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We investigate principles of rationality based on symmetry in Polyadic Pure Inductive
Logic. The aim of Pure Inductive Logic (PIL) is to determine how to assign probabil-
ities to sentences of a language being true in some structure on the basis of rational
considerations. This thesis centres on principles arising from instances of symmetry
for sentences of first-order polyadic languages.

We begin with the recently introduced Permutation Invariance Principle (PIP), and
find that it is determined by a finite number of permutations on a finite set of formulae.
We test the consistency of PIP with established principles of the subject and show,
in particular, that it is consistent with Super Regularity. We then investigate the
relationship between PIP and the two main polyadic principles thus far, Spectrum
Exchangeability and Language Invariance, and discover there are close connections.
In addition, we define the key notion of polyadic atoms as the building blocks of
polyadic languages. We explore polyadic generalisations of the unary principle of Atom
Exchangeability and prove that PIP is a natural extension of Atom Exchangeability
to polyadic languages.

In the second half of the thesis we investigate polyadic approaches to the unary ver-
sion of Constant Exchangeability as invariance under signatures. We first provide a
theory built on polyadic atoms (for binary and then general languages). We introduce
the notion of a signature for non-unary languages, and principles of invariance under
signatures, independence, and instantial relevance for this context, as well as a binary
representation theorem. We then develop a second approach to these concepts using
elements as alternative building blocks for polyadic languages.

Finally, we introduce the concepts of homomorphisms and degenerate probability func-
tions in Pure Inductive Logic. We examine which of the established principles of PIL
are preserved by these notions, and present a method for reducing probability functions
on general polyadic languages to functions on binary languages.
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Chapter 1

Introduction

“Symmetry is what we see at a glance; based on the fact that there is no reason for

any difference...” - B. Pascal, Pensées.

1.1 General Introduction

Decisions we make in everyday life often involve a degree of uncertainty; which route

should I take to get to work fastest? should I walk or take the bus? should I bring

a jacket with me? When trying to answer such questions logically, or rationally,

we (perhaps subconsciously) rely on our previous experiences and on information we

acquire that might influence our decision.

Consider, for example, the following situation. We invite a guest out for a meal. As the

hosts, our guest asks us to recommend which of options A, B and C they should order.

Not having any knowledge of their likes and dislikes, or the restaurant’s strengths and

weaknesses, how do we decide which dish to recommend? In this case, we do not

favour any option over another, and are equally likely to pick any of A, B and C; we

view the situation as completely symmetric. Suppose we now learn that our guest is a

fan of the main ingredient of dish A. This is likely to enhance our belief they should

order dish A. We have acquired some relevant information and it has affected our

decision. We are then told that the restaurant was redecorated last year. Most of us

would find this new information irrelevant to our decision, it should not increase or

decrease our probability of choosing any of A, B or C.

9
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The aim of Inductive Logic, beginning with Keynes’ [18] and developed in the context

we work in by Johnson [17] and Carnap [2, 3, 7, 9], is to supply us with a way to answer

such questions. More precisely, it is to enable an agent to assign degrees of belief in

a rational way, with rationality traditionally based on considerations of symmetry,

relevance and irrelevance1. Of these, rational principles based on symmetry have

featured most prominently in the subject and will form the principal theme of this

thesis. This is due to the natural appeal symmetry possesses - most of us would

readily accept that degrees of belief assigned to symmetric situations should be equal

- and moreover, due to the potential of expressing symmetry formally.

This thesis is set in Pure Inductive Logic (PIL)2, where the framework contains no

specific interpretation. Namely, we imagine an agent inhabiting some structure for a

language L (with no interpretation) who has no prior knowledge of what is true in this

structure. Our task is to provide a rational way for the agent to allocate degrees of

belief to sentences of L being true in this structure. Thus we are looking for a belief

function defined on sentences of this language that satisfies possible requirements of

rationality, in the form of mathematical statements we ask our function to satisfy.

Our approach in this investigation is mathematical rather than philosophical3 in na-

ture. We propose possible principles and investigate how they relate to each other,

their (mathematical) consequences, and which ‘belief functions’ satisfy them. We do

not claim a rational agent must, or even should, adhere to them. We merely present

them as principles the agent might wish their function to satisfy. Moreover, we will

concentrate our efforts on non-unary languages. The unary case has been thoroughly

researched, while the polyadic symmetry picture is much less resolved. With the ex-

ception of some earlier explorations such as [16, 19], research into polyadic symmetry

in the context of Inductive Logic has thus far focused on the principle of Spectrum

Exchangeability [20, 22, 25, 31, 32]. We will investigate new aspects of polyadic sym-

metry, and by doing so hope to offer a new perspective on the area.

1More recently, arguments based on analogy have appeared, see [14, 15], [36, Chapter 22].
2Carnap made the distinction between Pure and Applied Inductive Logic in [5].
3For some references of philosophical perspectives on the classical principles see [36, page 7].
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1.2 Mathematical Setting

We introduce the context and framework for this thesis, and the basic definitions,

results and notation that will be used from the outset. Rather than providing all

the required background in this section, we have provided in the first section of each

chapter the theory relevant to that chapter. This has the advantage of the pertinent

material being fresher in the reader’s mind, as well as allowing us to present our

investigation without delay.

We work with a first order language L containing variables x1, x2, x3, . . . , constants

a1, a2, a3, . . . , finitely many relation symbols R1, R2, . . . , Rq of finite arities r1, r2, . . . , rq

respectively, and no function symbols nor the equality symbol. t1, t2, t3, . . . will denote

terms of the language. The constants ai are intended to exhaust the universe, in the

sense that every individual in our universe can be represented by a constant from the

ai. We will use b1, b2, . . . to denote a distinct choice of constants from the ai; y1, y2, . . .

and z1, z2, . . . for distinct choices of variables from the xi. We identify the language L

with the set {R1, R2, . . . , Rq}.

We say that a language is unary if it contains only unary predicate symbols; it is r-ary

if all its relation symbols are at most r-ary and at least one is r-ary. If r = 2, we say

binary rather than 2-ary. To emphasise the unary context where appropriate, we use

symbols P1, P2, . . . , Pq for unary predicates and Lq for the language containing just

these predicate symbols.

SL will denote the set of sentences of L, QFSL the quantifier-free sentences, and

(QF )FL the (quantifier-free) formulae of L. We will use Greek letters such as θ, φ, ψ

for formulae of L, and intend that θ(x1, x2, . . . , xn) implies that all the variables ap-

pearing in θ are amongst x1, x2, . . . , xn. A similar convention applies to sentences

θ(a1, a2, . . . , an). To simplify notation, we shall identify formulae which are logically

equivalent throughout, and we will often use ‘=’ rather than ‘≡’ between logically

equivalent formulae.

Let T L denote the set of structures of L with universe {a1, a2, a3, . . . }, where each

constant symbol ai of L is interpreted in M ∈ T L as ai ∈ M. We assume the

structure the agent inhabits is one of the structures M ∈ T L, but the agent has no
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knowledge of what is true in M.

We identify degree of belief with subjective probability4 and the agent’s ‘belief function’

with a probability function:

Definition 1.1. A function w : SL → [0, 1] is a probability function on SL if for all

θ, φ,∃xψ(x) ∈ SL,

(P1) If |= θ then w(θ) = 1.

(P2) If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).

(P3) w(∃xψ(x)) = limn→∞w(
∨n
i=1 ψ(ai)).

Probability functions have a number of desirable properties5. Note in particular that

logically equivalent sentences are given the same value by a probability function, and

that convex sums of probability functions are probability functions.

Any probability function w satisfying just (P1) and (P2) on the quantifier-free sen-

tences of L has a unique extension to a probability function on SL [13], so in many

situations it suffices to think of probability functions as defined on quantifier-free sen-

tences only, and satisfying (P1) and (P2). This can be further reduced6 to a special

class of such sentences called state descriptions:

Definition 1.2. The state descriptions of L are sentences Θ(b1, . . . , bn) of the form

q∧
d=1

∧
〈i1...,ird 〉∈{1,...,n}

rd

±Rd(bi1 . . . , bird ) (1.1)

where ±Rd(bi1 . . . , bird ) denotes one of Rd(bi1 . . . , bird ), ¬Rd(bi1 , . . . , bird ).

These sentences completely describe how the constants b1, . . . , bn behave in relation to

each other (and no other constants). For Θ(b1, . . . , bn) a state description, Θ(x1, . . . , xn)

is called a state formula. We make a convention that the state description on zero con-

stants is a tautology and we denote it by ‘>’. We use the upper case Greek letters

Θ,Φ,Ψ to denote state descriptions and state formulae.

4For a justification of this approach see for example [36, Chapter 5], based on work by de Finetti
[11] and Ramsey [38].

5Details can be found in [36, Chapter 3].
6See [36, Chapter 7] for an explanation.
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So we have that a probability function is determined by its values on state descriptions.

Moreover7, any probability function w defined on state descriptions Θ(a1, a2, . . . , an),

n ∈ N to satisfy

(P1′) w(Θ(a1, a2, . . . , an)) ≥ 0,

(P2′) w(>) = 1,

(P3′) w(Θ(a1, a2, . . . , an)) =
∑

Φ(a1,a2,...,an+1)|=Θ(a1,a2,...,an)

w(Φ(a1, a2, . . . , an+1))

extends, by the Disjunctive Normal Form Theorem, to a probability function on

QFSL, and hence (uniquely) to a probability function on SL.

Notice that a state formula of the unary language Lq on n variables
∧n
i=1

∧q
d=1±Pd(xi)

has the form
n∧
i=1

αhi(xi)

where hi ∈ {1, . . . , 2q} and α1(x), . . . , α2q(x) are the formulae of the form

±P1(x) ∧ ±P2(x) ∧ · · · ∧ ±Pq(x).

The αj are known as the atoms of Lq, and they form the basic building blocks of

sentences of a unary language. As such, they have featured prominently in Unary

Inductive Logic, and have been used to formulate and investigate basic principles of

the subject. We shall return to this point later on, in particular in Chapters 4 and 5.

Finally, we define the notion of conditional probability. Given a probability function w,

the conditional probability function of θ ∈ SL given φ ∈ SL, for φ such that w(φ) 6= 0,

is defined as

w(θ |φ) =
w(θ ∧ φ)

w(φ)
.

We adopt the convention that expressions like w(θ |φ) = a stand for w(θ∧φ) = aw(φ)

even if w(φ) = 0. We assume throughout this investigation that if the agent assigns the

subjective probability w(θ) to θ ∈ SL holding in M, then the conditional probability

w(θ |φ) is what the agent supposes they would amend their choice of probability

function to were they to learn that φ held in M.

7[36, Chapter 7].
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Rational Principles

We present a number of basic, established principles of PIL that we will use from the

onset. As the investigation develops, we will introduce additional principles.

One of the most widely accepted principles in the subject pertains to the symmetry

between the constants, stating that a rational probability function should treat the

individual constants ai equally. It can be stated as follows:

Constant Exchangeability, Ex

Let θ(a1, . . . , an) ∈ SL and let b1, . . . , bn be any other choice of distinct constant sym-

bols from amongst the ai. Then

w(θ(a1, . . . , an)) = w(θ(b1, . . . , bn)). (1.2)

Ex is sometimes imposed at the start of investigations in Inductive Logic as the first

requirement a rational probability function should obey. We do not assume it here

but we will explain the role it has in what follows. We remark that if a probability

function satisfies Ex on the state descriptions of a language L then its extension to

SL will also satisfy Ex8.

A second principle based on symmetry which we shall come across relates to the

symmetry between the relation symbols of the language. With no further knowledge,

we have no reason to differentiate between two relation symbols of the same arity.

Predicate Exchangeability, Px

If Ri and Rj are relation symbols of L with the same arity, then

w(θ) = w(θ′)

where θ′ is the result of simultaneously swapping every occurrence of Ri in θ by Rj and

every occurrence of Rj by Ri.

The next principle suggests that there is a symmetry between a relation symbol and

its negation9.

8For details, see [36, Chapters 6 and 7].
9where we use that ¬¬R is logically equivalent to R.
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Strong Negation, SN

For θ ∈ SL

w(θ) = w(θ′)

where θ′ is the result of replacing each occurrence of R in θ by ¬R.

The following principle is again based on symmetry but applies only to unary languages

Lq. It refers to the symmetry between atoms in the zero knowledge situation. Polyadic

approaches to this principle will be investigated in some detail in Chapter 4.

Atom Exchangeability, Ax

For any permutation τ of {1, 2, . . . , 2q} and constants b1, . . . , bn,

w

(
n∧
i=1

αhi(bi)

)
= w

(
n∧
i=1

ατ(hi)(bi)

)
.

The final symmetry principle we introduce at this time applies only to non-unary

languages and concerns the symmetry between the variables in a relation.

Variable Exchangeability, Vx

Let R be an r-ary relation symbol of L, σ a permutation of {1, 2, . . . , r}. Then

w(θ) = w(θ′)

where θ′ is the result of replacing each occurrence of R(t1, t2, . . . , tr) in θ, where

t1, . . . , tr are any terms, by R(tσ(1), tσ(2), . . . , tσ(r)).

We now mention two principles motivated by the idea that we should not dismiss as

impossible sentences which could theoretically hold in M.

Regularity, Reg

For any consistent θ ∈ QFSL,

w(θ) > 0.

And the stronger notion of Super Regularity,

Super Regularity, SReg

For any consistent θ ∈ SL,

w(θ) > 0.
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Notation

We end this chapter with some notation and conventions which we will henceforth use

without further explanation.

Sn will denote the permutation group of {1, 2, . . . , n}. We will use ‘�’ for surjective

functions and Id : A→ A for the function that maps every element of A to itself.

Instead of Θ(b1, . . . , bn), we will at times write Θ(z1, . . . , zn)(b1, . . . , bn) to denote the

result of simultaneously replacing each occurrence of zi in Θ(z1, . . . , zn) by bi, i =

1, . . . , n, and similarly for other substitutions. When we wish to make the individual

substitutions clearer, we may also write Θ(z1, . . . , zn)(b1/z1, b2/z2, . . . , bn/zn) for this

substitution.

Definition 1.3. For a state description Θ(b1, . . . , bn) as in (1.1) and distinct k1, . . . , kg

from {1, . . . , n},

Θ(b1, . . . , bn)[bk1 , . . . , bkg ] ,

or simply Θ[bk1 , . . . , bkg ] when the context is clear, denotes the restriction of Θ(b1, . . . , bn)

to bk1 , . . . , bkg . That is, the conjunction of the literals from (1.1) with {i1, . . . , ird} ⊆

{k1, . . . , kg}. We define the restriction of a state formula similarly.

Example. Let L contain a single binary relation symbol R and let Θ(b1, b2, b3) be the

conjunction of

R(b1, b1) ¬R(b1, b2) R(b1, b3)

R(b2, b1) R(b2, b2) ¬R(b2, b3)

¬R(b3, b1) R(b3, b2) ¬R(b3, b3) .

Then Θ(b1, b2, b3)[b1, b2] is the conjunction of

R(b1, b1) ¬R(b1, b2)

R(b2, b1) R(b2, b2) .

Definition 1.4. For σ : {y1, . . . , yn}� {z1, . . . , zm} and a state formula Θ(z1, . . . , zm),

there is a unique state formula (up to logical equivalence) Φ(y1, . . . , yn) such that

Φ(σ(y1), . . . , σ(yn)) ≡ Θ(z1, . . . , zm).
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We denote this Φ by

(Θ(z1, . . . , zm))σ(y1, . . . , yn)

or more simply by Θσ if the variables are clear.

Let L be a language containing a single binary relation symbol R. Any state description

of L on n constants b1, . . . , bn may be represented by an n × n {0, 1}-matrix where

1 or 0 at the (i, j)th entry means this state description implies R(bi, bj) or ¬R(bi, bj)

respectively. State formulae of this language are represented similarly.

Example. The state formula Θ(z1, z2) corresponding to the conjunction of

R(z1, z1) ¬R(z1, z2)

R(z2, z1) ¬R(z2, z2)

may be represented by the matrix

1 0

1 0
.

Let σ : {y1, y2, y3} � {z1, z2} be such that σ(y1) = σ(y3) = z1, σ(y2) = z2. Then the

state formula Θσ can be represented by the matrix

1 0 1

1 0 1

1 0 1

.

y1 and y3 are both ‘clones’ of z1, y2 is a ‘clone’ of z2.

Finally, we mention two particular probability functions that will come up in the

investigation that ensues. When applied to unary languages, they form the end points

of Carnap’s Continuum of Inductive Methods (see [4, 7, 9, 17], [36, Chapters 16, 24]).

• The probability function cL∞, also known as the completely independent probability

function, treats each ±R(b1, . . . , br), where r is the arity of R, as stochastically

independent and occurring with probability 1
2
.

• The probability function cL0 believes all constants behave in the same way10.

That is, for each of the 2q possible assignments of ±, it satisfies

cL0

(
q∧

d=1

∀x1, . . . , xrd ±Rd(x1, x2, . . . , xrd)

)
= 2−q .

10In unary, cL0 believes all constants will satisfy the same atom as the first one seen (and gives
probability 2−q to such state descriptions). In contrast, cL∞ involves no learning from experience.



Chapter 2

Properties of the Permutation

Invariance Principle

2.1 Introduction

We begin this chapter by presenting the formal framework for polyadic symmetry in

Pure Inductive Logic, as set out in [35] and [36, Chapter 39]. This will allow us to

introduce the Permutation Invariance Principle, the main object of investigation for

the first part of this thesis, which first appeared in [35]. We then proceed to explore

some of the properties this principle possesses. Lemma 2.2 in many ways underpins

much of the investigation that follows, and the results from Section 2.4 will be useful

later on, in Chapter 4. Results from this chapter appear also in [39] and in [36, Chapter

41].

Let L be an r-ary language and let T L denote the set of structures for L as defined

on page 11. Let BL be the two-sorted structure with universe T L, the sets

[θ] = {M ∈ T L | M |= θ}

for θ ∈ SL and the membership relation between elements of T L and these sets.

An automorphism η of BL is a bijection of T L such that for each θ ∈ SL,

η[θ] = {ηM | M ∈ T L ,M |= θ} = [φ]

for some φ ∈ SL and conversely, for each φ ∈ SL,

η−1[φ] = {η−1M | M ∈ T L ,M |= φ} = [θ]

18
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for some θ ∈ SL.

We will henceforth write1 η(θ), or just ηθ, for the sentence φ ∈ SL such that η[θ] = [φ].

Note that θ, φ are determined up to logical equivalence only, however this should not

be a problem for us, since we are identifying logically equivalent sentences/formulae

throughout this account.

As is customary in investigations of Pure Inductive Logic, we assume a rational agent

is aware of the structure BL, inhabits one of the structuresM∈ T L but is unaware of

which particular M it is. When the agent chooses their rational probability function

w, it would therefore be reasonable to assume that justification for the probability w(θ)

for θ ∈ SL (equivalently [θ] ∈ BL) should apply also to w(ηθ) for any automorphism

η of BL. In other words, we are identifying a ‘symmetry’ of L with an automorphism

of BL. This gives us the following symmetry principle2 for a probability function w

on SL:

The Invariance Principle, INV

For any automorphism η of BL and θ ∈ SL

w(θ) = w(ηθ).

We remark that for any probability function w on sentences of L and an automorphism

η of BL, wη : SL → [0, 1] given by wη(θ) = w(ηθ) is a probability function on SL.

This can be seen by checking that conditions (P1)-(P3) from Page 12 hold for wη, see3

[36, Chapter 23].

INV is rather strong a principle and can be shown to contain as special cases many of

the symmetry principles traditionally studied in the subject [34, 36]. In particular, INV

encompasses the Principle of Constant Exchangeability, a point we shall expand on in

Section 2.3. In fact, previous investigations into INV for probability functions on unary

languages have proven INV to be too strong a principle, leaving only one4 (somewhat

1thus avoiding overuse of square brackets, which also denote restrictions of formulae, see page 16.
This notation is now established so we keep to it; it should be clear from the context what is meant.

2This principle for unary L first appeared in [34], and for polyadic L in [35].
3This reference addresses the case when L is just unary, however the proof works also for polyadic

languages L.
4This is Carnap’s cL0 , as described on page 17. We will encounter the polyadic version of this

probability function later on, on pages 80, 131.
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unsatisfactory) function that satisfies it [34]. On the other hand, it is not yet clear

what its full effect for general languages is. The reason for INV eliminating nearly all

probability functions in the unary context is that some automorphisms can force state

descriptions with different numbers of constants to have the same probabilities, which

- combined with all other conditions INV imposes - is almost never satisfied.

This raises the question of what happens if we require our automorphisms to map

state descriptions to state descriptions respecting the number of constants, and what

the probability functions that satisfy this weaker version of INV would be, where we

only demand that w(θ) = w(ηθ) for θ ∈ SL and for such automorphisms η. It turns

out [35] that such automorphisms must be in a certain sense uniform and up to a

permutation of all constants, they must be of the type described below.

We say that a function z permutes state formulae if for each n and (distinct) variables

z1, . . . , zn, z permutes the state formulae Θ(z1, . . . , zn) in these variables.

Definition 2.1. An automorphism η of BL permutes state formulae if there is a

function η̄ that permutes state formulae such that for any b1, . . . , bn and state formulae

Θ(z1, . . . , zn)

η(Θ(b1, . . . , bn)) = η̄(Θ(z1, . . . , zn))(b1, . . . , bn),

where η̄(Θ(z1, . . . , zn))(b1, . . . , bn) is the state description arrived at by applying η̄ to

Θ(z1, . . . , zn) and then substituting b1, . . . , bn into the resulting state formula.

Let z be a function permuting state formulae and satisfying the following conditions

from [35]:

(A) For each state formula Θ(z1, . . . , zm) and mapping σ : {y1, . . . , yn}� {z1, . . . , zm},

(z(Θ))σ = z(Θσ),

where σ is surjective and Θσ is the unique state formula5 Ψ(y1, . . . , yn) such that

Ψ(σ(y1), . . . , σ(yn)) = Θ(z1, . . . , zm).

(B) For each state formula Θ(z1, . . . , zm) and distinct i1, . . . , ik ∈ {1, . . . ,m}

z(Θ)[zi1 , . . . , zik ] = z(Θ[zi1 , . . . , zik ]),

5defined on page 16.
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where Θ[zi1 , . . . , zik ] is the restriction6 of Θ(z1, . . . , zm) to these variables.

Note that where no confusion may arise, we write Θ in place of Θ(z1, . . . , zn) and z(Θ)

for z(Θ(z1, . . . , zn)) in favour of clarity of notation.

By Theorems 1 and 2 of [35], every function z that permutes state formulae and

satisfies conditions (A) and (B) is a function η̄ for some automorphism η of BL that

permutes state formulae, and conversely, for every automorphism η that permutes

state formulae, η̄ satisfies (A) and (B).

We are now finally in a position to formally state the Permutation Invariance Principle

from [35]. Restricting the Invariance Principle to include only the automorphisms of

BL that permute state formulae gives us

The Permutation Invariance Principle, PIP

For any permutation of state formulae z that satisfies (A) and (B) and a state de-

scription Θ(b1, . . . , bn)

w(Θ(b1, . . . , bn)) = w(z(Θ)(b1, . . . , bn)).

2.2 A Finite Characterisation of PIP

The following lemma shows that the Permutation Invariance Principle can be equiv-

alently stated to involve invariance under finitely many permutations, specified by

their action on a particular finite set of formulae. This set of formulae will form a

fundamental component of much of this thesis.

Lemma 2.2. Let z be a function that permutes state formulae and satisfies (A) and

(B). Then z is uniquely determined by its action on state formulae of r variables,

where r is the highest arity of an L-relation symbol.

Proof. Consider a state formula Ψ(z1, . . . , zs) where s < r and let Θ(z1, . . . , zr) be

such that Θ |= Ψ. By condition (B)

z(Ψ) = z(Θ[z1, . . . , zs]) = z(Θ)[z1, . . . , zs]

6defined on page 16.
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so the values of z on state formulae of fewer than r variables are determined by its

values on state formulae of r variables.

Now let Ψ(z1, . . . , zr, . . . , zn) be a state formula with n > r and suppose there is a

function z1 that permutes state formulae and satisfies (A) and (B), such that z(Θ) =

z1(Θ) for all state formulae Θ on r variables, but z(Ψ) 6= z1(Ψ). Then there must be

a relation symbol Rd of L and (not necessarily distinct) zi1 , . . . , zird from {z1, . . . , zn}

such that

z(Ψ) |= Rd(zi1 , . . . , zird ) and z1(Ψ) |= ¬Rd(zi1 , . . . , zird ) (2.1)

or vice versa. Let zk1 , . . . , zkr be distinct variables from {z1, . . . , zn} such that all of

zi1 , . . . , zird are included amongst them.

By condition (B) and since z,z1 agree on state formulae of r variables, we have

z(Ψ)[zk1 , . . . , zkr ] = z(Ψ[zk1 , . . . , zkr ]) = z1(Ψ[zk1 , . . . , zkr ]) = z1(Ψ)[zk1 , . . . , zkr ],

contradicting (2.1). Thus the claim holds also for state formulae with more than r

variables, as required.

As an immediate consequence of this lemma, the set

F = {z |z permutes state formulae and satisfies (A) and (B)}

is finite and in the next section we will show that we can therefore generate a probabil-

ity function w′ that satisfies PIP from an arbitrary probability function w by averaging

over ‘permuted versions’ of w. Furthermore, Proposition 2.4 shall show that w′ will

preserve some characteristic properties of w and thus bear witness to their compati-

bility with PIP.

2.3 PIP and Other Principles

We use the result of the previous section to test the consistency of the Permutation

Invariance Principle with some long standing principles of Pure Inductive Logic. In

particular, we will focus on the rather elusive principle of Super Regularity and clarify

its status with respect to both PIP and INV.
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Before doing so however, we mention some of the relationships we are already aware

of between INV and PIP and other rational principles of PIL. Firstly, the commonly

assumed Principle of Constant Exchangeability is implied by INV but not by PIP.

In order to see that INV implies Ex [35], let σ ∈ SN+ and let ηM be formed from

M ∈ T L by replacing each ai in M by aσ(i). Then η extends to an automorphism

of BL and requiring w(θ) = w(ηθ) for this η gives Ex. On the other hand, it is not

surprising that PIP does not imply Ex since PIP requires the probability of two state

descriptions instantiating the same constants to get the same probability, and makes

no reference to the same sentence acting on different constants.

We can show that Ex is not implied by PIP explicitly by providing a probability

function that satisfies PIP but not Ex. For this purpose, we touch on a topic we will

explore in detail in Chapter 4. For the time being however, it suffices to note that

when L is purely unary, PIP is equivalent to the Principle of Atom Exchangeability

(see page 15): in unary, the functions z permuting state formulae and satisfying (A)

and (B) are exactly those generated by permutations of atoms. So we can justify our

claim by suggesting a probability function on unary languages that satisfies Ax but

not Ex.

Let Lq be a unary language containing q predicate symbols and let wδ1Lq , w
δ2
Lq

be func-

tions from the NP-continuum7, as described in [29, 30] and in Chapters 18 and 19 of

[36], with δ1, δ2 not both 0. Define

v

(
m∧
i=1

αhi(ai)

)
= wδ1Lq

 ∧
1≤i≤m
i odd

αhi(ai)

 · wδ2Lq
 ∧

1≤i≤m
i even

αhi(ai)

 .

Then v extends to a probability function on SLq since it satisfies (P1′)-(P3′) from

page 13: (P1′) and (P2′) clearly hold. To check that (P3′) holds, suppose that

m + 1 is even. The case when m + 1 is odd follows similarly with the roles of

δ1 and δ2 interchanged. Note that Φ(a1, . . . , am, am+1) |= Θ(a1, . . . , am) just when

7These functions can be defined as follows. Fix δ such that −(2q − 1)−1 ≤ δ ≤ 1 and let γ =
2−q(1− δ). Then for a state description

∧m
i=1 αhi(ai) of Lq

wδL

(
m∧
i=1

αhi
(ai)

)
= 2−q

2q∑
j=1

γm−mj (γ + δ)mj

where mj = |{i |hi = j}|.
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Φ(a1, . . . , am, am+1) = Θ(a1, . . . , am) ∧ αj(am+1) for j ∈ 1, . . . , 2q. So we have

∑
Φ|=Θ

v(Φ) =
2q∑
j=1

v

(
m∧
i=1

αhi(ai) ∧ αj(am+1)

)

=
2q∑
j=1

wδ1Lq

 ∧
1≤i≤m
i odd

αhi(ai)

wδ2Lq

 ∧
1≤i≤m
i even

αhi(ai) ∧ αj(am+1)


= wδ1Lq

 ∧
1≤i≤m
i odd

αhi(ai)

 2q∑
j=1

wδ2Lq

 ∧
1≤i≤m
i even

αhi(ai) ∧ αj(am+1)


= wδ1Lq

 ∧
1≤i≤m
i odd

αhi(ai)

wδ2Lq

 ∧
1≤i≤m
i even

αhi(ai)


= v(Θ),

where the penultimate equality follows since wδ2Lq satisfies (P3′) and going through all

the j’s gives all the state descriptions that extend the state description
∧

1≤i≤m
i even

αhi(ai).

Furthermore, v satisfies Ax but not Ex. Let σ ∈ S2q .

v

(
m∧
i=1

αhi(ai)

)
= wδ1Lq

 ∧
1≤i≤m
i odd

αhi(ai)

 · wδ2Lq
 ∧

1≤i≤m
i even

αhi(ai)


= wδ1Lq

 ∧
1≤i≤m
i odd

ασ(hi)(ai)

 · wδ2Lq
 ∧

1≤i≤m
i even

ασ(hi)(ai)


= v

(
m∧
i=1

ασ(hi)(ai)

)

since the NP-continuum functions wδ1Lq , w
δ2
Lq

satisfy Ax8, but Ex fails for v since for

example for q = 1, we have

v(α1(a1) ∧ α2(a2)) =
1

4

v(α1(a4) ∧ α2(a6)) =
1

4
(1− δ2

2)

and these are not equal when δ2 6= 0. It follows that a probability function satisfying

Ax without Ex exists, so PIP does not imply Ex.

PIP does, however, imply the principles of Predicate Exchangeability, Strong Negation

and Variable Exchangeability (and consequently so does INV of course) [36, Chapter

8[29, 30] or Theorem 18.2 of [36].
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39]. Each of these principles can be represented as invariance under a particular

z ∈ F , so they follow as a result of requiring PIP. For example, if z(Θ) is the result

of permuting some (fixed) relation symbol Ri everywhere in Θ with another relation

symbol Rj of the same arity, then z gives Px and is one of the functions from F since

it is easily seen to satisfy conditions (A) and (B).

In addition, we know Super Regularity to be inconsistent with INV for unary languages

[34]. Later on in this section, we will resolve whether Super Regularity is consistent

with PIP and whether it is consistent with INV for polyadic languages. In Chapter

3 we explore the connections between PIP, Spectrum Exchangeability and Language

Invariance, where these principles are also described, and as already alluded to above,

the relationship between PIP and Atom Exchangeability will be investigated in detail

in Chapter 4.

Firstly however, we continue from where the previous section ended, proceeding as

follows. Let w be an arbitrary probability function on SL and define w′ : SL→ [0, 1]

by first setting for state descriptions Θ(a1, . . . , an), n ∈ N,

w′(Θ(a1, . . . , an)) =
1

|F|
∑
z∈F

wz(Θ(a1, . . . , an)) (2.2)

where wz(Θ(a1, . . . , an)) = w(z(Θ)(a1, . . . , an)).

Lemma 2.3. The function w′ defined in (2.2) extends uniquely to a probability func-

tion on SL. Moreover, (2.2) holds even when the constants a1, . . . , an are replaced by

any other distinct constants b1, . . . , bn.

Proof. Let z ∈ F . wz extends to a probability function on SL since every such z is

η̄ for an automorphism η of BL that permutes state formulae by Theorem 1 of [35],

and so the extension of wz to every θ ∈ SL is wη(θ) = w(ηθ) for this η, and wη is a

probability function by the remark on page 19.

Alternatively, we can check that conditions (P1′)-(P3′) from page 13 hold for wz. wz

clearly satisfies (P1′) and (P2′). To check (P3′) note that by condition (B) on z, for

state descriptions Φ(a1, . . . , an, an+1), Θ(a1, . . . , an) we have

Φ(a1, . . . , an+1) |= Θ(a1, . . . , an) ⇐⇒ z(Φ)(a1, . . . , an+1) |= z(Θ)(a1, . . . , an)
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since for example, in the first direction, Φ[z1, . . . , zn] = Θ(z1, . . . , zn), so when z ∈ F ,

z(Φ)(a1, . . . , an+1) logically implies

z(Φ)[z1, . . . , zn](a1, . . . , an) = z(Φ[z1, . . . , zn])(a1, . . . , an) = z(Θ)(a1, . . . , an)

and similarly in the other direction.

Consequently, since (P3′) holds for w and since z(Φ)(a1, . . . , an+1) run through the

state descriptions for a1, . . . , an+1 when Φ(a1, . . . , an+1) do so, we have

wz(Θ(a1, . . . , an)) = w(z(Θ)(a1, . . . , an))

=
∑

z(Φ)(a1,...,an+1)|=z(Θ)(a1,...,an)

w(z(Φ)(a1, . . . , an+1))

=
∑

Φ(a1,...,an+1)|=Θ(a1,...,an)

wz(Φ(a1, . . . , an+1)).

So (P3′) holds for wz and hence wz extends uniquely to a probability function on SL.

w′ is therefore a convex combination of probability functions on SL and thus defines

a probability function on SL.

The rest of the lemma follows upon noting that any probability function u on SL

satisfies

u(Θ(b1, b2, . . . , bn)) =
∑

Φ(a1,a2,...,ak)|=Θ(b1,b2,...,bn)

u(Φ(a1, a2, . . . , ak)),

where k is large enough for the b1, . . . , bn to be included amongst a1, . . . , ak.

Proposition 2.4. The probability function w′ defined in (2.2) satisfies PIP. If, in

addition, the original probability function w satisfies Ex + SReg then so does w′.

Proof. To see that w′ satisfies PIP, let Θ(z1, . . . , zn), Φ(z1, . . . , zn) be state formulae

of L with G (Θ) = Φ for some G ∈ F . Consider the set

F ′ = {zG−1 |z ∈ F}.

F is closed under composition and inverse of functions [35], so for every z ∈ F ,

we have zG−1 ∈ F thus F ′ ⊆ F . Conversely, every z ∈ F can be written as the
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composition of zG ∈ F and G−1, so F ⊆ F ′. Therefore, the sets F and F ′ are equal

and

w′(Θ(b1, . . . , bn)) =
1

|F|
∑
z∈F

w(z(Θ)(b1, . . . , bn))

=
1

|F|
∑
z∈F

w(zG−1 (G (Θ)) (b1, . . . , bn))

=
1

|F ′|
∑

zG−1∈F ′
w(zG−1(Φ)(b1, . . . , bn))

=
1

|F|
∑
z∈F

w(z(Φ)(b1, . . . , bn))

= w′(Φ(b1, . . . , bn)).

Suppose w satisfies Ex. Then for every z ∈ F and b1, . . . , bn, b′1, . . . , b
′
n from the ai

w(z(Θ)(b1, . . . , bn)) = w(z(Θ)(b′1, . . . , b
′
n))

so wz satisfies Ex on state descriptions and hence9 on SL. Consequently, so does w′.

Now suppose w is super regular. The extension of each wz to a probability function

on SL is unique and w′ is defined as the weighted sum of these extensions. Notice that

the permutation that maps each state formula to itself trivially satisfies (A) and (B),

so Id ∈ F .10 It follows that w must be the extension to SL of wId defined on state

descriptions of L and w is therefore one of the summands in the calculation of w′. So

w′(θ) ≥ 1
|F| w(θ) > 0 for every consistent θ ∈ SL and so w′ is super regular.

The existence of a probability function w′ that satisfies PIP, SReg and Ex follows,

since a w satisfying Ex and SReg exists, see for example Chapter 26 of [36]. Note also

that since PIP implies the principles of Predicate Exchangeability, Strong Negation

and Variable Exchangeability, w′ will also satisfy these principles.

The consistency of Super Regularity with PIP is interesting due to the restrictive

nature of SReg. Yet this consistency becomes perhaps even more noteworthy in view

of the fact that INV contradicts SReg, as we shall now show. The case for languages

containing only unary predicate symbols follows from the results in [34] that we have

9By our remark from page 14.
10Id was defined on page 16.
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already mentioned and we will extend it to polyadic languages. For simplicity, we shall

construct the argument for a binary language, however the result generalises similarly

to languages of higher arities.

Let L1 denote the language with a single unary predicate symbol P and let L be the

language with a single binary relation symbol R. Let φ ∈ SL be the sentence

∀x (∀y R(x, y) ∨ ∀y ¬R(x, y)).

For M∈ T L such that M |= φ, define β(M) ∈ T L1 by

M |= R(ai, a1) ⇐⇒ β(M) |= P (ai),

so β is a bijection between {M ∈ T L |M |= φ} and T L1.

For ψ ∈ SL, define ψ∗ to be the result of replacing each occurrence of R(t1, t2) in

ψ, where t1, t2 are any terms of L, by P (t1). Then for M |= φ it follows easily by

induction on the complexity of L-formulae that

M |= ψ ⇐⇒ β(M) |= ψ∗.

Similarly, for ξ ∈ SL1 we define ξ+ to be the result of replacing each occurrence of

P (t1) in ξ by R(t1, a1). Then for M |= φ

M |= ξ+ ⇐⇒ β(M) |= ξ.

In [34] an automorphism11 δ of BL1 is specified, with the property

δ[P (a1) ∧ P (a2)] = [P (a1) ∧ P (a2) ∧ P (a3)].

Using this automorphism δ, define a bijection τ : T L→ T L in the following way:

τ(M) =

β
−1(δ(β(M))) if M |= φ,

M otherwise.

Then τ is an automorphism of BL since for ψ ∈ SL,

τ [ψ] = τ [(ψ∧¬φ)∨(ψ∧φ)] = [ψ∧¬φ]∪[(δ(ψ∗))+∧φ] = [(ψ∧¬φ)∨((δ(ψ∗))+∧φ)] = [θ]

11referred to as γ in [34].
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for the sentence θ ≡ (ψ ∧ ¬φ) ∨ ((δ(ψ∗))+ ∧ φ) and similarly, for every θ ∈ SL,

τ−1[θ] = [ψ] for some ψ ∈ SL.

Let ψ ∈ SL be the sentence R(a1, a1) ∧ R(a2, a1). Then ψ∗ is P (a1) ∧ P (a2), δ(ψ∗) =

P (a1) ∧ P (a2) ∧ P (a3), so (δ(ψ∗))+ = R(a1, a1) ∧R(a2, a1) ∧R(a3, a1). Consequently,

for any probability function w satisfying INV and φ as above, we require

w(R(a1, a1) ∧R(a2, a1) ∧ φ) = w(R(a1, a1) ∧R(a2, a1) ∧R(a3, a1) ∧ φ).

On the other hand, w(R(a1, a1) ∧R(a2, a1) ∧ φ) =

w(R(a1, a1) ∧R(a2, a1) ∧R(a3, a1) ∧ φ) + w(R(a1, a1) ∧R(a2, a1) ∧ ¬R(a3, a1) ∧ φ).

However then

w(R(a1, a1) ∧R(a2, a1) ∧ ¬R(a3, a1) ∧ φ) = 0

and this sentence is satisfiable. Therefore w cannot satisfy super regularity. We

conclude that SReg is inconsistent with INV.

2.4 PIP and Similarity

Previous investigations into the Permutation Invariance Principle have utilised the

equivalent Nathanial’s Invariance Principle (NIP) [33, 35], which involves the idea of

similarity. These two principles have since been unified by [36] under the name PIP,

however, the concept of similarity is essential to working with PIP and shall be of use

to us in particular in Chapter 4. We present it here.

Definition 2.5. State formulae Θ(z1, . . . , zn), Φ(z1, . . . , zn) are said to be similar,

denoted by12 Θ(~z) ≈ Φ(~z), if for all (distinct) i1, . . . , it and j1, . . . , js from {1, . . . , n}

and σ : {zi1 , . . . , zit}� {zj1 , . . . , zjs}, we have

Θ[zi1 , . . . , zit ] = (Θ[zj1 , . . . , zjs ])σ ⇐⇒ Φ[zi1 , . . . , zit ] = (Φ[zj1 , . . . , zjs ])σ. (2.3)

We define two state descriptions to be similar analogously, with z1, . . . , zn replaced by

(distinct) constants b1, . . . , bn. Note also that in the definition of similarity, if t = s

and σ(zik) = zjk for each k ∈ {1, . . . , t}, then

12We use ~z as a shorthand for the ordered tuple 〈z1, . . . , zn〉. We will use vector notation as
shorthand for other ordered tuples (that will be clear from the context) throughout this account.
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Θ[zi1 , . . . , zit ] = Θ[zj1 , . . . , zjt ](zi1/zj1 , . . . , zit/zjt)

⇐⇒ Φ[zi1 , . . . , zit ] = Φ[zj1 , . . . , zjt ](zi1/zj1 , . . . , zit/zjt)

where Θ[zj1 , . . . , zjt ](zi1/zj1 , . . . , zit/zjt) is the result of simultaneously replacing each

occurrence of zjk in Θ[zj1 , . . . , zjt ] by zik , k ∈ {1, . . . , t}. This observation shall be used

in what follows without further mention.

Nathanial’s Invariance Principle, NIP

For similar state descriptions Θ(b1, . . . , bn) and Φ(b1, . . . , bn),

w(Θ(b1, . . . , bn)) = w(Φ(b1, . . . , bn)).

The following theorem [35, Theorem 3] brings together the notions of similarity and

automorphisms permuting state formulae (and hence NIP and PIP).

Theorem 2.6. State formulae Θ and Φ are similar if and only if there is a permutation

of state formulae that satisfies (A) and (B) and maps Θ to Φ.

Theorem 2.6 combined with Lemma 2.2 means that the definition of similarity, Defini-

tion 2.5, can be simplified considerably. For L an r-ary language, it suffices to consider

t, s ≤ r in (2.3), as we now show.

Proposition 2.7. Let L be an r-ary language. Then Definition 2.5 can be equivalently

stated as:

State formulae Θ(z1, . . . , zn), Φ(z1, . . . , zn) are similar if for all (distinct) i1, . . . , it

and j1, . . . , js from {1, . . . , n} such that t, s ≤ r and σ : {zi1 , . . . , zit}� {zj1 , . . . , zjs},

Θ[zi1 , . . . , zit ] = (Θ[zj1 , . . . , zjs ])σ ⇐⇒ Φ[zi1 , . . . , zit ] = (Φ[zj1 , . . . , zjs ])σ. (2.4)

Proof. Definition 2.5 clearly implies (2.4), since choosing distinct i1, . . . , it and j1, . . . , js

from {1, . . . , n} means that t, s ≤ n, therefore every such choice with t, s ≤ r is cov-

ered by Definition 2.5 (if r ≤ n this is immediate, and if n < r then taking t, s ≤ r

introduces no new possibilities). We now show that it is also the case that requiring

(2.4) to hold implies Definition 2.5.
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Suppose not. Then there exist state formulae Θ(z1, . . . , zn), Φ(z1, . . . , zn) of L, for

which (2.4) holds for all t, s ≤ r, but (2.4) fails when s = l, t = k with k > r.13 In

other words,

Θ[zi1 , . . . , zik ] = (Θ[zj1 , . . . , zjl ])σ

say, but

Φ[zi1 , . . . , zik ] 6= (Φ[zj1 , . . . , zjl ])σ.

Recall that (Φ[zj1 , . . . , zjl ])σ is the unique state formula Ψ(zi1 , . . . , zik) such that

Ψ(σ(zi1), . . . , σ(zik)) = Φ[zj1 , . . . , zjl ]. So we have Φ[zi1 , . . . , zik ] 6= Ψ(zi1 , . . . , zik), and

in particular, there must be some relation symbol Rd of L on which Φ[zi1 , . . . , zik ] and

Ψ(zi1 , . . . , zik) disagree. Suppose

Φ[zi1 , . . . , zik ] |= Rd(zih1
, . . . , zihrd

)

and

Ψ(zi1 , . . . , zik) 6|= Rd(zih1
, . . . , zihrd

),

the other case being symmetric.

Let τ denote the restriction of σ to zih1
, . . . , zihrd

. Let the image of τ consist of the

variables zjg1 , . . . , zjgv , so that τ : {zih1
, . . . , zihrd

}� {zjg1 , . . . , zjgv}. Then

Φ[zih1
, . . . , zihrd

] |= Rd(zih1
, . . . , zihrd

)

and

(Φ[zjg1 , . . . , zjgv ])τ 6|= Rd(zih1
, . . . , zihrd

)

but Θ[zih1
, . . . , zihrd

] = (Θ[zjg1 , . . . , zjgv ])τ . However, rd ≤ r and this contradicts our

assumption that (2.4) holds for all t, s ≤ r, so no such k, l exist. Therefore, requiring

that (2.4) holds for t, s ≤ r, implies it holds for all possible t, s, and thus Θ(~z),Φ(~z)

are similar according to the original definition.

The notion of similarity is based on the ‘structure’ of state formulae. Informally, two

state formulae are similar if wherever a sub-state formula repeats in one it also does

in the other, and wherever a sub-state formula repeats ‘blown up’ in one, it does so

13We place no restriction on l here (of course other than l ≤ k), since as shall be shown, it suffices
to assume that k > r to arrive at the required contradiction.
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in the other. So similar state formulae are those with the same underlying structure,

in terms of where their substructures locally repeat or repeat expanded. This gives

us a way of checking when two state formulae can be mapped one to the other by a

function permuting state formulae and satisfying (A) and (B).

Example. Consider a language containing a single binary relation symbol. The state

formulae Θ(z1, z2, z3, z4),Φ(z1, z2, z3, z4) represented respectively by the matrices below,

are similar:

1 0 0 1

1 0 1 0

1 0 0 1

1 1 0 1

0 0 0 0

0 1 1 1

0 0 1 0

0 1 0 0

.

This can be checked (somewhat laboriously) by confirming that the sub-state formulae

of Θ and Φ on 1 and 2 variables satisfy (2.3). For instance,

Θ[z1, z2] ≡ Θ[z1, z3](z1/z1, z2/z3) ≡ Θ[z4, z3](z1/z4, z2/z3) (2.5)

Φ[z1, z2] ≡ Φ[z1, z3](z1/z1, z2/z3) ≡ Φ[z4, z3](z1/z4, z2/z3) (2.6)

and

(Θ[z1])ρ ≡ (Θ[z4])τ ≡ Θ[z1, z4] ≡ Θ[z4, z1](z1/z4, z4/z1) (2.7)

(Φ[z1])ρ ≡ (Φ[z4])τ ≡ Φ[z1, z4] ≡ Φ[z4, z1](z1/z4, z4/z1) (2.8)

where ρ(z1) = ρ(z4) = z1, τ(z1) = τ(z4) = z4. Checking (2.3) is satisfied by the

remaining sub-state formulae on 1 and 2 variables is done similarly. Notice that by

(2.5), (2.7) and (2.6), (2.8) respectively we also have that (Θ[z1, z2])σ ≡ Θ[z1, z3, z4]

and (Φ[z1, z2])σ ≡ Φ[z1, z3, z4], where σ sends z1 and z4 to z1, and z3 to z2.



Chapter 3

PIP, Spectrum Exchangeability and

Language Invariance

3.1 Introduction

Symmetry considerations in Polyadic Inductive Logic have produced two key players

to date - the Permutation Invariance Principle - introduced in the previous chapter,

and the principle of Spectrum Exchangeability (Sx), which we shall explain shortly. In

this chapter we explore the relationship between PIP and Sx, thus hoping to elucidate

the current polyadic symmetry picture. We will find that these two principles, while

originating from entirely different motivations, share some close connections.

In this first section, we present the key principles and surrounding theory that will be

used in the chapter. In particular, we describe Sx, the functions up̄,L that satisfy it,

the principle of Language Invariance, and the family of probability functions up̄,L
Ē

that

satisfy PIP.

After introducing the required notions, we will show that PIP does not imply Sx; that

unary language invariant families with PIP can have multiple extensions to general

language invariant families with PIP (in contrast to the situation with Sx), and finally,

that we can generate language invariant families with PIP that satisfy Sx up to any

given arity, but fail to satisfy it for languages of higher arity. Results from Sections

3.2 and 3.3 appear also in [36, Chapter 42].

33
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Spectrum Exchangeability

Consider the following formulation of Atom Exchangeability (for the unary language

Lq), which is equivalent to the formulation given on page 15 if we assume Ex holds :

w(
∧n
i=1 αhi(bi)) depends only on the multiset {m1,m2, . . . ,m2q},

where mj is the number of times the atom αj appears amongst the αhi .

The multiset {m1,m2, . . . ,m2q} is known as the spectrum of the state description.

Since in the unary case knowing which atom a constant satisfies completely determines

its behaviour, two constants that satisfy the same atom within a state description are

indistinguishable from each other with respect to that state description. More formally,

bi and bj are indistinguishable in Θ(b1, . . . , bn), denoted by bi ∼Θ bj, if for any predicate

symbol Pd of the language

Θ(b1, . . . , bn) |= Pd(bi) ⇐⇒ Θ(b1, . . . , bn) |= Pd(bj).

∼Θ defined in this way is an equivalence relation on the set {b1, . . . , bn}.

We can extend this notion to a polyadic language L by defining constants bi and bj to

be indistinguishable in a state description Θ(b1, . . . , bn), bi ∼Θ bj, if for any relation

symbol Rd of L and bk1 , . . . , bku , bku+2 , . . . , bkrd from {b1, . . . , bn}

Θ(b1, . . . , bn) |= Rd(bk1 , . . . , bku , bi, bku+2 , . . . , bkrd )

⇐⇒ Θ(b1, . . . , bn) |= Rd(bk1 , . . . , bku , bj, bku+2 , . . . , bkrd ). (3.1)

The spectrum of a state description Θ, denoted by S(Θ), is the multiset of the sizes of

the equivalence classes of ∼Θ (written in descending order), and Spectrum Exchange-

ability1 is stated as follows:

Spectrum Exchangeability, Sx

For state descriptions Θ(b1, . . . , bn), Φ(b′1, . . . , b
′
n), if S(Θ) = S(Φ), then2

w(Θ(b1, . . . , bn)) = w(Φ(b′1, . . . , b
′
n)).

Clearly, Sx is a polyadic generalisation of Ax as stated above. The interested reader

may look to [20, 22, 25, 31, 36] for investigations on Sx.

1This principle first appeared in [31].
2where b′1, . . . , b

′
n as well as the usual b1, . . . , bn are some distinct choices from the ai.
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At this point it will be useful to introduce the family of functions up̄,L. These functions

have been prominent in polyadic symmetry, and are investigated for example in [20,

23, 24, 36]. They form the building blocks of probability functions satisfying Sx and

they will be used throughout this chapter.

The Functions up̄,L

A sequence of colours 〈c1, . . . , cn〉 ∈ {0, 1, 2, . . . }n is picked at random, where each

cj is picked to be i with probability pi. At each stage j, we pick a state description

Θj(b1, . . . , bj) that extends our current state description. However, if cj = ck 6= 0

for some k < j, Θj(b1, . . . , bj) must be chosen such that bk ∼Θj bj. If a new colour

or colour 0 is chosen, the new state description Θj is chosen at random from those

extending the previous one, on the condition that if ck = cl 6= 0 for some k, l < j, then

bk and bl remain indistinguishable in Θj. u
p̄,L(Θ(b1, . . . , bn)) is defined as the sum of

the probabilities of choosing ~c and a state description in the manner described above

which equals Θ(b1, . . . , bn).

More formally, let B be the set of sequences of real numbers p̄ = 〈p0, p1, p2, p3, . . . 〉,

with pi ≥ 0 for all i, p1 ≥ p2 ≥ p3 ≥ . . . and
∑∞

i=1 pi = 1. Let ~c = 〈c1, c2, . . . , cn〉 ∈

{0, 1, 2, . . . , }n. A state description Θ(b1, . . . , bn) is consistent with ~c if whenever cj =

ck 6= 0, bj ∼Θ bk. Let C(~c,~b) be the set of all state descriptions for ~b = 〈b1, b2, . . . , bn〉

consistent with ~c. Then

up̄,L(Θ(~b)) =
∑

~c∈{0,1,2,... }n
Θ∈C(~c,~b)

|C(~c,~b)|−1

n∏
i=1

pci . (3.2)

Language Invariance

Suppose we have found our rational probability function in w : SL → [0, 1], a prob-

ability function defined on the sentences of a language L. It would be unreasonable

to assume that we would know from the start, or at all, that L is the only possible

language. So we would like to be able to extend the domain of w to any larger lan-

guage, and to be able to restrict w to act on sentences of smaller languages (thus in
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effect defining w on all (finite) languages), while maintaining the probabilities w gives

to sentences of L.

This concept, now commonly known as Language Invariance, has been around since

the early days of the subject, forming Carnap’s Axiom A11 of his Axioms of Invariance

[8]. In our context, this principle is stated for unary languages as follows:

Unary Language Invariance, ULi

A probability function w on a unary language L satisfies Unary Language Invariance

if there is a family of probability functions wL, one on each (finite) unary language L,

satisfying Ex and Px, such that wL = w and whenever L ⊆ L′, wL = wL
′
� SL.

Clearly, if L ⊆ L, we have wL = w � SL for such a family. Similarly, we define

Language Invariance, Li , as the corresponding principle for any (not necessarily

unary) language L. We say that w satisfies (U)Li with P (or (U)Li + P) for some

property P if every member wL of such a family containing w also satisfies P .

Language Invariance plays a significant role in the relationship between PIP and Sx, as

we shall see in Sections 3.3 and 3.4. For this reason, it will be helpful to first understand

some of the connections between Language Invariance and Sx. The following results

are from [21, 24] and [36, Chapter 32].

Theorem 3.1. 3 A probability function w satisfies Li + Sx if and only if there is a

measure µ on the Borel subsets of B such that for θ ∈ SL,

w(θ) =

∫
B
up̄,L(θ) dµ(p̄). (3.3)

In addition, if L contains at least one non-unary relation symbol then the language

invariant family containing w is unique.

Theorem 3.2. Let w be a probability function on a unary language L satisfying ULi

+ Ax. Then there is a measure µ on the Borel subsets of B such that for θ ∈ SL

w(θ) =

∫
B
up̄,L(θ) dµ(p̄)

and thus w satisfies Li + Sx.

3This representation theorem is similar in style to de Finetti’s Representation Theorem, a key
result of the subject, which we shall discuss in Chapter 5, page 66.
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Lemma 3.3. Let {wL}, {vL} be language invariant families with Sx such that wL = vL

for every unary language L. Then wL = vL for every language L.

In other words, if two language invariant families with Sx agree on all unary languages,

then they agree on all languages. We therefore have that a given unary language

invariant family with Ax extends uniquely to a language invariant family with Sx,

since such an extension exists by Theorem 3.2 and it is unique by Lemma 3.3. In

the opposite direction, the restriction of a Li + Sx family to a ULi family with Ax is

unique, by the definition of Language Invariance and since Sx on unary languages is

equivalent to Ax4. It follows that there is a one-to-one correspondence between unary

language invariant families with Sx and language invariant families with Sx.

The Functions up̄,L
Ē

We now describe the probability functions up̄,L
Ē

, introduced in5 [33] and described also

in [36, Chapter 42]. They were thought of as building blocks of functions satisfying

PIP and the hope is that future research will lead to a representation theorem for all

functions satisfying PIP using (some version of) the up̄,L
Ē

. The up̄,L
Ē

are closely related

to the up̄,L; they can be viewed as a variant of the up̄,L with additional structure.

Let B be as defined on page 35. Let p̄ be some sequence in6 B, with p0 = 0.

Define Ek to be the set of equivalence relations ≡k on {1, 2, 3, . . . }k for each k ≥ 1,

and E ⊆ E1 × E2 × E3 × . . . to consist of the sequences of equivalence relations

Ē = 〈≡Ē1 ,≡Ē2 ,≡Ē3 , . . . 〉 that satisfy the following condition:

If 〈c1, . . . , ck〉 ≡Ēk 〈d1, . . . , dk〉, then for any s1, . . . , sm ∈ {1, . . . , k}

(not necessarily distinct), 〈cs1 , . . . , csm〉 ≡Ēm 〈ds1 , . . . , dsm〉. (3.4)

Let Ē = 〈≡Ē1 ,≡Ē2 ,≡Ē3 , . . . 〉 be some sequence in E. A sequence of colours ~c =

〈c1, . . . , cn〉 ∈ {1, 2, 3, . . . }n is picked at random so that each colour cj in ~c is cho-

sen independently to be i with probability pi.

4Note that this assumes Ex, but since (U)Li implies Ex, Ex indeed holds.
5where they were called up̄,ĒL .
6This definition is slightly different to the one given in [33], where p̄ is defined as a sequence in

B0 = {〈p1, p2, . . . 〉 | 0 ≤ pi ≤ 1 ∀i,
∑∞
i=1 pi = 1, p1 ≥ p2 ≥ . . . }. Taking B with every p̄ having p0 = 0

gives an equivalent definition of the up̄,L
Ē

that will be more convenient for our purposes.
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We define a binary relation ∼~c,Ēk on {b1, . . . , bn}k for each k, using the equivalence

〈bi1 , . . . , bik〉 ∼
~c,Ē
k 〈bj1 , . . . , bjk〉 ⇐⇒ 〈ci1 , . . . , cik〉 ≡Ēk 〈cj1 , . . . , cjk〉 (3.5)

according to our chosen Ē.

Finally, for each relation symbol Rd of L and each equivalence class A of the equivalence

relation ∼~c,Ērd (where rd is the arity of Rd), we pick either∧
〈bi1 ,...,bird 〉∈A

Rd(bi1 , . . . , bird ) or
∧

〈bi1 ,...,bird 〉∈A

¬Rd(bi1 , . . . , bird ),

each with probability 1
2
. up̄,L

Ē
(Θ(b1, . . . , bn)) is defined as the sum of the probabilities

of choosing ~c and a state description in the manner described above, which equals

Θ(b1, . . . , bn).

Definition 3.4. A state description Θ(b1, b2, . . . , bn) is consistent with ~c under Ē, if

for any relation symbol Rd of L (of arity rd) and any i1, . . . , ird and j1, . . . , jrd from

{1, . . . , n} (not necessarily distinct) such that 〈ci1 , . . . , cird 〉 ≡
Ē
rd
〈cj1 , . . . , cjrd 〉, we have

Θ |= Rd(bi1 , . . . , bird ) ⇐⇒ Θ |= Rd(bj1 , . . . , bjrd ). (3.6)

In other words, bi1 , . . . , bird and bj1 , . . . , bjrd ‘behave in the same way’ in Θ(b1, b2, . . . , bn).

When bi1 , . . . , bird and bj1 , . . . , bjrd are distinct constants, (3.6) can be expressed as

Θ[bi1 , . . . , bird ] ≡ Θ[bj1 , . . . , bjrd ](bi1/bj1 , . . . , bird/bjrd ).

We denote the set of all state descriptions for ~b = 〈b1, b2, . . . , bn〉 consistent with ~c

under Ē by CĒ(~c,~b).

It follows from the process described above that only those ~c for which Θ(~b) ∈ CĒ(~c,~b)

could add a non-zero contribution to up̄,L
Ē

(Θ(~b)). Furthermore, we can calculate the

contribution of such a ~c to up̄,L
Ē

(Θ(~b)) as

|CĒ(~c,~b)|−1

(
n∏
i=1

pci

)
=

1

2g

(
n∏
i=1

pci

)
, (3.7)

where g is the sum of the total number of ∼~c,Ērd -equivalence classes in {b1, . . . , bn}rd

for each relation symbol Rd of L, d = 1, . . . , q. In other words, g is the number
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of equivalence classes for which choices must be made, thus giving 2g possible state

descriptions in CĒ(~c,~b).

We therefore write up̄,L
Ē

(Θ(~b)) as

∑
~c∈{1,2,... }n
Θ∈CĒ(~c,~b)

|CĒ(~c,~b)|−1

n∏
i=1

pci . (3.8)

For p̄ ∈ B with p0 = 0 and Ē ∈ E, the function up̄,L
Ē

in (3.8) determines a probability

function on SL that satisfies PIP (and Ex). Moreover, the up̄,L
Ē

form a language

invariant family with PIP.7

We remark that in the definition of up̄,L
Ē

, we can equivalently define ~c = 〈c1, . . . , cn〉

to be a sequence of colours from {0, 1, 2, . . . }n, in the same way ~c is defined for the

up̄,L. However, since we require that p0 = 0 throughout this account, there is no

advantage in doing so. For any ~c that contains the colour 0,
∏n

i=1 pci = 0, and so for

a state description Θ, such a ~c can only add a zero summand to up̄,L
Ē

(Θ). We make a

convention of omitting zero summands from our probability functions for the rest of

this chapter without further mention.

3.2 Probability Functions satisfying PIP without

Sx

Having covered the required background, we begin with our task of clarifying the

relationship between PIP and Sx. We already know that Sx implies PIP since similar

state descriptions share the same spectrum [35, Corollary 4], and thus any probability

function satisfying Sx would also give the same probability to any two similar state

descriptions. On the other hand, by constructing a counterexample, we now show

that the converse of this statement does not hold; there are probability functions that

satisfy PIP but not Sx.

7[33, Theorems 1, 2], [36, Chapter 42].
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Proposition 3.5. PIP does not imply Sx.

Proof. Let L be a language containing a single binary relation symbol R. Let p̄ ∈ B

be the sequence
〈
0, 1

4
, 1

4
, 1

4
, 1

4
, 0, 0, 0, . . .

〉
and let Ē be the sequence of equivalences〈

≡Ē1 ,≡Ē2 ,≡Ē3 , . . .
〉

defined by having the following equivalence classes on pairs of colours:

{〈1, 1〉, 〈3, 3〉} {〈2, 2〉, 〈4, 4〉} {〈1, 2〉, 〈3, 4〉} {〈2, 1〉, 〈4, 3〉}

{〈1, 3〉} {〈3, 1〉} {〈1, 4〉} {〈4, 1〉} {〈2, 3〉} {〈3, 2〉} {〈2, 4〉} {〈4, 2〉} (3.9)

and satisfying (3.4). So for this Ē we have 〈1, 2〉 ≡Ē2 〈3, 4〉, 〈2, 1〉 ≡Ē2 〈4, 3〉, 〈1, 1〉 ≡Ē2
〈3, 3〉 and 〈2, 2〉 ≡Ē2 〈4, 4〉, and for all other pairs8 〈c, d〉 ≡Ē2 〈c, d〉 only.

Let Θ(b1, b2, b3, b4) be the state description of L represented by the matrix

1 0 1 0

1 1 1 0

0 1 0 1

0 1 1 0

. (3.10)

Since none of b1, b2, b3, b4 are pairwise indistinguishable in Θ (if two constants were in-

distinguishable we would have two identical rows and two identical columns in the ma-

trix representation (3.10)), the spectrum of this state description, S(Θ), is {1, 1, 1, 1}.

Consider up̄,L
Ē

(Θ(b1, b2, b3, b4)). We choose a sequence 〈c1, c2, c3, c4〉 of colours, so that

each cj is chosen independently to be one of {1, 2, 3, 4} with probability 1
4
, and every

other colour with probability 0.

Firstly, note that Θ is not consistent under Ē with any ~c in which a colour appears

more than once. To see this, let ~c = 〈c1, c2, c3, c4〉 and suppose ck = cl for some k, l ∈

{1, 2, 3, 4}, k 6= l. Then we have that 〈ck, cj〉 ≡Ē2 〈cl, cj〉 for any j ∈ {1, 2, 3, 4}, so for Θ

to be consistent with this ~c under Ē, we must have Θ |= R(bk, bj) ⇐⇒ Θ |= R(bl, bj)

for every j. This means there would be two identical rows in the matrix representing

Θ, which is not the case.

Next we examine the case where each of the four colours is selected exactly once. Let

~c = 〈1, 2, 3, 4〉 say. Since 〈1, 2〉 ≡Ē2 〈3, 4〉, for Θ to be consistent with this ~c under Ē

8By (3.4) we also have that 1 ≡Ē1 3 and 2 ≡Ē1 4, and the equivalence is preserved upwards too, so
for example 〈1, 2, 1〉 ≡Ē3 〈3, 4, 3〉 and so on, but we are focusing on pairs since the language is binary.
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we require that

Θ[b1, b2] ≡ Θ[b3, b4](b1/b3, b2/b4).

However Θ[b1, b2] is

1 0

1 1

and Θ[b3, b4](b1/b3, b2/b4) is

0 1

1 0

so Θ is not consistent with 〈1, 2, 3, 4〉 under Ē. Since none of the 2 × 2 submatrices

of (3.10) repeat, a similar argument applies to any permutation of the order in which

the four colours are picked. Therefore, Θ is consistent with no ~c under Ē, and hence

up̄,L
Ē

(Θ(b1, b2, b3, b4)) = 0.

On the other hand, consider the state description Φ(b1, b2, b3, b4) of L, represented by

the matrix

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

. (3.11)

None of b1, b2, b3, b4 are pairwise indistinguishable in Φ, so S(Φ) = {1, 1, 1, 1} = S(Θ).

We now look at up̄,L
Ē

(Φ(b1, b2, b3, b4)). Arguing as we did for Θ, we see that no ~c with

a repeated colour is consistent with Φ under Ē either. However, let ~c = 〈1, 2, 3, 4〉. In

this case,

Φ[b1, b2] = Φ[b3, b4](b1/b3, b2/b4),

Φ[b2, b1] = Φ[b4, b3](b2/b4, b1/b3),

and Φ[b1] = Φ[b3](b1/b3), Φ[b2] = Φ[b4](b2/b4),9 so Φ is consistent with this ~c under Ē.

We can calculate the contribution of ~c = 〈1, 2, 3, 4〉 to up̄,L
Ē

(Φ) by
(∏4

i=1 pci
)

1
2g

, where

g is the number of equivalence classes in {b1, b2, b3, b4}2 with respect to the equivalence

∼~c,Ē2 , displayed in (3.9). So in this case g = 12 and
(∏4

i=1 pci
)

1
2g

=
(

1
4

)4 1
212 =

9Equivalently, Φ |= R(b1, b1) ⇐⇒ Φ |= R(b3, b3) and Φ |= R(b2, b2) ⇐⇒ Φ |= R(b4, b4) both
hold.
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1
220 . Furthermore, due to the heavily symmetric structure of Φ, any choice of ~c =

〈c1, c2, c3, c4〉 where c1, c2, c3, c4 are all distinct would contribute the same non-zero

factor to up̄,L
Ē

(Φ) by a similar argument to the one above. Since there are 24 possible

permutations σ of {1, 2, 3, 4}, and it can be checked that Φ is consistent under Ē with

〈σ(1), σ(2), σ(3), σ(4)〉 for each of them, the probability up̄,L
Ē

(Φ(b1, b2, b3, b4)) = 3
217 .

We conclude that

up̄,L
Ē

(Φ(b1, b2, b3, b4)) > up̄,L
Ē

(Θ(b1, b2, b3, b4))

while S(Φ) = S(Θ). So for p̄, Ē, L as above, up̄,L
Ē

satisfies PIP but does not satisfy

Sx.

We remark that it is true in general that for a state description Θ consistent with ~c

under Ē, if ~c is such that ck = cl then bk ∼Θ bl. This is the case since if j1, . . . , jrd

are formed from i1, . . . , ird by swapping occurrences of k and l, then 〈ci1 , . . . , cird 〉 ≡
Ē
rd

〈cj1 , . . . , cjrd 〉 because 〈ci1 , . . . , cird 〉 = 〈cj1 , . . . , cjrd 〉, and Θ satisfies (3.6).

Secondly, by condition (3.4) on Ē, since for any k, ≡Ēk defines ≡Ēm-equivalences for

all m < k, if 〈c1, . . . , ck〉 ≡Ēk 〈d1, . . . , dk〉 but 〈c1, . . . , ck〉 6= 〈d1, . . . , dk〉, then we must

have cj ≡Ē1 dj but cj 6= dj for at least one j from {1, . . . , k}.

3.3 PIP and Language Invariance

We show that ULi families with PIP can have multiple extensions to Li families with

PIP, unlike unary and polyadic language invariant families with Sx (cf. page 37). Our

method will be as follows. We will first point out that the uq̄,L, q̄ ∈ B provide one

extension from a ULi + PIP to a Li + PIP family. We will then show that for some

choice of q̄, p̄, Ē the functions uq̄,L and up̄,L
Ē

agree on unary languages but differ on

binary languages, and hence conclude that the ULi + PIP family uq̄,L extends to two

distinct Li + PIP families for polyadic L, one being uq̄,L and the other up̄,L
Ē

.

Firstly, notice that ULi + Ax, ULi + Sx and ULi + PIP are all equivalent10, so the

uq̄,L (and any convex combination of the uq̄,L as in (3.3)) on unary L satisfy ULi +

10Recall that PIP is equivalent to Ax on unary languages, page 23.
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PIP. Moreover, since (Li +) Sx implies (Li +) PIP, the uq̄,L satisfy Li + PIP. So we

have one extension from a ULi + PIP family to a Li + PIP family in the form of the

uq̄,L.

Now consider the probability function up̄,L
Ē

used in the proof of Proposition 3.5, where

p̄ was 〈0, 1
4
, 1

4
, 1

4
, 1

4
, 0, 0, . . . 〉 and Ē contained the equivalence 〈1, 2〉 ≡Ē2 〈3, 4〉 and all

equivalences that follow from condition (3.4). We prove that when the language is

unary, this probability function is equal to uq̄,L with q̄ = 〈0, 1
2
, 1

2
, 0, 0, 0, . . . 〉 ∈ B.

We have q1 = p1 + p3, q2 = p2 + p4, so when the language is unary, colours 1 and

3 act as if they are one colour, as do colours 2 and 4. To see this, let ~c ∈ {1, 2}n

and ~d ∈ {1, 2, 3, 4}n. Let D~c contain all ~d formed from this particular ~c by replacing

every 1 in ~c by 1 or 3, and every 2 in ~c by 2 or 4. Then the state descriptions for

~b = 〈b1, . . . , bn〉 consistent with this ~c are exactly those consistent with a ~d from D~c

under Ē, since colours (1 and 3) and colours (2 and 4) are equivalent under Ē. That

is, C(~c,~b) = CĒ(~d,~b) for the ~d from D~c.

Furthermore, let A(1) = {1, 3}, A(2) = {2, 4}. By the definition of p̄, q̄,

qci =
∑

d∈A(ci)

pd.

So the probability of picking a particular ~c is

n∏
i=1

qci =
n∏
i=1

∑
d∈A(ci)

pd =
∑

~d:di∈A(ci)

n∏
i=1

pdi , (3.12)

and the ~d such that di ∈ A(ci) are precisely the ~d in D~c by definition.

Let Θ(b1, . . . , bn) be a state description in a unary language L. Then using (3.2) and

(3.8)

uq̄,L(Θ(~b)) =
∑

~c∈{1,2}n
Θ∈C(~c,~b)

|C(~c,~b)|−1

n∏
i=1

qci =
∑

~c∈{1,2}n
Θ∈C(~c,~b)

∑
~d∈D~c

|CĒ(~d,~b)|−1

n∏
i=1

pdi = up̄,L
Ē

(Θ(~b))

since {~d ∈ D~c : ~c ∈ {1, 2}n} = {1, 2, 3, 4}n and since Θ ∈ C(~c,~b) ⇐⇒ Θ ∈ CĒ(~d,~b)

for d ∈ D~c.

However, in the proof of Proposition 3.5 we showed that up̄,L
Ē

does not satisfy Sx on

binary languages, and therefore cannot be equal to uq̄,L when L is binary. We conclude
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that the language invariant family with PIP uq̄,L extends to (at least) two different

language invariant families with PIP. One of these is the language invariant family

with Sx, uq̄,L, and the other the family up̄,L
Ē

, where q̄, p̄, Ē are defined as above.

In fact, by modifying the above argument slightly, we can show that ULi + PIP

functions of the form uq̄,L with q0 = 0 always have multiple extensions to Li + PIP

families.

Proposition 3.6. Let L be a unary language and let uq̄,L be such that q̄ ∈ B and

q0 = 0. Then uq̄,L has more than one extension to a language invariant family with

PIP.

Proof. Since q0 = 0, q̄ will contain at least one non-zero entry q1. We construct p̄ with

p0 = 0 containing (at least) four non-zero entries by splitting q1 into pi1 , pi2 , pi3 , pi4 6= 0,

pi1 + pi2 + pi3 + pi4 = q1. If q̄ contains other non-zero entries q2, q3 etc, they are

added to p̄ and ordered such that p1 ≥ p2 ≥ . . . . Let Ē contain the equivalence

i1 ≡Ē1 i2 ≡Ē1 i3 ≡Ē1 i4 and satisfy condition (3.4). Then up̄,L
Ē

behaves as uq̄,L on unary

languages, since similarly to above, in that case colours i1, i2, i3, i4 behave as colour 1.

On the other hand, uq̄,L and up̄,L
Ē

do not agree on binary languages. To see this, let L

contain a single binary relation symbol and let Φ(b1, b2, b3, b4) be the state description

represented by (3.11). Then if Φ is consistent with some colour vector ~c, it will also be

consistent under Ē with every ~d formed from ~c by replacing 1 with i1, i2, i3 or i4. How-

ever in addition, it will also be consistent under Ē with every ~d that contains four dis-

tinct colours, since if 〈dj1 , dj2〉 ≡Ē2 〈dk1 , dk2〉 then Φ[bj1 , bj2 ] = Φ[bk1 , bk2 ](bj1/bk1 , bj2/bk2)

since all the 2× 2 submatrices of Φ are equal. So up̄,L
Ē

(Φ) > uq̄,L(Φ) and therefore up̄,L
Ē

and uq̄,L provide different extensions to Li + PIP for the unary family uq̄,L.

3.4 The up̄,L
Ē

Families and Sx

In the previous section we saw that Li families with PIP and Li families with Sx may

agree on unary languages and differ on binary languages. In this section, we investigate

this relationship further, and find that in fact, there are Li families with PIP that not
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only satisfy Sx up to any given arity r, but such that Sx fails for any language of arity

higher than r. We will first show this for a family where Sx is only satisfied by unary

languages and fails for languages that are binary or higher, and then prove the result

for any arity r ≥ 2.

Let p̄ ∈ B be such that p0 = 0 and pi > 0 for infinitely many i ∈ N+. Define Ē as

follows:

• Fix two equivalence classes under ≡Ē1 , one containing all odd colours and one of

all even colours:

1 ≡Ē1 3 ≡Ē1 5 ≡Ē1 . . . ,

2 ≡Ē1 4 ≡Ē1 6 ≡Ē1 . . . .

• Add the equivalences 〈c1, c2〉 ≡Ē2 〈c2, c1〉 ⇐⇒ c1 ≡Ē1 c2.

• For m > 1, include every equivalence that must hold by condition (3.4), which

in this case amounts to:

If 〈c1, c2〉 ≡Ē2 〈d1, d2〉 then for s1, s2, . . . , sm ∈ {1, 2},

〈cs1 , cs2 , . . . , csm〉 ≡Ēm 〈ds1 , ds2 , . . . , dsm〉, (3.13)

where either c1 = c2, d1 = d2 and s1 = s2 = · · · = sm, or c1 ≡Ē1 c2 ≡Ē1 d1 ≡Ē1 d2

(but they are not equal). This is because every equivalence on pairs either follows

by condition (3.4) from an ≡Ē1 -equivalences or it is 〈c1, c2〉 ≡Ē2 〈c2, c1〉, and in

turn, every ≡Ēm-equivalence follows from one of these.

Proposition 3.7. The language invariant family up̄,L
Ē

with p̄, Ē as above satisfies Sx

only when the language L is unary.

Proof. We first show that when L is unary, this function up̄,L
Ē

is equal to uq̄,L for some

q̄ ∈ B and hence satisfies Sx, and then prove that Sx fails for every r-ary language,

r > 1.

Let q̄ = 〈0, q1, q2, 0, 0, . . . 〉 ∈ B, with

q1 =
∑
i odd

pi , q2 =
∑
i even

pi .
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Let L be a unary language and let Θ(b1, . . . , bn) be a state description of L. Then11

uq̄,L(Θ(~b)) =
∑

~c∈{1,2}n
Θ∈CL(~c,~b)

|CL(~c,~b)|−1

n∏
i=1

qci ,

up̄,L
Ē

(Θ(~b)) =
∑

~d∈{1,2,3,... }n

Θ∈CL
Ē

(~d,~b)

|CLĒ(~d,~b)|−1

n∏
i=1

pdi .

For ~c ∈ {1, 2}n, let D~c denote the set of all those ~d ∈ {1, 2, 3, . . . }n obtained from ~c by

replacing each occurrence of 1 in ~c by any odd number, and each occurrence of 2 in ~c

by any even number. Then the D~c partition {1, 2, 3, . . . }n. Each ~d ∈ D~c is such that

di ≡Ē1 dj ⇐⇒ ci = cj. So CL(~c,~b) = CL
Ē

(~d,~b) for ~d ∈ D~c, since the state descriptions

for ~b consistent with ~c are precisely those consistent with the ~d from D~c under Ē.

Furthermore, following the same argument as on page 43,

n∏
i=1

qci =
∑
~d∈D~c

n∏
i=1

pdi ,

and so

uq̄,L(Θ(~b)) =
∑

~c∈{1,2}n
Θ∈CL(~c,~b)

∑
~d∈D~c

|CLĒ(~d,~b)|−1

n∏
i=1

pdi = up̄,L
Ē

(Θ(~b)).

Therefore, when the language is unary, uq̄,L and up̄,L
Ē

are equal and hence up̄,L
Ē

satisfies

Sx.

We now show that Sx fails for non-unary languages. Let L+ contain an r-ary relation

symbol R, r > 1. Let Θ(b1, b2, b3) be the state description of L+ such that

Θ |= R(bi1 , . . . , bir)

whenever i1 = i2,

Θ |= ¬R(bi1 , . . . , bir)

otherwise. If L+ contains any other relation symbols, we may just assume they only

occur positively in Θ.

Then S(Θ) = {1, 1, 1}, since if bi ∼Θ bj, we would require using (3.1) that

Θ |= R(bi, bi, bi3 , . . . , bir) ⇐⇒ Θ |= R(bi, bj, bi3 , . . . , bir),

11We add a superscript L to C(~c,~b) and CĒ(~d,~b) in this section to emphasise the language involved.
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but Θ |= R(bi, bi, bi3 , . . . , bir)∧¬R(bi, bj, bi3 , . . . , bir) whenever i 6= j, and thus no bi, bj

can be indistinguishable in Θ.

Consider up̄,L
+

Ē
(Θ(b1, b2, b3)). While Θ is consistent with no ~d under Ē in which a colour

appears more than once, Θ is consistent, for example12, with 〈d1, d2, d3〉 = 〈1, 2, 3〉.

We have 1 ≡Ē1 3 so by (3.13), 〈d1, d1, . . . , d1〉 ≡Ēr 〈d3, d3, . . . , d3〉, and

Θ |= R(b1, b1, . . . , b1) ⇐⇒ Θ |= R(b3, b3, . . . , b3)

holds. In addition, 〈d1, d3〉 ≡Ē2 〈d3, d1〉, so we require that for di1 , . . . , dir and dj1 , . . . , djr

where for each g = 1, . . . , r either ig = 1 and jg = 3 or ig = 3 and jg = 1,

Θ |= R(bi1 , . . . , bir) ⇐⇒ Θ |= R(bj1 , . . . , bjr).

But this holds too, since we have either i1 = i2 and j1 = j2, or i1 6= i2 and j1 6= j2.

Therefore, since in addition
∏3

i=1 pi > 0, up̄,L
+

Ē
(Θ) > 0.

On the other hand, let Ψ(b1, b2, b3) be the state description of L+ such that

Ψ |= R(b1, bi2 , . . . , bir) ∧R(bi1 , b2, bi3 , . . . , bir)

for i1, . . . , ir ∈ {1, 2, 3} and

Ψ |= ¬R(bi1 , . . . , bir)

otherwise. We again assume that any other relation symbols only occur positively in

Ψ. Then S(Ψ) = {1, 1, 1} as b1 cannot be indistinguishable from any other constant

because

Ψ |= R(b1, b1, . . . , b1) ∧ ¬R(bs, b1, . . . , b1)

for s = 2, 3, and b2 cannot be indistinguishable from b3 similarly.

In contrast to Θ, when considering up̄,L
+

Ē
(Ψ) we find that Ψ is consistent with no ~d

under Ē. Clearly, Ψ is consistent with no ~d that contains a repeated colour. So

suppose that every colour in ~d = 〈d1, d2, d3〉 appears exactly once. By the definition of

Ē, there must be two colours in ~d that are equivalent under ≡Ē1 since there are only two

equivalence classes under≡Ē1 ; say ds ≡Ē1 dt. We show that for every choice of s 6= t from

{1, 2, 3} we have Ψ 6∈ CL+

Ē
(~d,~b). If ds ≡Ē1 d3, then 〈ds, ds, . . . , ds〉 ≡Ēr 〈d3, d3, . . . , d3〉,

12We remark that Θ is consistent under Ē with every ~d ∈ {1, 2, 3, . . . }3 in which each colour appears
exactly once by a similar argument.
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but Ψ |= R(bs, bs, . . . , bs) ∧ ¬R(b3, b3, . . . , b3) for s = 1, 2. So the remaining possibility

is if d1 ≡Ē1 d2. Then by the definition of Ē we have 〈d1, d2〉 ≡Ē2 〈d2, d1〉, and so for any

i1, . . . , ir and j1, . . . , jr such that either ig = 1 and jg = 2 or ig = 2 and jg = 1, we

require

Ψ |= R(bi1 , . . . , bir) ⇐⇒ Ψ |= R(bj1 , . . . , bjr).

Let i1 = 1, i2 = 2, so j1 = 2, j2 = 1. Then we have

〈d1, d2, di3 , . . . , dir〉 ≡Ēr 〈d2, d1, dj3 , . . . , djr〉

but

Ψ |= R(b1, b2, bi3 , . . . , bir) ∧ ¬R(b2, b1, bj3 , . . . , bjr).

So Ψ cannot be consistent with 〈d1, d2, d3〉 whichever two of d1, d2, d3 are≡Ē1 -equivalent,

and hence up̄,L
+

Ē
(Ψ) = 0.

Therefore, we have shown that for any r-ary language L+ with r ≥ 2, we can find state

descriptions with the same spectrum that get different probabilities by up̄,L
+

Ē
, hence

up̄,L
+

Ē
does not satisfy Sx.

We can generalise this method to construct Li + PIP families with Sx holding only

for languages of arity at most r.

Theorem 3.8. There exist language invariant families of probability functions with

PIP that satisfy Sx up to any given arity r ≥ 2, and such that Sx fails on languages of

arity higher than r.

Proof. We provide a method to generate such families. Let p̄ ∈ B be such that p0 = 0

and infinitely many of the other pi are non-zero. Define Ē as follows: Fix the ≡Ē1 -

equivalences, so that each colour i 6= 0 is in one of r+ 1 many ≡Ē1 -equivalence classes.

For each m such that 1 < m < r+ 1, include in Ē every ≡m-equivalence that does not

alter ≡Ē1 , that is

〈ci1 , . . . , cim〉 ≡Ēm 〈di1 , . . . , dim〉 ⇐⇒ (ci1 ≡Ē1 di1) ∧ (ci2 ≡Ē1 di2) ∧ · · · ∧ (cim ≡Ē1 dim).

Now define ≡Ēm for m ≥ r + 1 by (the usual condition on Ē):

If 〈c1, . . . , ck〉 ≡Ēk 〈d1, . . . , dk〉, then for s1, . . . , sm ∈ {1, . . . , k}

(not necessarily distinct), 〈cs1 , . . . , csm〉 ≡Ēm 〈ds1 , . . . , dsm〉. (3.14)
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Define q̄ ∈ B with q0 = 0 by:

qf is the sum of all the pi equivalent to each other under ≡Ē1 ,

f = 1, 2, . . . . So q̄ has exactly r + 1 non-zero entries. Then up̄,L
Ē

and uq̄,L agree on

languages up to highest arity r, following an argument similar to the one presented

for the unary case above. It follows that this Li + PIP family up̄,L
Ē

satisfies Sx on

languages of arity at most r.

To see that up̄,L
Ē

does not satisfy Sx on languages of arity higher than r, let L be a

language containing an s-ary relation symbol R, s ≥ r+ 1. Let Θ(b1, . . . , br, br+1, br+2)

be the state description of L defined by

Θ |= R(bi1 , . . . , bir+1 , . . . , bis)

whenever i1, . . . , ir+1 contain a repeat13,

Θ |= ¬R(bi1 , . . . , bir+1 , . . . , bis)

otherwise. We assume that if L contains any other relation symbols they only occur

positively in Θ. Reasoning as before, S(Θ) is {1, 1, . . . , 1}. Let ~d ∈ {1, 2, 3, . . . }r+2

with no colour appearing more than once. The only s-tuples of colours equivalent

according to ≡Ēs contain repeats by the definition of Ē since s ≥ r + 1, so for any

i1, . . . , is and j1, . . . , js from {1, . . . , r + 2}, if 〈di1 , . . . , dis〉 ≡Ēs 〈dj1 , . . . , djs〉, then

Θ |= R(bi1 , . . . , bis) ⇐⇒ Θ |= R(bj1 , . . . , bjs)

since they all occur only positively in Θ. So Θ is consistent with (every) such ~d under

Ē and up̄,L
Ē

(Θ) > 0.

On the other hand, let Ψ(b1, . . . , br, br+1, br+2) be the state description of L defined by

Ψ |= R(b1, bi2 , . . . , bis) ∧R(bi1 , b2, bi3 , . . . , bis) ∧ · · · ∧R(bi1 , . . . , bir , br+1, bir+2 , . . . , bis)

for all i1, . . . , is ∈ {1, 2, . . . , r + 2}, and

Ψ |= ¬R(bi1 , . . . , bis)

13Notice that we are concentrating here just on the initial r + 1 of the constants instantiating the
relation R.
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otherwise. We again assume that if L contains other relation symbols they only occur

positively in Ψ. Then S(Ψ) = {1, 1, . . . , 1} since

Ψ |= R(bi, bi, . . . , bi) ∧ ¬R(bi, . . . , bi, bj, bi, . . . , bi)

with bj in the ith place for every i ∈ {1, . . . , r + 1}, j ∈ {1, . . . , r + 2}, i 6= j, so no

two constants can be indistinguishable in Ψ. In addition, for each ~d ∈ {1, 2, 3, . . . }r+2,

we must have dv ≡Ē1 dt for some v, t ∈ {1, . . . , r + 2}, v 6= t, since there are only r + 1

equivalence classes under ≡Ē1 . So using (3.14) on the equivalence 〈dv, dv〉 ≡Ē2 〈dv, dt〉

gives

〈dv, dv, . . . , dv〉 ≡Ēs 〈dv, . . . , dv, dt, dv, . . . , dv〉

where dt is in the vth position. If dv ≡Ē1 dr+2, or if v 6= t are any two from {1, . . . , r+1},

then (similarly to above)

Ψ |= R(bv, bv, . . . , bv) ∧ ¬R(bv, . . . , bv, bt, bv, . . . , bv).

Therefore, since such v, t exist for every ~d ∈ {1, 2, 3, . . . }r+2, Ψ is consistent with

no ~d under Ē, and up̄,L
Ē

(Ψ) = 0. So up̄,L
Ē

(Θ) 6= up̄,L
Ē

(Ψ) while S(Θ(b1, . . . , br+2)) =

S(Ψ(b1, . . . , br+2)).

We conclude that the language invariant family up̄,L
Ē

satisfies Sx on languages of arity

at most r, and no further.



Chapter 4

PIP and Polyadic Atom

Exchangeability

4.1 Introduction

Atom Exchangeability, as introduced on page 15, is a natural symmetry principle in

Unary Inductive Logic. It is implied by the Unary Invariance Principle1 - the symmetry

‘umbrella’ principle, and implies the previously mentioned Predicate Exchangeability

and Strong Negation.

Early proponents of the subject were already aware of it. In his proposed princi-

ples of symmetry, Carnap suggested the principle of Attribute Symmetry [9, 44]. In

broad terms, this is the idea that individuals (constants) are categorised by different

families of attributes, and that these should be invariant under permutations of the

indexes of each family. Atom Exchangeability can be thought of as the special case

when constants are partitioned by the single family ‘atoms’, and w is invariant under

permutations of the names of classes in this family, i.e. the names of atoms.

Further support for this principle was accorded by Carnap and Johnson due to it being

a consequence of their favoured Johnson’s Sufficientness Postulate [17] (see page 65),

and though some criticism of Ax has been raised (for example in [9, 27, 28]), it remains

a prominent principle in Unary Inductive Logic.

1[36, Proposition 23.5].

51
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In the previous chapter, we introduced the principle of Spectrum Exchangeability as a

polyadic generalisation of Atom Exchangeability (under the assumption of Ex). In this

chapter, we will show that it is, in fact, PIP that forms the more natural generalisation

of Ax. For this purpose, we will introduce the concept of polyadic atoms, a key notion

that underpins much of the remainder of this thesis. Results from this chapter appear

also in [39] and in [36, Chapter 41].

4.2 Polyadic Atoms

Lemma 2.2 exemplified the unique role state formulae on r variables play in determin-

ing automorphisms of BL that permute state formulae for an r-ary language L. We

now demonstrate another important role of these formulae; they act as the building

blocks of L, much in the same way that atoms act as the building blocks of a unary

language. This will allow us to prove the above claim - that PIP is a natural general-

isation of the thoroughly studied unary principle of Ax, as stated on page 15 for the

language Lq:

Atom Exchangeability, Ax

For any permutation τ of {1, 2, . . . , 2q} and constants b1, . . . , bn,

w

(
n∧
i=1

αhi(bi)

)
= w

(
n∧
i=1

ατ(hi)(bi)

)
.

The formulation of Ax above is the statement that two state descriptions that are

mapped one to the other by a permutation of atoms, should get the same probability.

As we already mentioned in Chapter 2, it is easy to see that in the unary case, per-

mutations of atoms are in an obvious bijection with permutations of state formulae

satisfying (A) and (B) and that in the unary context PIP is equivalent to Ax.

We now extend the notion of atoms to polyadic (r-ary) languages L, by defining a

polyadic atom to be a state formula on r variables. We label the polyadic atoms

γ1(x1, . . . , xr), γ2(x1, . . . , xr), . . . , γN(x1, . . . , xr) in a fixed order, where the total num-

ber of atomsN is 2
Pq
d=1 r

rd , since each state formula of r variables contains rrd conjuncts

for each d = 1, 2, . . . , q.
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Unless indicated otherwise, γk will stand for γk(x1, . . . , xr), with these variables. Note

that for purely unary languages, this definition exactly describes the atoms of the

language in the original sense (as defined on page 13). We will often drop ‘polyadic’

and refer to these formulae simply as atoms.

In a manner corresponding to the case for unary languages, every state formula of the

polyadic language L may be written as a conjunction of polyadic atoms; namely,

Θ(z1, . . . , zn) =
∧

〈i1,...,ir〉∈{1,...,n}r
γhi1,...,ir (zi1 , . . . , zir), (4.1)

since such a conjunction completely describes the behaviour of2 z1, . . . , zn in relation to

each other (and no other variables). In contrast, however, not every such conjunction

describes a state formula of L, since some of these will be inconsistent. For instance,

for L containing a single binary relation symbol and a state formula Θ(z1, z2, z3, z4),

we would need γh3,4(z3, z4) = γh4,3(z4, z3) for the conjunction to be consistent.

Note that when i1, . . . , ir in (4.1) are distinct,

γhi1,...,ir (zi1 , . . . , zir) = Θ[zi1 , . . . , zir ].

On the other hand, when i1, . . . , ir are not all distinct we have

γhi1,...,ir (x1, . . . , xr) = (Θ[zim1
, . . . , zims ])σ

where im1 , . . . , ims are the distinct numbers among i1, . . . , ir, and σ : {x1, . . . , xr} �

{zim1
, . . . , zims} is defined by σ(xj) = zimk ⇐⇒ ij = imk , so

γhi1,...,ir (zi1 , . . . , zir) = Θ[zim1
, . . . , zims ].

4.3 PIP as Polyadic Atom Exchangeability

By Lemma 2.2 every permutation of state formulae that satisfies conditions (A) and (B)

from page 20, equivalently a permutation that extends to an automorphism permuting

state formulae, is determined by its restriction to the atoms of L. Let Γ denote the

2Recall that throughout this account z1, . . . , zn denote a distinct choice of variables from x1, x2, . . .
and that we use ‘=’ also for logical equivalence, as set out on page 11.
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set of permutations τ of {1, . . . , N} such that the permutation ξ of atoms defined by

ξ(γk(x1, . . . , xr)) = γτ(k)(x1, . . . , xr) is a permutation of state formulae satisfying (A)

and (B). With these definitions, PIP is clearly equivalent to what may be termed

Polyadic Atom Exchangeability - Permutation Version

For any state description ∧
〈i1,...,ir〉∈{1,...,n}r

γhi1,...,ir (bi1 , . . . , bir)

and τ ∈ Γ,

w

 ∧
〈i1,...,ir〉∈{1,...,n}r

γhi1,...,ir (bi1 , . . . , bir)

 = w

 ∧
〈i1,...,ir〉∈{1,...,n}r

γτ(hi1,...,ir ) (bi1 , . . . , bir)

 .

This represents PIP as a generalisation of Ax as stated above, except that we limit the

‘allowed’ permutations of polyadic atoms to those in Γ. The next result will determine

exactly which3 permutations of atoms define a permutation of state formulae that

satisfies (A) and (B).

Lemma 4.1. A permutation τ of {1, . . . , N} is in Γ if and only if for each m ≤ r,

distinct 1 ≤ i1, . . . , im ≤ r, σ : {x1, . . . , xr}� {xi1 , . . . , xim} and k, s ∈ {1, . . . , N}

(γk[xi1 , . . . , xim ])σ = γs(x1, . . . , xr) ⇐⇒ (γτ(k)[xi1 , . . . , xim ])σ = γτ(s)(x1, . . . , xr).

(4.2)

Proof. We first show that if τ is in Γ then (4.2) holds. Suppose that τ ∈ Γ and let η be

the associated automorphism of BL. Then η̄ satisfies (A) and (B) and η̄(γk) = γτ(k).

Assume the left hand side of (4.2) is satisfied. By condition (B)

η̄(γk[xi1 , . . . , xim ]) = η̄(γk)[xi1 , . . . , xim ] = γτ(k)[xi1 , . . . , xim ]

so by (A)

(γτ(k)[xi1 , . . . , xim ])σ = (η̄(γk[xi1 , . . . , xim ]))σ = η̄((γk[xi1 , . . . , xim ])σ) .

3Note that the condition in the following lemma is trivial when L is purely unary in accordance
with the aforementioned fact that any permutation of unary atoms extends to a permutation of state
formulae satisfying (A) and (B).
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Therefore, since γτ(s) = η̄(γs), if (γk[xi1 , . . . , xim ])σ = γs(x1, . . . , xr) then

(γτ(k)[xi1 , . . . , xim ])σ = η̄(γs(x1, . . . , xr)) = γτ(s)(x1, . . . , xr)

so the right hand side of (4.2) holds. Now assume that the right hand side of (4.2) is

satisfied. The left hand side follows upon noting that τ−1 must also be in Γ since η̄

has an inverse η̄−1 which also permutes state formulae [36, Chapter 39], and η̄−1(γk) =

γτ−1(k). So following the above argument with η̄ replaced by η̄−1 and γk replaced by

γτ(k) yields the required implication. Hence if τ ∈ Γ, the left and right hand sides of

(4.2) are equivalent.

To prove the opposite direction, assume that τ satisfies (4.2). We will show that τ is

in Γ. First observe that for such τ and for zi1 , . . . , zir not necessarily distinct variables,

γk(zi1 , . . . , zir) is consistent just when γτ(k)(zi1 , . . . , zir) is consistent. This is the case

since for a polyadic atom γv, γv(zi1 , . . . , zir) is consistent just when γv(x1, . . . , xr) is

(γv[xm1 , . . . , xmt ])σ where im1 , . . . , imt are the distinct numbers amongst i1, . . . , ir and

σ is defined by σ(xj) = xmu ⇐⇒ ij = imu . Using (4.2), this holds for γk(zi1 , . . . , zir)

if and only if it holds for γτ(k)(zi1 , . . . , zir).

Another observation we need is that if two atoms γk, γh have the property that restrict-

ing one to some m variables and the other to some (other) m variables produces the

same state formula up to renaming the variables then the same holds for γτ(k), γτ(h).

Expressed more formally, for (distinct) xi1 , . . . , xim and xj1 , . . . , xjm from {x1, . . . , xr}

we have

γk[xi1 , . . . , xim ] = γh[xj1 , . . . , xjm ](xi1/xj1 , . . . , xim/xjm)

⇐⇒ γτ(k)[xi1 , . . . , xim ] = γτ(h)[xj1 , . . . , xjm ](xi1/xj1 , . . . , xim/xjm) (4.3)

where γh[xj1 , . . . , xjm ](xi1/xj1 , . . . , xim/xjm) is the result of replacing every occurrence

in γh[xj1 , . . . , xjm ] of xjv by xiv , v = 1, . . . ,m.

To see this, consider for example σ1 : {x1, . . . , xr}� {xi1 , . . . , xim} and σ2 : {x1, . . . , xr}�

{xj1 , . . . , xjm} defined by

σ1(xi) =

xi if i ∈ {i1, . . . , im},

xi1 otherwise,

σ2(xi) =

xjv if i = iv ∈ {i1, . . . , im},

xj1 otherwise.
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Then the left hand side of (4.3) holds just if for these σ1, σ2 we have

(γk[xi1 , . . . , xim ])σ1 = γs(x1, . . . , xr) = (γh[xj1 , . . . , xjm ])σ2

for some γs(x1, . . . , xr), in which case

(γτ(k)[xi1 , . . . , xim ])σ1 = γτ(s)(x1, . . . , xr) = (γτ(h)[xj1 , . . . , xjm ])σ2

follows by (4.2), implying the right hand side of the equivalence. The other direction

follows similarly.

For a state formula

Θ(z1, . . . , zn) =
∧

〈i1,...,ir〉∈{1,...,n}r
γhi1,...,ir (zi1 , . . . , zir),

let the function z be defined by

z(Θ(z1, . . . , zn)) =
∧

〈i1,...,ir〉∈{1,...,n}r
γτ(hi1,...,ir )(zi1 , . . . , zir). (4.4)

By the first of the above observations each conjunct in (4.4) is consistent. Moreover, the

whole conjunction must be consistent, since otherwise there would be 〈i1, . . . , ir〉 and

〈j1, . . . , jr〉 from {1, . . . , n}r and distinct k1, . . . , kt occurring both amongst {i1, . . . , ir}

and {j1, . . . , jr} such that for some relation symbol Rd of L of arity rd and some

m1, . . . ,mrd from {1, . . . , t},

γτ(hi1,...,ir )(zi1 , . . . , zir) |= Rd(zkm1
, . . . , zkmrd ),

γτ(hj1,...,jr )(zj1 , . . . , zjr) |= ¬Rd(zkm1
, . . . , zkmrd ).

This would mean that

γτ(hi1,...,ir )(zi1 , . . . , zir)[zk1 , . . . , zkt ] 6= γτ(hj1,...,jr )(zj1 , . . . , zjr)[zk1 , . . . , zkt ],

so by the second observation

γhi1,...,ir (zi1 , . . . , zir)[zk1 , . . . , zkt ] 6= γhj1,...,jr (zj1 , . . . , zjr)[zk1 , . . . , zkt ].

However this is impossible since both are Θ(z1, . . . , zn)[zk1 , . . . , zkt ]. Therefore z de-

fined by (4.4) permutes state formulae and clearly z(γk(x1, . . . , xr)) = γτ(k)(x1, . . . , xr).
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It remains to check that z satisfies conditions (A) and (B). Condition (B) clearly holds

and for (A), let

Θ(z1, . . . , zm) =
∧

〈i1,...,ir〉∈{1,...,m}r
γhi1,...,ir (zi1 , . . . , zir)

and let σ : {y1, . . . , yn}� {z1, . . . , zm}. Writing σ also for the mapping from {1, . . . , n}

to {1, . . . ,m} that sends j to i iff σ(yj) = zi, we have

(Θ(z1, . . . , zm))σ =
∧

〈j1,...,jr〉∈{1,...,n}r
γhσ(j1),...,σ(jr)

(yj1 , . . . , yjr),

since Θσ is the (unique) state formula Φ such that Φ(σ(y1), . . . , σ(yn)) = Θ(z1, . . . , zm)

and γhσ(j1),...,σ(jr)
(σ(yj1), . . . , σ(yjr)) = γhi1,...,ir (zi1 , . . . , zir). In addition,

z(Θ(z1, . . . , zm)) =
∧

〈i1,...,ir〉∈{1,...,m}r
γτ(hi1,...,ir )(zi1 , . . . , zir).

So both (z(Θ(z1, . . . , zm)))σ and z((Θ(z1, . . . , zm))σ) are∧
〈j1,...,jr〉∈{1,...,n}r

γτ(hσ(j1),...,σ(jr))(yj1 , . . . , yjr)

and thus (A) holds.

We now show that another formulation of Ax, which in the unary case is easily seen

to be equivalent to the one given above, in the polyadic context becomes a principle

that is not obviously equivalent to PIP but somewhat surprisingly turns out to be so

nevertheless.

Atom Exchangeability (II)

Let

Θ(b1, . . . , bn) =
n∧
i=1

αhi(bi), Φ(b1, . . . , bn) =
n∧
i=1

αki(bi)

be state descriptions of a unary language. If for all 0 ≤ i, j ≤ n we have

hi = hj ⇐⇒ ki = kj

then w(Θ) = w(Φ).
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The immediate polyadic counterpart of this is

Polyadic Atom Exchangeability - Spectral-Equivalence Version, PAx

Let

Θ(b1, . . . , bn) =
∧

〈i1,...,ir〉∈{1,...,n}r
γhi1,...,ir (bi1 , . . . , bir)

and

Φ(b1, . . . , bn) =
∧

〈i1,...,ir〉∈{1,...,n}r
γki1,...,ir (bi1 , . . . , bir)

be state descriptions of L such that for all 〈i1, . . . , ir〉, 〈j1, . . . , jr〉 ∈ {1, . . . , n}r

hi1,...,ir = hj1,...,jr ⇐⇒ ki1,...,ir = kj1,...,jr . (4.5)

Then w(Θ(b1, . . . , bn)) = w(Φ(b1, . . . , bn)).

We shall show that PIP is equivalent to PAx and in order to do so we will use the

results on similarity from Section 2.4.

Theorem 4.2. The principle PAx is equivalent to PIP.

Proof. First assume that w satisfies PAx. Suppose that z is a permutation of state

formulae that satisfies (A) and (B), Θ is a state formula and Φ = z(Θ). Assuming

Θ(b1, . . . , bn) and Φ(b1, . . . , bn) are written as in the statement of PAx, by condition

(B) we have that z(γhi1,...,ir ) = γki1,...,ir so (4.5) holds. Hence

w(Θ(b1, . . . , bn)) = w(Φ(b1, . . . , bn)),

showing PIP for w.

Now suppose that w satisfies PIP. Let Θ,Φ be as in the statement of PAx and such

that (4.5) holds. It suffices to show that Θ and Φ are similar since then it will follow

by Theorem 2.6 and PIP that w(Θ(b1, . . . , bn)) = w(Φ(b1, . . . , bn)), proving PAx for w.

So suppose that for distinct i1, . . . , it and j1, . . . , js from {1, . . . , n} and σ : {zi1 , . . . , zit}�

{zj1 , . . . , zjs} we have

Θ[zi1 , . . . , zit ] = (Θ[zj1 , . . . , zjs ])σ.

Then for every choice of m1, . . . ,mrd (with possible repeats) from {i1, . . . , it} and each

relation symbol Rd of arity rd,

Θ |= Rd(zm1 , . . . , zmrd ) ⇐⇒ Θ |= Rd(σ(zm1), . . . , σ(zmrd ))
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since

Θ[zi1 , . . . , zit ] |= Rd(zm1 , . . . , zmrd )⇐⇒ Θ[zj1 , . . . , zjs ] |= Rd(σ(zm1), . . . , σ(zmrd )).

With a slight abuse of notation, writing σ(ik) = je instead of σ(zik) = zje , this means

that for any m1, . . . ,mr (with possible repeats) from {i1, . . . , it} we have hm1,...,mr =

hσ(m1),...,σ(mr), as γhm1,...,mr
describes every relation involving variables from {zm1 , . . . , zmr}

and similarly for γhσ(m1),...,σ(mr)
.

If we had

Φ[zi1 , . . . , zit ] 6= (Φ[zj1 , . . . , zjs ])σ

then reasoning as above, this would mean that for some m1, . . . ,mr from {i1, . . . , it},

km1,...,mr 6= kσ(m1),...,σ(mr). However this would contradict (4.5), so Φ[zi1 , . . . , zit ] =

(Φ[zj1 , . . . , zjs ])σ and since the same argument can be repeated with Θ and Φ inter-

changed, we conclude that Θ and Φ are similar as required.

4.4 PIP as Polyadic Atom Exchangeability under

Ex

We have thus far shown that two versions of Atom Exchangeability on unary languages

result in the principle PIP on polyadic languages when formulated using polyadic

atoms. The third remaining formulation of Ax in the unary context utilises the idea

of a spectrum of a state description, as explained on page 34 and restated below. This

version can easily be seen to be equivalent to the previous statements of unary Ax if

we assume that Ex holds. It would be natural to ask therefore, whether a polyadic

formulation of this version of Ax would be equivalent to PIP + Ex. We shall show

that for the most immediate polyadic counterpart of this principle the answer would

be no. Whether other possible definitions of polyadic spectrum do indeed provide an

equivalence with PIP + Ex remains a topic for further research.
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Atom Exchangeability (III)

For Θ(b1, . . . , bn) a state description of a unary language Lq, the probability

w(Θ(b1, . . . , bn)) = w

(
n∧
i=1

αhi(bi)

)

depends only on the spectrum of this state description, that is on the multiset {m1, . . . ,m2q}

where mj = |{i |hi = j}|.

By analogy, in the polyadic case this gives rise to defining the p-spectrum (polyadic,

atom-based spectrum) of a state description

Θ(b1, . . . , bn) =
∧

〈i1,...,ir〉∈{1,...,n}r
γhi1,...,ir (bi1 , . . . , bir)

of a polyadic language L as the multiset {m1, . . . ,mN} where

mj = |{〈i1, . . . , ir〉 ∈ {1, . . . , n}r |hi1,...,ir = j}|.

For ease of notation, we usually omit zero entries from our multisets.

We remark that current use of the term spectrum in Polyadic Inductive Logic, as in

the statement of Spectrum Exchangeability (on page 34), which involves the strong

notion of indistinguishability of constants in a particular state description, is clearly

different from the notion of p-spectrum. Unless the language is unary, this type of

indistinguishability is not preserved when the state description is extended, that is

when we consider another state description with additional constants that implies the

given one.

On the other hand, in the definition of a p-spectrum of a state description we consider

ordered r-tuples of constants (possibly with repeats), classifying them purely by the

way these r constants relate to each other in the state description and disregarding

their connections to the other constants. If we choose to define p-indistinguishability of

two r-tuples in a state description to mean satisfying the same atom within it, we find

that this notion of p-indistinguishability is ‘forever’: extending the state description

to more constants does not change it.
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With this in mind, we arrive at the following new polyadic symmetry principle:

Atom-based Spectrum Exchangeability, p-Sx

The probability of a state description of a polyadic language L depends only on its

p-spectrum.

Examining this new principle, we can see that p-Sx implies Ex, since if w satisfies p-

Sx then w(Θ(b1, . . . , bn)) = w(Θ(b′1, . . . , b
′
n)) when b1, . . . , bn and b′1, . . . , b

′
n are distinct

constants and Θ(b1, . . . , bn) is a state description, because they share the same p-

spectrum. It also implies PAx (and hence PIP), since any two state descriptions that

satisfy (4.5) necessarily have the same p-spectrum.

We now show the converse does not hold in general by pointing out a probability

function that satisfies PIP + Ex but gives different probabilities to state descriptions

with the same p-spectrum. For this purpose, we employ one of the probability functions

up̄,L
Ē

used in the previous chapter.

As in the proof of Proposition 3.5, let L be a language with a single binary relation

symbol R. Let p̄ =
〈
0, 1

4
, 1

4
, 1

4
, 1

4
, 0, 0, 0, . . .

〉
and let Ē contain the equivalence 〈1, 2〉 ≡Ē2

〈3, 4〉 together with all equivalences that follow by condition (3.4).

Having picked the sequence 〈c1, . . . , cn〉 where each cj is chosen to be i with probability

pi, we pick uniformly at random a state description consistent with this sequence under

Ē, where a state description

Θ(b1, . . . , bn) =
∧

〈i1,i2〉∈{1,...,n}2
γhi1,i2 (bi1 , bi2)

of L is consistent with 〈c1, . . . , cn〉 under Ē if4 for any 〈i1, i2〉, 〈j1, j2〉 ∈ {1, . . . , n}2,

〈ci1 , ci2〉 ≡Ē2 〈cj1 , cj2〉 =⇒ hi1,i2 = hj1,j2 . (4.6)

Then (as before), up̄,L
Ē

(Θ(b1, . . . , bn)) is the probability Θ(b1, . . . , bn) is the state de-

scription arrived at by the above process.

4This definition for an r-ary language is equivalent to Definition 3.4 given on page 38.
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Let Θ(b1, b2, b3, b4) and Φ(b1, b2, b3, b4) be state descriptions represented respectively

by the following matrices

1 0 0 1

0 1 0 1

0 0 1 1

1 1 1 1

1 0 1 1

0 1 0 1

1 0 1 0

1 1 0 1

.

The p-spectrum of both is {10, 6}, so it remains to show that up̄,L
Ē

(Θ) 6= up̄,L
Ē

(Φ).

To see this, note that neither Θ nor Φ are consistent with any sequence of colours

〈c1, c2, c3, c4〉 in which a colour appears more than once, since as explained by the

remark on page 42, this would require the state descriptions to have indistinguishable

constants and that is not the case.

So consider a sequence 〈c1, c2, c3, c4〉 where each colour appears exactly once. For some

permutation ν of {1, 2, 3} we must have 〈cν(1), cν(2)〉 ≡Ē2 〈cν(3), c4〉 but

Θ[bν(1), bν(2)] =
1 0

0 1
, Θ[bν(3), b4] =

1 1

1 1

for every ν, so Θ is consistent with no sequence 〈c1, c2, c3, c4〉 and hence up̄,L
Ē

(Θ) = 0.

On the other hand, Φ is consistent for example with the sequence 〈1, 2, 3, 4〉 and hence

up̄,L
Ē

(Φ) 6= 0.5 Thus up̄,L
Ē

is a function that satisfies PIP and Ex without satisfying

p-Sx, as claimed.

5The total probabilities may be checked to be up̄,L
Ē

(Θ) = 0 and up̄,L
Ē

(Φ) = 2−16.



Chapter 5

Binary Signature Exchangeability

5.1 Introduction

We investigate the notion of a signature in binary Inductive Logic, introduce the

Principle of Signature Exchangeability and study the probability functions satisfying

it. We prove a representation theorem for such functions and show that they satisfy a

binary version of the Principle of Instantial Relevance. In the next chapter, we extend

this investigation to general polyadic languages. The material in this chapter appears

also in [40].

We begin with a closer inspection of the principle of Constant Exchangeability, which

we have already met. Known by Johnson as The Permutation Postulate (see for

example [17, 43, 44]) or in Carnap’s terms, the Principle of Symmetry [6, 8], Ex is

a widely accepted and commonly assumed rational requirement in Pure Inductive

Logic. Informally, this is the statement that in the absence of further knowledge,

different individuals of our universe should be treated equally. In our framework it

means that the probability assigned to a sentence is independent of the particular

constants instantiating it. In addition, in the thoroughly studied unary context, this

principle exists in an equivalent formulation - as invariance under signatures of state

descriptions. This unary characterisation of the principle has led to some of the most

significant results in Unary Inductive Logic thus far. These include, for example,

a complete characterisation of functions satisfying Ex, and the Principle of Instantial

Relevance (see page 64) following as a logical consequence of Constant Exchangeability.

63
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In contrast, such results have so far not translated satisfactorily into the polyadic.

Having extended the concept of atoms to polyadic languages in the previous chapter,

in the following chapters we generalise the notion of a signature first to binary and

then to Polyadic Inductive Logic, and investigate the theory this yields for higher arity

languages. As has been our custom, in this first section we give a brief account of the

relevant background which in this case is the unary portion we shall be concerned with

for the purpose of this chapter. We then suggest new methods and formulations for

these concepts for binary languages. Specifically, we present a binary definition of a

signature and a principle of invariance under this notion, an independence principle

characterising the basic functions satisfying this new signature-based principle, and a

binary version of the Principle of Instantial Relevance.

Recall the Principle of Constant Exchangeability, as stated on page 14, where we also

remarked that it can be equivalently expressed as requiring (1.2) to hold only for state

descriptions Θ instead of general θ ∈ SL. This leads to a simpler formulation of Ex

for unary languages (as mentioned above), based on the notion of a signature1. The

signature of a state description Θ(b1, . . . , bm) =
∧m
i=1 αhi(bi) is defined to be the vector

〈m1, . . . ,m2q〉 where mj is the number of times that αj appears amongst the αhi . Ex

in the unary case thus amounts to2

Constant Exchangeability, unary version

The probability of a state description depends only on its signature.

In the previous chapter, we investigated atom-based polyadic approaches to the prin-

ciple of Atom Exchangeability. We now mention a collection of other important prin-

ciples from Unary Inductive Logic that are stated in terms of (unary) atoms.

Principle of Instantial Relevance, PIR

w

(
αj(am+2) |

m∧
i=1

αhi(ai)

)
≤ w

(
αj(am+2) | αj(am+1) ∧

m∧
i=1

αhi(ai)

)
.

This principle was suggested by Carnap [7, Chapter 13] and expresses the idea that

having witnessed an event in the past should enhance (or at least should not decrease)

1see [36, Chapter 8].
2Ex implies that the probability of a unary state description depends only on the atoms occurring

in it, and not which constants instantiate them.
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our belief that we might see it again in future.

Johnson’s Sufficientness Postulate, JSP

w(αj(am+1) |
∧m
i=1 αhi(ai)) depends only on m and on mj, where mj is the number of

times that αj appears amongst the αhi.

First appearing in [17], JSP states that our belief in seeing an individual with a certain

combination of properties should depend only on how many individuals we have seen,

and how many of them have satisfied exactly the same combination of properties.

Unary Principle of Induction, UPI

Assume that mj ≤ ms, where mj, ms are the numbers of times that αj, αs respectively

appear amongst the αhi. Then

w

(
αj(am+1) |

m∧
i=1

αhi(ai)

)
≤ w

(
αs(am+1) |

m∧
i=1

αhi(ai)

)
.

This principle [36, Chapter 21] says that if we have already seen at least as many

individuals with a certain combination of properties as with another combination, we

should think the next individual at least as likely to have the first combination of

properties as the second.

Finally, we mention the (not necessarily unary) Constant Irrelevance or Independence

Principle. It is not stated in terms of atoms, but it plays a role in what follows.

Constant Independence Principle, IP

Let θ, φ ∈ QFSL have no constant symbols in common. Then

w(θ ∧ φ) = w(θ) · w(φ).

In the unary context [36, Chapter 8], the only probability functions satisfying IP

together with Ex are the w~x functions, where ~x = 〈x1, . . . , x2q〉 is from

D2q =

{
〈x1, . . . , x2q〉 | x1, x2, . . . , x2q ≥ 0 and

2q∑
j=1

xj = 1

}
and w~x is determined by

w~x

(
m∧
i=1

αhi(bi)

)
=

m∏
i=1

xhi =
2q∏
j=1

x
mj
j ,
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where mj is again the number of times that αj appears amongst the αhi . Thus w~x

is the (unique) function that assigns the probability xj to all αj(ai) regardless of i,

and treats instantiations of atoms (both the same or different) by distinct constants

as stochastically independent. These functions are remarkably useful because they are

simple and since all unary probability functions satisfying Ex can be generated from

them as continuous convex combinations (integrals). The precise statement of this

claim [12] is

de Finetti’s Representation Theorem. Let L be a unary language with q predicate

symbols and let w be a probability function on SL satisfying Ex. Then there is a

normalised, σ-additive measure µ on the Borel subsets of D2q such that

w(Θ) =

∫
D2q

w~x(Θ) dµ(~x)

for any state description Θ of L, and conversely, given such a µ, w as above extends

uniquely to a probability function on SL satisfying Ex.

Early results of Unary Inductive Logic show that any probability function satisfying

Ex also satisfies PIR (as already mentioned, [13]), and that - provided the language

has at least two predicate symbols - any probability function satisfying Ex and JSP

must be one of the Carnap Continuum functions3. A later result due to Paris and

Waterhouse [37] shows that any probability function satisfying Ex and Ax must also

satisfy UPI.

These are pleasing results in Pure Inductive Logic, since we know that if we make

these rational requirements, we also gain their consequences - a PIL version of ‘buy

one (or two), get one free’. So, for example, if we are happy to accept Ex and Ax we

also gain the appealing UPI.

5.2 An Atom-based Approach for Binary Languages

We shall now consider how atoms can aid us to understand the properties of probability

functions on binary languages. Let L contain some binary relation symbols and pos-

sibly some unary predicate symbols, but no symbols of higher arity. We shall denote

3References for these functions were mentioned on page 17.
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the unary predicate symbols by P1, . . . , Pq1 and the binary symbols by Q1, . . . , Qq2 ,

with q1 + q2 = q.

In this language, the state formulae for one variable have the form

q1∧
i=1

±Pi(x) ∧
q2∧
u=1

±Qu(x, x) (5.1)

and we will write

β1(x), . . . , β2q(x)

for them (using the usual lexicographic ordering). We also refer to these formulae as

1-atoms (since they act on one individual). There are 2q many of these since there are

q relation symbols and each of them can appear in βk either positively or negatively.

The atoms of the language, that is, the state formulae for two variables, have the form

βk(x) ∧ βc(y) ∧
q2∧
u=1

±Qu(x, y) ∧
q2∧
u=1

±Qu(y, x).

There are N = 22q22q2 atoms, and we shall denote them by

γ1(x, y), . . . , γN(x, y) .

In order to help visualise the binary case, we introduce the notation δs(x, y) for the

conjunctions
∧q2
u=1±Qu(x, y), where s = 1, . . . , 2q2 (and the δs are again ordered lexi-

cographically). Any atom γh(x, y) can then be written as

βk(x) ∧ βc(y) ∧ δe(x, y) ∧ δd(y, x) (5.2)

for some 1 ≤ k, c ≤ 2q, 1 ≤ e, d ≤ 2q2 . We shall represent such an atom by the matrix k e

d c

 ,

and write γ[k,c,e,d](x, y) for this atom (5.2). We refer to βk(x)∧βc(y) as the unary trace

of the atom (5.2).

In addition, we assume that the atoms of L are ordered unambiguously: when k, c run

through 1, . . . , 2q and e, d run through 1, . . . , 2q2 , the number

2q+2q2(k − 1) + 22q2(c− 1) + 2q2(e− 1) + d (5.3)
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runs through 1, . . . , 22q22q2 . Then there is exactly one way of obtaining each of the

numbers 1, . . . , N , that is one value of k, c, e, d which gives each of the atoms.

Example. When L has just one, binary, relation symbol Q (that is, when q1 = 0,

q2 = 1) then β1(x) and β2(x) are Q(x, x) and ¬Q(x, x) respectively, and δ1(x, y) and

δ2(x, y) are Q(x, y) and ¬Q(x, y) respectively. One possible atom of this language is

Q(x, x) ∧Q(y, y) ∧ ¬Q(x, y) ∧Q(y, x),

which corresponds to the atom γ3(x, y) and it is represented by the matrix 1 2

1 1

 .

In this very special case of a language containing just one binary relation symbol, we

often write 0 in place of 2 (hence Q and ¬Q correspond to 1 and 0 respectively, as we

had previously), so the atom above may also be represented by 1 0

1 1

 .

Using atoms, a state description of L can be written as

Θ(b1, . . . , bm) =
∧

1≤i,t≤m

γhi,t(bi, bt) (5.4)

and it can be represented by an m×m matrix

k1 e1,2 e1,3 . . . e1,m

d1,2 k2 e2,3 . . . e2,m

d1,3 d2,3 k3 . . . e3,m

...
...

...
. . .

...

d1,m d2,m d3,m . . . km


(5.5)

for some

1 ≤ ki ≤ 2q, 1 ≤ ei,t , di,t ≤ 2q2 .

This means that depending on whether i < t or t < i, γhi,t is ki ei,t

di,t kt

 or

 kt di,t

ei,t ki


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respectively, and γhi,i is  ki e

e ki


for that e for which Θ(b1, . . . , bm) |= δe(bi, bi). Notice that this is the case since γhi,i is

equivalent to some βk as in (5.1) and there are indeed 2q12q2 = 2q choices of these.

Clearly, there is much over-specification in the expression (5.4); for example, we must

have γht,i(x, y) = γhi,t(y, x). A more efficient way of writing a state description (for at

least two individuals) in terms of atoms is to restrict i, t in (5.4) to i < t,

Θ(b1, . . . , bm) =
∧

1≤i<t≤m

γhi,t(bi, bt). (5.6)

This contains all the information about Θ and it still over-specifies all that concerns

single individuals. In this investigation we will find it convenient to make this part of

the state description visible, so we shall write it as

Θ(b1, . . . , bm) =
∧

1≤i≤m

βki(bi) ∧
∧

1≤i<t≤m

γhi,t(bi, bt). (5.7)

This works even when m = 1. We adopt a convention that if needed we still write

γht,i(x, y) for γhi,t(y, x).

Definition 5.1. For Θ as in (5.7), we define∧
1≤i≤m

βki(bi) (5.8)

to be the unary trace of Θ. Any conjunction of this form is called a unary trace for

b1, . . . , bm.

We remark that when using atoms, some over-specification is unavoidable. It is pos-

sible to develop an approach to Polyadic Inductive Logic using just elements rather

than atoms (where elements in the binary case are the conjunctions
∧q1
i=1±Pi(x) and

the conjunctions
∧q2
u=1±Qu(x, y) - these are the δs(x, y), and analogously for higher

arity languages), and thus to avoid over-specification. We will do this in Chapter 7,

where we will also mention some of the advantages and disadvantages of this approach.

In short however, such a ‘disjointed’ approach fails to capture much of the structure
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of the sentences we wish to work with. For example, in the disjointed approach, the

ordered pairs obtained from each other by changing the order of the two individuals

are treated separately, and consequently some crucial connections are lost.

In order to develop a binary approach to the principles we mentioned in Section 5.1

we will need also the concept of a partial state description. These are sentences which,

like state descriptions, specify all that can be said about all single individuals from

amongst the b1, . . . , bm, and all that can be said about some pairs of them:

Definition 5.2. A partial state description for b1, . . . , bm is a sentence

∆(b1, . . . , bm) =
∧

1≤i≤m

βki(bi) ∧
∧

{bi,bt}∈C
i<t

γhi,t(bi, bt) , (5.9)

where C is some set of 2-element subsets of {b1, . . . , bm}.

We use capital Greek letters also for partial state descriptions.

Example. Using the representation described above for L containing just one binary

relation symbol Q, the matrix

1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 1

represents the (full) state description

3∧
i,t=1

Q(bi, bt) ∧
3∧
i=1

(¬Q(bi, b4) ∧ ¬Q(b4, bi)) ∧Q(b4, b4) ,

while

1 1

1

0 1 0

0 1

represents the partial state description

4∧
i=1

Q(bi, bi) ∧ (Q(b1, b3) ∧ ¬Q(b3, b1)) ∧ (¬Q(b3, b4) ∧ ¬Q(b4, b3)).
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The matrix

1 1

1 0

0 1 0

0 1

represents no partial state description since it gives some - but not all - information

about the pair b2, b3. Specifying also Q(b3, b2) or ¬Q(b3, b2) would turn it into a partial

state description.

We remark that if C in (5.9) contains no 2-element subsets, that is C = ∅, then (5.9)

is still a partial state description. In particular, a unary trace for b1, . . . , bm is a partial

state description for b1, . . . , bm. Of course, every state description is also a partial state

description. Secondly, we mention that partial state formulae are defined analogously

to partial state descriptions, with b1, . . . , bm replaced by (distinct) variables z1, . . . , zm.

Finally, we follow the convention that only the individuals that are mentioned after

some βki in (5.9) are listed in brackets after Θ, and that they are distinct.

5.3 Binary Signatures

In Unary Inductive Logic, it is almost always the case that Ex is assumed. If we wish

to continue assuming Ex and to base our theory on polyadic atoms, we need to be

able to work with the atoms in a way which reflects that atoms obtained from each

other by permuting the variables are in some sense equivalent and represent the same

thing.

In the binary case, atoms have two variables and there is only one non-trivial permu-

tation of {x, y}. If γ(x, y) is the atom represented by k e

d c


then permuting x and y yields the atom represented by

 c d

e k

 .
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If k = c and e = d then these are the same atom.

Hence, when wishing to disregard the order, the behaviour of pairs of individuals

should be classified by the atom they satisfy, only up to the equivalence defined on

atoms by  k e

d c

 ∼
 c d

e k

 .

That is, γ[k,c,e,d] ∼ γ[c,k,d,e].

This means that rather than N different ways a pair can behave, there are p < N of

them, where N is the number of atoms and p is the number of ∼-equivalence classes.

Explicitly, p = (N + 2q · 2q2)/2, since there are two atoms in each equivalence class

where either k 6= c or (k = c and e 6= d), and only one atom in the 2q · 2q2 many

∼-equivalence classes that contain atoms where k = c and e = d.

It will be convenient to introduce notation for these equivalence classes; we shall denote

them by Γ1, . . . ,Γp, and assume that they are ordered by the least number atom they

contain (so that Γ1 contains γ1). From above, it follows that each class is
 k e

d c

 ,

 c d

e k

  (5.10)

for some k, c, e, d, and it has either two elements, or just one (when k = c and e = d).

For fixed k and c, A(k, c) will denote the set of all j such that Γj consists of the atoms

(5.10) for some e, d.

Note that for Θ(b1, . . . , bm) =
∧

1≤i,t≤m γhi,t(bi, bt) to be consistent, [k, c, e, d] and

[c, k, d, e] must appear exactly the same number of times among the hi,t, because

Θ |= γ[k,c,e,d](ai, at) ⇐⇒ Θ |= γ[c,k,d,e](at, ai) for these i, t. So when Θ is as in (5.7),

since we are considering just the pairs 〈i, t〉 ∈ {1, . . . ,m}2 where i < t, only one of

[k, c, e, d] and [c, k, d, e] will appear amongst the hi,t for these i, t.

Within the equivalence class (5.10), the unary trace of an atom determines the atom,

except when k = c and e 6= d, since then γ[k,k,e,d] and γ[k,k,d,e] are different atoms with

the same unary trace. We shall associate a number with each class Γj accordingly: 1

if the unary traces do determine its atoms and 2 otherwise. We denote this number

sj.
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Definition 5.3. The signature of a state description

Θ(b1, . . . , bm) =
∧

1≤i≤m

βki(bi) ∧
∧

1≤i<t≤m

γhi,t(bi, bt)

is defined to be the vector 〈n1, . . . , np〉, where nj is the number of 〈i, t〉 such that

1 ≤ i < t ≤ m and γhi,t ∈ Γj. If Θ is represented by (5.5) and Γj is (5.10), then nj is

the number of times one of the atoms from (5.10) appears as a submatrix of (5.5).

We shall define also the extended signature of Θ to be

~m~n = 〈m1, . . . ,m2q ; n1, . . . , np〉,

where mk is the number of times that k appears amongst the ki, i = 1, . . . ,m.

We remark that the extended signature is derivable from the signature, but it will be

convenient for us to record the ~m part explicitly.

Note that if ~m~n is the extended signature of some state description Θ(b1, . . . , bm) then

2q∑
k=1

mk = m, (5.11)

for k 6= c ∑
j∈A(k,c)

nj = mkmc , (5.12)

and ∑
j∈A(k,k)

nj =
mk(mk − 1)

2
. (5.13)

The first equation is clear. The reason for the second equation is that for k 6= c, if βk

and βc appear mk and mc many times in Θ(b1, . . . , bm) respectively, then mkmc many

of the hi,t in (5.7) will be from an equivalence class in A(k, c) when i < t. Otherwise

we would have to count hi,t = [k, c, e, d] and ht,i = [c, k, d, e] and the sum in (5.12)

would be 2mkmc. A similar argument works for the third equation.

Conversely, thinking about state descriptions in terms of matrices as in (5.5), we can

see that any ~m~n = 〈m1, . . . ,m2q ; n1, . . . , np〉 such that (5.12) and (5.13) hold, is an

extended signature of some Θ(b1, . . . , bm) for m defined by (5.11), so we refer to such

vectors as extended signatures on m.
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If the binary case behaved like the unary, Ex would be equivalent to the requirement

that the probability of a state description depends only on its signature. However, as

we shall see below, this is not the case and so we are led to define the

Signature Exchangeability Principle (binary), BEx

Let L be a binary language and let w be a probability function on SL. Then the

probability of a state description depends only on its signature.

BEx implies Ex, since a state description’s signature is invariant under permutations

of constants. To see this, let Θ(b1, . . . , bm) be a state description as in (5.7), and

suppose it has the extended signature ~m~n. Consider

Θ(bτ(1), . . . , bτ(m)) =
m∧
i=1

βkτ−1(i)
(bi) ∧

∧
1≤i<t≤m

γhτ−1(i),τ−1(t)
(bi, bt),

the state description obtained from Θ by permuting b1, . . . , bm according to τ ∈ Sm.

Then the extended signature of Θ(bτ(1), . . . , bτ(m)) is also ~m~n. Notice that if for

some 1 ≤ i < t ≤ m we have Θ(bτ(1), . . . , bτ(m)) |= γhτ−1(i),τ−1(t)
(bi, bt) then either

τ−1(i) < τ−1(t) and Θ(b1, . . . , bm) |= γhτ−1(i),τ−1(t)
(bτ−1(i), bτ−1(t)), or τ−1(i) > τ−1(t)

and Θ(b1, . . . , bm) |= γhτ−1(t),τ−1(i)
(bτ−1(t), bτ−1(i)). But if γhτ−1(i),τ−1(t)

∈ Γj, then so is

γhτ−1(t),τ−1(i)
, so in either case, the same number of atoms from each equivalence class

appear in Θ(b1, . . . , bm), Θ(bτ(1), . . . , bτ(m)). Clearly, ~m is the same for both state de-

scriptions since it is derivable from ~n (and in any case, {1, . . . ,m} = {τ(1), . . . , τ(m)}

as sets).

On the other hand, the converse implication does not hold - two state descriptions with

the same signature may not be obtainable from each other by permuting constants

and can therefore get different probabilities from functions satisfying Ex. This means

that BEx is strictly stronger than Ex. Rather than providing a general proof, we

will illustrate why this is so on the case of the language L containing just one binary

relation symbol Q. Let Θ(b1, b2, b3, b4), Φ(b1, b2, b3, b4) be the state descriptions of L

represented respectively by the matrices

1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 1

1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1

.
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Then Θ and Φ have the same signature, namely

~n = 〈n1 = 3, n2 = 0, n3 = 0, n4 = 3, n5 = 0, n6 = 0, n7 = 0, n8 = 0, n9 = 0, n10 = 0〉

where

Γ1 =


 1 1

1 1

  , Γ4 =


 1 0

0 1

 
(and ~m = 〈m1 = 4,m2 = 0〉). However, there is no permutation of b1, b2, b3, b4 that

maps Θ(b1, b2, b3, b4) to Φ(b1, b2, b3, b4). To see this let σ ∈ S4. Any matrix representing

Θ(bσ(1), bσ(2), bσ(3), bσ(4)) must contain a column consisting of three 0s and one 1, that

is the column corresponding to bσ−1(4). Since Φ contains no such column, there is

no permutation σ such that Θ(bσ(1), bσ(2), bσ(3), bσ(4)) is equivalent to Φ(b1, b2, b3, b4).

Furthermore, the probability function up̄,L with p̄ = 〈0, 1
2
, 1

2
, 0, 0, . . . 〉 described in

Chapter 3 gives these state descriptions different probabilities: up̄,L(Θ) > 0 while

up̄,L(Φ) = 0.

The probability function up̄,L
Ē

together with the state descriptions Θ and Φ from page

62 provide another example of state descriptions with the same signature and a prob-

ability function satisfying Ex that assigns them different probabilities. Recall that

these Θ and Φ were constructed to have the same p-spectrum. We remark that

the p-spectrum and the signature of a state description are indeed connected. Let

Θ(b1, . . . , bm) be a state description as in (5.4). Define the signature+ to record how

many 〈i, t〉 ∈ {1, . . . ,m}2 are such that γhi,t ∈ Γj for each j ∈ {1, . . . , p} and note that

the signature+ is derivable from the extended signature. In addition, suppose we split

p-spectrums for state descriptions on m constants into classes such that p-spectrums

that agree on
∑

γh∈Γj
nh for each j (that is, they have the same total number of atoms

from each Γj) are in the same class. Then state descriptions with the same signature+

all have a p-spectrum from the same class.

The probability functions satisfying BEx share a number of properties with those sat-

isfying Ex in the unary case. In particular, there is a large class of relatively simply

defined probability functions similar to the unary w~x (as described on page 65) which

satisfy BEx. These functions are characterised by an independence principle similar

to the Constant Independence Principle IP. In addition, we will show that there is a
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de Finetti-style representation theorem telling us that any probability function satis-

fying BEx can be expressed as a convex combination of these special functions (as an

integral). This, in turn, will yield a proof of a binary generalisation of the Principle

of Instantial Relevance. In addition, these results were used in [42] to prove a charac-

terisation of a binary Carnap Continuum as the unique functions satisfying a binary

generalisation of Johnson’s Sufficientness Postulate. We begin with independence.

5.4 Binary Independence

The Constant Independence Principle IP (for any language), see page 65, requires

that any two quantifier free sentences which have no constant symbols in common

are stochastically independent. In other words, probability functions satisfying this

principle have the property that evidence concerning certain individuals has no impact

on probabilities assigned to sentences involving different individuals.

In sentences involving only unary predicate symbols, occurrences of predicates are in-

stantiated by single constants; no predicate can bring two constants together in the way

binary relations do. Hence, when the language is unary, the notion of independence

used in IP is the strongest one, based on requiring that individuals do not interfere

with others. In the binary case, however, beyond simply requiring that individuals do

not interfere, we may require the same of pairs of individuals in the following sense.

Definition 5.4. For a sentence ψ of a binary language L we define C2
ψ to be the set

of (unordered) pairs of constants {ai, aj}, i 6= j, such that for some binary relation

symbol Q of L, either ±Q(ai, aj) or ±Q(aj, ai) appears in ψ.

We say that sentences φ, ψ such that C2
φ and C2

ψ are disjoint instantiate no pairs in

common. Such sentences cannot reasonably be required to be independent outright

because of information each may contain concerning single individuals, but they can

be independent conditionally.
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Strong Independence Principle (binary), BIP

Let L be a binary language and assume that φ, ψ ∈ QFSL instantiate no pairs in

common. Let b1, . . . , bs be the constants that φ and ψ have in common (if any) and let

∆(b1, . . . , bs) be a unary trace for these constants. Then

w(φ ∧ ψ |∆) = w(φ |∆) · w(ψ |∆). (5.14)

If s = 0 (the sentences have no constant symbols in common) then ∆ = > (tautology),

so BIP implies IP. If ∆ is not consistent with φ or ψ, or if4 w(∆) = 0, then (5.14)

clearly holds because both sides are 0.

The Functions w~Y

We shall now define the binary versions w~Y of the unary w~x mentioned on page 65.

Let DL be the set of all

~Y = 〈x1, . . . , x2q ; y1, . . . , yp〉

such that xk, yj ≥ 0 and
∑2q

k=1 xk = 1, and such that for any 1 ≤ k, c ≤ 2q,

∑
j ∈A(k,c)

sjyj = 1 (5.15)

(A(k, c) was defined on page 72).5 We intend to define w~Y so that these functions

satisfy Ex, BIP, w~Y (βk(ai)) = xk and if γh is the atom γ[k,c,e,d] and Γj its equivalence

class - that is, Γj is (5.10) - then

w~Y (γh(ai, at) | βk(ai) ∧ βc(at)) = yj .

To this end, it is convenient to write j(h) for j such that γh ∈ Γj. To make the

notation more manageable, we also write zh for yj(h). Hence the yj are associated

with the equivalence classes Γj of atoms, and the zh assign these same values to the

individual atoms in these classes. In terms of the zh, (5.15) says that the sum over zh

for those γh with a given unary trace is 1. That is, identifying h with [k, c, e, d], (5.15)

4using our convention for conditional probabilities from page 13.
5Note that DL is both compact and convex in RM for a sufficiently large M ∈ N, a fact we will

use in the proof of the representation theorem in Section 5.5.
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is equivalent to requiring that ∑
e,d∈{1,...,2q2}

z[k,c,e,d] = 1. (5.16)

To aid with explanations, we will use both (5.15) and (5.16) in what follows.

For a state description

Θ(a1, . . . , am) =
∧

1≤i≤m

βki(ai) ∧
∧

1≤i<t≤m

γhi,t(ai, at) (5.17)

we define

w~Y (Θ(a1, . . . , am)) =
∏

1≤i≤m

xki
∏

1≤i<t≤m

zhi,t , (5.18)

where ki ∈ {1, . . . , 2q} and zhi,t is yj for that j ∈ {1, . . . , p} such that γhi,t ∈ Γj. We

take the empty product to be 1. So for instance, for Θ a state formula on one variable,

w~Y (Θ(a1)) = xk1 · 1 = xk1 .

Proposition 5.5. Let L be a binary language. The functions w~Y defined in (5.18)

determine probability functions on SL that satisfy Ex.

Proof. w~Y is defined on state descriptions so it suffices to check that conditions (P1′)-

(P3′) from page 13 hold. (P1′) clearly holds. To check that (P2′) holds, consider the

state description Θi(a1) and notice that w~Y (Θi(a1)) = xi for some i = 1, . . . , 2q. Then

since |=
∨
i∈{1,...,2q}Θi(a1), we have that

w~Y (>) = w~Y

 ∨
i∈{1,...,2q}

Θi(a1)

 =
2q∑
i=1

w~Y (Θi(a1)) =
2q∑
i=1

xi = 1

since the state formulae Θ1(x), . . . ,Θ2q(x) are mutually exclusive. Alternatively, recall

our convention from page 12 that the empty state description is a tautology. Then

since we defined the empty product to be 1, it follows that for any tautology >,

w~Y (>) = 1 so (P2′) is satisfied.

To see that (P3′) holds, note that whenever Φ(a1, . . . , am, am+1) |= Θ(a1, . . . , am) we

have

Φ(a1, . . . , am, am+1) ≡ Θ(a1, . . . , am) ∧ βkm+1(am+1) ∧
∧

i∈{1,...,m}

γhi,m+1
(ai, am+1)
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where the unary trace of γhi,m+1
(x, y) is βki(x) ∧ βkm+1(y), and hence using (5.18)

w~Y (Φ) = w~Y

Θ ∧ βkm+1(am+1) ∧
∧

i∈{1,...,m}

γhi,m+1
(ai, am+1)


= w~Y (Θ) · xkm+1 ·

∏
i∈{1,...,m}

zhi,m+1
.

Consider βkm+1(am+1)∧
∧
i∈{1,...,m} γhi,m+1

(ai, am+1). We may choose any km+1 ∈ {1, . . . , 2q}

and Φ will remain consistent with Θ. Furthermore, for each such choice of km+1

and each i ∈ {1, . . . ,m}, we may choose any of the γhi,m+1
that have unary trace

βki(x) ∧ βkm+1(y).

Therefore for Θ,Φ as above

∑
Φ|=Θ

w~Y (Φ) =
∑
Φ|=Θ

w~Y (Θ) · xkm+1 ·
∏

i∈{1,...,m}

zhi,m+1


= w~Y (Θ) ·

∑
Φ|=Θ

xkm+1 ·
∏

i∈{1,...,m}

zhi,m+1


= w~Y (Θ) ·

2q∑
c=1

xc · ∑
~e,~d∈{1,...,2q2}m

∏
i∈{1,...,m}

z[ki,c,ei,di]


= w~Y (Θ) ·

2q∑
c=1

xc · ∏
i∈{1,...,m}

∑
e,d∈{1,...,2q2}

z[ki,c,e,d]


where ~e = 〈e1, e2, . . . , em〉, ~d = 〈d1, d2, . . . , dm〉 and ei, di are the ith entry of ~e, ~d

respectively. By the definition of ~Y ,
∑

e,d∈{1,...,2q2} z[ki,c,e,d] = 1 and
∑2q

c=1 xc = 1, so

∑
Φ|=Θ

w~Y (Φ) = w~Y (Θ) ·
2q∑
c=1

xc · 1 = w~Y (Θ).

Hence (P3′) holds, too. It follows that w~Y extends to a probability function on SL.

We now show that w~Y satisfies Ex. If Θ(a1, . . . , am) is as in (5.17), σ ∈ Sm and

Ψ(a1, . . . , am) = Θ(aσ(1), . . . , aσ(m)),

then6

Ψ(a1, . . . , am) =
∧

1≤i≤m

βkσ−1(i)
(ai) ∧

∧
1≤i<t≤m

γhσ−1(i),σ−1(t)
(ai, at),

6Recall the convention from page 69 needed below when σ−1(i) > σ−1(t).
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and using a similar argument to that on page 74, the multiset {kσ−1(i) : 1 ≤ i ≤ m}

equals the multiset {ki : 1 ≤ i ≤ m}, and the multisets {hσ−1(i),σ−1(t) : 1 ≤ i < t ≤ m},

{hi,t : 1 ≤ i < t ≤ m} can only differ in that the former contains hi′,t′ in place of

ht′,i′ when i′ = σ−1(i) > σ−1(t) = t′. We have γhi′,t′ ∼ γht′,i′ , i.e. they are in the same

equivalence class Γj, hence zhi′,t′ = zht′,i′ (since both are yj for this j). Therefore

w~Y (Ψ) =
∏

1≤i≤m

xkσ−1(i)

∏
1≤i<t≤m

zhσ−1(i),σ−1(t)
=
∏

1≤i≤m

xki
∏

1≤i<t≤m

zhi,t = w~Y (Θ).

Ex now follows, since (using for example, [36, Lemma 7.3]), if for any m ∈ N+, for

any permutation σ ∈ Sm and state description Θ(a1, . . . , am), w(Θ(a1, . . . , am)) =

w(Θ(aσ(1), . . . , aσ(m))), then w satisfies Ex.

Proposition 5.6. The w~Y satisfy BEx.

Proof. Notice that using a similar argument to above, (5.18) remains valid even when

we replace the a1, . . . , am by other distinct constants b1, . . . , bm. We sum the probabili-

ties of state descriptions for a1, . . . , aM extending Θ(b1, . . . , bm), where M is sufficiently

large so that all the b1, . . . , bm are amongst the a1, . . . , aM . For the ai that do not ap-

pear amongst b1, . . . , bm there is a free choice which atoms they satisfy, so summing

over all possible Φ(a1, . . . , aM) |= Θ(b1, . . . , bm) means summing over all possible xki

factors and all possible zh for γh with some fixed unary trace, both of which sum up

to 1, thus not affecting w~Y (Θ). Therefore w~Y (Θ) is independent of the choice of con-

stants instantiating Θ, and hence w~Y satisfies BEx since the right hand side of (5.18)

depends only on the signature of Θ.

We now show how the binary versions of the familiar probability functions cL0 and cL∞

from Carnap’s Continuum7 can be produced using the w~Y for a binary language L.

These functions feature extensively in studies of Inductive Logic, so the fact they can

be formed from the w~Y supports in some sense the credibility of the w~Y . Consider ~Y

defined by

x1 = x2 = · · · = x2q = 2−q,

7See page 17.
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y1 = y2 = · · · = yp = 2−2q2 .

Then ~Y ∈ DL since
∑

1≤k≤2q xk = 1 and, identifying again zh = z[k,c,e,d] with yj(h) as

defined on page 77,
∑

e,d∈{1,...,2q2} z[k,c,e,d] =
∑

e,d∈{1,...,2q2} 2−2q2 = 1. Furthermore, w~Y

defined with this ~Y treats each ±Ps(ai) and each ±Qu(ai, at) (where ai, at are not nec-

essarily distinct) as stochastically independent and each occurring with probability 1
2
,

which gives cL∞. To see that each instantiated relation symbol occurs with probability

1
2
, notice that for this ~Y , the probability of ±Ps(ai) is the sum of the probabilities for

exactly half of the βk, and the probability of ±Qu(ai, at) is the sum of the probabilities

of half of the γh. That is, assuming the trace of γh(x, y) is βk(x)∧βc(y), the probability

of each γh(ai, at) is

xk · xc · zh = 2−q · 2−q · 2−2q2 ,

so the probability of ±Qu(ai, at) is

N

2
(xk · xc · zh) = 22q+2q2−1(2−q · 2−q · 2−2q2) =

1

2

where N = 22q22q2 is the total number of atoms.

To see that this w~Y treats instantiations of relation symbols as stochastically indepen-

dent, let ψ be the sentence

± Ps1(ai1) ∧ ±Ps2(ai2) ∧ . . . ∧ ±Psn1
(ain1

)

∧ ±Qu1(ai1 , at1) ∧ ±Qu2(ai2 , at2) ∧ . . . ∧ ±Qun2
(ain2

, atn2
)

for some assignment of ± and where n1 +n2 = n, s1, . . . , sn1 are from {1, . . . , q1}, and

u1, . . . , un2 are from {1, . . . , q2}. Let a1, . . . , am be such that all of ai1 , . . . , ain1
, at1 , . . . , atn2

are included amongst them. Then

w~Y (ψ) =
∑

Θ(a1,...,am)|=ψ

w~Y (Θ) =
∑

Θ(a1,...,am)|=ψ

w~Y

( ∧
1≤i≤m

βki(ai) ∧
∧

1≤i<t≤m

γhi,t(ai, at)

)

=
∑

Θ(a1,...,am)|=ψ

( ∏
1≤i≤m

xki
∏

1≤i<t≤m

zhi,t

)
=

∑
Θ(a1,...,am)|=ψ

(2−q)m · (2−2q2)
1
2
m(m−1)

since each xki is 2−q and there are m of these, and since there are 1
2
m(m − 1) pairs

〈ai, at〉 such that 1 ≤ i < t ≤ m and zhi,t for each of them is 2−2q2 . In addition,

there are M = (2q1)m · (2q2)m
2

possible state descriptions for a1, . . . , am. Of these, half
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logically imply the assignment of ±Ps1(ai1), of those half satisfy ±Ps2(ai2) and so on,

so there are M ·
(

1
2

)n
state descriptions Θ(a1, . . . , am) such that Θ |= ψ. It follows that

the probability w~Y (ψ) is(
(2q1)m · (2q2)m

2

· 2−n
)
·
(
2−q
)m · (2−2q2

) 1
2
m(m−1)

=
(

(2q1)m · (2q2)m
2

· 2−n
)
· (2−q12−q2)m · (2−2q2)

1
2
m(m−1) = 2−n,

as required.

To produce cL0 , recall that this function gives non-zero probability only to state de-

scriptions in which all the constants behave in the same way. Let

βk(x) =

q1∧
s=1

±Ps(x) ∧
q2∧
u=1

±Qu(x, x)

for some assignment of ±, and let e ∈ {1, . . . , 2q2} be such that

βk(x) |= Qu(x, x) ⇐⇒ δe(x, y) |= Qu(x, y).

Denote this e by e(k).

Let γh ∈ Γj be the atom γ[k,k,e(k),e(k)]. Define ~Yk = 〈x1, . . . , x2q ; y1, . . . , yp〉 to be

such that xk = 1, yj = 1 for this j (the rest of the xs are 0 and all other8 yj are

such that ~Y satisfies (5.15)). Then ~Yk ∈ DL and we can define w~Yk
(Θ) for a state

description Θ. There are 2q atoms of the form γ[k,k,e(k),e(k)] since there are 2q choices of

k and each one determines such an atom. Clearly, the individuals satisfying this atom

behave in the same way, so if all constants of a state description satisfy this atom,

this state description should be given a non-zero probability by cL0 . Furthermore, if

γh is not γ[k,k,e(k),e(k)] for some k, then for any state description Θ, if Θ |= γh(bi, bt) for

some individuals bi, bt, then cL0 (Θ) = 0. Therefore, the value given by cL0 to a state

description can be given as the convex sum of the w ~Yk
- that is -

cL0 (Θ) = 2−q
2q∑
k=1

w ~Yk
(Θ).

We would now like to show that the w~Y satisfy BIP. For this purpose, we first need

the following lemma regarding w~Y acting on partial state descriptions of L.

8Note that the values of the other yj have no effect, since if the trace of γh(x, y) is βk(x) ∧ βc(y)
and one of xk, xc is 0, then this yj(h) will not contribute to w~Y (Θ) for any Θ.
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Lemma 5.7. Let L be a binary language and let

Φ(b1, . . . , bm) =
∧

1≤i≤m

βki(bi) ∧
∧

{bi,bt}∈C
i<t

γhi,t(bi, bt) (5.19)

be a partial state description of L. Then

w~Y (Φ(b1, . . . , bm)) =
∏

1≤i≤m

xki
∏

{bi,bt}∈C
i<t

zhi,t .

Proof. Let Θ(b1, . . . , bm) be a (complete) state description such that Θ |= Φ. Then

Θ(b1, . . . , bm) =
∧

1≤i≤m

βki(bi) ∧
∧

1≤i<t≤m

γhi,t(bi, bt)

=
∧

1≤i≤m

βki(bi) ∧
∧

{bi,bt}∈C
i<t

γhi,t(bi, bt) ∧
∧

1≤i<t≤m
{bi,bt}6∈C

γhi,t(bi, bt)

= Φ(b1, . . . , bm) ∧
∧

1≤i<t≤m
{bi,bt}6∈C

γhi,t(bi, bt).

So we have

w~Y (Φ(b1, . . . , bm)) =
∑
Θ|=Φ

w~Y (Θ(b1, . . . , bm))

=
∑
Θ|=Φ

 ∏
1≤i≤m

xki ·
∏

{bi,bt}∈C
i<t

zhi,t ·
∏

1≤i<t≤m
{bi,bt}6∈C

zhi,t



=
∏

1≤i≤m

xki ·
∏

{bi,bt}∈C
i<t

zhi,t ·
∑
Θ|=Φ

 ∏
1≤i<t≤m
{bi,bt}6∈C

zhi,t



=
∏

1≤i≤m

xki ·
∏

{bi,bt}∈C
i<t

zhi,t ·
∑

ei,t, di,t∈{1,...,2q2}
1≤i<t≤m
{bi,bt}6∈C

 ∏
1≤i<t≤m
{bi,bt}6∈C

z[ki,kt,ei,t,di,t ]



=
∏

1≤i≤m

xki ·
∏

{bi,bt}∈C
i<t

zhi,t ·
∏

1≤i<t≤m
{bi,bt}6∈C

 ∑
e,d∈{1,...,2q2}

z[ki,kt,e,d]


=

∏
1≤i≤m

xki ·
∏

{bi,bt}∈C
i<t

zhi,t ,

where the third equality follows since every Θ that extends Φ would have these two

products in common; the fourth equality is because for each pair {bi, bt} 6∈ C with
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1 ≤ i < t ≤ m, we can choose for γhi,t any atom with unary trace βki(x) ∧ βkt(y)

and we will get a state description that extends Φ, and the final equality is since∑
e,d∈{1,...,2q2} z[ki,kt,e,d] = 1 for any fixed ki, kt from {1, . . . , 2q}.

Theorem 5.8. Let L be a binary language. The probability functions w~Y on SL satisfy

BIP and hence IP.

Furthermore, any probability function on SL satisfying Ex and BIP is equal to w~Y for

some ~Y ∈ DL.

Proof. Assume that Φ and Ψ are some partial state descriptions which instantiate no

pairs in common. Let b1, . . . , bs be the constants that Φ and Ψ have in common and

let ∆ be a unary trace for these constants. If ∆ is not consistent with Φ or Ψ, then

w~Y (Φ ∧Ψ |∆) = w~Y (Φ |∆)w~Y (Ψ |∆) (5.20)

holds because both sides are 0, as remarked on page 77. So suppose Φ is as in (5.19),

s ≤ m,

Ψ(b1, . . . , bs, bm+1, . . . , bm+n) =∧
1≤i≤s

βki(bi) ∧
∧

m+1≤i≤m+n

βki(bi) ∧
∧

{bi,bt}∈D
i<t

γhi,t(bi, bt) (5.21)

where D is some set of 2-element subsets of {b1, . . . , bs, bm+1, . . . , bm+n}, D ∩ C = ∅,

and

∆(b1, . . . , bs) =
∧

1≤i≤s

βki(bi).

We can now use the above lemma regarding values of w~Y for partial state descriptions

to prove that (5.20) holds in this case, too: Θ ∧Φ is again a partial state description,

so the left hand side of (5.20) is

w~Y (Φ ∧Ψ |∆) =
w~Y (Φ ∧Ψ)

w~Y (∆)
=

∏
1≤i≤m+n xki

∏
{bi,bt}∈C∪D

i<t
zhi,t∏

1≤i≤s xki

=
∏

s+1≤i≤m+n

xki
∏

{bi,bt}∈C∪D
i<t

zhi,t .
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The right hand side of (5.20) is w~Y (Φ |∆)w~Y (Ψ |∆) which is

w~Y (Φ)

w~Y (∆)
·
w~Y (Ψ)

w~Y (∆)
=

∏
1≤i≤m xki

∏
{bi,bt}∈C

i<t
zhi,t∏

1≤i≤s xki
·

∏
1≤i≤s xki

∏
m+1≤i≤m+n xki

∏
{bi,bt}∈D

i<t
zhi,t∏

1≤i≤s xki

=
∏

s+1≤i≤m

xki
∏

{bi,bt}∈C
i<t

zhi,t ·
∏

m+1≤i≤m+n

xki
∏

{bi,bt}∈D
i<t

zhi,t

=
∏

s+1≤i≤m+n

xki
∏

{bi,bt}∈C∪D
i<t

zhi,t .

So both sides of (5.20) are equal. Hence BIP holds when φ, ψ are partial state

descriptions.

To prove that (5.14) holds with general φ, ψ ∈ QFSL, note that any quantifier free sen-

tence is equivalent to a disjunction of partial state descriptions by a slight adaptation

of the usual proof of the Disjunctive Normal Form Theorem (swapping propositions

for instantiations of relations). So suppose φ(b1, . . . , bm) ∈ QFSL is equivalent to a

disjunction of partial state descriptions Φu as in (5.19), with C = C2
φ. Assume that

ψ ∈ QFSL instantiates no pairs in common with φ. Without loss of generality, let

b1, . . . , bs be the constants that φ and ψ have in common and bm+1, . . . , bm+n the re-

maining constants appearing in ψ. ψ is equivalent to a disjunction of partial state

descriptions Ψf as in (5.21) where D = C2
ψ, and so by the above, for any unary trace

∆ for b1, . . . , bs,

w~Y (φ ∧ ψ |∆) = w~Y

(∨
u

Φu ∧
∨
f

Ψf

∣∣∣∣∣ ∆

)
=
∑
u,f

w~Y ( Φu ∧Ψf |∆)

=
∑
u,f

w~Y (Φu | ∆) · w~Y (Ψf | ∆) =
∑
u

w~Y (Φu | ∆) ·
∑
f

w~Y (Ψf | ∆)

= w~Y

(∨
u

Φu

∣∣∣∣∣ ∆

)
· w~Y

(∨
f

Ψf

∣∣∣∣∣ ∆

)
= w~Y (φ |∆) · w~Y (ψ |∆),

as required, where the equalities follow since the Φu and similarly the Ψf are mutually

exclusive, Φu and Ψf instantiate no pairs in common for each u, f , and since w~Y

satisfies BIP on partial state descriptions.

So far we have shown that the w~Y satisfy BIP (and hence also IP). For the final part

of the theorem, assume that w satisfies Ex and BIP. We define

xk = w(βk(ai))
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and

yj(h) = zh = w(γh(ai, at) | βk(ai) ∧ βc(at))

where βk(x) ∧ βc(y) is the unary trace of γh(x, y). Note that by Ex, this definition

is correct in that it does not matter which ai, at we take, and when j = j(h) = j(g)

(that is, when γh ∼ γg), then zh = zg, and yj is given the same value. Using BIP, we

will check that with ~Y defined in this way, w~Y equals w for state descriptions, and

hence w = w~Y for all sentences. We will do this by showing that ~Y ∈ DL, and that

w~Y = w on state descriptions of increasing numbers of constants.

Firstly, notice that xk, yj must be non-negative since w is a probability function. Since

w satisfies BIP we have

w

(∧
i∈S

βki(ai)

)
=
∏
i∈S

xki

(where S is any finite set), so also for γh(x, y) from Γj with unary trace βk(x) ∧ βc(y)

w(γh(ai, at)) = w(γh(ai, at) | βk(ai) ∧ βc(at)) · w(βk(ai) ∧ βc(at)) = xk xc yj.

In addition, w(>) = w
(∨2q

k=1 βk(a1)
)

=
∑2q

k=1 xk = 1, and the values for yj(h) = zh are

such that (5.16) holds, since

1 = w(>) = w

 ∨
k,c∈{1,...,2q}

∨
e,d∈{1,...,2q2}

γ[k,c,e,d](ai, at)


=

∑
k,c∈{1,...,2q}

∑
e,d∈{1,...,2q2}

w(γ[k,c,e,d](ai, at))

=
∑

k,c∈{1,...,2q}

∑
e,d∈{1,...,2q2}

xk xc z[k,c,e,d]

=
∑

k,c∈{1,...,2q}

xk xc ∑
e,d∈{1,...,2q2}

z[k,c,e,d]


and hence

∑
e,d∈{1,...,2q2} z[k,c,e,d] = 1 since

∑
k,c∈{1,...,2q} xk xc = 1.

So we already have that ~Y ∈ DL and that w = w~Y on state descriptions of one or two

constants. Next consider a state description Θ3(a1, a2, a3).9 Recall that we can write

it as the conjunction

γh1,2(a1, a2) ∧ γh1,3(a1, a3) ∧ γh2,3(a2, a3)

9We could jump to the inductive step already at this point, but presenting the argument also for
state descriptions of 3 individuals helps to see the general case.
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(as in (5.6)), and suppose the unary trace of Θ3 is βk1(a1) ∧ βk2(a2) ∧ βk3(a3). Let

ψ = βk2(a2) ∧ βk3(a3). Since w satisfies BIP we have that

w(Θ3(a1, a2, a3) |ψ)

= w(γh1,2(a1, a2) ∧ γh1,3(a1, a3) |ψ) · w(γh2,3(a2, a3) |ψ)

=

(
w(γh1,2(a1, a2) ∧ γh1,3(a1, a3))

xk2 xk3

)
·
(
w(γh2,3(a2, a3))

xk2 xk3

)
=

(
w(γh1,2(a1, a2) ∧ γh1,3(a1, a3) | βk1(a1))

xk2 xk3

)
· w(βk1(a1)) ·

(
xk2 xk3 zh2,3

xk2 xk3

)
=

(
w(γh1,2(a1, a2) | βk1(a1)) · w(γh1,3(a1, a3) | βk1(a1))

xk2 xk3

)
· w(βk1(a1)) ·

(
xk2 xk3 zh2,3

xk2 xk3

)
=

(
w(γh1,2(a1, a2) | βk1(a1)) · w(γh1,3(a1, a3) | βk1(a1))

xk2 xk3

)
· xk1 zh2,3

=

(
w(γh1,2(a1, a2))

xk1xk2

)
·
(
w(γh1,3(a1, a3))

xk1xk3

)
· xk1 zh2,3

=
xk1 xk2 zh1,2

xk1 xk2

·
xk1 xk3 zh1,3

xk1 xk3

· xk1 zh2,3

= xk1 zh1,2 zh1,3 zh2,3 ,

where we used the fact that (γh1,2(a1, a2)∧γh1,3(a1, a3)) |= βk1(a1) and hence w(γh1,2(a1, a2)∧

γh1,3(a1, a3)) = w(γh1,2(a1, a2) ∧ γh1,3(a1, a3) | βk1(a1)) · w(βk1(a1)). So

w(Θ3(a1, a2, a3))

w(ψ)
= xk1 zh1,2 zh1,3 zh2,3

and hence

w(Θ3(a1, a2, a3)) =
∏

1≤i≤3

xki
∏

1≤i<t≤3

zhi,t .

Now suppose the same holds for state descriptions of m constants for some m ∈ N+,

that is, for every Θm

w(Θm(a1, . . . , am)) =
∏

1≤i≤m

xki
∏

1≤i<t≤m

zhi,t . (5.22)

Let Θm+1(a1, . . . , am+1) |= Θm(a1, . . . , am). We can write Θm+1 in the form

Θm(a1, . . . , am) ∧ βkm+1(am+1) ∧
∧

i∈{1,...,m}

γhi,m+1
(ai, am+1). (5.23)
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Consider first
∧
i∈{1,...,m} γhi,m+1

(ai, am+1), the rightmost term in (5.23). Using BIP and

letting ψ = βkm+1(am+1) we have that (since w(γhi,m+1
(ai, am+1)) = xki xkm+1 zhi,m+1

)

w

 ∧
i∈{1,...,m}

γhi,m+1
(ai, am+1)


= w

(
γh1,m+1(a1, am+1) |ψ

)
· w

 ∧
i∈{2,...,m}

γhi,m+1
(ai, am+1)

∣∣∣∣∣∣ ψ
w(ψ)

=
w
(
γh1,m+1(a1, am+1)

)
w(ψ)

·
w
(∧

i∈{2,...,m} γhi,m+1
(ai, am+1)

)
w(ψ)

· w(ψ)

= xk1 zh1,m+1 · w

 ∧
i∈{2,...,m}

γhi,m+1
(ai, am+1)


= xk1 zh1,m+1 · w

(
γh2,m+1(a2, am+1) |ψ

)
· w

 ∧
i∈{3,...,m}

γhi,m+1
(ai, am+1)

∣∣∣∣∣∣ ψ
w(ψ)

= xk1 xk2 zh1,m+1 zh2,m+1 · w

 ∧
i∈{3,...,m}

γhi,m+1
(ai, am+1)


...

=

 ∏
1≤i≤m−1

xki
∏

i∈{1,...,m−1}

zhi,m+1

 · w(γhm,m+1(am, am+1)
)

=
∏

1≤i≤m+1

xki
∏

i∈{1,...,m}

zhi,m+1
.

Referring back to (5.23) and letting ψ′ =
∧

1≤i≤m+1 βki(ai),

w

Θm(a1, . . . , am) ∧ βkm+1(am+1) ∧
∧

i∈{1,...,m}

γhi,m+1
(ai, am+1)


= w

(
Θm ∧ βkm+1(am+1) |ψ′

)
· w

 ∧
i∈{1,...,m}

γhi,m+1
(ai, am+1)

∣∣∣∣∣∣ ψ′
w(ψ′)

= w
(
Θm ∧ βkm+1(am+1)

)
·
w
(∧

i∈{1,...,m} γhi,m+1
(ai, am+1)

)
w(ψ′)

= w(Θm) · w(βkm+1(am+1)) ·
w
(∧

i∈{1,...,m} γhi,m+1
(ai, am+1)

)
w(ψ′)

=

( ∏
1≤i≤m

xki
∏

1≤i<t≤m

zhi,t

)
· xkm+1 ·

∏
i∈{1,...,m}

zhi,m+1
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=
∏

1≤i≤m+1

xki
∏

1≤i<t≤m+1

zhi,t .

It therefore follows by induction that (5.22) holds for every m ∈ N+ and since a

probability function is defined by its values on state descriptions, w = w~Y , which

completes the proof.

5.5 A Representation Theorem for BEx

We showed in Proposition 5.6 that the probability functions w~Y satisfy BEx. We now

prove that the functions satisfying BEx are exactly the convex combinations of the

w~Y functions in the following sense.

Theorem 5.9. Let w be a probability function for a binary language L satisfying BEx.

Then there exists a (normalised, σ-additive) measure µ on the Borel subsets of DL such

that for any θ ∈ SL,

w(θ) =

∫
DL
w~Y (θ) dµ(~Y ). (5.24)

Conversely, for a given measure µ on the Borel subsets of DL, the function defined by

(5.24) is a probability function on SL satisfying BEx.

Proof. Let w be a probability function for L satisfying BEx. It suffices to prove (5.24)

for state descriptions, the rest follows, for instance, as in Corollary 9.2 of [36]. The

proof is based on the fact that for a state description Θ(b1, . . . , bm) and u > m

w(Θ(b1, . . . , bm)) =
∑

Ψ(b1,...,bm,bm+1,...,bu)|=Θ(b1,...,bm)

w(Ψ(b1, . . . , bm, bm+1, . . . , bu)), (5.25)

and it proceeds via grouping state descriptions for u individuals according to their

extended signature and counting their numbers.

Let t1, . . . , tn ∈ N, t1 + t2 + · · ·+ tn = t. We define(
t

{ti : i ∈ {1, . . . , n}}

)
=

(
t

t1, t2, . . . , tn

)
=

t!

t1!t2! . . . tn!
.
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Other expressions using this notation are to be interpreted similarly.

Let u ∈ N+ and let ~u~t = 〈u1, . . . , u2q ; t1, . . . , tp〉 be an extended signature on u. Firstly,

we wish to count the number of all state descriptions with this extended signature.

Thinking about state descriptions in terms of u× u matrices as in (5.5), this involves

placing, on the diagonal, the number 1 u1 times, the number 2 u2 times and so on. We

are thus creating ukuc many spaces (when k 6= c) or uk(uk−1)
2

many spaces in which to

place atoms from the classes Γj, j ∈ A(k, c) (k 6= c) or j ∈ A(k, k) respectively. Once

a place for an atom from a given Γj is chosen, no freedom remains over which atom

from this class it is when k 6= c or when k = c and e = d (that is, when sj = 1). When

k = c and e 6= d (i.e., when sj = 2), either one of the two atoms from this class can

be chosen to fill the place.

It follows that the number of state descriptions with extended signature10 ~u~t, denoted

by N (∅, ~u~t), is(
u

u1, . . . , u2q

) ∏
1≤k<c≤2q

(
ukuc

{tj : j ∈ A(k, c)}

)

×
∏

1≤k≤2q

( uk(uk−1)
2

{tj : j ∈ A(k, k)}

) ∏
j∈A(k,k)

s
tj
j

 . (5.26)

Now let ~m~n be an extended signature, m < u and let Θ(b1, . . . , bm) be a state descrip-

tion with this signature. Arguing similarly to above, we find that the number of state

descriptions with signature ~u~t extending Θ(b1, . . . , bm), denoted by N (~m~n, ~u~t), is(
u−m

u1 −m1, . . . , u2q −m2q

) ∏
1≤k<c≤2q

(
ukuc −mkmc

{tj − nj : j ∈ A(k, c)}

)

×
∏

1≤k≤2q

( uk(uk−1)
2

− mk(mk−1)
2

{tj − nj : j ∈ A(k, k)}

) ∏
j∈A(k,k)

s
(tj−nj)
j

 . (5.27)

We make the convention that our multinomial expression is 0 if any of the terms are

negative11. Note that the number calculated in (5.27) depends only on the signa-

ture ~m~n and not on the particular choice of Θ(b1, . . . , bm), since extending any state

10Throughout this proof, we will often refer to extended signatures simply as signatures in attempt
to reduce cumbersome terminology.

11This is justified, since a state description with signature ~u~t can extend a state description with
signature ~m~n only if m < u, mk ≤ uk for every k and nj ≤ tj for every j.
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description with signature ~m~n to one with signature ~u~t involves making the same

decisions.

We shall write w(~m~n) for w(Θ(b1, . . . , bm)); by BEx this is unambiguous. Let Sign(u)

denote the set containing all extended signatures ~u~t on u. That is,

Sign(u) =

~u~t :
2q∑
k=1

uk = u, for k 6= c
∑

j∈A(k,c)

tj = ukuc,
∑

j∈A(k,k)

tj =
uk(uk − 1)

2


where 1 ≤ k, c ≤ 2q. From (5.25)

1 = w(>) =
∑

~u~t∈Sign(u)

N (∅, ~u~t)w(~u~t), (5.28)

w(~m~n) =
∑

~u~t∈Sign(u)

N (~m~n, ~u~t) w(~u~t), (5.29)

and hence

w(~m~n) =
∑

~u~t∈Sign(u)

N (~m~n, ~u~t)

N (∅, ~u~t)
N (∅, ~u~t) w(~u~t). (5.30)

We shall show that∣∣∣∣∣∣
(
N (~m~n, ~u~t)

N (∅, ~u~t)

)
−

 ∏
1≤k≤2q

(uk
u

)mk ∏
1≤k<c≤2q

 ∏
j∈A(k,c)

(
tj
ukuc

)nj
∏

1≤k≤2q

 ∏
j∈A(k,k)

 tjs
−1
j(

uk(uk−1)
2

)
nj∣∣∣∣∣∣ (5.31)

is of the order O
(√

u
−1
)

(independently of u1, . . . , u2q , t1, . . . , tp), so that as u→∞,

(5.31) tends to 0. We make a convention that if some uk = 0 or some tj = 0 then

terms involving these are missing from the product above12.

First, let mk ≤ uk and nj ≤ tj for every j, k, so that none of the terms in (5.27) are

negative. The term
(
N (~m~n,~u~t)

N (∅,~u~t)

)
in (5.31) can be written as

u1 (u1 − 1) · · · (u1 − (m1 − 1)) · · ·u2q (u2q − 1) · · · (u2q − (m2q − 1))

u (u− 1) · · · (u− (m− 1))

×
∏

1≤k<c≤2q

( ∏
j∈A(k,c) tj (tj − 1) · · · (tj − (nj − 1))

(ukuc) (ukuc − 1) · · · (ukuc − (mkmc − 1))

)
12Note that this is valid, since factors involving uk = 0 and tj = 0 cancel out from the binomials

in
(
N (~m~n,~u~t)

N (∅,~u~t)

)
, so the convention means the same factors are missing from both terms in (5.31).
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×
∏

1≤k≤2q

 ∏
j∈A(k,k) tj (tj − 1) · · · (tj − (nj − 1))(

uk(uk−1)
2

)(
uk(uk−1)

2
− 1
)
· · ·
(
uk(uk−1)

2
−
(
mk(mk−1)

2
− 1
)) × ∏

j∈A(k,k)

s
−nj
j

 ,

which (using our convention about zero terms) can in turn be written as13 ∏
1≤k≤2q

(uk
u

)mk ∏
1≤k<c≤2q

 ∏
j∈A(k,c)

(
tj
ukuc

)nj ∏
1≤k≤2q

 ∏
j∈A(k,k)

 tjs
−1
j(

uk(uk−1)
2

)
nj

(5.32)

×
∏

1≤k≤2q

∏
0≤i≤mk−1

(
1− i u−1

k

)∏
0≤l≤m−1 (1− l u−1)

(5.33)

×
∏

1≤k<c≤2q

(∏
j∈A(k,c)

∏
0≤i≤nj−1

(
1− i t−1

j

)∏
0≤l≤mkmc−1

(
1− l (ukuc)

−1)
)

(5.34)

×
∏

1≤k≤2q


∏

j∈A(k,k)

∏
0≤i≤nj−1

(
1− i t−1

j

)
∏

0≤l≤(mk(mk−1)/2)−1

(
1− l

(
uk(uk−1)

2

)−1
)
 . (5.35)

Let P stand for the product of (5.33), (5.34) and (5.35).

We observe that P is bounded by a constant independent of u, the uk and the tj:

(5.33) <

(
1

1− (m− 1)m−1

)m
= mm

since (5.33) can be split into the product of m fractions, each numerator is at most 1,

and the least denominator is (1− (m− 1)u−1) which is greater than (1− (m− 1)m−1).

Similarly for (5.34) and (5.35) we have

(5.34) <
∏

1≤k<c≤2q

(
1

1− (mkmc − 1)(mkmc)−1

)mkmc
=

∏
1≤k<c≤2q

(mkmc)
mkmc ,

and

(5.35) <
∏

1≤k≤2q

(
mk(mk − 1)

2

)mk(mk−1)

2

.

Furthermore, we need only to consider those k where mk > 0 in the limit of (5.31)

since otherwise nj = 0 for j ∈ A(k, c) and factors involving corresponding uk, tj cancel

out from N (~m~n,~u~t)

N (∅,~u~t) , and they are all 1 in the product which is being subtracted.

13by splitting each of the three products into a term in (5.32) times one of (5.33), (5.34), (5.35).
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We shall prove the claim about (5.31) by cases. Consider first the case that for some

k with mk > 0 we have uk ≤
√
u. Then∏

1≤k≤2q

(uk
u

)mk
≤ (
√
u)−1,

each of the other products in (5.32) is at most 1, so (5.31) = | (5.32) · (1− P ) | =

O(
√
u
−1

). A similar argument works if uk >
√
u for every k with mk > 0 but for some

j we have nj > 0 and tj ≤
√
u, since then if j ∈ A(k, c),

∏
1≤k<c≤2q

 ∏
j∈A(k,c)

(
tj
ukuc

)nj ≤ (
√
u)−1

and if j ∈ A(k, k),

∏
1≤k≤2q

 ∏
j∈A(k,k)

 tjs
−1
j(

uk(uk−1)
2

)
nj ≤ 2 (

√
u− 1)−1

which is O(
√
u
−1

), the other terms in (5.32) are at most 1, so again (5.31) = O(
√
u
−1

).

The second case is when for every k such that mk > 0, uk >
√
u and for every j with

nj > 0, tj >
√
u. In this case, P is close to 1. To see this, note that (5.33) can be

written as a product of m fractions of the form 1−αuk−1

1−βu−1 , α, β ∈ {1, . . . ,m} and that

the distance of each fraction from 1 is∣∣∣∣1− αuk−1

1− βu−1
− 1

∣∣∣∣ =

∣∣∣∣βu−1 − αu−1
k

1− βu−1

∣∣∣∣ < 2
(
βu−1 + αuk

−1
)
< 2
√
u
−1

(α + β) ≤ 4m
√
u
−1
,

where the inequalities hold since when u is very large, β ≤ m < u
2

and so 1−βu−1 > 1
2
,

because u−1, uk
−1 <

√
u
−1

and since α, β ≤ m, respectively. Hence (5.33) is(
1 +O

(√
u
−1
))m

= 1 +O
(√

u
−1
)
.

A similar argument works for the other two products, (5.34) and (5.35), since for

very large u, mkmc <
ukuc

2
and mk(mk−1)

2
< uk(uk−1)

4
, so P is

(
1 +O

(√
u
−1
))3

=

1 +O
(√

u
−1
)

. Since each term in (5.32) is bounded by 1, (5.32) is bounded by 1. It

follows that (5.31) = | (5.32) · (1− P ) | is again of order O
(√

u
−1
)

.

Now suppose uk < mk for some k (the case when uk > mk for every k but some j

is such that tj < nj is similar). Note that then N (~m~n,~u~t)

N (∅,~u~t) = 0 since in that case no

state description with signature ~u~t extending a state description with signature ~m~n
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can exist. In addition, mk > 0 and uk <
√
u since u is very large and mk is fixed, so

arguing as above (5.32) would be of order O(
√
u
−1

) and consequently so would (5.31),

which exhausts all cases.

Define ~Y~u~t by

xk =
uk
u
, yj =



tj
ukuc

for j ∈ A(k, c), uk, uc 6= 0, k < c,

tjsj
−1“

uk(uk−1)

2

” for j ∈ A(k, k), uk 6= 0, 1,

0 otherwise.

(5.36)

At this point, we can complete the proof using classical techniques, or we can employ

methods from Nonstandard Analysis, particularly Loeb Measure Theory [10, 26]. We

present both, beginning with the classical proof.

From (5.28), let µu be the normalised discrete measure on DL which puts measure

N (∅, ~u~t)w(~u~t)

on the point ~Y~u~t. Using (5.28), (5.30) and the fact that (5.32) gets uniformly close to

N (~m~n,~u)

N (∅,~u~t) as u→∞ gives that w(~m~n) equals the limit as u→∞ of

∑
~u~t∈Sign(u)

 ∏
1≤k≤2q

(uk
u

)mk ∏
1≤k<c≤2q

 ∏
j∈A(k,c)

tj
ukuc

nj

×
∏

1≤k≤2q

 ∏
j∈A(k,k)

(
tjs
−1
j

uk(uk−1)
2

)nj
µu (~Y~u~t). (5.37)

So

w(~m~n) = lim
u→∞

∫
DL

 ∏
1≤k≤2q

xmkk ·
∏

1≤k<c≤2q

∏
j∈A(k,c)

y
nj
j ·

∏
1≤k≤2q

∏
j∈A(k,k)

y
nj
j

 dµu(~Y )

(5.38)

where xk, yj are as in (5.36).

Following the same argument as in the proof of [36, Theorem 9.1], using Prohorov’s

Theorem [1, Theorem 5.1] we have that since DL is compact, the µu have a subse-

quence µui which is weakly convergent to a countably additive measure µ. So for any

continuous function f in variables x1, . . . , x2q , y1, . . . , yp, we have that
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lim
u→∞

∫
DL
f dµui(

~Y ) =

∫
DL
f dµ(~Y ).

Now using (5.38)

w(~m~n) =

∫
DL

 ∏
1≤k≤2q

xk
mk ·

∏
1≤k<c≤2q

∏
j∈A(k,c)

y
nj
j ·

∏
1≤k≤2q

∏
j∈A(k,k)

y
nj
j

 dµ(~Y )

=

∫
DL
w~Y (~m~n) dµ(~Y ). (5.39)

In the opposite direction, a function on SL defined by (5.24) clearly satisfies (P1) and

(P2), and by the Lebesgue Dominated Convergence Theorem it also satisfies (P3). So

it is a probability function. This function satisfies BEx because all the w~Y do.

Nonstandard Proof

In what follows, we will write w~u~t for w~Y~u~t
. Note that w~u~t(~m~n) is equal to (5.32).

Let U∗ be a nonstandard ω1-saturated elementary extension of a sufficiently large

portion U of the set theoretic universe containing w. As usual, c∗ denotes the image

in U∗ of c ∈ U where these differ. Working now in U∗, let u ∈ N∗ be nonstandard.

Then (from (5.30)) we still have

w∗(~m~n) =
∑

~u~t∈Sign∗(u)

N ∗(~m~n, ~u~t)
N ∗(∅, ~u~t)

N ∗(∅, ~u~t)w∗(~u~t). (5.40)

Loeb Measure Theory enables us to conclude from (5.40) that for some σ-additive

measure µ′ on Sign∗(u) we have (for all standard extended signatures ~m~n)

w(~m~n) =

∫
Sign∗(u)

◦
(
N ∗(~m~n, ~u~t)
N ∗(∅, ~u~t)

)
dµ′(~u~t) (5.41)

where ◦ denotes the standard part. Since, in U , (5.31) is O
(√

u
−1
)

, this gives

w(~m~n) =

∫
Sign∗(u)

◦(w∗
~u~t

(~m~n)) dµ′(~u~t) . (5.42)

Moreover, ◦
(
w∗
~u~t

(~m~n)
)

equals w(◦(~Y~u~t))
(~m~n). So defining µ on the Borel subsets A of

DL by

µ(A) = µ′
{
~u~t | ◦(~Y~u~t) = 〈◦x1, . . . ,

◦x2q ;
◦y1, . . . ,

◦yp〉 ∈ A
}
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where the xk, yj are as defined in (5.36), means (5.42) becomes (using, for example,

Proposition 1, Chapter 15 of [41])

w(~m~n) =

∫
DL
w~Y (~m~n) dµ(~Y ),

as required.

We shall now use the above representation theorem to show that the w~Y functions,

which by Theorem 5.8 are the only probability functions satisfying Ex and BIP, can

be characterised alternatively as the only probability functions satisfying BEx and IP.

The fact that the w~Y satisfy BEx and IP follows from Proposition 5.6 and Theorem

5.8, and the other part follows from the following theorem.

Theorem 5.10. Let w be a probability function on SL satisfying BEx and IP. Then

w is equal to w~Y for some ~Y ∈ DL.

Proof. 14 Let µ be the σ-additive normalised measure guaranteed to exist by Theorem

5.9 such that

w =

∫
DL
w~Y dµ(~Y ) .

Let θ(b1, . . . , bm) ∈ QFSL and let θ′ be the result of replacing each bi in θ by bi+m.

By IP and since w(θ) = w(θ′) by (B)Ex, we have

0 = 2 (w(θ ∧ θ′)− w(θ) · w(θ′))

=

∫
DL
w~Y (θ ∧ θ′) dµ(~Y ) +

∫
DL
w ~Y ′(θ ∧ θ

′) dµ( ~Y ′)

−2

(∫
DL
w~Y (θ) dµ(~Y )

)
·
(∫

DL
w ~Y ′(θ

′) dµ( ~Y ′)

)
=

∫
DL
w~Y (θ) · w~Y (θ′) dµ(~Y ) +

∫
DL
w ~Y ′(θ) · w ~Y ′(θ

′) dµ( ~Y ′)

−2

(∫
DL
w~Y (θ) dµ(~Y )

)
·
(∫

DL
w ~Y ′(θ

′) dµ( ~Y ′)

)
=

∫
DL

∫
DL

(
w~Y (θ)− w ~Y ′(θ

′)
)2

dµ(~Y ) dµ( ~Y ′).

Let D(1)
L = DL,

A11 =

{
~Y ∈ DL : w~Y (θ) ∈

[
0,

1

3

)}
,

14This is based on the method of the proof of [36, Theorem 20.6].
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A12 =

{
~Y ∈ DL : w~Y (θ) ∈

[
1

3
,
2

3

)}
,

A13 =

{
~Y ∈ DL : w~Y (θ) ∈

[
2

3
, 1

]}
.

Let µ(A11) = a11, µ(A12) = a12 and µ(A13) = a13, so in particular D(1)
L = A11∪A12∪A13,

µ(D(1)
L ) = a11 + a12 + a13 = 1. Then

0 =

∫
DL

∫
DL

(
w~Y (θ)− w ~Y ′(θ

′)
)2

dµ(~Y ) dµ( ~Y ′)

≥
∫
A11

∫
A13

(
w~Y (θ)− w ~Y ′(θ

′)
)2

dµ(~Y ) dµ( ~Y ′)

≥
(

1

3

)2

a11a13

since we are integrating over a positive function so integrating over a subset of DL can

at most not decrease the integral, and since for ~Y ′ ∈ A11 and ~Y ∈ A13,
(
w~Y (θ)− w ~Y ′(θ

′)
)2 ≥(

1
3

)2
.

So one of a11, a13 must be 0. Without loss of generality suppose a13 = 0, then a11+a12 =

1. Let

D(2)
L =

{
~Y : w~Y (θ) ∈

[
0,

2

3

)}
so µ(D(2)

L ) = 1, and let

A21 =

{
~Y ∈ DL : w~Y (θ) ∈

[
0,

2

9

)}
,

A22 =

{
~Y ∈ DL : w~Y (θ) ∈

[
2

9
,
4

9

)}
,

A23 =

{
~Y ∈ DL : w~Y (θ) ∈

[
4

9
,
2

3

)}
.

Let µ(A21) = a21, µ(A22) = a22, µ(A23) = a23. Following the same argument as above,

0 ≥
(

2

9

)2

a21a23,

so one of a21, a23 must be zero. We proceed by picking one of these to be non-zero and

splitting the remaining interval into three again.

Repeating this process infinitely many times, we obtain a sequence D(n)
L , n ∈ N+,

where

D(n)
L =

{
~Y ∈ DL : w~Y (θ) ∈ In

}
,



CHAPTER 5. BINARY SIGNATURE EXCHANGEABILITY 98

In ⊆ [0, 1], l(In) =
(

2
3

)n−1
and µ(D(n)

L ) = 1.

Let Bθ =
⋂∞
n=1 D(n)

L . Then

Bθ =
{
~Y ∈ DL : w~Y (θ) = b

}
for some b ∈ [0, 1]. The complement of Bθ, Bθ

c, is
⋃∞
n=1

(
D(n)
L

)c
, and µ

((
D(n)
L

)c)
= 0

for each n since µ is σ-additive. Thus Bθ
c is the union of countably many sets, each

with µ measure 0, so µ(Bθ
c) = 0 by the σ-additivity of µ, hence µ(Bθ) = 1. I.e. Bθ is

a subset of DL with µ measure 1 such that for this particular θ ∈ QFSL, w~Y (θ) as a

function of ~Y is constant on Bθ.

Next, we enumerate the countably many quantifier free sentences of L by θ1, θ2, . . . .

Following the above argument, for each sentence θi there is an associated

Bθi =
{
~Y ∈ DL : w~Y (θi) = bi

}
for some bi ∈ [0, 1] such that µ(Bθi) = 1. Define B =

⋂∞
i=1Bθi . Using the same

σ-additivity argument as above, µ(Bc) = 0, and so µ(B) = 1. We conclude that B is a

subset of DL with µ measure 1 such that w~Y (θ) as a function of ~Y is constant on B for

every θ ∈ QFSL. Therefore, for any ~Y ∈ B we must have that w and w~Y are equal

for quantifier free sentences and hence for all sentences, which proves the theorem.

In fact, as long as none of the xk in ~Y are zero, B as defined above contains a single

~Y from DL:

Proposition 5.11. Let ~Y , ~Y ′ ∈ DL be such that x1, . . . , x2q , x
′
1, . . . , x

′
2q > 0 and ~Y 6=

~Y ′. Then there exists Θ a state description of L such that

w~Y (Θ) 6= w ~Y ′(Θ).

Proof. Suppose first that for some s ∈ {1, . . . , 2q}, we have15 xs 6= x′s. Let Θ(a1) =

βs(a1). Then w~Y (Θ(a1)) = xs, w ~Y ′(Θ(a1)) = x′s and these are not equal. So suppose

that xs = x′s for every s ∈ {1, . . . , 2q}, but yj 6= y′j for some j ∈ {1, . . . , p}. In this case

let Θ(a1, a2) = βk(a1)∧βc(a2)∧γh(a1, a2), with γh ∈ Γj. Then w~Y (Θ(a1, a2)) = xk xc yj

and w ~Y ′(Θ(a1, a2)) = xk xc y
′
j and these are not equal whenever xk, xc > 0.

15In fact, in this case at least two entries in x1, . . . , x2q and x′1, . . . , x
′
2q must differ since the xk add

up to 1.
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We have characterised the w~Y as the only probability functions satisfying BIP and

Ex, and the only functions satisfying IP and BEx. In contrast to the w~x in the unary

however, the w~Y are not the only functions satisfying IP and Ex.

Proposition 5.12. There exists a probability function w such that w satisfies Ex and

IP and w 6= w~Y for any ~Y ∈ DL.

Proof. We use results and notation from [36, Chapter 25]. Let L be a language con-

taining a single binary relation symbol R. Let w be a probability function on SL

satisfying Ex and let U∗ be a nonstandard universe as defined on page 95. Let n ∈ N,

let ν ∈ N∗ be nonstandard, and let Θ(a1, . . . , an) be a state description of L (so it is

a state description also in U∗) and Ψ(a1, . . . , aν) a state description in U∗.

We pick in U∗, uniformly at random and with replacement, ah1 , ah2 , . . . , ahn from

{a1, a2, . . . , aν} and define wΨ(Θ(a1, . . . , an)) as the probability that

Ψ(a1, . . . , aν) |= Θ(ah1 , . . . , ahn).

From [36, Chapter 25] we have that the ◦wΨ, the standard part of wΨ, are (standard)

probability functions on SL which satisfy Ex and IP and moreover, a probability

function w satisfies Ex and IP just if w = ◦wΨ for some state description Ψ(a1, . . . , aν)

in U∗.

The w~Y satisfy BEx, so we shall show that there exists a probability function ◦wΨ that

gives state descriptions with the same signature different probabilities and so cannot

be equal to a w~Y for any ~Y ∈ DL.

Let Θ(a1, a2, a3, a4), Φ(a1, a2, a3, a4) be state descriptions of L represented respectively

by the following matrices:

1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 1

1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1

.

Let Ψ(a1, . . . , aν) be a state description in U∗ such that Ψ |= R(ai, ai) for each 1 ≤ i ≤

ν, Ψ |= R(ai, at) for each 〈i, t〉 with 1 ≤ i, t ≤ ν
2
, and Ψ |= ¬R(ai, at) otherwise. Then Θ
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and Φ have the same signature, but ◦wΨ(Θ) > 0 and ◦wΨ(Φ) = 0. This is because there

is no way of choosing ah1 , ah2 , ah3 , ah4 from a1, . . . , aν so that Ψ[ah1 , ah2 , ah3 , ah4 ] ≡

Φ(ah1 , ah2 , ah3 , ah4), but Ψ[ah1 , ah2 , ah3 , ah4 ] ≡ Θ(ah1 , ah2 , ah3 , ah4) whenever

1 ≤ h1, h2, h3 ≤ ν
2

and ν
2
< h4 ≤ ν (so in fact ◦wΨ(Θ) = 1

16
).

5.6 Binary Instantial Relevance

In this section we consider how the idea of instantial relevance might be captured in

our atom-based binary context. Assuming that the available evidence is in the form

of a partial state description, the evidence may be extended to another partial state

description either by adding unary information about a new individual, or by adding

a binary atom instantiated by a pair of individuals each of which may or may not be

new. In each of these cases, if we have already learnt (and added to the evidence) the

same information about another individual or pair of individuals, it should enhance

our probability that this information will be learnt about the given individual or pair

of individuals too.

Adding unary information about a single constant does not involve any intricacies,

and instantial relevance amounts to requiring that for a partial state description

∆(a1, . . . , am) and any βk,

w(βk(am+2) |∆) ≤ w(βk(am+2) | βk(am+1) ∧∆). (5.43)

Adding an atom instantiated by some constants b1, b2 is more complicated, since such

sentences are already determined to some degree by ∆ when one or both of b1, b2 are

amongst the a1, . . . , am. More precisely, assume that

γh(b1, b2) ∧∆(a1, . . . , am)

is consistent and that βk(x)∧ βc(y) is the unary trace of γh(x, y). Then ∆(a1, . . . , am)

may already imply γh(b1, b2), or imply only βk(b1) ∧ βc(b2), or only βk(b1), or only

βc(b2), or none of these. According to which of these holds, we define the Extra in

γh(b1, b2) over ∆(a1, . . . , am) to be, in order,

∅, {{1, 2}}, {{1, 2}, {2}}, {{1, 2}, {1}}, {{1, 2}, {1}, {2}}
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respectively. Naturally, conditional probabilities of instantiated atoms given partial

state descriptions should only be compared if the Extra in them over the evidence is

the same.

Binary Principle of Instantial Relevance

Let ∆(a1, . . . , am) be a partial state description. Then (5.43) holds for any βk. Further-

more, if γh is an atom and b1, b2, b
′
1, b
′
2 are constants such that ∆∧γh(b1, b2)∧γh(b′1, b′2)

is consistent and the Extras in γh(b1, b2) over ∆∧ γ(b′1, b
′
2), in γh(b1, b2) over ∆ and in

γh(b
′
1, b
′
2) over ∆ are all the same then

w(γh(b1, b2) |∆) ≤ w(γh(b1, b2) | γh(b′1, b′2) ∧∆). (5.44)

Theorem 5.13. Let w be a probability function on SL satisfying BEx. Then w satisfies

the Binary Principle of Instantial Relevance.

Proof. Firstly, note that every w~Y satisfies (5.43) and (5.44) with equality by the

definition of these functions. To see this, let

∆(a1, . . . , am) =
∧

1≤i≤m

βki(ai) ∧
∧

{ai,at}∈C
i<t

γhi,t(ai, at).

Using the fact that the w~Y satisfy (B)IP and that the following sentences are all partial

state descriptions,

w~Y (∆ ∧ βk(am+2)) = w~Y (∆) · xk ,

w~Y (∆ ∧ βk(am+2) ∧ βk(am+1)) = w~Y (∆) · x2
k .

and, for example, when the above Extra is {{1, 2}, {2}} and the unary trace of γh(x, y)

is βk(x) ∧ βc(y), then

∆ ∧ γh(b1, b2) =
∧

1≤i≤m

βki(ai) ∧
∧

{ai,at}∈C
i<t

γhi,t(ai, at) ∧ βc(b2) ∧ γh(b1, b2)

∆ ∧ γh(b1, b2) ∧ γh(b′1, b′2) =
∧

1≤i≤m

βki(ai) ∧
∧

{ai,at}∈C
i<t

γhi,t(ai, at)

∧ βc(b2) ∧ βc(b′2) ∧ γh(b1, b2) ∧ γh(b′1, b′2)
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and

w(∆ ∧ γh(b1, b2)) = w(∆ ∧ γh(b′1, b′2)) = w(∆) · xc · zh ,

w(∆ ∧ γh(b1, b2) ∧ γ(b′1, b
′
2)) = w(∆) · x2

c · z2
h .

Similarly, when the Extra is {{1, 2}}, {{1, 2}, {1}} or {{1, 2}, {1}, {2}}, then

w~Y (∆ ∧ γh(b1, b2)) = w~Y (∆ ∧ γh(b′1, b′2)) = w~Y (∆) · f(~Y )

w~Y (∆ ∧ γh(b1, b2) ∧ γh(b′1, b′2)) = w~Y (∆) · (f(~Y ))2,

with f(~Y ) respectively (zh), (zh · xk) and (zh · xk · xc). When the Extra is ∅, (5.44)

holds trivially for any w, since in that case ∆, ∆ ∧ γh(b1, b2), ∆ ∧ γh(b′1, b′2) and

∆ ∧ γh(b1, b2) ∧ γh(b′1, b′2) are all logically equivalent.

By Theorem 5.9, since w satisfies BEx, w is an integral of the w~Y . Let µ be the

corresponding measure. Then (5.44) (and similarly16 (5.43)), can be expressed as

w(∆ ∧ γh(b1, b2))

w(∆)
≤ w(∆ ∧ γh(b1, b2) ∧ γh(b′1, b′2))

w(∆ ∧ γh(b′1, b′2))

(w(∆ ∧ γh(b1, b2)))2 ≤ w(∆ ∧ γh(b1, b2) ∧ γh(b′1, b′2)) · w(∆)(∫
DL
w~Y (∆ ∧ γh(b1, b2)) dµ(~Y )

)2

≤
(∫

DL
w~Y (∆ ∧ γh(b1, b2) ∧ γh(b′1, b′2)) dµ(~Y )

)
·
(∫

DL
w~Y (∆) dµ(~Y )

)
(∫

DL
f(~Y )w~Y (∆) dµ(~Y )

)2

≤
(∫

DL
(f(~Y ))2w~Y (∆) dµ(~Y )

)
·
(∫

DL
w~Y (∆) dµ(~Y )

)
.

Let A = w(∆), B = w(∆ ∧ γh(b1, b2)) and C = w(∆ ∧ γh(b1, b2) ∧ γh(b′1, b′2)). Then

the above amounts to B2 ≤ CA or 0 ≤ CA − B2, and this integral inequality holds

for any f , as follows: If A = 0, it clearly holds, since 0 ≤ B,C ≤ A by, for example,

[36, Proposition 3.1(c)]. If A > 0 then 0 ≤ CA−B2 ⇐⇒ 0 ≤ CA2 − AB2, and

0 ≤ CA2 − AB2

= CA2 − 2AB2 +B2A

=

∫
DL
A2 (f(~Y ))2w~Y (∆) dµ(~Y )−

∫
DL

2AB f(~Y )w~Y (∆) dµ(~Y ) +

∫
DL
B2w~Y (∆) dµ(~Y )

16Using the same argument, with γh(b1, b2) replaced by βk(am+2), γh(b′1, b
′
2) replaced by βk(am+1)

and f(~Y ) = xk.
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=

∫
DL

(
A2 (f(~Y ))2 − 2AB f(~Y ) +B2

)
w~Y (∆) dµ(~Y )

=

∫
DL

(
Af(~Y )−B

)2

w~Y (∆) dµ(~Y )

using that A and B are constants, and this clearly holds since the right hand side is

an integral of a non-negative function, thus proving the theorem.

We remark that the same method yields the following related result:

Theorem 5.14. Let w be a probability function on SL satisfying BEx. Let ∆(a1, . . . , am)

be a partial state description. If γh is an atom and b1, b2, b
′
1, b
′
2 are constants such that

∆ ∧ γh(b1, b2) ∧ γh(b′1, b′2) is consistent and the Extra in γh(b
′
1, b
′
2) over ∆ is the same

as the Extra in γh(b1, b2) over ∆ ∧ γ(b′1, b
′
2) then

w(γh(b
′
1, b
′
2) |∆) ≤ w(γh(b1, b2) | γh(b′1, b′2) ∧∆) . (5.45)

The main difference17 between (5.44) and (5.45) is a motivational one. The former is

the assertion that the probability of a particular atom occurring is increased (or at

least, not decreased) if we have evidence of another pair of individuals instantiating

this same atom. When restricted to unary languages, this corresponds to Carnap’s

formulation of PIR. (5.45) on the other hand, represents the idea that we learn infor-

mation about pairs of individuals successively, so that once we have learnt that a pair

of individuals satisfies a certain atom, this information is added to our evidence. The

probability we will then learn that another pair of individuals satisfies this same atom

should be at least as much as it was for learning the first pair satisfied this atom.

17Note that Theorem 5.14 also makes one less assumption about the required Extras than the
statement of the binary PIR.



Chapter 6

Polyadic Signature Exchangeability

We extend our investigation from Chapter 5 to polyadic languages. Specifically, we

define the notion of a signature and the Principle of Signature Exchangeability in this

more general context. We generalise the w~Y for polyadic languages and provide a

polyadic principle of instantial relevance. Finally, in the last section, we indicate some

possible directions for future research to continue this investigation. The results in

this chapter appear also in [40].

With the required background and motivation already covered by Section 5.1, we move

straight to our results.

6.1 An Atom-based Approach for Polyadic Lan-

guages

Let L be an r-ary language with relation symbols R1, . . . , Rq of arities r1, . . . , rq. So,

as usual, the maximum of the ri is r. Recall that the atoms of L, as defined in Chapter

4 on page 52, are the state formulae for r variables, denoted by

γ1(x1, . . . , xr), . . . , γN(x1, . . . , xr),

and that state descriptions can be expressed as a conjunction of instantiated atoms,

Θ(b1, . . . , bm) =
∧

〈i1,i2,...,ir〉∈{1,...,m}r
γhi1,...,ir (bi1 , . . . , bir)

104
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which, when m ≥ r, we can write also as

Θ(b1, . . . , bm) =
∧

1<i1<...<ir≤m

γhi1,...,ir (bi1 , . . . , bir). (6.1)

For the purpose of this chapter, we will find it convenient in addition to have a way

of referring to blocks smaller than atoms.

Definition 6.1. The g-atoms for g ≤ r are the state formulae of L for g variables.

They are denoted by

γg1(x1, . . . , xg), . . . , γ
g
Ng

(x1, . . . , xg).

Thus the γrh(x1, . . . , xr) are just the atoms γh(x1, . . . , xr) and Nr = N . Clearly, like N ,

the Ng depend on L. Note that in the binary case there are the γ2
h = γh (the binary

atoms) and the γ1
k (1-atoms), which we referred to as βk in the previous chapter to

avoid superscripts altogether.

As before, any conjunction of atoms is consistent (and hence defines a state description)

just when any pair of the γhi1,...,ir (bi1 , . . . , bir) agree when restricted to the constants

they have in common. We will find it useful to make these shared components visible

so we write

Θ(b1, . . . , bm) =
∧

1≤s≤r

∧
1≤i1<...<is≤m

γshi1,...,is (bi1 , . . . , bis) . (6.2)

This works even when m < r. Note that the γshi1,...,is
in (6.2) are such that

γshi1,...,is (bi1 , . . . , bis) = Θ[bi1 , . . . , bis ].

Let g < r. The following definition is motivated by the need to isolate the part of

a state description in which at most g constants are brought together instantiating

a relation. We refer to this part as the g-ary trace of the state description. More

precisely,

Definition 6.2. The g-ary trace of the state description (6.2), denoted by1

(Θ�g)(b1, . . . , bm),

1or sometimes simply by (Θ�g).
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is defined to be ∧
1≤s≤g

∧
1≤i1<...<is≤m

γshi1,...,is (bi1 , . . . , bis). (6.3)

Note that when g = 1 this definition agrees with the definition of the unary trace from

page 69. Any consistent conjunction of the form (6.3) is called a g-ary trace for the

constants b1, . . . , bm.

Partial state descriptions are composed of instantiated s-atoms in a similar way to

state descriptions, but the sentences do not necessarily combine to give a full state

description.

Definition 6.3. A partial state description for b1, . . . , bm is a sentence of the form

∆(b1, . . . , bm) =
∧

1≤s≤r

∧
{bi1 ,...,bis}∈C

s

i1<...<is

γshi1,...,is (bi1 , . . . , bis), (6.4)

where Cs is some set of s-element subsets of {b1, . . . , bm}.

We will assume that (6.4), like (6.2), displays all the instantiated γsh implied by ∆. In

other words, we assume that
⋃r
s=1 C

s contains along with any {bi1 , . . . , bis} also all its

subsets.

In addition, when writing ∆(b1, . . . , bm) for a partial state description, we mean that

all of b1, . . . , bm actually appear in it, so C1 contains all singletons {bi} for i = 1, . . . ,m.

When r = 2, this definition agrees with the definition of a partial state description

in the binary case (page 70). We remark also that a partial state description (6.4) is

a state description just when Cr contains all r-element subsets of {b1, . . . , bm}. Note

that any g-ary trace of a state description is a partial state description.

We define the g-ary trace of a state formula, and a partial state formula analogously

to the definitions for state descriptions.

6.2 Polyadic Signatures

As in the binary case, we need to introduce an equivalence between atoms (and more

generally, between g-atoms) to capture the fact that g-atoms obtained from each other

by permuting the variables represent the same thing.
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Accordingly, we define γgh ∼ γgk if there exists a permutation σ ∈ Sg such that

γgh(x1, . . . , xg) ≡ γgk(xσ(1), . . . , xσ(g)) (6.5)

and we denote the equivalence classes of ∼ by Γg1, . . . ,Γ
g
pg . When g = r we drop the

superscript and write just Γ1 . . . , ,Γp, and we write p for pr. If (6.5) holds, we say

that γgh obtains from γgk via σ. Note that the equivalence classes Γ1
j are singletons and

p1 = N1 = 2q, so they are not necessary and we can work with the γ1
k instead, as we

did with the βk in the previous chapter, for r = 2.

For 1 < g ≤ r, every Γgj can be split into subclasses, each subclass containing all γgh

with the same (g − 1)-ary trace. Define sgj to be the number of elements in these

subclasses. This is possible since given g and j, the subclasses of Γgj all have the same

number of elements. sgj expresses in how many ways the (g− 1)-ary trace of some/any

γgh from Γgj can be extended to a γgk ∈ Γgj ; one of these ways is to γgh itself but there

may be other possibilities. In the binary case, we wrote just sj for s2
j .

We extend the definition of a signature from binary languages to r-ary languages for

r > 2 in the expected way:

Definition 6.4. The signature of a state description Θ as in (6.1) (or (6.2)) is defined

to be the vector 〈n1, . . . , np〉, where nj is the number of 〈i1, . . . , ir〉 such that 1 ≤ i1 <

. . . < ir ≤ m and γhi1,...,ir ∈ Γj.

Thus, the signature records how many atoms from each equivalence class there are

within Θ(b1, . . . , bm). When m < r, the signature is not defined, but the notion of

extended signature still makes sense, where the extended signature of Θ as in (6.2) is

the vector

〈n1
1, . . . , n

1
p1

; . . . ; nr−1
1 , . . . , nr−1

pr−1
; n1, . . . , np〉 ,

and ngj is the number of 〈i1, . . . , ig〉 such that 1 ≤ i1 < . . . < ig ≤ m and γghi1,...,ig
∈ Γgj .

Note that the extended signature is derivable from the signature (when m ≥ r) and

that it is defined even when m < r.

Signature Exchangeability Principle, Sgx

The probability of a state description depends only on its signature.
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Sgx for unary or binary languages is the same as Ex or BEx respectively. Sgx implies

Ex but the converse implication does not hold in general. We gave two examples of

probability functions satisfying Ex but not Sgx (BEx) for r = 2 in the previous chapter

(see page 75).

6.3 Polyadic Independence

In the binary case, we defined C2
φ as the set of pairs of constants brought together

instantiating a relation in a sentence φ (Definition 5.4). In a similar vein, the following

definition captures exactly which sets of g constants are brought together instantiating

a relation within a sentence:

Definition 6.5. For a sentence φ(b1, . . . , bm) ∈ SL we define Cs
φ to be the set of

all sets {bk1 , . . . , bks} with s elements such that all of bk1 , . . . , bks appear in some

±Rd(bi1 , . . . , bird ), d ∈ {1, . . . , q} featuring in φ.

We refer to Cs
φ as the set of s-sets of constants appearing in φ. For example, consider

a language containing one binary relation symbol R1 and one ternary relation symbol

R2. For

φ = R1(a7, a2) ∨R2(a4, a2, a4)

we have C1
φ = {{a2}, {a7}, {a4}}, C2

φ = {{a2, a7}, {a2, a4}} and Ck
φ = ∅ for k ≥ 3.

Note that
⋃r
s=1C

s
φ is closed under taking subsets.

As we had in the binary case, a modification of the Disjunctive Normal Form Theorem

yields the following lemma:

Lemma 6.6. Let φ(b1, . . . , bm) ∈ QFSL. Then φ(b1, . . . , bm) is equivalent to a dis-

junction of partial state descriptions as in (6.4), with Cs = Cs
φ for s = 1, . . . , r.

We are now in a position to formulate a general version of the Independence Principle

from page 65 based on atoms, as we did on page 77 for r = 2. In this generalised version

we require that the following holds for any g < r: if two quantifier-free sentences have

no (g+ 1)-sets of constants in common then they are conditionally independent given

a g-ary trace for the constants that they share.
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Strong Independence Principle, SIP

Let L be an r-ary language and let 0 ≤ g < r. Assume that φ, ψ ∈ QFSL are such

that

Cg+1
φ ∩ Cg+1

ψ = ∅

and let b1, . . . , bt be the constants that φ and ψ have in common (if any). Let ∆ be a

g-ary trace for the constants b1, . . . , bt when t > 0, and ∆ = > (tautology) if φ and ψ

have no constants in common. Then

w(φ ∧ ψ |∆) = w(φ |∆) · w(ψ |∆). (6.6)

The Basic SIP Functions

Recall that for g ≤ r, Ng is the number of g-atoms and pg is the number of equivalence

classes of g-atoms under ∼.

Let ~Y = 〈y1
1, . . . , y

1
p1

; y2
1, . . . , y

2
p2

; . . . ; yr1, . . . , y
r
pr〉 be a vector of real numbers such

that

0 ≤ ygj ≤ 1,

p1∑
j=1

y1
j = 1,

and such that for 1 < g ≤ r the following holds: For any (g − 1)-ary trace ψ for

x1, . . . , xg, ∑
j

sgj y
g
j = 1 (6.7)

where the sum is taken over those j ∈ {1, . . . , pg} for which Γgj contains some γgh with

the (g − 1)-ary trace ψ.

We use DL to denote the set of vectors satisfying the above conditions. In a bid to

keep our formulae simpler, we will write

zgh = ygj(h)

where j(h) is that j for which γgh ∈ Γgj . Note that (6.7) is the same as requiring∑
(γgh� g−1)=ψ

zgh = 1. (6.8)
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The vectors ~Y ∈ DL play a similar role in the polyadic to the role the vectors ~x ∈ D2q

from w~x play in the unary. For a given ~Y , the corresponding function w~Y assigns a

state description Θ(b1, . . . , bm) the probability of obtaining it by the following process:

First the γ1
h are chosen for b1, . . . , bm, independently according to the probabilities z1

h.

Then the γ2
h are chosen for bi1 , bi2 with i1 < i2 from amongst the eligible ones, i.e. from

amongst those γ2
h for which (γ2

h � 1)(x1, x2) ≡ γ1
hi1

(x1) ∧ γ1
hi2

(x2), independently and

according to the probabilities z2
h, and so on. Note that this works by virtue of (6.8),

because when choosing γgh for bi1 , . . . , big , (γgh �g − 1) is determined.

More formally, given ~Y as above, for a state description Θ(a1, . . . , am) such that

Θ(a1, . . . , am) ≡
∧

1≤s≤r
1≤i1<...<is≤m

γshi1,...,is (ai1 , . . . , ais) (6.9)

we define

w~Y (Θ(a1, . . . , am)) =
∏

1≤s≤r
1≤i1<...<is≤m

zshi1,...,is . (6.10)

Note that, as in the binary case, if σ ∈ Sm and Ψ(a1, . . . , am) = Θ(aσ(1), . . . , aσ(m))

then w~Y (Θ) = w~Y (Ψ):

Ψ(a1, . . . , am) =
∧

1≤s≤r
1≤i1<···<is≤m

γshσ−1(i1),...,σ−1(is)
(ai1 , . . . , ais)

and the multisets

{γshσ−1(i1),...,σ−1(is)
: 1 ≤ i1 < . . . is ≤ m}, {γshi1,...,is : 1 ≤ i1 < · · · < is ≤ m}

can only differ in which atoms from each equivalence class they contain, but not the

number of atoms they contain from each equivalence class.

Proposition 6.7. Let L be an r-ary language. The functions w~Y defined in (6.10)

determine probability functions on SL that satisfy Ex.

Proof. To show that w~Y determines a probability function note that (P1′) and (P2′)

from page 13 clearly hold. For (P3′), we will prove that for any state description

Θ(a1, . . . , am) we have

w~Y (Θ(a1, . . . , am)) =
∑

Θ+(a1,...,am,am+1)|=Θ(a1,...,am)

w~Y (Θ+(a1, . . . , am, am+1)).
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Let Θ+(a1, . . . , am, am+1) extend Θ. Then w~Y (Θ+(a1, . . . , am, am+1)) is the product ∏
1≤s≤r

1≤i1<...<is≤m

zshi1,...,is


 ∏

1≤s≤r
1≤i1<...<is−1≤m

zshi1,...,is−1,(m+1)


where the first product is as for Θ and hi1,...,is−1,(m+1) is that h for which

γsh(ai1 , . . . , ais−1 , am+1) = Θ+[ai1 , . . . , ais−1 , am+1] .

That is, where Θ+ is

Θ(a1, . . . , am) ∧
∧

1≤s≤r
1≤i1<...<is−1≤m

γshi1,...,is−1,(m+1)
(ai1 , . . . , ais−1 , am+1). (6.11)

Consider some r-tuple 〈i1, . . . , ir−1, (m + 1)〉 with 1 ≤ i1 < . . . < ir−1 ≤ m. If some

Θ+ |= Θ satisfies

Θ+[ai1 , . . . , air−1 , am+1] = γrh(ai1 , . . . , air−1 , am+1) ,

then any conjunction that differs from (6.11) only by having γrk(ai1 , . . . , air−1 , am+1)

in place of γrh(ai1 , . . . , air−1 , am+1), where γrh and γrk have the same (r − 1)-ary trace,

is also a state description extending Θ. Since the zrk for all such k sum to 1 (from

(6.8)), we can sum them out. Similarly, we can deal with the other r-tuples, then the

(r−1)-tuples and so on, working our way down. So (P3′) holds too, and the w~Y define

probability functions on SL.

The w~Y satisfy Ex by the remark preceding this proposition, since w~Y (Θ(a1, . . . , am)) =

w~Y (Θ(aσ(1), . . . , aσ(m))) for state descriptions Θ and σ ∈ Sm.

Proposition 6.8. The w~Y satisfy Sgx.

Proof. Similar reasoning to above (and as in the binary case) - summing the probabil-

ities of all state descriptions for a1, . . . , aM extending Θ(b1, . . . , bm) (where b1, . . . , bm

are amongst a1, . . . , aM) - gives us that (6.10) holds even when a1, . . . , am are replaced

by any other distinct constants b1, . . . , bm. Therefore w~Y (Θ) is independent of the

constants instantiating Θ and hence it satisfies Sgx, since the right hand side of (6.10)

depends only on the signature of Θ.
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Next we would like to show that the w~Y satisfy SIP. For this purpose we will use the

following lemma:

Lemma 6.9. Let

Φ(b1, . . . , bm) =
∧

1≤s≤r

∧
{bi1 ,...,bis}∈C

s

i1<...<is

γshi1,...,is (bi1 , . . . , bis) (6.12)

be a partial state description of an r-ary language. Then

w~Y (Φ(b1, . . . , bm)) =
∏

1≤s≤r

∏
{bi1 ,...,bis}∈C

s

i1<...<is

zshi1,...,is .

Proof. To prove the lemma we sum the probabilities of state descriptions Θ(b1, . . . , bm)

extending Φ(b1, . . . , bm), exactly as in the proof of Lemma 5.7.

Theorem 6.10. Let L be an r-ary language. The probability functions w~Y on SL

satisfy SIP and hence also IP.

Furthermore, any probability function satisfying Ex and SIP is equal to w~Y for some

~Y ∈ DL.

Proof. Using Lemma 6.9, we will first show that SIP holds for partial state descriptions

Φ,Ψ and then, employing Lemma 6.6, in general. Let Φ be as in (6.12) and let

Ψ(b1, . . . , bt, bm+1, . . . , bm+n) =
∧

1≤s≤r

∧
{bi1 ,...,bis}∈D

s

i1<···<is

γshi1,...,is (bi1 , . . . , bis) (6.13)

with Ds a set of s-element subsets of {b1, . . . , bt, bm+1, . . . , bm+n}. Suppose that Cg+1∩

Dg+1 = ∅ and that b1, . . . , bt are the constants Φ and Ψ have in common. Let

∆(b1, . . . , bt) =
∧

1≤s≤g
∧

1≤i1<···<is≤t γ
s
hi1,...,is

(bi1 , . . . , bis) be a g-ary trace for b1, . . . , bt.

If ∆ is inconsistent with Φ or Ψ then

w(Φ ∧Ψ |∆) = w(Φ |∆) · w(Ψ |∆) (6.14)

holds because both sides are 0. We show that (6.14) holds also when ∆ ∧ Φ ∧ Ψ is

consistent. Suppose first that Φ,Ψ |= ∆.

Using that Φ ∧Ψ is a partial state description we have

w~Y (Φ ∧Ψ |∆) =

∏
1≤s≤r

∏
{bi1 ,...,bis}∈C

s∪Ds
i1<···<is

zshi1,...,is∏
1≤s≤g

∏
1≤i1<···<is≤t z

s
hi1,...,is
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=
∏

1≤s≤g

∏
{bi1 ,...,bis}∈C

s∪Ds
i1<···<is
t<is

zshi1,...,is

∏
g+1≤s≤r

∏
{bi1 ,...,bis}∈C

s∪Ds
i1<···<is

zshi1,...,is

and

w~Y (Φ |∆) · w~Y (Ψ |∆) =

∏
1≤s≤r

∏
{bi1 ,...,bis}∈C

s

i1<...<is

zshi1,...,is∏
1≤s≤g

∏
1≤i1<···<is≤t z

s
hi1,...,is

·

∏
1≤s≤r

∏
{bi1 ,...,bis}∈D

s

i1<···<is
zshi1,...,is∏

1≤s≤g
∏

1≤i1<···<is≤t z
s
hi1,...,is

=


∏

1≤s≤g

∏
{bi1 ,...,bis}∈C

s

i1<···<is
t<is

zshi1,...,is

∏
g+1≤s≤r

∏
{bi1 ,...,bis}∈C

s

i1<···<is

zshi1,...,is



·


∏

1≤s≤g

∏
{bi1 ,...,bis}∈D

s

i1<···<is
t<is

zshi1,...,is

∏
g+1≤s≤r

∏
{bi1 ,...,bis}∈D

s

i1<···<is

zshi1,...,is


=
∏

1≤s≤g

∏
{bi1 ,...,bis}∈C

s∪Ds
i1<···<is
t<is

zshi1,...,is

∏
g+1≤s≤r

∏
{bi1 ,...,bis}∈C

s∪Ds
i1<···<is

zshi1,...,is ,

so (6.14) holds for these Φ,Ψ. Now suppose it is not the case that Φ,Ψ |= ∆. Then

for 1 ≤ s ≤ g, there are γshi1,...,is
(bi1 , . . . , bis) which appear in ∆ but do not appear in

at least one of Φ,Ψ. We can see that (6.14) holds in this case too, since the additional

factors in w~Y (Φ∧Ψ∧∆), w~Y (Φ∧∆) and w~Y (Ψ∧∆) are all divided out by w~Y (∆), so

we end up with the same products as above. We conclude that SIP holds for partial

state descriptions.

To see that it holds also for any φ, ψ ∈ QFSL, using Lemma 6.6, let φ =
∨
u Φu for

partial state descriptions Φu as in (6.12) with Cs = Cs
Φ, and ψ =

∨
f Ψf for partial

state descriptions Ψf as in (6.13) with Ds = Cs
Ψ. Then the required result follows as

in the proof of Theorem 5.8 on page 85.

To prove the last part of the theorem, assume that w satisfies Ex and SIP. We define

~Y by

ygj(h) = zgh = w(γgh(a1, . . . , ag) | (γgh � g − 1)(a1, . . . , ag))

where γgh ∈ Γgj and (γgh � g − 1)(a1, . . . , ag) stands for a tautology when g = 1. Note

that by Ex it does not matter which γgh from Γgj we take, and that (6.7) must hold.

Writing any state description in the form (6.9) and using Ex and SIP, we can show



CHAPTER 6. POLYADIC SIGNATURE EXCHANGEABILITY 114

by induction2 (adding the conjuncts for increasing numbers of constants one by one)

that its probability is given by (6.10).

Corollary 6.11. Let L be an r-ary language and let µ be a normalised σ-additive

measure on the Borel subsets of DL. For any θ ∈ SL define

w(θ) =

∫
DL
w~Y (θ) dµ(~Y ). (6.15)

Then the function w is a probability function on SL satisfying Sgx.

Proof. The function w defined on SL by (6.15) clearly satisfies (P1) and (P2) from

page 12, and using Lebesgue’s Dominated Convergence Theorem it also satisfies (P3).

So w is a probability function. It satisfies Sgx since all the w~Y do.

On the other hand, whether or not the converse to Corollary 6.11 holds, that is,

whether any probability function satisfying Sgx can be expressed in the form (6.15),

remains to be investigated. We know that such a representation theorem, if it exists,

must use a different method to our proof of the binary Representation Theorem. We

demonstrate why this is so on the case when L is a ternary language.

Recall that the proof of the binary Representation Theorem 5.9 relied on counting the

number of state descriptions with a particular extended signature ~u~t (see (5.26)). This

involved expressing the sums of the tj for those j such that Γj contains an atom with

a particular unary trace (that is the number of ‘places’ in the state description to be

filled with binary atoms from these classes Γj) in terms of the uk from ~u, the unary

part of this extended signature.

Let

~m~n~l = 〈m1, . . . ,m2q ; n1, . . . , np2 ; l1, . . . , lp〉

denote an extended signature of some state description of the ternary language L. We

will show that it is not possible to count the number of state descriptions with this

extended signature in the way it is done in the binary and thus conclude that the

method of the binary proof does not work in the general polyadic case. In particular,

we will show that no expression for the lj can be worked out in terms of the nj; the

2As in the proof of Theorem 5.8.
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number of binary atoms from each equivalence class (that is, ~n) does not suffice to

determine the number of ‘places’ which atoms with a given binary trace must fill.

To see this, notice first that for the extended signature ~m~n~l we still have, as in the

binary: ∑
1≤k≤2q

mk = m;

for k 6= c ∑
j

nj = mkmc

where the sum is taken over those j ∈ {1, . . . , p2} for which Γ2
j contains some γ2

h(x1, x2)

with unary trace γ1
k(x1) ∧ γ1

c (x2), and∑
j

nj =
mk(mk − 1)

2

for those j such that Γ2
j contains a γ2

h(x1, x2) with unary trace γ1
k(x1) ∧ γ1

k(x2).

However, when we fix a binary trace ψ and sum the lj over those j ∈ {1, . . . , p} such

that Γj contains a γh(x1, x2, x3) with this binary trace ψ, different state descriptions

of L may yield different results.

Let

Θ(b1, b2, b3, b4) = γh1,2,3(b1, b2, b3) ∧ γh1,2,4(b1, b2, b4) ∧ γh1,3,4(b1, b3, b4) ∧ γh2,3,4(b2, b3, b4),

Φ(b1, b2, b3, b4) = γf1,2,3(b1, b2, b3) ∧ γf1,2,4(b1, b2, b4) ∧ γf1,3,4(b1, b3, b4) ∧ γf2,3,4(b2, b3, b4)

be state descriptions of L such that

Θ |=
4∧
i=1

γ1
1(bi) ∧ γ2

1(b1, b2) ∧ γ2
2(b1, b3) ∧ γ2

2(b1, b4)

∧ γ2
1(b2, b3) ∧ γ2

2(b2, b4) ∧ γ2
1(b3, b4), (6.16)

Φ |=
4∧
i=1

γ1
1(bi) ∧ γ2

1(b1, b2) ∧ γ2
1(b1, b3) ∧ γ2

2(b1, b4)

∧ γ2
1(b2, b3) ∧ γ2

2(b2, b4) ∧ γ2
2(b3, b4) (6.17)

and where γ2
1(x1, x2) 6∼ γ2

2(x1, x2) (so γ2
1 and γ2

2 are from different Γ2
j).

Then Θ and Φ both have the same ~m and ~n parts of the extended signature, since

each contains 4 of γ1
1 , 3 of γ2

1 and 3 of γ2
2 (i.e. Θ and Φ agree on all the mk and nj).
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However, if we let ψ be the binary trace3

γ2
1(x1, x2) ∧ γ2

2(x1, x3) ∧ γ2
2(x2, x3)

and sum the lj over those j for which Γj contains an atom with the binary trace ψ,

we get different results for Θ and Φ. For Θ we have that∑
j

lj = 2

since (from (6.16)) the binary traces of the atoms appearing in Θ are as follows:

γh1,2,3(x1, x2, x3) |= γ2
1(x1, x2) ∧ γ2

2(x1, x3) ∧ γ2
1(x2, x3),

γh1,2,4(x1, x2, x3) |= γ2
1(x1, x2) ∧ γ2

2(x1, x3) ∧ γ2
2(x2, x3),

γh1,3,4(x1, x2, x3) |= γ2
2(x1, x2) ∧ γ2

2(x1, x3) ∧ γ2
1(x2, x3),

γh2,3,4(x1, x2, x3) |= γ2
1(x1, x2) ∧ γ2

2(x1, x3) ∧ γ2
1(x2, x3),

and of these, only γh1,2,4 and γh1,3,4 are from a Γj that contains an atom with the binary

trace ψ. In contrast, (using (6.17)) the binary traces of the atoms appearing in Φ are

γf1,2,3(x1, x2, x3) |= γ2
1(x1, x2) ∧ γ2

1(x1, x3) ∧ γ2
1(x2, x3)

γf1,2,4(x1, x2, x3) |= γ2
1(x1, x2) ∧ γ2

2(x1, x3) ∧ γ2
2(x2, x3)

γf1,3,4(x1, x2, x3) |= γ2
1(x1, x2) ∧ γ2

2(x1, x3) ∧ γ2
2(x2, x3)

γf2,3,4(x1, x2, x3) |= γ2
1(x1, x2) ∧ γ2

2(x1, x3) ∧ γ2
2(x2, x3)

so ∑
j

lj = 3

for those j as above, since γf1,2,4 , γf1,3,4 and γf2,3,4 are all from a Γj that contains an

atom with the binary trace ψ.

It follows that no expression using the nj for these sums can be found, since the nj

are the same for Θ and Φ. Therefore, we cannot use the same proof method as in

Theorem 5.9. Whether a different method may yield such a representation theorem

remains, as already mentioned, a subject for future investigations.

3For clarity, we do not write the 1-atoms in the binary traces that follow; they are all γ1
1(xi).
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6.4 Polyadic Instantial Relevance

For a general r-ary language, instantial relevance based on atoms can be captured

similarly to the binary case. To do this, we first generalise the concept of Extra to

describe how much information a g-atom instantiated by b1, . . . , bg adds to a partial

state description.

Let

∆(a1, . . . , am) =
∧

1≤s≤r

∧
{ai1 ,...,ais}∈C

s

i1<...<is

γshi1,...,is (ai1 , . . . , ais) (6.18)

be a partial state description. Recall that
⋃r
s=1C

s is assumed to be closed under

taking subsets. Let b1, . . . , bg be distinct constants, some of which may be amongst

a1, . . . , am. Assume that γgh(b1, . . . , bg) is consistent with ∆.

Definition 6.12. The Extra in γgh(b1, . . . , bg) over ∆ is the set E of those subsets

{t1, . . . , ts} of {1, . . . , g} such that {bt1 , . . . , bts} is not in
⋃r
s=1C

s.

Note that E is empty just if ∆(a1, . . . , am) implies γgh(b1, . . . , bg), otherwise {1, . . . , g}

is in E. E contains the singleton {i} just when bi is a new constant not featuring in

∆. E is the whole power set of {1, . . . , g} when all of b1, . . . , bg are new. The Extra is

closed under supersets, and the additional information in γgh(b1, . . . , bg) over ∆ consists

of all ±Rd(bi1 , . . . , bird ) implied by γgh(b1, . . . , bg) and such that {i1, . . . , ird} ∈ E.

Polyadic Principle of Instantial Relevance, PPIR

Let ∆(a1, . . . , am) be a partial state description, 1 ≤ g ≤ r, and let γgh be a g-atom.

Let b1, . . . , bg, b
′
1, . . . , b

′
g be such that

∆ ∧ γgh(b1, . . . , bg) ∧ γgh(b′1, . . . , b
′
g)

is consistent. Assume that the Extras in γgh(b1, . . . , bg) over ∆ ∧ γgh(b′1, . . . , b
′
g), in

γgh(b1, . . . , bg) over ∆ and in γgh(b′1, . . . , b
′
g) over ∆ are all the same. Then

w(γgh(b1, . . . , bg) |∆) ≤ w(γgh(b1, . . . , bg) | γgh(b′1, . . . , b
′
g) ∧∆) . (6.19)
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Theorem 6.13. Any convex combination (or integral) of the functions w~Y satisfies

PPIR.

Proof. Let ∆, γgh and b1, . . . , bg, b
′
1, . . . , b

′
g be as in the statement of PPIR. Assume ∆

is as in (6.18). Let E be the Extra in γgh(b1, . . . , bg) over ∆. We have

w~Y (∆) =
∏

1≤s≤r

∏
{ai1 ,...,ais}∈C

s

i1<...<is

zshi1,...,is ,

w~Y (∆ ∧ γgh(b1, . . . , bg)) = w~Y (∆ ∧ γgh(b′1, . . . , b
′
g)) = w~Y (∆) ·

∏
{t1,...,ts}∈E

zskt1,...,ts ,

w~Y (∆ ∧ γgh(b1, . . . , bg) ∧ γgh(b′1, . . . , b
′
g)) = w~Y (∆) ·

 ∏
{t1,...,ts}∈E

zskt1,...,ts

2

.

It follows that for w = w~Y , (6.19) holds with equality.

The proof for w defined by (6.15), and hence also for any convex combination of the

w~Y , follows from the above equations exactly as in the binary case (Theorem 5.13).

By the same method we also obtain that under the same assumptions as those in

PPIR except that merely the Extras in γgh(b1, . . . , bg) over ∆ ∧ γgh(b′1, . . . , b
′
g) and in

γgh(b′1, . . . , b
′
g) over ∆ are required to be the same, we obtain that any convex combi-

nation (or integral) w of the functions w~Y satisfies

w(γgh(b′1, . . . , b
′
g) |∆) ≤ w(γgh(b1, . . . , bg) | γgh(b′1, . . . , b

′
g) ∧∆) .

6.5 Future Directions

The results presented in this chapter open the door to many new questions arising from

these ideas. For example, we introduced the concept of g-atoms for g ≤ r (where r is

the arity of the language) and used it to define partial state descriptions. Considering

a fixed r-ary language, let g-atoms again be the state formulae for g variables, but

this time for any positive natural number g. We may define the g-signature of a state

description for m individuals (where g ≤ m) analogously to (r-)signatures. We end

this chapter with some observations regarding these g-signatures, a direction to be

further researched.
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We can see that the g-signature of a state description determines its s-signature for

s < g. Hence, for such s, g, a probability function which gives state descriptions with

the same s-signature the same probability, must also give the same probability to state

descriptions with the same g-signature.

Conversely, however, it is not the case that the s-signature of a state description

determines its g-signature for s < g, not even when r ≤ s < g. One example, for

r = 2, s = 2 and g = 3, is provided by the state descriptions on page 74. Here we give

another example, for r = 2, s = 3 and g = 4:

Example. Let L contain one binary relation symbol. Then the 6 state formulae (3-

atoms) represented by

1 1 1

0 1 1

0 0 1

1 0 0

1 1 0

1 1 1

1 1 0

0 1 0

1 1 1

1 0 1

1 1 1

0 0 1

1 0 0

1 1 1

1 0 1

1 1 1

0 1 0

0 1 1

are equivalent in the sense that they can be obtained from each other via a permutation

of the variables. Furthermore, the following two are also equivalent:

1 1 0

0 1 1

1 0 1

1 0 1

1 1 0

0 1 1

.

However, the state descriptions Θ and Φ represented respectively by the matrices

1 1 0 1 1 1

0 1 1 1 1 1

1 0 1 1 1 1

0 0 0 1 1 0

0 0 0 0 1 1

0 0 0 1 0 1

1 1 1 0 1 1

0 1 1 1 1 1

0 0 1 1 1 1

1 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1

feature only the above 3-atoms and they have the same 3-signature but not the same

4-signature. The 3-signature of both contains eighteen 3-atoms of the first kind and

two 3-atoms of the second kind. On the other hand, the 4-atoms appearing in Θ and

Φ, where those equivalent to each other appear on the same line, are
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1.

1 1 0 1

0 1 1 1

1 0 1 1

0 0 0 1

2.

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

1 1 1 1

0 1 1 1

0 0 1 0

0 0 1 1

1 0 1 1

1 1 1 1

0 0 1 1

0 0 0 1

1 0 1 1

1 1 1 1

0 0 1 0

0 0 1 1

3.

1 1 1 1

0 1 1 0

0 0 1 1

0 1 0 1

4.

1 1 1 0

0 1 1 1

0 0 1 1

1 0 0 1

.

The 4-signature of Θ consists of three 4-atoms of the first kind, nine of the second

kind, and three of the third kind. However, the 4-signature of Φ contains four 4-atoms

of the first kind, ten of the second kind, and one of the fourth kind. Therefore, the

4-signatures of Θ and Φ are not equal.



Chapter 7

Element-based Signature

Exchangeability

7.1 Introduction

In the previous two chapters we presented an approach to generalising unary results

involving exchangeability which was based on the concept of polyadic atoms. In this

chapter, we propose an alternative approach based instead on the notion of elements.

Elements are ‘smaller’ building blocks than atoms in the sense that the polyadic atoms

can themselves be built out of elements. Rather than specifying how a set of constants

behaves within a state description, an element describes the behaviour of an ordered

tuple of constants within a state description. In the unary context, these two notions

clearly coincide: a state formula on one variable is an element as well as an atom. On

the other hand, when the language is non-unary, these notions differ considerably.

We shall see that the element-based approach generalises more readily to any polyadic

language, and that the mathematics of the theory is in some ways more similar to

the unary theory than in the atom-based approach. In addition, state descriptions

expressed in terms of elements contain no redundancy, like state descriptions in the

unary context. The drawback however, is that this approach is completely ‘disjointed’

- the element instantiated by an ordered tuple of constants is entirely independent

from the element instantiated by the same constants permuted. This overlooks the

interconnections that exist between constants in the polyadic (and do not exist in the

121
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unary, since a unary predicate acts on a single constant and cannot bring different

constants together). Furthermore, we will see that the element-based approach takes

us further away from polyadic Ex, a desirable property to have.

In the coming sections, we will define the elements of a polyadic language, the notion

of an element-based signature, and a principle of invariance under such signatures. We

will introduce functions that satisfy this principle, and provide a representation for all

functions satisfying it. Finally, we will provide a principle of instantial relevance for

this context.

7.2 An Element-based Approach for Polyadic Lan-

guages

Throughout this chapter (unless stated otherwise) let L be an r-ary language con-

taining q relation symbols R1, R2, . . . , Rq of arities r1, r2, . . . , rq respectively. Define

qs = |{d | rd = s}| for d ∈ {1, . . . , q}. That is, qs denotes how many of R1, . . . , Rq have

arity s.

Definition 7.1. For each s ∈ {1, . . . , r} such that qs 6= 0, the s-ary elements of L are

the formulae of the form1 ∧
d∈{1,...,q}
rd=s

±Rd(x1, . . . , xs).

They are denoted by δs1(x1, . . . , xs), . . . , δ
s
2qs (x1, . . . , xs).

We order the s-ary elements lexicographically, so δs1(x1, . . . , xs) =
∧

d∈{1,...,q}
rd=s

Rd(x1, . . . , xs)

and δs2qs (x1, . . . , xs) =
∧

d∈{1,...,q}
rd=s

¬Rd(x1, . . . , xs).

A state description Θ(b1, . . . , bm) of L can be written as a conjunction of elements:∧
s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈{1,...,m}s

δshi1,...,is (bi1 , . . . , bis), (7.1)

1As usual, x1, . . . , xs denote distinct variables.
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with hi1,...,is ∈ {1, . . . , 2qs}. Notice that every such conjunction defines a state descrip-

tion of L since it is necessarily consistent and it completely describes b1, . . . , bm in re-

lation to each other (and no other constants). Furthermore, the conjunction (7.1) con-

tains no redundancy ; we must specify δshi1,...,is
for every s-tuple 〈i1, . . . is〉 ∈ {1, . . . ,m}s

to produce a state description.

Using the s-ary elements, we define the concept of e-partial state descriptions :

Definition 7.2. An e-partial state description of L is any consistent conjunction of

elements of the form

∆(b1, . . . , bm) =
∧

s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈As

δshi1,...,is (bi1 , . . . , bis) (7.2)

where As ⊆ {1, . . . ,m}s.

e-partial state formulae are defined analogously, and we follow the convention that only

the individuals which appear after some δshi1,...,is
in (7.2) are listed in brackets after ∆

and that those listed are distinct. We remark that this definition is not equivalent to

the definition of a partial state description in the atom-based approach, see page 106.

7.3 e-Signatures

Definition 7.3. We define the e-signature of a state description

Θ(b1, . . . , bm) =
∧

s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈{1,...,m}s

δshi1,...,is (bi1 , . . . , bis),

to be the vector

~M = 〈ms
1, . . . ,m

s
2qs : s ∈ {1, . . . , r} and qs 6= 0〉,

where ms
k is the number of times δsk appears amongst the δshi1,...,is

.

For each s ∈ {1, . . . , r} with qs 6= 0 we have2

2qs∑
k=1

ms
k = ms (7.3)

2Note that where m has no subscript, ms denotes m to the power s.
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since there are ms many s-tuples in {1, . . . ,m}s and a state description specifies an

s-ary element for each one. Conversely, every ~M with ms
k ∈ N that satisfies (7.3) is an

e-signature for some state description Θ(b1, . . . , bm) so we say it is an e-signature on

m.

Notice that the definition of an e-signature may also be applied to e-partial state

descriptions, however the sum in (7.3) holds only for (complete) state descriptions.

We now wish to define the concept of invariance under e-signatures. If the polyadic

case worked like the unary we would have that this is equivalent to Ex as stated on

page 64. However, we will shortly see that this in not the case and so we define the

e-Signature Exchangeability Principle, e-Sgx

The probability of a state description depends only on its e-signature.

e-Sgx implies Ex, since a state description’s e-signature is invariant under permutations

of constants. To see this, let Θ(b1, . . . , bm) be a state description as in (7.1) and suppose

its e-signature is ~M . Consider

Θ(bτ(1), . . . , bτ(m)) =
∧

s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈{1,...,m}s

δshτ−1(i1),...,τ−1(is)
(bi1 , . . . , bis),

the state description obtained from Θ by permuting b1, . . . , bm according to τ ∈

Sm. Then the e-signature of Θ(bτ(1), . . . , bτ(m)) is also ~M , since Θ(bτ(1), . . . , bτ(m)) |=

δsh(bi1 , . . . , bis) just if Θ(b1, . . . , bm) |= δsh(bτ−1(i1), . . . , bτ−1(is)), and so each h ∈ {1, . . . , 2qs}

appears the same number of times amongst the hi1,...,is and the hτ−1(i1),...,τ−1(is).

On the other hand, two state descriptions with the same e-signature may not be

obtainable from each other by permuting constants and can therefore get different

probabilities from functions satisfying Ex. The two state descriptions from page 74

used to show this for BEx work here too. The e-signature of both is 〈10, 6〉, but they

get different probabilities from up̄,L with p̄ = 〈0, 1
2
, 1

2
, 0, 0, . . . 〉.

The following result brings together the principles of Ex, Sgx3 and e-Sgx.

Proposition 7.4. Let L be an r-ary language, r > 1. Then e-Sgx =⇒ Sgx =⇒ Ex,

however Ex 6=⇒ Sgx 6=⇒ e-Sgx.

3stated on page 107.
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Proof. We already have that Sgx implies Ex but not the converse (see page 74). To

see that e-Sgx implies Sgx, we will show that if two state descriptions have the same

signature then they also have the same e-signature, and hence any function that gives

the same probability to state descriptions with the same e-signature would also satisfy

Sgx. Consider an r-ary language L containing q relation symbols as above, and let

Θ(b1, . . . , bm) be the state description∧
1≤i1<···<ir≤m

γhi1,...,ir (bi1 , . . . , bir). (7.4)

Notice that for each γhi1,...,ir in (7.4) we have

γhi1,...,ir (bi1 , . . . , bir) =
∧

s∈{1,...,r}
qs 6=0

∧
〈j1,...,js〉∈{i1,...,ir}s

δshj1,...,js (bj1 , . . . , bjs)

since the γh are themselves state descriptions, so all the elements instantiated by

constants from bi1 , . . . , bir are determined by γhi1,...,ir . Considering every γhi1,...,ir in

(7.4) gives every s-ary element of the state description4, therefore the e-signature of a

state description is determined by its signature.

We now show the converse implication does not hold; state descriptions with the same

e-signature may have different signatures and consequently obtain different probabil-

ities from functions satisfying Sgx. Consider a language containing a single binary

relation symbol and let Θ,Φ be the state descriptions represented respectively by the

following matrices:

1 0

0 0

0 0

1 0
.

Let w~Y be a probability function as in (5.18) with ~Y defined by x1 = 1
4
, x2 = 3

4
; y1 = 1,

y7 = 1, y10 = 1 and yj = 0 otherwise, where5

Γ1 =


 1 1

1 1

 , Γ7 =


 1 0

0 0

 ,

 0 0

0 1

 , Γ10 =


 0 0

0 0

 .

Then Θ and Φ both have the e-signature 〈1, 3〉, however w~Y (Θ) = 3
16

, w~Y (Φ) = 0, and

w~Y satisfies Sgx.

4In fact, the element satisfied by 〈bj1 , . . . , bjs〉 will be implied by every γhi1,...,ir
where

{bj1 , . . . , bjs} ⊆ {bi1 , . . . , bir} so when counting the numbers of elements appearing in a state de-
scription using its signature, this repetition must be taken into account.

5The Γj were defined on page 72.
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We remark that when the language is unary, the three principles e-Sgx, Sgx and Ex

are all equivalent, since the signature and e-signature of a state description are equal.

7.4 The Probability Functions W~X

The probability functions satisfying e-Sgx are closely related to the unary w~x and to

the functions w~Y from the previous chapter. They are defined as follows.

Let HL be the set of all

~X = 〈xs1, . . . , xs2qs : s ∈ {1, . . . , r} and qs 6= 0〉

such that xsk ∈ [0, 1] and for each s such that qs 6= 0

2qs∑
k=1

xsk = 1.

For a state description

Θ(a1, . . . , am) =
∧

s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈{1,...,m}s

δshi1,...,is (ai1 , . . . , ais)

we define

W~X(Θ(a1, . . . , am)) =
∏

s∈{1,...,r}
qs 6=0

∏
〈i1,...,is〉∈{1,...,m}s

xshi1,...,is (7.5)

where hi1,...,is is that k ∈ {1, . . . , 2qs} for which Θ |= δsk(ai1 , . . . , ais). We define the

empty product to be 1.

Proposition 7.5. The functions W~X defined in (7.5) determine probability functions

on SL that satisfy Ex.

Proof. We check that the W~X satisfy conditions (P1′)-(P3′) from page 13. (P1′) clearly

holds. To see that (P2′) holds, let

Θi(a1) =
∧

s∈{1,...,r}
qs 6=0

δsks(a1, a1, . . . , a1)

be a state description on one constant, so

W~X(Θi(a1)) =
∏

s∈{1,...,r}
qs 6=0

xsks
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for ks ∈ {1, . . . , 2qs}. There are 2q1+···+qr = 2q possibilities for Θi, hence

W~X(>) = W~X

(
2q∨
i=1

Θi(a1)

)
=

2q∑
i=1

W~X(Θi(a1)) =
∑
~k

∏
s∈{1,...,r}
qs 6=0

xsks =
∏

s∈{1,...,r}
qs 6=0

2qs∑
k=1

xsk = 1

where ~k = 〈ks : s ∈ {1, . . . , r}, qs 6= 0〉 and each ks in ~k is from {1, . . . , 2qs}.

To see that (P3′) holds, let Φ(a1, . . . , am+1) |= Θ(a1, . . . , am). Then

Φ(a1, . . . , am+1) =
∧

s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈{1,...,m+1}s

δshi1,...,is (ai1 , . . . , ais)

= Θ(a1, . . . , am) ∧
∧

s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈{1,...,m+1}s\{1,...,m}s

δshi1,...,is (ai1 , . . . , ais)

where {1, . . . ,m + 1}s \ {1, . . . ,m}s denotes the set of s-tuples from {1, . . . ,m + 1}s

which are not also in {1, . . . ,m}s. Therefore for Θ,Φ as above

∑
Φ|=Θ

W~X(Φ) = W~X(Θ) ·
∑
Φ|=Θ

 ∏
s∈{1,...,r}
qs 6=0

∏
〈i1,...,is〉∈{1,...,m+1}s\{1,...,m}s

xshi1,...,is


= W~X(Θ) ·

∏
s∈{1,...,r}
qs 6=0

∏
〈i1,...,is〉∈{1,...,m+1}s\{1,...,m}s

2qs∑
k=1

xsk

= W~X(Θ)

by swapping the order of the sum and products, and since for any s-tuple from

{1, . . . ,m + 1}s \ {1, . . . ,m}s we may pick any δsk and the resulting state description

will be consistent with Θ. So (P3′) holds too and hence W~X extends to a probability

function on SL.

To see that the W~X satisfy Ex, let τ ∈ Sm and consider

Θ(aτ(1), . . . , aτ(m)) =
∧

s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈{1,...,m}s

δshi1,...,is (aτ(i1), . . . , aτ(is)).

Then

W~X(Θ(aτ(1), . . . , aτ(m))) =
∏

s∈{1,...,r}
qs 6=0

∏
〈i1,...,is〉∈{1,...,m}s

xshi1,...,is = W~X(Θ(a1, . . . , am)),

so we conclude that Ex holds, reasoning as we did in Proposition 5.5.
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Proposition 7.6. The W~X satisfy e-Sgx.

Proof. Similarly to the proof of Proposition 5.6 and to the argument used in Proposi-

tion 7.5 above, we can replace a1, . . . , am in (7.5) by any distinct constants b1, . . . , bm

as follows. Let a1, . . . , aM be such that all of b1, . . . , bm are amongst them, and let

Φ(a1, . . . , aM) |= Θ(b1, . . . , bm). Then for such Φ,Θ∑
Φ(a1,...,aM )|=Θ(b1,...,bm)

W~X(Φ(a1, . . . , aM)) = W~X(Θ(b1, . . . , bm))

since we have free choice over all the δsk which do not appear in Θ, and for each s

all such possibilities sum up to 1. We conclude that W~X(Θ) is independent of the

constants instantiating Θ, and so the right hand side of (7.5) depends only on the

e-signature of Θ.

The w~Y are more general than the W~X , since every W~X is also a w~Y but not the converse.

To show this is the case, we will need the following lemma:

Lemma 7.7. Let L be an r-ary language and let

∆(b1, . . . , bm) =
∧

s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈As

δshi1,...,is (bi1 , . . . , bis),

be an e-partial state description of L. Then

W~X(∆(b1, . . . , bm)) =
∏

s∈{1,...,r}
qs 6=0

∏
〈i1,...,is〉∈As

xshi1,...,is .

Proof. Let Θ(b1, . . . , bm) be a state description extending ∆(b1, . . . , bm).

W~X(∆(b1, . . . , bm)) =
∑
Θ|=∆

W~X(Θ(b1, . . . , bm))

=
∑
Θ|=∆

 ∏
s∈{1,...,r}
qs 6=0

 ∏
〈i1,...,is〉∈As

xshi1,...,is

∏
〈i1,...,is〉∈{1,...,m}s\As

xshi1,...,is




=
∏

s∈{1,...,r}
qs 6=0

∏
〈i1,...,is〉∈As

xshi1,...,is ·
∑
Θ|=∆

 ∏
s∈{1,...,r}
qs 6=0

∏
〈i1,...,is〉∈{1,...,m}s\As

xshi1,...,is


=

∏
s∈{1,...,r}
qs 6=0

∏
〈i1,...,is〉∈As

xshi1,...,is ,
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where {1, . . . ,m}s \As is the set of s-tuples from {1, . . . ,m}s that are not in As. The

final equality follows by swapping the order of the sum and products and since for the

s-ary elements that do not appear in ∆, we may choose any δsk, k ∈ {1, . . . , 2qs} and

the resulting state description will extend ∆, and these choices sum up to 1.

We will also need the following observations. Firstly, recall our definition of the g-ary

trace of a state description from page 105. We wish to write the g-ary trace of a state

description Θ as in (7.1) using elements. For this purpose, let ~j denote the s-tuple

〈j1, . . . , js〉 and define the function f : {1, . . . ,m}s → {1, . . . , s}, where f(~j) = n is

the number of distinct constants amongst j1, . . . , js. Then

(Θ � g)(b1, . . . , bm) =
∧

s∈{1,...,r}
qs 6=0

∧
〈j1,...,js〉∈{1,...,m}s

f(~j)≤g

δshj1,...,js (bj1 , . . . , bjs).

Notice that the g-ary trace of a state description is an e-partial state description. In

what follows we will take the 0-ary trace of a state description to be a tautology.

Secondly, notice that if γgh and γgl are g-atoms such that γgh ∼ γgl ,6 then

γgh(x1, . . . , xg) ≡
∧

s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈{1,...,g}s

δshi1,...,is (xi1 , . . . , xis)

⇐⇒ γgl (xσ(1), . . . , xσ(g)) ≡
∧

s∈{1,...,r}
qs 6=0

∧
〈i1,...,is〉∈{1,...,g}s

δshi1,...,is (xσ(i1), . . . , xσ(is)) (7.6)

for some σ ∈ Sg, so all the g-atoms in an equivalence class Γgj logically imply the same

s-ary elements.

Theorem 7.8. Every W~X with ~X ∈ HL is one of the functions w~Y for some ~Y ∈ DL,

but not the converse.

Proof. Let ~X = 〈xs1, . . . , xs2qs : s ∈ {1, . . . , r}, qs 6= 0〉 ∈ HL. By Lemma 7.7 and the

first of the above observations we have (for 1 ≤ g ≤ r)

W~X(γgh(a1, . . . , ag) | (γgh � g − 1)(a1, . . . , ag)) =

∏
s∈{1,...,r}
qs 6=0

∏
〈j1,...,js〉∈{1,...,g}s x

s
hj1,...,js∏

s∈{1,...,r}
qs 6=0

∏
〈j1,...,js〉∈{1,...,g}s

f(~j)≤g−1

xshj1,...,js

=
∏

s∈{g,...,r}
qs 6=0

∏
〈j1,...,js〉∈{1,...,g}s

f(~j)=g

xshj1,...,js

6for the equivalence defined on page 107.



CHAPTER 7. ELEMENT-BASED SIGNATURE EXCHANGEABILITY 130

since we are left only with elements that contain g different constants, so each must

instantiate all of a1, . . . , ag and hence must also be at least g-ary. Notice that since

the W~X satisfy Ex, the above holds also when a1, . . . , ag are replaced with any other

distinct constants.

Define ~Y by

ygj(h) = zgh =
∏

s∈{g,...,r}
qs 6=0

∏
〈j1,...,js〉∈{1,...,g}s

f(~j)=g

xshj1,...,js (7.7)

where the xshj1,...,js
from ~X are such that γgh(x1, . . . , xg) |= δshj1,...,js

(xj1 , . . . , xjs). Note

that by the second observation, when γgh ∼ γgl , we will get zgh = zgl . Then ~Y ∈ DL

since (6.8) is satisfied and furthermore, if Θ(b1, . . . , bm) is the state description∧
1≤g≤r

1≤i1<···<ig≤m

γghi1,...,ig
(bi1 , . . . , big) ≡

∧
s∈{1,...,r}
qs 6=0

∧
〈j1,...,js〉∈{1,...,m}s

δshj1,...,js (bj1 , . . . , bjs)

then

w~Y (Θ) =
∏

1≤g≤r
1≤i1<···<ig≤m

zghi1,...,ig

=
∏

1≤g≤r
1≤i1<···<ig≤m

 ∏
s∈{g,...,r}
qs 6=0

∏
〈j1,...,js〉∈{i1,...,ig}s

f(~j)=g

xshj1,...,js


=

∏
s∈{1,...,r}
qs 6=0

∏
〈j1,...,js〉∈{1,...,m}s

xshj1,...,js

= W~X(Θ)

using (6.10), (7.7) and (7.5). So for ~Y defined as above and every state description Θ,

W~X(Θ) = w~Y (Θ), and since a probability function is determined by its action on state

descriptions, W~X and w~Y are equal as probability functions.

To see the converse does not hold, let L be the language containing a single binary

relation symbol and let

~Y =

〈
y1

1 =
3

8
, y1

2 =
5

8
; y2

1 = · · · = y2
10 =

1

4

〉
.

Then

w~Y

1 1

1 1

 =
3

8
· 3

8
· 1

4
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and

w~Y

1 1

0 1

 =
3

8
· 3

8
· 1

4
,

however there is no W~X that assigns these same values to these state descriptions.

The above theorem allows us to deduce that the W~X satisfy the independence prin-

ciples we have previously encountered. See page 109 for a statement of the Strong

Independence Principle, SIP, and page 65 for the Constant Independence Principle,

IP.

Corollary 7.9. The functions W~X satisfy SIP and hence also IP.

Proof. By Theorem 7.8 every W~X is also one of the functions w~Y . The w~Y satisfy SIP

(and hence also IP) by Theorem 6.10, so the result follows.

Finally, we show that the W~X can be used to make cL0 and cL∞. W~X with ~X defined by〈
xs1 = xs2 = · · · = xs2qs = 2−qs : s ∈ {1, . . . , r}, qs 6= 0

〉
treats each ±Rd(ai1 , . . . , aird ) as stochastically independent and each occurring with

probability 1
2
. For cL0 , we take the convex sum of all ~X where exactly one xsk is 1 for

each arity s.

7.5 A Representation Theorem for e-Sgx

We prove that the W~X form the building blocks of all probability functions satisfying

e-Sgx.

Theorem 7.10. Let w be a probability function for an r-ary language L satisfying

e-Sgx. Then there exists a normalised, σ-additive measure µ on the Borel subsets of

HL such that for any θ ∈ SL

w(θ) =

∫
HL
W~X(θ) dµ( ~X). (7.8)

Conversely, for a given measure µ on the Borel subsets of HL, the function defined by

(7.8) is a probability function on SL satisfying e-Sgx.
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Proof. We follow a similar method to the proof of de Finetti’s Representation Theorem

in the unary, see for example [36, Theorem 9.1], and to our proof of Theorem 5.9. Let

w satisfy e-Sgx, let u ∈ N+ and let ~U = 〈us1, . . . , us2qs : s ∈ {1, . . . , r} and qs 6= 0〉 be

an e-signature on u.

The number of state descriptions with this e-signature, denoted by N (∅, ~U), is∏
s∈{1,...,r}
qs 6=0

(
us

us1, . . . , u
s
2qs

)
. (7.9)

Let ~M be an e-signature, m < u and let Θ(b1, . . . , bm) be a state description with

this e-signature. The number of state descriptions with e-signature ~U extending

Θ(b1, . . . , bm), denoted by N ( ~M, ~U), is∏
s∈{1,...,r}
qs 6=0

(
us −ms

us1 −ms
1 , . . . , u

s
2qs −ms

2qs

)
. (7.10)

We follow the convention that (7.10) is 0 if any of the terms are negative. We will

write w( ~M) for the value given by w to any state description with e-signature ~M . This

is valid since w satisfies e-Sgx. Let eSign(u) denote the set containing all e-signatures

~U on u:

eSign(u) =

{
~U :

∑
1≤k≤2qs

usk = us for each s ∈ {1, . . . , r} with qs 6= 0

}
.

Using the fact that

w(Θ(b1, . . . , bm)) =
∑

Φ(b1,...,bm,...,bu)|=Θ(b1,...,bm)

w(Φ(b1, . . . , bm, . . . , bu)),

we have

1 = w(>) =
∑

~U∈eSign(u)

N (∅, ~U) w(~U), (7.11)

w( ~M) =
∑

~U∈eSign(u)

N ( ~M, ~U) w(~U), (7.12)

and hence

w( ~M) =
∑

~U∈eSign(u)

N ( ~M, ~U)

N (∅, ~U)
N (∅, ~U) w(~U). (7.13)
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We will show that ∣∣∣∣∣∣∣
(
N ( ~M, ~U)

N (∅, ~U)

)
−

∏
s∈{1,...,r}
qs 6=0

∏
1≤k≤2qs

(
usk
us

)msk∣∣∣∣∣∣∣ (7.14)

is of the order O(
√
u
−1

) and hence tends to 0 as u → ∞ independently of the

us1, . . . , u
s
2qs . We follow the convention that if some usk = 0 then terms involving it

are missing from the product above.

Suppose first that ms
k < usk for every k, s. The term

(
N ( ~M,~U)

N (∅,~U)

)
in (7.14) can be written

as ∏
s∈{1,...,r}
qs 6=0

∏
1≤k≤2qs

(
usk
us

)msk
×

(∏
1≤k≤2qs ((1− (usk)

−1) · · · (1− (ms
k − 1) (usk)

−1))

(1− u−s) · · · (1− (ms − 1)u−s)

)
.

(7.15)

We will write P for the term(∏
1≤k≤2qs ((1− (usk)

−1) · · · (1− (ms
k − 1) (usk)

−1))

(1− u−s) · · · (1− (ms − 1)u−s)

)
.

If ms
k = 0 then factors involving usk do not appear in either term in (7.14), so we only

need to consider those k for which ms
k > 0. Consider the case that for some s, k with

ms
k > 0 we have usk <

√
us. Then

∏
s∈{1,...,r}
qs 6=0

∏
1≤k≤2qs

(
usk
us

)msk
<

1√
us
≤ 1√

u
.

In addition, the other term in (7.15) is bounded by a constant independent of u and

the usk:

P <

(
1

1− (ms − 1)m−s

)ms
= (ms)m

s

.

So (7.15) is O(
√
u
−1

) and so (7.14) → 0 as u→∞.

Now suppose that for every s, k with ms
k > 0, usk >

√
us. Notice that P can be written

as the product of ms fractions of the form
1−α(usk)−1

1−βu−s where α, β ∈ {1, . . . ,ms}. Each

such fraction is close to 1 since∣∣∣∣1− α(usk)
−1

1− βu−s
− 1

∣∣∣∣ =

∣∣∣∣βu−s − α(usk)
−1

1− βu−s

∣∣∣∣ < 2
(
βu−s + α(usk)

−1
)
<

2√
us

(α + β) ≤ 4ms

√
us
,
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where the inequalities hold since β ≤ ms < us

2
and so 1 − βu−s > 1

2
; because

u−s, (usk)
−1 < 1√

us
and since α, β ≤ ms, respectively. As 4ms√

us
≤ 4ms√

u
, the distance

of each fraction from 1 is O(
√
u
−1

), so P is(
1 +O(

√
u
−1

)
)ms

= 1 +O
(√

u
−1
)
.

Note that (7.14) can be written as∣∣∣∣∣∣∣
∏

s∈{1,...,r}
qs 6=0

∏
1≤k≤2qs

(
usk
us

)msk
(1− P )

∣∣∣∣∣∣∣ (7.16)

and that the product
∏

s∈{1,...,r}
qs 6=0

∏
1≤k≤2qs

(
usk
us

)msk
is bounded by 1. So (7.16) isO(

√
u
−1

)

and thus so is (7.14). So we have shown that (7.14)→ 0 as u→∞ when ms
k < usk for

every s, k.

Suppose usk < ms
k for some k and s. Then N ( ~M,~U)

N (∅,~U)
= 0 since no state description with

signature ~U can extend a state description with signature ~M . In addition, ms
k > 0

and usk <
√
us, so we would have

∏
s∈{1,...,r}
qs 6=0

∏
1≤k≤2qs

(
usk
us

)msk
<

1√
us
≤ 1√

u

and consequently, arguing as above, (7.14)→ 0 as u→∞ in this final case too.

Define ~X~U by

xsk =
usk
us

for k ∈ {1, . . . , 2qs} and s ∈ {1, . . . , r}, qs 6= 0. The proof is completed similarly to the

proof of Theorem 5.9.

Theorem 7.11. Let w be a probability function on SL. Then w satisfies e-Sgx and

IP if and only if w = W~X for some ~X ∈ HL.

Proof. The proof is the same as that of Theorem 5.10.
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7.6 Element-based Instantial Relevance

Our definition of instantial relevance in the atom-based theory involved the agent

acquiring new information in the form of a g-atom instantiated by some (possibly

new) individuals. In our current context, we will define instantial relevance with the

additional information being an instantiated s-ary element.

Polyadic Principle of Instantial Relevance (elements version), e-PPIR

Let ∆(a1, . . . , am) be an e-partial state description, s ∈ {1, . . . , r} with qs 6= 0, and let

δsk(x1, . . . , xs) be an s-ary element. Let b1, . . . , bs, b
′
1, . . . , b

′
s be such that

∆ ∧ δsk(b1, . . . , bs) ∧ δsk(b′1, . . . , b′s)

is consistent. Then

w(δsk(b1, . . . , bs) |∆) ≤ w(δsk(b1, . . . , bs) | δsk(b′1, . . . , b′s) ∧∆). (7.17)

Notice that if ∆ |= δsk(b
′
1, . . . , b

′
s) or ∆ |= δsk(b1, . . . , bs) then (7.17) holds with equality.

Theorem 7.12. Let w be a probability function satisfying e-Sgx. Then w satisfies

e-PPIR.

Proof. The theorem is proved similarly to Theorem 5.13.



Chapter 8

Homomorphisms and Degeneracy

8.1 Introduction

We introduce the concepts of homomorphisms and degeneracy in Polyadic Inductive

Logic. The results in this chapter are somewhat preliminary, and lay the groundwork

for future work in this area.

The idea is as follows. As usual, an agent inhabits a structure M for a language L,

but does not know which of the L-structures M is. The agent’s aim is to choose

a rational probability function w that assigns degrees of belief to sentences of L. If

the agent were able to represent w by a simpler probability function that assigns the

same values as w to sentences of L, it would surely be rational of them to do so.

An obvious interpretation of ‘simpler’ here is that w is represented by a probability

function on a language of lower arity. One could argue, for example, that the agent’s

capacity for holding information, their ‘memory’, is a limited quantity, and thus an

agent might only ‘remember’ the first n coordinates of an r-ary relation symbol when

r > n. Though this interpretation is by no means the only one, and we leave the

precise definition of what simpler might mean open to future investigations.

Aside from the seeming rationality of such a concept, the other main advantage is a

practical one. We have already seen that the mathematics involved gets considerably

more complicated as the arity of the language increases. We have a better understand-

ing of the behaviour of probability functions on lower arity languages, and unary and

binary languages in particular are easier to visualise. We have demonstrated a use

136
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for such an approach when we proved that INV does not imply SReg in Section 2.3,

where we used a result on unary languages to deduce it for non-unary languages.

Notation

We use the following notation in what follows. For a language L, let T L again denote

the set of structures M for L as defined on page 11. Recall that the universe of M,

which we will denote by |M|, is {ai | i ∈ N+} (with each ai interpreted as itself). We

will use the fact1 that if θ ∈ SL is consistent then there is a structure M ∈ T L such

thatM |= θ. Note that this means also that if there is an L-structure in which θ does

not hold, there must be anM∈ T L such thatM |= ¬θ, since ¬θ must be consistent.

Let FL be the set of formulae of L and φ ∈ FL. We denote by V ar(φ) the set

of variables appearing in φ (including bound variables) and by FrV ar(φ) the set

of free variables mentioned in φ. φ(x1, . . . , xn) is taken to imply that FrV ar(φ) ⊆

{x1, . . . , xn} (so that xi, i ∈ {1, . . . , n} may or may not appear in φ). We assume

throughout this chapter that the languages we deal with are non-empty.

8.2 Homomorphisms

Definition 8.1. For languages L,L′ we define κ : FL′ → FL to be a homomorphism

from L′ to L if and only if κ satisfies the following conditions:

For R an r-ary relation symbol of L′ and terms t1, . . . , tr (so that R(t1, . . . , tr) is an

atomic formula of L′)

(i) κ(R(t1, . . . , tr)) = κ(R(x1, . . . , xr))(t1, . . . , tr).

(ii) FrV ar(κ(R(t1, . . . , tr))) ⊆ FrV ar(R(t1, . . . , tr)).

For θ, φ,∃xj ψ(xj) ∈ FL′,

(iii) κ(¬θ) = ¬κθ.

(iv) κ(θ ∨ φ) = κθ ∨ κφ.

1See [36, Chapter 2] for details.
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(v) κ(∃xj ψ(xj)) = ∃xj κ(ψ(xj)).

Notice that (i) enables us to define the action of κ on atomic sentences of L′, and that

(ii) ensures that κ introduces no new variables - a restriction on the ‘complexity’ of κ.

In what follows κθ will sometimes be used instead of κ(θ) to aid readability.

Let κ : FL′ → FL be a homomorphism from L′ to L and let M ∈ T L. Define

M′ ∈ T L′ with the same universe as M such that for any atomic sentence2 θ of L′

M′ |= θ ⇐⇒ M |= κθ. (8.1)

Proposition 8.2. Let κ be a homomorphism from L′ to L and let M,M′ be the

structures for L,L′ respectively, defined by (8.1). Then for any sentence φ of L′

M′ |= φ ⇐⇒ M |= κφ. (8.2)

Proof. We prove the proposition by induction on the complexity of sentences of L′.

(8.2) holds for atomic sentences of L′ by the definition (8.1) of the structuresM,M′.

Suppose θ, φ, ψ(ai) are sentences of L′ for which (8.2) holds.

Consider the L′ sentence ¬θ. Since by our assumption (8.2) holds for θ, we have that

M′ 6|= θ ⇐⇒ M 6|= κθ. However then

M′ |= ¬θ ⇐⇒ M′ 6|= θ ⇐⇒ M 6|= κθ ⇐⇒ M |= ¬κθ

using the definition of interpretation of sentences for L′ and L.

Consider next the sentence (θ ∨ φ) ∈ SL′. We have

M′ |= θ ∨ φ ⇐⇒ M′ |= θ or M′ |= φ

⇐⇒ M |= κθ or M |= κφ

⇐⇒ M |= (κθ ∨ κφ)

⇐⇒ M |= κ(θ ∨ φ),

where the first and third bi-implications follow from the interpretation of L′-sentences

and L-sentences respectively; the second bi-implication results from our assumption

2so θ has the form R(ai1 , . . . , air ) for some relation symbol R of L′ (of arity r).
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that (8.2) holds for θ, φ, and the final bi-implication from property (iv) of κ. At this

point we have shown by induction that (8.2) holds for all quantifier-free sentences of

L′.

Finally, consider ∃xj ψ(xj) ∈ SL′.

M′ |= ∃xj ψ(xj) ⇐⇒ M′ |= ψ(ai) for some ai ∈ |M′|

⇐⇒ M |= κ(ψ(ai)) for (the same) ai ∈ |M|

⇐⇒ M |= ∃xj κ(ψ(xj))

⇐⇒ M |= κ(∃xj ψ(xj))

by the interpretation of L′-sentences, by the inductive hypothesis for ψ(ai) and since

|M′| = |M| by definition of these structures, by the interpretation of L-sentences, and

by property (v) of κ respectively.

Since every L′-sentence is either an atomic-sentence, or follows by a finite number of

steps from the three inductive cases, we conclude that (8.2) holds for any φ ∈ SL′.

Corollary 8.3. For θ, φ ∈ SL′ and κ a homomorphism from L′ to L,

θ ≡ φ =⇒ κθ ≡ κφ.

Proof. Suppose θ ≡ φ. Then exactly the same L′-structures satisfy both θ and φ. In

particular, for every L′-structure of the form M′ as defined by (8.1),

M′ |= θ ⇐⇒ M′ |= φ.

From Proposition 8.2 we have that M′ |= θ ⇐⇒ M |= κθ and similarly for φ.

Therefore,

θ ≡ φ =⇒ (M′ |= θ ⇐⇒ M′ |= φ)

⇐⇒ (M |= κθ ⇐⇒ M |= κφ)

⇐⇒ κθ ≡ κφ

using our remark from page 137 for the final bi-implication, since if everyM∈ T L is

such that M |= κθ ⇐⇒ M |= κφ, then this holds for every L-structure.
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As a consequence of the above corollary, when dealing with homomorphisms from a

language L′ to a language L, we may treat sentences of L′ up to logical equivalence

only.

8.3 Degenerate Probability Functions

Let w be a probability function on L and let κ be a homomorphism from L′ to L.

Define w′ : SL′ → [0, 1] by

w′(θ) = w(κθ). (8.3)

Proposition 8.4. w′ defined by (8.3) is a probability function on L′. Moreover, if w

satisfies Ex, than so does w′.

Proof. We show that w′ satisfies (P1)-(P3) from page 12. LetM′ ∈ T L′ be as in (8.1),

so by Proposition 8.2 for all θ ∈ SL′ and M∈ T L we have

M′ |= θ ⇐⇒ M |= κθ.

Let θ ∈ SL′ be such that |= θ. Then in particular, for every L′-structure of the form

M′, M′ |= θ, and hence for every M ∈ T L, M |= κθ. Therefore, following similar

reasoning to above, this holds for all L-structures, and so |= κθ. Now w′(θ) = w(κθ) =

1 since w is a probability function so it satisfies (P1). Thus w′ satisfies (P1).

Suppose θ |= ¬φ. This is logically equivalent to |= θ → ¬φ, and hence by (P1) above

we have

|= θ → ¬φ =⇒ |= κ(θ → ¬φ)

⇐⇒ |= κ(¬θ ∨ ¬φ)

⇐⇒ |= κ(¬θ) ∨ κ(¬φ)

⇐⇒ |= ¬κθ ∨ ¬κφ

⇐⇒ |= κθ → ¬κφ

⇐⇒ κθ |= ¬κφ.
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where the bi-implications are obtained by logical equivalence and by the properties

of κ. Now, w′(θ ∨ φ) = w(κ(θ ∨ φ)) = w(κθ ∨ κφ). Since w satisfies (P2) and

κθ |= ¬κφ, w(κθ ∨ κφ) = w(κθ) + w(κφ). But w(κθ) = w′(θ) and w(κφ) = w′(φ). So

w′(θ ∨ φ) = w′(θ) + w′(φ), and hence w′ satisfies (P2).

To see that (P3) holds too, notice that

w′(∃xj ψ(xj)) = w(κ(∃xj ψ(xj)))

= w(∃xj κ(ψ(xj)))

= lim
n→∞

w

(
n∨
i=1

κ(ψ(ai))

)

= lim
n→∞

w

(
κ

(
n∨
i=1

ψ(ai)

))

= lim
n→∞

w′

(
n∨
i=1

ψ(ai)

)
,

where the third equality follows since w satisfies (P3), and the other equalities obtain

from the properties of a homomorphism and the definition of w′. Therefore, w′ satisfies

conditions (P1)-(P3), so w′ is a probability function on SL′.

In order to see that if w satisfies Ex than so does w′, observe that for any θ ∈ FL′ we

have

κ(θ(t1, . . . , tn)) = κ(θ(x1, . . . , xn))(t1, . . . , tn).

This holds for atomic formulae by property (i) of Definition 8.1, and follows by induc-

tion on formula complexity for all formulae of L′. For example, suppose it holds for

θ(t1, . . . , tn) ∈ FL′. Then

κ(¬θ(t1, . . . , tn)) = ¬κ(θ(t1, . . . , tn))

= ¬κ(θ(x1, . . . , xn))(t1, . . . , tn) = κ(¬θ(x1, . . . , xn))(t1, . . . , tn).

The other cases are similar. Suppose κθ is the formula φ ∈ FL. Then by the above

observation,

κ(θ(a1, . . . , an)) = κ(θ(x1, . . . , xn))(a1, . . . , an) = φ(a1, . . . , an),

κ(θ(b1, . . . , bn)) = κ(θ(x1, . . . , xn))(b1, . . . , bn) = φ(b1, . . . , bn).
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Since w satisfies Ex, we have

w(κ(θ(a1, . . . , an))) = w(φ(a1, . . . , an)) = w(φ(b1, . . . , bn)) = w(κ(θ(b1, . . . , bn))).

So w′(θ(a1, . . . , an)) = w′(θ(b1, . . . , bn)), and thus w′ satisfies Ex.

We say a probability function w′ on SL′ is (L′, L)-degenerate if for some simpler3

language L, there exists a homomorphism κ : FL′ → FL and a probability function

w on SL such that

w′(θ) = w(κ(θ)). (8.4)

w′ is degenerate if it is (L′, L)-degenerate for some L.

Proposition 8.4 enables us to express an (L′, L)-degenerate probability function in

terms of a probability function on SL using the homomorphism κ. It also tells us

that if the probability function on SL satisfies Ex, then an (L′, L)-degenerate proba-

bility function expressed by (8.4) will also satisfy Ex. On the other hand, degenerate

probability functions do not necessarily preserve other properties, as we show next.

Proposition 8.5. Let w′ be a degenerate probability function as in (8.4). Then w′

may fail Vx, PIP, Sx, Px, Reg and SN even if w satisfies these principles.

Proof. We prove the proposition by providing examples of probability functions w′ as

in (8.4) where the above principles are satisfied by w but not by w′. Let LR be a

language containing a binary relation symbol R (possibly amongst others) and let LP

be the same language with R replaced by a unary predicate symbol P (where P 6∈ LR).

For ψ ∈ SLR, let κψ ∈ SLP denote the result of replacing each occurrence of R(t1, t2)

in ψ, where t1, t2 are any terms, by P (t1) and keeping all other relation symbols (if

any) unchanged. Then κ : FLR → FLP defines a homomorphism from LR to LP since

it satisfies (i)-(v) of Definition 8.1.

For M ∈ T LP , define M′ ∈ T LR (with the same universe as M) to interpret all

symbols in LP ∩ LR in the same way as M, and be such that

M′ |= R(t1, t2) ⇐⇒ M |= P (t1).

3where, as indicated at the beginning of the chapter, we adopt an intuitive interpretation of
‘simpler’ suitable for our purposes.
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Define wR : SLR → [0, 1] by

wR(θ) = cLP∞ (κθ).

Then wR is a probability function on SLR by Proposition 8.4, and cLP∞ is a probability

function on SLP that satisfies Vx (on non-unary languages), PIP, Sx, Px and SN.

Consider the sentences of LR

θ = (R(a1, a1) ∧R(a1, a2)), (8.5)

φ = (R(a1, a1) ∧R(a2, a1)). (8.6)

If wR satisfied Vx, we should get that wR(θ) = wR(φ) and by the definition of wR and κ,

we would thus require4 cLP∞ (P (a1)) = cLP∞ (P (a1) ∧ P (a2)). However cLP∞ (P (a1)) = 1/2

and cLP∞ (P (a1) ∧ P (a2)) = 1/4, thus Vx fails for wR.

We now address PIP. Vx is implied by PIP, therefore since Vx does not hold, wR

cannot satisfy PIP. To see it directly, let Θ(a1, a2, a3), Φ(a1, a2, a3) be the similar state

descriptions represented respectively by the matrices

1 1 1

0 0 0

1 1 1

0 1 0

1 1 1

0 1 0

.

We have

κΘ = P (a1) ∧ ¬P (a2) ∧ P (a3),

κΦ = ¬P (a1) ∧ P (a1) ∧ P (a2) ∧ ¬P (a3) ∧ P (a3),

and cLP∞ (κΘ) = 1/8 while cLP∞ (κΦ) = 0, so PIP does not hold for wR. This means that

Sx fails for wR too, since (Sx implies PIP and) the above state descriptions have the

same spectrum, {2, 1}.

To see that Px fails, suppose that LR contains (at least) one other binary relation

symbol Q (so Q is also in LP ). For ψ ∈ SLR, let ψ∗ ∈ SLR denote the sentence

resulting by simultaneously swapping each occurrence of the relation symbol R by Q

and Q by R. Let θ be as in (8.5), so θ∗ is (Q(a1, a1) ∧Q(a1, a2)). Then we have

κθ = P (a1)

4As usual, we identify logically equivalent sentences since they are given the same probability by
any probability function.
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κθ∗ = Q(a1, a1) ∧Q(a1, a2),

and cLP∞ (κθ) = 1/2 while cLP∞ (κθ∗) = 1/4. So wR(θ) 6= wR(θ∗), and hence wR does not

satisfy Px.

Regularity fails for wR, and also when wR is defined with cLP∞ replaced by any other

probability function wP on SLP , since

wR(R(a1, a1) ∧ ¬R(a1, a2)) = wP (P (a1) ∧ ¬P (a1)) = 0

but R(a1, a1) ∧ ¬R(a1, a2) is satisfiable.

Finally, to show that SN is not preserved by degenerate probability functions, let LR be

as before and let LP,Q be the same language with R replaced by two unary predicate

symbols P and Q (where P,Q 6∈ LR). For ψ ∈ SLR, let λψ ∈ SLP,Q denote the

result of replacing each occurrence of R(t1, t2) in ψ by P (t1)∧Q(t2). λ satisfies (i)-(v)

of Definition 8.1, so λ is a homomorphism from LR to LP,Q. Define the probability

function vR : SLR → [0, 1] by

vR(ψ) = cLP,Q∞ (λψ).

For vR to satisfy SN we must have, for example, vR(R(a1, a2)) = vR(¬R(a1, a2)).

However

vR(R(a1, a2)) = cLP,Q∞ (P (a1) ∧Q(a2)) = 1/4

vR(¬R(a1, a2)) = cLP,Q∞ (¬ (P (a1) ∧Q(a2))) = cLP,Q∞ (¬P (a1) ∨ ¬Q(a2)) = 3/4

and so SN fails.

We conclude the chapter by showing that using a homomorphism, any probability

function on an r-ary language can be represented by a probability function on a binary

language5.

To simplify notation, let L be the language containing a single r-ary relation symbol

R.6 Let Lr be the language with binary relation symbols B1, . . . , Br. For θ ∈ SL, let

5This result is based on a suggestion which arose during a joint discussion with the University of
Manchester Inductive Logic Group.

6The result generalises to any r-ary language using a similar method.
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κθ ∈ SLr be the result of replacing R(t1, . . . , tr) everywhere in θ by

∃x (B1(x, t1) ∧B2(x, t2) ∧ · · · ∧Br(x, tr)).

Then κ : FL→ FLr defines a homomorphism from L to Lr: Properties (i) and (ii) of

Definition 8.1 clearly hold. To see that κ satisfies the other properties, notice that they

hold when θ, φ, ψ(xj) are atomic, and hence also when θ, φ, ψ(xj) are any L-formulae

by induction on the complexity of L-formulae.

Let σ be a bijective map from N+ to (N+)r and for M ∈ T L let M∗ ∈ T Lr be the

structure for Lr such that for σ(s) = 〈i1, . . . , ir〉

M∗ |= B1(as, ai1) ∧B2(as, ai2) ∧ · · · ∧Br(as, air) ⇐⇒ M |= R(ai1 , . . . , air).

Then

M |= R(ai1 , . . . , air) ⇐⇒ M∗ |= ∃x (B1(x, ai1) ∧B2(x, ai2) ∧ · · · ∧Br(x, air)),

and hence by Proposition 8.2, for any θ ∈ SL

M |= θ ⇐⇒ M∗ |= κθ.

For M∈ T L, let VM : SL→ {0, 1} be the probability function7 defined by

VM(θ) =

1 if M |= θ,

0 otherwise.

Let w be a probability function on SL. By [36, Corollary 7.2], w(θ) can be represented

by

w(θ) =

∫
T L
VM(θ) dµ(M)

for µ a σ-additive, normalised measure on the σ-algebra of subsets of T L generated

by the subsets8 [θ] = {M ∈ T L | M |= θ} for θ ∈ SL.

Define v : SLr → [0, 1] by

v(φ) =

∫
T L
VM∗(φ) dµ(M).

7from [36, Chapter 3].
8as defined on page 18.



CHAPTER 8. HOMOMORPHISMS AND DEGENERACY 146

Notice that this definition is valid, since for φ ∈ SLr the set {M ∈ T L | M∗ |= φ} is

Borel and hence measurable, and furthermore v indeed defines a probability function

on SLr since (P1) and (P2) clearly hold, and (P3) holds by Lebesgue’s Dominated

Convergence Theorem.

So for θ ∈ SL we have

w(θ) =

∫
T L
VM(θ) dµ(M) =

∫
T L
VM∗(κθ) dµ(M) = v(κθ).

That is, the probability function w on SL can be represented by the probability

function v on SLr so w is (L,Lr)-degenerate.



Chapter 9

Conclusions

Our aim for this thesis has been to investigate rational principles based on symmetry

in Polyadic Inductive Logic. We have done this by furthering our understanding

of existing symmetry principles - focusing on the recently introduced Permutation

Invariance Principle, as well as presenting new possible avenues.

We began by investigating properties of PIP. We tested its consistency with longer

standing principles of Inductive Logic, and found that PIP is determined by a finite

set of permutations acting on a finite set of formulae. This allowed us to extend the

key unary notion of atoms to polyadic languages.

Following this, we explored the relationship between PIP, Spectrum Exchangeability

and Language Invariance, with Sx and Li currently the most studied of polyadic ra-

tional principles. This helped us understand the behaviour of PIP and its standing

within polyadic symmetry. A desirable extension to this investigation would be to gen-

eralise the functions up̄,L
Ē

to any p̄ ∈ B, and eventually to characterise the probability

functions satisfying PIP via a representation theorem.

Using our definition of polyadic atoms, we then proceeded to investigate PIP as a

generalisation of the popular unary principle of Atom Exchangeability. We found that

it is in fact PIP, rather than the previously thought Sx, that stands as the natural

polyadic extension of Ax. We concluded this part of the investigation with a probe

into generalising Ax under the assumption of Ex and proposed the principle of Atom-

based Spectrum Exchangeability. This is a direction still worthy of further thought in

147
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our opinion.

Inspired by new polyadic generalisations of the unary notion of a spectrum, we began

exploring its close neighbour, the signature. The unary version of Ex expressed in

terms of invariance under signatures formed the starting point for the second main

line of investigation in this thesis. We presented a polyadic formulation of a signature,

Signature Exchangeability and the Strong Independence Principle which arose from it,

and a polyadic principle of instantial relevance. To our knowledge, this offers the first

polyadic generalisation of the signature-based unary theory. In addition, in the binary

case we were able to provide a complete characterisation of the functions satisfying

Signature Exchangeability. Further research should be dedicated to checking whether

it is possible to extend the representation to all polyadic languages.

We also presented an alternative, simpler yet disjointed, approach to these ideas,

based on elements instead of atoms as the building blocks of polyadic languages. This

approach was closer in spirit to the unary theory, but arguably captured the essence

of Polyadic Inductive Logic less successfully.

From a broader perspective, this investigation and in particular the introduction of

atoms as the polyadic building blocks, opens the door to generalising more results from

Unary Inductive Logic which currently have no polyadic counterpart. We have men-

tioned there have already been results generalising Johnson’s Sufficientness Postulate

in terms of atoms [40, 42]. New possibilities could be extending the Unary Principle

of Induction (see page 65) and the Only Rule [36, Theorem 21.6] along these lines.

Finally, we introduced the concepts of a homomorphism and a degenerate probability

function into Inductive Logic. While preliminary, we believe this is a fruitful direction

for future research, both in terms of its purported rationality and for its practical /

mathematical applications. This investigation lays the foundations for any such work.

We have shed some light on a significant portion of polyadic symmetry. As always,

new knowledge leads to new questions, and Polyadic Inductive Logic being a relatively

young area of research means there is much yet to be discovered.
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[34] J. B. Paris and A. Vencovská. Symmetry’s end? Erkenntnis, 74(1):53–67, 2011.
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