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We investigate principles of rationality based on symmetry in Polyadic Pure Inductive
Logic. The aim of Pure Inductive Logic (PIL) is to determine how to assign probabil-
ities to sentences of a language being true in some structure on the basis of rational
considerations. This thesis centres on principles arising from instances of symmetry
for sentences of first-order polyadic languages.

We begin with the recently introduced Permutation Invariance Principle (PIP), and
find that it is determined by a finite number of permutations on a finite set of formulae.
We test the consistency of PIP with established principles of the subject and show,
in particular, that it is consistent with Super Regularity. We then investigate the
relationship between PIP and the two main polyadic principles thus far, Spectrum
Exchangeability and Language Invariance, and discover there are close connections.
In addition, we define the key notion of polyadic atoms as the building blocks of
polyadic languages. We explore polyadic generalisations of the unary principle of Atom
Exchangeability and prove that PIP is a natural extension of Atom Exchangeability
to polyadic languages.

In the second half of the thesis we investigate polyadic approaches to the unary ver-
sion of Constant Exchangeability as invariance under signatures. We first provide a
theory built on polyadic atoms (for binary and then general languages). We introduce
the notion of a signature for non-unary languages, and principles of invariance under
signatures, independence, and instantial relevance for this context, as well as a binary
representation theorem. We then develop a second approach to these concepts using
elements as alternative building blocks for polyadic languages.

Finally, we introduce the concepts of homomorphisms and degenerate probability func-
tions in Pure Inductive Logic. We examine which of the established principles of PIL
are preserved by these notions, and present a method for reducing probability functions
on general polyadic languages to functions on binary languages.
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Chapter 1

Introduction

“Symmetry is what we see at a glance; based on the fact that there is no reason for

)

any difference...” - B. Pascal, Pensées.

1.1 General Introduction

Decisions we make in everyday life often involve a degree of uncertainty; which route
should I take to get to work fastest? should I walk or take the bus? should I bring
a jacket with me? When trying to answer such questions logically, or rationally,
we (perhaps subconsciously) rely on our previous experiences and on information we

acquire that might influence our decision.

Consider, for example, the following situation. We invite a guest out for a meal. As the
hosts, our guest asks us to recommend which of options A, B and C' they should order.
Not having any knowledge of their likes and dislikes, or the restaurant’s strengths and
weaknesses, how do we decide which dish to recommend? In this case, we do not
favour any option over another, and are equally likely to pick any of A, B and C'; we
view the situation as completely symmetric. Suppose we now learn that our guest is a
fan of the main ingredient of dish A. This is likely to enhance our belief they should
order dish A. We have acquired some relevant information and it has affected our
decision. We are then told that the restaurant was redecorated last year. Most of us
would find this new information #rrelevant to our decision, it should not increase or

decrease our probability of choosing any of A, B or C.
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The aim of Inductive Logic, beginning with Keynes’ [18] and developed in the context
we work in by Johnson [17] and Carnap [2, 3, 7, 9], is to supply us with a way to answer
such questions. More precisely, it is to enable an agent to assign degrees of belief in
a rational way, with rationality traditionally based on considerations of symmetry,
relevance and irrelevance. Of these, rational principles based on symmetry have
featured most prominently in the subject and will form the principal theme of this
thesis. This is due to the natural appeal symmetry possesses - most of us would

readily accept that degrees of belief assigned to symmetric situations should be equal

- and moreover, due to the potential of expressing symmetry formally.

This thesis is set in Pure Inductive Logic (PIL)?, where the framework contains no
specific interpretation. Namely, we imagine an agent inhabiting some structure for a
language L (with no interpretation) who has no prior knowledge of what is true in this
structure. Our task is to provide a rational way for the agent to allocate degrees of
belief to sentences of L being true in this structure. Thus we are looking for a belief
function defined on sentences of this language that satisfies possible requirements of

rationality, in the form of mathematical statements we ask our function to satisfy.

Our approach in this investigation is mathematical rather than philosophical® in na-
ture. We propose possible principles and investigate how they relate to each other,
their (mathematical) consequences, and which ‘belief functions’ satisfy them. We do
not claim a rational agent must, or even should, adhere to them. We merely present
them as principles the agent might wish their function to satisfy. Moreover, we will
concentrate our efforts on non-unary languages. The unary case has been thoroughly
researched, while the polyadic symmetry picture is much less resolved. With the ex-
ception of some earlier explorations such as [16, 19], research into polyadic symmetry
in the context of Inductive Logic has thus far focused on the principle of Spectrum
Exchangeability [20, 22, 25, 31, 32]. We will investigate new aspects of polyadic sym-

metry, and by doing so hope to offer a new perspective on the area.

'More recently, arguments based on analogy have appeared, see [14, 15], [36, Chapter 22].
2Carnap made the distinction between Pure and Applied Inductive Logic in [5].
3For some references of philosophical perspectives on the classical principles see [36, page 7).
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1.2 Mathematical Setting

We introduce the context and framework for this thesis, and the basic definitions,
results and notation that will be used from the outset. Rather than providing all
the required background in this section, we have provided in the first section of each
chapter the theory relevant to that chapter. This has the advantage of the pertinent
material being fresher in the reader’s mind, as well as allowing us to present our

investigation without delay.

We work with a first order language L containing variables xy, x5, 3, ..., constants
a1, as, as, . .., finitely many relation symbols Ry, Ry, . .., R, of finite arities ry, 7o, ..., 7,
respectively, and no function symbols nor the equality symbol. 1, s, t3,... will denote

terms of the language. The constants a; are intended to exhaust the universe, in the
sense that every individual in our universe can be represented by a constant from the
a;. We will use by, bs, ... to denote a distinct choice of constants from the a;; y1, yo, . . .
and z1, 29, ... for distinct choices of variables from the x;. We identify the language L

with the set {Ry, Ro, ..., Ry}

We say that a language is unary if it contains only unary predicate symbols; it is r-ary
if all its relation symbols are at most r-ary and at least one is r-ary. If r = 2, we say
binary rather than 2-ary. To emphasise the unary context where appropriate, we use
symbols Py, P, ..., P, for unary predicates and L, for the language containing just

these predicate symbols.

SL will denote the set of sentences of L, QFSL the quantifier-free sentences, and
(QF)FL the (quantifier-free) formulae of L. We will use Greek letters such as 6, ¢, v
for formulae of L, and intend that 0(zq,xs,...,z,) implies that all the variables ap-
pearing in # are amongst xi,Zo,...,x,. A similar convention applies to sentences
O(ay,as,...,a,). To simplify notation, we shall identify formulae which are logically

4 b

equivalent throughout, and we will often use ‘=’ rather than

4

=’ between logically

equivalent formulae.

Let 7L denote the set of structures of L with universe {ay,as,as, ...}, where each
constant symbol a; of L is interpreted in M € TL as a; € M. We assume the

structure the agent inhabits is one of the structures M € 7 L, but the agent has no
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knowledge of what is true in M.

We identify degree of belief with subjective probability* and the agent’s ‘belief function’
with a probability function:

Definition 1.1. A function w : SL — [0,1] is a probability function on SL if for all
0,6, 30 () € SL,

(P1) If = 6 then w(f) = 1.
(P2) If = =(0 A ¢) then w(fV ¢) = w(B) + w(e).

(P3) w(3Fe (x)) = lim, e WV, (ar)).

Probability functions have a number of desirable properties®. Note in particular that
logically equivalent sentences are given the same value by a probability function, and

that convex sums of probability functions are probability functions.

Any probability function w satisfying just (P1) and (P2) on the quantifier-free sen-
tences of L has a unique extension to a probability function on SL [13], so in many
situations it suffices to think of probability functions as defined on quantifier-free sen-
tences only, and satisfying (P1) and (P2). This can be further reduced® to a special

class of such sentences called state descriptions:

Definition 1.2. The state descriptions of L are sentences ©(by, ..., b,) of the form

/q\ A + Ra(bi, -, bi,,) (1.1)

=1 (i1eeying)E{L,in}"d

where £R4(b;, ..., b;, ) denotes one of Ry(b;, ..., b;, ), ~Ra(bi, ..., bi, ).

These sentences completely describe how the constants by, ..., b, behave in relation to
each other (and no other constants). For ©(by, ..., b,) a state description, O(z1, ..., x,)
is called a state formula. We make a convention that the state description on zero con-

Y

stants is a tautology and we denote it by ‘T’. We use the upper case Greek letters

O, ®, ¥ to denote state descriptions and state formulae.

4For a justification of this approach see for example [36, Chapter 5], based on work by de Finetti
[11] and Ramsey [38].

®Details can be found in [36, Chapter 3].

6See [36, Chapter 7] for an explanation.
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So we have that a probability function is determined by its values on state descriptions.

7

Moreover’, any probability function w defined on state descriptions ©(ayq, as, . . ., a,),

n € N to satisfy

(P1") w(©(a,as,...,a,)) >0,

(P2) w(T) =1,

(P3) w(O(ay,as,...,a,)) = > w(P(ay,ag,...,an41))
B(a1,02,--,0n 1) =O(a1,az,....an)

extends, by the Disjunctive Normal Form Theorem, to a probability function on

QFSL, and hence (uniquely) to a probability function on SL.

Notice that a state formula of the unary language L, on n variables AI_; A%_, £Pi(x;)

has the form
/\ Qh; (ml)
i=1

where h; € {1,...,27} and ay(x),. .., a(x) are the formulae of the form
+P(z) NE£Po(z) N--- NEP,(z).

The «; are known as the atoms of L,, and they form the basic building blocks of
sentences of a unary language. As such, they have featured prominently in Unary
Inductive Logic, and have been used to formulate and investigate basic principles of

the subject. We shall return to this point later on, in particular in Chapters 4 and 5.

Finally, we define the notion of conditional probability. Given a probability function w,
the conditional probability function of § € SL given ¢ € SL, for ¢ such that w(¢) # 0,

is defined as
w(® A ¢)
w(e)
We adopt the convention that expressions like w(f | ¢) = a stand for w(OA @) = aw(p)

w(f|¢) =

even if w(¢) = 0. We assume throughout this investigation that if the agent assigns the
subjective probability w(f) to § € SL holding in M, then the conditional probability
w(f|¢) is what the agent supposes they would amend their choice of probability
function to were they to learn that ¢ held in M.

[36, Chapter 7).
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Rational Principles

We present a number of basic, established principles of PIL that we will use from the

onset. As the investigation develops, we will introduce additional principles.

One of the most widely accepted principles in the subject pertains to the symmetry
between the constants, stating that a rational probability function should treat the

individual constants a; equally. It can be stated as follows:

Constant Exchangeability, Ex
Let O(ay,...,a,) € SL and let by, ..., b, be any other choice of distinct constant sym-

bols from amongst the a;. Then

w(b(ay,...,a,)) =w(@(by,...,b,)). (1.2)

Ex is sometimes imposed at the start of investigations in Inductive Logic as the first
requirement a rational probability function should obey. We do not assume it here
but we will explain the role it has in what follows. We remark that if a probability
function satisfies Ex on the state descriptions of a language L then its extension to

SL will also satisfy Ex3.

A second principle based on symmetry which we shall come across relates to the
symmetry between the relation symbols of the language. With no further knowledge,

we have no reason to differentiate between two relation symbols of the same arity.

Predicate Exchangeability, Px
If R; and R; are relation symbols of L with the same arity, then

w(f) = w(d)

where 0’ is the result of simultaneously swapping every occurrence of R; in 0 by R; and

every occurrence of R; by R;.

The next principle suggests that there is a symmetry between a relation symbol and

its negation®.

8For details, see [36, Chapters 6 and 7].
9where we use that ——R is logically equivalent to R.
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Strong Negation, SN
For 6 e SL
w(f) = w(t)

where 0 is the result of replacing each occurrence of R in 0 by —R.
The following principle is again based on symmetry but applies only to unary languages

L. It refers to the symmetry between atoms in the zero knowledge situation. Polyadic

approaches to this principle will be investigated in some detail in Chapter 4.

Atom Exchangeability, Ax

For any permutation T of {1,2,...,29} and constants by, ..., by,

w(/\ ahi(bi)> = w(/\ aT(hi)(bi)) .

The final symmetry principle we introduce at this time applies only to non-unary

languages and concerns the symmetry between the variables in a relation.

Variable Exchangeability, Vx
Let R be an r-ary relation symbol of L, o a permutation of {1,2,...,r}. Then

where 0" is the result of replacing each occurrence of R(ty,ts,...,t.) in 0, where

ti, ...ty are any terms, by R(to(), to@), - to@r))-

We now mention two principles motivated by the idea that we should not dismiss as

impossible sentences which could theoretically hold in M.

Regularity, Reg
For any consistent § € QFSL,
w(#d) > 0.

And the stronger notion of Super Regularity,

Super Regularity, SReg

For any consistent 0 € SL,
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Notation

We end this chapter with some notation and conventions which we will henceforth use

without further explanation.

S, will denote the permutation group of {1,2,...,n}. We will use ‘—’ for surjective

functions and Id : A — A for the function that maps every element of A to itself.

Instead of O(by,...,b,), we will at times write O(z1, ..., 2,)(b1,...,b,) to denote the

result of simultaneously replacing each occurrence of z; in O(z,...,2,) by b;, i =
1,...,n, and similarly for other substitutions. When we wish to make the individual
substitutions clearer, we may also write ©(z1,...,2,)(b1/21,b2/22,...,b,/2,) for this
substitution.

Definition 1.3. For a state description ©(by,...,b,) as in (1.1) and distinct k1, ..., &,
from {1,...,n},

O(b1, .- bn)[brys - bw,
or simply ©O[by,, . . ., b,] when the context is clear, denotes the restriction of © (b1, . .., by)

to by,,...,by,. That is, the conjunction of the literals from (1.1) with {iy,... 4.} C

{k1,...,kg}. We define the restriction of a state formula similarly.

Example. Let L contain a single binary relation symbol R and let ©(by, by, b3) be the

conjunction of
R(by,by) —R(bi,ba) R(by,bs)
R(bs,b1) R(bg,by) —R(by,bs3)
—R(bs,b1) R(bs,by) —R(bs,bs).
Then O(by, by, bs)[b1, ba] is the conjunction of
R(b1,b1) —R(by,bs)
R(by,b1) R(ba,bs) .

Definition 1.4. Foro : {y1,...,yn} = {z1,..., 2m} and a state formula ©(z1, ..., z,,),

there is a unique state formula (up to logical equivalence) ®(yi, ..., y,) such that

S(o(y1),---,0(Yn)) =O(21, ..., 2m)-
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We denote this ¢ by
(6(217 s ’Zm))a(ylu s ,yn)

or more simply by ©, if the variables are clear.

Let L be a language containing a single binary relation symbol R. Any state description
of L on n constants by,...,b, may be represented by an n x n {0,1}-matrix where
1 or 0 at the (¢, j)th entry means this state description implies R(b;,b;) or ~R(b;, ;)

respectively. State formulae of this language are represented similarly.

Example. The state formula ©(z1, z3) corresponding to the conjunction of
R(z1,z1) —R(z, 22)
R(z2,21) —R(z2,22)
may be represented by the matrix
10
10
Let o : {y1,y2,y3} — {21, 22} be such that o(y1) = o(y3) = z1, 0(y2) = 2o. Then the
state formula ©, can be represented by the matrix
1 01
1 0 1.
1 01

Y1 and ys are both ‘clones’ of z1, yo is a ‘clone’ of zs.

Finally, we mention two particular probability functions that will come up in the
investigation that ensues. When applied to unary languages, they form the end points

of Carnap’s Continuum of Inductive Methods (see [4, 7, 9, 17], [36, Chapters 16, 24]).

e The probability function cZ , also known as the completely independent probability
function, treats each +R(by,...,b,), where r is the arity of R, as stochastically

independent and occurring with probability %

e The probability function ¢ believes all constants behave in the same way'?.

That is, for each of the 29 possible assignments of +, it satisfies

q
cé(/\ Yoy, ..., 2y, j:Rd(a:l,xg,...,a:rd)> =271,
d=1

0Tn unary, ¢l believes all constants will satisfy the same atom as the first one seen (and gives
probability 277 to such state descriptions). In contrast, cZ involves no learning from experience.



Chapter 2

Properties of the Permutation

Invariance Principle

2.1 Introduction

We begin this chapter by presenting the formal framework for polyadic symmetry in
Pure Inductive Logic, as set out in [35] and [36, Chapter 39]. This will allow us to
introduce the Permutation Invariance Principle, the main object of investigation for
the first part of this thesis, which first appeared in [35]. We then proceed to explore
some of the properties this principle possesses. Lemma 2.2 in many ways underpins
much of the investigation that follows, and the results from Section 2.4 will be useful
later on, in Chapter 4. Results from this chapter appear also in [39] and in [36, Chapter
41].

Let L be an r-ary language and let 7 L denote the set of structures for L as defined
on page 11. Let BL be the two-sorted structure with universe 7 L, the sets

) ={MecTL| M0}
for # € SL and the membership relation between elements of 7 L and these sets.
An automorphism n of BL is a bijection of 7 L such that for each 8 € SL,
] = {nM | MeTL, M=0} = [d]
for some ¢ € SL and conversely, for each ¢ € SL,
n el ={n"M|IMeTL, Mo} =[0]

18
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for some 6§ € SL.

We will henceforth write! 7(6), or just n6, for the sentence ¢ € SL such that n[f] = [¢].
Note that 6, ¢ are determined up to logical equivalence only, however this should not
be a problem for us, since we are identifying logically equivalent sentences/formulae

throughout this account.

As is customary in investigations of Pure Inductive Logic, we assume a rational agent
is aware of the structure BL, inhabits one of the structures M € 7 L but is unaware of
which particular M it is. When the agent chooses their rational probability function
w, it would therefore be reasonable to assume that justification for the probability w(€)
for 0 € SL (equivalently [] € BL) should apply also to w(n) for any automorphism
n of BL. In other words, we are identifying a ‘symmetry’ of L with an automorphism
of BL. This gives us the following symmetry principle? for a probability function w

on SL:

The Invariance Principle, INV
For any automorphism n of BL and 6 € SL

w(f) = w(nd).

We remark that for any probability function w on sentences of L and an automorphism
n of BL, w, : SL — [0,1] given by w,(§) = w(nd) is a probability function on SL.
This can be seen by checking that conditions (P1)-(P3) from Page 12 hold for w,,, see?
[36, Chapter 23].

INV is rather strong a principle and can be shown to contain as special cases many of
the symmetry principles traditionally studied in the subject [34, 36]. In particular, INV
encompasses the Principle of Constant Exchangeability, a point we shall expand on in
Section 2.3. In fact, previous investigations into INV for probability functions on unary

4

languages have proven INV to be too strong a principle, leaving only one* (somewhat

Lthus avoiding overuse of square brackets, which also denote restrictions of formulae, see page 16.
This notation is now established so we keep to it; it should be clear from the context what is meant.

2This principle for unary L first appeared in [34], and for polyadic L in [35].

3This reference addresses the case when L is just unary, however the proof works also for polyadic
languages L.

4This is Carnap’s ¢}, as described on page 17. We will encounter the polyadic version of this
probability function later on, on pages 80, 131.
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unsatisfactory) function that satisfies it [34]. On the other hand, it is not yet clear
what its full effect for general languages is. The reason for INV eliminating nearly all
probability functions in the unary context is that some automorphisms can force state
descriptions with different numbers of constants to have the same probabilities, which

- combined with all other conditions INV imposes - is almost never satisfied.

This raises the question of what happens if we require our automorphisms to map
state descriptions to state descriptions respecting the number of constants, and what
the probability functions that satisfy this weaker version of INV would be, where we
only demand that w(f) = w(nd) for § € SL and for such automorphisms 7. It turns
out [35] that such automorphisms must be in a certain sense uniform and up to a

permutation of all constants, they must be of the type described below.

We say that a function F permutes state formulae if for each n and (distinct) variables

21, ..., 2n, F permutes the state formulae ©(zy,..., z,) in these variables.

Definition 2.1. An automorphism n of BL permutes state formulae if there is a

function n that permutes state formulae such that for any by, ..., b, and state formulae
@(Zl, c. ,Zn)
n(O(by,...,b,)) =7(O(z1, ..., 20)) (b1, .., by),

where 7(O(z1,...,2,))(b1,...,by,) is the state description arrived at by applying 7 to

O(z1,. .., 2,) and then substituting by, ..., b, into the resulting state formula.
Let F be a function permuting state formulae and satisfying the following conditions
from [35]:
(A) For each state formula ©(z1, ..., zm) and mapping o : {y1, ..., Yn} = {21, -1 2m},
(F(©))s = F(O,),

where o is surjective and ©, is the unique state formula® U (yi, ..., y,) such that

\Il(g(y1>7 cee 70-(yn>> — @(Z1, [P 7Zm>.
(B) For each state formula ©(zy, ..., zy,) and distinct iy, ... i € {1,...,m}

F(@)[ZH’?Z’%] = F(@[Zim"'vzik])v

Sdefined on page 16.
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where O|z;,, ..., 2] is the restriction’ of O(z1,...,2y,) to these variables.
Note that where no confusion may arise, we write O in place of ©(zy,. .., z,) and F (©)
for F (O(z1,...,2,)) in favour of clarity of notation.

By Theorems 1 and 2 of [35], every function F that permutes state formulae and
satisfies conditions (A) and (B) is a function 7 for some automorphism 7 of BL that
permutes state formulae, and conversely, for every automorphism 7 that permutes

state formulae, 77 satisfies (A) and (B).

We are now finally in a position to formally state the Permutation Invariance Principle
from [35]. Restricting the Invariance Principle to include only the automorphisms of

BL that permute state formulae gives us

The Permutation Invariance Principle, PIP
For any permutation of state formulae F that satisfies (A) and (B) and a state de-
scription ©(by, ..., by,)

2.2 A Finite Characterisation of PIP

The following lemma shows that the Permutation Invariance Principle can be equiv-
alently stated to involve invariance under finitely many permutations, specified by
their action on a particular finite set of formulae. This set of formulae will form a

fundamental component of much of this thesis.

Lemma 2.2. Let F be a function that permutes state formulae and satisfies (A) and
(B). Then F is uniquely determined by its action on state formulae of r variables,

where r is the highest arity of an L-relation symbol.

Proof. Consider a state formula W(zy,...,z,) where s < r and let ©(zy,...,z) be

such that © = V. By condition (B)

Sdefined on page 16.
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so the values of F on state formulae of fewer than r variables are determined by its

values on state formulae of r variables.

Now let W(zy,...,2,...,2,) be a state formula with n > r and suppose there is a
function F; that permutes state formulae and satisfies (A) and (B), such that f (©) =
F 1(©) for all state formulae © on r variables, but F (¥) # F1(W¥). Then there must be

a relation symbol R, of L and (not necessarily distinct) z;,, ..., z;,, from {z1,..., 2.}
such that

F(Y) E Ra(ziy,-- -, 2,,) and F1(VY) E=Ra(zi, .5 2,,) (2.1)
or vice versa. Let zg,,..., 2 be distinct variables from {z1,..., z,} such that all of
Ziys - - %, are included amongst them.

Tq
By condition (B) and since [, F; agree on state formulae of r variables, we have
F(\I/)[Zkl, c 7Zkr] = F(‘II[Z]CI, ey Zkr]) = Fl(\I/[Zkl, ey Zkr]) = Fl(‘ll)[zkl, ceey ZkT],

contradicting (2.1). Thus the claim holds also for state formulae with more than r

variables, as required. O

As an immediate consequence of this lemma, the set
F = {F | F permutes state formulae and satisfies (A) and (B)}

is finite and in the next section we will show that we can therefore generate a probabil-
ity function w’ that satisfies PIP from an arbitrary probability function w by averaging
over ‘permuted versions’ of w. Furthermore, Proposition 2.4 shall show that w’ will
preserve some characteristic properties of w and thus bear witness to their compati-

bility with PTP.

2.3 PIP and Other Principles

We use the result of the previous section to test the consistency of the Permutation
Invariance Principle with some long standing principles of Pure Inductive Logic. In
particular, we will focus on the rather elusive principle of Super Regularity and clarify

its status with respect to both PIP and INV.
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Before doing so however, we mention some of the relationships we are already aware
of between INV and PIP and other rational principles of PIL. Firstly, the commonly
assumed Principle of Constant Exchangeability is implied by INV but not by PIP.
In order to see that INV implies Ex [35], let 0 € Sy+ and let nM be formed from
M € TL by replacing each a; in M by ay;). Then n extends to an automorphism
of BL and requiring w(f) = w(n#) for this n gives Ex. On the other hand, it is not
surprising that PIP does not imply Ex since PIP requires the probability of two state
descriptions instantiating the same constants to get the same probability, and makes

no reference to the same sentence acting on different constants.

We can show that Ex is not implied by PIP explicitly by providing a probability
function that satisfies PIP but not Ex. For this purpose, we touch on a topic we will
explore in detail in Chapter 4. For the time being however, it suffices to note that
when L is purely unary, PIP is equivalent to the Principle of Atom Exchangeability
(see page 15): in unary, the functions f permuting state formulae and satisfying (A)
and (B) are exactly those generated by permutations of atoms. So we can justify our
claim by suggesting a probability function on unary languages that satisfies Ax but

not Ex.

Let L, be a unary language containing ¢ predicate symbols and let wilq, w%q be func-
tions from the NP-continuum?, as described in [29, 30] and in Chapters 18 and 19 of
[36], with d1, 0o not both 0. Define

v (/\ Oém(%’)) = wilq /\ an, (a;) 'w%)q /\ an,(a;)

1<i<m 1<i<m
i odd i even

Then v extends to a probability function on SL, since it satisfies (P1)-(P3’) from
page 13: (P1’) and (P2') clearly hold. To check that (P3’) holds, suppose that
m + 1 is even. The case when m + 1 is odd follows similarly with the roles of

01 and §y interchanged. Note that ®(ay,...,am,ams1) FE O(aq,...,a,) just when

"These functions can be defined as follows. Fix ¢ such that —(2¢9 —1)7! < § < 1 and let v =
279(1 — §). Then for a state description A~ ap,(a;) of L,

2‘1

wj, (/\ an, (ai)> =279 AT (y 4 8)™

Jj=1

where m; = [{i| h; = j}|.
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q)(&l, o

D

<y Qs CLm+1) = @(al, .

v(®) = ZU </\ an,(ai) A aj(@myr)

24

s m) A (@) for j € 1,...,2% So we have

=0
249
=> wi [ A en(a) | wp [ A\ an(a)Aaj(amsa)
j=1 19%? 1_§i§m
24
=wi | A anla) | Dowp [N\ anla) Aaj(ami)
1<i<m ]:1 1<i<m
i odd i even
= wilq /\ ahi(ai) wéqu /\ ahz‘(ai)
1<i<m 1<i<m
i odd i even
= U(®)>

where the penultimate equality follows since w%q satisfies (P3’) and going through all

the j’s gives all the state descriptions that extend the state description A 1<i<m oy, (@;).

Furthermore, v satisfies Ax but not Ex. Let o € Soq.

m
v (/\ ahi(ai)> - wilq /\ Qp (&l) ’ wizq /\ Oéhz‘<ai)
=1 1<i<m 1<i<m
i odd i even
=wl | A\ tom(@) | - wP [ N\ o (@)
1<ism 1<i<m
i odd i even
m
=v (/\ Oéa(ha(az))
=1
01 02

since the NP-continuum functions wy Wk satisfy Ax®, but Ex fails for v since for

example for ¢ = 1, we have

v(an(ar) A as(as)) = %1
v(on(as) A aslag)) = }1(1 — 62

and these are not equal when 05 # 0. It follows that a probability function satisfying
Ax without Ex exists, so PIP does not imply Ex.

PIP does, however, imply the principles of Predicate Exchangeability, Strong Negation
and Variable Exchangeability (and consequently so does INV of course) [36, Chapter

8129, 30] or Theorem 18.2 of [36].
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39]. Each of these principles can be represented as invariance under a particular
[ € F, so they follow as a result of requiring PIP. For example, if F (O) is the result
of permuting some (fixed) relation symbol R; everywhere in © with another relation
symbol R; of the same arity, then F gives Px and is one of the functions from F since

it is easily seen to satisfy conditions (A) and (B).

In addition, we know Super Regularity to be inconsistent with INV for unary languages
[34]. Later on in this section, we will resolve whether Super Regularity is consistent
with PIP and whether it is consistent with INV for polyadic languages. In Chapter
3 we explore the connections between PIP, Spectrum Exchangeability and Language
Invariance, where these principles are also described, and as already alluded to above,
the relationship between PIP and Atom Exchangeability will be investigated in detail
in Chapter 4.

Firstly however, we continue from where the previous section ended, proceeding as
follows. Let w be an arbitrary probability function on SL and define w’ : SL — [0, 1]
by first setting for state descriptions ©(ay,...,a,), n € N,

) 1
W' (O(ay, ... an)) = mer;ﬂf(<9(a1,...,an)) (2.2)

where wp (O(ay, ... a,)) = w(F (©)(a,...,a,)).

Lemma 2.3. The function w' defined in (2.2) extends uniquely to a probability func-
tion on SL. Moreover, (2.2) holds even when the constants ay,...,a, are replaced by

any other distinct constants by, ..., b,.

Proof. Let F € F. wy extends to a probability function on SL since every such F is
7 for an automorphism n of BL that permutes state formulae by Theorem 1 of [35],
and so the extension of wy to every § € SL is w,(#) = w(nf) for this n, and w, is a

probability function by the remark on page 19.

Alternatively, we can check that conditions (P1’)-(P3’) from page 13 hold for wy. wp
clearly satisfies (P1") and (P2’). To check (P3’) note that by condition (B) on f, for

state descriptions ®(ay,. .., apn, Gny1), O(aq,. .., a,) we have

S(ay,...,an1) EO(ay,...,a,) <= F(P)(ar,...,ans1) EF(O)(ay,...,a,)



CHAPTER 2. PROPERTIES OF PIP 26

since for example, in the first direction, ®[zq,..., 2z,] = O(21,..., 2,), so when F € F,

F(®)(a,...,a,41) logically implies
F(P)[z1,. .y zal(ar, ... an) = F(Plz1, ..., 2a)) (a1, ..., a,) = F(O)(ay, ..., an)
and similarly in the other direction.

Consequently, since (P3") holds for w and since F (®)(ai,...,a,+1) run through the

state descriptions for ay, ..., a,+; when ®(ay,...,a,y1) do so, we have

wr(O(ay,...,an)) = w(F(O)(as, ..., an))

= > w(F (®)(ar, - .., ans))

F(®)(at,....ant1)EF(0)(at,....an)

— Z wr(®(ag, ..., an11))-

d(a1,....,an+1)FEO(a1,....,an)

So (P3') holds for wy and hence wy extends uniquely to a probability function on SL.

w’ is therefore a convex combination of probability functions on SL and thus defines

a probability function on SL.

The rest of the lemma follows upon noting that any probability function v on SL

satisfies
w(©(by, by, ..., by)) = Z u(®(ay,az, ..., a)),
®(a1,a2,...,ar)EO(b1,ba,...,bn)
where k is large enough for the by, ..., b, to be included amongst aq, ..., as. O

Proposition 2.4. The probability function w' defined in (2.2) satisfies PIP. If, in

addition, the original probability function w satisfies Ex + SReg then so does w'.

Proof. To see that w' satisfies PIP, let O(z,...,2,), ®(21,...,2,) be state formulae
of L with G(©) = ® for some G € F. Consider the set

F' ={FG'|F e F}.

F is closed under composition and inverse of functions [35], so for every f € F,

we have F G™' € F thus F/ C F. Conversely, every F € F can be written as the
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composition of F G € F and G, so F C F'. Therefore, the sets F and F’ are equal

and
W' (O(by,. .. b)) = S Z w(F (©)(b1,-..,b,))

=

_ ! 3" w(FGTH(G(6)) (b, .., ba)
Il e
1 -1

_WFGZ:E]:/M(FG (q))(bh ,bn))
1
ﬁfgw(ﬂ@)(bu bn))

Suppose w satisfies Ex. Then for every F € F and by,...,b,, U),... b, from the a;
w(F (©)(by, ..., by)) = w(F (©)(by, ... 0,))
so wy satisfies Ex on state descriptions and hence® on SL. Consequently, so does w’.

Now suppose w is super regular. The extension of each w; to a probability function
on SL is unique and w’ is defined as the weighted sum of these extensions. Notice that
the permutation that maps each state formula to itself trivially satisfies (A) and (B),
so Id € F.10 Tt follows that w must be the extension to SL of wiq defined on state
descriptions of L and w is therefore one of the summands in the calculation of w’. So

w'(6) > ﬁ w(#) > 0 for every consistent § € SL and so w’ is super regular. O

The existence of a probability function w’ that satisfies PIP, SReg and Ex follows,
since a w satisfying Ex and SReg exists, see for example Chapter 26 of [36]. Note also
that since PIP implies the principles of Predicate Exchangeability, Strong Negation

and Variable Exchangeability, w’ will also satisfy these principles.

The consistency of Super Regularity with PIP is interesting due to the restrictive
nature of SReg. Yet this consistency becomes perhaps even more noteworthy in view
of the fact that INV contradicts SReg, as we shall now show. The case for languages

containing only unary predicate symbols follows from the results in [34] that we have

9By our remark from page 14.
10Td was defined on page 16.
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already mentioned and we will extend it to polyadic languages. For simplicity, we shall
construct the argument for a binary language, however the result generalises similarly

to languages of higher arities.

Let Ly denote the language with a single unary predicate symbol P and let L be the
language with a single binary relation symbol R. Let ¢ € SL be the sentence

Vi (Vy R(z,y) VVy —~R(z,y)).
For M € TL such that M k= ¢, define B(M) € TL, by
M | R(ai,a1) <= BM) = P(ai),
so 3 is a bijection between {M € TL| M |= ¢} and T L.

For ¢ € SL, define ¢* to be the result of replacing each occurrence of R(t1,t3) in
1, where tq,ts are any terms of L, by P(t;). Then for M |= ¢ it follows easily by

induction on the complexity of L-formulae that

MEY = M) =y

Similarly, for £ € SL; we define £ to be the result of replacing each occurrence of

P(t1) in & by R(t1,a1). Then for M = ¢
M — M) =&
In [34] an automorphism!! § of BL, is specified, with the property
d[P(a1) A P(az)] = [P(ay) A P(az) A P(as)].
Using this automorphism 4, define a bijection 7 : 7L — 7 L in the following way:

BHO(BM))) if M=o,

M otherwise.

T(M) =

Then 7 is an automorphism of BL since for ¢ € SL,

Y] = T[(Y A=)V (P AG)] = [WA=G|U[(8(¥") T Ag] = [(V A=)V ((0(¢")) T A)] = [0]

Hreferred to as 7 in [34].
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for the sentence 6 = (¢ A —=¢) V ((0(¢*))T A ¢) and similarly, for every 6§ € SL,
7710 = [¢] for some ¢p € SL.

Let ¢» € SL be the sentence R(ay,a1) A R(az, ar). Then ¢* is P(ay) A P(az), 0(¢*) =
P(a1) A P(ag) A P(as), so (6(¥*))" = R(a1,a1) A R(ag, ar) A R(as, a;). Consequently,

for any probability function w satisfying INV and ¢ as above, we require
w(R(ay,a1) A R(az,a1) A ¢) = w(R(ai,a1) A R(as,ar) A R(az,a1) A ¢).
On the other hand, w(R(ay,a1) A R(az,a1) A ¢) =
w(R(ay,a1) A R(ag, ar) A R(ag,a1) A ¢) + w(R(ar,a1) A R(az,a1) A —R(as,ar) A ¢).

However then

w(R(ay,a1) A R(ag,a1) AN —R(az,a1) N p) =0

and this sentence is satisfiable. Therefore w cannot satisfy super regularity. We

conclude that SReg is inconsistent with INV.

2.4 PIP and Similarity

Previous investigations into the Permutation Invariance Principle have utilised the
equivalent Nathanial’s Invariance Principle (NIP) [33, 35], which involves the idea of
similarity. These two principles have since been unified by [36] under the name PIP,
however, the concept of similarity is essential to working with PIP and shall be of use

to us in particular in Chapter 4. We present it here.

Definition 2.5. State formulae ©(z1,...,2,), ®(z1,...,2,) are said to be similar,

denoted by'? ©(2) ~ ®(Z), if for all (distinct) 4y,...,4 and jy,...,Js from {1,... n}

and o : {z,..., 2z, } = {z,..., 2.}, we have

@[22‘1, . 7Zit] = (@[Zjl, e st])g e (I)[Zil, . 7Zit] = ((I)[Zjl, R, 72’]‘5])0. (23)
We define two state descriptions to be similar analogously, with z1, ..., z, replaced by
(distinct) constants bq,...,b,. Note also that in the definition of similarity, if ¢ = s

and o(z;,) = z;, for each k € {1,...,t}, then

12We use 7 as a shorthand for the ordered tuple (zi,...,2,). We will use vector notation as
shorthand for other ordered tuples (that will be clear from the context) throughout this account.
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@[Zin R Zit] - @[Zjn R th](zh/zju SR 7Zit/zjt>

<~ (I)[Zil, . 7Zit] = (I)[Zj1> . 7th](2i1/2j17 ceey Zit/th)
where O[z;,, ..., 2;,(zi, /%1, - - -+ 2i,/%;,) is the result of simultaneously replacing each
occurrence of z;, in ©|zj,, ..., 2;,] by z,, k € {1,...,t}. This observation shall be used

in what follows without further mention.

Nathanial’s Invariance Principle, NIP

For similar state descriptions ©(by, ..., b,) and ®(by,. .., b,),

w(O(by,...,b,)) = w(®(by,...,b,)).
The following theorem [35, Theorem 3] brings together the notions of similarity and
automorphisms permuting state formulae (and hence NIP and PIP).
Theorem 2.6. State formulae © and ® are similar if and only if there is a permutation

of state formulae that satisfies (A) and (B) and maps © to ®.

Theorem 2.6 combined with Lemma 2.2 means that the definition of similarity, Defini-
tion 2.5, can be simplified considerably. For L an r-ary language, it suffices to consider

t,s <rin (2.3), as we now show.

Proposition 2.7. Let L be an r-ary language. Then Definition 2.5 can be equivalently

stated as:

State formulae ©(z1,...,2,), ®(z1,...,2,) are similar if for all (distinct) iy, ...,
and ji,...,js from {1,...,n} such that t,s <r and o : {z,,...,zi,} = {2, 2.}
Olziy, - 2 = (Ozj5 -1 2. )e = Plziy, -, 2] = (P24, - -+, 23.])o- (2.4)
Proof. Definition 2.5 clearly implies (2.4), since choosing distinct iy, ..., and ji, ..., Js
from {1,...,n} means that ¢t,s < n, therefore every such choice with t,s < r is cov-

ered by Definition 2.5 (if » < n this is immediate, and if n < r then taking t,s < r
introduces no new possibilities). We now show that it is also the case that requiring

(2.4) to hold implies Definition 2.5.
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Suppose not. Then there exist state formulae ©(z1,...,2,), ®(21,...,2,) of L, for
which (2.4) holds for all ¢,s < r, but (2.4) fails when s = [, t = k with k¥ > r.'® In

other words,

Olziy, - 2] = Oz, -, 23])e
say, but

Dlziy, .oy 2zi | # (P24, -5 2])o-
Recall that (®[zj,, ..., 2;]), is the unique state formula ¥(z;,, ..., 2, ) such that
U(o(2y),.-.,0(2,)) = Plzj,, ..., 2;]. So we have ®[z;,,...,2,] # V(z,,...,2,), and
in particular, there must be some relation symbol R4 of L on which ®[z;,, ..., z;,] and

U(zy,...,%,) disagree. Suppose
(I)[Zin ey Zlk] ): Rd(zihl g ety Zihr(i)

and
\I/(Zil, .. 7Zik) Fé Rd<zih17 o ey Zith>,

the other case being symmetric.

Let 7 denote the restriction of o to z;, ,...,2;, . Let the image of 7 consist of the

hry

variables z;, ..., zj, , so that 7 : {Zihl s Zihrd} —» {zjgl, ..., %, }. Then

@[Zihl s e ey Zihrd] ): Rd(zihl g ee ey Zihrd)

and
(q)[ngl, Ce ’ngv])T i?é Rd<Zih1 go ooy Zihrd>

but O[z;, ,...,z, | = (Olz, ,...,2;, ])r. However, r; < r and this contradicts our
1 rq 91 9v

assumption that (2.4) holds for all ¢, s < r, so no such k,[ exist. Therefore, requiring

that (2.4) holds for ¢,s < r, implies it holds for all possible t, s, and thus ©(2), ®(2)

are similar according to the original definition. O]

The notion of similarity is based on the ‘structure’ of state formulae. Informally, two
state formulae are similar if wherever a sub-state formula repeats in one it also does

in the other, and wherever a sub-state formula repeats ‘blown up’ in one, it does so

13We place no restriction on [ here (of course other than [ < k), since as shall be shown, it suffices
to assume that k > r to arrive at the required contradiction.
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in the other. So similar state formulae are those with the same underlying structure,
in terms of where their substructures locally repeat or repeat expanded. This gives
us a way of checking when two state formulae can be mapped one to the other by a

function permuting state formulae and satisfying (A) and (B).

Example. Consider a language containing a single binary relation symbol. The state
formulae O(z1, 22, 23, 24), P(21, 22, 23, 24) represented respectively by the matrices below,

are similar:

1001 000 0
1010 0111
100 1 0010
110 1 010 0

This can be checked (somewhat laboriously) by confirming that the sub-state formulae

of © and ® on 1 and 2 variables satisfy (2.3). For instance,

Olz1, 20] = Olz1, 23](21/ 21, 22/ 23) = Olza, 23](21/ 24, 22/ 23) (2.5)
D21, 29) = P21, 23](21/ 21, 22/ 23) = P[24, 23](21/ 24, 22/ 23) (2.6)
and
(O]z1]), = (O[24])r = Ol21, 24) = Olzu, 21](21/ 24, 24/ 1) (2.7)
(D[z1]), = (P[24])r = P21, 24] = P2y, 21](21/ 24, 24/ 21) (2.8)

where p(z1) = p(z1) = 21, 7(z1) = 7(24) = z4. Checking (2.3) is satisfied by the
remaining sub-state formulae on 1 and 2 variables is done similarly. Notice that by
(2.5), (2.7) and (2.6), (2.8) respectively we also have that (O[z1, 23]), = Olz1, 23, 24]

and (®[z1, 22])s = P21, 23, 24], where o sends z; and z4 to z1, and z3 to z.



Chapter 3

PIP, Spectrum Exchangeability and

Language Invariance

3.1 Introduction

Symmetry considerations in Polyadic Inductive Logic have produced two key players
to date - the Permutation Invariance Principle - introduced in the previous chapter,
and the principle of Spectrum Exchangeability (Sx), which we shall explain shortly. In
this chapter we explore the relationship between PIP and Sx, thus hoping to elucidate
the current polyadic symmetry picture. We will find that these two principles, while

originating from entirely different motivations, share some close connections.

In this first section, we present the key principles and surrounding theory that will be
used in the chapter. In particular, we describe Sx, the functions u”* that satisfy it,
the principle of Language Invariance, and the family of probability functions U%L that

satisfy PIP.

After introducing the required notions, we will show that PIP does not imply Sx; that
unary language invariant families with PIP can have multiple extensions to general
language invariant families with PIP (in contrast to the situation with Sx), and finally,
that we can generate language invariant families with PIP that satisfy Sx up to any
given arity, but fail to satisfy it for languages of higher arity. Results from Sections

3.2 and 3.3 appear also in [36, Chapter 42].

33
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Spectrum Exchangeability

Consider the following formulation of Atom Exchangeability (for the unary language

L,), which is equivalent to the formulation given on page 15 if we assume Ez holds:

w(Ai_, an,(b;)) depends only on the multiset {my, ma, ..., Mo},

where m; is the number of times the atom o appears amongst the oy, .

The multiset {mq,mo, ..., mac} is known as the spectrum of the state description.
Since in the unary case knowing which atom a constant satisfies completely determines
its behaviour, two constants that satisfy the same atom within a state description are
indistinguishable from each other with respect to that state description. More formally,
b; and b; are indistinguishable in ©(by, ..., b,), denoted by b; ~g b;, if for any predicate
symbol P of the language

@(bl, e ,bn> ): Pd(bz) e @(bl, e 7bn> ): Pd(b])
~g defined in this way is an equivalence relation on the set {by,...,b,}.

We can extend this notion to a polyadic language L by defining constants b; and b; to
be indistinguishable in a state description ©(by,...,b,), b; ~e b;, if for any relation

symbol R, of L and by, ..., bg,, bk , by, from {by,...,b,}

w427 "t -

O(by,...,bn) E Rd(bkly---7bku7bi7bku+27~-;bk,«d)
< @(bl,,bn) ):Rd(b]ﬂ?'"abku7bj7bku+27"')bkrd)' (31)

The spectrum of a state description ©, denoted by S(0), is the multiset of the sizes of
the equivalence classes of ~g (written in descending order), and Spectrum Exchange-

ability! is stated as follows:

Spectrum Exchangeability, Sx
For state descriptions ©(by, ..., b,), ®(b),...,0.), if S(©) = S(®), then?

w(O(by, ..., b)) = w(d(,....b)).

Clearly, Sx is a polyadic generalisation of Ax as stated above. The interested reader

may look to [20, 22, 25, 31, 36] for investigations on Sx.

IThis principle first appeared in [31].
Zwhere b, ..., b, as well as the usual by, ..., b, are some distinct choices from the a;.
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At this point it will be useful to introduce the family of functions u”*. These functions
have been prominent in polyadic symmetry, and are investigated for example in |20,
23, 24, 36]. They form the building blocks of probability functions satisfying Sx and
they will be used throughout this chapter.

The Functions u?X

A sequence of colours (cy,...,¢,) € {0,1,2,...}" is picked at random, where each
c; is picked to be ¢ with probability p;. At each stage j, we pick a state description
©;(b1,...,b;) that extends our current state description. However, if ¢; = ¢ # 0
for some k < j, ©;(b1,...,b;) must be chosen such that by ~e, b;. If a new colour
or colour 0 is chosen, the new state description ©; is chosen at random from those
extending the previous one, on the condition that if ¢, = ¢; # 0 for some k,[ < 7, then
b and b; remain indistinguishable in ©;. u?*(O(by,...,b,)) is defined as the sum of
the probabilities of choosing ¢ and a state description in the manner described above

which equals ©(by, ..., b,).

More formally, let B be the set of sequences of real numbers p = (po, p1, pa2, P3, - - - ),
with p; > 0 for all i, py > ps >p3 > ... and Y > p; = 1. Let = (c1,¢2,...,¢) €
{0,1,2,...,}". A state description ©(by,...,b,) is consistent with ¢ if whenever ¢; =
cr # 0, bj ~o b,. Let C(cC, l;) be the set of all state descriptions for b = (by,ba, ..., by)
consistent with ¢. Then

I CIOE S g)l’lﬂpcf (3:2)

ge{0,1,2,... }1
©€C(E,b)

Language Invariance

Suppose we have found our rational probability function in w : SL — [0, 1], a prob-
ability function defined on the sentences of a language L. It would be unreasonable
to assume that we would know from the start, or at all, that L is the only possible
language. So we would like to be able to extend the domain of w to any larger lan-

guage, and to be able to restrict w to act on sentences of smaller languages (thus in
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effect defining w on all (finite) languages), while maintaining the probabilities w gives

to sentences of L.

This concept, now commonly known as Language Invariance, has been around since
the early days of the subject, forming Carnap’s Axiom A11 of his Azioms of Invariance

[8]. In our context, this principle is stated for unary languages as follows:

Unary Language Invariance, ULi
A probability function w on a unary language L satisfies Unary Language Invariance

L

if there is a family of probability functions w*, one on each (finite) unary language L,

satisfying Ex and Pz, such that w* = w and whenever £ C L', w* = w* | SL.

Clearly, if £ C L, we have w* = w | SL for such a family. Similarly, we define
Language Invariance, Li , as the corresponding principle for any (not necessarily
unary) language L. We say that w satisfies (U)Li with P (or (U)Li + P) for some

property P if every member w” of such a family containing w also satisfies P.

Language Invariance plays a significant role in the relationship between PIP and Sx, as
we shall see in Sections 3.3 and 3.4. For this reason, it will be helpful to first understand
some of the connections between Language Invariance and Sx. The following results

are from [21, 24] and [36, Chapter 32].

Theorem 3.1. 3 A probability function w satisfies Li + Sz if and only if there is a
measure i on the Borel subsets of B such that for 6 € SL,

w(e) = [ w"H(6) dulp). 33
B
In addition, if L contains at least one non-unary relation symbol then the language

wmwvariant family containing w is unique.

Theorem 3.2. Let w be a probability function on a unary language L satisfying UL
+ Ax. Then there is a measure p on the Borel subsets of B such that for 6 € SL

w(6) = / @H0) du(p)

and thus w satisfies Li + St.

3This representation theorem is similar in style to de Finetti’s Representation Theorem, a key
result of the subject, which we shall discuss in Chapter 5, page 66.
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Lemma 3.3. Let {w*}, {v*} be language invariant families with Sx such that w* = v*

L

for every unary language L. Then w* = v* for every language L.

In other words, if two language invariant families with Sx agree on all unary languages,
then they agree on all languages. We therefore have that a given unary language
invariant family with Ax extends uniquely to a language invariant family with Sx,
since such an extension exists by Theorem 3.2 and it is unique by Lemma 3.3. In
the opposite direction, the restriction of a Li + Sx family to a ULi family with Ax is
unique, by the definition of Language Invariance and since Sx on unary languages is
equivalent to Ax?*. It follows that there is a one-to-one correspondence between unary

language invariant families with Sx and language invariant families with Sx.

. 5.1,
The Functions u%’,

We now describe the probability functions U%L, introduced in® [33] and described also
in [36, Chapter 42]. They were thought of as building blocks of functions satisfying
PIP and the hope is that future research will lead to a representation theorem for all
functions satisfying PIP using (some version of) the u%’L. The u%’L are closely related

to the uP’; they can be viewed as a variant of the u”* with additional structure.
Let B be as defined on page 35. Let p be some sequence in® B, with py = 0.

Define E;, to be the set of equivalence relations =, on {1,2,3,...}* for each k > 1,
and E C E; x Eo x E3 x ... to consist of the sequences of equivalence relations

E= (E{;, Ef, Ef, ...) that satisfy the following condition:

If {c1, ..., cx) EkE (dy,...,dy), then for any si,...,sm € {1,...,k}

(not necessarily distinct), (cq,, ..., cs,) =L (dy,, ..., dy ). (3.4)
Let £ = <EF,E§,E§,...) be some sequence in E. A sequence of colours ¢ =
(c1,...,¢n) € {1,2,3,...}" is picked at random so that each colour ¢; in ¢ is cho-

sen independently to be ¢ with probability p;.

“Note that this assumes Ex, but since (U)Li implies Ex, Ex indeed holds.

Swhere they were called u’zE

6This definition is slightly different to the one given in [33], where p is defined as a sequence in
Bo = {{p1,p2,...) |0 < p; <1Vi, Z?;pi =1,p; > py >...}. Taking B with every p having pg = 0
7,

L . .
7 that will be more convenient for our purposes.

gives an equivalent definition of the u
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-

We define a binary relation NZ’E on {by,...,b,}* for each k, using the equivalence

<bi17 s 7bik> N?E <bj17 s 7bjk> — <Ci17 s 7Cik> EE <Cj17 s 7Cjk> (3'5)
according to our chosen FE.

Finally, for each relation symbol R, of L and each equivalence class A of the equivalence

relation Nf?dE (where r, is the arity of Ry), we pick either

/\ Rd(bi17 e 7b’ird) or /\ _‘Rd(bila Ce 7bird)7

each with probability 3. U%L(@(bl, ..., by)) is defined as the sum of the probabilities
of choosing ¢ and a state description in the manner described above, which equals

Oby,...,by).

Definition 3.4. A state description ©(by, by, ..., b,) is consistent with ¢ under E, if

for any relation symbol R, of L (of arity r,) and any 41, ...,4,, and ji,...,J,, from

{1,...,n} (not necessarily distinct) such that (c;,, ..., ¢, ) =F, (¢jy, - -+, ¢j,, ), We have

O ): Rd(bila c. ,bde) — 06 ): Rd(bjla c.. 7bjrd)' (36)
In other words, by, ..., b;, and by, ...,b;, ‘behavein the same way’ in ©(by, by, . .., by).

When b;,,...,b; and b;,,...,b

iy

de

are distinct constants, (3.6) can be expressed as

ir,

Olbiy, .- bi, | = O[byy, ..., bs J(biy /by, - by, /by, ).

We denote the set of all state descriptions for b = (by,ba,...,b,) consistent with ¢
under E by Cx(G,b).

- -

It follows from the process described above that only those ¢ for which ©(b) € Cz(¢, b)

could add a non-zero contribution to U%L(G(l;)) Furthermore, we can calculate the

contribution of such a ¢ to U%L(G(l;)) as

Ca(e,b)| ! <Hp> = % (HP> : (3.7)

dE—equivalence classes in {by,...,b,}"™

-
)

where ¢ is the sum of the total number of ~¢

for each relation symbol Ry of L, d = 1,...,q. In other words, ¢ is the number
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of equivalence classes for which choices must be made, thus giving 29 possible state

descriptions in Cp(é, b).

L©o()) as

> es@h e (3.8)

Ze{1,2,...}n
©cCx (&)

We therefore write u%’

For p € B with py = 0 and E € E, the function u%L in (3.8) determines a probability
function on SL that satisfies PIP (and Ex). Moreover, the u%’L form a language

invariant family with PIP.”

We remark that in the definition of U%’L, we can equivalently define ¢ = (¢y,...,¢,)
to be a sequence of colours from {0,1,2,...}", in the same way ¢ is defined for the
uPY. However, since we require that py = 0 throughout this account, there is no
advantage in doing so. For any ¢ that contains the colour 0, [];_, p., = 0, and so for
a state description ©, such a ¢ can only add a zero summand to u%’L(@). We make a
convention of omitting zero summands from our probability functions for the rest of

this chapter without further mention.

3.2 Probability Functions satisfying PIP without
Sx

Having covered the required background, we begin with our task of clarifying the
relationship between PIP and Sx. We already know that Sx implies PIP since similar
state descriptions share the same spectrum [35, Corollary 4], and thus any probability
function satisfying Sx would also give the same probability to any two similar state
descriptions. On the other hand, by constructing a counterexample, we now show
that the converse of this statement does not hold; there are probability functions that

satisfy PIP but not Sx.

7[33, Theorems 1, 2], [36, Chapter 42].
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Proposition 3.5. PIP does not imply Sz.

Proof. Let L be a language containing a single binary relation symbol R. Let p € B

1111

be the sequence <0, 1110000, > and let £ be the sequence of equivalences

_E _E
—1>»—2>

ESE - > defined by having the following equivalence classes on pairs of colours:

{(1L1), 3,3} {(2,2), {44} {(1,2),3,4} {(21),43)}
{13y G {4} {41} {23} {32} {4} {42} (39)

and satisfying (3.4). So for this £ we have (1,2) =% (3,4), (2,1) =F (4,3), (1,1) =F
(3,3) and (2,2) =F (4,4), and for all other pairs® (¢, d) =F (¢, d) only.

Let ©(by, bs, b3, by) be the state description of L represented by the matrix

1010
1110
. (3.10)
0101
0110

Since none of by, bs, b3, by are pairwise indistinguishable in © (if two constants were in-
distinguishable we would have two identical rows and two identical columns in the ma-

trix representation (3.10)), the spectrum of this state description, S(0), is {1,1,1,1}.

Consider U%L(@(bl, by, b3, by)). We choose a sequence (c1, ¢a, c3,¢4) of colours, so that
each ¢; is chosen independently to be one of {1,2,3,4} with probability }L, and every
other colour with probability 0.

Firstly, note that © is not consistent under £ with any ¢ in which a colour appears
more than once. To see this, let &= (cy, ¢z, ¢3, ¢4) and suppose ¢, = ¢; for some k, [ €
{1,2,3,4}, k # l. Then we have that (c, ¢;) =L (¢, ¢;) for any j € {1,2,3,4}, so for ©
to be consistent with this ¢ under E, we must have © = R(by,b;) < © | R(ly, b))
for every j. This means there would be two identical rows in the matrix representing

O, which is not the case.

Next we examine the case where each of the four colours is selected exactly once. Let

&= (1,2,3,4) say. Since (1,2) =L (3,4), for © to be consistent with this & under £

8By (3.4) we also have that 1 EF 3 and 2 EF 4, and the equivalence is preserved upwards too, so
for example (1,2,1) =& (3,4,3) and so on, but we are focusing on pairs since the language is binary.
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we require that

@[bl, bg] = @[bg, b4](b1/b3, bg/b4)

However ©[by, by is

and ©[bs, by|(by /b3, ba/by) is

0 1

10
so © is not consistent with (1,2,3,4) under E. Since none of the 2 x 2 submatrices
of (3.10) repeat, a similar argument applies to any permutation of the order in which

the four colours are picked. Therefore, © is consistent with no & under E, and hence

U%L(@(bl, bg, bg, b4)) =0.

On the other hand, consider the state description ®(by, b, b3, by) of L, represented by

the matrix
1 0 00
01 00
(3.11)
0010
00 01

None of by, by, b3, by are pairwise indistinguishable in @, so S(®) = {1,1,1,1} = S(O).

We now look at U%L(q)(bl, ba, b3, by)). Arguing as we did for ©, we see that no ¢ with
a repeated colour is consistent with ® under E either. However, let ¢ = (1,2,3,4). In

this case,

Dby, by| = P[bs, by](b1 /b3, b2/by),
Dby, by| = P[by, bs](ba/ba, b1 /b3),

and ®[b;] = ®[bs](by/b3), ®[bs] = P[bs](ba/bs),® s0 ® is consistent with this ¢ under E.

We can calculate the contribution of ¢ = (1,2,3,4) to U%L((I)) by (H?zl Pe;) 55, where

29

g is the number of equivalence classes in {by, bs, b3, by }* with respect to the equivalence

~§E, displayed in (3.9). So in this case ¢ = 12 and (H?leci) = = (%)42% =

9Fquivalently, ® = R(b,b) <= ® = R(bs,b3) and ® = R(ba,by) <= & = R(bs,by) both
hold.
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2%0. Furthermore, due to the heavily symmetric structure of ®, any choice of ¢ =

C1,C, C3,Cq4) Where ¢, ¢y, c3,¢q4 are all distinct would contribute the same non-zero

factor to U%L((D) by a similar argument to the one above. Since there are 24 possible
permutations o of {1,2, 3,4}, and it can be checked that ® is consistent under E with

(o(1),0(2),0(3),0(4)) for each of them, the probability u%’L((I)(bh by, b3, by)) = 2_:37
We conclude that
U%L(é(bla b27 b37 b4)) > U%L(@(b17 b27 b37 b4))

while S(®) = S(©). So for p, E, L as above, U%’L satisfies PIP but does not satisfy

Sx. O

We remark that it is true in general that for a state description © consistent with ¢

under E, if ¢ is such that ¢, = ¢ then b, ~g b;. This is the case since if ji, ... s Iy
are formed from 4y, ..., 4., by swapping occurrences of k and [, then (c;,, ... ,cird> E?d
(Cjrsescyy,) because (ciy, ... ¢, ) = (¢, -, ¢, ), and © satisfies (3.6).

Secondly, by condition (3.4) on E, since for any k, EE defines Efl—equivalences for
all m < k, if (c1,...,cx) EkE (dy,...,dg) but {(c1,...,cx) # (dy,...,dg), then we must
have ¢; =F d; but ¢; # d; for at least one j from {1,...,k}.

3.3 PIP and Language Invariance

We show that ULi families with PIP can have multiple extensions to Li families with
PIP, unlike unary and polyadic language invariant families with Sx (cf. page 37). Our
method will be as follows. We will first point out that the u%*, § € B provide one
extension from a ULi 4+ PIP to a Li 4+ PIP family. We will then show that for some
choice of g,p, E the functions u®* and u%’ﬁ agree on unary languages but differ on
binary languages, and hence conclude that the ULi + PIP family u%* extends to two
distinct Li + PIP families for polyadic £, one being u%* and the other u%’c.

Firstly, notice that ULi + Ax, ULi + Sx and ULi + PIP are all equivalent'?, so the

u?* (and any convex combination of the u®* as in (3.3)) on unary £ satisfy ULi +

0Recall that PIP is equivalent to Ax on unary languages, page 23.
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PIP. Moreover, since (Li +) Sx implies (Li +) PIP, the u®* satisfy Li + PIP. So we

have one extension from a ULi 4+ PIP family to a Li + PIP family in the form of the

u~.

Now consider the probability function U%L used in the proof of Proposition 3.5, where

p was (0, }1, 5 }1, 1,0,0,...) and E contained the equivalence (1,2) Ef (3,4) and all
equivalences that follow from condition (3.4). We prove that when the language is

unary, this probability function is equal to %" with = (0,1,1,0,0,0,...) € B.

We have ¢; = p1 + p3, @2 = p2 + ps, so when the language is unary, colours 1 and
3 act as if they are one colour, as do colours 2 and 4. To see this, let ¢ € {1,2}"
and d € {1,2,3,4}". Let Dz contain all d formed from this particular ¢ by replacing
every 1 in ¢ by 1 or 3, and every 2 in ¢ by 2 or 4. Then the state descriptions for
b= (by,...,b,) consistent with this ¢ are exactly those consistent with a d from Dy

under E, since colours (1 and 3) and colours (2 and 4) are equivalent under E. That

is, C(Z.b) = Cp(d, b) for the d from D.

Furthermore, let A(1) = {1,3}, A(2) = {2,4}. By the definition of p, q,
=2’
deA(c;)
So the probability of picking a particular ¢ is
He=11 22 ra= > dem (3.12)
=1 i=1 deA(e) d:d;€A(c;) =

and the d such that d; € A(c;) are precisely the din D by definition.

Let O(by,...,b,) be a state description in a unary language L. Then using (3.2) and
(3.8)

wthO0) = Y 1e@n) " [[aw= > Y lcadb) H = u2H(O(b))

ze{1,2}n i=1 ce{1,23n dqua
ecc(eb) ©eC(E,b)

since {d € Dz : @€ {1,2}"} = {1,2,3,4}" and since © € C(¢,b) <> O € Cz(d.b)
for d € Dg.

However, in the proof of Proposition 3.5 we showed that u%L does not satisfy Sx on

binary languages, and therefore cannot be equal to u%* when L is binary. We conclude
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that the language invariant family with PIP u?* extends to (at least) two different
language invariant families with PIP. One of these is the language invariant family

with Sx, u%*, and the other the family u%’ﬁ, where ¢, p, E are defined as above.

In fact, by modifying the above argument slightly, we can show that ULi + PIP
functions of the form u%” with ¢y = 0 always have multiple extensions to Li + PIP

families.

Proposition 3.6. Let L be a unary language and let u®" be such that ¢ € B and
go = 0. Then u?* has more than one extension to a language invariant family with

PIP.

Proof. Since qp = 0, ¢ will contain at least one non-zero entry ¢;. We construct p with

po = 0 containing (at least) four non-zero entries by splitting ¢; into p;,, pi,, Pis, iy 7 0,

Diy + Diy + Pis + iy, = q1- If G contains other non-zero entries ¢, g3 etc, they are

added to p and ordered such that p; > p, > .... Let E contain the equivalence
L

. oo oo oo . .. o.L 5
iy =1 iy =] i3 =7 14 and satisfy condition (3.4). Then u?2" behaves as u®" on unary

languages, since similarly to above, in that case colours iy, i, i3, 74 behave as colour 1.

On the other hand, u%* and u‘%L do not agree on binary languages. To see this, let L
contain a single binary relation symbol and let ®(by, b, b3, by) be the state description
represented by (3.11). Then if ® is consistent with some colour vector ¢, it will also be
consistent under F with every d formed from & by replacing 1 with 41, 79, 73 or i4. How-
ever in addition, it will also be consistent under E with every d that contains four dis-
tinct colours, since if (dj,, dj,) =5 (dy,, di,) then ®[b;,, bs,] = ®[bg,, bry] (0, /bry bjy /by
since all the 2 x 2 submatrices of ® are equal. So U%L(CI)) > u%L(®) and therefore u%L

and u?” provide different extensions to Li + PIP for the unary family u®’. O

3.4 The u%L Families and Sx

In the previous section we saw that Li families with PIP and Li families with Sx may
agree on unary languages and differ on binary languages. In this section, we investigate

this relationship further, and find that in fact, there are Li families with PIP that not
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only satisfy Sx up to any given arity r, but such that Sx fails for any language of arity
higher than r. We will first show this for a family where Sx is only satisfied by unary
languages and fails for languages that are binary or higher, and then prove the result

for any arity r > 2.

Let p € B be such that py = 0 and p; > 0 for infinitely many i € N*. Define E as

follows:

e Fix two equivalence classes under =F, one containing all odd colours and one of

all even colours:

e Add the equivalences (c1, ¢a) Ef (co,01) <= Efj Co.

e For m > 1, include every equivalence that must hold by condition (3.4), which

in this case amounts to:

If {c1, ¢2) Eg (di,dy) then for si,sq, ..., sm € {1,2},

(CoyrCogrnnnrCo ) =E (dy dsy, ... dy, ), (3.13)

where either ¢; = ¢y, dy = dy and s; = 59 = -+ = s,,,, O (1 EF Cy E? dy Efj ds
(but they are not equal). This is because every equivalence on pairs either follows

_E
—1

by condition (3.4) from an =F-equivalences or it is (¢, c2) =F (¢a,¢1), and in

turn, every =Z-equivalence follows from one of these.

Proposition 3.7. The language invariant family U%E with p, E as above satisfies Sz

only when the language L is unary.

p,L

7 s equal to u?" for some

Proof. We first show that when L is unary, this function u
g € B and hence satisfies Sx, and then prove that Sx fails for every r-ary language,

r > 1.

Let ¢ = (0, ¢1,¢2,0,0,...) € B, with

Q1:sz‘, Q2:sz‘-

i odd i even
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Let L be a unary language and let ©(by, ..., b,) be a state description of L. Then!!

-,

@) = 3 e @D [T g

ze{1,2}n
eccl(zb)
B n
uphem) = Y s b)) [ pa-
de{1,2,3,...}n i=1
eec}%(d‘,a)

For ¢ € {1,2}", let Dz denote the set of all those de {1,2,3,...}" obtained from ¢ by
replacing each occurrence of 1 in ¢ by any odd number, and each occurrence of 2 in ¢
by any even number. Then the Dz partition {1,2,3,...}". Each d € Dz is such that
d; =V d; <= ¢; = c¢;. So CY(G b) = CL(d,b) for d € Dy, since the state descriptions

for b consistent with & are precisely those consistent with the d from D¢ under E.

Furthermore, following the same argument as on page 43,
n n
e => []re
i=1 deD, i=1

and so

uPHOM) = Y D ICHA DT [ [ pa = uEE(O0).

ee{1,2}"  J-p. i=1
eccl(zb) deDs

. q n,L L .
Therefore, when the language is unary, u%* and u” are equal and hence u%" satisfies

Sx.

We now show that Sx fails for non-unary languages. Let L™ contain an r-ary relation

symbol R, r > 1. Let ©(by, by, b3) be the state description of Lt such that
O & R(bi,,....b)

whenever iy, = 19,

@ ): _'R(bz'l, e 7bir)

otherwise. If L™ contains any other relation symbols, we may just assume they only

occur positively in ©.
Then §(©) = {1, 1,1}, since if b; ~g bj, we would require using (3.1) that

O ): R(bi,bi,bi3,. .. ,bir) — 0O ): R(bi,bj,bi3, .. .,bir),

-,

"'We add a superscript L to C(¢, E) and C E(J: ) in this section to emphasise the language involved.
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but © = R(b;, b;, biy, ..., b;,) AN=R(bi, b, biy, ..., b;,) whenever ¢ # j, and thus no b;, b;

can be indistinguishable in ©.

Consider U%L+(@<b1, by, bs)). While © is consistent with no d under £ in which a colour
appears more than once, © is consistent, for example!'?, with (dy,ds, d3) = (1,2, 3).

We have 1 =F 3 s0 by (3.13), (dy,dy, ..., di) =F (ds,ds, ..., ds), and
© | R(by, by, ..., b1) <= © = R(bs,bs, ..., bs)

holds. In addition, (d;, ds) Ef (ds, dy), so we require that for d;,, ..., d; and d;,,....d;

r

where for each g =1,...,7 either i, =1 and j, =3 or i; = 3 and j, = 1,
S} ): R(bz‘l,...7b“) — 0 ): R(bjlw"abjr)'

But this holds too, since we have either i1 = i, and j; = jo, or iy # i and j; # Jo.

Therefore, since in addition []>_, p; > 0, U%L+(@) > 0.
On the other hand, let W(by, be, b3) be the state description of L™ such that
U R(by, by, b ) A R(bsy b, b - 1)

for i1,...,4, € {1,2,3} and
\I] ): ﬁR(bil, e ,biT)

otherwise. We again assume that any other relation symbols only occur positively in
V. Then S(V) = {1,1,1} as b; cannot be indistinguishable from any other constant
because

U = R(by,br,... b)) A=R(bs, by, ..., b1)

for s = 2,3, and by cannot be indistinguishable from b3 similarly.

In contrast to ©, when considering u%ﬁ(lll) we find that ¥ is consistent with no d
under £. Clearly, ¥ is consistent with no d that contains a repeated colour. So
suppose that every colour in d= (dy,ds, d3) appears exactly once. By the definition of
E, there must be two colours in d that are equivalent under E? since there are only two

equivalence classes under =7; say d, =F d,. We show that for every choice of s # t from

{1,2,3} we have U ¢ CL'(d,b). If d, =F ds, then (dy, dy, ..., d,) =F (ds,ds, ..., d3),

12\We remark that © is consistent under E with every de {1,2,3,...}3 in which each colour appears
exactly once by a similar argument.
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but U = R(bs, bs,...,bs) A R(b3,bs,...,b3) for s =1,2. So the remaining possibility
is if dy =F dy. Then by the definition of E we have (dy,dy) =F (dy,d,), and so for any
i1,...,% and ji,...,J, such that either i, = 1 and j, = 2 or iy = 2 and j, = 1, we
require

U= R(biy,....b;,) <= V= R(bj,...,b;).
Let iy = 1,15 = 2, so j; = 2,J2 = 1. Then we have

<d17d27di37 s 7dir> EVE <d2’d1’dj37 te 7djr>

but
U = R(b1, b2, big, ..., b;, ) A R(ba, by, by, ..., bj,).
So U cannot be consistent with (dy, ds, d3) whichever two of d, dy, d3 are E{E -equivalent,

and hence u%“(@) = 0.

Therefore, we have shown that for any r-ary language L™ with » > 2, we can find state
descriptions with the same spectrum that get different probabilities by u%LJr, hence

ﬁ7L+

ug " does not satisfy Sx. [

We can generalise this method to construct Li + PIP families with Sx holding only

for languages of arity at most 7.

Theorem 3.8. There exist language invariant famailies of probability functions with
PIP that satisfy St up to any given arity r > 2, and such that Sz fails on languages of
arity higher than r.

Proof. We provide a method to generate such families. Let p € B be such that pg =0
and infinitely many of the other p; are non-zero. Define E as follows: Fix the E?—
equivalences, so that each colour ¢ # 0 is in one of  + 1 many EiE—equivalence classes.
For each m such that 1 < m < 7+ 1, include in F every =,,-equivalence that does not

alter EF, that is

<Ci17- .. 7Cim> Eﬁ <di17 . 7dim> <~ (Cil ElE d“> AN (CZ'2 Ef} dw) VANRERWAN (Cim ElE dzm)
Now define =E for m > r 4 1 by (the usual condition on E):
If ey ..oy er) EkE (dy,...,dg), then for sy, ..., sm €{1,...,k}

(not necessarily distinct), (c;,,...,¢s,) =2 (ds,, ..., ds,). (3.14)
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Define ¢ € B with gy = 0 by:

qr is the sum of all the p; equivalent to each other under E{; ,

p.L

7% and u?* agree on

f=1,2,.... So q has exactly r + 1 non-zero entries. Then u
languages up to highest arity r, following an argument similar to the one presented
for the unary case above. It follows that this Li + PIP family u%ﬁ satisfies Sx on

languages of arity at most r.

To see that u%’c does not satisfy Sx on languages of arity higher than r, let L be a
language containing an s-ary relation symbol R, s > r+1. Let O(by, ..., b, b1, b,42)

be the state description of L defined by

O R(biy, ... by, bs)
whenever 4y, ...,7,,; contain a repeat!s,

© = —R(biy,..,biryrs -5 biy)

otherwise. We assume that if L contains any other relation symbols they only occur
positively in ©. Reasoning as before, S(0) is {1,1,...,1}. Let d e {1,2,3,...}+2
with no colour appearing more than once. The only s-tuples of colours equivalent

_E

E contain repeats by the definition of E since s > r + 1, so for any

according to

Z-l,...,?:s and j17~--7js from {1,...7T+2}, if <di17~--;dis> ESE <dj17"'7djs>7 then
© ): R<bi17---7bis) — 06 ): R<bj1a"-7bj5)

since they all occur only positively in ©. So © is consistent with (every) such d under

E and U%L(@) > 0.

On the other hand, let W(by, ..., b, b.11,b,12) be the state description of L defined by
U b= R(b1,biy, ..., 0i,) A R(biy, ba, byyy o by ) Ao - AR(biy, oo by bger, s,y oo, b))

for all 41,...,is € {1,2,..., 7+ 2}, and

U = =R(by, .-, bi,)

3Notice that we are concentrating here just on the initial » + 1 of the constants instantiating the
relation R.
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otherwise. We again assume that if L contains other relation symbols they only occur

positively in W. Then S(¥) = {1,1,...,1} since
U b= R(bibis .o bi) A=R(biy .. b3y bs by 1)

with b; in the ith place for every i € {1,...,r+ 1}, j € {1,...,r+2}, i # j, so no
two constants can be indistinguishable in . In addition, for each de {1,2,3,...}7+2
we must have d, =F d, for some v,t € {1,..., 7+ 2}, v # t, since there are only r + 1
equivalence classes under =F. So using (3.14) on the equivalence (d,,d,) =¥ (d,,d;)
gives

(dy,dy, ... dy) =F (dy, ... dy,dy,dy, ..., dy)

where d, is in the vth position. If d, E{Z dyy 9, or if v # t are any two from {1, ..., r+1},

then (similarly to above)
U = R(by, by, ..., by) AR(by, ..., by, b, by, ..., by).

Therefore, since such v,t exist for every d € {1,2,3,...}"2 W is consistent with
no d under E, and u%’,L(\If) = 0. So U%L(@) # U%L(\I/) while S(O(by,...,b.12)) =
S(U(bi, ... bry2)).

We conclude that the language invariant family u%’ﬁ satisfies Sx on languages of arity

at most r, and no further. O



Chapter 4

PIP and Polyadic Atom
Exchangeability

4.1 Introduction

Atom Exchangeability, as introduced on page 15, is a natural symmetry principle in
Unary Inductive Logic. It is implied by the Unary Invariance Principle! - the symmetry
‘umbrella’ principle, and implies the previously mentioned Predicate Exchangeability

and Strong Negation.

Early proponents of the subject were already aware of it. In his proposed princi-
ples of symmetry, Carnap suggested the principle of Attribute Symmetry [9, 44]. In
broad terms, this is the idea that individuals (constants) are categorised by different
families of attributes, and that these should be invariant under permutations of the
indexes of each family. Atom Exchangeability can be thought of as the special case
when constants are partitioned by the single family ‘atoms’, and w is invariant under

permutations of the names of classes in this family, i.e. the names of atoms.

Further support for this principle was accorded by Carnap and Johnson due to it being
a consequence of their favoured Johnson’s Sufficientness Postulate [17] (see page 65),
and though some criticism of Ax has been raised (for example in [9, 27, 28]), it remains

a prominent principle in Unary Inductive Logic.

1[36, Proposition 23.5].

o1
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In the previous chapter, we introduced the principle of Spectrum Exchangeability as a
polyadic generalisation of Atom Exchangeability (under the assumption of Ex). In this
chapter, we will show that it is, in fact, PIP that forms the more natural generalisation
of Ax. For this purpose, we will introduce the concept of polyadic atoms, a key notion
that underpins much of the remainder of this thesis. Results from this chapter appear

also in [39] and in [36, Chapter 41].

4.2 Polyadic Atoms

Lemma 2.2 exemplified the unique role state formulae on r variables play in determin-
ing automorphisms of BL that permute state formulae for an r-ary language L. We
now demonstrate another important role of these formulae; they act as the building
blocks of L, much in the same way that atoms act as the building blocks of a unary
language. This will allow us to prove the above claim - that PIP is a natural general-
isation of the thoroughly studied unary principle of Ax, as stated on page 15 for the
language Lg:

Atom Exchangeability, Ax

For any permutation T of {1,2,...,29} and constants by, ..., by,

w (/\ ahi(bi)> —w (/\ aT(hi)(bi)> .

The formulation of Ax above is the statement that two state descriptions that are
mapped one to the other by a permutation of atoms, should get the same probability.
As we already mentioned in Chapter 2, it is easy to see that in the unary case, per-
mutations of atoms are in an obvious bijection with permutations of state formulae

satisfying (A) and (B) and that in the unary context PIP is equivalent to Ax.

We now extend the notion of atoms to polyadic (r-ary) languages L, by defining a
polyadic atom to be a state formula on r variables. We label the polyadic atoms
(1, xe),y2 (2, o), - YN (21, - o 2, in a fixed order, where the total num-
ber of atoms N is 22d=1""¢  since each state formula of r variables contains " conjuncts

foreachd =1,2,...,q.
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Unless indicated otherwise, v, will stand for v (z1, ..., z,), with these variables. Note
that for purely unary languages, this definition exactly describes the atoms of the
language in the original sense (as defined on page 13). We will often drop ‘polyadic’

and refer to these formulae simply as atoms.

In a manner corresponding to the case for unary languages, every state formula of the

polyadic language L may be written as a conjunction of polyadic atoms; namely,

@(21,...,zn) = /\ ’yhil YYYY ir(zilﬁ"‘7zir>7 (41)

(i1yeir) €{1,n}"
since such a conjunction completely describes the behaviour of? 21, .. ., 2, in relation to
each other (and no other variables). In contrast, however, not every such conjunction
describes a state formula of L, since some of these will be inconsistent. For instance,
for L containing a single binary relation symbol and a state formula ©(zy, 29, 23, 24),

we would need u, , (23, 24) = Vhy (24, 23) for the conjunction to be consistent.

Note that when 4y, . .., in (4.1) are distinct,

Yhiy,....in (Zi17 cey Zir) = @[zil’ <o 722'7-]'
On the other hand, when iy, ..., are not all distinct we have
Yhiy ... ir (33‘1, cee 7$T‘) = <@[Zim17 ce Zims])ﬂ
where 4y, ..., iy, are the distinct numbers among iy, ..., and o : {z1,..., 2.} —
{Zimy s+ Zi, | 18 defined by o(z) = 2, <= ij = ip,, 0
Yhiy,...in (Zin R Zir) = @[Zim17 SRR Zims]'

4.3 PIP as Polyadic Atom Exchangeability

By Lemma 2.2 every permutation of state formulae that satisfies conditions (A) and (B)
from page 20, equivalently a permutation that extends to an automorphism permuting

state formulae, is determined by its restriction to the atoms of L. Let I' denote the

2Recall that throughout this account z1, . . ., 2, denote a distinct choice of variables from x1, s, . . .
and that we use ‘=" also for logical equivalence, as set out on page 11.
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set of permutations 7 of {1,..., N} such that the permutation £ of atoms defined by
Ee(1, .., 20)) = Yray (@1, ..., 2,) is @ permutation of state formulae satisfying (A)

and (B). With these definitions, PIP is clearly equivalent to what may be termed

Polyadic Atom Exchangeability - Permutation Version

For any state description

and T € T,
w /\ Yhiy,...ir (biw 7bir) =w /\ Vr(hiy,....ir) (6217 >blr)
(il,...,ir>€{1,...,n}r <i1,...,i1~>€{1,...,n}r

This represents PIP as a generalisation of Ax as stated above, except that we limit the
‘allowed’ permutations of polyadic atoms to those in I'. The next result will determine

exactly which® permutations of atoms define a permutation of state formulae that

satisfies (A) and (B).

Lemma 4.1. A permutation 7 of {1,..., N} is in T if and only if for each m < r,

distinct 1 <'iy,... 0, <7, 0:{x1,..., 2.} = {zy,...,2; } and k,s € {1,...,N}

VelTirs - Ti))o = Vs(@1s oo, 2) = (Ve [Tins -5 Tin))o = Vo) (@15 -2 Ty).
(4.2)

Proof. We first show that if 7 is in I" then (4.2) holds. Suppose that 7 € " and let 1 be
the associated automorphism of BL. Then 7 satisfies (A) and (B) and 7(7v) = Y- )-
Assume the left hand side of (4.2) is satisfied. By condition (B)

ﬁ('yk[xin s 7xim]) = ﬁ(vk)[xila s 7$im] = Vr(k) [xiu s 7xim]

so by (A)

(e, s i o = MOWlTars - 23 ]))e = D((l2ins -5 20 ])o) -

3Note that the condition in the following lemma is trivial when L is purely unary in accordance
with the aforementioned fact that any permutation of unary atoms extends to a permutation of state
formulae satisfying (A) and (B).
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Therefore, since v-(s) = 7(7s), if (Y[, ..., %i.])e = Vs(x1, ..., ;) then

(%(k) [Tiyy s o = 0(ys(21, .. 2,)) = fyT(s)(xl, ey Ty)

so the right hand side of (4.2) holds. Now assume that the right hand side of (4.2) is

satisfied. The left hand side follows upon noting that 71

must also be in I' since 7
has an inverse 77! which also permutes state formulae [36, Chapter 39], and 77 (v;) =
Yo—1()- So following the above argument with 7 replaced by 77! and ~;, replaced by
Yr(k) Yields the required implication. Hence if 7 € T', the left and right hand sides of

(4.2) are equivalent.

To prove the opposite direction, assume that 7 satisfies (4.2). We will show that 7 is
in I". First observe that for such 7 and for z; , ..., 2, not necessarily distinct variables,
Yi(Ziys - -, 2,) is consistent just when v-(z)(2,, ..., 2, ) is consistent. This is the case
since for a polyadic atom vy, 7y(zi, - ., 2i,) is consistent just when ~,(z1,...,x,) is
(VolTmys -+ Tm,])o Where iy, , ..., iy, are the distinct numbers amongst iy, ..., 4, and
o is defined by o(z;) = ,, <= 1j = im,. Using (4.2), this holds for v (z, ..., 2,)
if and only if it holds for v-(x) (2, .., 2,)-

Another observation we need is that if two atoms v, 7, have the property that restrict-
ing one to some m variables and the other to some (other) m variables produces the

same state formula up to renaming the variables then the same holds for vy, Y-

Expressed more formally, for (distinct) z;,,...,z;, and xj,,...,z;, from {zq,..., 2.}
we have
Wl@ins s i ] =l w2, 2,
< Vr(k) [Tiys ooy Ty, ] = Vr(h) [Tjps oo T (Tiy [Ty i, [25,) (4.3)
where y[xj,, ..., (T /T4, - -, i, /25,,) 1s the result of replacing every occurrence
in y,(zj,...,2;,] of z; by z;,,v=1...,m.
To see this, consider for example oy : {z1,..., 2.} = {xsy,..., 2, Yand oy : {2y, ..., 2.} —>

{zj,,...,xj,} defined by

Z; ifi € {’il,...,im}, Zj, le:Zv S {il,...,’im},
0'1(1'@') = O'2<Zl'i) =
x;, otherwise, xj, otherwise.
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Then the left hand side of (4.3) holds just if for these oy, 09 we have

(VelTiy, - Tin)ow = Vs(@1, ooy 20) = (WlTiys - s T o

for some ~4(z1,...,x,), in which case

('77(k:) [xh? e 7xim])0'1 = 77(5)(1'17 S 7177") = (’VT(h) [xjn s 7xjm])0'2

follows by (4.2), implying the right hand side of the equivalence. The other direction

follows similarly.

For a state formula
@(Zla"'azn): /\ ’)/hil ..... ir(zil""7z7;'r)7
let the function F be defined by

F(O(z1,. .05 2)) = A Vrhiy,.oi) (Zins o5 Ziy): (4.4)

By the first of the above observations each conjunct in (4.4) is consistent. Moreover, the
whole conjunction must be consistent, since otherwise there would be (iq,...,i,) and
(J1, .-, Jry from {1,... . n}" and distinct kq, ..., k; occurring both amongst {i1,...,%,}
and {j1,...,Jr} such that for some relation symbol R, of L of arity r; and some

mi,...,my, from {1,... t},

Vr(hiy,..., i7.)(zi17 e 7Zir> }: Rd(zkm17 SR Zk”““d)’

Vr(hyy... jr)<zj1’ T 7er> ): _'Rd(kal, SR ’kaTd)'

Vrthay.in)Zirs o5 Zi) Zhys o5 2] 7 Vg ) Zrs s 23) [Zhas -5 20l
so by the second observation
Vhiyoin Zins -+ o5 Zig) Zhas o5 2] 7 Vngy i (B e 23 ) [ o oo s 20
However this is impossible since both are O(z1, ..., 2,)[2k,, - - -, 2k,]. Therefore F de-

fined by (4.4) permutes state formulae and clearly F (v (21, ..., %)) = Yr@) (@1, ..., 27).
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It remains to check that F satisfies conditions (A) and (B). Condition (B) clearly holds
and for (A), let

O(21,- - 2m) = /\ Vhiy iy (Zins 5 Ziy)

andlet o : {y1,...,yn} = {z1,..., 2m}. Writing o also for the mapping from {1,...,n}
to {1,...,m} that sends j to ¢ iff o(y;) = 2;, we have

<@<Zlu SR 7Zm))a = /\ P)/h(,(]-l) (,(jr)(yju s 73/]}«)7

,,,,,

since O, is the (unique) state formula ® such that ®(o(y1),...,0(Yn)) = (21, ..., 2m)

and Y, Lo (i), 05.) =V, (Zigs -5 2i,). In addition,

~~~~~

,,,,,

/\ Velha)srtr) Ui > Ysi)

and thus (A) holds. O

We now show that another formulation of Ax, which in the unary case is easily seen
to be equivalent to the one given above, in the polyadic context becomes a principle
that is not obviously equivalent to PIP but somewhat surprisingly turns out to be so

nevertheless.

Atom Exchangeability (IT)
Let

Oy, ... by) = Nan (),  ®r,....0n) = /\ o, (by)
=1 =1

be state descriptions of a unary language. If for all 0 < 1,7 < n we have
hi = hj < kﬁl = k?j

then w(©) = w(P).
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The immediate polyadic counterpart of this is

Polyadic Atom Exchangeability - Spectral-Equivalence Version, PAx
Let

@(b17 s 7bn) = /\ 'Vhil ,,,,, ir(bim s 7bi7->

and

(I)(bla s 7bn> = /\ Veiy ... i (biu SRR blr)

(i1,ir)€{1,0m}T
be state descriptions of L such that for all (i1, ... i), {(j1,...,4r) €{1,...,n}"

= Kji,r- (4.5)

Then w(O(by,...,b,)) = w(P(by,...,b)).

We shall show that PIP is equivalent to PAx and in order to do so we will use the

results on similarity from Section 2.4.

Theorem 4.2. The principle PAx is equivalent to PIP.

Proof. First assume that w satisfies PAx. Suppose that F is a permutation of state
formulae that satisfies (A) and (B), © is a state formula and ® = F(0). Assuming
O(by,...,b,) and ®(by,...,b,) are written as in the statement of PAx, by condition
50 (4.5) holds. Hence

.......... i

w(O(by,...,b,)) = w(®(by,..., b)),

showing PIP for w.

Now suppose that w satisfies PIP. Let ©,® be as in the statement of PAx and such
that (4.5) holds. It suffices to show that © and & are similar since then it will follow
by Theorem 2.6 and PIP that w(©(by,...,b,)) = w(P(by,...,b,)), proving PAx for w.

So suppose that for distinct i1, ...,4; and jy,...,js from {1,... ., n}and o : {z;,...,2,} —
{zj,,-.., 2, } we have

Olziy, - 2, = (O2j5 -5 2] o
Then for every choice of my, ..., m,, (with possible repeats) from {i;,...,4;} and each

relation symbol Ry of arity ry,

e ): Rd(Zml, .. .,Zmrd> 1 S) ): Rd(a(zﬂ’n)v tee 70'(2de>>
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since

Olziy, . zi] F RalZmys -5 2me,) <= Ol2j, s 23] B Ra(0(zmy ), -+ o 0(2m,.,))-

With a slight abuse of notation, writing o (i) = j. instead of o(z;,) = z;,, this means
that for any my, ..., m, (with possible repeats) from {i,..., 4} we have hp,,  m. =
Po(my),....o(my)s S QU describes every relation involving variables from {z,,,, . .., Zm, }

and similarly for v,

o(my),..., o(my)”

If we had

D2y s 2] #F (Pl2ys -, 2]
then reasoning as above, this would mean that for some my, ..., m, from {iy,... 4},
Eoroome 7 Ko(my),...o(m,)- However this would contradict (4.5), so ®[z;,,...,2,] =
(®[2jy,- -, 25,])s and since the same argument can be repeated with © and @ inter-
changed, we conclude that © and ® are similar as required. O]

4.4 PIP as Polyadic Atom Exchangeability under
Ex

We have thus far shown that two versions of Atom Exchangeability on unary languages
result in the principle PIP on polyadic languages when formulated using polyadic
atoms. The third remaining formulation of Ax in the unary context utilises the idea
of a spectrum of a state description, as explained on page 34 and restated below. This
version can easily be seen to be equivalent to the previous statements of unary Ax if
we assume that Ex holds. It would be natural to ask therefore, whether a polyadic
formulation of this version of Ax would be equivalent to PIP + Ex. We shall show
that for the most immediate polyadic counterpart of this principle the answer would
be no. Whether other possible definitions of polyadic spectrum do indeed provide an

equivalence with PIP + Ex remains a topic for further research.
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Atom Exchangeability (III)
For ©(by,...,b,) a state description of a unary language L, the probability

w(O(by,...,b)) = w (/\ ahi(bi)>

depends only on the spectrum of this state description, that is on the multiset {my, ... , moq}

where m; = |{i|h; = j}|.

By analogy, in the polyadic case this gives rise to defining the p-spectrum (polyadic,

atom-based spectrum) of a state description

O(by,....by) = A Vhuyoosr By -2 b))

(i15e0nyirYE€{1,...;n}7"

of a polyadic language L as the multiset {m,..., my} where

mj = ’{<21, e ,7:7«> S {]., Ce ,n}r | h’il,m,ir = ]}l
For ease of notation, we usually omit zero entries from our multisets.

We remark that current use of the term spectrum in Polyadic Inductive Logic, as in
the statement of Spectrum Exchangeability (on page 34), which involves the strong
notion of indistinguishability of constants in a particular state description, is clearly
different from the notion of p-spectrum. Unless the language is unary, this type of
indistinguishability is not preserved when the state description is extended, that is
when we consider another state description with additional constants that implies the

given one.

On the other hand, in the definition of a p-spectrum of a state description we consider
ordered r-tuples of constants (possibly with repeats), classifying them purely by the
way these r constants relate to each other in the state description and disregarding
their connections to the other constants. If we choose to define p-indistinguishability of
two r-tuples in a state description to mean satisfying the same atom within it, we find
that this notion of p-indistinguishability is ‘forever’: extending the state description

to more constants does not change it.
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With this in mind, we arrive at the following new polyadic symmetry principle:

Atom-based Spectrum Exchangeability, p-Sx
The probability of a state description of a polyadic language L depends only on its

p-spectrum.

Examining this new principle, we can see that p-Sx implies Ex, since if w satisfies p-
Sx then w(©(by,...,b,)) = w(O(,..., b)) when by, ..., b, and b}, ..., b, are distinct
constants and O(by,...,b,) is a state description, because they share the same p-
spectrum. It also implies PAx (and hence PIP), since any two state descriptions that

satisfy (4.5) necessarily have the same p-spectrum.

We now show the converse does not hold in general by pointing out a probability
function that satisfies PIP + Ex but gives different probabilities to state descriptions

with the same p-spectrum. For this purpose, we employ one of the probability functions

p,L
uP

7 used in the previous chapter.

As in the proof of Proposition 3.5, let L be a language with a single binary relation
symbol R. Let p = <0, }1, %, }1, }1, 0,0,0,... > and let E contain the equivalence (1,2) E];

(3,4) together with all equivalences that follow by condition (3.4).

Having picked the sequence (cy, . .., ¢,) where each ¢; is chosen to be ¢ with probability
p;i, we pick uniformly at random a state description consistent with this sequence under

E, where a state description

O(br, ..., by) = /\ Vhiy iy (biy, biy)

<i1,i2>€{17...,n}2

of L is consistent with {(cy,...,c,) under E if* for any (i, 4), (j1, jo) € {1,...,n}?,

<Ci17ci2> Eg <leﬂcj2> = hil;i2 - hjl,jz' (46)

Then (as before), u%’L(@(bl, ..., by)) is the probability O(by,...,b,) is the state de-

scription arrived at by the above process.

4This definition for an r-ary language is equivalent to Definition 3.4 given on page 38.
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Let O(by, b, bs,by) and P(by, be, b3, by) be state descriptions represented respectively

by the following matrices

1 001 1011
0101 0101
0011 1 010
1111 1 101

The p-spectrum of both is {10, 6}, so it remains to show that U%L(@) 4 ulk (D).

To see this, note that neither © nor ® are consistent with any sequence of colours
(c1, o, c3,cq4) in which a colour appears more than once, since as explained by the
remark on page 42, this would require the state descriptions to have indistinguishable

constants and that is not the case.

So consider a sequence (c1, ¢2, 3, ¢4) where each colour appears exactly once. For some
permutation v of {1,2,3} we must have (c,(1), cy(2)) =r (Cu(3), ca) but
10 1

Olby(1y, bu2)] = , O[by(3), ba] =
01 1 1

. . . p, L
for every v, so © is consistent with no sequence (cy, 2, ¢3, ¢4) and hence u%’ (©) =0.

On the other hand, ® is consistent for example with the sequence (1,2, 3,4) and hence

u%’L(CI)) # 0.5 Thus u%L is a function that satisfies PIP and Ex without satisfying

p-Sx, as claimed.

el

L(©) = 0 and uB’(®) = 2716,

5The total probabilities may be checked to be u 7

o1l



Chapter 5

Binary Signature Exchangeability

5.1 Introduction

We investigate the notion of a signature in binary Inductive Logic, introduce the
Principle of Signature Fxchangeability and study the probability functions satisfying
it. We prove a representation theorem for such functions and show that they satisfy a
binary version of the Principle of Instantial Relevance. In the next chapter, we extend
this investigation to general polyadic languages. The material in this chapter appears

also in [40].

We begin with a closer inspection of the principle of Constant Exchangeability, which
we have already met. Known by Johnson as The Permutation Postulate (see for
example [17, 43, 44]) or in Carnap’s terms, the Principle of Symmetry [6, 8], Ex is
a widely accepted and commonly assumed rational requirement in Pure Inductive
Logic. Informally, this is the statement that in the absence of further knowledge,
different individuals of our universe should be treated equally. In our framework it
means that the probability assigned to a sentence is independent of the particular
constants instantiating it. In addition, in the thoroughly studied unary context, this
principle exists in an equivalent formulation - as invariance under signatures of state
descriptions. This unary characterisation of the principle has led to some of the most
significant results in Unary Inductive Logic thus far. These include, for example,
a complete characterisation of functions satisfying Ex, and the Principle of Instantial

Relevance (see page 64) following as a logical consequence of Constant Exchangeability.

63
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In contrast, such results have so far not translated satisfactorily into the polyadic.
Having extended the concept of atoms to polyadic languages in the previous chapter,
in the following chapters we generalise the notion of a signature first to binary and
then to Polyadic Inductive Logic, and investigate the theory this yields for higher arity
languages. As has been our custom, in this first section we give a brief account of the
relevant background which in this case is the unary portion we shall be concerned with
for the purpose of this chapter. We then suggest new methods and formulations for
these concepts for binary languages. Specifically, we present a binary definition of a
signature and a principle of invariance under this notion, an independence principle
characterising the basic functions satisfying this new signature-based principle, and a

binary version of the Principle of Instantial Relevance.

Recall the Principle of Constant Exchangeability, as stated on page 14, where we also
remarked that it can be equivalently expressed as requiring (1.2) to hold only for state
descriptions © instead of general # € SL. This leads to a simpler formulation of Ex
for unary languages (as mentioned above), based on the notion of a signature'. The
signature of a state description ©(by, ..., by) = Aj-; o, (b;) is defined to be the vector
(ma,...,moqs) where m; is the number of times that a; appears amongst the «y,,. Ex

in the unary case thus amounts to?

Constant Exchangeability, unary version

The probability of a state description depends only on its signature.

In the previous chapter, we investigated atom-based polyadic approaches to the prin-
ciple of Atom Exchangeability. We now mention a collection of other important prin-

ciples from Unary Inductive Logic that are stated in terms of (unary) atoms.

Principle of Instantial Relevance, PIR

w(%’(am+2) | /\ahi(ai)> < w<04j(&m+2) | aj(@mer) A /\ahi(ai)> :

i=1 =1

This principle was suggested by Carnap [7, Chapter 13] and expresses the idea that

having witnessed an event in the past should enhance (or at least should not decrease)

Isee [36, Chapter 8.
2Ex implies that the probability of a unary state description depends only on the atoms occurring
in it, and not which constants instantiate them.
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our belief that we might see it again in future.

Johnson’s Sufficientness Postulate, JSP
w(aj(amsr) | Nivy an,(a;)) depends only on m and on m;, where m; is the number of

times that o; appears amongst the ay,.

First appearing in [17], JSP states that our belief in seeing an individual with a certain
combination of properties should depend only on how many individuals we have seen,

and how many of them have satisfied exactly the same combination of properties.

Unary Principle of Induction, UPI
Assume that m; < mg, where mj, my are the numbers of times that «;, o respectively

appear amongst the ay,,. Then

w(%‘(@mﬂ) | /\Oéhi(ai)> < w<as(am+1) | /\@hi(@i)> :

i=1 i=1

This principle [36, Chapter 21] says that if we have already seen at least as many
individuals with a certain combination of properties as with another combination, we
should think the next individual at least as likely to have the first combination of

properties as the second.

Finally, we mention the (not necessarily unary) Constant Irrelevance or Independence

Principle. It is not stated in terms of atoms, but it plays a role in what follows.

Constant Independence Principle, IP

Let 0,0 € QFSL have no constant symbols in common. Then

w(@ A ¢) = w(0) - w(g).

In the unary context [36, Chapter 8], the only probability functions satisfying IP

together with Ex are the wz functions, where ¥ = (1, ..., 22q) is from
249
ng = {<I‘1, ce ,Q32q> ’ T1,T2,...,T2 2 0 and ij = 1}
j=1

and wg is determined by

m m 24

ma

v Aowo ) = Ton = T4
i=1 i=1 j=1
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where m; is again the number of times that «; appears amongst the ay,. Thus wy
is the (unique) function that assigns the probability z; to all a;(a;) regardless of 1,
and treats instantiations of atoms (both the same or different) by distinct constants
as stochastically independent. These functions are remarkably useful because they are
simple and since all unary probability functions satisfying Ex can be generated from
them as continuous convex combinations (integrals). The precise statement of this

claim [12] is

de Finetti’s Representation Theorem. Let L be a unary language with q predicate
symbols and let w be a probability function on SL satisfying Ex. Then there is a

normalised, o-additive measure p on the Borel subsets of Dag such that

w©) = [ us() du(@

for any state description © of L, and conversely, given such a p, w as above extends

uniquely to a probability function on SL satisfying Fx.

Early results of Unary Inductive Logic show that any probability function satisfying
Ex also satisfies PIR (as already mentioned, [13]), and that - provided the language
has at least two predicate symbols - any probability function satisfying Ex and JSP
must be one of the Carnap Continuum functions®. A later result due to Paris and

Waterhouse [37] shows that any probability function satisfying Ex and Ax must also
satisfy UPI.

These are pleasing results in Pure Inductive Logic, since we know that if we make
these rational requirements, we also gain their consequences - a PIL version of ‘buy
one (or two), get one free’. So, for example, if we are happy to accept Ex and Ax we

also gain the appealing UPI.

5.2 An Atom-based Approach for Binary Languages

We shall now consider how atoms can aid us to understand the properties of probability
functions on binary languages. Let L contain some binary relation symbols and pos-

sibly some unary predicate symbols, but no symbols of higher arity. We shall denote

3References for these functions were mentioned on page 17.
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the unary predicate symbols by P, ..., P, and the binary symbols by @1,...,Qy,,
with ¢ + g2 = ¢.

In this language, the state formulae for one variable have the form

/\ +P(x) A\ £Qu(x, ) (5.1)

u=1
and we will write

Bi(x), ..., Pea(x)

for them (using the usual lexicographic ordering). We also refer to these formulae as
1-atoms (since they act on one individual). There are 2¢ many of these since there are

q relation symbols and each of them can appear in 3 either positively or negatively.

The atoms of the language, that is, the state formulae for two variables, have the form
q2 q2
Bi(@) A Bey) A N\ £Qulz. y) A N\ £Quly. ).
u=1 u=1
There are N = 229222 atoms, and we shall denote them by

(@, y),. .., yn(z,y).

In order to help visualise the binary case, we introduce the notation d,(z,y) for the
conjunctions A% +Q,(z,y), where s = 1,...,2%9 (and the d, are again ordered lexi-

cographically). Any atom ~,(x,y) can then be written as

B(x) A Be(y) A de(,y) A daly, ) (5.2)

for some 1 < k,c <29, 1 <e,d < 2%. We shall represent such an atom by the matrix

and write Y c.eq (%, y) for this atom (5.2). We refer to B (x) A B.(y) as the unary trace
of the atom (5.2).

In addition, we assume that the atoms of L are ordered unambiguously: when k&, ¢ run

through 1,...,2% and e, d run through 1,...,2% the number

2q+2q2<k _ 1) 4 22fI2(C — 1) + 2% (e — 1) +d (5'3)
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runs through 1,...,2%1222  Then there is exactly one way of obtaining each of the

numbers 1,..., N, that is one value of k, ¢, e, d which gives each of the atoms.

Ezample. When L has just one, binary, relation symbol Q) (that is, when ¢ = 0,
g2 = 1) then (y(x) and Pa(x) are Q(x,z) and —Q(x,x) respectively, and 61(x,y) and

do(z,y) are Q(z,y) and =Q(x,y) respectively. One possible atom of this language is

Qz,2) N Q(y,y) AN =Q(z,y) N Q(y, ),
which corresponds to the atom vs(x,y) and it is represented by the matriz

1 2
11

In this very special case of a language containing just one binary relation symbol, we
often write 0 in place of 2 (hence Q@ and =@ correspond to 1 and 0 respectively, as we

had previously), so the atom above may also be represented by

10
11

Using atoms, a state description of L can be written as

Obr, . bm) = N\ Y, (b, b) (5.4)

1<it<m

and it can be represented by an m x m matrix

k1 €12 €13 ... €1m

dl 2 k?g €23 €2.m

diz daz k3 €3m (5.5)
dl m d2,m d3 m km

for some

1<k <27 1< ey, dy <29,
This means that depending on whether ¢ <t or ¢ <14, 3, is

k; €it ket di,t
di,t Ky €it k;
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respectively, and 7y, ; is

for that e for which ©(by,. .., by) |= de(bs, b;). Notice that this is the case since 7y, , is

equivalent to some (3 as in (5.1) and there are indeed 27129 = 29 choices of these.

Clearly, there is much over-specification in the expression (5.4); for example, we must
have vy, , (2,y) = Yn,,(y, 7). A more efficient way of writing a state description (for at

least two individuals) in terms of atoms is to restrict ¢,¢ in (5.4) to ¢ < t,
Obr,..bm) = N ., (bib). (5.6)
1<i<t<m
This contains all the information about © and it still over-specifies all that concerns
single individuals. In this investigation we will find it convenient to make this part of
the state description visible, so we shall write it as
Or,....bwm) = N Bu@®) A\ Yn, (b by). (5.7)
1<i<m 1<i<t<m
This works even when m = 1. We adopt a convention that if needed we still write

,yht,i(x7 y) for Yhi e (yv "E)

Definition 5.1. For © as in (5.7), we define
A Br(b) (5-8)
1<i<m

to be the unary trace of ©. Any conjunction of this form is called a unary trace for

bi,... by

We remark that when using atoms, some over-specification is unavoidable. It is pos-
sible to develop an approach to Polyadic Inductive Logic using just elements rather
than atoms (where elements in the binary case are the conjunctions AL, £P;(z) and
the conjunctions A, £Q,(z,y) - these are the d,(x,y), and analogously for higher
arity languages), and thus to avoid over-specification. We will do this in Chapter 7,
where we will also mention some of the advantages and disadvantages of this approach.

In short however, such a ‘disjointed’ approach fails to capture much of the structure
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of the sentences we wish to work with. For example, in the disjointed approach, the
ordered pairs obtained from each other by changing the order of the two individuals

are treated separately, and consequently some crucial connections are lost.

In order to develop a binary approach to the principles we mentioned in Section 5.1
we will need also the concept of a partial state description. These are sentences which,
like state descriptions, specify all that can be said about all single individuals from

amongst the by, ..., b,,, and all that can be said about some pairs of them:

Definition 5.2. A partial state description for by, ..., b, is a sentence

Alby, . bn) =\ Bu@)A N\, (bi b)), (5.9)

1<i<m {b;,bt}€C
1<t

where C'is some set of 2-element subsets of {by, ..., by}

We use capital Greek letters also for partial state descriptions.

Example. Using the representation described above for L containing just one binary

relation symbol QQ, the matrix

1 110
1 110
1110
0001

represents the (full) state description

/3\ Q(bi, by) A /?)\(ﬂQ(bz» by) N =Q (b, b)) N Q(bg, ba)
=1 i=1
while
1 1
1
0 10
01

represents the partial state description

4

/\ Qbi,b:) A (Q(D1, b3) A =Q(bs, b1)) A (=Q(bs, ba) A =Q(bs, bs)).

=1
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The matriz
1 1
10
0 10
0 1

represents no partial state description since it gives some - but not all - information
about the pair by, bs. Specifying also Q(bs, by) or =Q(bs, by) would turn it into a partial

state description.

We remark that if C' in (5.9) contains no 2-element subsets, that is C' = (), then (5.9)
is still a partial state description. In particular, a unary trace for by, ..., b,, is a partial
state description for by, ..., b,,. Of course, every state description is also a partial state
description. Secondly, we mention that partial state formulae are defined analogously
to partial state descriptions, with by, ..., b, replaced by (distinct) variables 21, ..., z.
Finally, we follow the convention that only the individuals that are mentioned after

some [, in (5.9) are listed in brackets after ©, and that they are distinct.

5.3 Binary Signatures

In Unary Inductive Logic, it is almost always the case that Ex is assumed. If we wish
to continue assuming Ex and to base our theory on polyadic atoms, we need to be
able to work with the atoms in a way which reflects that atoms obtained from each
other by permuting the variables are in some sense equivalent and represent the same

thing.
In the binary case, atoms have two variables and there is only one non-trivial permu-
tation of {z,y}. If v(x,y) is the atom represented by

k e
d c

then permuting x and y yields the atom represented by
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If Kk = c and e = d then these are the same atom.

Hence, when wishing to disregard the order, the behaviour of pairs of individuals
should be classified by the atom they satisfy, only up to the equivalence defined on

atoms by

That iS, Vk,c,e,d) ™ Ve,k,d,e]-

This means that rather than N different ways a pair can behave, there are p < N of
them, where N is the number of atoms and p is the number of ~-equivalence classes.
Explicitly, p = (IV + 27 - 292) /2, since there are two atoms in each equivalence class
where either k # c or (k = ¢ and e # d), and only one atom in the 27 - 22 many

~-equivalence classes that contain atoms where k = ¢ and e = d.

It will be convenient to introduce notation for these equivalence classes; we shall denote
them by I'1,...,I'y, and assume that they are ordered by the least number atom they

contain (so that I'; contains 7). From above, it follows that each class is
; (5.10)

for some k, ¢, e,d, and it has either two elements, or just one (when k = ¢ and e = d).
For fixed k and ¢, A(k, ¢) will denote the set of all j such that I'; consists of the atoms
(5.10) for some e, d.

Note that for ©(bi,...,bmn) = Ai<iicm Yni.(bis b)) to be consistent, [k, c,e,d] and
[c, k,d,e] must appear exactly the same number of times among the h;;, because
O F VMiced(ai,ar) <= O F Yepdelar, a;) for these i,t. So when © is as in (5.7),
since we are considering just the pairs (i,¢) € {1,...,m}? where i < ¢, only one of

[k, c,e,d] and [c, k, d, e] will appear amongst the h;; for these i, .

Within the equivalence class (5.10), the unary trace of an atom determines the atom,
except when k = c and e # d, since then Y e 4 and Vg .4, are different atoms with
the same unary trace. We shall associate a number with each class I'; accordingly: 1
if the unary traces do determine its atoms and 2 otherwise. We denote this number

Sj.
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Definition 5.3. The signature of a state description
Ob1, ..., bym) = /\ B (bi) A /\ Vhi o (bis br)
1<i<m 1<i<t<m
is defined to be the vector (ni,...,n,), where n; is the number of (i,t) such that
1 <i<t<mandy,, € IfO Iisrepresented by (5.5) and I'; is (5.10), then n; is

the number of times one of the atoms from (5.10) appears as a submatrix of (5.5).

We shall define also the extended signature of © to be

— —

Mt = (Mq,...,Maa; Ny,... Ny,
where my, is the number of times that k appears amongst the k;, i =1,...,m.

We remark that the extended signature is derivable from the signature, but it will be

convenient for us to record the m part explicitly.

Note that if m7 is the extended signature of some state description ©(by, ..., b,,) then

29
> mp=m, (5.11)
k=1

for k # ¢
Z nj = mpme, (5.12)

jeA(k,c)

and
Z n; = mk (e — 1) : (5.13)
JEA(k k)
The first equation is clear. The reason for the second equation is that for k # ¢, if G,
and 3. appear my and m,. many times in O(by, ..., b,,) respectively, then m;m, many
of the h;; in (5.7) will be from an equivalence class in A(k, c) when i < t. Otherwise
we would have to count h;; = [k,c,e,d] and hy; = [c, k,d,e] and the sum in (5.12)

would be 2m;m,.. A similar argument works for the third equation.

Conversely, thinking about state descriptions in terms of matrices as in (5.5), we can
see that any mn = (mq,...,maq; ny,...,n,) such that (5.12) and (5.13) hold, is an
extended signature of some O(by,...,b,,) for m defined by (5.11), so we refer to such

vectors as extended signatures on m.
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If the binary case behaved like the unary, Ex would be equivalent to the requirement
that the probability of a state description depends only on its signature. However, as

we shall see below, this is not the case and so we are led to define the

Signature Exchangeability Principle (binary), BEx
Let L be a binary language and let w be a probability function on SL. Then the

probability of a state description depends only on its signature.

BEx implies Ex, since a state description’s signature is invariant under permutations
of constants. To see this, let ©(by,...,b,) be a state description as in (5.7), and
suppose it has the extended signature 7. Consider
O(br1y, - brim) = \ Be, 1y B A N\ 1y (Bis D),
i=1 1<i<t<m

the state description obtained from © by permuting by, ..., b,, according to 7 € S,,.
Then the extended signature of ©(b-(1),...,br(m)) is also 7. Notice that if for
some 1 < ¢ <t < m we have O(b-1y,...,brom)) 'VhT—lm,T—l(t)(bi’bt) then either
T7Hi) < 77Ht) and O(by, ..., bm) Y1y, (020 beoaqr), o TTH(E) > TTH(E)
and O(by,...,b,) thl(t)’Tfl(i)(bel(t),bel(i)). But if y, _, ., € I, then sois
Vh, 14y 1—10y7 SO in either case, the same number of atoms from each equivalence class
appear in O(b,...,by), O(b-(1), ..., brm)). Clearly, m is the same for both state de-
scriptions since it is derivable from 7 (and in any case, {1,...,m} ={7(1),...,7(m)}

as sets).

On the other hand, the converse implication does not hold - two state descriptions with
the same signature may not be obtainable from each other by permuting constants
and can therefore get different probabilities from functions satisfying Ex. This means
that BEx is strictly stronger than Ex. Rather than providing a general proof, we
will illustrate why this is so on the case of the language L containing just one binary
relation symbol Q. Let ©(by,bo, b, by), ®(by,bs, b3, bs) be the state descriptions of L

represented respectively by the matrices

1 110 1100
1110 1110
1 110 0111
0001 0011
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Then © and ® have the same signature, namely
ﬁ: <n1 = 37”2 - 07n3 - 07”4 - 37”5 - 07n6 - 07”7 - OJ”S - 07”9 - 07”10 — 0>

where

PIZ ) F4:
11 01

(and m = (my = 4,my = 0)). However, there is no permutation of by, by, b3, by that
maps O(by, by, b3, by) to ®(by, b, bs, by). To see this let 0 € S4. Any matrix representing
O (bs(1); bo(2), bo(3), bo(1)) must contain a column consisting of three Os and one 1, that
is the column corresponding to b,-1(4). Since ® contains no such column, there is
no permutation o such that ©(by(1), bo(2); bo(3): bo(a)) is equivalent to ®(by, bg, b3, bs).
Furthermore, the probability function u?* with p = (0, %, %,0,0, ...) described in
Chapter 3 gives these state descriptions different probabilities: wP*(©) > 0 while
uPL(®) = 0.

The probability function u%’L together with the state descriptions © and ¢ from page
62 provide another example of state descriptions with the same signature and a prob-
ability function satisfying Ex that assigns them different probabilities. Recall that
these © and ® were constructed to have the same p-spectrum. We remark that
the p-spectrum and the signature of a state description are indeed connected. Let
©(by,...,bn) be a state description as in (5.4). Define the signature+ to record how
many (i,t) € {1,...,m}? are such that v, , € I'; for each j € {1, ..., p} and note that
the signature+ is derivable from the extended signature. In addition, suppose we split
p-spectrums for state descriptions on m constants into classes such that p-spectrums
that agree on therj ny, for each j (that is, they have the same total number of atoms
from each I';) are in the same class. Then state descriptions with the same signature+

all have a p-spectrum from the same class.

The probability functions satisfying BEx share a number of properties with those sat-
isfying Ex in the unary case. In particular, there is a large class of relatively simply
defined probability functions similar to the unary wz (as described on page 65) which
satisfy BEx. These functions are characterised by an independence principle similar

to the Constant Independence Principle IP. In addition, we will show that there is a
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de Finetti-style representation theorem telling us that any probability function satis-
fying BEx can be expressed as a convex combination of these special functions (as an
integral). This, in turn, will yield a proof of a binary generalisation of the Principle
of Instantial Relevance. In addition, these results were used in [42] to prove a charac-
terisation of a binary Carnap Continuum as the unique functions satisfying a binary

generalisation of Johnson’s Sufficientness Postulate. We begin with independence.

5.4 Binary Independence

The Constant Independence Principle IP (for any language), see page 65, requires
that any two quantifier free sentences which have no constant symbols in common
are stochastically independent. In other words, probability functions satisfying this
principle have the property that evidence concerning certain individuals has no impact

on probabilities assigned to sentences involving different individuals.

In sentences involving only unary predicate symbols, occurrences of predicates are in-
stantiated by single constants; no predicate can bring two constants together in the way
binary relations do. Hence, when the language is unary, the notion of independence
used in IP is the strongest one, based on requiring that individuals do not interfere
with others. In the binary case, however, beyond simply requiring that individuals do

not interfere, we may require the same of pairs of individuals in the following sense.

Definition 5.4. For a sentence ¢ of a binary language L we define Ci to be the set
of (unordered) pairs of constants {a;,a;}, ¢ # j, such that for some binary relation

symbol @ of L, either £Q(a;, a;) or £Q(a;, a;) appears in .

We say that sentences ¢, such that C’; and C’i are disjoint instantiate no pairs in
common. Such sentences cannot reasonably be required to be independent outright
because of information each may contain concerning single individuals, but they can

be independent conditionally.
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Strong Independence Principle (binary), BIP
Let L be a binary language and assume that ¢,v € QFSL instantiate no pairs in

common. Let by, ..., bs be the constants that ¢ and ¢ have in common (if any) and let
A(by,...,bs) be a unary trace for these constants. Then
w@AY[A) = w(@|A)-w(y|A). (5.14)

If s = 0 (the sentences have no constant symbols in common) then A = T (tautology),
so BIP implies IP. If A is not consistent with ¢ or ¢, or if' w(A) = 0, then (5.14)

clearly holds because both sides are 0.

The Functions wy

We shall now define the binary versions wy of the unary wz mentioned on page 65.
Let D;, be the set of all

}7:<I‘1,...,Z’2q;y17...,yp>

such that z,y; > 0 and quzl x, = 1, and such that for any 1 < k, ¢ < 29,

Z s;y; =1 (5.15)

jEA(k.C)
(A(k,c) was defined on page 72).> We intend to define wg so that these functions
satisfy Ex, BIP, wy(6k(a;)) = @1 and if ~ is the atom 7 e q and I'; its equivalence

class - that is, I'; is (5.10) - then

wy (Va(ais ar) | Bela;) A Belar)) = y; -

To this end, it is convenient to write j(h) for j such that v, € I';. To make the
notation more manageable, we also write 2, for y;p). Hence the y; are associated
with the equivalence classes I'; of atoms, and the z;, assign these same values to the
individual atoms in these classes. In terms of the zj, (5.15) says that the sum over zj,

for those 7, with a given unary trace is 1. That is, identifying h with [k, ¢, e, d], (5.15)

4using our convention for conditional probabilities from page 13.

®Note that Dy, is both compact and convex in RM for a sufficiently large M € N, a fact we will
use in the proof of the representation theorem in Section 5.5.
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is equivalent to requiring that
> Zpeea =1 (5.16)
e, de{l,...,292}

To aid with explanations, we will use both (5.15) and (5.16) in what follows.

For a state description
Oar,...,am) = /\ B, (a;) A /\ Vi, (5, ar) (5.17)
1<i<m 1<i<t<m

we define

wyO(ar, ... an) = [ = [] 2 (5.18)

1<i<m  1<i<t<m
where k; € {1,...,27} and z,,, is y; for that j € {1,...,p} such that ;,, € I';. We
take the empty product to be 1. So for instance, for © a state formula on one variable,

w?(@(al» =Tp, - 1 = xp,.

Proposition 5.5. Let L be a binary language. The functions wy defined in (5.18)
determine probability functions on SL that satisfy Ex.

Proof. wy is defined on state descriptions so it suffices to check that conditions (P1’)-
(P3') from page 13 hold. (P1’) clearly holds. To check that (P2') holds, consider the

state description ©;(a;) and notice that wy(0;(a1)) = x; for some i =1,...,2% Then

-----

wp(T) =wy |V Oil@) | =D wp(®ife) =3 o =1

since the state formulae ©1(z), ..., O (x) are mutually exclusive. Alternatively, recall
our convention from page 12 that the empty state description is a tautology. Then
since we defined the empty product to be 1, it follows that for any tautology T,
wy(T) =1 so (P2') is satisfied.

To see that (P3’) holds, note that whenever ®(ay,...,amn, ami1) = O(ay, ..., ay) we

have

P(ar, ..., 0m, amy1) = O(ar, ..., am) A Brpir (Qmg1) A /\ Vhimr1 (@i Armg1)
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where the unary trace of vy, .. (z,y) is B, () A B,.., (v), and hence using (5.18)

w);(CI)> = Wy oA 6k7n+1 (aerl) A /\ Yhim+1 (aia am+1)

-----

and ® will remain consistent with ©. Furthermore, for each such choice of k1

and each i € {1,...,m}, we may choose any of the 7, ., that have unary trace

ﬁki (CC) A ﬁkarl (y)

Therefore for ©, ® as above

Z w?(fb) = Z w?(@) "Lk H Zhim+1

P =6 i€{1,..m}

= w)_/'(@) Lk 1 H “hism+1
PE=0 €{1,...,m}
24

= w?(@) Ze g H Zlk;cyeiyd)
c=1 €,J€{1 ..... 202}m ie{1,...,m}
24

= wp(®)- > |z [] > ke
c=1 1€{1,...,m} e,de{1,...,292}

where € = (e1,€ea,...,6en), d = (dy,ds,...,dy,) and e;,d; are the ith entry of e d

-----

D wp(®) = wg(0) Y w1 =wy(6).

D=0

Hence (P3') holds, too. It follows that wy extends to a probability function on SL.
We now show that wy satisfies Ex. If ©(aq,...,a,,) is as in (5.17), 0 € S, and
\Ij(ala s aam) = @(aa(l)7 s 7a0'(m))7

then®
U(ay,...,a,) = /\ ﬂkfl(i)(ai) A /\ Vhy1(3y.0-1 (1 (ai,a),

1<i<m 1<i<t<m

6Recall the convention from page 69 needed below when o~1(i) > o1 (¢).
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and using a similar argument to that on page 74, the multiset {ko-1(;y : 1 <@ < m}
equals the multiset {k; : 1 < < m}, and the multisets {h,-1(;) o1 1 1 <@ <t <m},
{hiy : 1 < i <t < m} can only differ in that the former contains h;  in place of
hy s when i' = o~(i) > o~ (t) = t'. We have v, , ~ Y, ,, i.e. they are in the same

equivalence class I';, hence 2, , = 23, , (since both are y; for this j). Therefore

1l
',

w?(\ll> - H xka—l(i> H Zhgfl(i)yo.fl(t) = H Tk, H Zhi :w?(G)‘

1<i<m 1<i<t<m 1<i<m 1<i<t<m

Ex now follows, since (using for example, [36, Lemma 7.3]), if for any m € N7, for
any permutation o € S, and state description O(ay,...,a,), w(O(ay,...,ay)) =

w(O(ag(1); - - - A(m))), then w satisfies Ex. O

Proposition 5.6. The wy satisfy BEx.

Proof. Notice that using a similar argument to above, (5.18) remains valid even when
we replace the a4, . .., a,, by other distinct constants by, ..., b,,. We sum the probabili-
ties of state descriptions for ay, ..., ay extending O(by, ..., b, ), where M is sufficiently
large so that all the by,...,b,, are amongst the aq,...,ay. For the a; that do not ap-
pear amongst by, ..., b, there is a free choice which atoms they satisfy, so summing
over all possible ®(ay,...,ay) | O(by,...,b,) means summing over all possible zy,
factors and all possible z, for 7, with some fixed unary trace, both of which sum up
to 1, thus not affecting wy(0). Therefore wy(©) is independent of the choice of con-
stants instantiating ©, and hence wy satisfies BEx since the right hand side of (5.18)
depends only on the signature of ©. m

We now show how the binary versions of the familiar probability functions ¢} and %

from Carnap’s Continuum”

can be produced using the wy for a binary language L.
These functions feature extensively in studies of Inductive Logic, so the fact they can
be formed from the wy supports in some sense the credibility of the wy. Consider Y

defined by

Ty =Ty = =90 =279

"See page 17.
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Y=y = =y = 2700

Then Y € D, since > i<k<os Tk = 1 and, identifying again 2;, = zjt g With yjn) as
defined on page 77, Ze,de{l,...,2q2} Ykcied = Ze,de{17...,2q2} 272¢2 = 1. Furthermore, wy
defined with this Y treats each +P,(a;) and each £Q,(a;, a;) (where a;, a; are not nec-
essarily distinct) as stochastically independent and each occurring with probability %,
which gives cL . To see that each instantiated relation symbol occurs with probability
%, notice that for this 17, the probability of +Ps(a;) is the sum of the probabilities for
exactly half of the (3, and the probability of £Q,(a;, a;) is the sum of the probabilities
of half of the ~,. That is, assuming the trace of v,(x, y) is Bx(z) A B.(y), the probability
of each vy, (a;, az) is

Tp - Tp-zp=279.271.272
so the probability of £Q.,(a;, a;) is

N 1
5<Ik T 2p) = 22q+2q271<27q .94, 272(12) _ 5

where N = 224222 ig the total number of atoms.

To see that this wy treats instantiations of relation symbols as stochastically indepen-

dent, let ¢ be the sentence

+ Psl(ail) A :EPS2(GZ'2) VANRAN :l:PSnl (ainl)

A iQm (aim atl) N j:Quz (ai2> atz) ARERA iQunQ (ainz ) ath)

for some assignment of + and where ny +ns =n, s1,...,s,, are from {1,..., ¢}, and
Uty ..., Uny are from {1,..., g} Letay, ..., ay besuchthat allof ay,, ..., a;, ,ay,. .., a,

are included amongst them. Then

wy(Y) = Z wy(O) = Z w?( /\ Br; (@) A /\ %i,t(ai,at)>
JEY

O(a1,e..am) =) O(ar,....am 1<i<m 1<i<t<m

- Z ( H Lk; H Zhi,t> = Z (2—q)m.(2—2q2)%m(m—1)
o(

O(ar,mam)y \1<i<m  1<i<t<m A1) 10

since each xy, is 27¢ and there are m of these, and since there are %m(m — 1) pairs
(a;,a;) such that 1 < i <t < m and z,,, for each of them is 272, In addition,

there are M = (29)™ - (2‘12)”””2 possible state descriptions for aq, ..., a,,. Of these, half
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logically imply the assignment of +P;, (a;,), of those half satisfy +P;,(a;,) and so on,
so there are M - (%)n state descriptions ©(ay, . .., a,,) such that © |= 1. It follows that

the probability wy (1) is
(@ -y 2) - (@) (27
= (@m-@oa) - gy @e)ine ) = 9
as required.

To produce cf, recall that this function gives non-zero probability only to state de-

scriptions in which all the constants behave in the same way. Let
q1 q2
Br(x) = N\ £Pu(z) A N\ £Qu(z, )
s=1 u=1
for some assignment of £, and let e € {1,...,2%} be such that

Or(@) | Qulr, 7) <= dc(2,9) = Qu(z,y).

Denote this e by e(k).

Let v, € I'; be the atom 7 ger),er). Define Y, = (T1,..., %203 Y1,-.-,Yp) tO be
such that z; = 1, y; = 1 for this j (the rest of the z; are 0 and all other® y; are
such that Y satisfies (5.15)). Then Y; € D, and we can define wy,(©) for a state
description ©. There are 27 atoms of the form vy i e(k),e(k) since there are 27 choices of
k and each one determines such an atom. Clearly, the individuals satisfying this atom
behave in the same way, so if all constants of a state description satisfy this atom,
this state description should be given a non-zero probability by cf. Furthermore, if
Vb 18 Ot Vi ke (k). (k)] for some k, then for any state description O, if © = v,(b;, b;) for

some individuals b;, b;, then ¢f(©) = 0. Therefore, the value given by ¢} to a state

description can be given as the convex sum of the wy: - that is -

ct(0) =271 wy(O).

We would now like to show that the wy satisfy BIP. For this purpose, we first need

the following lemma regarding wy acting on partial state descriptions of L.

®Note that the values of the other y; have no effect, since if the trace of v (z,y) is B (z) A Be(y)
and one of x, x. is 0, then this ;) will not contribute to wy(©) for any ©.
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Lemma 5.7. Let L be a binary language and let

®(by, ... by) =

1<i<m {b; bp}eC

i<t

be a partial state description of L. Then

)= 1] o I1 2

w (D (by, ...

Proof. Let O(by, ...

1<i<m
i<t

/\ Yhi (bi’ bt)

{b;,bs }eC

(5.19)

,by,) be a (complete) state description such that © = ®. Then

G(blv“-abM) = /\ ﬁkz(b)/\ /\ ﬁyhi,t(b“bt)
1<i<m 1<i<t<m
= A Bu®)A N o, Oib)A N An, (b )
1<i<m {bi,be }eC 1<i<t<m
i<t {bi,be }gC
= (b, b)) A\ Yn (b br)
1<i<t<m
{bi,be }¢C
So we have
wp(Q(by, .. b)) = > wp(Oby,....by))
OE®
= Z H xki. H Zhi,t H Zhiyt
oEd | 1<i<m {bs,bs}C 1<i<t<m
i<t {bi,be }¢C
= Il o I w20 | 11 2
1<i<m {bi,bs YeC okd | 1<i<t<m
i<t {bi,bi }¢C
- H Lk H Fhig Z H Flki ket eiindie
1<i<m {bi,bt}eC €;t, di$t€{1 ..... 2q2} 1<i<t<m
i<t 1<i<t<m {bi,be}gC
{bibe}gC
= H Tk, - H Zhiy * H Z Rlks Kt ,e,d]
1<i<m {bi,br }YeC 1<i<t<m \e,de{l,...,292}
i<t {bi,be }¢C
= H Lh; H Rhies
1<i<m (bibe}eC
i<t

where the third equality follows since every © that extends & would have these two

products in common; the fourth equality is because for each pair {b;,b;} ¢ C with
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1 < i <t < m, we can choose for ,,, any atom with unary trace Gy, (x) A Gy, (v)
and we will get a state description that extends ®, and the final equality is since

Zede{l 202} ki ke ed] = 1 for any fixed k;, k; from {1,...,29}. O

.....

Theorem 5.8. Let L be a binary language. The probability functions wy on SL satisfy
BIP and hence IP.

Furthermore, any probability function on SL satisfying Ex and BIP is equal to wg for

someY € Dy.

Proof. Assume that ® and ¥ are some partial state descriptions which instantiate no
pairs in common. Let by,...,bs be the constants that ® and ¥ have in common and

let A be a unary trace for these constants. If A is not consistent with ® or ¥, then
Wy (PAV[A) =wp(P|A)wp(V]A) (5.20)

holds because both sides are 0, as remarked on page 77. So suppose @ is as in (5.19),

s <m,

\I/(bl, o ,bs, bm+1, PN 7bm+n) ==
A B n N B A N\ A bib) (521)

1<i<s m+1<i<m+n {b;,by YD
i<t

where D is some set of 2-element subsets of {by,...,bs,bms1,-- . bmant, DNC =0,

and

Alby,. b)) = N\ Br(b).
1<i<s
We can now use the above lemma regarding values of wy for partial state descriptions
to prove that (5.20) holds in this case, too: © A ® is again a partial state description,
so the left hand side of (5.20) is

wy (P A V) H1gigm+n Tk, H{bi’bﬁ-}ftcw Zhy,

s+1<i<m+n {b; by }eCUD
i<t




CHAPTER 5. BINARY SIGNATURE EXCHANGEABILITY 85

The right hand side of (5.20) is wy(® | A) wg (¥ | A) which is

wy (D)  wy (V) ngz‘gm Lk; H{bifgec Zhi ¢ H1§z‘§s Lk; Hm+1§z’§m+n Lk; H{bifQGD Zhi

wy(A)  wy(A) ngigsxki ngiﬁsxki
Mo I I o T o
s+1<i<m {b;,bs}€C m+1<i<m+n {b;,bt}€D
i<t i<t
= || Lk; H Rhi g
s+1<i<m+n {bj,bg}eCUD

1<t

So both sides of (5.20) are equal. Hence BIP holds when ¢, 1 are partial state

descriptions.

To prove that (5.14) holds with general ¢, v € QFSL, note that any quantifier free sen-
tence is equivalent to a disjunction of partial state descriptions by a slight adaptation
of the usual proof of the Disjunctive Normal Form Theorem (swapping propositions
for instantiations of relations). So suppose ¢(by,...,b,) € QFSL is equivalent to a
disjunction of partial state descriptions @, as in (5.19), with C' = C’q%. Assume that
Y € QFSL instantiates no pairs in common with ¢. Without loss of generality, let
b1, ...,bs be the constants that ¢ and ¢ have in common and b,,,1,..., by, the re-
maining constants appearing in . 1 is equivalent to a disjunction of partial state
descriptions Uy as in (5.21) where D = C’i, and so by the above, for any unary trace
A for by, ..., b,

A) = wp( P, ATf|A)

u7f

:Zw?(@ﬂ A) - wy (V| A):Zw?(cbﬂ A) - ZwY(\I/fl A)
u, f u

oo )

as required, where the equalities follow since the ®, and similarly the ¥, are mutually

wg(p A Y| A) = wg (\/@u/\\/\l/f
u f

A) =wp(¢]A) - wp(P[A),

exclusive, ®, and VU, instantiate no pairs in common for each u, f, and since wy

satisfies BIP on partial state descriptions.

So far we have shown that the wy satisfy BIP (and hence also IP). For the final part
of the theorem, assume that w satisfies Ex and BIP. We define

rr = w(Br(as))
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and

Yicny = 2n = w(yn(as, az) | Br(ai) A Belar))
where G(x) A Be(y) is the unary trace of v,(z,y). Note that by Ex, this definition
is correct in that it does not matter which a;, a; we take, and when j = j(h) = j(g)
(that is, when v;, ~ 7,), then 2, = z,, and y; is given the same value. Using BIP, we
will check that with Y defined in this way, wy equals w for state descriptions, and
hence w = wy for all sentences. We will do this by showing that Y eD 1, and that

wy = w on state descriptions of increasing numbers of constants.

Firstly, notice that x, y; must be non-negative since w is a probability function. Since

w satisfies BIP we have

w (/\ ﬁmai)) =11

€S (Sh
(where S is any finite set), so also for v (x,y) from I'; with unary trace Gy (z) A Be(y)

w(ynlai, ar)) = wynlas, ar) | Brlai) A Belar)) - w(Be(ai) A Be(ar)) = zp zc y;.

In addition, w(T) = w(\/iq:1 ﬁk(a1)> = Ziq:l xy, = 1, and the values for ;) = 2, are
such that (5.16) holds, since

l=w(T)=w \/ \/ Vik,c.ed) (s Ar)

k,ce{1,...,29} e,de{1,...,292}

= Z Z W(Vk,c,e,d) (@ir A1)

k,ce{1,...,24} e, de{1,...,292}

= g E Tk T Zk,c.e,d]

k,ce{1,...,24} e, de{1,...,292 }
= Z Tk Te Z Zlk,c,e,d]
k,ce{1,...,29} e, de{l,...,292}
and hence Ze,de{l,...,zqz} Zk,ce,d = 1 since kae{lm?q} T Te = 1.
So we already have that Y € Dy, and that w = wy on state descriptions of one or two

constants. Next consider a state description O3(ay, as, CL3).9 Recall that we can write

it as the conjunction

Yha2 (ab Clg) A Yhi,3 (alﬁ CL3) N Yha,s (a27 a3)

9We could jump to the inductive step already at this point, but presenting the argument also for
state descriptions of 3 individuals helps to see the general case.
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(as in (5.6)), and suppose the unary trace of O3 is Gk, (a1) A B, (a2) A Prs(as). Let
Y = B, (az) A Bry(as). Since w satisfies BIP we have that

w(O3(ay, az, az) 1)

- w<7h1,2 (a’lv a2) A Yhis (alv a3) | w) : w(7h2,3 (a27 a3) ’ Z/J)

w ’7h12 ai, az /\’yh13(a1?a3))> ) (w(’yhz:&(a??a?’)))

'Ikz xkg xk2 IkS

w ’7h12 ay, s /\’Yhu(a1,a3) |Bk1( ))) w(ﬁk ((11)) ) (xkz Ly th,:s)

‘/Ekg ka IkZ ka

xkg ajkg ku ‘/EkS

w ’yhl 2 a17 as | ﬁk’l (al)) (/th,:s ((11, a3) | ﬁkl (al)))
* Ly Rho 3
.’L’k2 Ik3

(
(
_ (w Vi (@1, a2) | By (1)) - w(yn, 5 (a1, a3) !ﬁkl(al))) w(Be (@) (:% Lhy zhu)
(
S

’7h12 ai, az )) <w(7h173(a1,a3))>
’ * Thy Rho s

Loy Loy Ly T

Ty Thy Zhy o Ty Ly Zhy 3 Tz
- ’ t Lk ~ho3
Ikl l’k2 .TTkl l’k3

= Lky Rhi2 Rhi,3 Rhays

where we used the fact that (ys, , (a1, a2) A Vn, 4 (a1, a3)) = B, (a1) and hence w(y, , (ar, az)A
Vi s (a1, as)) = w(ny (01, a2) AYny 5 (a1, as) | B, (01)) - w (B, (a1)). So
w(O3(ay, az, az))

w(@/)) = Ty Zhy o Rhy 3 Rha s

and hence

w(Os(ay,as,a3)) = H T, H Zhy -

1<3<3 1<i<t<3

Now suppose the same holds for state descriptions of m constants for some m € N*,

that is, for every ©,,

w(Om(ar,...,an)) = H T, H Zhy,- (5.22)

1<i<m 1<i<t<m

Let ©pyi1(al, ..., ame1) E Om(aq, ..., ay). We can write ©,,,1 in the form

@m<a17 s 7am) A /Bkm+l (am+1> N /\ Vi m+1 (ai7 am+1)' (523)
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m} Vhimin (@i, Qpyq), the rightmost term in (5.23). Using BIP and

.....

Consider first A,y

letting ¥ = B, (@m+1) we have that (since w(va, .., (i, Gmt1)) = Ty Thpsr Zhy i)

w /\ Yhim+1 (aiv am-i-l)

= w(’7h1,m+1 (ah am+1) | ¢) " w /\ Yhimsa (ai7 am—H) (G w(¢)

w(’yhl,mﬂ(al,amﬂ)) w(/\iE{Z ..... m} ’Yhi,mﬂ(aivamﬂ))

- w(®) | w(©) oY)

- xk‘l zhl,m+1 T w /\ ’Yhi’m.u (ai7 am+1>
Thy Zhy i1 * w(th,rrH-l (a2> am+1) | ¢) tw /\ Vhim+1 (ai> am+1) ¢ w(w)

= Tk Thy Zhymi1 Fho,mer = W /\ Yhi m+1 (aia @m+1)

1<i<m4+1  e{l,...m}

Referring back to (5.23) and letting ¢' = Ao, Br, (),

w @m(ah oo 7am) A ﬁk‘m+1 (am+1) A /\ 'Yhi7m+1 (a'i7 (lm+1)

= w(@m A ﬁkm+1 (am-f-l) | 77Z)/> "w /\ Yhiym+1 (ai7 am-‘rl) w, w(qu)/)

w (Aie{l ..... m} /Yhi,m-H (aiv am—l—l))

= w(@m A 6km+1 (am+1)) ' w(¢,)
w /\ie 1,..,m Vhivm“(ai’ Omt1)
= w(Om) - (B i (@m+1)) - ( : }w(¢’) )

1<i<m 1<i<t<m
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1<i<m+1 1<i<t<m+1

It therefore follows by induction that (5.22) holds for every m € Nt and since a
probability function is defined by its values on state descriptions, w = wyg, which

completes the proof. n

5.5 A Representation Theorem for BEx

We showed in Proposition 5.6 that the probability functions wy satisfy BEx. We now
prove that the functions satisfying BEx are exactly the convex combinations of the

wy functions in the following sense.

Theorem 5.9. Let w be a probability function for a binary language L satisfying BFEx.
Then there exists a (normalised, o-additive) measure 1 on the Borel subsets of Dy, such

that for any 0 € SL,

w(f) = /D wg(6) du(Y). (5.24)

Conversely, for a given measure p on the Borel subsets of Dy, the function defined by

(5.24) is a probability function on SL satisfying BEz.

Proof. Let w be a probability function for L satisfying BEx. It suffices to prove (5.24)
for state descriptions, the rest follows, for instance, as in Corollary 9.2 of [36]. The

proof is based on the fact that for a state description ©(by,...,b,) and u > m

w(O(by, ... by)) = > wW(T(by, ... by bins, - ba)), (5.25)

and it proceeds via grouping state descriptions for u individuals according to their

extended signature and counting their numbers.

Let t1,...,t, € N, t; +to+---+1t, =t. We define

t B t B !
{t;ie{l,...,n}}) — \ti,to,....t,)  tlta!.. .1,
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Other expressions using this notation are to be interpreted similarly.

Let u € Nt and let @t = (U, ... U4 t1, ..., t,) be an extended signature on u. Firstly,
we wish to count the number of all state descriptions with this extended signature.
Thinking about state descriptions in terms of u x u matrices as in (5.5), this involves
placing, on the diagonal, the number 1 u; times, the number 2 us times and so on. We

are thus creating u,u,. many spaces (when k # ¢) or =% (uzk —

many spaces in which to
place atoms from the classes I';, j € A(k,c) (k # ¢) or j € A(k, k) respectively. Once
a place for an atom from a given I'; is chosen, no freedom remains over which atom
from this class it is when k£ # ¢ or when k = ¢ and e = d (that is, when s; = 1). When

k = cand e # d (i.e., when s; = 2), either one of the two atoms from this class can

be chosen to fill the place.

It follows that the number of state descriptions with extended signature!® @, denoted

by N(0, @t), is

o) I (i 500)
Uty ton ) {tj:jeAlk,c)}

uk(UZkfl) .
< 1 ({tj:jeA(k,k)}) II s7 | (5:26)

1<k<21 JEA(k,k)

Now let 777 be an extended signature, m < w and let ©(by, ..., b,,) be a state descrip-
tion with this signature. Arguing similarly to above, we find that the number of state

descriptions with signature @t extending ©(by, ..., b,,), denoted by N (i, it), is

< u—m ) H ( Uple — MM )
Uy — My, ..., U2ea — Mag I<hee<2a {tj —n; j c A(k’,C)}

Uk(UQk—l) _ mk(";k_l) (t—n)
) (5,27
* H <{tj —mn;:j € Ak, k?)}> H % (5.27)

1<k<24 jEA(k,K)

We make the convention that our multinomial expression is 0 if any of the terms are
negative!. Note that the number calculated in (5.27) depends only on the signa-

ture m7 and not on the particular choice of ©(by, ..., b,), since extending any state

10T hroughout this proof, we will often refer to extended signatures simply as signatures in attempt
to reduce cumbersome terminology.

UThis is justified, since a state description with signature @ can extend a state description with
signature m only if m < u, my < uy for every k and n; < t; for every j.
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description with signature M to one with signature @ involves making the same

decisions.

We shall write w(nii7) for w(O(by,...,by)); by BEx this is unambiguous. Let Sign(u)

denote the set containing all extended signatures @t on u. That is,

Sign(u Zukfu fork#c > tj=uge, Y = el = 1) Uk_l)

jeA(k,c) jEA(k,E)

where 1 < k, ¢ < 27. From (5.25)

L=w(T)= Y N0 al)w(it), (5.28)

ateSign(u)
w(mi) = > N (i, at) w(at), (5.29)
ateSign(u)
and hence
o N (mi, ut
w(mn) = Z NI uf) N (0, t) w(at). (5.30)

ateSign(u)
We shall show that

(o) - (6™ 1 (1 Ge)

1<k<24 1<k<c<2¢ \ jeA(k,c

thj_l Y
1T 11 Y ORTRETIY (5.31)

1<k<29 \ jeA(k,k) <—2 )

is of the order O (ﬁfl) (independently of uy, ..., ug,t1,...,t,), so that as u — oo,
(5.31) tends to 0. We make a convention that if some u; = 0 or some t; = 0 then

terms involving these are missing from the product above!?

First, let my, < uy and n; < t; for every j, k, so that none of the terms in (5.27) are

negative. The term (Ajf\%ﬁﬁ?) in (5.31) can be written as

uy (ug — 1) -+ (ug — (mqg — 1)) -+~ uga (uge — 1) - -+ (uge — (Mmaoa — 1))
u(u—1)---(u—(m—1))

[cagoti (G —1) -t — (n; — 1))
X H ((ukuc) (upe — 1) -+ - (upue — (mgme — 1)))

1<k<c<24

2Note that this is valid, since factors involving ui; = 0 and t; = 0 cancel out from the binomials

in (N(T(?é)ﬁ%gj), so the convention means the same factors are missing from both terms in (5.31).
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" H HjeA(k,k) tj(tj—1)---(t; — (n; — 1)) « H

e <Uk(u21c—1)) <uk(u2k_1) _ 1) <uk(u2k_1) _ <mlc("2“c—1) )) AR

13

which (using our convention about zero terms) can in turn be written as

tisit ’ )
32

L) I (I Ge) ) (I (e

1<k<24 1<k<e<2d \ jEA(k,c) 1<k<2e \ jeA(kk

H1§k§2q H()Sigmk—l (1 - i“lzl)
Hoglgm—1 (1 —1ut)

(5.33)

% H (HjeA(k,c) Hogignj—l (1 - itj_ll)) (5‘34)
1<k<c<L24 HUSZSmkmC—l (1 —1 (Ukuc) )

y H HjeA(k,k) Hogignjfl (1 - itfl)

1<k<2d wp(up=1)) !
== Hoglg(mk(mk—l)/Q)—1 1-1 (T)
Let P stand for the product of (5.33), (5.34) and (5.35).

(5.35)

We observe that P is bounded by a constant independent of u, the u; and the ¢;:

(5.33) < (1 _ (mil)m1>m —

since (5.33) can be split into the product of m fractions, each numerator is at most 1,

and the least denominator is (1 — (m — 1)u~') which is greater than (1 — (m —1)m™").
Similarly for (5.34) and (5.35) we have

(534 <[] (1_(mkmc —11)(mkm0)—1>mkmcz I Grmom™™,

1<k<c<24 1<k<cL24

and
my (mg—1)

(5.35) < [] (m’“m’“_l))

1<k<24

Furthermore, we need only to consider those k& where my > 0 in the limit of (5.31)

since otherwise n; = 0 for j € A(k, ¢) and factors involving corresponding uy, t; cancel

out from Ajf\%ﬁﬁ?, and they are all 1 in the product which is being subtracted.

13by splitting each of the three products into a term in (5.32) times one of (5.33), (5.34), (5.35).
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We shall prove the claim about (5.31) by cases. Consider first the case that for some

k with my, > 0 we have u, < \/u. Then

I ()" <wvw,

U
1<k<2d

each of the other products in (5.32) is at most 1, so (5.31) = |(5.32)- (1 — P)| =
O(\/ﬂ_l). A similar argument works if u, > /u for every k with m;, > 0 but for some

j we have n; > 0 and t; < y/u, since then if j € A(k,¢),

(10 () <var

1<k<c<29 \ jeA(k,c)

and if j € A(k, k),

1 "

1 11 <ﬂ—)> <2(a—1)"

1<k<21 \ jEA(k,k) 2
which is O(v/u '), the other terms in (5.32) are at most 1, so again (5.31) = O(y/u ).

The second case is when for every k such that my > 0, up > y/u and for every j with
n; > 0, t; > y/u. In this case, P is close to 1. To see this, note that (5.33) can be

written as a product of m fractions of the form 11_7";;’{11, a,f € {1,...,m} and that

the distance of each fraction from 1 is

-1 -1
Bu= — oy

1 —aug™ ! B
| 1—Bu !

= <2Pu o) < N (a+p) < dm/u

1

where the inequalities hold since when u is very large, 8 < m < § and so 1 — Bu~t > o1

because vt u, ' < /u~ " and since a, B < m, respectively. Hence (5.33) is
(1 +0 (ﬁ*)) =140 (ﬁfl) .

A similar argument works for the other two products, (5.34) and (5.35), since for
3
me(mp— U (U — . —1
and ’“(; b < k(f U so P is <1—|—O<\/ﬂ )) =
1+0 (ﬁ‘l). Since each term in (5.32) is bounded by 1, (5.32) is bounded by 1. It
follows that (5.31) = | (5.32) - (1 — P) | is again of order O <\/ﬂ_1>.

very large u, mpm,. < “

Now suppose up < my for some k (the case when uy > my for every k but some j
N (i ait)
N (@0

state description with signature @t extending a state description with signature 1

is such that ¢t; < n; is similar). Note that then = 0 since in that case no
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can exist. In addition, my > 0 and u;, < v/u since u is very large and my, is fixed, so
arguing as above (5.32) would be of order O(y/u ') and consequently so would (5.31),

which exhausts all cases.

Define }7@; by

;

u;?uc for j € A(k,c), ux,u. #0, k <c,
u o _
W= s —<Z<k>) for j € Ak, k), we # 0,1, (5.36)
0 otherwise.

\

At this point, we can complete the proof using classical techniques, or we can employ
methods from Nonstandard Analysis, particularly Loeb Measure Theory [10, 26]. We

present both, beginning with the classical proof.

From (5.28), let p, be the normalised discrete measure on Dy, which puts measure

N0, iit) w(it)

on the point Y,z Using (5.28), (5.30) and the fact that (5.32) gets uniformly close to

% as u — oo gives that w(mm) equals the limit as u — oo of
n
%)m s
SOV IL ) I (I o5
ateSign(u) \1<k<29 1<k<ce<2? \ jeA(k,c)

t-s-_l " .
< I | 11 (—uk{u§_1)> fa (Vo). (5.37)

1<k<24 \ jEA(k,k) 2

So

w(mii) = lim T == 11 II ¢ IT 11 #°| dw(®)

Dr \ 1<k<2q 1<k<c<24 jeA(k,c) 1<k<29 je A(k,k)
(5.38)

where x, y; are as in (5.36).

Following the same argument as in the proof of [36, Theorem 9.1], using Prohorov’s
Theorem [1, Theorem 5.1] we have that since Dy, is compact, the p, have a subse-
quence f,,, which is weakly convergent to a countably additive measure p. So for any

continuous function f in variables z1,..., %24, Y1, ..., Yy,, We have that
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lim [ f dp, (V)= | f du(Y).
u—0o0 Jp D,
Now using (5.38)
wiii) = | v I T v T1TT w7 ) aut?)
Dr \ 1<k<29 1<k<c<24 jeA(k,c) 1<k<29 je A(k,k)
- /w (i) du(Y). (5.39)
Dr

In the opposite direction, a function on SL defined by (5.24) clearly satisfies (P1) and
(P2), and by the Lebesgue Dominated Convergence Theorem it also satisfies (P3). So

it is a probability function. This function satisfies BEx because all the wy do.

Nonstandard Proof

In what follows, we will write w; for wy . Note that wg{mn) is equal to (5.32).

Let U* be a nonstandard w;-saturated elementary extension of a sufficiently large
portion U of the set theoretic universe containing w. As usual, ¢* denotes the image
in U* of ¢ € U where these differ. Working now in U*, let u € N* be nonstandard.
Then (from (5.30)) we still have

o N GRRT) oo
w*(mn) = Z WN (0, wt)w* (t). (5.40)

ateSign* (u)

Loeb Measure Theory enables us to conclude from (5.40) that for some o-additive

measure i’ on Sign*(u) we have (for all standard extended signatures 77)

w(ii) = /Sign*(u) < (7, ;ﬁ?) dy (D) (5.41)

where ° denotes the standard part. Since, in U, (5.31) is O <ﬁ71)7 this gives

w(mit) = [S s *(wiks (i) dp (it) . (5.42)

Moreover, °(w1*f(7”ﬁﬁ)) equals wy_ (mii). So defining p on the Borel subsets A of
ID)L by
pu(A) = M’{ﬂ’t | 0(176{) = ("x1,. .., @2a; Y1, ..., Yp) € A}
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where the xy,y; are as defined in (5.36), means (5.42) becomes (using, for example,

Proposition 1, Chapter 15 of [41])
w(iit) = | wy () du(?)

as required. O

We shall now use the above representation theorem to show that the wy functions,
which by Theorem 5.8 are the only probability functions satisfying Ex and BIP, can
be characterised alternatively as the only probability functions satisfying BEx and IP.
The fact that the wy satisfy BEx and IP follows from Proposition 5.6 and Theorem

5.8, and the other part follows from the following theorem.

Theorem 5.10. Let w be a probability function on SL satisfying BEx and IP. Then

w 18 equal to wy for some Y eDy.

Proof. ' Let p1 be the o-additive normalised measure guaranteed to exist by Theorem

5.9 such that
w = / Wy du(Y).
Dy,
Let 0(by,...,by) € QFSL and let 6" be the result of replacing each b; in 6 by b; 1.
By IP and since w(f) = w(#') by (B)Ex, we have

0 = 2(w@A0)—w() - wd))

Let DY =Dy,

1This is based on the method of the proof of [36, Theorem 20.6].
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A = {?eDL cwy () € [%;)}
Ay = {VG]D)L cwy () € E,l}}

Let u(Aq1) = ain, p(As2) = ago and p(A3) = aqs, so in particular ]D)(Ll) = A UA1oUA; S,
M(D(Ll)) = a11 + a1z + a13 = 1. Then

= /D /D (wy(60) = wy (8)" dpa(Y) dp(Y")
/A /A (wy(0) = wy (8)" du(Y) du(Y")

1 2
> _
= (3> 11013

since we are integrating over a positive function so integrating over a subset of D, can

v

at most not decrease the integral, and since for Y’ € Ay and Y € Ajs, (wy(0) — w);,(e’))2
12

(3)"

So one of ay1, a3 must be 0. Without loss of generality suppose a3 = 0, then a114a2 =

1. Let

SO ,u(]D(LQ)) =1, and let

Aggz{?GDLti |:

. P
AQQ—{YGDLti |: 3 )}
Let pu(As) = a1, p(Asn) = asa, p(Asz) = asz. Following the same argument as above,

9\ 2
0> (5) (21023,

so one of asy, asz must be zero. We proceed by picking one of these to be non-zero and

splitting the remaining interval into three again.

Repeating this process infinitely many times, we obtain a sequence ]D)(L"), n € Nt

where

DY = {¥ €Dy s wph) € L},
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1

I, €[0,1], {(L,) = (2)" " and u(D{”) = 1.

Let By = >, D{"). Then
By = {17 €Dy wy(d) = b}

for some b € [0, 1]. The complement of By, By*, is | J -, (D(L")>C, and p ((D(Ln)>c> =0
for each n since p is o-additive. Thus By“ is the union of countably many sets, each
with p measure 0, so u(By“) = 0 by the o-additivity of p, hence u(By) = 1. L.e. By is
a subset of D, with 1 measure 1 such that for this particular § € QFSL, wy () as a

function of Y is constant on By.

Next, we enumerate the countably many quantifier free sentences of L by 64,0,,....

Following the above argument, for each sentence 6; there is an associated
Bgl, = {17 eDy wy(Gl) = bl}

for some b; € [0,1] such that p(By,) = 1. Define B = (.2, By,. Using the same
o-additivity argument as above, p(B¢) = 0, and so u(B) = 1. We conclude that B is a
subset of D, with p measure 1 such that wy(6) as a function of Y is constant on B for
every 8 € QFSL. Therefore, for any Y € B we must have that w and wy are equal

for quantifier free sentences and hence for all sentences, which proves the theorem. [

In fact, as long as none of the z; in Y are zero, B as defined above contains a single

Y from Dy:

Proposition 5.11. Let ?,f’ € Dy, be such that xy,...,x9a, 2, ..., x5 > 0 and Y #+
Y. Then there exists © a state description of L such that

wy(0) # wy,(0).

Proof. Suppose first that for some s € {1,...,27}, we have’® z, # z/. Let O(a;) =
Bs(ar). Then wy(O(a1)) = x5, wy(O(a1)) = ), and these are not equal. So suppose
that v, = o/, for every s € {1,...,27}, but y; # ; for some j € {1,...,p}. In this case
let ©(aq, az) = Pr(ar) APe(a2) AMyn(ar, az), with v, € I';. Then wy(0(aq, a2)) = xp . y;

and wy, (0(ay, a2)) = 1, 7. y; and these are not equal whenever xy, z. > 0. O

15Tn fact, in this case at least two entries in @1, ..., 22 and 2}, ..., x5, must differ since the z; add
up to 1.
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We have characterised the wy as the only probability functions satisfying BIP and
Ex, and the only functions satisfying IP and BEx. In contrast to the wz in the unary

however, the wy are not the only functions satisfying IP and Ex.

Proposition 5.12. There exists a probability function w such that w satisfies Fx and

IP and w # wy for any Y € Dy.

Proof. We use results and notation from [36, Chapter 25]. Let L be a language con-
taining a single binary relation symbol R. Let w be a probability function on SL
satisfying Ex and let U* be a nonstandard universe as defined on page 95. Let n € N,
let v € N* be nonstandard, and let O(ay,...,a,) be a state description of L (so it is

a state description also in U*) and W(ay,...,a,) a state description in U*.

We pick in U*, uniformly at random and with replacement, ay,,ap,,...,a,, from

{ai,as,...,a,} and define w¥(O(ay,...,a,)) as the probability that

U(ay,...,a,) = O(ap,,...,an,).

From [36, Chapter 25] we have that the °w?, the standard part of w?, are (standard)
probability functions on SL which satisfy Ex and IP and moreover, a probability

function w satisfies Ex and IP just if w = °w? for some state description ¥(ay,...,a,)

in U*.

The wy satisfy BEx, so we shall show that there exists a probability function °w? that
gives state descriptions with the same signature different probabilities and so cannot

be equal to a wy for any Y eDy.

Let ©(ay, as, as, aq), ®(ay, as, as, ay) be state descriptions of L represented respectively

by the following matrices:

1110 1100
1 110 1 110
1 110 0111
0001 0011

Let ¥(ay,...,a,) be a state description in U* such that ¥ = R(a;, a;) for each 1 <i <
v,V = R(a;, a;) for each (i,t) with1 <i4,¢ < £, and ¥ |= =R(a;, a;) otherwise. Then ©
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and ® have the same signature, but *w?(0) > 0 and *w¥(®) = 0. This is because there
is no way of choosing ay,,, ap,, ap,, ap, from ay, ... a, so that Way,,an,, an,, an,] =
S (ap,, any, Ang, any ), DUt Yiap,, an,, Gy, an,| = O(an,, an,, an,, ap,) whenever

1 < hy,hy hg < % and § < hy < v (so in fact *w¥(0) = ). ]

5.6 Binary Instantial Relevance

In this section we consider how the idea of instantial relevance might be captured in
our atom-based binary context. Assuming that the available evidence is in the form
of a partial state description, the evidence may be extended to another partial state
description either by adding unary information about a new individual, or by adding
a binary atom instantiated by a pair of individuals each of which may or may not be
new. In each of these cases, if we have already learnt (and added to the evidence) the
same information about another individual or pair of individuals, it should enhance
our probability that this information will be learnt about the given individual or pair

of individuals too.

Adding unary information about a single constant does not involve any intricacies,
and instantial relevance amounts to requiring that for a partial state description

A(ay,...,a,) and any [y,

w(Bk(ami2) [ A) < w(Br(amy2) | Br(amsr) A A). (5.43)

Adding an atom instantiated by some constants by, by is more complicated, since such
sentences are already determined to some degree by A when one or both of by, by are

amongst the aq,...,a,. More precisely, assume that
'Yh(bl, bg) A A((ll, R ,CLm)

is consistent and that [ (z) A B.(y) is the unary trace of v,(x,y). Then A(ay, ..., an)
may already imply 7,(b1, b2), or imply only Gk(b1) A B.(b2), or only S(by), or only
Be(bs), or none of these. According to which of these holds, we define the Extra in

Y (b1, bo) over A(aq, ..., ay) to be, in order,

0, {2 {n2n {2 {2k {1 {125 {1} {21}
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respectively. Naturally, conditional probabilities of instantiated atoms given partial
state descriptions should only be compared if the Extra in them over the evidence is

the same.

Binary Principle of Instantial Relevance

Let Aay, ..., an) be a partial state description. Then (5.43) holds for any By. Further-
more, if v, is an atom and by, ba, by, by are constants such that A Ay (by, ba) Ays (Y], b))
is consistent and the Eztras in vy,(by, ba) over A A~y(by,by), in (b1, ba) over A and in

Y (b}, 05) over A are all the same then

w( (b1, b2) | A) < w(yn (b1, b2) | ya (b, b5) A A). (5.44)

Theorem 5.13. Let w be a probability function on SL satisfying BEx. Then w satisfies

the Binary Principle of Instantial Relevance.

Proof. Firstly, note that every wy satisfies (5.43) and (5.44) with equality by the
definition of these functions. To see this, let

Alay, ... ay) = /\ B, (ai) N /\ Vo (@i, Q).

1<i<m {a;,at}€C
1<t

Using the fact that the wy satisfy (B)IP and that the following sentences are all partial

state descriptions,

Wy (A A Blams2)) = wp(A) -,
Wy (A A Bi(amy2) A Bi(am+1)) = wy(A) - 2.

and, for example, when the above Extra is {{1, 2}, {2}} and the unary trace of v, (z, y)
is Gu(2) A Bo(y), then

ANm(brb) = N Bila) A N n, (@i a0) A Be(bz) An(by, by)

1<i<m {a;,ar}eC
i<t

A A ’Yh(blv b?) A '7h blla b/ /\ ﬁk‘ a/l /\ 'Yhiﬁt(ai; at)

1<i<m {aj,at}€C
<t

A Be(ba) A Be(bhy) A yn(br, b2) Ay (b, b5)
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and
wW(A AR (b1,b2)) = w(A Ay (D], 05)) = w(A) - @ - 23,
w(A A (b, bo) Ay (b)) = w(A) - a2 - 2 .

Cc

Similarly, when the Extra is {{1,2}}, {{1,2},{1}} or {{1,2},{1},{2}}, then
wy (A A (b1, b2)) = wp (A Aya(By, 1)) = wy(A) - (V)

wy (A A (b, b2) A (b, 05)) = wy(A) - (F(Y)),

with f(Y) respectively (z3), (2 - 2;) and (2, - 24 - 2,). When the Extra is (), (5.44)
holds trivially for any w, since in that case A, A A y,(b1,b2), A A (b, b5) and
AN YR(b1,ba) Ay, (b, b5) are all logically equivalent.

By Theorem 5.9, since w satisfies BEx, w is an integral of the wy. Let p be the

corresponding measure. Then (5.44) (and similarly'® (5.43)), can be expressed as

WA AR (b1,b2))  w(A A (b1, ba) Ay (b, 05))
w(A) w(A Ay, (b, b))

(w(A A (b1, 52)))” < w(A An(br, ba) A yu(B,05)) - w(A)

(/DLw(Amh(bl,m))du(?)) ([ s Asnton ) A1) )

( [ wr(a) )

<DLf( g (A >du<?>)2s (f )y (4) ) - ([ (@) (i)

IN

Let A = w(A), B = w(A Avp(b,b2)) and C = w(A A y,(b1,b2) A v, (b, 05)). Then
the above amounts to B2 < CA or 0 < CA — B2, and this integral inequality holds
for any f, as follows: If A = 0, it clearly holds, since 0 < B,C < A by, for example,
[36, Proposition 3.1(c)]. If A > 0 then 0 < CA — B?> < 0 < CA? - AB? and

0<CA?> - AB?
= CA? —2AB? + B’A

= [ AP wrla) du(P) = [ 24857y wp(d) duP)+ [ BHup(8) du?)

16Using the same argument, with v, (b1, by) replaced by Bk (am-2), vu(b],b5) replaced by Bk (amt1)
and f(Y) = zy.
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= /D (A2 (F(Y))? = 24B f(Y) + BZ> wy(A) dp(Y)
_ / (AF(V)~ B) wyp(A) du(¥)

using that A and B are constants, and this clearly holds since the right hand side is

an integral of a non-negative function, thus proving the theorem. O]

We remark that the same method yields the following related result:

Theorem 5.14. Let w be a probability function on SL satisfying BEx. Let A(ay, ..., ay)
be a partial state description. If vy, is an atom and by, b, b, b, are constants such that
AN AR (b1, ba) A yp(by,b,) is consistent and the Extra in ~,(by, b)) over A is the same
as the Extra in ~y,(by, ba) over A A ~y(by,b,) then

w(q/h(blla b,2) | A) < w(Vh(bla b2) | Wh(b,h b,Z) N A) : (545)

The main difference’” between (5.44) and (5.45) is a motivational one. The former is
the assertion that the probability of a particular atom occurring is increased (or at
least, not decreased) if we have evidence of another pair of individuals instantiating
this same atom. When restricted to unary languages, this corresponds to Carnap’s
formulation of PIR. (5.45) on the other hand, represents the idea that we learn infor-
mation about pairs of individuals successively, so that once we have learnt that a pair
of individuals satisfies a certain atom, this information is added to our evidence. The
probability we will then learn that another pair of individuals satisfies this same atom

should be at least as much as it was for learning the first pair satisfied this atom.

"Note that Theorem 5.14 also makes one less assumption about the required Extras than the
statement of the binary PIR.



Chapter 6

Polyadic Signature Exchangeability

We extend our investigation from Chapter 5 to polyadic languages. Specifically, we
define the notion of a signature and the Principle of Signature Exchangeability in this
more general context. We generalise the wy for polyadic languages and provide a
polyadic principle of instantial relevance. Finally, in the last section, we indicate some
possible directions for future research to continue this investigation. The results in

this chapter appear also in [40].

With the required background and motivation already covered by Section 5.1, we move

straight to our results.

6.1 An Atom-based Approach for Polyadic Lan-
guages

Let L be an r-ary language with relation symbols Ry, ..., R, of arities r,...,7r,. So,
as usual, the maximum of the r; is r. Recall that the atoms of L, as defined in Chapter

4 on page 52, are the state formulae for r variables, denoted by

(xy, o), N (2, Ty,

and that state descriptions can be expressed as a conjunction of instantiated atoms,

Oy, ... ,by) = A Vhiyoir By 3,

(#1582, sip) €{ 1,0, m}"

104
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which, when m > r, we can write also as

Ob1, ... by) = /\ Vhiy ..., ¢T<bil7"‘7bir)' (6.1)

1< <...<ip,<m

For the purpose of this chapter, we will find it convenient in addition to have a way

of referring to blocks smaller than atoms.

Definition 6.1. The g-atoms for g < r are the state formulae of L for g variables.

They are denoted by

Vf(xl,...,:I:g),...,ﬁvg(xl,...,xg).

Thus the v} (21, ..., x,) are just the atoms v, (z1, ..., z,) and N, = N. Clearly, like N,
the N, depend on L. Note that in the binary case there are the 77 = 4, (the binary
atoms) and the 7} (1-atoms), which we referred to as (3 in the previous chapter to

avoid superscripts altogether.

As before, any conjunction of atoms is consistent (and hence defines a state description)
just when any pair of the vy, . (bi,...,b;,) agree when restricted to the constants
they have in common. We will find it useful to make these shared components visible
so we write

Oy, ....bm) = N\ N v i b)) (6.2)

1<s<r 1<i1<...<is<m

This works even when m < r. Note that the 73 ~ in (6.2) are such that

««««««

Let ¢ < r. The following definition is motivated by the need to isolate the part of
a state description in which at most g constants are brought together instantiating
a relation. We refer to this part as the g-ary trace of the state description. More

precisely,

Definition 6.2. The g-ary trace of the state description (6.2), denoted by!

(@ fg)(bh s 7bm)7

Lor sometimes simply by (©]g).
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is defined to be

/\ /\ 721'1 ,,,,, is (biﬁ T bls) (63)

1<s<g 1<i1<...<is<m

Note that when g = 1 this definition agrees with the definition of the unary trace from
page 69. Any consistent conjunction of the form (6.3) is called a g-ary trace for the

constants by, ..., by,,.

Partial state descriptions are composed of instantiated s-atoms in a similar way to

state descriptions, but the sentences do not necessarily combine to give a full state

description.
Definition 6.3. A partial state description for by, ..., b,, is a sentence of the form
Aby, ... by) = /\ /\ Yoy oo iy 03, (6.4)
1Ss§r {bil AAAAA bis}ecs
i1<...<is
where C*® is some set of s-element subsets of {1, ..., by }.

We will assume that (6.4), like (6.2), displays all the instantiated ~; implied by A. In

other words, we assume that | J._, C* contains along with any {b;,,...,b;,} also all its
subsets.

In addition, when writing A(by,...,b,) for a partial state description, we mean that
all of by, . .., b, actually appear in it, so C* contains all singletons {b;} fori = 1,...,m.

When r = 2, this definition agrees with the definition of a partial state description
in the binary case (page 70). We remark also that a partial state description (6.4) is
a state description just when C" contains all r-element subsets of {bi,...,b,}. Note

that any g-ary trace of a state description is a partial state description.

We define the g-ary trace of a state formula, and a partial state formula analogously

to the definitions for state descriptions.

6.2 Polyadic Signatures

As in the binary case, we need to introduce an equivalence between atoms (and more
generally, between g-atoms) to capture the fact that g-atoms obtained from each other

by permuting the variables represent the same thing.
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Accordingly, we define 7j ~ ~{ if there exists a permutation o € S, such that

Y(@1, - Zg) EV(To), - - To(g)) (6.5)
and we denote the equivalence classes of ~ by I'Y, ... A7, When g = r we drop the
superscript and write just I'y ..., ,T',, and we write p for p,. If (6.5) holds, we say

that ~; obtains from 7 via 0. Note that the equivalence classes I'j are singletons and
p1 = N; = 29, so they are not necessary and we can work with the 7} instead, as we

did with the ;. in the previous chapter, for r = 2.

For 1 < g < r, every F? can be split into subclasses, each subclass containing all 7}

with the same (g — 1)-ary trace. Define s7 to be the number of elements in these

subclasses. This is possible since given g and j, the subclasses of ' ? all have the same
g .

number of elements. s} expresses in how many ways the (g — 1)-ary trace of some/any

7y, from T'Y can be extended to a 7] € I'}; one of these ways is to 7} itself but there

may be other possibilities. In the binary case, we wrote just s; for s?.

We extend the definition of a signature from binary languages to r-ary languages for

r > 2 in the expected way:

Definition 6.4. The signature of a state description © as in (6.1) (or (6.2)) is defined
to be the vector (ny,...,n,), where n; is the number of (iy,...,%,) such that 1 < <

...<i7.§mand7hi1

Thus, the signature records how many atoms from each equivalence class there are
within O(by,...,b,). When m < r, the signature is not defined, but the notion of

extended signature still makes sense, where the extended signature of © as in (6.2) is

the vector
1 1. o1 r—1 .
25PN TN N USRI (TR 3
and n? is the number of (i1, ..., ig) such that 1 <i; <... <ig;<mand~y] € F?.
Lo

Note that the extended signature is derivable from the signature (when m > r) and

that it is defined even when m < r.

Signature Exchangeability Principle, Sgx

The probability of a state description depends only on its signature.
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Sgx for unary or binary languages is the same as Ex or BEx respectively. Sgx implies
Ex but the converse implication does not hold in general. We gave two examples of
probability functions satisfying Ex but not Sgx (BEx) for 7 = 2 in the previous chapter
(see page 75).

6.3 Polyadic Independence

In the binary case, we defined C’; as the set of pairs of constants brought together
instantiating a relation in a sentence ¢ (Definition 5.4). In a similar vein, the following
definition captures exactly which sets of g constants are brought together instantiating

a relation within a sentence:

Definition 6.5. For a sentence ¢(bi,...,b,) € SL we define Cj to be the set of
all sets {by,,...,bx,} with s elements such that all of by ,..., b, appear in some

+Ra(biy, .-, i), d €{1,...,q} featuring in ¢.

We refer to C'§ as the set of s-sets of constants appearing in ¢. For example, consider
a language containing one binary relation symbol R; and one ternary relation symbol
Rs. For

¢ = Ry(ar,az) V Ro(ay, as, ay)

we have Cf = {{as}, {ar},{as}}, C3 = {{az,a7},{az,a4}} and C§ = § for k > 3.
Note that |J,_, C3 is closed under taking subsets.

As we had in the binary case, a modification of the Disjunctive Normal Form Theorem

yields the following lemma:

Lemma 6.6. Let ¢(by,...,by) € QFSL. Then ¢(by,..., by) is equivalent to a dis-

Junction of partial state descriptions as in (6.4), with C* = C; fors=1,...,r.

We are now in a position to formulate a general version of the Independence Principle
from page 65 based on atoms, as we did on page 77 for r = 2. In this generalised version
we require that the following holds for any g < r: if two quantifier-free sentences have
no (g + 1)-sets of constants in common then they are conditionally independent given

a g-ary trace for the constants that they share.
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Strong Independence Principle, SIP
Let L be an r-ary language and let 0 < g < r. Assume that ¢,7p € QFSL are such
that
+1 +1_
Cone;T =0

and let by, ..., b, be the constants that ¢ and ¢ have in common (if any). Let A be a
g-ary trace for the constants by, ..., by whent >0, and A =T (tautology) if ¢ and 1

have no constants in common. Then

w(o AU |A) = w(6|A) - w(t| A). (6.6)

The Basic SIP Functions

Recall that for g < r, Ny is the number of g-atoms and p, is the number of equivalence

classes of g-atoms under ~.

Let Y = (yi, ... ,yél; yi, ... ,y§2; AP VAR ,y;> be a vector of real numbers such

that
0<y/<1, D y=1

and such that for 1 < g < r the following holds: For any (¢ — 1)-ary trace v for

T1,...,Zg,

Z sfyl =1 (6.7)

J

where the sum is taken over those j € {1,...,p,} for which I'{ contains some ~;; with

the (g — 1)-ary trace .

We use Dy to denote the set of vectors satisfying the above conditions. In a bid to

keep our formulae simpler, we will write

Zh = Yjn)

where j(h) is that j for which 4} € I'Y. Note that (6.7) is the same as requiring

> o4 =1 (6.8)
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The vectors Y € D, play a similar role in the polyadic to the role the vectors & € Daq
from wz play in the unary. For a given 17, the corresponding function wy assigns a
state description ©(by, ..., b,,) the probability of obtaining it by the following process:
First the 7} are chosen for by, ..., b, independently according to the probabilities z;}.
Then the 7,% are chosen for b;,, b;, with 7; < 75 from amongst the eligible ones, i.e. from
amongst those 77 for which (72 [ 1)(z1,z2) = yiil (1) A ’)/,1”2(1'2), independently and
according to the probabilities 27, and so on. Note that this works by virtue of (6.8),

because when choosing 74 for b;,,...,b;,, (7, g — 1) is determined.
More formally, given Y as above, for a state description ©(ay, ..., a,,) such that
Oag,...,am) = /\ Vhiyo (iyy -y a;,) (6.9)

1<s<r
1<i)<...<ig<m

we define

wy(O(ay, ..., am)) = H T (6.10)

1<s<r
1<ig<...<is<m

Note that, as in the binary case, if o € S,,, and ¥(a1,...,am) = O(asa), - - Uo(m))
then wy(0) = wp(V):

U(ay,...,am) = /\ Vh,

1<s<r
1<i) <---<ig<m

—1(i1),e 0™ 1(is)

and the multisets

{n. .. tl<i<..odg<m}, {y, .t 1<i < <ig<m}

can only differ in which atoms from each equivalence class they contain, but not the

number of atoms they contain from each equivalence class.

Proposition 6.7. Let L be an r-ary language. The functions wy defined in (6.10)
determine probability functions on SL that satisfy Ez.

Proof. To show that wy determines a probability function note that (P1’) and (P2')
from page 13 clearly hold. For (P3’), we will prove that for any state description
O©(ay,...,an,) we have

wy(0(ay, ... an)) = > wy (0% (a, ..., Ay A1)

Ot (at,...,am,am+1)EO(a1,...,am)
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Let ©F (a1, ..., m, am1) extend ©. Then wy(O©F (a1, ..., Gy, Gm+1)) is the product

S S
| | Fhiy,oois l I Zhil,.“,is,l,(mﬂ)

1<s<r 1<s<r
1<ig<...<is<m 1<i) <...<ig_1<m

where the first product is as for © and h;, i, (m+1) is that h for which

Vil@iyy ooy @iy s Amat) = O [as,, .. @i, s Gmat] -

That is, where O7 is

O(ar,...,am) A /\ o’ (@iyy vy @iy yy Q). (6.11)

i1 yeeerig_1,(m+1)
1<s<r

1<iy<...<ig_1<m

Consider some r-tuple (iy,...,4,_1,(m+ 1)) with 1 <i; < ... < i,_1 < m. If some

O1 | O satisfies

@Jr[&im ceey iy am+1] = 7}:(%17 ceey Qipgy am+1> )
then any conjunction that differs from (6.11) only by having vj(a,, ..., @i, ysGmi1)
in place of v} (a;,,...,a; ,,am+1), where v} and v} have the same (r — 1)-ary trace,

is also a state description extending ©. Since the zj for all such k£ sum to 1 (from
(6.8)), we can sum them out. Similarly, we can deal with the other r-tuples, then the
(r —1)-tuples and so on, working our way down. So (P3') holds too, and the wy define

probability functions on SL.

The wy satisfy Ex by the remark preceding this proposition, since wy(0(ay, . .., a,)) =

Wy (O(as(1), - - - » Go(m))) for state descriptions © and o € S,,. O

Proposition 6.8. The wy satisfy Sgz.

Proof. Similar reasoning to above (and as in the binary case) - summing the probabil-
ities of all state descriptions for aq,...,ay extending O(by,...,b,) (where by,..., b,
are amongst aj, ..., ay) - gives us that (6.10) holds even when ay, . . ., a,, are replaced
by any other distinct constants by, ...,b,. Therefore wy(©) is independent of the
constants instantiating © and hence it satisfies Sgx, since the right hand side of (6.10)

depends only on the signature of ©. [
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Next we would like to show that the wy satisfy SIP. For this purpose we will use the

following lemma:

Lemma 6.9. Let

O(by, .. bm) = N A Viegan iy 5 bi) (6.12)

1<s<r  {b;
11<...<is

be a partial state description of an r-ary language. Then

wp(®(by, ., bm)) = [] I =, ..

1<s<r {bi1 ,,,,, biS}GCS

11 <...<ts
Proof. To prove the lemma we sum the probabilities of state descriptions O (b1, ..., by,)
extending ®(by,...,b,), exactly as in the proof of Lemma 5.7. ]

Theorem 6.10. Let L be an r-ary language. The probability functions wyg on SL
satisfy SIP and hence also IP.

Furthermore, any probability function satisfying Ex and SIP is equal to wy for some
}7 e Dy.

Proof. Using Lemma 6.9, we will first show that SIP holds for partial state descriptions
®, U and then, employing Lemma 6.6, in general. Let ® be as in (6.12) and let

U(br, by bt - b)) =\ A v B b) (6.13)

1<s<r {b;

with D* a set of s-element subsets of {by, ..., b, brst, .-+ bmin}. Suppose that C9t1N

D9t = ( and that by,...,b are the constants ® and ¥ have in common. Let

A(by, ... by) = /\1§s§g /\19.1<_._<2.S§t %Swl AAAAA . (biy, ..., b;,) be a g-ary trace for by, ..., b.
If A is inconsistent with ® or ¥ then

W@ AT[A) = w(@|A) - w(W|A) (6.14)

holds because both sides are 0. We show that (6.14) holds also when A A & A W is
consistent. Suppose first that &, ¥ = A.

Using that ® A U is a partial state description we have

44444 s

wa(dAT|A) = fssts
Y H1gsgg [Li<i<ci< 5,
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— S S
- H H Phiy...sis H H Phiy...sis

1<s<g {bij,.,bis yJEC°UD?® gHI<s<r {b;y,....bis FEC®UD?®
11 <<t 1< <ig
t<is

and

ngsgr H{bil """ big}EC? Z?Lz'l ,,,,, is HISSS’/‘ H{bﬁ‘ """ big}eD? Z;Lil
wy(P|A) - wp (V] A) = R e

,,,,,

s

[hcicg Thaiicocinze Zhi, [licicg Thciicocinze Zhi,

— S S
- H H Phiy.. s H H Phiy oo

1§s§g {bil,---7bi5}ecs g+1§s§r {bil,...,biS}Ecs
1< <is i1 <-<is
t<is

S S
1 U G O (R | (R

1<s<g  {biy,....bi yED? gH+1<s<r  {biy,....bis }ED®
1< <ig 1< <is
t<is
- || || th‘l ,,,,, is H H Zhi1 vvvvv is’
1<s<g {biy,..,bis JEC*UD?® gHlsssr{bi;,...bi, }eC*UD*
i1 <<l 11 <-<ig
t<is

so (6.14) holds for these ®, W. Now suppose it is not the case that &, ¥ = A. Then

for 1 < s < g, there are ’y,slil . (bi,, ..., b;,) which appear in A but do not appear in

at least one of ®, W. We can see that (6.14) holds in this case too, since the additional
factors in wy(® AV AA), wy(PAA) and wy (VA A) are all divided out by wy(A), so
we end up with the same products as above. We conclude that SIP holds for partial

state descriptions.

To see that it holds also for any ¢, € QFSL, using Lemma 6.6, let ¢ =/, @, for
partial state descriptions @, as in (6.12) with C* = C§, and ¥ = \/ s ¥y for partial
state descriptions ¥y as in (6.13) with D® = C,. Then the required result follows as
in the proof of Theorem 5.8 on page 85.

To prove the last part of the theorem, assume that w satisfies Ex and SIP. We define
Y by

Yiay = 2n = wlar, ... a9) | (v Tg = Dlas, ..., ag))

where 73 € T'Y and (v} [ g — 1)(a1,...,a,) stands for a tautology when g = 1. Note

that by Ex it does not matter which +; from I'} we take, and that (6.7) must hold.

Writing any state description in the form (6.9) and using Ex and SIP, we can show
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by induction? (adding the conjuncts for increasing numbers of constants one by one)

that its probability is given by (6.10). O

Corollary 6.11. Let L be an r-ary language and let v be a normalised o-additive

measure on the Borel subsets of Dy. For any 0 € SL define

w(d) = /D wy (0) du(Y). (6.15)

Then the function w is a probability function on SL satisfying Sgz.

Proof. The function w defined on SL by (6.15) clearly satisfies (P1) and (P2) from
page 12, and using Lebesgue’s Dominated Convergence Theorem it also satisfies (P3).

So w is a probability function. It satisfies Sgx since all the wy do. m

On the other hand, whether or not the converse to Corollary 6.11 holds, that is,
whether any probability function satisfying Sgx can be expressed in the form (6.15),
remains to be investigated. We know that such a representation theorem, if it exists,
must use a different method to our proof of the binary Representation Theorem. We

demonstrate why this is so on the case when L is a ternary language.

Recall that the proof of the binary Representation Theorem 5.9 relied on counting the
number of state descriptions with a particular extended signature @t (see (5.26)). This
involved expressing the sums of the ¢; for those j such that I'; contains an atom with
a particular unary trace (that is the number of ‘places’ in the state description to be
filled with binary atoms from these classes I';) in terms of the w;, from #, the unary

part of this extended signature.

Let

Ml = My, ..., Maa; Ny, e Ny 5 Ly ey 1)

denote an extended signature of some state description of the ternary language L. We
will show that it is not possible to count the number of state descriptions with this
extended signature in the way it is done in the binary and thus conclude that the
method of the binary proof does not work in the general polyadic case. In particular,

we will show that no expression for the /; can be worked out in terms of the n;; the

2As in the proof of Theorem 5.8.
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number of binary atoms from each equivalence class (that is, ) does not suffice to

determine the number of ‘places’ which atoms with a given binary trace must fill.

To see this, notice first that for the extended signature mitl we still have, as in the

binary:
5 e
1<k<2d
for k # ¢
Z nj = MmEme
J
where the sum is taken over those j € {1,...,py} for which F? contains some 2 (1, T3)

with unary trace v, (z1) A v2(z2), and
-1
S = g
for those j such that I'? contains a 7 (1, z2) with unary trace v (z1) A v (z2).

However, when we fix a binary trace ¢ and sum the [; over those j € {1,...,p} such
that I'; contains a ~, (21, 22, x3) with this binary trace 1, different state descriptions

of L may yield different results.
Let

O (b1, b2, b3, b4) = Yny o5 (b1,02,03) A Va4 (b1, 02,04) A Va5, (D1, 03,04) A Viy s, (b2, b3, bs),

(I)(bb 627 b3a b4) =Yfi,2,3 (b17 b2a b3) A Vfi2.4 (b17 b2’ b4) A Viiza (bh b37 b4) A Yf2,3,4 (b27 b?n b4)
be state descriptions of L such that

0 FE /\71 ) A (b1, b2) A3 (by, bs) A3 (b, ba)

A7 (b2, bs) A3 (ba, bs) A7 (bs, b)), (6.16)

NS /\71 /\71(b1:b2)/\71(b1>b3)/\72(b1»b4)
A i (b, bs) A3 (ba, by) A3 (bs, ba) (6.17)
and where 7§ (21, T2) % 73 (21, 22) (so 77 and 73 are from different I'%).

Then © and ® both have the same m and 7 parts