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Abstract: 

Polyamide 6 is popular engineering polymer used for many applications including 

filament production via melt spinning. Currently there is no market leading 

masterbatch suitable for addition at the melt spinning stage used for imparting flame 

retardant properties. Flaming drips are a common problem and new tighter 

regulations are causing new additives to be assessed and greater consideration to be 

taken when developing such product. Flame retardant additives were assessed for 

dispersion, thermal gravimetric analysis, melt spinning performance, mechanical 

properties retention and efficacy under DIN 4102-B2 testing.   

A masterbatch was developed in association with Americhem Europe, masterbatch 

supplier for the thermoplastic industry in Europe. Although further investigation into 

certain aspects of the development are necessary to optimise the product.  
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Chapter 1: Introduction 

This chapter offers an introduction to the organisation involved in the dissertation and goes 

on to generate the objectives of the dissertation and the challenges that have been and will be 

faced to achieve those objectives. 

1.1 Americhem Incorporated 

Americhem Incorporated (AI) is a privately owned family company founded in 1941, the 

headquarters of which are located in Cuyahoga Falls, Ohio, USA.  The company supply 

concentrated colour and chemical additive dispersions to the plastics industry worldwide. 

For the purpose of the dissertation the focus is on the synthetic fibres segment of the 

business.  

AI operates from seven manufacturing sites, spread across North America and one in 

Manchester with the other being in Suzhou, China. To maintain effective regional service to 

global customers, the company has sales offices in Luxembourg, Monterrey and Mexico.   

To date, the company has continually strived to differentiate itself from competitors by 

adopting a technology led strategy, resulting in innovative product designs and a desire to 

solve problems experienced by customers.  This approach has given rise to the fact that 

almost every Americhem product has been developed as a solution to one particular 

problem for one particular customer.  As a result of the technological focus, Americhem has 

taken advantage of niche market areas where the company’s core technologies such as 

pigment dispersing, mixing, colour science and polymer processing can be used to generate 

competitive advantage. 

The manufacturing sites are managed independently but are grouped by geographical 

locations. The four manufacturing sites in the USA are grouped under ‘NAFTA’ whereas 

Europe and China is grouped under ‘International’.  

For the purpose of this dissertation the focus of the research is centralised around the 

European manufacturing site. 

1.2 Americhem Europe 
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Established in Manchester, England in 1995 Americhem Europe (AE) was Americhem 

Incorporated’s first plant outside the USA.  

From Manchester AE is charged with supplying EMEA (Europe, Middle East and Asia). One 

core business area is Single Business Unit (SBU) 90 Fibres. This covers a broad range of 

applications including carpeting, synthetic turf, non-woven and many more textile 

applications.  

Americhem Europe has ISO 9001 accreditation and has recently passed TS16949 Audit for 

automotive accreditation.  

More information can be found at www.americhem.com. 

1.3 Research Problem 

As of 2006 the population of Earth was approximately 6.3 billion inhabitants, there are 

approximately 7-8 million fires reported annually resulting in 70-80 thousand deaths and 

500-800 thousand injuries [1]. 

In Europe alone the annual reported fires was 2-2.5 million causing 20-25 thousand deaths 

and 250-500 thousand injuries  [1]. 

Of worldwide fires 30% occur in dwellings where 80% of fire related deaths are also 

associated [1]. 

It is reported that toxic gases account for 50% of fire related deaths whereas, 25% of deaths 

are caused from burns [2]. 

The market for flame retardant textiles is increasing and there are many areas where these 

are applicable such as; home textiles i.e. curtains, upholstery and carpets. Technical and 

functional textiles like automotive carpet and protective clothing [2]. 

Common synthetic fibres such as polyamide are difficult to flame retard effectively for many 

reasons [81]. 

 Their chemical structures are not substantive to common functional flame retardant.  
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 During fibre production the fluid polymer has low compatibility with the flame 

retardant additive.  

 Usually high loadings are required, which create spinning issues and greatly alters 

their physical and textile properties.  

 As they are thermoplastics they have a tendency to melt and flow which leads to 

flaming drips.  

Currently no flame retardant additive has been found for PA6 / PA66 textile fibres. Various 

attempts have been made to incorporate flame retardants during polymerisation and a 

couple are discussed by Levchick (2009) [37]. 

Post treatments have been around for many years and are well established, whilst carpets 

can pass certain flame retardant tests on their own with no flame retardant additive [37].  

1.4 Research Objective 

The objective of the dissertation is to develop a masterbatch suitable for processing during 

Polyamide 6 filament production, which will impart flame retardant properties to the 

Polyamide 6 yarns, taking into account issues mentioned in 1.3 and reviewing previous work 

carried out.  

Gamino & Costa (1988) [81] stated that flame retardants should be: 

 Thermally stable at desired polymers processing temperature 

 Compatible with the host polymer to avoid migration which will reduce the flame 

retardant effect over time.  

 Not impair the physical and chemical properties of the fibre.  

 Be characterised as low toxicity and should not originate toxic and/ or obscuring 

smoke upon burning.  

The dissertation will focus on yarns suitable for home textiles where there are also 

environmental issues to understand. The flame retardants must be non-persistent, bio 
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accumulative, toxic (PBT) and non-CMR (carcinogenic, mutagenic, reprotoxic). They must 

also be durable (non-leaching) and insoluble and non-hydrolysable [2]. 

This dissertation will explore these issues and the numerous issues surrounding the subject 

area throughout Chapter 2 and 3 with a view to developing a suitable masterbatch for 

imparting flame retardant properties to PA6 fibres in line with regulations, as well as 

meeting the required processing parameters needed to satisfy yarn producers.  

Flame retardance efficacy will be analysed using common test standards carried out at 

accredited laboratories and simulated tests carried out internally at Americhem Europe.  

1.5 Chapter 1 Conclusion 

Chapter 1 has briefly introduced to the reader; Americhem Inc. and Americhem Europe and 

given a brief insight into the nature of the business and the current structure.  

From the research problem presented we can conclude that the main objective is to develop a 

masterbatch that will impart flame retardant properties to PA6 yarns whilst maintaining 

physical and mechanical properties.  

In Chapter 2, the dissertation will review the multiple chemistries available for achieving the 

goal, the problems associated with the application and conclude which chemistries and 

materials provide the best option to proceed with development. 
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Chapter 2: Literature Review; Polyamide 6 

This chapter provides a literature review on the key areas identified within the research 

problems, aims and objectives mentioned in chapter 1.  

Using the literature the dissertation will discuss in more detail the problems and challenges 

faced when developing flame retardant masterbatch for PA6. 

2.1 Polyamide, Fibre Production and Masterbatch Introduction. 

2.1.1 Brief History 

‘Nylon’ was the first synthetic fibre to go into full scale production.  The first development 

was from the work of W.H. Carothers for DuPont in USA during the 1930’s. Carothers’ work 

focused on the polymerisation of di-amines and di-carboxylic acids. Both monomers 

contained six carbon atoms and Nylon (PA 6, 6) went into first production in 1938 with the 

first stocking being sold in 1939 [5-6]. 

A parallel development was carried out in Germany attempting to circumvent DuPont 

patents; chemists investigated synthetic fibre forming polymers. This led to the development 

of ‘Perlon’ (PA6), some monofilaments were produced in 1939 and continuous filament 

followed in 1940. Full scale production bean in 1941 but due to the war was put on hold until 

1950 [5-6]. 

Throughout the project we will focus on the PA6.    

2.1.2 Market Overview 

Since the economic downturn in 2008 polyamide filaments have enjoyed a revival. Between 

2009 and 2010 the annual volumes rose 15.6% to 3.8 million tonnes global production [7]. 

Breaking this down into specific applications, the textile market saw an increased production 

of 19.4% whilst the industrial filament sector grew 15.4% respectively. These two 

applications account for approximately 80% of the PA filament production. The remainder 

being used for carpet applications which saw a less impressive growth of 7.7% between 2009 

and 2010, this is believed to be due to the sluggish housing market within the United States 

[7]. 
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To summarise polyamides are still an important fibre on the market and have many 

applications. They are a long way from conquering polyesters dominance within the 

synthetic fibres market but still occupy a healthy 8% [7]. 

2.1.3 Caprolactam Production 

Caprolactam is the monomer used for the production of PA6. It is preferred to self-

condensation of ω-amino-caproic acid because it is easier to make and purify [6]. 

For reference Figure 2.1 shows the major commercial routes for bulk caprolactam production 

via cyclohexanone and cyclohexanone oxime [11]. 

 

Figure 2.1; Caprolactam production process [11] 

Figure 2.2 further explains process one from figure 2.5. Starting with (1) cyclohexane, this is 

converted to (2) cyclohexanol, then (3) cyclohexanone, followed by the (4) oxime of 

cyclohexanone.  (5) Cyclohexanone oxime undergoes Beckman rearrangement upon 

treatment with sulphuric acid to produce caprolactam. Caprolactam can then be 

polymerized to make nylon [9]. 

 

Figure 2.2; Caprolactam production process [9] 
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The production of caprolactam produces large amounts of by product ammonium sulphate. 

In 2000 DSM and Shell released that they had developed a new process, The ‘Altam’ Process 

uses butadiene (C4H6), carbon monoxide, ammonia and hydrogen as raw materials which 

are considered inexpensive and easily available and does not produce the unwanted by 

products [6, 8, 11]. 

Novel and commercial routes for the production of caprolactam are discussed further by 

Mettu 2009 [11]. 

2.1.4 Polyamide 6 Production - Ring Opening Mechanism [9] 

The ring opening is initiated by heating caprolactam to 250°C – 280°C for 12-24 hours with 

the addition of water as the initiator. Figure 2.3 shows the initial addition of water to 

caprolactam ring thus creation of electrophilic carbon which is susceptible to nucleophilic 

attack from the hydroxide which propagates ring opening.  

 

 

 

Figure 2.3; Addition of Water to Caprolactam to propagate ring opening [9] 
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The molecule generated in Figure 2.3 donates a proton to another caprolactam ring creating 

another electrophilic carbon and causing the fusing of two caprolactam molecules, one in 

ring form and one in chain form (Figure 2.4) [9, 10]. 

 

 

Figure 2.4; Fusion of Caprolactam Molecules [9, 10] 

 

Through further proton transfer and ring opening a caprolactam dimer is formed where both 

molecules are in chain form (Figure 2.5) [5, 6, 9, and 10]. 
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Figure 2.5; Production of Caprolactam Dimer in Chain Form [10] 

 

The dimer reacts with more caprolactam monomer until termination the result being 

Polyamide 6 (Figure 2.6). [9, 10]. 

 

Figure 2.6; Continued Reaction between Caprolactam Dimer and Monomer until Termination – Product 

Nylon 6 [10] 

2.2 Melt Spinning – Fibre / Filament Production 
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2.2.1 Introduction 

Melt spinning is a one of the most common methods of PA6 filament production. Benefits 

from melt spinning are the high spinning speeds, low production costs, versatility as can 

produce continuous filament, staple fibres and monofilaments. They can produce many fibre 

cross sections for various applications [12]. 

PA6 granules are melted and transported via an extruder (usually single screw) to a 

metering pump. The pump is used to control the output of the melt solution. The pump 

forces the solution through a spinneret at high pressure. This is where the fibre cross section 

is determined. There are many cross sections available but common ones are trilobal, round 

and octagonal. The extruded filaments are then cooled via a quench air column, lubricated to 

reduce static and then drawn and then wound onto a package for continuous filament or 

chopped into staple fibres [12]. 

 

Figure 2.7; Schematic Melt Spinning Process [12] 

The produced continuous filaments usually get further drawn, texturised and heat set to 

make the yarn more stable depending on the end application of the yarn.  Modern 



24 
 

machinery can perform the spinning and texturising steps in one process. This method of 

production can be used to produce a broad range of filaments from micro fibres to very 

coarse yarns. This paper will focus on Bulk Continuous Filament (BCF) production used in 

carpet yarns [12]. 

2.2.2 Principles 

There are a number of key principles and processing parameters affecting melt spinning 

process and properties of fibres produced.  

Spinneret design is essential for fibre uniformity and production yield. Key parameter within 

the spinneret is the orifice length/diameter ratio. Usually a length/diameter ratio of ≥ 3 is 

used to eliminate die swell (entrance effect) within the spinneret [14]. 

Upstream pressure above 600 psi are preferred for uniform polymer melt distribution to the 

spinneret orifices [14]. 

Shear rates below 5000 sec-1 is recommended to avoid melt fracture (entrance effect). 

Although not associated with polyamides melt fracture can occur at lower spinning 

temperatures [89]. 

Other key parameters for fibre uniformity are the polymer material being used and its 

viscosity, extrusion temperature, jet velocity, spinning path length, take up speed and 

cooling conditions (quenching rate) and draw ratios [89]. 

Computer modelling can be used to predict fibre properties however online trials and 

measurements are still determined to be the best method [14]. 

A detailed explanation of the complexities to melt spinning were published by Ziabicki 

(1976) Fundamentals of Fibre Formation [89]. 

2.3 Bulk Continuous Filament Production Processes 

Bulk continuous filaments are used mainly in the textile industry for floor coverings. Here 

we will discuss their method of production.  

2.3.1 Introduction 
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As already mentioned briefly BCF yarns are now mostly produced in one continuous 

sequence initially utilising ‘stuffer box’ texturising method but now more commonly used is 

an air jet texturising principle. The polymer granules are melted and transported via an 

extruder where the melt is then pumped through a spinneret. The number of holes within a 

spinneret and the shape of those holes determine the number of filaments within the final 

yarn (or a component of the final yarn) and the cross section of each filament [13].  

2.3.2 Cross Section 

There are various cross sections used for filament production. The cross section is chosen 

based on the final application of the yarn Figure 2.8 identifies some of the cross sections used 

and the properties associated with them.  

 

Figure 2.8; Cross sections available for melt spinning [19] 

Clover and Trilobal are most commonly used for BCF applications for their bulk and lustre 

properties.  

2.3.3 Quench and Lubricant Application 

The produced filaments are quenched and the ‘as spun’ filaments have a lubricant applied to 

them known as spin finish. The spin finish can vary depending on polymer being spun and 

how the filaments are going to be processed. Spin finish reduces static and aids drawing and 

texturisation and is applied via a metering pump so the amount applied is known and not in 

excess. Variants within the application of spin finish are the number of filaments (typically 
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ranging from 34-140 in BCF production) and the cross section of the filaments. In some cases 

special air jets are used to apply spin finish for even application [13]. 

Quenching is an important processing parameter, effecting the molecular orientation of the 

filaments. The aim is to provide uniform cooling to each filament to ensure they have the 

same morphology and properties within the yarn bundle. If not done correctly this can affect 

the yarn in downstream processes such as dyeing and result in streaky colouration as the 

fibre morphology within the filament bundle is different [14]. 

Differences in birefringence, filament diameter, tenacity and elongation have been reported 

from non-uniform quenching. Filaments cooled in lower temperature zones of the quenching 

area were found to have lower birefringence, lower tenacity and higher elongation compared 

to filaments in the warmer section of the quench zone [14]. 

2.3.4 Drawing 

In BCF production drawing is completed before texturising. PA6 can be cold drawn but for 

bulk texturising hot drawing is used. Godets (driven, heated rolls) are used to draw the 

filaments. They are usually fitted in pairs ‘duo’ but can be fitted as singles along with a 

smaller roll which will not be driven or heated known as a separator. The filaments are 

wrapped around the godets a number of times so that the heat can penetrate into the 

filaments. It is important that the wraps do not touch each other [13]. 

Drawing takes place in two stages. A roll not usually heated (but can be) draws the filaments 

from the spinneret and through the quench column and finish applicator. 

This roll sees the filaments begin to solidify and the pull exerted applies some initial draw to 

the filaments, meaning that the weight per unit length of the filaments is already lower at 

this roll than when they left the spinneret. A low level of draw is applied from the draw off 

roll and the first set of ‘duos’ to ensure a light but constant input tension [13]. 

The main drawing takes place between two sets of godets (or duos). The first being heated 

50°C-90°C (depending on polymer) the second pair heated to higher temperature. The 

purpose of the second heat application is to ‘set’ the yarn and also increase the temperature 

so that it is closer to that of the texturising unit to facilitate the bulking process [13]. 
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Figure 2.9 Schematic of Melt Spinning Machine [13] 

A draw ratio is applied between the sets of godets. Draw ratio can vary depending on the 

polymer being spun. They commonly range between 1.5 and 4.0. Drawing of the filament 

reduces the denier closer to the final produce denier range. Draw ratio can be calculated 

following Equation 1.1 [13]. 

Eqn 1.1   Draw Ratio (DR) = Speed of Final Draw Roll / Speed of First Draw Roll (m/min) 

 

Drawing the filaments is necessary to develop yarn properties such as tenacity and 

elongation. These properties are obtained from the orientation of the crystalline and non-

crystalline (amorphous) regions of the polymer which drawing imparts [14]. 

2.3.5 Fibre Structure and Crystallinity 

Nylon filaments can take up various crystalline polymorphs. The crystal structure developed 

during spinning depends on the rate of crystallisation. The two main types are the α (alpha) 
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form and γ (gamma) form. From literature it is suggested that the other forms of polymorphs 

are derivatives of these two main types [15]. 

Yang summarises that PA6 filaments produced via melt spinning method at moderate 

spinning speeds contain close to equal amounts of the α and γ form crystals. On annealing at 

high temperatures (100°C moist conditions and 150°C in dry) crystal growth will increase 

but the α form being favoured conformation [14]. 

Murthy states the α form is predominant crystal structure developed during slow 

crystallisation and γ form is more predominant on rapid crystallisation. γ form is typically 

present in high speed spinning where the take up speed is greater than 3000 m/min, Yang 

agrees with this [14, 15]. 

The chains in α crystallites are in fully extended conformation whereas the amide (NH) 

groups in the γ crystal form is rotated 60° from the α conformation resulting in a shorter 

chain axis and a more pleated structure (Figure 2.10) [14]. 

Murthy concludes that the hydrogen bonds are stronger in the γ pleated structure and that 

the amorphous regions of PA6 can also be orientated and the chains in this region be altered 

[15]. 

Experiments carried out by Vasanthan [16] found the density of PA6 to increase with an 

increasing draw ratio, this attributed to changes in the crystal structure formed, increase in 

total crystallinity or combination of both. 

The study found that crystal to crystal transformation and strain induced crystallisation can 

both occur at higher draw ratios (>3) At lower draw ratios only strain induced crystallisation 

takes place. These experiments were carried out under cold drawing conditions [16]. 
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Figure 2.10; Different Crystal Structure in PA6 filaments [16] 

Gianchandani et al [17] also found that samples with lower orientation contained higher 

amounts of amorphous region and α phase with lower amounts of γ form than samples with 

a higher orientation. The study further leads to how annealing process can the α form crystal 

at the expense of amorphous regions thus increasing the density. They also found that the 

nature of the α form can change into a more perfect monoclinic conformation [17].  

Following the review of literatures 5 and 12-18 the structure and crystallinity of PA6 

filaments can vary depending on the method of production and the intended application. 

Many methods have been developed to examine this phenomena and further exploration is 

outside the scope of this paper.  

2.3.6 Texturising and Cooling 

In line texturising takes place immediately after drawing. The yarn is heated in a similar 

fashion during the drawing stages using heated ‘duos’. The filaments are then fed into the jet 

system.  
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Figure 2.11; Hot Fluid Texturising jet design. [13] 

 

Hot air or steam is commonly used as they hot fluid jets, these enter the jet at high velocities 

which impart a forwarding motion on the filaments and help to transport them through the 

jet. Turbulence is generated within the jet and this increases the heat transfer from the hot 

fluid into the filaments [13]. 

Due to the design of the jet the hot fluid is then allowed to expand and slow down resulting 

in the yarn creating a plug. (Figure 2.11) The filaments are compressed creating bulk as the 

filaments shrink, buckle and form loops. It is this compression which restraints the 

movement of the yarn which creates the bulk. The filaments then leave the jet in a crimped 

formation and are then cooled and stabilised otherwise the bulk will not be permanent [13, 

19, 20]. 

The crimped yarn then leaves the jet and lands onto a cooling drum. Typically the drum has 

a mesh surface which draws through air. The ambient air passes through the bulked yarn 

providing a cooling effect [13]. 

A similar principle can be observed (figure 2.12) although in air jet texturising, hot 

compressed air is used in place of hot fluid.  
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Figure 2.12; Air Jet Texturising [20] 

The uniformity of the yarn is determined by the flow of fluid within the jet, the regulated 

temperature, flow and pressure and action of the cooling drum [13]. 

2.3.7 Entanglement 

The cooled yarn is then relaxed via another set of ‘duos’ and fed for entanglement 

(intermingling). The purpose of this process is to: [13] 

1. Hold yarn bundles together. Especially if multiple yarns (plied yarns) are being 

used which is common in BCF for processing different colours.  

2. When a single ply yarn is being used the intermingling hold the filaments tightly 

together in a cohesive bundle which will help prevent yarn damage on weaving or 

tufting.  

3. Intermingling yarns lightly can aid unwinding.  
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Figure 2.13; Intermingling Schematic [13] 

A visual perception of the intermingling process can be seen in figure 2.13. As the yarn 

passes through the jet it is met with air flow which creates ‘mingle points’ or ‘knots’ in the 

yarn. These hold the filaments together and help prevent yarn breakages on further 

processing for example during weaving and the yarn will not be sized [13, 14]. 

There are many types of jets which have been developed for intermingling which operate at 

different pressure depending on the denier of the yarn or whether the yarn will be further 

processed before final fabric production. For a single yarn going for tufting without further 

twisting, plying or heat setting air entanglement is an important factor as this is the final 

preparation before final production. Jets can be provided for processing one – four ply yarns. 

When this occurs for example when three different colours are being plied together for a 

carpet the guiding arrangement and yarn tension of each yarn is a critical factor as too much 

tension or a problem with arrangement can cause yarn breaks and issues with the final 

product appearance [13, 14]. 

2.3.8 Winding 

During winding the nature of the BCF yarns can cause fluctuations in winding tension. The 

change in tension can have an effect on the finished yarn. If the yarn tension increases then 

the percentage crimp will reduce while the residual shrinkage will increase and the opposite 

in the case of a reduction in winding tension. Therefore winding needs to be closely 

monitored [13, 14]. 

2.4 Introduction to Masterbatch 
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Polymer granules containing a high percentage of pigments, additives or fillers are termed a 

Masterbatch. These granules are mixed with raw polymer before injection moulding, fibre 

spinning or film production to achieve the desired colour or property modification in the 

final product [22]. 

When using additives and pigments they can form agglomerates within a polymer matrix 

causing problems in the final product. A masterbatch provides these ingredients dispersed 

and distributed evenly throughout the polymer matrix. This is important for fibre 

production, if the ingredients are finely dispersed then screen pack life is enhanced and there 

will be less filament breakages on spinning.   

As discussed previously there are generally three types of masterbatch. Colour masterbatch 

for pigments and dyes. Additive masterbatches can contain UV Stabilisers, Flame Retardant 

additives plus many more. Filler masterbatches which contain high percentage of fillers. 

There are often also combination solutions, for example a colour masterbatch can also 

contain UV and light stabiliser additives providing the user with one masterbatch to provide 

colour and stabilisation in the final product [22]. 

The European masterbatch market increased between 2001 and 2006 in terms of tonnes 

produced across various industries and was predicted to continue growing through to 2010 

(Table 2.1) [88].  

Table 2.1; Masterbatch volumes by type – AMI Consulting. [88] 

 

The total estimated value of the European masterbatch market as of 2006 was €2.4 billion. 

The estimated value of the fibres masterbatch market is €205 million [88]. 

2.4.1 Production of Masterbatch 
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Masterbatches are generally produced on an extruder. The three main types are single screw, 

twin screw and conical screw. Here we will focus on the twin screw production of 

masterbatches.  

As previously mentioned the aim of the extrusion process is to produce highly concentrated 

granules of finely dispersed ingredients. There are many factors which influence masterbatch 

production and the dispersion efficacy.  

The main factors effecting production and effectiveness are; 

 Raw material mixing / blending 

 Raw material feeding 

 Temperature profile 

 Screw Profile 

 Shear Rates 

These factors will vary depending on polymer and additives being processed.  

2.4.2 Raw Material Mixing / Blending 

Blending is typically a batch process done prior to extrusion. There are various blending 

methods around.  

Ribbon blenders are semi-circular steel tanks containing double helical rotating blades. 

(Figure 2.14) The rotating blades cause the material to move back and forth within the 

blender from the centre outwards and back again. They need at least 40% of the volume to be 

taken up for effective blending and therefore are used for larger batch sizes. The blending is 

considered low intensity [24]. 
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Figure 2.14; Inside Ribbon Blender [24] 

Vertical blenders (Figure 2.15) are cone shaped with a rotating screw within which orbits the 

blender walls. The screw moves material from the bottom to the top of the cone. These 

blenders require less floor space but more overhead space than a ribbon blender and can 

process smaller batches as low as 10% of the volume. Vertical blenders can also fitted with a 

heated jacket and run on a vacuum to dry materials during the blending process [24]. 

 

Figure 2.15; Schematic Vertical Blender [24] 
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High Intensity Mixers are smaller than both the mentioned methods and are usually on line 

blending systems. These have blades situated at the bottom of a chamber which rotate at 

very high speeds. This rotation creates a vortex which then generates shear and heat. They 

are used for powder/powder blends and the heat generated can cause some of the 

ingredients to melt and adhere to the carrier resin which leads to improved dispersion on 

extrusion [24]. 

It is common for pigments to be blended with wax and polymer in this method. The wax 

would have a lower melting point and melt through the heat generated, causing the pigment 

to adhere to the wax and polymer leading to improved dispersion on extrusion.  

2.4.3 Feeding of Raw Material 

Feeder deposit the formulation directly onto the screws of the extruder, the screw speed will 

be set at a higher rate than the material is fed as to avoid a build-up of material. This method 

is known as starve fed. It also limits the possibility of the materials bridging in the extruder 

throat [24]. 

The output of the extruder is determined by the feed not the screw speed and measured in 

Kilograms per hour (Kg/h) or pounds per hour (lbs/h). 

Ingredients can also be fed downstream via a side feeder, again these are starve fed and a 

single or twin screw will convey the additives to the extruder at a controlled rate [24]. 

Figure 2.16 shows a typical twin screw extruder with a side feeder function. 
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Figure 2.16; Twin Screw Extruder – External Layout [24] 

2.4.4 Processing Thermoplastics on a Twin Screw Extruder 

A wide range of thermoplastics can be processed on a twin screw extruder to produce 

masterbatches. They include but are not limited to Polypropylene, Polyesters and 

Polyamides.  

Twin screw extruders are the preferred choice for the production of masterbatches and 

compounds as they are able to provide sufficient mixing of ingredients at lower melt 

temperatures [26]. 

The screws and barrel of a twin screw are made up of various smaller sections which are, 

feeding/conveying, mixing and venting. This enables each section to be custom built for the 

materials being processed providing great flexibility.  

There are two type of screw types for twin screw processing. They are ‘co’ and ‘counter’ 

rotating screws. These can also be ‘intermeshing’ or ‘non-intermeshing’ Figure 2.17 shows 

the common screw types.  
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Figure 2.17; Screw types available for twin screw extrusion [25] 

The difference between co-rotating and counter rotating twin screw extruders is the screw 

rotation relative to each other. In co-rotating extruders, both screws rotate in the same 

direction, while in counter-rotating extruders, one screw rotates clockwise and the other 

screw rotates counter clockwise. With co-rotating screws, both screws have either right-

handed or left-handed thread, depending on the screw rotation (clockwise vs counter clock 

wise). In counter rotating extruders, one screw has a right-handed thread and the other 

screw a left-handed thread [25]. 

Table 2.2 explains the performance variance of differing screw setups.  

The screw shafts are fitted with different elements depending on what section they occupy 

within the extruder.  

The feeding section is built with open flights to ensure the maximum material intake. This 

section is followed by conveying and melting section where a large surface area is required 

to ensure good heat convection and melt the material [25]. 
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Table 2.2; Performance variance of different screw setups [27] 

 

The mixing section consists of kneading and / or mixing elements. There are two main types 

of mixing, being dispersive mixing and distributive mixing (Figure 2.18). 

Dispersive mixing uses kneading block to break up agglomerates. This method breaks up the 

agglomerates found in pigments using a high shear process and disperses them throughout 

the melt stream. Distributive mixing is carried out by mixing elements and is suitable for 

processing fibrous materials, fillers and mixing shear sensitive polymers. It is a low shear 

process and works by breaking and recombining the melt stream whilst distributing the 

particles in a uniform manner [27]. 

 

Figure 2.18; Comparison Distributive and Dispersive Mixing [27] 
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Factors affecting mixing are temperature, screw speed, percent fill in the screw channel and 

screw geometry. There are many types of kneading blocks and mixing elements on the 

market for use in a twin screw extruder [27]. 

The degassing section of the screw is to let volatiles and moisture to escape the system, the 

screw elements in this section are usually open flights to convey material and prevent it 

passing up into the vent holes [25]. 

The metering section is used to feed material to the die and increase the pressure by 

compression. ‘Single flighted’ forward conveying elements are used to meter the melt to the 

die [27]. 

There are many types of polyamides processed on extrusion equipment some are crystalline 

some are in amorphous form therefore they require quite different processing conditions. 

Polyamide 6 is a crystalline polyamide [28], Figure 2.19 shows the chemical structure. 

 

Figure 2.19; Chemical Structure PA6 [28] 

As polyamides are hygroscopic and they absorb relatively high levels of water from the 

atmosphere the polymer needs to be carefully dried prior to extrusion. If the polymer is ‘wet’ 

upon extrusion it is possible that the water molecules can attach the –NH- groups and cause 

the polymer to degrade reducing the molecular weight and affecting properties [28]. 

Consequently ‘over drying’ can also hinder the extrusion process as water acts as a 

plasticiser within a PA6 extrusion helping the melt flow of the material [28]. 

Ideally a desiccant dryer system is used to dry the PA6 prior to extrusion. The preferred 

moisture content is 0.08% (800ppm) and no lower than 0.02% (200ppm), the recommended 

drying temperature is 82°C, any higher can lead to oxidative thermal degradation of the 

polymer which can cause dis-colouration [28]. 
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Polyamide 6 viscosity versus shear rate curves provided the conclusion that polyamide is 

affected by both temperature and shear rate. By increasing the shear rate from 100 to 400 sec-1 

can reduce viscosity by approximately 2 times, whilst increasing the temperature profile 

20°C from 230°C to 250°C can reduce viscosity between 1.5-2 times [28]. 

As a brief definition Shear is the movement of parallel layers. Shear rate is the velocity 

gradient at which these layers are sliding past each other. It is a measure of deformation of a 

polymer melt and flow rate of the material and geometry of the extruder influence this. 

Shear rate is recorded in reciprocal seconds.  Measurement are carried out on an oscillating 

plate rheometer [29] Figure 2.20  shows the shear rates involved for extrusion applications.  

The formulation being processed also has to be considered, additives and pigments can 

affect the melt flow of the system and therefore screw speeds and temperature profile will 

need to be adjusted and recorded to obtain optimum processing conditions.  

To summarise masterbatches are used to supply well dispersed pigments, additives and 

other materials at high concentrations within a polymer matrix. There are many technical 

aspects of master batch production to consider from raw material handling, polymer 

processing, machine make-up and many more. Section 2.5 discusses masterbatch use in fibre 

/ filament production.  

 

 

Figure 2.20; Extrusion process shear rates [29] 
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2.5 Solution Dyeing of PA6 

Also known as ‘dope-dyed’ or ‘mass-dyed’, solution dyeing is the process where pigments 

and auxiliaries are incorporated into the PA6 prior to spinning. These materials are usually 

incorporated into a ‘masterbatch’ (also known as a concentrate) and added to the polymer 

chips during spinning. This leads to all the necessary pigments and additives such as UV 

and Antioxidants being incorporated into the final filament at the melt spinning stage thus 

the filament coming out of the spinneret will already appeared coloured (Depending on the 

pigments included) [21, 22]. 

The aim of the solution dyeing process is to facilitate uniform pigment dispersion within the 

fibres without any aggregates or agglomerates [50]. 

The concentrate can typically contain up to 40% pigment in a polymer carrier and can be fed 

into the melt stream upon fibre production via a side feeder or simply blended with the 

polymer chips prior to spinning [50]. 

This method of colouration or incorporating additives into fibres has economic, technological 

and ecological advantages over the exhaust dyeing method [50] 

The advantages with solution dyeing versus post dyeing are; 

 One Step Process (removes dyeing process) 

 Improved Fastness (Light and Wash) 

 Improved Chemical Resistance 

 Lower energy and utility consumption 

 More Uniform Colour 

 Reduction in cost when masterbatch used a low dosing level (3%<) 

The disadvantages of solution dyeing are; 

 Difficult to achieve bright colours  

 Difficult to achieve deep colours 
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 Less cost effective when high addition levels are necessary 

Many yarn producers now use pre-coloured masterbatch for the colouration of their yarns 

especially carpet yarns. As previously stated masterbatch is not limited to pigments and can 

also be used for incorporating additives into the synthetic filaments such as Flame 

Retardants.  

2.6 Chapter Summary  

Chapter two provided an introduction to polyamides and their use in the textile industry.  

Production of polyamide 6 textiles was examined from the polymerisation processes through 

to melt spinning and bulk continuous filament production.  

The extrusion of polyamide 6 was considered and the processes and difficulties were 

examined.  

Finally an introduction to masterbatch was made and also the pros and cons of solution 

dyeing via masterbatch addition was evaluated.  
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Chapter 3 Literature Review; Fire – Retardance Strategy, Materials and Test Methods 

3.1 Fire Parameters and Triangle 

When developing a flame retardant system an understanding of how a fire can develop and 

its key parameters which govern the fire are required. 

The key parameters are [3]: 

 Combustibility – Will the material burn 

 Ignitability – How will it ignite 

 Spread of Flame – How quick the flames will spread 

 Heat Release – Rate and amount of heat released.  

Tesoro (1978) lists some key definitions in relation to the subject [46];  

Combustion. Self-catalysed exothermic reaction involving two reactants (fuel and oxidiser). 

Fire. Uncontrolled combustion. 

Flames. Gas-phase combustion processes with emission of visible light. 

Ignition. Initiation of combustion. 

To Glow. To burn without flame, but with visible light. 

Using home textiles as an example and incorporating them into the Fire Triangle (Figure 3.1), 

a fire can be initiated by a cigarette (heat) igniting a piece of combustible upholstered 

furniture (fuel) which begins to burn. The flame spread to the surroundings (carpets, 

curtains) which in turn also being to burn. Once these materials have formed enough 

flammable gases and there is sufficient heat and oxygen present flashover will occur 

engulfing the whole room. The fire will begin to decrease once all the fuel or oxygen has 

been consumed [3].   
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Figure 3.1; the Fire Triangle [3] 

 

3.1.2 Fire cycle and how materials burn 

Solid materials do not burn directly. Synthetic textiles such as PA6 textiles need to be 

decomposed by heat. This process is called pyrolysis and will be discussed in more detail 

later. The process releases flammable gases which react with oxygen in the air in the 

presence of heat creating a visible flame [3]. 

Figure 3.2 explains the fire cycle in seven stages helping us to understand how a material 

burns and the key processes involved.  When developing flame retardant systems we can 

target which stage we would like the flame retardant to be functional.  

 



46 
 

 

Figure 3.2; Fire Cycle and key stages of fire development [4] 

1. Ignition source provide heat to the material.  

2. Point in which the heat source first contacts the polymer in our case a textile and 

initiates pyrolysis of the textile.  

3. Polymer long chain molecules break down forming char layer.  

4. Polymer long chain molecules break down releasing flammable gases, which are 

highly energy free radicals.  

5. The free radicals, fuel and oxygen react forming visible flames.  

6. Side products. Smoke.  

7. Energy emitted and re-transmitted to the textile reinforcing paralysis enabling the 

process to continue and sustain itself. [4]  
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Figure 3.3; Concept horizontal fire spread on textile material [90] 

 

Figure 3.3 continues to explain the fuel cycle but gives an easier perception of stage 7 

whereby the continued pyrolysis of a textile material can occur. It also aids the 

understanding of horizontal fire growth.  

Using Figure 3.4 we can begin to understand how a fire develops over time. Flame retardants 

are most effective during the initiation and start of a fire. Once flash over has occurred and a 

fire is fully developed flame retardants will be ineffective.   

 

Figure 3.4; Development of fire over time [40] 

In summary a fire needs fuel, oxygen and heat removing one of these parameters will result 

in fire decrease leading to eventual extinguishment. The textile material is the fuel within the 

triangle and with continued pyrolysis continues to provide fuel to the system. It is here 
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where our research can now being to explore methods of retarding the pyrolysis of the textile 

material to suppress the fuel supply to the fire system. 

3.2 Pyrolysis 

Eloma et al (1997) [44] summarises combustible gases (fuel) must be produced for ignition of 

a polymeric material to occur.  

Upon heating the polymer will eventually reach temperature in which the weakest bonds 

rupture. At lower temperatures this process is considered to be degradation and only slight 

changes in structure and properties will be noticed.  

At higher temperatures the chemical structure change of the polymer is more extreme, a 

significant dissociation of chemical bonds takes place leading to decomposition.  

Troitzsch (1983) explains that pyrolysis is the irreversible chemical decomposition of a 

material due to temperature without oxidation [45]. 

Pyrolysis plays the main role in the production of combustible gases in the burning of 

polymers [44]. 

3.3 Burning Mechanism of Fibres 

In 2.5 we have extensively considered the basics of how fires occur and the necessary 

requirements for continued combustion. To further explore the burning mechanisms of fibres 

we revert to Broughton and Cerkez (2013) [38]. 

The first consideration is what is fuel? Different materials provide different amounts of fuel 

to the fire cycle. Hydrogen although stable in air and oxygen atmospheres is extremely 

flammable when an ignition source is applied [38].  

Organic materials (usually polymeric materials) containing large amount of hydrocarbons 

can provide a large amount of fuel for oxidation providing they are sufficiently broken down 

by thermal decomposition to release lower molecular weight volatile fragments.  These 

fragments provide the fuel and can escape into the surrounding atmosphere to be combined 

with oxygen and burn. The oxidation of these fragments produces enough heat and at a 
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sufficient rate for additional thermal decomposition to occur producing more fuel and 

combustion to be sustained until fuel has been used up [38]. 

Table 3.1; Energy required to break chemical bonds [38] 

 

 

Energy is required to begin this decomposition step to break bonds of the polymeric 

materials to reduce molecular weight and release volatile fragments. Table 3.1 shows energy 

required to break some common chemical bonds.  

Broughton and Cerkez [38] state that two bonds need to be broken to release a volatile 

fragment from a polymer chain. Factors affecting the release of fragments are the presence of 

aromatic rings, double bonds and cross linking in the polymer structure.  

It is thought that when considering the energy contribution to heat of combustion of 

individual elements shown in Table 3.2 we can begin to understand the overall fuel values 

for organic compounds. It can also be used to provide an understanding as to how to reduce 

the fuel value and therefore flammability of organic solids. It can be seen that elements such 

as Oxygen, Nitrogen and Chlorine contribute a negative energy and thus are not fuels. 

Therefore polymers with high oxygen, nitrogen or chlorine contents will provide less fuel to 

a fire cycle than for example a polyolefin polymer made up of solely carbon and hydrogen 

[38].  
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Table 3.2; Elements and molecules contribution to heat of combustion [38] 

 

After degradation has occurred and fragments are released they still need to diffuse into the 

atmosphere. This diffusion can be affected by fabric structure. In a single fibre or light weight 

fabric like a non-woven web for example with a high surface area these fragments will 

diffuse rapidly to the atmosphere compared to a tightly woven fabric. These tightly woven 

materials will melt and coalesce into molten pools and shrink away from the ignition source 

or drip a flaming molten pool away from the solid fuel. This drip can still be a fire hazard 

although providing initial protection to the source material [38].  

3.4 Burning of Polyamide 6 

There have been numerous research projects and studies on the burning of polymers and in 

particular polyamide 6 and other aliphatic polyamides. We will focus on works by 

Aminabhavi &Cassidy, Hull & Stec and Levchik et al.  

Aminabhavi &Cassidy (1989) [31] reviewed Hilado (1969) and reported the combustion of 

polymeric materials involves a series of chemical and physical changes.  

1. On a micro-scale concerning the behaviour of the polymer 

2. On a macro-scale concerning the behaviour of a unit mass of material.  

3. On a mass scale concerning the behaviour of the complete system.  
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It was summarised that on a micro scale hard polymer becomes a viscous liquid after a loss 

in physical integrity. At high temperature oxidation occurs producing heat and a flame in the 

gaseous phase.  

On a larger scale (macro) Hilado (1969) found polymeric burning occurs in stages. Initial 

heating leads to decomposition and then ignition (stage 1). Parameters for ignition are: 

1. Flash Point of polymeric material (temperature at which flammable gases evolve) 

2. Self-Ignition of polymeric material (temperature within the polymer which becomes 

possible to self-sustain ignition) 

3. Oxygen Index (OI) (Minimum level of Oxygen required to sustain ignition and 

combustion.)  

Stage two is combustion in which a unit mass of polymer generates an amount of 

combustion heat, leading to propagation.  

Hilado concluded mass scale burning depends on various aspects being, initial fire, fire build 

up, flash point, severity of fire, and fire propagation. It was noted combustion can be self-

propagating after the removal of an ignition source if sufficient heat is generated and 

radiated back to the polymer surface to continue the decomposition process. Therefore it was 

also summarised combustion would be governed by the variables; rate of heat generation, 

rate of heat transfer to the surface and rate of decomposition.  

Hull & Stec (2009) [32] explain the impact of heat on polymeric material causes the breakages 

of chemical bonds leading to volatile fragments being produced. As they are at elevated 

temperatures they are buoyant above the surface of the polymer and once they are in 

sufficient concentration and they are flammable it is possible for a flame to stabilise.  

Similarly Aminabhavi &Cassidy suggested that volatile products can be split into three 

categories; 

1. Non-flammable gases 

2. Flammable gases 
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3. Carbonaceous Char 

Hull & Stec (2009) further evaluate the concept of heat transfer processes, which are critical 

to the ignition and burning behaviour. Once ignition has occurred a fire usually grows by 

flame spread [32]. 

Flame Spread is where surfaces near the initial site of pyrolysis (decomposition) or the flame 

zone are heated by radiant heat and begin to decompose leading to more flammable 

products [32]. 

Horizontal flame spread is slow due to only gas phase conduction, whereas vertical flame 

spread can be rapid as radiative, convective and conductive heat transfer occurs [32]. 

Levchik, Weil and Lewin (1999) [33] carried out an extensive review of work previously 

carried out on the decomposition of aliphatic polyamides.  

Levchik, Weil and Lewin reviewed Straus and Wall (1958). They found that heavy volatile 

products comprised of about 95% of the total volatiles. Straus and Wall suggested that the 

weakest bonds C-N bonds undergo initial scission and that random breakdown of PA6 

occurred along with hydrolytic scission of the peptide bond. C (O)-NH which assumed 

responsibility for high levels of CO2 being produce during decomposition [33]. 

A review of Luderwald et al (1978) revealed that above temperatures of 390°C intensive 

thermal degradation began. The main products were cyclic oligomers of caprolactam. Similar 

study by Bletsos et al (1985) observed multiple monomer units as products of decomposition. 

They explained that this was due to the cleavage if the CH2-CH2, CH2-NH or CH2-CO 

bonds and not cleavage of the peptide bond as mentioned in Straus and Wall [33]. 

Levchik, Weil and Lewin state PA6 shows three steps of weight loss as shown in TGA 

analysis in an inert atmosphere. The first step is volatisation of residual moisture and low 

molecular weight oligomers. The second step occurs between 280°C and 450°C and is the 

major decomposition step as most of the material volatizes. It is assumed that a cross linked 

structure is formed causing a slowdown in decomposition at 450°C, which on further heating 

decomposes and yields approximately 5% of stable char [33]. 
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A review on the solid residue products of thermal decomposition of PA6 found that the 

spectrum of PA6 did not change greatly during the major steps of decomposition. This 

suggests mostly volatisation of monomer and chain fragments. At a high degree of 

decomposition nitrile groups (CN triple bond) and C=C double bonds were observed which 

are attributed to be the cause of the stable layer of char [33]. 

Levchick, Weil and Lewin conclude that no complete agreement on the mechanism of 

thermal decomposition of nylons have been found. The three main types of decomposition 

discussed in the various literatures are hydrolytic scission, homolytic scission and 

intramolecular hydrogen transfer [33]. 

There is also disagreement at which the primary bond scission occurs whether that be at the 

peptide bond or alkyl-amide bond.  

It is summarised that PA6 tends to produce monomer and cyclic or linear oligomers upon 

decomposition. Secondary reactions can lead to the evolution of volatile gases and cross 

linking which leads to the formation of stable solid char residue consisting of nitrile groups 

and carbon double bonds.  

This topic was also discussed by Price & Horrocks (2013, ‘Combustion Processes for Textile 

Fibres). Table 3.3 compares various common fibres’ thermal properties.  

From Table 3.3 we can see PA6 pyrolysis onset is 431°C and ignition is 450°C these are 

important properties to be aware of when developing a flame retardant product. 

Price and Horrocks (2013) [34] stated that random chain scission occurs during the 

decomposition of PA6 and resulting products are caprolactam monomer. This summary 

agrees with more than one study reviewed by Levchik, Weil and Lewin. 

 



54 
 

Table 3.3; Thermal Transitions of common Fibres [34] 

 

Price & Horrocks [34] continue to explain the thermal degradation of aliphatic polyamides 

are influenced by two major factors.  

The first being the strength of the weakest bonds around the amide group (Figure 3.5). 

 

Figure 3.5; Weakest Bonds in Polyamide Chain [34] 

This agrees with the work carried out by Straus and Wall as reviewed in Levchik, Weil and 

Lewin. They agreed that these breakages occur randomly and also stated that gas products 

were NH3, CO and CO2, other products were low molecular weight fragments and 

subsequent degradation products. Of the gases evolved only CO is flammable but volatiles 

from the smaller polymer chain fragments can provide major fuel components.  

Reviewing Kohan (1973) Price and Horrocks [34] conclude that decomposition of PA6 can 

lead to depolymerisation back to monomer caprolactam which leads to the possibility of 

recycling PA6 from waste like nylon carpets.  
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The second factor is some aliphatic polyamides can form 3-D structures which lead to gels. 

This is more common in nylon 6.6.  

Price and Horrocks [34] further discuss flammability of simple nylons is determined by their 

ability to shrink away from the ignition source as well as the volatiles formed. It is also stated 

that by increasing the Limited Oxygen Index (LOI) to >25 textile materials begin to pass 

various flame retardant test methods.  

It is worth noting that there are many LOI values quoted throughout literature for PA6 

ranging from 21-24 which falls into the moderately flammable category.  

Another issue associated with the thermal decomposition of polymeric materials is the 

toxicity of the products from decomposition.  

Braun and Levin (1989) reviewed various studies researching the decomposition products of 

aliphatic nylons. It is generally agreed that the quantity of smoke produced and its toxicity 

play and important role in determining the possibility of survival during a building fire. 

Polyamides are common materials within buildings from clothing, home furnishing and 

possibly moulded parts. Therefore it is important to understand the products from 

combustion and the toxicity of these products.  

Hull and Stec (2009) also comment that most fire deaths are caused by inhalation of toxic 

gases. The yield of toxic products is affected by the material composition, temperature and 

oxygen concentration in the atmosphere. It is also mentioned Carbon Monoxide (CO) is the 

most significant toxic gas.  

Braun and Levin (1989) aimed to determine the possible products which aliphatic 

polyamides would yield under various fire conditions and to evaluate the toxicity of these 

products [35]. 

Braun and Levin (1989) concluded that decomposition of nylons began with primary scission 

of the NH-CH2 bond then followed by secondary reactions. This results are in some 

agreement with the conclusions from literatures 30-33.  
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The studies reviewed analysed the decomposition products from three atmospheres, 

vacuum, inert and air. For the purpose of this project we will focus on the studies carried out 

in air which is believed to be more correlative with real life conditions.  

Initial studies by Michel et al (1981) and Hartstein and Forshey (1976) focused on the 

production of hydrocarbons developed from the decomposition of PA6. Both studies had 

similar results and the main hydrocarbons produced were Butane/ Butene, Pentene-1 and 

Cyclohexane.  

From Braun and Levin (1989) a study carried out but Murata and Takahasni (1974) were able 

to determine that PA6 began producing Hydrogen Cyanide (HCN) and Ammonia (NH3) at 

approximately 375°C.  

Other reviews on pieces by Sugihara (1975), Sumi and Tsuchiya (1976) and Morikawa (1978) 

used tube furnaces to thermally degrade PA6 between temperature range 400-1000°C. The 

experiments were carried out in air and nitrogen.  

Sugihara (1975) focussed on production of HCN, CO, NH3 and NO2. Sumi and Tsuchiya 

monitored HCN, CO and CO2 while Morikawa was concerned with production of NH3 and 

HCN.  

All three studies found production of HCN increased with an increase in temperature in 

either air or nitrogen atmosphere.  

Sugihara reported CO in air and nitrogen increased with an increase temperature while Sumi 

stated it was independent from temperature.  

From Sugihara’s data approximately 270 mg/g of CO was produced in air. Volatiles became 

present at roughly 400°C. The tests were run to 1000°C. CN- produced was 130 mg/g while 

NH3 was considerably lower.  

From Morikawa’s research approximately 100 mg/g HCN was produced in air over a 

temperature range 500-1000°C.  

Sumi’s results can be seen in Table 3.4  
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Table 3.4; Products from thermal decomposition of PA6 Sumi and Tsuchiya (1976) 

 

To summarise Braun and Levin’s review it was found that there is a general decrease in 

quantity of heavier hydrocarbons and an increase in production of CO, CO2 and HCN as 

temperature increases or as oxygen concentration within the atmosphere increases. 

Predominant gases of decomposition of aliphatic nylons are CO, CO2, H20, NH3, HCN and 

NOx.  

Reverting to Hull and Stec [32] the formation of CO can be favoured by many conditions 

from smouldering to a fully developing fire.  

It is stated that CO arises from incomplete combustion which can be caused by four factors; 

1. Insufficient heat in gas phase 

2. Quenching of flame reactions 

3. Presence of stable molecules such as aromatics which survive longer in the flame 

zone and give high CO yields in well ventilated conditions and lower yields in under  

ventilated conditions.  

4. Insufficient oxygen where heat flux will cause pyrolysis of the fuel but there is 

insufficient oxygen to complete the combustion reaction.  

Figure 3.6 from Hull and Stec (2009) summarise the yields compared to the fire conditions.  
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Figure 3.6; Stage of Toxic Gas Production [32] 

To summarise, the products from decomposition of polymers and specifically PA6, 

Literature 33-34 conclude there are various products produced some being asphyxiator gases 

which can inhibit an individual caught in a fire and prevent escape. The literatures whilst not 

finding a concrete agreement with each other conclude that there are many aspects of the 

decomposition of PA6 and the various products as a result of this mechanism. When 

developing a flame retardant system it is important to consider the nature in which the 

virgin material will burn and then beginning to find a solution to inhibit that. From the 

literature flame retardant textiles begin to pass flame test standards once they achieve a LOI 

of greater than 25. This is one aspect to consider, another is to consider what additives we 

can add to material to alter the burning behaviour. Strategies and current products on the 

market will now be considered. 

3.5 Flame Retardant Strategies  

There are two main strategies to achieve flame retardant products. Within these categories 

there are various mechanisms. We will briefly review each mechanism before exploring in 

more detail specific materials.  

3.5.1 Strategy 1 – Physical Action  



59 
 

There are three key mechanisms to Physical Action strategy; 

1) Cooling effect – Endothermic process triggered by additives (commonly fillers) such 

aluminium hydroxide. They cool the polymer surface below the temperature 

required for sustaining combustion. Also known as heat sinks [32, 36].  

2) Formation of Protective Layer – Obstructs the flow of heat and oxygen to the polymer 

therefore obstructing the flow of fuel to the flame [32].  

3) Dilution effect – Another heat sink method with the addition of inert fillers which 

evolve inert gases on decomposition and dilute the fuel in the gaseous phase. 

Common mode of action is the release of water vapour and carbon dioxide.  

Aluminium Hydroxide and Magnesium hydroxide are the most common Physical Action 

flame retardants. They break down endothermically to release water vapour which can 

dilutes free radicals in the gas phase whilst also forming protective layer on the polymer 

surface [32].  

One problem associated with these materials is the high loadings needed for efficacy, leading 

to large impacts on mechanical properties of polymers. This leads them to be unsuitable for 

fibre production [32].  

3.5.2 Strategy 2 - Chemical Action  

Similarly to physical action there a multiple mechanisms associated with the chemical action 

of flame retardants.  

1) Gas Phase Reactions – Combustion is a free radical mechanism where oxygen attack 

the hydrogen atom in a C-H structure forming OH radical, H atom and C radical. 

Flame retardants can act in the gas phase to interrupt this process. Halogenated flame 

retardants decompose at the burning temperature react with the H atoms to form 

non-combustible vapours such as HCl and HBr. These reduce the concentration of 

flammable gases below the required level to sustain combustion [32, 36].  

2) Solid Phase (condensed) Reactions – Flame retardants work by breaking down the 

polymer so it can melt away from the flame or ignition source. The phenomena can 
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occasionally be seen with PA6 fabrics without the addition of a flame retardant. Even 

if this characteristic is exhibited fire safety is usually compromised as flaming drips 

are usually produced [32].  

Char formation is a better mechanism of solid phase flame retardancy. On 

decomposition the form a carbonaceous layer on the polymer surface which imparts a 

protective barrier. Formation of char can also coincide with the release of diluting 

vapours such as water and carbon dioxide depending on the host polymer [32, 36].  

Intumescence is the third mechanism of solid phase flame retardant to be mentioned. 

This is where a layer of material behind the surface layer will swell on the surface 

providing an insulating protective barrier. Intumescent systems are comprised of a 

carbon donor, acid donor and spumific compound. On decomposition the system 

expands and through cross linking reactions forming a protective insulated barrier in 

a ‘foam’ like structure [32, 36]. 

3.6 Flame Retardant Additives and the Environment 

Over recent years additive flame retardants have caused concern regarding their effect on 

the environment. Many are considered ‘PBT’ (Persistent, Bio accumulate and Toxic) to the 

environment [83]. 

New regulations (REACH) have been put in place to limit and prohibit the use of such 

materials. 

Nyholm (2009) [83] reported materials considered CMR (Carcinogenic, Mutagenic and Toxic 

to Reproduction) are now restricted under REACH as they can potentially increase the risk 

of cancers.  

POPs (Persistent Organic Pollutants) are also restricted under REACH because of their PBT 

attributes. POPs can accumulate in the ecosystems leading to long term effects on humans 

and the environment [83]. 

Nyholm (2009) presented the classification criteria under new regulation. (Figure 3.7) 
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Table 3.5: Classification of PBTs under REACH regulations [83] 

 

Halogen based flame retardants have received the most scrutiny and various popular 

brominated flame retardants were found in animal and human food chains in the USA [84].  

Polybrominated diphenyl ethers (PBDE) and Hexabromocyclododecane (HBCD) were used 

in many flame retardant systems for use in a variety of industries. These two compounds are 

not strongly bound within a polymer matrix and can leach out of the plastic material over 

time becoming environmental pollutants [84]. 

Nyholm (2009) reported the United Nations Environment Program had identified 12 

chlorinated based compounds to be banned globally. Nyholm (2009) attributed the PBDE as 

a POP as it has a resembling chemical structure to the banned chlorinated POPs [83]. 

PBDE and HBCD can be released from a material via vapour transfer, dust or leaching out of 

the materials. All three methods of migration can lead to them becoming indoor air 

contaminants, atmospheric pollutants, released into the soil and aquatic life and 

bioaccumulation in people [84]. 

Waaijers et al (2013) [82] investigated the PBT characteristics of non-halogenated additive 

flame retardants. The extensive study is beyond the scope of this paper, but a summary 
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presented by Waaijers et al (2013) lists the flame non-halogenated flame retardants 

considered to be most PBT.  

Table 3.6 Summary from Waaijers et al (2013) [82] 

 

 

The summary presented in Table 3.5 from Waaijers et al (2013) shows that some non-

halogenated flame retardants could be considered PBT under certain condition. 

Triphenylphosphate (TPP) is a common flame retardant yet has been rated ‘low-high’ for P 

and B and also possible very persistent and very bio accumulative [82]. 

 Zinc Stannate was summarised as the least risk to the environment. Although Waaijers et al 

state that at this current time there is not enough data to fully evaluate the risk of these 

materials including materials such as TPP. There are also many contradictory evaluations for 

example APP was found to have low PBT properties from literature reviewed, yet there is 

some data to suggest that it has moderate Eco toxicity [82]. 

3.7 Flame Retardant Mechanisms for Polyamides  

There are numerous research studies available to evaluate which materials impart flame 

retardant properties to polyamides. Generally the studies are weighted to engineering 

plastics application and less so towards polyamide textiles. Here we review current flame 

retardant products, methods and previous research on the subject area. 

There are a number of additives that can be considered to impart flame retardant properties 

to polymers and synthetic fibres. Market research carried out by the Freedonia Group 
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projected that the ‘Global demand for flame retardants is projected to expand 4.6 percent per year 

through 2018 to 2.8 million metric tons, valued at $7.0 billion. Advances will be stimulated by an 

acceleration in manufacturing output, especially in the US, Japan and Western Europe, as they 

recover from the recession-impacted 2008-2013 period’ [43]. 

The most common flame retardant additives are halogen based (more commonly Bromine or 

Chlorine), Phosphorous based, Metal Hydroxide based and Nitrogen based.  

3.7.1 Halogen Based Flame Retardant Additives 

Halogens refer to group seven of the periodic table and include Fluorine, Chlorine, Bromine 

and Iodine. The structure of halogenated flame retardants can vary widely from aliphatic to 

aromatic structures [47].  

To be effective the halogen containing flame retardant has to release a halogen in the form of 

a radical or hydrogen halide at below or the same temperature as the polymer 

decomposition temperature [48].  

The organo-halogen compounds have been found to be the most effective as flame retardant 

additives and as a result organo-chlorine and organo-bromine are most commonly used. 

[47]. Fluorinated organics are normally more stable than other polymers and as a result do 

not release the halogen radicals or halides effectively to act as a flame retardant. Iodinated 

organics have low thermal stability and cannot be processed with other polymers [48]. 

Organo-bromine is the most commonly used as its properties are considered ‘just right for 

preventing fires’ as the bond between C-Br is stable enough for the environmental exposure 

yet can easily release the Br under sufficient thermal stress and fire conditions [47]. 

Halogen FRA mainly act in the gas phase by means of chemical reaction .The halogen 

quenches the high energy radical developed during decomposition of the polymer. The 

series of reactions has been summarised by many and we use Troiszsh (1998) [49] to 

summarise;  

Eqn 3.1:  H∙ + O2    OH∙ + O 

  O + H2   OH∙ + H∙ 
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Formations of high energy OH and H radicals 

Eqn 3.2: RBr   R∙ + Br∙ 

Flame Retardant breaks down to form halogen radical.  

Eqn 3.3: Br∙ + RH   R∙ + HBr 

Halogen radical reacts to form hydrogen halide.  

Eqn 3.4: HBr + H∙   H2 + Br∙ 

  HBr + OH∙   H2O + Br∙ 

The halides interfere with the mechanism by reacting with the high energy radicals 

quenching them and replacing them with the lower energy Br∙ radicals.  

Eqn 3.5: Br∙ + RH   R∙ + HBr 

The hydrogen halide consumed is regenerated by the reaction with hydrocarbon.  

Disadvantages of HFR’s can increase the smoke development from combustion of aliphatic 

nylons. Bromine additives also cause greater smoke density than chlorinated additives. 

Bromine compounds can further affect smoke toxicity as greater concentrations of HCN and 

CO may be produced [51]. 

Examples of brominated flame retardants in current practice are summarised extensively by 

Levchick & Weil (2000) [51] and also Levchick et al (2009) [52]. 

Polybrominated Diphenyl Oxides have recently come under environmental scrutiny, this 

includes Albemarle’s’ Saytex 120 which is stable at high processing temperatures, non-

blooming and also has good light stability. A typical formulation for unfilled PA66 would be 

13% Saytex 120 + 5% ATO [52]. 

Due to the environmental pressures alternatives were developed. Saytex 8010 (Figure 3.7) 

and Firemaster 2100 from Chemtura are based on Decabromodiphenylethane. These have 

similar efficacy to the diphenyl oxides and good thermal stability, however they are more 

expensive.  
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Figure 3.7; Saytex 8010 Chemical structure [54] 

Another popular group of brominated flame retardants are Brominated Polystyrenes. There 

are two methods of production. They were initially manufactured by the post bromination of 

low molecular weight polystyrenes by ring substitution of H by Br on the benzene ring [51]. 

Initially this type of BFR had reduced thermal stability due to labile halogen being present 

after manufacture. Processes were developed to reduce this unstable halogen and improve 

stabilisation, although some impurities remained which reduced the thermal stability [52]. 

Two products from this category of post brominated styrene are Pyrocheck 68-PB and FR – 

803P (figure 3.8) from Albemarle and ICL-IP respectively.  

 

Figure 3.8; FR-803P Chemical Structure [55] 

Another method of production is the polymerisation of di-bromostyrene or mixed di / tri-

bromostyrene. This method gives the ability to produce products with different bromine 

contents and various molecular weights [52]. 

They can also be produced by the addition of co-monomers to aid compatibilisation to 

specific polymers. A study by Fielding and Elliot (1997) for Great Lakes added Maleic 

Anhydride and Glycidyl Methacrylate to polydibromostyrene to improve the compatibility 

with Polyamides [53].  
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They found that adding these co-monomers enhanced the compatibility to PA and produced 

a product with enhanced properties with improved flame retardancy and physical properties 

[53]. 

Polymerised bromostyrenes are considered more stable than post brominated products. With 

the added ability to manufacture tailor made molecular weight products properties can be 

optimised for specific applications [52]. 

Great Lakes (Chemtura) have many brominated polystyrene products for various 

applications. PDBS – 80 (figure 3.9) is well established for high temperature polyamides, it 

can be processed up to 360 °C and aids melt flow. PDBS – 80 has a molecular weight ~60000 

and a bromine content of 59% [52, 55]. 

 

Figure 3.9; PDBS-80 Chemical Structure [56] 

PBS-6HW also has molecular weight of 60000 and a lightly higher bromine content at 64%, 

this product has better tensile and impact properties in polyamide compared to PDBS- 80, 

but has a lower melt flow [52]. 

As mentioned earlier typically Brominated polystyrenes are not miscible with polyamide but 

CP-44B produced with approximately 1% co-polymer glycidyl methacrylate improves this 

compatibility. These co-polymers can also react with the polyamide end groups. They can 

provide a drip suppressant effect meaning additives like PTFE may be reduced or removed 

from the formulation [52]. 

There are many more brominated flame retardant systems available or somewhat developed. 

A 25 year summary can be found in Levchick & Weil (2000) [51]. 
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Halogen based flame retardants have been used in conjunction with metal oxides for many 

years. In particular Antimony trioxide (Sb2O3) [80]. 

Upon heating halogen and antimony cocktails metal halides are produced in the form of 

SbCl3 or SbBr3. These can transformed in the flame to metal oxides [80]. 

Eqn 3.6: SbX3 + H·   SbX2 + HX 

Eqn 3.7: SbX2 + H·  SbX + HX 

Eqn 3.8: SbX + H·   Sb + HX 

Eqn 3.9: Sb + O   SbO 

Antimony Trioxide does not show any significant flame retardant properties when used on 

its own. But it enhances the effect of halogen based flame retardants. SbX3 has double 

function in flame retarding effect. It can inhibit the flame by providing halogen acids (HX) 

and supplying SbO which catalyses the quenching of reactive radicals in the flame [80].  

3.7.2 Phosphorus Flame Retardants 

Phosphorus containing additives mainly function in the condensed phase [49] although 

some volatile phosphorus can be oxidised to scavenge radicals in the gas phase [57]. 

Levchik (2007) [48] explains phosphorus flame retardants can be potent scavengers of H and 

OH radicals if the conditions are right. It is suggested they can be more effective than both 

bromine and chlorine at the same molar concentration. Equations 2.6 to 2.10 are some 

examples of phosphorus scavenging reactions.  

Eqn 3.10: HPO2· + H·   PO + H2O 

Eqn 3.11: HPO2· + H·    PO2 + H2 

Eqn 3.12: HPO2· + OH·    PO2 + H2O 

Eqn 3.13: PO· + H· + M  HPO + M 

Eqn 3.14: PO· + OH· + M  HPO2 + M 
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It is however challenging to design a phosphorus based flame retardant which can volatize 

at a low enough temperature into the flame which can also survive polymer processing [48]. 

Phosphorus based flame retardants work well in polymers containing oxygen and nitrogen 

in the condensed phase [49, 48]. 

One mode of action is the formation of anhydrides of phosphoric acid or related acids which 

may act as dehydrating agents and promote char formation [58]. 

They can also act as heat sinks by retarding oxidation of carbon oxide to carbon dioxide 

decreasing the heating process [58]. 

Lastly the acids formed can create a thin glassy or liquid protective coating which lowers 

oxygen diffusion as well as reducing heat and mass transfer between the condensed and gas 

phases. This barrier inhibits the oxidation process of carbon to carbon monoxide stage 

resulting in decreased exothermic of heat combustion [58]. 

 

Figure 3.10; Examples of phosphorus based flame retardants [59] 

There are many phosphorus based flame retardants on the market currently. They can be 

based on elemental phosphorus (P) for example Red Phosphorus. Alternatively the additive 

can be supplied as organic or inorganic compounds (Figure 3.10) and come in either solid or 

liquid form with various physical and chemical properties. The ‘P’ content can also differ 

greatly from 100% in Red Phosphorus to less than 10% in some compounds [59]. 
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Red Phosphorus is well established in its use in glass reinforced PA6, 6 following initial 

concerns over colour, handling/ safety and stability. Stabilised forms of Red Phosphorus are 

available with improved stability and reduced phosphine gas evolution on processing, there 

are masterbatch producer’s supplying concentrates of Red Phosphorus in various polymers 

to remove handling concerns [52]. 

Clariant’s Exolit RP Series is a range of stabilised and coated Red Phosphorus [52]. 

3.7.2.1 Ammonium Polyphosphate 

The mode off flame retardant action for ammonium polyphosphate was studied by Levchik 

et al (1994) [60]. The experiment compared the combustion behaviour of PA6 with the 

addition of APP at multiple concentrations using various analytical techniques associated 

with the flame retardant performances and decomposition properties.  

The study found the addition of APP to PA6 promotes formation of intumescent char 

residue on the surface of burning PA6. Although at levels below 30% APP was observed that 

the char only formed on the edges and would flow exposing the underlying polymer to the 

flame. It was also noted that with addition below and up to 30% APP the Oxygen Index was 

unaffected, but increased significantly at levels of 40% APP and above [60]. 

PA6 loses 95% of its weight between 330°C and 400 °C, whereas pure APP starts to 

decompose at 260°C and only loses 18% initially which is attributed to ammonia and water. 

The remaining polyphosphoric acid undergoes extensive decomposition above 450°C. A 

stable ash residue of 5% is left at 600°C [60]. 

From the TGA analysis conducted Levchik et al observed that APP strongly modifies the 

decomposition behaviour of PA6. The onset temperature was notably the same as pure APP 

at 20-50% APP concentrations [60]. 

Mixture of 20% APP and above shown four decomposition steps. It appeared the final 

amount of stable ash residue was much larger than expected following analysis of PA6 and 

APP individually, although the amount of ash did not increase with increased loading of 

APP [60]. 
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Linear pyrolysis experiments at various heat fluxes found that decomposition onset was 

lower with the addition of APP to PA6. The addition of APP also caused self-ignition to 

occur faster than pure PA6. A faster initial decomposition was observed for 40% APP 

mixture, which then slowed down to a much slower rate than pure polymer. At higher heat 

flux rate of 50 kWm-2 40% mixture shown a much slower rate of combustion than PA6 [60]. 

Levchik et al studied the degradation process in detail confirming in PA6/ APP mixtures the 

first step of degradation caused the formation of alkyl phosphate ester bond, which initiates 

the depolymerisation of PA6 chain to caprolactam, cyclic oligomer lactams and chain 

fragments [60]. 

The first step of degradation would also produce 5-amido-penthyl polyphosphate it is the 

further degradation of this product which leads to intumescent behaviour. Foaming was 

observed when 5-amido-penthyl polyphosphate undergoes thermal degradation with the 

formation of char. Greater effects are witnessed where there is excess of APP and 5-amido-

penthyl polyphosphate is mixed with phosphoric-polyphosphoric acid. The blowing action 

is due to water, ammonia, aliphatic hydrocarbons and nitriles being evolved by the partial 

fragmentation of the aliphatic amide structure of 5-amido-penthyl polyphosphate [60]. 

A condensed phase flame retardant mechanism is suggested. Linear pyrolysis experiments 

suggest that the APP provides a thermal shield to the PA6. The effectiveness is increased as 

the concentration of APP is increased. Thermal insulation was observed when intumescence 

occurs, slowing down the rate of thermal decomposition of the material exposed to heat [60]. 

Intumescent additive formulations are mixtures of a carbonisation agent, carbonisation 

catalysts (such as phosphoric acids and or boric acid salts which form stable acidic species on 

heating) and a blowing agent [61]. 

PA6 mixtures with APP lead to flame retardant properties of interest as the mixtures develop 

and intumescent shield [60, 61]. 

However, it is known that the addition of APP to PA6 destabilises the polymer and modifies 

its degradation behaviour. The intumescent properties induced by APP is the cause of the 
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flame retardant behaviour when blended with PA, although the PA plays the role of the 

polymer matrix and carbonizing agent [61]. 

The compatibility of APP within PA6 is low and upon quenching the APP will migrate out of 

the polymer matrix. To avoid this migration a compatibiliser must be added [61]. 

Le Bras et al (1999) [61] suggested possible compatibilisers to be ethylene-vinyl acetate, 

functional terpolymers of ethylene or siloxane / silane based resins. From Le Bras’ 

investigation ethylene-vinyl acetate was recommended.  

The experiment found that when using EVA/PA6 mixture at 6:1 ratio with the addition of 

28% APP the oxygen index was increased from 21 (PA6) to 29. A UL-94 V-0 rating was also 

achieved. This is below the 40% first suggested by Levchik [60, 61]. 

A previous study by Siat et al (1997) also shown that the mixture of PA6/EVA/APP modified 

the degradation of PA6 and formed a stable carbonaceous char residue at 400°C -500°C. It 

was concluded that the addition of APP and EVA initially reduced thermal stability in the 

first degradation step but forms a more stable residue. It was summarised that the EVA 

allows a reduction of fuel flow rate feeding the flame [62]. 

3.7.2.2 Organic Phosphinic Salts 

A relatively new phosphorus based compound has been found to have good flame retardant 

properties when added to polyamides.  

Organic Phosphinic Salts (Exolit OP Range from Clariant) are a broad selection of flame 

retardant additives for various applications. For polyamides certain grades has shown good 

colourability, good flow properties, high temperature stability and good mechanical 

properties [59]. 

They can be processed on standard polymer processing equipment and suitable for filled 

and unfilled polymers.  

There have been various pieces conducted to investigate the efficacy of these novel 

Phosphorus based flame retardants particularly in literatures 63-67. 
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Figure 3.11; Chemical structure organic Phosphinic salt [59] 

Bourbigot (2008) [65] studied the flame retardant effect of aluminium phosphinate salts in 

different thermoplastics.  

It was possible to achieve a V-0 at 3.2mm specimen thickness by incorporating 23% Exolit 

OP1311 into PA6. The LOI also increase to 29. 18% additive managed to achieve a V-1 rating. 

It was also observed that with the addition of 23% Exolit OP1311 in PA6 the peak heat 

release rate was reduced 60% [65]. 

A similar study by Quifei (2011) [66] focussed on the differences between Aluminium 

Hypophosphate and Magnesium Hypophosphate. It was determined that the aluminium 

hypophosphate had better flame retardant efficacy than the magnesium derivative. 24% 

addition of Aluminium Hypophosphate achieved a V-0 in 1.6mm specimen [66]. 

Quifei {66} determined that the phosphine acted as a radical scavenger in the gas phase and 

appeared to have good charring ability. The additives cause the thermal degradation of PA6 

to occur at a lower temperature but slow down the rate of degradation.  

Ramani et al (2009) studied the prospect of synergistic flame retardance utilising Nano clay 

in the form of organo modified montmorillionite. [63, 64]. 

Again it was concluded that the flame retardant alters the thermal degradation behaviour of 

PA6 by causing onset decomposition to begin at a lower temperature.  

It was also observed that the flame retardant acts in the gas phase as diethyl Phosphinic acid, 

and the yield of hydrogen cyanide does not increase with the addition of organo phosphorus 

flame retardants [63, 64]. 

3.7.3 Nitrogen Containing Flame Retardant Additives 
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Levchik et al (1997) [68] studied the effects of Nitrogen containing flame retardants in the 

form of melamine on how it affected the thermal behaviour of polyamide 6.   

The study included pure melamine and salt derivatives such as melamine cyanurate, 

melamine oxalate and a couple of phosphorus containing melamine slats in the form of 

dimelamine phosphate and melamine pyrophosphate [68]. 

The flame retardant additives were added to PA6 up to concentrations of 30%. The Limited 

Oxygen Index, UL-94 and decomposition behaviour were measured and analysed [68]. 

It was observed melamine and its salts provoke the melt flowing and dripping of PA6 during 

LOI measurement and UL-94 flame testing. For certain salts as the concentration of the 

additive increased so did the dripping tendency [68]. 

However the phosphorus containing salts saw a reduction in dripping as the concentration 

increased, although they did not offer flame retardant effects until a concentration of 30% 

was reached [68]. 

From the LOI measurements the addition of just 10% Melamine o-phthalate caused the LOI 

to increase to <50 compared to that of 21 for PA6 [68]. 

The next most significant effect in terms of LOI was caused by melamine cyanurate. 10% 

addition saw the LOI increase to 35 and greater concentrations saw the LOI approach 40.  

From the TGA analysis it was observed that melamine and its salts derivatives alter the 

thermal behaviour of PA6. They cause decomposition of PA6 to occur earlier, onset 

temperature is reduced from 350°C to between 250° - 300°C depending on the salt being used 

[68]. 

There were three suggestions for the cause of this [68]: 

1. Melamine interferes with the hydrogen bonding within polyamide 6 facilitating 

thermal decomposition.  

2. At high temperatures PA6 is at equilibrium with its monomer and the addition of 

melamine promotes a catalytic effect, or ammonia is evolved which accelerates 

monomer formation.  
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3. Aminolysis by the melamine itself or by evolved ammonia contributes to the thermal 

degradation of PA6.  

In summary melamine and its salts can impart flame retardant properties to polyamide 6 

and at particularly low concentrations however the phosphorus containing salts are required 

in concentrations of approximately 30% [68]. 

It was summarised that melamine cyanurate is more effective in PA66 compare to PA6. The 

main pyrolysis product of PA66 is cyclopentanone which condenses with the melamine and/ 

or cyanuric acid causing cross linking and the formation of a char residue [52]. 

The main pyrolysis products of PA6 are caprolactam, alkyl cyanides and ammonia which 

have very little interaction with the melamine cyanurate pyrolysis products [52].  

However melamine cyanurate does reduce the amount of caprolactam produced during the 

pyrolysis of PA6 and increases the amount of oligomer fragments products which are less 

flammable but increase the melt flow of the PA6 [52]. 

Literatures 69-71 present various studies investigating the use of melamine cyanurate as a 

Flame retardant for Polyamide 6.  

Lin et al (2013) [69] added MCA with bicyclic phosphates and PEO to PA6 fibres via melt 

spinning process in an 8:1:0.4 ratio and at various addition levels.  

They found that the addition of FR additive cocktail reduced the burning of PA6 but 

produced burning drips at addition levels below 8%. According to UL-94 testing a V-0 rating 

can be achieved at 8% addition [69]. 

TGA analysis shown that the addition of FR additives caused a two-step degradation process 

where as PA6 decomposes in a single step. The onset temperature is also reduced with the 

addition of FR additives [69]. 

DTG analysis found that the amount of combustible gases produced by PA6 was reduced 

with when FR additives were added [69]. 
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One disadvantage found when adding FR additives to PA6 was the deterioration of 

mechanical and physical properties. The tensile strength is severely compromised and 

spinning draw ratios have to be significantly reduced to produce fibre [69]. 

Tang et al (2014) [70] analysed how morphology of melamine cyanurate can affect flame 

retardant performance in PA6. The three morphologies prepared via subtle changes in the 

production process were irregular sphere, rod like and flakes on a Nano scale particle size. 

Then 8% MCA was added to the PA6 to form a composite.  

It was found that all the Nano particle MCA were evenly dispersed with the PA6 matrix 

regardless of the morphology.  

The flame retardant effect however was different depending on the morphology of the MCA. 

From UL-94 and LOI testing the sphere shaped particles could only achieve a V-2 and the 

LOI was increased to 27.4, whereas the rod configuration particle raised the LOI to 28.9 and 

achieved a V-0. The flake morphology MCA improved the flame retardant properties the 

most with an LOI of 29.5 and V-0 being achieved. It was observed that the various 

morphologies performed similarly during cone calorimeter testing [70]. 

It was concluded that the best results achieved by the flake structured MCA were the result 

of increased hydrogen bonding between the MCA and PA6. This in turn delayed the 

decomposition of the MCA resulting in better flame retardant performance effect [70].  

Chen at al (2006) [71] attempted to produce MCA via an ‘in-situ’ process, in which MCA is 

synthesised in the presence of PA6 via a ‘reactive extrusion’. This method is used to produce 

Nano-sized MCA particles finely dispersed within the polymer leading to the production of 

MCA containing polyamide in a one step process, the flame retardant performance was 

analysed.  

It was concluded that the MCA Nano particles can be dispersed in PA6 via an ‘in-situ’ 

process. The Nano particles improve the flame retardant performance and with the addition 

of dioctyl phthalate plasticiser mechanical properties maintain comparable to pure PA6. V-0 

UL-94 can be achieved for specimens 3.2mm and 1.6mm thickness [71]. 
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Similarly to previous studies reviewed decomposition still occurs in two steps where as pure 

PA6 decomposes in one step. Onset also occurs at a lower temperature for the flame retarded 

PA6 although the decomposition rate is slower. This indicates that the MCA particles 

incorporated in PA6 decreases the release of combustible gases generated on decomposition 

of PA6 [71]. 

It was suggested that upon decomposition of the MCA, inert gases are released. These gases 

dilute oxygen in air playing a role in flame retarding [71]. 

MCA Technologies presented a novel nitrogen based flame retardant additive at the Fire 

Resistance in Plastics Conference 2012. Very little research has been published based on this 

new additive although there have been some positive results for polypropylene when used 

in conjunction with ammonium polyphosphate [72].  

MCA presented that a V-0 can be achieved in glass filled PA6 when used at 3:1 ratio, metal 

phosphinate in the form of Exolit OP1230 previously discussed at 20% loading and 25% glass 

fibres [72]. 

3.7.4 Other Flame Retardant Additives 

3.7.4.1 Nano Layered Silicates 

Over recent years Nano-clays have received a large amount of attention in terms of their 

flame retarding capabilities and how they can improve physical properties of polymers [73]. 

Layered silicates commonly used such as montmorillionite are from the smectite family. 

Their crystal structure consists of two tetrahedrons fused to an edge shared octahedral sheet 

of alumina. They are naturally hydrophilic and therefore immiscible in most polymers. To 

improve the compatibility the silicate surface is modified usually with organic surfactants 

[74]. 

There are two types of nanocomposite that can be formed. Intercalated or exfoliated; 

Intercalated has a well ordered layered structure whereas exfoliated has the clay layers 

broken and particles individually dispersed. Exfoliated structure leads to greater 

improvement in mechanical properties [74].  
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Polymer Layered Silicate Nanocomposites do not improve flame retardancy of polymers on 

their own as they reduce the polymers ability to flow and drip away from the flame thus 

holding the polymer in place fuelling the flame [74]. 

Bourbigot, Devaux & Flambard (2001) [75] produced PA6/Organo Modified Clay 

nanocomposite textiles via melt spinning process, produced knitted fabrics for various flame 

retardant tests.  

Incorporating the clay into the PA6 saw the peak heat release reduced 40% and also reduced 

smoke evolution, particularly a reduction in CO and CO2 evolution was measured [75]. 

Although TGA analysis shows the clay begins to decompose at 200°C, although PA6 

processing temperatures are higher than this there was no evidence to suggest the clay had a 

destabilising effect on the PA6. However as the time to ignition was shorter than that of pure 

PA6, it is believed that some degradation does occur of the organic modifier which creates 

fibrils on the yarn surface which in turn act as ‘little matches’ leading to shorter ignition 

times [75]. 

Song et al (2004) [73] summarised earlier pieces and suggested that layered silicates need to 

be used with more conventional flame retardants to achieve flame retardant performance.  

Samples were produced comparing pure PA6 and with the addition of 2% organo modified 

montmorillonite (OMT), PA6 + 8% magnesium hydroxide (MH) + 5% Red Phosphorus (RP) 

and finally adding 2% OMT to the flame retardant cocktail [73]. 

When adding the clay to the pure PA6 mechanical properties were improved, the Peak Heat 

Release Rate (PHRR) was reduced and an increase in char formation was observed. However 

there were no improvements in flame retardant properties which were evidenced by burning 

samples on UL-94 and only a 0.5 increase on LOI to 21.5 [73]. 

A V-0 was achievable when incorporating MH and RP to the PA6 yet the tensile strength 

was reduced. By adding 2% clay to this mixture the tensile strength was reinstated, a further 

reduction in PHRR was witnessed a greater char formation [73]. 

Kilaris et al (2008) [74] investigated synergy of layered silicates and melamine cyanurate, 

using an organo-modified montmorillonite clay.  



78 
 

Adding clay to PA6 caused a significant reduction in molecular weight, three possible 

processes of chain scission were suggested [74]. 

Incorporating MCA saw an increase in molecular weight offsetting the reduction caused by 

the clay. This was suggested to be caused as MCA encourages scission of the alkyl-amide 

bonds which provokes formation of carbodiimides that lead to branched or cross linked 

structures [74]. 

As discussed earlier (2.2.1.5) PA6 can form different crystal structures depending on cooling 

rate and other variables. The addition of clay promoted the formation of γ-crystallite causing 

a reduction in melting temperature and overall crystallinity, adding MCA acted as a 

nucleator favouring the α-crystal morphology [74]. 

Flammability tests shown that adding layered silicates to the PA6 incorporated with MCA 

provided an antagonistic effect. MCA can achieve a V-0 on its own adding clay caused a non-

classification result. The addition of clay prevented the melt dripping of the PA6/MCA blend 

holding the material in place to fuel the flame [74]. 

3.7.4.2 Zinc containing additives 

Shen, Kochesfahani & Jouffret (2008) [76] evaluated the use of Zinc Borate in various 

polymers based on Borax Firebrake range.  

Zinc borates are synergists in halogen based formulations, and also display synergism with 

antimony trioxide. They also act as smoke suppressants and afterglow suppressants. They 

can promote and stabilise char formation and reduce burning drips [76]. 

In halogen free systems zinc borates when used in conjunction with metal hydroxides can 

promote strong char/ceramic residue providing insulating layer to underlying polymer [76]. 

Zinc borates have been seen to reduce the peak heat release rate, smoke evolution, carbon 

monoxide evolution and afterglow [76]. 

Horrocks, Smart, Kandola & Price (2012) [77] investigated the synergy of zinc stannate when 

used in non-halogenated flame retardant PA6 systems.  
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They compared the performance of many standard flame retardants additives previously 

discussed in the form of metal phosphinate, aryl phosphate, cyclic phosphonate, and 

melamine polyphosphate and melamine cyanurate with and without the addition of zinc 

species [77]. 

In summary the addition of zinc species did not appear to positively affect the flame 

retardance of the all the formulations but did help maintain the mechanical properties closer 

to that of pure PA6 [77].  

The best UL-94 result achieved was a V-2 when used with cyclic phosphonate, melamine 

polyphosphate and melamine cyanurate. This improved the results for the phosphorus 

containing additives however it reduced the flame retardant effect of melamine cyanurate 

[77]. 

It was observed that the addition of zinc species can reduce the peak heat release rate and the 

total heat release whilst also reducing smoke evolution [77]. 

3.7.4.3 Ammonium Sulfamate 

Coquelle et al (2014) [78] considered ammonium sulfamate as a flame retardant additive for 

PA6 fibres.  

Adding the ammonium sulfamate at levels above 7% were not possible to spin. The fibres 

produced containing 7% additive were very brittle and not capable of elongation [78]. 

However fibres containing 5% ammonium sulfamate provided mechanical properties very 

similar to pure PA6. It was found that the addition of ammonium sulfamate caused a 

reduced peak heat release and total heat release. 5% ammonium sulfamate reduced the 

PHRR by 20% having some flame retardant characteristics [78]. 

Ammonium sulfamate was suggested to act in the gas and condensed phases promoting 

char formation. The additive does de-stabilise the PA6 somewhat changing the 

decomposition pathway into a three step process and causing onset to occur at a relatively 

low temperature between 170°C and 270 ° C where ammonia is released [78]. 

3.7.4.4 Polytetrafluoroethylene (PTFE) 
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Polytetrafluoroethylene is known to be useful as a drip suppressant because it tends fibrillate 

and elongate during processing. Fibrils shrink upon exposure to heat from a flame and hence 

retard dripping of the matrix in which the fibrils reside [79]. 

PTFE is used in many flame retardant formulations some of which can be found within 

literature 37. 

3.8 Review of Test Standards 

Flammability testing could be considered one of the most important testing procedures 

within the textile industry. Test methodology is designed to quantify specific burning 

parameters. Unfortunately there is no governing test norm and there is no one test which can 

measure all the properties associated with the burning of a textile material [39].  

Various countries have their own test standards, some of which have greater acceptance 

across various industries. There are particular industries for example the automotive and 

construction industries which have recognised standards. Therefore a review is needed of 

the more common and accepted test norms to gather a greater understanding.  

3.8.1 UL 94 

Possibly the most common and widely accepted test method for plastic materials is the 

Underwriters Laboratory 94 test.  

UL – 94 is designed for assessing the flammability of plastic materials. It is a vertical flame 

test for plastic specimens (bar) at specified dimensions. The test measures how much a ‘bar’ 

of polymer burns when a small Bunsen burner flame (20mm) is applied for 10 seconds on 

two separate occasions.  

Five specimens are tested and are 125mm in length and 12m in width. Thickness can vary 

between 3.2mm, 1.6mm and 0.8mm. Occasionally 0.4mm test specimens are tested. A wad of 

cotton is placed below the test specimen to detect flaming drips. The results classification can 

be found in table 3.6.  Although not specifically for textile materials UL-94 can be used to 

carry out flame tests on textile specimens.  
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Table 3.7; UL-94 Classification [40] 

 

3.8.2 Limited Oxygen Index 

Limited Oxygen Index (LOI) is another well-known test in regards to flame retardance. It is 

also including in some international standards for example BS ISO 4589-2. Oxygen Index 

technique offers a method to determine an absolute values which can describe the tendency 

of any textile fabric to sustain combustion [39].  

A high LOI value indicated a material has low flammability, where as a low LOI value can 

indicate a material will burn easily.  

The dimensions of the test specimen are not specified therefore any specimen could be 

tested, although for rigid plastic materials 100x65x3 dimensions are preferred. The specimen 

is positioned vertically and clamped at the bottom (Fig 3.12). The chimney is supplied with a 

controlled mixture or Nitrogen and Oxygen and the specimen has a pilot flame applied until 

the entire top surface of the specimen is ignited.  

If the specimen does not ignite or extinguishes within 30 seconds the concentration of 

oxygen is increased and the test repeated. This procedure is followed until the specimen 

demonstrates stable combustion in a ‘candle’ fashion for 3 minutes after the ignition source 

has been removed.  
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Figure 3.12; LOI test apparatus [40] 

If more than 5 mm of the specimen is consumed a fresh specimen is used and the oxygen 

concentration reduced slightly and the process begins again.  

Following this procedure eventually a LOI value is found. This is the highest concentration 

of oxygen at which the specimen self-extinguishes in less than 3 minutes and less than 5 mm 

specimen consumption.  

LOI Values for Polyamide 6 can range from 21-24 depending on the source literature and the 

specimen assessed.  

Although LOI does not reflect a real life fire scenario it is a good screening test for flame 

retardant properties and is reproducible. Film samples and textiles can also be tested.  

3.8.3 DIN 4102 – B1 and B2 [85] 

In Germany, upholstery fabrics are tested in accordance with DIN 4102 which has been 

established by the German Institute for Building Technology.  

DIN 4102 Part 1 - Kleinbrenner (B2)  
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All materials used in buildings in Germany need to meet the B2 requirement which is 

determined using a small flame test. 

 

Figure 3.13; DIN 4102 B2 [85] 

The fabric specimen is suspended vertically and a 20mm high flame is applied for 15 seconds 

to both the fabric surface and edge. Reference lines are marked on the specimen, which 

achieves B2 classification if the tip of the flame does not reach the reference marks within 20 

seconds on any sample. Five samples are tested with filter paper being placed below each to 

determine the production of flaming droplets.  

DIN 4102 Teile 15/16 - Brandschacht (B1) 

Referred to as the "Brandschacht test", this is the main test method in Germany which 

measures reaction to fire and is considered the highest flammability standard in the country 

for upholstery fabrics.  

The term Brandschacht, literally "fire shaft", refers to the testing apparatus itself which 

consists of a square-shaped vertical housing equipped with a gas burner. Four fabric samples 

are held vertically in a supporting frame and subjected to flames for 10 minutes. At the same 

time a constant, uniform flow of air is blown into the Brandschacht from below.  



84 
 

 

Figure 3.14; DIN 4102 B1 [85] 

In evaluating the test, smoke gas temperature and the mean residual length of the sample are 

taken into account (residual length is the part of the specimen which has escaped burning). 

In order to be classified as B1, the tested fabric must show:  

1. A mean residual burn length of no less than 150mm, with no specimen being burned away 

completely  

2. A mean smoke gas temperature of less than 200°C 

3.8.4 FMVSS 302 – Transportation 

 

Figure 3.15; FMVSS-302 Test Chamber [40] 
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FMVSS 302 is used to specify the burn resistance of materials used on motor vehicle 

compartments. Test specimen of 356 mm x 10 mm is used. Maximum thickness of the 

specimen must be no more than 13mm. A 38 mm flame is applied for 15 seconds and the 

burn length and time measured. Test chamber can be seen in Figure 3.15.  

Testing Classification can be found in table 3.7. 

Table 3.8; Classification of FMVSS 302 [40] 

 

 

 

3.8.5 Methenamine Pill Test – ASTM D 2859-96 

Standard Test Method for Ignition Characteristics of Finished Textile Floor Covering 

Materials also known as ‘The Methenamine Pill Test’ is used to determine the flammability 

of finished textile floor covering materials when exposed to an ignition source under 

controlled laboratory conditions. It is applicable to all types of textile floor coverings 

regardless of the method of fabrication or whether they are made from natural or man-made 

fibres [41].  

The test demonstrates that a carpet will self-extinguish when exposed to a small incendiary 

source of fire, such as a lighted cigarette, match, or a burning ember from a fireplace [42]. 

The Pill Test relies on the use of a solid white organic compound Hexamine (known also as 

Hexamethylentramine and Methenamine) tablet (i.e., “pill”) approximately the same size as 

a typical aspirin that is used to replicate the source of a fire the size of a lighted cigarette, a 

match or a fireplace ember. The carpet test specimen (the sample) is first placed in an oven to 

remove any moisture that may be present. Next, the sample is cut to a 9” x 9” size, and the 
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pill is placed in the centre of the sample. The pill is then ignited by a match and allowed to 

burn for two minutes. If the charred area of the sample extends beyond 3 inches the sample 

fails [42]. 

There are many other test methods not to be discussed here. For example French NF P 92 501 

and the US NFPA 701. Smoke analysis methods will also not be discussed but many test 

methods and their application can be found in literature and on the internet.  

3.8.6 Cone Calorimetry ISO - 5560 

Cone calorimetry has become a well-known test to predict, study and understand burning 

characteristics and decomposition of materials under a range of conditions. For research 

purposes probing techniques can be used to extract samples for analysis during various 

stages of the experiment [86]. 

ISO 5560 measures the rate of heat release and the heat of combustion from burning 

materials under controlled radiant heat source. The specimen under test is usually 100mm x 

100mm and can be up to 50mm in thickness. The conical electric heater can apply uniform 

radiance to the specimen ranging from 10kW – 100kW/m2.  

 

 

Figure 3.16; Cone Calorimeter Schematic [87] 
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A spark is applied to ignite the flammable vapours produced, air passes through the 

apparatus and the test is carried out in well ventilated areas.  

Heat release is measured as a function of oxygen consumption calorimetry, other 

measurements include CO and CO2 generation along with smoke density. Heat release is an 

important parameter for predicting fire growth [86, 87]. 

3.9 Literature Review Summary 

Throughout chapter three a variety of areas have been discussed with regards to flame 

retardance and the materials, processes, regulations and testing procedures involved. The 

depth of the subject area has to be appreciated and the reader should have a greater 

understanding of the factors which greatly affect flame retardance, and the considerations to 

be taken when attempting to produce a flame retardant system.  

Chapter three began explaining the basics of fire and the processes involved to initiate, 

sustain fire and understand why materials burn.  

An extensive review was carried out of the burning mechanisms involved and  the product 

produced during combustion of PA6, leading into research surrounding the possible 

strategies for imparting flame retardance to polyamide fibres, filaments or textiles. The mode 

of action for materials was considered and reviewed.  

Common test methods recognised within a variety of industries have been considered and 

summarised.   
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Chapter 4: Development of Flame Retardant Masterbatch 

4.1 Introduction 

The purpose of the experiment was to develop a masterbatch suitable for imparting flame 

retardant properties to PA6 filaments via melt spinning of PA6 filaments. The means for 

development and analysis will be vertical flame tests, TGA analysis and filter pressure 

performance measurements.  

The development will be carried out in three stages. Stage one being the initial selection of 

additives and a stage gate of their performance.  

Stage two will continue to work with these additives trying to improve efficacy and look for 

synergism, leading onto the final stage (stage three) which will be final masterbatch 

development.  

All results mentioned throughout chapter 4 will be presented in detail in chapter 5.  

4.2 Materials 

Polyamide 6 was supplied by Radici SPA, PA6 used was Radilon S D4 100.  

The four primary flame retardants considered were melamine cyanurate, supplied by 

Budenheim in the form of Budit 315 (MCA). Metal Phosphinate flame retardant Exolit OP 

1230 (OP) was supplied by Clariant. Novel flame retardant Triazine HF (THF) sourced from 

MCA Technologies GmbH. High flow Polybromostyrene CP-44 HF (CP44) was supplied by 

Great Lakes Chemtura. Budit 315 contains 48% nitrogen, and has a mean particle size of 2-3 

µm. Exolit OP1230 has a particle size of 20µm and contains 24% phosphorus  

CP-44 HF is a co-polymer of di / tri-bromostyrene with glycidyl methacrylate, the 

methacrylate functionality is attributed to providing greater bonding and compatibility with 

the host polymer, which should provide better dispersion. Bromine content is 64-65% and 

molecular weight is approximately 60,000.  

Secondary additives were also used for synergistic effects. Nanocor I.30T is a Nano layered 

silicate suitable for polyamides. Antimony Trioxide suitable for filaments (particle size 1µm) 
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was supplied by Chemisphere Ltd. The final additives PTFE (Nanoflon P39B) and Zinc 

Borate (ZB2335) were supplied by Shamrock Technologies and Wallace FR respectively.  

For masterbatch production Montan wax was used as a dispersing aid in the form of 

Licowax OP supplied by Clariant.  

4.3 Equipment 

TSA Twin Screw Laboratory Extruder EM-26; 26mm Screw Diameter; 30:1 L/D Ratio; 5kW 

motor power; 0-500rpm.  

Hills Research Melt Spinning Machine; Single thread line 1 inch extruder; 30:1 L/D ratio; 

Melt pump output 2.92cc/revolution; Maximum operating 45rpm; Quench duct 1.2m x 0.5m; 

air flow 12m/min – 54m/min; Finish applicator meter 0.292cc Slack and Parr; Draw system, 

three roll system (two step draw); 0.5m (circumference) x 125mm; Max temperature 180°C; 

Winding , Leesona 965 precision tension controlled; 0-1200m/min. 

Knitted on Lawson Hemphill FAK sampler 88 gauge suitable for 500 - 1500 total denier 

yarns. The fabrics were weft knitted, technical back structure.   

Filter pressure test on Instron 4466 135x1400 twilled Dutch screen (12-14 micron) 

TGA analysis Metler Toledo TGA/DSC2 

Clariant labs performed DIN 4102-B2  

External labs carried out mechanical testing according to ASTM D2256.  

4.3.1 Internal Testing Procedures 

As some of the tests carried out throughout the method are internal tests, here is a brief 

introduction to each test.   

4.3.1.1 Filter Pressure Test  

The filter pressure test is a test that measures a masterbatches characteristics on a fibre 

spinning filter pack at a specific temperature and screen pack configuration.  The test goes 
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through three phases, compression and pack, complete pack and then pressure build due to 

pack blinding (figure 4.1). 

 

Figure 4.1 Internal Filter Pressure Test 

 

Data analysis is performed on the test results to obtain statistics to be used for further 

analysis.  There are four components to the filter pressure analysis data report.  They are 

initial rise, pack number, normalized pack number and chatter number. 

The first step is to remove the concentrate compression and pack data and set the test the 

first data point to time zero (figure 4.2). 

 

Figure 4.2 Setting test to zero after removing compression of filter pack 
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The second is to fit the data to a 2nd order polynomial and generating an equation in the form 

of aX2 + bX + C.  Constant C will be the pressure build due to the concentrate viscosity. 

 

Step three is to determine the pack number.  The pack number is the slope of the curve fit at 

the end of test (figure 4.3)  To determine the slope take the first derivative of the equation 

(2aX + b) where a and b are the constants of the polynomial fit and X is the standard test 

time. 

 

Figure 4.3 Curve fit at end of test 

The normalised pack number is obtained from the addition ratio of the masterbatch.  The 

pack number is assumed to be 1% and would be multiplied by 4 for a normalised pack 

number for a concentrate used at 4%.  It is assumed that if you are using 4 times more 

concentrate then the pack number should be 4 times larger. 

4.3.1.2 Flame test procedure 

Internal flame test is similar to the DIN 4102 B2 method discussed in 3.8.3 in terms of setting 

up the experiment. However there are some minor but critical differences to testing and 

recording the experiment.  

A 150mm specimen is clamped in place vertically, and a 20mm flame is applied directly to 

the specimen for 10 seconds. If the specimen does not ignite the flame is applied again and so 

on up to three times. If after three applications the material does not ignite the material is 

considered to retard combustion.  
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The burn time is recorded in seconds, whether the material drips and are those drips 

burning. Some general observations are also made regarding the nature of burning, and how 

aggressive is the combustion. The tests are also video recorded for reference.   

4.4 Method & Formulations 

4.4.1 Phase one 

Pre-dispersions of each primary flame retardant were prepared (table 4.1) containing 20% 

additive in Polyamide 6 host polymer via twin screw extruder. The 20% concentrates were 

then compounded at 2% and 4% in PA6, these compounds were melt spun at 100% therefore 

the yarn produced would contain 0.4% and 0.8% active ingredient. The compounds were 

melt spun via Hills R&D line. (See figure 4.4 for spinning conditions) 

The denier of the yarns produced was 13.5 Denier per filament, round cross sections. The 

spinneret consisted of 38 holes, diameter of the holes was 0.6mm x 2.4mm length.  

 

 

Figure 4.4 Phase one spin setup.  

The yarns were then plied, air jet texturised similar to process described in figure 2.12 and 

wound onto a bobbin. The textured yarn was then knitted via Lawson Hemphill Fak 
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sampler. 1 metre fabrics were laundered and tested under DIN 4102 – B2 at Clariant 

laboratory, Gersthofen, Germany. 

Table 4.1 Phase 1 Pre-dispersions formulation 

   PA6 MCA OP THF CP44 

A 80 20 

   B 80 

 

20 

  C 80 

  

20 

 D 80 

   

20 

 

TGA / DSC analysis was also carried out on the compounds to assess how the ingredient 

affected decomposition properties.  

Following problems faced when spinning melamine cyanurate additive Budit 315 filter 

pressure test was carried out to test the dispersion. Spinning temperatures were reduced 

further and draw ratios were also reduced from 3 to 2.5 in an attempt to spin the yarn. 

Unfortunately it was not possible to spin the MCA additive at 0.4% and 0.8% concentration 

in final fibre and therefore MCA was removed from any further consideration.  

Problems were also experienced when attempting to spin THF at 0.8% concentration.  

4.4.2 Phase two 

Table 4.2 Phase 2 compound spins – amounts (%) in final fibre 

   PA6 OP THF CP44 MMT ZB ATO 

1 97.450 2.550 

     2 96.800 2.300 0.900 

    3 97.400 2.300 

  

0.300 

  4 97.100 2.300 

  

0.600 

  5 97.450 2.300 

   

0.250 

 6 97.450 1.275 

 

1.275 
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7 96.550 1.275 0.900 1.275 

   8 97.150 1.275 

 

1.275 0.300 

  9 97.150 1.275 

 

1.275 

 

0.300 

 10 98.700 

  

1.300 

   11 97.450 

  

2.550 

   12 98.125 

  

1.575 

  

0.300 

13 97.550 

  

2.000 

  

0.450 

14 97.525 

 

0.900 1.575 

   15 98.125 

  

1.575 0.300 

  16 98.125 

  

1.575 

 

0.300 

  

Following phase one two flame retardant additives were considered for further development 

Exolit OP1230 and Chemtura CP44-HF were the two primary additives still considered. 

Other secondary additives were selected in and attempt to find synergistic effects.  

Multiple formulations found in table 4.2 were melt spun again via spinning conditions set 

out in figure 4.4. The yarn was air jet texturised and knitted. Fabrics were laundered at 30°C 

household cycle and again sent to Clariant for DIN 4102 B2 testing.  

TGA / DSC was also carried out on the samples.  

Phase two flame tests also included a second standard. DSM are in the process of developing 

a ‘spinnable’ flame retardant grade of polyamide 6 ‘NX-140’ where the flame retardants are 

incorporated via in situ polymerisations therefore the additives are incorporated during 

processes outlines in 2.1….. Unfortunately due to confidentiality no further analysis could be 

carried out.  

4.4.3 Phase three 

Following phases one and two Aluminium Phosphinate (Exolit OP 1230) was chosen for 

flame retardant masterbatch development. A highly concentrated masterbatch (table 4.3) 

containing Exolit OP1230, PTFE, anti-oxidant package was extruded via twin screw extruder. 

The dried masterbatch was tested for filter pressure rise, to gage dispersion quality.  
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Table 4.3 Masterbatch formulation 

Ingredient Amount  

PA6 46 

ExolitOP1320 40 

PTFE 10 

B-1171 2 

Licowax OP 2 

 

Due to limited success in alternative drip suppressants in phase two, well known drip 

suppressant additive PTFE was used for phase three.  

Although poor filter performance was experienced with the highly concentrated masterbatch 

an attempt was made to spin the masterbatch at first 7% and secondly 5%.  

In an attempt to improve filter performance the highly concentrated masterbatch was ‘let 

down’ in a 70 / 30 ratio of MB / PA6. The concentration of the new additives can be found in 

table 4.4.  

 

Table 4.4 Formulation of Let-down highly concentrated masterbatch 

Ingredient Amount  

PA6 62.2 

Exolit OP1320 28 

PTFE 7 

B-1171 1.4 

Licowax OP 1.4 
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Again filter pressure tests were carried out on this masterbatch. There was no significant 

improvement observed by reducing the concentration of the additives. Again attempts were 

made to spin the masterbatch but were unsuccessful.  

Following phase where a 20% concentrate was produced containing Exolit OP1230 which 

was ‘spinnable’ throughout phase one and two, it was decided that a new masterbatch was 

produced with lower concentrations of flame retardant additives (table 4.5). 

 

Table 4.5 Final masterbatch formulation 

Ingredient Amount  

PA6 73 

Exolit OP1320 20 

PTFE 5 

B-1171 1 

Licowax OP 1 

  

The masterbatch produced from formulation in table 4.5 shown a much improved filter 

pressure test performance.  

It was then possible to spin this masterbatch at 10% and 15% addition levels, although the 

draw ratio and draw temperatures had to be reduced. Final spin setting can be found in 

figure 4.5. 

TGA / DSC analysis was carried out on the masterbatch.  
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Figure 4.5 Final Spin Setup 

 

Internal flame tests were carried out on the fabrics produced following laundering and 

conditioning. All results from chapter four will be presented and discussed in chapter five.  
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Chapter 5: Results and Discussion 

Throughout chapter 5 results taken during the various stages of development will be 

presented, analysed and discussed.  

5.1 Phase One 

Phase one carried out the initial stage-gating of the selected additive flame retardants. The 

fabrics were assed under DIN 4102-B2 and yarns were assessed for their mechanical 

properties. All samples were compared versus virgin PA6 material.  

TGA Analysis was carried out on the compounds prior to spinning to investigate how the 

additive flame retardants affected the decomposition of PA6 (figure 5.1)  

 

Figure 5.1 TGA Analysis: Primary FRAs vs PA6 in Nitrogen 

From the TGA analysis it can be observed that even low levels of melamine cyanurate affects 

the decomposition of PA6. The decomposition occurred in two steps similarly to findings in 

chapter three. However at the concentration tested decomposition did not begin to occur 

until approximately 300°C and therefore considerably above the spinning temperatures 

used, so it is strange that the compounds containing MCA were unable to be spun, as a result 

of this an internal filter pressure test was carried out to test dispersion of the concentrate. 

(Figure 5.2) 
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It can be seen from the filter pressure analysis that the dispersion of the MCA into a PA6 

matrix was poor. The screen was blocked and the maximum load was reached causing the 

test to end. As a result it was determined that poor dispersion caused the spinning issues of 

MCA containing compounds.  

The other additives perform in a similar fashion; they cause decomposition onset at a lower 

temperature but reduce the rate of decomposition apart from the CP-44 which appears to 

decompose faster.  

 

Figure 5.2; Filter pressure analysis 20% MCA in PA6 

Results from the mechanical properties assessment can be found in table 5.1. 

Table 5.1 Phase One Tensile Assessment ASTM D2256 
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For the majority it is observed that adding the FRAs to PA6 causes a slight reduction in 

tensile strength compared to pure PA6. However there was a slight increase when adding 

THF at 0.4%.  

The elongation was reduced approximately 10% when adding the Exolit OP, whereas adding 

the Polybromostyrene there was a slight increase in elongation. When adding the Triazine 

the elongation was reduced 15%. This may be one explanation as to why it was not possible 

to spin the Triazine HF at the higher concentration.  

 

Figure 5.3; DIN 4102-B2; PA6 Control – burning drips. 

DIN 4102-B2 testing was carried out at Clariant Laboratory, from the assessments we can 

observe all fabrics passed the DIN4102-B2 testing.  

All samples were deemed to burn excessively and all fabrics produced burning drips.  

The fabrics containing organic Phosphinic salts appeared to increase the time taken for 

burning drips occur especially in the 0.8% concentration fabrics.  

From figure 5.4 the burning drips are clearly visible all samples performed similarly in terms 

of burning drips.   

All formulations ‘self-extinguished’, the Pure PA6 material and Exolit OP1230 containing 

formulations extinguished upon the removal of the heat source for the majority of the 
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samples tested. The Triazine and Polybromostryene samples however continued to burn 

after the heat source had been removed.  

It was observed from the flame testing that the pure PA6 extinguished by melting away from 

the heat source. The Exolit containing formulations appeared to melt away somewhat but 

there was also char production on the burnt edges.  

The Triazine and halogenated formulations shown little melt flow away from the ignition 

source and once the initial burning drips had been produced continued to burn although 

very slowly.  

5.2 Phase two 

Throughout phase two many formulations were tested under DIN 4102 –B2 in an attempt to 

find synergistic performance between FRAs.  

An extra control was also introduced for flame testing; ‘Novamid NX-140’ from DSM a 

relatively new flame retardant polyamide resin suitable for spinning.  

There were 16 formulations compounded (table 4.2) and sent for DIN4102-B2 testing 

compilation of results can be found in table 5.3.  

The control in phase two performed considerably worse than during phase one. On a couple 

of occasions the maximum burn length was reached causing a test fail. It is worth noting that 

there is a considerable performance variance between the samples which could be related to 

the fabrics themselves. One possible cause for the large variance could be if the knit structure 

was not consistent throughout fabric production, as a more open fabric would ignite and 

burn more freely than a tightly knitted structure.  
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Table 5.2:   DIN 4102 – B2 Phase One Compound Spins 

Test-Number: Control PA6 Exolit 1230 (0.4%ff) Exolit 1230 (0.8% ff) Triazine (0.4% ff) 

Sample Number 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Time when reaching the reference mark (s)   / / / / / / / / / / / / / / / / / / / / 

Total Burn time (inc flame [s]) 9 9 14 13 12 12 9 13 15 11 13 12 10 15 17 63 17 27 38 40 

Time to drop burning droplets (s) 6 7 7 11 10 11 9 9 9 9 9 11 10 10 11 10 10 8 9 9 

Material deemed to be burning excessive (y/n) Y Y Y Y 

Independent Extinction   J J J J J J J J J J J J J J J J J J J J 

Pass B2 (y/n) Y Y Y Y 

Test Number CP-44 (0.4% ff) CP-44 (0.8% ff) 

Sample Number 1 2 3 4 5 1 2 3 4 5 
 

Horizontal Flame Test DIN4102-B2 
  

Time when reaching the reference mark (s)   / / / / / / / / / / Edge Exposure 

 Total Burn time (inc flame [s]) 14 21 17 19 17 12 19 29 23 39 Flame Time 15s / 150mm measurement mark 

Time to drop burning droplets (s) 8 10 10 9 11 9 9 9 8 9 

Material deemed to be burning excessive (y/n) Y Y 

Independent Extinction   J J J J J J J J J J 

Pass B2 (y/n) Y Y 
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Figure 5.4; DIN 4102-B2; 0.4% FF Exolit 1230 – flaming drips 

 

The second control NX-140 from DSM performed well, the material bid not burn for more 

than 20 seconds. However there was still the issue of drips although the drips were not 

flaming.  

When using the Exolit OP1230 on its own there was an improvement in flame retardance 

properties, almost comparable to the NX-140. However it appeared that as the increase in 

concentration of Exolit increased the flame retardant performance reduced slightly. The burn 

times increased with a higher concentration of OP. 

The performance of Exolit OP1230 was not improved by the addition of other flame 

retardant additives. In fact a surprising affect from the addition of Nano-layered silicates was 

observed. The layered silicates were added as a drip suppressant, yet they actually promoted 

combustion. There was a considerable increase in total burn time when the MMT was added 

to Exolit and as the MMT concentration was increased the flame retardant properties were 

worsened and a test fail was observed. This could be caused as the MMT prevents the melt 

flow of the PA in turn removing the fabrics ability to flow away from the flame, therefore not 

removing the fuel. A Similar observation was made when adding the MMT to CP44 as a 

synergist, although when adding MMT to a blend of OP and CP44 the effect of promoting 

combustion was less severe.  

The addition of Triazine did not really contribute to the flame retardance in any of the 

systems it was used.  
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Using Polybromostyrene as flame retardant for PA6 and in synergistic systems provided a 

variety of results. Spinning performance of the compounds was good even at relatively high 

concentrations, it was possible to incorporate 16575 parts per million (ppm) bromine into the 

fibre.   

Even at high concentrations it was ‘out performed’ by the Exolit system containing 6000 ppm 

Phosphorus although this can be related to the improved efficacy of phosphorus in nitrogen 

containing polymers.  

The CP44 did provide an improvement in flame retardance compared to pure PA6 and some 

tests performed similarly to the NX-140 although again there was some variance between the 

tests and no improved performance was observed when the concentration was doubled.  

Surprisingly the addition of antimony trioxide did not improve the efficacy of CP44. Two 

concentrations were assessed and both performed similarly, it could be argued that the 

higher concentration performed worse.  

Although some positive results were obtained when combining the Exolit and CP44 together 

they did not perform better than when using the additives on their own.  

The addition of zinc borate hindered the flame retardancy of the systems it was assessed 

similarly to the MMT, however no failures were observed.  

To summarise the phase two flame tests, the flame retardancy of PA6 can be improved 

although it appears the materials utilised perform better when used on their own. However 

all formulations still suffer from drips.  

As Exolit OP1230 outperformed the other flame retardant additives used the development 

continued using this as the primary additive. In phase two MMT and ZB were used as drip 

suppressants although they exhibited poor performance and had an antagonistic effect.  
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Table 5.3; DIN 4102 – B2; Phase Two 

Test Name OP (2.55% ff) OP + TRI (2.3 + 0.9% ff) 
OP + MMT (2.3 + 0.3% 

ff) 
OP + MMT (2.3 + 0.6% ff) 

Sample Number 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Time when reaching the reference mark ( s )   / / / / / / / / / / / / / / / / 43 58 26 / 

Total Burn time (inc flame [s]) 20 24 34 19 15 23 15 36 25 24 26 50 45 47 36 16 117 122 94 17 

Time to drop burning droplets (s) 14 12 13 13 13 11 13 13 13 13 11 13 13 13 12 13 10 12 10 10 

Material deemed to be burning excessive (y/n) 
Y Y Y Y 

Independent Extinction   J J J J J J J J J J J J J J J J N N J J 

Pass B2 (y/n) Y Y Y Y 

Test Name OP (2% ff) 
OP + CP44(1.275 + 

1.275% 

OP+ CP44 + TRI (1.275, 

1.275, 0.9%) 

OP, CP44, MMT (1.275, 

1.275, 0.3) 

Sample Number 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Time to reach Reference mark / / / / / / / / / / / / / / / / / / / / 

Total Burn time (inc flame [s]) 15 23 17 17 26 21 26 36 15 15 37 22 37 45 42 31 37 17 31 19 

Time to drop burning droplets (s) 13 13 11 12 11 13 12 13 10 12 13 14 14 13 14 14 12 13 13 13 

Material deemed to be burning excessive (y/n) 
Y Y Y Y 

Independent Extinction   J J J J J J J J J J J J J J J J J J J J 

Pass B2 (y/n) Y Y Y Y 
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Table 5.3 Continued 

Test Name Control PA6 Novamid NX-140 CP44, ATO (2, 0.45%) CP44, TRI (1.575, 0.9) 

Sample Number 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Time when reaching the reference mark ( s )   71 77 / / / / / /   
  / / / / / / / / / / 

Total Burn time (inc flame [s]) 
149 89 26 75 30 20 19 18     34 31 19 26 19 40 33 19 18 41 

Time to drop burning droplets (s) 
11 12 11 11 11 13 12 10     13 10 13 12 11 10 12 10 11 12 

Material deemed to be burning excessive (y/n) 
Y Y Y Y 

Independent Extinction   N N Y Y Y Y Y Y     Y Y Y Y Y Y Y Y Y Y 

Pass B2 (y/n) Y Y Y Y 

    

Test Name OP + ZB (2.3 + 0.3%ff) CP44 (1.3%) CP44 (2.55% CP44, ATO (1.575, 0.3%) 

Sample Number 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Time when reaching the reference mark ( s )   
/ / / / / / / / / / / / / / / / / / / / 

Total Burn time (inc flame [s]) 
32 51 56 54 52 28 15 40 17 39 33 21 39 44 62 23 35 17 16 29 

Time to drop burning droplets (s) 
12 12 12 10 11 10 10 11 9 9 10 11 10 10 11 12 11 11 10 12 

Material deemed to be burning excessive (y/n) 
Y Y Y Y 

Independent Extinction   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Pass B2 (y/n) Y Y Y Y 
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Table 5.3; continued 

Test Name 
OP, CP44, TRI (1.275, 1.275, 

0.3) 
CP44, MMT (1.575, 0.3%) CP44, ZB (1.575, 0.3%) 

Sample Number 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Time when reaching the reference mark ( s )   / / / / / / / / / / / / / / / 

Total Burn time (inc flame [s]) 
22 90 37 20 29 44 100 39 92 28 60 19 28 50 44 

Time to drop burning droplets (s) 
12 12 13 12 13 10 12 11 12 10 14 10 10 11 10 

Material deemed to be burning excessive (y/n) 
Y Y Y 

Independent Extinction   
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Pass B2 (y/n) Y Y Y 
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5.3 Phase Three 

Throughout phase one and two the work has been carried out in compounds. In phase three 

the focus will be on developing a masterbatch to impart flame retardancy to PA6 fibres.  

Flame tests from phases one and two outlined the outstanding issue of dripping during 

combustion. As no synergistic performance was found well known drip suppressant PTFE 

was to be utilised in an attempt to solve this problem.  

Following flame tests and TGA analysis in phases one and two Exolit OP1230 has been 

chosen as the primary flame retardant additive.  

Masterbatch was produced using formulation in table 4.3 and filter pressure performance 

was assessed figure 5.5.  

 

Figure 5.5; Filter pressure analysis masterbatch one. 

It can be observed from figure 5.5 that the filter pressure performance was poor from 

masterbatch one. This consistent rise in pressure indicates particulate build up on the screen 

pack. A pressure filter test like this would relate to poor spinning performance and blockage 

of spinning filter packs. As a consequence of this performance it was decided to reduce the 

concentration of the masterbatch in an attempt to improve dispersion and filter performance.  
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The masterbatch produced was let-down in a 70:30 ratio, MB: PA6 to reduce the 

concentration of the FRAs. Formulation can be found in table 4.4. Again filter pressure 

performance was measured figure 5.6.  

 

Figure 5.6; Filter pressure analysis masterbatch two.  

Observing from figure 5.6 an improvement in filter pressure performance was noticed. 

Although improved in terms of maximum pressure load reached, the constant rise does not 

encourage good dispersion and ‘spinnability’.  

 

Figure 5.7; Final masterbatch filter pressure performance 
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Therefore it was decided that a new masterbatch be developed reducing the concentration 

further. (Table 4.5) The filter pressure performance analysis was carried out (figure 5.7).  

The new masterbatch shown superior filter pressure performance reaching a relatively low 

load build-up, and pressure actually reducing after initial compression. It was decided that 

spinning would commence with this masterbatch.  A pack number of 3.17 was achieved 

which was slightly higher compared to the 28% concentrated masterbatch which was 2.9785. 

However I attribute this to the increased gradient between 80 and 100 seconds during the 

filter test.  

Initial spin trials using spin setup from figure 4.4 were unsuccessful, the filaments were 

breaking during draw stage two. As a result the drawing temperatures were reduced and the 

draw ratio was also reduced (figure 4.5) the final masterbatch was spun at addition levels of 

10% and 15%. 

It is worth noting that the quenching air was turned off during spinning with the addition of 

masterbatch as the filament’s ‘drawability’ was significantly reduced when the quenching 

system was on. It was assumed the additives were reducing the melt viscosity of the 

filaments and further quenching was causing them to solidify too quickly, leading to 

filament breakages on the take up roll and preventing further drawing.  

Mechanical properties were assessed compared to pure PA6 also produced under the same 

condition. Results can be found in table 5.4.  

Table 5.4; Final MB at 10% and 15% ASTM D2256 

 

Judging by the results found in table 5.4 it can be stated that the addition of the FR 

masterbatch does alter the mechanical properties when compared to PA6 although not 

severely. Adding the masterbatch at 10%, there was a reduction in tensile strength by 5% and 
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elongation by approximately 20%. The Young’s modulus increased more than 15% therefore 

producing a ‘stiffer’ yarn.  

When adding the masterbatch at 15% then tensile strength increased slightly when 

compared to PA6, however the elongation reduced further when increasing the 

concentration. The Young’s modulus reduced compared to 10% addition level having 

modulus properties more comparable to pure PA6. With no severe detrimental effects on 

mechanical properties it was possible to knit fabrics. 

 

Figure 5.8; PA6 internal flame testing – melting away from flame 

Pure PA6 supported combustion during the flame tests although when the flame was 

initially applied there was an attempt to melt flow away from the heat source (figure 5.8). 

The flame was applied for 10 seconds and within that time the fabric had ignited. Once 

ignition had occurred PA6 continued to burn producing flaming drips (figure 5.9). Five 

samples were assessed and recorded in table 5.5.  

Again five specimens were assessed for the two fabrics produced using 10% and 15% 

masterbatch.  
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For MB10% there were a variety of results attained from the flame tests (table 5.5), ranging 

from immediate ‘flashover’ to ‘non-ignition’. Once flashover had occurred combustion was 

supported and flaming drips were produced. From observations combustion was also more 

‘aggressive’ and ‘intense’ (brighter flame produced).  

The time to burning drips was increased and two specimens took more than one flame 

application to ignite the fabric. From figure 5.10 it is observed the application of the flame 

and the immediate self-extinction. Therefore some flame retardancy can be observed, 

however, this was not observed for all five specimens.  

 

Figure 5.9; PA6 internal flame testing – flaming drips  

To summarise MB10% some flame retardancy can be observed, and more than one specimen 

did not ignite on first flame application. As the masterbatch was dosed with the PA6 

polymer there may have been some separation due to a variance in bulk densities or pellet 

geometry which could cause under / over feeding at certain points throughout yarn 

production.  

Increasing the addition level of the masterbatch appeared to make the fabrics more difficult 

to ignite as three of the five specimens tested took three 10 second flame applications; 

however on two of the three specimens once ‘flashover’ had occurred the whole specimen 

was consumed in an aggressive manner.  
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Figure 5.10; MB10% internal flame testing – immediate extinction 

Comparing figure 5.9 and 5.11 it is clearly visible how the two specimens burn differently. 

Pure PA6 has small blue flame on the edge of the fabric once the flaming drip has been 

removed, comparing to figure 5.11, a bright, intense and larger flame can be observed on the 

fabric surface, spreading vertically up the fabric in an aggressive manner this was observed 

for masterbatch containing fabrics.  

 

 

Figure 5.11; MB10% internal flame testing – aggressive burning 
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Table 5.5; Flame Test Results – Phase three 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Burn Time (s) inc flame 116 82 74 92 54 40 121 86 70 101 93 105 82 87 98

Number of applications until combutsion 1 1 1 1 1 1 2 2 2 2 3 2 2 3 3

Flaming Drips y y y y y y y y y y y y y y y

Comments

Flame Testing Results Table
MB15%MB10%PA6

Once flash over 

occurred burned 

aggressivley. 2/5 

samples whole fabric 

was consumed. 

4/5 took two flame 

application for 

combustion to be 

supported. Aggressive 

combustion

All samples attempted 

to flow away from 

flame. 

 

To summarise the flame test results shown in table 5.5 the addition of a flame retardant 

masterbatch does hinder the ease of ignition, but once ignited the majority of the samples 

performed similarly to PA6 in terms of burn time and dripping. Yet as mentioned the 

masterbatch containing fabrics burnt in a more aggressive manner. None of the specimens 

tested achieved a ‘retard combustion’ rating.  

TGA analysis in nitrogen shown that when incorporating additives into the PA6 matrix the 

thermal decomposition of PA6 occurs at a lower temperature of 350°C compared to 370°C, as 

observed in figure 5.12.  

 

Figure 5.12: TGA Analysis N2 – PA6 vs Flame Retardant Masterbatch 

It can also be observed that the decomposition occurs over a longer period of time. The PA6 

has completely decomposed by 500°C, whereas the flame retardant masterbatch does not 

fully decompose until 680°C 

 

Figure 5.13: TGA Analysis Air, PA6 vs Flame Retardant Masterbatch 
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A similar observation can be made from TGA analysis in air. The flame retardant 

masterbatch onset decomposition occurs at a lower temperature compared to PA6.  

However the TGA analysis in air and nitrogen could provide an explanation as to why it 

took numerous flame applications to ignite the fabrics containing masterbatch. 

From table 3.3 it was mentioned the pyrolysis of PA6 begins at 431°C and ignition occurs at 

450°C.  

At these temperature the rate of decomposition is much slower for the masterbatch 

compared to the PA6, and as a result inhibiting pyrolysis and thus combustion.  
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Chapter 6: Conclusions and Summary. 

6.1 Summary 

Throughout the dissertation a critical review has been carried out on the a variety of subject 

areas in order to attempt to develop a masterbatch containing flame retardant additives 

suitable for incorporating flame retardant properties on PA6 filaments via melt spinning.  

Polyamide 6 production, melt spinning, flame retardant additives and the environmental 

issues around such additives have been considered within chapters two and three. 

From chapter five we can conclude that the initial ignition of PA6 can be delayed by 

incorporating additives via masterbatch. In some cases spinning from compound as 

explained in 5.2 can achieve reduced burn times. However the problem of flaming drips was 

still observed.  

TGA analysis confirms some additives affect the decomposition of PA6 causing a 

destabilisation effect, in particular melamine cyanurate, as discussed in 3.7.3 and observed in 

5.1. Literatures reviewed were able to produce filaments containing melamine cyanurate and 

some promising results were observed, however in my study it was not possible to produce 

filaments containing melamine cyanurate.  

All the primary flame retardants considered shown this phenomena however it was only the 

nitrogen containing additives which were not possible to spin.  

Polybromosyrene shown some promise in processing and flame retardance in 5.1 and 5.2 

however was not selected due to the negative publicity currently surrounding halogenated 

flame retardants.  

A lot of research has been directed at the use of Nanoclays for flame retardance, however in 

this study they only provide antagonistic effects, similar results were observed for the 

incorporation of zinc borate.  

Novel Polyamide resin NX-140 from DSM was included during phase two and shown 

promising flame retardance, but due to confidentiality more detail cannot be discussed.  
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Organophosphorus shown the most suitability for developing flame retardant masterbatch, 

although the grade selected may have contained a particle size distribution which was too 

large for filament production. Spinning was more successful via compound and when 

spinning the additives via masterbatch the spinning parameters had to be changed 

significantly from standard PA6 spinning conditions.  

Research reviewed achieved V-0 on the UL-94 tests in plastic articles down to 1.6mm 

specimen thickness. The supplier (Clariant) state in their brochures that this additive is 

suitable for carpets and textiles. From TGA analysis my results are comparable to research 

reviewed. We both experienced the organo-phosphorus causing thermal degradation to 

begin at a lower temperature, but slowing down the rate of degradation.  

Research summarised that the organophosphorus was a good ‘char’ former and this could be 

the cause for the longer burn times when adding masterbatch as the fabrics were attempting 

to char, whereas the PA6 melt flowed away from the flame.  

Achieving dispersion suitable for masterbatches to be used in the dope dyeing process was 

also difficult using organophosphorus, however the poor dispersion was not investigated 

thoroughly enough to hold the organophosphorus accountable, but could be linked to 

particle size.  

The addition of PTFE did not stop the flaming drips once combustion has begun during 

flame tests. It is possible that the grade selected was not the correct grade for the 

development although it was selected for supply chain issues and on the basis it was known 

to be suitable for melt spinning.  

It is worth noting that blending step usually takes place to aid the wetting of the host 

polymer and ensure homogenous mixture of the ingredients and no blending was carried 

out during the development. Dispersion could possibly be improved with adequate blending 

process.  

Summarising the flame tests carried out within the development it can be concluded that 

vertical flame tests like the internal method and DIN 4102 –B2 are not the most suitable for 
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comparing flame retardance. In some cases the pure polymer being used as control passed 

all tests.  

Another consideration to take place for the flame testing was the use of knitted fabrics. As 

discussed in chapter three the fabric structure affects flammability considerably and possibly 

knitted fabrics were not the best choice, however with no weaving capability available 

knitted fabrics were the only option. There were also some variances within the knitted 

fabrics as there was no yarn feeding device on the knitter so fabrics were produced by 

maintained and standard setting and monitoring changes in knitting tension throughout 

fabric production.  

Ideally more analysis would have been carried out on the filaments and fabrics themselves. 

For example to detect the distribution of the additives within the filaments via scanning 

electron microscope (SEM), this would enable determination of how much additives were 

passing through the spinning filters into the filaments, especially important when the 

dispersion and particle size of the additive is being questioned.  

As the incorporation of the masterbatch caused more aggressive combustion cone 

calorimetry and smoke analysis would be useful to conclude heat release and toxicity.  

In the development other aspects were not considered as the development is not considered 

optimum. For example how the addition of flame retardant masterbatch affects dyeing and 

downstream process. Is the masterbatch procurable with hindered amine light stabilisers? As 

depending on exposure PA6 needs to be UV stabilised.  

From the dissertation it can be concluded that the subject area of polyamide fibres and 

associated flame retardance of filaments and textiles is a vast area of great interest. Many 

investigations have been carried out previously, some reviewed in chapter 3, and there is yet 

a single product on the market which meets all the criteria to impart flame retardance on 

PA6 fibres, filaments and textiles.  

After treatments appear to be the most effective in industry yet they affect the handling 

properties of the fabrics and may not be permanent.  
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6.2 Future Research 

Although the objective of the dissertation was not wholly fulfilled their possibilities to 

improve or further develop a flame retardant masterbatch.  

Further research is necessary and new materials to need to considered and greater screening 

during additive selection.  

Particle size of the additives can play an important factor for masterbatch and filament 

production. Homogenous dispersion is necessary for melt spinning filaments to obtain 

optimum performance and properties.  

Organophosphorus shown promise as a flame retardant and a suggestion of a new material 

Exolit OP 945 should be considered due to reduced particle and narrow particle size 

distribution.  

Dispersion techniques should be considered, what affects would pre-blending have on the 

homogeneity and dispersion? Could high energy dispersion methods using a Banbury mixer 

for example provide the necessary dispersion and particle stabilisation within the PA matrix?  

Future studies should consider analysis of the filaments produced in an attempt to measure 

how much of the additives make their way in to the final filament and their distribution 

throughout the filament.  

To improve the research carried out here a more controlled method of fabric production 

should be considered, woven structures may be more suitable for flame tests.  

Due to the observed ‘more aggressive’ combustion cone calorimetry and smoke toxicity 

should be considered during development.  

To fully develop a suitable product for industry a more complete evaluation should be 

considered, including dyeing performance and how is it affect for raw white yarns going into 

post dyeing. How is dope dying affected with the inclusion of flame retardant masterbatch?  

Light Fastness and weathering performance should be analysed to judge if the produced 

yarn can be used for outdoor applications.  
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6.3 Conclusions 

 Masterbatch incorporating flame retardants additives was developed 

 Addition of masterbatch hindered ignition of PA6 knitted fabrics 

 Addition of masterbatch caused more aggressive burning 

 Addition of masterbatch did not prevent flaming drips on combustion 

 Addition of masterbatch lower decomposition onset temperature 

 Addition of masterbatch slows down rate of decomposition 

 Nanoclays promoted combustion 

 Pure PA6 used as control passed flame tests without modification 

 More complete analysis needed, cone calorimetry and smoke toxicity to evaluate 

aggressive burning.  

 More investigation needed to improve dispersion of flame retardant additives within 

PA6 matrix  

 More investigation needed to improve development and consider downstream 

processing e.g. dyeing and UV resistance. 

 Further Research and Development necessary 
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