likely to depict their faces than any other detectable body part (and even more so where lecture theatre imagery is concerned), and that human faces themselves are extremely feature-rich, meaning that the detection of them can be reasonably robust. Therefore, we believe that the reliable sampling of skin colours could be achieved through the intelligent application of feature-based face detection methodologies.

3.2.1.1 Feature-Based Face Detection

As we have discussed in Chapter 2, there are numerous previous works that have adopted feature-based face detection for the purposes of image sampling [41,78,151]. Although the vast majority of that research pertained to the detection of small numbers of people, or even individuals, we believe that we can successfully develop a process that is suited to our larger-scale problem. A common theme amongst the previous works is the adoption of the face detection framework developed by Viola and Jones [147], which we believe will also be ideal for our needs. As we previously described, their system introduced a number of innovations to the computational efficiency of feature-based detection, without any form of compromise in terms of result accuracy. Additionally, its open-source implementation as part of the OpenCV function library is extremely configurable, which will allow us to tailor it to meet our requirements exactly. If our system is to be adaptive with respect to the colour models it generates, it is important that the sampling process is also flexible, as there are many potential forms our lecture theatre-based inputs could take. Being able to configure the sensitivity of the face detector, therefore, is massively beneficial.
We have found that with too high a sensitivity, the detector of Viola and Jones will often find the majority of faces within our imagery, but will also be liable to produce a number of false positive detections. It is of great importance that false positives are avoided, as the sampling of non-skin regions under the false premise of them being skin could have severely detrimental effects on the representativeness of a subsequently generated colour model. Conversely, a low enough sensitivity can eliminate false positives entirely, but, of course, configuring the detector in such a manner can introduce the potential for subject undersampling. Although it is not necessary to sample the skin of every individual depicted by a given image to build a skin colour model that represents them effectively (especially if some form of generalisation or interpolation is used during modelling), if the sample size is simply too small and too many individuals go undetected, then the probability of significant skin tones not being sampled can be increased greatly. The consequence of this would be the generation of models that plainly do not represent the skin colour of all the individuals they should pertain to. For these reasons, ensuring that the sensitivity of the face detection process allows us to ascertain as much information as possible about a given image without introducing any false positives is extremely important.

It should be noted that none of the previous works we have looked into had any particular need to configure the sensitivity of the face detector as carefully as we need to. Given the nature of our problem, we will be attempting to detect multiple small faces, which will require a greater sensitivity than most typical problems would, as the features of small, distant faces will naturally be more difficult for a detector to discern than those of a single large face that is close to the point of image capture, which seemed to be the type of problem that most of the existing adaptive segmentation approaches were attempting to solve. Of course, although we require a great enough sensitivity for small faces to be found reliably, it must still be low enough for false positives to be avoided consistently.

We have extensively experimented with the Viola-Jones detection system in order to find an optimal sensitivity for our system. This experimentation has involved a much larger range of lecture theatre imagery than we have used previously, as the utilised dataset contains 10 images that depict a total of 540 visible faces. The sensitivity of the detection system can be controlled through the adjustment of a “minimum neighbour” threshold.
Typically, individual detections cannot convey enough confidence in order for a positive face classification to be made, but a certain number of them within close proximity ("neighbours") could indeed be used to confidently declare the presence of a face. Finding an ideal value for this number to use as a threshold is important, as requiring too many neighbouring detections would reduce overall sensitivity, whereas defining too small a number of neighbouring detections as a face would lead to an abundance of false positive classifications.

Our experimentation, therefore, was aimed at the empirical determination of an optimal minimum neighbour threshold. Through preliminary testing, we found that, where our inputs were concerned, there was a significant (and potentially harmful) drop-off in general detection rates when a threshold greater than 10 was used, and a threshold of 0 represents no detection consolidation whatsoever, so we limited our search space for an optimal value accordingly. Hence, using a broad range of threshold values (1-10), we processed our dataset with the face detector, and monitored two critical performance metrics: detection rate; and false discovery rate. The first of these we are familiar with, as the detection rate (synonymous with “recall”) simply represents the fraction of visible faces that are positively classified by the detector. The greater the detection rate achieved, the lesser the likelihood of the skin tones of an image being pivotally undersampled.

However, the second of these metrics, the “false discovery rate”, represents the fraction of positive classifications that are actually false, and it is not a statistic we used during our previous skin segmentation work. Although it is simply equivalent to $1 - \text{precision}$, we have chosen to present our data using FDR instead at this time as it should allow us to more easily visualise the expected decrease in the number of false positive classifications made as a result of the minimum neighbour threshold being increased. Where pixel-wise classification problems are concerned, such as skin segmentation, such information could instead be conveyed through a “false positive rate” (defined as $1 - \text{specificity}$), but since there exists no real definition of “true negative” where face detection is concerned (as the label “non-face” could be applied to any number of regions within a given image), this is not an option for us. However, false discovery rates have the additional benefit of presenting false positives in terms of their influence on sets of positive classifications, rather than framing them within a context of all negative samples. This means that the
metric can give insight into how inaccurate colour models may become if the face detection process is too sensitive. The greater the false discovery rate yielded by a particular detection sensitivity, the greater the proportion of pixels used to build a model that do not actually represent skin, and the lesser the representativeness of the model.

Fig. 3.17 illustrates our findings, and presents the scores achieved for each of the two metrics we are interested in by each of the threshold values, as well as a graphical representation of the ratio between them.

![Figure 3.17](image)

Figure 3.17: The detection rates and false discovery rates (and the ratio between the two) yielded across a range of minimum neighbour threshold values used for the process of face detection with the system of Viola and Jones [147].

What we are attempting to ascertain from the data illustrated by Fig. 3.17 is a threshold value that provides an optimal balance between detection rate and false discovery rate, so that our detection process will not be liable to either critically undersample faces or generate non-negligible numbers of false positive detections. This is why, as well as presenting the two metrics, we have included the DR/FPR ratio. As can be seen, this ratio trends upwards rather dramatically, which is to be expected, as the number of false positives produced by the detector can, evidently, be greatly diminished with only minor decreases to sensitivity. Given the decidedly less radical changes those decreases make to the number of true positives, the large fractional differences are inevitable. However, although the maximisation of this ratio would, on the surface, seem to be the best route for selecting an optimal value, what must be recognised is that there are severely
diminishing returns on the elimination of false positives, and, after a point, far more true positives are likely to be lost through further increments to the classification threshold. The number of false positives eliminated by increasing the threshold from 7 to 10, for instance, is almost negligible, but there is a 5% decrease in the detection rate achieved. The threshold value of 7 itself has actually produced an above-trend DR/FDR ratio, and we, therefore, believe it represents an ideal level of sensitivity for the face detector when used as part of our system. Again, although we could achieve greater detection rates with a greater sensitivity, we believe we do not necessarily need to sample a large proportion of the faces within a given image in order to develop a representative colour model, and, although the stringent elimination of false positives is extremely important, miniscule advancements in that regard should not come at much larger costs to true positive detection rates.

Our selected threshold value of 7 neighbours actually represents a much lower sensitivity than the default value of the OpenCV implementation of the face detector, as it defines the presence of only 3 proximal detections to be evidence enough for the existence of a face, despite our previous suggestion that typical face detection tasks do not necessitate high sensitivities. We believe this disparity in ideal levels of sensitivity to not only be the result of the complexity introduced by our sampling requirements, but also a result of considerations for general image quality, perhaps related to the poor standard of image capture devices when the OpenCV implementation of the face detector was written. The lecture theatre images we have collated are generally well-focused, well-exposed, and are of large resolutions, but we cannot expect every arbitrary image to be of such high quality, or, therefore, as favourable for successful object detection. Empirically, we have found that requiring 7 neighbouring detections for a positive classification can actually lead to rather poor detection rates where images of lesser quality are concerned.

Ideally, however, we do not wish to limit the applicability of our system by making it overly specialised, especially if accommodation can be made without any compromise to the meeting of primary objectives. Therefore, we perform face detection in a flexible manner. For any given input image, we initially attempt to detect faces using our high-precision, moderate-recall threshold value of 7. Should any faces be found, the results are accepted and processed. In the event that no faces are found, however, the threshold
value is decremented, and detection is performed again. This is repeated until at least one face is found, or the threshold value is reduced to 1, at which point it is determined that there are likely to be no actual visible faces within the given image, as any positive classifications that can only be made using such a low threshold are likely to be false positives. Through the simple implementation of this process, we can acquire optimal face detection results on our typically high quality lecture theatre imagery as well as best-case-scenario detection results for any arbitrary image using just a single system configuration, making it a globally applicable sampling technique.

Fig. 3.18 depicts the result of detecting faces within Fig. 3.1 using the detection system of Viola and Jones in conjunction with our optimised threshold value, and serves as an example of how face detection results are actually presented by the system, and how effective our threshold value is for yielding desirable results.

Figure 3.18: The result of performing face detection on Fig. 3.1 using the system developed by Viola and Jones [147] with our high-precision, moderate-recall threshold value. The faces of 19 individuals have been successfully detected, and zero false positives have been produced.

The first aspect of the detection results illustrated by Fig. 3.18 that we note is the absence of any false positive classifications. We have previously discussed how important we believe the avoidance of such results to be, so a set of positive classifications being entirely devoid of them is extremely positive. This insurmountable level of precision is particularly pleasing in this instance because of the excellent detection rate also achieved,
with the faces of the majority of the depicted individuals having been successfully
detected. Although these results constitute merely a single demonstration of how
effective the detector, run at an optimal level of sensitivity, can be, we believe they
strongly reinforce the choices we have made regarding image sampling.

3.2.1.2 Sub-Region Sampling

Another aspect of Fig. 3.18 to be noted is the form of the results themselves. As can be
discerned, the regions defined by the detector as “faces” are all perfectly square. This is
reasonable, as the detection windows not necessarily being square could lead to much
greater degrees of computational complexity, at the point of both feature cascade training
and implementation, for very little gain, if any at all. However, it is slightly problematic
where our intentions are concerned. Of course, human faces do not typically resemble the
shape of a square and are generally rounder, more elliptical in appearance. Additionally,
we have found that, in the majority of cases, the detector will overestimate the sizes of
faces, and the detection regions will often be larger than the heads of the individuals they
pertain to. The combination of these factors means that a significant proportion of most
positively classified face regions will not actually be relevant to us, and will instead
represent uninteresting, potentially harmful background information. Given that we
intend to use detected face regions to build skin colour models, ensuring that we can
consistently discard this superfluous information is important.

Our solution to this issue is fairly simple: to define a circular sub-region within each
detection region, located about its centre, within which every pixel is retained for further
processing, and outside of which every pixel will be discarded from the set of samples.
Ideally, the regions we define would be restrictive enough to discard all background
pixels in the vast majority of cases, but still be large enough to retain as many skin pixels
as possible, so as to not limit the amount of useful information we have available for
colour modelling. Just as with the face detection process itself, therefore, we must be
careful that we neither significantly oversample nor undersample our data.

Of course, the sizes of our sub-regions should be relative to the sizes of the detection
regions they pertain to, so that we can achieve representative, consistent sampling.
Therefore, simply defining their sizes fractionally would be our best option. Through experimentation, we found that defining the radius of a given sub-region as 0.4 times the height of the given detection region yielded satisfying results. Marginally above that value, we found that there existed some potential for the retention of a non-negligible number of background pixels. Additionally, we observed that defining sub-regions any smaller than this would, for the most part, lead to the elimination of large numbers of actual face pixels for very little further discarding of background information. A circular sub-region with a radius of 0.4 times the height of a detection region (or, a diameter of 0.8 times the height), yields a pixel retention rate of just over half (50.27%), meaning that we still have access to the majority of pixels that face detection provided for any given image, whilst being confident that no significant proportion of them represent detrimental background information. An unfiltered skin pixel sample set of this size actually represents a larger sample set than any of the previous works that we have looked at that use the same face detection method use, which we believe is advantageous.

Fig. 3.19 illustrates the result of our sub-region application to some of the face detection regions depicted by Fig. 3.18.

![Figure 3.19: A graphical representation of our elimination of background pixels within face detection regions through the definition of inner sub-regions.](image)

As the above results demonstrate, background information can be entirely eliminated through this simple process of sub-region definition. As can also be seen, although we have, inevitably, lost some actual skin pixels, our retention of them is generally still rather high. Furthermore, it can be noted that, as well as eliminating pixels that represent certain environmental features, we have discarded the pixels pertaining to the hair of
many individuals, which is just as beneficial in our attempts to build representative sets of skin pixels.

3.2.1.3 Pixel Filtering

Although massively advantageous where initial detection is concerned, the major drawback of faces being so feature-rich is that the features serve to break up skin regions, making the successful and consistent segmentation of them decidedly more complicated. In general, facial features will exhibit distinctly different colours to typical skin regions, which means that they must be removed from pixel sample sets in order for representative colour models to be built. Unfortunately, unless facial expression, orientation, and relative detection region size can be guaranteed (which is only likely to be the case under extremely constrained circumstances), we believe that discarding non-skin features based upon their presumed locations could lead to inaccurate and inconsistent results. This is in contrast to the elimination of background information, which we have shown can be achieved effectively through the assumption that such pixels will exist almost exclusively around the edges of detection regions.

As we described in Chapter 2, Liao and Chi [78] proposed the use of a small window to consistently sample skin regions. The location of this window would be predefined and relative to the given detection region itself, and would, in typical cases, encompass a small region of skin on the right-hand cheek of individuals. The belief of the researchers was that this method would allow for expression and orientation variations, because the window would be so small (covering only 4% of the pixels of a given region) and specifically located that it would take extreme circumstances for anything other than a cheek to present itself in that exact location. Although we do not believe this to be too unreasonable an approach, we do not consider it an ideal solution where our problem is concerned. Fig. 3.19 demonstrates that even arbitrarily selected faces can exhibit fairly large degrees of orientation and expression variation, and although we could define very small regions that would actually represent skin pixels within all three of those samples, the set of pixels such a selection process would yield would be miniscule, and highly likely to not be entirely representative. The method proposed by Liao and Chi [78] seemed to work well for their expected inputs, which would typically exhibit just a single
user that would be close to the point of image capture. In that instance, a small region of skin would actually consist of a reasonably large number of pixels. Where much more distant individuals and much smaller numbers of pixels are concerned, however, the likelihood of camera imperfections, image compression artefacts, or other such anomalies having detrimental effects on the representative of pixel sets becomes much larger.

Wimmer and Radig [151] also proposed a location-based sampling technique, but rather than predefining the likely location of a region of skin, they presented an empirically derived probability map. Through applying a threshold to the map, a skin mask could be generated that would consist of a set of region of interest (ROI) coordinates, which would define which pixels within a given face detection region have a likelihood of being skin that is at least as great as the threshold applied. While interesting, and potentially effective, we do not believe this to be an optimal solution for our problem either. Although, given the use of a reasonable threshold, this method would yield a larger set of pixels than the method of Liao and Chi [78], we believe there is still room for improvement. The introduction of an adjustable threshold adds further complexity to the sampling process, and it would seem the mask applied to a given face region would still be rather restrictive unless a particularly permissive threshold were to be used. Additionally, the technique being based upon location data means that skin probabilities are somewhat dependent upon facial expressions and orientations, rather than necessarily invariant to them.

In contrast to the location-based sampling approaches of Liao and Chi [78] and Wimmer and Radig [151], Hsieh et al. [41] make use of colour information. We concur with the beliefs of the latter researchers because, although the location of them is largely indeterminable, non-skin facial features do tend to share a common trait in the colour domain: extreme intensity. Features such as facial hair, nostrils, eyes, and mouths will usually tend towards black (low intensity) as they are naturally darker in colour to skin (especially in the case of facial hair), or are likely to be under the influence of far less incident light than typical skin regions. Thankfully for the purpose of filtering these features out and isolating skin pixels, this property should allow for them to be distinguished and discarded on a reasonably consistent basis. There are a variety of measures that can be used to express the intensity of colours [58], such as value,
luminance, lightness, and gleam, but we have chosen to use luma. Although these quantities, amongst others, have their minor individual merits, converting to luma values comes at a reasonably low computational cost, and preliminary testing has suggested that rather large dynamic ranges can be achieved through the conversion of our data, which should allow for effective filtering. As described by Eq. 3.25, the calculation of the luma value for any given pixel i is achieved through a weighted sum of its constituent RGB component values, which has been designed to approximate the response of the human vision system to light intensities.

\[
luma_i = 0.299 \cdot R_i + 0.587 \cdot G_i + 0.114 \cdot B_i
\]

(3.25)

In maintaining the adaptability of our system, we have chosen to not predefine acceptable intensity ranges for pixels. The strong, white illumination present within Fig. 3.2 has resulted in the darkest regions of the faces of that image generally being considerably brighter than those of the faces within Fig. 3.1, as our arbitrarily selected samples in Fig. 3.20 from the two images can be used to demonstrate, for instance. However, this does not imply that those faces have fewer dark non-skin features, or that those features occupy smaller proportions of their respective faces, which is why the predefinition of absolute values would simply be inappropriate, and would inevitably result in inaccuracies. In fact, the proportion of face regions that actually consist of non-skin features should be fairly consistent across faces and images, with only the presence of significant amounts of facial hair likely to significantly skew the balance between skin and non-skin pixels.
Therefore, we have instead developed a process that makes luma-based pixel filtering considerate of the specific illumination circumstances of each input. A simple method by which to filter face pixel sets would be to consider the properties of their luma distributions, whereby pixels with luma values less than the given mean minus a certain number of standard deviations would be considered outliers (non-skin) and be discarded. This is extremely useful, as standard deviations pertain to set proportions, and we have already established that a fairly consistent, although unknown, proportion of any given face should consist of non-skin pixels. Therefore, rather than arbitrarily select the number of deviations that should be used to define the nature of outliers in any given scenario, we have studied how similar face sub-regions that have been filtered using different deviation bounds are to their ground truth counterparts, which are, of course, already perfectly devoid of non-skin features. This has yielded great insights into the proportion of face pixel sets that should generally be retained, and the proportion that should generally be labelled as “non-skin” and discarded. Fig. 3.21 demonstrates how darker pixels within face sub-regions can be discarded through luma filtering.
Ideally, we would discard the dark pixels from any given sub-region such that it would match its ground truth counterpart, and Fig. 3.21 demonstrates how this could be achieved rather accurately through luma distribution-based filtering. However, it also shows that establishing the correct filter tolerance is critical for the process to be effective. Fig. 3.21(c), for instance, demonstrates a particularly low tolerance of only 0.5 standard deviations, which has resulted in many more pixels being discarded than have actually been identified as non-skin in the manual annotation, Fig. 3.21(b). This is problematic, as it means that actual skin pixels are being discarded, and useful information lost. Fig. 3.21(c), on the other hand, perhaps illustrates too much tolerance, as the use of 1.5 standard deviations has resulted in most non-skin features not actually being fully eliminated, and the colours of unwanted regions being retained. Conversely, the use of a single standard deviation, as illustrated by Fig. 3.21(d), has yielded a segmentation that is not too dissimilar from the ground truth, with the mouth, eyes, and brows of the depicted individual having been discarded to an almost-perfect degree. This result supports the notion that this process can indeed be implemented effectively.

In an effort to find the optimal filter tolerance to use for our process, we have used a range of numbers of standard deviations to filter the non-skin pixels from a large number of faces, and compared the results to the manually annotated data. The range of filter tolerances we have chosen to investigate is broad: from a rather restrictive 0.5 standard deviations, which would result in the retention of only 69.1% of pixels, up to an extremely permissive 3 standard deviations, which would yield 99.9% pixel retention and virtually have the same effect as applying no filter whatsoever.

Across 41 face sub-regions, we have considered the pixels manually discarded in order to form the ground truth data as our positive class of pixels, and then calculated the elimination precision and recall achieved for each one by each filter tolerance in order to determine elimination F-scores. We regard the F-score to be an extremely useful metric in this instance for the same reason it has been useful previously: the class we are most interested in at this time is the significant minority class. The calculated scores can then be averaged, across all faces, for each number of standard deviations to establish mean F-scores, which can then be compared simply. The results of this process can be seen in Fig. 3.22.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

105

Figure 3.22: The mean F-score achieved by each filter tolerance across our 41 face sub-regions, with regards to the elimination of non-skin pixels.

The results illustrated by Fig. 3.22 are interesting, and are largely in line with our expectations. Firstly, we expected that low tolerances would be overly restrictive, and result in the elimination of large numbers of skin pixels for little to no gain, yielding lower precisions and, hence, lower F-scores, and it would seem that this is indeed the case. Furthermore, as tolerance has been increased, we have seen a steady decline in the average score achieved, which is again consistent with our expectations. This is a consequence of smaller numbers of pixels having been discarded, as smaller proportions of the non-skin regions present within each face have been eliminated, which has resulted in lower recall rates and lower F-scores. Our results suggest quite strongly that an optimal filter tolerance of 1 standard deviation exists between these two classes of issues. We will, therefore, be using it as part of our process to establish positive skin pixel sets from face sub-regions from this point forward, and an example of the result of its application can be seen in Fig. 3.23.
As Fig. 3.23 demonstrates, discarding any pixel with a luma value that is more than 1 standard deviation lower than the mean value of the given set will yield a pixel retention rate of 84.1%, meaning that there will be abundant useful information with which to build colour models after filtering. This result also suggests that the average face sub-region contains \(~16\%\) non-skin pixels, which is a proportion that we believe should be relatively invariant over any number of input images or face detections. It is for this reason that the filter tolerance we have identified as optimal should provide consistent results, with regards to the accurate elimination of non-skin regions, as it simply represents the proportional relationship between face sub-regions and the skin pixels within them, and nothing image-specific.

3.2.2 Skin Colour Distribution Modelling

For any given image, the pixel set used as the basis for its skin colour model will simply be the collation of the pixels retained after the sub-region definition and luma filtering of every face detected within it. Our image sampling process has been carefully calibrated to ensure that the skin pixel sets we produce contain as many positive skin pixels as we can confidently classify without introducing any significant number of false positives. This ensures that a generated colour model will represent as great a proportion of the skin within the given image as possible without being skewed at all by non-skin data.
3.2.2.1 Modelling Approach Selection

Having produced a set of skin pixels, we are now in a position to build a colour model that will represent the skin present within the given image. However, the choice of methodology with which to construct the model is not an entirely trivial one. Parametric and non-parametric techniques provide us with a wealth of options, but the most appropriate one for our system can be chosen with a small number of simple considerations:

- We have only positive samples with which to train the model, ruling out any classifier type dependent upon the existence of negative samples in order to learn, such as a classifier based upon Bayes’ theorem. As we ran the face detector at low sensitivity, we cannot be confident that the regions not returned do not actually contain faces, or other regions of skin.

- A given filtered pixel set will, naturally, merely be a subset of all the skin pixels present within the given image, so being able to interpolate the colours that are not necessarily being represented by our set, but are very similar to those that are, would be extremely useful.

- A modelling approach that would allow us to calculate continuous skin likelihoods, rather than providing only binary classifications as typical decision rule models would, would certainly be preferable, as the potential for adjustable thresholding would significantly improve the applicability and usefulness of the system.

- The approach to skin segmentation we are developing would ideally be suitable for real-time systems, so the method by which we model colour distributions must allow for relatively efficient calculations and classifications.

- Given that we have yet to commit to a specific colour space in which to operate, we can value highly any particular synergies that may exist between certain spaces and particular modelling approaches.
Thankfully, an option exists that meets all of these criteria: Gaussian modelling. Just as we demonstrated in Section 3.1.1.6, the development of a unimodal Gaussian function is straightforward, and requires only the determination of a mean colour vector (through the application of Eq. 3.22) and a covariance matrix (through the application of Eq. 3.23) for the given skin pixel set, which can be accomplished using only our positive samples. Additionally, by generalising our data with such a condensed representation, we are naturally interpolating skin tones that may have been undersampled by our preceding face detection and pixel filtering process.

Furthermore, the application of Eq. 3.21 to the pixels of a given image, in order to determine their skin likelihoods and classify them, will allow for specific thresholds to be applied for specific results to be obtained. By enabling the trivial adjustment of classification sensitivity, our approach will be extremely flexible, and capable of meeting specific end-user needs. If, for instance, a certain segmentation process necessitates that as much skin as possible is positively identified, without great concern for the co-existence of some false positives, then the skin likelihood required of a pixel for it to be positively classified can be lowered accordingly. Alternatively, certain processes may need to identify pixels that exhibit extremely high skin likelihoods, such as those that need “seeds” in order to initiate neighbourhood diffusion or skin region growing [116], and our approach will be equally capable of catering to these demands. The application of Eq. 3.21 should also prove to be relatively efficient, and will even afford some opportunity for significant optimisation, which we will be exploring.

Finally, as we have previously highlighted, the elliptical nature of Gaussian models synergises extremely effectively with the way in which skin colours tend to cluster in normalised colour spaces [139], which is why we are also electing to use the normalised rg space for our system. As well as the space providing natural resistance to illumination variations (through proportion-based representation), the reduction in problem dimensionality from three (RGB) to two (rg) will serve to reduce computational complexity, as the distributions we generate will be merely bivariate.

Although the normalised rg cluster model of Soriano et al. [133] was an inconsistent performer during our initial skin segmentation experimentation in Section 3.1.1.2, we do not believe those results truly represent the potential for the space to be used to model
skin colour distributions as part of a highly effective, adaptive system. As we identified, given that explicit cluster models are typically inflexible generalisations of large training data sets, greatly disparate results are inevitable when inputs that are significantly different in nature are presented, especially when their differences are so extreme that there exists essentially no overlap between the colour distributions of the skin within them, as we discussed in Section 3.1.2. Such a situation essentially presents the possibility of two separate, yet equally undesirable, possibilities when pre-trained models are being applied: that the moderate levels of recall achieved for each are accompanied by objectionably low levels of precision; or, although decidedly less likely, that the skin of one image will be effectively and specifically segmented whilst the skin of the other will be undetected almost entirely amongst multitudinous false positive classifications. Either way, the results of broadly applying a single model to inputs that can vary wildly in nature will inevitably leave great room for improvement.

These issues are entirely alleviated by the adaptive nature of our approach, however. Since we will be constructing image-specific models, which will be applied to the image from which they have been derived and no other, the only colours that will ever be positively classified as skin within any given image will be those that we have identified with great confidence as being representative of skin within that particular image. Furthermore, unless there is a significant, unforeseen failure on the part of our adaptive sampling process, the possibility of the skin of an image not actually being represented by its respective colour model, and therefore remaining largely undetected after segmentation, should be all but eliminated.

Although it performed slightly more effectively than the normalised rg model of Soriano et al. [133], the Gaussian joint-probability distribution model we built in Section 3.1.1.6 was similarly inconsistent in the segmentation of skin from our two lecture theatre-based inputs. Although constructed specifically from skin samples pulled from those particular images, and many similar images, the approach failed for the same reasons that the explicit normalised rg cluster model did. Again, however, the issues that proved the most detrimental to our pre-trained Gaussian model will be mitigated completely by adaptive skin colour modelling.
In summary, our skin colour distribution sampling and modelling process for any given input image can be described by the following sequence of steps:

1. Use the face detection system of Viola and Jones in a high-precision, moderate-recall configuration to detect high-likelihood faces.

2. Define circular sub-regions within each face detection region, about their centres, in order to eliminate large portions of uninteresting background information.

3. For each sub-region, calculate the mean and the standard deviation of the luma values of pixels, and discard those that are darker than the given mean minus one given standard deviation, as they are likely to represent non-skin features.

4. Collate the retained pixels of every face detection sub-region to form the positive skin sample set.

5. Calculate the mean colour vector of the skin sample set according to the normalised rg colour representations of its pixels.

6. Determine the covariance matrix of the skin sample set as it pertains to the normalised rg colour space.

The entire sampling and modelling process can also be described by Fig. 3.24, which illustrates each of its steps and the flow of information from initial input to model generation.

![Figure 3.24: A simplistic overview of our image-specific skin colour sampling and distribution modelling process.](image-url)
3.2.2.2 Generated Model Validation

The efficacy of the process we have developed in producing representative colour models can be broken down into two separate matters: whether the pixel sampling process is providing representative sample sets; and whether Gaussian modelling is effectively representing those sets. In order to investigate the first of these matters, we can compare the distributions of generated pixel sets to those of the ground truth sets they are approximating. To that end, Fig. 3.25 depicts the normalised rg distributions of the manually annotated skin of Fig. 3.1 and Fig. 3.2, as well the distributions of the pixel sets acquired through the sampling of those images.

Figure 3.25: The normalised rg distributions of (a) the manually annotated skin of Fig. 3.1, (b) the sampled skin of Fig. 3.1, (c) the manually annotated skin of Fig. 3.2, and (d) the sampled skin of Fig. 3.2.

With regards to the distributions of Fig. 3.1, we can perceive some degree of dissimilarity between the cluster of the ground truth data and that of the filtered pixels. More
specifically, we can see less dispersion in the colour distribution of the filtered pixels (Fig. 3.25(b)), with a greater concentration of data points proximal to centre of the cluster. This is to be expected, as the pixels that constitute the filtered set are essentially those of the ground truth set that we can most confidently and most precisely define as skin. Given that the distributions are otherwise very similar, however, this minor dissimilarity should prove to be of very little concern. There is even greater similarity between the clusters of Fig. 3.2., as the naturally slightly greater concentration of the filtered pixel colour distribution (Fig. 3.25(d)) is made almost imperceptible by the diminutive size of the clusters themselves.

Given how dissimilar the colour distributions of the skin of the two images are, the fact that we can sample them and replicate them both so accurately using the exact same process suggests that our sampling process is indeed highly effective. It should also be highlighted that the plots depicted by Fig. 3.25 illustrate only a small segment of the entire normalised rg colour space, which reinforces the notion that the distributions of our filtered pixel sets are incredibly similar to those that they are supposed to approximate.

As effective as our image sampling process may be, without an equally effective methodology for building models from skin sample sets, we will not be able to achieve desirable segmentation results upon the application of said models, which constitutes the crux of the second of our highlighted matters. In order for us to ascertain the suitability of Gaussian modelling for our colour distributions, we can compare the models we generate to the filtered sets they are derived from and the ground truth sets they are estimations of. Working within the normalised rg colour space, however, our models will essentially be three-dimensional (r,g,probability), which makes the visual evaluation of them somewhat problematic, even though a dimensionality this low is the best-case scenario for our problem in general.

At this time, we can, instead, isolate the normalised r and normalised g dimensions of our data and consider the means and standard deviations of our models, rather than their covariance matrices, which will at least give us some visual sense of goodness-of-fit, which is paramount for establishing model validity and modelling approach suitability. It should be noted that such a reduction in space dimensionality means that we will only be looking at our data as it has been regressed onto two individual planes, whilst there are,
theoretically, infinite planes we could define to bisect our hyperelliptical models in order to visually gauge their suitability. The use of the orthogonal normalised r and normalised g dimensions alone, however, should still give us a broad sense of how well given models will tend to fit their respective skin colour distributions across our three-dimensional space, with their comparatively extremely simple definition merely being an added benefit. Fig. 3.26, therefore, illustrates this comparison between our generated models and their respective ground truth and filtered set distributions across the two images we have been looking at.
With respect first of all to the Gaussian model we have generated for Fig. 3.1, which is depicted by Fig. 3.26(b), we note that the cluster appears to be slightly larger than the distribution of the pixels themselves. This is not especially unexpected, as the creation of the model is influenced by every pixel within the set, including those that are not proximal to the centre of the main cluster of colours. The model being larger is not particularly detrimental either, as one of the main benefits of using Gaussian models for skin segmentation is that we can apply threshold values of our choosing in order to obtain certain forms of results. If we were to apply a high threshold, for instance, we would identify only pixels with high skin likelihoods, which would be those closest to the centre of their respective cluster. If we wanted to additionally identify skin pixels with lower skin likelihoods (more outlying colours), a large model would allow us to apply a low threshold to accomplish this, even though this would yield an inevitable increase to the number of false positive classifications being made. The situation is again similar with regards to Fig. 3.2, as Fig. 3.26(h) illustrates that the model we have generated for that image is different in size alone from the filtered pixel distribution, with the two clusters sharing near-identical centre points, shapes, and orientations. Despite the models having larger sizes than the pixel distributions they have been derived from, we can see that they still have very little of the colour space in common, which exemplifies that the models we generate are indeed very much specific to the images that they have been built for.
There are a number of interesting aspects to the normalised r and normalised g model comparison plots we have created. For Fig. 3.1, we can see that, as far as the normalised r domain is concerned, the model slightly overestimates the filtered pixel set (Fig. 3.26(c)) but slightly underestimates the ground truth data (Fig. 3.26(d)). This suggests that using the model for classification may result in some lack of sensitivity for the normalised r values of skin pixels, but the extent of this issue is likely to be very minor. In the normalised g domain, we note that the model slightly overestimates the distributions of both the filtered pixels (Fig. 3.26(e)) and the ground truth pixels (Fig. 3.26(f)), with the situation being marginally less apparent in the case of the latter. The implication of this is that the model may be slightly overly sensitive with regards to the normalised g values of skin pixels, but, again, this issue is far from severe, and unlikely to result in significant segmentation inaccuracies.

Fig. 3.26(i) illustrates that the Gaussian model we have generated for Fig. 3.2 also overestimates the normalised r value distribution of its respective filtered pixel set, but does so to a lesser degree where the ground truth data is concerned (Fig. 3.26(j)). As opposed to the situation of Fig. 3.1, we would expect to see some minor oversensitivity across the normalised r domain at the point of pixel classification. The model built for Fig. 3.2 also demonstrates some overestimation of the distributions of the filtered pixels (Fig. 3.26(k)) and the manually annotated pixels (Fig. 3.26(l)) in the normalised g domain, but the disparity between these distributions and the generated model is so minor, especially in the case of the ground truth pixels, that we would not anticipate any meaningful classification inaccuracy to occur as a result. That our sampling process and choice of modelling methodology has resulted in such minor distribution misestimations for two very dissimilar inputs strongly reinforces the choices we have made in the design of our system to this point.

Although a number of statistical goodness-of-fit tests exist for investigating the adherence of a set of values to normal distribution, we have found them to be inappropriate for our situation. Entirely in contrast with our observations, we have found that the chi-squared test [95], the Kolmogorov–Smirnov test [14], the Lilliefors test [81], and the Jarque-Bera test [48] all determine the probability of our data samples actually being from a normal distribution to be infinitesimally small. These tests, and others like
them, are null hypothesis tests against data sets conforming to normality, whereby a rejection of the null hypothesis constitutes proof that it is not true, and that the data in question does not adhere to normal distribution. Given very large data sets, however, such tests will only permit extremely small deviations from normality before rejecting the notion that they may actually conform. This is problematic, as we are dealing with such very large sets of values, with the ground truth data of Fig. 3.2 alone consisting of 678,710 normalised rg value pairs, for instance. Our data sets, of course, have not been explicitly derived from normal distributions, so the size of them alone is almost bound to lead to the statistical tests we have identified rejecting the hypothesis that they may have been, with extremely high degrees of confidence at that. We have observed, in Fig. 3.26, that whilst the Gaussian models we have generated do not perfectly fit the data distributions they are approximating, the discrepancies that do exist are, for the most part, very slight, which is why we believe our observations are significantly more reliable than the results of the goodness-of-fit tests. Furthermore, as much as our Gaussian models may not be perfect, there are finite ways in which such colour models can be built, and we do not believe any of the alternative methodologies could offer anything close to the modelling accuracies we have achieved, regardless of any of the other benefits, such as colour interpolation, that they also afford.

3.2.3 Segmentation System Application

As we have previously identified, segmenting skin from an image using a Gaussian model involves pixel-wise classifications that are based upon the application of a probability threshold to skin likelihoods, which are determined through the utilisation of Eq. 3.21. As normal distribution dictates, the closer the colour of a pixel to the centre of a model distribution (i.e. the less it deviates from the mean), the higher the likelihood that it represents skin, and vice-versa. The probability threshold controls overall classification sensitivity, but without defining one we can produce an intermediary skin likelihood image, wherein every pixel will be represented by the probability of its colour being representative of skin within the given image. The scale of these probabilities is [0,1], whereby absolute black is representative of zero skin likelihood (0), and absolute white indicates supposed skin certainty (1). An example of this can be seen in Fig. 3.27.
As Fig. 3.27 illustrates, the Gaussian colour models we generate will only assign non-zero skin likelihoods to colours that bear any resemblance to those that are represented by the given filtered pixel set, so the vast majority of the pixels within Fig. 3.27(a) have been classified as non-skin even without the application of a probability threshold. Most of the skin pixels within the image have been designated rather high skin likelihoods in this instance, meaning that moderate thresholding is likely to positively classify the majority of them, but there are some regions where this is not the case. The primary cause of this would seem to be the specular reflection of light, which was an issue we previously discussed in Section 3.1.1, perhaps as well as the undersampling of certain skin tones. The colours of some items of clothing have lead to them also being assigned non-zero skin likelihoods, but it would appear that they relatively low, which means that a moderate probability threshold is likely to correctly identify them as non-skin regions.

As we have discussed, skin segmentation itself is achieved by applying a threshold to skin likelihoods (calculated using Eq. 3.21), whereby any pixel with a likelihood below the given threshold will be identified as “non-skin”, and any pixel with a likelihood equal to or above the given threshold will be classified as “skin”. This decision-making procedure for pixels can be described by Eq. 3.26.

\[
p_{\text{pixel}} = \begin{cases}
\text{skin}, & P(\text{skin} | \text{colour}_{\text{pixel}}) \geq \text{probThreshold} \\
\text{non-skin}, & \text{otherwise}
\end{cases}
\] (3.26)
This of course means that the lower the given probability threshold, the lower the likelihood required of a pixel for it to be classified as skin, and the higher the threshold, the higher the likelihood required. The threshold value used during classification also applies a degree of confidence to classifications, whereby the use of a lower threshold means that there will be less confidence that any given positive classification is actually correct, and a higher threshold means that there will be more confidence in the given positive classifications being correct, although the opposites of these situations are true as they pertain to negative classifications (if a pixel is negatively classified with a low threshold, for instance, we can be rather confident that it is actually non-skin).

The application of a threshold to skin likelihoods can be considered a limitation on how far a colour may deviate from the mean of a generated model before it is classified as “non-skin”. If we consider our Gaussian models to be elliptical clusters that encompass all colours within the normalised rg colour space that have non-zero possibilities of representing skin for the given image, then applying a probability threshold will define an inner elliptical cluster whereby all colours within its limits are positively classified as skin, and all colours outside them are classified as non-skin. Fig. 3.28 illustrates the effects of applying probability thresholds, with regards to the way in which they define ellipsoids that limit the ranges of colours that will be classified as skin during segmentation.

Figure 3.28: A demonstration, given a skin colour model, of how the application of a probability threshold will define a range of colours that will be classified as skin, whereby any colour not within that range will be classified as non-skin. We present nine different threshold values, ranging from 0.1 (highly permissive) to 0.9 (highly restrictive) on a 0.1 interval.
As can be seen, the range of colours positively classified as skin does not scale linearly along any given axis with the defined value of the probability threshold. This is to be expected, as our distribution, given its Gaussian nature, can be visualised as a bell-shaped curve in a three-dimensional space (normalised r, normalised g, probability), and the ellipsoids depicted by Fig. 3.28 are contours of that structure at intervals of its height, which is the dimension denoting probability. Fig. 3.28 illustrates how the definition of a highly restrictive probability threshold (such as 0.9) results in a greatly limited range of colours that will be classified as skin, and that this range can be expanded dramatically with reductions to the threshold, which will result in significantly more sensitive segmentations. To demonstrate these effects, the actual segmentation results obtained by applying probability thresholds to the skin likelihoods depicted by Fig. 3.27(b) can be seen in Fig. 3.29.
Figure 3.29: Without a threshold, we can use (a) the Gaussian skin colour model we generated for Fig. 3.27(a) to produce (b) the intermediary skin likelihood image for that input. A probability threshold of 0.25 is applied to the Gaussian model to limit its classification range to the colour cluster depicted by (c) and produce segmentation (d). Threshold values of 0.5 and 0.75 are also applied, which limit the colour range of positive classification to the clusters depicted by (e) and (g), respectively, and produce the segmentations illustrated by (f) and (h).

The results in Fig. 3.29 illustrate quite clearly how the value of the applied probability threshold will directly affect the classification sensitivity. Of course, proportionality between threshold levels and achieved recall rates will be entirely dependent upon the nature of individual inputs, and will very rarely be close to linear, but sensitivity generally varying inversely to threshold value will always hold true, in practice. Intuitively, it would be expected that the precision achieved by the segmentation of a given image would increase with the value of the probability threshold used, but this is not necessarily the case, and can be skewed by certain input characteristics. Although unlikely, it may be that the non-skin regions of a given image consist of only high-likelihood colours, or those colours in addition only to zero-likelihood colours, and skin regions made up of colours that cover a broad range of the given likelihood scale. In such
an instance, a high probability threshold would segment the high-likelihood skin as well as the high-likelihood non-skin, resulting, of course, in a level of precision that is the proportion of former to the latter. Lowering that threshold would result in the segmentation of further skin regions, but no additional non-skin, granting an increase to precision as well as sensitivity. Such a situation arising across arbitrary images would be rather improbable, but neglecting it as a possibility when we want to consider the relationship between applied probability threshold values and segmentation results would be done in error.

3.2.4 Segmentation System Optimisation

Before evaluating the efficacy of our system in accurately segmenting skin from images, we believe that there are a number of algorithmic improvements we can make in order to dramatically decrease throughput time at no cost whatsoever to results. In order to determine where such improvements can be made, and where they can make the most difference to overall performance, we must first investigate how much time our system currently expends on its various constituent processes. The time that a certain process takes for a given input image will depend upon the nature of that image, but the average fraction of total throughput time dedicated to an individual process over a large number of images will give us great insight into whether it requires optimisation.

The total time it takes to segment the skin from an image will be largely dependent upon the resolution of that image, as, naturally, the more pixels there are to process, the more time processing them all will take. This is why, at a time when we are trying to identify processes to optimise, it is far more appropriate to consider throughput time proportions than actual times. Image resolution aside, there are a number of factors that could theoretically affect the time it takes for individual tasks to be completed, some of which will have far more effect on certain processes than others. For instance, there being only a small number of faces detected within a given image, or the faces detected within it being relatively small, would result in not much time being required to filter pixels and determine the Gaussian distribution parameters of the yielded filtered set. This would have no impact, however, on the amount of time required to subsequently classify every pixel of the image. Alternatively, an image with a high density of features and edges may
lead to greater lengths of time being required for face detection windows to be discarded by the detector, as the existence of certain features within a window may suggest the presence of a face within it before otherwise-unnecessary evaluations actually confirm the absence of one. Such a scenario would increase the overall time required to return face detection results, but would, again, have no impact on subsequent processes.

Figure 3.30 illustrates the average proportion of total throughput time expended by each major process of our system, which we have defined as the following: face detection; pixel filtering and skin colour modelling; and skin segmentation. These average values have been calculated over 20 arbitrary images, which vary greatly in content and are of numerous sizes.

As Fig. 3.30 makes apparent, the vast majority of the time taken to process a given image is spent classifying its constituent pixels as either “skin” or “non-skin”. Given that pixel-wise skin segmentation dictates that our classification algorithm is run for each and every pixel within a given image, it will often have to be run millions of times before a result is obtained. This means that even slight algorithmic improvements could yield dramatic benefits to efficiency, and greatly reduce the amount of time required to process images. The filtering of pixels and the modelling of them, on the other hand, takes an almost negligible amount of time to complete, so is of little concern at this stage. Although face detection takes a decidedly non-negligible amount of time to complete for any given input image, the face detection system of Viola and Jones that we use has already been
incredibly well optimised, so we do not consider it an appropriate target for further optimisation. It is for these reasons, and our belief that there is significant scope for improvement, that our efforts to optimise our system will, at this time, be focused upon the way in which we classify pixels.

3.2.4.1 Mahalanobis Distance-Based Classification

The logical first step towards improving the efficiency of our classification process is to look further into the method by which we ascertain skin likelihoods. To this point, we have been using Eq. 3.21 to calculate the probabilities of pixels representing skin, but if we consider the individual components of that expression, using it in its entirety may seem unnecessary. The value of the exponent (and, hence, the shape of the distribution itself) is actually defined by the squared Mahalanobis distance between the given input colour vector and the given mean colour vector, multiplied by a constant. Mahalanobis distance itself [83] is a multi-dimensional generalisation of how far a value (or a vector of values) is from the mean of a distribution, and is expressed by a unitless and scale-invariant value that measures this distance in terms of standard deviations. Eq. 3.27 describes how the Mahalanobis distance between colour vector \(c_i \) and distribution \(s \) is calculated.

\[
\text{distance}_{\text{Mahal}}(c_i, s) = \sqrt{(c_i - \mu_s)^T \Sigma_s^{-1} (c_i - \mu_s)}
\]

(3.27)

Although determining Mahalanobis distances instead of skin likelihoods would reduce the number of calculations required to classify every pixel within a moderately sized image by several million, our existing method of classifying pixels is rendered useless, as we simply cannot apply a probability threshold in the range \([0,1]\) to these distances. If we could translate our defined thresholds to distances, however, we could indeed classify pixels based upon their Mahalanobis distances from distributions [106,140]. Thankfully, this is entirely possible. Since Eq. 3.21 uses a Mahalanobis distance to calculate a probability, we can rearrange it to yield an expression that will calculate a Mahalanobis distance given a probability. Eq. 3.28 describes this expression, wherein \(d_M \) represents Mahalanobis distance and \(p \) represents skin probability.
\[p = e^{\left(\frac{-1}{2}d_M^2\right)} = \frac{1}{e^{\left(\frac{1}{2}d_M^2\right)}} \]

\[e^{\left(\frac{1}{2}d_M^2\right)} = \frac{1}{p} \]

\[\frac{d_M^2}{2} = \ln(1/p) \]

\[d_M^2 = 2\ln(1/p) \]

\[d_M = \sqrt{2\ln(1/p)} \] (3.28)

As can be discerned from Eq. 3.28, the mapping of probabilities to Mahalanobis distances is non-linear. Whereas the probability of a colour representing skin will not vary linearly, along any axis, with its deviation from the mean of the given distribution (as illustrated by Fig. 3.28), its Mahalanobis distance from that mean will, of course, vary linearly with its deviation along every axis. This relationship can be illustrated by Fig. 3.31.

![Figure 3.31: The variation of Mahalanobis distance from the centre of a distribution. A range of Mahalanobis distances are presented, which would cover the vast majority of a distribution, to demonstrate its linearity.](image)

Although the Mahalanobis distance from the distribution mean along the perimeter of any of the ellipsoids depicted by Fig. 3.31 is constant, the Euclidean distance, demonstrably, is not necessarily so. This is because Mahalanobis distance is defined by, and is relative only to, the covariance matrix of a distribution, rather than the absolute distance between
two points in n-dimensional Euclidean space. However, were the dimensions of our space to be rescaled to have unit variance, then our ellipsoids would become circular, and the Mahalanobis distances would actually correspond to standard Euclidean distances. Additionally, although we have illustrated the linearity of Mahalanobis distance variation using rational values, the distances we use during any pixel classification process are likely to be irrational, such is the nature of the conversion from probability to Mahalanobis distance. For instance, a straightforward, meaningful probability threshold of 0.5 would correspond to a Mahalanobis distance of 1.1774. The actual values of the distances are of little concern, however, as it is merely whether the Mahalanobis distance of an input pixel is greater than or less than the given distance threshold that is important.

By using Eq. 3.28, we can determine the Mahalanobis distance \(d_M \) beyond which any colour will have a skin likelihood less than the given threshold \(p \), and within which any colour will have a skin likelihood greater than threshold \(p \). Having now alternated from probability-based pixel classification to Mahalanobis distance-based pixel classification, our decision rule for determining whether a given pixel is classified as “skin” or “non-skin” can now be described by Eq. 3.29.

\[
pixel = \begin{cases}
 \text{skin}, & \text{MahalDist}_{\text{pixel colour}} \leq \text{MahalDist}_{\text{threshold}} \\
 \text{non-skin}, & \text{otherwise}
\end{cases} \quad (3.29)
\]

Rather than having a probability threshold to which Mahalanobis distances are compared after expensive (over vast numbers of pixels) conversions, we now simply convert the probability threshold itself to a Mahalanobis distance (using Eq. 3.28) at the start of the pixel classification process, then compare the calculated deviations of pixel colours directly to that value. This means that the application of this new classification methodology will yield absolutely identical results to the probability-based decision rule we used previously (as described by Eq. 3.26), but will do so more efficiently.

3.2.4.2 Efficiently Discarding Zero-Likelihood Pixels

Although classifying pixels using Mahalanobis distances is less computationally expensive than doing so using probabilities, there is still a non-negligible cost associated with the classification of any given pixel. For an average arbitrary image, the vast
majority of pixels being classified will have skin likelihoods that are essentially zero, such is the extent of their colours’ deviations from the given model distribution. An example of this has already been seen in Fig. 3.27(b), wherein the pixels that are not black (those that actually have non-zero skin likelihoods) are significantly outnumbered by those that are. In spite of there being virtually no possibility that these pixels would ever be classified as skin (unless an infinitesimally small, and practically useless, probability threshold were to be applied), the time currently expended by our pixel classification process on determining the precise Mahalanobis distance of such a pixel is exactly the same as the time it would spend for a pixel with a non-zero skin likelihood, i.e. one for which calculating the Mahalanobis distance will actually determine whether it is positively or negatively classified, given a practical threshold. What this means is that the vast majority of the time currently being committed to the classification of pixels is actually being done so for, essentially, no benefit whatsoever to results. Therefore, an adequate solution to this issue should yield dramatic improvements to performance.

Devising a method to distinguish zero-likelihood pixels from those with actual possibilities of being classified as skin, without having to determine their Mahalanobis distances, would be greatly beneficial, as not having to perform multitudes of matrix-based calculations for those pixels would save significant portions of the time currently being spent on pixel classification. We could achieve such pre-emptive distinctions by defining a range of “possible skin” colours before performing any segmentation. Such a range could be used to determine, at a low computational cost, whether a given input pixel would definitely be classified as “non-skin” according to the given skin colour model, or whether there exists a possibility that it would be classified as “skin”. In this way, we could ensure that the time being spent on Mahalanobis distance calculations would only ever be done so for the betterment of results. Given a threshold value, this methodology could be used to achieve an even greater effect than the elimination of pixels with near-zero skin likelihoods, as the defined colour range could be calibrated to also reject pixels that have likelihoods that, while comparatively significant, happen to be below the threshold, thereby reducing the number of necessary Mahalanobis distance calculations even further, and improving computational efficiency to an even greater extent.
Defining colour ranges can be done dynamically, on an image-by-image basis, as parameters can be derived specifically from generated colour models. Given a defined probability threshold, we can use Eq. 3.28 to determine the Mahalanobis distance from the given distribution at which colours will have a skin likelihood equal to the threshold. As we previously have established, any colours with deviations greater than that distance will have skin likelihoods lower than the threshold, and would, therefore, be classified as “non-skin”. With regards to either individual dimension of the normalised rg colour space, the calculated Mahalanobis distance will equate to the maximum number of standard deviations from the mean that the colour component could exhibit before the colour itself would definitely be classified as “non-skin”.

Of course, one component of a given colour being within standard deviation bounds does not guarantee the positive classification of that colour, as the other component must also be within its respective bounds. Even then, it is still entirely possible that both of the components of a colour are close enough to their respective limits that the absolute deviation of the colour is greater than the given Mahalanobis distance threshold, which would also result in the colour being classified as “non-skin”. This is why, although we can apply colour bounds to greatly reduce the number of calculations performed during segmentation, the determination of Mahalanobis distances will always be required to some extent if we wish to maintain the accuracy of our results. However, by using a calculated Mahalanobis distance threshold to establish a range of colours for which calculations are necessary, with all others being outrightly classified as “non-skin”, we believe we can minimise that extent.

To determine the colour parameter bounds used during the segmentation of a given input, which consist of lower and upper limits on the normalised r and normalised g component values of colours, we can use the simple expressions described by Eq. 3.30, Eq. 3.31, Eq. 3.32, and Eq. 3.33, where μ_i and σ_i respectively represent the mean and the standard deviation of colour component i according to the model generated for the given input, and d_M represents the Mahalanobis distance calculated from the defined probability threshold.

$$lower\text{Limit}_r = \mu_r - (d_M \cdot \sigma_r)$$

(3.30)
Chapter 3. Adaptive Skin Segmentation

\[
upperLimit_r = \mu_r + (d_M \cdot \sigma_r)
\]
(3.31)

\[
lowerLimit_g = \mu_g - (d_M \cdot \sigma_g)
\]
(3.32)

\[
upperLimit_g = \mu_g + (d_M \cdot \sigma_g)
\]
(3.33)

With these limits established for a given input image, we ensure that Mahalanobis distances are only calculated for pixels that have normalised \(r \) values and normalised \(g \) values that are both greater than their respective lower limits and less than their respective upper limits. Any colour not within all four of these bounds will be classified as “non-skin” without consideration for its actual Mahalanobis distance, as it is certain to be greater than the given threshold anyway. Were these limits to be any more restrictive, colours that would actually represent skin according to the given model and threshold would, inevitably, be falsely negatively classified. Conversely, were the limits to be any more expansive, then the Mahalanobis distances of colours that would be classified negatively anyway would also be calculated, which would be detrimental to efficiency. Basing limits on the Mahalanobis distance threshold itself eliminates the potential for either of these issues. These concepts can be visualised by Fig. 3.32.

![Figure 3.32: The range of colours for which Mahalanobis distances are calculated is limited according to the Mahalanobis distance threshold itself, and all colours outside of that range will be classified as “non-skin” without such calculations.](image)

As can be seen, the limits we establish actually form perfect bounding boxes around the ellipsoids of given Mahalanobis distance thresholds, ensuring that no skin colours are
wrongly dismissed as “non-skin” and no unnecessary Mahalanobis distance-based classifications are performed. What can also be discerned is that, by virtue of the nature of ellipsoids, there will still be significant ranges of colours within any given bounding box that will not actually represent skin according to the given model and threshold, and these must be distinguished through Mahalanobis distance calculation. Given this modification to our segmentation process, the decision rule for determining whether a given pixel is classified as “skin” or “non-skin” can now be described by Eq. 3.34.

\[
pixel = \begin{cases}
 \text{skin}, & \text{pixel colour}_r \geq \text{lowerLimit}_r \text{ and } \\
 & \text{pixel colour}_r \leq \text{upperLimit}_r \text{ and } \\
 & \text{pixel colour}_g \geq \text{lowerLimit}_g \text{ and } \\
 & \text{pixel colour}_g \leq \text{upperLimit}_g \text{ and } \\
 \text{MahalDist}_{\text{pixel colour}} \leq \text{MahalDist}_{\text{threshold}} \\
 \text{non-skin}, & \text{otherwise}
\end{cases}
\]

(3.34)

Using Eq. 3.34 to segment skin ensures that the number of calculations required to accurately classify a pixel is kept to an absolute minimum, as a non-skin pixel will be classified as such upon the first failure to meet a condition, and, therefore, all conditions would only ever be evaluated for pixels within the given colour range. It is important to note that, despite these dramatic changes to the way in which we now perform skin segmentation, the results this process yields are identical to those that would be produced using the previous methods. The effect of implementing this system is merely the acquisition of the same results but with much greater efficiency, thereby improving system performance at no cost to accuracy whatsoever.

To determine the extent to which applying calculation-limiting colour ranges improves efficiency, we can repeat the experiment we carried out at the start of Section 3.2.4, and compare those results to what we can achieve now. Of course, the changes we have made will have no effect at all on the efficiency of the face detection and colour model-building processes, so whilst we expect dramatic reductions to the amount of time generally being expended on the segmentation of skin, the performance of those procedures will remain unchanged. Fig. 3.33 illustrates the results of our experimentation, having used exactly the same test parameters as we did during our previous trial. Our findings are presented in the context of those previous results in order to exemplify how beneficial our optimisations have been. It should be noted that these results will also reflect the benefits
of classifying pixels according to their Mahalanobis distances rather than their likelihoods, which was the initial algorithmic modification we made to pixel classification.

![Figure: 3.33: A relativistic comparison of the amount of time our system now expends executing its constituent individual processes, given the modifications made to the pixel classification component.]

As the results of Fig. 3.33 demonstrate, our attempts to optimise our skin segmentation process have proven to be extremely effective. The amount of time required to classify every pixel of a given image has been reduced by around 80%, which represents success beyond even our own expectations. Previously, segmenting skin required more than double the amount of time that face detection did, but this situation has now been entirely reversed, as the former now takes around half the time of the latter, which means detecting faces is now by far the most computationally expensive process our system consists of. The overall effect these optimisations is that the total throughput time for any given input image has been more than halved, which constitutes a rather incredible performance improvement, especially when the fact that there has been no compromise whatsoever to result accuracy is taken into consideration.

Although the total amount of time taken to classify the pixels of an image would previously vary only with the resolution of that image (i.e. the number of pixels it contains), as the amount of time expended by the classification of any given pixel would be constant, it will now also vary with the nature of the given image. Because the time-consuming Mahalanobis distance calculations are now only performed for certain colours, the total time it takes to segment the skin from an image will now also depend
upon the proportion of pixels within that image that exhibit skin-like colours and necessitate distance-based classifications.

3.2.4.3 Colour Range-Based Classification

Although we believe we have reached a practical limit on the degree to which our skin segmentation process can be optimised without any compromises being made to the accuracy of the results it generates, it would be prudent to explore the potential for minor compromises that could yield further performance enhancements. We have already greatly reduced the number of Mahalanobis distance calculations we perform by limiting them to certain ranges of colours, but it would be interesting to discover how a classification process that does not necessitate them at all would perform.

If we were to take our updated decision rule (described by Eq. 3.34), and simply remove the final positive classification condition (stating that the colour of the given pixel must deviate by less than the given Mahalanobis distance threshold), we would have such a process. This new segmentation technique would still establish colour ranges through the same methodology as before, but rather than dictate that pixels with colours that are within the limits of the given range will be subject to Mahalanobis distance-based classification, they would now simply be classified as “skin”. The decision rule for this classification process can, therefore, be described by Eq. 3.35.

$$
\text{pixel} = \begin{cases}
 \text{skin}, & \text{pixel colour}_r \geq \text{lowerLimit}_r \text{ and pixel colour}_r \leq \text{upperLimit}_r \text{ and pixel colour}_g \geq \text{lowerLimit}_g \text{ and pixel colour}_g \leq \text{upperLimit}_g \text{ and} \\
 \text{non} - \text{skin}, & \text{otherwise}
\end{cases}
$$

Given that the condition eliminated from our classification process was designed to disprove the notion that the colour of a given pixel is representative of skin, as it would generally be regarded as a positive sample until it could be confidently rejected, the new method by which we classify pixels will be more permissive. The colour ranges that would lie within all four parameter bounds but be rejected based upon their Mahalanobis distances (as can be seen in Fig. 3.32) will no longer be negatively classified, and will
instead also be categorised as “skin”. This new classification methodology can be visualised by Fig. 3.34.

![Figure 3.34](image)

Figure 3.34: Rather than using an established colour range to determine the necessity of Mahalanobis distance-based classification, this new segmentation method simply classifies any colours within the given colour range as “skin”.

With a greater range of colours being positively classified for any given image using the new decision rule, it would seem inevitable that we would achieve greater sensitivities than we would when using the previous method. Such gains, however, would likely come at costs to precision, as it would be colours that our models deem to have lower skin likelihoods than the given threshold that would now also be positively classified, which is certain to lead to increases in the numbers of false positive classifications made. Whether or not this would result in a net benefit, in terms of overall classification accuracy, would be dependent upon the nature of the given image, but what is certain is that the results would be achieved with greater efficiency. To determine the extent to which classifying pixels based only upon their adherence to colour range limits does actually reduce the amount of time taken to segment the skin from an image, we have repeated our throughput time proportion-based experimentation, and present the results in Fig. 3.35. Once again, our results are presented in the context of our previous findings to highlight the effect of our optimisations.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

As can be seen in Fig. 3.35, roughly a third of the time being spent on skin segmentation after the initial implementation of “possible skin” colour ranges has been saved by our most recent change in methodology. However, given that the classification of pixels was no longer the most computationally expensive process our system consisted of, not classifying pixels based upon their Mahalanobis distances at all only reduces overall throughput time by around a further 10%, the significance of which will depend upon the needs of the user. Whilst the amount of time taken to segment the skin from an image would be dependent upon the nature of the image using the previous classification methodology, this is not the case for the newly modified process, as the amount of time expended through determining whether an input pixel colour adheres to the given limits or not is the same for any given pixel. Therefore, the time expenditure of our segmentation process would now once again vary only with the size of the given image. Whilst not as monumental as our previous optimisation, this most recent modification does yield non-negligible benefits to the performance of our system, but whether or not these benefits come at only minimal and reasonable costs to segmentation accuracy can only be determined through evaluation.
3.3 Segmentation System Evaluation

In order to determine whether the development of our new skin segmentation system has been worthwhile, and whether the design decisions we have made throughout the process have been optimal, we must evaluate it against the very approaches that we have looked at previously and found to be insufficient for purpose. By discovering the circumstances under which our approach exhibits superiority over those previous works, we can go a long way towards establishing its value. In addition, we will also be experimenting with an existing adaptive methodology. By comparing its achieved results to those of our system, we can demonstrate that the strengths of our approach are not limited to its adaptive nature and that its development has not rendered it overly specialised.

The evaluation of our system will be conducted using two separate sets of images. The first of these is the lecture theatre images we have used previously. The initial impetus for the development of our system was the inconsistent performance of existing segmentation techniques when applied to complex lecture theatre imagery. By analysing how comparatively effective our new approach is at segmenting the skin from those images, we can assess whether we have found a sufficient solution to our problem.

The second set of images we will be using for classifier evaluation is a large dataset of arbitrary images. Throughout the development of our system, we have attempted to maintain algorithmic flexibility, ensuring that the technique will be effective for as broad a range of inputs as possible. Although it was designed with images depicting large numbers of people in mind, there have been no specific concessions made that would render the process unsuitable for images containing only a single face, for instance. Through demonstrating that our approach can outperform a broad range of existing methodologies given arbitrary images, its applicability to generic skin segmentation tasks can be determined.

In Section 3.1.2, we presented a simple quantitative comparison of previous techniques, which consisted of the evaluation of segmentations using three metrics: recall, precision, and F-score. These metrics were extremely useful, as their relating exclusively to the positive “skin” class meant that their reliability was not compromised by the extreme
class imbalance of the lecture theatre images, as opposed to that of accuracy, for instance. Whilst incredibly useful for providing a general sense of how the existing approaches performed, those metrics did not tell the entire story.

With regards to the pre-trained Bayes and Gaussian classifiers, which are continuous classifiers (i.e. output likelihoods on the interval [0,1]), we applied a 0.5 probability threshold based upon the logic that any colour with a likelihood above that value is more-than-likely to represent skin, and any colour with a likelihood lower than it is more-than-likely to represent non-skin. Through the application of a single threshold, we essentially formed a discrete classifier for each methodology, to be evaluated against each other as well as against the four other discrete, colour space-specific classifiers. This made direct comparison extremely straightforward, and allowed us to utilise those reliable, highly informative metrics. The compromise in that instance was that we only explored a single point on the operational spectrums of the Bayes and Gaussian classifiers, which means that we were not fully informed on how effective they truly have the capacity to be.

However, given that the system we have developed is also a continuous classifier, and that we now, naturally, have a much greater need to know precisely how well various classifiers (including our own) perform than we did during that preliminary testing, our quantitative analysis at this stage will be significantly more in-depth. This more detailed study will, of course, also apply to the existing approaches we have been working with, so any significant misrepresentation of reality the results in Section 3.1.2 yielded (if there are any at all) can be exposed and corrected.

The first additional evaluatory tool we will be applying to our results is receiver operating characteristic (ROC) analysis. A ROC curve is a graphical plot that illustrates how the performance of a binary classification system varies as the probability threshold applied to its outputs is varied across the entire [0,1] interval [170]. Performance at any given threshold value is represented by a single point in (FPR,TPR) space. TPR (true positive rate) is synonymous with recall and sensitivity, and specifies the capacity of a classifier to segment the samples belonging to the positive class. FPR (false positive rate) equates to 1 – specificity, and defines the tendency of a classifier to produce false positive classifications, in terms of the proportion of all negative input samples that have been positively classified.
By specifying a large number of threshold values, a representative ROC curve can be constructed for any binary continuous classifier. Such a curve will provide significantly more information about a classifier than condensing it down to a single threshold value ever could, as the entirety of its performance spectrum will be taken into account. The curve itself can be a very useful visual aid in the determination of the relative efficacy of a classifier, as it can reveal to what extent a certain classifier outperforms any other over the entire range of possible threshold values. Additionally, by minimising the distance (i.e. the classification error) between the curve and the top-left corner of the graph, which is the point (FPR=0, TPR=1) and represents perfect classification performance, an optimal threshold value for a given classifier can be identified, meaning that ROC curves can actually play a role in the training and optimisation of a classifier [170].

As useful as the visualisation can be, it is often times extremely beneficial to have a single scalar value that represents the overall performance of a classifier, making comparison extremely straightforward. Of course, we have previously used the F-score metric to provide such values, but, as we have established, its scope is limited to only discrete classifiers. From a ROC graph, however, we can derive a value that represents the proportion of the entire (FPR,TPR) space that exists between any given plot and the x-axis, which is referred to as the area under curve (AUC). AUC has been shown to be an extremely strong indicator of overall efficacy [3,4,44], and it will be an important aspect of our evaluation process.

In spite of the general usefulness of ROC graphs, there are complications presented by the nature of our lecture theatre imagery. Just as the reliability of accuracy is lessened by class skew, so too is that of a receiver operating characteristic. Some researchers argue that ROC curves are entirely insensitive to class distribution [25], as TPR and FPR relate exclusively to the positive and negative class, respectively, and so the balance between them will not be reflected by the appearance of any given curve. Whilst true, this does mean that ROC curves can yield overly optimistic representations of the performance of a classifier given evaluation data containing significant class imbalances, and will often not tell the whole story [21,49]. For instance, when the number of negative samples greatly outweighs the number of positive samples in an input sample set, large differences in the
number of false positives produced by different classifiers will only be reflected by very small changes to their false positive rates.

It is for this reason that many researchers instead opt to use precision-recall (PR) curves to evaluate binary classifiers [3, 21]. As the name suggests, they are constructed in a two-dimensional space constrained by the recall and precision metrics we have worked with previously. The most obviously apparent departure from ROC curves is the lack of regard for the negative sample class. For our purposes, this is immediately beneficial, as it is the positive class we eminently more interested in, as we established during our preliminary testing. The advantages that PR curves hold over ROC curves, therefore, can be considered similar to those that the F-score metric holds over accuracy.

PR curves are constructed in an identical fashion to ROC curves, with numerous probability thresholds being used to generate sets of (recall, precision) points for various classifiers, and they can similarly be represented by individual scalar AUC values. Despite establishing the rationale for PR curves being considered more reliable and informative than ROC curves given the nature of our data, we will be making use of both performance representations throughout our evaluation process, as we believe the more information we have, the stronger the conclusions we draw will be.

Throughout evaluation, we will be regarding the two forms of our classification system (hereby denoted by “AGSS”, standing for “Adaptive Gaussian Skin Segmentation”) as two entirely separate classifiers, which we will be referring to as “AGSS-Mahal” and “AGSS-Range”. The first of these, AGSS-Mahal, refers to the mode of operation that ultimately bases pixel classifications on Mahalanobis distances, whereas AGSS-Range is the form of our system that will classify pixels based only upon their adherence to the given established range of potential skin colours. It is important that we do regard them as separate entities, as it is not only whether our system can outperform existing techniques that is important to us, but also whether the additional optimisations that we implemented will yield unreasonable costs to accuracy.
3.3.1 Lecture Theatre-Based Imagery

As we established, the first stage of our evaluation will be conducted using the lecture theatre images that we used during our preliminary testing. It is vitally important that we determine whether our skin segmentation system is capable of solving the issue it was initially intended to solve. Although our quantitative analysis at this stage will be restricted to just those two images, we believe that they each contain so much information, in terms of the numbers and ethnicities of the people within them, and are so wildly different in nature, in terms of environmental factors that include image capture point and illumination conditions, that they will still provide us with a very strong understanding of how our classifier will perform given any image of their type, both in absolute terms and relatively to those existing methodologies.

However, we will also provide qualitative analysis of a number of other lecture theatre image segmentations, in order to demonstrate result consistency with the two primary images. The reason we cannot provide quantitative analysis of a larger number of lecture theatre images is simple: the production of manual annotations for such complex scenes, each of which contains dozens of separate skin regions that often encapsulate further non-skin regions, is extremely time-consuming. It is because of this that we chose the most dramatically different (although still high quality) images in our large lecture theatre image set to annotate, as they would allow us to confidently establish approach efficacy with maximum efficiency, as a result of their great diversity.

3.3.1.1 Discrete Classifier Analysis

Although we have previously outlined the pitfalls of forming discrete classifiers to represent continuous systems, our initial evaluation will involve the comparison of our approach to the existing techniques on the same basis that they were compared in Section 3.1.2. This will give us a good sense of how our approach performs in a practical scenario, and brings to completion that line of evaluation. Therefore, Fig. 3.36 illustrates the results of segmenting the skin from Fig. 3.1 and Fig. 3.2 using both classification modes of our system, given a probability threshold value of 0.5.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

(a)

(b)

(c)
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

Figure 3.36: The results of segmenting the skin from Fig. 3.1 using (a) AGSS-Mahal and (b) AGSS-Range, and the results of segmenting the skin from Fig. 3.2 using (c) AGSS-Mahal and (d) AGSS-Range.

In terms of the original configuration of our system (AGSS-Mahal), what may be immediately noticeable from the results depicted by Fig. 3.36(a) and Fig. 3.36(c) is that our approach appears to have excelled at avoiding false positive classifications. Whereas we found many instances of the existing segmentation techniques erroneously classifying large segments of the environment as skin, the issue is far less prevalent where our system is concerned. Even the particularly skin-like wooden surfaces visible in Fig. 3.1 have been successfully discarded almost entirely. Of course, what is also apparent is that these gains have come at some minor costs to recall. This is not an overly severe situation, however, as a high proportion of skin has been segmented for the vast majority of individuals across the two images. It would also seem that whatever shortfall exists in the number of true positive classifications achieved by our system, relative to other techniques, is greatly outweighed by the reduction in the number of false positive classifications achieved, which will yield considerably greater levels of precision, and ensure that a positive classification made by our system is only ever made with a high degree of confidence.

On first inspection, it may seem as if the results achieved by AGSS-Mahal (Fig. 3.36(a) and Fig. 3.36(c)) and AGSS-Range (Fig. 3.36(b) and Fig. 3.36(d)) are practically identical, but there are a number of subtle differences between the outputs that are worthy of note. In general, it would seem as if AGSS-Range is slightly more sensitive than
AGSS-Mahal, and is likely to produce a greater number of true positives and a greater number of false positives for any given input. The enhanced recall rates achieved for our lecture theatre images are most apparent in the faces of individuals, as small false negative regions have been dilated (in a morphological sense), or eliminated entirely. Additionally, we can note the existence of extra false positive classifications within certain surfaces of the environments, as well as in the hair of some individuals. This is all, of course, is logically consistent with the design of the system however, as AGSS-Range will positively classify every pixel that AGSS-Mahal does, plus those that are within “possible skin” colour bounds but beyond the Mahalanobis distance threshold, which will likely include both additional true positives and additional false positives. Whether the greater recall rates AGSS-Range achieves will be coupled with detrimental effects to precision will be depend upon the nature of given inputs. Fig. 3.37 presents a quantification of the outputs depicted by Fig. 3.36, and also compares the results to those achieved by the existing segmentation techniques, as shown previously in Fig. 3.14.
As we ascertained from the inspection of the output images in Fig. 3.36, the recall rates that our system has achieved using a 0.5 probability threshold are, generally, somewhat lower than those achieved by most of the existing techniques. What is incredibly encouraging, however, is the consistency with which our approach has successfully made true positive classifications. Whereas almost every other technique we have investigated has performed significantly more impressively on one image than it has on the other, the level of sensitivity we have achieved for each image is very similar. Achieving such result consistency was the main objective for developing an adaptive segmentation system, so these results can very much be considered a sign of success.

This consistency extends beyond the achieved recall rates, though, as our system has also produced very similar degrees of precision for each image. Unlike the sensitivity situation, however, the precision that our system has achieved is much greater than that of any of the other techniques we have looked at. This strongly supports our existing belief that the relative slight reduction in true positives that our system yields with a 0.5 probability threshold value comes with far more striking reductions to the number of
false positives it produces, which, again, means that positive classifications made by our system will confer much greater degrees of confidence to users that they are actually true than those made by any other technique will. It is these significant gains to precision that have resulted in the F-scores of our system being markedly superior to those of the existing segmentation approaches, suggesting that the overall performance of our system is decidedly better than that of any other, as far as these images are concerned.

With respect specifically to the results of AGSS-Mahal and AGSS-Range, the small differences between them are almost entirely in line with our expectations. Just as we observed in Fig. 3.36, AGSS-Range does indeed yield marginally greater recall rates than AGSS-Mahal, and this improvement does seem to be relatively identical across the two images. We also knew that there was an increase in the number of false positive classifications made, but without the quantitative results of Fig. 3.37, we could not be sure whether the balance between them and the additional true positive classifications would be such that the precision would be improved. Fig. 3.37 confirms that this is not the case, as, for each image, the precision achieved by AGSS-Range is slightly worse than that achieved by AGSS-Mahal. Interestingly, it would seem that the superior recall of AGSS-Range and greater precision of AGSS-Mahal are in almost perfect balance as far as their F-scores are concerned, as the two classification modes of our system have almost identical overall performance ratings for both images. By the nature of the design of our system, however, the results of AGSS-Range have been achieved with slightly greater efficiency than those of AGSS-Mahal.

3.3.1.2 Receiver Operating Characteristic Analysis

Whilst a useful indicator, Fig. 3.37 cannot tell the whole story of the performance of our system, as it concerns itself with just a single threshold value. It is for this reason that ROC analysis has the potential to be a superior gauge of overall success. By producing segmentation results for a large number of probability thresholds, we can form curves that will represent how well our system performs across its entire operational spectrum. We will form a curve for both AGSS-Mahal and AGSS-Range using this method, as well as for our pre-trained Bayes and Gaussian classifiers. Where curve-based analysis is concerned, the explicit cluster models we are also comparing our system to represent
somewhat of a complication. Since they are inherently discrete classifiers, there exists no continuous output to which a varying threshold value can be applied, and they can only ever yield a single point in ROC space. This means that a curve cannot be formed to represent them in quite the same sense that one can be formed to represent AGSS-Mahal, for instance. Building curves is very important for our evaluatory process, because they will subsequently allow us to derive AUC values, which are very powerful performance indicators [3,4,44].

By applying logic to the (FPR,TPR) ROC space, however, we can simulate curves for the explicit skin colour cluster models. Firstly, the point (0,0) represents a yield of zero positive detections, meaning no true positive or false positive classifications whatsoever. With a sufficiently large probability threshold value applied (such as 1), any given continuous classifier will produce such a result. If we also apply this notion to discrete classifiers, we can ascribe an additional point to their performance curves.

Similarly, the point (1,1) represents a yield of zero negative detections, meaning that every input sample has been indiscriminately positively classified. With a sufficiently small threshold value applied (such as 0), any given continuous classifier will yield a result such as this. Again, if this notion is applied to discrete classifiers, a third performance point can be attributed to them, and curves that are defined across the entirety of the ROC space can be formed.

It may seem that such curves would overestimate the capabilities of discrete classifiers, as they would not actually be able to deliver results at any point along them aside from the three we can specifically define, but the extent of this should not be considerable. By their very nature, the ROC curves of continuous classifiers will be somewhat convex, as their performances should improve and then deteriorate as the applied threshold value is varied over the [0,1] interval. Additionally, a straight line drawn between (0,0) and (1,1) would represent the result of random guessing (essentially, classifying inputs according to the flipping of a coin), and the performance of a classifier with any value whatsoever will always track above this line. Therefore, we would expect the characteristics of the continuous classifiers to yield larger AUCs than those of the discrete classifiers, reflecting their greater utility, unless the segmentation results of the latter should happen to be vastly superior to any individual result of the former.
Our ROC analysis results are illustrated by Fig. 3.38. We present the results of every existing technique we have been working with, and those of both classification modes of our own system, that have been achieved when segmenting the skin from our two lecture theatre images, as well as the mean between them. Being able to present average results is an additional benefit of ROC analysis when compared to the use of F-scores, which do not naturally lend themselves to consolidation. If we were to average the recalls and precisions achieved for our two lecture theatre images, for instance, the F-score we could derive from those values would not equate the average of the individual F-scores.
What Fig. 3.38 makes immediately apparent is the negative effects of extreme class imbalance on ROC analysis. The low prevalence of the skin pixel set within each image skews the false positive rates to such a degree that the performance characteristics are pushed towards the top-left corner of the space, which represents perfect classification. In terms of our analysis, this is detrimental because the differences between the performances of the classifiers we are looking at have become somewhat condensed, and not as pronounced as they would otherwise be. This is not to say that the analysis is of little value, however, as there is still much we can learn.

With respect to Fig. 3.38(a), for instance, we can see that the continuous classifiers “dominate” (have superior performances across the entire range of threshold values) every explicit cluster model but the YCbCr classifier of Hu et al. [43], which actually yields an individual performance far superior to that of any other approach. Furthermore, we can note that the performances of AGSS-Mahal and AGSS-Range are near-identical, and are marginally better than that of the Bayes classifier, on top of being significantly better than the Gaussian classifier. Fig. 3.38(b) presents a slightly different situation, as the explicit cluster models, Kovac et al.’s RGB model [67] being the exception, generally perform far worse, Soriano et al.’s normalised rg model [133] in particular. The performances of the continuous classifiers on the second image, including our own, are

Figure 3.38: The ROC curves representing the segmentation results achieved for (a) Fig. 3.1, (b) Fig. 3.2, and (c) the average between the two.
relatively consistent with the first image, and the results of AGSS-Mahal and AGSS-Range are, again, extremely similar.

The averaged results, illustrated by Fig. 3.38(c), indicate the advantages both forms of our system hold over the existing approaches as they are applied to general lecture theatre imagery. We can see that both AGSS-Mahal and AGSS-Range can deliver superior false positive rates to any other technique up to an incredibly high recall rate (around 0.93). To truly quantify the extent to which our system excels according to ROC analysis, we can investigate the AUCs of the characteristics we have produced, whereby a value closer to 1 indicates superior performance. For every component illustrated by Fig. 3.38, Fig. 3.39 presents the derived AUC for each segmentation methodology.

![Figure 3.39](image)

Figure 3.39: The calculated area under curve (AUC) value for each ROC characteristic depicted by the plots of Fig. 3.38, respectively. NB: The y-axis of these graphs, which represent AUC, has been truncated to a range of [0.5,1] in order to better emphasise the condensed differences between the results (an aberration caused by class imbalance).
As we discerned from the ROC curves themselves, the performance of our system is extremely consistent over the two images, with Fig. 3.39(a) suggesting only very marginally better results for Fig. 3.1 than for Fig. 3.2. For each image, it would seem that both AGSS-Mahal and AGSS-Range have outperformed every one of the existing approaches, albeit to varying degrees. The overall suggestion of these results, as illustrated by Fig. 3.39(c), is that our system is indeed superior to the alternative techniques, although the extent to which this may be true is obscured somewhat by the complications that the extreme class imbalance of our data has introduced to the ROC analysis.

3.3.1.3 Precision-Recall Analysis

In order to evaluate the results in a manner that is insensitive to the extremely low prevalence of skin present within our lecture theatre images (which average out to just 0.065), we can employ precision-recall analysis. The important difference between PR space and ROC space is that the former is constrained only by metrics that relate exclusively to the positive “skin” class (precision and recall). Although ROC curves and PR curves are built within different spaces, the metrics they pertain to are intrinsically related such that the dominance of one classifier over another in ROC space will exist if, and only if, the first classifier also dominates the second in PR space [21]. This relationship is extremely encouraging for us, as the characteristics of our system very nearly dominate those of every existing approach as far as the average results illustrated by Fig. 3.38(c) are concerned.

Curves in PR space are formed using almost the same procedure as curves in ROC space are, with only the explicit cluster models presenting somewhat of a complication. Whereas with ROC curves, we could simply ascribe the points (0,0) and (1,1) to the performance characteristics of those discrete classifiers to generate a full curve, the situation is not so straightforward where PR curves are concerned. There does exist a point to which all characteristics will converge when the applied probability threshold is 0. This point is (1,prevalence), as a threshold value of 0 will result in the positive classification of every skin pixel within the given image, and a precision that is equal to
the proportion of positive samples to negative samples that exist, i.e. the prevalence of the positive class.

The complications arise, however, when we consider what result a characteristic should express when the applied probability threshold is 1. Such a threshold will yield no positive classifications, so whilst the recall will simply be 0, the achieved precision would actually be undefined. If the threshold is lowered from 1 to the value at which the sample with the single greatest likelihood of the given set is positively classified by a given continuous classifier, whether or not the first defined point for the characteristic of that classifier is (0,0) or (1,0) would be determined entirely by whether that first segmented sample is a false positive or a true positive. If we control for the nature of images (i.e. the presence of non-skin pixels with extremely high skin likelihoods), we believe that the probability of that first positive sample being a true positive can be approximated by the average precision of the classifier. Therefore, we will complete the discrete classifier PR curves by ascribing the point (0,precision$_\text{classifier}$) to their characteristics, which will enable us to determine AUC values to represent them. This theoretical point attribution will also apply to the continuous classifiers, including our own, although it will be significantly less influential as far as their characteristics are concerned, as they are already defined by actual results using thresholds as large as 0.99. The completed PR curve graph for each lecture theatre image, as well as the average between them, is depicted by Fig. 3.40.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

In a rather stark contrast to the ROC curves illustrated by Fig. 3.38, the results presented by Fig. 3.40 actually exhibit rather large differences between the performances of the various classifiers we are concerned with, which constitutes a major benefit of the insensitivity of PR curves to class imbalances. Fig. 3.40(a) suggests that both AGSS-Mahal and AGSS-Range substantially outperform every other classifier on Fig. 3.1, as it is only the performance of Hu et al.’s YCbCr model [43] that is not dominated by them. Furthermore, whilst the characteristics of the two are very similar, we can observe some small degree of superiority on the part of AGSS-Mahal. With respect to Fig. 3.40(b), we can again observe almost-complete dominance by both classification modes our system, as their results can only be bettered very marginally at extremely high recall rates by the Bayes and Gaussian classifiers. AGSS-Mahal and AGSS-Range once again perform very
similarly, but the latter would seem to have achieved very slightly superior results at the lower threshold values.

The overall performance characteristics, as illustrated by Fig. 3.40(c), confirm that both AGSS-Mahal and AGSS-Range achieve comfortably superior results to any other technique on our lecture theatre imagery, as far as precision-recall analytics are concerned. We can observe that our system yields much better degrees of precision for recall rates up to around 0.91, which constitutes superior performance over the vast majority of its operational spectrum. Averaged out over the two images, it would seem that the difference in the performances of AGSS-Mahal and AGSS-Range become particularly negligible. To confirm the accuracy of this observation, we can again make use of AUC analysis, and Fig. 3.41 illustrates the AUC of each curve depicted by Fig. 3.40, where, again, values closer to 1 signify better overall performances.

Figure 3.41: The calculated area under curve (AUC) value for each PR characteristic depicted by the plots of Fig. 3.40, respectively.
We can note from the results illustrated by Fig. 3.41(a) that the performances of the existing approaches on Fig. 3.1 are rather poor, and are decidedly outclassed by our system, with only the Gaussian classifier coming close to offering stiff competition. Fig. 3.41(b) suggests that they perform significantly better on Fig. 3.2, with the Bayes classifier in particular having achieved a marked improvement over its previous result. Both AGSS-Mahal and AGSS-Range also yield improved results, however, maintaining their comfortable performance superiority over the alternative techniques. The overall results of our PR curve analysis for lecture theatre imagery, which are illustrated by Fig. 3.41(c), confirm the outstanding performances of our system, as the AUC both of its classification modes have achieved are significantly better than those of the previous approaches over the two images. Whilst there is little to discern between the performances of AGSS-Mahal and AGSS-Range, it is, again, worth bearing in mind that the results of AGSS-Range have been achieved with slightly superior efficiency.

3.3.1.4 Qualitative Analysis of Additional Images

As we outlined at the beginning of Section 3.3.1, an unfortunate consequence of the complexity of our lecture theatre images is that the process of creating manual annotations to define the presence of skin within them is extremely time-consuming. This was the reason for our quantitative analysis concerning only a pair of images. We offset that situation by selecting the most disparate and diverse images in our dataset to evaluate, but we can reinforce our findings by presenting the qualitative analysis of additional images. To that end, Fig. 3.42 illustrates the segmentation results our system has achieved for a further four lecture theatre images. It should be remembered that producing an actual segmentation using a continuous classification system involves the definition of a probability threshold, which will yield a single discrete classifier. Just as our results in Section 3.3.1.1 could not be used to provide complete performance assessments, the segmentations depicted by Fig. 3.42 can offer only a sense of how effective our system has the capacity to be.
Figure 3.42: The results achieved by AGSS-Mahal over four additional lecture theatre images, given an applied probability threshold value of 0.5.
From first inspection of Fig. 3.42, it would seem that the results we have achieved over these new images are well in line with those we achieved during our quantitative analysis. Generally, we see the classification of very few false positives, yielding excellent levels of precision. The one arguable exception to this observation is depicted by Fig. 3.42(a), in which a number of skin-coloured surfaces have been segmented to a non-negligible degree, which is an unfortunate consequence of the particular circumstances of that environment. Additionally, the illumination present within the image is far from consistent, with certain regions exhibiting the influence of significantly stronger incident lighting than other regions, which is problematic for both skin colour modelling and subsequent segmentation.

Even though the input images of Fig. 3.42 represent a rather diverse range of segmentation problems, it would be reasonable to suggest that our system has been very effective at identifying the particular skin tones present within each one, allowing us to consistently achieve what would appear to be fairly impressive recall rates. Combined with the generally high levels of precision we have achieved, the overall accuracy of these segmentations can be considered outstanding. These results, therefore, strongly reinforce the main conclusion that we drew from our quantitative analysis: that the adaptive skin segmentation system we have developed is highly effective at modelling and classifying the skin within lecture theatre-based images, especially in comparison to number of highly-regarded existing techniques.

3.3.2 Annotated Arbitrary Image Database

Although we have established that our system can comfortably outperform numerous existing approaches when it comes to the segmentation of skin from lecture theatre images, it is also well worth investigating how effective it can be where arbitrary images are concerned. Although the poor performance of those existing techniques specifically on lecture theatre imagery provided the impetus for us to build our system, its developmental process has not involved any concession being made for that particular type of input. Theoretically, therefore, we should also be able to achieve superior results for any given arbitrary image of people.
Rather than construct our own dataset of arbitrary images to evaluate our system against the existing approaches, we will be making use of the DB Skin annotated skin database of Ruiz-del-Solar and Verschae [115]. This dataset consists of 103 images of varying size, quality, environment, and subject, as well as a corresponding manual annotation for each one. Given the diversity of the segmentation problems the set poses, it will represent a very strong test of the general-purpose capabilities of the techniques we are interested in evaluating.

Our evaluation using the DB Skin dataset will be broken down into two individual analyses, the first of which will be performed over all 103 images it consists of. A large majority of the images within the dataset contain detectable faces, but there are a number that do not, and some of those contain no skin whatsoever. In these latter cases, our system will be incapable of constructing colour models, and will classify every pixel within such images as “non-skin”. The results of our system, therefore, may not compare favourably to those achieved by the existing approaches for the few images that contain skin but no detectable faces. This shortcoming, however, will be somewhat offset by the results we achieve for the images that contain no skin at all, as our system will be capable of correctly identifying the absence of any people, whereas the alternative techniques will continue to classify pixels without any regard for such higher-level information, and are liable to produce numerous false positive classifications without the potential to yield a single true positive.

It should be noted that our overall results will correctly account for these fringe cases, in terms of their contributions to the average performance metrics. For instance, we will consider the recall rates achieved for the images containing no skin to be “undefined”, and simply calculate the average recall of a classifier over the number of images that do actually contain skin. Similarly, if a classifier were to segment zero pixels from within an image (which, in practice, should only apply to our own system given an image containing no detectable faces), we will consider its achieved precision to also be “undefined”, and eliminate it from further calculations. We will not be applying this rule to circumstances where a classifier unfairly benefits from its undesirable results being disregarded, however. For example, the recall rates that our system achieves on the images that contain skin but no detectable faces will be recorded as 0, and will
contributed to its overall results, and the same principle will apply to the levels of precision achieved by the existing approaches on images that contain no skin whatsoever.

Our second analysis using the DB Skin dataset will involve evaluating segmentation performances over a 70-image subset. The images that constitute this subset are those within the dataset that contain at least one detectable face, with the remaining 33 containing no visible faces at all, or being of low enough quality that the detection of the faces that are visible within them becomes infeasible for the feature-based detector that we have adopted for our approach. Although we are interested in determining how well our system performs given any arbitrary image, we are also extremely keen to explore its relative efficacy when we can control for the visibility of faces within input images. In this way, we can emphasise how suitable our system may be for solving any problem where the presence of detectable faces can be guaranteed. Of course, our lecture theatre images served as practical examples of this suitability, but further demonstration will allow give us a more comprehensive understanding about the capabilities of our approach.

For both of these datasets, we will be using ROC analysis and PR analysis to evaluate classifier performance. We will not, however, be providing any individual discrete classification results to represent the continuous classifiers. Generating such results made sense for the evaluation presented by Section 3.3.1.1, as we were operating with such a small number of input images, but over a much larger and more diverse dataset, where the segmentations of individual images cannot be taken as reliable indicators of overall performance, doing so would be decidedly less useful. For the reasons we highlighted at the beginning of Section 3.3, however, we believe that the quantitative results provided by ROC and PR analysis will prove to be more than sufficient in allowing us draw accurate conclusions.

3.3.2.1 Complete Dataset Evaluation

As we outlined, the first stage of our analysis using the DB Skin annotated database will concern the results achieved over all 103 images it contains. The dataset is extremely diverse, and should be extremely effective at highlighting the specific circumstances
under which the various approaches we will be evaluating excel, and those under which they struggle. Many of the images contain faces, sometimes numerous but more often single, a few contain skin but no detectable faces, and a small number contain no skin whatsoever, and Fig. 3.43 exhibits examples of each of these types of images within the dataset.

![Images](image1.png) ![Images](image2.png) ![Images](image3.png) ![Images](image4.png)

(a) (b) (c) (d)

Figure 3.43: Samples of the images contained within the DB Skin dataset that contain (a) multiple detectable faces, (b) individual people with detectable faces, (c) regions of skin but no visible faces, and (d) no people whatsoever.

Even the few sample images we have provided in Fig. 3.43 strongly support our suggestion that the DB Skin database consists of an extremely diverse set of images, and should constitute a rather rigorous test of the segmentation capabilities of the approaches we will be evaluating. As could be discerned, the images that contain numerous detectable faces, such as those depicted by Fig. 3.43(a), are likely to be those for which our system delivers its best results, as the more visible faces there are, the higher the chances of at least one being found, allowing for a skin colour model to be built and skin pixels to be segmented. Provided they are of high enough quality, our system should also comfortably be able to segment the skin from images containing only individual faces, such as those depicted by Fig. 3.43(b).
It is images similar to those within Fig. 3.43(c) that will prove to be most problematic for our system, as the absence of any detectable faces will mean that we will be unable to build any colour models, and, therefore, be incapable of segmenting any skin. In terms of our evaluation, this issue is exacerbated by the fact that the absence of detectable faces does, of course, not hinder the recall rates of any of the other approaches we are working with, and they are likely to yield significantly better results for such images, boosting their overall performance characteristics. Images such as those depicted by Fig. 3.43(d) represent a stark contrast to that situation, as we would expect our system to successfully identify the clear absence of any faces, thereby making zero positive classifications and achieving perfect accuracy. Without regard for such information, however, the existing techniques are liable to produce significant numbers of false positives, harming their overall results in the process. The balance between these forms of images within the dataset could, therefore, play a non-negligible role in determining the relative performances of the classifiers we will be evaluating.

The first means by which we will be evaluating performance over all 103 images of the DB Skin database is **receiver operating characteristic analysis**. Our methodology at this stage will be identical to that applied during Section 3.3.1.2, which involved the production of results for the continuous classifiers at various probability threshold values over the [0,1] interval, which, in turn, can be used to form performance characteristics. Additionally, we will be applying the same logic to the discrete classifiers as we did previously, logically ascribing the (FPR,TPR) points (0,0) and (1,1) to their curves in order to subsequently derive representative AUC values. It should be noted that whilst the average prevalence of skin within the DB Skin dataset is much greater than the average present within our lecture theatre images (0.156 as opposed to 0.065), there does still exist a rather distinct imbalance between the skin pixel class and the non-skin pixel class. This means that the reliability and usefulness issues we faced previously will still be present during this analysis, although to a somewhat less extreme extent. The performance characteristics we have produced for various segmentation techniques, including our own, over the entire DB Skin dataset can be seen in Fig. 3.44.
Figure 3.44: The ROC curves yielded by various skin segmentation techniques when tasked with identifying skin pixels across the entire DB Skin database.

In comparison to the results illustrated by Fig. 3.38, the class imbalance present within the images of DB Skin has skewed the appearance of the performance characteristics of Fig. 3.44 to a much less severe degree, making the differences between them more distinct. In another contrast to those lecture theatre image results, we can observe that the results of the explicit cluster models are much more competitive in this instance, as both the RGB model of Kovac et al. [67], and the YCbCr model of Hu et al. [43] have yielded results that are superior to any of the individual results produced by the continuous classifiers. The HSV model of Sobottka and Pitas [132] has also demonstrated competence, although Soriano et al.’s normalised rg model [133] would appear to have achieved rather inadequate recall rates.

The results that both forms of our system have achieved over the entire dataset are somewhat disappointing, as they are generally inferior to those produced by most of the explicit cluster models as well as the Gaussian and Bayes classifiers, the latter of which seems to have performed comfortably better than any other approach at the highest recall rates. Our system has, however, yielded superior numbers of false positive classifications at recall rates up to around 0.5, but the benefits of this to overall performance have been diminished somewhat by the class imbalance. We can note that there is, once again, very little difference between the performances of AGSS-Mahal and AGSS-Range, although the latter would appear to have achieved very marginally superior results over the centre
of its performance spectrum. In order to more effectively interpret the ROC curves illustrated by Fig. 3.44, we have derived AUC values to represent them, which are presented in Fig. 3.45.

![Figure 3.45: The calculated area under curve (AUC) value for each of the ROC characteristics illustrated by Fig. 3.44, which were achieved over the entire DB Skin database. NB: The y-axis of this graph, which represents AUC, has been truncated to a range of [0.5,1] in order to better emphasise the condensed differences between the results (an aberration caused by class imbalance).](image)

The results depicted by Fig. 3.45 confirm the observations we made about the ROC curves that have been produced using all 103 images of the DB Skin dataset. We note that the performances of our own system are decidedly mediocre in comparison to those of several of the existing approaches, with the Bayes classifier in particular having yielded clearly superior results. Whilst disappointing, however, the inferiority of our system in this instance was not entirely unexpected, as we were not able to guarantee the presence of faces throughout the entire set of images. Furthermore, for the reasons we detailed at the outset of Section 3.3, the class imbalance present within the set has negatively impacted the degree to which ROC-based results can be considered representative of true capability.

Just as it did during our lecture theatre image evaluation, we expect that precision-recall analysis will be able to provide us with highly useful information despite the presence of a significant class imbalance within the set of images we are using. We will be
constructing the representative PR curves using the exact same methodology we employed in Section 3.3.1.3, with the (recall, precision) points (0, precision\textsubscript{classifier}) and (1, prevalence) again being logically attributed to the characteristic of each of the segmentation approaches. Although we were disappointed with the results of our ROC analysis, given that none of the characteristics of the existing techniques actually dominated those of our own system, we know, at the very least, that our performance characteristics in PR space will not be dominated by any others either. In fact, we reserve some degree of optimism, as the strong false positive rates we achieved previously should be reflected more appropriately by the skew-insensitive precision metric. The performance characteristics that we have constructed for our PR analysis can be seen in Fig. 3.46.

![Figure 3.46: The PR performance characteristics of the results achieved by the segmentation methodologies over all 103 images of the DB Skin dataset.](image)

The characteristics illustrated by Fig. 3.46 tell a slightly different story than the ROC curves depicted by Fig. 3.44 did. It is now made rather obvious, for instance, that at lower recall rates, both classification modes of our system are capable of yielding significantly better levels of precision than any of the existing approaches, with AGSS-Mahal offering slightly superior results in this regard. This is not to say that PR analysis has yielded results that are satisfactory for us, however, as we can plainly observe that both AGSS-Mahal and AGSS-Range have struggled greatly in achieving high recall rates, the former in particular. Given this rather dramatic fall-off in the performance of our system, it is
somewhat difficult to discern how our overall results compare to those of the existing techniques. Deriving AUC values for the characteristics should prove to be extremely useful in that regard, and Fig. 3.47 illustrates these results.

As the calculated AUC values of Fig. 3.47 make clear, the overall performances of our system compare much more favourably to those of the existing approaches in this instance than they did during our ROC analysis. In fact, PR analysis would apparently suggest that the performances of AGSS-Mahal and AGSS-Range are bettered only by that of Hu et al.’s YCbCr model [43], and the superiority of that technique is only very marginal. We do still consider our results to be rather disappointing, however, and believe that our system is capable of significantly better results given slightly more favourable circumstances. Whilst our unsatisfactory performance was somewhat exaggerated by ROC analysis because of the complications introduced by class imbalance, the PR characteristics of Fig. 3.46 suggest rather strongly that our system is not ideally suited to consistently segmenting skin when presented with the types of problems that DB Skin, in its entirety, poses.

What we have found is that our approach actually yields highly impressive results on the images within the set for which face detection can be achieved. Our inadequate overall recall rates, therefore, are not the result of poor general sensitivity, but rather the
consequence of a large number of successful segmentations being tarnished by a small
number of instances in which the absence of a detectable face has rendered our system
unable to segment any skin at all. Similarly, the lacklustre degrees of precision achieved
by the existing approaches can be partially attributed to the small number of images
within the DB Skin dataset that contain no skin whatsoever, for which multitudes of false
positive classifications will have been made for no true positives, resulting in zero
precision. It would seem, therefore, that the diversity present across all 103 images of DB
Skin has exposed the weaknesses of every segmentation approach we have investigated,
not only our own.

3.3.2.2 Detection-Facilitating Image Evaluation

Having established that our system will yield overall results that are comparable to those
of the existing techniques when tasked with segmenting skin from an extremely diverse
set of arbitrary input images, we are now interested in determining how well it will
perform when the presence of detectable faces within the input images is controlled. Of
course, it was when face detection yielded no results that our system failed to segment
skin during our previous analysis, so we would expect to see noticeable improvements to
overall performance given exclusively images that facilitate the detection of faces.

This analysis does not simply represent a concerted or contrived effort to generate
favourable results for our system, however, as there are numerous real-world
circumstances under which the presence of detectable faces can be naturally assumed
(such was the case with our lecture theatre images, for instance). It is necessary for us to
understand how our system performs given a broad range of such inputs, so that we can
ascertain just how suitable our approach would be for providing solutions to certain
problems, and determine how widely applicable it could truly be.

In order to establish an appropriate set of images for this analysis, we must discard those
from the DB Skin dataset that do not pose the type of problems we are interested in
solving at this time. This means that the subset of images we will be performing our
evaluation with will not include any inputs that contain no skin at all, and none that do
contain some skin but no visible faces, which rules out the types of images represented
by Fig. 3.43(d) and Fig. 3.43(c), respectively. It should be noted that the elimination of
the former type of image (those containing no skin whatsoever) benefits the existing
approaches far more than it does our own system, so we would expect to see those
techniques also demonstrate performance improvements during this analysis, not just our
own system. The extent to which their results improve in comparison to ours is of the
utmost important, however.

Additionally, there are a number of images within the database that contain at least one
“visible” face (i.e. a face that is clearly discernible to the human eye), but no “detectable”
faces, as far as our implementation of the Viola-Jones face detector [147] is concerned.
The images within the DB Skin dataset for which this is the case exhibit a rather broad
range of causes. For instance, the face of the subject may be partially occluded, or
oriented in such a way that its features no longer align with the expectations of the
feature detector, resulting in it being rejected as a possible face. Furthermore, numerous
images are simply of such low quality that the features of the faces within them become
indiscernible, and virtually impossible to detect programmatically. Fig. 3.48 depicts a
sample of the images within the dataset that exhibit these types of issues, meaning that
we will not be using them for this analysis.

Figure 3.48: A sample of the images within the DB Skin dataset that contain “visible”
faces, but no faces that are detectable by our implementation of the Viola-Jones face
detector [147]. These images, and a number of others like them, will not be used as
inputs during this analysis.

The images of Fig. 3.48 highlight a number of the issues that the DB Skin dataset
presents to the process of face detection. The problem of insufficient image quality,
prevalent within the above images, can be the result of a number of factors, including low
capture resolution and inadequate or outdated camera hardware. Extremely uneven
illumination, which can also be observed, can have extremely detrimental effects on face detection, just as it does on skin segmentation. We have found that of the 103 images that constitute the entire dataset, the images that contain no skin at all, those that contain no visible faces, and those that contain no detectable faces account for a total of 33. This means that there are 70 images within the set that do actually facilitate face detection, and it is these that we will be using for this analysis.

As with our previous analyses, our first performance evaluation will concern **receiver operating characteristic analysis**. Our methodology at this stage will be identical to the one we applied in Section 3.3.2.1, although we are of course now operating with a subset of the images we were using at that time. Interestingly, despite eliminating from our test set the images containing no skin, the images containing no faces, and the images containing only faces of such poor visual quality that they are undetectable, the overall prevalence of skin within the set has increased only from 0.156 to 0.157, which is an essentially negligible difference. The consequence of this is that the issues of ROC reliability and value that are introduced by class imbalance are still very much relevant now. Regardless of this, however, it is the contrast to the results achieved over all 103 images of the DB Skin dataset that are most important to us at this time, and the performance characteristics we have developed for the reduced image set can be seen in Fig. 3.49.

![Figure 3.49: The receiver operating characteristics produced by the segmentation methodologies we are investigating over our 70-image, face detection-facilitating dataset.](image-url)
The results illustrated by Fig. 3.49 highlight a number of extremely interesting points. Firstly, it would appear that the performances of the existing approaches are all improvements over their previous efforts, although these improvements would appear to be so uniform that the differences between them have actually changed very little. It is where the results of our own system are concerned that we can observe rather significant comparative differences. Whereas before, both forms of our system produced marginally superior levels of precision at lower sensitivities, but then struggled greatly in delivering recall rates nearly as high as those of the existing techniques, the situation presented by these results is dramatically different. As well as even greater precision now being yielded by our system up to recall rates of around 0.65, the most striking improvement in its performance is exhibited by its top-end recall rates, which are now superior to those of every other approach, Bayes classifier by a small margin aside. Once again, the differences between the performances of AGSS-Mahal and AGSS-Range are very slight, but it would appear that the latter produces slightly better results over the central probability threshold values. To more effectively determine how relatively well our system has performed on the 70-image dataset according to ROC analysis, we can utilise the AUC values of the curves of Fig. 3.49, which are depicted by Fig. 3.50.

Figure 3.50: The calculated area under curve (AUC) value for each of the ROC characteristics illustrated by Fig. 3.49, which were achieved over our 70-image subset of the DB Skin database. NB: The y-axis of this graph, which represents AUC, has been truncated to a range of [0.5,1] in order to better emphasise the condensed differences between the results (an aberration caused by class imbalance).
The AUC values illustrated by Fig. 3.50 confirm many of our observations of Fig. 3.49. Firstly, we can note that the distribution of the performances of the existing approaches is virtually unchanged, as they have all yielded slight, but noticeable, improvements over their performances for the 103-image dataset. It is the improved results of our system that are made the most apparent by the AUC values, however. Previously, the overall performances of AGSS-Mahal and AGSS-Range, according to ROC analysis, were roughly on par with that of the HSV model of Sobottka and Pitas [132], and inferior to those of a number of other techniques. However, Fig. 3.50 suggests that AGSS-Range is actually the pre- eminent performer where images containing detectable faces are concerned, with the results of AGSS-Mahal only being very slightly worse overall, although also marginally inferior to those of the Bayes classifier. Whilst encouraging, it should be remembered that these results may not fully represent the reality of the situation, as the class imbalance within the input images will have skewed the performance characteristics to some non-negligible degree.

Once again, to overcome the issues that class imbalance can pose, we will be making use of precision-recall analysis, and the methodology we will be employing to do so will be identical that which we used in Section 3.3.2.1. During our evaluation with the entire DB Skin dataset, we observed that PR analysis gave a much more favourable assessment of the performance of our system than ROC analysis did, due largely to the specific nature of its results, which were characterised by the generally successful avoidance of false positive classifications. We would, therefore, expect to see PR analysis yielding an extremely positive assessment of our system in this instance as well, and the characteristics that constitute this analysis can be seen in Fig. 3.51.
In line with our prediction, the PR curves illustrated by Fig. 3.51 do indeed cast the results of our system in an extremely positive light. Even in this precision-recall space, where differences should, theoretically, be more pronounced, the relative performances of the existing approaches have changed very little, as they have all recorded small, near-uniform improvements. The major differences between the results of Fig. 3.46 and those depicted by Fig. 3.51 lie, of course, in the performances produced by our own system over the reduced dataset. Whereas over the entire DB Skin dataset, we observed rather significant declines in the levels of precision achieved for recall rates of around 0.5 and above, we can now see that our system maintains its superior precision up to a recall rate of just over 0.7, as well as delivering much greater degrees initially. Furthermore, the recall rates we have achieved at the top-end of the scale are very much comparable to those produced by the best of the existing techniques. In terms of the differences between the performances of AGSS-Mahal and AGSS-Range, we can note that the former yields slightly greater levels at precision at the greater threshold values, but the latter is marginally superior at the lower values. To accurately quantify the degree to which PR analysis suggests that our system is the predominant segmentation approach of this evaluation, we can make use of AUC values once more, and those we have derived are illustrated by Fig. 3.52.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

Figure 3.52: The calculated area under curve (AUC) value for each of the PR characteristics illustrated by Fig. 3.51, which were achieved over 70 images of the DB Skin database.

As we discerned from our inspection of Fig. 3.51, the performances of our system are comfortably superior to those of the existing techniques. During our analysis using all 103 images of the dataset, we found that, even though PR characteristics were favourable to our results, the overall performances of our system were not outstanding, and were inferior, however slightly, to those yielded by the YCbCr model of Hu et al. [43], as well as only being marginally better than those of a number of the alternative approaches. What we now see, however, is that both classification modes of our system have excelled given the more specific form of images this analysis consists of. As we predicted, the results of the existing techniques have maintained their distribution almost perfectly, but, despite them all demonstrating performance improvements, their gains are so minor that they are now noticeably outclassed by our own system. Again, there is very little to choose between the results of AGSS-Mahal and AGSS-Range, but the superior efficiency of the latter certainly counts in its favour.

3.3.2.3 Partial Dataset Performance Improvements

Having now analysed the performances that every approach we have been working with has produced over both the entire 103-image set of DB Skin and the reduced, face detection-facilitating 70-image set, it is important that we examine the quantitative
differences between the results. In doing so, we can easily gauge how much more effectively our system can solve segmentation problems that guarantee the presence of detectable faces (such as our 70-image dataset) than numerous existing approaches can. Additionally, we can determine how much more suited our system is to such problems than those where the presence of detectable faces is not entirely assured (as was the case when we used the 103-image dataset). Without a face to detect within a given image, our system will, of course, simply be incapable of segmenting the skin within it, should there happen to be any.

However, the empirical probability of a detectable face being present given a certain type of problem should be weighed against the extent to which our system yields superior results when one actually is. This probability will determine whether the overall results that our approach yields will be superior to those of other techniques, although this situation would be mitigated somewhat by the potential for a problem to also present inputs that contain no skin at all, which our system will be uniquely capable (as far as this investigation goes) of identifying and classifying correctly. The 103-image dataset and the 70-image subset we have been working with obviously represent different face presence likelihoods (with the former facilitating detection in around 68% of cases, and the latter, by design, 100%), and the margins between the results achieved over the two sets can be seen in Fig. 3.53.
Figure 3.53: The differences, denoted by the coloured segments, between the results achieved by the segmentation methodologies on the 103-image dataset and the 70-image dataset, according to (a) ROC analysis and (b) PR analysis. Given that every approach produced improved results for the 70-image dataset in both analyses, the grey segments represent the initial results, and the coloured segments actually represent the improvements. NB: The y-axis of (a), which represents ROC AUC, has been truncated to a range of [0.5,1] in order to better emphasise the condensed differences between the results (an aberration caused by class imbalance).

What is perhaps most interesting about the results illustrated by Fig. 3.53 is how similar the improvements achieved over the two different forms of analysis are, given that they pertain to spaces that are markedly different in nature. In both instances, we can note that whilst the existing approaches have all performed slightly more effectively over the 70-image dataset than over the larger one, the improvements to the results of our system are substantially greater. It should be noted that whilst the 70-image dataset was built with the strengths of our methodology in mind, the types of images it consists of are in no way inherently problematic for the existing techniques. In fact, of the 33 images belonging to the DB Skin dataset that we have discarded, 8 (so, almost a quarter) of them contain no skin whatsoever, and their elimination serves only to boost the overall results of the existing approaches, and actually detract from the performances of our own system. In essence, we discarded all of the images from the dataset that represented inherent issues for any of the approaches we are working with, in order to establish a level playing field for actual skin segmentation.

In the ROC domain, we observed that our results were, by a wide margin, inferior to those of a number of the other techniques for the 103-image dataset. However, given the
consistent presence of detectable faces within the inputs of the 70-image dataset, ROC analysis, despite still being rather heavily skewed against us due to the nature of our results and the class imbalance present, now deems our system to be essentially on par with the best of the existing approaches. Given the existence of that prevailing class imbalance, however, it would be remiss of us to place too much value in these results, or draw conclusions from them exclusively.

Despite the strong similarity of the improvements gained over ROC and PR analysis, the final situations that they present are slightly different. During our initial 103-image evaluation, although the PR characteristics of our system were decidedly different in nature to those of the other segmentation methodologies (as we generally yielded greater precisions, but lower recall rates), the overall AUC values we achieved were very much comparable to that of the best of the alternatives. As far as PR analysis is concerned then, the result of our improvements over the 70-image dataset being much greater than those of the existing approaches is that our system can be considered comfortably superior to any of them given the assured presence of detectable faces. Given the highlighted issues of pixel class imbalance, it is the results of our PR analysis that we attribute higher value to, making its favourable assessment of our system all the more encouraging.

3.3.3 Adaptive Methodology Comparison

As well as comparing our system to established static segmentation approaches, it is important to explore how well it performs against existing adaptive technology. In doing so, we can go beyond demonstrating the benefits of adaptive methodologies as a whole, and express the strengths of our system in particular. Towards this end, we will experiment with one of the adaptive approaches we identified during our literature review: the face detection-based system of Hsieh et al [41]. Although this approach is similar to ours in some regards, there are a number of keys differences, and we hope to discover the effects on overall performance of the divergent design decisions.

Whilst this analysis should allow for important insights to be made, a noteworthy caveat is that we have had to write the implementation of the existing approach ourselves, as we do not have access to the source code of the work. Therefore, although our recreation is
as accurate and as truthful as we can achieve given the description offered by the published article, it should be noted that the results we present may not be entirely representative of the full capabilities of the methodology. However, given our understanding of the research, we do not expect any inaccuracy that exists in this regard to be significant.

Given the structural similarity with our own methodology, we have used our system as a basis for the implementation of the existing approach, and made a range of modifications, which can be summarised thusly:

- Face sample regions are defined by squares about detection centres that are 60% of the height and 60% of the width of the original detections.

- Non-skin pixels are filtered out through the assumption of skin luminance distribution symmetry, whereby a lower bound is defined by the deviation of the brightest pixels from the given distribution mean.

- Skin colour models consist of the means and standard deviations of the normalised r, normalised g, and red distributions of filtered skin pixel sets.

- Where segmentation is concerned, pixels are classified as skin if their colour component values all fall within two standard deviations of their respective model means.

As could be noted, these changes pertain to almost every major component of our system, which should mean significant differences in the results achieved. The one exception to this is the process of face detection. Although the work of Hsieh et al. [41] also made use of the Viola-Jones detector, it was implemented primarily with individual subjects in mind, for which the research we have conducted towards determining an optimal detection sensitivity for reliable sampling purposes would be of no concern. In order to give the existing approach the greatest potential to succeed over our large-scale imagery, and to emphasise the specific effects of the differences outlined above, we will be allowing it to benefit from that research and be providing it with the exact detection results that our system produces.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

The evaluation itself will be conducted over two datasets we have worked with previously: the pair of lecture theatre images; and the set of face detection-facilitating images within the DB Skin dataset. These datasets will be sufficient for demonstrating that the strengths of our system extend beyond the simple fact that it is adaptive, and that our detection sampling, model construction, and pixel classification methods are also sound. Furthermore, for the sake of consistency, the evaluatory methodologies we will be employing will be identical to those used previously.

3.3.3.1 Adaptive Lecture Theatre Imagery Analysis

We will firstly compare the performance of the existing adaptive approach to that of our system with respect to our two lecture theatre images. It is the accuracy of results over these inputs that we originally set out to improve upon, so it is important to fully establish that our research has paid dividends in this regard. Just as in Section 3.3.1, our initial evaluatory tool will be discrete classifier analysis, which should provide some straightforward, if somewhat incomplete, insights. The outputs generated by the adaptive approach of Hsieh et al. [41] are presented by Fig. 3.54.

![Figure 3.54: The outputs produced by the adaptive approach of Hsieh et al. [41] when tasked with segmenting skin from (a) Fig. 3.1 and (b) Fig. 3.2.](image)

As can be seen in Fig. 3.54, it would appear that the existing adaptive approach has consistently segmented large portions of skin throughout both inputs, with lighter skin tones being identified particularly effectively. The precision demonstrated by these results would not seem to be as strong, however, as some considerable regions of false positives have also been segmented, which is an especially large issue where the low skin
prevalence of Fig. 3.1 is concerned. These results are quantified and compared to those of both versions of our own system, using 0.5 probability thresholds, in Fig. 3.55.

![Image of bar chart showing metric scores for different skin segmentation approaches and probability thresholds.]

Figure 3.55: Quantification of the outputs presented by Fig. 3.54, compared to those of our own system using 0.5 probability thresholds.

The results shown by Fig. 3.55 indicate clearly that the recall rates yielded by the approach of Hsieh et al. [41] greatly exceed those of our own system, when implemented with probability thresholds of 0.5. Furthermore, it can be noted that the recall rates achieved over the two inputs are almost identical, demonstrating strong consistency in that regard. Far less consistent, however, is the precision of those results, as the adaptive method has yielded substantially lower levels of precision than our system has, especially where Fig. 3.1 is concerned, meaning that its positive classifications are considerably less reliable. In terms of overall accuracy, as signified by the F-scores, it would appear that our system has achieved comfortably superior results over Fig. 3.1, and also performed marginally more effectively over Fig. 3.2. Given that these results represent just individual points on the continuous operational spectra of our system, however, this type of analysis cannot be considered comprehensive. It is for this reason that we will also be employing receiver operating characteristic analysis. The methodology we will use for generating performance curves will be identical to that used previously, and the results produced over our lecture theatre images by the existing adaptive method and our own system can be seen in Fig. 3.56.
Figure 3.56: Receiver operating characteristics produced by the approach of Hsieh et al. [41] and our own system over (a) Fig. 3.1, (b) Fig. 3.2, and (c) the average of the two, as well as the respective AUC values.

As can be seen, in terms of ROC analysis, the results achieved by the existing adaptive method are extremely similar over the two inputs, just as the performances of our own system are. Furthermore, we can observe that the two individual performances virtually overlap the curves of our approach, suggesting that threshold values exist that would result in us producing near-identical TPR/FPR results to those of Hsieh et al. [41]. The AUC values characterising the performance curves express the superiority of our system.
conferred by its capacity to achieve greater levels of recall or precision, although, as before, these results cannot be considered entirely reliable because of the extreme class imbalance presented by the images. Therefore, we will also be utilising precision-recall analysis, where the focus on positive class metrics negates the issues of class skew. The process of curve construction will be identical to before, and the results generated by the existing method and our own over the two inputs are illustrated by Fig. 3.57.

![Figure 3.57: Precision-recall performance curves produced by the approach of Hsieh et al. [41] and our own system over (a) Fig. 3.1, (b) Fig. 3.2, and (c) the average of the two, as well as the respective AUC values.](image)
Although the results of Fig. 3.57 indicate significantly superior performances by all approaches over Fig. 3.2 than over Fig. 3.1, we can note that, similarly to before, the performances of the existing approach overlap the curves of our system almost perfectly, again suggesting that we could yield very similar outputs, in terms of recall and precision, given certain threshold values. However, as evidenced by the complete performance curves, the capabilities of our system exceed those of the approach of Hsieh et al. [41], as we can achieve greater recall rates and much higher levels of precision, if configured to do so. The corresponding AUC values quantify this efficacy and flexibility, as we can plainly note the overall superiority of our system given the lecture theatre imagery, which indicates that the strengths of our approach are not limited to its capacity to adapt to inputs.

3.3.3.2 Adaptive Arbitrary Imagery Analysis

As before, to fully assess classifier capabilities, it is important that we analyse the results achieved over arbitrary images. Although we have already demonstrated that our system can perform effectively given such images, by comparing the results we achieve to those of the existing adaptive approach, we can show that there exists no overspecialisation that was previously compensated for simply by the inherent benefits of adaptation. We will be utilising the 70-image subset of the DB Skin database that allows for face detection, as the approach of Hsieh et al. [41] and our own system would perform identically over the excluded images, which would offer no useful information and serve only to obscure the performance differences that do exist. Our first form of analysis will concern receiver operating characteristics, and those produced by the existing approach and both versions of our own system over the 70-image dataset, using the same methodology as before, can be seen in Fig. 3.58.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

Figure 3.58: The receiver operating characteristics produced by the adaptive approach of Hsieh et al. [41] and our own system over the face detection-facilitating 70-image subset of the DB Skin database.

Similarly to our analysis over the lecture theatre imagery, Fig. 3.58 indicates that the performance of the existing adaptive method is near-identical to results that our system will produce given certain threshold values. Again, when we take the entire performance characteristics into account, this means that our approach has produced superior overall results, which is reflected by its greater AUC values. Although the skin prevalence presented by the set of arbitrary images is greater than that of the lecture theatre images (0.157 as opposed to an average of 0.065), there still exists enough of a class imbalance for ROC analysis to be rendered somewhat unreliable. Therefore, we will also be utilising precision-recall analysis, and the results generated by the existing approach and our own system over the set of 70 detection-facilitating images can be seen in Fig. 3.59.

Figure 3.59: The precision-recall performance curves produced by the adaptive approach of Hsieh et al. [41] and our own system over the face detection-facilitating 70-image subset of the DB Skin database.

Unlike previous results, Fig. 3.59 indicates that the performance of the existing approach is actually slightly superior to the performances of our system in terms of both recall and
precision over a small range of likelihood threshold values. This is comfortably offset by the remainders of the spectra, however, which demonstrate the capacity of our system to generate results of either significantly greater recall or significantly greater precision. The AUC values characterising overall performance express the superiority of both forms of our system over the approach of Hsieh et al. [41] for the arbitrary image dataset, which suggests strongly that there exists no overspecialisation in favour of the lecture theatre imagery we have worked with.

3.3.4 Segmentation Efficiency Evaluation

As well as segmentation accuracy, another key factor in determining whether a classifier is suitable for solving a certain problem is its efficiency, which considers the amount of time (or computational energy) that the system expends in the process of generating an output. How critical a factor this is in the selection process of an ideal solution to a problem will depend upon the nature of the given task. It is paramount for the potential applicability of the system we have developed to establish how efficiently it can operate in comparison to a wide range of existing approaches. Rather than being a mere afterthought in the pursuit of maximum segmentation accuracy, ensuring computational efficiency has played a role throughout the development of our approach, and was been fully considered during the making of decisions pertaining to face detection, pixel filtering, model building, and pixel classification. This efficiency evaluation will consist of two separate analyses, which represent two entirely different types of segmentation problem.

3.3.4.1 Offline Performance Analysis

The first type of problem we will be analysing is “offline” segmentation. Such a task would typically consist of a large set of images requiring segmentation, with the achieved results not being yielded immediately after the processing of an image, perhaps instead being collated with the results of every other image within the given set before being yielded by the system. We have already presented a practical example of this form of problem, as all of the quantitative results presented throughout Section 3.3.1 and Section 3.3.2 were generated in an offline fashion. Under typical circumstances, computational
efficiency is not overly critical where offline segmentation is concerned, but were the efficiency of a system to be extremely low, then the parameters of a certain task could dictate that that approach is not a suitable solution. A system that captures images during the day and requires them to be processed overnight, for instance, may only consider a solution adequate if it is efficient enough to guarantee results by the morning.

For this analysis, we will again be making use of the 70-image dataset that we initially constructed for Section 3.3.2.2. In order to properly establish efficiency, it is extremely important that we use inputs that we can guarantee will yield successful outputs. As an example of why this is so critical, our own system would actually be capable of processing a greater number of images within a given amount of time if they contained no faces than if they did. In the former case, our system would perform face detection, determine, rightly or wrongly, that the given image contains no skin, and then immediately move onto the next image. In the latter case, however, our system would build a colour model and attempt to segment skin before moving on, which would take a non-zero amount of computational effort, no matter how small the image or how little skin it contains. Furthermore, it was the performance of our system over this dataset that demonstrated its true value, and we feel it would be pertinent to establish its relative efficiency given a suitable application.

Our evaluation methodology is rather straightforward, as we will simply be measuring the total amount of time it takes for the various segmentation approaches we are looking at to process all 70 images of the dataset. Unlike evaluating the accuracy of segmentations, measuring throughput times is rather non-deterministic, so we will be repeating the trials numerous times in order to establish an accurate mean value for each methodology. Furthermore, such an experiment will require the definition of single, discrete classifiers for sets of segmentations to be generated, so we will be applying a probability threshold of 0.5 to the four continuous approaches. The achieved results are illustrated by Fig. 3.60. It should be noted that the value of the threshold will uniquely affect the amount of time that AGSS-Mahal takes to process images, as lower thresholds will mean broader ranges of colours necessitate Mahalanobis distance-based classification, and vice-versa. Conversely, AGSS-Range will only ever establish whether the colour of a pixel lies within the acceptable range defined for the given image using
four conditions, regardless of the boundaries of that range. Given that 0.5 represents the centre of the [0,1] interval, however, we believe that the results AGSS-Mahal yields will be strongly representative of its general performance.

![Figure 3.60](image)

Figure 3.60: The mean amount of time taken by each segmentation approach to fully process our dataset of 70 varyingly sized arbitrary images using an Intel Core 2 Q9550 2.83GHz processor, where shorter throughput times indicate greater levels of efficiency.

As can be discerned from Fig. 3.60, the adaptive nature of our system detrains its efficiency quite significantly. Despite numerous efforts being made to optimise the algorithms that constitute our approach, it is clear to see that it still takes around three times longer for our system to process the entire dataset than it does most of the existing techniques. As we suggested, however, it would take an extreme degree of inefficiency for a classifier to be rendered useless for an offline segmentation task such as this, and we do not believe our results in this instance necessarily constitute extreme inefficiency, although this would be at the discretion of any potential adopter, of course. What should also be considered is that, in this scenario, although the results that our system has achieved have been yielded much more slowly than those of other techniques, our results are significantly more accurate.

Unlike our approach, the others essentially have flat rates for pixel classification, meaning that the total throughput times they achieve are, in effect, proportional to the total number of pixels they are tasked with classifying, as the exact same conditions are applied to each and every one. This is also true for the Gaussian classifier, it just so
happens that its classification rules are so computationally expensive that it takes more than four times as long as any of the other existing techniques to process the dataset.

Of course, as we discovered during our optimisation in Section 3.2.4, the large majority of the time our system spends processing a given image is not actually spent on pixel classification itself. For AGSS-Mahal, roughly two-thirds of the processing time of an image is taken up by face detection, and this proportion is around three-quarters where AGSS-Range is concerned. If we consider the results depicted by Fig. 3.60 in the context of these time proportions, then we can deduce that both forms of our system, AGSS-Range in particular, actually spend less time classifying pixels than any other approach. The real problem that the 70-image dataset presents to the efficiency of our system, therefore, is that it requires face detection to be performed for each individual image. Whilst this is perfectly understandable, as the DB Skin dataset purposefully consists of an extremely diverse set of images, it is perhaps not entirely representative of a real-world problem. Images that have been captured by a stationary camera throughout the day, for instance, are not likely to exhibit great illumination differences on an image-to-image basis, although this may be dependent upon certain factors relating to the capture interval. Given such a scenario, the skin colour model generated for one image through face detection and pixel filtering may still be adequate for the next image, and then the next x images after that, so the requirement for a specific model to be generated for each one results only in unnecessary time expenditure. For every image that undergoes segmentation without the need for a new skin colour model to be built, the efficiency of our system will not only improve absolutely, but also relatively to any non-adaptive method.

3.3.4.2 Real-Time Performance Analysis

The second form of problem that we will be analysing performance over is “real-time” segmentation. Although the definition of “real-time” is likely to vary from application to application, the results of real-time segmentation would typically be acted upon immediately after they are generated, very often in the context of some form of feedback loop, where future inputs may be influenced in some way by past outputs, making the type of problem entirely unlike offline segmentation. Under regular circumstances,
efficiency is much more critical to real-time systems than it is to offline systems, as any excessive amount of time being spent on the segmentation of skin from a frame will result in a delay of feedback to the given user, which would be detrimental to their experience as well as limiting to what could be achieved through use of the system in any given period of time.

To carry out this analysis, we will be using image streams from a personal webcam, which is being interacted with by a user, as the sample in Fig. 3.61 illustrates, which represents a typical application for real-time skin segmentation, and a potential use-case for our system. We will define a fixed number of frames to be processed by the various segmentation methodologies, and measure the amount of time it takes for them to complete the task in order to determine a mean operating frame rate for each (defined in frames per second (fps)). Again, because of the non-deterministic nature of such an experiment, we will be performing numerous trials in order to ensure the accuracy of our results. Additionally, we will be defining discrete classifiers for the continuous systems using a probability threshold of 0.5 once more.

Figure 3.61: A sample frame of the image streams we will be using to determine segmentation methodology frame rates, which consist of a single user interacting with a personal webcam.

This analysis will actually pertain to two separate image streams. Although we will control for the content of them to ensure identicality, they will be of different resolutions. As we have established, the existing approaches exhibit constant pixel classification rates, so the amount of time it takes them to process an image will simply be a function of the size of that image, but the performance of our system will also be influenced by the nature of images, in terms of the presence of features and the prevalence of skin pixels,
amongst other factors. It will, therefore, be extremely interesting to see how the comparative performance of our approach varies when image size is adjusted but image nature is kept consistent.

The two stream resolutions this analysis will be concerned with are 320x240 and 640x480, which means that the latter is precisely four times larger than the former, and, therefore, liable to reveal rather stark relative performance differences, as we desire. These may seem like rather low image resolutions to be working with, but in the realm of real-time image processing, where performance is measured in frames per second (rather than seconds per frame), there is a clear emphasis placed upon efficiency rather than upon perfect accuracy, the latter of which may not necessarily be required for the practical purposes of certain applications. To reinforce this notion, there are numerous high-end, consumer technologies that operate with image streams of these sizes, such as Microsoft Kinect devices.

The results that have been generated for this analysis are illustrated by Fig. 3.62. It should be noted that the results of our own system have been produced with a new skin colour model having been built for every single frame, which can be considered its default mode of operation. Given that this was also the case for our offline analysis, we do not necessarily expect the relative performances of our system at this time to depart greatly from our previous results, but the differences between the two resolutions are what we are primarily interested in presently.
CHAPTER 3. ADAPTIVE SKIN SEGMENTATION

Figure 3.62: The mean frame rate of each segmentation approach when tasked with segmenting skin from an image stream at a resolution of (a) 320x240 and (b) 640x480, again using an Intel Core 2 Q9550 2.83GHz processor.

There are numerous aspects of the results depicted by Fig. 3.62 that are of interest to us. Firstly, in line with our expectations, the comparative performances of the existing approaches have remained almost identical, not just across the two plots seen here, but also in relation to the results illustrated by Fig. 3.60. This is a result of them all taking an essentially fixed amount of time to classify any given pixel, as we suggested. Secondly, in comparison to our offline segmentation analysis, the performance of our system over the 320x240 image stream (depicted by Fig. 3.62(a)) is notably similar, with the majority of the existing techniques again operating around three times more quickly than our own, but this degree of inferiority was also to be somewhat expected.

It is the direct comparison of Fig. 3.62(a) and Fig. 3.62(b) that is the most revealing aspect of these results, however. We can note that the performances of both AGSS-Mahal and AGSS-Range are significantly more comparable to those of the existing approaches where the 640x480 image stream is concerned, suggesting that the larger the given image, the better the relative performance of our system. As we established during our offline segmentation analysis, both of our pixel classification processes are actually quicker than any of the others involved in this evaluation, but, overall, they were greatly hampered by the necessity to initially perform face detection. What this means is that, in theory, there will be an image size above which our system will operate more efficiently than any other, even when face detection is performed for every individual frame. However, the image resolution required to reach and exceed such a point would likely be
unnecessarily large for practical purposes, meaning excessive concessions being made to frame rates.

3.3.4.3 Interval-Based Face Detection

Rather than image resolution alone, what we must really consider is the necessity for face detection to actually be run for each and every frame of an image stream. If we take the 320x240 resolution stream, for instance, we note that even when we are performing face detection for every input frame, we still achieve around 3fps. Given a real-world scenario, such as that of a user interacting with a webcam, is the illumination of the given environment likely to be changing at such a rate that a recalibration of the colour model being used to segment skin is necessary three times every second? Intuitively, such a requirement would actually appear to be entirely unnecessary. However, the prime benefit of adaptive methods in general is in their capacity to automatically readjust given variations in external factors, and continue to produce satisfactory outputs no matter the circumstances, so abandoning the notion of face detection-based colour model calibration entirely is out of the question. Between these two extremes, however, there will exist a recalibration interval large enough to grant our system greater efficiency than any of the existing approaches, and, given the results we have achieved thus far, we believe that this interval would be considerably lower than the variations of a typical real-world scenario would require.

In order to determine what this interval may be, we can experiment with a range of different values to discover what the mean frame rate of our system would be over them. Given the flat classification rates of the existing techniques, the curves that characterise our system in (interval,frame rate) space will intersect them at certain points, the frame rate coordinates of which will define the face detection intervals over which our system will yield greater degrees of efficiency. Rather than measuring the interval in frames, we will be defining it in seconds, as this will establish independence from the frame rate metric and also more strongly relates to the circumstances of the given real-world scenario. Additionally, an interval of zero seconds signifies that face detection will be performed for every frame, mimicking the results depicted by Fig. 3.62. The results we
have generated for this experiment, using the same image streams as before, are illustrated by Fig. 3.63.

![Figure 3.63: The frame rates achieved by both forms of our system over a range of face detection intervals against those of the existing approaches, for image streams at resolutions of (a) 320x240 and (b) 640x480, again using an Intel Core 2 Q9550 2.83GHz processor.](image)

As can be discerned from Fig. 3.63, there do exist minimum intervals for both forms of our system that will yield greater levels of efficiency than any other technique can offer for both image streams. That both AGSS-Mahal and AGSS-Range are capable of offering
greater efficiency was not in any doubt, however, as we were already aware that our pixel classification rates were superior, but these results do reveal that the value of the minimum interval required to achieve such is somewhat dependent on the resolution of the image stream in question. In the case of the 320x240 stream, the results for which are illustrated by Fig. 3.63(a), we can note that AGSS-Range becomes the most efficient method of segmentation with a face detection interval of just under a second, and eventually reaches a frame rate almost twice as great as that of any other methodology.

AGSS-Mahal requires a significantly longer interval to achieve greater efficiency over the existing approaches (around five seconds), and only marginally outperforms them after that point. As far as AGSS-Mahal is specifically concerned, we previously made note of the fact that its efficiency is uniquely variable on the value of the given applied threshold, but, for similar reasons, it is also variable on the prevalence of skin within the given input. The great similarity in the results of AGSS-Mahal and AGSS-Range reported by Fig. 3.60 and Fig. 3.62 is largely the result of the burden of per-input face detection, but with that mode of operation being abandoned, the previously subtle pixel classification differences between the two have been made rather more apparent.

The 70-image dataset that we used to generate the results depicted by Fig. 3.60 had a mean skin pixel prevalence of 0.157, but the prevalence within the image stream used for this experiment is around double that value, as can be discerned from the inspection of Fig. 3.61. In an average case, this would mean that the rate at which AGSS-Mahal performs Mahalanobis distance-based classifications would roughly be doubled also, resulting in greater differences between its performances and those of AGSS-Range, which is the reason it has trailed so far behind in this experiment. This also means that, tasked with segmenting skin from inputs exhibiting lower skin prevalences (or, lower proportions of skin-like pixels in general), the efficiency of AGSS-Mahal would be closer to that of AGSS-Range, assuming no lower of a probability threshold value. However, were the prevalence of skin (or any skin-like pixels) within our input stream to be any greater, the efficiency of AGSS-Mahal may actually become inferior to a number of the existing approaches, although it should be noted that the prevalence of skin exhibited by Fig. 3.61, given its nature, could be considered close to the practical limit of skin prevalence within an image, assuming a real-world problem.
The results depicted by Fig. 3.63(b) are rather similar to those yielded for the smaller resolution stream. AGSS-Range achieves superior efficiency at just over a second for the 640x480 stream, and goes on to far exceed the frame rates that any other approach is capable of producing. AGSS-Mahal, on the other hand, despite eventually reaching a point of efficiency very slightly greater than that of any of the existing approaches, takes a significantly longer period of time to do so, although the differences between its efficiency and that of Hu et al.’s YCbCr model [43] after an interval of around 10 seconds is practically negligible. Accounting for the error caused by the non-deterministic nature of the experiment, it would seem that a four-fold increase in the size of the image being used has approximately resulted in a two-fold increase to the face detection interval required for each form of our system to achieve levels of efficiency that are greater than those of the existing approaches.

Another interesting feature of both sets of the results depicted by Fig. 3.63 is the way in which the levels of efficiency that AGSS-Mahal and AGSS-Range achieve eventually plateau. As the face detection interval is increased, the proportional amount of time expended by its execution becomes smaller and smaller, meaning that further reductions in frequency deliver increasingly diminishing efficiency returns whilst further foregoing the benefits of adaptive colour model calibration. So, whilst the interval between face detection processes should not be arbitrarily maximised, it is perhaps advisable that it is also not minimised simply to the point at which the frame rate of the given classification mode of our system plateaus for the given input stream.

The reason for this is that face detection at any frequency will introduce some degree of stutter, as the process will briefly interrupt the output stream in order to recalibrate the skin colour model being used. Furthermore, the frame rates illustrated by Fig. 3.63 are simply the mean rates achieved over the entire set of inputs, so do not reflect the somewhat non-linear (with respect to real-time) fashion in which the frames have been processed by our system. The lengths of these instances of stutter are not exorbitant (given the proportion of time that our system spends on face detection when segmenting skin from any individual image, we can ascertain that they would typically be equivalent to around two frames for AGSS-Mahal and three frames for AGSS-Range, although the
same amount of real-time in both cases, of course), but could detriment the experience of the user and, therefore, the value of the system, were they to be too frequent.

It is for these reasons that the ideal face detection interval for any given scenario should simply be dictated by the requirements of that scenario, and the environment it relates to. For any typical real-world problem, we would not expect the required colour model recalibration frequency to be anywhere near great enough for the resulting stutter to be problematic. Even an interval of a minute, for instance, would seem extremely short (as it would not usually allow for a great deal of environmental change), but yet it would still allow our system to operate at, essentially, its maximum average frame rate for the given stream resolution, stuttering for only a couple of frames during any given minute. Furthermore, defining the interval according to those requirements would also ensure that the applied recalibration frequency is great enough for any environmental variations to be adjusted for in a satisfactory timeframe. For any typical real-time segmentation problem, therefore, our system will be capable of delivering a significantly more efficient performance than any of the existing approaches can achieve, which, of course, is in addition to its outputs being decidedly more accurate.
Chapter 4

Adaptive Framework for Enhanced Large-Scale Face Detection

In this chapter, we will fully detail the design and development of our face detection framework, and then present an evaluation that will explore both its efficacy and its efficiency.

4.1 Framework Design and Development

As we discussed in Chapter 1, the main obstacle to the successful detection of faces within large-scale imagery is feature indiscernibility, which can often render faces undetectable unless positive classification thresholds are lowered and the results of multiple detection systems are combined. However, identifying weak faces in such a way will inevitably lead to significant numbers of false positive results, but we believe we can overcome this issue by introducing adaptive detection classification processes that consider additional modalities: size and colour. These filters will allow us precisely eliminate non-face regions from sets of detections and output results that are superior to those of the systems used initially. An overview of the framework we are proposing is illustrated by Fig. 4.1.
As can be seen, the system we are proposing consists of a number of distinct components. In brief, our methodology will initially collate the detection results of existing face detectors, and then derive a set of precise samples from the outputs of one of them. These samples are then used to adaptively construct a size distribution model, which can be used to discard detections of incongruous sizes. This will yield a set of detections that consists primarily of duplicates, whereby a great number of them may be associated with any given face. Therefore, we consolidate groups of detections to form face candidates, which will have “scores” associated with them that correspond to the number of detections consolidated in their formation. These scores represent general feature discernibility, and we outrightly classify candidates with particularly large scores as faces. Those with scores of just 1 are discarded on the basis that they likely pertain to non-face regions, but those remaining will be classified according to colour-based classification. This will involve using our adaptive skin colour modelling methodology to determine a “skin rating” for each candidate, and those with ratings over a certain threshold will also be positively classified, and those without will be eliminated. The final output of our system, therefore, will consists of the union of the score-classified faces and the colour-classified faces.

In order to visualise the operation of each component of our methodology, we will be fully processing a sample input image over the course of its development, which will be the same image we observed the Viola-Jones detector failing to achieve satisfactory results over in Chapter 1. This input is depicted by Fig. 4.2.
Given the complexity of the framework we have designed, there will be numerous parameters that influence its performance. Due to the nature of a number of them, runtime definition is entirely infeasible, and, as we hope to prove, somewhat unnecessary regardless. We will, therefore, be calibrating them prior to the application of our framework to actual problems. During development, we will be detailing this calibration as it applies to a number of our processes, establishing sensible and meaningful metrics to evaluate the performance of filters over broad ranges of possible values, ensuring that they function optimally and do not limit the potential of our system. Of course, such calibration requires sample inputs for performance data to be generated, and we will be using a set of five lecture theatre images to calibrate our processes. Although these will all pertain to a particular type of face detection problem, there is still great diversity within the set, and we expect that they will reveal patterns that are consistent with those exhibited by other types of imagery, which is a notion we intend to fully examine during the evaluation of our work.

4.1.1 Face Detection Collation

Our process begins with the aforementioned collation of feature-based detections, which involves performing face detection with any number of existing detection techniques. To maximise the efficacy of our framework, as much information as possible should be
made available to it. Not only should this amount of information relate to the number of
detectors used or the sensitivities at which they are run, but also the type of features they
are designed to look for. Having an abundance of data pertaining to a certain set of faces
is certainly not detrimental, but if there are a number of faces for which there is no
information yielded whatsoever, then the overall accuracy that our approach is capable of
achieving would be limited. The Viola-Jones feature set that produced the results
illustrated within Chapter 1, for instance, was trained to look specifically for facial
features as they would appear on a front-oriented face, i.e. it is a “frontal face” detector.
If we were to combine its results with those of another frontal face detector, our
framework would likely only output a very similar set of faces, albeit with somewhat
greater confidence. If we were to combine its detections with those of a “profile face”
detector, however, i.e. one trained to detect facial features as they would appear on a face
that is oriented off-centre, then our framework would have the potential to yield many
more true positives for the given image, as the set of features initially searched for would
be broader, and the potential for weaker faces to be detected would be greater.

For the purposes of demonstration, we will be using the feature sets included with the
OpenCV implementation of the Viola-Jones face detection system to generate our initial
detections. This set of detectors includes four Haar-like feature cascades that have been
trained using frontal face samples, and one that has been trained using samples of faces in
profile. Additionally, there is one detector that utilises local binary pattern features (as
first proposed by Ojala et al. [96]) to detect frontal faces. A considerable amount of
preliminary experimentation has revealed to us that each of these feature sets is capable
to detecting faces that every other one cannot under certain circumstances. Therefore,
despite there being considerable crossover in the faces that they are each likely to detect,
the detection rates that we can achieve will be maximised by the inclusion of all of them.

The collated detection results achieved for Fig. 4.2 by these six detectors can be seen in
Fig. 4.3, having been generated using the greatest sensitivity each detector is capable of,
whereby individual detections have not been consolidated into candidates that would be
filtered according to a “minimum neighbour” threshold under normal circumstances.
As Fig. 4.3 makes clear, the process of maximum-sensitivity detection collation will yield huge amounts of noise, as there are false positives of a broad range of sizes scattered throughout the image. This is of little concern to us, however, as almost every face visible within the image has at least one detection associated with it, which means that we have the potential to positively classify it. If our filters are effective at eliminating false positives, therefore, such results being yielded by the detectors represents an ideal scenario, as the potential for our approach to output highly accurate results is established. What can also be noted from Fig. 4.3 is that there are numerous faces that would appear to have multitudes of detections associated with them. This is entirely in line with our expectations, as we would anticipate that strong faces would be found by multiple detectors, and also for any one of the detectors we are using to return the same face region multiple times, as we have disabled their capacity to filter and consolidate their detections.

4.1.2 PCA-Based Size Filtering

The first method by which we will be filtering out detections will be classifying them according to their size. As could be observed from Fig. 4.3, which represented a very typical result for the type of input we are concerned with, there will be an abundance of
detections produced by any usual collation process that have sizes that are completely incongruous with those of the detections around them and, assuming a reasonably ordinary distribution of people, quite clearly not all of them can pertain to actual faces. It is extremely important that this problem is solved in these relative terms, as considering the solution to be as simple as discarding any detection larger than \(x \) or any detection smaller than \(y \) would be completely dismissive of many crucial factors, such as the distribution of the faces within the given image or the circumstances under which the image has been captured, each of which is liable to dramatically impact the size that we would expect any given detection to be were it to actually pertain to a face.

It is for these reasons that we will be generating size models adaptively, as the distribution of face sizes within any given image will be extremely specific to that image. In order to build models that can relate image coordinates to face sizes, however, we require the means by which to sample these distributions. To acquire such samples, we employ the same methodology that we used in the generation of skin colour models (as described in Chapter 3), whereby highly precise feature-based face detection results are considered to be a set of actual faces, from which we can ascertain certain pieces of information to be used in the creation of representative models. It should be noted than rather than performing feature-based face detection an additional time, we derive precise face detections from the results of a single detector used for collation, which involves detection neighbourhood thresholding and consolidation. The achieved results would be identical using either technique, but deriving the information from our preexisting results, and avoiding reprocessing the entire given image, is significantly more computationally efficient. The set of precise face detections we have constructed for Fig. 4.2 is illustrated by Fig. 4.4.
Although the results illustrated by Fig. 4.4 clearly represent only a small subset of all the faces we ultimately wish to find within Fig. 4.2, the most important aspect of them for our current intentions is that they are precise, and, in actuality, even the low detection rate that has been achieved here still far exceeds what we would ever actually need in practice. Given that we are confident that this sampling process will only very rarely return false positive detections (as we demonstrated in Chapter 3), we can consider its results to be representative of the faces present within the image and use them to derive a size model to be applied to every detection initially collated. The pieces of data acquired through this approach are the (x,y) coordinates of the centre of each detection and its size, which is merely considered unidimensional as the detections we have collated using the feature cascades provided by OpenCV are all square, so an array of (x,y,size) objects constitute the output of our image sampling process, and the input of our size model generation process.

4.1.2.1 Size Distribution Model Derivation

Although we have extremely reliable information from which to derive representative size models, specifying the correct means of doing so is critical for success, as the implementation of an inappropriate methodology would yield models that are decidedly less effective than we require them to be. Deriving size distribution models from the sets
of data points that we acquire through sampling is a matter of analysing the relationships between their variables, which are \(x \), \(y \), and \(size \). More specifically, for any given image, we are concerned with discovering how expected face size varies with location, which is an association that can be affected greatly by a tremendous number of external factors.

We believe that principal component analysis (PCA), which is a statistical procedure for revealing and describing patterns within datasets [51], represents the optimal methodology for modelling the relationships between our variables. This is because it is ideally used in situations where there exists no natural distinction between predictor and response parameters [51], which is the case where our problem is concerned, as our data points are derived from truly scattered results. This suitability is in contrast to techniques such as ordinary least squares regression for instance, whereby fitting a model would involve minimising the error in dependent variable(s) exclusively. Principal component analysis, on the other hand, will minimise error with regards to every parameter of the given problem [51], which is a capacity we require in order for effective models to be derived. This concept of minimising error can be made clearer by considering the \((x,y,size)\) objects ascertained through image sampling to be points within three-dimensional space, and those of Fig. 4.4 are visualised in these terms by Fig. 4.5.

![Figure 4.5: A visualisation of the 18 high-precision face detection results illustrated by Fig. 4.4, plotted within our three-dimensional \((x,y,size)\) space. Both plots relate to the exact same data, and merely provide different perspectives to better illustrate the distribution of the points.](image)

If we consider our model-fitting problem in these three dimensions, then we can conceptualise the purpose of PCA as being to fit a two-dimensional plane to our data.
points. The process to achieve this consists of several stages, the first of which is to derive the covariance matrix that describes the distribution of our precise face detection results. The generation of such a covariance matrix is described below, where F, as described by Eq. 4.1, represents our set of n results, x_i, y_i, and s_i define the x-coordinate, y-coordinate, and unidimensional size of the i^{th} detection, σ_{jk} represents the covariance between parameters j and k, and C represents the covariance matrix itself.

$$
F = \begin{bmatrix}
x_1 & y_1 & s_1 \\
x_2 & y_2 & s_2 \\
\vdots & \vdots & \vdots \\
x_n & y_n & s_n
\end{bmatrix}
$$

(4.1)

$$
C = \frac{1}{n}FF^T = \begin{bmatrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xs} \\
\sigma_{yx} & \sigma_{yy} & \sigma_{ys} \\
\sigma_{sx} & \sigma_{sy} & \sigma_{ss}
\end{bmatrix}
$$

(4.2)

With the covariance matrix of the dataset established, as described by Eq. 4.2, our objective becomes to determine its eigenvectors. An eigenvector of a square matrix is a non-zero vector that has a direction invariant under the linear transformation associated with the given matrix. Where A is a square matrix and λ is a real-valued scalar, any vector v that satisfies the condition defined by Eq. 4.3 is an eigenvector of matrix A.

$$
Av = \lambda v
$$

(4.3)

The scalar λ that completes this condition is known as an “eigenvalue”, and it will define the factor by which the eigenvector v is scaled when it is transformed by the matrix A, whereby a negative value would result in its direction being reversed. For a given k-by-k square matrix that does have eigenvectors, there will exist exactly k linearly uncorrelated eigenvectors, and an eigenvalue uniquely corresponding to each one. The reason that finding these vectors is so important to us is that they characterise our original dataset, and can, therefore, provide us with a model against which our collated data points can be compared and filtered. The eigenvalue relating to each eigenvector defines the amount of variance in the dataset that it explains, and the eigenvector with the largest eigenvalue constitutes the first “principal component” of our representation. This will define a line through our three-dimensional space that passes through the mean point of our data and minimises the sum of the squared orthogonal error of every data point, as Fig. 4.6 illustrates.
Figure 4.6: The first principal component of our data characterisation (plotted in red) passes through the mean point (labelled in blue) and minimises the sum of the squared orthogonal errors (signified by the green projections) of the points within the set.

The first principal component is the best possible single-dimensional representation of our data, but, as can be ascertained from Fig. 4.6, using it as a model on which to build a face size filter would not be particularly effective, as there still remains a large degree of error between the points and the individual vector. Therefore, we look to the second principal component of our representation, which is the eigenvector associated with the second-largest eigenvalue. This vector will be orthogonal to our first eigenvector, and will explain the maximum amount of variance remaining within the dataset possible under the constraint that the vector is indeed orthogonal. In other words, it is the vector about the axis of the first principal component that minimises the remaining error of the data points. Since they are orthogonal, the first two principal components will together form the basis of a two-dimensional plane, and the one we have derived from our data points can be seen in Fig. 4.7, which also illustrates our third orthogonal component, i.e. the normal of the plane, which constitutes our final error term and explains the least amount of variance within our dataset.
As Fig. 4.7 illustrates, by characterising our data according to a bidimensional model rather than a unidimensional model, the error terms of our data points have been significantly reduced, meaning that we have achieved much more accurate representation. Given that we would usually expect the faces visible within a lecture theatre-based image to be distributed across a surface of seating, the plane we have constructed can be used to accurately and reliably model the sizes of faces according to their coordinates, and therefore has the capacity to discriminate between detections of sizes that we would expect faces to exhibit and detections that are either too large or too small to realistically pertain to actual faces.

4.1.2.2 Sized-Based Detection Elimination

With a representative size model constructed, the issue of filtering out false positive detections from our collated set becomes one of effective application. For many of the data points illustrated by Fig. 4.3, it is rather plain to see that their sizes are far beyond what we would expect actual faces to exhibit, given their locations, and it would, therefore, be relatively straightforward to discard them. There will be a large number of false positives, however, with sizes much closer to those that would be exhibited by actual faces, but are still either too large or too small to realistically be true positives, and it is these that necessitate our filters being carefully designed. In order to visualise this
situation, Fig. 4.8 illustrates our collated detections against the model we have generated from the precise detection results.

Figure 4.8: Our set of 3322 collated detections plotted against the expected face size model derived from the precise face detection results. NB: The size axis of this representation covers a much larger range of values than that of Fig. 4.7, hence the difference in appearance of our planar model.

As Fig. 4.8 illustrates, there do exist numerous detections within our collated set that are quite clearly far too large to represent faces, according to our model, which could be discarded using even extremely permissive thresholds. We can also see isolated detections that are much closer to our model, but are still notably larger than any of the detections in their vicinity within our three-dimensional space, making their elimination entirely possible, but still requiring careful model application. As well as detections that would appear to be too large to represent actual faces, there are also a great number that would seem to be far too small. This is most evident around the bottom of the image, where a rather dense cluster of detections exist below the sizes we would expect them to exhibit were they to be true positives. For an image captured of any normal environment, we would expect the apparent sizes of faces to become much larger as we move down, as the subjects become much closer to the point of capture, so such false positives should be discarded relatively simply.

In order to calculate the expected size of any given detection, we must determine its projection onto the plane. However, since we are concerned with establishing a size discrepancy with regards to a specific location (i.e. the difference between the size of a detection and the expected size of a face at the location of the detection), it would be
entirely inappropriate for us to use an orthogonal projection. Although these constituted the final error terms during the derivation of the model, they are not the form of deviation we are concerned with now. The orthogonal projection of a detection onto the plane would be a point with entirely different coordinates, yielding the expected size of an entirely different image location, which would be of no use in the determination of the nature of that detection. We must project detections directly along the size axis of our three-dimensional space, and the point at which the vector meets the model will define the expected face size for that detection. The equation of our plane, which will be satisfied by every \((x,y,\text{size})\) point that lies upon it, can be described by Eq. 4.4, where \(\mu_i\) represents the \(i^{th}\) component of the mean model point, and \(v_j\) represents our third eigenvector, which is the normal of the plane and can be used to independently define it, given the orthogonal nature of the eigenvectors.

\[
\begin{bmatrix} x & y & s \end{bmatrix} - \begin{bmatrix} \mu_x & \mu_y & \mu_z \end{bmatrix} \cdot v_3 = 0 \tag{4.4}
\]

Given that the mean point \(\mu\) and normal \(v_j\) will be constants derived from our precise face detection results, we can rearrange Eq. 4.4 to yield an expression that can be used to calculate the size component of the point on the plane that corresponds to the input coordinates \(x\) and \(y\). Eq. 4.5 describes this derived expression, where \(v_{3j}\) represents the \(j^{th}\) component of the normal vector.

\[
0 = (\begin{bmatrix} (x - \mu_x) & (y - \mu_y) & (s - \mu_z) \end{bmatrix}) \cdot v_3 \\
= (x - \mu_x)v_{31} + (y - \mu_y)v_{32} + (s - \mu_z)v_{33} \\
(s - \mu_z)v_{33} = -(x - \mu_x)v_{31} - (y - \mu_y)v_{32} \\
s \cdot v_{33} = -(x - \mu_x)v_{31} - (y - \mu_y)v_{32} + \mu_z \cdot v_{33} \\
s = (-(x - \mu_x)v_{31} - (y - \mu_y)v_{32} + \mu_z \cdot v_{33}) / v_{33} \tag{4.5}
\]

By applying Eq. 4.5 to the coordinates of any detection, we can project it onto the plane along the size axis, thereby determining the size that a face at its location should exhibit, according to our model. The size projections of our collated detections are illustrated by Fig. 4.9.
Figure 4.9: The projections of our 3322 collated detections along the size axis onto our face size model, each of which determines the size we would expect a face at the location of its corresponding detection to exhibit.

Although we now have the capacity to determine an expected face size for any given detection, defining effective means by which we use them to classify detections is an equally critical part of the process. We believe that using expected face sizes to establish acceptable size ranges for detections would allow us to achieve the precise elimination of large numbers of false positives. The retention of a given detection, therefore, would be dependent upon its size being within said range, and it being discarded would be the result of its size being either smaller than the lower bound of the given range, or greater than its upper bound. This decision rule can be described by Eq. 4.6, where \(detection \) represents any given input detection from our collated set, \(size_{detection} \) represents the size of that detection, and \(lowerSizeBound_{detection} \) and \(upperSizeBound_{detection} \) represent the limits of the acceptable size range established for the detection, derived from its expected size.

\[
detection = \begin{cases}
\text{discarded,} & \text{if } size_{detection} < lowerSizeBound_{detection} \text{ or } size_{detection} > upperSizeBound_{detection} \\
\text{retained,} & \text{otherwise}
\end{cases}
\]

(4.6)

Whilst we believe the simple decision rule described by Eq. 4.6 will allow us to accurately discard multitudes of false positive detections from any given collated set, its successful application will only be possible if we can establish acceptable size ranges in an effective manner. To achieve this, we must first ensure that the breadth of any given range is relative to the magnitude of its expected size. That is to say, a small expected...
size should yield a small range of acceptable sizes, whereas a larger expected size should correspond to a larger range. This is extremely important, as it takes into consideration the potential error involved with any face detection, and the tendency for detectors to slightly underestimate or slightly overestimate the apparent size of any given face, which is certainly the case where the Viola-Jones system [147] is concerned, as it scales its detection window to identify faces of all sizes. The limits of any given expected size range can, therefore, be calculated using Eq. 4.7 and Eq. 4.8, respectively, where errorTolerance represents the maximum relative error that we are willing to accept of a detection before discarding it.

\[
\text{lowerSizeBound}_{\text{detection}} = \text{size}_{\text{detection}} \cdot (1 - \text{errorTolerance}) \tag{4.7}
\]

\[
\text{upperSizeBound}_{\text{detection}} = \text{size}_{\text{detection}} \cdot (1 + \text{errorTolerance}) \tag{4.8}
\]

Given this requirement of the ranges being relative, what remains is to ascertain how broad they should actually be. In order to determine appropriate size error tolerances, we have analysed the results achieved by a number of difference tolerance levels, over 5 images that depict a total of 200 individual faces. These results pertain to the rate at which detections were eliminated by each filter (calculated as the number discarded over the number initially collated) and the rate at which actual faces were eliminated, i.e. the incidence rate of every detection associated with a single face being discarded (calculated as the number of eliminated faces over the number that had a non-zero number of detections associated with them prior to the application of the filter). Ideally, we would like to eliminate as many detections as possible without losing any significant number of faces, as this would maximise the number of false positive detections that our size filter can discard without causing any detrimental effects to the overall detection rates of the system. It should be noted that many of the detections we would expect a given size filter to eliminate would actually constitute true positives, but they are more than likely to be some of the overestimates and underestimates that we have previously alluded to, and the faces they pertain to are almost certain to have vast numbers of detections associated with them that are more appropriately sized that will not be discarded. Even if the set of detections eliminated according to their size for a given input image consisted mostly of true positives, we would expect the false positives also discarded to represent the majority of the false positives produced for that image during initial detection, and this is
the critical factor, as long as faces are not entirely lost. The mean results of our analysis are illustrated by Fig. 4.10.

![Graph](image)

Figure 4.10: The mean detection elimination rates achieved by each of our filter tolerances, where “detection discard rate” pertains to the proportion of the initially collated detections that have been discarded, and “face elimination rate” concerns the proportion of faces that have had every detection associated with them discarded.

As can be ascertained from Fig. 4.10, the rate at which detections are eliminated decreases rather dramatically as we increase the tolerance of the filter being used. A tolerance of 0.1 results in the elimination of almost 9% of the initially detected faces in an average case, which certainly constitutes a non-negligible loss of useful information. A tolerance of 0.5, on the other hand, will retain virtually every face in a typical scenario, but would only eliminate around 10% of the detections within the collated set, which will result in the retention of multitudes of false positives. A middle-ground between these two extremes would represent an ideal solution, and we will, therefore, opt to use a value of 0.25 to define the tolerance of our size filters. For an average input image, we would expect this tolerance to result in the elimination of 25% of initial detections (which we believe is likely to include the majority of the false positives present within a typical collated set), and a face elimination rate of under just 4%, which can be considered acceptable. Fig. 4.11 provides a visual representation of the application of ±25% size error bounds to our collation of data points.
Figure 4.11: Through the application of our decided-upon error tolerance, we can generate additional planes within our three-dimensional space that represent the lower and upper size limits of detections across the entire image.

The space enclosed by our upper and lower size bounds, as shown by Fig. 4.11, constitutes an “acceptable size” region, wherein every data point has a size that our filter (as applied through Eq. 4.6) believes could possibly be exhibited by a face at its location. These detections will, therefore, be retained for further processing. Those outside of the bounds can be considered either too small or too large to realistically represent faces, and will be eliminated from the collated set upon the application of Eq. 4.6. The results of this classification process, in terms of our three-dimensional space, can be seen in Fig. 4.12.

Figure 4.12: Our bounds define an acceptable size region, and any detection falling outside of it will be classified as either too large or too small to represent a face (as in (a)) and will, therefore, be discarded. Every detection within the region will be considered potentially representative of a face and retained (as in (b)) for further processing.
If we consider our set of retained detections in the context of the image they pertain to, we can achieve a greater understanding of how effective our size filtering process has been at eliminating vast numbers of false positives whilst retaining virtually all useful information. To that end, Fig. 4.13 depicts the set of retained detections with regards to our input image.

Figure 4.13: As we have discarded a set of 922 detections, which would appear to include the vast majority of the false positives initially generated, we have retained precisely 2400 detections, which will be processed further.

As Fig. 4.13 makes clear, despite discarding almost 28% of the detections within the collated set, there are still large numbers associated with almost every face that was initially detected (all of which we have added confidence to by validating their sizes), which suggests that significant numbers of false positives have been eliminated without any considerable loss of useful information. The way in which the remaining detections conform to our generated plane can also be noted, as they generally increase in size as we move from the top of the image to the bottom and as we move from left to right, although the latter is decidedly more subtle.

The success of this filtering process can be made even more apparent when Fig. 4.13 is compared to Fig. 4.3, as the latter illustrated multitudes of false positives detections of all sizes scattered throughout the image. Now, although there are undoubtedly still false positives present within our set of detections, the number of them has been drastically
reduced. Those that have been retained clearly exhibit face-like sizes, but there do exist additional means by which they can be identified and discarded.

It should be noted that, due to the nature of principal component analysis, our system will be unable to process a collated set detections if precise face detection yields fewer than three results, as this is the minimum number of data points required for a model to be derived in our three-dimensional space using PCA. In such a scenario, the output of our framework would simply be the number of precise face detections produced, be it two, one, or zero.

4.1.3 Retained Detection Consolidation

Although we have demonstrated that our size-filtering process can be successful in eliminating large numbers of false positives, the set of detections retained cannot be considered a set of actual faces. Fig. 4.13, for instance, depicts 2400 individual detections, yet Fig. 4.2 contains merely 44 visible faces, so we must work further towards deriving an accurate representation of those faces. As can be discerned from Fig. 4.13, it would seem that the remaining false positives within the detection set account for only a very small proportion of the number of retained detections. The vast majority, therefore, constitute duplicate detections of faces, whereby a number of individual faces will have hundreds of detections associated with them, which will be typical wherever the high-sensitivity implementation of the Viola-Jones feature cascades is concerned. These detections are not actually identical, and there will be variation in their sizes and exact coordinates, but they must be consolidated if we are ever to achieve a number of final detections that can be considered representative.

The result of successfully consolidating duplicate detections would be a set of face candidates, and no more than one would correspond to any individual face. In this way, the final output of our system would never be inflated due to the erroneous counting of the same face on multiple occasions. The process of consolidation is a matter of determining whether detections are encapsulated by other detections. Given a scenario in which we have two detections and one of them is contained entirely within the other, we would consolidate the two and output a single detection, which would have a size and
location equivalent to the means of those of the original detections. The properties of those original detections would be weighted equally in this way as we would have no way of knowing which was actually more accurate. Fig. 4.14 visualises this concept.

Figure 4.14: Our means of consolidation would take (a) a detection encapsulated entirely by another and output (b) a single detection with a size and location that is the average of those of the original detections.

Fig. 4.14 demonstrates a rather simple and effective procedure, but, unfortunately, the detections we will be attempting to consolidate during any typical trial will present much more complex issues, and will, therefore, require a more sophisticated solution. Not only will the detections associated with any individual face likely be far more numerous than those depicted by Fig. 4.14(a), but it would be extremely likely that rather than complete encapsulation, there would merely be considerable overlap. Fig. 4.15 illustrates these problems, both in terms of our demonstration and with regards to the detections depicted by Fig. 4.13.

Figure 4.15: A depiction of (a) the type of scenario we are likely to be confronted with when attempting to consolidate every detection associated with any given face, although it is entirely possible that there will be hundreds of detections involved in a real-world situation, rather than just the small number seen here, as (b) a sample region from Fig. 4.13 makes apparent.
In order to overcome the types of issues that Fig. 4.15 presents, we can introduce a scaling factor to the consolidation process. Although there is no encapsulation being demonstrated by the detections illustrated by either Fig. 4.15(a) or Fig. 4.15(b), it is clear to see in both instances that there are central regions of interest that the detections have in common. Such similar detections can simply be considered slightly different interpretations of the same pieces of visual information and, as such, they would ideally be consolidated. By scaling detections about their centres, we can make them large enough to encapsulate other detections within their vicinity, allowing us to deduce which are clustered together. Once the grouping of every detection within a given set has been determined, discovered clusters can be consolidated by simply averaging their constituent detections. These concepts are visualised by Fig. 4.16.

![Figure 4.16](image)

Figure 4.16: By scaling up a detection, as in (a) (where the individual detection in question is denoted by the dashed orange line, and its scaled up form by the solid orange line), and then testing for the encapsulation of other detections, we can determine whether or not it belongs to a certain cluster. Once the constituent detections of a given cluster have been established, they can be consolidated through averaging, as in (b).

To give greater insight into the precise mechanics of this process, we present the algorithms at the core of its implementation. Algorithm 1 describes the overall consolidation process, which consists of a stage of detection labelling followed by a stage of cluster consolidation, and Algorithm 2 describes a function that evaluates detection encapsulation.
Algorithm 1: Detection consolidation

Input:

D : set of size-filtered detections d
S : defined scaling factor

Output:

C : set of consolidated detections c

Phase 1: Detection labelling

Let n be the number of detections in D
Let A be a set of cluster labels, where labels \(a_1, \ldots, a_n\) will correspond to detections \(d_1, \ldots, d_n\)
Let m be the number of different labels assigned

Assign first detection to first cluster

\[a_1 \leftarrow 1 \]

\[m \leftarrow 1 \]

For all other detections

\[\text{for } i = 2 \text{ to } n \text{ do} \]

Until label is assigned, compare to previously labelled detections

\[\text{for } j = 1 \text{ to } i - 1 \text{ and while } a_i \text{ is empty do} \]

Given scaling, if current detection encapsulates previous (Algorithm 2), then assign same cluster label

\[\text{if } \text{doesEncapsulate}(d_i, d_j, S) \text{ then } a_i \leftarrow a_j \]

end for

If current detection does not encapsulate any previous under scaling, then assign new cluster label

\[\text{if } a_i \text{ is empty then } m \leftarrow m + 1, a_i \leftarrow m \]

end for

Phase 2: Cluster consolidation

For each cluster

\[\text{for } i = 1 \text{ to } m \text{ do} \]

Determine the means (coordinates, size) of all detections with the given cluster label and assign to the consolidation

\[c_i \leftarrow \frac{1}{|\{a \in A : a = i\}|} \sum_{j=1}^{n} \{d_j : a_j = i\} \]

end for

return C
Algorithm 2: Test detection encapsulation under scaling (doesEncapsulate)

Input:
- \(d_{\text{cur}}\): current detection
- \(d_{\text{lab}}\): existing labelled detection
- \(S\): defined scale factor

Output:
- veracity of detection encapsulation under scaling

Let \(d_S\) be the result of scaling-up current detection \(d_{\text{cur}}\)
Let \(x_{d,p}\) and \(y_{d,p}\) respectively represent the x-coordinate and y-coordinate of detection \(d\) at position \(p\), where \(p = \{\text{top-left} = \text{tl}, \text{bottom-right} = \text{br}, \text{centre} = \text{c}\}\) and the origin of the coordinate system \((0,0)\) is considered to be its top-left corner
Let \(z_d\) represent half the width of square detection \(d\)

Scale up current detection about its centre according to defined scaling factor

\[
\begin{align*}
 x_{d,\text{tl}} &\leftarrow x_{d,\text{c}} - (S \cdot z_{d,\text{c}}) \\
 y_{d,\text{tl}} &\leftarrow y_{d,\text{c}} - (S \cdot z_{d,\text{c}}) \\
 x_{d,\text{br}} &\leftarrow x_{d,\text{c}} + (S \cdot z_{d,\text{c}}) \\
 y_{d,\text{br}} &\leftarrow y_{d,\text{c}} + (S \cdot z_{d,\text{c}})
\end{align*}
\]

Test encapsulation of labelled detection according to detection corners

\[
\begin{align*}
 \text{if } &\quad x_{d_{\text{lab}},\text{tl}} \leq x_{d_S,\text{tl}} \text{ and } y_{d_{\text{lab}},\text{tl}} \leq y_{d_S,\text{tl}} \text{ and } x_{d_{\text{lab}},\text{br}} \geq x_{d_S,\text{br}} \text{ and } y_{d_{\text{lab}},\text{br}} \geq y_{d_S,\text{br}} \text{ then} \\
 \text{else} \quad &\text{return } \text{false}
\end{align*}
\]

Whether or not these means of detection consolidation will consistently yield accurate and desirable results will be dependent upon the sound determination of an optimal value for the applied scaling factor. If we were to set it too small, it is entirely possible that entire groups of detections would never be consolidated. If we were to use too large a value, however, the potential for neighbouring groups, which pertain to entirely separate but nearby faces, to be consolidated into single detections would become considerable. Not only would this result in individual faces being lost, meaning detection rates would be diminished, but it is highly likely that the properties of the detections involved would lead to the output detection, as it is a mean, corresponding to a region of space between the given faces, and not an actual face. An example of this situation from within Fig. 4.13 is depicted by Fig. 4.17. It is for these reasons that size filtering is performed prior to detection consolidation, as the presence of even a small number of large false positives could lead to the erroneous consolidation of multiple groups of detections, which would be severely damaging to our achieved detection rates.
Figure 4.17: Because the scaling factor we have used in this instance is too large, two separate groups of detections illustrated by Fig. 4.13 have been consolidated into just a single result, which itself does not entirely pertain to either of the faces involved.

As we would like to avoid the type of result that Fig. 4.17 illustrates, but also successfully consolidate every group of detections that we generate, we must carefully derive an optimal value for the scaling factor. In order to do this, we will again be making use of empirical results, and our analysis will involve the same 5 images we have used previously. This may not seem like a reliably large sample size, but the images vary greatly in nature and depict 200 individual faces, which offers vast opportunity for the issues we have described to manifest. We will be using a broad range of scaling factors to consolidate our filtered detection set, and measuring the rate at which groups of detections are not entirely consolidated, which will be contrasted to the rate at which separate groups are consolidated into single outputs. Both of these rates will be in terms of the number of faces within each image that have detections associated with them after size filtering. The optimal scaling factor will be one that can minimise both of these rates, as they both constitute errors, although one clearly results in system oversensitivity and the other undersensitivity. The mean results of our analysis are illustrated by Fig. 4.18.
Chapter 4. Enhanced Face Detection

Figure 4.18: The mean consolidation efficacy achieved by a range of scaling factors on a set of input images, where the rate at which groups are not entirely consolidated (referred to as the “non-consolidation rate”) is contrasted against the rate at which the detections of different faces are consolidated (referred to as the “false consolidation rate”).

As can be ascertained from Fig. 4.18, the rate at which detections are not consolidated by small scaling factors is rather significant. A factor of 1.1 being applied, for instance, results in approximately a third of detection groups not being consolidated, which is far from an acceptable situation. On the other hand, a scaling factor as large as 2.0 will entirely eliminate the issue of non-consolidation, but will introduce huge amounts of false consolidation, as separate groups of detections are consolidated together, and actual faces are lost. The most optimal value for us to use henceforth, therefore, can be found in between these extremes, and it would seem that a scaling factor of 1.4 yields results that are devoid of false consolidations, and causes the non-consolidation of detection groups in only extremely rare circumstances (during our analysis, the rate was merely 0.5%). The result of using this scaling factor during the consolidation of the detections illustrated by Fig. 4.13 can be seen in Fig. 4.19.
CHAPTER 4. ENHANCED FACE DETECTION

The results illustrated by Fig. 4.19 indicate that we have greatly successful in our attempts to disregard the multitudes of duplicate detections present within the set retained after size filtering. As can be seen, in this instance, we have not produced a single false consolidation, or a single case of non-consolidation, which is a testament to the optimality of our settled-upon scaling factor value for this type of problem. This stage of our face detection process does not inherently confer any confidence to the detections we did not discard previously, but it does transform the set of data points we have from a set of mere detections to a set of genuine faces candidates, the properties of which can henceforth be evaluated in order for us to produce actual positive classifications.

4.1.4 Score-Based Face Candidate Classification

Having generated a set of face candidates from our initially collated set of detections, through size filtering and then consolidation, we can now begin to examine the conditions under which regions can be positively classified in order for our output to be built. The face candidates illustrated by Fig. 4.19 are not the only pieces of information we have to work with in our attempts to derive a set of actual faces for Fig. 4.2, however. An exceptionally useful by-product of the detection consolidation process is a set of
“scores” (one for each candidate), each of which defines the number of detections that were consolidated to form its corresponding candidate. The scores derived for the candidates depicted by Fig. 4.19 are illustrated by Fig. 4.20, as is the distribution of those scores.

![Image](image.png)

(a)

Figure 4.20: (a) The score associated with each face candidate represents the number of detections that were consolidated during its formation. (b) The distribution of the scores illustrated by (a) (50 bins).

Rather than just an interesting statistic, these scores can convey a lot of information about a candidate. Largely, a score will give an indication of how strongly facial features are expressed by the given candidate, whereby the greater the score, the more its features resemble those of a face. Although the foundation of our face detection approach is the utilisation of modalities other than features, it would be negligent to ignore instances of overwhelming feature-based confidence in the presence of faces. Furthermore, our face...
candidates were constructed from detections that were retained by the size filter, so their scores also convey the confidence conferred by the validation of their sizes. It is for these reasons that we believe classifying candidates that have particularly large scores as faces would allow us to precisely extract large numbers of actual faces (i.e. without also extracting non-face regions) from our sets of candidates without the need to further consider additional candidate properties. This, of course, would not necessarily allow us to identify every face within a given image, as, although that may be possible, we would not expect any particularly weak faces to have great enough scores to make them distinguishable from non-face regions.

In much the same way that attempting to predefine ranges of acceptable detection sizes would have been greatly inappropriate, establishing a score threshold, above which candidates would be positively classified as faces, that would be applied in each and every scenario would also be completely ignorant of numerous critical factors. Firstly, the score of any given candidate will be highly dependent upon the number of detectors used during the initial collation of detections. Naturally, no matter the constitution of the given input, the score associated with any given candidate will be increased monotonically with the application of additional detectors, so with a sufficient number of detectors used, every candidate would have a score exceeding any predefined threshold.

Furthermore, a globally applied threshold would give no consideration to the quality of any given image. Even with a fixed number of detectors, there are a number of variables associated with the circumstances under which a given image is captured that can significantly affect the score that candidates are ultimately associated with. Subjects and features being distant (smaller), the depicted environment being weakly illuminated, and a lack of general focus, among other factors, can all be detrimental to the initial collation of detections, and will, therefore, impact the range of scores that a set of candidates express. If we were to artificially introduce a small degree of blur to Fig. 4.2, for instance, the candidate scores we would generate would be considerably lower than those depicted by Fig. 4.20, and there would likely be many fewer candidates, but the candidates with the largest scores within Fig. 4.20 would still have the largest scores within the blurred image (which Fig. 4.21 demonstrates), as their relative feature-based face resemblances would not have changed (were the amount of blur to simulate nothing
more than the capturing device not being held completely stationary during image capture, that is), and it is by this property that candidates should be evaluated. However, a threshold that successfully separates some of the faces within Fig. 4.20 from the non-faces may not positively classify any candidates within the blurred version of it, and a threshold that proves effective at precisely identifying some faces within the blurred image may also lead to numerous false positive classifications within the original depicted by Fig. 4.20. This would also be the case if we were to reduce the number of detectors used rather than degrade the general quality of the image.

Figure 4.21: (a) Having artificially introduced a small degree of blur to Fig. 4.2, thereby diminishing its overall visual quality, the scores related to our candidates are generally significantly lower than those expressed by Fig. 4.20, but those with greater relative scores previously still have greater relative scores now. (b) The distribution of the scores depicted by (a), in the context of the distribution illustrated by Fig. 4.20(b) (50 bins).
It is for these reasons that we must define score thresholds on an image-by-image basis, and classify candidates in a manner that is relative to the other candidates within the given set. Our classification rule, therefore, can be described by Eq. 4.9, where candidate represents any candidate within a given set, score\textsubscript{candidate} represents the score corresponding to that candidate, and score\textsubscript{Threshold_candidateSet} represents the threshold defined for the set of candidates that the given candidate belongs to. Rather than discarding candidates that cannot be confidently classified as faces according to their scores, we simply draw no conclusions about their nature and retain them for further processing.

\[
\text{candidate} = \begin{cases}
\text{face}, & \text{score}_{\text{candidate}} \geq \text{score\textsubscript{Threshold_candidateSet}} \\
\text{undetermined}, & \text{otherwise}
\end{cases}
\] (4.9)

Clearly, the success of such a methodology will be dependent upon the appropriate definition of thresholds, and whether we can suitably adapt them to the aforementioned variables. To that end, if we assume that the largest score generated for an image pertains to an actual face, then we can gain an understanding of how strongly expressed the features of faces within the image have the potential to be, given the circumstances surrounding the quality of the image and the detectors being used and how dependent scores are upon them. We believe that this assumption is entirely reasonable given that we know there must exist at least three faces identifiable using high-threshold detection within an image for our system to even progress to the stage of score-based classification, and it would seem extremely unlikely, in any scenario, that a non-face region would exist that would not only have a greater score than any of those faces, but a greater score than every single face within the image. It is, of course, this rationale that underpins the entire concept of score-based classification, and how we can use it to separate a set of faces from non-face regions.

By using the largest score generated for an input to establish a threshold specific to the face candidates of it, classifications can be made that account for all of the factors we have identified. We believe that simply defining the face classification threshold of a given set of candidate scores as a certain fraction of the largest of those scores would prove to be effective. The process of determining thresholds in this manner can be described by Eq. 4.10, where greatestScore\textsubscript{candidateSet} refers to the largest score of any
candidate within a set, and \textit{scoreFraction} represents our constant fractional value that will define the relationship between greatest scores and applied score thresholds.

\[
\text{scoreThreshold}_{\text{candidateSet}} = \text{greatestScore}_{\text{candidateSet}} \cdot \text{scoreFraction}
\]

The efficacy of defining thresholds in this way will be reliant upon the fraction used being entirely appropriate. We can derive a suitable fraction to use in the definition of score thresholds empirically, by establishing the frequencies with which certain values are likely to yield false positives (in terms of false discovery rates, which are equivalent to \(1 - \text{precision}\)) and the rates at which they can positively classify actual faces (in terms of the proportions of candidates that pertain to faces being positively identified, making the metric distinct from an overall detection rate). Clearly, it would be desirable for us to maximise the latter than whilst minimising the former. Having experimented with a range of values over our five calibration images, the mean results we have achieved are illustrated by Fig. 4.22.

![Figure 4.22](image)

Figure 4.22: The mean false discovery (FP / (TP + FP)) and positive candidate identification (TP / (TP + FN)) rates yielded by a range of classification threshold-defining largest score fractions over our set of system calibration images.

As can be discerned from Fig. 4.22, both our false discovery rate (FDR) and our positive candidate identification rate (PCIR) decrease rather drastically as we increment the score fraction used, although the former certainly diminishes at a significantly greater pace. At a particularly small fraction of 0.01, we can observe an extremely impressive PCIR of
90%, but also an FDR of almost 25%, which represents a disappointingly low level of precision. On the opposite end of the spectrum, we can see that after an applied fraction of 0.15 or so, the FDRs yielded by thresholds become negligible, but the achieved PCIRs also become rather low. A fraction of 0.1 would appear to be a reasonable compromise between these two extremes, as it yields a FDR of only 2%, whilst also delivering a PCIR of around 66%, and we will, therefore, be using it to define score threshold values from this point forward. Although this would mean roughly one-third of candidate-associated faces not being positively identified by our score-based classification methodology in an average case, what must be remembered is that those faces would have been neither negatively classified nor discarded, and may very well still be correctly classified as faces and be represented by our final results. Using a score fraction of 0.1 to define a face classification threshold for the candidates of Fig. 4.20 using Eq. 4.10 and subsequently applying Eq. 4.9 to those candidates yields the set of faces depicted by Fig. 4.23.
Figure 4.23: (a) The set of 24 faces extracted from the candidates depicted by Fig. 4.20, having used a score threshold of 20 (200*0.1) to discriminate between faces and candidates without entirely compelling face-like features. (b) The discrimination of these faces from the low-score candidates in terms of the distribution of the scores (50 bins).

As the results illustrated by Fig. 4.23 demonstrate, our score-based classification methodology has succeeded in extracting a large number of actual faces from the set of candidates depicted by Fig. 4.20. Just as important as the positive identification rate exhibited here is the precision with which it has been achieved, as not a single non-face region has been erroneously classified as a face. The reason this is so critical is that it maintains the potential for us to attain a perfect separation of our candidates, whereby every face would be positively identified as such and every non-face region would ultimately be discarded. Whether or not this can be realised, however, will now be entirely dependent upon the efficacy of our subsequent discrimination techniques, which will be applied to the candidates not positively classified by their scores. These low-score candidates (i.e. the set candidates depicted by Fig. 4.20 but not Fig. 4.23) are illustrated by Fig. 4.24.
Figure 4.24: As the candidates with scores greater than the generated threshold have now been positively classified as faces, we are left with a set of 47 low-score candidates, which, rather than simply being discarded, will be classified according to additional criteria.

Whilst the application of a score threshold to the set of candidates depicted by Fig. 4.20 has segregated the majority of the actual faces represented by that set, Fig. 4.24 makes clear that there are still a number yet to be positively classified. These weak faces, however, are vastly outnumbered by candidates that pertain to non-face regions, and the sheer variety exhibited by those candidates (in terms of their locations, colours, textures, etc.) is so great that attempting to distinguish the small number of remaining faces from them using any specific supplementary modality is highly unlikely to yield favourable results in any typical scenario, and certainly not on any form of consistent basis.

What can also be noted from Fig. 4.24, however, is that the majority of the candidates it depicts that represent non-skin regions have scores of just 1, whereas most of the actual faces are associated with scores greater than this. A score of 1 signifies that a region was related to just a single size-filtered detection, meaning that it only expressed size-appropriate face resemblance to a single detector at a single scale, which implies that it could very well be the result of nothing more than a mathematical fluke. We could, therefore, assume this to be the case for every such candidate, and extend our score-based classification process by simply discarding any candidate with a score of 1, which would make the discrimination of faces from non-face regions according to an alternative property considerably more achievable. Although we have previously stressed the
importance of our score thresholds being specific to candidate sets, the propensity for anomalous detections to be generated is independent of the factors that affect candidate scores so greatly, so predefining this cut-off point using a fixed value does not contradict our existing rationale. This modification of our process updates the score-based candidate classification rules such that they can now be described by Eq. 4.11.

\[
\text{candidate} = \begin{cases}
\text{face, } & \text{score}_{\text{candidate}} \geq \text{scoreThreshold}_{\text{candidateSet}} \\
\text{non-face, } & \text{score}_{\text{candidate}} = 1 \\
\text{undetermined, } & \text{otherwise}
\end{cases}
\]

(4.11)

The result of eliminating candidates with a score of 1 from the set illustrated by Fig. 4.24 (or, the result of applying the decision rules described by Eq. 4.11 to the candidates depicted by Fig. 4.20) can be seen in Fig. 4.25.

Figure 4.25: As we have discarded the 28 candidates of Fig. 4.24 associated with a score of 1, we will now be carrying forward a set of 19 candidates to be classified with respect to an alternative modality.

Through comparison of Fig. 4.24 and Fig. 4.25, we can observe that the vast majority of the non-face regions previously represented by our set of low-score candidates have now been eliminated as a consequence of their scores being just 1. Whereas the actual faces were greatly outnumbered by the non-face regions in the scenario illustrated by Fig. 4.24, the situation has been entirely reversed by the introduction of our additional classification rule, as there are far fewer non-faces regions now represented by our set of candidates.
than there are actual faces within it, as can be ascertained from Fig. 4.25. This is extremely important, as it means that precisely extracting the remaining faces is now decidedly more feasible than it was beforehand.

Simply eliminating candidates with a score of 1 is not entirely without its downsides, however. Empirically, we have found that sets of candidates will occasionally contain actual (although extremely weak) faces with such scores, and these will, of course, be lost upon the application of Eq. 4.11 to such sets. An instance of this can actually be observed between Fig. 4.24 and Fig. 4.25, for example. This is extremely unfortunate, as it means that detection rates can be negatively impacted, although we would never expect the extent of this to be particularly significant, as the prevalence of score-of-1 faces is likely to correlate positively with the total number of visible faces. Nevertheless, it is an undesirable consequence, but we believe the consistency with which the extension of our score-based classification rules eliminates large numbers of non-face regions and the non-negligible improvements to precision that this will generally lead to outweigh the marginal recall costs we are likely to incur.

Having achieved the precise extraction of numerous actual faces and the elimination of large numbers of non-face regions from our set of candidates through the application of score-based classification, we have reached the limit of what can be accomplished through the isolated consideration of candidate scores, and we must, therefore, examine different candidate properties in order to accurately determine the natures of those retained to this point.

4.1.5 Colour-Based Face Candidate Classification

Whilst score-based candidate classification is no doubt capable of being extremely effective at accurately classifying the majority of the candidates generated for any given image, be that either positively or negatively, it cannot be used to discriminate between particularly weak faces and non-face regions that exhibit any non-negligible amount of face resemblance, as such candidates will be associated with similar scores. Rather than attempt to further utilise scores, therefore, we will consider an entirely disparate attribute of our remaining candidates: their colour. The colours expressed by the pixels of any
given candidate will be entirely independent from the size of the candidate and how feature-rich it may be. Therefore, a candidate exhibiting colours that are significantly skin-like, given that its size and score will have already been validated by virtue of it being retained to this stage, can be considered compelling evidence of it representing an actual face. In isolation, the general colour of a region cannot confer sufficient confidence to it for a positive classification to be made with any particular accuracy, but through using it to supplement the properties we have already worked with, it most certainly can.

Of course, classifying candidates according to their colours does not necessarily preclude the potential for candidates pertaining to non-face regions being erroneously positively classified, but if we ensure that the skin colour models to which candidates are compared are extremely specific, then the frequency of such incidents should not be significant. Furthermore, such specificity of the applied models would also ensure that the probability of actual face regions being negatively classified is minimised as well. The efficacy of our colour-based classification process will, therefore, be dependent upon the means by which skin colour models are generated, and how representative they are. Given the particularly vast number of variabilities involved with inputs that depict lecture theatres and like environments, generating models on a per-image basis, using an adaptive methodology, will maximise the likelihood of accurate candidate classification being achieved.

To this end, we will be adopting the skin colour modelling approach we detailed the development of in Chapter 3. This system necessitates the existence of a set of high-confidence face regions in order for a model to be derived. Conveniently, as we have already generated a set of such data points during the construction of our size filter, we are able to produce a skin colour model without the need for additional image sampling. The derivation of a model, therefore, involves only the detection-wise filtration of sub-region pixels according to their luma values, and the calculation of the mean colour and covariance matrix of the resulting set, whereby the normalised rg colour space is used to represent colours. Once this has been achieved, the model can be used to determine the likelihood of any given pixel representing skin through the application of an expression derived from the density function of a Gaussian joint-probability distribution, which can
be described by Eq. 4.12, where \(c_i \) represents the colour vector of input pixel \(i \), and \(\mu_s \) and \(\Sigma_s \) represent the mean colour vector and covariance matrix of our skin colour model \(s \), respectively.

\[
p(skin|c_i) = e^{-\frac{1}{2}(c_i - \mu_s)^T \Sigma_s^{-1}(c_i - \mu_s)}
\] (4.12)

Regardless of how effectively we derive skin colour models, the accuracy with which we can classify candidates according to their colours will be dependent upon the manner in which we apply Eq. 4.12. Usually, it would be used in conjunction with a threshold to achieve binary classifications and the segmentation of skin, and we could, in theory, do this with the pixels of our candidates, then, for instance, calculate the proportion of any given candidate region that appears to represent skin, then apply a classification threshold to that value. Although such a process would have the potential to yield accurate results, making colour-based candidate classification a two-dimensional problem in this manner (as we would be applying threshold upon threshold) introduces entirely unnecessary complications, chief among them being that calibration of the process is far more likely to render it overfitted to the training data used than would otherwise be the case.

Instead, we use Eq. 4.12 to calculate continuous “skin ratings” for candidates, which will simply be scalars defined on a [0, 1] interval. A skin rating will provide a general sense of how skin-like the colours of a given candidate are according to the given derived model, and will allow us to classify it using straightforward, unidimensional thresholding, whereby any candidate with a skin rating greater than the applied threshold will be positively classified as a face, and any with a rating less than the threshold will be negatively classified and discarded. This decision rule can be described by Eq. 4.13, where \(candidate \) represents any input from our set of candidates yet to be classified, \(SkinRating_{candidate} \) represents the skin rating determined for that input, and \(SkinRatingThreshold \) defines the threshold to be applied to our calculated ratings to produce classifications.

\[
candidate = \begin{cases}
 \text{face}, & \text{if } SkinRating_{candidate} \geq SkinRatingThreshold \\
 \text{non\text{-}face}, & \text{otherwise}
\end{cases}
\] (4.13)
Although the classification rule described by Eq. 4.13 appears rather simple, whether it can yield accurate results on a consistent basis will depend upon the decidedly more complex matters of calculating skin ratings in an effective manner and establishing an appropriate threshold to apply. It is the former of these issues that we will consider first. Although determining the skin rating of a candidate could be as straightforward as applying Eq. 4.12 to each of its constituent pixels and calculating the mean of the output values, such a process would undoubtedly yield inconsistent results. The reason for this is the same reason that we define sub-regions within face detection results and also filter out their pixels that have particularly low luma values, which is that candidates that do actually represent faces will often contain to a significant number of pixels that do not pertain to skin. These uninteresting regions will concern either background information that has been enclosed by the oft-overestimating candidates or non-skin facial features, both of which we have already developed an effective elimination method for that we will be applying here. The supreme benefit of sampling the pixels of candidates in the same way that we sample the pixels of high-precision face detection results is that for the candidates that do actually pertain to faces, the skin ratings we calculate will generally be greater than if we didn’t, as actual skin pixels will represent much greater proportions of the sets of pixels taken into consideration. On the other hand, the ratings of candidates that represent non-face regions will typically not be notably affected, as their contents will not usually adhere to any sort of face-like distribution, thus making discriminating between the two types of candidates according to their scores significantly more achievable. The way in which we calculate the skin rating of any given candidate, therefore, can be described by Eq. 4.14, where \(\text{SkinProb()} \) signifies the use of Eq. 4.12 to determine the skin probability of a pixel, \(\text{RetainedCandidateSubregionPixel}_i \) represents the \(i^{\text{th}} \) pixel of the sub-region of the candidate that has been retained after luma-based filtering, and \(n \) represents the total number of retained pixels within the sub-region of the candidate.

\[
\begin{align*}
\text{SkinRating}_{\text{candidate}} &= \frac{1}{n} \sum_{i=1}^{n} \text{SkinProb}(\text{RetainedCandidateSubregionPixel}_i) \\
\end{align*}
\]

Through the application of Eq. 4.14 to inputs, we can prepare sets of candidates for classification according to the defined threshold. The skin ratings determined for the candidates depicted by Fig. 4.25 in this way are illustrated by Fig. 4.26.
Figure 4.26: The skin ratings calculated for the set of low-score face candidates depicted by Fig. 4.25. Each rating signifies how skin-like the general colour of the given candidate is, according to the skin colour model generated for the given image.

Through the inspection of Fig. 4.26, we can ascertain that our process of ascribing scalar values to candidates to describe how skin-like their overall tone is has been rather successful where the candidates of Fig. 4.25 are concerned. As can be observed, the candidates that pertain to faces are universally associated with large skin ratings, whereas those that represent non-skin regions generally have significantly lower ratings. Interestingly, there would appear to be no significant correlation between the consolidation scores of these candidates and the skin ratings that have been derived for them here, as the actual face candidates and non-face region candidates are now seemingly distinguishable after previously being inseparable, which greatly reinforces our decision to transition to the analysis of colour-based properties.

Of course, the accurate discrimination that such a range of skin ratings may allow for can only be realised when we apply a suitable threshold, which we will again be deriving empirically, using our set of designated calibration images. Unlike the other parameters we have calibrated during the development of our face detection framework, our derived skin rating threshold will not be a multiplier for any other element, and the same absolute value will be applied during any given scenario. The reason for this relates to the nature of our skin colour modelling process. As our models are adaptively derived and specific to the characteristics of given input images, the skin rating calculated for any given
candidate will inherently be relative to that of every other candidate within the given image, and a candidate within one image that has a particularly skin-like colour according to its respective model will have the exact same skin rating as a candidate within an entirely different image that has an equally skin-like colour according to the model of that image. Despite this dissimilarity, the means by which we will derive a skin rating threshold will be the same as those used to determine an optimal largest score fraction for score-based candidate classification. For a range of skin rating thresholds, we will be measuring the yielded false discovery rates and positive candidate identification rates, in terms of the sets of low-score candidates generated for each image involved. The results of this analysis can be seen in Fig. 4.27.

Figure 4.27: The false discovery (FP / (TP + FP)) rates and positive candidate identification (TP / (TP + FN)) rates achieved by a range of skin rating thresholds over our set of calibration images.

As Fig. 4.27 illustrates, both the FDR and PCIR yielded by colour-based classification will rather gradually decrease as we increase the value of the applied skin rating threshold. According to our results, using a threshold as low as 0.1 will consistently positively classify every low-score candidate that represents a face, which is extremely encouraging, but it will also lead to a third of positive score-based classifications being false, and such an error rate is far from desirable. On the other hand, we can achieve excellent precision with a skin rating threshold of 0.4 or greater, but our detection rate would be greatly diminished by comparison. Given that both metrics vary near-linearly
over the range of thresholds we have experimented with, using these results to determine an optimal value to apply to future inputs is not entirely straightforward, and will perhaps be most effectively achieved by simply establishing which value maximises the proportional difference between the achieved FDR and PCIR, which would be approximately 0.35. This may seem like a rather low classification threshold, but it should be remembered just how specific the outputs of our skin colour modelling process are, and particularly large skin ratings (of 0.8 or above, for instance) will likely be extremely rare as a result. Using this threshold, we would expect colour-based classification to yield a positive low-score candidate identification rate of approximately 78% when processing a typical input, as well as a false detection rate within the region of only 9%, and we believe such performance characteristics represent great success as far as our development and implementation of the process is concerned. Applied to the candidate skin ratings illustrated by Fig. 4.26 through the use of Eq. 4.13, a threshold value of 0.35 will yield the positive classifications depicted by Fig. 4.28.

As the results of Fig. 4.28 demonstrate, our colour-based candidate classification methodology has the potential to discriminate between weak faces and non-skin regions to a highly accurate degree, as every single candidate within Fig. 4.26 has been correctly classified, be it positively or negatively. Although score-based classification proved to be
extremely effective at correctly determining the true nature of large numbers of candidates, those that it could not separate have now been successfully categorised by colour-based classification, which lends great credence to our decision to adopt colour as a supplementary modality. It should be noted that although we have designed our system such that the candidates that are indistinguishable to the score-based component have been passed onto the colour-based component, it could have been implemented in the opposite fashion just as simply. Empirically, however, we have found that score-based classification is capable of identifying considerably larger numbers of faces within candidate sets without also yielding false positives than colour-based classification is, given typical input images, which is why our finalised framework design dictates that the latter assumes an auxiliary role. Of course, now that both of our classification processes have yielded results, we can form the final output of our face detection system, which will consist simply of the union of the two generated sets of positive classifications. The overall detection results that we have achieved for Fig. 4.2 are illustrated by Fig. 4.29, which combines the score-based classification results depicted by Fig. 4.23 and the colour-based classification results depicted by Fig. 4.28.

As Fig. 4.29 demonstrates, the system we have developed certainly has the potential to yield accurate results where large-scale face detection problems of this type are
concerned. Each component of our framework has been calibrated specifically to discard potential false positive detections, as we apply a number of filters to validate the properties of data points, whereby a particular lack of conformity to our expectations of actual faces will result in elimination, and adherence to them will reinforce confidences. As we have successfully avoided generating even a single false positive in the case of Fig. 4.2, thereby achieving perfect precision, it would seem that our calibrations have been extremely effective. Nevertheless, as encouraging as the precision achieved in this instance may be, it would be rather meaningless if it was simply the result of our system being generally insensitive. However, as Fig. 4.29 also makes clear, our approach is very much capable of yielding excellent recall rates, having failed to detect just 8 of the 44 faces visible within Fig. 4.2 using the six facial feature cascades provided by OpenCV, and each of these face exhibits significant occlusion, problematic orientation, or indeed a combination of both of these detection-inhibiting factors.

Comparison to the results of the Viola-Jones detection system [147] using its default configuration (as we presented in Chapter 1) reinforces the quality of our results, as the recall rate, precision, and overall F-score achieved in that instance have all been improved upon significantly, by 0.38, 0.16, and 0.31, respectively. Furthermore, in Chapter 1, we presented a selection of weak faces that, due to a range of issues, had not been detected during our trial of the Viola-Jones system, and Fig. 4.29 indicates that our framework has successfully overcome the problems they pose in order to positively identify all of them. Despite our results being so encouraging here, the output produced for just a single image can never be considered fully sufficient evidence of its overall efficacy, and this can only be established through rigorous evaluation.

4.2 Framework Evaluation

Although we are confident that the design and implementation of our framework for enhanced face detection (henceforth denoted by “EFDF”, standing for “Enhanced Face Detection Framework”) has been entirely sound, by thoroughly evaluating the results it can achieve, we can go a long way towards proving whether this is actually the case or not. Furthermore, we can establish the extent to which our approach is capable of
outperforming existing techniques, or reveal the reasons for why it falls short. Our evaluation will consist of three separate analyses, the first two of which will concern the detection accuracy of our system when it is used in conjunction with all six of the feature cascades that we have identified. The final analysis will investigate how efficiently its results can be achieved when using that set of six cascades, and our findings will then be contrasted against the efficiency achieved when using just one of them. By evaluating the performance of our framework so broadly in this manner, we can more effectively assess its value.

Initially, we will be discovering how effectively our framework can detect faces in a set of images that pertain to lecture theatres. It is this type of input that exposed the weaknesses of existing techniques at the outset of this project, so it is imperative that we assess whether or not the solution we have developed is actually capable of solving the problems that it poses, and ascertain that the calibration of our process parameters has not resulted in them being overfitted to the specific images we have used. Subsequently, we will be working with a set of arbitrary images of people, which will present somewhat simpler detection problems. Over such images, we would expect the existing detectors to perform much more capably, and it is important that we verify that our system can still provide competitive results under such circumstances, thereby demonstrating that it is sufficiently adaptive, and has not been over-engineered to solve the particular issues posed by lecture theatre imagery. This is somewhat of a concern to us, as, of course, the parameters dictating the performance of the various filters that comprise our framework have been empirically calibrated using exclusively images of people within lecture theatres, and although we believe that the patterns those images revealed will be consistent across any images of people, it is important we confirm this to be the case.

The analysis of detection results will firstly involve a simple quantitative comparison of the outputs generated by each detector operating using its default configuration, which will be in terms of the recall rates, levels of precision, and F-scores achieved. Such results are incredibly useful, as they can provide straightforward insight into the expected performance of a system given its implementation as a solution to a real-world detection problem. The scope of this type of evaluation is limited, however, as it cannot fully
inform on the potential for detection systems to achieve accurate results, as it does not consider their entire operational spectrums.

It is for this reason that we will also be employing precision-recall (PR) analysis, which will take into account the results that approaches yield over a broad range of sensitivity configurations. We will not, however, be utilising receiver operating characteristic (ROC) analysis, simply because it cannot be applied to the results of face detection systems. The reason for this is that a “false positive rate” is impossible to reasonably define when the label of “true negative” could be applied to a practically infinite number of samples within any given image where faces are concerned. This matters little, however, as it has been established that the results of PR analysis are more meaningful than those of ROC analysis when the positive class of a problem is of greater importance and interest than the negative class [21,49], which is most certainly the case for our problem. The performance curves that PR experimentation generates can also be quantified according to the proportions of the precision-recall space that they enclose, which constitutes the “area under curve” (AUC) metric. This is an extremely strong indicator of the overall quality of a classification system [3,4,44], and, as such, will allow us to draw strong conclusions about how successful we have been in meeting our objectives.

4.2.1 Lecture Theatre Imagery Analysis

Our first evaluatory analysis will concern the detection results achieved over a set of lecture theatre images. These results will include those of our own system as well as those of the detectors we have used for detection collation, implemented independently of our framework. By comparing those techniques directly to our own, we can establish the extent to which our approach can improve upon their results. The lecture theatre image dataset we will be using for this analysis consists of 18 individual images that depict a total of 803 faces. A small sample of these images can be seen within Fig. 4.30.
We consider the challenges that this dataset poses to face detection systems to be rather stern, as the faces it contains are presented at wildly varying scales, orientations, degrees of occlusion, and levels of illumination, with a number of other factors also needing to be accounted for. This is highly beneficial, as it means that our system will be rigorously tested and its potential made apparent. Furthermore, such a diverse set of inputs should yield a rather broad range of results, allowing us to easily discern between the performances of the approaches we will be looking at.

4.2.1.1 Default Configuration Analysis

We will firstly be processing our lecture theatre image dataset using the detection systems in their default configurations. Where our framework is concerned, this means it will be operating using the parameter values we deemed optimal during its development, and for the individual feature cascades, the default minimum number of neighbouring detections required for the presence of a face to be declared (three) will be applied. The outputs generated will be evaluated in terms of the mean recall rates and levels of precision achieved, from which we will then derive an overall F-score, which simply
represents the harmonic mean of the two aforementioned values. The results achieved over all 18 images within the dataset are illustrated by Fig. 4.31(a), and Fig. 4.31(b) depicts a small sample of the results yielded given the individual images (specifically, those shown in Fig. 4.30).

Figure 4.31: (a) The face detection results achieved across the lecture theatre image dataset, with the performance of our framework when using all six feature cascades contrasted against the performances of the cascades when implemented independently, and (b) a small sample of the individual outputs we have produced.
As Fig. 4.31(a) shows, the performance of EFDF is comfortably superior to that of any of the individual detectors it has utilised for this experiment, with an overall F-score of around 0.81 having been attained. The recall rate we have achieved over the dataset is roughly 10% greater than that of the next-best detector in that regard, the Default cascade. Of course, positively identifying around 69% of all faces within the set still leaves significant room for improvement (as some of the undetected weak faces depicted by Fig. 4.31(b) confirm), but the potential for our framework to combine and enhance the results of existing detection systems is strongly evidenced by these results. Furthermore, whilst the precision of the independent Default cascade was rather poor, that of our own system is better than that of any of the individually implemented detectors, as almost 99% of the positive classifications we have made are actually correct (in fact, the results shown by Fig. 4.31(b) consist of 126 TPs and 0 FPs). Not only does this mean that our classifications have been made with extremely high confidence, but also that there is substantial room for manoeuvre with regards to increasing the sensitivity of our system to further improve the recall rates we achieve.

4.2.1.2 Precision-Recall Analysis

In order to get a more comprehensive sense of the potential for our framework to improve upon the results of existing systems, we can employ precision-recall analysis. This form of evaluation will involve generating precision and recall statistics just as before, but it will now be done for a range of sensitivity settings for each of the detectors we are working with. Where the individual cascades are concerned, the adjustment of detection sensitivity is trivial, requiring merely changes to the discrete minimum neighbour threshold to be made. Where our framework is concerned, however, the issue is somewhat more complicated, as the parameters controlling its filters all influence its overall performance to some degree. Therefore, we will be controlling sensitivity by making simultaneous marginal adjustments to each of the four major parameters we have optimised, which will allow us to construct a representative performance curve. In addition to working with our “optimal” configuration, we will be generating results using four alternative parameter value sets, designed to induce different levels of sensitivity. These additional configurations are specified by Tab 4.1.
Table 4.1: Specification of the parameter configurations to be used by our framework. The values that constitute the alternative configurations have been derived from marginal adjustments being made to the optimised values of the parameters.

The performance curves we will be constructing would ideally enclose some determinable proportion of the precision-recall space in order for us to subsequently derive AUC values, so we must define rules for how the extremes of the performance spectrum of each detector are represented. In the case of no detections being made whatsoever, we define recall to be 0 and precision to be 1, as preliminary testing revealed that all of the detectors, including our own, will yield numerous true positives before producing any false positives as their sensitivities are increased. Where maximum sensitivity is concerned, there exists no guarantee that every face will actually be identified by a given detector, as the way in which the features of some may appear may not actually be accounted for by its feature set, and only false positives might ever be additionally produced after a certain sensitivity, meaning that precision will tend towards 0, so we will ascribe the point representing 0 precision and the greatest recall achieved to the curve of every approach in order to complete it. The results we have generated on these terms for all of the detectors, including our framework, over the lecture theatre dataset are illustrated by Fig. 4.32.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reduced sensitivity</th>
<th>Optimal</th>
<th>Adjust.</th>
<th>Increased sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size error tolerance</td>
<td>0.15 0.20</td>
<td>0.25 0.05</td>
<td>0.30 0.35</td>
<td></td>
</tr>
<tr>
<td>Consolidation scaling</td>
<td>1.50 1.45</td>
<td>1.40 0.05</td>
<td>1.35 1.30</td>
<td></td>
</tr>
<tr>
<td>Face score fraction</td>
<td>0.14 0.12</td>
<td>0.10 0.02</td>
<td>0.08 0.06</td>
<td></td>
</tr>
<tr>
<td>Skin rating threshold</td>
<td>0.45 0.40</td>
<td>0.35 0.05</td>
<td>0.30 0.25</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.32: The precision-recall curves generated over our lecture theatre images by our framework when incorporating all six feature cascades and the cascades implemented independently, having had their sensitivities adjusted over the entire range of meaningful values. The bold result on the characteristic of our system signifies its performance using its optimised parameter values.

In line with our previous results, Fig. 4.32 makes clear that our system has outperformed the detectors it has incorporated by a rather wide margin. The most striking aspect of its performance is arguably that the maximum recall rate it has yielded is roughly 15% greater than that of the best individual cascade. In addition, that detection rate has been achieved at a considerably greater level of precision than the more sensitive results of the cascades have exhibited. Furthermore, we can note that EFDF produces recall rates of up to almost 0.7 before it begins to generate any significant number of false positives. Having established this, despite the dataset (and the ground truth data) being so demanding of the detectors we are looking at, it would be entirely accurate to suggest that there does still exist significant room for improvement, although for our system to yield even greater detection rates, it would need to be provided with information from detectors that are even more sensitive than those used here.

To further emphasise the relative quality of the results of our framework over this dataset, we can quantify the performances curves we have generated by deriving AUC values, which will define the proportion of the entire space that each one encloses. The values derived for all of the curves of Fig. 4.32 can be seen in Fig. 4.33.
The AUC values illustrated by Fig. 4.33 confirm that the overall performance of our framework over the lecture theatre imagery has been greatly superior to that of any of the cascades it has incorporated. It was over such inputs that we were primarily looking to improve detection results, and this analysis indicates that we have been rather successful in this regard, as recall rates have been increased considerably while precision has also been enhanced. It should be noted that there is significant overlap in the feature sets of some of the cascades, meaning that we could probably have achieved very similar results using a subset of the six cascades we have used in this instance, but through incorporating all of them, we have established that our framework can derive outstanding results from huge sets of supplied detection data points. By virtue of the capacity to incorporate the detections of any system that can yield simply coordinate and size information, our system can achieve truly exceptional recall rates, as evidenced by this analysis. Furthermore, it would appear that the calibration of our adaptive filters has been so effective that their ability to identify and specifically eliminate false positives is nigh-on impeccable, only beginning to falter when the parameters controlling them are artificially adjusted.
4.2.2 Arbitrary Imagery Analysis

Our second accuracy-focused analysis will involve the detection of faces within a set of arbitrary images. Again, we will be looking at the results of our own system when using the six feature cascades and comparing them to those of the cascades when implemented independently. This will help us to ascertain whether or not the lecture theatre imagery-centric development of our framework has rendered it unsuitable for more typical problems. The dataset consists of 20 images, all of which have been arbitrarily selected from the results of an online image search, and it contains a total of 226 faces. A small selection of the images that make up this set can be seen within Fig. 4.3. It should be noted that although numerous datasets exist for the evaluation of face detection systems [163], they tend to be focused upon the correct identification of small numbers of people or even individuals, and, as such, they would not allow us to fully explore the capabilities of our approach.

As can be gathered from Fig. 4.34, the problems that our arbitrary image dataset will pose to the detection systems we are working with will be decidedly simpler than those present by the previous dataset. One large factor in this situation is that the scales of the faces depicted by the set will vary considerably less than those seen within the lecture
theatre imagery, and there will be dramatically fewer instances of weak faces as a result. It is for this reason that we would expect to see the independently implemented cascades perform much more effectively than they did during our previous analysis. This means that rather than significantly improve upon the results of those detectors, as there may simply not be much room for improvement, we hope only to see our framework deliver comparable results.

4.2.2.1 Default Configuration Analysis

The first stage of this analysis will involve generating results using the default configuration of each detection approach. As before, our own system will operate using its optimal parameter values, and the cascades will make classifications based upon a minimum neighbour threshold of three. We will also again be utilising recall, precision, and F-score to quantify the outputs produced by the various detectors. The results achieved over our arbitrary image dataset are illustrated by Fig. 4.35.

![Figure 4.35: The face detection results achieved across the arbitrary image dataset, with the performance of our framework when using all six feature cascades contrasted against the performances of the cascades when implemented independently.](image)

In spite of our hopes to merely remain competitive over this set of relatively typical images, the results of Fig. 4.35 would suggest that we have still managed to produce non-negligible improvements to the performances of the individual cascades. The recall rate of 0.95 that we have achieved over the images is marginally better than that of any of the
individual cascades, and our precision is bettered only by detectors that have yielded significantly lower detection rates. Through further investigation, we have found that the few faces that we failed to positively identify within the dataset all exhibit the types of issues that were commonplace across our lecture theatre imagery, such as partial occlusion and atypical orientation, but it is possible that these could also be detected given increased classification sensitivity.

4.2.2.2 Precision-Recall Analysis

In an effort to achieve a more complete understanding of how well our system can perform given relatively simple arbitrary images, we can again employ precision-recall analysis. The methodology we will use will be identical to that used previously, with minor adjustments being made to the parameters of our framework to control its sensitivity and a range of minimum neighbour thresholds being applied to the detections of the individual cascades to tune their sensitivities. In addition, the attribution of points to the extremes of the performance curves will be accomplished in an identical fashion to before. The results achieved by all of the detectors we are working with are illustrated by Fig. 4.36.

![Figure 4.36: The precision-recall curves generated over our arbitrary images by our framework when incorporating all six feature cascades and the cascades implemented independently, having had their sensitivities adjusted over the entire range of meaningful values. The bold result on the characteristic of our system signifies its performance using its optimised parameter values.](image-url)
As could be expected, the performance curves depicted by Fig. 4.36 do not indicate that our framework has improved upon the results of the independently implemented cascades in a particularly dramatic manner, chiefly because of the general high quality of those results. The greatest recall rate to have been yielded by EFDF (equating to roughly 0.97) is only very slightly superior to those produced by most of the individual cascades (occupying a range of approximately 0.9 to 0.96), but the precision with which it has achieved it is considerably greater, so the benefits our system can provide are certainly not negligible, even in this instance. To make the significance of these performance curves more clear, we can again derive AUC values from them. The results of this process are illustrated by Fig. 4.37.

![Figure 4.37: The calculated area-under-curve (AUC) value for each of the precision-recall performance characteristics depicted by Fig. 4.36, which were achieved over our arbitrary image dataset. NB: The y-axis, representing AUC, has been truncated to a range of [0.4,1] in order to better emphasise the differences between the results.](image)

The AUC values presented by Fig. 4.37 confirm that the superiority of our system is minor, but as most of the individually implemented cascades have performed so effectively themselves, that it has improved upon their results in any way whatsoever can be considered a definite success. This is especially significant given that our framework was not specifically calibrated to work with such inputs, and that our hope was to return merely comparable results. Instead, we have demonstrated rather plainly that our system is very much capable of yielding results that are superior to those of the detectors it incorporates, even given the more generic tasks that they already perform well on.
The relatively poor performance of the Profile cascade in this instance is interesting to note, as it highlights how differently it functions to the other detectors we have been working with. However, it is actually precisely because of its greatly dissimilar results that a detector of its nature (i.e. one that looks for atypical features) would be ideally suited to incorporation into our framework, as it would be able to supplement the results of a more typical detector to a much greater extent than just another typical detector would.

Where our lecture theatre imagery was concerned, we suggested that our system could have yielded roughly equivalent results using a subset of the six cascades it had used to generate its results. In this instance, we believe we could have achieved virtually the same results using just one of the better-performing cascades, by maintaining its recall rate and improving upon its precision through the application of our, demonstrably, highly effective filters.

4.2.3 Detection Efficiency Evaluation

Although we have presented substantial evidence that our face detection methodology has the potential to outperform existing approaches, it is important that we discover the computational costs that our superior results can incur. In doing so, we can go further towards establishing how suitable our system may be for real-world problems that necessitate high accuracy, but where efficiency is also somewhat of a concern.

In this analysis, we will be investigating the offline performance of our detection approach, in relation to the throughput times achieved over the two datasets we have been interested in. The real-time generation of outputs will often not be critical where offline processing tasks are concerned, but computational efficiency will always be an important factor, as a system demonstrating far too little will render itself worthless, depending upon the requirements of the problem at hand.

Initially, we will be looking at our framework in the context of all six of the feature cascades we have been working with being incorporated for detection collation, just has been the case during the generation of the results presented throughout Section 4.2.1 and Section 4.2.2. Given this, we would expect the throughput times that we achieve to be
significantly longer than any of the individual times achieved by the detectors, although whether they would be longer than the times of all of them combined is a slightly more complex matter. This is because, when used independently, the feature cascades will carry out their own forms of consolidation and threshold-based classification in order to generate actual results from their initial detections, but these processes are, of course, not performed when the detectors are implemented as part of our system. Having established this, we would still expect the throughput times of our approach to be marginally longer than the sums of those times, as our modelling and classification processes should, in theory, be slightly more computationally expensive than the individual consolidation and thresholding methods that we are making redundant.

The total throughput times achieved over the two sets of images we have been working with by the six individual detection cascades and our framework incorporating all of them can be seen in Fig. 4.38. It should be noted that the 20 arbitrary images are varyingly sized, whereas the 18 lecture theatre images are all large.

Figure 4.38: The total throughput times achieved over our two datasets by the six individual feature cascades and our own framework, working with all of those cascades to produce its initial detection collations. Shorter throughput times indicate greater levels of efficiency, and the results have been generated using an Intel Core 2 Q9550 2.83GHz processor.

In line with our expectations, the results illustrated by Fig. 4.38 clearly indicate that our system, when making use of all six feature cascades, takes considerably longer to fully process the datasets it is presented with than any of the individual detectors. This would appear to be the case for both sets of images we have used, and it is worth noting that,
proportionally, the results achieved over the two are very similar, as every detector, including our own system, has taken roughly three times longer to fully process the set of lecture theatre images than it has the set of arbitrary images, which suggests that the general nature of inputs is not likely to significantly influence the relative efficiency of our approach. It must be remembered, however, that the nature of given inputs will determine the extent to which our framework can yield superior results. As we demonstrated in Section 4.2.1, our system can greatly improve overall accuracy when it is applied to complex imagery that poses challenging, atypical detection problems, and perhaps its inferior efficiency can be justified in such cases, depending upon the specific requirements of the given task. However, where more simple inputs are concerned, such as those worked with in Section 4.2.2, over which the improvements made are less significant, perhaps the application of our framework using all six feature cascades simply results in unnecessary computational costs being incurred.

We can also note that sums of the throughput times of the individual cascades are shorter than the times achieved by our framework, confirming that the consolidation and thresholding processes of the isolated detectors are not as computationally expensive as the stages of our system that succeed detection collation, which, again, was very much expected to be the case. In order for us to fully understand how efficient our system has the potential to be, it is necessary for us to investigate what proportion of total processing time each of its major constituent components generally expends, which will reveal where the most significant computational costs are being incurred. We have broken down the throughput times achieved over our two datasets to quantify these proportions, and the results, which represent the averages calculated between the two, are illustrated by Fig. 4.39. It should be noted that the two sets of proportions we calculated over the datasets were extremely similar, which is why we simply present the average values in this instance.
CHAPTER 4. ENHANCED FACE DETECTION

As Fig. 4.39 makes clear, when all six feature cascades are being utilised, by far the most computationally expensive process that our approach consists of is detection collation, as it evidently accounts for the vast majority of the time required for results to be generated. Precise face detection, which involves the derivation of a set of high-confidence face detections from the initial detections of a single cascade through consolidation and thresholding, takes very little time by comparison, as might be expected. Using principal component analysis to generate a size distribution model using that data then filtering the collated detections according to that model seemingly takes a negligible amount of time, but the consolidation of the resulting set of detections into a set of face candidates does require some effort, albeit not an inordinate amount. The score-based classification of those candidates is, again, computationally trivial, although colour-based is decidedly less so, as the derivation of skin colour models and the application of them to candidates in order to determine their skin ratings takes small, although non-negligible, periods of time.

Overall, we consider this to be a greatly positive situation, as it means that the overall efficiency of our framework is significantly more dependent upon the selection of the incorporated detectors than on its modelling and classification processes, meaning that those adaptive, non-adjustable components that we have developed are relatively efficient simply by their design. The importance of this is that any potential adopter of the system will have almost-complete control over its efficiency, which can, therefore, be adjusted to meet the specific requirements of the given task in a trade-off against its accuracy. If we
were to use just a single feature cascade for detection collation, for instance, we would expect the total throughput times that our framework achieves to be significantly shorter than those we have witnessed previously. Having incorporated only the Default feature cascade into our system, the times it achieves over our two datasets under the exact same conditions as before are illustrated by Fig. 4.40, and contrasted against the results of the Default cascade used in isolation and those of our framework when utilising all six cascades, as depicted by Fig. 4.38.

![Figure 4.40: The throughput times achieved over the two sets of images by our framework when using only the Default feature cascade during detection collation, compared to the Default cascade used independently and our framework when incorporating all six feature cascades. Again, shorter throughput times indicate greater levels of efficiency, and the image sets and hardware used are identical to before.](image)

The results of Fig. 4.40 confirm that our system will process inputs significantly more quickly when it utilises just a single feature cascade for detection collation, as we anticipated. We can note a time expenditure reduction of roughly 75%-80% compared to our previous results, making the efficiency of the system much more comparable to the feature cascade being used in isolation, as it demonstrates total throughput times that are in the region of only 30% longer. This difference would suggest that our modelling and classification processes take noticeably longer to execute than the consolidation and thresholding methods of the individual cascade do, but to further understand why this may be the case, we can again break down our time expenditures according to the contributions made to them by the individual components of our system. These proportions are illustrated by Fig. 4.41, and are presented in both the context of the times achieved using all six cascades and the context of our latest results.
As we discerned from Fig. 4.40, a considerable amount of time was saved by collating detections using only the Default cascade, but Fig. 4.41(a) suggests that the improvements to efficiency were not exclusive to the collation process. We can note that the detection consolidation and colour-based classification components of our system have also performed much more quickly than previously, and the reason for this is simply that a reduced number of initial detections will generally result in fewer data points needing to be processed at these stages. Due to the particular nature of consolidation, whereby every detection will be compared to every other detection within the given filtered set, the amount of time it expends will vary polynomially with the number of data points it processes, and this is why it has seen much greater improvements to efficiency than colour-based classification, the time expenditure of which, similarly to every other component of our system, will vary in a much more linear fashion.

Despite the huge reductions in time expenditure, the inspection of Fig. 4.41(b) makes clear that detection collation is still by far the biggest factor in the overall efficiency of our framework. Again, this is encouraging, as it confirms that the computational overheads of the other components of our system are not inherently prohibitive to highly efficient face detection. It also means that our achieved throughput times could be reduced even further than they have been already by using a detector that is even more efficient than the Default feature cascade. As can be seen in Fig. 4.38, of the five other
cascades we have been working with, three of them actually achieved even lower throughput times than the Default cascade, so we would fully expect our framework to perform even more efficiently using any of them to provide initial detections instead.

However, simply employing the most efficient detector available to provide initial detections with no concern for the accuracy of the results it can achieve would entirely undermine the premise of our work. This notion also applies, of course, to our use of the Default cascade as the only source of initial detections, which will be providing our system with far less information to work with than the incorporation of all six cascades would be, thereby degrading our potential to yield highly accurate results. Over our lecture theatre images, which typically contain numerous weak faces that will not all be detected by any individual cascade (hence the development of our framework for detectors designed to identify different sets of features), we would expect that collating detections using only the Default cascade would result in significantly reduced detection rates in comparison to the results we presented in Section 4.2.1. To illustrate this, we have again processed our lecture theatre dataset using our framework in its default parameter configuration, but only the Default cascade has been used to provide detections. The results we have achieved, in terms of recall rate, precision, and F-score, can be seen in Fig. 4.42.

![Graph showing detection rates](image)

Figure 4.42: The results achieved by our framework over our set of lecture theatre images using only the Default feature cascade during detection collation, contrasted against the results it achieves using all six cascades, and the results of the Default cascade when used independently.
As Fig. 4.42 demonstrates, the results we have achieved using only the Default cascade to provide initial information are decidedly inferior to those we achieved previously. This is very much as we anticipated, as it is indeed the reduced recall rates that have resulted in the degradation of the overall F-score, with approximately 10% fewer true positive classifications being made over the entire dataset, although the high precision of the previous performance has been largely maintained. The comparison between our new results and those of the Default cascade used in isolation is very encouraging, however, as it would appear that our system has managed to greatly reduce the number of false positive classifications the cascade produces without causing any significant detrimental effects to its recall rates, resulting in a marked improvement to overall accuracy. This is particularly positive as we are aware that this has been achieved without an excessive amount of additional computational effort, as Fig. 4.40 illustrated.

Of course, our lecture theatre images pose very particular, atypical problems for face detectors, so it is essential that we also investigate the effects of using only the Default cascade when we are processing arbitrary images. As the analysis we presented in Section 4.2.2 attests to, the results of the Default cascade when used independently were much more comparable to those of our system (when using all six cascades) over the set of arbitrary images than they were over the set of lecture theatre images. This was primarily because the more strongly expressed features of the faces within the arbitrary set were discoverable for the Default cascade, which left little room for our framework to achieve superior detection rates through the incorporation of additional feature cascades. We did, however, observe a non-negligible difference in precision, with our system achieving superior overall accuracies as a result. Given this, and the effects of applying our framework to the detections of the Default cascade depicted by Fig. 4.42, we would expect that, over the entire arbitrary image set, using only the Default cascade for collation would achieve very similar detection rates to using the cascade independently, but yield some improvements to its precision, just as before. To discover whether this would actually be the case, we have processed the arbitrary image dataset using our framework in conjunction with only the Default cascade, and the results of this experimentation are illustrated by Fig. 4.43.
Figure 4.43: The results achieved by our framework over the set of arbitrary images using only the Default feature cascade during detection collation, contrasted against the results it achieves using all six cascades, and the results of the Default cascade when used independently.

As Fig. 4.43 elucidates, our expectations of the results were entirely accurate, as we can firstly note the virtually identical detection rates that we have achieved in this instance compared to both of the previous cases. Whilst not reducing the number of true positive classifications made should not be considered success on its own, that this has been accomplished in conjunction with significant improvements to precision being made is highly positive, as the yielded results in this instance are essentially no different to those achieved using all six cascades, but have been generated with much greater efficiency. Furthermore, we have again demonstrated that we can noticeably improve the results of an existing detector without incurring inordinate additional computational costs.

Overall, it would seem that the efficiency of our system will largely be determined by the efficiency of the detectors chosen to be incorporated for the purposes of detection collation. As we have demonstrated, utilising a broad range of feature cascades will improve results significantly given complex imagery, but will also result in the system being relatively inefficient, although this may be considered an acceptable trade-off given the requirements of the task. Over simpler inputs, the framework will perform just as inefficiently when using the same set of cascades, but the improvements to accuracy that it is likely to yield will be significantly reduced, so the trade-off will perhaps no longer be reasonable, and a smaller set of incorporated detectors may be far more appropriate. The selection of initial detectors, therefore, should be dictated by the nature and specification
of the given problem, and the overall efficiency of our system will then simply be
determined by that choice, in addition to the relatively minor computational costs of our
modelling and classification processes.

It must be remembered that the feature cascades we have used to demonstrate the
capabilities of our framework were not necessarily all required for the results we have
achieved to be as encouraging as they have been. As they were developed to be
implemented independently, there will be considerable overlap in the features that they
look for in order to identify face regions, and it is highly likely that virtually the same
results could have been achieved over the lecture theatre image dataset (the one for which
detection rates were significantly improved) with a smaller number of cascades than we
have been working with, which would have yielded far greater efficiencies. Even though
different detectors are likely to return different results when processing any given input,
there will be diminishing returns as more and more are incorporated for detection
collation, as fewer and fewer faces will remain unfound, so the incurred costs to
efficiency will yield smaller and smaller benefits. However, it was our desire to prove
that our framework could process huge amounts of raw data and still derive highly
accurate detection results from it, and that there would be no upper limit on the number
of detectors that it could incorporate, regardless of how inefficiently the resulting system
may perform.
Chapter 5

Discussion and Conclusions

In this chapter, we will summarise and discuss the research we have conducted towards exploring our hypothesis, present a number of objective conclusions that we have drawn, and offer suggestions for possible improvements that could be made to our work in the future.

5.1 Synoptic Discussion

In Chapter 3, we detailed the entire developmental process of our new adaptive skin segmentation approach, from its inception and design to its implementation, and concluded with a thorough evaluation, assessing both its accuracy and its efficiency.

Initially, we identified a number of issues with a wide range of existing, and popular, skin segmentation methodologies when applied to our lecture theatre imagery, even when the images are of high general quality. These issues related primarily to poor recall rates under certain circumstances and inadequate degrees of precision under others, and were strongly linked to the intensity and tone of the illumination present within the inputs. The overarching problem, however, was the matter of achieving consistency. Over inputs of different nature, we could not conclude that any of the approaches we had identified were capable of attaining adequate consistency. This was rather understandable, as the type of problem we were presenting could be considered somewhat more complex than that of a typical arbitrary image, but the fact remained that we could not identify a solution.
It was the lack of consistency in the results of the existing techniques that lead to the realisation that, in order for accurate segmentations to be regularly achieved over such inputs, we must implement an adaptive approach, capable of segmenting skin according to the specific conditions exhibited by given inputs. Although a number of adaptive methodologies for skin segmentation did already exist, we highlighted a number of reasons why they were not necessarily appropriate answers to our large-scale problem. Rather than adopting any of them, therefore, we endeavoured to develop our own adaptive segmentation system.

The first stage of development involved identifying the means by which we could sample input images, and we found the use of feature-based face detection to be highly effective, and an ideal fit given the nature of our task. Additionally, we found some precedence for its successful application to problems such as ours. We proceeded to carefully configure its implementation and ensure it would perform in a completely beneficial manner, with an emphasis placed heavily upon the avoidance of false positive detections. We recognised that the regions returned by the face detector would often contain non-negligible proportions of background information, so we decided to define circular sub-regions within the results that would eliminate such data from further consideration, with the preservation of likely skin pixels also being a major factor in this process. Furthermore, we found that within the sub-regions we were generating, there were still considerable numbers of non-skin pixels. These would usually instead pertain to facial features such as eyes and mouths, but could also represent hair or glasses. Having identified that these non-skin pixels tended to exhibit low visual intensity, we decided that an effective method to isolate actual skin pixels from them was to filter them according to their relative luma values, and applying such a process to every face detection sub-region for a given image would yield a set of pixels that we could be confident represented the skin tones present within that image.

Given such a set of pixels, the objective became effectively deriving a representative skin colour model. There were numerous options available, but by far the most viable and suitable was Gaussian modelling. Not only would it allow us to construct models from our positive skin colour samples alone, it would also result in the interpolation of likely skin colours that may have been undersampled initially, and afford the possibility of...
adjustable thresholding due to its continuous nature. Furthermore, by also opting to operate within the normalised rg colour space, we could take full advantage of skin tones tending to cluster elliptically within that space. Given a set of sample pixels, the construction of a representative Gaussian model was trivially simple, and required merely the determination of the mean colour vector and covariance matrix of the set.

Having derived a skin colour model for a given input image, we would be ready to segment the skin from within it. By utilising the definition of a joint probability density function, we could determine the skin likelihood of any given input colour vector. This alone could not yield any form of segmentation, however, as this would require the definition of a probability threshold. By applying such a threshold to calculated likelihoods, we could classify pixels as either “skin” or “non-skin”, thereby achieving an output – a segmented image. Rather than being content with our system classifying pixels in this manner, we attempted to optimise it, and ensure that the results it was producing were being delivered with maximal efficiency. Our first step was to base classifications directly on Mahalanobis distances, thereby reducing the number of calculations required to determine the skin likelihoods of pixels. This was only a relatively minor improvement, however, as having to perform such classifications for every pixel within any given image was still computationally expensive. We modified the system, therefore, to limit the number of pixels that necessitated such calculations to an absolute minimum, by using the given threshold to define a range of possible skin colours for any given model. Whilst this did drastically improve the performance of our system, we decided that it would be interesting to discover the effects of going just a step further, and using the defined ranges themselves to determine the classification of pixels. We expected that this would further improve performance somewhat, but potentially yield slightly less accurate results.

The result of our optimisation was two final forms of our system: AGSS-Mahal and AGSS-Range. Whilst we were extremely confident in the design decisions we had made to develop them, we could not be sure that they would actually outperform existing approaches without stringent evaluation. Firstly, we were focused on assessing segmentation accuracy. Initially, this involved quantifying the results we could achieve for the lecture theatre imagery, and comparing those results to those yielded by the
existing approaches at outset of this endeavour. Our somewhat rudimentary single-
segmentation results demonstrated that our system was capable of achieving much
greater consistency than any of the existing approaches, but this was far from sufficient
evidence of its superiority. We then applied ROC analysis to our results, and found that it
suggested our system was very marginally better than the others, but the severe class
imbalance of the data greatly limited the amount of information we could ascertain. It
was for this reason that we also applied PR analysis, which is invariant to such issues,
and discovered that our results were actually significantly superior to those of the existing
techniques, leading us to conclude that we had, in fact, solved the problem we had
initially set out to solve.

Despite this success, we were also keen to learn just how applicable our system would be
to more generic segmentation tasks. Therefore, we made use of an existing annotated
database of arbitrary images. We used similar evaluation methodologies to our previous
analysis, and initially found that ROC analysis actually deemed our system to be inferior
to a number of others, although the reliability of these results was somewhat mitigated
again by the presence of class imbalance. The results of PR analysis were more
encouraging, as they suggested that our system was roughly on par with the best of the
existing approaches, but we were still not entirely satisfied. Of course, we knew our
system would not be capable of segmenting any skin from within a given image if it
contained no detectable faces, but the prevalence of such images within the dataset we
were working with was so great that our overall results turned out to be rather
disappointing. We, therefore, formed a subset of the images, all of which would facilitate
face detection, in the hopes that it would allow us to properly emphasise how much more
effectively our system could segment the skin from such images than the existing
approaches. Despite the effects of class skew still being present, ROC analysis reported a
greatly improved performance, determining our overall results to be as good as those of
any other technique. PR analysis, on the other hand, actually indicated that our
performances over the new dataset were substantially superior to any others, suggesting
that both forms of our system were very much capable of delivering excellent
segmentations for generic tasks, assuming the relatively consistent presence of detectable
faces, and that it had not been over-engineered for lecture theatre-based imagery.
Interestingly, we found that the differences in the results of AGSS-Mahal and AGSS-
Range were, for the most part, essentially negligible, which we did not entirely expect, although could be explained by the extreme specificity of the skin colour models we generate to the images they pertain to.

In addition to these analyses, we also experimented with an existing adaptive methodology. This was intended to prove whether or not the strengths of our approach were limited to its adaptability, and whether there may exist some degree of overspecialisation with regards to the lecture theatre imagery, which may have been compensated for by adaptation during our previous arbitrary image analysis. Over both the lecture theatre images and the set of detection-facilitating arbitrary images, we found that our overall results were superior to those of the existing approach, especially in the case of the former. We concluded, therefore, that our system was not overly specialised and that its strengths extended beyond its capacity to adapt.

Aside from segmentation accuracy, it was paramount for the potential applicability of our system that we established how efficient it was. Producing even greatly superior segmentations may not matter if the amount of effort required to produce them substantially outweighs the requirements of alternative options. Firstly, we were concerned with performance over an offline segmentation task, which involved measuring the throughput times achieved by various approaches over a large set of arbitrary images. We found that our system took considerably longer to complete the task than most of the existing approaches, but, as it was an offline problem, the extent of this may not necessarily render it unsuitable. Furthermore, we noted that the majority of the time our system spent processing any given image was actually committed to face detection, and that the amount of time it took to classify pixels was actually less than the amount expended by the existing approaches, which was especially true for AGSS-Range.

Our second efficiency analysis concerned real-time performance, as we attempted to establish operating frame rates for the techniques. We used a fixed-resolution image stream pertaining to a single user interacting with a webcam, and initially found that the achieved frame rates were in line with the results of our offline analysis. Although this was to be expected, we identified that, for such a task, performing face detection for each and every frame was almost entirely unnecessary, as the potential for the environment to
change on an image-by-image basis would be virtually non-existent. We therefore experimented with different recalibration intervals, and found that even incredibly short intervals would allow our system to perform at much greater average frame rates than any of the existing approaches, with AGSS-Range being particularly impressive. We also identified that frequent recalibrations would introduce output stream stutters, and came to the conclusion that the ideal face detection interval for a task should simply be dictated by the requirements of the problem.

Overall, we consider the work that was carried out during the course of Chapter 3 to have been extremely successful. We initially identified a particular problem, established that a broad range of existing approaches could not effectively solve this problem, and then set about developing a solution. Having designed a system that we believed would yield satisfactory results, we broke down its individual components and ensured they were implemented optimally. Given our completed system, we rigorously evaluated the accuracy of its segmentations as well as its efficiency, and found that it could comfortably outperform the existing techniques in both regards.

In Chapter 4, we described the whole developmental process of our new approach to large-scale face detection, detailing its conception, design, implementation, and calibration, and then thoroughly evaluated its detection capabilities and its computational efficiency.

At the outset, we demonstrated a number of inadequacies with some popular existing technology (the Viola-Jones detection system [147]) when applied to our atypically complex lecture theatre imagery. We found that a number of issues were commonplace where such large-scale inputs were concerned, such as a lack of focus, suboptimal orientation, and partial occlusion. These problems, amongst others, resulted in the features of numerous faces being weakly expressed, which was hugely detrimental to the detection rates of the feature-based detectors. Although we found that simply reducing the threshold for positive classification would increase the achieved recall rates, doing so would also produce greater numbers of false positives and degrade overall precision.

We asserted that if provided with the high-sensitivity detection results of numerous face detection systems, we could apply adaptive filters based upon supplementary modalities
invariant to the highlighted issues in order to achieve exceptional accuracies. These filters would, in theory, have the capacity to precisely eliminate false positive detections from generated sets, and each would give us greater confidence that those retained do actually pertain to faces. The specific properties that we identified as suitable for the basis of detection classification were size and colour, as we believed we could accurately derive models to represent them for any given input image through sampling. We had highlighted a number of previous efforts to reinforce face detection results with additional modalities, but found the approaches presented to be fundamentally inappropriate for the type of problem we were attempting to solve.

The first stage of developing our system involved establishing the means by which initial detections would be collated. As we decided to demonstrate the functioning of our framework using the feature cascades provided by the OpenCV library, this was a rather straightforward process. These detectors all return results in the exact same format (a set of squares with certain sizes and locations) and can be trivially configured for high sensitivity in the exact same manner. Were we to incorporate different forms of detectors, specific considerations may need to be made for their results to be appropriately integrated. We chose to implement every face detection cascade available to us so that we would have maximal information to process and ensure that we gave our system every possible opportunity to achieve excellent detection results, even though there would be significant crossover in the results each would typically return.

No matter the nature of the given input, detection collation will always yield huge amounts of noise, as the process of high-sensitivity detection will return numerous regions that bear only the slightest resemblance to a face, and will often be nothing more than a mathematical fluke. Our efforts to eliminate false positive detections began with the implementation of a size-based filter. For a number of reasons, we decided that predefined size thresholds would be entirely unsuitable, as they would fail to account for several factors relating to the capture of given images, such as the distances from the people they depict and the sizes of the environments they have been taken within. Therefore, we developed an adaptive approach, which used principal component analysis to derive image-specific planar size-coordinate models from high-confidence face detection data. When combined with appropriate error bounds, we found that filtering
detections according to their size using our generated models to be an extremely effective method of discarding large numbers of false detections.

As encouraging as the results from our size-based filtering technique were, we found that the number of retained detections would typically be in the hundreds if not thousands (when using the six feature cascades), but, clearly, these could not all uniquely represent a face. In reality, due to the nature of the detection cascades, each face would be associated with a rather large number of duplicate detections, where the specific number will correlate with the discernibility of its features, so determining the means to derive individual candidates from those groups became a necessity, if our final results were to be in any way accurate. To achieve this, we applied a consolidation algorithm that would scale individual detections up then assess the encapsulation of other detections, which would allow us to discover clusters that could be averaged in order to produce face candidates. The calibration of this process had to be carried out with great precision, as a scaling factor too great would result in partially occluded faces being lost and a factor too small would lead to all the detections of faces not being consolidated.

The process of detection consolidation was a preparatory process for actual classification, and it was through “scores” that we would first begin to classify candidates and produce actual outputs. These scores represented the number of detections that had been consolidated to form each candidate, and could be considered a measure of how strongly candidates expressed facial features. Even though we established that feature discernibility could not be relied upon exclusively to make accurate classifications, to ignore the information entirely would have been negligent. Therefore, we decided to classify every candidate with a compellingly large score as a face. The determination of a positive classification threshold was not trivial, however, as the scores of candidates were greatly dependent upon several factors, including image quality and the nature of the detectors used for detection collation. To solve this issue, we used the greatest score within any given set as a guideline for the overall effect of those variables, and then established the positive classification threshold for the given image as a fraction of that value. We calibrated the specific fraction to be used to maximise the number of true positives we could produce without also yielding any false positives. Where the candidates not classified as faces were concerned, those with a score of just 1 were
outright discarded, as empirical evidence suggested that the vast majority of these pertained to non-face regions, and those that remained were reserved for further processing.

Although we were able to successfully identify large numbers of faces using our score-based classification process, it would typically be incapable of finding particularly large proportions of them within our lecture theatre imagery, due to the natural prevalence of weak faces. It is for this reason that we turned to colour-based classification, with the hope that it could distinguish between faces and non-faces in the instances where scores could not allow us to. We adopted our own adaptive modelling approach to build skin colour representations specific to given images, as we had already established how effectively it could overcome the variabilities inherent to the lecture theatre images. We used these models to calculate skin ratings for the low-score candidates, indicating how much their general colour tones resembled skin. We could then apply a threshold to these ratings in order to positively identify additional faces, where the threshold was calibrated to achieve maximal recall while maintaining impeccable precision. Since the candidates with skin ratings below the threshold exhibited neither compelling facial features nor skin-like colour, we discarded them, deeming them to represent only non-face regions. The union of the score-classified and colour-classified face sets constituted the final output of our system.

Although we were confident that our system had been developed soundly, we endeavoured to evaluate it fully to confirm our beliefs. Initially, we used our framework to detect faces within a set of lecture theatre images, as we considered it extremely important to provide concrete evidence that we had made significant advances towards solving the problems that we identified as the basis for our work. We first presented results generated by our framework and the individual cascades using their default sensitivities, which demonstrated rather plainly that we had achieved greatly superior results. These outputs could not represent the entire operational spectrums of the detection systems, however, which is why we also utilised precision-recall analysis. This form of evaluation can be considered decidedly more comprehensive, which is why its extremely positive results were so encouraging for us, and could be considered an indication of our success in meeting our initial objectives. That being said, the detection
rates we yielded did leave significant room for further improvement, although, where our framework is concerned, this could only be accomplished through the incorporation of even more sensitive initial detectors.

To further establish the value and applicability of our work, we decided it was appropriate to ascertain how well it would perform over a set of arbitrary images. Despite performing well over the complex lecture theatre imagery, excellent performance over simpler images was not guaranteed, as the calibration of our system could potentially have rendered it overly specialised. The results produced during our default sensitivity analysis were initially encouraging, as they suggested that our framework was at least as capable as any of the individual cascades, but we again utilised precision-recall analysis to expand upon them. We found that our overall performance was marginally superior, but the degree of improvement that our system could offer was limited because the results of the individual cascades were of rather high quality themselves. Nevertheless, we demonstrated that our framework could enhance face detection results even when the inputs were not of the type we primarily designed it for, signifying its flexibility.

The final stage of our evaluatory process involved assessing the relative efficiency of our system. Firstly, we discovered that the throughput times that our framework (when incorporating all six of the facial feature cascades) achieved over the image sets were significantly longer than those of the individually implemented cascades, but this was not unexpected, as detection collation required each of these detectors to be run before their results could be processed. Using all six cascades was originally intended to demonstrate how accurate the results of our system could be, so we felt it necessary to establish how efficiently it would perform using just one of them. Encouragingly, we found that our efficiency was still greatly dependent upon that of the detectors chosen to be incorporated, and that the computational overheads of our framework were minor, although non-negligible.

Overall, we regard the research that we have detailed within Chapter 4 to have been greatly successful. We first established the existence of a particular problem and identified its root causes, and then designed a methodology that we believed could overcome them. Having soundly implemented every component of our proposed solution, we provided strong evidence that it could go a long way towards solving our
original problem, and demonstrated that our work could also be successfully applied to generic tasks.

Throughout our evaluations, we held the reliability of the results we generated in the highest regard. Where system accuracy was concerned, we ensured that the images, ground truth data, and metrics used were in no way particularly favourable to our work. Furthermore, during our efficiency analyses, we fully accounted for the non-deterministic nature of measuring throughput times and frame rates by extensively repeating our experiments numerous times and calculating representative mean values. It is for these reasons that we value our results so highly and draw such encouragement from them.

Further to the results we have presented within this thesis, our skin segmentation system and face detection framework have also been implemented as fully functional Android applications. Both of these exhibit the encouraging levels of accuracy and efficiency that our evaluations have demonstrated, evidencing strongly our belief that our systems would very much be applicable to real-world problems.

5.2 Itemised Conclusions

The research described by Chapter 3 produced a number of key findings pertaining to the field of skin segmentation:

- Several existing skin segmentation techniques that are commonly applied to generic problems struggle greatly to yield accurate results on a consistent basis when applied to complex lecture theatre-based imagery.

- Feature-based face detection can be an extremely effective method of sampling images with the intention of building representative skin colour models.

- By defining sub-regions within face detection regions, uninteresting background information can be eliminated on a very consistent basis, with minimal skin pixels being lost.
Regions within detection windows that pertain to non-skin features can be effectively discarded by filtering them according to their relative luma values, as they will typically be of lower intensity than the skin pixels around them.

Skin colour distributions in the normalised rg colour space conform very strongly to normal distribution, as they tend to form elliptical clusters.

The bivariate Gaussian distribution models that we derive from filtered pixel sets are highly representative of the skin within the images that have been built for.

Classifying pixels by applying an adjustable threshold to continuous likelihood values is an extremely flexible and effective method of segmenting skin.

By making classifications based directly on Mahalanobis distances rather than probabilities, calculations can be saved on each and every pixel within a given image, improving efficiency at no cost to accuracy.

By using the value of the threshold being applied in conjunction with the given colour model, we can define a range of “possible skin” colours for an image. In this way, the number of computationally expensive calculations being performed for any given input can be drastically reduced, again without accuracy being compromised in any way.

The defined colour ranges themselves could also be used as effective classifiers, theoretically achieving even greater efficiency at, potentially, some small costs to accuracy.

Over lecture theatre-based imagery, the system we have developed is significantly more consistent than any of the existing approaches, capable of delivering impressive results for inputs of greatly differing nature.
- Tasked with segmenting skin from a set of arbitrary images where the presence of detectable faces is not guaranteed, the overall results of our system may be inferior to those of other approaches, but this would depend on how great the proportion of images that do not facilitate face detection is.

- When the presence of detectable faces within arbitrary inputs can be assured, the segmentations that our system produces are markedly superior to those of any other methodology.

- In general, although AGSS-Range does achieve marginally greater recall rates than AGSS-Mahal, its precision is slightly inferior, but these differences would appear to cancel out in most circumstances to yield very similar overall accuracies for the two classification modes.

- As it is demonstrably capable of yielding highly precise results, our system would excel at providing “seed” pixels to a segmentation approach that involves skin region growing.

- As we have demonstrated that our system outperforms an existing adaptive methodology over both lecture theatre and arbitrary image datasets, we can conclude that the strengths of our system are not limited to its adaptive nature, and that it is not overspecialised to the lecture theatre imagery.

- For segmentation tasks that necessitate colour models being generated on a per-image basis, our system will take significantly longer to output results than most of the existing approaches, although AGSS-Range does perform more quickly than AGSS-Mahal.

- Where real-time segmentation is concerned, establishing an interval on which to perform face detection and recalibrate the skin colour model being used, rather than doing so for every input frame, will result in the performance of AGSS-Range being greatly superior to that of any other technique, and the performance of AGSS-Mahal being superior to the existing approaches in most cases, but dependent upon the prevalence of skin-like pixels.
The research detailed by Chapter 4, which covered our work towards enhancing face detection, also yielded a number of key findings:

- Existing feature-based face detection technology (specifically, the popular Viola-Jones system [147]) is incapable of producing accurate detection results over our atypically complex lecture imagery, because of the prevalence of “weak” faces.

- By collating the results of multiple face detection systems (that look for different properties), we can acquire information on many more apparent faces than any individual detector can typically provide.

- Principal component analysis can be used in conjunction with high-threshold face detection results to generate highly representative face size distribution models, which can identify false detections extremely precisely.

- The consolidation of near-duplicate two-dimensional data points can be accomplishing highly effectively by scaling up individual group members and assessing the encapsulation of other group members.

- Detection consolidation “scores” correlate very strongly with feature discernibility and, as such, can be used to precisely positively identify large numbers of faces.

- If an image region is associated with only a single detection after the application of six high-sensitivity feature cascades, it is extremely likely that that region will not pertain to a face.

- How skin-like the colour of a face candidate appears to be can be described by a “skin rating”, which can be established by employing our own adaptive skin colour modelling approach to derive a model for the given image and then applying that representation to the constituent pixels of the candidate.
• The true nature of regions that express some, but not compelling, feature-based face resemblance can be determined extremely accurately by applying a threshold to their calculated skin ratings, separating candidate sets into “face” and “non-face” classes.

• Over complex imagery that presents large-scale problems, our framework can achieve much greater recall rates than the detectors it uses to provide initial detection information, as it successfully combines the correct, but insufficient, positive detections of each to yield a single set of faces.

• Where simpler, arbitrary images are concerned, our system will, at the very least, maintain the high detection rates that the incorporated detectors may achieve when implemented independently, signifying that it is not overspecialised for lecture theatre imagery.

• As a result of the meticulous calibration of our classification processes, our system is extremely adept at identifying false positives, and can eliminate them based upon inordinate size, feature indiscernibility, and unconvincing general colour.

• Even given problems for which detection rates cannot be significantly improved, our framework can considerably improve upon the levels of precision achieved by the detectors it incorporates.

• The efficiency of our system will be largely determined by the efficiency of the detectors it employs for detection collation, as the computational costs of our classification processes will vary with the amount of information provided, and will almost always be relatively minor.

• For the purpose of achieving maximal detection accuracies at optimal efficiencies, the selection of incorporated detectors should be made to specifically suit the requirements of the given problem, as simpler tasks will rarely necessitate the use of a broad range of detectors.
5.3 Potential Extensions

Despite being extremely satisfied with the results we achieved over the course of Chapter 3, it would be entirely fair to suggest that the system we developed is not perfect. Given its adaptive nature, having a method to sample images in order to build skin colour models specific to them is a necessity. We chose to adopt the feature-based face detector of Viola and Jones [147], and found it to be extremely effective, providing plenty of information from which representative models could be derived. The drawback of this sampling methodology is, of course, that it will fail should the given input image contain no detectable faces.

Currently, if our attempts to detect a face within an image return no results, then we simply conclude that the image contains no skin, and move onto the next input. As we discovered during our evaluation using the DB Skin dataset, however, the potential for arbitrary images to contain significant regions of skin but no detectable faces is far from negligible. This is problematic, as our system is simply incapable of processing such images, whereas the other segmentation approaches we have looked at do still provide results of some value, as the absence of detectable face is, of course, of no concern to them whatsoever.

Given that our implementation of the face detector is already extremely flexible, and it can be assured that if it returns no results for an image then there exists no configuration that would allow it to, the only solutions we could attempt to implement would represent fairly significant departures from our current methodology. Rather than changing our sampling approach, the simplest, and perhaps the most effective, option might be to adjust the behaviour of our system in the event that it finds no faces. Instead of coming to the conclusion that images that contain no detectable faces simply contain no skin, we could choose to believe that the face detector has failed, and that there is actually skin to be segmented. In such a scenario, we would have built no skin colour model, so we would require alternate means by which to classify pixels.

Depending upon the nature of the given problem, there are two options available to us should we not be able to build a skin colour model for an image. The first of these is
simply to reuse the model we created most recently. This option would be appropriate for real-time scenarios, whereby the previous model would likely pertain to the same environment as the one we have just attempted to build. However, over a set of arbitrary inputs, for instance, where the environment depicted may change on an image-to-image basis, this solution would be far from effective, as the models our system constructs are, by design, completely specific to their respective inputs, and could never be considered globally applicable.

In such a situation, we could instead actually adopt one of the existing approaches. As it was fairly consistently the best performer of the previous techniques, we could, for instance, apply the YCbCr model of Hu et al. [43] to images whenever we fail to build a model due to a lack of detectable faces. Doing so would represent the best of both worlds as far as segmenting skin from images is concerned, as for the large number of cases where we can detect a face, build a model, and segment skin, we will achieve the best results possible, and then in the few images where we cannot do so, we can still yield results that are considerably better than erroneous “no skin” conclusions. Of course, such a modification to our system would mean that it would no longer be capable of correctly identifying situations where the input image really does contain no skin, so the possibility of such inputs occurring should be weighed against the possibility of images that contain skin but no detectable faces occurring, which would be dictated by the nature of the given problem. Over the DB Skin dataset, for instance, there were actually many more instances of the latter than of the former, so the application of an alternate segmentation technique would result in a marked improvement to the overall results of our system.

Similarly, although the face detection framework we developed can deliver excellent detection results given even complex imagery, as we have demonstrated, there are certain aspects of it that could be improved upon to offer even greater flexibility. For instance, the existing detectors that we have been using for the purposes of demonstration to provide initial detection information throughout this chapter (the OpenCV feature cascades) are very similar in nature, and, running at high sensitivity, can each potentially return dozens of results pertaining to any single face. Were these results to be collated with those of a system that would only ever return a maximum of one detection per face without any consideration for this fact, there would clearly be great imbalance in the
influence that each detector would have over the results produced, where the contribution of the single-detection system would regularly be negligible. One way to overcome this issue would be to establish a set of simple calibration images, which would be processed prior to the collation of detections for any input dataset. In this way, we could determine the nature of the typical outputs of detectors, and assign weights to them in order to ensure balanced contributions to the collated detection sets.

Although the issue has never been prevalent during our experimentation, modelling face size distributions according to individual two-dimensional planes may not always yield perfect representations of environments, even if the error bounds we apply do allow for some degree of inaccuracy. If we were to consider, for instance, a semi-circular auditorium, it is likely that the faces of the people within it would not conform to a planar distribution and, as such, would be misrepresented by a planar model. We could attempt to solve this potential issue by generating multiple planes per distribution whenever the average error expressed by our third principal component (representing residual error in the given model) exceeds a certain threshold, or we could employ a higher-order polynomial function to perform our surface modelling, but the necessity for such complex modifications to be made is questionable when the prevalence of issues caused by our current system is, evidently, so low.

An aspect of our filters that would almost certainly benefit from some refinement would be the automatic elimination of face candidates that have a score of just 1, indicating severely weak feature expression. Empirically, we have found that it is through this decision rule that most ultimately undetected faces with initial detections associated with them are lost. We deemed this process to be acceptable during the implementation of our system, as we discovered that the number of faces that would typically go undetected as a result of it was seemingly significantly smaller than the number of false positives it would successfully discard. We currently have no concrete potential solution to this problem, although we could examine the effects of retaining such candidates for colour-based classification and weighting their skin ratings according to the precise conformity of their sizes to the given generated distribution model, exploring further the properties that we know we can reliably work with.
Bibliography

