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 

Abstract — Active Distribution System Management (ADSM) 

aims at optimally operating distribution network assets with a 

high penetration of Distributed Energy Resources (DER) while 

taking into account operational uncertainties, market constraints, 

and scheduled power flows at the interface with the transmission 

system. A novel framework for ADSM, which incorporates a 

dual-horizon rolling scheduling model based on Dynamic AC 

Optimal Power Flow (OPF) is proposed in this paper. In the first 

stage (“planning”), energy import/export is committed for given 

times ahead at the grid supply point considering local variable 

generation and load forecasts. At the second stage (“operation”) 

deviations from the schedules are minimised by controlling 

various assets and DER (including Electrical Energy Storage - 

EES). We demonstrate how crucial it is to properly consider 

uncertainties (for instance associated with forecasts) over 

different time scales. Case study results on a real UK distribution 

network show that the proposed ADSM approach can (i) provide 

credible operational strategies to maximise renewable 

penetration, (ii) minimise deviations from time-ahead schedules 

and (iii) estimate the required level of local reserves from 

dispatchable generation and EES while realistically accounting 

for uncertainty. The framework and model formulation proposed 

can thus be seen as a key tool to facilitate the transition from 

Distribution Network Operators to Distribution System 

Operators and their interaction with Transmission System 

Operators. 

 

Index Terms —Active Network Management, Dynamic Optimal 

Power Flow, Distribution System Unit Commitment, Electrical 

Energy Storage (EES), Distribution System Operator, Forecast. 

I. INTRODUCTION 

ISTRIBUTION Network Operators (DNOs) are facing 

multiple challenges in the transition to Distribution 

System Operators (DSOs). In fact, traditionally DNOs have 

been managing a largely passive network where demand is 

inflexible and Distributed Generation (DG) is operated with a 

fit-and-forget approach. Conversely, DSOs are expected to 

manage active networks supporting local balancing and 

actively interact with Transmission System Operators (TSOs), 

carrying out optimisation policies of the available DER and 

controllable network assets while preserving system integrity  
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and stability. Therefore, new operational options to exploit the 

required flexibility, the increased TSO/DSOs/market 

coordination, and the preventive instead of corrective actions 

that will be available in Active Distribution System 

Management (ADSM) [1] have to be investigated.  

More specifically, in the future, an increasing number of 

generating units connected at the distribution level are 

expected to participate in the day-ahead and intraday markets. 

ADSM and new business arrangements will then be key to 

providing flexibility for DSOs to facilitate DG owners’ market 

participation, and comply with agreed market commitment 

schedules. At the TSO/DSO interface, knowing in advance the 

expected flows would in turn also facilitate TSO’s provision 

of system balancing and security services. In this sense, 

optimising the operation of the local network, quantifying the 

flexibility available at the distribution level, and forecasting 

local consumption and production, are key tools for short-term 

operational planning for both more active distribution systems 

and the transmission system. To operate this transition, a 

decentralised architecture where the power system is divided 

in distribution grid areas is for instance presented in [2]. The 

philosophy is that each distribution area should provide local 

balancing and voltage control with the purpose of solving 

problems locally, without affecting negatively the upstream 

transmission system and even facilitating the TSO’s operation, 

as aforementioned. Each area would then be responsible for 

local reserves’ activation as well as dispatch, assuming similar 

responsibilities to the TSO. This approach could also help 

reduce losses as well as mitigate congestion problems more 

efficiently, enabling a more optimal use of the local resources. 

Finally, the relatively small size of grid areas would allow 

practical optimisation control strategies, which would not be 

computationally affordable under a complete TSO control.   

 Since distribution networks were designed to be operated in 

a passive fashion, the radial topology typically encountered at 

medium and low voltage levels may not provide a comparable 

level of flexibility to reroute power flows as found in meshed 

network, thus requiring a careful control of power flows and 

voltages. 

In recent years, different approaches have been investigated 

such as locational marginal pricing congestion management 

[3] and steady-state operations of distribution networks 

modelled with Optimal Power Flow (OPF) aimed at 

minimising/maximising various objective functions such as 
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cost of operation, network losses, or penetration of renewables 

[4]. For instance, in [4] [5] OPF-based techniques are used to 

evaluate the network capacity to connect DG at distribution 

and sub-transmission levels. OPF formulations can also be 

found extensively in energy management systems [7]–[9]. In 

[10], a Dynamic OPF (DOPF) problem is developed for active 

network management with wind power, considering inter-

temporal constraints arising from electrical energy storage and 

managed flexible demand. In [11], a DOPF formulation is 

used to schedule available DER 24h-ahead and with different 

spinning reserve levels based on their location. In [11][12], a 

DOPF model is used to optimise the control strategy for 

electrical storage in the presence of renewable generation. 

Generally, inter-temporal constraints are well handed by these 

DOPF formulations and while being difficult mathematical 

problems, the generality and flexibility of their formulation 

makes them very powerful tools. However, the use of time 

series for DER scheduling and network assets control in the 

presence of variable generation may not be adequate to deal 

with the intrinsic uncertainty. In fact, the time-series based 

models discussed in the literature do not assess the quality of 

their proposed strategies as they assume “perfect information”. 

It is then fundamental to go beyond addressing uncertainties in 

a comprehensive manner, by also assessing the performance of 

the model as these uncertainties unfold. In [14] and [15], a 

rolling approach for Unit Commitment (UC) is used to 

evaluate the flexibility and reserve requirements in wind-

power rich systems, but the intra-hour variations of wind and 

demand are not considered. A stochastic programming 

approach is also frequently adopted for UC problems in 

presence of wind such as in [16] but it may be impractical for 

computational reasons when including networks, especially 

when a full AC formulation is needed. At distribution level, 

[17] presents a two-stage planning and real-time control 

ADSM model for LV networks, which focuses on the control 

of thermostatically controlled loads and Electrical Energy 

Storage (EES). However, the RES penetration level is low and 

no potential export to the upstream grid is considered, hence 

limiting significantly the scope of and need for managing 

impact of uncertainties in planning and operations.  

Based on the above, this paper introduces a novel Dual-

Horizon Rolling Scheduling framework for ADSM based on a 

Dynamic AC OPF formulation. The model addresses 

fundamental issues in the treatment of uncertainties when 

loads and RES forecasts are involved. The Dynamic AC OPF 

formulation used at both stages, namely “planning” (e.g., 24h 

ahead with 1h resolution) and “operational” (e.g., 4h ahead 

with 15min resolution) stages, is capable of modelling 

network constraints with accuracy. In addition, the dual-

horizon formulation allows proper controlling of inter-

temporally constrained technologies such as EES. Finally, the 

dual-horizon formulation offers the advantage to plan 

operations realistically, as the performance of the planned 

schedule is assessed in the operational stage. In fact, as 

aforementioned, DSOs will be expected to be able to balance 

and optimise networks locally and actively interact with TSOs. 

The estimation of their balancing capability under different 

levels of local reserves and different time scales to cope with 

relevant uncertainties (of variable renewables, in particular) is 

of paramount importance. In this light, the model proposed 

here is formulated so as to commit the energy delivered at 

each time step at the upstream Grid Supply Point (GSP, 

representing the interface with the transmission system) ahead 

of delivery (e.g., day ahead) and then to minimise the 

deviation from the commitment in real time. This approach 

allows taking full advantage of the flexibility offered by the 

combination of the different controllable DERs and network 

assets under uncertainty over different time scales and paves 

the way to practical techno-economic arrangements that are 

expected at the TSO-DSO interface.  

The paper is structured as follows. Section II discusses the 

different aspects of the proposed flexible ADSM model with 

an emphasis on the treatment of uncertainties, as well as the 

rolling dual-horizon stages. Section III describes the 

corresponding Nonlinear Programming (NLP) formulations of 

the planning and operational problems. Section IV presents the 

results of the model applied to a real UK medium voltage 

distribution network with wind power, dispatchable DG, EES, 

reactive power compensation, and on-load tap changer 

(OLTC) transformers. Case study applications analyse the 

impact of considering different planning horizons as well as 

different levels and technology providers of reserve (including 

EES). Section V concludes the paper. 

II. FLEXIBLE ACTIVE DISTRIBUTION SYSTEM MANAGEMENT 

A. Dealing with Uncertainties 

In order to perform operational simulation and optimisation, 

most studies use simple time series to represent data varying 

over time (see for instance [18]). However, as much as they 

provide useful information from a statistical point of view, this 

approach assumes knowledge of perfect information, which 

can be very unrealistic in the case of variable and 

unpredictable renewable energy sources. Consequently, they 

are not well suited for real-time operations and control 

strategies. If forecasts are used as an alternative, the longer the 

forecasted period is, the worse the prediction usually gets and 

the difference between expectation and realisation increases.  

 
Fig. 1.  24h-ahead wind farm actual power output and forecast with maximum 

expected forecast error (based on a 3σ rule). 

As an example, Fig. 1 depicts the 24h-ahead (15min 

resolution) expected power output for a 15MW wind farm as 

from [15][16]
1
, along with maximum expected forecast errors 

based on a 3σ rule (i.e., 99.7% of the values lie within three 

standard deviations if assuming a normally distributed wind 

speed error). If the forecasted power output was 

 
1 Other forecast approaches could also be applied without affecting the 

general consideration and results discussed here. 
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underestimated, in the worst case, wind could simply be 

curtailed. However, if the forecasted output were 

overestimated, the system would face a lack of planned power 

injection and need to react consequently.  

Generally speaking, however, the error of prediction on the 

power output can remain relatively low and manageable, even 

for a 24h horizon. Therefore, having a look at the error of 

prediction on the energy production can give more insights 

into the importance of forecasting accuracy for RES. In this 

respect, Fig. 2a shows the actual wind power generated by a 

15MW wind farm over 24 hours with a 15min time step 

against a typical 24h-ahead forecast. Fig. 2b shows the 

prediction error for the same case and, it can be observed that, 

while the absolute error does not exceed 5 MW, the 

cumulative error of prediction reaches 37.97 MWh for a total 

wind power generation of 109.45 MWh (34.7% error). Fig. 3a 

and Fig. 3b only differ from Fig. 2a and Fig. 2b by the length 

of the forecast horizon, which is then 4 hours. It can be 

observed that the error barely exceeds 2 MW where the 

cumulative error drops down to 12.86 MWh (11.7%). Based 

on this, it appears crucial to analyse the consequences of 

different time horizons and reserve requirements for network 

planning and operations, as well as to understand which 

decisions have to be made on both “short” (“operation”) and 

“long” (“planning”) term horizons. This applies especially in 

the presence of inter-temporally constrained devices such as 

EES, and with the aim of facilitating a smooth interaction 

between DSO and TSO. 

 
 
Fig. 2  Actual wind power output and 24h ahead forecast based on prediction 

model (a), and 24h forecast error and cumulative error (b). 

 
 

 
Fig. 3.  Actual wind power output and 4h ahead forecast based on prediction 
model (a), and 4h forecast error and cumulative error (b). 

In this paper, a relatively simple and efficient way of 

representing these uncertainties is introduced. Considering 

day-ahead operations, 24h-ahead forecasts are used to predict 

loads and wind power knowing their intrinsic limitations in 

terms of accuracy. The load forecast is updated once every 

24h and the wind power forecast is updated at every time step 

of the simulation (i.e., one hour for planning, 15min for 

operations), thus feeding the model only with the most up-to-

date information. Using a constantly updated rolling forecast 

is efficient and pragmatic, as it feeds the problem with solely 

the best real-life available information, leading eventually to 

more realistic results compared to the “perfect information” 

approach. 

One of the main benefits of such a dual-horizon ADSM is to 

assess the impact of uncertainties on the control strategy. Any 

source of uncertainty can be incorporated within this 

methodology as long as it can be represented as forecasts and 

realisation time series. In the case of photovoltaic generation 

embedded in the LV network, for instance, adequate forecasts 

should be adopted and its controllability should be reflected 

accordingly as it may lay outside of the DSO control. 

However, the rationale behind the “short” and “long” term 

horizons is valid independently of the event forecasted as the 

different sources of uncertainties are integrated at their own 

relevant time scale. 

B. Algorithm for Dual-Horizon (“planning” and 

“operational” stages) Rolling Scheduling for ADSM  

Inter-temporally constrained technologies such as 

dispatchable DG or EES, as well as control equipment such as 

OLTC or VAR compensation, call for different operation and 

optimisation timescales ranging from minutes to hours. This, 

together with the fact highlighted above that uncertainty 

increases with the prediction horizon, leads to considering a 

multi-horizon approach to ADSM. More specifically, a dual-

horizon scheduling formulation applied to distribution systems 

is proposed here, whereby the problem is decomposed in two 

stages, namely, a “planning” stage and an “operational” stage. 

The rationale behind the dual-horizon approach is to plan 

dispatch (so as to facilitate possible techno-economic 

arrangements at the TSO-DSO interface) and then control 

network operations accordingly on a rolling basis. Adopting 

this approach gives the opportunity to model future network 

operations and market arrangements with accuracy while 

integrating the abovementioned technologies. As shown in 

Fig. 4, the planning model “commits” the generation import 

and export at the upstream GSP based on the states of the 

different network assets and DER forecasts on a “long-term” 

basis according to possible market arrangements. The 

operational model then “dispatches” the system on a rolling 

“short-term” basis minimising the deviation from the 

commitment proposed at the planning stage. Both planning 

and operational problems are constantly fed with the most up-

to-date information at the relevant time resolution, as 

discussed in the previous section. To exemplify the proposed 

approach, in this paper the planning phase is run on a day-

ahead basis with a 1h resolution to represent a typical market 

setting. The operation phase is run on a rolling 4h-ahead basis 

with a 15min resolution to properly capture the intra-hour 

variations while keeping sufficient accuracy regarding the 
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forecasting horizon. The rolling operation phase is of 

paramount importance, as it assesses the feasibility and 

performance of the proposed planning strategy as uncertainties 

unfold. It is worth mentioning that planning and operation 

horizons and resolutions depend solely on the problem 

modelled, and do not affect the generality of the formulation.  

 
Fig. 4.  Scheme of the proposed dual-horizon scheduling for flexible ADSM. 

C. System reserves 

Reserve needs to be considered at the planning stage to 

overcome potential shortage of available power from 

intermittent generation when the objective is, for instance, to 

minimise energy import at the TSO-DSO interface
2
. In 

particular, since RES and load forecast errors can be estimated 

over time, reserve needs to be dynamically calculated as a 

function of these forecast errors. It should be emphasised that 

different forecasting approaches will have different error 

distributions (not necessarily following a Gaussian 

distribution) and should be integrated accordingly into the 

reserve calculation. In order to mitigate these errors, 

dispatchable DG and potentially EES may offer the advantage 

of being available at any time provided that reserve is 

adequately scheduled, ramping capabilities are properly taken 

into account, and EES energy content is properly estimated (in 

particular, see Section IV.E for EES reserve studies). 

 

D. DER and active network assets 

1) Distributed Generation (DG) 

There may be several DG technologies connected at 

distribution networks (and MV in particular, with capacity 

generally in the order of some to tens of MW), such as 

onshore wind, medium-scale hydro, industrial and district 

heating combined heat and power, large photovoltaic farms, 

and so on. DG sources may be considered dispatchable (in 

terms of active power output) in the case of conventional 

generation, and mostly non-dispatchable in the case of 

variable renewables. Reactive power control can also be 

considered to different extents for both technologies 

depending on electric generator characteristics and the 

network interface (e.g., inverter capability and so on).  

 
2 As also mentioned later, different objectives could also be used without 

loss of generality. 

2) Electrical Energy Storage (EES) 

EES is likely to become a fundamental component of 

distributed energy systems and, particularly, in presence of 

variable generation. The most common EES is based on 

battery technologies whose main characteristics reside in their 

energy capacity, power ratings, storage periods, and process 

efficiency.  

3) Hybrid Volt-Var-Watt voltage and power flow control  

In networks with increasing DG, the voltage profile is 

substantially affected by the often highly variable local 

generation. Focusing on MV networks, they are typically 

connected to HV networks through a transformer (possibly 

equipped with an OLTC device). In addition, a wide range of 

reactive compensation devices ranging from bank capacitors 

to Static Var Compensators (SVCs) can be used to improve 

the voltage profile. Hence, “hybrid” coordination of OLTC’s 

set points, SVC’s reactive power output, and DG’s MW and 

MVar outputs [21] are features that are expected in ADSM 

schemes to deal with local power flow balancing and voltage 

regulation. In the proposed model, coordination of all 

available controllable DER and network assets are considered 

at both planning and operational stages.  

III. ADSM PROBLEM FORMULATION 

A. Dynamic AC Optimal Power Flow for ADSM 

As elaborated above, the focus of the proposed ADSM model 

is to simulate steady-state operations over different time scales 

and account for relevant inter-temporal constraints. The model 

is based on a Dynamic AC OPF (DACOPF) formulation to be 

able to handle radial MV distribution networks
3
. It is assumed 

that the three-phase distribution system is reasonably well 

balanced and can be reduced to its single-phase equivalent 

where the standard π line model is used (in the case of 3-phase 

imbalances, the DACOPF formulation would have to be 

updated without affecting the generality of the framework). As 

the DACOPF seeks to find the optimal control policy not only 

for individual steps’ setpoints, but also for an inter-temporally 

constrained sequence of operations, the problem shares 

properties of both classic OPF (as network constraints are 

accounted for) and scheduling or generation scheduling (as 

inter-temporal constraints and cost characteristics are 

accounted for) formulations. In the formulation illustrated 

below, control options are evaluated and optimised while 

taking into account network and inter-temporal constraints. 

Therefore, the same DACOPF algorithm can be used 

indifferently for both planning and operational stages, while 

only objective functions, control options (decision variables in 

the optimisation problem), and of course time scales (horizons 

and resolutions, indicated in the following formulation as T 

and t, respectively) differ. In the following formulation, the 

subscript 𝑝 denotes the subset of planning stage variables and 

the 𝑜 denotes the subset of operational stage variables. When 

none of these subscripts are used, that constraint holds for both 

planning and operation, where only horizon and resolution 

differ. Planning and operational stages’ objective functions  

 
3 The model has also been successfully tested for other topologies and R/X 

ratios. However, showing details of the model’s capability to deal with 

different types of networks is outside the scope of this paper. 
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1) Planning stage 

In the planning problem, the system is optimised taking into 

account  long-term forecasts. The planning phase is based on 

the complete DACOPF formulation. This approach, while 

more complex than a scheduling problem without network 

constraints, enables proposing a credible long-term strategy at 

the planning stage. In this work, the objective function (1) 

minimises the import of electricity at the grid upstream 

connection point: 

min
𝑥𝑝

 ∑ 𝑃𝑝,𝑘,𝑡
𝑔𝑟𝑖𝑑

𝑇

𝑡=1
 (1) 

where 𝑝 denotes the subset of planning stage variables, 𝑡 is the 

time index (1h resolution), 𝑇 is the time horizon (24h ahead), 

𝑘 denotes the bus index, and 𝑥𝑝 is the vector of decision 

variables for the planning stage, 𝑃𝑝,𝑘,𝑡
𝑔𝑟𝑖𝑑

,  𝑄𝑝,𝑘,𝑡
𝑔𝑟𝑖𝑑

, 𝑃𝑝,𝑘,𝑡
𝐷𝐺 , 𝑄𝑝,𝑘,𝑡

𝐷𝐺 , 

𝑃𝑝,𝑘,𝑡
𝑅𝐸𝑆,𝑖𝑛𝑗

, and 𝑄𝑝,𝑘,𝑡
𝑅𝐸𝑆,𝑖𝑛𝑗

 define the GSP, DG and RES active and 

reactive power,  𝑃𝑝,𝑘,𝑡
𝑠𝑡𝑜𝑟 defines the EES charge/discharge, 𝑄𝑝,𝑘,𝑡

𝑉𝐴𝑅  

defines the reactive power from compensation devices, and 

𝑂𝐿𝑇𝐶𝑝,𝑙,𝑡
𝑡𝑎𝑝

 defines the tap position of OLTC on branch 𝑙. This 

objective function corresponds to seeking the minimisation of 

electricity import and to export electricity, if possible. 

However, alternative objective functions could readily be 

considered too (and our model is totally flexible to do so), in 

the light of possible arrangements between TSOs and DSOs 

and development of the DSOs’ activities and business [22]. 

2) Operational stage 

The operational phase optimises the system taking into 

account both short-term forecasts and the planning policies 

suggested in the long-term. The operational phase is also 

based on the complete DACOPF formulation. The objective 

function (2) minimises the deviation from the import-export 

commitment at the upstream level proposed at the planning 

stage: 

min
𝑥𝑜

 ∑ (𝑃𝑜,𝑘,𝑡
𝑔𝑟𝑖𝑑

− 𝑃𝑝,𝑘,𝑡
𝑔𝑟𝑖𝑑

)2
𝑇

𝑡=1
 (2) 

where 𝑜 denotes the subset of operational stage variables, 𝑡 is 

the time index (15min resolution), 𝑇 is the time horizon (4h 

ahead), and 𝑥𝑜 is the vector of decision variables for the 

operational stage, 𝑃𝑜,𝑘,𝑡
𝑔𝑟𝑖𝑑

, 𝑄𝑜,𝑘,𝑡
𝑔𝑟𝑖𝑑

, 𝑃𝑜,𝑘,𝑡
𝐷𝐺 , 𝑄𝑜,𝑘,𝑡

𝐷𝐺 , 𝑃𝑜,𝑘,𝑡
𝑅𝐸𝑆,𝑖𝑛𝑗

, and 

𝑄𝑜,𝑘,𝑡
𝑅𝐸𝑆,𝑖𝑛𝑗

 define the GSP, DG, and RES active and reactive 

power, 𝑃𝑜,𝑘,𝑡
𝑠𝑡𝑜𝑟 defines the EES charge/discharge, 𝑄𝑜,𝑘,𝑡

𝑉𝐴𝑅  defines 

the reactive power output from compensation devices, and 

𝑂𝐿𝑇𝐶𝑜,𝑙,𝑡
𝑡𝑎𝑝

 defines the OLTC tap position on branch 𝑙. 

B. Problem constraints  

1) Power Flow Equations 

Equations (3) and (4) define the active and reactive power 

flow balance where 𝑃𝑘,𝑡
𝑙𝑜𝑎𝑑  and 𝑄𝑘,𝑡

𝑙𝑜𝑎𝑑  represent the net active 

and reactive load demands respectively. 𝑉𝑘,𝑡, 𝑉𝑖,𝑡,  𝜃𝑘,𝑡, and 𝜃𝑖,𝑡 

represent the voltages and angles at bus 𝑘 and 𝑖. 𝐺𝑘,𝑖,𝑡 and 

𝐵𝑘,𝑖,𝑡 are the admittance and susceptance matrices, whose 

formulation (not detailed for brevity) can be found in [23]. 𝑆𝑙,𝑡 

represents the apparent power on branch 𝑙 at time 𝑡. Equation 

(5) and (6) set voltage and power flow limits.  

𝑃𝑘,𝑡
𝑔𝑟𝑖𝑑

+ 𝑃𝑘,𝑡
𝐷𝐺 + 𝑃𝑘,𝑡

𝑅𝐸𝑆,𝑖𝑛𝑗
− 𝑃𝑘,𝑡

𝑙𝑜𝑎𝑑 − 𝑃𝑘,𝑡
𝑠𝑡𝑜𝑟 = 

∑  

𝐼

𝑖=1

𝑉𝑘,𝑡𝑉𝑖,𝑡[𝐺𝑘,𝑖,𝑡cos(𝜃𝑘,𝑡 − 𝜃𝑖,𝑡) + 𝐵𝑘,𝑖,𝑡sin(𝜃𝑘,𝑡 − 𝜃𝑖,𝑡)] 

∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 

(3) 

𝑄𝑘,𝑡
𝑔𝑟𝑖𝑑

+ 𝑄𝑘,𝑡
𝐷𝐺 + 𝑄𝑘,𝑡

𝑅𝐸𝑆,𝑖𝑛𝑗
+ 𝑄𝑘,𝑡

𝑉𝐴𝑅 − 𝑄𝑘,𝑡
𝑙𝑜𝑎𝑑 = 

∑  

𝐼

𝑖=1

𝑉𝑘,𝑡𝑉𝑖,𝑡[𝐺𝑘,𝑖,𝑡sin(𝜃𝑘,𝑡 − 𝜃𝑖,𝑡) − 𝐵𝑘,𝑖,𝑡cos(𝜃𝑘,𝑡 − 𝜃𝑖,𝑡)] 

∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 

(4) 

 

 𝑉𝑘
𝑚𝑖𝑛 ≤ 𝑉𝑘,𝑡 ≤ 𝑉𝑘

𝑚𝑎𝑥 (5) 

 𝑆𝑙,𝑡 ≤ 𝑆𝑙,𝑡
𝑚𝑎𝑥 

(6) 

2) On-Load Tap Changers 

The position of the taps for each OLTC transformer is 

optimally set during both the planning and operation 

optimisation phases (assumed here as continuous variable as 

commonly used). Equation (7) sets the limits for the tap 

positions. 𝑂𝐿𝑇𝐶𝑙,𝑡
𝑡𝑎𝑝

 is included in the formulation of 

admittance and susceptance matrices.  

 𝑂𝐿𝑇𝐶𝑙,𝑡
𝑡𝑎𝑝,𝑚𝑖𝑛

≤ 𝑂𝐿𝑇𝐶𝑙,𝑡
𝑡𝑎𝑝

≤ 𝑂𝐿𝑇𝐶𝑙,𝑡
𝑡𝑎𝑝,𝑚𝑎𝑥

 (7) 

3) Reactive Power Compensation 

The quantity of reactive power delivered by the available 

compensation devices is calculated optimally. Equation (8) 

sets the limits for the inductive or capacitive reactive power 

delivered.  

 𝑄𝑘,𝑡
𝑉𝐴𝑅,𝑚𝑖𝑛 ≤ 𝑄𝑘,𝑡

𝑉𝐴𝑅 ≤ 𝑄𝑘,𝑡
𝑉𝐴𝑅,𝑚𝑎𝑥

 (8) 

4) Dispatchable DG 

The amount of electricity delivered by dispatchable DG can 

be adjusted within operating limits. Equation (9) defines the 

electrical power output constrained with reserve at the 

planning stage. Equations (10) and (11) set the electrical 

generating limits. Equations (12) and (13) define the power 

factor limits and the ramping constraints, respectively. 

 
∑  

𝐾

𝑘=1
𝑃𝑝,𝑘,𝑡

𝐷𝐺 ≤  ∑  
𝐾

𝑘=1
𝑃𝑝,𝑘,𝑡

𝐷𝐺,𝑚𝑎𝑥 − 𝑃𝑝,𝑡
𝑟𝑒𝑠𝑒𝑟𝑣𝑒  (9) 

 𝑃𝑘,𝑡
𝐷𝐺,𝑚𝑖𝑛 ≤ 𝑃𝑘,𝑡

𝐷𝐺 ≤ 𝑃𝑘,𝑡
𝐷𝐺,𝑚𝑎𝑥

 (10) 

 𝑄𝑘,𝑡
𝐷𝐺,𝑚𝑖𝑛 ≤ 𝑄𝑘,𝑡

𝐷𝐺 ≤ 𝑄𝑘,𝑡
𝐷𝐺,𝑚𝑎𝑥

 (11) 

 𝑝𝑓𝑘,𝑡
𝐷𝐺,𝑚𝑖𝑛 ≤ 𝑝𝑓𝑘,𝑡

𝐷𝐺  (12) 

 −𝛥𝑘,𝑡
𝐷𝐺 ≤ 𝑃𝑘,𝑡

𝐷𝐺 − 𝑃𝑘,𝑡−1
𝐷𝐺 ≤ 𝛥𝑘,𝑡

𝐷𝐺 (13) 

5) Renewable Energy Sources 

RES are modelled as non-dispatchable active power 

injections 𝑃𝑘,𝑡
𝑅𝐸𝑆,𝑖𝑛𝑗

 following a forecasted power output. The 

only control option is to curtail the amount of active power 

injected with respect to actual power generated 𝑃𝑘,𝑡
𝑅𝐸𝑆,𝑔𝑒𝑛

, as 

shown in (14). Equation (15) defines the power factor limits. 

 𝑃𝑘,𝑡
𝑅𝐸𝑆,𝑖𝑛𝑗

≤ 𝑃𝑘,𝑡
𝑅𝐸𝑆,𝑔𝑒𝑛

 (14) 

 𝑝𝑓𝑘,𝑡
𝑅𝐸𝑆,𝑚𝑖𝑛 ≤ 𝑝𝑓𝑘,𝑡

𝑅𝐸𝑆 (15) 
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6) Electrical Energy Storage  

EES is considered as a load (with positive sign) or a 

generator (with negative sign) depending on its charging or 

discharging state, respectively, as defined in equation (16). 

Equation (17) and (18) set the limits for charging and 

discharging rates, respectively. Equation (19) sets limits on the 

minimum and maximum storage levels. Equation (20) allows 

setting an initial loading level. Equation (21) ensures the 

continuity of the state of charge (SOC) of storage through 

inter-temporal constraints, where 𝜂𝑐ℎ𝑎𝑟𝑔𝑒  and 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 stand 

for the charging and discharging storage efficiencies. Using 

this formulation, charging and discharging states can 

mathematically occur at the same time. However, as the 

round-trip efficiency is smaller than one, an optimal solution 

will choose to either charge or discharge [10]. At the planning 

stage, EES may be allocated to reserve or used for energy 

balancing, depending on the strategy adopted (see below). 

Subsequently, at the operation stage EES is used for energy 

balancing, or to provide reserve if planned to do so.  

 𝑃𝑘,𝑡
𝑠𝑡𝑜𝑟 = 𝑃𝑘

𝑠𝑡𝑜𝑟,𝑐ℎ𝑎𝑟𝑔𝑒
+ 𝑃𝑘

𝑠𝑡𝑜𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
 

∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 
(16) 

 0 ≤ 𝑃𝑘
𝑠𝑡𝑜𝑟,𝑐ℎ𝑎𝑟𝑔𝑒

≤ 𝑃𝑘
𝑠𝑡𝑜𝑟,𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥

 
∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 

(17) 

 0 ≥ 𝑃𝑘
𝑠𝑡𝑜𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

≥ 𝑃𝑘
𝑠𝑡𝑜𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥

 
∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 

(18) 

 𝐸𝑘
𝑠𝑡𝑜𝑟,𝑆𝑂𝐶,𝑚𝑖𝑛 ≤ 𝐸𝑘,𝑡

𝑠𝑡𝑜𝑟,𝑆𝑂𝐶 ≤ 𝐸𝑘
𝑠𝑡𝑜𝑟,𝑆𝑂𝐶,𝑚𝑎𝑥

 
 ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 

(19) 

 𝐸𝑘,𝑡
𝑠𝑡𝑜𝑟,𝑆𝑂𝐶 = 𝐸𝑘

𝑠𝑡𝑜𝑟,𝑖𝑛𝑖
 

∀𝑘 ∈ 𝐾, 𝑡 = 1 
(20) 

 𝐸𝑘,𝑡
𝑠𝑡𝑜𝑟,𝑆𝑂𝐶 = 𝐸𝑘,𝑡−1

𝑠𝑡𝑜𝑟,𝑆𝑂𝐶 + 𝑃𝑘,𝑡−1
𝑠𝑡𝑜𝑟,𝑐ℎ𝑎𝑟𝑔𝑒

· 𝜂𝑐ℎ𝑎𝑟𝑔𝑒

+ 𝑃𝑘,𝑡−1
𝑠𝑡𝑜𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

/ 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 
∀𝑘 ∈ 𝐾, 𝑡 = 2, . . 𝑇 

(21) 

7) Reserve 

Reserve requirements are calculated at the planning stage 

based on the load and RES expected forecast errors (ε𝑝,𝑘,𝑡
𝑙𝑜𝑎𝑑  and 

ε𝑝,𝑘,𝑡
𝑅𝐸𝑆 , respectively) over the relevant time horizon. Reserve 

can be provided by dispatchable DG (𝑃𝑝,𝑡
𝑟𝑒𝑠𝑒𝑟𝑣𝑒) assuming full-

time availability, as well as, in case, by EES too. In particular, 

three alternative formulations for provision of reserve are 

assessed in this paper, depending on the control strategy used 

for EES to provide reserve. More specifically, in (22.1) 

storage is not included in the reserve provision at the planning 

stage, and all the committed reserve is supplied by 

dispatchable DG. In (22.2), the EES is considered for reserve 

provision in terms of “available power” at time t, so that the 

required reserve is provided by the combination of the 

committed dispatchable DG and the power that EES can 

provide at time 𝑡; hence, in principle, all the energy available 

in the storage (EES SOC) could be used for reserve provision 

at time t, subject to the discharge rate limit 𝑃𝑝,𝑘
𝑠𝑡𝑜𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥

 

and a limit on minimum energy level in EES, 𝐸𝑘
𝑠𝑡𝑜𝑟,𝑆𝑂𝐶,𝑚𝑖𝑛

. In 

(22.3), storage is again included in the reserve provision but 

with an emphasis on “available energy”, whereby the total 

energy available in the EES is spread evenly over the 

remaining time periods of the planning horizon 𝑁𝑙𝑒𝑓𝑡; hence, 

only a share of the total EES SOC could be used for provision 

of reserve at time t, again subject to EES discharge rate and 

minimum energy level. Therefore, the reserve 𝑃𝑝,𝑡
𝑟𝑒𝑠𝑒𝑟𝑣𝑒  to be 

provided by dispatchable DG in the three cases is expressed as 

(22.1), (22.2) and (22.3), respectively.  

 
𝑃𝑝,𝑡

𝑟𝑒𝑠𝑒𝑟𝑣𝑒 = ∑  
𝐾

𝑘=1
ε𝑝,𝑘,𝑡

𝑅𝐸𝑆 ∙ 𝑃𝑝,𝑘,𝑡
𝑅𝐸𝑆,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

 

                  + ∑  
𝐾

𝑘=1
ε𝑝,𝑘,𝑡

𝑙𝑜𝑎𝑑 ∙ 𝑃𝑝,𝑘,𝑡
𝑙𝑜𝑎𝑑,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

 

(22.1) 

 
𝑃𝑝,𝑡

𝑟𝑒𝑠𝑒𝑟𝑣𝑒 = ∑  
𝐾

𝑘=1
ε𝑝,𝑘,𝑡

𝑅𝐸𝑆 ∙ 𝑃𝑝,𝑘,𝑡
𝑅𝐸𝑆,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

 

                   + ∑  
𝐾

𝑘=1
ε𝑝,𝑘,𝑡

𝑙𝑜𝑎𝑑 ∙ 𝑃𝑝,𝑘,𝑡
𝑙𝑜𝑎𝑑,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

− ∑  
𝐾

𝑘=1
min {

𝐸𝑝,𝑘,𝑡
𝑠𝑡𝑜𝑟,𝑆𝑂𝐶 − 𝐸𝑘

𝑠𝑡𝑜𝑟,𝑆𝑂𝐶,𝑚𝑖𝑛

𝛥𝑡
, 

−𝑃𝑝,𝑘
𝑠𝑡𝑜𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥

} 

(22.2) 

 
𝑃𝑝,𝑡

𝑟𝑒𝑠𝑒𝑟𝑣𝑒 = ∑  
𝐾

𝑘=1
ε𝑝,𝑘,𝑡

𝑅𝐸𝑆 ∙ 𝑃𝑝,𝑘,𝑡
𝑅𝐸𝑆,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

 

                         + ∑  
𝐾

𝑘=1
ε𝑝,𝑘,𝑡

𝑙𝑜𝑎𝑑 ∙ 𝑃𝑝,𝑘,𝑡
𝑙𝑜𝑎𝑑,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

− ∑  
𝐾

𝑘=1
min {

𝐸𝑝,𝑘,𝑡
𝑠𝑡𝑜𝑟,𝑆𝑂𝐶 − 𝐸𝑘

𝑠𝑡𝑜𝑟,𝑆𝑂𝐶,𝑚𝑖𝑛

𝑁𝑙𝑒𝑓𝑡  ∙ 𝛥𝑡
, 

−𝑃𝑝,𝑘
𝑠𝑡𝑜𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥

} 

(22.3) 

IV. CASE STUDY APPLICATION 

A. Case study description  

The case study application used to demonstrate the 

proposed ADSM model consists of a real 11 kV medium-

voltage UK distribution network as shown in Fig. 5. 

 
Fig. 5.  22-bus UK Medium Voltage Network. 

The total nominal load of the network is 3.9 MW and 1.28 

MVar. The system consists of the two wind farms, namely 

WF1 (bus 17) and WF2 (bus 21), and a dispatchable gas 

turbine (GT, at bus 3), which is also used for reserve. Reactive 

power compensation is installed at buses 17 and 21. EES is 

installed at bus 11. Table I shows the case study parameters. 

All input data for the following case studies can be found 

online for reproducibility purpose
4
.  

 
4 [Online] Available: https://goo.gl/G7gku3 
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Three case studies are analysed under different wind levels 

characterised by their capacity factors cf, namely: 𝑐𝑓𝑙𝑜𝑤 = 0.11 

for low-wind, 𝑐𝑓𝑚𝑒𝑑𝑖𝑢𝑚 = 0.21 for medium-wind, and 𝑐𝑓ℎ𝑖𝑔ℎ =

0.31 for high-wind. The following scenarios are considered in 

each case study: 

1) Perfect information, Single Horizon: in this scenario, the 

import at the GSP is minimised over a week with perfect 

information for the wind power at 1h resolution. This 

corresponds to a single-horizon DOPF where uncertainties are 

ignored. Consequently, there is no reserve allocated, as there 

is no potential error of forecasting considered. 

2) 24h-ahead commitment, Dual Horizon: in this scenario, 

the import at the GSP is minimised with 24h-ahead planning 

(1h resolution) and repeated every 24h over a week. The 

operation phase is run on a rolling 4h horizon at a 15min 

resolution minimising deviation from the objective set by the 

planning policy. As the scenario takes into account wind 

power and load forecasting uncertainty, four levels of reserve 

are considered, namely, no reserve, 1σ, 2σ and 3σ of the 24h-

ahead forecasted value. These reserve levels are used to study 

the impact on both the energy import/export policy at the 

planning stage and the potential mismatches during the rolling 

operational stage. 

3) 8h-ahead commitment, Dual Horizon: this scenario is 

similar to scenario 2, but the import at the GSP is minimised 

with 24h-ahead planning (1h resolution) and repeated every 8h 

over a week. The commitment period is therefore reduced to 

8h-ahead as it allows quantifying benefits of more frequent 

planning with lower errors of prediction. The operation phase 

remains unchanged (rolling 4h horizon, 15min resolution). 

4) 4h-ahead commitment, Dual Horizon: similarly to 

scenario 2 and 3, the import at the GSP is minimised with 24h-

ahead planning (1h resolution) and repeated every 4h over a 

week. The operation phase remains unchanged (rolling 4h 

horizon, 15min resolution). 

 
TABLE I 

CASE STUDY PARAMETERS 

Component Parameters 

Grid 𝑝𝑓𝑔𝑟𝑖𝑑,𝑙𝑎𝑔 ≥ 0.95, 𝑝𝑓𝑔𝑟𝑖𝑑,𝑙𝑒𝑎𝑑 ≥ 0.95 

WF1 𝑃𝑅𝐸𝑆,𝑚𝑎𝑥 = 10𝑀𝑊, 𝑝𝑓𝑤𝑖𝑛𝑑,𝑙𝑎𝑔 ≥ 0.95, 

𝑝𝑓𝑤𝑖𝑛𝑑,𝑙𝑒𝑎𝑑 ≥ 0.95 

WF2 𝑃𝑅𝐸𝑆,𝑚𝑎𝑥 = 5𝑀𝑊, 𝑝𝑓𝑤𝑖𝑛𝑑,𝑙𝑎𝑔 ≥ 0.95, 

 𝑝𝑓𝑤𝑖𝑛𝑑,𝑙𝑒𝑎𝑑 ≥ 0.95 

GT 𝑃𝐷𝐺,𝑚𝑎𝑥 = 6𝑀𝑊, 𝛥𝑘,𝑡
𝐷𝐺 = 0.5𝑀𝑊/𝑚𝑖𝑛,  

 𝑝𝑓𝐷𝐺,𝑙𝑎𝑔 ≥ 0.8, 𝑝𝑓𝐷𝐺,𝑙𝑒𝑎𝑑 ≥ 0.85 

EES 𝑃𝑘
𝑠𝑡𝑜𝑟,𝑆𝑂𝐶,𝑚𝑎𝑥 = 2𝑀𝑊ℎ 

𝑃𝑘
𝑠𝑡𝑜𝑟,𝑖𝑛𝑖 = 𝑃𝑘

𝑠𝑡𝑜𝑟,𝑓𝑖𝑛
= 0.5𝑀𝑊ℎ 

𝑃𝑘
𝑠𝑡𝑜𝑟,𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥

= −𝑃𝑘
𝑠𝑡𝑜𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥

= 0.5𝑀𝑊ℎ 

𝜂𝑐ℎ𝑎𝑟𝑔𝑒 = 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 0.95 

VAR 

Compensation 
𝑄𝑉𝐴𝑅,𝑚𝑖𝑛 = −2𝑀𝑉𝑎𝑟 

𝑄𝑉𝐴𝑅,𝑚𝑎𝑥 = 2𝑀𝑉𝑎𝑟 

Fig. 6 shows the wind power generated by the two wind 

farms under the three wind levels over a week. Fig. 7 shows 

the weekly load profiles and day-ahead forecasts. The model 

is run for a one-week time window with the (20.1) reserve 

control strategy (i.e., EES does not provide reserve). The other 

reserve control strategies are investigated in Section IV.E. The 

problem is implemented in the optimisation programming 

language AIMMS and is solved with the interior-point solver 

KNITRO on a standard Intel Core i5 desktop PC. The average 

computational time is 210 seconds per 24h of simulation (this 

slightly varies depending on the inputs, especially the RES 

production pattern). 

 
Fig. 6.  Weekly profiles for wind power. 

Fig. 7.  Weekly profile for electric loads. 

B. Load and Wind Power Forecasts 

Individual residential LV loads have been generated and 

aggregated at each busbar [24], bringing realistic diversity in 

demand profiles. A load forecast was synthetized assuming the 

normality of errors for the day ahead with a 10% RMSE [25]. 

Fig. 8 shows the 24h-ahead aggregated load forecast for the 

MV network presented (15-min resolution) along with 

maximum expected forecast error based on a 3σ rule. 

 

 
Fig. 8.  24h-ahead actual load and forecast with maximum expected forecast 

error (based on a 3σ rule) – spring week day. 

The wind speed time-series for a single-location were 

generated following [26] and a stochastic wind speed forecast 

was synthetized assuming the normality and autocorrelation of 

errors over time (from 3% RMSE 1h-ahead to 15% RMSE 

24h-ahead) [15][21]. The wind speeds (actual and forecast) are 

then converted to wind power using an S-curve [28]. 
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C. General results 

As the planning stage finds the best possible strategy for a 

given horizon, and the operational stage finds the best possible 

control strategy to achieve it, when it is not possible for the 

operational stage to meet the goal set by the planning stage 

(e.g. minimise import), the quantified mismatch gives very 

valuable information about the performance of the system 

under uncertainty for different levels of reserve and different 

planning horizons. For instance, the optimal level of reserve to 

commit can be found for a given mismatch tolerance at the 

TSO/DSO interface, leading to more economic operations. 

Results for energy export at GSP, energy mismatch relative to 

the committed level, and wind power curtailment under the 

four different scenarios and for each of the wind case studies 

are shown in Table II with respect to the level of committed 

reserve. Results for energy produced (wind farms, 

dispatchable DG), consumed energy (loads, losses), energy 

exported, and energy mismatch are shown in Fig. 9. From 

Table II and Fig. 9, it can be observed that independently of 

the level of wind power generated, the dual-horizon scenarios 

are never able to match the “perfect information” scenario on 

the total energy exported and wind power integration, while 

suffering from energy mismatches with no or low levels of 

reserve allocated. Reducing the commitment period from 24h 

to 4h-ahead shows a net increase in the total energy exported, 

and a significant reduction of energy mismatch, as potential 

errors of prediction are less severe on a shorter term. The 24h-

ahead and 8h-ahead scenarios see no mismatch from a 2σ 

reserve level upwards, and the 4h-ahead scenario from a 1σ 

reserve level upwards. Further, increasing the level of reserve 

beyond the “no-mismatch” point is not beneficial as both the 

levels of power exported and wind power injected decrease 

significantly. This demonstrates that a too conservative 

attitude towards the reserve sizing may degrade results 

significantly, as even the wind power injection is reduced. It is 

very important to note that the “perfect information” results 

differ more significantly from the “Dual-Horizon” results as 

the horizon increases; consequently, reducing the planning 

period reduces the need for higher levels of committed 

reserve. These results demonstrate the ability of the proposed 

approach to quantify the trade-off between the import 

minimisation strategy and the need for committed reserve. 

Depending on the TSO’s tolerance to mismatch, the most 

suitable level of reserve could therefore be scheduled. In 

addition, without loss of generality, and in the context of the 

general framework proposed here, other objective functions 

could also be considered, depending on the specific market 

arrangements that may be in place. One example could be 

minimising operational cost at the planning stage (i.e., when 

participating in the day-ahead market), and then minimising 

operational cost at the operation stage while applying a 

penalty for mismatch.    

D. Case study temporal details 

Several examples are provided in this section to 

demonstrate the capability of the model to capture the time 

series characteristics of the system operation. Fig. 10a shows 

temporal details of the power committed by the “24h-ahead 

Dual-Horizon No Reserve” planning for High-wind case day 3 

(in dashed line), as well as the power delivered at the GSP 

from the rolling operations (in black). Since no reserve is 

committed, when shortage of wind power resulting from errors 

of prediction occur, the committed power cannot be delivered 

and the planned targets cannot be met resulting in a mismatch. 

Fig. 10b shows the planned and actual dispatchable DG 

production, as well as the wind power injected. Since no 

reserve is committed, the dispatchable DG is planned to be 

operating at full capacity. Fig. 10c shows the wind power 

available, the 24h-ahead wind power forecasted, the wind 

power curtailed, and the actual and forecasted load. The 

exports and mismatches in Fig. 10a are directly correlated to 

the wind power forecast, as the influence of load is negligible. 

Fig. 10d shows the EES state of charge over time: the 

charging and discharging patterns are also directly correlated 

with the errors of prediction, as it helps reducing the 

mismatches while not being sufficient to eliminate them. This 

suggests that storage is undersized for these purposes. Storage 

is mainly charged during periods with wind power surplus and 

discharged during shortages. Similarly to the previous case, 

Fig. 11a shows the power Reserve planning analysis 

committed by the “4h-ahead Dual-Horizon 1σ Reserve” 

planning again for High-wind case day 3 (in dashed line), the 

power delivered at the GSP from the rolling operations (in 

black), and also the power committed at the GSP when not 

considering thermal constraints (in clear dashed line). In this 

case, since enough reserve is committed in combination with 

adequate storage capacity and a shorter planning horizon, 

shortages of wind power are perfectly managed and the 

committed power can be delivered as planned with minimum 

mismatches. This can be seen in Fig. 11a where the power 

delivered matches perfectly the power committed. The export 

objective when not considering thermal constraints in Fig. 11a 

is directly correlated to the wind power curtailment observed 

in Fig. 11c, showing congestion expected and avoided at the 

planning stage. In this case study, congestion remains 

marginal, happening solely during high-wind/high-load 

periods, demonstrating the adequacy of the local resources 

(wind power, dispatchable DG, and EES) to meet the planning 

objective. At the operation stage, congestion is not likely to be 

observed as the export goal has already been set considering 

thermal constraints. 
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TABLE II 

EXPORT AT BUS 1, ENERGY MISMATCH, AND WIND POWER CURTAILMENT  

 Reserve Single-Horizon 24h-ahead 8h-ahead 4h-ahead 

 
 Low-wind Medium-

wind 

High-wind Low-wind Medium-

wind 

High-wind Low-wind Medium-

wind 

High-wind Low-wind Medium-

wind 

High-wind 

Export 
(MWh) 

No 947.35 1168.23 1357.04 890.97 1061.03 1252.31 916.47 1125.59 1316.70 932.12 1146.63 1336.21 

1σ NA NA NA 827.85 963.12 1090.14 853.60 1018.71 1177.67 868.67 1041.30 1198.63 

2σ NA NA NA 726.01 803.53 854.27 761.37 866.61 977.83 782.37 899.67 1016.35 

3σ NA NA NA 614.88 624.57 617.48 658.95 695.54 759.71 686.77 742.06 819.55 

Mismatch 

(MWh) 

No NA NA NA 23.91 37.63 33.71 15.34 18.40 28.19 11.12 13.42 12.17 

1σ NA NA NA 0.85 2.65 0.26 0.32 0.10 1.03 0.04 0.17 0.03 

2σ NA NA NA 0 0.13 0 0 0 0 0 0 0 

3σ NA NA NA 0 0.06 0 0 0 0 0 0 0 

Curtailment 
(MWh) 

No 9.47 

(3.3%) 

22.88 

(4.3%) 

58.44 

(7.5%) 

42.36 

(14.9%) 

93.30 

(17.5%) 

131.24 

(16.9%) 

28.01 

(9.8%) 

52.73 

(9.9%) 

86.77 

(11.2%) 

19.08  

(6.7%) 

38.71  

(7.3%) 

75.68 

(9.8%) 

1σ NA NA NA 76.65 
(26.9%) 

155.26 
(29.1%) 

254.43 
(32.8%) 

66.26 
(23.3%) 

131.73 
(24.7%) 

204.09 
(26.3%) 

61.05 
(21.4%) 

122.34 
(22.9%) 

195.57 
(25.2%) 

2σ NA NA NA 118.33 

(41.5%) 

233.40 

(43.8%) 

371.11 

(47.8%) 

104.73 

(36.8%) 

208.25 

(39.1%) 

320.17 

(41.3%) 

98.16 

(34.4%) 

196.62 

(36.9%) 

302.41 

(39.0%) 

3σ NA NA NA 155.37 
(54.5%) 

298.23 
(55.9%) 

461.00 
(59.4%) 

137.28 
(48.2%) 

269.66 
(50.6%) 

402.23 
(51.9%) 

127.30 
(44.7%) 

253.37 
(47.5%) 

338.31 
(43.6%) 
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Fig. 9.  Energy generated, consumed, exported, and mismatch for low-wind scenario (a), medium-wind scenario (b), and high-wind scenario (c). 

 



Accepted for publication – IEEE Transactions on Smart Grid – January 2016 

 

10 

 

 
Fig. 10.  24h-ahead Dual-Horizon No reserve, High-wind, day 3 – Power 
exchange at GSP (a), dispatchable DG and Wind Power Injected (b), Load and 

Wind Power Curtailment (c), and Electrical Storage State of Charge (d). 

E. Reserve Planning Analysis 

The three reserve formulations (22.1), (22.2), and (22.3) 

presented in Section III.C.7 (with specific reference to EES 

participation in reserve provision at the planning stage) are 

implemented and compared here for the Medium-wind day 1 

case study under the 24h-ahead Dual-Horizon scenario and 

considering 1σ, 2σ, and 3σ levels of reserve. As shown in Fig. 

12, the largest daily energy mismatch is observed for 

formulation (22.2), when storage is used to provide as much 

reserve as possible at a given time t. The second largest 

mismatch is observed for formulation (22.3), when storage 

committed for reserve at the planning stage operates by 

spreading its contribution over multiple time steps in the 

planning horizon, starting from the time t. Finally, the smallest 

mismatch is observed for formulation (22.1), when storage is 

not included in reserve provision and adequate reserve from 

dispatchable DG is therefore scheduled to reduce potential 

mismatches. The worst performance of formulation (22.2) is 

explained by the strongly auto-correlated nature of wind and 

load forecasts errors, as explored in [27] and as discussed 

above. In fact, when storage is called to mitigate prediction 

errors according to (22.2), it can be discharged at a certain  

 
 

Fig. 11.  4h-ahead Dual-Horizon 1σ reserve, High-wind, day 3 – Power 
exchange at GSP (a), dispatchable DG and Wind Power Injected (b), Load and 

Wind Power Curtailment (c), and Electrical Storage State of Charge (d). 

time t regardless of the potentially future upcoming deviations, 

thus affecting negatively its future availability and ability to 

provide further reserve in successive time steps. In contrast to 

formulation (22.2), in formulation (22.3) the EES energy 

available for reserve at time t is spread over the planning 

horizon’s successive time periods: considering the strong 

correlation between mismatches in adjacent time-steps, this 

helps cope with sustained deviations from the forecasts over 

different time steps in a more effective way, as the EES 

contribution to reserve is lower and so more dispatchable DG 

is committed which can flexibly provide reserve. Generally, 

speaking, as the cumulative error can be significant over a day 

in both cases (22.2) and (22.3) (see also Fig. 2 and Fig. 3), the 

decision of discharging the EES to mitigate deviations from 

the forecasts might lead to situations where the storage’s SOC 

is eventually too low and, at the same time, not enough 

dispatchable generation has been committed for reserve which 

leads to some mismatch from the committed schedule. 

Conversely, in formulation (22.1) all reserve can be provided 

by flexible dispatchable DG, while storage still provides 

energy balance support by storing and releasing energy when 

needed to mitigate deviations. Accordingly, the results 
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Fig. 12.  Daily energy mismatch comparison for the three reserve control 
strategies – medium wind scenario, day 1. 

indicate that it may be advisable not to include storage in the 

reserve provision with the given case study’s settings, and 

suggest that, in order to reduce the need for dispatchable 

generation as reserve (and possibly allow further integration of 

renewable energy) a substantially larger EES installed 

capacity might be required. This is object of ongoing 

investigations. 

V. CONCLUSIONS 

Within the general context of the transformation of 

distribution networks into distribution systems and of 

developing operational tools for the emerging role of DSO, 

this paper has presented a general dual-horizon rolling 

scheduling model for flexible ADSM based on a DACOPF 

formulation. The planning stage optimises dispatch on a 

“long-term” horizon committing imports and exports at the 

GSP (i.e., the interface between the TSO and DSOs). At the 

operation stage, network operations are controlled on a rolling 

“short-term” basis minimising deviations from the objective 

set at the planning stage.  

The importance of time horizon and reserve for 

commitment involving variable generation has been discussed 

and quantified. In particular, it has been demonstrated that the 

“perfect information” approach for ADSM planning with 

variable generation yields unrealistic results whereas the Dual-

Horizon rolling approach offers a better treatment of 

forecasting and planning uncertainties. In this respect, the 

benefits of using shorter planning horizons have also been 

quantified alongside the sizing of reserve and the technology 

providing this reserve (in particular, dispatchable DG and 

EES), demonstrating again the importance of considering 

uncertainties relative to the “perfect information” approach 

used in much of the literature. Furthermore, it has been shown 

that, if forecasting errors can be corrected by committed 

reserve, the effects of autocorrelations at the energy level may 

be severe and should not be neglected. This is particularly 

important if EES is used to provide reserve, as it might lead to 

situations where there is shortage of reserve. Therefore, as 

shown in the case study, it might be more beneficial to use 

storage to provide energy balance at the operation stage only 

and use dispatchable DG for reserve. Moreover, the DACOPF 

formulation adopted has proven capable of modelling the 

distribution network operations realistically, capturing for 

instance congestion issues. 

Within the framework proposed for ADSM, the model 

developed has proven to be able to perform a Dual-Horizon 

scheduling with a full dynamic AC OPF. The novelty of this 

approach lies in the possibility of not only planning 

operations, but also controlling its feasibility and performance 

through the rolling operations phase. The framework 

developed could subsequently be used to estimate the 

performance of real active distribution systems operations in 

presence of various DER. This can facilitate the transition of  

DNOs towards the DSO role, and the planning of TSO-DSO 

interactions as it allows estimating the balancing capabilities 

of distribution networks under different levels of local 

reserves and different time horizons with a comprehensive 

treatment of uncertainties.  

Applications under current investigation include optimal 

design of active distribution system assets to deal with long 

term uncertainties in planning.  
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