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Humanitarian clearance of minefields is most often carried out by hand, conventionally
using a a metal detector and a probe. Detection is a very slow process, as every piece
of detected metal must treated as if it were a landmine and carefully probed and
excavated, while many of them are not. The process can be safely sped up by use of
Ground-Penetrating Radar (GPR) to image the subsurface, to verify metal detection
results and safely ignore any objects which could not possibly be a landmine.

In this thesis, we explore the possibility of using Full Wave Inversion (FWI) to
improve GPR imaging for landmine detection. Posing the imaging task as FWI means
solving the large-scale, non-linear and ill-posed optimisation problem of determining
the physical parameters of the subsurface (such as electrical permittivity) which would
best reproduce the data. This thesis begins by giving an overview of all the mathe-
matical and implementational aspects of FWI, so as to provide an informative text for
both mathematicians (perhaps already familiar with other inverse problems) wanting
to contribute to the mine detection problem, as well as a wider engineering audience
(perhaps already working on GPR or mine detection) interested in the mathematical
study of inverse problems and FWI.

We present the first numerical 3D FWI results for GPR, and consider only sur-
face measurements from small-scale arrays as these are suitable for our application.
The FWI problem requires an accurate forward model to simulate GPR data, for
which we use a hybrid finite-element boundary-integral solver utilising first order curl-
conforming Nédélec (edge) elements. We present a novel ‘line search’ type algorithm
which prioritises inversion of some target parameters in a region of interest (ROI),
with the update outside of the area defined implicitly as a function of the target pa-
rameters. This is particularly applicable to the mine detection problem, in which we
wish to know more about some detected metallic objects, but are not interested in the
surrounding medium. We may need to resolve the surrounding area though, in order
to account for the target being obscured and multiple scattering in a highly cluttered
subsurface.

We focus particularly on spatial sensitivity of the inverse problem, using both a
singular value decomposition to analyse the Jacobian matrix, as well as an asymptotic
expansion involving polarization tensors describing the perturbation of electric field
due to small objects. The latter allows us to extend the current theory of sensitivity
in for acoustic FWI, based on the Born approximation, to better understand how
polarization plays a role in the 3D electromagnetic inverse problem. Based on this
asymptotic approximation, we derive a novel approximation to the diagonals of the
Hessian matrix which can be used to pre-condition the GPR FWI problem.
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Table 1: List of Abbreviations

ABC Absorbing Boundary Condition
ALIS Advanced Landmine Imaging System
BFGS Broden Fletcher Goldfarb and Shanno optimization algorithm
CFIE Combined Field Integral Equation
EFIE Electric Field Integral Equation

EIT Electrical Impedance Tomography
FE-BI Finite Element Boundary Integral
FEM Finite Element Method
FWI Full-Wave Inversion
GMRES Generalised Minimal Residual algorithm

GPR Ground-Penetrating Radar
IED Improvised Explosive Device
IFFT Inverse Fast Fourier Transform
ILU Incomplete LU decomposition
ILU-C Crout variant of ILU

LU Lower Upper decomposition A = LU
MD Metal Detector
MFIE Magnetic Field Integral Equation
MINRES Minimal Residual algorithm
MLFMA Multi-Level Fast Multipole Algorithm

NENH n̂×Electric n̂×Magnetic (formulation of CFIE)
NETH n̂× Electric Tangential Magnetic (formulation of CFIE)
PDE Partial Differential Equation
PEC Perfect Electric Conductor
PMC Perfect Magnetic Conductor
PML Perfectly Matched Layer

ROI Region of Interest
RWG Rao Wilton Glisson basis functions
SAR Synthetic Aperture Radar
SCPML Stretched Co-ordinate PML

SHF Super High Frequency (radio band)
SR1 Symetric Rank-One optimization algorithm
SVD Singular Value Decomposition
SVE Singular Value Expansion
TENH Tangential Electric n̂×Magnetic (formulation of CFIE)
TETH Tangential Electric Tangential Magnetic (formulation of CFIE)
TENENH Tangential Electric n̂×Electric n̂×Magnetic (formulation of CFIE)

TNT Trinitrotoluene (explosive)
UHF Ultra High Frequency (radio band)
UPML Uniaxial PML
UXO Unexploded Ordinance
VHF Very High Frequency (radio band)
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Chapter 1

Introduction

1.1 The Landmine Problem

1.1.1 Legacy of Landmines

According to the Landmine and Cluster Munition Monitor there is currently no cred-

ible estimate for the number of landmines currently planted in the ground, though

some sources put the estimate at 10 million [171]. A better indication of the impact

of mines on people is the amount of contaminated area, and what sort of land this

is. According to The Monitor’s latest report, Afghanistan, Bosnia and Herzegovina,

Cambodia and Turkey all have more than 100 km2 contaminated land [174], and a fur-

ther 18 countries are estimated to have contamination between 10 and 100 km2. They

state that in 2013 there were 3,308 reported casualties due to landmines, an average

of 9 per day, the vast majority of which (79%) were civilians. Of civilian casualties,

46% were children. It is further estimated by the United Nations (www.un.org) that

for every 5000 mines cleared, one worker will be killed and two injured by accidental

explosions.

While 162 states have signed the Mine Ban Treaty, there are still areas in the world

where new mines are being placed. It has been confirmed that between September

2013 and October 2014, there was new use of antipersonnel mines by government

forces in Syria and Myanmar (states not party to the Mine Ban Treaty), as was there

in the internationally unrecognised breakaway area of Nagorno-Karabakh. There have

been unconfirmed allegations of landmine use in the conflict between the Ukranian
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government forces and Russian-backed separatists [174].

1.1.2 Landmines, UXOs and IEDs

The Ottawa Treaty, often referred to as the Mine Ban Treaty but formally the Con-

vention on the Prohibition of the Use, Stockpiling, Production and Transfer of Anti-

Personnel Mines and on their Destruction, defines a landmine to be “a munition de-

signed to be placed under, on or near the ground surface area and to be exploded by the

presence, proximity or contact of a person or a vehicle” [173]. Such devices generally

fall under two categories: anti-personnel and anti-vehicle (or anti-tank) landmines.

Anti-personnel mine is defined by the Mine Ban Treaty as “a mine designed to be

exploded by the presence, proximity or contact of a person and that will incapacitate,

injure or kill one or more persons.” State Parties of the Mine Ban Treaty (currently

162 countries [174]) are obliged not to use, develop, produce, acquire, stockpile or

transfer anti-personnel landmines, but anti-vehicle mines are not covered by the ban.

While they will generally require much greater pressure to activate, they still pose a

threat to civilians. Devices set off by remote detonation are not covered by the treaty.

There are four main component parts to a landmine: an outer casing of plastic,

wood, rubber or glass; a fuse or other firing mechanism; a detonator; and high ex-

plosives. Anti-personnel mines are often roughly cylindrical in shape, ranging from

around 5 – 10 cm in diameter, but can also be cuboid or shaped like a butterfly. They

may contain large amounts of metal, designed to fire shrapnel out over large distances,

or may have a minimal amount of metal and so be difficult to detect using a metal

detector.

Homemade copies, or other homemade devices designed to detonate with the prox-

imity or contact of a person or vehicle, are called Improvised Explosive Devices (IEDs).

Unexploded Ordnance (UXOs) are explosive weapons such as bombs, rockets, missiles,

mortars and grenades which did not explode when used. Both IEDs and UXOs pose a

similar threat to civilians as anti-personnel mines: all are indiscriminate; they prevent

land from being used for farming, houses, schools and roads; and they kill or seriously

injure people trying to rebuild their lives for decades after a conflict.
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1.1.3 Humanitarian mine clearance

Most landmines are activated by pressure, and so their safe detection and removal

poses a significant risk. The terrain and local infrastructure may also make some

detection or clearance methods more difficult. Anything which requires large amounts

of power requires good enough local infrastructure to supply generators with fuel, and

rough terrain can make vehicle mounted clearance methods impossible. Minefields, of

course, exist where this is the case, and so we must have at our disposal a range of

detection methods small and light enough to be transported by hand or pack animal.

It is possible for hand-held devices to have some remote component, such as computers

or power generation, provided they are also small enough for transportation.

Humanitarian demining also has specific concerns which may not be relevant for

military demining. For humanitarian purposes, an area must be completely cleared of

all landmines in order for that area to be once again used, e.g. for agriculture. Military

demining may not have the same concern though, as it may only be necessary to create

a safe path through a known minefield. If this is the objective one can use a mine flail

to clear a path, which effectively crushes, sets off or moves mines in the path out of

the way. For humanitarian purposes, this only counts as preparing the ground prior

to clearance, as it cannot be guaranteed that all the mines have been destroyed, and

explosives will still be present.

1.1.4 Detection and classification tools

Given an area known to contain low metal content landmines, the mine clearance

process involves finding an object which may be a landmine, determining if the object

is or is not a landmine, followed by the safe removal of the object. In order to meet

the United Nations and International Mine Action Standards are met, contaminated

areas will generally be cleared manually, which is an expensive, slow and dangerous

process. The most common detection method used by mine clearing personnel is a

metal detector (MD), and every piece of detected metal is carefully probed to determine

if a mine is present. Metal detectors must be sensitive enough to detect minimum metal

mines (which may have as little as 1 gram of metal present), and so yield approximately

1000 false positives for every mine detected [172]. Metal free mines cannot be detected
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in this way, but these are rare. The need to determine what every piece of detected

metal is, and the large number of false positives, contributes significantly to the amount

of time it takes to clear minefields.

The other tools commonly at the disposal of mine clearance personnel are well-

trained dogs (or other trained animals such as rats), which are able to smell the

explosive chemicals such as TNT in landmines, and ground penetrating radar (GPR).

Other ongoing developments for mine-detection include explosives detection with Nu-

clear Quadrupole Resonance, infra-red methods, acoustics or ultrasound, and electrical

impedance tomography [106].

There are currently two field-deployed hand-held combined GPR and metal de-

tector landmine detection systems commonly available: MINEHOUND [49, pp 636]

and HSTAMIDS (Handheld STAnd-off MIne Detection System) [49, pp 665-667]. The

ALIS (Advanced Landmine Imaging System) [58,145,146] has also undergone success-

ful field trials, but is not yet in production. MINEHOUND presents ‘raw’ GPR data

to the user audibly as a tone which varies in amplitude due to reflection amplitude,

and pitch due to depth of target. HSTAMIDS similarly presents the data audibly, but

this is after data has been processed (the processing algorithms used are not known to

have been published), whereas ALIS presents the user with a SAR image of the sub-

surface. As well as these already fielded systems, much consideration has been given

to appropriate imaging and signal processing methods for GPR landmine detection.

For example, using migration or synthetic-aperture imaging [58,145,146,156,162,164],

or pattern recognition and signal filtering methods [20,101,144,147,165,178,179,198]

The dual sensor ALIS has been able to achieve over 50% reduction in false alarm

rate at test lane trials in Croatia [60, pp 39], and varying amounts up to 36% in

Cambodia [60, pp37]. During MINEHOUND tials in Cambodia between August 2010

and December 2013, 845 landmines were correctly identified in an area of 573,109 m2,

while crucially 92% of metal objects were correctly rejected as clutter [43]. 99% of

metal targets were able to be rejected in an anti-tank minefield in Afghanistan, since

these targets are easier to discriminate. Trials of the HSTAMIDS system in Thailand

also had a good clutter rejection of 77% compared with metal detection alone [50].

It is clear that one detection modality and equipment may never be sufficient

for all locations landmines are found, and for all types of landmine. For example,
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metal detectors will never work on metal free landmines, GPR works poorly in highly

conductive soils, and dogs and other animals cannot work in highly contaminated

areas and, being animals and not machines, may make mistakes or simply not wish

to work. Some detection methods may also work well together as a primary detection

and secondary classification modality. For example, the case of a metal detector to

find a target, and GPR to determine the shape and material of the target.

1.1.5 Demining procedure for combined metal-detection and

GPR

When using the MINEHOUND, the demining procedure developed by the Halo Trust

for humanitarian clearance is summarised as follows [42]:

1. Mark out a lane from the side of the minefield.

2. Walking along the safe (previously cleared) side of the lane, with MINEHOUND

in metal detection mode mark every piece of metal with a red tag.

3. Walking along the safe side of the lane, with MINEHOUND in GPR mode explore

each marked target for GPR signal.

4. Replace the red tag over metal targets which had no GPR signal with a blue

tag.

5. Carefully excavate all red targets, on the assumption they are landmines.

6. Flail all remaining metal only targets, destroying them so they are not re-

detected

7. Move the demined line forwards, marking out a new lane, and return to 2.

Note that in this procedure, deminers are working from one side of a field across, a small

distance in at a time, as opposed to individual lanes taking deminers a large distance

into the field. The excavation (and destroying of mines) portion of the procedure is

done to international standards, and is the same as if a metal detector alone had been

used: the GPR simply allows some metal targets to be ignored.



CHAPTER 1. INTRODUCTION 24

It is preferred that any new equipment could easily be incorporated into a similar

procedure as above, so that deminers can continue to work in a way with which they

are familiar with (removing some need for retraining), and that has been shown to

work. More advanced GPR imaging could easily be incorporated into this procedure,

simply by adding an additional stage in which those metal targets which did have a

GPR signal are also imaged, enabling more to be rejected as clutter. In this thesis

we are considering the use of Full-Wave Inversion (FWI), which is a computationally

expensive method. The computational expense means it may be some time before FWI

can be carried out in real-time on field portable computers. This should not deter us,

as improvements in computer power will be naturally driven by other applications,

and landmines will continue to be an issue for a long time to come.

It is also possible that the computation could be carried out in the naturally large

amount of time between the MD and GPR scan. GPR data could be collected simulta-

neously to MD data to be processed (only if a return was detected) while the deminer

continues up the lane (transmitted to a nearby computer if necessary). A system such

as a barcode on the red tags could identify the processed images with detected tar-

gets, which could be aligned with metal detection data to determine an origin. For

a simple safety check, the GPR data taken when the deminer explores the target in

GPR mode (the second pass) could be compared with that taken in the background in

MD mode (the first pass), validating the pre-processed image and ensuring the data

does correspond to the given ‘GPR code’. Deminers should of course be given both

the raw and processed data, to let them make the decision of mine/not a mine. The

practicality of such a method could only be determined by field testing, and it may of

course be preferable to wait a little longer for more powerful portable computers.

1.1.6 Some specific challenges for GPR landmine detection

Unlike in metal detection, the electromagnetic field emitted by a GPR is greatly af-

fected by soil characteristics and clutter in the ground. Firstly, any landmine detection

system (and imaging method) will need to cope with the wide range of soil types in

which landmines are found: not only a wide range of permittivities, which primarily

will effect the wavelength in the ground (and therefore image resolution) as well as

the ground surface reflection, but also a wide range of conductivities, which will affect
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signal attenuation. Both will affect the contrast of detected targets to the background.

GPR is also greatly affected by inhomogeneities in the soil, whether they are clutter

objects, for example pieces of waste tin can, or local changes in the soil itself such as

patches of clay, layers or stones. These inhomogeneities cause additional reflections and

change the ray-path of the electromagnetic wave, making it harder to image targets

in the subsurface.

Some specific challenges to GPR landmine detection occur because of clutter in

the ground. For example, landmines may often be placed under trees because people

will shelter there from the midday sun. In some places, these trees have been grown in

tin pots, and the tree planted out still in the pot. As the tree grows the pot is broken

and pieces of tin are spread out in the soil, creating a highly cluttered environment

in which it can be very hard to detect and classify a landmine amongst the roots,

pieces of tin and soil [65]. The soil itself can often confuse the results of a GPR for de-

miners. For example, patches of clay soil, water or air in the ground can give a similar

response to a landmine, leading de-miners to carefully excavate an area to find nothing

present [42]. Landmines are found in both rural and (semi) urban environments, in

which the type of clutter and ground will be vastly different. Examples such as these

highlight why imaging methods for mine detection must be able to cope with an

inhomogeneous subsurface, and may need to do more than determine the shape of an

object to identify it.

Not only should imaging methods be able to cope with these difficulties, but they

must also improve on the current status quo. That is, we must have a 100% detection

rate, and to reduce false positives by more than 90%. A new GPR and imaging method

is only an improvement then if, of the false positive detections of a metal detection

system, at most 1 in 100 false positives are not rejected – we should aim for a 99%

reduction. Of course, performance at the same level as systems currently available

but either being more affordable would also be an improvement, but not the area this

thesis will concentrate on.
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1.2 Thesis overview

1.2.1 Aims and objectives

This thesis is concerned with the use of GPR imaging algorithms to classify detected

objects, to allow de-miners to safely ignore targets which cannot be part of a landmine

(reducing the rate of false positives), thus safely speeding the detection process. Such

algorithms must be capable of operating in the highly cluttered and wide-ranging

environment in which landmines are found, as well as able to obtain more information

useful in reducing the rate of false positives. Specifically, we will explore the possibility

of using Full-Wave Inversion methods (FWI), in which quantitative information is

gained about detected targets and multiple scattering is solved for as part of the

imaging algorithm. The aims of this thesis are then as follows:

1. Present the state of the art, theory and implementational aspects of Full-Wave

Inversion for GPR in a manner suitable for the general scientific audience;

2. Develop shallow subsurface FWI algorithms for hand-held GPR data, which are

capable of imaging a highly cluttered environment and give more information

about detected (metalic) objects to help reduce the rate of false positives;

3. Better understand spatial sensitivity of the 3D electromagnetic imaging problem,

specifically with regards to how the number, layout and polarization of GPR

antennas in a hand-held device affects the ability to image the subsurface and

to resolve or destinguish different targets.

While this thesis primarily presents numerical experiments into FWI, laying the ground-

work for future development using the method for mine detection, we also give all the

relevant background material and numerical recipes, so that readers have all the in-

formation available in one location for further study in FWI for mine detection. Our

hope is that the thesis provides an informative text both for mathematicians (perhaps

familiar with other inverse problems) wanting to contribute to the mine detection

problem, as well as a wider engineering audience (perhaps already working in GPR

and/or mine detection) interested in the mathematical study of inverse problems and

FWI.
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1.2.2 Layout of thesis

We begin in Chapter 2 with an introduction to inverse problems theory and ground-

penetrating radar hardware and imaging, as well a review of the current state of

full-wave inversion and an overview of how this optimisation problem can be solved.

This background material is supplemented in Chapter 3 by a presentation of the fun-

damental equations governing electromagnetic wave scattering – Maxwell’s equations.

Chapter 4 explores FWI in 2D, both with a numerical experiment into recon-

structing fairly complex targets but also explaining in some depth all the aspects of

the inversion procedure. We expect this chapter to be useful primarily to those unfa-

miliar with either FWI or non-linear inverse problems, and others may wish to read

ahead to the more novel content of the thesis. We use a finite-difference approximation

of the Helmholtz equation as the forward model (simulating GPR data), and apply

appropriate Total Variation regularisation to the inverse problem. As we are well able

to reconstruct targets in the shallow subsurface with data simulated for small hand-

held arrays, in Chapter 5 we explore more formally what is required of an acquisition

system for FWI (as well as improving mine detection) by way of an SVD analysis.

Such analysis is often used in inverse problems, and while it has been applied to FWI

to understand the conditioning of the problem, we go further by using the singular

vectors to explore the null and image spaces.

A 2D approximation is not appropriate for landmine detection, as landmines are

distinctly 3D objects and detection is hampered by out of plane (possibly multiple)

scattering. Performing FWI in 3D requires an accurate 3D forward model, simulating

the more complex scattering problem and incorporating polarization effects as well as

source models and ground transmission/reflection. In Chapter 6 we present a com-

bined finite-element boundary-integral (FE-BI) solver, in which the boundary integral

portion describes the ground transmission/reflection of electromagnetic waves and al-

lows any incident source field to be applied, giving a novel way to simulate GPR data.

Simulations are compared with GPR field data, and a qualitative comparison gives

promising results.

Chapter 7 is concerned with sensitivity of the electromagnetic inverse problem

in 3D. We present an asymptotic approximation of the scattering of electromagnetic

waves by a small object from the literature, using polarization tensors, and show that
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it can be written in a more familiar and useful form for GPR. This approximation

is used to understand spatial sensitivity, and using it we derive a novel expression

for the wavenumber coverage in the image domain, extending literature results which

apply to scalar valued waves. This gives a novel understanding as to how cross-polar

measurements can improve resolution, by adding an additional class of test functions

for the inverse problem. We highlight this idea of sensitivity using the polarization

tensor approximation via some numerical experiments into the performance of given

acquisition arrays in distinguishing mine-like targets.

While FWI for GPR is well studied in 2D, as are iterative and non-linear 3D inverse

electromagnetic and wave scattering problems, we present in Chapter 8 the first numer-

ical experiments into 3D FWI for near-surface GPR data recorded on small hand-held

arrays. We find we are easily able to reconstruct isolated objects, and then give a

novel algorithm to improve reconstruction of a target in a known location surrounded

by a highly inhomogeneous medium. While we are restricted by computational cost

as to the size of problem we are able to solve, this chapter provides the basis of for

future development of 3D FWI for landmine detection. We discuss how the method

can give certainty that detected targets are not landmines, and what would need to

be done for this to be realised.

Finally, in Chapter 9 we derive a novel approximation to terms in the Hessian ma-

trix which can be used to precondition the l-BFGS optimisation scheme. This extends

theory used for preconditioning FWI of scalar-valued waves, but also approximates the

change in components due to their contrast to the surrounding medium. We use the

ability to estimate the change in Hessian components in this approximation in a novel

trust-region model, enabling us to efficiently determine an appropriate first step length

in the optimisation procedure. This is particularly useful as quasi-Newton algorithms

such as l-BFGS often require many cost function evaluations in the first iteration to

find an appropriate step length, due to a poor initial Hessian approximation. We

compare the pre-conditioned to l-BFGS to l-BFGS initialised with the identity matrix

in some numerical experiments, to help to understand its effectiveness. While the

Hessian is derived with an expression appropriate for FWI of electromagnetic waves,

the same principle could be used for any modality which has an asymptotic expansion

involving polarization tensors.



CHAPTER 1. INTRODUCTION 29

1.2.3 Outputs arising from this thesis

The following papers are in preparation as a result of this research:

• A. Adler, WRB. Lionheart, and F. Watson. Shape sensitivity of EIT and GPR.

Working title

• Francis Watson. A full-wave inversion strategy for surface GPR measurements

to determine 3D targets in an area of interest. Working title

• Francis Watson. A novel preconditioner for the GPR full-wave inversion problem

in 3D

The following paper was presented at GPR 2014:

• F Watson and WRB Lionheart. SVD analysis of GPR full-wave inversion. In

Ground Penetrating Radar (GPR), 2014 5th International Conference on, pages

484–490, 2014

It has also resulted in an open access suite of Matlab functions to solve GPR FWI

problems [194].

Contributed talks were given at the BAMC 2014 and 2015; GPR 2014; the Medical

Imaging Workshop at the University of Strathclyde, Glasgow, May 2014; and the

Manchester Student SIAM Chapter Conference 2015. An invited seminar was given

at Hull University in May 2015, and poster presentations given at the Parliamentary

SET for Britain Exhibition 2014 and the BAMC 2013 (the latter being awarded the

Best Student Poster prize).



Chapter 2

Full-Wave Inversion of GPR Data

2.1 Introduction

This chapter sets out the basic theory needed throughout the thesis. We begin by

introducing to the reader to the concept and basic theory of inverse problems. An

inverse problem is, given some measurements, determine what caused them – clearly

GPR imaging is an inverse problem. We then discuss the basics of GPR theory, cover-

ing the current (commercial) industry standard of both equipment and data processing

and imaging. In Section 2.4 we discuss the GPR imaging problem in the context of

related electromagnetic inverse scattering problems, before reviewing the non-linear

imaging method this thesis concentrates on, namely Full Wave Inversion.

Readers with a background in mathematical inverse problems may wish to refer to

only Section 2.3, covering the basics of GPR theory to better understand the problem

at hand. Posing the imaging problem as a (nonlinear) regularised least-squares problem

will likely be familiar to members of the inverse problems community, but the current

literature is reviewed in Section 2.5 if they are interested in the current state of GPR

FWI as compared to other nonlinear inverse problems.

Equally, those with a background in GPR will likely find Section 2.3 quite basic, but

be more interested in the mathematical perspective of imaging in general, Section 2.2,

as well as the overview of the state of FWI. As well as reviewing the literature on

GPR FWI, Section 2.5 also covers the basics of how posing the imaging problem as

an optimisation one can be solved, giving features such as the gradient and Hessian of

the data misfit functional’s physical meaning.
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2.2 Inverse and ill-posed problems

2.2.1 Forward versus inverse problems

We follow Mueller and Siltanen [121] to overview the basic concepts and features of

a non-linear inverse problem, which is defined as the opposite of a direct, or forward,

problem. That is, a direct problem is one in which we find an effect from a known

cause, and an inverse problem is one in which we try to determine the cause of an

observed effect. Given a map

F : X → Y F : m 7→ d,

the forward problem is to calculate the observable quantity d = F(m), and the inverse

problem is to determine some model parameter(s) or function(s) m which caused the

observed quantity d. Without loss of generality, we may consider X ⊂ Rp and Y ⊂ Rq.

For example, in X-ray tomography, the forward problem is to simulate some X-ray data

which would be observed from a known object. The inverse problem is to determine

what object gave rise to the recorded data. Landmine detection is of course an inverse

problem, by whatever modality we use to detect them.

In the mathematical study of inverse problems, one is generally concerned with ill-

posed problems. A well-posed problem f : X → Y , as defined by Hadamard [67, pp.

4952], is one which has

1. Existence: there is at least one solution to f(x), x ∈ D(f) ⊂ X, the domain of

f ;

2. Uniqueness: given m ∈ D(f), there is at most one solution to f(x);

3. Stability: the solution y = f(x) varies continuously with the input x.

An ill-posed problem is one which fails one or more of these conditions. Necessarily,

the direct problem F is well posed: F is a well-defined, single valued continuous func-

tion. However, F−1 may not exist, and if it does it may fail at least one of Hadamard’s

conditions. For example, the deblurring of a noisy, out of focus or deteriorated photo-

graph to restore the original is an ill-posed problem: a solution exists, but we can likely

find multiple possible originals as information has been lost in the blurring. However,
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restoring a photograph from its negative is well posed: the map between photograph

and negative is bijective. The former is interesting to us mathematically, whereas the

latter is a trivial process.

For practical problems, one can only have indirect measurements which contain

noise,

d = F(m) + ε. (2.2.1)

We may have statistical information on the noise ε, such as its distribution or standard

deviation, or we may think of it as a deterministic but unknown quantity. In either

case, we assume it is bounded by ‖ε‖ < δ, for some δ > 0. The inverse problem is

now:

Given some measurements which contain noise, d = F(m) + ε, find the

parameters m which gave rise to the observed data.

The naive solution to the inverse problem is to apply F−1 to d, or if the operator

does not exist we can define it in the least-norm sense

F−1(d) := argmin
m∈X

‖F(m)− d‖. (2.2.2)

Since we are considering ill-posed inverse problems, one of Hadamard’s conditions fails

for F−1. If 1. is violated, d = F(m) + ε does not lie in the range of F , d /∈ F(D(F)).

Criteria 2. fails if F(m1) = F(m2) for some m1 6= m2 ∈ X, and 3. is violated if F

does not allow a continuous inverse.

When one of Hadamard’s conditions fail, the naive inversion F−1 may give a so-

lution far from the true model parameters. It may be an non-physical solution which

does not lie in D(F), and the contribution from noise ε may dominate the solution.

Often, the contribution from noise will be highly oscillatory.

2.2.2 Regularised inversion

Since the naive solution to the inverse problem will fail, we introduce the restricted

inverse problem,

Let d = F(m) + ε. Given d and δ > 0 with ‖d− F(m)‖ ≤ δ, extract any

information about m.
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This information could include the number and location of inclusions, the shape and

size of an object, or a simple binary decision such as landmine or not a landmine.

To solve this problem, we introduce the regularised inverse operator Rλ : Y → X,

which depends on the regularisation parameter 0 < λ <∞. For Hilbert spaces X and

Y , and F : X → Y an injective bounded linear operator, the family of maps Rλ is

called a regularisation strategy if

lim
λ→0
RλF(m) = m ∀m ∈ X. (2.2.3)

Given a noise level δ > 0, so that ‖d−F(m)‖ ≤ δ, a choice of regularisation parameter

λ(δ) is called admissible if

λ(δ)→ 0 as δ → 0 and

sup
d

{
‖Rλ(δ)d−m‖ : ‖F(m)− d‖ ≤ δ

}
→ 0 as δ → 0 ∀m ∈ X.

(2.2.4)

A regularisation strategy then is one which recovers the true parameters m if there

is no noise and λ = 0, and if the regularisation parameter is admissible we have a

solution which does not blow up with noise: the regularised inverse operator Rλ is

robust to noise.

To solve an inverse problem, typically we must discretise the direct problem in order

to compute solutions numerically. The model parameters m are approximated by some

vector m, where either mi ≈ m(xi), the value of m at some discrete points, or more

generally mi are the coefficients of a set of functions φi(x) such that m ≈
∑

imiφi.

Equally, the data is simulated at a discrete set of points d = F(m). We have abused

the notation F(m) to imply the numerical solution to the direct problem. Throughout

this thesis, we have used bold-face to denote vectors of arbitrary dimension (e.g. m),

and capital letters in standard maths-italics for matrices (e.g. L).

Note that our choice of discretisation is in itself a form of regularisation: we are

restricting the solution to the inverse problem to lie in our discrete function space.

The numerical solution of the direct problem is in general a non-trivial part of the

inverse problem. If the inverse problem is sensitive to noise, it will also be sensitive to

numerical errors in the solution to the discretised direct problem.

A classical choice of regularisation strategy, and a common choice for linear inverse

problems, is Tikhonov regularisation Tλ,

Tλ(d) := argmin
m

{
‖F(m)− d‖2

2 + λ‖m‖2
2

}
. (2.2.5)
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This can be understood as balancing two requirements:

1. Tλ gives a small residual F(Tλ)− d;

2. Tλ should be small in the L2-norm.

The regularisation parameter λ then tunes these requirements. There may typically

be many choices of Tλ satisfying 1, so one of the roles of 2. is to ensure the solution is

unique.

We may have prior knowledge of the solution to the inverse problem, such as it

may lie close to some m∗. In this case, we can generalise Tikhonov regularisation to

Tλ(d) := argmin
m

{
‖F(m)− d‖2

2 + λ‖m−m∗‖2
2

}
. (2.2.6)

If the noise in the data is Gaussian white noise, the Tikhonov regularised solution is

equivalent to the maximum a posteriori (MAP) estimate of m given data d and noise

variance η in the Bayesian interpretation of the inverse problem, where in the Bayesian

case λ is related to the variance of the noise (see for example [25, pp. 183-188]).

Tikhonov regularisation can be generalised further as

Tλ(d) := argmin
m

{
‖F(m)− d‖2

P + λ‖m−m∗‖2
Q

}
, (2.2.7)

where ‖x‖2
Q ≡ xTQx is a weighted l2 norm. In the Bayesian interpretation, the matrix

P is the inverse covariance matrix of d, while Q is the inverse covariance matrix of

m. For example, if we know the solution is smooth we may choose for a regularisation

strategy

Tλ(d) := argmin
m

{
‖F(m)− d‖2

2 + λ‖Lm‖2
2

}
. (2.2.8)

or

Tλ(d) := argmin
m

{
‖F(m)− d‖2

2 + λ‖L(m−m∗)‖2
2

}
, (2.2.9)

where L is a discretised differential operator. In general, our regularisation operator

will take the form

Rλ(d) := argmin
m

{
‖F(m)− d‖2

2 + λR(m)
}
, (2.2.10)

where R is a function penalising deviation from prior known information about the

solution to the inverse problem. Often R is an lp norm, and for 0 ≤ p ≤ 1 such a

regularisation strategy promotes a sparse solution to the inverse problem.
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2.3 GPR theory

2.3.1 GPR data and equipment

Ground penetrating radar equipment consists of one or more transmitting antennae

and one or more receiving antennae either on or above the ground surface or buried in

boreholes; a processor; and a display. The transmitting antenna radiates an electro-

magnetic wave in the microwave band, and reflections of the wave caused by objects in

the subsurface or changes in dielectric constants are recorded at the receiving antenna,

as shown in Figure 2.1. The source signal may be amplitude, frequency or phase modu-

lated; or a noise signal. Most GPR systems use an impulse signal, with the reflections

being recorded by a sampling receiver in the time domain. Stepped frequency and

frequency modulated systems, recording in the frequency domain, are becoming more

popular as their dynamic range can be greater than time domain radar, though there

is little commercially available [41, pp 13, 36].

Transmitter Receiver

Air

Ground

Figure 2.1: Schematic of GPR system and susbsurface, showing some of the ray paths
between the transmittter and receiver.

The majority of commercially available GPR systems are either monostatic (us-

ing either a pair of co-located antenna or a single antenna which switches between

transmitting and receiving) or are bistatic (using a single transmit and single receive

antenna) pulsed systems.
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2.3.2 GPR data processing and imaging

Traditional GPR data processing is largely focussed on signal processing, rather than

inverse problems and imaging. We make the (rather informal) distinction that signal

processing is largely to reduce clutter in the data, presenting it in a way which can

more readily be interpreted by the end user; whereas inverse problems and imaging

are the approach by which we find some set of parameters describing the subsurface

which, when inserted in to the governing equations of electrodynamics, would best

reproduce the data.

Let us denote the recording of the full set of (time domain) GPR data as the 3D

matrix D, where element Dijk is the GPR recording at receiving antenna position

xi, yj and time tk (assuming a single receiving antenna). Subsets of D are commonly

referred to as A, B and C -scans, where an A-scan is a single recorded waveform, a B -

scan is an ensemble of waveforms in one surface coordinate direction, and the C -scan

is an ensemble of waveforms over both surface coordinate directions for a fixed time

(or depth). That is, the A, B and C -scans are defined as

fA(tk) =Dijk for i, j constant, k ∈ 1 : n (2.3.1a)

fB(xi, tk) =Dijk for i ∈ 1 : p, j constant k ∈ 1 : n, (2.3.1b)

fC(xi, yj) =Dijk for i ∈ 1 : p, j ∈ 1 : q, k constant (2.3.1c)

In general, time t is interchanged with depth z by an approximation of the speed of

wave propagation (or, more precisely, the distance from the antenna).

The received time waveform in an A-scan can be described as the convolution of

functions, plus noise ε, as [45]

fA(t) = fs(t) ? fa1(t) ? fc(t) ? fg(t) ? ft(t) ? fg(t) ? fa2(t) + ε, (2.3.2)

where fs is the signal applied to the antenna, fan are the antenna impulse responses,

fc is the antenna cross coupling response, fg is the ground impulse response, and ft is

the response of subsurface targets. In this setting, A-scan processing can primarily be

considered as determining the signal ft due to the targets underground, and finding

the parts of ft relating to targets of interest. This largely consists of [41, pp 147-174]:

• zero-offset removal (ensuring the mean value of the A-scan is close to zero);
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• noise reduction (such as averaging co-located samples);

• clutter reduction (such as averaging a group of A-scans over the area of interest);

• varying gain to account for amplitude loss with distance

• high-pass filtering to improve signal-to–clutter ratio, and low-pass to improve

signal-to-noise ratio;

• wavelet optimisation resulting in the deconvolution of the wanted signal (e.g.

application of the Weiner filter);

• determining the resonant frequency of characteristic targets;

• spectral analysis methods which avoid limitations of the fast Fourier transform

when a frequency domain signal has been recorded, such as multiple signal clas-

sification (MUSIC).

We see that A-scan processing essentially involves pre-processing the GPR data.

As above, a B -scan can be considered an ensemble collection of (pre-processed)

A-scans. This will exhibit hyperbolae-like structures caused by the reflection of waves

from targets, due to the distance of the target to the antenna as it is moved being

hyperbolic. B -scan processing is largely to determine target surfaces, either using

migration methods or synthetic-aperture radar. Alternatively, B -scan processing can

be considered an imaging processing problem, in which one carries out 2D convolution

operations to highlight features in the data such as edges. Many of the processes

applicable to B -scans are also suitable for C -scan processing.

2.4 Electromagnetic inverse problems and imaging

Ground penetrating radar is an inverse problem in which we wish to gain knowledge

of the structure of, or objects in, the subsurface, from measurements of reflected

electromagnetic waves. The electromagnetic waves emitted by the GPR system are

primarily in the Ultra-High Frequency band (UHF, 300 MHz – 3GHz), although there

are some systems which operate in the upper VHF (Very-High Frequency, 30 – 300
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MHz) or lower SHF (Super-High Frequency, 3 – 30 GHz) region. This puts GPR in

the middle of a range of electromagnetic inverse problems.

At the bottom end of the frequency scale is Electrical Impedance Tomography

(EIT, see for example [27,175]), which operates from zero frequency up to the low kHz

band. Both the objects being imaged with EIT and the domain are far smaller than

the wavelength, and so one can think of the modality as determining the resistivity

(reciprocal of conductivity) to the application of a direct current (i.e. an infinite

wavelength), which is a highly ill-posed non-linear problem. At the other end of the

spectrum lies X-ray tomography [52], where X-rays have a frequency above 300 PHz

and a wavelength less than 1 nm. In X-ray tomography, one measures the absorption

of X-ray beams as they pass through a body. The beams are generally considered not

to scatter at all, and so the inverse problem is linear and only mildly ill-posed. Some

small amount of scattering can occur, which if included in the forward model makes

the inverse problem mildly nonlinear.

Between these lower and upper limits of the electromagnetic frequency scale are the

modalities most similar to GPR: radio frequency imaging such as Radar; microwave

tomography (GHz band); optical tomography [17] and Tomographic Diffractive Mi-

croscopy (e.g. [61,89]) (infra-red to visible light spectrum); and many other modalities

and variants throughout the spectrum. In these examples, as with GPR, the objects

being imaged are generally on the order of or larger than the wavelength, and so the

dominant feature of the forward problem is scattering. The ill-posedness of the inverse

electromagnetic scattering problem is between that of EIT and X-ray tomography,

though in the low-frequency limit (i.e. for objects sufficiently small compared to the

wavelength in the near field), it may be similar to to EIT.

We can use the Helmholtz equation to highlight the non-linearity in the inverse

scattering problem. Consider first a domain Ω with homogeneous wave speed c0, in

which the wave field u0 satisfies(
∇2 +

ω2

c2
0

)
u0(ω,x) = s(ω,x),x ∈ Ω. (2.4.1)

For a domain with wave speed perturbed by some δc, the total field u+ δu satisfies(
∇2 +

ω2

(c0 + δc(x))2

)
(u0 + δu)(ω,x) = s(ω,x), x ∈ Ω (2.4.2)
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Subtracting (2.4.1) from (2.4.2), we find the perturbation in wave field δu owing to

perturbation in wave speed satisfies(
∇2 +

ω2

c2
0

)
δu = −ω2V (x)(u0 + δu), (2.4.3)

where the reflectivity V is given by

V (x) =
1

c2
0

− 1

(c0 + δc)2
. (2.4.4)

In integral form, the solution of equation (2.4.3) is given by

δu =

∫
G0(x, z)V (z)ω2

(
u0 + δu

)
(ω, z) dz, (2.4.5)

where G0 is the freespace Green’s function for the Helmholtz equation (detailed in

Chapter 3). Equation (2.4.5) is referred to as the Lipmann-Schwinger equation [36, pp.

53].

In equation (2.4.3), the scattered wave δu appears both on the left hand side

and as a source term, and in equation (2.4.5) it appears both within and outside

of the integral. The wave scattered at z by the perturbation δc(x) is re-scattered

at x by the perturbation δc(z). This is the source of the non-linearity of (δu) with

δc, and therefore of the inverse problem. In Chapter 3, we see that the Helmholtz

equation is a good approximation to the electromagnetic scattering problem under

certain assumptions, but the non-linearity of the scattering problem holds in the full

electromagnetic scattering case.

The Lipmann-Schwinger equation can be expanded as a Neumann series

δu =

∫
G0(x, z)V (z)ω2u0(ω, z) dz

+

∫
G0(x, z′)V (z′)ω2

∫
G0(z′, z)V (z)ω2u0(ω, z) dz dz′

+

∫
G0(x, z′′)V (z′′)ω2

∫
G0(z′′, z′)V (z′)ω2 . . .∫

G0(z′, z)V (z)ω2u0(ω, z) dz dz′ dz′′ + . . . ,

(2.4.6)

which can be shown to converge provided the scattered fields are sufficiently small [36,

pp. 54]. The series (2.4.6) makes the multiple scattering mentioned above clear. The

linear approximation of (2.4.5) in δc is given by truncating the Neuman series to first

order,

δu =

∫
G0(x, z)V (z)ω2u0(ω, z) dz +O(δc2) := δuB +O(δc2), (2.4.7)
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where δuB is called the Born approximation. We see that (2.4.7) is a single scattering

approximation, with the error term O(δc2) incorporating all multiple scattering.

Denote by FB the map FB : δc 7→ δuB the linear operator (or Born operator). In the

linear approximation, closed-form solutions to the inverse electromagnetic scattering

problem of finding can be made to determine some (approximation to) F−1
B . For

example, Somersalo et al obtain an approximate solution in the form of an inverse

Fourier transform of the data [160]. They make the assumption that the wave fields

are in the form of distorted plane waves, for which they give well bounded estimates

of the second order error term in the perturbation of permittivity, permeability and

conductivity. Closed-form solutions can also be posed as an inverse generalized Radon

transform, for example [26,47,48,117]. The use of an inverse Radon transform to solve

the inverse scattering problem not only relates the inverse scattering problem to X-ray

CT [52], but a much more general class of geometrical inverse problems, for example

as discussed by Palamodov [127–129]. For time domain data, by Miller et al [117], we

have

Ṽ (x) =
1

π2

∫
| cos3 α(r,x, s)|
c3

0A(r,x0,x)
δu(r, s, t = τ0) d2ξ(r,x, s). (2.4.8)

Here, Ṽ is an estimation of V , r and s are the locations of source and receiver, α is half

the angle between incident and scattered rays at x, A is the amplitude of the relevant

Green’s function (i.e. 2D or 3D), τ is half the the travel time from s to x then to r,

and ξ is a unit vector in the direction of travel-time gradient ∇xτ(r,x0, s), and α is

half the angle between ξ and the ray path from source to observation point.

Many similar expressions to (2.4.8) have been used for the inverse scattering prob-

lem in seismology, including the well known Kirchhoff migration formula

P =
1

2π

∫ [
cosα

c0r

∂

∂t
u0(s, r, r/c0)

]
ds, (2.4.9)

as applied to the GPR landmine detection problem by Feng and Sato [58]. In (2.4.9)

P is a back-projection of the data, which we can understand as data residual terms

being ‘projected’ to where reflections could have originated if we reversed time in

the wave equation. This results in an ‘image’ of the subsurface, in that it will have

greatest amplitude at the locations in which reflection occurred due to constructive

interference.

Such methods will break down when either there is a poor estimation of the
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wavespeed or multiple scattering is prevalent, and give rise to coherent artefacts in

the image. With a poor estimation of wavespeed, the perturbations in wave speed

found by expressions such as (2.4.8) and (2.4.9) will be wrongly placed in the subsur-

face, and data due to multiple scattering will be resolved as if it were due to additional

scattering surfaces – seen as extra layers beneath those physically present. They also

give only qualitative rather than quantitative information, in that they locate discon-

tinuities of wavespeed in the subsurface (which give rise to reflections), and therefore

show the shape of the objects, rather than determine what the wavespeed (or other

physical parameters) is as a function of space.

In the landmine detection problem we are often faced with a highly inhomogeneous

medium, with locally varying ground conditions and many clutter objects. We would

also like to gain quantitative information about detected objects, as an additional

measure to decide if a target could be a landmine, and so would like to solve the

full non-linear electromagnetic inverse problem. Generally, there are no closed form

solutions to fully nonlinear electromagnetic inverse problems (one notable exception

is the D-bar method for EIT, see e.g. [87]), and so we must attempt to solve the

regularised inverse problem (2.2.10) numerically with some appropriate optimisation

scheme. All of the aforementioned electromagnetic inverse problems can (or in some

cases must) be treated this way. For GPR reflection data, posing the inverse problem

as the non-linear regularised least-squares problem such as (2.2.10) is referred to as

Full-Waveform Inversion, which we review in the subsequent section.

2.5 Improving GPR imaging with full-wave inver-

sion

2.5.1 Introduction

Full-waveform inversion (FWI) is an imaging approach in which we find the quantita-

tive subsurface parameters (such as the dielectric permittivity) which would best fit

the recorded GPR data. The solution of the FWI problem requires many numerical

solutions of Maxwell’s equations for comparison with the recorded radar data, and so
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has a very high computational cost. Indeed, solving this non-linear optimisation prob-

lem requires at least one solution of Maxwell’s equations per iteration, per frequency

and per source location to calculate the current cost of the objective function, with

more to perform a line search and calculate a gradient. Because of this computational

cost, much of the research into FWI has been restricted to 2D inversions.

Despite the computational cost, there are several benefits in taking a FWI ap-

proach to GPR imaging, the most obvious of which being gaining information about

material properties. Unlike the more common direct imaging approaches, which are

able to determine qualitative information about detected objects, by finding the set

of subsurface parameters which would best reproduce the data we gain this as quan-

titative information – as well as the qualitative information seen by the boundaries

between material types. We may even be able to determine how well resolved this

quantitative information is [111].

Further, by taking a full-waveform approach, our inversion naturally includes non-

linear effects in the data such as multiple scattering and diffraction. Contrarily, in

a direct linear inversion, any observed non-linear effects will not match any single

scattering and background wavespeed assumptions made, and so will cause artifacts

in the image. The data is often filtered before direct inversions to attempt to remove

these non-linear parts of the data and so reduce the resulting artefacts, but this has

the effect of reducing the information content of the data.

2.5.2 An overview of full-wave inversion

Given a recorded GPR data set dobs, which will contain some unknown noise, and a

model of simulating data F : m 7→ dsim for a given set of parameters m describing the

electromagnetic properties of the subsurface (in some discretisation), the full-waveform

problem is to find the m which solves

minv = argmin
m∈M

J (m) +R(m) = argmin
m∈M

1

2
‖F [m]− dobs‖2

p +R(m), (2.5.1)

where R is a regularisation term to prevent over-solving and incorporate a-priori in-

formation, and M some permissible set of parameters (for example, enforcing non-

negativity). We have left p ∈ N+ unspecified here, but in general the l2 norm is used

for ease of differentiability, making (2.5.1) a least-squares problem. Other choices of
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norm, such as the l1 norm, can make the full-wave problem more robust to noise [29].

While the forward operator F represents a linear PDE, the solution to this PDE

varies non-linearly with the parameters m due to features such as multiple scattering,

refraction and diffraction. Therefore, full-wave inversion is to pose the task of imaging

the subsurface as a non-linear optimisation problem. FWI is also a relatively large

scale problem, since simulating the data will require solving this PDE with sources

at many locations and at many frequencies. Further, any iterative solution of (2.5.1)

involves at least two data simulations per iteration (one to simulate dsim and another

to calculate the gradient).

The final difficulty in FWI stems from the fact that changes in m generally produce

far smaller changes in dsim = F [m], or that many different parameter models produce

very similar data. Thus, small differences in data dobs − dsim can be mapped to much

larger perturbations in minv than they were caused by – a feature characteristic of

inverse problems – hence the need to incorporate the regularisation term.

FWI was first posed for seismic imaging by Tarantola in 1984 [167], though many

other inverse and imaging problems have previously been posed as a nonlinear least-

squares problem. Since then FWI has had much development in the seismic industry,

and we refer the reader to the review paper by Virieu and Operto [181] and references

therein, to save listing all contributions here. Some of the first work on FWI for GPR

data was by Ernst et al. [56] and Kuroda et al. [88], both considering 2D inversion

of cross-borehole data, and both using a gradient-based method in the time domain.

Kuroda et al. inverted only permittivity ε, whereas Ernst et al. implemented a scheme

which switched between inverting permittivity and conductivity and have successfully

applied their algorithm to field data [55]. Meles et al. [110,113] and Lavoué et al. [90]

both proposed algorithms which simultaneously update permittivity and conductivity,

whereas Busch et al. [31] have used an algorithm which switches between simultane-

ous updates of permittivity, phase and source wavelet, and simultaneous updates of

conductivity and wavelet amplitude.

A large majority of FWI work for GPR has been carried out in 2D due to the

large computational cost of solving 3D electromagnetic problems. Notable work on

moving towards 3D FWI include that of Busch et al. [31], who use a 3D forward model

to update a layered model of the subsurface, and that of Klotzsche et al. [85], who
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use a 2D forward model in several slices to update a 3D subsurface model (i.e. they

take a tomographic approach). Seismic FWI has now been carried out in 3D using

an acoustic model of the subsurface, for example by Ben-Hadj-Ali et al [23] in the

frequency domain; as well as in the time domain by Vigh and Starr [180], Warner

et al [191], and Houbiers et al [75]. Seismic 3D FWI has so far been limited to low

frequencies (< 7 Hz) [181], and 3D elastic FWI is still poses a computational challenge

but has been carried out for example by Butzer et al [32].

As discussed in Section 2.2, one needs to incorporate regularisation in order to

stabilise the inverse problem. For GPR FWI, the treatment of the regularisation

term has had little study. In general as little regularisation as possible is used, for

example Ernst et al [56] remarks on the presence of artifacts due to not incorporating

a regularisation term. Similarly, Meles et al [110] make no mention of regularisation,

and Kuroda et al [88] mention it only as the subject of future work which may improve

reconstruction. Meles et al [113] later do discuss regularisation when considering the

non-linearity of the problem, but they do not include any in their scheme. They

mistakenly state that it does not relieve the non-linearity of the inverse problem, but

of course with a greater amount of (linear) regularisation the optimisation problem

does become more linear (to the limit where one matches only the prior knowledge).

Lavoué [92] does give a proper account of regularisation, although their attention

is restricted to use of a generalised Tikhonov reguarlisation with a discretised Laplace

operator (as with (2.2.9)). They find their chosen regularisation is insufficient for

designing a stable scheme for joint reconstruction of permittivity and conductivity,

needing some other scaling between the two parameter types. The simulations they

present though do not have smoothly varying conductivity or permittivity, and so the

choice is inappropriate for their numerical experiments, and so their conclusions are

limited.

There appears to be a general reluctance in the GPR FWI community to incor-

porate regularisation (or more than a minimal amount), as if modifying the problem

from a data matching one alone will result in incorrect solutions. In many of the

papers referenced here, the only form of a regularisation strategy is through choice of

an initial inversion model, choice of parameterisation and scaling, and data weighting
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strategies. In part this is due to a lack of prior knowledge of the subsurface [113], al-

though we would argue that there is likely better a priori knowledge available in many

applications than might be considered. For example, if one expects smooth variations

in the subsurface then regularisation with a discrete Laplacian is appropriate, but if

one expects to reconstruct jump changes (distinct solid objects) then something more

like Total Variation should be used (see Section 4.3.6). The same is not necessarily

true in the case of seismic FWI, where there has been more study of appropriate regu-

larisation methods. For example, Asnaashari et al [18] give an in-depth review of the

effect of (generalised) Tikhonov regularisation to incorporate prior knowledge, includ-

ing the effect of a weighting matrix, allowing dynamic variation of the regularisation

parameter λ, and comparing the different roles of a starting model and regularisation

term.

2.5.3 Optimisation for the full-wave problem

As mentioned above, the full-wave problem (2.5.1) will need to be solved with a suitable

iterative method, in which we generate a sequence of iterates {mk}kmax
k=0 which converge

towards the unique minimiser of J , minv, and we follow Nocedal and Wright [123] for

an overview of appropriate methods. The updates will be determined by a local approx-

imationMk to J at mk. The modelM is often based on the quadratic approximation

of the objective function J , i.e. the truncated Taylor series of J

Mk(p) := J (mk) + pT∇mJ (mk) +
1

2
pT∇2

mJ (mk)p, (2.5.2)

so that the model Mk approximates J at mk by

J (mk + p) =Mk(p) +O
(
‖p‖3

∞
)

(2.5.3)

as ‖p‖∞ → 0. See Appendix A.2 for the definition of the Landau Big-O notation.

Here p is some (small) perturbation to mk andMk is the quadratic model. From this

approximation we can derive descent directions pk, for which J (mk + pk) < J (mk).

If we assume that Hk = ∇2
mJ (mk) is positive definite, then the minimiser of Mk is

given by setting the derivative of Mk to zero, resulting in the Newton Direction

pk = −H−1
k gk, (2.5.4)
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where gk = ∇mJ (mk).

The main drawback of Newton type methods is the requirement to calculate (and

store) the inverse Hessian matrix H−1
k , which is prohibitive in FWI due to its size.

More generally, we can define a descent direction,

pk = −B−1
k gk. (2.5.5)

for some choice of matrix Bk. Equation (2.5.5) results in the steepest descent method

if Bk is the identity matrix, and a quasi-Newton method if Bk ≈ Hk. Quasi-Newton

methods make use of the fact that changes in the gradient provide information about

the Hessian matrix. That is [123, pp23],

gk+1 = gk +Hk(mk+1 −mk) + o(‖mk+1 −mk‖), (2.5.6)

as ‖mk+1 − mk‖ → 0. See Appendix A.2 for the definition of the Landau little-o

notation. The approximate Hessian can be chosen to mimic property (2.5.6) if it

satisfies the secant equation,

Bk+1sk = yk, (2.5.7)

where

sk = mk+1 −mk yk = gk+1 − gk. (2.5.8)

The most popular formula for Bk [123, pp139] is the BFGS formula (named after its

inventors Broyden, Fletcher, Goldfarb and Shanno), which is

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
. (2.5.9)

Practical quasi-Newton algorithms will store and update B−1
k , rather than calculating

Bk+1 and then solving (2.5.5) for pk, as the matrix-vector product is generally far

cheaper to calculate than solving a linear system. The BFGS algorithm is can be

written in this way as

Bk+1 = (I − ρkskyTk )Bk(I − ρkyksTk ) + ρksks
T
k , ρk =

1

yTk sk
, (2.5.10)

where we have redefined Bk to be Bk := B−1
k and I is the identity matrix.

One final suitable class of methods are the (non-linear) conjugate gradient methods,

which take for a descent direction

pk = −gk + βkpk−1, (2.5.11)
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where βk is a scalar ensuring pk and pk+1 are conjugate, which improves the rate of

convergence over steepest descent methods. The directions pk+1 and pk are conjugate

if their inner product with respect to the linearised model Mk is zero,

〈pk+1,pk〉Mk
= 0, (2.5.12)

Using the linearised modelMk of the non-linear optimisation problem, (2.5.12) means

that

pTk J
TJpk+1 = 0. (2.5.13)

Here, J is the Jacobian matrix Jij = ∂Fi/∂mj, which forms a linear map between data

residuals and model perturbations. The Jacobian is not calculated to find conjugate

directions (e.g. by the Fletcher-Reeves method [123, pp. 121]). CG is appealing for

large scale optimisation problems because each iteration only requires evaluation of

the objective function and its gradient. No matrix operations are required, and there

is a very minimal storage cost. For the full-wave problem though, this benefit may not

be realised if calculation of the cost and gradient far outweigh the cost of calculating

a descent direction. Indeed, we will see that the Hessian matrix has a certain physical

meaning in FWI, and so we may wish to incorporate it (or an approximation of it)

into our optimisation method in order to improve the rate of convergence.

After an update direction pk has been calculated, one must determine how much

to update the model in that direction – i.e. the globalisation of the local optimisation

problem (2.5.2). The Newton method has a natural steplength of 1, which is the exact

minimiser of the quadratic model Mk. However, gradient, CG and quasi-Newton

methods may be badly scaled, and a steplength of 1 may either be an insufficient

update or too large a step. Instead, a line search can then be carried out in the

direction pk to find

αk = argmin
α>0

J (mk + αpk), (2.5.14)

after which we set mk+1 = mk +αkpk. Line search algorithms will in general not solve

(2.5.14) exactly, but attempt to find an αk which satisfies the strong Wolfe conditions,

J (mk + αkpk) ≤J (mk) + c1αk∇mJ (mk)
Tpk (2.5.15a)

|∇mJ (mk + αkpk)
Tpk| ≤c2|∇mJ (mk)

Tpk|, (2.5.15b)
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where 0 < c1 < c2 < 1. (2.5.15a) ensures the cost function has decreased sufficiently,

and (2.5.15b) ensures α lies close to a local minimum. For quasi-Newton methods,

if the approximate Hessian is close to the true Hessian then the steplength α = 1

often satisfies the Wolfe conditions[pp. 44, 46] [123], and so should be tested first. In

steepest descent and CG methods, often the curvature condition (2.5.15b) is ignored

and one only attempts to satisfy the sufficient decrease (Armijo) condition (2.5.15a).

All of the above methods, and variants thereof, have been applied to solving the

2D FWI problem, with varying degrees of success. For example, in GPR several

have used the steepest descent method [55, 56, 110, 113, 113], which has a minimal

cost of calculating a descent direction but may converge slowly, while Kuroda et al

[88] noted the convergence increases which can be gained by using a nonlinear CG

method. Lavouè et al [90, 91] have applied the l-BFGS-b (limited memory BFGS

bounded) method to simultaneous reconstruction of permittivity and conductivity,

and found the algorithm efficiently dealt with non-linearities during the optimisation

procedure. For seismic FWI, we highlight the paper by Pratt et al. [137], which

compares Gauss-Newton and full Newton methods, showing how incorporating the

(approximate) Hessian can accelerate convergence of the optimisation scheme though

at large computational costs. Further, Métivier et al. [114–116] demonstrated how

the Truncated Newton method, which efficiently calculates only a small number of

Hessian vector products directly without calculating (and storing) the full Hessian

matrix, can yield an effective algorithm (performing favourably when comapared to

l-BFGS), particularly where multiple scattering dominates the data.

2.5.4 Efficient gradient calculation

Consider the data misfit term J (m) = 1
2
‖F [m]−d‖2 = 1

2
δdT δd∗, where δd = F [m−d

are the data residuals, T denotes the transpose and ∗ denotes complex conjugation.

The gradient of the data misfit term is given by

∇mJ =
∂J
∂m

= <{JT δd∗}, (2.5.16)

where J is the Jacobian matrix

Jij =
∂Fi
∂mj

, i = 1, . . . , n, j = 1, . . . , p, (2.5.17)
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n is the number of data points (number of receivers × number of frequencies × number

of source locations) and p the number of subsurface parameters. J is a large dense

matrix, and so computation and storage of this matrix is at least undesirable if not

infeasible. Following Pratt et al. [137], we show the gradient vector can be calculated

directly, without forming J , via the adjoint state method.

Without loss of generality, consider the single frequency, single source experiment

where the forward operator F is to solve for u the linear system A(m)u = s and

evaluate at the first n mesh/grid points which correspond to the first n parameters mi

(grid points can be re-ordered arbitrarily, and for multiple sources and frequencies we

simply sum each corresponding gradient vector). Then (2.5.16) can be written as


∂J
∂m1

∂J
∂m2

...

∂J
∂mp

 = <




∂u1

∂m1

∂u2

∂m1
· · · ∂up

∂m1

∂u1

∂m2

∂u2

∂m2
· · · ∂up

∂m2

...
...

. . .
...

∂u1

∂mp

∂u2

∂mp
· · · ∂up

∂mp





δd∗1
...

δd∗n

0
...

0




, (2.5.18)

where we have extended the vector δd to contain 0s where a measurement is not

taken at a grid point. Taking partial derivatives of the forward system with respect

to parameter mi, we find

A
∂u

∂mi

+
∂A

∂mi

u = 0, (2.5.19)

which we can rewrite as

∂u

∂mi

= A−1

(
− ∂A

∂mi

u

)
= A−1f (i), (2.5.20)

where f (i) is referred to as the ith virtual source term. Thus, the Jacobian can be

written as

J = A−1
[
f (1), . . . , f (p)

]
= A−1F. (2.5.21)

Substituting (2.5.21) into (2.5.16), we find

∇mJ = −<
{

(A−1F )T δd∗
}

= −<
{
F T (AT )−1δd∗

}
. (2.5.22)

So, calculation of the gradient via the adjoint-state method requires one more forward

solve (per frequency and source location), whereas calculation of the Jacobian would

take p forward solves via (2.5.21).
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Consider the ith component of the gradient vector for a single source single fre-

quency data set,

(∇mJ )i = <
{

uT
∂AT

∂mi

(
AT
)−1

δd∗
}

= <
{

f (i)Tv
}
. (2.5.23)

The system matrix A will in general be symmetric, except for complex parts of the

matrix corresponding to absorbing boundary conditions derived from the Sommerfeld

radiation condition. The term v = (AT )−1δd∗ is like a back-projected data residual –

i.e. reversing time. The term ∂A/∂mi consists only of highly local nonzeros, and so

we see the part of the backprojected data residual local to mi is scaled and multiplied

by the forward predicted wave field - i.e. a convolution in the time domain. This is

demonstrated in Figure 2.2, which shows the forward and adjoint fields for a single

source location at 1 GHz, their correlation and contribution to the gradient, the sum of

contributions from all source locations at 1 GHz and the full gradient term (summed

over all frequency components). We see that as more (unique) measurements are

added, the components constructively interfere where a perturbation in wavespeed

causing reflection is present, and destructively interfere where one is not.

2.5.5 The effect of the Hessian in full-wave inversion

Numerical evidence [137] suggests the Hessian matrix H = ∇2
mJ plays an important

role in both the stability and accelerating convergence rates in solving the full-wave

problem (2.5.1), though it is more costly both to compute and store than the Jacobian.

Let us write the Hessian as the sum of two parts,

H(m) = B(m) + C(m), (2.5.24)

where the matrices B and C are given by

B(m) =<
{
JTJ∗

}
(2.5.25a)

C(m) =<
{[(

∂JT

∂m1

)
δd∗,

(
∂JT

∂m2

)
δd∗, . . . ,

(
∂JT

∂mp

)
δd∗
]}

. (2.5.25b)

B is referred to as the Gauss-Newton approximation of the Hessian.

Again, let us consider a single source single frequency experiment where the first

n elements of solution vector u correspond to receiver locations. Each element of B is
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Figure 2.2: Formulation of the gradient via the adjoint state method from a single
source point at 1GHz. (a) shows the forward simulated wave, (b) the back-projected
data residuals, (c) the correlated forward and adjoint fields, (d) the gradient contri-
bution from this measurement, (e) the sum of gradient contributions over all source
locations at 1 GHz and (f) the full gradient (summed over 100 frequencies between 1
and 3 GHz). The true domain is shown in Figure 4.2 in Chapter 4, and the gradient
is calculated from a homogeneous background.
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then given by

Bij = <

{
n∑
r=1

∂ur
∂mi

∂u∗r
∂mj

}
, (2.5.26)

which is the zero-lag correlation of the first derivatives of the wave field at receiver

locations with respect to parameters mi and mj. The elements Bij then are at a

maximum for the autocorrelation i = j, and decrease with distance between i and j.

B would be a diagonal matrix in the high frequency approximation, but in general

it is banded. Further, we know that the amplitudes of the derivatives decrease with

distance from the source/receiver, and so gradient based optimisation methods are less

sensitive to perturbations in m away from the source/receiver. B−1 therefore acts as a

‘refocussing filter’ in the descent direction, compensating for the different illumination

of parameters by the acquisition array [115,137].

For the same single source, single frequency experiment, each element of C is given

by

Cij = <

{
n∑
r=1

∂2ur
∂mi∂mj

δd∗r

}
, (2.5.27)

the zero-lag correlation of the data residuals and the second order derivatives of the

wave field at the receivers with respect to mi and mj. These second order derivatives

represent a recorded signal which has been scattered twice, at mi and mj [137]. The

affect of C−1 on the descent direction is therefore to compensate for first order multiple

reflections.



Chapter 3

Electromagnetic Theory

3.1 Introduction

The dynamics of the electromagnetic waves emitted from a GPR antenna, transmitted

into the ground, scattered in the subsurface, and received at another antenna, are

governed by Maxwell’s equations – named after James Clerk Maxwell who published

an early form of the equations between 1861 and 1862 [108]. In this chapter we

describe these fundamental equations, for completeness of the thesis and to reference

for a reader unfamiliar with electromagnetic motion.

First, we give Maxwell’s equations in both differential time and differential time-

harmonic form, and constitutive relations for material properties. We then derive

vector (curl-curl) wave equations for the electric field in 3D, and show that these

reduce to the Helmholtz equation in 2D, as well as giving the variational form for the

vector wave equation. Boundary conditions and free-space Green’s functions are also

covered. Finally, we describe the surface equivalence principle which describes the

field radiated from a domain as integrals of the tangential electric and magnetic fields

on the boundary of the domain. We follow Jin [80], Monk [119] and Volakis et al [186]

for an overview of Maxwell’s equations.

53
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3.2 Maxwell’s equations of electrodynamics

3.2.1 Maxwell’s equations in differential time-domain form

In a closed domain Ω, with boundary ∂Ω, where all the field quantities and their

derivatives are continuous, and where the material properties behave linearly with

respect to the applied electromagnetic fields, Maxwell’s equations in differential (point)

form are given by [80,119,186]

∇× E(r, t) = −∂B(r, t)

∂t
−M(r, t) (Faraday’s Law) (3.2.1a)

∇×H(r, t) =
∂D(r, t)

∂t
+ J (Maxwell-Ampère law) (3.2.1b)

∇ ·D(r, t) = ρ(r, t) (Gauss’ law) (3.2.1c)

∇ ·B(r, t) = ρm(r, t) (Gauss’ law - magnetic) (3.2.1d)

∇ · J(r, t) = −∂ρ(r, t)

∂t
(continuity) (3.2.1e)

∇ ·M(r, t) = −∂ρm(r, t)

∂t
(continuity - magnetic), (3.2.1f)

where the vector fields are given by

E = electric field in volts/meter (V/m)

H = magnetic field in amperes/meter (A/m)

J = electric current density in amperes/meter2 (A/m2)

M = magnetic current density in volts/meter2 (V/m2)

D = electric flux density in coulombs/meter2 (C/m2)

B = magnetic flux density in webers/meter2 (Wb/m2)

and the scalar quantities are

ρ = electric charge density in coulombs/meter3 (C/m3)

ρm = magnetic charge density in webers/meter3 (Wb/m3).

The Maxwell-Ampère law tells us that both flowing electric current and an electric field

changing in time will give rise to a magnetic field encircling them. Similarly, Faraday’s

law states that a magnetic field changing in time will give rise to a circulating electric

field. Faraday’s law also includes a magnetic current density M which can give rise
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to a ciculating E-field - note that this is a fictitious quantity (as is ρm) introduced for

convenience in solving Maxwell’s equations or representing solutions. Often Maxwell’s

equations are written with these terms neglected.

Gauss’ Law states that an electric charge acts as a source or a sink for electric fields

- it tells us that D field lines will diverge away from positive charges, diverge towards

negative, and will start and stop on charges. It also tells us that the divergence of D is

equal to the net amount of charge in that region. Gauss’ Law for Magnetism says the

equivalent for magnetic flux density. Since ρm is a fictitious quantity, setting ρm = 0

we see that the divergence of the magnetic flux are zero, and so the fields will tend to

form closed loops.

Finally, the continuity equation ensures that if current is flowing into or out of a

region, this is met by an increase or decrease in charge, respectively. Because of the

continuity equation, only 3 of the Maxwell equations are independent (discounting the

magnetic continuity equation for the fictitious quantities).

3.2.2 Constitutive relations and material properties

As we noted in Section 3.2.1, two of Maxwell’s equations are dependent or auxiliary.

Removing two dependent equations we are left with an indefinite system (more un-

knowns than equations), and so we must therefore have some constitutive relations

between the field quantities. Constitutive relations describe the macroscopic prop-

erties of the medium, and for a simple inhomogeneous and isotropic medium these

are

D = ε(r)E (3.2.2a)

B = µ(r)H, (3.2.2b)

where the scalars 0 < ε < ∞ and 0 < µ < ∞ are (electric) permittivity measured

in fads/meter (F/m) and (magnetic) permeability measured in henrys/meter (H/m),

respectively. More generally, for an anisotropic material, ε and µ are 3× 3 symmetric

tensor fields

ε(r) =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 , µ(r) =


µxx µxy µxz

µyx µyy µyz

µzx µzy µzz

 ∀r ∈ Ω, (3.2.3)
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which are in general positive definite. ε and µ may also be considered functions of

frequency ω, and for non-linear materials these are also functions of the electromagnetic

fields (such as ferroelectric and ferromagnetic materials). However, for the purposes

of this thesis, we shall assume throughout that the variation of all electromagnetic

parameters with ω is negligible over the range of frequencies of interest, and we will

not consider non-linear materials.

Further, the current densities an be written as the sum of impressed (excitation)

and induced (conduction) currents as

J = Ji + Jc = Ji + σ(r)E, (3.2.4a)

M = Mi + Mc = Mi + σm(r)H, (3.2.4b)

where (3.2.4a) is Ohm’s law. Here, σ is the electric current conductivity in siemens/m

(S/m)), and σm is the (fictitious) magnetic current conductivity in ohms/m (Ω/m).

Similarly, σ and σr are scalars for an isotropic material, and 3× 3 symmetric tensors

for an anisotropic material.

3.2.3 Time-harmonic Maxwell’s equations

If we assume a time dependence of exp(−iωt), i =
√
−1, for the electric and magnetic

fields and flux densities, where ω = 2πf is the angular frequency, then Maxwell’s

equations (3.2.1) reduce to

∇× E(r, ω) = −iωB(r, ω)−M(r, ω), (3.2.5a)

∇×H(r, ω) = iωD(r, ω) + J(r, ω), (3.2.5b)

∇ ·D(r, ω) = ρ(r, ω), (3.2.5c)

∇ ·B(r, ω) = ρm(r, ω), (3.2.5d)

∇ · J(r, ω) = −iωρ(r, ω), (3.2.5e)

∇ ·M(r, ω) = −iωρm(r, ω), (3.2.5f)

in which we have abused notation somewhat by using the same bold-face vectors

to denote the complex amplitudes of the aforementioned time-dependent real-valued

fields. This notation is continued hereafter, and we also drop the function dependencies

(r, ω). Making use of the constitutive relations given in Section 3.2.2, equations (3.2.5)
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reduce to

∇× E = −M− iωµH = −Mi − (σm + iωµ) H (3.2.6a)

∇×H = J + iωεE = Ji + (σ + iωε) E (3.2.6b)

∇ · (εE) = ρ = − (∇ · Ji) /iω (3.2.6c)

∇ · (µH) = ρm = − (∇ ·Mi) /iω. (3.2.6d)

Common equivalent expressions involve using the complex permittivity ε̇ = ε− iσ/ω

and permeability µ̇ = µ− iσm/ω.

3.3 Boundary conditions

The solution to Maxwell’s equations in some domain Ω becomes unique upon ap-

plication of boundary conditions on ∂Ω. Consider a (possibly charged) interface ∂Ω

between two domains Ω1 and Ω2, as shown in Figure 3.1. Natural boundary conditions

at the interface can be derived through Maxwell’s equations in integral form [186], and

are given by

n̂× (E1 − E2) = −Mis, (3.3.1a)

n̂× (H1 −H2) = Jis, (3.3.1b)

n̂ · (ε1E1 − ε2E2) = ρs, (3.3.1c)

n̂ · (µ1H1 − µ2H2) = ρms, (3.3.1d)

where Ei and Hi are the electric and magnetic fields in medium i, Jis and Mis are the

impressed electric and magnetic current densities at the interface, εi and µi are the

permittivity and permeability in medium i, ρs and ρms are the electric surface charge

density and the (fictious) magnetic charge density at the interface, and n̂ the outward

unit normal to ∂Ω. Ignoring the fictitous magnetic currents and charges, we have

n̂× (E1 − E2) = 0, (3.3.2a)

n̂× (H1 −H2) = Jis, (3.3.2b)

n̂ · (ε1E1 − ε2E2) = ρs, (3.3.2c)

n̂ · (µ1H1 − µ2H2) = 0. (3.3.2d)
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Equations (3.3.2) are known as the field continuity, or transmission, conditions. The

first condition states that the tangential component of the electric field is continuous

across the surfaces. Similarly, the second states that the magnetic field is discontinuous

by an amount equal to the impressed electric current Jis, which we note will be zero

unless a source is actually placed at the surface. Similarly, the second pair state that

the normal component of the magnetic field differs by a factor of µ1µ2
−1, and that the

normal components of εE and are discontinuous by an amount equal to ρs.

n̂

∂Ω

Jis

ε2, µ2

ε1, µ1

E1,H1

E2,H2

Ω1

Ω2

Figure 3.1: Boundary between two media.

If medium 2 is a perfect electric conductor, the continuity conditions reduce to

n̂× (E1) = 0, (3.3.3a)

n̂× (H1) = Jis, (3.3.3b)

n̂ · (ε1E1) = ρs, (3.3.3c)

n̂ · (µ1H1) = 0, (3.3.3d)

since medium 2 cannot sustain an internal field.

In some settings, it can either be difficult or costly to impose the field continuity

conditions (3.3.2). In these cases, one may make use of approximate impedance–type

boundary conditions such as the Leontovich Boundary Conditions [66, 98,151,186],

n̂× (n̂× E) =− ηZ0n̂×H,

n̂× E =
Z0

η
n̂× (n̂×H),

(3.3.4)
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where η is the normalised characteristic impedance and Z0 =
√
µ0ε
−1
0 the free-space

impedance in Ohms (Ω), with ε0 ≈ 8.854 × 10−12 F/m is the free-space permittivity,

µ0 = 4π × 10−7 H/m . The characteristic impedance is often taken to be η =
√
µrε−1

r

when one side of the medium is free-space, where εr and µr are the relative permittivity

and permeability of the material defined by ε = ε0εr and µ = µ0µr. This follows by

demanding the reflected field due to (3.3.4) is the same as that given by the natural

boundary conditions (3.3.2), and is exact for an infinite planar interface only but an

approximation for curved boundaries relying on |Im
{√

εrµr
}
| � 1. Other choices are

appropriate for approximating for example a coated conductor or a material which

varies slowly in the transverse plane [186, pp 17-19].

For an unbounded or open domain, we must specify a condition on E and H as

r → ∞ in order to obtain a unique solution, where r =
√
x2 + y2 + z2. For causal

solutions – i.e. for waves generated by the J and ρ within the domain and not by waves

coming in from infinity - E and H are required to satisfy the radiation condition

lim
r→∞

r

∇×
 E

H

+ ik0r̂×

 E

H

 = 0, (3.3.5)

where r̂ = (xêx+yêy+zêz)/r and k0 = 2πλ−1
0 = ω

√
ε0µ0 is the free-space wavenumber

(1/m). (3.3.5) is usually referred to as the Sommerfeld radiation condition for general

three-dimensional fields. For 2D fields in the y = 0 plane, the condition becomes

lim
r→∞

√
r

 ∂

∂r

Ey
Hy

+ ik0

Ey
Hy

 = 0, (3.3.6)

r =
√
x2 + z2, which we note provides conditions on Ex, Ez, Hx and Hz components

via Maxwell’s equations (3.2.6).

3.4 Wave equations

3.4.1 Vector wave equations

Recall that Faraday’s equation states that a changing magnetic field gives rise to a

circling electric field, and that Ampère’s Law states that a change in electric field gives

rise to circling magnetic field. Clearly, the coupling of the two results in wave motion:

the magnetic field leads to a change in electric, which leads to a change in magnetic,
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and so forth. This is evident if we combine equations (3.2.6a) and (3.2.6b) to form

second-order vector wave equations – the form of Maxwell’s equations which the finite

element method makes use of.

Taking the curl of (3.2.6a),

∇×
(
µ−1∇× E

)
+ iω∇×H = −∇× µ−1M. (3.4.1)

and substituting for the curl of H via Ampère’s law (3.2.6b),

∇×
(
µ−1∇× E

)
+ ω2εE = −iωJ−∇× µ−1M. (3.4.2)

Substituting ε = ε0εr and µ = µ0µr, we have

∇×
(
µ−1
r ∇× E

)
− k2

0εrE = −ik0Z0J−∇× µ−1
r M, (3.4.3)

which is an inhomogeneous vector wave equation for E. In terms of Ji, (3.4.3) can be

written as

∇×
(
µ−1
r ∇× E

)
+
(
ik0Z0σ − k2

0εr
)
E = −ik0Z0Ji −∇× µ−1

r M. (3.4.4)

Here, λ0 the free-space wavelength (m), and Z0 =
√
µ0ε
−1
0 the free-space impedance in

ohms (Ω). Similarly, solving instead for the magnetic field leads to the dual of (3.4.4),

∇×
(
ε−1
r ∇×H

)
+
(
ik0Y0σ − k2

0µr
)
H = −ik0Y0M−∇× ε−1

r Ji, (3.4.5)

where Y0 = Z−1
0 is free-space admittance (S).

3.4.2 Scalar wave equations

If we assume that both the medium of interest (described by µr, εr and σ) and the

electric and magnetic fields are invariant in one coordinate direction, we can reduce

the 3D vector wave equation to a 2D scalar one. Considering a medium and field

invariant in the ŷ direction, the y component of equation (3.4.4) reduces to[
∂

∂x

(
µ−1r

∂

∂x

)
+

∂

∂z

(
µ−1r

∂

∂z

)
+
(
k20εr − ik0Z0σ

)]
Ey = −ik0Z0Jy +

∂

∂x
µ−1r Mz −

∂

∂z
µ−1r Mx.

(3.4.6)

We can write this in the form

[
∇
(
µ−1
r ∇

)
+ (k2

0εr − ik0Z0σ)
]
Ey = S, (3.4.7)
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and for a homogeneous µr [
∇2 + k2

]
Ey = S (3.4.8)

(absorbing µr into S), where ∇ is the 2D Laplace operator in the x, z plane, and the

complex wavenumber k2 = ω2/c2 with complex wave speed (assuming scalar valued

permittivity and permeability). Note that (3.4.7) and (3.4.8) are in the familiar form

of the Helmholtz equation, as also describes acoustic waves in a compressible medium.

For a homogeneous and charge free domain Ω, (3.4.4) reduces to

∇×∇× E− k2E = 0. (3.4.9)

Using the identity ∇×∇×f ≡ ∇(∇·f)−∇2f , and noting that by Gauss’ law ∇·E = 0,

we again arrive at the Helmholtz equation

∇2u+ k2u = 0 (3.4.10)

for each u = Ex, Ey, Ez.

3.5 Variational formulation

Consider the following model scattering problem, in which the E field satisfies govern-

ing equations and boundary conditions

∇×
(
µ−1
r ∇× E

)
− k2

0εrE = −ik0Z0J (3.5.1a)

∇ · (εrE) = 0, (3.5.1b)

n̂× E = f on ΓD, (3.5.1c)

n̂× (µ0µr)
−1∇× E = g on ΓN , (3.5.1d)

where ΓD∪ΓN = ∂Ω is the (closed) boundary of the Lipschitz domain Ω ⊂ R3, which

may be formed of multiple materials so that µr and εr are functions of space. (3.5.1)

is the strong form of the scattering problem. To derive the variational formulation,

following [136], we multiply (3.5.1a) by an arbitrary test function F ∈ H1
curl(Ω), where

H1
curl(Ω) is defined by (A.1.11), and integrate over the domain Ω, giving∫

Ω

{
F · ∇ ×

(
µ−1
r ∇× E

)
− F · k2

0εrE
}

dV = −ik0Z0

∫
Ω

F · J dV. (3.5.2)
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Using the identity

a · (∇× b) = (∇× a) · b−∇ · (a× b),

we arrive at∫
Ω

(∇× F) ·
(
µ−1
r ∇× E

)
dV −

∫
Ω

∇ ·
(
F×

(
µ−1
r ∇× E

))
dV

−
∫

Ω

F · k2
0εrE dV = −ik0Z0

∫
Ω

F · J dV. (3.5.3)

Invoking the divergence theorem,∫
Ω

∇ ·A dV =

∮
∂Ω

A · n̂ dS,

and the identity (A×B) · n̂ = −A · (n̂×B) yields∫
Ω

(
(∇× F) · (µ−1

r ∇× E)− k2
0εrF · E

)
dV

+

∮
∂Ω

F ·
(
n̂× µ−1

r ∇× E
)

dS = −ik0Z0

∫
Ω

F · J dV, (3.5.4)

where n̂ is the outward unit normal to the surface ∂Ω. On substituting for the curl of

the magnetic field from equation (3.2.6a), the weak problem is stated as: find E ∈ X

such that∫
Ω

(
(∇× F) · (µ−1

r ∇× Ê)− k2
0εrF · Ê

)
dV =ik0Z0

∮
∂Ω

F · (n̂× Ĥ) dS

− ik0Z0

∫
Ω

F · J dV

(3.5.5)

for all F ∈ Y . The sets X and Y are

X =
{
u ∈ H1

curl(Ω) : n̂× u = f on ΓD, ∇ · (εru) = 0
}

(3.5.6a)

Y =
{
u ∈ H1

curl(Ω) : n̂× u = 0 on ΓD, ∇ · (εru) = 0
}
, (3.5.6b)

enforcing the divergence condition and the Dirichlet boundary condition, while the

Neuman boundary condition is directly substituted into the right-hand side of (3.5.5).

The divergence condition can be enforced as a Lagrange multiplier, but it can be shown

that for ω � 0 the multiplier is equal to 0 [96]. If a solution solves the weak problem

(3.5.5) with (3.5.6), it is also a solution to the strong problem (3.5.1).
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3.6 Green’s functions

3.6.1 Scalar Green’s functions

In three dimensions, the free-space Green’s function for the scalar Helmholtz equation

G0(r, r′) satisfies (
∇2 + k2

)
G0(r, r′) = −δ(r− r′), (3.6.1)

and decays as R = |r − r′| tends to infinity, such that it satisfies the Sommerfeld

radiation condition

lim
R→∞

R

(
∂G0

∂R
− ikG0

)
= 0. (3.6.2)

Following [166], we make the change of variables r1 = r− r′, so that G0(r1, 0) satisfies

1

r2
1

d

dr1

[
r2

1

dG0(r1, 0)

r1

]
+ k2G0(r1, 0) = −δ(r1), (3.6.3)

where r1 = |r1|. For r1 6= 0, (3.6.3) can be written as

d2[r1G0(r1, 0)]

dr2
1

+ k2r1G0(r1, 0) = 0, (3.6.4)

which (with the radiation condition) has the solution

r1G0(r1, 0) = Ae−ikr1 . (3.6.5)

To determine the coefficient A, we substitute (3.6.5) into equation (3.6.3) and integrate

over the volume of a sphere of radius ε centred at r1 = 0. Since for any volume V

enclosing r1 we have ∫∫∫
V
δ(r1) dV = 1, (3.6.6)

taking the limit ε→ 0 we find that 4πA = 1, and so

G0(r1, 0) =
e−ikr1

4πr1

, or G0(r, r′) =
e−ik|r−r′|

4π|r− r′|
. (3.6.7)

In the far field, we have the limit

lim
r→∞

G0(r, r′) =
e−ikr

4πr
eikr·r̂′ , (3.6.8)

where r = |r| and r̂′ = r′/|r′|.

Following the same procedure, in two dimensions we have

G0,2D(r, r′) =
H

(2)
0 (k|r− r′|)

4i
, (3.6.9)
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where H
(2)
0 is the zeroth-order Hankel function of the second kind.

The gradient of the 3D scalar Green’s function is given by

∇G0(r, r′) = −∇′G0(r, r′) = −
(

ik0 +
1

R

)
G0(r, r′)R̂, (3.6.10)

where R̂ = (r− r′)/|r− r′|, and ∇ and ∇′ are the gradient operators with respect to

r and r′, respectively. Further, the Hessian of the scalar Green’s function is given by

∇∇G0(r, r′) = ∇′∇′G0(r, r′) =R̂R̂

[
1

R2
+

(
ik0 +

1

R

)2
]
G0(r, r′)

− (I− R̂R̂)

(
ik0 +

1

R

)
G0(r, r′)

R
, (3.6.11)

where I is the identity dyadic (i.e. the 3× 3 identity matrix).

3.6.2 Dyadic Green’s functions

Consider the electric and magnetic fields produced by an electric current source J in

free space. The electric field satisfies the vector wave equation

∇×∇× E(r)− k2
0E = −iωµ0J. (3.6.12)

The free space dyadic Green’s function of the electric type G relates the field E and J

by

E(r) = −iωµ0

∫∫∫
V

G(r, r′) · J(r′) dV ′, (3.6.13)

where V is the support of the current J(r). Following [166], integrating (3.6.12) over

V and applying (3.6.13), we have that∫∫∫
V
∇×∇×G(r, r′) · J(r′)− k2G(r, r′) · J(r′) dV ′

=

∫∫∫
V

Iδ(r− r′) · J(r) dV ′, (3.6.14)

which for arbitrary J(r) can be satisfied only if

∇×∇×G(r, r′)− k2
0G(r, r′) = Iδ(r− r′). (3.6.15)

Taking the (posterior) scalar product of (3.6.15) with an arbitrary constant vector p,

we have

∇×∇×G(r, r′) · p− k2
0G(r, r′) · p = pδ(r− r′). (3.6.16)
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By the vector identity ∇×∇× f ≡ ∇(∇ · f)−∇2f , we have

∇2G(r, r′) · p + k2
0G(r, r′) · p = ∇

[
∇ ·G(r, r′) · p

]
− pδ(r− r′). (3.6.17)

Taking the divergence of (3.6.17),

∇ ·G(r, r′) · p = − 1

k2
0

∇ · [pδ(r− r′)], (3.6.18)

since ∇ · (∇× f) ≡ 0. Substituting (3.6.18) into (3.6.17), we find

∇2G(r, r′) · p + k2
0G(r, r′) · p = −

(
1 +
∇∇·
k2

0

)
[pδ(r− r′)]. (3.6.19)

By making use of the scalar Green’s function, which solves (3.6.1), we find that

G(r, r′) · p =

(
1 +
∇∇·
k2

0

)
[pG0(r, r′)] =

(
I +
∇∇
k2

0

)
G0(r, r′) · p. (3.6.20)

Since p is an arbitrary vector, we see the free space dyadic Green’s function is given

by

G(r, r′) =

(
I +
∇∇
k2

0

)
G0(r, r′). (3.6.21)

Following a similar procedure, the free space dyadic Green’s function of the magnetic

type can be shown to be given by [166, pp 60]

Gm(r̂, r̂′) =∇×
[
IG0(r̂, r̂′)

]
=[∇G0(r̂, r̂′)]× I. (3.6.22)

From Maxwell’s equations, it is clear that the electric and magnetic dyadic Green’s

functions are related by

∇×G = Gm (3.6.23a)

∇×Gm = Iδ(r− r′) + k2
0G. (3.6.23b)

which tells us that the curl of G is given by

∇×G(r, r′) = ∇×
[
IG0(r, r′)

]
= [∇G0(r, r′)]× I. (3.6.24)

The free-space dyadic Green’s function of the electric type is symmetric, and r and

r′ are interchangeable,

G(r, r′) = G(r′, r) =
[
G(r, r′)

]T
=
[
G(r′, r)

]T
, (3.6.25)

whereas the free-space dyadic Green’s function of the magnetic type is antisymmetric,

Gm(r, r′) = Gm(r′, r) =
[
Gm(r, r′)

]T
=
[
Gm(r′, r)

]T
. (3.6.26)
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3.7 Surface equivalence principle

The surface equivalence states that the fields exterior (interior) to a (possibly fictitious)

surface S may be exactly represented by equivalent electric and magnetic currents, Js

and Ms, placed on the surface and allowed to radiate into the external (internal) region

- hence why it was useful to include the fictitious magnetic current in our formulation

of Maxwell’s equations (3.2.6). Love’s equivalence principle [102], [186, pp9-10], states

that these equivalent currents are given in terms of the total exterior fields, Eext and

Hext, as

n̂×Hext =Js

Eext × n̂ =Ms,
(3.7.1)

where the interior fields are assumed to be zero. The radiated fields due to the equiv-

alent currents are given by the integral equations [134,186]

Eext(r) =

∮
S
∇×G(r, r′) ·Ms(r

′) dS ′

+ ik0Z0

∮
S

G(r, r′) · Js(r′) dS ′ (3.7.2a)

Hext =−
∮
S
∇×G(r, r′) · Js(r′) dS ′

+ ik0Y0

∮
S

G(r, r′) ·Ms(r
′) dS ′. (3.7.2b)

In equations (3.7.2), we have assumed that the surface S is radiating into free space

with constant permittivity and permeability ε0 and µ0. Where they are radiating into

a homogeneous region of permittivity and permeability ε and µ, the values k0, Z0 and

Y0 should be replaced by k = εk0, Z =
√
µ/ε and Y =

√
ε/µ, the wave number,

intrinsic impedance and intrinsic admittance, respectively. In proceeding chapters, we

may write equations (3.7.2) as

Eext =K(Ms) + Z0L(Js), (3.7.3a)

Hext =−K(Js) + Y0L(Ms), (3.7.3b)

where the integral operators K and L are defined by

K(X) =

∮
S

∇×G(r, r′) ·X dS (3.7.4a)

L(X) =ik0

∮
S

G ·X dS. (3.7.4b)
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Poggio and Miller [134, pp 164] also note that when the surface S is placed within

an infinite medium and subjected to incident fields Ein, Hin, in order to satisfy the

radiation condition at infinity the contribution from the integral over S must be due

entirely from sources outside of S. In other words, denoting Eext = Ein + Esc, Hext =

Hin + Hsc, where the superscript sc denotes the parts of the field scattered by the

dielectric enclosed by S,

Eext =Ein +K(Ms) + Z0L(Js), (3.7.5a)

Hext =Hin −K(Js) + Y0L(Ms), (3.7.5b)

which is the same as (3.7.2) with the addition of the forcing terms.

Let us briefly examine how an electric field is produced by the two integral operators

K and L. Expanding the dyadic Green’s function to write L as

L(Js) = ik0

∮
S

[
Js(r

′) +
1

k2
0

∇∇′ · Js(r′)
]
G0(r, r′) dS ′, (3.7.6)

it is clear that L produces an electric field by two mechanisms [152]. The first term

is induction, by which a current first produces a magnetic field, and a time-varying

magnetic field in turn produces an electric one. The second term gives rise to an

electric field by charge accumulation in the current. The integral K(Ms) gives rise to

an electric field mainly through induction, but this induction term will be partially

orthogonal to that produced by L(Js) [152]. By duality, the same can be concluded

for the magnetic fields.

One can use the far field expression of the free space Green’s function (3.6.8),

together with the curl of the dyadic Green’s function (3.6.24), to obtain the far field

expressions of the radiated currents as1 [186, p 12]

Eext(r) =ik0
e−ik0r

4πr

∮
S

[Ms(r
′)× r̂− Z0r̂× (r̂× Js(r

′))] eik0r·r̂′ dS ′ +O
(

1

r2

)
,

(3.7.7a)

Hext(r) =ik0
e−ik0r

4πr

∮
S

[r̂× Js(r
′)− Y0r̂× (r̂×M(r′))] eik0r·r̂′ dS ′ +O

(
1

r2

)
, (3.7.7b)

as r →∞.

If the radiated fields are to satisfy some given boundary conditions to the surface

S, we can use the appropriate Green’s function (if available) in the surface equivalence

1Note that in many texts there may be a sign difference due to the choice of Green’s functions.



CHAPTER 3. ELECTROMAGNETIC THEORY 68

formulation. If Eext is to satisfy Dirichlet boundary conditions on S, one can use the

electric dyadic Green’s function of the first kind, G1, which is defined to satisfy the

Dirichlet condition [166, p 66]

n̂×G1 = 0 on S, (3.7.8)

and reduce the surface equivalence formulation to

Eext(r) =

∮
S
∇×G1(r, r′) ·Ms(r

′) dS ′, (3.7.9a)

Hext(r) =−
∮
S
∇×G1(r, r′) · Js(r′) dS ′, (3.7.9b)

where we have used the fact that G1 has no tangential component on S to negate the

second terms in the integrand.

If the radiated electric field is to satisfy Neumann boundary conditions, one can

use the electric dyadic Green’s function of the second kind, G2, which is defined to

satisfy the Neumann condition [166, p 67]

n̂×∇×G2 = 0 on S, (3.7.10)

resulting in the expressions for the radiated fields reduces to

Eext(r) =ik0Z0

∮
S

G2(r, r′) · Js(r′) dS ′, (3.7.11a)

Hext(r) =ik0Z0

∮
S

G2(r, r′) ·Ms(r
′) dS ′. (3.7.11b)

Unlike (3.7.2), equations (3.7.9) and (3.7.11) require only knowledge of either the

electric or magnetic current sources on S to calculate the respective fields. However,

construction of the first and second kind of dyadic Green’s functions is more involved,

particularly for more complex surfaces where they will most likely be unknown. Some

forms are given by Tai [166].
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3.8 Summary

In this chapter, we have covered the well known electromagnetic theory relevant to

GPR, which will be referred to throughout this thesis. In Chapter 4, we will use the

Helmholtz equation to describe scattering of GPR waves in the 2D approximation as

the forward model for the full-wave inversion problem. Chapter 7 will make use of the

dyadic Green’s functions and the surface equivalence principle to describe scattering

from small inclusions in the subsurface, and to examine sensitivity in the 3D full-wave

inversion problem. Chapter 6 covers numerical simulation of GPR data in 3D, and

will use both the variational form of the curl-curl wave equation from Section 3.5 as

the basis of a finite-element approximation, as well as the surface equivalence principle

to describe the transmission and reflection of electromagnetic waves from the ground

surface.



Chapter 4

Full-Wave Inversion in 2D

4.1 Introduction

We wish to be able to perform full-wave inversion on GPR data to obtain quantitative

information about objects in the subsurface, as well as account for multiple scattering

and changes in the wave speed which would affect the accurate locating and charac-

terising of objects. As discussed in Section 2.5, 2D full-wave inversion of GPR data

is now a fairly well established research topic. However, 2D inversions make unrealis-

tic assumptions about the physical reality of the wave scattering problem, and so 2D

inversion of data from a 3D world may not always be adequate for one’s needs. Partic-

ularly, landmines are 3D objects, so we will need to implement 3D inversion schemes

for our purpose. Nevertheless, it is useful for us to begin experimenting with 2D in-

versions to gain incite in to solving our specific problem of landmine detection. Since

the 2D assumptions made reduce the forward problem to the Helmholtz equation, our

results can be applicable also to ultrasound imaging.

This chapter is used to illustrate the inversion procedure, and so we bring together

all the implementational details and numerical recipe in one place for the reader.

We will first describe the forward problem in 2 dimensions, which we solve via a

second order finite-difference scheme for ease of prototyping. Thereafter, we discuss

the various aspects of the inversion scheme, including suitable regularization strategies.

We implement Total Variation regularisation (TV), and we believe this is the first

implementation for FWI of GPR data. TV has been used to deblur (non FWI) GPR

images as a post-processing method [130], and as well as for FWI of seismic data with

70
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the Helmholtz equation as the forward model [15], so this is only a minor novelty.

4.2 The forward problem in 2D

4.2.1 Finite difference approximation of the Helmholtz equa-

tion

For 2D inversions, we make the assumption that the subsurface is invariant in one

coordinate direction, say ŷ. This assumption is made not only about the parameters

describing the subsurface, but also about sources which are therefore line sources.

Under this assumption, waves will not reflect in or out of the plane that we are imaging

in. From Section 3.4.2, the y component of the electric wave satisfies the equation[
∇
(

1

µr
∇
)

+ (k2
0εr − ik0Z0σ)

]
Ey = −ik0Z0Jy, (4.2.1)

which is recognised as 2D Helmholtz equation[
∇
(

1

µr
∇
)

+ k2

]
Ey = S, (4.2.2)

where the complex wavenumber k2(x) = k2
0εr(x) − ik0Z0σ(x). The y component of

the wave decouples from the x and z components, since a ŷ polarized wave incident

on an object invariant in the y direction will not change polarization state. The x and

z components however remain coupled.

We have chosen to use a second-order finite difference method for the numerical

solution of the Helmholtz equation, primarily for ease of prototyping. Assuming we

discretise the subsurface into a regular grid with constant step length h, this is given

by

− 1

h2
(um−1,n + um+1,n)− 1

h2
(um,n−1 + um,n+1) +

(
4

h2
k2
m,n

)
= Sm,n, (4.2.3)

where um,n is the discrete value of the component of electric field in the plane of

homogeneity (e.g. Ey), or the pressure field if one considers ultrasound, and km,n and

Sm,n are the discrete values of the wavenumber and source field, respectively.

Since we have an infinite domain, one must truncate the domain in order to nu-

merically compute a solution to (4.2.2). The most straightforward way to do this is
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by using absorbing boundary conditions. First order accurate absorbing boundary

conditions in 2D can be easily implemented by [21]

∂u

∂n̂
− iku = 0 (4.2.4)

where n̂ is the unit outward normal to the domain. It is further possibly to improve

their accuracy by [21]
∂u

∂n̂
− iku− i

2k

∂2u

∂ŝ2
= 0 (4.2.5)

on domain edges and
∂u

∂ŝ
=

3

2
iku (4.2.6)

at the corners, where ŝ is a unit tangent vector to the domain. Equations (4.2.5) and

(4.2.6) are second order accurate. To apply either the first or second order conditions,

one uses their discrete approximation to substitute for um,n in (4.2.3) which would lie

one grid point outside of the domain. Alternatively, one could use perfectly matched

layers [24] to truncate the domain, either as well as or instead of the absorbing bound-

ary conditions.

The discretised system, coupled with the absorbing boundary conditions, is assem-

bled as the linear system

A(k)u = S, (4.2.7)

where the A ∈ Cn2×n2
is a Hermitian highly sparse banded matrix. Solving the system

(4.2.7) results in a discrete second-order accurate approximation to the solution to

(4.2.2) (if the second-order absorbing boundary conditions have been used, else it will

be first-order accurate).

4.2.2 Iterative solution of the linear system

For sufficiently large k, the system matrix A becomes indefinite due to it being the sum

of a negative (∇2) and positive (k2) operator (i.e. it has both positive and negative

eigenvalues) [57], and may have a large condition number which can result in large

floating point errors in the solution to the system. The system (4.2.7) is traditionally

solved via direct method such as Gaussian elimination, an O(n3) operation for an n×n

square matrix. Indeed, if we use Matlab’s mldivide or ‘backslash’ operator to solve

the system if will perform some test on the form of A before deciding to calculate an
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LU decomposition A = LU (where L is a lower and U an upper triangular matrix),

and solve the system LUx = b via Gaussian elimination [169].

Calculating an LU decomposition of A may require an unacceptably large amount

of storage, since it will not take account of the sparse banded nature of the matrix,

thereby producing fill-in in the bandwidth of A (i.e., it will create non-zero entries

where there were zeroes before, between the leading and furthest off-diagonals of A).

Further, one may not need the machine-precision accuracy gained from using a direct

method. This is particularly prevalent where one is solving an inverse problem with

limited accuracy data: there is little point trying to simulate data with machine pre-

cision when one cannot record to this accuracy, and where modelling errors may be a

greater source of inaccuracy in simulated data. We must also consider that errors in

the forward model propagate into the derivative of the objective function when solving

the inverse problem, since the derivative is a backprojection of data residuals, giving

rise to another source of error on solution of a further linear system. We may then

need to solve the forward problem with greater precision than the recorded data in

order to obtain sufficiently accurate derivative information.

Instead of using a direct method, it is more appropriate to use an iterative one.

Such a method builds up a sequence of improving approximations, xk, to the linear

system. For large sparse banded matrices, iterative methods can take advantage of the

fact that a matrix multiplication Ax takes m×n operations, where m is the number of

bands and n the size of the matrix. This can be done by taking the kth approximation

to be

xk ∈ span
{
b, Ab, . . . , Ak−1b

}
, k = 1, 2, . . . , (4.2.8)

which is the Krylov subspace of A. The vectors qi = Aib are referred to as the Arnoldi

vectors. Iterative methods based on the Krylov subspace include conjugate gradients

(CG) for Hermitian positive definite A, minimal residual (MINRES) for Hsermitian

indefinite A, and the generalized minimal residual (GMRES) algorithm for general

non-Hermitian matrices, as well as the bi-conjugate gradient (BiCG) and bi-conjugate

gradient stabilized (BiCGSTAB) algorithms. Broadly speaking, these methods differ

in how they find the xk which minimises Axk − b [64].

One must ask how good an approximate solution is contained in (4.2.8). If it does

not contain a good solution for any moderate k, one must use instead a preconditioned
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method, which solves the modified problem

M−1Ax = M−1b. (4.2.9)

Then, we instead generate the subspace

xk ∈ span
{
M−1b, (M−1A)M−1b, . . . , (M−1A)k−1M−1b

}
, k = 1, 2, . . . . (4.2.10)

A good choice of preconditioner M should be one such that the linear system (4.2.9)

is much easier to solve, broadly speaking resulting in the space (4.2.10) containing a

good approximation after a moderate number of iterations. Generally this means M

is a good approximation to A, such that M−1A is close (in some sense) to the identity.

If M = A though, we gain nothing from preconditioning since we will have solved the

linear system directly.

The simplest form of preconditioner is to take M as the diagonal of S (the Jacobi

preconditioner). This has a minimal memory footprint and it is simple to findM−1, but

it may be insufficient where A is not sufficiently diagonally dominant. This diagonal

preconditioner can be generalised by forming M from blocks along the diagonal of A.

For denser matrices than the 5-point stencil finite difference matrix, forming M from

the elements Aij where indices i and j lie close to one another can also be effective.

Methods based on an incomplete factorization of A, such as incomplete LU (ILU)

factorisation, can prove to be far more robust since they are much ‘closer’ to A. Their

drawback is their additional storage requirement, as well as additional time to compute

the decomposition. Multigrid methods are also possible, in which the problem is solved

in a hierarchy of increasingly refined grids. However, since a sufficiently refined grid

is required to prevent large numerical dispersion, it may not be possible to solve the

problem on a much coarser grid which limits their applicability.

For the discretised Helmholtz system, with A close to indefinite the Krylov subspace

may poorly represent the solution. This is because the solution is large throughout

the domain, but with a 5 finite difference point stencil all the lower order Arnoldi basis

vectors have only a few nonzero entries [57]. A pre-conditioned method is therefore

necessary.

One appropriate method is BiCGSTAB [177] with a shifted-Laplace type pre-

conditioner [2, 54, 141, 189, 199]. The shifted-Laplace the pre-conditioner M is given
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by

M(k) = A(k̂), k̂ = k(βr + iβc), (4.2.11)

where βr is close to 1 and 0 < βc ≤ 1. At βr = 1 and βc = 0, the shifted-Laplace

pre-conditioner reduces to the system matrix and applying M−1 will solve the system

(4.2.7). This is not efficient since it would bypass the iterative method. For βc > 0 M

is a damped system, and so the solution M−1b has far more local perturbations than

A−1b. 0 � βr < 1 can also be beneficial for large values k0, as M will have a lower

condition number but similar eigenvalue spectrum. In general, for our relatively small-

scale problem we have found the values βr = 1, βc = 0.2 to yield convergence at an

acceptable rate. Figure 4.1 shows the convergence of the finite-difference solution of the

Helmholtz equation with k = 15 against the analytic Green’s function, (3.6.9), using

first order absorbing boundary conditions. Convergence is seen to be super-linear, not

quadratic, owing to the first order absorbing conditions. At higher wavenumbers, an

initial oscillatory period would be observed in the convergence plot before the solution

begins to converge with grid refinement. This is due to high numerical dispersion

caused by insufficient grid points (see, for example, Ainswork [3]).

4.3 Inversion procedure

4.3.1 Introduction

In this section we describe the full-wave inversion procedure, that is to solve numeri-

cally

minv = argmin
m

1

2
‖F(m)− d‖+ λR(m), (4.3.1)

giving the full numerical recipe so that the reader has all the required information for

them to implement 2D FWI in one location. Following the discussions on inverse prob-

lems and iterative optimisation in Chapter 2, we first describe our chosen optimisation

procedure (l-BFGS) and reasons for its selection. We also discuss implementational

aspects of the iterative procedure, including stopping criteria and line-searching, in

the context of the inverse problem. We then discuss a suitable regularisation strategy

for landmine detection, and its implementation in the two-dimensional discretisation

of the subsurface.
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Figure 4.1: Convergence plot of the finite-difference solution of the Helmholtz equation
with k = 15, for a 1×2 m grid with O(1) absorbing boundary conditions, compared to
the analytic Greens function. The line of best fit has a gradient of −1.4204, showing
super-linear convergence. Convergence is not quadratic due to the O(1) absorbing
boundary conditions.

To highlight the affect of the various parameters or features of the inversion process,

we have used a common test problem throughout this section containing two square

scatterers (or rather, cuboids infinite in the ŷ direction), as shown in Figure 4.2. Un-

less stated otherwise, data was simulated at 100 frequencies between 1 and 3 GHz for

a 1 source 3 receiver array with maximum source-receiver offset of 20 cm, at 16 source

locations along the surface. The data then had Gaussian noise added to result in a

signal-to-noise ratio of 20:1. The inversion was initialised at a homogeneous domain,

used Total Variation regularisation (see section 4.3.6), was allowed to run for 20 it-

erations, and the objective function was weighted by 1
ω2 . When simulating data, the

finite difference grid spacing was 1.43 mm, but when evaluating the objective function

2 mm was used. This strategy, in which course and fine grid points are not co-located

(apart from at source locations), ensures we are not ignoring the effect of discretisa-

tion errors on the solution to the inverse problem by using the same simulation and

inversion grid (this is often referred to as an ‘inverse crime’, see for example Kaipio

and Somersalo [81]).
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Figure 4.2: Test domain used to demonstrate the inversion process. Colour scale shows
reciprocal of wavespeed 1

c
× 108 s/m

4.3.2 Iterative solution of the full-wave problem

In Section 2.5.3, we gave an overview of several optimisation methods which can

be suitable for solving the non-linear and large-scale optimisation problem of FWI:

Newton; quasi-Newton; steepest descent; and non-linear conjugate gradient methods.

These methods calculate a descent direction of the cost function J at each iteration

based on a linear or quadratic modelMk(p) ≈ J (xk), followed by a line-search in the

descent direction to approximately minimise the cost function in this direction. The

model M may not be a good approximation if we are far from the global minimiser

(true solution). In Section 2.5.5, we also discussed the meaning of the Hessian matrix

and its effect in the Newton descent direction: it incorporates non-linear effects such as

first-order multiple scattering, and correctly rescales the descent direction to account

for parameter illumination. Due to the importance of the Hessian matrix, we wish our

optimisation method to include it. Thus we rule out steepest descent and conjugate

gradient methods, leaving us with a choice of Newton, quasi-Newton and Newton-CG.

Unfortunately, both the Hessian matrix itself and the Gauss-Newton approximation

H ≈ JTJ are too large to store in full, or calculate in a reasonable time-frame, for a

realistic sized full-wave problem. We therefore chose to use a quasi-Newton method,

which approximates the Hessian matrix based on the finite differences in the gradient

at each iteration.

One option is the BFGS method, as well as other methods in the Broyden Class

[123, pp 149-152]. The BFGS update (2.5.10) requires the storage of a large dense

Hessian approximation, which also rules the method out due to memory constraints.
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Instead, we may use the limited memory BFGS method, l-BFGS, which stores a user-

defined number m of vector pairs {sk,yk}, where

sk = mk+1 −mk, yk = ∇mJk+1 −∇mJk, (4.3.2)

and Jk := J (mk). Repeated application of the BFGS formula (2.5.10) shows that at

iteration k, the BFGS approximate Hessian satisfies

Bk =
(
V T
k−1 · · ·V T

k−m
)
Bk−m (Vk−m · · ·Vk−1)

+ ρk−m
(
V T
k−1 · · ·V T

k−m+1

)
sTk−msTk−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
V T
k−1 · · ·V T

k−m+2

)
sTk−m+1s

T
k−m+1 (Vk−m+2 · · ·Vk−1)

+ . . .

+ ρk−m+1sk−1s
T
k−1, (4.3.3)

where Bk−m is the BFGS approximate inverse Hessian at iteration k −m, and

ρk =
1

yTk sk
, Vk = I − ρkyksTk . (4.3.4)

The l-BFGS approximate inverse Hessian is derived from (4.3.3) by choosing a new

initial approximation B0
k in place of Bk−m in (4.3.3), thus neglecting contributions to

the Hessian from more than m iterations previous. If B0
k is sufficiently sparse (for

example, a diagonal matrix), then l-BFGS will have a vastly lower memory footprint

then BFGS. (4.3.3) also prompts the efficient calculation of the product Bk∇mJk given

in Algorithm 1 by Nocedal and Wright [123, pp178].

Algorithm 1 l-BFGS two-loop recursion

q← ∇Jk;
for i = k − 1, k − 2, . . . , k −m do

αi ← ρis
T
i q;

q← q− αiyi;
end for
r← B0

kq;
for i = k −m, . . . , k − 1 do

β ← ρiy
T
i r;

r← r + si(αi − β);
end for . end with result r = Bk∇Jk

l-BFGS requires an initial estimation of the inverse Hessian matrix B0
k, which for

computational simplicity is often chosen to be a multiple of the identity matrix. The
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first iteration of l-BFGS will then be the equivalent to steepest descent, and we can

expect little reduction in our cost function. Since we are able to choose a different

initial Hessian for each iteration, for iteration k > 1 it can be effective to choose

B0
k = γkI =

STk−1yk−1

yTk−1yk−1

I, (4.3.5)

which attempts to make the size of B0 close to that of ∇2J [123, pp143].

Algorithm 2 l-BFGS

Choose an m0, m > 0;
k ← 0;
while Convergence criteria not met do

Choose B0
k; . e.g. from (4.3.5)

pk ← −Hk∇Jk from Algorithm 1;
mk+1 ←mk + αkpk, where αk satisfies the (strong) Wolfe conditions;
if k > m then

Discard the vector pair {sk−m,yk−m} from storage;
end if
sk ← xk+1,xk;
yk ← ∇Jk+1 −∇Jk;
k ← k + 1;

end while

The importance of the Hessian matrix in least-squares FWI, as discussed in Sec-

tion 2.5.5, can be highlighted by comparing the l-BFGS descent direction to the gradi-

ent, as shown in Figure 4.3. Here we see the l-BFGS direction will add a contribution

over the whole of the scattering objects and comparatively little contributions else-

where; in contrast, the gradient term appears to only add contributions around the

edge of the scatterers, with the (l∞) size of artefacts almost as large as that of the

scattering objects. This is easiest to see in the comparison between the normalised

directions. The gradient is also very badly scaled, which may result in a line search

requiring many objective evaluations in order to find a suitable steplength if a steepest

descent method is used.
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Figure 4.3: Comparing the l-BFGS descent direction to the gradient after 10 iterations.
a) shows the current iterate m10, b) the gradient g10, c) the l-BFGS descent direc-
tion p10, and d) the difference between normalised l-BFGS direction and normalised
gradient.

4.3.3 Stopping conditions

The l-BFGS algorithm given in Algorithm 2 is stated without stopping criteria. We

will generally want to stop when one of several things occurs:

Jk
J0

≤tolJ , (4.3.6a)

∇Jk ≤tolg, (4.3.6b)

‖mk −mk−1‖
‖mk‖

≤tols, (4.3.6c)

Jk−1 − Jk ≤tolc. (4.3.6d)

The reasoning behind first two of these conditions is clear: if the gradient is sufficiently

small we have reached a local minima, and if the cost value has reached a known

minimum value we will not be able to reduce it further. tolJ should be set relative to

the estimated noise level: given the accuracy of our data (and of our forward model),

one should not try and approach this accuracy in the cost function, as we will be

including noise in our solution. If the maximum estimated noise level is δε, a suitable

tolerance might be tolJ = 10 × δε – i.e. we expect an order of accuracy in solution

less, but other choices are possible.

(4.3.6c) identifies that the optimisation scheme has stagnated, and further itera-

tions may simply be a waste of computational time. (4.3.6d) is similarly a sensible
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criteria, preventing excessively small change in cost reduction at large computational

expense. It is guaranteed to be reached if Jk is strictly decreasing with k and bounded

below. Both (4.3.6c) and (4.3.6d) can be implemented with a delay to prevent a pre-

mature stop, i.e. we stop only if the inequality holds for a given number of previous

iterations. This can be useful if we expect the stagnation occurred due to a poor

descent direction, or changing some other parameter (say, regularisation), which can

be resolved in the next iteration.

We note that each tolerance is an additional regularisation parameter. Too small

a tolerance and we over-solve the inverse problem, either fitting the noise in the data

or simply making trivially small gains at large computational cost. Too large and we

exit prematurely, far from the true solution and having only fitted the dominant parts

of the data misfit. This is highlighted by Figure 4.4, comparing the iterate mk at

iterations 5, 15, 25, and 50, and by Figure 4.5, showing the relative residual, absolute

error and relative change in solution for 50 iterations of l-BFGS.

From Figure 4.4 we see that at 5 and 15 iterations we are far from the true so-

lution. With little difference between the iterates 25 and 50 though, for these final

25 iterations we are over-solving. This is confirmed by Figure 4.5, which shows that

after 25 iterations there is little reduction in both the residual as well as the absolute

error against the true solution. From Figure 4.5(c) we see that, in this example the

stopping criteria tols = 10−4 would have been appropriate.

4.3.4 Line-searching

The l-BFGS algorithm requires a step length αk at each iteration, to determine how

far along each descent direction pk one should travel to update the solution (i.e. a

globalisation method). Often in FWI the step length is calculated via a linearisation

[55,132]

α = κ

(
F(mk + κpk)−F(mk)

)T (F(mk)− dobs

)(
F(mk + κpk)−F(mk)

)T (F(mk + κpk)−F(mk)
) , (4.3.7)

where κ is chosen to be small enough such that linearity in the forward operator

holds, but large enough to avoid numerical round-off error. For details see Ap-

pendix A.3. However, carrying out a line-search which satisfies the (strong) Wolfe
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Figure 4.4: Reconstruction of the 2D test problem in Figure 4.2 at iterations 5 (top
left), 15 (bottom left), 25 (top right) and 50 (bottom right)

conditions (2.5.15) may result in either faster or more stable convergence if the lineari-

sation (4.3.7) is poor. Given a descent direction pk, defining φ(α) := J (mk + αpk)

the strong Wolfe conditions can be written as

φ(α) ≤φ(0) + c1αφ
′(0) (4.3.8a)

|φ′(α)| ≤c2|φ′(0)|. (4.3.8b)

As mentioned in Section 2.5.3, (4.3.8a) ensures the objective function has decreased

sufficiently, preventing us from testing larger steps when the decrease is poor; and

(4.3.8a) ensures α lies close to a local minimum.

To understand why the curvature condition (4.3.8b) must be satisfied, and not

just sufficient decrease condition (4.3.8a), consider that the Hessian update is positive

definite only if

sTk yk > 0. (4.3.9)

By (4.3.8b), we have

yTk sk =α(∇Jk+1 −∇Jk)Tpk

≥(c2 − 1)α∇J Tpk > 0 (4.3.10)

since 0 < c2 < 1 and pk is a descent direction. Hence, satisfying the (strong) Wolfe

guarantees a positive definite Hessian update, and therefore that the pk will be descent
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directions. For l-BFGS, it is sensible to perform a fairly loose search such as c1 = 10−4

and c2 = 0.9 [123, pp. 142]. This way, more effort is placed into finding a step which

will give a positive definite Hessian update, improving the descent direction for later

iterations.

Nocedal and Wright [123, pp 60-61] give a line search algorithm which first finds a

region [α1, α2] in which an α satisfying () lies, then interpolating between these points.

For completeness, this is included here as Algorithms 3 and 4.

Algorithm 3 Line Search Algorithm

α0 ← 0, choose αmax > 0 and α1 ∈ (0, αmax);
i← 1;
loop

Evaluate φ(αi)
if φ(αi) > φ(0) + c1αiφ

′(0) or [φ(αi) ≥ φ(αi−1) and i > 1] then
α∗ ← zoom(αi−1, αi);
return α∗;

end if
Evaluate φ′(αi);
if |φ′(αi)| ≤ −c2φ

′(0) then
α∗ ← αi;
return α∗;

end if
if φ′(αi) ≥ 0 then

α∗ ← zoom(αi, αi−1);
return α∗;

end if
Choose αi+1 ∈ (αi, αmax);
i← i+ 1;

end loop . Loop ends with an α∗ satisfying the strong Wolfe conditions

The trial step lengths generated by Algorithm 3 are monotonically increasing, and

φ(α) is assumed to a continuous function with continuous first derivative. If there

exists an α ∈ (0, αmax) such that

φ(α) = φ(0) + c1αφ
′(0) =: ψ(α), (4.3.11)

then there is guaranteed to be at least one α∗ ∈ (0, αmax) satisfying the strong Wolfe

conditions [123, pp 35]. To show this, first let α′ smallest such α satisfying (4.3.11),

then all α ∈ (0, α′) satisfy the sufficient decrease condition. By the mean value theo-

rem, ∃α′′ ∈ (0, α′) such that

φ′(α′)− φ(0) = α′φ′(α′′). (4.3.12)
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Combining (4.3.11) and (4.3.12), it is clear that α′′ satisfies the curvature condition,

and also satisfies the sufficient decrease condition since α′′ < α′.

Assuming αmax is sufficiently large that the above holds, the line search algorithm

successively increases αi until:

1. αi no longer satisfies the sufficient decrease, or φ(αi) > φ(αi−1);

2. αi satisfies the strong Wolfe conditions;

3. the cost function has positive gradient at αi.

In the first and third cases, we have overstepped a (local) minimum of φ(α), so there

must be an α∗ ∈ (αi−1, αi) satisfying the strong Wolfe conditions, which is found by

the function zoom by interpolation between αi and αi−1. Otherwise, the function is

still decreasing at αi, and a larger step size is chosen via

αi+1 = λαi, λ > 1. (4.3.13)

λ should be sufficiently large that the algorithm makes sufficient progress, but not so

large that zoom is given too wide an interval to interpolate effectively. λ ∈ (1.05, 1.5)

can be an effective choice.

Note that Algorithm 3 only calculates a gradient where it is necessary: if αi violates

the sufficient decrease condition we needn’t check if it satisfies the curvature condition.

Note also that the order in which αi and αi−1 are supplied to zoom varies: the first

argument is always the one which is closest to satisfying the Wolfe conditions.

Algorithm 4 selects a new step length αj between αlo and αhi. If this satisfies the

strong Wolfe conditions it is returned, but if it does not a new step is selected between

αj and αlo. Whichever gives the higher function value of αj and αlo is renamed to be

αhi, and the other to be αlo for the next iteration.

Note that at the start of every iteration, we always have knowledge of φ(αlo),

φ′(αlo) and φ(αhi). We can therefore take the trial step length to be the minimiser of

the quadratic interpolation of φ between αlo and αhi,

αq = − b

2a
, (4.3.14)
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Algorithm 4 Zoom

Input αlo, αhi;
loop

Interpolate φ between αlo and αhi to find a trial step αj;
Evaluate φ(αj);
if φ(αj) > φ(0) + c1αjφ

′(0) or φ(αj) ≥ φ(αlo then
αhi ← αj;

else
Evaluate φ′(αj);
if |φ′(αj)| ≤ −c2φ

′(0) then
α∗ ← αj;
return α∗;

end if
if φ′(αj)(αhi)− αlo) ≥ 0 then

αhi ← αlo;
end if
αlo ← αj;

end if
end loop . Loop ends with an α∗ satisfying the strong Wolfe conditions

where 
α2

lo αlo 1

α2
hi αhi 1

2αlo 1 0



a

b

c

 =


φ(αlo)

φ(αhi)

φ′(αlo)

 .
If αlo 6= 0, we also always have the additional information of φ′(0) (φ(0) may not be

additional information if αhi = 0), so can instead interpolate a cubic. A cubic may also

be interpolated between φ(αlo), φ′(αlo), φ(αhi) and φ(αold) at later iterations, where

αold 6= αlo, αhi is a previously tested and rejected step.

This interpolation should be safeguarded to ensure the trial value is sufficiently far

from either αlo and αhi.Similarly to Moré and Thuente [120], we take

αj =


αlo + αhi

2
, if any


αq < min(αlo, αhi) + δ

αq > max(αlo, αhi)− δ

|αq − αhi| < |αq − αlo|

αq, otherwise

, (4.3.15)

where δ > 0 is a small user-defined number. The selection (4.3.15) ensures a sufficiently

large step is taken, and that it is closer to αlo than αhi, that it lies in the given range (if a

cubic interpolation has been used it may not). We also return α∗ = αlo if |αlo−αhi| < δ

and αlo 6= 0, or if some maximum number of iterations have passed.
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For l-BFGS, the step length α0 = 1 should be tried first by the line-search algo-

rithm, as such a step length helps super-linear convergence to be observed [123, pp158-

160]. In early iterations though the Hessian approximation may be poor, and so the

descent direction poorly scaled. Choosing

α0 =


Jk

λφ′(0)
for k = 1

2(Jk − Jk−1)

φ′(0)
otherwise

(4.3.16)

interpolates a quadratic to Jk, Jk−1 and φ′(0), or a line in the first iteration. The

contribution λ > 0 in the first iteration serves to rescale α0, since the linear interpolant

is a poor approximation. Adjusting this by

α0 = min(1, 1.01α0), (4.3.17)

which forces the selection of α0 = 1 as soon as it is reasonable.

Our final concern is with the maximum step length. Via equations (4.3.11) and

(4.3.12), we showed that step lengths satisfying the Wolfe conditions were guaranteed

if φ(α′) = ψ(α′) for some α′ ∈ (0, αmax]. This in turn is guaranteed if we take

αmax =
φ(0)

c1φ′(0)
(4.3.18)

since ψ(αmax) = 0, and φ is continuous and bounded below by some φmin > 0, so it

must intersect ψ. However, this range may be too great, breaking physical bounds on

the parameters. In such cases αmax must be reduced, but we cannot then guarantee

the curvature condition will be satisfied by α∗.

The line search described in this section may appear to be computationally expen-

sive, but the actual cost will depend on well scaled the descent direction pk is, and

how well φ(α) can be approximated by a quadratic or cubic function. Note that the

linearisation (4.3.7) always takes 1 additional forward solve to calculate a step length

α, before the objective and gradient are evaluated at mk − αpk. In the strong Wolfe

search, if the initial step length is accepted there is no additional cost. If it is not,

Algorithm 4 interpolates this step length to find a more desirable selection, similar to

calculating the linearised step length (4.3.7). A gradient is only calculated if a step

length sufficiently reduced the objective function, and only rejected if the step length

would result in a non positive definite l-BFGS update. (4.3.7) does not guarantee
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either a positive definite update or sufficient decrease in objective function. It may be

particularly unsuitable if the objective function is highly nonlinear.

To demonstrate the necessity of a more involved line search than the linear step

(4.3.7), we compare the first 20 iterations of the test problem detailed in Section 4.3.1

using a linearised step, to using Algorithms 3 and 4. For the linearised step, we take

κ = ‖pk‖∞/100 (as suggested by Pica [132]), and for the strong Wolfe conditions we

take c1 = 0.05 (a fairly tight condition), and both c2 = 0.95 and c2 = 0.8 (a loose

and tight condition, respectively). The relative residuals and absolute errors of the

optimisation procedures are shown in Figure 4.6, and Figure 4.7 the reconstruction

results after 20 iterations.

Figure 4.6(a) shows us that the linearised step length prevents l-BFGS from reach-

ing its optimal rate of convergence. Moreover, Figure 4.6(b) shows that after 8 itera-

tions, while the residual continues to decrease, we fail to resolve any more details of the

subsurface. From the reconstruction shown in Figure 4.7(a), which is fairly oscillatory

and so will have a large TV norm, we hypothesise that this is due to failing to account

for the non-linearity of TV regularisation by imposing a linearised step length. As

we will see in Section 4.3.6, the way in which we have implemented TV regularisation

means the non-linearity increases with each iteration, making the linearisation (4.3.7)

a poor choice. Using the strong Wolfe line search however, we do more to approxi-

mately minimise J along pk, thus accounting for the non-linearity in the objective

functional.

It is interesting to note that the additional cost of implementing a strong Wolfe line

search was minimal in this example. Each iteration of l-BFGS requires two forward

solves (one data simulation and one adjoint solve for the gradient). Using (4.3.7)

required 20 additional forward solves (1 per iteration). The loose Wolfe search required

only 9 additional forward solves, because in later iterations pk was well scaled and

α = 1 was accepted, requiring no additional forward solves required. The stricter

Wolfe search required 18 additional forward solves, which is still fewer than using the

linearised step, though there is negligible difference between the results of the two

reconstructions using Wolfe line searches.

Note that our implementation of (4.3.7) is not thorough: we do not dynamically set

κ as is more usual [55], and there are no safeguards implemented to ensure sufficient
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Figure 4.6: Comparison of (a) relative residuals and (b) absolute error for 20 iterations
l-BFGS using a linearised step lengths to step lengths satisfying the strong Wolfe
conditions



CHAPTER 4. FULL-WAVE INVERSION IN 2D 90

x location (m)

D
ep
th

(m
)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3 0.62

0.64

0.66

0.68

0.7

0.72

0.74

(a) Linearised step length

x location (m)

D
ep
th

(m
)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3 0.62

0.64

0.66

0.68

0.7

0.72

0.74

(b) Loose Wolfe search c2 = 0.95

x location (m)

D
ep
th

(m
)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3 0.62

0.64

0.66

0.68

0.7

0.72

0.74

(c) Tight Wolfe search c2 = 0.80

Figure 4.7: Reconstruction results after 20 iterations of l-BFGS for (a) linearised line
steps, to strong Wolfe line searches with (b) c2 = 0.95 and (c) c2 = 0.80. Both strong
Wolfe line searches used c1 = 0.05.
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decrease. Nevertheless, it seems fruitless to calculate forward solutions which will

always be discarded, and it would appear necessary to satisfy the curvature condition

to ensure a good l-BFGS descent direction and to properly account for non-linearity

in the objective function.

4.3.5 Modifications for bounded optimisation

The line-search described above produces step lengths guaranteed to satisfy the Strong

Wolfe conditions wherever αmax is chosen by (4.3.18). If αmax is less than that in

(4.3.18), for example due to physical bounds on parameters, the strong Wolfe condi-

tions are not guaranteed to be satisfied if

αmax = argmin
α∈(0,αmax]

φ(α), (4.3.19)

for example when both φ and φ′ are monotonically decreasing functions of α ∈

(0, αmax].

The l-BFGS-b scheme [33] has been developed for problems with box constraints

mmin ≤ mi ≤ mmax. The method identifies free and fixed variables at each iteration

via a steepest descent method, then updates only the free variables using the l-BFGS

method. In our experience, since we are dealing with measurements caused by physical

parameters which will be far from physical bounds (for example, we won’t have in

general a vacuum or perfect conductors present), the unbounded l-BFGS method will

be unlikely to come close to violating the physical constraints. We have found it

sufficient to identify the fixed variables as those for which mk + αminpk would violate

the constraints, for some prescribed minimum step length αmin.

To ensure a positive definite Hessian update, Byrd et al [33] discard any vector

pairs (sk,yk) which would result in a non positive definite Hessian update. One can

instead use a damped BFGS update

Hk+1 = Hk −
Hksks

T
kHk

sTkHksk
+

rkr
T
k

sTk rk
, (4.3.20)

where

rk = θkyk + (1− θk)Hksk, (4.3.21)
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and Nocedal [123, pp 537] proposes the scalar θk is given by

θk =

 1 sTk yk ≥ 0.2sTkHksk

(0.8sTkHksk)/(skHksk − sTk yk) sTk yk < 0.2sTkHksk
(4.3.22)

With this choice, θk = 0 gives Hk+1 = Hk, discarding the latest update, and θk = 1

gives the possibly indefinite BFGS update. θk then interpolates between the previous

Hessian approximation and the new update, ensuring Hk+1 is positive definite but that

as much new information is included as possible.

Equation (4.3.20) gives the dense BFGS Hessian update, and not the l-BFGS in-

verse Hessian. The damped limited memory BFGS update is similarly calculated by

replacing yk with rk, as implemented by Baali et al [6]. Calculation of θk (specifically

Hksk) is a little more involved since we do not store Hk nor wish to form the dense

matrix. Instead, we solve

Hksk = (Bk)
−1 sk (4.3.23)

for Hksk using an iterative method such as CG,with an implementation that can

be passed a function returning products Bkx rather than the matrix Bk itself (e.g.

Matlab’s inbuilt cgs). These products can then be calculated using the same 2-loop l-

BFGS recursive method as used for the inverse Hessian gradient product, Algorithm 1.

The cost of solving for Hksk is small, since if Bk is formed by m vector pairs (sk,yk)

and B0 is taken to be a multiple of the identity, then Bk has at most r = m+1 distinct

eigenvalues. It can easily be shown that conjugate gradient methods will terminate

in at most r iterations [123, pp. 115]. The distinct eigenvalues of the l-BFGS inverse

Hessian for the first 10 iterations are shown in Figure 4.8.

We reiterate that the damping only ever occurs where the line search fails to return

step lengths satisfying the strong Wolfe conditions, which is a rare occurrence. While

more complex choices than (4.3.20) are possible, for example switching to an SR1

update [5], they are not worth implementing for such occasional gain.

4.3.6 Regularisation

The regularisation functional R plays two main roles: preventing over-solving of an

ill-posed system, thereby reducing the contribution of noise in the solution; and adding

a-priori knowledge, restricting the solution of our ill-posed problem to one which fits
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Figure 4.8: Eigenvalues of the l-BFGS inverse Hessian after the first 10 iterations. The
number of numerically distinct (15 decimal places) eigenvalues is displayed, which is
seen to be 1 more than the number of BFGS updates (which is 1 less than the iteration
number)

some expected distribution of the subsurface parameters. For the landmine detection

problem, we are looking for distinct objects in the ground with a solid boundary. A

suitable regularisation functional for this is the Total Variation semi-norm,

TV (f) =

∫
Ω

|∇f(x)| dV, (4.3.24)

where f : Ω → R for some domain Ω ⊂ R3. The total variation semi-norm penalises

high-frequency changes in f , but allows for jump changes. It therefore promotes

solutions f(x) to the inverse problem which vary little in some neighbourhood around

x, but that distinct jumps are promoted where this is not possible.

The gradient of the TV semi-norm is given by

∇TV (f) = −∇ ·
(
∇f
|∇f |

)
. (4.3.25)

It is clear from (4.3.25) that the TV semi-norm is non-differentiable for a homogeneous

function, which makes it unsuitable for gradient based optimisation methods (partic-

ularly so since we are likely to start from a homogeneous background). The gradient

is also strongly non-linear [28]. One method to overcome this is to approximate the
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Euclidean norm with [183,184]

|x| ≈
√
|x|2 + ε2,

for some |ε| � 1, which has a well-defined smooth gradient at |x| = 0. We then have

the smoothed Total Variation semi-norm

TVε(f) =

∫
Ω

√
|∇f(x)|2 + ε2 dV. (4.3.26)

In the 2D discrete setting, this is given by [184, pp 133]

TVε(m) =
nx∑
i=1

ny∑
j=1

ψ
(
(Dx

ijm)2 + (Dz
ijm)2

)
hxhz, (4.3.27)

where hx and hz are the step sizes in the x̂ and ẑ directions, which have nx and nz

total grid points;

Dx
ijm =

mi,j −mi−1,j

hx
, and Dz

i,jm =
mi,j −mi,j−1

hz
; (4.3.28)

and

ψ(t) = 2
√
t+ ε2. (4.3.29)

Following C. Vogel [184, pp. 133-134], the derivative of (4.3.27) in the direction v is

given by

∂TVε
∂v

∣∣∣∣
m

=
nx∑
i=1

nz∑
j=1

ψ′ij
[
(Dx

ijm)(Dx
ijv) + (Dz

ijm)(Dz
ijv)
]
hxhz,

=
〈
diag(ψ′(m))Dxm, Dxv

〉
+
〈
diag(ψ′(m)Dzm, Dzv

〉
, (4.3.30)

where ψ′ij =
(
(Dx

ijm)2 + (Dz
ijm)2

)
and diag(ψ′) is the diagonal matrix whos entries

are the ψ′ij, Dx and Dz correspond to the grid operators in (4.3.28), and 〈·, ·〉 is the

Euclidean inner product. From this, we obtain that the gradient with respect to model

parameters is given by

∇mTVε(m) = L(m)m, (4.3.31)

where

L(m) =
[
DT
x DT

z

]diag(ψ′(m)) 0

0 diag(ψ′(m))

Dx

Dz

 . (4.3.32)

Implementing a smoothed Total-Variation regularisation in this manner, one can re-

duce the parameter ε after each iteration of l-BFGS, so that TVε → TV . In early
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iterations this must be done gradually, since the gradient may be close to singular if

mi is close to homogeneous.

A. Borsic [28] has compared various starting values for ε as well as the rate in which

they are decreased for solving the electrical impedance tomography (EIT) problem

using a Newton method, as well as for fixed values of ε. In general, a larger value

results in a more stable scheme, but the approximation of the TV semi-norm is poor

and so final results will suffer.

It can be more efficient to solve the TV regularised inverse problem with a Primal

Dual method, in which an alternative problem is constructed using the Lagrangian

of the objective function, referring to A. Borsic [28] for an overview of Primal Dual

methods for the TV regularised inverse problem up to 2002. More recently, it has

been shown that using a split Bregman method can converge quickly as well as being

suitable for large-scale problems [62]. For the simpler test problems considered in this

chapter, it is sufficient for us to implement an iteratively reweighted quasi-Newton

method for the smoothed TV functional, in which ε is reduced only after sufficient

decrease in objective function, and is increased if a sufficient reduction cannot be

found. Pseudocode for this method is given in Algorithm 5. Note that when ε is

increased due to an insufficient reduction in the objective function, the iterate mk+1

is thrown away (i.e. iteration k is recalculated).

Algorithm 5 Iteratively Reweigheted l-BFGS

set ε, m0;
k = 0;
while Convergence criteria not met do

Calculate pk . via l-BFGS Algorithm 1
Set mk+1 ← mk + αkpk satisfying Strong Wolfe conditions . via Algorithm 3
if sufficient decrease of J (mk+1) then

decrease ε;
k ← k + 1;

else
Increase ε;

end if
end while

Figure 4.9 compares a Total Variation to a Tikhonov regularised solution (2.2.6)

with a homogeneous prior. The reconstruction with Tikhonov regularisation is poor

because it does not add relevant prior information about the solution: the background
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Figure 4.9: (a) Tikhonov and (b) Total Variation regularised solutions to the FWI
problem, both with λ = 1.5.

is close to the correct value, but the inclusions are restricted away from the correct

values. Tikhonov regularisation also does a poor job at preventing oscillatory artefacts,

which arise due to the gradient being formed by solutions to wave equations.

As we discussed in Section 2.2.2, the amount of regularisation used (choice of

λ > 0 in (4.3.1)) provides a trade-off between fitting the model to the data, and

incorporating a priori knowledge to ensure uniqueness and stability of the solution.

This can be highlighted by l-curve plots of the logs of the data misfit ‖F(minv)− d‖2

against the regularisation misfit R(minv), for various values of λ. Such plots generally

show a large regularisation term and small data residual for small λ, owing to the

dominance of noise in the solution, and vice-versa for large λ, with an area of high

curvature for intermediate values of λ (the “corner” of the L). According to Hansen

and O’Leary [72] (see also [70] and [71, pp. 187-193]), this point of high curvature
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Figure 4.10: L-curve plots for the TV regularised FWI problem with varying signal-
to-noise ratio, with regularisation parameters λ ∈ [0, 500].

provides a qualitative means of choosing the regularisation parameter λ. This criterion

does not always hold [68,182], the L-curve plot does not always form an L shape (for

example when the underlying assumption that the data residual and the smoothing

regularisation function are not monotonic functions of λ).

Figure 4.10 gives L-curve plots for the TV regularisd FWI problem with signal-

to-noise ratios between 100 and 10. While the trade-off between data residual and

TV norm is clear, there is not a distinctly high point of curvature in any of the plots.

Moreover, for large amounts of noise the plot does not show a convex corner at all for

the non-linear Total-Variation regularisation. The cluster of points in Figures 4.10(c)

and 4.10(d) varying discontinuously with λ� 1 highlights the instability of the inverse

solution to noise.
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4.3.7 Frequency selection

The scattering of waves in the subsurface largely occurs due to features large compared

to the wavelength, with features smaller than the wavelength having a much smaller

effect. Lower frequency components of the recorded data then will largely be due to

larger scatterers in the subsurface, whereas higher frequency components will contain

the detail of smaller objects. With higher frequency components affected by more

length scales of objects, they are likely to have been scattered more times, and so fitting

higher frequency may be a more non-linear problem. Contrarily, it may be much easier

to determine large-scale features to lower frequency data, which has only been reflected

from large objects (ignoring some features), but reconstructing the detail of features

small compared to the wavelength becomes a severely ill-posed problem (compare to

EIT). There may also be differences in the noise level at different frequencies, perhaps

with higher frequency data being more susceptible to background thermal noise and

so having a greater variance.

In light of this, one often attempts first to reconstruct large-scale features (ex-

pecting a better conditioned problem) before resolving the detail, and there are two

common approaches: invert all the data simultaneously but with a different weighting

for each frequency component, for example Hu et al [76] weight proportionally to 1/ω2

for seismic inversion; or begin with lower frequency components, and adding higher

frequency components to the objective function (removing or not the lower frequen-

cies) in later iterations, for example as implemented by Ravaut et al [139] for seismic

data, or Meles et al [112, 113] for GPR data. The latter has the additional benefit

of reducing the computational cost of evaluating the objective function in early iter-

ations, while the former uses a more over-determined dataset so may be more robust

to noisy data.

Figure 4.11 compares the reconstruction, and Figure 4.12 the relative residuals and

2-norm absolute error, after 20 iterations of l-BFGS for different weights of frequency

components in the data. We see from Figure 4.11 that the 1
ω

and 1
ω2 weightings have

acted as ‘smoothing operators’, reducing the contribution of noise when compared

with the equal weighting reconstruction. The artefact beneath the greater contrasted

object is also reduced, possibly due to internal multiple scattering (at higher frequen-

cies) having less of an impact. Moreover, Figure 4.12 shows that with the frequency
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Figure 4.11: Comparison of 2D inversions after 20 iterations of l-BFGS for different
weights of frequency components. a) is the true image, b) the result for equal weighting,
c) the result for reciprocal of frequency weighting, and d) the result for reciprocal of

frequency squared. Colour scale (same in each) showing reciprocal of wavespeed
1

c
×108

s/m

weighted objective functionals, l-BFGS is able to achieve more per iteration, both

in reducing the residual and in reducing the absolute error compared with the true

solution.

4.4 Numerical experiment

We present here a numerical experiment to reconstruct a domain with more complex

objects: a target with a hollow; and a cross shaped target. The cross shape was used by

Meles et al [111] to increase multiple scattering, and so the complexity of the inverse

problem, in a cross-borehole experiment. Similarly, the hollow target will increase

the non-linearity of the inverse problem due to the increased presence of internal

multiples and smaller-scale features. We are particularly interested in whether we

are able to resolve the hollow target, since landmines generally have some form of

air gap or multiple material types. The domain is discretised into 0.25 cm square

voxels. Approximately 10% of the voxels had a small normally distributed random

perturbation in wave speed added, with a variance of 5 × 105 ms-1 – a more realistic

stochastic model of granular soil is later used in Chapter 8. The domain is shown in
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Figure 4.12: Comparison of relative residual and absolute error for different weights
of frequency components for the first 20 iterations of l-BFGS.
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Figure 4.13: Test domain in 2D with one cross-shaped and one hollow target.

Figure 4.13.

We simulate data at 100 frequencies linearly spaced between 1 and 3 GHz, at 100

source locations across the surface with 3 receivers evenly spaced across a 20 cm max-

imum source-receiver offset: 30,000 measurements for the 48,521 parameters, and so a

definite nullspace which we need to account for with prior knowledge (regularization).

Following Section 4.3.6, we use TV regularisation with λ = 2. Gaussian white noise

was added to the simulated data at a signal to noise ratio of 20:1. Figure 4.14(e) shows

the reconstruction after 5, 10, 15, 20 and 30 iterations of l-BFGS, with a horizontal

and vertical slice through the hollow object at 30 iterations.

We are able to reconstruct the approximate wavespeed and shape of the objects,

including the interior of the hollow object. We are not aware of hollow objects such

as this being considered in other GPR FWI numerical experiments. Reconstructing

objects which vary internally is difficult, as one must necessarily account for internal

(multiple) scattering. The lower part of the cross has not yet been fully resolved,

which is to be expected as ray paths to this area must first pass through some other

part of the cross (i.e. data due to reflections from the bottom point of the cross is

not linear). We also see that the top three points of the cross (and not the centre or

bottom) are resolved first, as there is a direct reflection in the data from them.

Either more iterations of l-BFGS, a larger amount of regularisation (λ) or smaller

TV small number ε is needed to account for the wave-like artefacts in the reconstruc-

tion, which are due to (a combination of) multiple scattering and incomplete data

coverage.
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Figure 4.14: Reconstruction of the more complex domain in Figure 4.13 after 5, 10,
15, 20 and 30 iterations of l-BFGS. The vertical slice in (e) is at x = 0.55 cm, and the
horizontal at z = 0.04 cm. Blue line shows the true domain, and red the reconstructed.
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4.5 Summary and conclusions

In this chapter, we have implemented a finite-difference solver for the Helmholtz equa-

tion to simulate GPR data in 2D, and used this as the forward solver for 2D FWI.

The 2D Helmholtz problem was approximated by a finite difference scheme, and the

resulting sparse linear system solved using a pre-conditioned BiCGSTAB method. A

sufficiently fine grid spacing is required to prevent high numerical dispersion. We have

described the FWI numerical recipe in full, with simulated examples to introduce to

the reader to all the implementational aspects of inversion. We have shown that, in

so far as the Helmholtz equation is a sufficient model for GPR data, it is possible to

carry out 2D FWI for (simulated) GPR data for hand-held arrays.

We are not aware of other examples of GPR FWI which consider data from small-

scale arrays, as generally a large array is used for data redundancy. While Lavoué

et al [90, 91] have used the l-BFGS-b optimisation method for GPR FWI, we have

modified the method to give a damped Hessian update, rather than skipping it, on

occasions when the update would not be positive-definite. This way we still retain

as much additional information about the Hessian as possible, whilst ensuring the l-

BFGS direction −pk is a descent direction. We did not quantify the benefits of such

an approach, as in numerical experiments we have undertaken it is rare that bounds

are reached.

We are the first to apply Total Variation regularisation to the GPR FWI problem,

though as previously noted it has been applied to the more general inverse Helmholtz

problem. The TV regularised FWI problem was solved via an iteratively re-weighted

l-BFGS scheme, which we found to converge in a reasonable number of iterations

(∼ 30), and did indeed lead to solutions with the jump discontinuities desired. For

more complex problems it may be desirable to implement a primal-dual method to

solve the TV regularised problem. While the l-BFGS method has led to a good rate of

convergence, it would also be interesting to implement other quasi-Newton methods

such as other members of the Broyden class (e.g. SR1), or hybrid quasi-Newton CG

methods such as those given Babaie-Kafaki et al [19].

We have also given a more thorough treatment of the step length calculation, where

more often a step length is chosen via a simple linearisation. This can provide improved
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convergence by ensuring a non-trivial step is taken, while ensuring the step is not so

large that the quadratic modelM(mk) (and thus descent direction) has become poor,

at little or no additional computational cost. This is particularly important when

the inverse problem is highly non-linear, and so we deem it necessary when using a

non-linear regularisation method such as Total Variation. Performing a line search

satisfying the strong Wolfe conditions ensures the Hessian update will be positive

definite, whilst first testing a unit step length helps the super-linear convergence of

l-BFGS to be observed. We have also found no additional cost of implementing a

strong Wolfe line search compared with calculating a linearised step length.

In our 2D numerical experiments, it was always possible to obtain good approx-

imations of the wavespeed of scatterers given simulated noisy data, including the

cross-shaped and hollow targets in the numerical experiment of Section 4.4. We are

not aware of hollow targets such as this being considered in other GPR FWI numerical

experiments, which are difficult to reconstruct as this necessarily involves accounting

for internal multiple scattering. This is a positive result, though we acknowledge that

the GPR landmine detection/classification problem is indeed a 3D problem which

limits its applicability. In the proceeding chapters we consider the full 3D inversion

problem, using the same iteratively re-weighted l-BFGS scheme for the TV regularised

inverse problem, but with a more physically complete forward model.



Chapter 5

SVD analysis of GPR Full-Wave

Inversion

5.1 Introduction

Following Watson and Lionheart [192], in this chapter we will use singular value de-

composition (SVD) as a tool to investigate the map from data to image, helping us

understand what it is possible for a given antenna array to resolve. Oberröhrmann et

al [124] have, similarly, used a chequerboard analysis to determine optimal acquisition

setup for coverage and resolution of a cross-borehole experiment. Meles et al [111] also

used singular values as a tool to measure the reliability of inverted GPR images from

full-waveform data, for 1 to 4-sided experiments. Our results differ in that we will also

use the singular vectors to analyse the imaging and null-spaces of the FWI system.

Silvestrov and Tcheverda [157] carry out a similar analysis for a cross-borehole seismic

experiment, though they use the method to analyse an appropriate parametrisation of

the problem rather than the acquisition system.

The landmine detection problem motivates us to get the best possible information

out of the most affordable equipment, and less complex acquisition systems with fewer

antenna are of course more affordable. Acknowledging that FWI is generally carried

out using multi-static arrays for data redundancy, we ask whether enough information

can be gained from bi-static systems (or multi-static systems with few receive antenna)

for a reliable FWI by taking measurements at many more source locations. To put the

question another way, do these additional measurements, from many more physical

105
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locations and at many frequencies, yield enough independent information suitable for

an inversion? We of course expect that we will be unable to fully resolve the sub-surface

parameters using only bi-static data, but following our inversion results in Chapter 4

we believe it possible to perform FWI with a small-scale hand-held array. While we

concentrate on the specific case of a hand-held GPR system, our methodology can

readily be used to analyse the suitability of other acquisition systems.

To compensate for the lack of multi-offset data we must finely sample the frequency

spectrum of data in our experiment, and so take 100 frequencies between 1 and 3 GHz

to ensure a correct coverage of imaged wavenumbers [159].

5.2 Statement of the problem

One of the difficulties of solving equation (2.5.1) is that many different parameter

sets m can give the same measurements, up to the noise level, so we need sufficiently

strong a-priori information to obtain a unique and stable solution. Much emphasis

has been placed on developing stable and efficient optimisation procedures for solving

the FWI problem, particularly in the seismic community [137, 159]. However, unlike

in the seismic imaging case, where data is recorded on large arrays of receivers but

over a small frequency band (generally in the range 1–20 Hz with O(10) sampled

frequencies), in the hand-held GPR case we can have only a small array of antennas

but a wider frequency band (in this case, 1–3 GHz with 100 sampled frequencies). We

therefore wish to analyse what such an acquisition system is able to resolve, and if a

more complex antenna array (i.e. large multi-static) is required for good results.

The full-wave inversion problem is solved iteratively with a suitable nonlinear op-

timisation scheme, such as the (l-)BFGS method [123, p. 177], and as such requires

calculation of the gradients of the data residuals J = 1
2
‖F [m] − d‖2

2 with respect to

the parameters m, which we recall are given by

∇mJ = <
{
JT δd∗

}
, (5.2.1)

where δd = F [m] − d are the data residuals, and J(m) is the Jacobian matrix of

partial derivatives Jij = ∂Fi/∂mj, while T denotes a (non-conjugate) transpose and ∗

denotes complex conjugation. Computation of the Jacobian matrix is not mandatory
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in order to calculate the gradient, which can be efficiently computed via the adjoint

state method (2.5.22). We calculate the Jacobian matrix via the adjoint state method

(2.5.21) for this work.

If we assume the use of a (quasi-) Newton method to solve the FWI problem, then

the descent direction p is given by

Hp = −∇mJ (m), (5.2.2)

where H is (an approximation to) the Hessian matrix.

The solution to the linearised inverse problem, neglecting regularisation, is [40]

mlin = m0 + <{δm},

Jδm = δd, (5.2.3)

where m0 is the initial estimate, and δd is the data residual F [m0] − d. The least-

squares solution is given by

δm = (JTJ)−1JT δd. (5.2.4)

The similarities between a linear inversion, gradient calculation and iterative up-

dates to the solution of the nonlinear inverse problem are made clear on comparison

of equations (5.2.1), (5.2.2) and (5.2.4), with the gradient and solution to the lin-

earised inverse problem differing by a scale factor [39, 133]. Note also that JTJ is

the Gauss-Newton approximation to the Hessian matrix H. In our example of the

(l-)BFGS method, the first iteration is a gradient descent in which the linear inver-

sion is realised. Since we expect the dominant part of the data to be from first order

reflections, we assert that the Jacobian matrix exhibits the dominant features of the

map from data to image, and in particular the Jacobian of the first iteration of the

inversion. Since our optimisation method will always update the image in a direction

close to JT δd, we cannot expect to be able to resolve anything in the nullspace of JT .

5.3 Inverse problems and singular value decompo-

sition

A singular value decomposition (SVD) of J ∈ Rm×n is given by

J = UΣV T =

q∑
i=1

uiσiv
T
i , (5.3.1)
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where U ∈ Rm×m and V ∈ Rn×n are orthonormal matrices with columns ui and vi,

respectively, and Σ ∈ Rm×n, q = min(m,n), is a diagonal matrix of non-negative

values Σii = σi, ordered such that

σ1 ≥ σ2 ≥ . . . ≥ σq ≥ 0. (5.3.2)

The σi are called the singular values, the ui and vi are called the left- and right-

singular vectors of J , respectively. The left singular vectors span the data space, and

the right span the image space. Note that the σi are not conductivity σi.

Linear ill-posed problems are characterised by the singular values decaying rapidly

to zero, so that [28, 71]

σ1 ≥ . . . ≥ σa > µ ≥ σa+1 ≥ . . . ≥ σb > ε ≥ . . .

. . .σb+1 ≥ . . . ≥σc > 0 = σc+1 = . . . = σq, (5.3.3)

where µ is the accuracy threshold set by the measurement instrumentation, and ε is

the threshold for which observations are negligible. Note that µ and ε are not per-

meability µ and permittivity ε. The singular values σ1, . . . ,σa thus relate to reliable

measurements which will be correctly mapped by the Jacobian to a descent direction

introducing model parameters responsible for the recorded data. The singular values

σa+1, . . . ,σb relate to unreliable measurements, and the rest are null (to machine pre-

cision). The former will result in noise being introduced to the solution, and the latter

will have no effect.

If we could measure a continuum of data the linearised forward problem would be

an operator A : X → Y between infinite dimensional Banach spaces X and Y . As we

refine our discrete model and q → ∞, the singular values of J converge uniformly to

those of A [69,71, pp. 43-44]. In common with most inverse problems, the operator A

is compact and so does not have a bounded inverse, reflected in the decay of singular

values, and their rate of decay gives us a useful measure of the ill-posedness of the

inverse problem. If there is a γ > 0 such that the singular values satisfy σn = O(n−γ),

then by Hofmann [74] (see also [121, pp 44-45]) the degree of ill-posedness is defined

as:

1. mildly ill-posed if 0 < γ ≤ 1;

2. moderately ill-posed if γ > 1;
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3. severely ill-posed if σn = O
(
e−γn

)
.

These definitions are related to the Picard condition, that the data d ∈ Y must satisfy

∞∑
i=1

(
〈ui, d〉Y

σi

)2

<∞ (5.3.4)

in order for a square-integrable solution to the inverse problem A−1d to exist, which

is a stronger statement than d ∈ L2(Y ). Here, ui ∈ Y are the singular functions

of A forming a basis for the (infinite dimensional) data space, and σi the singular

values. We cannot guarantee that the noise component of d satisfies (5.3.4), and so

the contributions of noise to the naive solution A−1d will ‘blow up’ as 1/σn.

Note that while J may represent an over-determined system (5.2.3) (i.e. we have

more measurements than parameters we are trying to find, m > n), a will typically be

far less than the number of parameters n. In this sense, we are left with an effective

Jacobian,

Jeff =
a∑
i=1

uiσiv
T
i , (5.3.5)

which maps measurements to the image space spanned by the first a singular vectors

vi only. Therefore, we can in fact only expect to be able to resolve targets represented

by the vectors in the row space of Jeff , rather than the full matrix J .

Given measurements of relative accuracy r, we can estimate the accuracy threshold

µ by using the ‘rule of thumb’ that the condition number of Jeff should not be greater

than 1/r, and noting that cond(Jeff) = σ1/σa. This rule of thumb ensures that Jeff

satisfies the discrete Picard condition [71, p. 82]. More precisely though, the meaning

of µ is [71, p. 22]

rank(Jeff) ≡ min
‖E‖2≤µ

rank(J + E), (5.3.6)

in which we may consider the arbitrary m × n matrices E to represent modeling

errors. Solving the linearised inverse problem via the truncated singular value (TSVD)

solution

δminv = argmin
δm

‖Jeffδm− δd‖2
2 = (JTeffJeff)−1JTeffδd (5.3.7)

is equivalent to a Tikhonov regularised solution [71, pp. 109-111], [25, pp. 257]
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Figure 5.1: Test domain mtrue used for projections and simulating data for inversion.
Colour scale showing reciprocal of wave speed c−1 × 10−8sm−1. Note that projections
are onto δm = mtrue−m0 for a homogeneous background m0 of wave speed 1.5× 108

m/s.

5.4 Numerical results

We now calculate the Jacobian matrices using an adjoint-state formulation [137], before

taking an SVD and projecting objects of interest onto the row space of the respective

effective Jacobians to illuminate whether the system would be able to resolve such a

target.

Our simulated systems all have a 20 cm maximum source-receiver offset, a limit

chosen to represent our need for hand-held devices. Measurements are taken at 100

frequencies linearly sampled between 1 and 3GHz, at source positions evenly spaced

between 10 cm and 70 cm along the surface of a 1 m wide by 30 cm deep domain (so

that the final receiver position is 10 cm from the other end of the domain). These

limitations were chosen represent possible hand-held GPR measurements.

The test domain, shown in Figure 5.1, is 1 m wide by 0.3 m deep with absorbing

boundary conditions on the sides and bottom, and has a background wave speed of

1.5 × 108ms−1. It is discretised to 1 cm for imaging purposes, however it is refined

further to 0.33 cm for both forward and adjoint solutions of the Helmholtz equation

to ensure accuracy in the higher frequencies. This gives a minimum of 15 grid points

per wavelength, which is sufficient for the purpose of this experiment.

There are several parameters describing the acquisition array which we could in-

vestigate with an SVD analysis, including the number or offset of antennae; and the

number or position of source locations. In this experiment we consider number of re-

ceive antennae, which we evenly space in the 20 cm interval, fixing other parameters.
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We analyse both fixing the total number of measurements for our comparison, reduc-

ing the number of source locations with an increased number of receive antennas, and

fixing the source locations. In the former case we keep ns × nr = 48, where ns is the

number of source locations and nr the number of receive antennas, and in the latter

we keep ns = 16. For our accuracy threshold, we accept singular vectors vi associated

with singular values σi satisfying σi > 10−2σ1, which represents a possible accuracy of

noisy measurements with 2 significant figures accuracy. Our results are not sensitive

to a (reasonable) change in this accuracy threshold, as the number of singular vectors

above the threshold for each test case remain in proportion.

5.4.1 SVD analysis

Figure 5.2 shows us the first 1000 singular values for Jacobian matrices calculated

for the homogeneous domain, representing the first linear step of the inversion. The

near straight lines in these log-log scale plots show that the singular values decay like

i−γ, for γ > 0 a positive real constant. Initially this is with 0 < γ < 1, indicating a

mildly ill-posed problem, but increasing to γ > 1 at around i = 500 (depending on

the set of singular values in question), which indicates a moderately ill-posed problem.

This fits the rapid decay typical of an inverse problem, as mentioned in Section 5.3.

The steepening at i = 500 is an effective drop in rank, implying less independent

information can be gained from subsequent measurements.

Moreover, the steepening in decay of singular values indicates that the reconstruc-

tion of some types of perturbations in the subsurface – those which can be represented

by vi for i < 500 – may be better posed than others. Figures 5.3 and 5.4 show some of

the singular vectors for the bistatic and 4 receiver systems, and we remark that those

corresponding to smaller σi become more oscillatory: a phenomenon often observed

but which there is no known proof in general [121, pp. 45]. We therefore expect recov-

ery of larger (less oscillatory) perturbations to be generally more stable to noise. This

is in line with the the analytic results of Karamehmedović [82], who found (roughly)

that, for the inverse source problem of the Helmholtz equation in 2D, reconstruction

of objects large compared with the wavelength is stable (through (2.4.3), it is easy to

see the inverse source problem is equivalent to the linearised inverse parameter prob-

lem). Referring to Karamehdović’s results, we expect the drop in rank occurs when
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Figure 5.2: The first 1000 normalised singular values of the Jacobian matrices for
bi-static and multi-static acquisition systems. 5.2(a) show the singular values for the
case where we have fixed the source locations, and 5.2(b) the case where we have kept
the total the number of measurements constant.
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the singular vectors have sufficiently small length-scale perturbations compared with

the wavelength.

Figure 5.2(a) shows a slower decay in singular values for systems with more re-

ceivers, which is as we would expect. However, when we fix the total number of

measurements, Figure 5.2(b) shows a similar rate of decay for all four systems. Partic-

ularly, the σi for the bi-static system decay almost as slowly as those for the multi-static

systems, and those for the 3 and 4 receiver case are almost indistinguishable. This

suggests we may be able to at least partially compensate for a lack of multi-offset data

by increasing the number of source locations, as each results in a Jacobian matrix with

a similar condition number (or, equivalently, a Jeff of similar rank).

However, it is not just the rank and condition of Jeff that are important, or equiva-

lently amount of data above the noise level, but the suitability of these measurements

to image our target. One can only expect to image something which makes a signifi-

cant enough impact to observed data and better measurements do not necessarily just

mean more observations above the noise level. To understand the suitability of our

measurements, one must also look at the singular vectors vi, and how they map the

imaging space. Figures 5.3 and 5.4 show the singular vectors for the bi-static and 4

receiver systems with a fixed total number of measurements. We remark that the bi-

static vectors show a skew-symmetry, the multi-static show anti-symmetry, and both

systems show a greater sensitivity nearer sources/receivers. As we mentioned above,

earlier singular vectors are also less oscillatory, and so different systems will likely lead

to different stabilities in the recovery of certain parameters with small length-scale

perturbations (such as nearby objects presenting jump changes).

For a realistic noise level Jeff will always have a large nullspace, and so taking more

measurements to result in a better conditioned Jacobian is not going to help if what we

want to be able to image still lies in this nullspace. To help us understand the image

and nullspaces of Jeff , we can project test targets onto singular vectors vi corresponding

to singular values above the accuracy threshold. As previously mentioned, we take the

accuracy threshold to be given by the σi satisfying σi > 10−2σ1.

The targets we use are 5 cm squares placed 3 cm below the surface and 2 cm

apart, and have wave speeds of 1.3 × 108 and 1.4 × 108 ms−1 respectively, as shown

in Figure 5.1. These are chosen as we are interested in whether a system is able
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Figure 5.3: The 2nd, 4th, 8th and 16th singular vectors for the bi-static system with 48
source locations and 100 frequencies between 1 and 3 GHz.
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Figure 5.4: The 2nd, 4th, 8th and 16th singular vectors for the 4 receiver system with
12 source locations and 100 frequencies between 1 and 3 GHz.
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Figure 5.5: Projections of the two low contrast targets onto the right singular vectors
associated with singular values σi which satisfy σi > 10−2σ1. From top to bottom:
projections associated with an acquisition system with 1, 2, 3 and 4 receive antennas
with a maximum source/receiver offset of 20 cm. Column a) contains the projections
for fixed source locations, and column b) for a fixed number of measurements. Colour
scale showing reciprocal of wave speed c−1×10−8sm−1. Note that projections are onto
δm = mtrue −m0 for a homogeneous background m0 of wave speed 1.5× 108 m/s.

to distinguish nearby objects based on quantitative information, particularly with a

low contrast to one another. The low contrast, both between the objects and to the

background, also means that the linear approximation should be a good one.

The results of the projections are shown in Figure 5.5, and the relative errors of the

projection compared to the true δm are given in Table 5.1. As we ought to expect, for

fixed source locations we get better results for the systems with more receivers, with

a progressively better contrast between the two objects. The improvement going from

bi-static to 2 receivers is significant, but increasing further to 3 or 4 receivers less so.

Particularly, the bi-static projection gives a lower contrast and a ‘noisier’ background.

This is clear from Table 5.1, which shows the projection of the 4 receiver system is

15.9% closer to the true solution than the bi-static case, with the 3 and 4 receiver

projections on par.

For the projections with a fixed total number of measurements, only the bi-static
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Acquisition system A B

Bi-static 37.5% 32.7%

2 receivers 29.1% 26.0%

3 receivers 26.5% 26.5%

4 receivers 24.1% 26.7%

Table 5.1: Relative error of projections of low contrast targets onto the right singular
vectors of acquisition systems, for fixed source locations (column A) and fixed total
number of measurements (column B)

result remains poor, with all multi-static projections giving results to within 1% rel-

ative error of each other. The implication is that, provided we have some degree

of multi-static data in 20 cm offset limit, we ought to be able to at least partially

compensate for a lack of large array by taking more measurements.

5.4.2 Inversion results

We now invert data simulated for each of the four acquisition systems, for both 16

source locations and 48 total measurements (locations × receivers), at 100 frequencies

between 1 and 3GHz, with 5% Gaussian noise added. We use a small weight of total

variation regularisation [184, p. 129] for stability, and allow 20 iterations of the l-BFGS

optimisation procedure.

The inversion results are shown in Figure 5.6, and Figure 5.8 shows the absolute

model error with each iteration. It is clear that the inversion of bi-static data reaches

a local minima much farther from the true solution than the multi-static cases, and

we are also almost unable to distinguish the two objects from one-another in the end

result. Conversely, it is easy to distinguish the two objects from the inversions of

multi-static data, as highlighted by the horizontal slices of the inversion shown in

Figure 5.7.

When we fix the total number of measurements (an increase in measurements

for 2 receivers, reduction for 4, and the same data set for 3 receivers), the results

from the multi-static inversion do become slightly more similar, though there is little

improvement in the bi-static case. This is most apparent from the plots of model error,

Figure 5.8. This backs up the result of our projections onto singular vectors, in which
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Figure 5.6: From top to bottom: inversion results for 1, 2, 3 and 4 receiver data sets,
respectively. The left column is for a fixed source locations, and the right for a fixed
total number of measurements.

we saw similar results when keeping the total number of measurements fixed. We

suspect the difference between the multi-static inversion results with a fixed number

of measurements is due to the non-linear part of the inversion (i.e. inversion of the part

of the data caused by diffraction and multiple reflections between the two objects),

since this part is ignored by the SVD analysis.

5.5 Discussion and further work

Taking an SVD of the Jacobian matrices shows us how data can be mapped to the

gradient in our inversion procedure, allowing us to see what can (or can not) be

resolved in a linear step of the inversion for a given acquisition system. Since the

inversion procedure consists of many more non-linear updates, a linear step being

unable to resolve a certain target does not mean we cannot resolve it at all, but that

we will be relying on non-linear steps to do so – e.g. relying on data caused by multiply

scattered or refracted waves. Further, we expect the singly scattered waves to give

the biggest contribution to the data [157], and so the first linear step ought to give

the largest contribution. Because of this, our SVD analysis gives a good indication of
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the row- and null-spaces of the full non-linear inversion, without having to calculate

the Jacobian matrix for subsequent iterations (the Jacobian J(mi) changes with each

iteration).

In a similar fashion to our SVD analysis, with an aim to determine the informa-

tion content of data and the extent to which an image was fully resolved, Meles et

al [111] formed a cumulative sensitivity plot from Jacobian matrices to help to gain

understanding about what a system may be capable of imaging. If there is no sen-

sitivity in an area, then one cannot detect an object there. However, an object may

lie in an area of sensitivity, but still lie (partially) in the nullspace of Jeff , since the

singular vectors vi above the noise level may not be able to adequately represent the

shape of the object or its contrast against the surrounding ground. This is where our

analysis differs, as we have also explored these singular vectors, as did Silvestrov and

Tcheverda [157] when considering appropriate model parametrisation for a seismic

cross-borehole experiment.

Our analysis fixed the maximum source-receiver offset at 20 cm, and it would be

interesting to see how the minimal offset affects our results. We also considered only

a simple test problem with two square objects. This was useful for us since one of our

aims is to use FWI to distinguish objects through additional quantitative information,

but other (more realistic and complex) domains should be considered. Further, we

have neglected to include antenna characteristics, as well as simplifying our forward

map to the 2D Helmholtz equation, and so must be careful in how we apply any

conclusions to the design of a real GPR system. To fully utilise SVD as a tool to aid

designing an acquisition system, we ought to work with the 3D Maxwell equations,

including antenna characteristics as well as different layouts. That said, if we find

poor results in this simplified case then we cannot reasonably expect better results in

the more complex 3D Maxwell case, since we will be adding more degrees of freedom

to the inversion. There is therefore little point in studying a bi-static system for FWI,

but it would be interesting to continue the study with small-scale arrays.
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5.6 Conclusions

We presented an SVD analysis of Jacobian matrices for acquisition systems with 1 to 4

receive antennas. This was used as to analyse the ill-posedness of the FWI problem for

the resulting data set, as well as being a tool for analysing the ability of such a system

to image objects of interest (or, equivalently, to explore their nullspaces and inability

to image). The method can readily be applied to the analysis of other acquisition

systems, provided calculation of the Jacobian matrix is not prohibitive.

In our analysis, when we fixed the source locations for the different acquisition

systems, the decay of singular values showed Jacobians for systems with more receivers

have a greater rank (up to a given noise level), or equivalently the system is better

conditioned. However, when we fix the total number of measurements (within our

hand-held limitations of up to 4 receivers in a 20 cm maximum offset), the difference

between the decays of singular values for all systems is almost negligible. Since these

Jacobian matrices then have approximately the same rank and condition, this implies

that we ought to be able to compensate for a lack of multi-offset data by taking

measurements at more locations.

When we include noise though, regardless of how many measurements we are able

to take, we still have a large nullspace of the resulting effective Jacobian. It is therefore

important not just to look at the singular values to analyse the condition of a system,

but also to analyse the span of singular vectors above the noise level. The results of

projections of our objects of interest onto these singular vectors imply that, when we

have at least some degree of multi-static data (within our imposed hand-held limits),

we can compensate for a having fewer offsets by taking more measurements. This is

not the case for the bi-static system which, despite having approximately the same

rank and condition, is unable to destinguish the objects. These results are backed up

anecdotally by our inversion results, and we see that a small scale multi-static array

ought to be sufficient to gain quantitative information able to distinguish objects,

though not necessarily fully resolve a more realistic domain.

This highlights the fact that it is not just having more singular vectors available to

span our image space that are important (i.e. obtaining a better conditioned system),

and taking more measurements to average over noise. Rather, better measurements are
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also those that result in singular vectors better able to resolve what we are interested

in, as we need our data to be sufficiently sensitive to their presence. It is the latter

that has led to all the multi-static systems behaving comparably to each other, and

the bi-static system falling short.



Chapter 6

Modelling the forward problem in

3D

6.1 Introduction

In Chapter 4, we used a finite difference approximation of the Helmholtz equation

to simulate GPR data in 2D. From Chapter 3 though, we know that the Helmholtz

equation only describes electromagnetic scattering in a domain which is homogeneous

in one direction (say ŷ) and only for the component of electric field polarised in that

direction. We also neglected any proper treatment of boundary conditions and source

terms. If we wish to perform FWI on real GPR field data, we must address this and

model the full 3D electromagnetic scattering problem.

In this chapter, we first derive the finite element approximation of the electromag-

netic vector wave equation using linear edge (or Nédélec) elements. We then discuss

truncation of an infinite subdomain by using a perfectly matched layer (PML), and

model the ground transmission/reflection of electromagnetic waves by a coupling the

finite element system to a boundary integral over the ground surface. Finally, we

discuss a preconditioned iterative method to solve the partially dense, partially sparse

coupled finite difference boundary integral (FE-BI) system, which is suitable for the

scale of problem we are interested in, and give compare simulated results to some real

GPR data.

123
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6.2 Finite Element Formulation

In this section we present the finite element formulation of Maxwell’s equations, fol-

lowing P. Monk [118,119], JL. Volakis et al [186], J. Jin [80] and N. Polydorides [136],

in which the solution to weak formulation of the vector wave equation (3.5.5) is ap-

proximated numerically by a finite set of basis functions. We begin by partitioning Ω

into a set of nel non-overlapping elements, Ωh = ∪nel
i=14i. The weak problem (3.5.5) is

then approximated on Ωh by: find Eh ∈ Xh such that∫
Ωh

(
1

µr
(∇× F) · (∇× Eh)− k2

0εrF · Eh

)
dV = ik0Z0

∮
∂Ωh

F · (n̂×H) dS (6.2.1)

for all F ∈ Yh, where Xh ⊂ X, Yh ⊂ Y are finite dimensional subsets of X and Y

given in (3.5.6).

Letting Ωh be a partitioning of Ω into tetrahedral elements, we choose for Xh, Yh

the standard basis of linear edge shape elements {Li}ne

i=1, namely Neédélec (edge)

elements [122], which were first described by Whitney [197]. Here ne is the number of

edges of tetrahedra in Ωh, and the Li ∈ H1
curl(Ωh) are given by

Li = li(N
i
m∇N i

n −N i
n∇N i

m) i = 1 : ne. n,m ∈ V . (6.2.2)

Here, li is the length of the ith edge, V is the set of indices for the nodes in the model,

and N i
m, N

i
n are the definitions of the nodal shape functions at the two vertices across

the edge. In local nodal numbering on the kth element in Ωh, these scalar-valued nodal

shape functions are defined as

N1(x, y, z) =
1

6V

∣∣∣∣∣∣∣∣∣∣∣∣

1 x y z

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣
, N2(x, y, z) =

1

6V

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x y z

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣
,

N3(x, y, z) =
1

6V

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y2 z3

1 x2 y2 z2

1 x y z

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣
, N1(x, y, z) =

1

6V

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x y z

∣∣∣∣∣∣∣∣∣∣∣∣
,
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where V is the volume of the kth tetrahedron. It is easy to show that the basis functions

Li have a constant tangential component upon the edge on which they are defined,

and that they are divergence-free [80, pp. 295]. Higher order Nédélec elements are

possible, see for example Monk [126], Ainsworth and Coyle [4], and Schoberl [150].

The solution to (6.2.1) is then written as

Eh =
ne∑
i=1

EiLi, (6.2.3)

where Eh ∈ H1
curl(Ωh), Ei is the tangential component of the electric field on the ith

edge. To solve (6.2.1), we must evaluate the integrals over each tetrahedral element,

which gives the local contribution to the stiffness and mass matrices from tetrahedra e

Ke
ij =

∫
V e

(∇× Le
i ) · (∇× Le

j) dV (6.2.4)

M e
ij =

∫
V e

Le
i · Le

j dV. (6.2.5)

Here, Le
i is the ith edge shape function on tetrahedra e (i.e. using local numbering).

Carrying out integrals (6.2.4) and (6.2.5), we are left with ne local mass and stiffness

matrices, the elements of which must be assembled into the global mass and stiffness

matrices (i.e. using the global element numbering). See e.g. Howard, Silvester and

Wathen [53] for a description of the assembly procedure, as well as a more general in-

troduction to finite element methods. Additional care must be taken when assembling

elemental contributions to ensure the local edge orientation is accounted for to avoid

sign conflicts, which is not necessary for nodal elements.

The curl of the linear edge elements are given by

∇× Le
i = 2lei∇N e

i1
×∇N e

i2

=
lei

(6V e)2

[
(cei1d

e
i2
− dei1c

e
i2

)x̂ + (dei1b
e
i2
− bei1d

e
i2

)ŷ + (bei1c
e
i2
− cei1b

e
i2

)ẑ
]
, (6.2.6)

where N e
ij

is the nodal shape function for the jth node of edge shape function i on

tetrahedra e, and the b·, c· and d· are the coefficients of x, y and z in the nodal elements,

respectively. substituting into (6.2.4) results in

Ke
ij =

lei l
e
jV

e

(6V e)4
[(cei1d

e
i2
− dei1c

e
i2

)(cej1d
e
j2
− dej1c

e
j2

)

+ (dei1b
e
i2
− bei1d

e
i2

)(dej1b
e
j2
− bej1d

e
j2

)

+ (bei1c
e
i2
− cei1b

e
i2

)(bej1c
e
j2
− cej1b

e
j2

)].

(6.2.7)
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For the mass matrices (6.2.5), we have that

Le
i · Le

j =
lei l

e
j

(6V e)2
[Ne

i1N
e
j1fi2j2 −N

e
i1N

e
j2fi2j1 −N

e
i2N

e
j1fi1j2 +Ne

i2N
e
j2fi1j1 ], (6.2.8)

where fij = bei b
e
j +cei c

e
j +deid

e
j . The expressions for M e

ij are straightforward to compute

and implement, though all 21 combinations of i and j are rather involved so we refer

the reader to [80, pp. 301-302]. Alternatively, the evaluation of (6.2.4) and (6.2.5) can

be carried out numerically, with the result being exact for a 2nd order scheme (since

the basis functions vary linearly).

6.3 Verifying the finite element system

We verify our forward solver is working correctly by comparing the numerical to the

analytic result of a plane wave,

Eexact = peik0·x, (6.3.1)

where p is the electric wave polarization, k0 is the free-space vector wavenumber with

|k0| = k0 and p⊥k0. Plane waves are simulated in a cubic domain by applying the

Neumann boundary condition

n̂×H = n̂×
(

i

ωµ0

∇× (peik0·x)

)
, x ∈ ∂Ω. (6.3.2)

Our FE solution should converge linearly in the H1

curl(Ω) norm with edge-length

h [118],

‖e‖curl ≤ Ch‖Eexact‖curl (6.3.3)

where C is a constant which does not depend on h, and the H1

curl(Ω) norm is given

by

‖e‖curl =
√
‖e‖2

L2 + ‖∇ × e‖2
L2 . (6.3.4)

Here, ‖ · ‖L2 is the (L2(Ω))3 function norm over the domain Ω,

‖e(x)‖2
L2 =

∫
Ω

|e(x)|2 dV, (6.3.5)

and | · | the Euclidean norm of vectors in C3. (6.3.5) can be calculated numerically by

Gauss integration over the discrete space Ωh.

To test convergence initial tetrahedral meshes were generated using Netgen [149],

which were then progressively refined, and the relative error between the FE and
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analytic solution calculated in the H1(curl,Ω) norm calculated for each mesh. The

standard uniform tetrahedral mesh refinement involves halving each edge in the mesh,

dividing each tetrahedron is divided into 8 new tetrahedral volumes: 1 on each corner,

and the remaining octahedron in the centre divided into a further 4 [125]. There are

three possible diagonals which can divide the central octahedron, and hence three

possible sets of 4 tetrahedrons, and the diagonal must be chosen carefully to ensure

non-degeneracy [163]. For the purposes of this test, we make the assumption that the

tetrahedral meshes produced by Netgen will be well conditioned, and so tetrahedra

are close to equilateral (so that the 4 diagonals have approximately the same length),

and then always chose the first diagonal node numbering for ease of implementation.

Figure 6.1 shows the convergence of the FE solution to the analytic plane wave

with 1/h for three different starting meshes. Since the meshes produced by Netgen

are unstructured, and so the tetrahedra do not all have a common edge length, we

defined h as the maximum edge length in the whole mesh. The initial meshes used

had a maximum edge length of h0 = 0.165, 0.111 and 0.088 respectively. The straight

lines of best fit on the log-scaled graphs had gradients of α = −0.95,−0.96 and −0.98

respectively: just sub-optimal convergence. We expect this is largely due to the non-

optimal refinement of the mesh (i.e. not selecting the best diagonal of the octahedron).

We do not have the super-convergence often observed when refining a structured mesh,

for example [77,118].

6.4 Perfectly matched layers

A perfectly matched layer (PML) is an interface between two half-spaces, one of which

is lossy, which does not reflect a plane wave for all frequencies and angles of incidence.

Such a layer, which will absorb but not reflect incoming waves, can then be used

to artificially truncate an unbounded domain. The concept was first proposed by

Berenger [24], who found it gave superior numerical results compared with several

other methods of truncating an infinite domain. In this section we show how such a

layer can be described either by a change of coordinates or as an anisotropic absorber,

for us to use to truncate the infinite subsurface.

First, we follow Chew and Weedon [38] and Jin [80, pp 375-406] to derive a PML
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based on the change of co-ordinates

xs =

∫ x

0

sx(x
′) dx′,

ys =

∫ y

0

sy(y
′) dy′,

zs =

∫ x

0

sz(z
′) dz′.

(6.4.1)

Under this change of variables, we have

∂

∂xs
=

1

sx

∂

∂x
,

∂

∂ys
=

1

sy

∂

∂y
,

∂

∂zs
=

1

sz

∂

∂z
, (6.4.2)

and so Maxwell’s equations become

∇s × E = −iωµH, (6.4.3a)

∇s ×H = iωεE, (6.4.3b)

∇s · (εE) = 0 (6.4.3c)

∇s · (µH) = 0, (6.4.3d)

where

∇s = êx
1

sx

∂

∂x
+ êy

1

sy

∂

∂y
+ êz

1

sz

∂

∂z
. (6.4.4)

So, ∇s is the standard ∇ operator in Cartesian co-ordinates stretched by a factor of

sx, sy and sz in the x, y and z directions, respectively.
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To show that this describes a lossy medium, consider a plane wave within such a

PML region, which has electric and magnetic fields

E = E0e−ik·r (6.4.5)

H = H0e−ik·r, (6.4.6)

k = kxêx + kyêy + kzêz. Substituting into the Maxwell’s equations for the stretched

co-ordinate system (6.4.3) gives

ks × E = ωµH, (6.4.7a)

ks ×H = −ωεE, (6.4.7b)

ks · E = 0, (6.4.7c)

ks ·H = 0, (6.4.7d)

where

ks = êx
kx
sx

+ êy
ky
sy

+ êz
kz
sz
. (6.4.8)

Taking the cross product of (6.4.7a) with ks,

ks × (ks × E) = ωµks ×H = −ω2µεE, (6.4.9)

and by the identity a× (b× c) = (a · c)b− (a · b)c and (6.4.7c) we have

(ks · ks)E = ω2µεE. (6.4.10)

This gives the dispersion relation

ks · ks = ω2µε = κ2, (6.4.11)

the solution to which is

kx = κsx sin θ cosϕ (6.4.12a)

ky = κsy sin θ sinϕ (6.4.12b)

kz = κsz cos θ, (6.4.12c)

where θ) and ϕ are the polar and azimuthal angles in spherical polar coordinates. We

note that if si is a complex number, the wave will be attenuated in the êi direction,

and the attenuation in each direction can be independently controlled.
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To show that this medium does not cause a reflection, consider again a plane wave

of arbitrary polarisation, this time obliquely incident on the interface z = 0 in the

stretched coordinate system. This wave can be decomposed into the sum of a wave

with electric field transverse to ẑ, (TEz), and one with magnetic field transverse to ẑ,

(TMz). For the TEz case, the incident, reflected and transmitted fields are

Ein = E0e−ikin·r (6.4.13a)

Er = RTEE0e−ikr·r (6.4.13b)

Et = TTEE0e−ikt·r, (6.4.13c)

where E0 is a constant vector perpendicular to êz, and RTE and TTE are the reflection

and transmission coefficients. By tangential continuity boundary conditions (3.3.2),

we have

RTE =
k1zs2zµ2 − k2zs1zµ1

k1zs2zµ2 + k2zs1zµ1

. (6.4.14)

Here, the subscripts 1 and 2 indicate the upper and lower half-spaces respectively.

From phase-matching conditions on the interface k1x = k2x and k1y = k2y, we have

κ1s1x sin θ1 cosϕ1 = κ2s2x sin θ2 cosϕ2 (6.4.15a)

κ1s1y sin θ1 sinϕ1 = κ2s2y sin θ2 sinϕ2. (6.4.15b)

(6.4.15c)

Choosing ε1 = ε2, µ1 = µ2, s1x = s2x and s1y = s2y, then we have θ1 = θ2 and ϕ1 = ϕ2,

and can show that RTE = 0, and similarly RTM = 0. This holds regardless of the

choice of s1z and s2z, as well as the choice of frequency and the angle of incidence. For

complex s2z, we therefore have a layer which is lossy in the ẑ direction, but which is

reflectionless for waves incident obliquely to the interface from above.

Above, we described a PML which absorbs waves in the ẑ direction. In order to

truncate an infinite 3D domain with a PML, the choice of PML parameters sζ depends

on position. For a PML perpendicular to the x̂ axis,

sx = s′x − is′′x, (6.4.16)

and for a PML perpendicular to the ŷ axis

sy = s′y − is′′y. (6.4.17)
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Wherever the PML is not active in a direction ζ = x, y, z, sζ = 1. This way, the PML

can then be attenuating in several directions (i.e. in the corners and edges of the 3D

domain).

Consider an anisotropic medium with permittivity and permeability

ε̄ =


εxx 0 0

0 εyy 0

0 0 εzz

 µ̄ =


µxx 0 0

0 µyy 0

0 0 µzz

 . (6.4.18)

Let us denote the solution to the Maxwell equations for such a medium as Ean and

Han, and choose ε̄ and µ̄ to be

ε̄ = εΛ̄ µ̄ = µΛ̄, (6.4.19)

where

Λ̄ =


sysz
sx

0 0

0 szsx
sy

0

0 0 sxsy
sz

 . (6.4.20)

It can then readily be shown that

Ean
ζ = sζE

sc
ζ , Han

ζ = sζH
sc
ζ , (6.4.21)

where ζ = x, y, z, and Esc and Esc are the solutions to the Maxwell equations in

the stretched co-ordinate system (6.4.3) with permittivity and permeability ε and µ.

Hence we can interpret a PML as an anisotropic absorbing material, with it being first

derived in this way by Sacks et al [143].

An anisotropic absorber PML is referred to as a uniaxial PML (UPML), and its nu-

merical implementation is particularly straightforward where the domain discretisation

is aligned with the coordinate system – e.g. for rectangular brick elements. However,

Shin and Fan [155] found that in many applications, implementing the SC-PML is

more favourable due to resulting better conditioned system matrices, and therefore

more accurate solutions with direct solvers and faster convergence for iterative ones.

For ease of implementation, we have used a UPML backed by a PEC surface

(natural boundary conditions). More robust choices can be made, such as first or

second order absorbing boundary conditions [80, pp. 387-390], which may allow a

smaller PML region to be used for the same attenuation. Also note that while the
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PML is reflectionless in the continuous case described above, when we discretise a

perfectly-matched interface does not exist due to discretisation errors and so may cause

reflection [37]. To reduce this effect, we increase the lossy coefficients s′′ gradually over

a short distance at the start of the PML region.

6.5 Boundary conditions and sources above the ground

6.5.1 Introduction

In Section 6.2, we have prescribed the boundary condition

n̂× Ĥ = g r ∈ ∂Ω.

For GPR, we have knowledge of sources above the domain of interest (i.e. above

ground), and so must apply transmission boundary conditions (3.3.2) at the ground

surface. In order to apply these conditions we couple the FEM system with a boundary

element approximation of the surface equivalence theorem. In this section we present

the formulation of the boundary element method, and give the analytic results required

for numerical evaluation of the integration of resulting singular integrands. While we

could instead have included the air in the computational region for the FEM solver, it

was felt at the outset of development that the use of a boundary element would allow

easier application of arbitrary source terms without the difficulty of requiring a finer

discretised mesh near source locations.

6.5.2 Field Integral Equations

Recall the surface equivalence principle from Section 3.7, that two sources that pro-

duce the same field within a region are said to be equivalent within that region. This

states that the field exterior/interior to a given and possibly fictitious surface S may

be exactly represented by equivalent currents placed on that surface and allowed to

radiate. The sources which produce equivalent interior fields are given in terms of the

exterior electromagnetic fields as

Js(r, ω) = n̂×Hext and Ms(r, ω) = Eext × n̂. (6.5.1)
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Here, the exterior fields are given by the sum of the incident, reflected (directly from

the surface) and scattered (from interactions in the subsurface) fields,

Eext = Einc + Er + Esc,

Hext = Hinc + Hr + Hsc.
(6.5.2)

Recall the radiated fields due to these equivalent currents are given by the surface

equivalence principle

Eext =−
∮
S

∇×G(r, r′) ·Ms dS

+ ik0Z0

∮
S

G(r, r′) · Js dS, (6.5.3a)

Hext =−
∮
S

∇×G(r, r′) · Js dS

+ ik0Y0

∮
S

G(r, r′) ·Ms dS. (6.5.3b)

Having an equivalence relation for harmonic fields and current sources, we are seeking

to apply the boundary condition

n̂×H = n̂× 1

µr
∇× E = −ik0Js, r ∈ ∂Ω (6.5.4)

on the ground surface ∂Ω. However, the total electric field on the boundary is not

known a-priori since it is the sum of the incident, reflected and scattered fields, and only

the incident and reflected can be calculated trivially. Following Volakis et al [186, pp.

229-233] (see also [80,134,136,187,188]), we cast the unknown quantities Esc and Hsc

as a boundary integral equation, obtaining

−n̂× [Hin + Hr] =− Js
2
− P.V.

∮
S

n̂× [∇×G(r, r′) · Js] dS ′

+ ik0Y0

∮
S

n̂×G(r, r′) ·Ms dS ′ (6.5.5a)

−n̂× [Ein + Er] =
M

2
− P.V.

∮
S

n̂× [∇×G(r, r′) ·M] dS ′

+ ik0Z0

∮
S

n̂×G(r, r′) · Js(r′) dS ′ (6.5.5b)

where P.V. is the Cauchy principal value. Equation (6.5.5a) is referred to as the

Magnetic Field Integral Equation (MFIE), and (6.5.5b) the Electric Field Integral

Equation (EFIE). Here, the first terms on the right hand side are due to the identity

[186, pp 230]∮
S
n̂×

[
∇
(

e−ik0R

4πR

)
× Js

]
ds =

1

2
Js + P.V.

∮
S
n̂×

[
∇
(

e−ik0R

4πR

)
× Js

]
ds. (6.5.6)
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The principle value is not necessary since the evaluation of this integral with r on S

does not produce a singularity, and the 1/2 value can be obtained without invoking

the principal value theorem by placing r slightly off of S and taking the limit as r

approaches S [186, pp. 230-231]. Note that we included the reflected terms as knowns

in the integral equations above. If we do not know them, they can be neglected and will

be included within the scattered fields on solution of the integral equations [186, pp.

230].

It is well known that both the MFIE and EFIE can suffer spurious internal res-

onance problems at resonant frequencies of the enclosed volume [131, 190], as well as

having different characteristics such as accuracy of solution, convergence rate, low-

frequency breakdown or inaccuracy etc. This problem can be alleviated by taking

some linear combination of the two, referred to as the combined field integral equation

(CFIE), such as

TETH = (1− α)MFIE +
α

Z0

EFIE, (6.5.7)

where α is a parameter between 0 and 1. (6.5.7) is referred to as the TETH (tangential

E tangential H) formulation of the CFIE equation, which Sheng et al [153] find does

not completely remove the problem of interior resonances but reduces the problem to

occur over a very narrow frequency range. Other possible linear combinations include

TENH =α1EFIE + α2n̂×MFIE,

NETH =α1n̂× EFIE + α2MFIE,

NENH =α1n̂× EFIE + α2n̂×MFIE,

(6.5.8)

where α1 and α2 are scaling parameters, as well further additions of NE (n̂×E) or NH

(n̂×H). Sheng et al [153] find that the TENH formulation yields the best conditioned

finite element matrices, so is most suitable for iterative solvers, and NETH the worst.

Further, they find that TENH and NETH overcome the problems of interior resonance,

which TETH and NENH do not although only suffer the problem in a very narrow

bandwidth. Finally, they that the accuracy of (6.5.7) and (6.5.8) can all be improved

by including both TE and NE formulations, and found that a TENENH formulation

(with α1 = α2 = 0.45, α3 = 0.1) was both accurate and efficient when using a multi-

level fast multipole algorithm [161]. However in later work, Liu and Jin [100], see also

Jin [80, pp 465], have found that the NETH formulation is useful in that an effective



CHAPTER 6. MODELLING THE FORWARD PROBLEM IN 3D 135

and efficient preconditioner exists based on the absorbing boundary conditions (see

Section 6.8.1).

6.5.3 Variational formulation

The variational form of the MFIE is derived by by multiplying a test function F ∈

H1
div(∂Ω), where H1

div(∂Ω) is defined in (A.1.10), and integrating over the boundary,

−1

2

∮
S

F · Js dS −
∮
S

F ·
{

n̂×
∮
S′
∇×G(r, r′) · Js(r′) dS ′

}
dS

+ik0Y0

∮
S

F ·
{

n̂×
∮
S′

G(r, r′) ·Ms(r
′) dS ′

}
dS = f ext

i ,

(6.5.9)

where the source term f ext
i is given by

f ext
i =

∮
S

F · n̂× [Hin + Hr] dS. (6.5.10)

Making use of (3.6.21) and (3.6.24) to write the MFIE in terms of the scalar Greens

function, we have

−1

2

∮
S

F · Js dS −
∮
S

F ·
{

n̂×
∮
S′
∇′G0(r, r′)× Js(r

′) dS ′
}

dS

+ik0Y0

∮
S

F ·
{

n̂×
∮
S′
G0(r, r′)Ms dS ′

}
dS

+i
Y0

k0

∮
S

F ·
{

n̂×
∮
S′
∇′ ·Ms∇G0 dS ′

}
dS = f ext

i .

(6.5.11)

In order to combine the MFIE with the FEM system, we substitute for Ms = −n̂×Eext,

and enforce the continuity conditions (3.3.2),

n̂×Hint = n̂×Hext on the surface S

n̂× Eint = n̂× Eext on the surface S.
(6.5.12)

The magnetic continuity condition is ‘natural’, and we may simply set Hext = Hint in

(6.5.5a). The electric continuity condition must be explicitly forced, either by enforcing

the relation ∮
S

F · n̂× (Eint − Eext) ds = 0, (6.5.13)

or by simply setting Eext = Eint in (6.5.11). The former allows us to use different

test functions to represent Eext and Eint, and so may have disjoint surface and volume

meshes (i.e. ones who’s vertices do not necessarily coincide), as well as different order
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basis functions, whereas the latter is simpler to implement. Since we wish to use linear

basis functions in both cases, and the surface of our domain will not be a particularly

complex shape (in general, a cuboid with the top surface somewhat distorted), we

choose the latter. This gives the weak form of the MFIE, which is to find Ein,Js ∈
H1

div(∂Ω) such that

−1

2

∮
S
F · Js dS −

∮
S
F ·
{
n̂×

∮
S′
∇′G0(r, r′)× Js(r

′) dS′
}

dS

−ik0Y0

∮
S
F ·
{
n̂×

∮
S′
G0(r, r′)(n̂×Eint) dS′

}
dS

+i
Y0

k0

∮
S
F ·
{
n̂×

∮
S′
∇′ · (n̂×Eint)∇′G0 ds

′
}

dS = f ext
i ,

(6.5.14)

for all F ∈ H1
div(∂Ω). The weak formulation of the EFIE, similarly, is to find Ein,Js ∈

H1
div(∂Ω) such that

−1

2

∮
S
F · (n̂×Eint) dS +

∮
S
F ·
{
n̂×

∮
S′
∇′G0(r, r′)× (n̂×Eint) dS′

}
dS

+ ik0Z0

∮
S
F ·
{
n̂×

∮
S′
G0(r, r′)Js dS′

}
dS

− i
Z0

k0

∮
S
F ·
{
n̂×

∮
S′
∇′ · Js∇′G0 ds

′
}

dS = f ext
i ,

(6.5.15)

for all F ∈ H1
div(∂Ω), where the forcing term in (6.5.15) is given by

f ext
i =

∮
S

F · n̂× [Ein + Er] dS. (6.5.16)

The weak forms of the NE and NH formulations of the E and CFIE equations

(6.5.8) are given simply by taking n̂× equations (6.5.14) and (6.5.15). By the scalar

triple product rule a · b× c = −b× a · c, this is equivalent to replacing test functions

F with n̂× F.

6.5.4 FE-BI formulation

As with the FEM formulation of the vector wave equation, for the boundary element

formulation of (6.5.14) and (6.5.15) we discretise ∂Ω into a set of triangular elements,

and approximate the infinite dimensional space H1
div(∂Ω) with a finite dimensional

subspace H1
div(∂Ωh). In this model, the numerical solution to the surface currents

n̂×H = Js and n̂×Eext|∂Ω = Ms are approximated by a linear combination of vector

basis functions fn, such that

Jsh(r) =
ns∑
n=1

Jnfn(r) and Msh(r) =
ns∑
n=1

Mnfn(r). (6.5.17)
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For the fn, we choose the RWG basis functions (named after its creators Rao, Wilton

and Glisson [138]),

fn(r) =


lnρ

+
n (r)

2A+
n

r ∈ T+
n

lnρ
−
n (r)

2A−n
r ∈ T−n

0 elsewhere

. (6.5.18)

Here, ln is the length of edge n, A±n is the area of triangles T±n sharing edge n, and

ρ+
n = (r− n), ρ−n = (n− r), (6.5.19)

where we have abused the notation of n to mean the position of the free vertex of

the triangle. We see that these basis functions have support only on the two triangles

sharing edge n, and are zero elsewhere. Further, they are numerically equivalent to

n̂ × Ln, where the Ln are the linear basis functions used to represent the internal E

field in the FEM approximation.

Substituting the approximate tangential components of the E and H fields on

the surface ∂Ω, (6.5.17), into the weak formulation of the MFIE (6.5.14) and EFIE

(6.5.15), we arrive at the Boundary Element formulation of the CFIE integrals, which

are linear combinations of

C(1)
m,n =

1

2

∮
S

fm · fn dS

C(2)
m,n =

∮
S

fm ·
(

n̂×
∮
S′
∇′G0(r, r′)× fn(r′)ds′

)
dS

(6.5.20)

and

D(1)
m,n = ik0

∮
S

fm(r) ·
(

n̂×
∮
S′
G0(r, r′)fn(r′) dS ′

)
dS

D(2)
m,n =

i

k0

∮
S

fm(r) ·
(

n̂×
∮
S′
∇′G0(r, r′)∇′ · fn(r′) dS ′

)
dS,

(6.5.21)

Upon assembly and coupling with the Finite Element system, we have A B

C D

 Eh

Jh

 =

 φE

φM

 (6.5.22)

Here, Eh and Jh are the coefficients of the basis functions for the E field and surface

currents, respectively, A is the original FEM system matrix, and B represents the

integral of n̂ ×H = Js over ∂Ω in (6.2.1). For the TETH CFIE, the matrices C and

D are given by

C =
α

Z0

(C(1) + C(2)) + Y0(1− α)(D(1) +D(2))

D =Z0
α

Z0

(D(1) +D(2)) + (1− α)(C(1) + C(2)),
(6.5.23)
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The matrices A and B are sparse, while C and D are dense (with C containing non-

zeros in columns corresponding to surface elements Li, and zero columns elsewhere).

Figure 6.2 shows the sparsity pattern of the FE-BI system matrix.

The boundary integral method is coupled with the finite element formulation over

a finite aperture of the ground surface S ⊂ ∂Ωh, as shown in Figure 6.3. The boundary

of S, ∂S, is taken to be the inside boundary of the PML region, such that the PML

(and discretised volume Ωh) extends beyond the BI region, and the PML region and

S do not overlap. This is a similar approach to that used by Jin and Volakis [79,186]

for simulating wave fields emitted by an antenna in a cavity recessed in an infinite

metallic plane: the boundary integrals are not taken over the entire (infinite) metallic

surface, where the electric field (and Green’s function) is zero valued. The difference

is our cavity is backed with a PML region, or (physically) an anisotropic absorbing

material, which is also backed by a metallic surface for simplicity.
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Figure 6.2: Sparsity plot of the FE-BI system matrix.
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Incident wavefield
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ground surface
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PEC/absorbing
boundary

Scatterers

Figure 6.3: Combining the FEM formulation with a BI region on the ground surface

6.6 Integration of singular integrands

6.6.1 Introduction

Notice that the boundary element formulation of the CFIE equations involves singular

integrands when r and r′ are close. Here, we will define close as being when the two

points lie within two surface elements which either touch or overlap, though more

generally we could say when |r − r′| < R, where R is a given radius. When the

integrand is singular low order numerical methods are unsuitable. One alternative

method is to separate the integrand into a sum of two parts, where one is smooth

enough for numerical integration, and the second is singular but has an analytic result

for its integration over the surface triangle [63,136,200]. When r is not close to r′, we

may proceed to integrate numerically using Gaussian quadrature.

In this section we present the analytic results in the literature required to evaluate

the integrals of singular integrands in this way, and apply the results to the D1, D2

and C2 matrices.

6.6.2 Analytic results for integrals of singular integrands

Let us define a local labeling of the vertices and edges of the surface triangle S ′, in

which the nodes are ordered clockwise when viewed from the side in which the outward

normal n̂ points; ŝi is the counter-clockwise unit tangential vector to edge i, the edge



CHAPTER 6. MODELLING THE FORWARD PROBLEM IN 3D 140

opposite node i; and m̂i = ŝn×n̂ is the outward unit normal to edge i in the plane of S ′.

With this notation, we define a local co-ordinate system L := (u, v, w) on the surface

triangle S ′, where the origin O′ is the first node of the triangle, û is the unit vector

ŝ3, v̂ = n̂× û, and ŵ = n̂. See Figure 6.4 and Table 6.1 for variable disambiguation.

With this notation, the analytic results we require for the integration of singular

integrands over surface triangle S ′ are [63,136,200]∮
S′
R dS ′ =

1

3

3∑
i=1

t0i

∮
∂iS′

R dl′ for w0 = 0

=
1

3

(
w2

0

∮
S′

1

R
dS ′
)

+
1

3

3∑
i=1

t0i

∮
∂iS′

R dl′ for w0 6= 0,

(6.6.1)

and ∫
S′

1

R
dS ′ =

3∑
i=1

t0i

∫
∂iS′

1

R
dl′ for w0 = 0

= −w0

(
w0

∫
S′

1

R3
dS ′
)

+
3∑
i=1

t0i

∫
∂iS′

1

R
dl′ for w0 6= 0

(6.6.2)

where the integrals over ∂iS
′ indicates the contour integral along edge i, ti is the

distance from O′ to the projection of r into the plane of S ′,

w0

∫
S′

1

R3
dS ′ = sgn(w0)β, (6.6.3)

and

β =
3∑
i=1

(
arctan

(
t0i s
−
i

(R0
i )

2 + |w0|R−i

)
+ arctan

(
t0i s

+
i

(R0
i )

2 + |w0|R+
i

))
. (6.6.4)

Further, we require the integrals of the gradients of powers of R, given by∫
S′
∇′R dS ′ =

3∑
i=1

m̂i

∮
∂iS′

R dl′ − n̂(r′)w0

∫
S′

1

R
dS ′, (6.6.5)

∫
S′
∇′ 1
R

dS ′ =
3∑
i=1

m̂i

∫
∂iS′

1

R
dl′ + n̂(r′)w0

∫
S′

1

R3
dS ′, (6.6.6)

∫
S′
∇′R3 dS ′ = −

3∑
i=1

m̂i

∫
∂iS′

R3 dl′ + 3ω0n̂(r′)

∫
S′
R dS ′. (6.6.7)
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Variable Description

n̂ Outward unit normal on S
r Observation point on S
r′ Integration point in S ′

O Origin
O′ Origin of local coordinates L on S ′ - i.e. node 1
w0 Distance from r to integration surface S ′, w0 = (r− n̂)v
R Distance from r to r′

ρ Vector from O′ to the projection of r onto S ′, ρ = r− w0n̂
ρ′ Vector from O′ to r′

ρn Vector from O′ to vertex n
ρ′n Vector from vertex n to r′

Rn Vector from vertex n to r′

ŝn Unit vector on edge n in the direction of test function fn
m̂n Unit normal on edge n in the plane of S ′

t0n Distance from ρ to the edge n
s±n Distance from t0n to the beginning/end of edge n

t±n Distance
√

(t0n)2 + (s±n )2

R0
n Distance

√
(t0n)2 + w2

0

R±n Distance
√

(t±n )2 + w2
0

Table 6.1: Variable definitions for analytic integration of boundary integrals

Finally, the integrals along the boundaries of the surface triangle S ′ (i.e. edges) re-

quired to evaluate equations (6.6.1)–(6.6.6) are given by∫
∂iS′

1

R
dl′ = ln

(
R+
i + s+

i

R−i + s−i

)
(6.6.8)∫

∂iS′
R dl′ =

1

2

(
s+
i R
−
i s
−
i R
−
i + (R0

i )
2

∫
∂iS′

1

R
dl′
)

(6.6.9)∫
∂iS′

R3 dl′ =
1

4

(
s+
i (R+

i )3 − s−i (R−i )3 + 3(R0
i )

2

∫
∂iS′

R dl′
)
. (6.6.10)

The definitions of the distances R
±/0
i , t

±/0
i and s

±/0
i are given in Table 6.1. In the

proceeding subsections, we we use these results to express the integrals for C2, D1 and

D2.
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Figure 6.4: Variable definitions for analytic integration of boundary integrals. Image
via Graglia [63].

6.6.3 The integrals for D(1)

We begin by separating the integral D1
m, into a sufficiently smooth and a singular part,

D(1)
m,n = ik0

∮
S

fm · n̂×
[∮

S′

(
e−ik0R − 1

4πR
+
k2

0R

8π

)
fn(r′) dS ′

+
1

4π

∮
S′
R−1fn(r′) dS ′

− k
2
0

8π

∮
S′
Rfn(r′) dS ′

]
dS

(6.6.11)

The integrand of the first part has the limit

lim
R→0

{
e−ik0R − 1

4πR
+
k2

0R

8π

}
= −i

k0

4π
, (6.6.12)

and is sufficiently smooth for low-order numerical integration. By equation (6.6.5) and

the definition of fn, with ρ = r−w0n̂, the integral of the first singular part in (6.6.11)

is given by∮
S′

(r′ − n)
1

R
dS ′ =

∮
S′

r′ − r

R
dS ′ + (r− n)

∮
S′

1

R
dS ′

=

∮
S′
∇′R dS ′ + (r− n)

∮
S′

1

R
dS ′

=
3∑
i=1

m̂i

∮
∂iS′

Rdl′ + (ρ− n)

∮
S′

1

R
dS ′. (6.6.13)

Similarly, the second part is given by∫
S′

(r′ − n)R dS ′ =
1

3

∫
S′
∇′(R3) dS ′ + (r− n)

∫
S′
R dS ′

=
1

3

3∑
i=1

m̂i

∫
∂iS′

R3 dl′ + (ρ− n)

∫
S′
Rds′.

(6.6.14)

by (6.6.7).
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6.6.4 The integrals for D(2)

Since we are using linear edge shape functions on the boundary, their divergence

∇′ · fn(r′) = ∇′ · (n̂(r′) × Ln) is constant and so can be taken outside of the integral

over S ′. This gives us

D(2)
m,n =

i

k0

∮
S

fm(r) · n̂×
(
∇′ · fn(r′)

∮
S′
∇′G0(r, r′)ds′

)
ds. (6.6.15)

If we write the scalar Green’s function as

G0(r, r′) =

(
G0(r, r′)− 1

4πR
+
k2

0

8π
R

)
+

1

4πR
− k2

0

8π
R, (6.6.16)

then on taking the gradient we have∮
S′
∇′G(r, r′) ds′ =

∮
S′
∇′q(R) ds′ +

1

4π

∮
S′
∇′ 1
R
ds′ − k2

0

8π

∮
S′
∇′Rds′, (6.6.17)

where the term ∇′q is given by

∇′q(R) =

(
2e−ik0R(ik0R + 1)− k2

0R
2 − 2

8πR3

)
R, (6.6.18)

and has the limit

lim
R→0
∇′q(R) = −i

k3
0

12π
R. (6.6.19)

The integrals of the two singular integrands are given by equations (6.6.5) and (6.6.6).

6.6.5 The integrals for C(2)

Consider the integrals for matrix C(2),

C(2)
m,n =

∮
S

fm ·
(

n̂×
∮
S′
∇′G0(r, r′)× fn(r′)ds′

)
ds, (6.6.20)

which contains a 1/R2 singularity. However, if the two triangles S and S ′ are on the

same plane the value of the integral vanishes. This is because both∇′G and fn = n̂×Ln

are tangential to the plane of S and S ′, and so their cross product is normal to the

plane. Then, as n̂(r) = n̂(r′), the cross product of n̂(r) with the inner integral is zero.

Assuming S and S ′ lie on different planes, let us write

Hn(r) =

∮
S′
∇′G0(r, r′)× fn ds

′.

=
1

4π

∮
S′

(
ik0 +

1

R

)
R̂× fn(r′)

e−ik0R

R
ds′

(6.6.21)
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If ρ′n = ρn(r′) = (r′ − n), then

Hn(r) =
ln

8πAS′

∮ (
ik0 +

1

R

)
R̂× ρ′n

e−ik0R

R
ds′. (6.6.22)

Expressing R in terms of ρ′n and the observation related vector Rn,

R̂× ρ′n =
R

R
× ρ′n =

Rn − ρ′n
R

× ρ′n =
1

R
(Rn × ρ′n), (6.6.23)

we have

Hn(r) =
ln

8πAS′
Rn ×

∮
ρ′n

(ik0R + 1)e−ik0R

R3
ds′, (6.6.24)

since Rn is constant with respect to r′. Following the same approach of extracting the

singularity as in D1 and D2, we have

Hn(r) =
ln

8πAS′
Rn ×

[∮
S′
ρ′n

(ik0R + 1)e−ik0R − (1 + 0.5k2
0R

2)

R3
ds′

+

∮
S′

ρ′n
R3

ds′ +
k2

0

2

∮
S′

ρ′n
R
ds′
]
.

(6.6.25)

Here, we have the limit

lim
R→0

(ik0R + 1)e−ikiR − (1 + 0.5k2
0R

2)

R3
= −1

3
ik3

0, (6.6.26)

as well as the analytic expressions for singular parts∮
S′

ρ′n
R3

ds′ = −
3∑
i=1

m̂i ln

(
R+
i + s+

i

R−i + s−i

)
+ (ρ− n)

∮
S′

1

R3
ds′ (6.6.27)

and ∮
S′

(r′ − n)
1

R
ds′ =

3∑
i=1

m̂

∮
∂iS′

Rdl′ + (ρ− n)

∮
S′

1

R
ds′, (6.6.28)

by equations (6.6.5), (6.6.6) and (6.6.8).

6.7 Modelling sources and receivers

The excitation vectors for the MFIE and EFIE are given by

φMi =

∮
S1

fi · n̂× (Hin + Hr) ds (6.7.1)

and

φEi =

∮
S1

fi · n̂× (Ein + Er) ds (6.7.2)
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respectively, where S1 is the ground surface . The simplest realistic source we can

consider is that of a dipole antenna, which we can approximate as

Ein(r) = A(θ)G(rs, r)p̂in (6.7.3)

where rs is the source location, p̂in the source polarisation, and A(θ) an amplitude

term which varies with the angle between r− rs and direction the antenna is pointed

d̂in ⊥ p̂in. Choice of a smoothly decaying amplitude allows us to model approximately

a wide range of possible antenna patterns, which can be fitted to true antenna radiation

patterns.

Given the surface values of Js and Ms on S1, the response at the receiving antenna

is calculated by the surface equivalence theorem,

Hext =

∮
S1

{
−Js(r

′)×∇G0(r, r′)− ik0Y0Ms(r
′)G0

− i
Y0

k0

·M(r′) · ∇∇G0(r, r′)
}
ds′

Eext =

∮
S1

{
Ms(r

′)×∇G0(r, r′)− ik0Z0Js(r
′)G0

− i
Z0

k0

J(r′) · ∇∇G0(r, r′)
}
ds′.

(6.7.4)

As with the source term, if we have a directional receive antenna then we can multi-

ply the Green’s function with some (smooth) angle-dependent cut-off function A(θ),

physically accounting for waves not being picked up (or unable to enter) a directional

antenna. These integrals are then evaluated at the position(s) of the receiving antenna,

and the scalar product taken with the polarisation direction of receiving antenna p̂rec.

Note that, unlike in the CFIE equations, the integrals in equations (6.7.4) are over

surfaces away from the singularity of G0, since we assume the receiving antenna is off

of the surface.

6.8 Iterative solution of the FE-BI system

6.8.1 Preconditioning methods for the FE-BI system

The coupled finite-element boundary-integral method results in a large partially sparse,

partially dense, square system matrix S, which is complex, non-symmetric and fairly

ill-conditioned. The matrix equation is difficult to solve efficiently, especially as the
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scale of the problem increases. As discussed in Section 4.2.2, for large systems the most

efficient approach is to use an iterative solver, while direct methods are only suitable

for smaller systems. Indeed, at some point it becomes prohibitive to use direct LU

based methods to solve the system, since a full LU decomposition of S will produce

large amounts of fill-in and one only ever has limited availability of memory. The rate

of convergence of iterative solvers though will likely depend drastically on the choice

of preconditioning used: with a poor choice (or no preconditioning), Krylov subspace

based methods may fail to converge to the required tolerance or simply stagnate,

similar to the discretised Helmholtz problem.

Recall that the point of preconditioning is to replace the system

Sx = b (6.8.1)

by one hopefully easier to solve,

M−1Sx = M−1b. (6.8.2)

The preconditioner matrix M is required to be easy to calculate and invert (e.g. using

a direct method), but M−1S should either be close to the identity or simply be better

suited to our iterative method (e.g. through having a preferable eigenvalue spectrum).

If M−1S = I then we have already solved the problem, but have made no performance

gain since we have solved (6.8.1) directly.

In Section 4.2.2 we mentioned some general algebraic preconditioners applicable to

many linear algebra problems, such as the Jacobi preconditioner and incomplete fac-

torisations, but it is possible too to derive methods based on physical approximations

of the forward problem. Liu and Jin [80, 100] give a method in which the BI portion

of S is approximated by the absorbing boundary condition (3.3.4). Writing FE-BI

system as

Sx = (A+B)x = b, (6.8.3)

where A is the sparse symmetric FE matrix, B is the dense, non-symmetric BI matrix,

the preconditioner suggested by Liu and Jin is to use

n̂× (∇× E) + ik0n̂× (n̂× E) =n̂× (∇× Ein)

+ ik0n̂× (n̂× Ein) r ∈ ∂Ω,
(6.8.4)
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or

n̂× (n̂× E)− n̂×H =n̂× (n̂× Ein)

− n̂×Hin r ∈ ∂Ω,
(6.8.5)

to replace the CFIE equations. Unlike the BI CFIE equations, the discrete approxi-

mation of the ABC results in a sparse matrix, denoted L. L is a local approximation

to B, and the large eigenvalues of (A+L) are similar to those of (A+B) [100] which

makes it suitable for GMRES.

Multi-grid methods [202], [64, pp 183-204], could also be used to precondition the

FE-BI system, such as the Multilevel Fast Multi-pole Algorithm (MLFMA) [153,161].

In MLFMA, the domain is successively subdivided into smaller cubes. Electromagnetic

interactions within the same or neighbouring cubes are calculated directly, but those

apart by the addition theorem (i.e. multiple scattering at this stage are ignored).

The process is then carried out iteratively on the higher level grids, until the coarsest

subdivision is reached. MLFMA reduces the computational complexity of the BI

portion of the matrix from O(N2
s ) to O(Ns logNs), becoming a very practical method

for large problems

6.8.2 An ILUC preconditioner

Through some preliminary testing, we have found that for our scale of problem iterative

methods will often stagnate with a simple Jacobi preconditioner, and while using a

sparse approximation to S (such as the ABC preconditioner described in (6.8.5)) is

robust, the time taken to solve the linear system with such a preconditioner is generally

greater than when using Matlab’s inbuilt direct method mldivide (backslash). This

is likely due to the dense BI matrices taking up only a very small proportion S, so

the cost of inverting M is almost on par with inverting S. Similarly, we find that

constructing an ILU factorisation of S either results in a non-robust scheme if the

drop tolerance is too high (i.e. LU is a poor approximation of S), or the time taken

to construct the decomposition is on par with using a direct method.

Table 6.2 shows some function timings for the built in Matlab functions mldivide

and ILU of a system matrix for a 50 cm3 domain with 110123 edges, εr = 4 background

and a 5 cm radius sphere target with εr = 6, for which we used the efficient Crout
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Operation
Computation time (s)

Pass 1 Pass 2 Pass 3 Average

mldivide(S,b) 207.94 206.76 206.94 206.88
mldivide(S,B) 363.36 365.18 363.54 364.03
ILU(S, 10−2) 190.05 190.14 189.81 190.00
ILU(S, 10−3) 292.36 290.80 288.96 290.71
ILU(S, 10−4) 1217.63 1233.08 1216.85 1222.52

Table 6.2: Function timings in Matlab for mldivide with a single and 90 right-
hand-side vectors, and the Crout variant of ILU(S, tol) for given drop tolerances, for
a 110123 square FE-BI system matrix. Timings performed in single thread mode on
an Intel Xeon E3-1280 v3 at 3.60 GHz based computer in Matlab R2014a under
Scientific Linux 6.4. S is a 1101232 matrix, of which the two dense blocks are 9902.

variant of ILU [99]. We see that mldivide scales well when given multiple right-hand-

side vectors, as it only performs the LU decomposition once. The ILU with a drop

tolerance of 10−2 would be an obvious choice of preconditioner here,as if an iterative

method such as GMRES would converge in 2s per right-hand-side vector it would be

faster than mldivide for this problem. Unfortunately, the high drop tolerance makes

it a poor preconditioner and GMRES fails to converge. If we use an ILU preconditioner

with a drop tolerance of 10−3, we would need GMRES to converge in under 0.8s per

right-hand-side in order to be more efficient than mldivide when including the time to

construct the preconditioner. While this seems to be a stable preconditioner, mldivide

still outperforms the built in Matlab implementation gmres, when it is possible to

use the direct method within memory constraints.

We assume that our scale of problem is on the verge of where direct methods cease

to become effective (or possible) and iterative methods are necessary, but the inherent

efficiencies built in to mldivide often allow it to outperform iterative schemes when

we include the cost of constructing M since mldivide scales well when given multiple

right-hand-sides simultaneously. We have not attempted to implement a multi-grid

method, on the assumption that it would only be of benefit for (at least slightly) larger

scaled problems.

However, while the time taken to create an ILU decomposition of S is on par

with solving directly the linear system, we have found that once we have an ILU of

S(m0) this can continue to be an effective preconditioner for S(mk), where m0 is some

(possibly homogeneous) initial model and mk some perturbed model. We assume this
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is due to the large similarities between the two: the boundary integral portion of S

always stays the same, and the parts corresponding to the PML should not be able

to change much during any inversion. ILU(S(m0)) as a preconditioner mimics the

properties of the outgoing wave only.

The GMRES algorithm often performs well when the complex eigenvalues of M−1S

are tightly clustered about a single point away from the origin [64, pp55], which from

Figure 6.5 we see is the case for (LU)−1S. In Figure 6.6, we see we gain exponen-

tial convergence using the preconditioned GMRES for the same model problem used

above, for ILU preconditioners calculated on homogeneous domains of permittivity

εr = 3.8, 4, 4.2 and for various drop tolerances. Reduction in residual is greater per

iteration for a lower drop tolerance, although A drop tolerance of 10−2 gave too poor

an approximation to the LU decomposition and GMRES failed. With a lower drop

tolerance, each iteration of GMRES becomes more expensive to compute due to the

increased density of L and U . Computation times of Matlab’s inbuilt gmres function

are given in Table 6.3, and we see there is a ‘sweet spot’ in computation time with a

drop tolerance O(10−3).

From the convergence plots and execution times that the ILU preconditioner cal-

culated on a homogeneous domain can remain effective even where the background

permittivity is incorrect (at least for this simple test problem). In this case, if one

had fewer than around 30 source terms (which is perhaps not representative of a GPR

data set), then preconditioned GMRES out-performs mldivide. For larger systems we

expect this number of source terms to grow, and of course iterative methods become a

necessity due to memory limitations. To test the implementation of the FE-BI system,

several simple scattering problems containing dielectric spheres were set up, though

the results are omitted here.

One of the reasons iterative methods can perform slowly for the FE-BI system is

that matrix-multiplication algorithms for sparse systems are often not suited to the

partially dense, partially sparse structure if it is stored all together in a sparse format.

The time taken to perform the dense part of the multiplication Sx will be dispropor-

tionately large, since it will not have the structure assumed by the sparse format used

and lead to repeated access of the same elements of x, with elements of the dense part

of S likely stored in memory in a less than optimal order. Conversely, a dense matrix
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(b) Eigenvalues of M = LU
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Figure 6.5: Largest 250 eigenvalues of (a) Sm, (b) M = LU , (c) (LU)−1Sm. Sm is
the system matrix for the model problem described in section 6.8.2, and LU is an
ILUC decomposition with drop tolerance 10−3 of a system matrix S0 for homogeneous
permittivity εr = 4 .
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−2)

ILU(S0, 10
−3)
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ILU(S1, 10
−3)

ILU(S2, 10
−3)

Figure 6.6: Relative residual of GMRES solution against iteration for various ILU
based preconditioners and drop tolerances. S0, S1 and S2 are the system matrix for
homogeneous permittivities εr = 4, 3.8 and 4.2 respectively

Preconditioner System matrix
gmres(S,b, 10−6) computation time (s)

Iterations
Pass 1 Pass 2 Pass 3 Average

ILU(S0, 10−2) Sm – – – – 200

ILU(S0, 10−3)
S0 5.91 5.95 5.83 5.90 19
Sm 7.03 7.04 7.15 7.07 23

ILU(S0, 10−4) Sm 17.14 16.90 16.99 17.01 21
ILU(S1, 10−3) Sm 7.38 7.35 7.40 7.38 23
ILU(S2, 10−3) Sm 7.46 7.30 7.59 7.45 23

Table 6.3: Computation times for preconditioned gmres to reach a relative residual of
10−6. ILU(S, tol) is the Crout variant of the ILU preconditioner with a drop tolerance
tol. Sm is the system matrix for the sample scattering problem with a single spherical
target of εr = 6 in a background of εr = 4, S0, S1 and S2 are created for homogeneous
εr = 4, 3.8 and 4.2, respectively. gmres failed to converge in 200 iterations with the
ILU(S0, 10−2) preconditioner. gmres was run without restarts. Timings performed
in single thread mode on a Intel Xeon E3-1280 v3 at 3.60 GHz based computer in
Matlab R2014a under Scientific Linux 6.4. The S are 1101232 matrices, of which the
two dense blocks are 9902.
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multiplication algorithm will perform well in the dense portion, accessing elements of

x in memory only once, but will also compute all the zero multiplications in the sparse

portion (moreover, S will be too large to store in dense format). The ‘Fast Multi-pole’

portion of MLFMA [153, 161] described above overcomes this difficulty. More simply

though, one can gain decent computation speed gains and modest reductions in mem-

ory footprint by storing the sparse and dense portions of the FE-BI system separately

in the appropriate format, and performing the multiplications of these parts against

x individually before summing the contributions.

6.9 Comparison to field data

GPR data was collected at a test bed at Cranfield University, Shrivenham, supported

by Utsi Electronics and EPSRC grant IAA074 [196]. Figure 6.7(b) shows the test bed,

which contains a very sandy soil (imported from Afghanistan), and so is not representa-

tive of many of the places in which landmines are found or are a humanitarian concern,

but is a useful starting point to verify simulations. A range of targets were buried in

the site, including various landmine surrogates kindly lent by the School of Electrical

and Electronic Engineering, University of Manchester, shown in Figure 6.7(a). There

were also a range of IED and UXO surrogates and various clutter objects already in

place. Utsi Electronics kindly loaned two GPR systems to collect data, one on-ground

and one off-ground (technical details are omitted here to protect Utsi Electonics’ IP).

Figure 6.8 shows a B-scan through the test site using the on-ground system which had

a 1 GHz centre frequency.

To begin verifying our FEBI solver, we simulate data for an AISI 420 stainless steel

sphere with 44.45mm diameter, buried 12cm deep (to the bottom of the sphere) in

a homogeneous sand background, and compare to the data recorded for this target.

We assume the sand has permittivity εr = 4, and the steel sphere ε1 = 1, µr = 1.005

and σ = 1.25 × 106 S/m. These values may not be accurate, as we could not find

specific values of AISI 420 stainless steel at microwave frequencies, nor do we have an

accurate permittivity from the Afghanistan sand. The source wavelet was estimated

by an average fit of the simulated wave amplitude to the recorded at each frequency,

A(ωi) = (dsim
i )†(dobs

i )T , (6.9.1)
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(a) Landmine surrogates (b) Test bed at Cranfield University, Shrivenham

Figure 6.7: (a) Landmine surrogates and (b) test bed used for data collection. The
larger surrogates in the case are designed to give an accurate GPR response of a
landmine, while the small targets in the top row (which can be inserted into the larger
bodies) are metal detection surrogates.
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Figure 6.8: Time domain B-scan or surrogate landmine targets. The target at 0.8 m
is a stainless steel ball, and the target at 3.75 m is a bundle of wires on the ground
surface. Landmine surrogate targets were out of the survey line shown, but a slight
response to one can be seen at 2.5 m.
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where dsim
i and dobs

i are the simulated and recorded data for the ith frequency ωi,

respectively, and † the Moore Penrose pseudo-inverse. If we only simulated data in a

single location this would force our simulation to fit exactly the recorded data, so we

simulate in a sufficiently large area such that we have parts of the data that are and

parts that are not affected by the target. It is easier to understand the data in the

time domain, so we IFFT the simulated data to compare A/B-scans. We compare to

the recorded data at just the frequencies simulated, so that

d̃obs = IFFT(FFT (dobs, 512), nω), (6.9.2)

where nω is the number of simulated frequencies. This way, the comparison is not

obscured by frequency features in the data we have not simulated. Figures 6.9 and

6.10 compare simulated and recorded A and B scans, respectively.

Qualitatively, from Figure 6.9 we see we have the correct number of peaks and

troughs, though the amplitudes do not match. The ground reflection (up to 2 ns) has

a greater amplitude, most likely due to an incorrect estimation of ground permittivity.

We also do not simulate the fairly rough ground surface. The first reflection from

the steel sphere (3–5 ns) also has a greater amplitude, but the multiple after is less

pronounced. Again, this is likely to be due to an incorrect estimation of the contrast

to the background medium. Finally, we see no obvious affect from the PML region,

which would begin at approximately 10 ns in the time domain signal.

Figure 6.10 displays similar simulated hyperbolas, both in the primary reflection

and multiples after, to the field data. It is clear that much more complex interactions

are occurring in the real data, due to layering of the sand from regular digging as well

as the medium being quite granular with an uneven surface.

This qualitative comparison is promising, but more would need to be done to

accurately verify the data simulation. Particularly, we should compare a multi-static

response to a well characterised object in a well known background medium, in a

controlled environment such that the background is (approximately) homogeneous.

Antenna position would also need to be more accurately controlled or measured.
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Figure 6.9: Comparison of simulated and recorded A-scan directly above a 44.45mm
diameter stainless steel ball in a sand background.
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stainless steel ball in a sand background.
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6.10 Summary

This chapter has described the numerical simulation of GPR data in 3D using a finite-

element boundary-integral method (FE-BI). We have first given the finite-element

(FE) formulation of Maxwell’s equations, allowing numerical solution of scattering

problems in a given domain. The FE system was verified against the analytic solution

of a plane wave.

Using FEM to simulate GPR data requires boundary conditions on the ground

surface representing the incident wave. These transmission conditions are non-local

due to reflection of the waves off of the ground as well as scattering in the ground

surface, and are solved via a boundary integral (BI) method. This is then coupled

with the FEM system, and the resulting system matrix is partially dense and partially

sparse. The infinite subsurface also needs to be truncated for numerical computation,

which was achieved via a perfectly matched layer.

We then discussed solution methods for the resulting FE-BI linear system. We

showed that an ILU preconditioned iterative scheme can be more effective than a direct

method for the average size of system we have, though up to this size Matlab’s built

in mldivide performs comparably.

Finally, we compared the numerical solution of the GPR response of a stainless

steel sphere in a sandy background to field data. The simulated data was promising,

containing all the qualitative features we expected to see. However, more needs to be

done to fully verify the solver is able to accurately



Chapter 7

Polarization Tensors

7.1 Introduction

The perturbation, or scattering, of electric and magnetic field due to the inclusion of

an object of small size, either at high frequencies or in the far field, has received much

attention. See for example the review of work prior to 1965 by Kleinman [84], or a more

recent monograph by Dassios and Kleinman [46], and references therein. Particularly,

this perturbation in field can be described in the form of an asymptotic expansion

in the object’s size, in which each term involves the product of a polarization tensor

(sometimes referred to as a polarizability tensor) and the incident field at the object’s

location [83]. Particularly, for the scattering by a perfectly conducting object, the

polarization tensor is related to that of Pólya, Schiffer and Szegö [135, 148]. Expan-

sions involving a polarization tensor have been carried not out for various regimes of

electromagnetics, including low-frequency (or objects small compared with the wave-

length) [7, 14, 95, 185], the Electric Impedance Tomography problem [8, 10, 13, 34, 59],

and the Eddy-current/metal detection problem [94,107,203], but also for non electro-

magnetic problems such as acoustics and linear elasticity [9, 12]. In the case of EIT

the full asymptotic series is known, in which higher order terms involve higher order

generalised polarisation tensors [9, Chapter 5]. These examples all consider character-

ising a finite number of isolated objects in a homogeneous background, which differs

from GPR where the ground is inhomogeneous, with many small-scale perturbations

from a granular material or layers. The polarization tensors depend on the shape of

157
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the object, as well as the contrast of its material parameters to that of the surround-

ing (homogeneous) medium, and so are invariant to the objects location (though they

rotate with the object). They therefore give a useful description of the effect an object

placed in an arbitrary electro-magnetic field.

Before proceeding to the 3D inverse problem, we consider in this chapter such

scattering approximations using polarization tensors. We first define the tensor, be-

fore presenting a scattering approximation for the full Maxwell equations using the

polarization tensor available in the literature. We show that this approximation can

be appropriate for GPR with minor modifications if one had a homogeneous back-

ground and sufficiently isolated scatterers, as well as showing that the proof of the

literature result still holds. While such approximations can result in efficient recon-

struction algorithms in cases where one is looking for sufficiently isolated objects [7],

this is unlikely to be suitable for GPR where both multiple scattering and an inhomo-

geneous background give large contributions to the data.

Rather than use the approximations to form an imaging method, we use them to

inform a better understand sensitivity of our measurements to given perturbations or

targets in the subsurface. We compare this alternative and novel view of sensitivity

to the more traditional understanding involving the Fréchet derivative, contrasting

what information each understanding can give and where each is applicable. This

gives us a novel approach to sensitivity in FWI, extending analysis usually carried out

with the Born approximation to include polarization effects. Finally, we use this novel

understanding of sensitivity to analyse the type of linear array considered for the 2D

inverse problem in Chapter 5.

7.2 Polarization tensors

7.2.1 The scattering problem

Let E and H be the electric and magnetic fields, respectively, satisfying Maxwell’s

equations (3.2.6) in a domain Ω ⊆ R3, in which the permittivity ε(r) and permeability
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µ(r) can be described as

ε(r) =

 εj r ∈ Dj, j = 1, . . . ,m,

ε0 r ∈ Ω \ I,
(7.2.1a)

µ(r) =

 µj r ∈ Dj, j = 1, . . . ,m,

µ0 r ∈ Ω \ I,
(7.2.1b)

(7.2.1c)

where the Dj ⊂ R3 are sufficiently separated C∞ smooth closed bounded domains

(inclusions), with boundary ∂Dj and equipped with outward unit normal νj, and

I =
⋃m
j=1Dj.

The total fields can be described as the sum of incident fields and scattered fields,

E = Ein +Esc, H = Hin +Hsc. Here, the incident fields Ein and Hin are the solution to

Maxwell’s equations in Ω with homogeneous permittivity ε(r) = ε0 and permeability

µ(r) = µ0 (in which we have used the superscript notation to emphasise that they

need not be the free space permittivity and permeability), and Esc and Hsc are the

perturbations in fields due to the inclusions Dj. The incident and scattered fields both

satisfy the transmission conditions (3.3.2),

We will consider inclusions of the form Dj = z + αBj, where Bj are C∞ smooth

closed bounded domains of unit size and containing the origin, with boundary ∂Bj,

so that the Dj are a translation and scaling (by a small α) of inclusions Bj. We

consider also only cases in which the points zj are sufficiently far apart (and the α

sufficiently small) such that the principle of linear superposition holds – i.e. the total

scattered field is the sum of scattered fields caused by each single inclusion alone. It

is therefore sufficient for us to restrict our attention to a single inclusion D = z + αB

with permittivity and permeability ε∗ and µ∗. The cases for multiple inclusions follow

simply by summing the scattered fields.

7.2.2 Definition of a generalised polarisation tensor

Following Ammari et al [14], the polarization tensor M for an inhomogeneity B con-

taining the origin, with parameter contrast c = γ0/γ∗, is defined as the rank 2 3 × 3

tensor

Mij(c) =
1

c

∫
B

∂

∂xi
φj dV, (7.2.2)
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where ϕj is the solution to the transmission problem

∇2φj = 0 x ∈ B and R3 \B

φj is continuous across ∂B

γ0

γ∗

(
∂φj
∂ν

)+

−
(
∂φj
∂ν

)−
= 0 on ∂B

φi(x)− xj → 0 as |x| → ∞.

(7.2.3)

It is clear that M is a function of the shape B of the inclusions D (in equation (7.2.1)),

but not of their position z. It can be shown that the tensor is symmetric, positive

definite for c > 1 and negative definite for 0 < c < 1, the elements are monotonic with

c, and that (7.2.3) defines components of a tensor in Cartesian coordinates [11]. The

expression (7.2.3) can alternatively be written as∇ · γ(x)∇φj = 0 x ∈ R3

φj(x)− xj → 0 as |x| → ∞
(7.2.4)

where

γ(r) =

 γ∗ x ∈ B

γ0 x ∈ R3 \B.
(7.2.5)

We see that the φj can be considered as scalar potential to Maxwell’s equations,

E = ∇φj for an electrostatic field, with zero electric charge density and (non-physical)

radiation conditions. Other definitions of the polarization tensor exist, which are

equivalent (up to a constant) and found by an alternative choice of scalar potential

[93]. It is also the same rank 2 tensor as used in asymptotic expansions for electrical

impedance tomography [9] (the Pólya Szegö tensor of [135, 148]), where the higher

order terms of the expansion are also known (and involve higher ranked tensors) [8].

7.2.3 Analytic values of tensor components

For the polarization tensor defined by (7.2.3) and (7.2.4), it can be shown that for B

a ellipsoid oriented in the coordinate axes, M is the diagonal tensor [83, pp 45], [7],

Mij = δij|B|
γ0

γ0 + (γ∗ − γ0)Li
, (7.2.6)

where Li is the depolarization factor of the ellipsoid given by [176, pp. 71]

Li =
1

2
a1a2a3

∫ ∞
0

ds

(s2 − a2
i )(s

2 − a2
1)

1
2 (s2 − a2

2)
1
2 (s2 − a2

3)
1
2

, (7.2.7)
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for ai the principle axes of the ellipsoid, and L1 +L2 +L3 = 1. In the case of a sphere

these are simply Li = 1
3
. For prolate spheroids, a1 > a2 = a3, we have

L1 =
1− e2

e2

(
−1 +

1

2e
ln

1 + e

1− e

)
, e2 = 1−

(
a2

a1

)2

, (7.2.8)

and for oblate spheroids, a1 > a2 = a3,

L1 =
1 + f 2

f 2

(
1− 1

f
arctan f

)
, f 2 =

(
a2

a1

)2

− 1. (7.2.9)

For either a prolate or oblate spheroid, for a1 close to a2 = a3 then

L1 ≈
1

3
+

4

15

a2 − a1

a
. (7.2.10)

Finally, for a flat elliptic disc, a1 � a2, a3,

L1 = 1, L2 = L3 = 0, (7.2.11)

and for a long elliptical cylinder, a2, a3 � a1,

L1 = 0, L2 =
a3

a2 + a3

, L3 =
a2

a2 + a3

. (7.2.12)

If B is not oriented with the coordinate axes, the result is that the polarization

tensor is pre-and post-multiplied by the rotation matrix R which maps the coordinate

axes to the principle axes of B,

M = RTM ′R. (7.2.13)

Note that (7.2.13) is an eigendecomposition of M , since for rotation matrices RT =

R−1.

We remark (but present no formal proof) that for any given (non-ellipsoidal) object

B with tensor M , there is an ellipsoid B′ which would give the same tensor. To see this,

it is sufficient to take an eigendecomposition of M = Q−1M ′Q to find the diagonal

tensor M ′, and show that there exists an ellipsoid oriented with coordinate axis with

tensor M ′ (which can then be rotated by R = Q). Since Li decreases monotonically

with any ai but increases monotonically with aj, j 6= i, and L1 + L2 + L3 = 1 with

0 ≤ Li ≤ 1, we can find any set of depolarization factors 0 ≤ L1 ≤ L2 ≤ L3 ≤ 1 which

sum to 1. By (7.2.6), M ′
ii decreases monotonically with Li and γ∗, and increases with

γ0 and |B|. The depolarization factors, contrast and size of perturbation allow any

diagonal M ′ (or equivalently any 3 eigenvalues) to be found.
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In light of this remark, the most the polarization tensor M can say about the

scattering an object B causes, is how its closest fitting ellipsoid would scatter the

same wave field. The term ‘closest’ is not defined geometrically but through (7.2.6) and

(7.2.7). In some applications, for example electric impedance tomography [9, chapter

5], a whole asymptotic series is known with each term involving a higher order tensor.

In this case, higher order tensors give information about how the object differs from

an ellipsoid (e.g. anti-symmetries), as the whole series describes exactly the scattering

due to the object. As far as we are aware, the exact information conveyed by each

order tensor about a scatterer is an open problem.

Expressions for the effect of a small ellipsoidal particle on an electric (or magnetic)

field involving the depolarization factors were derived as early as Chasles [35] (1840),

Thomson and Tait [170, pp. 525] (1879), Maxwell [109, pp. 60–70] (1873) and Lord

Rayleigh [140] (1897). It is interesting that, while these are not formal asymptotic

expressions nor in tensor form, some more recent results reduce to similar expressions

as those in classical electrodynamics in the case of small ellipsoids.

7.3 An asymptotic expansion for GPR

7.3.1 Introduction

In this section, we present an asymptotic result from the literature which is given in

terms of the tangential traces of the electromagnetic field on the surface of a closed

and bounded domain. By application of a surface equivalence principle, we show the

boundary integral of tangential traces in the result is equivalently the scattered field,

and so this particular result can be applicable to GPR. Finally, we show that proof of

the result still holds given the modifications required to apply the surface equivalence

principle.

7.3.2 Tangential traces of fields on the surface of a closed

domain

Ammari et al [14], also see Vogelius and Volkov [185], give the leading order terms

in an asymptotic expansion as α → 0 for a source (charge) free closed and bounded
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domain Ω ⊂ R, with Neumann boundary conditions (∇ ×H) × ν = g on ∂Ω. They

obtain that the tangential trace of the magnetic field on the boundary ∂Ω can be

written as

Hsc(r′)× ν(r′)− 2

∮
∂Ω

∇′ × (G0(r, r′)(Hsc(r)× ν(r))× ν(r′) dS

=2α3ω2µ
0

µ∗
(µ0 − µ∗)G(z, r′)× ν(r′)MB

(
µ0

µ∗

)
Hin(z)

+ 2α3

(
1

ε∗
− 1

ε0

)
(∇×G(z, r′))TMB

(
ε0

ε∗

)
∇×Hin(z) +O(α4),

(7.3.1)

as α → 0, for any r′ ∈ ∂Ω and ν the outward unit normal to ∂Ω. The result holds

for z bounded away from ∂Ω by some distance d0, and holds for 0 < α < αmax where

αmax depends on d0 and ω but otherwise independent of z.

Ammari et al also give the corollary that, for a smooth vector valued function w

which satisfies

∇×∇×w − ω2ε0µ0w = 0 in an open neighbourhood of Ω, (7.3.2)

then

iωµ0

∮
∂Ω

Hsc × ν ·w dS −
∮
∂Ω

(∇×w)× ν · ν × (Esc × ν) dS

=α3ω2ε0µ0

(
ε0

ε∗
− 1

)[
MB

(
ε0

ε∗

)
Ein(z)

]
·w(z)

+ α3iωµ0

(
µ0

µ∗
− 1

)[
MB

(
µ0

µ∗

)
Hin(z)

]
· ∇ ×w(z) +O(α4)

(7.3.3)

as α→ 0.

7.3.3 Application of a surface equivalence principle

In GPR, we are interested in the scattering due to dielectric objects in the subsurface of

incident waves created above the domain. In this section, we demonstrate Ammari et

al’s asymptotic expansion for the tangential components of H on a surface ∂Ω, equation

(7.3.3), can also be written in terms of the fields inside the domain Ω. In order to

make this clarification we use the surface equivalence principle given in Section 3.7,

and a further application of the theory allows us to describe the fields outside of Ω.
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First, noting the quadruple product rule

((∇×w)× ν) · ν × (E× ν) = ((∇×w) · ν) (ν · E× ν)

− ((∇×w) · (E× ν)) (ν · ν)

=− (∇×w) · (E× ν),

we have for (7.3.3)

iωµ0

∮
∂Ω

H× ν ·w dS +

∮
∂Ω

(∇×w) · (E× ν) dS

=α3ω2ε0µ0

(
ε0

ε∗
− 1

)[
MB

(
ε0

ε∗

)
Ein(z)

]
·w(z)

+ α3iωµ0

(
µ0

µ∗
− 1

)[
MB

(
µ0

µ∗

)
Hin(z)

]
· ∇ ×w(z) +O(α4).

(7.3.4)

We now raise w(z) to be a dyad satisfying

∇×∇× w − ω2ε0µ0w = 0 in an open neighbourhood of Ω,

where w = w1ex + w2ey + w3ez represents three different fields each satisfying the

vector wave equation. Such a tensor is given by the dyadic Greens function G(r, r′)

for wavenumber k2 = ε0µ0, for r within Ω. Substituting into (7.3.4), we have

iωµ0

∮
∂Ω

H× ν ·G(r, r′) dS ′ +

∮
∂Ω

(∇r′ ×G(r, r′)) · (E× ν) dS ′

=α3ω2ε0µ0

(
ε0

ε∗
− 1

)[
MB

(
ε0

ε∗

)
Ein(z)

]
·G(r, z)

+ α3iωµ0

(
µ0

µ∗
− 1

)[
MB

(
µ0

µ∗

)
Hin(z)

]
· ∇r ×G(r, z) +O(α4).

(7.3.5)

We notice that the integrals on the left-hand side of (7.3.5) are, by surface equivalence

theorem (3.7.2), the scattered electric field1 Esc(r) radiated from ∂Ω into a medium

of dielectric properties ε0 and µ0,

Esc(r) =α3ω2ε0µ0

(
ε0

ε∗
− 1

)[
MB

(
ε0

ε∗

)
Ein(z)

]
·G(r, z)

+ iα3ωµ0

(
µ0

µ∗
− 1

)[
MB

(
µ0

µ∗

)
Hin(z)

]
· ∇r ×G(r, z) +O(α4).

(7.3.6)

1In the next section we show that the contribution of the Dirac delta term in the Green’s function
results in Esc rather than the total field E.
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The magnetic field is then given by Maxwell’s equations as

Hsc(r) =
i

ωµ
∇r × E(r)

=iα3ωε0
(
ε0

ε∗
− 1

)[
MB

(
ε0

ε∗

)
Ein(z)

]
· ∇r ×G(r, z)

+ α3

(
µ0

µ∗
− 1

)[
MB

(
µ0

µ∗

)
Hin(z)

]
· ∇r ×∇r ×G(r, z) +O(α4),

(7.3.7)

as α→ 0, forr ∈ Ω. Since G satisfies the vector wave equation, for r 6= z we have

Hsc(r) =iα3ωε0
(
ε0

ε∗
− 1

)[
MB

(
ε0

ε∗

)
Ein(z)

]
· ∇r ×G(r, z)

+ α3ω2ε0µ0

(
µ0

µ∗
− 1

)[
MB

(
µ0

µ∗

)
Hin(z)

]
·G(r, z) +O(α4),

(7.3.8)

as α→ 0, forr ∈ Ω. This result is similar to that of Ledger and Lionheart [95], though

their result is not written explicitly in terms of a Green’s function. If we choose r to

lie on ∂Ω, then it is straightforward to see that the field radiated from Ω is given by

a further application of the surface equivalence theorem (3.7.2),

Eext(r) =

∮
∂Ω

∇×G(r, r′) · E(r′)× ν dS ′

+ ik0Z0

∮
∂Ω

G(r, r′) · ν ×H(r′) dS ′.

(7.3.9)

By the duality theorem, one can fine equivalent expressions for Esc and Hsc for the

case where Neumann boundary conditions are applied to the Electric field H × ν =

1
iωµ

(∇× E)× ν = g on ∂Ω. That is, by interchanging E → H, H → −E, µ → ε and

ε→ µ, we have

Esc(r) =α3ω2ε0µ0

(
ε0

ε∗
− 1

)[
MB

(
ε0

ε∗

)
Ein(z)

]
·G(r, z)

− iα3ωµ0

(
µ0

µ∗
− 1

)[
MB

(
µ0

µ∗

)
Hin(z)

]
· ∇r ×G(r, z) +O(α4) (7.3.10a)

Hsc(r) =α3ω2ε0µ0

(
µ0

µ∗
− 1

)[
MB

(
µ0

µ∗

)
Hin(z)

]
·G(r, z)

− iα3ωε0
(
ε0

ε∗
− 1

)[
MB

(
ε0

ε∗

)
Ein(z)

]
· ∇r ×G(r, z) +O(α4) (7.3.10b)

as α → 0, forr ∈ Ω. Equations (7.3.10) are directly applicable where we have

solved the weak form of the vector wave equation for the E-field, and therefore applied

Neumann conditions to E. We notice the expression for H is the same, but that the

expression for E has a negative Hin component.
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7.3.4 Proof of the asymptotic result

In the previous section, we used the corollary of Ammari et al [14] for the case when

w is raised to the rank-2 tensor G. Note though that our choice of G does not in fact

satisfy (7.3.2) at r = z – rather it satisfies (7.3.2) only in a punctured neighbourhood of

Ω. We also note that when we applied the surface equivalence theorem in Section 7.3.3,

the full fields E and H in the integrands resulted in Esc and Hsc after application of the

theorem. In this section we follow closely the proof of corollary given by Ammari et

al [14, Section 7, 8] for the case where w has been raised to the rank 2 tensor G(r, r′).

We will find that the contribution given by the in G, owing to the Dirac delta term

in the vector wave equation, results precisely in a −Ein term. Thus, on application of

the surface equivalence principle for E, one is left precisely with Esc as was presented

in the previous section.

As with Ammari et al, for simplicity let the position of the inclusion be z = 0 ∈ Ω.

Let Gm2 be the magnetic Green’s function of the second kind [166, pp 68] which

satisfies

∇× 1

ε0
∇×Gm2(r, r′)− ω2µ0Gm2 = −δ(r− r′)I in Ω

1

ε0

(
∇×Gm2(r, r′)

)
× n̂(r) = 0 on ∂Ω,

(7.3.11)

where ∇ is with respect to r. For any z ∈ Ω \ αB we have

(H−Hin)(r) =−
∫

Ω

(
∇× 1

ε0
∇×−ω2µ0

)
Gm2(r, r′)(H−Hin)(r′) dV ′

=

∫
∂Ω

1

ε0

(
(∇×Gm2(r, r′))× n̂

)T
(H−Hin)(r′) dS′

−
∫
∂Ω

Gm2(r, r′)
1

ε0
(∇× ((H−Hin)(r))× n̂) dS′

−
∫

(Ω\αB)∪αB
Gm2(r, r′)

(
∇× 1

ε0
∇×−ω2µ0

)
(H−Hin)(r′) dV ′

+

∫
∂(αB)

Gm2(r, r′)
1

ε0
(
(∇× (H−Hin)(r′)+ × n̂

)
dS′

−
∫
∂(αB)

Gm2(r, r′)
1

ε0
(
(∇× (H−Hin)(r′)+ × n̂

)
dS′.

(7.3.12)

In the above, we have added and removed integrals
∫
∇×∇× (H −Hin) dV ′ using

the divergence theorem.

Due to the common boundary conditions, the second term in (7.3.12) is zero. The

first term is also zero, due to the boundary conditions for Gm2 on ∂Ω. Our choice

of Green’s function does not affect the other integrals compared with Ammari et al,
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so we may follow their manipulations directly. These involve the introduction of two

auxiliary fields, which are left out here for the sake of brevity, and bring us to the

asymptotic formula

(H−Hin)(r′) =α3ω2(µ0 − µ∗)µ
0

µ∗
Gm2(0, r′)TM

(
µ0

µ∗

)
Hin(0)

+ α3

(
1

ε∗
− 1

ε0

)(
∇×Gm2(0, r′)

)T
M

(
ε0

ε∗

)
∇×Hin(0) +O(α4).

(7.3.13)

Now, we wish to use (7.3.13) to find an asymptotic formula for

i

ωε0

(∫
∂Ω

(
(∇×H)(r′)× n̂

)
· ∇ ×G(r, r′) dS′ − ω2µ0ε0

∫
∂Ω

H(r′) ·G(r, r′)× n̂dS′
)
.

Here we first differ from Ammari et al, in that we have∫
∂Ω

(
(∇×Hin)(r′)× n̂

)
· ∇ ×G(r, r′) dS ′

− ω2µ0ε0
∫
∂Ω

Hin(r′) ·G(r, r′)× n̂ dS ′ = Ein,

(7.3.14)

by the surface equivalence theorem (3.7.2), where Ammari et al. have a right hand

side of 0. Using (7.3.13) and (7.3.14), as well as the shared boundary condition for H

and Hin, we have that∫
∂Ω

(
(∇×H)(r′)× n̂(r′)

)
· ∇′ ×G(r, r′) dS′

−ω2µ0ε0
∫
∂Ω

H(r′) ·G(r, r′)× n̂(r′) dS′ −Ein

=

∫
∂Ω

(
∇′ ×H(r′)−∇′ ×Hin(r′)

)
× n̂(r′) · ∇′ ×G(r, r′) dS′

− ω2µ0ε0
∫
∂Ω

(
H(r′)−Hin(r′)

)
·G(r, r′)× n̂(r′) dS′

=− α3ω2µ0ε0(µ0 − µ∗)µ
0

µ1

∫
∂Ω

Gm2(0, r′)
(

G(r, r′)× n̂(r′)
)

dS′ ·M
(
µ0

µ1

)
Hin(0)

− α3ω2µ0

(
ε0

ε∗
− 1

)∫
∂Ω

(
∇′ ×Gm2(0, r′)

)(
G(r, r′)× n̂(r′)

)
dS′ ·M

(
ε0

ε∗

)
∇×Hin(0)

+O(α4).

(7.3.15)

To rewrite (7.3.15) in the form of (7.3.6), we first note that for r 6= r′,∫
∂Ω

Gm2(0, r)
(

G(r, r′)× n̂(r′)
)

dS ′ = − 1

ω2µ0
∇×G(r,0) (7.3.16)

and ∫
∂Ω

(
∇′ ×Gm2(0, r)

)(
G(r, r′)× n̂(r′)

)
dS ′ = −ε0G(r,0). (7.3.17)
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The first of these follows from application the divergence theorem,∫
∂Ω

Gm2(z, r′)
(

G(r, r′)× n̂(r′)
)

dS ′

=−
∫
∂Ω

(
Gm2(r′, z)× n̂(r′)

)T
G(r, r′) dS ′

=

∫
Ω

(
∇′ ×Gm2(r′, z)

)T
G(r, r′) dV ′ −

∫
Ω

Gm2(r′, z)T∇′ ×G(r, r′) dV ′

=
1

ω2µ0ε0

∫
Ω

(
∇′ ×Gm2(r′, z)

)T
∇′ ×∇′ ×G(r, r′) dV ′

−
∫

Ω

Gm2(r′, z)T∇′ ×G(r, r′) dV ′

=
1

ω2µ0ε0

∫
Ω

(
∇′ ×∇′ ×Gm2(r′, z)

)T
∇′ ×G(r, r′) dV ′

−
∫

Ω

Gm2(r′, z)T∇′ ×G(r, r′) dV ′

=− 1

ω2µ0
∇×G(r, z).

(7.3.18)

In the above, we have used that both Gm2 and G satisfy vector wave equations and

that r 6= z /∈ ∂Ω. Setting z = 0, (7.3.16) follows directly. (7.3.17) follows simply by

taking the curl of (7.3.16) and substituting for ∇×∇×G.

Inserting formulas (7.3.16) and (7.3.17) into (7.3.15), one obtains

i

ωε0

(∫
∂Ω

((∇×H)(r′)× n̂(r′)) · ∇′ ×G(r, r′) dS ′

−ω2µ0ε0
∫
∂Ω

H(r′) ·G(r, r′)× n̂(r′) dS ′ − Ein

)

=α3iωµ0

(
µ0

µ∗
− 1

)
∇×G(r,0)M

(
µ0

µ1

)
Hin(0)

+ α3iωµ0

(
ε0

ε1
− 1

)
G(r,0)M

(
ε0

ε∗

)
∇×Hin(0) +O(α4).

(7.3.19)

Application of the surface equivalence theorem for E(r) and multiplication through by

−iωε0 yields the left hand side of Esc = E − Ein, and substitution for ∇ ×Hin from

Maxwell’s equations yields the required result.

7.3.5 Expressing the asymptotic expansion as a linear opera-

tor on M

It is useful and somewhat informative to write the approximation of a GPR dataset

using asymptotic formula (7.3.10) as a linear operator D on the tensor M . We consider
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the case of a single inclusion at z with a contrast only in ε (i.e. µ∗ = µ0), but the

result is easily extended to the more general case. M has 6 different values which we

store in the vector m = [M11,M12,M13,M22,M23,M33]T = [m1, . . . ,m6]T . With this

notation, we first write the product MEin as

MEin =


E0x E0y E0z 0 0 0

0 E0x 0 E0y E0z 0

0 0 E0x 0 E0y E0z

m (7.3.20)

where Ein = [E0x, E0y, E0z]
T . In this form, the expression (7.3.10) can be written as

Esc(r, ω) =α3ω2ε0µ0

(
ε0

ε∗
− 1

) G11E0x
G11E0y

+G12E0x

G11E0z
+G13E0x

G12Ey
G12E0z

+G13E0y
G13E0z

G21E0x
G21E0y

+G22E0x

G21E0z
+G23E0x

G22E0y
G22E0z

+G23E0y
G23E0z

G31E0x
G31E0y

+G32E0x

G31E0z
+G33E0x

G32E0y
G32E0z

+G33E0y
G33E0z

m

=Aje(r, z, ω)m,

(7.3.21)

where Gij are the elements of G, and we have absorbed the constants into Aje(r, z, ω).

We have used the superscript j to denote that Aje is associated with the jth source

field. Similarly, the scattered magnetic field can be written as

Hsc(r, ω) = Ajm(r, z, ω)m, (7.3.22)

where Ajm differs to Aje by a constant as well as use of the magnetic Greens function

Gm = ∇ × G rather than G. The fields external to Ω are found by integrals of the

tangential components of Esc and Hsc on ∂Ω, which are given by

(n̂× Esc)(r) =n̂× (Ajem) = NAje(r, z, ω)m, (7.3.23a)

(n̂×Hsc)(r) =n̂× (Ajmm) = NAjm(r, z, ω)m, (7.3.23b)

for r ∈ ∂Ω, where N is the skew-symmetric matrix equivalent to n̂× at surface

location r, given by

N =


0 −n3 n2

n3 0 −n1

−n2 n1 0

 .
Carrying out the surface equivalence integration over ∂Ω numerically involves the

summation of these surface tangential components at integration points ri as

Esc(r) =
∑
i

wi

[
−∇×G0(r, ri)N

iAje(ri, z, ω) + ik0Z0G(r, ri)N
iAjm(ri, z)

]
m

=Aj(r, z)m, r ∈ R3 \ Ω

(7.3.24)
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where N i represents the operation n̂× at location ri, and the matrix Aj is the sum

of integration weights wi times the matrices within the square brackets. Accordingly,

the data element djk, the kth recorded voltage from the jth source field, is given by

djk = pk · Esc(rk) = pTkEsc = pTAj(rk, z, ω)m, (7.3.25)

and so the part of the data dj due to the jth source field may be written

dj =


pT1A

j(rj1, z)
...

pTkA
j(rjK , z)

m = Djm. (7.3.26)

The total data set can then be written as the matrix operation

d =


d1

...

dJ

 =


D1

...

DJ

m = Dm. (7.3.27)

This step by step formulation of D makes clear what is happening in equations

(7.3.10). First, the product MEin mixes the components of Ein, and acts as a dipole

source, with the field propagated to ri by the Greens function. Equivalently, the

operation Ajem mixes the components of m, but only those which have an affect on

the polarization of Ein. For example, with an x-polarised incident field, Aje will only

act on M11, M12 and M13. As Ein and Hin are perpendicular to one another, if they

are propagating in the z-direction then the product Ajmm will involve only M12, M22

and M23. In both cases, the electric or magnetic Green’s functions will further scale

the contributions of the terms in each of the three components of MEin, being null

in the direction of propagation. Finally, the operators Aj account for the change in

polarization and direction of propagation at the ground surface, and the data terms

are a linear combination of the elements of Ajm (given by the polarization of receivers

p). The polarization of the incident field at z determines which components of M

have an affect on the scattered wave, and the position and polarization of receiving

antennas affects what linear combination of these elements Mij appear in the data.
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7.4 Understanding the polarization tensor as sen-

sitivity

7.4.1 Comparison to the Taylor series

When we carry out non-linear least-squares imaging such as FWI, one often refers to

the Fréchet derivative, or Jacobian matrix J , of the objective functional J ,

∇δmJ (m) = J(m)δm, (7.4.1)

as the sensitivity. The idea that the Jacobian matrix is the the sensitivity comes

naturally: Jij tells us the rate of change of a simulated datum with respect to a single

parameter. The greater Jij, the more sensitive the datum is to the parameter. This

idea is only valid when the first order approximation,

J (m+ δm) = J (m) + J(m)δm+O(|δm|2) (7.4.2)

holds, and so δm must be small in the L∞ norm. That is, it is valid for any shape

perturbation δm, but the supremum of δm is small. Note that (7.4.2) is simply the

first-order Taylor series approximation, or the Born approximation, and so is a sin-

gle scattering approximation. Higher order terms account for higher order multiple

scattering, and with the complete series (which is then exact) we can account for the

saturation effect (that if an object is sufficiently conductive, say, making it more con-

ductive will have little effect). If we are considering a large (L∞) change in parameter,

the Jacobian matrix may offer far less insight into how sensitive our data is to such

an object.

Asymptotic expansions using the polarisation tensor give us another natural view of

sensitivity, since they give us an expression of the change in field due to the inclusion of

a small object, or a collection of small objects sufficiently separated, in a homogeneous

domain. These can be of any contrast in permittivity, conductivity and permeability,

and any shape. I.e. they may have a large L∞ norm, but the small volume results

in a small L2 norm. Unlike Jij this is not a rate of change (though trivially we can

differentiate it), but it does include the non-linear saturation effect which the Taylor

series would require the entire series to accurately represent. If we are interested in

the sensitivity of our measurements to individual high contrast objects then it may
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be more applicable. Also in contrast, the approximation (7.4.2) is valid at any m for

which J is Fréchet differentiable, unlike the polarization tensor approximation which

is valid only for a homogeneous background.

Recall also that by the adjoint-state method (2.5.20), columns of the Jacobian (in

discretised form) are given by

J·i = A−1

(
− ∂A

∂mi

u

)
,

where A is the finite difference or finite element system matrix and u is the numer-

ical solution. The operator
∂A

∂mi

plays a similar role here to polarisation tensor M :

reflecting the incident wave which is then propagated to receivers. The two approxi-

mations then are indeed of a similar form, though one of the niceties of the asymptotic

expansion in this regard is that M is invariant to the position of the parameter.

We then have two ideas of sensitivity. The first, and more traditional, uses the

first order Taylor series expansion, and is valid for any parameterisation (or any size

and shape object) but only for a small (supremum) change in material parameters. It

is also applicable for an inhomogeneous domain. The second, using the polarisation

tensors, is valid only when we have small objects, but for any material contrast. Higher

order terms add information about how the object differs from an ellipsoid, but can

never account for multiple scattering.

7.4.2 Resolution in 3D FWI

To analyse sensitivity in full-wave inversion to experimental setup (e.g. frequency,

source-receiver offset), Sirgue and Pratt [159] (see also [181]) use the scalar Green’s

functions for the Helmholtz equation to approximate the wave field terms in the gra-

dient. Consider a homogeneous background model with wavespeed c0, an incident

monochromatic plane wave of angular frequency ω in direction ŝ, and a scattered

plane wave in direction r̂ (in the far-field approximation). Ignoring amplitude effects,

the Green’s functions are

G0(x, s) = exp(ik0ŝ · x),

G0(x, r) = exp(ik0r̂ · x),
(7.4.3)

where s and r are the source location and receiver locations, respectively, and k0 =

ω/c0. Using these expressions for the incident and scattered fields in the gradient of
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the misfit function (2.5.22) we have (in the continuous setting) [159]

∇J (x) =−
∑
ω

∑
s

∑
r

ω2<{exp(−ik0ŝ · x) exp(−ik0r̂ · x)δd(r, s)}

=−
∑
ω

∑
s

∑
r

ω2<{exp(−ik0(ŝ + r̂) · x)δd(r, s)} .
(7.4.4)

They remark that (7.4.4) has the form of a truncated Fourier series, in which the

coefficients are the data residuals and integration variable is the scattering wavenumber

vector k = k0(ŝ + r̂). This can be expressed as

k =
2f

c0

cos

(
θ

2

)
n̂, (7.4.5)

where n̂ is a unit vector in direction ŝ + r̂, and θ the angle between ŝ and r̂. From

(7.4.5) we see that one frequency and one offset (aperture) in the data space map to

one wavenumber in the model space, and so give redundant control of wavenumber

coverage. We also see that low frequency and wide offsets help resolve large length-

scale features of the medium, and that highest -frequency small-offset (θ = 0) leads to

a maximum resolution of half a wavelength. Finally, larger offsets will be helpful for re-

solving small-scale horizontal features. This analysis relies on the Born approximation,

which neglects features of vector wave scattering in 3D such as polarization.

To extend the above analysis to electromagnetic wave scattering in 3D, we consider

the case where the forward problem can be written in the form

Esc(r) = ω2G(r, z)MB(m)Ein(z) +O(α4) (7.4.6)

as α → 0. This is the equivalent expression to (7.3.10) with the additional constants

absorbed into M , which is valid either for an infinite domain, or a finite domain Ω with

measurement positions r within or on the boundary ∂Ω. Without loss of generality,

we consider a single scattering object B at z.

The 2-norm data misfit cost function is given by

J (m) = h
(
Esc(m),m

)
=
∑
ω

∑
s

∑
r

1

2
‖Rs,rE

sc(ω,m)− ds,r(ω)‖2
2, (7.4.7)

where Rs,r : E 7→ d is a restriction matrix onto receiver r for source s (in the relevant

polarization). We use the adjoint state method to calculate the gradient of (7.4.7)

with respect to m, which requires the augmented functional (Lagrangian) associated
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with the minimisation problem

L(Ẽ, λ̃,m) =<

{
1

2

∑
ω

∑
s

∑
r

‖Rs,rẼ(ω)− ds,r(ω)‖2
2−

∑
ω

∑
s

〈
λ̃(ω),

∂F
∂m

〉}

=<

{
1

2

∑
ω

∑
s

∑
r

‖Rs,rẼ(ω)− ds,r(ω)‖2
2−

∑
ω

∑
s

〈
λ̃(ω),G(r, z)

MB

∂m
Ein(z)

〉}
,

(7.4.8)

where F is the forward operator

F = ω2G(r, z)MB(m)Ein(z)− Esc(r) = 0. (7.4.9)

The adjoint state is defined by ∂L(Esc, λ,m)/∂Ẽ = 0, which gives

λs(ω) =
∑
r

R∗s,r(Rs,rE
sc
s (ω)− ds,r(ω). (7.4.10)

The gradient is then given by

∂J
∂m

=
h(Esc,m)

∂m
−
〈
λ,
∂F(Esc,m)

∂m
)

〉
, (7.4.11)

and since ∂h/∂m = 0 (h depends on m only through Esc)

∂J
∂m

= −<

{∑
ω

∑
s

〈
R∗s,rδds,r(ω), ω2G

∂M

∂m
Ein
s

〉}
. (7.4.12)

Assuming a point source Ein
s (z) = G(s, z)ps, and Rs,r takes polarization pr at r, the

gradient is given by

∇J = −
∑
ω

∑
s

∑
r

ω2<
{

pr ·G
∗
(r, z)

∂M

∂m
G
∗
(z, s)psδds,r(ω)

}
. (7.4.13)

The similarity to (7.4.4) is clear, though the result is valid in the near field and for

vector-valued waves.

The term ∂M /∂m accounts for the shape of the scatterer B (as well as the sat-

uration effect). If we are using a discretisation of the subsurface with elements of

approximately of equal length in each coordinate direction this term could be ne-

glected (being a scale multiple of the identity). In some applications other shaped



CHAPTER 7. POLARIZATION TENSORS 175

discretisations are used though, for example if we have a layer-like structure one might

use flatter elements. In this case, we have

∂M

∂m
= c


1 0 0

0 1 0

0 0 0

 , c > 0, (7.4.14)

and so the ẑ component of G(z, s)ps would largely give little contribution to the

gradient. Moreover, we can see that an acquisition array on the ground surface we

would gain most from having ps = pr.

Using the far-field approximation and neglecting amplitude as was done in (7.4.4),

we have

∇J =−
∑
ω

∑
s

∑
r

ω2<
{

p′r
T

exp(−ik0r̂ · z)
∂M

∂m
exp(−ik0ŝ · z)p′sδds,r(ω)

}
,

=−
∑
ω

∑
s

∑
r

ω2<
{

p′r
T ∂M

∂m
p′s exp

(
−ik0(ŝ + r̂) · z

)
δds,r(ω)

}
(7.4.15)

where p′s ⊥ ŝ and p′r ⊥ r̂ are the components of source and receiver polarizations

orthogonal to ŝ and r̂, respectively.

We can draw similar conclusions from (7.4.15) as were made by Sirgue and Pratt

[159] and Virieux [181] with regards to equation (7.4.4). For vector valued waves, the

(complex) scattering wavenumber vector (7.4.5) can be expressed as

k =
2f

c0

cos

(
θ

2

)
n̂ + i log

(
p′r

T ∂M

∂m
p′s

)
z

z · z

=
2f

c0

cos

(
θ

2

)
n̂ + i log

((
pr − cosϕrr̂

)T ∂M
∂m

(
ps − cosϕsŝ

)) z

z · z
,

(7.4.16)

where ϕs is the angle between source polarization ps and source wave direction ŝ, ϕr

the angle between receiver polarization pr and scattered wave direction r̂, and we have

assumed that |pr| = |ps| = 1. In the above, we have used

a exp
(
−ik · z

)
= exp

(
log(a)− ik · z

)
= exp

{
−i
(
k + i log(a)

z

z · z

)
· z
}
.

Without loss of generality, we assume p′r
T (∂M /∂m)p′s ≥ 0. Equivalently, we assume

pr
Tps ≥ 0, since M (and it’s derivative) is positive definite, and p′r and p′s are

projections of pr and ps. Negative values can be absorbed into the data δds,r by

redefining polarizations in the negative direction (and having a negative source term),
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and it is usual to refer to polarizations consistently in (positive) x̂, ŷ and ẑ directions.

Since we have neglected amplitude affects, we also assume p′r
T (∂M /∂m)p′s ≤ 1. These

assumptions makes it clear that the complex component of k is a lossy term which

varies with the two angles ϕs and ϕr. We can consider the resolution at z to be

contributed to by only the measurements which have

(
pr − cosϕrr̂

)T ∂M
∂m

(
ps − cosϕsŝ

)
≥ a > 0, (7.4.17)

where a is some threshold determined by measurement accuracy.

For linear waves, (7.4.5) shows that frequency and aperture have redundant control

of wavenumber coverage. Considering the complex wavenumber (7.4.16) for vector

valued waves, this coverage is no longer completely redundant since k lives in the

complex space k ∈ C3,={k} ≤ 0, which has twice the dimension as that of the scalar

valued wave.

The terms multiplying δd in (7.4.4) and (7.4.15) are test functions which map

data residuals to a perturbation in the model. This is similar to the SVD analysis

carried out in Chapter 5, in which the singular vectors (above the noise level) are

the test functions available to map the image space. In both cases, we need a set

of measurements corresponding to test functions which well represent (resolve) the

perturbations δm(x) we wish to be able to image.

Figure 7.1 shows the test functions for co-located source and receiver at the origin,

at 1 GHz in a subsurface with εr = 4. Figures 7.1(a), 7.1(b), 7.1(c) and 7.1(d) are

for the scalar wave case, x̂x̂, ŷŷ and x̂ŷ polarized source and receiver, respectively.

Figure 7.2 shows the same but for a source and receiver offset 50 cm in the x̂ direction.

We see that the same-polarized measurements are of the form of concentric ellipsoids,

with amplitude zero in the direction of polarization and 1 in the plane tangential to

polarization. The cross-polar test functions similarly take nulls in the directions of

both source and receiver polarization, and have a maximal amplitude of 0.5. The

concentric ellipsoids for the cross-polar test functions however change phase over each

plane of nulls: they are in the form of a quadrupole, whereas the single polarized test

functions are in the form of a dipole.

Clearly, polarization plays a role in how well we are able to resolve targets. With

a single polarization p for sources and receivers, we will see similar nulls in each test
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(a) Scalar wave test function (b) x̂ polarized source and receiver

(c) ŷ polarized source and receiver (d) x̂ and ŷ polarized source receiver

Figure 7.1: Test functions in the imaging space for co-located source and receiver at
the origin, at 1 GHz in a background of permittivity εr = 4

function and may be unable to resolve targets oriented in the plane tangential to

p. Measuring both sets of polarizations mitigates this, and may allow targets to be

pinpointed more accurately. Cross polarized measurements add an entirely additional

class of test functions (quadrupoles), and so we may expect a far greater ability to

resolve targets where all 3 types are used. This both gives some theoretical basis

to the common experimental result that cross polar measurements give ‘much more’

information (for some informal definition of more), for example [103,142,201]. It also

goes some way to explaining why sub-wavelength resolution can be obtained with

cross-polar measurements in the (more general) inverse problem of electromagnetic

wave scattering, for example Godavarthi et al [61].
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(a) Scalar wave test function (b) x̂ polarized source and receiver

(c) ŷ polarized source and receiver (d) x̂ and ŷ polarized source receiver

Figure 7.2: Test functions in the imaging space for a 50 cm source-receiver offset in
the x̂ direction, at 1 GHz in a background of permittivity εr = 4

7.5 Maximising Sentitivity to a Mine-like Object

7.5.1 Introduction

In Chapter 5, we presented an argument for the use of hand-held (i.e. small-scale)

multi-static arrays for landmine detection – both as a necessity for full-wave inversion,

but also to improve information even for a linear imaging method. This was based on

an SVD analysis of the Jacobian matrix, and the method could be extended to optimise

the offsets of GPR antennas for the response of a target(s) of interest. Calculating

the Jacobian matrix is computationally expensive, and an optimisation scheme would

necessarily involve calculation of many Jacobians – it would therefore be prohibitive

to optimise an array in this way.

Since we have an understanding of the polarization tensor being related to sensi-

tivity in the data to a small object, we can use it instead of the Jacobian in numerical

experiments to optimise GPR equipment for suitability for landmine detection. The

computational cost is far less computationally expensive, and produces results which
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are applicable in a similar single-scattering regime.

In this section, we consider optimising antenna position of a linear array to deter-

mine the optimum offsets (within some sensible bounds) to maximise the response of

a landmine. These are the same form of small-scale multi-static array as we advocated

were necessary for inversion (and distinguishing objects) in 2D. With these results, we

can consider critically if the optimal found antenna layout for a 2D array is sufficient.

7.5.2 Optimising arrays to maximise landmine distinguisha-

bility

We are concerned that a GPR antenna array should always be able to detect a land-

mine, down to the required depth in the soil, regardless of its orientation. We also

require an array to gain as much information as possible about the object for deminers

to know that they are dealing with a landmine.

As an object rotates, so too does its polarization tensor (7.2.13). By requiring that

a GPR array should always be able to detect a mine-like object at a given depth z,

we may wish to maximise the semi-norm objective function

J = min
φi
‖dφi‖∞, (7.5.1)

where φi = [ϕi, θi] is polar and azimuthal rotation from flat of a mine-like object (and

its polarization tensor) in spherical polar coordinates, dφi is the approximation of the

data recorded for the isolated mine-like object in a homogeneous ground, oriented at

[ϕi, θi]. We have chosen the l∞ norm as if one data-point is sufficiently strong we can

say that the object has been detected, regardless of whether other data-points are

much smaller. The minimum value over all angles is then taken as we are concerned

with the worst case scenario – landmines continue to function and present a threat at

all orientations, and still need to be removed.

We wish to perform full-wave inversion to resolve the subsurface in the l2 norm.

Requiring that an array gives as much information about a mine-like object as possible

then, we may wish to maximise the semi-norm objective function

J = min
φi
‖dφi‖2

2. (7.5.2)

Here, we are maximising the worst case (over orientation) 2-norm of the dataset, which

we assume results in more information suitable for 2-norm inversion of the dataset.
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Both semi-norms (7.5.1) and (7.5.2) are non-smooth at points where the orientation

φi for the worst data set would change. They also may not be convex, and so all that

can be concluded when optimising with such an objective function is that a locally

optimal case has been found. This is still useful when considering the design of a

small-scale GPR array, which will necessarily have to fit within given (possibly very

restrictive) physical bounds.

7.5.3 Numerical experiment

We consider here optimisation of similar arrays as those we considered in Chapter 5:

a multi-static array with antennas arranged in a line, with the 1 source to the side of 3

receivers. The optimisation was bounded by a minimum antenna offset of 2 cm, and a

maximum source-receiver offset of 30 cm, and carried out to maximise the response of

a mine-like target. This was taken to be the polarization tensor of an 8× 4 cm oblate

spheroid with εr = 3.25− 0.018i at 2GHz, which is a similar dimension to a Type-72

landmine (a TNT filled mine) and approximately the permittivity and conductivity of

TNT [51].

The optimisation was carried out using Matlab’s interior point method in fmincon

function, which approximates gradients via finite differences. Table 7.1 shows the op-

timised array positions, the objective function values at the start initial and optimised

configuration, and the first order optimality value. To ensure the results are consis-

tent, the optimisation was restarted both from a different configuration as well as the

optimised result.

x0 xs fp(x0) fp(xs) O(1) Optimality

p = 2
[5.00, 10.0, 15.0] [2.11, 4.48, 7.04] 0.110 0.150 9.89× 10−2

[10.0, 20.0, 24.0] [2.66, 4.86, 7.67] 0.066 0.148 3.45× 10−2

[2.11, 4.48, 7.04] [2.04, 4.26, 7.05] 0.150 0.150 1.12× 10−3

p =∞
[5.00, 10.0, 15.0] [3.28, 13.7, 23.9] 0.0146 0.0174 6.56× 10−4

[10.0, 20.0, 24.0] [2.70, 15.0, 25.4] 0.0096 0.0178 1.04× 10−1

[3.28, 13.7, 23.9] [3.11, 13.7, 24.4] 0.0174 0.0174 1.12× 10−3

Table 7.1: Array optimisation results to maximise distinguishability of a mine-like
object with a linear array. x0 is the starting configuration and xs the optimised result.
fp is the p = 2 or ∞ semi-norm (7.5.1),(7.5.2).
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Throughout the optimisation procedure (at all trial configurations), the least dis-

tinguishable orientation was always [ϕ, π/2], i.e. the ‘mine’ oriented vertically, since

this presents the smallest cross-section facing the antennas. Since this worst orienta-

tion never changed, the cost function was smooth within the range of values tested.

The results also appear fairly robust to starting configurations, though there is some

change in solution – likely due to the gradient being small in a wide region around the

solution.

The p = 2 optimisation moves the receivers as close to x = 0 as possible, since this

is where the maximum response of the worst-oriented target occurs. With the worst

orientation being the same for all possible antenna arrangements, optimising with

f2 does not yield any illuminating results. Optimising for f∞ though separates the

receivers, presumably to each detect different peaks in response. I.e. the first receiver

moves close to x = 0 which is where the maximum response for the most difficult to

detect orientation is found, allowing the other two receivers to improve the response of

the next worse orientations. This is aligned with the result of Sirgue and Pratt [159]

that the wavenumber coverage in the domain is related to the source-receiver offset,

with a larger maximal offset giving better coverage, as discussed in Sections 4.3.7 and

7.4.2.

This is a simple test example in which the results are not particularly illuminating

with regards to how to arrange antennas for landmine detection. The principle could

be useful though with more realistic problems or more complex design constraints,

since it is relatively cheap to calculate the cost function as it does not require simulat-

ing more data. More importantly, we find only a small difference in distinguishability

between the starting and optimal found array layouts: the limiting factor is not an-

tenna position, but a lack of 2D array and cross-polar measurements. The mine-like

object was always least distinguishable when rotated closer to π/2 about x̂, at which

point the single-polarised antennas will receive the smallest reflection no matter where

they are placed along the x̂ axis.
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7.5.4 An SVD analysis

We can conduct an SVD analysis of a linear array using the polarisation tensor expan-

sion, in a similar manner to the that in Chapter 5. To do so, we form the linear opera-

tors (7.3.27) for objects at a set of locations x = −10,−5, 0, 5, 10,, y = −10,−5, 0, 5, 10

and z = 2.5, 5, 7.5, 10 cm, concatenate these matrices and calculate a singular value

decomposition of the map from tensors to data,

D
[
D1 D2 · · · Dn

]
= UΣV T (7.5.3)

where Di is the linear operator for a polarization tensor at the ith location. The linear

array considered had ŷ polarised receivers at x = 10, 20 and y = 0 cm, 24 frequencies

between 1 and 2 GHz, and 100 source locations over [−10, 10] × [−10, 10] cm, 10cm

above the ground surface. The resulting linear operator D is an overdetermined sys-

tem, with 4800 data points mapped to from 600 or 1200 tensor elements, for mapping

permittivity alone or both permittivity and conductivity, respectively.

The singular values of D (for both permittivity and conductivity) are shown in

Figure 7.3. The singular values decay as σi ∝ a−γi, for some a, γ > 0, fitting the rapid

decay of singular values generally seen inverse problems as discussed in Section 5.3.

The rate of decay is greater than in the 2D Helmholtz case analysed in Chapter 5

(exponential vs polynomial), which we suppose is due to the vector valued nature of

the problem.

We see a clear drop in singular value around i = 1000, corresponding to an effective

drop in rank, and so have a definite nullspace. If we assume an accuracy threshold

of 10−3σ1, corresponding three significant figures measurement accuracy, then we find

the singular vectors in the effective nullspace involve the tensor elements we expect:

largely M11 and M13, as shown in Figure 7.4. This is because neither the source nor

the measurements are polarised in x̂ or ẑ, so these tensor components only come in to

play when refraction at the ground surface changes polarization to have some x̂ or ẑ

component, and then back to ŷ after reflection from a scatterer.

The nullspace not only gives us information about what a given acquisition system

would not be able to detect, but also what it would be unable to tell apart – which is

given by tensors for with their differences in the nullspace. For the acquisition system
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Figure 7.3: Singular values of the map from polarization tensor elements to data for
a hand-held linear array.
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Figure 7.4: Occurrences of tensor elements in nullspace vectors. m1 = M11, m2 = M12,
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analysed, we find the difference between the pairs of tensors and locations

M (1)(B1) =


2.0000 0.1744 −0.6700

0.1744 0.0284 0.0386

−0.6700 0.0386 0.2932

 at r1 = [0, 0, 5]

M (2)(B2) =


2.0000 0.0823 −0.8818

0.0823 −0.0317 −0.0906

−0.8818 −0.0906 2.0418

 at r2 = [0, 2.5, 5]

(7.5.4)

lies in the nullspace, where M (1) is corresponds to a spheroidal inclusion B1 at r1 =

[0, 0, 5] cm and M (2) corresponds to a spheroidal inclusion B2 at r2 = [0, 2.5, 5] cm.

The acquisition system would not be able to distinguish between an object at [0, 0, 5]

with tensor M (1) and an object at [0, 2.5, 5] with tensor M (2), or any two systems of

scatterers which only differ by any scalar multiple of M (1) −M (2).

One can easily understand from this example how such a linear acquisition system

may be unable to accurately locate (and resolve) an object which is greater in x̂ and

ẑ dimension than in ŷ, for any rotation about the ẑ axis in the subsurface. This is

clear since the polarization tensors M (1) and M (2) have M11, M13 and M33 as the

greatest magnitude components. This coincides with remarks by D.J. Daniels that a

hand-held system may struggle to accurately locate mine-like targets at an angle, for

example D.J. Daniels [44].

From this section, we ought to conclude that while a multi-static linear array is

necessary for 2D FWI and target distinguishability, something more complex again is

needed for the 3D FWI problem. We need at least some form of 2D array to be able

to accurately locate and resolve targets of arbitrary orientation in 3D, and to improve

resolution we ought also to have cross-polar measurements. Otherwise, we find a large

nullspace containing objects we wish to resolve.

7.6 Summary and conclusions

In this chapter, we have shown that an asymptotic expansion for the scattering of elec-

tromagnetic waves by a small object can be re-written, by use of a surface equivalence

theorem, in a way which may be applicable to ground-penetrating radar. While we

have noted that such expansions have been used for efficient target location schemes,
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the lack of multiple scattering means that for our application (in which we may have a

very inhomogeneous background) it is more useful to use the approximation to better

understand sensitivity. This gave us a novel viewpoint of sensitivity which is compa-

rable to the more traditional understanding involving the Fréchet derivative.

The two ideas of sensitivity are applicable under different criteria, one with a small

perturbation in parameter contrast (e.g. permittivity) but of any dimension and shape,

and the other for any sized perturbation in parameter but of small dimension. Both

are applicable when considering a small change in parameter of small dimension, and

so the two can coincide. This idea of sensitivity was used to extend the resolution

analysis in FWI of scalar valued waves based on the Born approximation, so that the

polarization of vector-valued waves could be included in the inverse problem with full

the Maxwell equations.

Finally, we have used the polarization tensor expansion to analyse the performance

of a linear array of single polarised antennas – the same form of system as shown to

be necessary for 2D inversion in Chapter 5. We have seen that even an optimal linear

array may behave poorly if we wish to accurately locate and resolve a mine-like object

which is not sitting flat. For the full 3D inversion problem, it will not be sufficient to

use a single polarised linear array.



Chapter 8

Full-Wave Inversion in 3D

8.1 Introduction

There is now a substantial amount of research on full-wave inversion of GPR data in

2D (see Chapter 2 for an overview), and we have also had positive results with the 2D

inversions carried out in Chapter 4. Unfortunately, 2D imaging assumes a particularly

inaccurate property of the subsurface: that it is invariant in one coordinate axis. This

may be acceptable for certain applications, such as the detection of large layers or

objects such as pipes running in the direction assumed to be invariant. For objects

which vary in 3 dimensions, the 2D assumption necessarily misinterprets their shapes,

and misplaces out-of-plane reflections. Unfortunately, landmines are not 2D objects,

so we must attempt to resolve in 3D. Particularly, what we wish to gain from FWI in

3D is to safely rule out some detected metal targets as not being landmines.

The computational cost of full 3D FWI of GPR data has previously been prohibitive

for any significant results, primarily due to the cost of simulating data. For many

applications of GPR a large domain is required for useful results, since often a picture

of the subsurface as a whole is desired. Depending on the scale of feature one wishes

to resolve for, a domain may be 10s or 100s of wavelengths long in each of the 3

co-ordinate directions. Numerical simulation of electromagnetic waves requires many

grid points per wavelength, and so the resulting linear system will involve hundreds

of thousands, if not millions, of unknowns. Such a system may either be unsolvable

within given memory limitations, or may take a prohibitively large amount of time

(especially when we consider we will need to simulate data many 1000s of times to

186
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solve the FWI problem).

Solving the inverse problem itself is also more complex, since 3D scattering of

transverse waves is inherently more complex than the scattering of 2D longitudinal

waves. We also have many more subsurface parameters in our model to fit to our

data, for which simulated data varies non-linearly with each. Reconstruction in 3D also

requires a third independent dimension of measurements (a second spacial dimension ŷ

on the ground surface, to go with the first x̂ and time/frequency used in 2D imaging).

Not only does this make the dataset larger (increasing storage cost), but there is more

data to simulate, increasing the computational cost further. Solving the 3D inverse

problem then has a much greater storage cost, is more complex due to the larger

number of parameters to be fitted which all cause a non-linear variation, and involves

a greater number of solutions to the forward problem which is also far more costly to

compute than a 2D simulation. For the landmine detection problem however we only

need to invert in a small area around a detected target, rather than the entire region

currently being explored. In other words, we do not need to use FWI to generate

an image of the entire lane being explored in order to detect landmines, only as a

verification for targets already detected. We can then invert on a domain just small

enough that 3D FWI becomes plausible.

In this chapter, we explore the use of 3D FWI to gain quantitative information

about detected targets, to help reduce the rate of false positives in landmine detec-

tion. We present the first full 3D FWI results for simulated GPR data, and use a

combined FE-BI forward solver which is novel to GPR FWI. We begin by covering

some implementation aspects which are different to the 2D reconstruction problem

using a finite-difference grid, before presenting initial numerical results. We then in-

troduce the concept of nuisance parameters, one familiar to inverse problems literature

in general but not yet applied to the GPR problem. Based on this concept, we present

a new algorithm which separates subsurface parameters of interest (those around a

detected target) to those which are not (those away from the target). The solution to

the inverse problem varies non-linearly with the nuisance parameters in this case, so

they cannot be defined implicitly as functions of the target parameters in a straight-

forward way. We do though treat the two sets of parameters separately in a novel ‘line

search’ algorithm, enabling us to fit well the target parameters to the data, but only
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loosely fit those away from the target for which we have worse data coverage.

8.2 Implementation aspects

8.2.1 Regularisation

In 2D the construction of regularisation operators was straightforward on the evenly

spaced finite-difference grid, but we must reconsider their construction on an unstruc-

tured tetrahedral mesh in 3D. Since the volumes of the elements can vary, we modify

Tikhonov regularisation o

R(m) = ‖V (m−mprior)‖2
2 := ‖m−mprior‖2

V,2, (8.2.1)

where V is a diagonal matrix of the volumes of each tetrahedron. This way, a small

element does not have a disproportionate affect on the regularisation cost.

The discrete Laplace operator L defined on tetrahedral volumes is given by

Lij =


si
s̃

if i = j

−sij
s̃

if 4j adjacent to 4i

0 otherwise

(8.2.2)

where sij is the surface area of the face between elements 4i and 4j, si is the total

surface area of element 4i, and s̃ the mean surface area of all the triangular faces.

Note that if all the elements are equilateral this reduces to the usual finite difference

operator (for tetrahedral meshes), which has 4 on the diagonal and −1 where 4i is

adjacent to 4j. The definition (8.2.2) in terms of surface areas also holds for arbitrary

shaped polygonal meshes (e.g. cubic).

Similarly, the discrete grad/difference operator (for Total Variation) is given by

Gij =


+
si
s̃

if 4j contains face i and is before the other element containing i

−si
s̃

if 4j contains face i and is after the other element containing i

0 otherwise

,

(8.2.3)

where si is the area if face i.
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8.2.2 Gradient calculation

The calculation of the gradient via the adjoint-state method largely follows that of the

finite-difference approximation of the Helmholtz equation, but differs slightly since

our measurements are no longer taken to be the values of the wave field at the grid

points on the surface. Using a coupled FE-BI forward model, our measurements are

calculated by a linear combination of the Ms and Js coefficients. The single-frequency

single-source measurements dsim ∈ Cd are given by

dsim = F [m] = RS(m)−1φ, (8.2.4)

where F is the forward operator, m ∈ Rp is the discretisation of permittivity, con-

ductivity and permeability (if applicable), S = [AB;CD] ∈ Cn×n is the FE-BI system

matrix and φ the exterior source term. The sparse matrix R ∈ Cn×d is the discrete

numerical integration operator of Ms and Js.

To form the adjoint-state calculation of the gradient, we follow again the derivation

given by Pratt et al [137]. First, consider an element of the Jacobian matrix,

Jij =
∂Fi
∂mj

=
∂

∂mj

(
RS−1φ

)
i

=

(
R
∂S−1

∂mj

φ

)
i

= Ri
∂S−1

∂mj

φ. (8.2.5)

Here, Ri represents the ith row of R, i.e. the row which gives the ith measurement.

Differentiating the forward operator (8.2.4) with respect to the parameter mj

SEh = φ, (8.2.6)

resulting in
∂S

∂mj

Eh + S
∂Eh

∂mj

= 0, (8.2.7)

which we can write as

∂Eh

∂mj

= S−1f (i), f (i) = − ∂S

∂mi

Eh. (8.2.8)

We have used Eh to denote the finite element coefficients of both the internal E field

and surface H field. Note that the Jacobian matrix can be written as

J = R
∂Eh

∂m
= RS−1[f (1), . . . , f (p)] = RS−1F, (8.2.9)

where p is the total number of material parameters. Therefore,

∇mJ =<
{

(RS−1F )T δd∗
}

=<
{
F T (S−1)TRT δd∗

}
. (8.2.10)



CHAPTER 8. FULL-WAVE INVERSION IN 3D 190

Unlike in the Helmholtz case, we can be sure that S is a non-symmetric matrix,

and so cannot take (ST )−1 to be S−1. However, if we are using and storing an LU

decomposition of S, these can still be used to solve the adjoint problem.

Note that the surface integral parts of matrix S, i.e. B, C and D, are not functions

of m, so only the mass and stiffness matrices will contribute to ∂S/∂mj. Differentiating

with respect to a permittivity parameter gives a contribution from the mass matrix

only,

∂S

∂εj
=

∂M∂εj 0

0 0


∂Mmn

∂εj
=


−k2

0

∫
�j

Lm · Ln dv, Lm,Ln supported in �j

0 elsewhere

.

(8.2.11)

We have used the notation �j to denote the one or more tetrahedral elements 4i that

form the volume of parameter mj.

Similarly, one can differentiate with respect to a conductivity parameter to give

∂S

∂σj
=

∂M∂σj 0

0 0


∂Mmn

∂σj
=


ik0Z0

∫
�j

Lm · Ln dv, Lm,Ln supported in �j

0 elsewhere

,

(8.2.12)

as well as by a permeability parameter,

∂S

∂µj
=

 ∂K
∂µj

0

0 0


∂Kmn

∂µj
=


−(µr)

−2

∫
4j

(∇× Lm)(∇× ·Ln) dv, Lm,Ln supported in �j

0 elsewhere

.

(8.2.13)

Ordering m such that mj = εj for j ∈ [1, p1], mj = σj−p1 for j ∈ [p1 + 1, p2], and

mj = µj−p1−p2 for j ∈ [p1 + p2 + 1, p] (if applicable), we have

∂A

∂mj

=


∂M/∂εj j ∈ [1, p1]

∂M/∂σj−p1 j ∈ [p1 + 1, p2]

∂K/∂µj−p1−p2 j ∈ [p1 + p2 + 1, p]

(8.2.14)
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and so

∂S

∂mj

=

 ∂A
∂mj

0

0 0

 . (8.2.15)

We have allowed a different discretisation for permittivity, conductivity and perme-

ability, and so could have a finer discretisation for permittivity than for conductivity

(say).

8.3 Numerical experiments

8.3.1 Introduction

In this section we present the first 3D FWI results for GPR imaging. Our aim is to

show that it is possible to use FWI in 3D to gain both quantitative and qualitative

information about detected objects, with the additional information being useful to

determine if a target is or is not a landmine.

We again restrict ourselves to simulated data from hand-held equipment, for which

we place the (artificial) limit of 8 receivers in an array no larger than 30 cm2, though

demining equipment may need to be smaller. Following our results in Chapter 5 we

consider only multi-static arrays, for which in 3D we consider the simplest case to be

a 2× 2 array. Following also the reasoning in Chapter 7, we always consider systems

which have cross polar measurements.

Ideally, similar analysis to that carried out in Chapter 5 would be carried out for

3D FWI, to determine what form of acquisition was required and to characterise the

nullspace. Unfortunately such analysis is not currently sensible for the 3D electro-

magnetic inverse problem, due to both time and memory limitations in calculating the

Jacobian matrix. These results are presented then as a proof of principle for small scale

3D FWI of GPR data. We begin with simple reconstructions to show that one can find

the shape, size and permittivity of a single inclusion using data with simulated noise

(i.e. determine what a target is), before considering domains which contain a highly

variable background resulting in multiple scattering. Parameters used for the recon-

structions throughtout the rest of this thesis are given in Table 8.1, unless otherwise

stated.
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Linesearch

type strong Wolfe
c1 10−4

c2 0.8
δ (safeguard) 10−5

max iterations 5

Regularisation

type TV
λ 5

ε (initial) 10−6

ε decrease 0.8×

Source

function Gp within beam
beam width π/8 radians
rolloff start π/12 radians

rolloff function cubic

PML

width 0.2 m
s′′x, s

′′
y, s
′′
z (maximum) 1

s′′i increase distance 0.02 m
s′′i increase function quadratic

Miscellaneous
boundary integral TETH CFIE

mesh max edge length 0.0075 m
frequency weighting 1/ω2

i

Table 8.1: Parameters used for 3D inversion. Note that the stopping criteria are not
given, as in all numerical experiments inversion was run for a maximum number of
iterations.

8.3.2 Recovering a single inclusion

We begin by simulating data for a 4 cm cube of relative permittivity εr = 3.75,

buried at a depth of 2 cm (to the top) in a background with constant εr = 4, as

shown in Figure 8.1(a). Note that the object does not have a smooth boundary:

this is an artefact of Matlab’s slice image function. The GPR system is a 2 × 2

array of antennas arranged in a 15×15 cm square, each measuring both polarisations.

Measurements are taken every 1 cm in the x̂ direction and every 2 cm in the ŷ direction

(simulating a single zig-zagging pass over the object), from −10 to +10 cm relative to

the centre of the object in each direction. Data is simulated at 12 frequencies between

750 MHz and 1.5 GHz, all together resulting in a data set which is smaller than a

realistic (increasing the difficulty of inversion). 1% Gaussian white noise is added to

both the real and imaginary parts of the data, and the inversion is carried out using

a different coarser mesh for the forward operator. We have been less ambitious in the
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amount of noise added for this initial test than for the 2D FWI results in Chapter 4,

due to having less data redundancy to save computation time.

The reconstructed image after 10 iterations of l-BFGS, using Laplace regularisation

(8.2.2) and λ = 1.5, is shown in Figures 8.1(b) and 8.2. In the latter, we see that we

are well able to determine the approximate height and permittivity of the object, but

have underestimated the contrast to the background at this point and are less able

to determine the object’s width. We would not expect to exactly reconstruct the

object after only 10 iterations (which is not enough for even a 2D reconstruction),

and would likely underestimate the contrast regardless due to the regularisation term.

Nevertheless, we have a stable reconstruction in the presence of (some small amount

of) noise for a single target, using Maxwell’s equations in 3D as the forward model

and a data simulated for a small hand-held array of one-sided measurements: this is

in itself a significant step towards our goal.

The generalised Tikhonov regularisation using the discretised Laplace operator

results in a smooth reconstructed boundary, not the jump change actually present,

and allows some smooth wave-like artefacts surrounding the object. These artefacts

are present in the descent direction. Similar artefacts were present in early iterations

of 2D reconstructions (see for example Figure 4.3), but the TV regularisation used was

better able to compensate for them as they have a large total variation. The inability

of Laplace regularisation to counter these smooth artefacts, and since the object we

are trying to reconstruct does not have a smooth boundary, make it an inappropriate

choice. However, it is useful to use a linear type of regularisation (such as a generalised

Tikhonov function) for prototyping and testing the reconstruction algorithm in 3D,

since a descent direction can be found via linear algebra; non-linear regularisation such

as TV cannot be solved via linear algebra alone. The amount of regularisation was

chosen as in our experience it was sufficient to result in a stable reconstruction in the

presence of noise. A more thorough study of the amount of regularisation required for

the 3D problem is still required.

8.3.3 Eigenvalue decomposition of the approximate Hessian

As noted by Thacker [168], and considered by Ma and Hale [105] for the FWI problem

(see also [104]), the eigenvectors corresponding to the largest and smallest eigenvalues
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(a) Test domain

(b) Reconstruction

Figure 8.1: 3D reconstruction of a single cubic scattering object in a homogeneous
background after 10 iterations of l-BFGS, with Laplace regularisation and λ = 1.5.
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of the Hessian matrix correspond to the parts of the model m which can be best

and worst determined, respectively. This is since these correspond to the directions

in which J changes either the greatest, for the largest eigenvalues, or least, for the

smallest eigenvalues. Figure 8.5 shows the eigenvectors corresponding to the largest

and smallest eigenvalues after 10 iterations.

Figure 8.4 also shows the unique eigenvalues calculated by Matlab’s eigs func-

tion. Both the smallest and largest 30 eigenvalues were calculated, and since these

overlapped we have all numerically unique eigenvalues of the l-BFGS approximate Hes-

sian. We see from the eigenvectors of the Hessian, Figure 8.4, that the reconstruction

is well-resolved in the direction of eigenvector corresponding to the largest magnitude

eigenvalue. The eigenvector corresponding to the smallest eigenvalue has contributions

mostly on the below and to the left of the target location – the area in the shadow

of the source antenna – as well as the top-right corner of the target. This is because

these are the parts of the target for which there will be the least direct reflections from

in the data.

Moreover, Thacker demonstrates that in the linear approximation the inverse Hes-

sian matrix is the covariance matrix [168]. For any linear function of the model pa-

rameters y = bTm, the variance of y can be estimated by inverse Hessian as

var(y) ≈ bTBb, (8.3.1)

where B is the l-BFGS approximate inverse Hessian. The variance of each parameter

solution are then approximated simply by the diagonal components of the approximate

inverse Hessian, since bi = êi. Figure 8.6 shows the variances for the inversion result

in Figure 8.1(b). Note though that our approximate Hessian, containing only a few

eigenvalues of the true Hessian, may be inaccurate, and that the linear approximation

may not hold.

8.3.4 Discussion

We have presented here the first (published) 3D FWI results for GPR. The 3D in-

verse problem is not generally considered due to its large computational cost: to gain

meaningful results for most applications, one would require a computational domain

beyond memory limits. Not only is the 3D inverse problem computationally expensive,
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Figure 8.4: Eigenvalues of the l-BFGS approximate Hessian after 20 iterations for a
coarse reconstruction of a single inclusion

(a) Eigenvector corresponding to largest eigenvalue

(b) Eigenvector corresponding to smallest eigenvalue

Figure 8.5: Eigenvectors of the l-BFGS approximate Hessian after 10 iterations, cor-
responding to (a) the largest and (b) the smallest eigenvalues. Slices at y = 0.
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Figure 8.6: Estimation of the variance of the 3D reconstruction of a single target in
homogeneous background, using the l-BFGS approximate Hessian

but the underlying scattering problem is also more complex. For 2D FWI, one of the

assumptions is that there is no out of plane scattering in the data, but even in this

simple single target example out of plane scattering will be a significant feature in the

data almost everywhere. Polarization effects and refraction at the ground surface also

contribute to the complexity of the scattering problem, and therefore of the inverse

problem.

One of the features the more complex scattering gives rise to is a ‘shadow’ region

on the far side of the scatterer to the antennas. We noted in Section 8.3.2 this feature

was also seen in early iterations of the 2D inverse problem, but it was easier to account

for in 2D as we had better parameter illumination over each all possible ray angles (1

dimension of data). In 3D, each parameter can be illuminated over 2 sets of angles (2

dimensions of data) and from 2 possible source polarizations. Ideally, each parameter

would be illuminated from all possible angles and all polarizations so that the position

and orientation of surfaces can be properly determined. Any small array which has a

single source antenna will therefore be more limited as to seeing the opposite sides of

objects, as highlighted by the eigenvector analysis in the previous section.

The poor descent direction beneath and around the target becomes far more preva-

lent in more realistic examples. Figure 8.7 shows a slice of the gradient of the objective
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Figure 8.7: Gradient of the objective function ∇J (m0) for a single target in stochastic
background medium, as shown in Figure 8.8, for a homogeneous domain m0. Slice at
y = 0.

function for a single target in a more realistic stochastic background medium (see later

Figure 8.8 for the true domain). The more complex scattering, including out of plane

scattering, multiples, and misplaced perturbations due to an incorrect background per-

mittivity estimation and curving of ray paths in the true medium, results in a descent

direction with many incorrectly placed perturbations.

We are severely limited as to the size of dataset we are able to simulate due to

computation time and memory constraints. The main parameters we have then been

able to test, so as not to increase the size of computation, are antenna offsets and

position (but not number of source locations), their respective polarisations, and the

beamwidth of the antennas. Anecdotally, we found the beamwidth has had perhaps

the largest effect on reconstruction results, with a much narrower beam resulting in a

superior reconstruction. This was contrary to expectations, on the assumption that a

wider beam would allow illumination of a target from more angles and result in higher

resolution as in SAR imaging [36, pp 100-101]. The improved results were likely due

to each data point being related primarily to a smaller set of parameters (within

the beam) and so a better determined system. We can also consider that the more

focussed the beam, the closer it becomes to a point source on the ground surface – as

was the approximation for 2D reconstructions. We expect that with a more complete

coverage of source locations and/or frequencies (better wavenumber coverage in the

image domain), the reverse may begin to hold.
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A much more thorough investigation into sensitivity and the suitability of acqui-

sition system to 3D GPR FWI is required. It is well known that multiple offsets and

a large maximum offset improve resolution in 2D FWI, but whether the same is re-

quired in both coordinate axis on the surface for 3D FWI is an open question. It may

be that a more modest number of antennas in one direction is acceptable, depending

on the number in the other direction, as well as the offsets, polarizations and source

locations. The results in Section 7.4.2 go some way to answering this question, but

ideally we would like to undertake at least a more formal SVD analysis as was done

for 2D reconstructions in Chapter 5.

8.4 Nuisance parameters in full-wave inversion

8.4.1 Introduction

For the landmine detection problem, we desire an accurate solution in a reqion of

interest Ωt ⊂ Ω, which is some area surrounding detected metal objects, but are not

concerned with the solution outside of this subdomain Ωn = Ω/Ωt. Let us divide our

parameter set m into two sets mt and mn, where each of the elements of mi refer

to an electromagnetic property within subdomain Ωi. mt is the set of parameters

we are interested in and mn those of little consequence. We refer to the mt as target

parameters and the mn as nuisance parameters. The fit of mn to the data will effect our

solution to the mt, for example due to multiple scattering from objects in Ωn into the

region of interest, or by an incorrect conductivity resulting in an over/underestimation

of the amplitude in simulated data, thereby resulting in a gradient with too large or

small a norm. We cannot then expect to simply fix these parameters and obtain

accurate estimates for mt, and so must have a way to estimate mn whilst maintaining

an emphasis on finding an accurate mt. We do this by attempting to define the

nuisance parameters implicitly as functions of the target parameters.

Such a formulation well studied in inverse problems in general, to determine a

subset of parameters for which either the objective function varies linearly, or there

is a closed form solution to minimise the objective with respect to. We follow the

formulation of Aravkin and van Leeuwen [16] of estimation these nuisance parameters,

before considering how it can be applied to our case where the objective function
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varies non-linearly with nuisance parameters. This leads us to a novel ‘line search’

type algorithm which attempts to invert in the region of interest, while allowing the

nuisance parameters to vary if necessary.

8.4.2 Estimating nuisance parameters

Consider a problem of the form

xinv = argmin
x∈X , θ

g(x, θ), (8.4.1)

where g : Rm × Rn → R is a twice differentiable function, x ∈ X ⊂ Rm is a set of

parameters of interest, and θ ∈ Rn are a set of nuisance parameters. For a problem in

this form, we assume that for any x ∈ X we can easily find

θ̃(x) = argmin
θ

g(x, θ), (8.4.2)

though this can be relaxed to cinsider θ̃ only a local minimum. Rather than solving

(8.4.1), we instead minimise the reduced objective

g̃(x) = g(x, θ̃(x)). (8.4.3)

If g̃ is twice continuously differentiable on some domain U × V , U ⊂ Rm, V ⊂ Rn,

then [16,22]

∇xg̃(x̃) =∇xg(x̃, θ̃(x̃)) (8.4.4a)

∇2
xg̃(x̃) =∇2

xg(x̃, θ̃(x̃)) +∇2
x,θg(x̃, θ̃(x̃))∇xθ̃(x̃) (8.4.4b)

for x̃ ∈ U and θ̃ ∈ V such that ∇θg(x̃, θ̃) = 0 and ∇2
θg(x̃, θ̃) is positive definite.

Aravkin and van Leeuwen [16] note that the first and second derivatives of g̃ with

respect to x may exist even where the smoothness hypotheses are not met.

Equations (8.4.4) suggest a natural iterative approach to minimising g̃ in the un-

constrained case,

xk+1 = xk − pk = xk − γkH−1
k ∇xg̃(xk) = xk − γkH−1

k ∇xg(xk, θ̃(xk)), (8.4.5)

where γk is a step length. Hk = I, the identity matrix, leads to the steepest descent

algorithm, while Hk = ∇2
xg̃(xk) yields a modified Newton algorithm. If X ⊂ Rm is a

closed and bounded set then we can simply project xk − pk onto X . Note that this is
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not the same as an alternating approach, where we switch between solving for x and

θ. Instead, for every update to x we update θ̃(x).

This formulation has been applied to full-wave inversion, for example for estimating

source amplitude [16]. Often the source wavelet is estimated prior to the inversion

[86, 113], or can be solved for as part of the optimisation scheme [30]. To define the

frequency-dependent source amplitude and phase as nuisance parameters, let Fi(m)

be the unit-amplitude and zero phase-shifted simulated GPR data for m at frequency

ωi, then the full-wave problem can be written (neglecting regularisation terms) as

minv = argmin
m

∑
i

‖āiFi(m)− di‖2, (8.4.6a)

āi(m) = argmin
ai

‖aiFi(m)− di‖2. (8.4.6b)

Indeed, solving (8.4.6b) for the āi given m is a linear problem with a closed-form

least-squares solution

āi = (FTi Fi)−1FTi di =
〈Fi,di〉
〈Fi,Fi〉

. (8.4.7)

Note that this can be calculated without requiring any further forward simulations.

8.4.3 Inverting target parameters

For the landmine detection problem, we are interested in accurately reconstructing a

target located by a metal detector, and are less interested in resolving the surrounding

soil and clutter. Moreover, we expect de-mining personnel to have explored in greater

detail the area immediately around the metal target as they try to determine its make-

up, so GPR data will be less sensitive to positions away from the target. We then

have poor information about other scatterers away from the target, so may not be

able to resolve these features fully, but they cannot be entirely ignored as they will

have affected the data (for example through multiple scattering interactions with the

target). We wish to pose this in the framework of nuisance parameters, where the

target parameters are those surrounding the detected metal object and the nuisance

parameters a sufficient distance away.

Separating our parameter vector into two sets mt and mn, where mt are the pa-

rameters immediately around the target (either permittivity alone or both permittivity
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and conductivity), and mn are all others, we would like to set

m̄2(mt) = argmin
mn

J (mt,mn). (8.4.8)

Unfortunately, this would involve a global optimisation problem on (almost) the same

scale and complexity as solving for the full parameter vector m for each trial mt, which

is prohibitive. Instead, for each trial target values mt we propose taking a linearised

step in mn, given in equation (4.3.7), such that

mk+1 = mk +

 αtpt

ᾱ2(α1)pn

 , (8.4.9a)

αt = argmin
αt∈(0,αmax]

φ(αt, ᾱn(αt)), (8.4.9b)

ᾱn = argmin
α2∈(0,α′max]

φ(αt, αn). (8.4.9c)

Here, p = [pt; pn] is the l-BFGS descent direction separated into target and nuisance

parameters, αt is a step length for pt found by a (strong) Wolfe linesearch, and ᾱn is

a step length found by the linearisation (4.3.7).

The linearised step length ᾱn(αn), for each trial step αt, is found by interpolation of

δd between α2 = 0 and αn = αt. To safeguard this selection, preventing unnecessary

forward evaluations at multiple close steplengths, if ᾱn < bαt, 0 < b�∞, it is set to

0, and if (1− d1)αt < ᾱn < (1 + d2)αt, 0 < d1, d2 � 1, it is set to αy. This involves at

most 3 forward computations per trial step αt, but may require only 2. Further, we

set

α′max = min(αmax, δαt), (8.4.10)

where δ > 0 can either be set dynamically throughout the inversion process, beginning

with a small number (0 < δ < 1) and gradually increasing it, or a constant 1 ≤ δ �∞.

This prevents a much larger update in mn than in mt), and poor scaling between the

two parameter sets. If a larger step in αn was preferred, we would likely do better to

try a larger αt since these are the parameters we wish to resolve. Further, starting

with a small value of δ forces the inversion to fit the target parameters as closely as

possible without updating the nuisance parameters in early iterations. The scheme is

shown in Algorithm 6 and Matlab code is given in Appendix B.1 [194].
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Algorithm 6 Nuisance parameter linesearch

Input m, pt, pn, αmax > 0, δ > 0;
while Linesearch criteria are not met do

Select an αt ∈ (0, αmax]; . e.g. from Algorithm 3 or 4
φ0 ← J (m+ αtpt); . Retain data residual δd0

φ1 ← J (m+ αtpt + αtpn); . Retain data residual δd1

αn ← αt<
{

(δd0 − δd1)T δd0

‖δd0 − δd1‖2

}
; . Linear step from equation (4.3.7)

if αn > αmax or αn > δαt then
αn ← min(αmax, 1.5αt);

end if

if αn ≤ 0.25αt then
αn ← 0;
φα ← φ0;

else if 0.9αt ≤ αn ≤ 1.25αt then
αn ← αt;
φα ← φ1;

else
φα ← J (m+ αtpt + αnpn);

end if
end while
Increase δ
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8.4.4 Remarks

Algorithm 6 attempts to reduce the dimensionality of the optimisation problem, by

considering the parameters outside of a region of interest as nuisance parameters. The

amount in which these are updated is limited by the size of update in parameters

describing the region of interest. To justify the approach, we can consider (8.4.9) as a

globalisation method for the more familiar constrained optimisation problemmt,inv

mn,inv

 = argmin
mt∈D,mn∈χ(mt)

J (mt,mn). (8.4.11)

Here, D is the domain of mt enforcing physical parameters, and χ(mt) are a set

of non-linear constraints enforcing the implicit relationship m̄n = m̄t(mn). When

this non-linear constraint is not held, the step ᾱnpn is taken towards m̄n = m̄n(mt)

(changing the ratio between αt and αn).

Note that since p = [pt; pn] is a descent direction, and our scheme always tests

α1 = α2 for δ ≥ 1, Algorithm 6 guarantees reduction in the objective function

J (mk + αtpt + αnpn) ≤ J (mk + αp) ≤ J (mk), (8.4.12)

where the final inequality is strictly provided such an α > 0 can be found by the

linesearch method.

Meles et al [110] give an algorithm for simultaneously updating permittivity and

conductivity, in which two linear step lengths are calculated for the two parameter

types, both about mk. This accounts for the different scaling between the two pa-

rameter types. If we consider permittivity the target parameter, and conductivity the

nuisance parameter, then Algorithm 6 is similar to their approach. The difference

being that in Algorithm 6, the step length calculated for conductivity takes its lineari-

sation about mk + αtpt, and not about mk. If the update direction pt is well scaled

(which it ought to be after at least a few iterations of l-BFGS) and the first trial step

length αt is acceptable, then our algorithm has a similar computational cost to that

of Meles et al.

8.4.5 Numerical experiment

To demonstrate the applicability of Algorithm 6, we present a numerical experiment

in reconstructing a target in a known location, surrounded by a highly inhomogeneous
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background. For this, we take a spherical target of εr = 3.25 and 2.5 cm radius, in

a stochastic background medium described by an ellipsoidal autocorrelation function

[73,78] (see Appendix A.4). Such a function gives rise to multi-scale random medium,

and by varying autocorrelations length scales in the horizontal and vertical directions

(denoted a and b respectively) we can generate a range of ground types including

layered or granular media. We use length scales a and b which are also 5 cm, the

same as the target. We expect that with such a selection will make the reconstruction

problem more difficult than either much larger or smaller scale features, which would

have a different affect across the bandwidth to the target.

Figure 8.9 shows the reconstruction using Algorithm 6 after only 10 iterations, and

Figure 8.10 the relative residuals and step lengths at each iteration of l-BFGS. We see

that in the centre of the target we have already found close to the correct permittivity,

but have not yet correctly resolved the shape. In the first iteration, the nuisance

parameters are not updated at all. In the next 4, the update in these parameters

is limited by the maximum step length α′max.At this point, some of the background

stochastic medium has been resolved, specifically the lower permittivity directly above

and to the sides of the target. Presumably, these nuisance parameters had the greatest

effect on the ability to resolve the target parameters, as after iteration 5 the nuisance

parameters were updated little. We would not expect to do much to accurately resolve

the background medium, particularly after so few iterations.

The ability of Algorithm 6 to adapt the descent direction for an appropriate update

outside of the ROI is highlighted by the contour plot shown in Figure 8.11. It is quite

clear that in the first iteration, the steepest-descent direction (αt = αn) is only a good

direction for a short distance (α < 0.02), after which the change in curvature makes

any step in αn yield little reduction in the objective function J . By αt = 0.1, any

αn > 0 increases the objective value (though only a small amount). In this particular

case, a quadratic approximation to the objective function J along pt is also quite a

good one (we have a single, smooth minimum close to parabolic), so a line search can

quickly find the minimum via quadratic interpolation.

Our experience from 2D FWI is also that we would be unlikely to resolve the exact

shape of the target so soon. It takes many iterations of FWI to accurately determine

the shape of targets, and the implementation of TV is likely insufficient for 3D FWI: a
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Figure 8.8: Slice image of a single cubic target of permittivity εr = 3.25 in stochastic
background medium with mean permittivity εr = 4.

primal dual method may be required due to the complexity. Yet, the ability to quickly

resolve the permittivity within the region of interest is significant for the landmine

detection problem. In this numerical experiment, we are able to extract the relevant

information from the non-linear and noisy data quickly. Each iteration is more costly,

requiring a minimum of 2 evaluations of the objective function, yet we determine the

permittivity of the target in far fewer iterations than even a 2D reconstruction, saving

on computational cost overall.

8.5 Discussion

In the preceding section, we presented an algorithm to resolve the shape and permit-

tivity of a target object in a region of interest. This can be defined to be some volume

surrounding a metal object located by a metal detector, and while the reconstruction

in Figure 8.9 is not fully resolved (we allowed only a small number of iterations), we

expect that if it were allowed to continue this would be able to tell us precisely what

was surrounding the metal object. We have only considered reconstruction of a domain

with a flat ground surface. While a rough and varying terrain could cause significant

difficulties in resolving the subsurface, considering such features was beyond the scope

of this thesis.
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Figure 8.9: Reconstruction after 10 iterations of a single cubic target of permittivity
εr = 3.25 in stochastic background medium with mean permittivity εr = 4, using the
nuisance parameter linesearch Algorithm 6

Why did we not test our algorithm’s ability to reconstruct a landmine? Being able

to accurately reconstruct landmines is unlikely to improve clearance rates at all. If

mine clearance personnel use a metal detector alone, then they must carefully remove

every piece of metal from the ground. This process can only be sped up by safely

showing what is not a landmine: given a piece of metal which could be a firing pin,

we want our algorithm to be able to demonstrate that the material surrounding it can

not be a landmine so that it can be ignored. Particularly, we want this to be possible

in the cases which systems such as MINEHOUND can not account for. That is, when

there is some object large enough for the GPR to detect around the metal fragment,

but when this is not a landmine. We might still like the system to be able to resolve a

landmine, so that if one is present (perhaps a non metallic mines) de-mining personnel

are sure of what the target is, and how it is oriented, and so can operate with more

caution. This is only a secondary objective though, as de-mining personnel will treat

all targets which they cannot me sure are not landmines as though they are.

How can we be sure that our reconstruction results rule out there being a landmine

present? We must be sure of the accuracy of our reconstruction, and that the recon-

structed model fits the data significantly better than the presence of any landmine

could. This would require a long term testing period, creating a large bank of data



CHAPTER 8. FULL-WAVE INVERSION IN 3D 209

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration i

R
el
a
ti
ve

re
si
d
u
a
l
J
(m

i)
/
J
(m

0
)

(a) Relative residuals of reconstruction

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration i

S
te
p
le
n
g
th

α
i

 

 

Target parameters αt,i

Nuisance parameters ᾱn,i
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Figure 8.10: (a) Relative residuals and (b) step lengths for the first 10 iterations of
Algorithm 6 for a single target in a stochastic background medium.
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Figure 8.11: Contour plot for J (m + αtpt + αnpn) in the first iteration of l-BFGS.

and reconstructions, to determine how accurate a reconstruction is likely to be given

how closely it fits the data. We would need to take into account how accurately we are

able to simulate the GPR data, including how accurately we can simulate landmine

data and what its effect on the data would be. See for example Simonson [158] for a

discussion on the statistical significance of mine clearance trial data

Figure 8.12 shows the absolute difference between data simulated on the reconstruc-

tion in Figure 8.9, to data simulated on the test domain in Figure 8.8 in which we

vary the target permittivity between εr = 1 and 5, but keep the same stochastic back-

ground medium. Since the reconstruction fits much poorer a true target permittivity

of less than 3 or greater than 3.5, we can be sure of correctly identifying a range of

possible material permittivities. Figure 8.14 compares some of the data simulated for

the domain shown in Figure 8.8 (blue) to that simulated in the reconstructed domain

(green), and to that simulated for a mine-like target in a stochastic background (shown

in Figure 8.13). It is clear that the simulated and reconstructed datasets are far more

similar to one-another than either is to the data from the mine-like target. If we have

complete bank of possible mine-like targets available to compare to, we could be sure

that this GPR data was not due to a landmine, and safely ignore the target. A system

such as MINEHOUND however would record a signal, and the de-mining personnel
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Figure 8.12: Absolute difference of reconstructed data dr, and data simulated for a
single target dεr of permittivity εr ∈ [1, 5] in a stochastic background medium as with
Figure 8.8, ‖dr − dεr‖2.

would need to carefully excavate regardless. To understand the statistical significance

of reconstructed results we would need to undertake a large number of comparisons

such as those shown in Figures 8.12 and 8.14, which would tell us statistically how

closely we have resolved the domain, and when we are able to say with certainty that

features in the data can not be due to a landmine rather than the reconstructed target.

Why not then simply use a look-up table to compare recorded GPR traces to those

of known targets? The answer is the non-linearity of the inverse problem: a look-up

table cannot take into account a highly inhomogeneous or contaminated background,

causing multiple scattering, or local variations in soil type and topography of the

ground surface. A lookup table may perform poorly where the data due to a target is

significantly different in a cluttered environment (due to multiple scattering or curving

of the ray-path) to how it is in a homogeneous or known background. We refer again to

Figure 8.7, showing a slice of the gradient for a single target in stochastic background,

and recall that the gradient is equivalent to a linear inversion (back-projection). Direct

comparison of the data is essentially equivalent to comparison of a linear inversion,

since we can define a linear inversion such that the map between data and image is

invertible (e.g. using a Radon transform). Noting the large perturbations away from

the target in the gradient, owing to the stochastic medium, we would be unlikely to
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Figure 8.13: Surrogate mine target in a stochastic background medium
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Figure 8.14: Comparison of data simulated on test domain Figure 8.8 (blue), recon-
structed domain Figure 8.9, and for a mine-like target in stochastic medium (red), at
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be able to rule this out as not a landmine from the simple image (or traces) alone. We

would argue then, that it is more sensible to compare reconstructed results to possible

landmines in some way.

8.6 Conclusions and outlook

In this chapter, we have undertaken numerical experiments in 3D Full-Wave Inversion

for GPR, using a combined Finite-Element Boundary-Integral solver to simulate the

forward problem. These are both the first published 3D results, and the first published

use of a FE-BI method as the forward model, for GPR FWI. The study was of course

limited due to the extremely large computational cost of solving Maxwell’s equations

in 3D: a full comparison of the inversion parameters, such as regularisation type and

amount, l-BFGS memory parameter, Wolfe condition parameters, or other optimisa-

tion methods, could not be undertaken. Rather, the implementation and experiments

demonstrated in this chapter are a proof of principle, and a useful starting point, for

future work in 3D GPR FWI. We also believe that moving towards a full 3D model

in FWI is the right way to solve the problem, as a 2D model neglects many scattering

effects which may be seen in the data. It is particularly important if FWI is to be used

for the mine detection problem, since a 2D model of the subsurface cannot represent

a landmine.

Due to the computational cost, we were limited as to the size of dataset we could

simulate and expect to invert within given time constraints. This generally resulted

in a poorer descent direction than we would expect from a ‘full’ GPR dataset. We

noticed (in early iterations) similar shadows in the update direction below the target

position as those observed in the 2D problem, likely due to reflections off the bottom of

the target being misplaced due to an incorrect wavespeed in the current model, as well

as multiple reflections within the target itself. Due to the much more complex scat-

tering problem in 3D, the l-BFGS optimisation (and likely choice or implementation

of regularisation) struggled to account for these coherent artefacts in a small number

of iterations. Anecdotally, we found a narrower GPR source beam provided a better

descent direction, presumably because the information content of each data-point was

associated with a smaller region. We expect more complete data coverage would also
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alleviate this problem.

Finally, we considered the applicability of 3D FWI to the landmine detection prob-

lem, questioning what we really want to be able to find from such a method and in

what circumstances. The answer is we are only interested in determining the proper-

ties of some detected target, particularly in a heavily cluttered environment. This led

us to develop a novel linesearch type algorithm, which attempts to treat parameters

away from the target as a nuisance. The step length taken in the nuisance param-

eters is defined implicitly in terms of the parameters describing the target, and so

we concentrate the reconstruction on determining the detected target. We tested the

algorithm in the case of a single target in a known location in a highly stochastic

background. We were quickly able to determine the permittivity of the target, while

the background minimum had a minimal update, and so the algorithm performed as

wanted. For landmine detection, we believe such an algorithm could therefore be use-

ful in providing additional quantitative information about a target, while being able

to account for multiple scattering from clutter and local soil variations.

The reconstructions presented were in a necessarily small domain, due to memory

constraints. As such, both 3D FWI and the results presented here are not yet appli-

cable to many applications of GPR which require knowledge of a much larger area.

As processing power improves, and large amounts of memory become more available,

we expect to be able to carry out much more complex 3D inversions of larger GPR

datasets. Particularly, we do not believe it is an unrealistic aim to treat the mine

detection problem using FWI, with a small scale inversion such as Algorithm 6, as

clearance of the worlds landmines is a very long term goal. We can expect landmines

still to be a significant problem in (say) 10 years time, when perhaps computer power

is sufficient for such an imaging method in the field. Eventually, whether FWI is com-

putationally worthwhile will cease to become a concern. One must then determine if

it does enable a reduction in the rate of false positives (we believe that it must), or

even if it is useful as a standalone method (i.e. without a metal detector) to detect

no metal landmines. Finally, there is a question of how the information provided by

FWI ought to be presented to de-mining personnel: a permittivity distribution of the

subsurface is almost certainly inappropriate.



Chapter 9

A Polarization Tensor

Preconditioner for l-BFGS

9.1 Introduction

In Chapter 7, we presented a polarization tensor expansion for Maxwell’s equations

which was suitable for GPR. The expansion is valid where one considers scatterers

which are of a small volume, but may be of any material contrast to the background

medium. We discussed this asymptotic expansion in terms of sensitivity, and used this

idea for numerical experiments into increasing distinguishability of landmines. This is

unlike the more common understanding of sensitivity, based on the Taylor expansion

(or Born series), which is valid for any size scatterer but only of a small material

contrast. The two must of course coincide, when we have both small scatterers and of

low contrast. Instinctively then, we would like to know if this idea that polarization

tensors are related to sensitivity can be used to help our non-linear reconstruction.

Often, the first iteration of l-BFGS results in only a small reduction in residual

when initialising the approximate Hessian as the identity matrix. It may also take

many evaluations of the cost function to find a suitable first step length if the gra-

dient is poorly scaled. As we discussed in Section 2.5.5, this is because the Hessian

contains information about some physical properties of the scattering problem: first

order multiples, and data illumination. In this section, we will consider the polariza-

tion tensor expansion may be used to precondition the first iteration of an l-BFGS

scheme, accounting for data illumination. We derive an approximate Hessian matrix

215
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based on the polarization tensor expansion. We then present a trust-region algorithm,

in which the objective function is approximated by the Taylor series expansion but

using the approximate Hessian previously derived. The algorithm returns an updated

initial parameter model and an initial Hessian approximation for this model. The

initial Hessian approximation can be used to precondition an l-BFGS scheme, which is

an improvement over initialising with the identity matrix. Using a polarization tensor

expansion to precondition the l-BFGS method for solving a non-linear optimisation

problem is an idea novel to this thesis.

9.2 A Gauss-Newton type preconditioner

In a quasi-Newton inversion method, we require an initial approximation to the Hessian

H0 for the initial parameterisation m0. There is no general rule as to what this ought

to be for best results, but there are certain features we would like it to contain: it ought

to be positive definite (so that p = −H−1g is a descent direction) and symmetric; and

it ought to mimic some of the physical attributes contained in the true Hessian, such as

compensating for parameter illumination. We can think of choosing an initial Hessian

as preconditioning the gradient descent direction, or indeed as a form of regularisation.

One choice is the Gauss-Newton approximation of the Hessian,

B(m) = <
{
JTJ∗

}
, Bij = <

{
n∑
r=1

∂Fr
∂mi

∂F∗r
∂mj

}
,

where Fr are the simulated data, or some diagonals of B. Recall from Section 2.5.5

that the Gauss-Newton approximation of the Hessian compensates for the different

illumination of parameters by the source–receiver array, as well as some of the non-

linearity from the saturation effect. Unfortunately, this matrix is prohibitively large

to calculate and store for 3D reconstructions. Indeed, this is still the case if we

only wished to store just some diagonals of B, since one is still required to solve

p = length(m) additional forward problems regardless of how many off-diagonals are

stored. To alleviate this problem, Shin et al [154] suggest using the virtual source

matrix

F =

[
− ∂A

∂m1

u, . . . ,− ∂A

∂mp

u

]
,

where A is the finite element or finite difference system matrix and u is the numerical
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solution to the forward problem. Instead of using the Gauss-Newton Hessian B, they

use a pseudo-Hessian diag(F TF ) which avoids the p additional forward solutions. This

matrix does account for the coverage of parameters by the source fields, but not the

coverage by receivers (i.e. it negates the correlation with the adjoint fields). One can

also approximate the Gauss-Newton terms by the Born approximation for scalar-valued

waves, as with equation (7.4.4) (where this expression assumes point scatterers).

To derive an approximate Gauss-Newton Hessian for the electromagnetic inverse

problem, let us suppose we have started our inversion procedure from a homogeneous

domain m0, which we have discretised into small volumes α3Bi with centres ri, which

all have approximately equal sizes in each dimension. We approximate the cost func-

tion by the polarization tensor approximation,

J (m) =
1

2
‖F(m)− d‖2 ≈ 1

2
‖u0 + u(δm)− d‖2 =

1

2
‖u(δm)− δd0‖, (9.2.1)

where u0 = F(m0) and u is the asymptotic approximation of the scattered fields, the
jth component of which is given by

uj(δm) =
∑
i

pj ·
(∫

∂Ω
∇×G(rj , r

′) ·
(
α3ω2ε0µ0

(
ε0

εi
− 1

)
G(r′, ri)MBi

(
ε0

εi

)
Ein(ri)

)
dS′

− ik0Z0

∫
∂Ω

G(rj , r
′) ·
(
−iα3ωε0

(
ε0

εi
− 1

)
∇′ ×G(r′, ri)MBi

(
ε0

εi

)
Ein(ri)

)
dS′

)
,

(9.2.2)

in which we have ε0δmi = εi and ε0m0 = ε0, and rj and pj are the location and

polarization of the jth measurement. The approximation is valid where the vector

δm is sparse in such a way that the δmi are sufficiently separated – certainly it is

exact at δm = 0 and as the size of parameter volumes tends to zero, and valid for a

perturbations in a single parameter.

Let us use this expansion to approximate the Jacobian components

Jij(m0 + δm) =
∂Fi
∂mi

∣∣∣∣
m0+δm

≈ ∂ur
∂mi

∣∣∣∣
δm

.

Considering a change only in the ith volume in real permittivity miε0 = εi, where in
all other volumes mjε0 = εj = ε0, i 6= j, we have from (7.3.10) that the rate of change
in a data term is given by

∂ur

∂mi
=

dεi

dmi

∂

∂εi

[
pr ·

(∫
∂Ω
∇×G(rr, r

′) ·
(
α3ω2ε0µ0

(
ε0

εi
− 1

)
G(r′, ri)MBi

(
ε0

εi

)
Ein(ri)

)
dS′

− ik0Z0

∫
∂Ω

G(rr, r
′) ·
(
−iα3ωε0

(
ε0

εi
− 1

)
∇′ ×G(r′, ri)MBi

(
ε0

εi

)
Ein(ri)

)
dS′

)]
.

(9.2.3)

As mentioned in Section 7.2.3, yhere exists an ellipsoid with the same polarization

tensor as for Bi, and since we have prescribed that the Bi are approximately equal in
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each dimension then this ellipsoid must be close to spheical. The polarization tensor

is therefore of the form

MBi

(
ε0

εi

)
=

|Si|εi

ε0 + (εi − ε0)/3
I. (9.2.4)

Here, |Si| is the volume of the sphere with the same tensor as Bi, which may be
different to |Bi|. Substituting into (9.2.3), we have that

∂ur

∂mi
= ε0

∂

∂εi

[
Viε

0(ε0 − εi)
ε0 + (εi − ε0)/3

pr ·
(∫

∂Ω
∇×G(rr, r

′) ·
(
ω2µ0G(r′, ri)

(
ε0

εi

)
Ein(ri)

)
dS′

− ik0Z0

∫
∂Ω

G(rr, r
′) ·
(
−iω∇′ ×G(r′, ri)

(
ε0

εi

)
Ein(ri)

)
dS′

)]
,

(9.2.5)

where Vi is the volume α3|Si|. Carrying out the differentiation, we have

∂ur
∂mi

=− ε0Viε
0

(ε0 + (εi − ε0)/3)2
pr ·

(∫
∂Ω
∇×G(rr, r

′) ·
(
ω2µ0G(r′, ri)E

in(ri)
)

dS′

− ik0Z0

∫
∂Ω

G(rr, r
′) ·
(
−iω∇′ ×G(r′, ri)E

in(ri)
)

dS′

)
.

(9.2.6)

Equation (9.2.6) gives an approximation to the Gauss-Newton Hessian terms, which

are relatively cheap to calculate (carrying out the integrals numerically), involving

only multiplications and not the p additional forward problems required to calculate

J . One can directly can directly calculate and store only the diagonals of B required,

alleviating the overhead of having to calculate and store (at least briefly) entire columns

of J .

Another computational benefit of (9.2.6) is that the data illumination part of B

(the integrals) and the non-linear saturation part (the contrast terms) are separated.

One may choose to store only the data illumination part, calculating the saturation

(ε0)2/(ε0 + (εi − ε0)/3)2) on the fly for individual parameters mi, which allows us to

efficiently calculate approximations to B(m0 +αp) rather than just B(m0). This relies

on our assumption that our subsurface is discretised into volumes which have a sphere

as a best fitting ellipsoid. If they do not, the polarisation tensor is not a multiple of

the identity, they do not factorise out of the integrals, and so the integration would

have to be carried for each proposed change p. While this does not lead to an efficient

algorithm, it may add information about our discretisation strategy on inversion, for

example how a discretisation into small thin volumes can have a somewhat anisotropic

effect on the forward problem (and therefore reconstruction).

Despite the polarisation tensor expansion assuming inclusions are sufficiently sep-

arated (i.e. it is a single scattering approximation), and this not being the case in our
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discretised domain, it is still both a useful approximation here. When inclusions are

sufficiently close, the approximation fails by not accounting for multiple scattering.

However, the Gauss-Newton approximation of the Hessian is also a single-scattering

assumption (when calculated for a homogeneous background), and so we have no worse

an approximation.

We can also calculate the second order derivatives
∂2ur
∂m2

i

∂2ur
∂m2

i

=
2ε20Viε

0

3(ε0 + (εi − ε0)/3)3
pr ·

(∫
∂Ω

∇×G(rr, r
′) ·
(
ω2µ0G(r′, ri)E

in(ri)
)

dS ′

− ik0Z0

∫
∂Ω

G(rr, r
′) ·
(
−iω∇′ ×G(r′, ri)E

in(ri)
)

dS ′

)
,

(9.2.7)

but cannot calculate the mixed derivative terms. The diagonal terms of this part of

the Hessian matrix are given by

Cii(m0 + δm) = <

{∑
r

∂2F
∂m2

i

∣∣∣∣
m0+δm

δdr(m0 + δm)

}
≈ <

{∑
r

∂2ur
∂m2

i

∣∣∣∣∣
δm

δd0,r(δm)

}
,

(9.2.8)

which requires δd(δm). We do not then have the same efficient calculation of Cii(m0+

δm) as for Bij(m0 + δm), but it is straightforward to calculate Cii(m0)

9.3 Remarks on the approximate Hessian

In the previous section, we derived an expression for an approximate Hessian ma-

trix H(p). The matrix includes both compensation for data illumination given by

diag(JTJ∗)(0), but also includes the saturation effect for a proposed model change

δm. When only the diagonal Gauss Newton terms (∂ur/∂mi)
2 are calculated, the ma-

trix is positive definite and so any H−1p is a descent direction. This is not guaranteed

if we include the ∂2ur/∂m
2
i terms which may be negative. As the size of parameter vol-

ume tends to zero, then H(0)→ diag(JTJ∗), where H(0) is the approximate Hessian

including only the (∂ur/∂mi)
2 terms.

Since we have an approximation to H(αp), and not just H(0), we would like to in-

corporate this additional information into a pre-conditioning matrix/initial Hessian to

begin an l-BFGS optimisation scheme. Performing a line search along p0 = −H(0)−1g

to precondition l-BFGS neglects information about the saturation effect. Consider
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Taylor’s theorem,

J (m + p) = J (m) + pT∇J (mk) +
1

2
pT∇2J (m + tp)p, (9.3.1)

where J is the cost function, for some t ∈ (0, 1). From (9.3.1), to incorporate the

saturation effect, we might consider an update of the form

αp = −αH(αp)−1g, (9.3.2)

which would be an implicit scheme. Making use of the implicit function theorem, we

can show that the curve φ(α),

φ(α) := J (m0 + αpα), pα = −H−1(αp)g (9.3.3)

is continuous and has a continuous first derivative for (m0 + p) ∈ Rp. Consider the

function

f(x,y) = H−1(xy)g − y, f : R1+p → Rp. (9.3.4)

Denote by Df(α,pα) = [X|Y ] the Jacobian matrix X the derivatives
∂fi
∂x

and Y the

matrix of derivatives
∂fi
∂yj

. For a point (α,pα) for which f(α,pα) = 0, the implicit

function theorem states that if Y is invertible, then there exists an open set U con-

taining α and an open set V containing b and a unique continuously differentiable

function g(x) : U → V such that

{(x,g(x))|x ∈ U} = {(x,y) ∈ U × V |f(x,y) = 0} . (9.3.5)

Since f is continuously differentiable (by the definition of H), it remains only to show

that Y is invertible and that solutions exist. By the definition of H, Y will be a

full-rank diagonal matrix. Finally, we can begin at α = 0, p = 0, and by the implicit

function theorem pα is defined implicitly by α in an open neighbourhood of α = 0, and

is continuously differentiable. The composition of continuous functions is also continu-

ous, so φ(α) is continuous, with continuous first derivative, in an open neighbourhood

of α = 0.

However, while φ(α) defined by (9.3.2) is continuous, it is not clear how best

to search along this curve. Particularly, it may only be well defined in too small a

neighbourhood of α = 0, and it is not clear what stopping criteria to use for such a

‘line search’ (the Wolfe conditions would need to be modified). Instead, it is more

appropriate to incorporate the additional information H(δm) in a trust-region type

algorithm, which we present in the next section.
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9.4 A Trust-region algorithm with the approximate

Hessian

A trust-region method first finds the minimum of the model (9.4.2), before checking

the step which minimises the model provides an adequate reduction in the true cost

function. The contrast to a line search method (such as lBFGS) is that the model

is used only to find a descent direction, and the true cost function used to find a

minimum along this direction.

To determine a model, consider again Taylor’s theorem

J (m0 + p) = J (m0) + pT∇J (m0) +
1

2

∫ 1

0

(1− t)pT∇2J (m0 + tp)p dt. (9.4.1)

Based on the (9.4.1), we propose the model

M(p) := J (m0) +∇J (m0)Tp +
1

2

∫ 1

0

(1− t)pTH(tp)p dt, (9.4.2)

for use in a Trust region method, in which the integral can be evaluated numerically,

together with the search direction

p = −H−1(0)g. (9.4.3)

Such a choice includes the saturation affect in the cost evaluation, so the proposed

minima along p, estimated by (9.4.2), may be closer to the true minimum than basing

the model on (9.3.1).

Note that (9.4.2) is cheap to evaluate: for length(p) = p, and evaluating the

integral numerically at k integration points, the matrix operations involve only (2k +

1)p multiplications for a diagonal H−1. Because of this low cost, we propose evaluating

M(x) at the points

x(αi) = αip, p = H−1(0)g, (9.4.4)

for some fixed s ∈ [0, 1] and 0 ≤ αi ≤ αmax, where αmax is a predetermined trust limit

of the model (9.4.2). We may then interpolate between these points to find the α

which minimises (9.4.2) along φ(α) =M(αp), returning both a parameter update

m1 = m0 + αp,

and an approximate Hessian matrix H(αp) to precondition a subsequent l-BFGS op-

timisation scheme.
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We must ensure the parameter update αp has reduced the true cost function J , and

that there was sufficient agreement between the true and model function reductions.

This is done by calculating

ρ =
J (m0)− J (m1)

M(0)−M(α)
. (9.4.5)

If the result of (9.4.5) is negative, an increase in cost was found. If ρ is too small, less

than some η ∈ [0, 1
4
) say, then the agreement between the model and cost function was

poor, in which case we would decide to reduce αmax and recalculate the constrained

minimum. This also ensures that the Hessian approximation H(αp) is a good approx-

imation to the true Hessian in the norm

‖H‖p = |pTHp|. (9.4.6)

Since we only calculate the leading diagonals of H, neglecting large parts of the true

Hessian, we generally take a tolerance close to 0, 0 < η � 0.25.

The trust region scheme proposed is given in Algorithm 7, based on the basic trust-

region approach given by Nocedal and Wright [123, pp 68-69], and Matlab code given

in Appendix B.2 [194]. An initial minimiser α is first found via interpolation of model

function values. If this fails to sufficiently reduce the objective function, αmax is re-

duced, interpolation points greater than αmax and corresponding model values are

removed, which are replaced by the pair {α,J (m0 + αp)}, and a new constrained

minimum is found. The algorithm returns a new initial model m1 and approximate

Hessian H to precondition an l-BFGS scheme. Optionally, the initial Hessian approx-

imation could include a single BFGS update, provided this is positive definite (this is

not guaranteed by Algorithm 7).

The reduction of αmax is safeguarded to ensure sufficient decrease of the trial step

length α, such that αmax ≤ λα for some λ ∈ (0, 1). Further, the removal of estimated

interpolation values satisfying

{αi, ci} : |αi − α| < βeη−ρα, 0 < β < 0.5,

where ci = J (m0 + αip), rejects more estimated interpolation values the smaller

(and more negative) ρ is compared with η (and therefore the worse the model M).

Specifically, the exponential value is large when ρ is negative – that is, when the

function increased in value, and so the estimated function values are particularly poor.
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We can view the algorithm as a backtracking line search, which will satisfy (ap-

proximately) the sufficient decrease condition. The estimated values are given by

M(α) = J (m0) +∇J (m0)Tp +O(|p|2). (9.4.7)

Then the sufficient agreement condition (9.4.5) can be written as

η ≤J (m0)− J(m0 + αp)

M(0)−M(α)

≈J (m0)− J(m0 + αp)

−α∇J (m0)Tp
,

and so we ensure

J (m0 + αp) ≤ J (m0) + ηα∇J (m0)Tp, (9.4.8)

which is the sufficient decrease condition for η = c1. The contribution of the Hessian,

when included in (9.4.8), is to reduce the amount of ‘sufficient decrease’ required at

longer step lengths.

Algorithm 7 Trust-region initial Hessian

Input λ ∈ [0, 1), αmax > 0, 0 < α1 < . . . < αn = αmax, η ∈ [0, 0.25), β ∈ (0, 0.5);

Calculate terms Si =
(∑

r
∂ur
∂mi

)2

via (9.2.6);

H ← diag(Si) + λI; . Store Hii as coefficients of δmi

c0 ← J (m0), g ← ∇J (m0);
p← H−1(0)g;
for i = 1 . . . n do

Hi ← H(m0 + αip);
ci ← c0 + αig

Tp+ 1
2

∑i
j=0wij(1−

j
i
)α2

i p
TH−1

j p; . Evaluate (9.4.2)
end for
Interpolate ci to find approximate minimiser α of M;
ρ← (J (m0)− J (m0 + αp))/(M(0)−M(α));
while ρ < η do

Reduce αmax;
Remove αi : |αi − α| < βeη−ρα and corresponding estimated ci;
Remove αi > αmax and corresponding estimated ci;
Insert interpolation point and value (α, J (m0 + αp)) to (αi, ci);
Interpolate ci to find approximate minimiser α of M;
ρ←

(
J (m0)− J (m0 + αp)

)
/(M(0)−M(α));

end while
Hi ← H(m0 + αip);
Return Trial model update m1, approximate initial Hessian H(m1);
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9.5 Numerical experiment

9.5.1 Introduction

To demonstrate the applicability of the approximate Hessian (9.2.6) and Algorithm 7,

our aims are twofold. Firstly, we wish to show that the descent direction

p0 = −H−1g0 (9.5.1)

is well scaled, and that the initial Hessian H improves the rate of convergence of the

l-BFGS scheme at least in early iterations. Secondly, we wish to show that Algorithm 7

can efficiently find a suitable step length α. As noted by Leong and Chen [97], it is

hard to interpret the influence of the initial Hessian matrix, with a full study needing

to take into account line search policies, the choice of memory parameter m, as well

as a range of test problems and the structure and spectrum of their (true) Hessian

matrices.

Due to the computational cost of FWI in 3D we are limited as to the scope of any

numerical study, and so in this section we will consider the effect of incorporating the

approximate Hessian to the scenario used in Section 8.4.5, of a single scatterer in a

highly inhomogeneous background. Specifically, we will consider the computational

cost of finding an initial step length via Algorithm 7 and subsequent convergence of

the first 10 iterations of l-BFGS, comparing to initialising l-BFGS with the identity

matrix.

9.5.2 Numerical results

Verifying the trust-region algorithm

We begin by evaluating the performance of the trust region search, Algorithm 7, in

resolving the single object in a stochastic background medium as used in Section 8.4.5,

shown in Figure 8.8. We do not separate the descent direction into target and nuisance

parameters, as in Section 8.4. As such, we can expect the initial descent direction to

be poor due to scattering in the highly stochastic background medium.

Figure 9.1(a) shows the objective values estimated by the model (9.4.2) (in blue),
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and compares these values to the values estimated by the second order Taylor expan-

sion,

M′(p) = J (m0) +∇J (m0)Tp +
1

2
pTH(m0)p. (9.5.2)

We see the contribution of the numerical integration of the contribution from the

Hessian approximation H(m0 + p) is significant: the position of the minimum is

approximately doubled compared with use of H(m0) alone. More importantly, we

see the minimum of the model function M is close to the true minimum position – a

relative error of 0.25%. On comparison to the true objective values in Figure 9.1(b), we

see an over-estimation of the reduction in objective value by the model. We expect this

is largely due to a particularly poor descent direction due to the multiple scattering

in the stochastic background medium, which is not accounted for due to the lack of

off-diagonal terms in the approximate Hessian.

Figure 9.1(c) shows that the model agreement is consistent at least up until the

point of the estimated minimum (larger step lengths would not be chosen by the trust

region algorithm). We can see first step length suggested by Algorithm 7 will satisfy

the curvature condition as it is close to the true minimum, and will satisfy the sufficient

decrease condition for sufficiently small c1.

The effect of pre-conditioning

We will refer to l-BFGS initialised by the identity matrix as l-BFGS(I), and l-BFGS

pre-conditioned by the approximate Hessian matrix as l-BFGS(H). To compare the

convergence of l-BFGS(I) to l-BFGS(H), we begin by comparing their convergence in

the inversion of a single low-contrast spherical scatterer of εr = 3.05 in a homogeneous

background of εr = 3 (with the same dimensions and layout as shown in Figure 8.1(a)

but different permittivity). In such a domain the linear approximation to the scattering

problem should be a good one. This is then the easiest problem we can construct for

l-BFGS(I), as the gradient direction should be close to the true perturbation.

Figure 9.2 compares the convergence of l-BFGS(I) and l-BFGS(H), showing the

relative residuals, absolute 2-norm error to the true solution, step-length and for-

ward/gradient calculations needed (above the required 2) at each iteration. We note

that the first iteration of l-BFGS(I) increased the true error, while decreasing the resid-

ual, likely due to the lack of information about data-coverage in this steepest descent
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Figure 9.1: Comparison of objective values (a) estimated by Algorithm 7 and (b)
evaluating the cost function, as well as the positions of their minima, and (c) their
agreement ratio, for a single object in a stochastic background medium.
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iteration. It is clear that even in this simple test problem, l-BFGS(I) takes several

iterations before it is able to move towards the true solution. Contrarily, l-BFGS(H)

makes good progress in each iteration, and until iteration 5 requires no additional for-

ward solves to find a suitable step-length. While it appears less efficient after the 5th

iteration, requiring more forward/gradient calculations, at this point the residual is al-

ready less than l-BFGS(I) reaches after 10 iterations. We expect l-BFGS(H) performs

particularly well here because, in this single target domain, the polarization tensor

approximation for the scattered fields (which is a single scattering approximation)

sufficiently accurate.

We also consider the effect of the preconditioner for reconstructing the target in

stochastic domain, as shown in Figure 8.8. Again, we do not use the nuisance pa-

rameter search given in Algorithm 6. Figure 9.4 shows the relative residuals of l-

BFGS(I) and l-BFGS(H), Figure 9.4 the reconstructed image slices through y = 0,

and Figure 9.5 reconstruction horizontal and vertical slices at y = 0, z = 0.015 and

x = y = 0.01, respectively. Interestingly, we see little or no gain from preconditioning

in this example. There was also no improvement in computational cost (nor any loss),

and so graphs of step-lengths and forward calculations needed are omitted.

The only benefit we see from the reconstruction slices is that l-BFGS(H) is slightly

better able to determine the shape of the target. The lack of improvement is likely

due to the complexity of this problem involving multiple scattering, which the Hessian

approximation does not account for. The improved ability to reconstruct the edges of

the target is also likely due to accounting for data coverage at these locations.

9.6 Towards realistic inversion

Throughout these last two chapters, the numerical results presented have been limited

by the computational cost and memory requirements of 3D electromagnetic FWI. We

present in this section, for completeness, a reconstruction of a more realistic scenario

than previously used for comparison and verification. The domain contains two 4 cm

cubic targets, one higher and one lower permittivity than the background medium,

offset from each other in x, y and z, but close enough that we expect multiple scattering

to be noticeable. These are placed in a stochastic background medium, as shown in



CHAPTER 9. A PRECONDITIONER FOR L-BFGS 228

0 1 2 3 4 5 6 7 8 9 10
10

−2

10
−1

10
0

Iteration i

R
el
a
ti
ve

re
si
d
u
a
l
J
(m

i)
/
J
(m

0
)

 

 

l-BFGS(I)
l-BFGS(H)

(a) Relative residuals

1 2 3 4 5 6 7 8 9 10 11
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration i

A
b
so
lu
te

er
ro
r
‖
m

i
−

m
tr
u
e
‖
2

 

 

l-BFGS(I)
l-BFGS(H)

(b) Absolute 2-norm error to true solution

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Iteration i

S
te
p
le
n
gt
h
α
i

 

 

l-BFGS(I)
l-BFGS(H)
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(d) Additional forward/adjoint solves

Figure 9.2: Comparison of convergence for preconditioned and standard l-BFGS, l-
BFGS(H) (red) and l-BFGS(I) (blue) respectively, for reconstruction of a low contrast
scatterer in homogeneous background. (a) shows the relative residuals, (b) the absolute
2-norm error to the true solution, (c) the step-length found to satisfy the strong Wolfe
conditions and (d) the additional computations required to find the step-length (above
the necessary 1 forward and 1 gradient calculation).
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Figure 9.3: Relative residuals for l-BFGS(I) (blue) and l-BFGS(H) (red) for recon-
structing a cubic target in a stochastic background medium

Figure 9.6(a). We simulate data at 20 frequencies between 1 and 1.5 GHz, at 180 source

locations over [−0.15,−0.15]× [0.15, 0.15] with a 4×2 array of antennas arranged with

polarizations x̂ ŷ x̂ ŷ

x̂ ŷ x̂ ŷ

 .
The top-right and bottom-left antennae alternate as source terms, and 5% Gaussian

white noise is added to the data. We designate the object at (0, 0, 0.05) as the target

of interest (e.g. in the location of a metal fragment), setting the ROI as the 4 cm

radius region about this point. As before, we expect the stochastic medium to make

resolving the target more difficult, but this should be made more so by the presence of

the second target close enough to obscure direct reflections from some source locations.

We should also have poor information about the second target as part of it lies outside

the footprint of source locations.

The reconstructed results are shown in Figure 9.6, and we see we are successfully

able to reconstruct the approximate shape and permittivity of both objects, as well

as some of the more dominant features of the stochastic background medium. Inter-

estingly, some parts of the central target are resolved with a higher contrast than the

background medium, though the sides of the objects are fairly well captured. The

plots of relative residuals, norm of the gradient and absolute error in Figure 9.7 show

a steady decay (approximately linear for the residuals and gradient), and by the size

of the gradient after 20 iterations we must assume we are close to a (local) minimum.
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(b) l-BFGS(I) reconstruction
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(c) l-BFGS(H) reconstruction

Figure 9.4: Comparison of reconstructions of a single target in a stochastic background
medium. (a) shows the true image at y = 0, (b) the l-BFGS(I) reconstruction, and (c)
the l-BFGS(H) reconstruction.
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(a) Horizontal slice at y = 0, z = 0.05

3 3.5 4 4.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Relative permittivity ǫr

D
e
p
t
h
z

 

 

True
l-BFGS(I)
l-BFGS(H)

(b) Depth slice at x = y = 0.01

Figure 9.5: Comparison of reconstructions of a single target in a stochastic background
medium. (a) shows a horizontal slice at y = 0, z = 0.05, and (b) shows a depth slice
at x = y = 0.01. Blues shows the true domain, green l-BFGS(I) and red l-BFGS(H).

Figure 9.7(d) also shows the step lengths selected for target and nuisance parameters

are fairly independent, as desired.

We simply echo some previous conclusions here: FWI in 3D with a small-scale

array of surface measurements is a plausible method for resolving a detected target

in an inhomogeneous background; the implementation of TV regularisation is likely

insufficient in the 3D setting; and Algorithms 6 and 7 appear to work successfully in

the more complex medium. There is nothing to suggest near-surface FWI as a tool

to resolve unknown targets is not possible, even when we move towards more realistic

settings. A wider range of ground types and scenarios should now be observed.
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(a) True domain

(b) 3D reconstruction slice
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Figure 9.6: Reconstruction of two targets in a stochastic medium, after 20 iterations
of l-BFGS(H) and using the line search Algorithm 6. (a) shows the true domain
containing two cubic targets with relative permittivity εr = 4.4 and 3.25, respectively,
in a stochastic background medium with mean εr = 4. (b) shows the 3D reconstruction
slice, and (c) a slice along y = 0.5x, z = 0.05.
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Figure 9.7: (a) Relative residuals, (b) relative norm of gradient, (c) absolute error
and (d) target and nuisance parameter step lengths for 20 iterations of l-BFGS recon-
structing domain shown in Figure 9.6

9.7 Summary and conclusions

In this chapter, we have used the polarization tensor expansion of Chapter 7 to derive

approximations to components of the Hessian matrix of the least squares data-misfit

objective function. This extends a commonly used approximation to the Hessian di-

agonal components for FWI of scalar-valued waves to include polarization and ground

reflection terms. It is also able to approximate the change in these terms as the pa-

rameters mi vary, and this approximation holds provided nearby parameters remain

unchanged – i.e. when the polarization tensor approximation holds. Since it does

not account for multiple scattering, the approximation H(m0 + δm) may not be good

where δm contains nearby perturbations. However, the Gauss-Newton approximation

which is often used to precondition l-BFGS also breaks down under this condition.

A computational benefit of the approximate Hessian is that the change in compo-

nents due to a perturbation in parameters δm is computationally cheap to calculate

(involving only multiplication) for parameters mi that are (assumed to be) of equal

length in each coordinate direction. However, where they are not the approximate

Hessian also incorporates the effect of scattering from a non-uniformly shaped param-

eter, particularly on the change in polarization of the electromagnetic wave. This is
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not accounted for in the usual approximation involving the Green’s function (for scalar

valued waves), which assumes point reflectors.

Rather than use the Hessian approximation directly to pre-condition l-BFGS, we

considered its ability to estimate the changes in Hessian terms could be best utilised

via a trust-region type method. The model used for the trust region was the 1st order

Taylor expansion, with the exact remainder term in integral form being approximated

by numerical integration of the Hessian approximation H(m0 + αp0). For a descent

direction, we took the approximate Newton direction p0 = −H−1(m0)g0. In the nu-

merical examples we have tried, the trust region algorithm generally over-estimated

the reduction in objective function, but chose a steplength close to the exact minimiser.

Where the dominant feature of the data was due to a single target, subsequent itera-

tions of l-BFGS created well-scaled descent directions, and convergence was improved

over improved over initialising with the identity matrix. Where there was significant

multiple scattering, the benefits of the Hessian approximation were less pronounced,

though it did lead to a marginally better approximation of the target’s shape for very

little additional computational cost.

Not only does the this Hessian approximation contribute to the theory of FWI

for GPR data, but this novel approach could be used for any (non-linear) inverse

problem for which there is a similar polarization tensor expansion describing the.

It remains to more thoroughly verify the approximate Hessian, both through testing

convergence of the to true Hessian components as the size of parameter tends to zero (if

computationally viable), and to numerically verify the effect of the pre-conditioner on

a wider range of inversion problems. While we have tested the Hessian approximation

for a single scatterer in a highly inhomogeneous domain, it would be interesting to

determine how well the approximation helps convergence for a domain containing a

few, distinct, nearby targets. It is likely to be less effective in such a situation, although

including some off-diagonal terms could improve its practicality. Doing so would be

straightforward, but increase the memory footprint of the matrix. Regardless, we

strongly expect it will improve convergence of l-BFGS in a wide range of problems

when compared to initialising with the identity matrix.



Chapter 10

Conclusions and Future Research

10.1 Summary and conclusions

This thesis has explored the possibility of using Full-Wave Inversion for GPR data as

a means to improve the rate anti-personnel landmines can be cleared. A significant

constraint to the speed at which landmines can be cleared is the need to remove every

piece of metal found by a metal detector, as one cannot be sure they are not part of

a landmine without further information. A GPR can be used to rule out some metal

fragments as not landmines (for example, when there is no GPR response), and we

hold that the additional quantitative information from FWI will be able to reduce the

rate of false positives further. A significant portion of this thesis has been considered

with the optimisation problem of FWI, as well as understanding sensitivity of GPR

measurements.

In Chapter 4, we presented all the material necessary to understand and implement

FWI in 2D, for which we used a finite-difference approximation of the Helmholtz equa-

tion to model the forward problem. We described the implementation of a suitable

optimisation and linesearch method to solve the inverse problem, discussed suitable

stopping criteria and modifications of the optimisation method for bound constraints,

considered a suitable regularisation strategy using the Total Variation measure, and

frequency selection strategies. We presented a near-surface reconstruction of simu-

lated data including significant non-linear effects, owing to the complex shaped and

hollow targets, for a small wideband GPR array. The use of TV regularisation and

consideration of hollow targets is novel for GPR FWI of simulated data.
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As FWI is usually carried out only on data from large arrays, but we had positive

reconstruction results of simulated data for small hand-held arrays, we wanted to more

formally understand what data was required. In Chapter 5 we explored this question

with the aid of a Singular Value Decomposition of the Jacobian matrix, which (in

the linear approximation) maps GPR data to the image. Where other studes have

looked at the singular values to undestand the conditioning of the inverse problem,

in this work we went further and explored the resulting singular vectors which give

us a vector basis describing objects we can image for a given noise level. A novel

numerical experiment was used to help determine what was required of an array in

order to distinguish nearby objects. In this experiment, we found that while a multi-

static array was certainly necessary, the degree to which it was multi-static was less

important. The results are applicable to imaging methods other than FWI, and so we

believe use of a multi-static array is important for landmine detection where there is

a need to resolve targets in a highly cluttered environment.

A 2D model of the subsurface, and scattering therein, involves the assumption that

it is invariant in one direction. This approximation is neither suitable for landmines nor

the highly cluttered environments they can be found in, and so we wish to perform FWI

in 3D. This requires a forward model which can accurately simulate the more complex

scattering of electromagnetic waves in 3D, and so in Chapter 6 we presented a combined

finite-element boundary-integral solver for electromagnetic scattering in the frequency

domain. The finite element part describes scattering in the inhomogeneous subsurface,

and the formulation was given for first order tetrahedral edge (Nédélec) elements.

The infinite subsurface was truncated with a perfectly matched layer (PML), and

transmission of electromagnetic waves from the air into the subsurface was governed by

coupling to the boundary integral part of the solver, which is a novel way of simulating

GPR data. Simulations were compared qualitatively to GPR field data with positive

results.

In Chapter 7, we presented an asymptotic formula from the literature describing

the scattering of electromagnetic waves from small inclusions using the Pólya Szegö

polarization tensor, and by application of the surface equivalence principle we gave

a novel demonstration that the expression could be re-written in a more intelligible
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way which which can be suitable for describing GPR scattering of targets in a homo-

geneous ground. We used this formula to help us understand sensitivity for FWI of

electromagnetic waves in 3D, deriving a novel expression similar to those commonly

used to understand wavenumber coverage in the image domain for FWI either in 2D

or for scalar valued waves (e.g. [159]). This expression helps to understand how cross-

polar measurements can increase resolution in GPR imaging: they add a different class

of test functions (like a quadrupole as opposed to a dipole) to describe the subsur-

face. The idea of the polarization tensor describing sensitivity was contrasted to the

more common description using Fréchet derivatives, and this was used to undertake

numerical experiments into the sensitivity of GPR arrays to mine-like targets.

Chapter 8 presented the first numerical experiments into 3D FWI for GPR data

with a small hand-held array using a FE-BI system to solve the forwad problem.

Naturally, there were significant restrictions on the size of domain and dataset we

were able to simulate due to the computational and memory cost of inversions in

3D. We re-examined our aims with regards to the landmine detection problem, that

we wish to resolve a target in a known location in the presence of clutter, and so

developed a novel algorithm for reconstructing the subsurface in a region of interest

while allowing the surrounding medium to vary. The algorithm performed well in a

numerical experiment to resolve a single target in a highly inhomogeneous stochastic

background medium. We then discussed whether the results ought to help in the mine

clearance process – safely reducing false positive detections – and an idea of what

would need to be done before the method could be used in practice.

Finally, in Chapter 9 we derived a novel approximation to elements of the Hessian

matrix using the polarization tensor approximation given in Chapter 7, which was used

to precondition the l-BFGS optimisation scheme. This extended the approximation

of the Gauss-Newton Hessian used for FWI of scalar valued waves, based on Green’s

functions, to electromagnetic waves. Since the approximation accounts for contrast

of parameters to the background medium, a novel trust region model was used to

determine a good initial step length for the optimisation problem. While the exact

expression for the Hessian used is only applicable to scattering of electromagnetic

waves in a bounded domain, the same principle could be used for any application for

which a similar asymptotic approximation exists.
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10.2 Future work

In order to realise full-wave inversion as a field-ready imaging method for landmine

detection there are three main areas of future work that would need to be undertaken:

improvements and verification of the forward model; development of the inversion

algorithm; and a long term testing program of field data,

Firstly, the forward model needs verification against well-controlled GPR data,

to be sure of its accuracy (particularly, an error bound on how inaccurate it is). It

could also be made more efficient in several places: the PML region has not had a

thorough treatment in terms of finding the most efficient parameters (such as width,

the rate at which it is increased); higher order basis functions are almost certainly more

appropriate, as one needs many linear elements to accurately represent a wave-like

function; and the efficiency of the combined FE-BI system also needs to be considered.

A more robust form of CFIE may be required for field data, or one may find a time-

domain solver will inevitably be preferred. None of these areas require novel research

and development, as are already the topic of other research fields, but it is necessary

to undertake such studies both to be sure of the accuracy of a fielded system and to

reduce computation time as much as possible.

Secondly, the efficiency of the inversion algorithm ought to be improved in order

to deal with real data fast enough not to deter de-mining personnel from using the

equipment – i.e. close to real time imaging. There is of course a wait for development of

portable computing equipment to be powerful enough to use such a computationally

intensive method, but increasing the algorithm (and forward solver) efficiency will

both bring forward the day when such methods are plausible, or allow cheaper (less

powerful) devices to be used thereafter. One should not be deterred by the long

lead time before powerful enough portable computers are available: landmines will be

problem for a long time to come without new effective means of clearance. Specific

areas of improving algorithm efficiency include appropriate choice of parameters for
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field data, such as linesearch (Wolfe) parameters, the l-BFGS memory needed, and the

amount of regularisation required for the noise level of the GPR equipment used.

We have only considered reconstruction of a domain with a flat ground surface,

though a rough or unevan ground can cause significant difficulties in imaging the

subsurface. While it was beyond the scope of this work, the affect of a realistic non-flat

ground surface on spatial sensitivity and inversion results must be studied. Moreover,

to implement FWI in the field using the algorithms we have presented would require a

preliminary algorithm to calculate the topography of the ground surface. This could

be done using the first time of arrival data, caused by reflections from the ground

surface, which is an easier problem to solve than imaging the subsurface (it is a linear

mildly ill-posed inverse problem).

For 3D inversions, implementing TV by iteratively re-weighting l-BFGS is almost

certainly inefficient, as this will require many iterations in order for the smoothing

parameter ε to be reduced significantly so that TVε(m) is a good approximation to

TV (m). Instead, a suitable primal-dual method will need to be implemented, such

as a split Bregman algorithm [62] which is particularly suited to large-scale problems.

There will also be work comparing the rate of convergence of l-BFGS, for near-field

surface measurements of GPR field data, to other optimisation schemes. As men-

tioned in Chapter 4, hybrid quasi-Newton-CG methods may yield better convergence,

as might a truncated Newton method. We also need to do more to verify the Hes-

sian approximation presented in Chapter 9, whether by doing more to determine its

effectiveness in a wider range of problems, or by directly determining how closely it

approximates the components of the true Hessian matrix.

Most importantly, in order to use FWI in a hazardous application such as de-

mining, long term field testing is required to determine statistical accuracies of recon-

structions given the fit to the data. Such testing needs to be undertaken in the full

range of situations landmines are found, including soil types and humidities, roughness

and topography of the ground surface, and range and amount of clutter objects and

inhomogeneities in the ground. As discussed in Section 8.5, we need to be sure that

when an inversion result shows there is not a landmine, we need to know how different

to a mine-like object the reconstruction needs to be in order to declare a target not a
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mine with statistical certainty. This would likely involve comparing the reconstruction

to a bank of known mine types, and showing that if any one of them was present in the

reconstructed background (including clutter) that the fit to the recorded GPR data

would be far worse.

Inevitably, such certainty in reconstruction results also requires development of a

multi-static hand-held array suitable for FWI. As discussed in Chapters 5 and 7, we

believe a system with multi-static and cross-polar measurements is required for 3D

FWI of GPR data, but the number, positioning and polarization of antennas which is

optimal (for, say, a maximum equipment cost) is to be determined. A useful measure

of ‘optimal’ would be the system which gives the greatest differences in data between

landmines and common clutter objects, but we must also consider the need to resolve

targets in highly inhomogeneous ground (and the two measures may conflict). The

question of the optimal system is then non-trivial, would need both numerical studies

and empirical testing with lab and field data, and likely involve some compromise for

the cost or complexity of the system.
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Appendix A

Definitions and Formulae

A.1 Function spaces

We give here the definitions of function spaces required for this thesis. For further

reading, and an introduction to functional analysis, see for example Monk [119, Chap-

ters 2-3]

Let Ω ⊂ Rn. The Lebesgue space Lp(Ω) is the space of all measurable functions

f : ω → R (or C) whose absolute value raised to the power p is integrable over Ω,

Lp(Ω) =

{
f :

∫
Ω

|f |p dΩ <∞
}
, (A.1.1)

equipped with norm

‖f‖Lp(Ω) =

(∫
Ω

|f |p dΩ

)1/p

. (A.1.2)

The space L2(Ω) is a Hilbert space equipped with inner product

〈f, g〉L2(Ω) =

∫
Ω

fg dΩ. (A.1.3)

For vector valued functions F : Ω → R3 (or C3), the space Lp(Ω) is the space of all

measurable vector functions

Lp(Ω) =

{
F :

∫
Ω

|F|p dΩ <∞
}
, (A.1.4)

equipped with norm

‖F‖Lp(Ω) =

(∫
Ω

|F|1/p dΩ

)p
. (A.1.5)

The space L2(Ω) is a Hilbert space equipped with inner product

〈F,G〉L2(Ω) =

∫
Ω

F ·G dΩ. (A.1.6)
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The Hilbert space H1(Ω) is the space of functions f which are square integrable,

and whose first derivative is square integrable,

H1(Ω) = {f : f ∈ L2(Ω),∇f ∈ L2(Ω)}. (A.1.7)

This space is alternately written as L2
grad(Ω) in some texts. It is equipped with inner

product

〈f, g〉H1(Ω) = 〈f, g〉L2(Ω) + 〈∇f,∇g〉L2(Ω) , (A.1.8)

which defines the norm

‖f‖2
H1(Ω) = 〈f, f〉 . (A.1.9)

The Hilbert spacesH1(Ω) are also the Sobolev spaceW 1,2(Ω). More generally, Hk(Ω) =

W k,2(Ω).

For vector valued functions F : Ω→ R3 (or C3), we have the two Hilbert spaces

H1
div(Ω) ={F : F ∈ L2(Ω),∇ · F ∈ L2(Ω)}, (A.1.10)

H1
curl(Ω) ={F : F ∈ L2(Ω),∇× F ∈ L2(Ω)}. (A.1.11)

These are equipped with inner products

〈F,G〉H1
div(Ω)2 = 〈F,G〉L2(Ω) + 〈∇ · F,∇ ·G〉L2(Ω) (A.1.12)

and

〈F,G〉H1
curl(Ω) = 〈F,G〉L2(Ω) + 〈∇ × F,∇×G〉L2(Ω) , (A.1.13)

respectively. These inner products define the norms

‖F‖2
H1
· (Ω) = 〈F,F〉H1

· (Ω) . (A.1.14)

These Hilbert spaces are alternatively written H1
div(Ω) = H1(div,Ω) = L2

div(Ω) and

H1
curl(Ω) = H1(curl,Ω) = L2

curl(Ω) in some texts.

A.2 Landau notation

Landau notation introduces two “order of magnitude” operators used throughout this

thesis, little-o ad Big-O notation. Little-o provides a function which is of lower order

magnitude. Formally, let f, g : X ⊂ R→ R, then if

lim
x→c

f(x)

g(x)
= 0, c ∈ R, (A.2.1)
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then we say that

f(x) = o(g(x)) as x→ c. (A.2.2)

Big-O provides a function which is at most the same magnitude. Formally, let

f, g : X ⊂ R→ R, then if there exists an M > 0 such that

lim
x→c

∣∣∣∣f(x)

g(x)

∣∣∣∣ = 0, c ∈ R, (A.2.3)

we say that

f(x) = O(g(x)) as x→ c. (A.2.4)

Little-o is the stronger statement,

f(x) = o(g(x)) as x→ c ⇒ f(x) = O(g(x)) as x→ c. (A.2.5)

A.3 Linearised step length

Pica et al. [132] give a linearised step length for use in FWI based on a finite difference

approximation of
∂F
∂pk

, where pk is the descent direction. Consider the Misfit function

(for real valued F)

J (mk + αpk) =
1

2
[F(mk + αpk)− d]T [F(mk + αpk)− d]

=
1

2
[F(mk) + α∇F(mk)pk − d]T

× [F(mk) + α∇F(mk)pk − d] +O(|αpk|2),

(A.3.1)

where ∇F(mk)pk =
∂F
∂pk

∣∣∣∣
mk

. The optimal step length α would minimise J , and so

has
∂J (mk)

∂α
= 0. (A.3.2)

Differentiating (A.3.1) with respect to α, one obtains

∂J
∂α

= [F(mk) + α∇F(mk)pk − d]T [∇F(mk)pk] +O(|αpk|2). (A.3.3)

Equating to zero and neglecting higher order terms, one finds the α which minimises

J along pk is given by

αk = − [F(mk)− d]T [∇F(mk)pk]

[∇F(mk)pk]T [∇F(mk)pk]
. (A.3.4)
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Approximating the directional derivative of F with first order finite differences, one

has

αk = −κ [F(mk)− d]T [F(mk)−F(mk + κpk)]

[F(mk)−F(mk + κpk)]T [F(mk)−F(mk + κpk)]
, (A.3.5)

where κ ∈ R+ is a suitably small number.

Since we have a complex valued F as well as a regularisation term R, the cost

function becomes

J (mk + αpk) =
1

2
[F(mk) + α∇F(mk)pk − d]T

× [F(mk) + α∇F(mk)pk − d]

+R(mk) + α∇R(mk)
Tpk +O(|αpk|2).

(A.3.6)

Differentiating (A.3.6) with respect to α,

∂J
∂α

=<{[F(mk) + α∇F(mk)pk − d]}T <{[∇F(mk)pk]}

+ ={[F(mk) + α∇F(mk)pk − d]}T ={[∇F(mk)pk]}

+∇R(mk)pk +O(|αpk|2),

(A.3.7)

and so we have the approximate minimiser

αk =− κ
(

[<{F(mk)− d}]T [<{F(mk)−F(mk + κpk)}]

+ [={F(mk)− d}]T [={F(mk)−F(mk + κpk)}] + κ∇R(mk)
Tpk

)
÷ [F(mk)−F(mk + κpk)]

T [F(mk)−F(mk + κpk)].

(A.3.8)

A.4 Stochastic media model

Jiang et al. [73, 78] give a stochastic media model with an ellipsoidal autocorrelation

function, which is able to give a fractal spatial description of the subsurface over

a range of length scales, from layer-like to granular medium types. The ellipsoidal

autocorrelation function is given by

f(x, y, z) = exp

[
−
(
x2

a2
+
y2

b2
+
z2

c2

)1/(1+r)
]
, (A.4.1)

where a, b and c are the autocorrelation lengths, and r is a roughness factor. r = 1

corresponds to an exponential ellipsoidal, r = 0 a Gaussian ellipsoidal, and 0 < r < 1

an intermixed ellipsoidal autocorrelation function. Larger values of a, b and b create

larger-scale perturbations. Setting a, b� c will create a layer-like medium.
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To generate the random medium, we first Fourier transform f ,

F (kx, ky, kz) =

∫∫∫ ∞
−∞

f(x, y, z) exp [−2πi(kxx+ kyy + kzz)] dx dy dz. (A.4.2)

The power spectrum F is combined with a stochastic field θ(kx, ky, kz) ∈ [0, 2π] created

by a (pseudo) random number generator and inverse Fourier transformed, resulting in

the stochastic perturbation

µ(x, y, z) =

∫∫∫ ∞
−∞

F (kx, ky, kz) exp(iθ) exp [−2πi(kxx+ kyy + kzz)] dkx dky dkz. (A.4.3)

A stochastic perturbation to the background permittivity is then given by

φ =
v

σ
[µ− µ̄], (A.4.4)

where µ̄ is the mean value of µ, σ is the variance of µ and v the required variance of

the stochastic model.
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B.1 Nuisance parameter linesearch

The file nuisance search.m [194] computes step lengths αt via a strong Wolfe line

search, and αn(αt) via a linearised step length, as in Algorithm 6.

1 func t i on [ alpha , phi a lpha , g r ad f ] = nu i sance s ea r ch ( x , p , n indx , data , alpha 1 , alpha max , f ,

g , mdl , params , CFIEp , phi 0 , g r ad f )

%NUISANCE SEARCH

3 %[ alpha , phi a lpha , g r ad f ] = nu i sance s ea r ch ( x , p , n indx , data , alpha 1 , alpha max , f , g , mdl ,

params , CFIEp , phi 0 , g r ad f )

% Perform stong Wolfe search in d i r e c t i o n p , where parameters p( n indx )

5 % are nuisance parameters and de f ined i m p l i c i t l y by minimis ing in

% d i r e c t i o n p(˜ n indx ) . p( n indx ) i s c a l c u l a t e d by a l i n e a r

7 % approximation , which r e s u l t s in e i t h e r 1 ( i f t h i s i s c l o s e to 0 or

% alpha f o r p(˜ n indx ) ) or 2 a d d i t i o n a l forward s o l v e s per co s t

9 % eva luat i on .

%

11 % INPUTS:

% x − cur rent paramter model

13 % p − update d i r e c t i o n . Ei ther p or p(˜ n indx ) must be a

% descent d i r e c t i o n at x

15 % n indx − index o f nuisance paramters

% data − data to be f i t t e d

17 % alpha 1 − i n i t i a l s tep length

% alpha max − maximum step length

19 % f − s t r i n g or func t i on handle to o b j e c t i v e

% g − s t r i n g o f func t i on handle to grad i ent

21 % mdl − FEM t r i a n g u l a t i o n model in EIDORS format

% params − parameter s t r u c t with forward , i nv e r s e and l i n e

23 % search s e t t i n g s

% CFIEp − boundary i n t e g r a l system matr i ce s

25 % phi 0 − o b j e c t i v e value at x

% grad f − grad i ent at x

27 %

% OUTPUTS:

29 % alpha − s tep l eng ths alpha =[ a lpha t , a lpha n ]

% phi a lpha − o b j e c t i v e value f ( x + alpha p)

31 % grad f − grad i ent g (x + alpha p)

%

33 %

% ( c ) 2015 FM Watson

35

% Check params/ s e t d e f a u l t va lues

37 i f i s f i e l d ( params . l i n e , ’ c1 ’ )==0

params . l i n e . c1 = 1e−3;

39 end

41 i f i s f i e l d ( params . l i n e , ’ c2 ’ )==0

params . l i n e . c2 = 0 . 9 ;

43 end

45 i f i s f i e l d ( params . l i n e , ’ max it ’ )==0

params . l i n e . max it = 10 ;

47 end

49

i f i s f i e l d ( params . l i n e , ’ a lpha s t ep ’ )

51 a lpha s t ep = params . l i n e . a lpha s t ep ;

i f i s c h a r ( a lpha s t ep )

53 switch params . l i n e . a lpha s t ep

55 % Calc step so l a s t i s alpha max

case ’ root ’

57 a lpha s t ep = nthroot ( alpha max/ alpha 1 , params . l i n e . max it ) ;
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59 otherwi se

e r r o r ( ’ params . l i n e . a lpha s t ep can cu r r en t l y take a numeric (>1) or the s t r i n g ” root

” ’ ) ;

61 end

end

63

e l s e

65 a lpha s t ep = 1 . 5 ;

end

67

% min step

69 i f i s f i e l d ( params . l i n e , ’ de l ta min ’ )==0

params . l i n e . de l ta min = 1e−3;

71 de l ta min = params . l i n e . de l ta min ;

e l s e

73 de l ta min = 1e−3;

end

75

% min d i s tance to i n t e r p o l a t e

77 i f i s f i e l d ( params . l i n e , ’ n u i s d e l t a ’ )==0

params . l i n e . n u i s d e l t a = 1e2 ∗ de l ta min ;

79 n u i s d e l t a = 1e2 ∗ de l ta min ;

e l s e

81 n u i s d e l t a = params . l i n e . n u i s d e l t a ;

end

83

% max nuisance step

85 i f i s f i e l d ( params . l i n e , ’ nu is max step ’ )==0

params . l i n e . nuis max step = 1 . 5 ;

87 nu i s c = params . l i n e . nuis max step ;

e l s e

89 nu i s c = params . l i n e . nuis max step ;

end

91

% Check F

93 i f i s c h a r ( f )

F = s t r2 func ( f ) ;

95 e l s e i f i s a ( f , ’ f unc t i on hand l e ’ )

F = f ;

97 e l s e

e r r o r ( ’ expect ing a func t i on f o r input F ’ )

99 end

101 % Check G

i f i s c h a r ( g )

103 G = st r2 func ( g ) ;

e l s e i f i s a ( f , ’ f unc t i on hand l e ’ )

105 G = g ;

e l s e

107 e r r o r ( ’ expect ing a func t i on f o r input g ’ )

end

109

% nuisance and model parameter update d i r e c t i o n s

111 p mdl = ze ro s ( s i z e (p) ) ;

p nu i s = ze ro s ( s i z e (p) ) ;

113

t indx = s e t d i f f ( 1 : l ength (x ) , n indx ) ;

115

p nu i s ( n indx ) = p( n indx ) ;

117 p mdl ( t indx ) = p( t indx ) ;

119

% I n i t i a l i s e

121 a lpha o ld = 0 ; alpha new = alpha 1 ; k=1;
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123 % i n i t i a l va lue / d i r e c t i o n a l d e r i v a t i v e

% [ phi 0 , ˜ , g r ad f ] = F(x , data , mdl , params ) ;

125

% Descent d i r e c t i o n grad i ent at alpha=0 −− NB w i l l remove contn from

127 % nuisance params

d ph i 0 = dot ( grad f , p mdl ) ;

129 d p h i 0 f u l l = dot ( grad f , p ) ;

131 ph i o ld = phi 0 ;

d ph i o l d = d ph i 0 ;

133

135 % I n i t i a l i s e ? seems to need i t ?

alpha = alpha 1 ;

137 ph i a lpha = ph i o ld ;

139 % i n i t i a l i s e i n t e r p o l a t i o n po int s

ALPHX = zero s (2∗params . l i n e . max it , 2) ;

141 Gradpts = ze ro s ( params . l i n e . max it , 2 ) ;

Gradpts (1 , 2 ) = d ph i 0 ;

143

i f ( d ph i 0 >=0) && ( d p h i 0 f u l l >=0) % Check descent d i r e c t i o n

145 f p r i n t f ( ’ grad f . p mdl = %6.4g , g r ad f . p = %6.4g\n ’ , d phi 0 , d p h i 0 f u l l ) ;

d i sp ( ’ E i ther p or p mdl must be a descent d i r e c t i o n f o r f at x ’ ) ;

147 alpha = 0 ;

ph i a lpha = phi 0 ;

149 return ;

end % i f descent

151

% Indx to ALPHX

153 k to t = 1 ;

155 % Save f i r s t grad

g r a d f 0 = grad f ;

157

% Run opt imi sa t i on

159 whi le k<=params . l i n e . max it

s t r = s p r i n t f ( ’ nu i s ance s ea r ch i t e r a t i o n %i , alpha=%6.4 f ’ , k , alpha new ) ;

161 di sp ( s t r ) ;

%

163

[ phi new , a lpha nuis , nu i s s t ep , de l ta d , E c e l l ] = nu i s ance inne r (x + alpha new ∗ p mdl ) ;

165

i f f l ag >0

167 alpha=a lpha o ld ;

ph i a lpha = ph i o ld ;

169 break

end

171

% New value does not s a t i s f y s u f f i c i e n t dec rease cond i t i on

173 i f phi new> phi 0 + params . l i n e . c1∗alpha new∗ d ph i 0 | | ( phi new >= ph i o ld && k>1)

175 [ alpha , a lpha nuis , ˜ , phi a lpha , g r ad f ] = nuisance zoom ( alpha old , alpha new , ph i o ld ,

d ph i o ld , phi new ) ;

177 break

end % i f

179

% Calc g rad i ent

181 di sp ( ’ c a l c u l a t i n g grad i ent . . . ’ )

[ g r ad f ] = G( x + alpha new ∗ p mdl + nu i s s t ep , de l ta d , Ece l l , mdl , params , CFIEp ) ;

183 i f f l ag >0

185 alpha=a lpha o ld ;

ph i a lpha = ph i o ld ;

187
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break

189 end

191 % D i r e c t i o n a l d e r i v a t i v e

d phi new = dot ( grad f , p mdl ) ;

193

% S a t i s f i e s Wolfe cond i t i on s − break

195 i f abs ( d phi new ) <= −params . l i n e . c2 ∗ d ph i 0

197 alpha = alpha new ;

ph i a lpha = phi new ;

199

break ;

201 end % i f

203

% Inc r ea s i ng func t i on

205 i f d phi new >=0

207 [ alpha , a lpha nuis , ˜ , phi a lpha , g r ad f ] = nuisance zoom ( alpha new , a lpha o ld , phi new ,

d phi new , ph i o ld ) ;

209 break

end % i f

211

% I f alpha was s u f f i c i e n t l y c l o s e to alpha max , approx at max step

213 % length so alpha max i s cons t ra ined minimum

i f abs ( alpha max − alpha new ) < params . l i n e . de l ta min

215 alpha = alpha new ;

ph i a lpha = phi new ;

217

break

219

end

221

% update i t e r a t i o n number

223 k = k+1;

225 % Indx to ALPHX

k to t = k to t + 1 ;

227

% Save grad i ent i n t e rp pts

229 Gradpts (k , 1 ) = alpha new ;

Gradpts (k , 2 ) = phi a lpha ;

231

% Save old alpha

233 a lpha o ld = alpha new ;

235 % Try in t e rp pt

i f k>=3

237 % Quadratic i n t e rp

a l p h i n t e r p g r a d s = quad interp vvv ( Gradpts(1+k−3 ,1) , Gradpts(2+k−3 ,1) , Gradpts(3+k−3 ,1) ,

. . .

239 Gradpts(1+k−3 ,2) , Gradpts(2+k−3 ,2) , Gradpts(3+k−3 ,2) ) ;

241 e l s e

% Linear i n t e rp

243 a l p h i n t e r p g r a d s = Gradpts (2 , 2 ) ∗Gradpts (2 , 1 ) /( Gradpts (1 , 2 ) − Gradpts (2 , 2 ) ) ;

245 end

247 % Take the l a r g e r s tep o f i n t e r p o l a t e d and

alpha new = max( a lpha s t ep ∗alpha new , a l p h i n t e r p g r a d s ) ;

249

% Check f o r max step

251 alpha new = min( alpha new , alpha max ) ;
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253

% update old phi

255 ph i o ld = phi new ;

257 end % whi le

259 alpha = [ alpha , a lpha nu i s ] ;

261 % not found

i f k==params . l i n e . max it

263 alpha = alpha new ;

d i sp ( ’ l i n e m a x i t reached without s a t i s f y i n g Wolfe cond i t i on s ’ ) ;

265 end % i f

267

% Check didn ’ t i n c r e a s e

269 i f ph i a lpha > phi 0

ph i a lpha = phi 0 ;

271 alpha = [ 0 , 0 ] ;

g r ad f = g r a d f 0 ;

273 d i sp ( ’ could not reduce funct ion , r e tu rn ing 0 step ’ )

end

275

277 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% I m p l i c i t l y de f ined nuisance parameters

279 % approximate minimiser along p nu i s in [ 0 , alpha max ]

func t i on [ ph i inner , a lpha inner , nu i s s t ep , de l ta d , E c e l l ] = nu i s ance inne r ( x t r i a l )

281 d i sp ( ’ s o l v i ng f o r i m p l i c i t l y de f ined v a r i a b l e s . . . ’ )

283

% Check i f nearby i n t e r p o l a n t

285 i f nu i s c ==0

[ ph i inner , de l ta d , ˜ , E c e l l ] = F( x t r i a l , data , mdl , params , CFIEp) ;

287 a lpha inne r = 0 ;

289 e l s e i f any ( abs (ALPHX( : , 1 ) − alpha new ) < n u i s d e l t a ) && k to t >=3

291 % Unique ordered va l s

ALPHXINT = unique (ALPHX, ’ rows ’ ) ;

293

% I n t e r p o l a t e

295 a lpha inne r = int e rp1 (ALPHXINT( : , 1 ) , ALPHXINT( : , 2 ) , alpha new , ’ pchip ’ , ’ extrap ’ ) ;

297 % Check in range

a lpha inne r = min ( [ a lpha inner , alpha max , nu i s c ∗alpha new ] ) ;

299 n u i s s t e p = a lpha inne r ∗ p nu i s ;

301 f p r i n t f ( ’ i n t e r p o l a t e d t r i a l s tep a l p h a i=%f \n ’ , a lpha inne r )

303 % Tr ia l

[ ph i inner , de l ta d , ˜ , Ec e l l ] = F( x t r i a l + a lpha inne r ∗p nuis , data , mdl , params , CFIEp

) ;

305

307 % I f i n c r e a s e s on phi o ld , t ry 0 step

i f ph i i nne r > ph i o ld && a lpha inne r >= delta min

309 %

disp ( ’ i n c r ea s ed at i n t e r p o l a t i o n step , t ry ing i m p l i c i t s tep a l p h a i=0 ’ )

311 [ ph i inner0 , de l ta d0 , ˜ , Ece l l 0 ] = F( x t r i a l , data , mdl , params , CFIEp) ;

313 % Check i f b e t t e r

i f ph i i nne r0 < ph i i nne r

315 a lpha inne r = 0 ;

ph i i nne r = ph i i nne r0 ;



APPENDIX B. SELECTED CODE 253

317 E ce l l = Ece l l 0 ;

d e l t a d = de l ta d0 ;

319 n u i s s t e p = ze ro s ( s i z e ( p nu i s ) ) ;

321 % Save be t t e r value

ALPHX( k tot , 1 ) = alpha new ;

323 ALPHX( k tot , 2 ) = 0 ;

end

325

end

327

329 % Standard method

e l s e

331

i f nu i s c < 1

333 a lpha inne r1 = nu i s c ∗ alpha new ;

e l s e

335 a lpha inne r1 = alpha new ;

end

337

di sp ( ’ t r i a l i m p l i c i t s tep a l p h a i=0 ’ )

339 [ ph i inner0 , de l ta d0 , ˜ , Ece l l 0 ] = F( x t r i a l , data , mdl , params , CFIEp) ;

341 %

% p h i i n n e r o l d = ph i i nne r0 ;

343

% Star t with ta rg e t s tep

345 % a lpha inne r = 2∗alpha new ;

347 % Test un i t s tep length

f p r i n t f ( ’ t r i a l i m p l i c i t s tep a l p h a i=%f \n ’ , a lpha inne r1 )

349 [ ph i inner1 , de l ta d1 , ˜ , Ece l l 1 ] = F( x t r i a l + a lpha inne r1 ∗p nuis , data , mdl , params ,

CFIEp) ;

351 % Regul con t r i bu t i on

[ ˜ , dR0 ] = Reg( x t r i a l , params , mdl ) ;

353 dR0 = params . reg . lambda ∗ dR0 ;

355 [ ˜ , dR1 ] = Reg( x t r i a l + a lpha inne r1 ∗p nuis , params , mdl ) ;

dR1 = params . reg . lambda ∗ dR1 ;

357

% Centred approxin ( combine Taylor expans ions at 0 , alpha ) )

359 dR = (dR0 + dR1) /2 ;

361 % Linea r i s ed step length

a lpha inne r = −a lpha inne r1 ∗ ( r e a l ( de l t a d1 ( : ) − de l t a d0 ( : ) ) . ’ ∗ r e a l ( de l t a d0 ( : ) ) . . .

363 + imag ( de l t a d1 ( : ) − de l t a d0 ( : ) ) . ’ ∗ imag ( de l t a d0 ( : ) ) . . .

+ a lpha inne r1 ∗dot (dR, p nu i s ) ) . . .

365 /(norm( de l t a d1 ( : ) − de l t a d0 ( : ) ) ˆ2) ;

367

369 % Check not too f a r

a lpha inne r = min ( [ a lpha inner , alpha max , nu i s c ∗ a lpha inne r1 ] ) ;

371

373 % Safeguard

% Too shor t a step , or func t i on inc r ea s ed but i n t e r p o l a t i o n i n c r e a s e s

375 i f a lpha inne r <= 0.2 ∗ a lpha inne r1 | | ( a lpha inne r >= alpha new && ph i inne r1 >=

ph i inne r0 )

a lpha inne r = 0 ;

377 ph i i nne r = ph i i nne r0 ;

Ec e l l = Ece l l 0 ;

379 de l t a d = de l ta d0 ;

n u i s s t e p = ze ro s ( s i z e ( p nu i s ) ) ;
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381

% Close to a lpha inne r1

383 e l s e i f a lpha inne r >= 0.95 ∗ a lpha inne r1 && a lpha inne r <= 1.1 ∗ a lpha inne r1

a lpha inne r = a lpha inne r1 ;

385 ph i i nne r = ph i i nne r1 ;

d e l t a d = de l ta d1 ;

387 Ece l l = Ece l l 1 ;

n u i s s t e p = a lpha inne r1 ∗ p nu i s ;

389

e l s e

391 % Test l i n e a r step length

f p r i n t f ( ’ t r i a l i m p l i c i t s tep a l p h a i=%f \n ’ , a lpha inne r )

393 [ ph i inner , de l ta d , ˜ , Ec e l l ] = F( x t r i a l + a lpha inne r ∗p nuis , data , mdl , params ,

CFIEp) ;

n u i s s t e p = a lpha inne r ∗ p nu i s ;

395

end

397

% Check t h i s didn ’ t i n c r e a s e

399 i f ph i i nne r0 < min( ph i inner1 , ph i i nne r )

a lpha inne r = 0 ;

401 ph i i nne r = ph i i nne r0 ;

Ec e l l = Ece l l 0 ;

403 de l t a d = de l ta d0 ;

n u i s s t e p = ze ro s ( s i z e ( p nu i s ) ) ;

405

e l s e i f ph i i nne r1 < min( ph i inner0 , ph i i nne r )

407 a lpha inne r = a lpha inne r1 ;

ph i i nne r = ph i i nne r1 ;

409 de l t a d = de l ta d1 ;

Ec e l l = Ece l l 1 ;

411 n u i s s t e p = a lpha inne r1 ∗ p nu i s ;

end

413

% Save

415 ALPHX( k tot , 1 ) = alpha new ;

ALPHX( k tot , 2 ) = a lpha inne r ;

417

end

419

421 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% zoom search in p mdl

423 func t i on [ alpha , a lpha nuis , nu i s s t ep , phi a lpha , g r ad f ] = nuisance zoom ( a lpha lo , a lpha hi ,

ph i l o , d ph i l o , ph i h i )

s t r i i = s p r i n t f ( ’ zoom c a l l e d with a lpha l o =%6.4f , a lpha h i =%6.4 f ’ , a lpha lo , a lpha hi ’ )

;

425 d i sp ( s t r i i ) ;

427 zoom max it = 5 ;

429 f o r kk=1: zoom max it

% Determine range i s wide enough f o r s u f f i c i e n t move / f o r c e smal l s tep

431 % a lpha l o < de l ta min co r r e c t ed out s ide loop

i f abs ( a lpha h i − a lpha l o ) < 1 .1 ∗de l ta min

433 alpha new = a lpha l o ;

ph i a lpha = p h i l o ;

435 % grad f w i l l e i t h e r be f o r a lpha lo , or w i l l be c a l c u l a t e d during

% catch at end o f func t i on

437 break

439 end

441

% I n t e r p o l a t e to f i nd min us ing appropr ia te cubic or quadrat i c s p l i n e

443 i f kk==1
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% Have a d d i t i o n a l g rad i ent i n f o

445 i f a l pha l o > 0

a lpha in t = cub i c i n t e rp vvgg ( a lpha lo , a lpha hi , 0 , ph i l o , ph i h i , d ph i l o ,

d ph i 0 ) ;

447

% Ensure doesn ’ t tend to i n f i n i t y , i n t e r p o l a t i o n wasn ’ t s i n g u l a r

449 % use quadrat i c i f so ( f u r t h e r sa f eguard ing f o l l o w s )

i f a l pha in t > max( a lpha lo , a lpha h i ) + de l ta min | | i snan ( a l pha in t )

451 a lpha in t = quad interp vvg ( a lpha lo , a lpha hi , ph i l o , ph i h i , d p h i l o ) ;

end

453

% No a d d i t i o n a l g rad i ent i n f o as p h i l o=0

455 e l s e

% Quadratic i n t e r p o l a t i o n minimum

457 a lpha in t = quad interp vvg ( a lpha lo , a lpha hi , ph i l o , ph i h i , d p h i l o ) ;

end

459 e l s e

% Have ph i o ld i n f o

461 a lpha in t = cub i c i n t e rp vvvg ( a lpha lo , a lpha hi , a lpha o ld , ph i l o , ph i h i ,

ph i o ld , d p h i l o ) ;

463 % Ensure doesn ’ t tend to i n f i n i t y , i n t e r p o l a t i o n wasn ’ t s i n g u l a r

% use quadrat i c i f so ( f u r th e r sa f eguard ing f o l l o w s )

465 i f a l pha in t > max( a lpha lo , a lpha h i ) + de l ta min | | i snan ( a l pha in t )

a l pha in t = quad interp vvg ( a lpha lo , a lpha hi , ph i l o , ph i h i , d p h i l o ) ;

467 end

469 end

471 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Safeguard to ensure in range , s u f f i c i e n t move , c l o s e r to a lpha lo ,

473 % i s n t NaN

i f a l pha in t < min( a lpha lo , a lpha h i ) + de l ta min | | . . .

475 a lpha in t > max( a lpha lo , a lpha h i ) − de l ta min | | . . .

abs ( a l pha in t − a lpha l o ) > abs ( a l pha in t − a lpha h i ) | | . . .

477 i snan ( a l pha in t )

479 alpha new = ( a lpha l o + a lpha h i ) /2 ;

481 % Otherwise acceptab l e

e l s e

483 alpha new = a lpha in t ;

485 end

487 s t r i i = s p r i n t f ( ’ zoom i t e r a t i o n %i , a l pha l o =%6.4f , a lpha h i =%6.4f , alpha=%6.4 f ’ , kk

, a lpha lo , a lpha hi , alpha new ) ;

d i sp ( s t r i i ) ;

489 d i sp ( ’ c a l c u l a t i n g co s t . . . ’ ) ;

491 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% cos t f o r s tep length alpha

493 [ phi a lpha , a lpha nuis , nu i s s t ep , d e l t a d i n , E c e l l i n ] = nu i s ance inne r (x +

alpha new ∗ p mdl ) ;

495

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

497 % Increased , choose step length in ( alpha low , alpha )

i f ph i a lpha > phi 0 + params . l i n e . c1 ∗ alpha new ∗ d ph i 0 | | . . .

499 ph i a lpha >= p h i l o

% Save old

501 a lpha o ld = a lpha h i ;

ph i o l d = ph i h i ;

503

% c a l c u l a t e co s t

505 a lpha h i = alpha new ;
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507

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

509 % Not inc r ea s ing , check grad i ent cond i t i on

e l s e

511

% grad i ent

513 di sp ( ’ c a l c u l a t i n g grad i ent . . . ’ ) ;

[ g r ad f ] = G( x + alpha new ∗ p mdl + nu i s s t ep , d e l t a d i n , E c e l l i n , mdl , params ,

CFIEp ) ;

515

d ph i a lpha = dot ( g r ad f , p mdl ) ;

517

s t r i i = s p r i n t f ( ’ d phi ( alpha )=%6.4 f ’ , d ph i a lpha ) ;

519 d i sp ( s t r i i ) ;

521 % S a t i s f i e s Wolfe cond i t i ons , re turn value

i f abs ( d ph i a lpha ) <= −params . l i n e . c2 ∗ d ph i 0

523 break ;

525 e l s e i f kk == zoom max it

d i sp ( ’ l i n e m a x i t reached without s a t i s f y i n g curvature cond i t i on ’ ) ;

527

end

529

531 % Choose new range ( a lpha lo , a lpha h i )

% Determine which s i d e o f alpha min l i e s

533 i f d ph i a lpha ∗ ( a lpha h i − a lpha l o ) >=0

% Save old −− a lpha l o being dropped

535 a lpha o ld = a lpha h i ;

ph i o l d = ph i h i ;

537

% update a lpha h i

539 a lpha h i = a lpha l o ;

541

e l s e

543 % Save old −− a lpha l o being dropped

a lpha o ld = a lpha l o ;

545 ph i o ld = p h i l o ;

547 end

549 %

p h i l o = phi a lpha ;

551 d p h i l o = d ph i a lpha ;

a l pha l o = alpha new ;

553 end % i f

555 % Add to t o t a l i t s ( indx to ALPHX)

k to t = k to t + 1 ;

557

end % whi le

559 % For return

alpha = alpha new ;

561

% May not be de f ined on max i t s

563 i f e x i s t ( ’ g r ad f ’ , ’ var ’ )==0

[ g r ad f ] = G( x + alpha new ∗ p mdl + nu i s s t ep , d e l t a d i n , E c e l l i n , mdl , params ,

CFIEp ) ;

565 end

567 end % nuisance zoom func t i on

569 end



APPENDIX B. SELECTED CODE 257

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

571

573

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

575 % I n t e r p o l a t i o n minima

% Quadratic , f ( x1 ) , f ( x2 ) , f ’ ( x1 )

577 func t i on x min = quad interp vvg ( x1 , x2 , v1 , v2 , g1 )

va l s = [ x1 ˆ2 , x1 , 1 ; x2 ˆ2 , x2 , 1 ; 2∗x1 , 1 , 0 ] ;

579 c o e f s = va l s \ [ v1 ; v2 ; g1 ] ;

581 % Tr ia l va lue i s minimiser o f quadrat i c

x min = −c o e f s (2 ) /(2∗ c o e f s (1 ) ) ;

583 end

585

% Quadratic , f ( x1 ) , f ( x2 ) , f ( x3 )

587 func t i on x min = quad interp vvv ( x1 , x2 , x3 , v1 , v2 , v3 )

va l s = [ x1 ˆ2 , x1 , 1 ; x2 ˆ2 , x2 , 1 ; x3 ˆ2 , x3 , 1 ] ;

589 c o e f s = va l s \ [ v1 ; v2 ; v3 ] ;

591 % Tr ia l va lue i s minimiser o f quadrat i c

x min = −c o e f s (2 ) /(2∗ c o e f s (1 ) ) ;

593 end

595

% Cubic , f ( x1 ) , f ( x2 ) , f ’ ( x1 ) , f ’ ( x3 )

597 func t i on x min = cub i c i n t e rp vvgg ( x1 , x2 , x3 , v1 , v2 , g1 , g3 )

va l s = [ x1 ˆ3 , x1 ˆ2 , x1 , 1 ; . . .

599 x2 ˆ3 , x2 ˆ2 , x2 , 1 ; . . .

3∗x1 ˆ2 , 2∗x1 , 1 , 0 ; . . .

601 3∗x3 ˆ2 , 2∗x3 , 1 , 0 ] ;

c o e f s = va l s \ [ v1 ; v2 ; g1 ; g3 ] ;

603

% Tr ia l value i s minimiser o f quadrat i c

605 x min = (− c o e f s (2 ) + sq r t ( c o e f s (2 ) ˆ2 − 3∗ c o e f s (1 ) ∗ c o e f s (3 ) ) ) /(3∗ c o e f s (1 ) ) ;

end

607

% Cubic , f ( x1 ) , f ( x2 ) , f ( x3 ) , f ’ ( x1 )

609 func t i on x min = cub i c i n t e rp vvvg ( x1 , x2 , x3 , v1 , v2 , v3 , g1 )

va l s = [ x1 ˆ3 , x1 ˆ2 , x1 , 1 ; . . .

611 x2 ˆ3 , x2 ˆ2 , x2 , 1 ; . . .

x3 ˆ3 , x3 ˆ2 , x3 , 1 ; . . .

613 3∗x1 ˆ2 , 2∗x1 , 1 , 0 ] ;

c o e f s = va l s \ [ v1 ; v2 ; v3 ; g1 ] ;

615

% Tr ia l value i s minimiser o f quadrat i c

617 x min = (− c o e f s (2 ) + sq r t ( c o e f s (2 ) ˆ2 − 3∗ c o e f s (1 ) ∗ c o e f s (3 ) ) ) /(3∗ c o e f s (1 ) ) ;

end
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B.2 Hessian preconditioned trust region

The file Hessian precon trust.m [194] calculates an initial update via a trust region

model using the first order Taylor approximation of the cost function, including an ap-

proximation of the exact remainder (in integral form) using the polarization tensor ap-

proximation to the diagonals of the Hessian matrix. See Algorithm 7 for pseudo code.

The Hessian components are calculated via Hess deltas.m and initial Hessian.m

(given in Watson [194]).

f unc t i on [ m0, C, G, H, du2 , du dd ] = Hes s i an p r e con t ru s t ( m0, data , mdl , params , CFIEp , c0 ,

de l ta d , g0 , Eh0 , du2 , du dd )

2 %HESSIAN PRECON NONLIN

% [ m0, C, G, H, du2 , du dd ] = Hes s i an p r e con t ru s t ( m0, data , mdl , params , CFIEp , c0 , de l ta d , g0

, Eh0 , du2 , du dd )

4 %

% Gauss−Newton Hess ian type p r e cond i t i one r f o r FWI based on p o l a r i z a t i o n

6 % tensor approximation . Trust r eg ion algor i thm sea r che s along

% p=−H(0) ˆ{−1}g0 , and f o r a model uses the f i r s t order Taylor expansion

8 % with the exact remainder in i n t e g r a l form ( c a l c u l a t e d numer ica l ly ) . The

% remainder term has the true Hess ian rep laced by the tensor−approximated

10 % diagona l s .

%

12 % INPUTS:

% m0 − i n i t i a l model

14 % data − GPR data to f i t

% mdl − FEM model in EIDORS format

16 % params − parameter s t r u c t

% CFIEp − boundary i n t e g r a l system matr i ce s

18 % The f o l l o w i n g are not mandatory :

% c0 − i n i t i a l co s t

20 % de l t a d − i n i t i a l data r e s i d u a l s

% g0 − i n i t i a l g rad i ent

22 % Eh0 − c e l l o f forward f i e l d s f o r m0

% du2 − approximate Gauss−Newton diagona l terms

24 % du dd − approximate Hess ian second d e r i v a t i v e d iagona l s

%

26 % OUTPUTS:

% m0 − updated i n i t i a l model

28 % C − updated i n i t i a l co s t

% G − updated i n i t i a l g rad i ent

30 % H − i n i t i a l Hess ian approximation

% du2 − approximate Gauss−Newton diagona l terms

32 % du dd − approximate Hess ian second d e r i v a t i v e d iagona l s

%

34 %

% Current ly only accounts f o r p e r m i t t i v i t y − conduc t iv i ty assumed 0 ,

36 % permeab i l i ty assumed 1

% Current ly only l ead ing d iagona l p r e cond i t i one r

38 %

% ( c ) 2015 FM Watson

40

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

42 % Setup

44 disp ( ’ Hess ian precon c a l l e d ’ )

46 i f i s f i e l d ( params , ’ precon ’ )==0

params . precon = [ ] ;

48 end
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50 i f nargin<9 && nargin >=5

% Cost , g rad i ent

52 d i sp ( ’ c a l c u l a t i n g i n i t i a l co s t and grad i ent . . . ’ )

[ c0 , de l ta d , ˜ , Eh0 , g0 ] = o b j e c t i v e (m 0 , data , mdl , params , CFIEp) ;

54

% P o l a r i z a t i o n tensor approximate Hess ian terms

56 [ du2 , du dd ] = Hes s de l t a s (m0, de l ta d , Eh0 , mdl , params ) ;

58 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Delta terms i f not provided

60 e l s e i f narg in==9

[ du2 , du dd ] = Hes s de l t a s (m0, de l ta d , Eh0 , mdl , params ) ;

62

e l s e i f narg in˜=11

64 e r r o r ( ’ i n v a l i d inputs f o r He s s i an p r e con t ru s t ’ )

end

66

68 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Some setup

70 % Don ’ t c a l c f o r nuisance params?

i f i s f i e l d ( params . precon , ’ s k i p nu i s anc e ’ )

72 sk ip nu i s ance = params . precon . sk ip nu i s ance ;

e l s e

74 sk ip nu i s ance = true ;

end

76

%Assume homog eps0 − should be !

78 eps0 = m0(1) ∗params .EM. eps0 ;

80 i f i s f i e l d ( params . precon , ’ lambda ’ )

lambda = params . precon . lambda ;

82 e l s e

lambda = 0 ;

84 end

86 % Trust r eg ion minimum

i f i s f i e l d ( params . l i n e , ’ de l ta min ’ )

88 de l ta min = params . l i n e . de l ta min ;

e l s e

90 de l ta min = 1e−6;

end

92

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

94 % Precond i t i on ing d i r e c t i o n

di sp ( ’ c a l c u l a t i n g descent d i r e c t i o n and trust−r eg ion co s t s . . . ’ )

96 % Hess ian at 0

[ H01 , H02 ] = i n i t i a l H e s s i a n (du2 , du dd , eps0 , 0 , params ) ;

98

% Regu l a r i s a t i on

100 H0 = H01 + lambda ;

102 % 2nd der iv i f posde f

i f a l l (H0 + H02 > 1e−6)

104 H0 = H0 + H02 ;

end

106

108 % Descent d i r e c t i o n

p0 = − g0 . /H0 ;

110

% I f nuisance , s e t to 0 f o r t r u s t r eg ion algor i thm

112 i f i s f i e l d ( params . mdl , ’ nu isance ’ ) && sk ip nu i s ance

114 p0 ( params . mdl . nuisance ) = 0 ;
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116 end

118

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

120 % Trust r eg ion co s t s

122 % max step

alpha max = max move (m0, p0 , mdl , params ) ;

124 i f i s f i e l d ( params . l i n e , ’ alpha max ’ )

alpha max = min( alpha max , params . l i n e . alpha max ) ;

126 end

128 % Disc pts

a l p h a i i = [ 0 , l og space ( log10 ( de l ta min ) , log10 ( alpha max ) ,101) ] ;

130 c i i = ze ro s (1 , l ength ( a l p h a i i ) ) ;

c i i (1 ) = c0 ;

132

p H p = ze ro s (1 , l ength ( a l p h a i i ) ) ;

134 p H p (1) = dot (p0 , p0 . ∗H0) ;

136 f o r i i =1: l ength ( a l p h a i i )−1

% Hess ian with sa tu ra t i on a l p h a i i ∗ p

138 [ H01 , H02 ] = i n i t i a l H e s s i a n (du2 , du dd , eps0 , . . .

a l p h a i i ( i i +1)∗p0 , params ) ;

140 H = H01 + lambda ;

% 2nd der iv i f posde f

142 i f a l l (H + H02 > 1e−6)

H = H + H02 ;

144 end

146 % grad i ent ctn

c i i ( i i +1) = c0 + a l p h a i i ( i i +1) ∗ dot ( g0 , p0 ) ;

148

% Next approx Hess ian ctn

150 p H p ( i i +1) = dot (p0 , p0 . ∗H) ;

152 % Add approximate remainder term

c i i ( i i +1) = c i i ( i i +1) + . . .

154 0 .5 ∗ t rapz ( l i n s p a c e (0 ,1 , i i +1) , . . .

(1 − ( i i :−1:0) / i i ) . ∗ a l p h a i i ( i i +1) . ˆ 2 . ∗p H p ( 1 : i i +1) ) ;

156

end

158

160

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

162 % Remove negat ive as untheasable

i f any ( c i i <0)

164 ind neg = f ind ( c i i <=0,1, ’ f i r s t ’ ) ;

a l p h a i i = a l p h a i i ( 1 : ind neg −1) ;

166 c i i = c i i ( 1 : ind neg −1) ;

alpha max = a l p h a i i ( end ) ;

168 end

170 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

172

% Approx min

174 [ alpha min0 , c e s t 0 ] = trustmin ( a l p h a i i , c i i , de lta min , alpha max ) ;

176

% Actual co s t

178 f p r i n t f ( ’ eva lua t ing o b j e c t i v e at t r u s t r eg ion minimum , alpha = %f \n ’ , alpha min0 )

180 [ c t rue , ˜ , ˜ , Ec e l l ] = o b j e c t i v e (m0 + alpha min0∗p0 , data , . . .

mdl , params , CFIEp) ;



APPENDIX B. SELECTED CODE 261

182

184

% Check agreement

186 rho = ( c0 − c t ru e ) /( c0 − c e s t 0 ) ;

188

% Re−eva luate i f ( very ) poor agreement or in c r ea s ed cos t

190 kk=1; max its = 5 ;

r h o t o l = 0 . 0 2 ;

192

% save f o r t rue va l s

194 c t r u e o l d = [ ] ;

a lpha o ld = [ ] ;

196 whi le rho < r h o t o l

d i sp ( ’ Reducing t r u s t r eg ion . . . ’ )

198

% save old

200 c t r u e o l d = [ c t ru e o l d , c t r u e ] ;

a lpha o ld = [ a lpha o ld , alpha min0 ] ;

202

% reduce reg ion

204 alpha max = 0.25 ∗alpha max ;

206 i f alpha max < de l ta min

di sp ( ’ t r u s t r eg i on f a i l e d at alpha max < alpha min ’ )

208 break

end

210

% Replace nea r e s t nbrs , drop over alpha max

212 % remove more the sma l l e r /more negat ive rho i s

[ ˜ , ind rm ] = f ind ( abs ( a l p h a i i − alpha min0 ) < . . .

214 0 .1 ∗exp ( r h o t o l )∗alpha min0 /exp ( rho ) . . .

& a l p h a i i < a lpha o ld ( end ) . . .

216 & a l p h a i i > a l p h a i i (2 ) ) ;

218 ind rm = unique ( [ ind rm , f i nd ( a l p h a i i >= alpha min0 ) ] ) ;

220 c i i ( ind rm ) = [ ] ;

a l p h a i i ( ind rm ) = [ ] ;

222

% new min

224 [ a lpha inte rp , i n t e rp indx ] = unique ( [ a l p h a i i , a lpha o ld ] , ’ l a s t ’ ) ;

i n t e r p v a l s = [ c i i , c t r u e o l d ] ;

226 i n t e r p v a l s = i n t e r p v a l s ( i n t e rp indx ) ;

[ alpha min0 , c e s t 0 ] = trustmin ( a lpha inte rp , i n t e r p v a l s , . . .

228 delta min , alpha max ) ;

230 % Actual co s t ( check good va l f o r step , e l s e rho s tays same and reduce )

i f alpha min0 < 0 .9 ∗min( a lpha o ld )

232 f p r i n t f ( ’ eva lua t ing o b j e c t i v e at t r u s t r eg i on minimum , alpha = %f \n ’ , alpha min0 )

[ c t rue , ˜ , ˜ , E c e l l ] = o b j e c t i v e (m0 + alpha min0∗p0 , data , . . .

234 mdl , params , CFIEp) ;

end

236

% I f i n c r ea s ed on a backstep , break

238 i f any ( c t r u e > c t r u e o l d ) && any ( c t r u e o l d < c0 )

[ c t rue , indx ] = min ( c t r u e o l d ) ;

240 alpha min0 = a lpha o ld ( indx ) ;

break

242 end

244 % Agreement

rho = ( c0 − c t ru e ) /( c0 − c e s t 0 ) ;

246

i f kk>=max its
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248 di sp ( ’ Trust r eg ion method f a i l e d to converge in max its ’ )

break

250 end

252 kk = kk+1;

254 end

256

258 % Check reduced , i f not return approximate Hess and grad i ent at 0

i f c t rue>c0

260 G = g0 ;

C = c0 ;

262 H = H0 ;

e l s e

264 m0 = m0 + alpha min0 ∗ p0 ;

C = c t r u e ;

266 G = grad i ent (m0, de l ta d , Ece l l , mdl , params , CFIEp) ;

[ H01 , H02 ] = i n i t i a l H e s s i a n (du2 , du dd , eps0 , alpha min0∗p0 , params ) ;

268 H = H01 + lambda ;

270 % I f posde f i nc lude 2nd de r i v s

i f a l l (H + H02 > 1e−6)

272 H = H + H02 ;

end

274

end

276 end

278

func t i on [ alpha min , c e s t ] = trustmin ( a l p h a i i , c i i , minstep , maxstep )

280

i f l ength ( a l p h a i i )==1

282 alpha min = 0 ;

c e s t = c i i (1 ) ;

284

e l s e

286

% Linear c o n s t r a i n t s

288 A = [1 ; −1 ] ; B = [ maxstep ; minstep ] ;

290 % 1 s t step

[ ˜ , i 0 ] = min ( c i i ) ;

292

% Use fmincon and in t e rpo l a t i on , s t a r t i n g at lowest va l

294 [ alpha min , c e s t ] = fmincon (@(x ) in t e rp1 ( a l p h a i i , c i i , x , . . .

’ s p l i n e ’ ) , a l p h a i i ( i 0 ) , A, B) ;

296

end

298 end
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B.3 Modified l-BFGS

The code lbfgs.mat [194] solves the full-wave inversion problem via l-BFGS, and

includes modifications for parameter refinement, re-weighting frequency components,

changing regularization parameters, dampening of BFGS update and nuisance param-

eters. See Algorithms 1 and 2 for pseudo-code for the l-BFGS optimisation scheme.

1 func t i on [ m k , resvec , g , s t ep l , Flag , params , M, S , Y, e vec ] = l b f g s ( d , f , m 0 , mem, mdl ,

params , CFIEp , C0 , G0, m true )

%LBFGS Performs L−BFGS opt imi sa t i on f o r co s t func t i on f

3 % [ m k , resvec , g , s t ep l , Flag , params , M, S , Y, e vec ] = l b f g s 2 (d , f , m k , mem, params , C0 , G0,

m true )

% Inputs :

5 % d − data

% f − f unc t i on handle or s t r i n g

7 % m k − i n i t i a l e s t imate

% mem − number or prev ious i t e r a t i o n s to s t o r e

9 % params − s t r u c t conta in ing domain and c o l l e c t i o n manifo ld

% informat ion , max i t / t o l e r an c e and r e g u l a r i s a t i o n

11 % C0 , G0 − i n i t i a l co s t and grad i ent ( both must be supp l i ed or

% w i l l be ignored ) . Allows user to s p e c i f y a modi f ied

13 % i n i t i a l descent d i r e c t i o n G0, but t h i s may cause a

% Wolfe l i n e s e a r c h to f a i l

15 % m true − the true value to t e s t convergence aga in s t . Must only

% be used i f e vec i s an output

17 %

% I n i t i a l Hess ian may be supp l i ed in params . outer . i n i t i a l H e s s . May be

19 % the l ead ing diagonal , a spar se matrix , or a s t r u c t conta in ing . H0 , . S

% and .Y d e f i n i n g an lBFGS Hess ian matrix . Note these are not cu r r en t l y

21 % r e f i n e d with other parameters , so i f the g r id i s r e f i n e d i n i t i a l H e s s

% w i l l be ignored

23 %

% Reweighting / r epa ramete r i s i ng occurs when an e x i t cond i t i on i s broken .

25 % For t h i s purpose , a l l e x i t c ond i t i on s are r e s c a l e d by

% params . outer . r e f i n e t o l and . r e w e i g h t t o l r e s p e c t i v e l , with d e f a u l t s 1

27 %

% Outputs :

29 % m k − So lut i on returned

% re svec − r e s i d u a l value

31 % Flag − Returns 0 i f op t im i sa t i on converged , 1 i f op t im i sa t i on

% stagnated , 2 i f max its was reached be fo r e convergence ,

33 % 3 i f i n v a l i d descent d i r e c t i o n returned ( conta in s any

% INFs o f NaNs)

35 % k − I t e r a t i o n number returned ,

% M − So lut i on h i s t o r y

37 % e vec − 2−norm of e r r o r aga in s t t rue s o l u t i o n x t rue ( i f g iven )

%

39 % Exit cond i t i on s :

% Res idual / r1 < params . outer . r t o l ( r e l a t i v e ) − f l a g = 0

41 % Gradient norm < params . outer . g t o l ( abso lu te ) − f l a g = 0

% Decrease in r e s i d u a l < p . o . d e c r e a s e t o l ( abso lu te ) − f l a g = 1

43 % Change in s o l u t i o n < p . o . s tag ( r e l a t i v e ) − f l a g = 1

% Max i t s reached − f l a g = 2

45 %

% ( c ) 2015 FM Watson

47

49 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Check inputs , f i e l d s

51

m k = m 0 ;

53
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% Check F

55 i f i s c h a r ( f )

F = s t r2 func ( f ) ;

57 e l s e i f i s a ( f , ’ f unc t i on hand l e ’ )

F = f ;

59 e l s e

e r r o r ( ’ expect ing a func t i on f o r input F ’ )

61 end

63 disp ( ’ Beginning LBFGS opt imi sa t i on ’ )

65 i f i s f i e l d ( params . outer , ’ damping ’ )

damping = params . outer . damping ;

67 i f strcmp ( damping , ’ auto ’ )==0 && strcmp ( damping , ’ on ’ )==0 && strcmp ( damping , ’ o f f ’ )

e r r o r ( ’ params . outer . damping can be s t r i n g s ”auto ” , ”on ” , or ” o f f ” ’ )

69 end

e l s e

71 damping = ’ auto ’ ;

end

73

% Nuisance params

75 i f i s f i e l d ( params . mdl , ’ nu isance ’ ) && strcmp ( params . l i n e . so lve r , ’ nu isance ’ )

nu i s indx = params . mdl . nuisance ;

77 ta rg indx = s e t d i f f ( 1 : l ength (m k) , nu i s indx ) ;

e l s e

79 nu i s indx = [ ] ;

t a rg indx = 1 : l ength (m k) ;

81 end

83 % Stopping delay

i f i s f i e l d ( params . outer , ’ s t op de l ay ’ )

85 s top de l ay = params . outer . s t op de l ay ;

e l s e

87 s top de l ay = 0 ;

end

89 delayed = 0 ;

91

% Weight changes

93 i f i s f i e l d ( params . outer , ’ omega weight ’ )

omega weight = params . outer . omega weight ;

95 params . reg . omega weight = omega weight ( 1 , : ) ;

97

w e i g h t i i = 1 ;

99 i f i s f i e l d ( params . outer , ’ r e w e i g h t t o l ’ )

r e w e i g h t t o l = params . outer . r e w e i g h t t o l ;

101 e l s e

r e w e i g h t t o l = 1e0 ;

103 end

105 i f i s f i e l d ( params . outer , ’ r e w e i g h t i t s ’ )

r e w e i g h t i t s = params . outer . r e w e i g h t i t s ;

107 e l s e

r e w e i g h t i t s = params . outer . max its +2;

109 end

111

e l s e

113 r e w e i g h t t o l = 1 ;

w e i g h t i i = 1 ;

115 omega weight = 1 ;

r e w e i g h t i t s = params . outer . max its + 2 ;

117

119 end
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121 % Refinement

i f i s f i e l d ( params . outer , ’ r e f i n e p t s ’ )

123 re f inement = true ;

r e f i n e p t s = params . outer . r e f i n e p t s ;

125 r e f i n e i t = 1 ;

max re f ine = length ( r e f i n e p t s ) ;

127

% When to r e f i n e

129 i f i s f i e l d ( params . outer , ’ r e f i n e t o l ’ )

r e f i n e t o l = params . outer . r e f i n e t o l ;

131 e l s e

r e f i n e t o l = 1e0 ;

133 end

135 i f i s f i e l d ( params . outer , ’ r e f i n e i t s ’ )

r e f i n e i t s = params . outer . r e f i n e i t s ;

137 e l s e

r e f i n e i t s = params . outer . max its +2;

139 end

141

e l s e

143 re f inement = f a l s e ;

r e f i n e t o l = 1 ;

145 r e f i n e i t s = params . outer . max its + 2 ;

147 end

149 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% I n i t i a l i s e v a r i a b l e s / parameters

151

% Last m d i f f e r e n c e s between x i and x i−1

153 S = ze ro s ( numel (m k) , mem) ;

155 % Last m d i f f e r e n c e s between grad x i+1 and grad x i

Y = ze ro s ( numel (m k) , mem) ;

157

% Indexing f o r S/Y

159 m ind = repmat ( 1 :mem, 1 , c e i l ( ( params . outer . max its + 2) /2) ) ;

161 % I n i t i a l i s e 2− loop parameter

a l p h a i = ze ro s (1 ,mem) ;

163

% I n i t i a l i s e r e s vector

165 r e svec = ze ro s ( params . outer . max its + 1 ,1) ;

167 % I n i t i a l i s e norm of g rad i ent

g = re svec ;

169

d ph i 0 = 0 ;

171

% I n i t i a l co s t and grad i ent

173 i f nargin>=9

i f isempty (C0) | | isempty (G0)

175 di sp ( ’ c a l c u l a t i n g i n i t i a l co s t and grad i ent . . . ’ ) ;

[ r e svec (1) , ˜ ,˜ ,˜ , G new ] = F(m k , d , mdl , params , CFIEp) ;

177 G old = G new ;

g (1) = norm(G new) ;

179 e l s e

r e svec (1) = C0 ;

181 g (1) = norm(G0) ;

G old = G0;

183 G new = G0;

end

185 e l s e
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disp ( ’ c a l c u l a t i n g i n i t i a l co s t and grad i ent . . . ’ ) ;

187 [ r e svec (1 ) , ˜ ,˜ ,˜ , G new ] = F(m k , d , mdl , params , CFIEp) ;

G old = G new ;

189 g (1) = norm(G new) ;

end

191

f p r i n t f ( ’ i n i t i a l co s t %6.4 f and norm of g rad i ent %6.4 f \n ’ , r e svec (1) , norm(G new) )

193

% Flag

195 Flag = 0 ;

197 % I t e r a t i o n number

k = 1 ;

199 dont ex i t = f a l s e ;

201 % Actual e r r o r output

i f nargout >=6;

203 M = zero s ( l ength (m k) , params . outer . max its +1) ;

M( : , 1 ) = m k ;

205

i f nargout == 10

207 e vec = ze ro s ( params . outer . max its + 1 ,1) ;

i f narg in==10

209 [ epsk , s igk , muk ] = c o a r s e 2 f i n e (m k , params ) ;

i f a l l ( s i z e ( epsk )==s i z e ( m true {1}) )

211 e vec (1) = e vec (1) + norm( epsk − m true {1}) ;

end

213 i f a l l ( s i z e ( s i gk )==s i z e ( m true {2}) )

e vec (1 ) = e vec (1) + norm( s i gk − m true {2}) ;

215 end

i f a l l ( s i z e (muk)==s i z e ( m true {3}) )

217 e vec (1) = e vec (1) + norm(muk − m true {3}) ;

end

219

end

221

end

223 end

225 % Step−l eng ths

i f nnz ( nu i s indx ) > 0 && strcmp ( params . l i n e . so lve r , ’ nu isance ’ )

227 s t e p l = ze ro s (2 , params . outer . max its ) ;

e l s e

229 s t e p l = ze ro s (1 , params . outer . max its ) ;

end

231

% Memory f o r cur rent i t ( l o s e s 1 i f bad step )

233 mem k = mem;

235 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Perform L−BFGS opt imi sa t i on procedure

237 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

239 % Stop i f e i t h e r g rad i ent or r e s i d u a l reach prede f ined t o l

% Do whi le ( | | k==1) to f o r c e always one i t e r a t i o n

241 whi le ( g (k ) > params . outer . g t o l && re svec (k ) / r e svec (1) > params . outer . r t o l ) | | k==1 | |

dont ex i t

f p r i n t f ( ’ Beginning i t e r a t i o n %i :\n ’ , k )

243

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

245 % I m p l i c i t Hess ian approximation

di sp ( ’ c a l c u l a t i n g descent d i r e c t i o n . . . ’ )

247

i f k==1

249 i f i s f i e l d ( params . outer , ’gamma0 ’ )

gamma k = params . outer . gamma0 ;
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251 e l s e

gamma k = 1 . ;

253 end

e l s e

255 gamma k = ( S ( : , m ind (k−1) ) . ’ ∗ Y( : , m ind (k−1) ) ) / . . .

( Y( : , m ind (k−1) ) . ’ ∗ Y( : , m ind (k−1) ) ) ;

257 end

259

% 2− loop r e c u r s i o n s f o r i m p l i c i t Hess ian approximation

261 q = G new ;

263 % −−−−−−−−−−−−−−−

% Loop 1

265 f o r i=k−1:−1:max(k−mem k , 1 )

a l p h a i ( i ) = S ( : , m ind ( i ) ) . ’ ∗ q/( Y( : , m ind ( i ) ) . ’ ∗S ( : , m ind ( i ) ) ) ;

267 q = q − a l p h a i ( i ) ∗ Y( : , m ind ( i ) ) ;

end

269

% I n i t i a l Hess ian −−−−−−−−−−−−−−−−−−−−−−−

271 % Output p k approximates H ∗ G new

i f i s f i e l d ( params . outer , ’ i n i t i a l H e s s ’ ) && k <= mem k

273 % I n i t i a l Hess approxn

H0 sup = params . outer . i n i t i a l H e s s ;

275

% supp l i ed as lBFGS params

277 i f i s s t r u c t ( H0 sup )

% Calcu la te with 2− loop r e c c u r s i on

279 p k = inv Hes s vec prod ( H0 sup . S , H0 sup .Y, q , . . .

spd iags ( 1 . / H0 sup . H0 , 0 , l ength (m k) , l ength (m k) ) ) ;

281

H0 sup = spd iags ( H0 sup . H0 , 0 , l ength (m k) , l ength (m k) ) ;

283

e l s e i f i snumer ic ( H0 sup )

285

% Suppl ied as matrix or vec tor

287 i f s i z e ( H0 sup , 1 )==length (m k) && s i z e ( H0 sup , 2 )==length (m k)

% I n i t i a l Hess approxn

289 p k = cgs ( H0 sup , q ) ;

291

e l s e i f s i z e ( H0 sup , 1 )==length (m k) && s i z e ( H0 sup , 2 )==1

293 % Suppl ied as l ead ing d iagona l

p k = q ./ H0 sup ;

295 H0 sup = spd iags ( H0 sup , 0 , l ength (m k) , l ength (m k) ) ;

297 end

299 e l s e

warning ( ’ supp l i ed i n i t i a l Hess ian s i z e does not match ’ )

301 p k = gamma k∗q ;

end

303

% Ensure s a t i s f i e s weak quasi−Newton in l a t e r i t e r a t e s

305 % i . e . s {k−1}ˆT H0k s {k−1} = s {k−1}ˆT y {k−1}

i f k > 1

307 p k = p k ∗ ( S ( : , m ind (k−1) ) . ’ ∗ Y( : , m ind (k−1) ) ) / . . .

( S ( : , m ind (k−1) ) . ’ ∗H0 sup∗ S ( : , m ind (k−1) ) ) ;

309 end

311

% Sca l e with gamma k ( assumes i n i t i a l Hess ian becomes l e s s accurate

313 % with each i t e r a t i o n )

s c a l e = (mem k + 1 − k ) /mem k ;

315 p k = s c a l e ∗ p k + (1− s c a l e ) ∗ gamma k ∗ q ;
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317 e l s e

p k = gamma k ∗ q ;

319 end

321 % −−−−−−−−−−−−−−−−−−−−−

% Loop 2

323 f o r i=max(1 , k−mem k) : k−1

beta = Y( : , m ind ( i ) ) . ’ ∗ p k /( Y( : , m ind ( i ) ) . ’ ∗ S ( : , m ind ( i ) ) ) ;

325 p k = p k + S ( : , m ind ( i ) ) ∗ ( a l p h a i ( i ) − beta ) ;

end

327

% Inva l i d descent d i r e c t i o n / i n f or NaN found

329 i f nnz ( nu i s indx )>0

p targ = ze ro s ( s i z e ( p k ) ) ;

331 p targ ( ta rg indx ) = p k ( ta rg indx ) ;

e l s e

333 p targ = p k ;

end

335

i f any ( i snan ( p k ) ) | | any ( i s i n f ( p k ) ) | | . . .

337 ( dot (G new , p k ) <=0 && dot (G new , p targ ) <=0)

339 f p r i n t f ( ’ I nva l i d lBFGS descent d i r e c t i on , i t e r a t i o n %i . Dropping l a s t ( s , y ) pa i r . . . \n ’ , k )

;

341 p k t ry = inv Hes s vec prod (S ( : , m ind (min (1 , k−mem) : k−1) ) , . . .

Y( : , m ind (max(1 , k−mem) : k−1) ) , G new , gamma k) ;

343

% Choose d i r e c t i o n

345 i f dot (G new , p k t ry ) <=0

347 Flag = 3 ;

f p r i n t f ( ’ I nva l i d lBFGS descent d i r e c t i on , i t e r a t i o n %i . Using s t e e p e s t descent \n ’ , k ) ;

349 p k = G new ;

351 e l s e

p k = p k t ry ;

353 end

355 end

357

359 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Perform l i n e search

361 di sp ( ’ per forming l i n e s e a r c h . . . ’ )

363

365 % I n i t i a l and max step l eng ths

d p h i 0 o l d = d ph i 0 ;

367 d ph i 0 = dot (G new , −p k ) ;

369 i f k==1

alpha 0 = −r e svec (1) / (1 . 2 ∗ d ph i 0 ) ;

371

e l s e

373

% Choose max o f :

375 % In t e rpo l a t ed quadrat i c between F k−1, F k and grad F kˆT p k ;

% O(1) change in co s t same as prev ious step

377 a lpha 0 = max( s t e p l (1 , k−1) ∗ d p h i 0 o l d / d phi 0 , . . .

2∗ ( r e svec (k ) − r e svec (k−1) ) / d ph i 0 ) ;

379

end

381
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% Safeguard a minimum step

383 i f i s f i e l d ( params . l i n e , ’ de l ta min ’ )

i f alpha 0<params . l i n e . de l ta min

385 alpha 0 = 10∗params . l i n e . de l ta min ;

end

387 e l s e i f a lpha 0 <= 0.001

a lpha 0 = 0 . 0 1 ;

389 end

391 % f o r c e 1 i f p o s s i b l e

a lpha 0 = min (1 , 1 .05 ∗ a lpha 0 ) ;

393

395 % max step : min o f s u f f . dec rease l i n e i n t e r s e c t s 0 , and user de f ined

i f i s f i e l d ( params . l i n e , ’ c1 ’ )

397 alpha max = −r e svec (k ) / (1 . 2 ∗params . l i n e . c1∗ d ph i 0 ) ;

e l s e

399 alpha max = −r e svec (k ) / (1 . 2 ∗1e−3 ∗ d ph i 0 ) ;

end

401 i f i s f i e l d ( params . l i n e , ’ alpha max ’ )

alpha max = min( alpha max , params . l i n e . alpha max ) ;

403 end

405 % Check box c o n s t r a i n t s

[ alpha max phys , m fixed ] = max move (m k , −p k , mdl , params ) ;

407 p k ( m fixed ) = 0 ;

alpha max = min( alpha max , alpha max phys ) ;

409

% Ensure f i r s t s tep l e s s than alpha max

411 i f alpha max < a lpha 0

a lpha 0 = alpha max /2 ;

413 end

415 % Perform l i n e s ea r ch , pass new cos t and grad i ent

[ alpha , r e svec (k+1) , G new ] = l s e a r c h (m k , −p k , d , alpha 0 , . . .

417 alpha max , F , r e svec (k ) , G new , mdl , params , CFIEp) ;

419 s t e p l ( : , k ) = alpha . ’ ;

421 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Update s o l u t i o n

423 % No nuisance params

i f l ength ( alpha )==1

425 m k = m k − alpha ∗ p k ;

S ( : , m ind (k ) ) = −alpha ∗ p k ;

427

% Nuisance params

429 e l s e i f l ength ( alpha )==2

m k( ta rg indx ) = m k( ta rg indx ) − alpha (1) ∗p k ( ta rg indx ) ;

431 m k( nu i s indx ) = m k( nu i s indx ) − alpha (2) ∗p k ( nu i s indx ) ;

433 S( targ indx , m ind (k ) ) = − alpha (1) ∗p k ( ta rg indx ) ;

S( nuis indx , m ind (k ) ) = − alpha (2) ∗p k ( nu i s indx ) ;

435

e l s e

437 e r r o r ( ’ l i n e search returned a non s c a l a r s tep length (may return 1 or 2 s c a l a r s in case o f

nuisance parameters ) ’ ) ;

end

439

441

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

443 % Change parameter weight ing

% Either reweight t o l or other e x i t c ond i t i on s met

445 i f (norm(S ( : , m ind (k ) ) ) /norm(m 0) < r e w e i g h t t o l ∗params . outer . s tag | | . . .

r e svec (k ) − r e svec (k+1) < r e w e i g h t t o l ∗params . outer . d e c r e a s e t o l | | . . .



APPENDIX B. SELECTED CODE 270

447 r e svec (k ) / r e svec (1 ) <= r e w e i g h t t o l ∗params . outer . r t o l | | . . .

˜rem(k , r e w e i g h t i t s ) ) . . .

449 && w e i g h t i i < s i z e ( omega weight , 1 )

451 w e i g h t i i = w e i g h t i i + 1 ;

params . reg . omega weight = omega weight ( we i gh t i i , : ) ;

453

%

455 disp ( ’ Frequenc ies reweighted , r e c a l c u l a t i n g cos t and grad i ent . . . ’ )

[ r e svec (k+1) , ˜ ,˜ ,˜ , G new ] = F(m k , d , mdl , params , CFIEp) ;

457 g (k+1) = norm(G new) ;

459 %

dont ex i t = true ;

461

end

463

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

465 % Reparameter ise

% Occurs now so that next descent d i r e c t i o n ca l cn i s on r e f i n e d gr id .

467 % Next descent d i r e c t i o n w i l l be the same f o r t h i s paramete r i sa t i on

i f re f inement

469 i f (norm(S ( : , m ind (k ) ) ) /norm(m 0) < . . .

r e f i n e t o l ∗params . outer . s tag | | . . .

471 r e svec (k ) − r e svec (k+1) < . . .

r e f i n e t o l ∗params . outer . d e c r e a s e t o l | | . . .

473 r e svec (k+1)/ r e svec (1) <= . . .

r e f i n e t o l ∗params . outer . r t o l | | . . .

475 ˜rem(k , r e f i n e i t s ) ) && r e f i n e i t <= max re f ine

477 di sp ( ’ Refinement t o l e r an c e met , r e f i n i n g coar s e i n v e r s i o n g r id . . . ’ )

479 % New d i s c pts

params new = parameter i se mode l ( ’ nea r e s t ’ , mdl , params , . . .

481 params . mdl . n param (2) , . . .

params . mdl . n param (3) , . . .

483 params . outer . r e f i n e p t s { r e f i n e i t }) ;

485

% Nuisance params

487 i f i s f i e l d ( params . mdl , ’ nu isance ’ )

nu i s = ze ro s ( l ength (m k) ,1) ;

489 nuis ( nu i s indx ) = 1 ;

nu i s indx = f ind ( r eparamete r i s e ( nuis , params , params new ) ) ;

491 params new . mdl . nuisance = nu i s indx ;

493 end

495 % Reparameter ise

p k = reparamete r i s e ( p k , params , params new ) ;

497 m k = reparamete r i s e (m k , params , params new ) ;

S = reparamete r i s e (S , params , params new ) ;

499 Y = reparamete r i s e (Y, params , params new ) ;

m 0 = reparamete r i s e (m 0 , params , params new ) ;

501

503 % Recalc co s t and grad i ent on new gr id

[ r e svec (k+1) , ˜ ,˜ ,˜ , G new ] = F(m k , d , mdl , params new , CFIEp) ;

505 g (k+1) = norm(G new) ;

507 i f i s f i e l d ( params . mdl , ’ nu isance ’ )

t a rg indx = s e t d i f f ( 1 : l ength (m k) , nu i s indx ) ;

509 end

511

i f e x i s t ( ’ G old ’ , ’ var ’ )
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513 G old = reparamete r i s e ( G old , params , params new ) ;

end

515

i f e x i s t ( ’M’ , ’ var ’ )

517 M = reparamete r i s e (M, params , params new ) ;

end

519

521 % Lose old params

params = params new ;

523

% Force next i t e r a t i o n

525 dont ex i t = true ;

527 %

r e f i n e i t = r e f i n e i t + 1 ;

529

end

531

end

533

535 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Actual e r r o r f o r known true s o l u t i o n

537 i f nargout>=6

% Actual e r r o r

539 i f narg in==10 && nargout ==10

i f narg in==10

541 [ epsk , s igk , muk ] = c o a r s e 2 f i n e (m k , params ) ;

i f a l l ( s i z e ( epsk )==s i z e ( m true {1}) )

543 e vec (k+1) = e vec (k+1) + norm( epsk − m true {1}) ;

end

545 i f a l l ( s i z e ( s i gk )==s i z e ( m true {2}) )

e vec (k+1) = e vec (k+1) + norm( s i gk − m true {2}) ;

547 end

i f a l l ( s i z e (muk)==s i z e ( m true {3}) )

549 e vec (k+1) = e vec (k+1) + norm(muk − m true {3}) ;

end

551

end

553 end

555 % So lut i on h i s t o r y

M( : , k+1) = m k ;

557

end

559

g (k+1) = norm(G new) ;

561

f p r i n t f ( ’ Completed i t e r a t i o n %i , normal i sed r e s i d u a l value %6.4 f , norm of g rad i ent %6.4 f \n ’ ,k

, r e svec (k+1)/ r e svec (1 ) ,norm(G new) )

563

565 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Check i f r e q u i r e damping , update d i f f e r e n c e s in grad i ent

567 d ph i a lpha = dot (G new , p k ) ;

i f ( abs ( d ph i a lpha ) > −params . l i n e . c2∗ d ph i 0 && strcmp ( damping , ’ auto ’ ) ) | | . . .

569 strcmp ( damping , ’ on ’ )

571 % I f nuisance params ex i s t , damp s e p e r a t e l y

i f l ength ( alpha )==2

573 % Requires damping , c a l c replacement y k

p k tn = ze ro s ( s i z e ( p k ) ) ;

575 p k tn ( ta rg indx ) = alpha (1) ∗p k ( ta rg indx ) ;

p k tn ( nu i s indx ) = alpha (2) ∗p k ( nu i s indx ) ;

577
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H sk = Hess vec prod (S ( : , m ind (max(1 , k − mem k − 1) : k−1) ) , . . .

579 Y( : , m ind (max(1 , k − mem k − 1) : k−1) ) , . . .

−p k tn , gamma k) ;

581

583 % Target parameters

sk yk = dot(−alpha (1) ∗p k ( ta rg indx ) , G new( ta rg indx ) − G old ( ta rg indx ) ) ;

585

sk H sk = dot(−alpha (1) ∗p k ( ta rg indx ) , H sk ( ta rg indx ) ) ;

587

% Damping f a c t o r (1 i s no damping )

589 i f sk yk >= 0.2 ∗ sk H sk

t h e t a k t = 1 ;

591

e l s e

593 t h e t a k t = 0 .8 ∗ sk H sk /( sk H sk − sk yk ) ;

595 end

597 % Nuisance parameters

sk yk = dot(−alpha (2) ∗p k ( nu i s indx ) , G new( nu i s indx ) − G old ( nu i s indx ) ) ;

599 sk H sk = dot(−alpha (2) ∗p k ( nu i s indx ) , H sk ( nu i s indx ) ) ;

601

% Damping f a c t o r (1 i s no damping )

603 i f sk yk >= 0.2 ∗ sk H sk − eps % −eps in case o f 0 step

the ta k n = 1 ;

605

e l s e

607 the ta k n = 0.8 ∗ sk H sk /( sk H sk − sk yk ) ;

609 end

611 % Apply damped update s e p e r a t e l y

Y( nuis indx , m ind (k ) ) = theta k n ∗ (G new( nu i s indx ) − G old ( nu i s indx ) ) + (1 −

the ta k n )∗H sk ( nu i s indx ) ;

613 Y( targ indx , m ind (k ) ) = t h e t a k t ∗ (G new( ta rg indx ) − G old ( ta rg indx ) ) + (1 −

t h e t a k t )∗H sk ( ta rg indx ) ;

615 e l s e

% Requires damping , c a l c replacement y k

617 H sk = Hess vec prod (S ( : , m ind (max(1 , k − mem k − 1) : k−1) ) , . . .

Y( : , m ind (max(1 , k − mem k − 1) : k−1) ) , . . .

619 −alpha∗p k , gamma k) ;

621 sk H sk = dot(−alpha∗p k , H sk ) ;

623 % S ing l e parameter s e t

sk yk = dot(−alpha∗p k , G new − G old ) ;

625

% Damping f a c t o r (1 i s no damping )

627 i f sk yk >= 0.2 ∗ sk H sk

theta k = 1 ;

629

e l s e

631 theta k = 0.8 ∗ sk H sk /( sk H sk − sk yk ) ;

633 end

635 % Apply damped update

Y( : , m ind (k ) ) = theta k ∗ (G new − G old ) + (1 − the ta k )∗H sk ;

637

end

639

641 e l s e
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% No damping

643 Y( : , m ind (k ) ) = G new − G old ;

645 end

647 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Stop cond i t i on s (minimum found i s the whi le cond i t i on )

649

651 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Stagnat ion ( x k − x k−1 = −alpha ∗ p k )

653 i f norm(S ( : , m ind (k ) ) ) /norm(m 0) < params . outer . s tag && ˜ dont ex i t

d i sp ( ’No s u f f i c i e n t change in s o l u t i o n ’ ) ;

655 Flag = 1 ;

657 % Stop or delay

i f delayed >= stop de l ay

659 break

e l s e

661 delayed = delayed + 1 ;

end

663

665 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Max i t s

667 e l s e i f k==params . outer . max its

Flag = 2 ;

669

break

671

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

673 % I n s u f f i c i e n t dec rease

e l s e i f r e svec (k ) − r e svec (k+1) < params . outer . d e c r e a s e t o l && ˜ dont ex i t

675 d i sp ( ’No s u f f i c i e n t dec rease ’ )

Flag = 1 ;

677

% Reset to prev ious ( in case o f i n c r e a s e in co s t )

679 i f r e svec (k+1) > r e svec (k )

m k = m k − S ( : , m ind (k ) ) ;

681 d i sp ( ’ Cost func t i on increased , r e tu rn ing prev ious i t e r a t e ’ )

break

683 end

685 i f de layed >= stop de l ay

break

687 e l s e

delayed = delayed + 1 ;

689

end

691

693 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Else update old va lues

695 e l s e

697 % Update k

k = k+1;

699 G old = G new ;

701 dont ex i t = f a l s e ;

de layed = 0 ;

703

end

705

% Discard cur rent i t e r a t i o n i f no change to s o l u t i o n

707 % Only occurs i f another i t e r a t i o n fo r c ed ( e . g . r eparameter i s ed )
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i f norm(S ( : , m ind (k ) ) ) < 1e1 ∗ eps

709 mem k = mem k−1;

e l s e

711 mem k = mem;

end

713

715 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Reduce/ i n c r e a s e e p s i l o n f o r TV norm

717 i f i s f i e l d ( params . reg , ’ e p s i l o n ’ ) && i s f i e l d ( params . reg , ’ cont inuat ion ’ )

i f delayed<=0 && params . reg . e p s i l o n > 10∗ eps

719 params . reg . e p s i l o n = params . reg . e p s i l o n ∗ params . reg . cont inuat ion ;

params . reg . cont inuat ion = 0.99 ∗params . reg . cont inuat ion ;

721 e l s e

params . reg . e p s i l o n = params . reg . e p s i l o n ∗ 2 ;

723 end

end

725

% Inc r ea s e nuisance max step i f i s f i e l d

727 i f i s f i e l d ( params . l i n e , ’ nu is max step ’ ) && i s f i e l d ( params . l i n e , ’ nuis step mod ’ )

params . l i n e . nuis max step = params . l i n e . nuis max step ∗ params . l i n e . nuis step mod ;

729 end

731

end

733

735 i f nargout>=6

M = M( : , 1 : k+1) ;

737 i f nargout == 10

i f a l l ( s i z e (m k)==s i z e ( m true ) )

739 [ epsk , s igk , muk ] = c o a r s e 2 f i n e (m k , params ) ;

i f a l l ( s i z e ( epsk )==s i z e ( m true {1}) )

741 e vec (k+1) = e vec (k+1) + norm( epsk − m true {1}) ;

end

743 i f a l l ( s i z e ( s i gk )==s i z e ( m true {2}) )

e vec (k+1) = e vec (k+1) + norm( s i gk − m true {2}) ;

745 end

i f a l l ( s i z e (muk)==s i z e ( m true {3}) )

747 e vec (k+1) = e vec (k+1) + norm(muk − m true {3}) ;

end

749

end

751 end

753 re svec = re svec ( 1 : k+1) ;

g = g ( 1 : k+1) ;

755

end

757 f p r i n t f ( ’LBFGS opt im i sa t i on completed with f i n a l r e s i d u a l %6.3 f and f l a g %i \n ’ , r e svec (k ) , Flag )

759

761 end
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soil surface and antenna effects from GPR data to enhance landmine detection.

IEEE Transactions on Geoscience and Remote Sensing, 45, March 2007.

[102] A. E. H. Love. The integration of the equations of propagation of electric waves.

Philosophical Transactions of the Royal Society of London. Series A, Containing

Papers of a Mathematical or Physical Character, 197:pp. 1–45, 1901.

[103] P. Lutz, S. Garambois, and H. Perroud. Influence of antenna configurations for

gpr survey: information from polarization and amplitude versus offset measure-

ments. Geological Society, London, Special Publications, 211(1):299–313, 2003.

[104] Yong Ma and Dave Hale. Cwp-679 a projected hessian for full waveform inver-

sion.

[105] Yong Ma and Dave Hale. Quasi-newton full-waveform inversion with a projected

hessian matrix. Geophysics, 77(5):R207–R216, 2012.

[106] Jacquiline MacDonald. Alternatives for Landmine Detection. RAND, 2003.

[107] Liam A Marsh, Christos Ktistis, Ari Jrvi, David W Armitage, and Anthony J

Peyton. Three-dimensional object location and inversion of the magnetic po-

larizability tensor at a single frequency using a walk-through metal detector.

Measurement Science and Technology, 24(4):045102, 2013.

[108] James Clerk Maxwell. On physical lines of force. The London, Edinburgh and

Dubplin Philosophical Magazine and Journal of Science, March 1861.



BIBLIOGRAPHY 286

[109] James Clerk Maxwell. A Treatise on Electricity and Magnetism, volume 2.

Clarendon Press, 1873.

[110] Giovani Meles, Jan Van der Kruk, Steward A. Greenhalgh, Jacques R. Ernst,

Hansruedi Maurer, and Alan G. Green. A new vector waveform inversion al-

gorithm for simultaneous updating of conductivity and permittivity parameters

from combination crosshole/borehole-to-surface GPR data. IEEE Transactions

on geoscience and remote sensing, 48(9):3391–3407, September 2010.

[111] Giovanni Meles, Stewart Greenhalgh, Alan Green, Hansruedi Maurer, and Jan

van der Kruk. GPR full-waveform sensitivity and resolution analysis using an

FDTD adjoint method. IEEE Transactions on Geoscience and Remote Sensing,

50:1881–1896, 2012.

[112] Giovanni Meles, Stewart Greenhalgh, Jan van der Kruk, Alan Green, and Han-

sruedi Maurer. Taming the non-linearity problem in GPR full-waveform inversion

for high contrast media. Journal of Applied Geophysics, 73:174–186, 2011.

[113] Giovanni Angelo Meles. New Developments in Full Waveform Inversion of GPR
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[150] Joachim Schöberl and Sabine Zaglmayr. High order nédélec elements with local
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