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Abstract

This paper considers the cooperative output regulation problem for linear multi-agent systems with a directed communication
graph, heterogeneous linear subsystems, and an exosystem whose output is available to only a subset of subsystems. Both the
cases with nominal and uncertain linear subsystems are studied. For the case with nominal linear subsystems, a distributed
adaptive observer-based controller is designed, where the distributed adaptive observer is implemented for the subsystems
to estimate the exogenous signal. For the case with uncertain linear subsystems, the proposed distributed observer and the
internal model principle are combined to solve the robust cooperative output regulation problem. Compared with the existing
works, one main contribution of this paper is that the proposed control schemes can be designed and implemented by each
subsystem in a fully distributed fashion for a class of directed graphs.
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1 Introduction

Cooperative output regulation of multi-agent systems is
to have a group of autonomous agents (subsystems) in-
teracting with each other via communication or sensing
to asymptotically track a prescribed trajectory and/or
maintain asymptotic rejection of disturbances. The co-
operative output regulation problem is closely related
to the consensus problem and other cooperative control
problems as studied in [11,5] and the references therein.
A central work in cooperative output regulation is to
design appropriate distributed controllers, using only
the local state or output information of each agent and
its neighbors. In recent years, many interesting results
are reported on cooperative output regulation, e.g., in
[15,13,6,9,12,14,4,2]. In particular, several state and out-
put feedback control laws are proposed in [15,13,6,9] to
achieve cooperative output regulation for multi-agent
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systems with heterogeneous but known linear subsys-
tems. The robust cooperative output regulation prob-
lem of uncertain linear multi-agent systems is studied in
[12,14], where internal-model-based controllers are de-
signed. In [4,2], cooperative global output regulation is
discussed for several classes of nonlinear multi-agent sys-
tems.

Although many advances have been reported on the
cooperative output regulation problem, some challeng-
ing issues remain unresolved. For instance, control de-
sign presented in [13,12,14] explicitly depends on cer-
tain nonzero eigenvalues of the Laplacian matrix asso-
ciated with the communication graph. However, it is
worth mentioning that any nonzero eigenvalue of the
Laplacian matrix is global information of the commu-
nication graph. Using these global information of the
communication graph prevents fully distributed imple-
mentation of the controllers. In other words, the con-
trollers given in the aforementioned papers are not fully
distributed. In [6], fully distributed adaptive controllers
are proposed, which implement adaptive laws to update
the time-varying coupling weights between neighboring
agents. Similar adaptive protocols have been also pre-
sented in [8,16,7] to solve the consensus problems. It is
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worth noting that the adaptive controllers in [6] are ap-
plicable to only the case where the graph among the
agents are undirected and that the adaptive protocols in
[8,16,7] are designed for homogeneous multi-agent sys-
tems. To design fully distributed controllers to achieve
cooperative output regulation for heterogeneous multi-
agent systems with general directed graphs is much more
challenging, due to both the heterogeneity of the agents
and the asymmetry of the directed graphs, and is still
open, to the best knowledge of the authors.

This paper extends the fully distributed control design
to the cooperative output regulation problem for lin-
ear multi-agent systems with a directed communication
graph, heterogeneous linear subsystems, and an exosys-
tem whose output is available to only a subset of sub-
systems. Both the cases with nominal and uncertain
linear subsystems are studied. A distributed adaptive
observer-based controller is designed to solve the cooper-
ative output regulation problem for multi-agent systems
with nominal linear subsystems. The distributed adap-
tive observer, which utilizes the observer states from
neighboring subsystems, is constructed for the subsys-
tems to asymptotically estimate the state of the exosys-
tem. The case with uncertain linear subsystems is further
studied. The proposed distributed adaptive observer and
the internal model principle are combined to design dis-
tributed controllers to solve the robust cooperative out-
put regulation problem. The proposed control schemes
in this paper, in contrast to the controllers in [13,12,14],
can be designed and implemented by each subsystem in
a fully distributed fashion, and, different from those in
[6], are applicable to directed graphs.

2 Cooperative Output Regulation Problem

In this section, we consider a network consisting of N
heterogeneous subsystems and an exosystem. The dy-
namics of the i-th subsystem are described by

ẋi = Aixi +Biui + Eiv,

ei = Cixi +Div, i = 1, · · · , N, (1)

where xi ∈ Rni , ui ∈ Rmi , and ei ∈ Rpi are, respec-
tively, the state, the control input, and the regulated
output of the i-th subsystem, and Ai, Bi, Ci, and Di are
constant matrices with appropriate dimensions. In (1),
v ∈ Rq represents the exogenous signal which can be ei-
ther a reference signal to be tracked or the disturbance
to be rejected. The exogenous signal v is generated by
the following exosystem:

v̇ = Sv, yv = Fv, (2)

where yv ∈ Rl is the output of the exosystem, S ∈ Rq×q,
and F ∈ Rl×q.

To achieve cooperative output regulation, the subsys-
tems need information from other subsystems or the ex-
osystem. The information flow among theN subsystems

can be modeled by a directed graph G = (V, E), where
V = {v1, · · · , vN} is the node set and E ⊆ V × V is the
edge set, in which an edge is represented by an ordered
pair of distinct nodes. If (vi, vj) ∈ E , node vi is called
a neighbor of node vj . A directed path from node vi1
to node vil is a sequence of adjacent edges of the form
(vik , vik+1

), k = 1, · · · , l − 1. A directed graph contains
a directed spanning tree if there exists a root node that
has directed paths to all other nodes.

Since the exosystem (2) does not receive information
from any subsystem, it can be viewed as a virtual leader,
indexed by 0. The N subsystems in (1) are the followers,
indexed by 1, · · · , N . Assume that the output yv of the
exosystem (2) is available to only a subset of the follow-
ers. Without loss of generality, suppose that the subsys-
tems indexed by 1, · · · ,M (1 ≤ M � N), have direct
access to the exosystem (2) and the rest of the followers
do not. The followers indexed by 1, · · · ,M , are called
the informed followers and the rest are the uninformed
ones. The communication graph G among the N subsys-
tems is assumed to satisfy the following assumption.

Assumption 1 For each uninformed follower, there ex-
ists at least one informed follower that has a directed
path to that uninformed follower.

For the case with only one informed follower, Assump-
tion 1 is equivalent to that the graph G contains a di-
rected spanning tree with the informed follower as the
root node. For the directed graph G, its adjacency ma-
trix A = [aij ] ∈ RN×N is defined by aii = 0, aij = 1 if
(vj , vi) ∈ E and aij = 0 otherwise. The Laplacian ma-
trix L = [Lij ] ∈ RN×N associated with G is defined as
Lii =

∑
j 6=i aij and Lij = −aij , i 6= j.

Because the informed subsystems indexed by 1, · · · ,M ,
can have direct access to the exosystem (2), they do not
have to communicate with other subsystems to ensure
that ei, 1, · · · ,M , converge to zero. To avoid unnecessar-
ily increasing the number of communication channels,
we assume that the informed subsystems do not receive
information from other subsystems, i.e., they have no
neighbors except the exosystem. In this case, the Lapla-
cian matrix L associated with G can be partitioned as

L =
[

0M×M 0M×(N−M)

L2 L1

]
where L2 ∈ R(N−M)×M and

L1 ∈ R(N−M)×(N−M). Under Assumption 1, it is known
that all the eigenvalues of L1 have positive real parts [1].
Moreover, it is easy to verify that L1 is a nonsingular
M -matrix [10].

The objective of the cooperative output regulation prob-
lem considered in this section is to design appropriate
distributed controllers based on the local information
available to the subsystems such that (i) The overall
closed-loop system is asymptotically stable when v = 0;
(ii) For any initial conditions xi(0), i = 1, · · · , N , and
v(0), limt→∞ ei(t) = 0.

To solve the above cooperative output regulation prob-
lem, the following assumptions are needed, which are
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standard in the classic output regulation problem [3].

Assumption 2 The matrix S has no eigenvalues with
negative real parts.

Assumption 3 The pairs (Ai, Bi), i = 1, · · · , N , are
stabilizable.

Assumption 4 The pair (S, F ) is detectable.

Assumption 5 For all λ ∈ σ(S), where σ(S) denotes

the spectrum of S, rank
([
Ai−λI Bi

Ci 0

])
= ni + pi.

Since the exogenous signal v is not available to the sub-
systems for feedback control, the subsystems need to im-
plement some observers to estimate v. For the informed
subsystems that have direct access to the output yv of
the exosystem (2), they can estimate v by using the fol-
lowing observers:

ξ̇i = Sξi + L(Fξi − yv), i = 1, · · · ,M, (3)

where the feedback gain matrix L ∈ Rp×l is chosen
such that S + LF is Hurwitz. Denote by ξ̄i = ξi − v
the estimation errors. From (2) and (3), it is easy to

see that ˙̄ξi = (S + LF )ξ̄i, i = 1, · · · ,M , implying that
limt→∞ ξ̄i(t) = 0, i = 1, · · · ,M.

For the uninformed subsystems that do not have di-
rect access to (2), we need to construct distributed ob-
servers to estimate the exogenous signal v. The dis-
tributed adaptive observer for each uninformed subsys-
tem is described by

ξ̇i = Sξi − (di + ρi)

N∑
j=1

aij(ξi − ξj),

di = [

N∑
j=1

aij(ξi − ξj)]TΓ[

N∑
j=1

aij(ξi − ξj)],

(4)

where ξi ∈ Rp, i = M + 1, · · · , N, denotes the esti-
mate of v on the i-th uninformed subsystem, di(t) de-
notes the time-varying coupling gain associated with the
i-th uninformed subsystem with di(0) ≥ 0, aij is the
(i, j)-th entry of the adjacency matrix associated with
G, Γ ∈ Rl×l is the feedback gain matrix, and ρi(·) are
smooth and monotonically increasing functions in terms

of
∑N
j=1 aij(ξi − ξj). The parameters Γ and ρi(·) are to

be determined.

Theorem 1 Suppose that Assumptions 1 and 4 hold.
Then, limt→∞(ξi(t) − v(t)) = 0, i = 1, · · · , N , if L in
(3) is chosen such that S + LF is Hurwitz and the pa-
rameters in the adaptive observer (4) is chosen to be
Γ = P 2 and ρi = ζTi Pζi, i = M + 1, · · · , N , where

ζi =
∑N
j=1 aij(ξi − ξj) and P > 0 is a solution to the

algebraic Riccati equation (ARE):

STP + PS + I − P 2 = 0. (5)

Moreover, the coupling gains di in (4) converge to some
finite steady-state values.

Proof Let ζ = [ζTM+1, · · · , ζTN ]T . Then, ζ can be rewrit-
ten as

ζ = (L2 ⊗ I)


ξ̄1
...

ξ̄M

+ (L1 ⊗ I)


ξ̄M+1

...

ξ̄N

 , (6)

where ξ̄i = ξi − v denote the estimation errors. Because
L1 is nonsingular and limt→∞ ξ̄i(t) = 0, i = 1, · · · ,M ,
it can be observed from (6) that limt→∞ ξ̄i(t) = 0, i =
M + 1, · · · , N , if and only if limt→∞ ζ(t) = 0. From (4)
and (6), it is not difficult to get that ζ and di satisfy the
following dynamics:

ζ̇ = [I ⊗ S − L1(D̂ + ρ̂)⊗ I]ζ + (L2 ⊗ LF )ξ̄,

ḋi = ζTi Γζi,
(7)

where ρ̂ = diag(ρM+1, · · · , ρN ), D̂ = diag(dM+1, · · · , dN ),
and ξ̄ = [ξ̄T1 , · · · , ξ̄TM ]T .

Let V1 =
∑N
i=M+1[ qi2 (2di + ρi)ρi + λ̂0

4 d̃
2
i ], where G ,

diag(qM+1, · · · , qN ) > 0 is chosen such that GL1 +

LT1 G > 0 [10,7], λ̂0 denotes the smallest eigenvalue of

GL1 + LT1 G, and d̃i , di − α, with α being a positive
constant. The time derivative of V1 along the trajectory
of (7) is given by

V̇1 =

N∑
i=M+1

[2qi(di + ρi)ρ̇i + qiρiḋi +
λ̂0

2
d̃iζ

T
i P

2ζi]

≤ ζT [(D̂ + ρ̂)G⊗ (PS + STP )− λ̂0(D̂ + ρ̂)2 ⊗ P 2

+ ρ̂G⊗ P 2 +
λ̂0

2
(D̂ − αI)⊗ P 2]ζ

+ ζT [(D̂ + ρ̂)GL2 ⊗ PLF ]ξ̄,
(8)

where we have used the fact that GL1 +LT1 G ≥ λ̂0I. By
using the well-known Young’s inequality, we have

ζT (ρ̂G⊗ P 2)ζ ≤ ζT (
λ̂0

8
ρ̂2 ⊗ P 2 +

8

λ̂0

G2)ζ, (9)

and

ζT [(D̂ + ρ̂)GL2 ⊗ PLF ]ξ̄

≤ λ̂0

8
‖[(D̂ + ρ̂)⊗ P ]ζ‖2 +

8

λ̂0

‖(GL2 ⊗ LF )ξ̄‖2

≤ λ̂0

8
‖[(D̂ + ρ̂)⊗ P ]ζ‖2 +

8

λ̂0

‖GL2 ⊗ LF‖2‖ξ̄‖2.

(10)
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Substituting (10) and (9) into (8) gives

V̇1 ≤
1

2
ζT [(D̂ + ρ̂)G⊗ (PS + STP )]ζ

− λ̂0ζ
T [(

7

8
(D̂ + ρ̂)2 − 1

8
ρ̂2 − 1

2
D̂ +

1

2
αI

− 8

λ̂2
0

G2)⊗ P 2]ζ +
8

λ̂0

‖GL2 ⊗ LF‖2‖ξ̄‖2

≤ 1

2
ζT [(D̂ + ρ̂)G⊗ (PS + STP )]ζ

− λ̂0ζ
T [(

1

4
(D̂ + ρ̂)2 + α̂)⊗ P 2]ζ

+
8

λ̂0

‖GL2 ⊗ LF‖2‖ξ̄‖2

≤ 1

2
ζT [(D̂ + ρ̂)G⊗ (PS + STP − P 2)]ζ

+
8

λ̂0

‖GL2 ⊗ LF‖2‖ξ̄‖2,

(11)

where we have chosen α ≥ max
16q2i
λ̂2
0

+ 2α̂ and
√
α̂ ≥

1
λ̂0

max qi to get the last two inequalities.

Let V2 = ξ̄T (IM ⊗ Q̄)ξ̄, where Q̄ > 0 satisfy that Q̄(S +
LF ) + (S + LF )T Q̄ = −I. The time derivative of V3

along (??) can be obtained as

V̇2 = ξ̄T (IM ⊗ Q̄) ˙̄ξ = −‖ξ̄‖2. (12)

Consider the Lyapunov function candidate V = V1 +
h2V2, where h2 ≥ 6

λ̂0
‖GL2 ⊗ LF‖2. Since di(t) ≥ 0

for any t > 0 and ρi(·) are monotonically increasing
functions satisfying ρi(s) ≥ 0 for s > 0, it is not difficult
to see that V is positive definite with respect to ξ̄, ζi,
and d̃i, i = M + 1, · · · , N . By using (11) and (12), we
can get the time derivative of V as

V̇1 ≤ −
1

2
ζT [D̂ρ̂G⊗ I]ζ ≤ −1

2
min qi‖ζ‖2 ≤ 0. (13)

From (13), we can get that each di is bounded, which,

by noting ḋi ≥ 0, implies that each di converges to
some finite value. Note that V̇1 ≡ 0 is equivalent to
ζ ≡ 0. By LaSalle’s Invariance principle [10], it fol-
lows that ζ asymptotically converges to zero. That is,
limt→∞(ξi(t)− v(t)) = 0, i = M + 1, · · · , N . �

Remark 1 Theorem 1 shows that the local observer (3)
and the distributed adaptive observer (4) ensure that
the subsystems can asymptotically estimate the exoge-
nous signal for general directed graphs satisfying As-
sumption 1. Because (S, I) is controllable, the ARE (5)
has a unique solution P > 0. That is, the adaptive ob-
server (4) always exists.

Upon the basis of the estimates ξi of the exogenous signal
v, we propose the following controller to each subsystem

as
ui = K1ixi +K2iξi, i = 1, · · · , N, (14)

where K1i ∈ Rmi×ni and K2i ∈ Rmi×q are the feedback
gain matrices. By substituting (14) into (1), we write the
closed-loop dynamics of the subsystems as

ẋi = (Ai +BiK1i)xi + Eiv +BiK2iξi,

ei = Cixi +Div, i = 1, · · · , N. (15)

Theorem 2 Suppose that Assumptions 1–5 hold. Select
K1i such that Ai + BiK1i are Hurwitz, and K2i = Ui −
K1iXi, i = 1, · · · , N , where (Xi, Ui) are unique solutions
to the regulator equations 1 :

XiS = AiXi +BiUi + Ei,

0 = CiXi +Di, i = 1, · · · , N. (16)

Then, the cooperative output regulation problem is solved
by the distributed controller (14) and the adaptive ob-
servers (3) and (4) constructed by Theorem 1.

Proof The closed-loop dynamics of each subsystem can
be rewritten as

ẋi = (Ai +BiK1i)xi + (Ei +BiK2i)v +BiK2iξ̄i,

ei = Cixi +Div, i = 1, · · · , N,
(17)

where ξ̄i = ξi− v denote the estimation errors. Let x̃i =
xi −Xiv, i = 1, · · · , N. Then, by invoking (16), we can
obtain from (17) and (2) that

˙̃xi = (Ai +BiK1i)x̃i +BiK2iξ̄i,

ei = Cix̃i, i = 1, · · · , N.
(18)

Since Ai + BiK1i are Hurwitz and it follows from The-
orem 1 that limt→∞ ξ̄i(t) = 0, i = 1, · · · , N , it is easy
to see that limt→∞ x̃(t) = 0, which further implies that
limt→∞ ei(t) = 0, i = +1, · · · , N . That is, the coopera-
tive output regulation problem is solved. �

Remark 2 Theorem 2 states that the proposed adap-
tive control scheme consisting of the controller (14) and
the observers (4) and (3) can solve the cooperative out-
put regulation problem. Note that the proposed control
scheme in this section, relying on the subsystem dynam-
ics and the local information of neighboring subsystems,
is fully distributed. By comparison, the controllers in
the previous work [13] require some nonzero eigenvalue
of the Laplacian matrix which is global information of
the communication graph. The adaptive controllers in
[6] are indeed fully distributed, which, however, are ap-
plicable to only undirected graphs. The proposed control
scheme in this section works for directed graphs satisfy-
ing Assumption 1, whose design is more challenging.

1 A necessary and sufficient condition for the solvability of
(16) is Assumption 5 [3].
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3 Robust Cooperative Output Regulation
Problem

In this section, we consider the case where the sub-
systems in (1) are subject to uncertainties and have
the same dimensions that are chosen to be xi ∈ Rn,
ui ∈ Rm, and ei ∈ Rp. Specifically, the matrices in (1)
can be written as

Ai = Āi + ∆Ai, Bi = B̄i + ∆Bi, Ei = Ēi + ∆Ei

Ci = C̄i + ∆Ci, Di = D̄i + ∆Di, i = 1, · · · , N,
(19)

where Āi, B̄i, Ēi, C̄i, D̄i denote the nominal parts of
these matrices, and ∆Ai, ∆Bi, ∆Ei, ∆Ci, ∆Di are the
uncertainties associated with these matrices. For con-
venience, let ∆̂ represents the uncertainty vector. Note
that we assume that the model uncertainties are such
that the closed-loop system remains stable.

For the uncertain subsystems described by (1) and (19)
and the exosystem (2), the robust cooperative output
regulation problem in this section is to design appropri-
ate distributed controllers based on the local informa-
tion such that there exists an open neighborhood W of
the origin, then for any ∆̂ ∈W and any initial condition
xi(0), i = 1, · · · , N , and v(0), limt→∞ ei(t) = 0.

The internal model principle will be utilized to solve the
robust cooperative output regulation problem. Using the
estimates ξi of the exogenous signal v via the observers
(3) and (4), we introduce the following distributed dy-
namic state feedback control law:

ui = Kxixi +Kzizi,

żi = G1zi +G2(Cixi +Diξi), i = 1, · · · , N, (20)

where zi ∈ Rnz with nz to be specified later, the pair
(G1, G2) incorporates the p-copy internal model of the
matrix S (The definition of the p-copy internal model
can be found in [3]), and Kxi and Kzi are the feedback
gain matrices to be designed. By combining (20) and
(1), we get the augumented closed-loop dynamics of the
subsystems as

η̇i = Aciηi +Bciv + Yciξ̄i,

ei = Cciηi +Div, i = 1, · · · , N, (21)

where ηi = [xTi , z
T
i ]T , the estimation errors ξ̄i are defined

as (17), and Aci =
[
Ai+BiKxi BiKzi

G2Ci G1

]
, Bci =

[
Ei

G2Di

]
,

Cci = [Ci 0 ], and Yci =
[

0
G2Di

]
. The stabilizability of

the augmented system (22) is guaranteed by Assmptions
3 and 5 [3].

Theorem 3 Suppose that Assumptions 1–5 hold.

Choose Kxi and Kzi such that
[
Āi+B̄iKxi B̄iKzi

G2C̄i G1

]
are

Hurwitz, i = 1, · · · , N Then, the robust cooperative
output regulation problem is solved by the distributed

controller (20) and the adaptive observers (3) and (4)
constructed by Theorem 1.

Proof Since the nominal forms of the system matri-

ces Aci of (21), equal to
[
Āi+B̄iKxi B̄iKzi

G2C̄i G1

]
, are Hurwitz,

there exists an open neighborhood W such that for any
∆̂ ∈ W , the state matrices Aci are also Hurwitz. Be-
cause (G1, G2) incorporates a p-copy internal model of

S, it follows from Lemma 1.27 of [3] that for any ∆̂ ∈W ,
there exist Xxi and Xzi such that

XxiS = (Ai +BiKxi)Xxi +BiKziXzi + Ei,

XziS = G1Xzi +G2(CiXxi +Di),

0 = CiXxi +Di, i = 1, · · · , N.
(22)

Let Xci =
[
Xxi

Xzi

]
. Then, (22) can be rewritten as

XciS = AciXci +Bci,

0 = CciXci +Di, i = 1, · · · , N. (23)

Let η̃i = ηi −Xciv, i = 1, · · · , N. Then, we can obtain
from (21), (23), and (2) that

˙̃ηi = Aciη̃i + Yciξ̄i,

ei = Ccix̃i, i = 1, · · · , N.
(24)

From (24), we see that limt→∞ ei(t) = 0 if limt→∞ η̃i(t) =
0, the latter of which can be shown by following similar
steps in the proof of Theorem 2. �

Remark 3 The robust cooperative output regulation
problem is also studied in the previous works [14,12]. On
contrary to those controllers in [14,12], which depend on
global information of the communication graph, one fa-
vorable feature of the proposed adaptive control scheme
in this section is fully distributed. It is worth mentioning
that related robust consensus tracking problems are con-
sidered in [17,18] for integrator-type agents with distur-
bances and unmodelled dynamics. By contrast, general
linear and uncertain linear agents are studied in this pa-
per. The methods in [17,18], differing from those in this
paper, cannot be directly used to solve the cooperative
output regulation problem here.

4 Conclusion

In this paper, we have presented several distributed
adaptive observer-based controllers to solve the cooper-
ative output regulation problem for multi-agent systems
with nominal or certain linear subsystems and a linear
exosystem. A distinct feature of the proposed adaptive
controllers is that they can be designed and imple-
mented by each subsystem in a fully distributed manner
for directed graphs. This is the main contribution of
this paper with respect to the existing related works.
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