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Abstract: A key driver for developing more sustainable energy systems is to decrease the effects of climate 

change, which could include an increase in the frequency, intensity and duration of severe weather events. 

Amongst others, extreme weather has a significant impact on critical infrastructures, and is considered one 

of the main causes of wide-area electrical disturbances worldwide. In fact, weather-related power 

interruptions often tend to be of high impact and sustained duration, ranging from hours to days, because of 

the large damage on transmission and distribution facilities. Hence, enhancing the grid resilience to such 

events is becoming of increasing interest. In this outlook, this paper first discusses the influence of weather 

and climate change on the reliability and operation of power system components. Since modeling the 

impact of weather is a difficult task because of its stochastic and unpredicted nature, a review of existing 

methodologies is provided in order to get an understanding of the key modeling approaches, challenges and 

requirements for assessing the effect of extreme weather on the frequency and duration of power system 

blackouts. Then, the emerging concept of resilience is discussed in the context of power systems as critical 

infrastructure, including several defense plans for boosting the resilience of power systems to extreme 

weather events. A comprehensive research framework is finally outlined, which can help understand and 

model the impact of extreme weather on power systems and how this can be prevented or mitigated in the 

future. 
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1. Introduction 

A key driver for developing more sustainable energy systems is to decrease the effects of climate 

change, which include occurrence of severe weather events. Amongst others, extreme weather such as 

hurricanes and storms is considered one of the main causes of wide-area electrical disturbances worldwide.  

In USA, for example, the annual impact of weather-related blackouts ranges from $20 to $55 billion [1] and 

the trend of such events shows that their frequency has increased over the last 30 years, with a dramatic 

increase in the 2000s. [2]. These disruptive events can be classified into five categories, namely, small 

impact, moderate, serious, major and extreme, based on the number of customers disconnected and the 

duration and frequency of the event [3]. In fact, severe weather caused approximately 80% of the large-

scale power outages from 2003-2012 [2]. Climate change is expected to further increase the frequency, 

intensity and duration of extreme weather events [4, 5], as a result mainly of the continuous rise in the 

global greenhouse gas (GHG) concentrations.  

Electrical power systems are amongst the critical infrastructures of modern societies, so it is crucially 

important to boost their resilience to severe weather and to any future challenges that may arise due to the 

climate change. The future energy networks should go greener with reduced GHG emissions to mitigate the 

degree and impact of the climate change, but should also be resilient to unforeseeable external shocks, such 

as extreme weather. This leads to developing the so-called “low-carbon resilient” networks which combine 

both carbon reduction and resilience goals, as discussed in [6] and [7].  

In this context, resilience is defined as the ability of a power system to withstand extraordinary and 

high impact-low probability events such as due to extreme weather, rapidly recover from such disruptive 

events and absorb lessons for adapting its operation and structure to prevent or mitigate the impact of 

similar events in the future [6, 8-11]. Adaptation refers to the measures taken to reduce the vulnerability 

and build resilience [12] and it can be defined as “the process of adjustment to actual or expected climate 

and its effects, in order to moderate harm or exploit beneficial opportunities” [5].        

However, building highly resilient networks to extreme weather events is a difficult task due to the high 
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impact of such events to the transmission and distribution facilities. On the other hand, the so far low 

probability of occurrence of most such events makes it hard to develop a suitable cost benefit analysis. 

Also, uncertainty in the evolution of weather and potential change in the frequency or intensity of such 

extreme events makes the picture even more complex. 

Modeling the influence of weather on the reliability of power systems has attracted the interest of 

several researchers and, as a result, numerous methodologies have been developed in the last decades. A 

review of these methodologies is presented in this paper, in order to understand the key modeling 

approaches, limitations and challenges in assessing the impact of weather on the frequency and severity of 

power system blackouts. In addition, a review of measures for improving the network resilience and the 

natural disaster emergency, preparedness and response is provided in this paper. These can be divided in 

short-term preventive and corrective measures, i.e., before (e.g. days or weeks), during and after a weather 

event; and long-term preventive measures which refer to planning and network reinforcement schemes for 

providing adaptability and robustness to future weather events and climate change. 

Following this, a generic research framework is provided for enabling the development of weather-

related resilience studies. In general, three models are required in such studies, namely, weather, 

component and system models. These models interact with each other to estimate the weather-affected 

system resilience indices.   

This paper is organized as follows. Section 2 discusses the influence of severe weather and climate 

change on power system components. Section 3 provides the state-of-the-art techniques and challenges for 

assessing the effect of weather on power systems resilience. The defense plans to such events for boosting 

the network resilience are presented in Section 4. The proposed research framework is presented and 

discussed in Section 5. Section 6 summarizes and concludes the paper. 

2. Influence of Weather and Climate Change on Power System Components 

The extreme weather events have a significant influence on the reliability and operation of electrical 

components, and in turn on the resilience of the entire power infrastructure, the extent of which depends on 
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the severity of the weather [13, 14]:  

- High temperatures and heat waves limit the transfer capability of transmission lines, and increase the 

energy losses and the line sagging. 

- High winds during storms and hurricanes can lead to faults and damage to overhead transmission and 

distribution lines, either by debris being blown against the lines or even a tower collapse in extremely 

high winds.  

- Cold waves, heavy snow and the accumulation of ice can also cause failures of overhead lines and 

towers. Under freezing conditions, ice and snow may gather on insulators, which bridge the insulators 

and provide a conducting path, resulting in a flashover faults.  

- Lightning strikes on or near overhead conductors can also cause short-circuit faults, which will trigger 

the electrical protection and the disconnection of the lines. Such faults are usually transient and are thus 

rapidly restored to service. However, the voltage surge caused by the strike may be transferred along 

the line and cause damage to equipment, such as transformer wings.  

- Rain and floods do not pose a danger to overhead transmission lines, but to substation equipment, such 

as switchgear and control cubicles. The combination of rain with strong wings or lightning can however 

be significant threat to overhead lines.   

It can be seen that the impact of severe weather can be direct destructive events, such as tower 

collapses due to high winds, or indirect events affecting the normal operation of electrical components, 

such as heat and cold waves.  

Further, an important aspect that affects the degree of the influence of weather is the condition of the 

components. It is expected that aged components are more likely to be more vulnerable to extreme weather 

conditions than newer components. In fact, the exposure of power systems to severe weather conditions is 

often amplified by over-aged or degraded transmission and distribution equipment [15, 16].   

The climate change is expected to have a great impact on the weather parameters discussed above and 

consequently on the operation and reliability of power systems [17-24]. The operation of several 



 

 

5 

components, such as transformers and overhead lines, is governed by the maximum permissible operating 

temperature. An increase in the ambient temperature will thus affect their operating ratings and possibly 

limit their capabilities as the system elements would need to be derated to cope with the higher 

temperatures. Also, thermal power plants will be affected by the decreasing efficiency of the thermal 

conversion due to the rising ambient temperatures [23]. In addition, an increase in the temperature will 

affect the efficiency of the substation earthing, as the earthing impedance changes in response to the 

ground’s moisture and temperature [18]. The rise in the sea level will threaten the coastal assets such as oil 

and gas pipelines, while the increased rainfall will increase the probability of floods. Changes in 

precipitation patterns as well as higher frequency and intensity of drought periods may adversely impact 

hydropower generation and affect water availability for cooling purposes in thermal and nuclear power 

plants. The efficiency of the other renewable energy resources will also be affected by the climate change 

[17]. For example, an anticipated increase in cloudiness will affect the efficiency of solar technologies [23]  

and wind generation may have to be shut down when extremely high winds are experienced. Severe 

weather conditions due to climate change can also result to fuel supply interruptions, which affect the 

availability of primary energy resources [12]. Furthermore, the climate change is also thought to contribute 

to catastrophic wildfires around the world, such as United States and Canada, as a result of longer and 

warmer seasons, which threaten mainly the transmission facilities. In addition, the growth in the demand 

and change in load patterns due to the weather and climate change [25-29], in combination with the 

population migration to areas most affected by the climate change or most prone to weather-related 

hazards, will create major bottlenecks in delivering electrical energy efficiently and reliably [21].  

Based on these discussions, it is clear that extreme weather events can significantly impact the critical 

power infrastructure in several ways, but assessing this impact requires further studies to quantify possible 

changes in their frequency and intensity due to changes in the climate. If the rate of this change is lower 

than the rate of the development of power systems, then the power system should be able to adapt to the 

change in the weather pattern. However, if the rate of climate change is higher, then it may impose a threat 
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to the resilience of power systems because they have been traditionally designed to be robust for relatively 

normal and stable weather and loading patterns [21]. Nevertheless, replacing, uprating or making all the 

power system components more robust to cope with the potentially increased impact of severe weather 

events due to the climate change is a very expensive and rather unrealistic solution. More efficient and 

cost-effective short-term and long-term planning would therefore be required to boost the resilience of 

power systems to such events.  

3. Assessing the Effect of Weather on Power System Operation and Resilience Implications: State-

of-the-Art 

Modeling the influence of weather on the reliability and operation of power system components and in 

turn on the resilience of the entire power infrastructure is a difficult task due to the stochastic and 

unpredicted nature of weather. This section provides a review of the existing methodologies in this research 

area for identifying the key modeling approaches, challenges and limitations.   

3.1.Modelling techniques 

The techniques used in power systems reliability assessment can be generally divided into analytical 

and Monte Carlo simulations. Analytical techniques are preferred for small-scale system configurations 

because of their simplicity and low computational burden, but the simulation techniques are more suitable 

when complex system operational conditions are modelled. 

The majority of the methods in the literature for evaluating the weather-associated impact on power 

systems reliability use analytical techniques, with Markov approach being the dominant analytical 

technique. The basic concepts of incorporating weather-related failures were first introduced in [30] and 

[31]. In [30], a two-state weather model is proposed for modeling the failure bunching phenomenon in 

parallel facilities (Figure 1.a). The “failure bunching due to adverse weather” refers to the sharp increase in 

the failure rate of the components and in the probability of overlapping component failures during highly 

stressed conditions, such as adverse weather. This must not be confused with the common mode or 

common cause failures [32]. Markov process is used by Billinton and Bollinger in [31] to evaluate the 



 

 

7 

impact of weather on simple parallel configurations, where the two-state weather model is used to illustrate 

the bunching effect. The two-state weather model is the most widely used weather model [33-36], mainly 

because of its simplicity. Using this model, the weather conditions are divided in two states: normal and 

adverse. The failure and restoration rates are considered different but constant in each weather state. This 

results in two sets of reliability indices which can be weighted by the probability of transition between the 

two weather states. Liu and Singh [35] propose a DC Optimal Power Flow (OPF) Markov cut-set method 

(MCSM), which is based on the concept of applying the two-state weather model and the Markov process 

only to the minimal cut sets resulting in load shedding in order to estimate their reliability indices, and not 

to all system components. The proposed MCSM is compared with a next event sequential simulation 

(NESS), concluding that the analytical method is fast and of comparable accuracy with the NESS. Billinton 

and Wenyuan [37] use the two-state weather model and the Monte Carlo sampling technique to incorporate 

the variable weather conditions in composite analysis.   

However, as argued in [38], the reliability indices obtained using the two-state weather model can be 

very optimistic. As a result, a third weather state, i.e. major adverse weather, has been added in [32] and 

[39] based on IEEE Standard 346 [40] to better capture the variations in weather severity (Figure 1.b). A 

generalized state space diagram for a Markov multi-state weather model is proposed in [41], where it is 

argued that even the three-state weather model may be inadequate to represent the wide and fluctuating 

range of weather conditions. 
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Figure 1: Markov Weather Models 
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Other analytical techniques used in the existing literature include the Bayesian networks [42, 43], and 

in particular the noisy OR-gate model [44], the fuzzy clustering techniques for mapping the relation 

between hurricane parameters and the increment multipliers of failure rates (IMFR) of transmission lines 

[45], and the Boolean Logic Driven Markov process for assessing the reliability of small-scale smart grids 

under variable weather conditions [46]. 

Nevertheless, because of the stochastic and space- and time-dependent nature of the weather events and 

the size and complexity of real power systems, the simulation techniques are considered more suitable than 

the analytical techniques for weather-related power system resilience studies. These simulation techniques 

must be capable to capture the traversing nature of the weather events, both space- and time-wise, and also 

model their stochastic impact on the operational and reliability parameters of power system components as 

they move across the network. The failure rates of the outdoor power system components depend on the 

weather conditions and might increase with the weather intensity level, which is highly stochastic. In 

addition, the restoration time of the damaged components, e.g. overhead lines and transmission towers, also 

depends on the weather conditions, which can be significantly longer than the restoration time during 

normal weather. Therefore, using multiple weather states with fixed failure and restoration times is quite 

inflexible and not practical for the resilience assessment of large power systems. 

Monte Carlo simulation is applied by Rios et al. [47] to evaluate the impact of time-dependent 

phenomena and weather conditions on the computation of value of security (VaS) in power systems. Two 

main weather states are considered: normal and adverse. A weather-dependent failure rate is then 

determined based on the duration of each weather state and the proportion of failures for each component in 

each weather state. A sequential Monte Carlo approach is used in [33] for modeling the traversing weather 

events, taking into account their speed and direction. The Time To Fail (TTF) and Time To Repair (TTR) 

are resampled when the weather enters a new state using a failure rate multiplier and a repair rate divider 

for incorporating the weather impact. However, only one direction and fixed moving speed are considered, 

which does not represent the real nature of weather events. Time-varying failure rates are proposed by 
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Wang and Billinton in [48] using time-varying weather weight factors.  These are then inserted in a time-

sequential approach (TSDISREL99) for evaluating the system reliability indices, concluding that time-

varying failure rates result in an increase in the unreliability cost indices for frequency sensitive load and a 

slight increase for the others. A non-homogenous Poisson process (NHPP) is used in [49] and [50] for 

generating the number and time of occurrence of high wind and lightning events, which are, however, 

considered standstill and not traversing. Then, similarly to [48], time-varying failure and restoration rates 

are developed and inserted in a sequential Monte Carlo approach to determine the influence of the weather 

stochasticity on the reliability indices. Li et al. [51] use historical weather data and outage records from 

Northeast USA utilities for developing a wind storm probability model and parameterizing the weather-

dependent component models. Following this, sequential Monte Carlo is used for evaluating the 

performance of an actual distribution system in Northeast USA under six different wind storm intensity 

categories, ranging from normal to severe hurricanes.  

3.2.Consideration of weather regions 

It is usually assumed that the system is exposed to the same weather conditions at any given time by 

modeling weather as a standstill event. This reduces the complexity of the modeling procedure because no 

regional weather aspects are considered. This is a valid assumption for distribution systems which cover a 

small geographical area and the system is usually exposed to the same weather conditions at any given 

time. However, it is not applicable in transmission system resilience studies, which cover a large 

geographical area and the weather event moves across the transmission network sequentially with time.  

Billinton and Li [37] show that this assumption leads to the overestimation of the problem and to the 

estimation of pessimistic inadequacy indices. 

As discussed in the existing literature, such as [37], [44] and [45], it is more accurate and practical to 

divide the network in weather regions. An arbitrary division of the IEEE 9-bus reliability test system into 

two weather regions is shown in Figure 2. The weather is assumed the same within each region, but it 

traverses and changes both time-wise and space-wise, i.e. region to region. Using weather regions helps 
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model a weather event in a more realistic way and also estimate the regions’ resilience to weather 

fluctuating events. 
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Figure 2: Dividing an electrical network in weather regions 

Different criteria can be used for defining these weather regions, such as voltage levels [45] and 

meteorogical and geographical characteristics [37]. Splitting the system in weather regions based on the 

voltage levels is not realistic, but it simplifies the analysis. Ideally, the network will be divided based on 

real, recorded weather data, with the probability and duration of each weather state in each weather region 

given by meteorogical records. The number of weather regions may depend more on the availability of 

such data than on the size of the transmission network. 

3.3.Modeling the impact of weather on the failure rate of power system components 

The environment in which the transmission and distribution facilities reside has a significant impact on 

their reliability, and in particular on their failure rate. In addition, it is possible that a long transmission line 

crosses several weather regions, experiencing different weather conditions at each region. For example, 

lines 5-7 and 8-9 of Figure 2 cross the two weather regions. Therefore, the impact of weather across the 

transmission line will vary from region to region. Defining the weather-affected failure rate of the 

components with high accuracy is vitally important in modeling the impact of weather on the entire power 

infrastructure.  

In [33], the line is divided into segments which are assumed to be connected in series. A failure rate 

multiplier is applied to each line segment, based on the fraction of the line in each weather region and on a 
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failure stress factor for the segments in adverse weather. The line overall failure rate is then given by the 

summation of the failure rates of the line segments, since they are assumed to be in series. Liu and Singh 

[45] use the weighted average method to define an incremental multiplier of failure rate (IMFR) for each 

line segment, which depends on the portion of the line in each weather region. Barben [52] assumes that 

each line segment can fail independently and that they are designed to avoid the propagation of mechanical 

or electrical outages to the adjacent segments. Therefore, the line overall failure is simply given by the 

summation of the failure rates of the line segments.  

An additional approach is to estimate the failure rate of each segment in each weather region and then 

choose the worst (highest) failure rate as a representative for the line. Also, the concept of fragility curves 

[53-56] can be used, which express the relation of the failure probability of any system component, such as 

transmission lines and towers or distribution poles, to any individual or combination of weather parameters, 

such as wind speed and lightning density. The shape of the curves depends on the impact of the weather 

parameter on the failure probability of the component. These fragility curves would be generic for each 

weather parameter and would correspond to all the weather regions. The regional weather profile would 

then be mapped to these curves for obtaining the regional weather-affected failure probabilities of the 

components (Figure 3). These curves can be developed either through modeling taking into account the 

weather aspects that affect the components’ failure rate, such as wind speed, height and direction, or using 

real empirical data for determining the failure rate of the components under different weather conditions.  

A strong assumption made in the methods discussed above is that a weather condition terminates at the 

boundary between two geographical weather regions. The division of the network in weather regions is 

based on the same assumption. However, in real systems, there are no clear frontiers between weather 

regions, but the weather event moves across the network with a fluctuating density, speed and duration, 

affecting the reliability of the electrical components in unpredictable ways. Nevertheless, dividing the 

network in weather regions and assuming same weather in each region provides a simple but effective way 

for assessing the impact of different weather conditions across the transmission lines. 
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Figure 3: Determining components’ failure probability using fragility curves 

3.4.Influence of weather on restoration time 

Figure 4 shows the restoration procedure of the weather-damaged components and the restoration of 

the power system to normal operation. Following the weather event, data need to be collected to assess the 

damage and set the priorities to initiate the system restoration. Then, the system operators coordinate with 

the repair crews for restoring the damaged components, followed by the corrective actions by the system 

operators for restoring the power system to a normal operation.  
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Figure 4: Restoration procedure during weather emergencies 

However, this restoration procedure and the recovery time following a weather event depends on 

several factors, such as the magnitude and location of the event, the availability of spare parts and repair 

crews and the accessibility to the affected areas. Therefore, similarly to the failure rates, it is critical to 
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determine the weather-affected restoration time to increase the accuracy of the modeling output. 

There are several approaches to this problem in the literature. In [39, 44, 45], it is assumed that no 

repair can take place during the bad weather period because it is argued that it is too dangerous for the 

repair crews to be dispatched. Considering that additional manpower and resources are employed by the 

electrical utility during severe weather, a repair rate equal to the one during normal conditions is used in 

[52]. Billinton and Singh [34] apply three repair scenarios using the two-state and three-state weather 

models of Figure 1: no repair in adverse weather, repair time equal in normal and adverse weather and 

repair time 1.5 times the repair time in normal weather. It is concluded, as expected, that assuming no 

repair in adverse weather results in the highest average outage duration.  

In another study by Wang and Billinton [48], weight factors are used to reflect the impact of weather, 

taking into account the day and time of the restoration. This leads to hourly and weekly time-varying 

restoration times. It is shown that the time-varying restoration times have a significant impact on the 

unreliability cost indices. However, the development of these time-varying restoration times requires a vast 

amount of weather data and system past restoration experience in different weather conditions. Therefore, 

this results in utility-specific restoration times, and not to a universally applicable restoration model.  

A repair rate divider is applied in [33] for which, similarly to the failure rate multiplier discussed 

earlier, a repair stress in each weather state and the fraction of the line in each weather region are 

considered. Weather historical data that are associated with each line in the system are, however, required 

for developing these failure rate multipliers and repair rate dividers.   

Ideally, input should be obtained from several electrical utilities on the emergency procedures in place 

during and after extreme weather events and on the factors governing the restoration times. For example, 

backup transmission towers may be available which are deployed in case of a weather emergency. This 

input from the electrical utilities can then serve as a basis for developing a generic restoration model of 

sufficient accuracy, which could effectively capture the impact of the different weather conditions. 
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3.5.Impact of “human resilience” during weather emergencies 

The critical power infrastructure can be seen as a system-of-systems, for which human response is very 

important. Dealing with the weather emergency requires the high involvement of system operators in order 

to monitor and cope with the evolving system conditions. Therefore, system operators’ situation awareness, 

decision-making and response play a key role in preserving system resilience during weather events. In this 

context, “human resilience” is thus vitally important. In this respect, Mallak [57] defines six factors that 

drive the level of this human resilience, namely, goal-directed solution seeking, avoidance, critical 

understanding, role dependence, source reliance and resource access.  

It can be appreciated how these high level components defining human resilience can be readily 

mapped against the requirements of human response (particularly by system operators) under power system 

stressed conditions. In fact, system operators have to deal with a large amount of data and alarms during 

electrical and weather emergencies. However, they have certain information processing bottlenecks [58-

60], which may affect their capability to perceive and interpret the presented data in an effective and timely 

manner. This influences their reaction to electrical events, which is detrimental to the grid resilience. 

Panteli et al. [61] show that the insufficient situation awareness and reaction to an electrical event affects 

significantly the probability of cascading outages and customer disconnection. Nevertheless, the effect of 

operators’ inadequate response during weather emergencies was not evaluated in [61].  

Therefore, in addition to the delay in the restoration time due to the weather conditions, the human 

response can also result in the delayed restoration of the damaged components and of the system to a 

resilient state. Thus, the main sources of human-related delay during a weather emergency are (Figure 5): 

- development of individual situation awareness and decision-making at control centers (ΔT-1), and 

- coordination and information sharing between the system agents, namely system operators (ΔT-2) and 

repair crew (ΔT-3). 

Even though the development of smart monitoring and communication technologies has enabled the 

improvement of situation awareness and the information sharing between the system agents, it is possible 
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that due to failures, limitations or design flaws in the information systems or individual operator and repair 

crew errors, the corrective or preventive actions will not be implemented timely or they will not have the 

desired effect on the network, compromising the grid resilience. It is therefore critically important to 

consider these factors in the resilience studies. 
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Figure 5: Human-related delay during weather emergencies 

3.6. Independent and common cause failures 

Power systems are traditionally designed to withstand single outages (“N-1” security criterion), but not 

multiple outages (“N-k” security criterion). However, it is possible that the weather events lead to the 

simultaneous outage of multiple components if their intensity and/or duration is very high. An example of 

multiple failures is the outage of a double line circuit due to a collapse of a transmission tower. This is 

considered a common cause failure, which is evaluated in [44], [52] and [62]. Common cause failures 

constitute a high threat to the system resilience, as they reduce significantly the system resistance to new 

outages and also reduce the available assets and resources for coping with the unfolding disturbance.  

It is therefore critical to consider both independent and common cause failures in weather-related 

resilience studies. Resilience enhancement measures can then be applied for mitigating the impact of these 

events, such as building the transmission towers with more robust materials. 

3.7.Dealing with key modeling uncertainties 

There are several modeling uncertainties when assessing the impact of weather on the resilience of 

power systems, such as the restoration plans and the potential delay due to the human response, which can 



 

 

16 

decrease the accuracy of the modeling output. This is mainly because of the lack of data and of the 

unpredicted behaviour of the weather. A way of dealing with these modeling uncertainties is performing 

sensitivity studies to evaluate the impact of the assumptions made in the weather modeling. Different 

techniques can be used, such as wide range method [63]. For example, in [37] the percentage of failures in 

adverse weather is varied over a wide range to evaluate its impact on Expected Energy Not Served (EENS). 

The restoration time is varied in [31] to assess its impact on the system failure rate.  

The sensitivity studies would help understand the importance and effect of each modeling aspect and 

parameter on the modeling output. This will guide the more effective and systematic collection of data that 

would help increase the accuracy of and the confidence to the simulation output.    

4. Boosting the Resilience of Electrical Networks 

The probability of extreme weather events is currently relatively low, but their impact is so high (and in 

the future the occurrence frequency might increase due to climate change) that it is vitally important to 

enhance the resilience of electrical power systems to such events. In this respect, electrical utilities [64, 65] 

and consulting companies [66, 67] worldwide are working towards the development and implementation of 

grid resilience improvement measures. In fact, hardening to extreme weather has been recognized as one of 

the key asset management and business goals of several companies, such as [68]. These measures can be 

divided in short-term, which refer to the preventive and corrective actions before, i.e. days or weeks, during 

and after the weather event, and long-term, which refer to the long-term planning for providing adaptability 

and robustness to future weather events and climate change. 

4.1.Short-term resilience measures 

Table 1 shows the short-term resilience measures. These include the traditional preventive and 

corrective actions for blackout prevention [14], such as reserve planning, generation redispatch and 

automated protection and control actions, but also additional weather-related measures that can be taken to 

better prepare for the forthcoming weather event. An accurate forecast of the weather event’s location and 

severity would allow system operators to configure the network in a way to mitigate the impact of the 
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severe weather. For example, they can minimize the generation and power flows in the most affected areas 

to alleviate the post-disturbance line overloadings. Furthermore, the repair and recovery crews would be 

effectively dispatched and prepositioned to enable the quick restoration of the damaged components [69]. 

Maintaining backup components and materials also enable the fast replacement of the weather-affected 

power system components.  

During the weather event, it is of key importance to monitor effectively the system state, which enables 

the development of sufficient situation awareness. This leads to the effective decision-making and reaction 

by the operators to the electrical events, and also to the efficient coordination with the recovery and repair 

crews. These crews, weather-permitted, should quickly restore the damaged components to prevent the 

propagation of the electrical disturbance. The communication infrastructure is critical during the weather 

event, because it enables the data collection and the communication between the system agents, i.e., system 

operators and repair crews. It is also critical to monitor the progress of the weather event. If the weather 

event becomes more intense or follows a different than the predicted route, then the system operators 

should readjust their emergency plans and possibly apply different corrective and/or preventive actions.  

Following the weather event, its impact needs to be assessed and the operators should set priorities for 

initiating the restoration of the damaged components by the repair crews. The restoration procedures are 

then applied by the operators for returning the system to a resilient state and reconnecting the customers. 

Table 1: Short-term Resilience Measures Before, During and After the Weather Event 

Before: 

- Accurate estimation of the weather location and severity 

- Estimation and prepositioning of the number of repair and recovery crews possibly 

required following the weather event 

- Maintain backup components and materials, such as transmission towers 

- Coordination with adjacent networks 

- Traditional preventive actions, such as: 

 System configuration in a resilient state 

 Reserve planning 

 Ensure black-start capabilities 

 Smart solutions, such as demand-side management 

During: 

- Monitoring: development of situation awareness 
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- Ensure communications functionality 

- Coordination with repair and recovery crews 

- Traditional corrective actions, such as: 

 Generation redispatch 

 Substation re-configuration 

 Capacitor switching 

 Automated protection and control actions: load and generation rejection, system 

separation, etc.  

After: 

- Disaster assessment & priority setting 

- Restoration of damaged components, e.g. poles and towers 

- Traditional restoration actions, such as: 

 Reenergizing transmission lines 

 Unit restarting 

 Load restoration 

 Resynchronization of areas 

4.2. Long-term resilience measures 

 Table 2 shows the long-term resilience measures that can be taken for mitigating the influence of 

weather and providing system adaptability [1, 4, 18, 19, 22, 70]. Following the weather event, the 

limitations or deficiencies in the operational procedures can be identified. This will enable the improvement 

of the risk assessment and management, the enhancement of the emergency and preparedness plans and the 

improvement of vegetation management. In order to be resilient in the face of new emergencies, e.g. 

unforeseeable weather conditions, an organization should develop robust techniques in problem diagnosis, 

improvisation, communication and collaborative actions that would enable an effective and fast 

coordination between the system agents during the weather emergency [71]. 

Table 2: Long-term Resilience Measures 

Operational procedures: 

- Risk assessment and management 

- Improve emergency and preparedness plans 

- Tree trimming/vegetation management for clearing the transmission lines rights-of-way 

Hardening measures (structural and topology): 

- Undergrounding distribution and transmission lines 

- Upgrading poles and structures with stronger, more robust materials 

- Elevating substations and relocating facilities to areas less prone to flooding 

- Redundant transmission routes by building additional transmission facilities 

- Re-routing transmission lines to areas less affected by weather 

Smart solutions: 

- Energy storage 
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- Distribution generation 

- Demand side management 

- Microgrids 

- Advanced control and protection schemes, such as System Integrity Protection Schemes 

(SIPS) 

- Advanced visualization and information systems  

In addition, structural measures can be taken, such as undergrounding the distribution or transmission 

lines [4]. This would increase the robustness of the components to severe weather conditions. Furthermore, 

topology measures, e.g. building additional transmission facilities [4], would improve the assets and 

resources available to the system operators, which would help manage the disaster as it unfolds. 

In the era of smart grids, different smart solutions can be applied for enhancing the grid resilience to 

extreme weather events. For example, energy storage [72], distributed generation [73] and demand side 

management [74] can be used for providing flexibility, serving the power consumer without external 

transmission lines and reducing the power flows in the areas that are highly prone to the severe weather. An 

additional application of energy storage is the ability to balance microgrids for achieving a balance between 

generation and demand. Microgrids can separate and isolate themselves from the network during a weather 

emergency and then automatically resynchronize and reconnect following the weather event.  

Advanced protection and control schemes, e.g. System Integrity Protection Schemes (SIPS) [75], can 

also be used to enhance the grid robustness. These schemes are usually automated and they use fast 

communications and real-time measurements to adapt their operation on the evolving system conditions, 

without the need of human intervention. Examples include the load and generation rejection and the system 

separation. Wide area measurement systems (WAMS) using Phasor Measurement Units (PMUs) can 

improve the speed and accuracy of these protection and control schemes [75, 76].  

The latest technological breakthroughs, including PMUs, can also help improve the visualization and 

information systems for better supporting the system operators. Available technologies include the 

intelligent alarm processing for dealing with the vast amount of alarms during emergencies [77], and the 

advanced visualization techniques such as color contours, animated arrows and dynamically sized pie 
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charts, for improving the efficiency of the graphical user interface [78-80]. 

4.3.Discussion and Resilience Measures Implications 

In general, there are two critical aspects in the natural disaster emergency and preparedness planning: 

what is the system designed to withstand and what can the system owner afford to withstand? The 

resilience enhancement measures must thus achieve an optimal balance between performance, cost and 

risk. Therefore, the main drivers of the investments in these measures are: 

- improvement of the customer satisfaction,  

- enhancement of reliability metrics and safety, and 

- reduction or control of the operational and maintenance expenses.  

However, some of the measures presented in Tables 1 and 2 are very expensive solutions. In particular, 

system hardening measures are usually much more expensive than possible operational and “smart grid” 

solutions. Therefore, the resilience enhancement measures to put in place would ultimately have to be 

supported by cost benefit analysis that should take account of the possible consequences of the high impact 

low probability weather events. Before implementing any measures, their cost (including capital, operating 

and maintenance costs) has to be compared with the reduction in the risk achieved by these measures.  

5. Generic Research Framework For Evaluating the Influence of Weather On Power Systems 

Resilience 

Based on the discussions of the previous sections, a comprehensive research framework is presented in 

this section that provides the main modeling aspects and requirements for evaluating the impact of weather 

on the resilience of power systems. More specifically, the key resilience features of a power system 

intended as a critical infrastructure, include [9, 10]: 

- Robustness/Resistance: This refers to the ability of the system to withstand high-impact low-probability 

events. 

- Resourcefulness: This feature indicates the ability to effectively manage the disaster as it unfolds using 

the available resources and assets. 
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- Response and Recovery: The fast response to and recovery from disruptive events is very important. 

- Adaptability: Lessons need to be absorbed from a catastrophe, such as natural hazards, for boosting the 

key resilience features before the next crisis. 

In general, three main models have to be considered, namely, weather, component, and system models 

(Figure 6). The aim of these models is to provide a suitable quantitative assessment platform to analyze the 

impact of weather on the key resilience features outlined above. In this light, these models interact with 

each other for obtaining the weather-affected system resilience indices. As can be seen in Figure 6, the 

weather model provides input to both the component and system models. The component model uses the 

input of the weather model to estimate the weather-adjusted component resilience and operation, which is 

used as input to the system model. Then, in the system analysis, the inputs from the weather and component 

models are used for carrying out the performance assessment of the system in order to estimate the effect of 

weather on the system resilience indices.   

5.1.Weather model 

Developing a highly accurate weather profile is important in such studies. Historical weather 

observations or recorded data can be used for creating the regional weather profiles. These can be obtained 

from measurements at the weather stations of each country or from site measurements at different locations 

in the system, such as wind parks or transmission lines and towers. Alternatively, weather generators can be 

used for generating the weather data required. For example, the UKCP09 weather generator [81] developed 

by the Met Office, UK [82] is a free software that uses historical weather data for training the weather 

generator, which then provides long time series of weather data using random number sampling. An 

additional example includes the Hazard U.S. Multi-Hazard (Hazus-MH) tool [83] provided by the Federal 

Emergency Management Agency (FEMA) [84], which generates natural hazard scenarios, and in particular 

earthquakes, hurricanes and floods. If sufficient real observation data or such weather generators are not 

available, simulation techniques can support the generation of the weather profile, as in [49], [50] and [85], 

which should be capable to capture the stochastic and continuously varying behaviour of the weather. 
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However, these have to be accompanied by methods for reducing or evaluating the influence of the weather 

forecast errors on the accuracy of the simulation output, such as [86]. Finally, the weather profiles should 

be time- and space-domain, with the time resolution ideally being half hourly or hourly. 

 As aforementioned, the climate change is expected to increase the frequency, severity and duration of 

extreme weather events. Future weather scenarios are thus needed for capturing this impact of climate 

change on the resilience of future power systems. These scenarios can be obtained from the weather 

generators discussed above. The resilience assessment using future weather scenarios would provide an 

indication of the measures to be applied for boosting the future grid resilience.  

 In addition to the weather profiles, the weather model should be able to provide the relation between 

the weather and the components’ resilience and operation. An example includes the fragility curves 

discussed in Section 3.3. This can be achieved by using historical weather data and associating the 

behaviour of the components, e.g. outage, derated operation, etc., with these weather events, as in [87]. 

This will provide a statistical impact of weather on the failure frequency and operation of power system 

components, which can be used to model the behaviour of the components during extreme weather events.   

5.2.Component model 

The weather conditions that power system components experience affect significantly their reliability, 

i.e. failure and restoration rates, and operation. Using the input from the weather model on the relation 

between weather and components’ resilience and operation, the component model should be capable to 

model this impact of weather while taking into account the structural, e.g. material, and operational, e.g. 

operating temperature, characteristics of the components.  

Additionally, the component model should be flexible and easily modified, in order to incorporate any 

future changes in the component characteristics. It can be a function of the parameters affecting the 

resilience and operation of the component, such as material, geographical location, height, temperature and 

wind speed and direction. A generic model for each type of components can be developed, e.g. 

transmission lines or transmission towers, which should be easily adjusted to specific components 
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depending on the components’ characteristics and on the impact of weather on each component.  
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Figure 6: Generic research framework for assessing the impact of weather on power systems resilience 

In addition to the impact of weather on components’ resilience, the effect on components’ operation 

should be included in the component model as it affects the operation of the entire power infrastructure. For 

example, when modeling the wind turbines, the cut-in and cut-off wind speeds should be considered. This 

is particularly critical when modeling extreme wind speed events, typically higher than 25m/s. 

Furthermore, the component model should be capable to capture the continuous varying weather 

conditions, without the need of distinguishing normal and bad weather. In this way, there will not be a 

different model for each weather state, but only one universal model for any weather conditions which 

reduces the complexity of the simulation procedure. 

In general, the operational reliability of a component is affected by the weather conditions and the 

loading conditions [88, 89]. The effect of weather has been extensively discussed in this paper. In 

conventional reliability evaluation of power systems, it is assumed that the failure rates of the components 

are constant and loading-independent. However, in real-time operation, the components experience higher 

stress during heavily loading conditions, which affects their failure probability. Therefore, the dependency 

between components’ reliability and loading needs to be considered. Developing a comprehensive model 

using weather- and loading-dependent reliability data would provide a clearer indication of the operational 
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reliability of power systems.    

5.3.System model 

The weather profile and the weather-adjusted component resilience and operation are then used by the 

system model for assessing the performance of the system under different weather conditions. For this 

purpose, as discussed in Section 3.1., it is preferable to use time series simulation techniques. This enables 

the modeling of a weather event in both time and space domain, which helps capture the stochastic nature 

and impact of weather while moving across the transmission network. The time series weather profile can 

then be mapped to the component model for obtaining the operational state of the components at every 

simulation step. It is also vitally important to take into account the spatial characteristics of the weather 

event, because the transmission network covers a large geographic area, so the effect of weather would 

vary from region to region.  

Power systems are by definition system-of-systems, so by affecting the robustness of the individual 

components, the weather events can initiate cascading impacts on the entire infrastructure. Therefore, the 

output of the system model should provide a clear indication of the impact of weather on the resilience 

features of the entire power system. In addition, using the weather regions discussed in Section 3.2., a 

regional indication of the risk introduced by severe weather events can be estimated, which will provide a 

regional vulnerability index that will help target the resilience enhancement measures to the most 

vulnerable regions of the system. 

Even though assessing the impact of future climate change on the reliability of power systems using the 

current system topologies, operational procedures and protection and control methods provides an 

indication of the problem, it does not accurately reflect either the real behaviour of future networks or the 

extend of the problem in the future. When modeling the influence of future weather scenarios, it is more 

realistic to take into account the practices of future networks and future demand scenarios. The latest trends 

within the concept of smart grids show that power systems are experiencing a transition from the 

conventional way of operating and protecting the grid to a smarter and more adaptive way. Technologies 
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and practices, such as energy storage, demand side management, microgrids, adaptive wide area protection 

schemes and decentralized protection and control, are going to affect the operation and reliability of future 

networks. In addition, several technological developments, such as electrical vehicles and increased 

appliances efficiency, would result in significant changes in the typical existing demand patterns. Also, the 

progress in the monitoring and visualization tools would enhance the observability of the system, resulting 

in a higher operators’ situation awareness and response to electrical events. Therefore, these aspects have to 

be included in the resilience studies in order to obtain a complete and more accurate indication of the 

problem in the future, which will drive the decision on the most suitable resilience enhancement measures. 

Finally, several indices can be used, such as Expected Energy Not Served (EENS) and Loss of Load 

Probability (LOLP) [90]. For evaluating the effect of the modeling parameters on these reliability indices, 

sensitivities studies can be performed as discussed in Section 3.7.  

5.4.Adaptability studies and resilience enhancement measures 

Following the estimation of the weather effects on the resilience of power systems, adaptability studies 

should be conducted, whose aim should be the enhancement of the key resilience features. This will help 

prevent or mitigate the impact of future weather events. In fact, it is critically important for a power system 

to adapt to the future weather conditions in order to cope with the possible increase in the frequency, 

duration and/or intensity of extreme weather phenomena, possibly engendered by climate change. 

Based on the outcome of the adaptability studies, resilience enhancement measures can be applied, as 

discussed in Section 4. The effect of these measures on the key resilience features varies. For example, 

upgrading the components with stronger materials makes them more robust to the weather conditions, 

which reduces their probability of failure. Effective operational procedures and enhanced situation 

awareness help reduce the restoration time, which improves the recovery feature of resilience. Redundant 

transmission facilities and smart grid solutions provide additional resources and control assets to the system 

operators, which help them cope effectively with the unfolding disaster. This altogether improves the 

resourcefulness feature of resilience. 
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6. Conclusions     

Severe weather has a significant impact on the critical power infrastructure. In combination with the 

potential increase in the frequency, severity and duration of such events due to the climate change, boosting 

the grid resilience to extreme weather phenomena becomes increasingly important.  

Quantifying the risk introduced by weather is a difficult task due its high stochasticity and multi-

dimensional impact. A review of existing methodologies for assessing the impact of weather on the 

resilience of power systems is presented in this paper. This helps identify the key modeling approaches, 

requirements and challenges in such studies, e.g., modeling the impact of weather on the failure and 

restoration rates of power system components, which is directly relevant to the concept of resilience.  

Several resilience enhancement measures are then discussed in the paper. These can be divided in 

short-term, i.e., before, during and after the weather emergency, and long-term for providing robustness 

and adaptability to future weather conditions. Preventive control actions and proper operational procedures 

help prepare for the forthcoming weather event, while corrective actions help manage effectively the 

disaster as it unfolds. In addition, structural and topology measures increase the resistance and 

resourcefulness of the system to extreme weather events. Smart grid solutions can also be applied for 

providing flexibility and advanced monitoring, protection and control strategies to mitigate the effect of 

severe weather. In addition to what is discussed in the existing body of literature, it has been argued in this 

paper that the resilience of the critical power infrastructure should be modeled and assessed within the 

context of system-of-systems that also include human response as a key dimension. 

Based on this review and the relevant emerging considerations, a generic research framework is 

proposed which helps model the impact of any weather conditions on any power system. It is mainly 

composed of three models, namely, the weather, component, and system models, which interact with each 

other for obtaining the weather-affected system resilience indices. This framework can be used as the basis 

for developing weather-related resilience studies, as it discusses and incorporates the key modeling aspects 

when evaluating the effect of weather on power systems resilience.  
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