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Validation of the Quantum Chemical Topological Force Field, QCTFF 

 

Until such a time that computers are powerful enough to routinely perform ab initio 

simulation of large biomolecules, there will remain a demand for less expensive 

computational tools. Classical force field methods are widely used for the simulation of 

large molecules. However, their low computational cost comes at the price of introducing 

approximations to the description of the system, for example atomic point charges and 

Hooke type potentials. The quantum chemical topological force field, QCTFF, removes the 

classical approximations and uses a machine learning method, kriging, to build models that 

map ab initio atomic properties to changes in the internal coordinates of a chemical 

system. The atomic properties come from quantum chemical topology, QCT, and include 

atomic multipole moments and also energy terms from the interacting quantum atoms 

(IQA) energy decomposition scheme. By using atomic multipole moments, the electrostatic 

interactions between atoms is described in a more rigorous fashion than most classical 

force fields, and polarisation is captured through the use of kriging models. In this thesis, 

the QCTFF approach has been applied to a selection of test cases including small molecular 

dimers and amino acids. Kriging models are built using a “training set” of molecular 

geometries, and an investigation of different approaches for sampling amino acids is 

provided.  The concept of the “atomic horizon sphere” is discussed, where the effect on the 

multipole moments of an atom in an increasingly large environment is investigated. This is 

an important investigation required to guide the development of future QCTFF training 

sets. Investigations into the effect of deprotonation of  basic and acidic amino acids side 

chains is provided, as well as a study of the short range repulsion between atoms.
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Chapter 1 

Introduction and Methods 

1.1. Background 
In silico techniques are widely used throughout chemistry[2]. But why study a chemical 

system using computation? The computational modelling of experimentally observable 

chemical systems offers unique insight and analysis that, along with experimental results, 

provides a more complete understanding of the chemical system than experiment alone is 

capable of. The better understanding of the system can then act as a guide in the design of 

future experiments. For example, the development of photovoltaic devices frequently 

utilises computation to identify the HOMO and LUMO orbitals of the dye molecule and the 

semiconductor using density functional theory (DFT)[3, 4]. The calculations aid the design 

of dye molecules that will give efficient photovoltaic cells. Another example of 

computational methods being used in parallel with experiment is the elucidation of 

reaction pathways [5-7]. High level ab initio data are capable of giving energies not just of 

reactants and products, but also energies of competing transition states which are 

unobtainable directly from experiment.  

Computational methods are often a faster and cheaper alternative to experiment, and 

computation is widely used in industry to streamline research and development processes. 

For example, a pharmaceutical company wanting to design a novel inhibitor for a target 

protein may save a significant sum of money by screening many possibly drug candidates 

using computational methods such as docking[8], molecular dynamics (MD) simulation[9], 

or Monte-Carlo (MC) simulation[10]. These techniques are capable of narrowing down the 

drug candidates in a fraction of both the time and the cost that would be taken by 

experimental means. A detailed review of the applications of docking to medicinal 

chemistry problems is provided in Appendix A. 

A practical limit on the accuracy of data available to a computational chemist is that on the 

size of the system being studied. Ab initio methods such as DFT, Møller-Plesset 2 (MP2) 

and coupled cluster techniques (e.g. CCSD(T)) scale rapidly with system size (O(N5), O(N6) 

and O(N7) for MP2, CCSD and CCSD(T) respectively[11]) but are highly accurate and 

involve little approximation. Molecular mechanics (MM) force fields offer an alternative 

when the system of interest is too large for ab initio calculation. MM force fields treat 

chemical systems as a sum of classical potentials and are much faster than ab initio 

methods. The details of MM force fields are described in detail in Section 1.2. Until such a 

time as computers are powerful enough to routinely provide ab initio results for large 

systems such as proteins, the search for the best MM potential is an active area of research.  
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The aim of this body of work is to present my personal contribution towards the 

development and improvement of the Quantum Chemical Topological Force Field (QCTFF), 

a potential developed by the Popelier group for application to biomolecular and medicinal 

applications. Despite naming it a force field, QCTFF is both fundamentally and theoretically 

removed from the classical approaches to force field methodology. Instead of using 

parameterised atom types and classical potentials, QCTFF uses machine learning and ab 

initio quantum chemical topological (QCT) information to build models that provide near 

ab initio accuracy on a MM time scale. 

1.2. Force Field Methodology  
A force field is a set of equations that may be solved in order to reproduce the total energy 

of a system. Although difference force fields all differ from one another, they share many 

features and potential forms. Examples of common force fields are AMBER[12], 

CHARMM[13, 14], GROMOS[15] and AMOEBA[16]. Because QCTFF takes a radically 

different approach to force field development, the following description of standard MM 

potentials is not relatable to QCTFF. However, to appreciate the radical approach that 

QCTFF takes to biomolecular force field development, it is important to provide the reader 

with an overview of the standard approach. 

An MM force field calculates the total internal energy,     , of a system as a sum of bonded 

and non-bonded terms,  

              

     

              

(1.1) 

where         and             can be further decomposed to give, 

            
            

 

           

      
          

 

           

         
           

 

                

       
         

 

              

 

(1.2) 

                
             

 

              

     
             

 

              

 

(1.3) 

Bonded terms include bond stretches, angle bends, stretch-bend cross terms, and torsional 

potentials. The non-bonded terms consists of the electrostatic interaction, the van der 

Waals dispersion interaction and the Pauli repulsion. The latter two terms are normally 

described together as a Lennard Jones type potential.  
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The bond stretch term is obtained by Taylor expansion about the equilibrium separation of 

two bonded atoms,    , between two bonded atoms A and B, 

               
  

  
             

 

  

   

   
              

 

  

   

   
                

(1.4) 

When equation 1.4 is truncated at the first non-zero term, one obtains Hooke’s Law, 

       
 

 
                 

(1.5) 

Equation 1.5 contains two constants, the force constant,    , and the equilibrium bond 

distance,       . These values are easily obtained by experimental techniques, typically IR 

spectroscopy. 

The angle bend term of a classical MM force field is obtained in an analogous manner to 

that of the bond stretch term, described by Taylor expansion about the equilibrium bond 

angle. When truncated after the first non-zero term, one obtains: 

        
 

 
                  

 
 

(1.6) 

where the force constant,     , and equilibrium angle,        , are obtained by experiment.  

The above expressions for bond stretches (equation 1.5) and angle bends (equation 1.6) 

provide good description of stretches and bends so long as the atoms remain near their 

equilibrium positions. Equation 1.5 fails to model bond stretches when     is much larger 

than       . In such a situation, the energy of a bond becomes infinitely positive. This is not 

reasonable, and may be “balanced” by including higher terms in the Taylor expansion to 

give a potential of the form, 

       
 

 
        

   
                

   
            

 
             

 
 

(1.7) 

As the third order force constant    
   

 is negative, its inclusion ensures infinitely positive 

energies are no longer a concern, but now the energy tends to infinitely negative values. 

Hence the inclusion of the quartic term in equation 1.7. It is uncommon for higher order 

terms to be included in bond stretch potentials, but higher order terms are common for 

angle bend potentials; in fact the MM3 force field includes terms up to and including the 6th 

order force constant     
   

 [17]. 
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The stretching motion of bonds and the bending of angles are not isolated events- such 

molecular vibrations are coupled with one another. Consider a single molecule of water. As 

the angle      falls below the value         the increased repulsion between the two    H 

atoms will be offset by an increase in the two O-H bond lengths. Such a coupling between 

two vibrational coordinates can be modelled in a MM force field though means of cross 

terms. A simple cross term coupling a bond stretch with an angle bend is presented in 

equation 1.2.8. 

            
 

 
                                  

(1.8) 

In addition to bond stretches, angle bends and their associated cross terms, the bonded 

potential includes potentials describing rotation about torsion angles,      . Torsional 

terms are periodic in nature and thus the functional form of such terms differ to those 

describing the bonded terms discussed previously. Rather than Taylor expansion around 

an equilibrium point, a Fourier series is instead used, of general form: 

         
 

 
                                      

        

 

(1.9) 

where     is a set of periodicities,         is the amplitude, and         is the phase angle.  

Cross terms involving torsional potentials also feature in most MM force fields. Similar to 

the above discussion on stretch-bend coupling, one can imagine that in the eclipsed 

conformation of ethane the C-H bonds may extend from        to lessen steric repulsion 

between H atoms. Such terms often take a form similar to: 

             
 

 
                                  

(1.10) 

Moving now to the non-bonded terms within a classical force field, the discussion shall 

turn to the van der Waals dispersion term. This is an attractive interaction between all 

atoms. Such an interaction arises due to the correlated movements of electrons giving rise 

to instantaneous atomic (and molecular) moments that are orientated so as to be 

attractive. The dominant term of this interaction is that of the induced dipole- induced 

dipole interaction. This has a  
 

   dependence so therefore as two atoms approach one 

another the energy gets increasingly negative, tending to infinitely negative at very small 

separations. 

Clearly this is not what happens in the real world. As electron density of two atoms begins 

to overlap at short separations, Pauli repulsion between the electrons increases rapidly. 
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This is typically described by a 
 

    dependence. This gives rise to the famous Lennard-Jones 

potential, 

             
   

   

 
  

  
   

   

 
 

  

(1.11) 

where     is the depth of the potential energy well and     is the internuclear separation 

at which        becomes positive. While the  
 

   dependence of the attractive term is 

theoretically grounded (as stated above), the 
 

    dependence of the repulsive term has no 

such foundation. It is simply chosen because it provides a ‘good’ description of the energy. 

Other potential forms are used by different force fields, for example the AMOEBA force field 

of Ponder et al.[16] use a ‘buffered 14-7 potential’. This takes the form, 

           
    

        
 

 

 
    

   
      

    

(1.12) 

where            
  and    

  is the minimum energy distance between nuclei A and B. Such 

a potential is chosen to provide a steeper repulsive region at short range, and because it 

provides a better fit to both ab initio gas phase calculations and the properties of liquid 

noble gasses[18]. Parameters such as the well depth and minimum energy separations 

vary across force fields, although they are typically obtained by both ab initio calculation 

and experimental results. 

The electrostatic component of a classical force field is typically described by Coulomb’s 

law, 

       
    

    

 

(1.13) 

where    and    are the partial charges of atoms A and B respectively. There are a number 

of ways in which these partial charges are assigned, such as restrained electrostatic 

potential (RESP), Mulliken population analysis and atoms in molecules (AIM) charges. As 

previously stated, the use of atomic point charges provides poor description of the 

electrostatic contribution to the total energy of a system. In particular, point charges fail to 

correctly model interactions where the electron density is anisotropic, for example lone 

pairs, delocalised   systems and  -holes. 

One of the core features of QCTFF is its treatment of the electrostatics. Multipole moments 

up to and including the hexadecapole moments are present on all atoms. How the 
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multipole moments are obtained is outlined in Section 1.3, and a thorough comparison of 

atomic multipole moments versus atomic point charges is included in Section 1.6. 

1.3 Quantum Chemical Topology, QCT  
Underpinning the development of QCTFF[19] is Quantum Chemical Topology(QCT)[20], 

which embraces all work[21] in quantum chemistry that uses the topological language of 

dynamical systems (e.g. attractor, basin, gradient path, critical points). QCT contains the 

“quantum theory of atoms in molecules” (QTAIM)[22-24] as a special case where this 

topological language is applied to the electron density   and its Laplacian. The theory of 

interacting quantum atoms, IQA, of Pendas et al. [25] is another example of a theory that 

falls under the umbrella of QCT.  

A topological atom ΩA is a bundle of gradient paths (i.e. trajectories of steepest ascent 

through  ), terminating at a maximum critical point, which typically coincides with the 

nucleus A. Topological atoms are defined in a parameter-free manner, and they are non-

overlapping and sharply bounded (at the inside of the molecule) by so-called interatomic 

surfaces. A gradient path is a trajectory in 3D space, which can be seen as consisting of 

infinitesimal vectors orthogonal to envelopes of constant electron density ρ. 

      
  

  
  

  

  
  

  

  
  

(1.14) 

where  ,  , and   are unit vectors that maintain the directionality of the       axis, and 
   

  
 is 

the change in electron density with respect to movement along the x-axis. The gradient 

paths follow the direction of increasing ρ, until terminating at a critical point. The latter is 

an attractor, which can only be a nucleus (which is mostly the case), a bond critical point, a 

ring critical point or a cage critical point. Figure 1.1 shows an example of a QCT partition 

of the furan molecule. The nature of a critical point is determined by analysis of the 

eigenvalues of the Hessian at the critical point. The Hessian of the electron density is given 

by  

        

 
 
 
 
 
 
 

   

   

   

    

   

    

   

    

   

   

   

    

   

    

   

    

   

    
 
 
 
 
 
 

 

(1.15) 

of which the diagonal          is given by  
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(1.16) 

where the            describes the local curvature of the electron density at any point in 

space.            are the eigenvalues of          and can be used to state whether a point 

in space is a maximum, minimum or saddle point in electron density.  

  

Figure 1.1: The gradient vector field of furan. Topological features such as gradient paths, bond 

critical points, nuclear attractors and zero-flux surfaces can all be observed. 

The four types of critical points are described by two values. The first is the “rank” which is 

determined by the number of non-zero eigenvalues at the critical point. The second 

number is the sum of the signs of the eigenvalues for the diagonalised Hessian  at the 

critical point of interest. A nucleus is therefore a (3,-3) critical point as it is a maximum in 

electron density in the x, y and z directions. A bond critical point is (3,-1) critical point as it 

is a maximum in two directions and a minimum in one (the axis on which the bond lies). A 

ring critical point is a (3,1) critical point as it is a maximum in only one direction 

(orthogonal to the ring) and a minimum in two, and the finally a cage critical point, which is 

surrounded in three dimensions by atoms, is a (3,3) critical point. Analysis of topological 
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properties at critical points provides insight into the nature of the chemical systems being 

studied. Study of QTAIM metrics at critical points such as the electron density,  , the 

Laplacian,    , and the energy density (the sum of potential and kinetic energy), H, has 

been successfully used to describe chemical systems such as heavy metal complexes[26, 

27], transition metal complexes [28], aromatic molecules [29] and non-covalent 

interactions[30, 31].  

The electrostatic interaction between atoms is the topic of much of the work in this thesis, 

and QCT allows for a rigorous treatment of this interaction. Partitioning by QCT gives rise 

to well defined, non-overlapping atoms[23] for which atomic multipole moments may then 

be obtained. Atomic multipole moments provide an anisotropic description of the electron 

density around the nucleus of a topological atom, and were one of the key original 

motivators for the development of QCTFF. The superiority of an anisotropic description of 

an atomic electron density is discussed in great detail in section 1.6. The Coulomb 

interaction[32] energy between two topological atomic basins ΩA and ΩB is given by:  

   
         

 

  

    

 

  

                

   

 

(1.17) 

where ρtot is equal to the sum of the electron density ρ and the nuclear charge density. The 

expression 1/r12 in equation 1.17 can be replaced by series expansion involving the 

spherical harmonics[33, 34] to give:   

 

 

   

              
     

         
    

  

      

  

      

 

    

 

    

 

(1.18) 

where Rlm(r) is a regular spherical harmonic. The interaction tensor T depends upon both 

the mutual orientation of the two interacting atoms A and B, and their internuclear 

distance. The simplest interaction term is that two monopole moments (or essentially 

atomic charges), where T is simply 1/r. Substituting equation1.18 into equation 1.17 gives:  

   
           

         
     

        

 

(1.19) 

where Qlm represents a multipole moment:  
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(1.20) 

that is obtained after a 3D integration over the complicated volume of the topological atom. 

It is convenient to define an interaction rank L between two multipole moments of order    

and    by: 

          

(1.21) 

Previous work [35, 36] has shown that an interaction rank of     provides satisfactory 

description of structural and dynamic characteristics of a system. The value of   is identical 

to the inverse power in the      behaviour of an interatomic electrostatic interaction. For 

example, dipole…dipole interactions behave by the well-known 1/R3 law given that 

         . Truncating at     requires monopole, dipole, quadrupole, octopole 

and hexadecupole moments for each atom. Therefore, in this work all topological atoms are 

described by              multipole moments each.  

1.4. The Theory of Interacting Quantum Atoms, IQA 
The theory of interacting quantum atoms (IQA) of Pendas et al[25] has recently been 

incorporated into QCTFF development, as a means of replacing the classical force field 

terms outlined in Section 1.2.  IQA is a topological energy decomposition scheme that has 

successfully been applied to a wide range of chemical systems[37-39]. IQA fits under the 

umbrella of quantum chemical topology. The total energy of a system,      is given as a 

sum of atomic self-energies       and of interaction energies       , 

           
 

 

 

         
  

   

   

 

 

 

(1.22) 

where   is the total number of atomic basins in the system.       is further decomposed 

into electron-electron and electron-nucleus interactions,    
   and    

   respectively, and the 

electronic kinetic energy of atom  ,   , 

           
      

      

(1.23) 

where    
   has a classical, coulombic component    

   and an exchange-correlation 

component    
  .  

      
   is also a sum of contributions, 
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(1.24) 

where    
   is the interaction between the two atomic nuclei,    

   is the interaction 

between the electrons of atom   and the electrons of atom  ,    
   is the interaction 

between the nucleus of atom A interacting with the electrons of atom  ,    
   is the 

interaction between the electrons of   with the nucleus of B and    
   is the exchange-

correlation energy between atoms   and B. The first four components on the right hand 

side of Equation 1.24 can be combined and written as the classical interaction energy    
   

giving 

           
 

 

 

      
      

   

 

   

 

(1.25) 

The atomic self-energy by itself is a difficult value to interpret. The difference in the atomic 

self-energy relative to a reference system lends itself to interpretation more easily by 

observation of changes in the self-energy,       
 . To illustrate this point, an IQA study by 

Eskandari and Van Alsenoy on the rotational barrier of biphenyl [37] showed that the 

“steric clash” may be described as a consequence of the ortho-H atoms experiencing an 

increase in their self-energies when going from a staggered to an eclipsed conformation. 

This is despite the       
   between “clashing” H atoms being most attractive in the eclipsed 

conformation. 

Due to the difficulty in interpreting an atomic self-energy the deformation energy of an 

atom,     
   can be calculated.     

  is defined as the difference in the self-energy between 

the free, unbound atom (or fragment), and the self-energy of the atom in a chemical 

system, 

    
             

               
  

(1.26) 

    
  is always positive because the unbound atom is always lower in energy than the 

bound atom. The deformation energy may be extended to a group of atoms. For example, 

the deformation energy of a water molecule upon formation of the water dimer would be 

given by 

    
                      

 

                

 

                 
  

(1.27) 
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The short-range repulsion between atoms is the subject of Chapter 6, and the IQA 

interpretation of this interaction is given as the sum of     for all atoms or fragments and 

all     interactions between the two atoms or fragments   and  , and is named the XRC 

energy. 

           
   

   

   

      
  

 

 

 

 

 

(1.28) 

where   is an atom in fragment   and   is an atom in fragment  . Note that at the HF level 

of theory there is no correlation and the XRC energy is simply the XR energy. 

1.5. The Atomic Local Frame and Kriging 
QCTFF is designed to be used as a force field for molecular dynamics simulations, and 

therefore it should be obvious that QCT and IQA properties cannot be calculated at each 

time step as this would be highly computationally expensive. Classical force fields use 

parameterised atom types, described by a set of constants that are fed into simple 

potentials to obtain the energy of the system. QCTFF offers a radically different approach 

using the machine learning method kriging[40-42], also known as Gaussian process 

regression[43], as a method of capturing the changes in topological atomic properties as a 

function of molecular geometry. Therefore, instead of a given atom type being described by 

a list of parameters, in QCTFF it is described by a collection of kriging models, each 

describing the changes in a single topological property (such as an atomic multipole 

moment or the atomic self-energy) with respect the system’s coordinates. This approach 

naturally includes polarisation and charge transfer effects. 

In the work presented in this thesis, kriging models have been built for both atomic 

multipole moments and also the IQA self and interaction energies. As the coordinates of an 

atomic system evolve, for example when bonds stretch and angles bend, the topological 

properties of the atoms involved will change, e.g. their atomic charges (or monopole 

moments). Using kriging, it is possible to build models capable of predicting changes in an 

atomic property by evaluating the molecular coordinates. In Chapter 2 kriging models are 

built for the first 25 atomic multipole moments of seven hydrogen bonded dimer 

complexes and also the IQA atomic self and interaction energies of three weakly bound 

complexes. In Chapter 3 kriging models are built for the first 25 atomic multipole 

moments (up to, and including, hexadecapole moment) of each atom in the amino acids 

alanine (Ala) and lysine (Lys).  

In order to build a kriging model, one must define a coordinate system. A chemical system 

may be defined by a minimum of 3N-6 internal coordinates. In the language of machine 

learning, the 3N-6 coordinates around an atom are referred to as features, and it is these 

features that a multipole moment is mapped to. In QCTFF an atomic local frame (ALF) is 
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defined in order to describe the 3N-6 coordinates around a central atom. Consider a 

central atom, denoted A. First, the Cahn-Ingold-Prelog rules are used to determine the two 

atoms of highest priority bonded to A, and these atoms are termed X and Y in order of 

priority. The distances     and    , and the angle      define the three ALF coordinates. 

Subsequently a right-handed coordinate system is stablished using the XAY plane. All other 

atoms in the system can then be described by three polar coordinates,         and    . 

One therefore obtains N-3 sets of three spherical polar coordinates each, which combined 

with the aforementioned ALF coordinates make up the 3N-6 coordinates required, i.e. 3(N-

3)+3 = 3N-6. 

Returning to kriging, the change in a given multipole moment or IQA component is smooth 

with respect to a change in the ALF coordinates. Therefore it is safe to interpolate the 

topological properties of an unknown molecular geometry existing inside a set of known 

geometries. Kriging is used to build models capable of accurate interpolation of the atomic 

properties by mapping an input (nuclear coordinates) to an output (a topological 

property). To achieve this, a training set of molecular geometries with known values of the 

topological property is required. The sampling of molecular geometries for training kriging 

models is described in the description of the GAIA protocol later in this chapter. Kriging 

models calculate topological properties of a new geometry by the following process: 

                 

 

   

 

(1.29) 

where        is a topological property at a new set of coordinates    and    is the global 

(average) value of the property over the whole training set.               is the     element 

of the vector              and    is the     element of  , defined by 

* 1 * 2 *{ [ ( ), ( )], [ ( ), ( )],..., [ ( ), ( )]}n Tcor cor cor     r x x x x x x  

(1.30) 

where T marks the transpose.  

Kriging treats all topological properties as an error from the global value, and it is the 

correlation of these errors for a given multipole moment between all   training points that 

is calculated by kriging. This is achieved by building a     correlation matrix   between 

all pairs of training points with elements Rij , given by 

                                
    

 
 
  

 

   

  

(1.31) 

where    and    are training points composed of   features. The parameters    (    ) 

and    (       ) describe the importance of each feature   and may be written as the 

d-dimensional vectors   and  . A large value of    corresponds to a feature being highly 
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correlated to the output topological property. The parameter    describes the smoothness 

of the function, and is often close to 2.  

A second crucial concept underpinning kriging is the so-called concentrated (or reduced) 

log-likelihood function L̂ , defined as  

         
 

 
         

 

 
         

(1.32) 
where  

    
                  

 
 

(1.33) 
and  

    
      

      
 

(1.34) 

where   is a vector of response values for each training point and   is a vector of 1s. 

Another (very different) machine learning method called particle swarm optimisation 

(PSO)[44] then searches for the optimum values of   and   that maximise the concentrated 

log-likelihood function.  

In Section 1.5 it was stated that each atom is described by 25 multipole moments, and 

therefore when building kriging models to describe electrostatics, 25 kriging models, each 

modelling one multipole moment, are required per atom. When building kriging models to 

describe the IQA energy of a system, each atom has two kriging models associated with it, 

one describing      
  and the other describing       

    
. The    in       

    
 corresponds to all 

atoms except  .  

The kriging models are tested on an external test set of geometries, and this process is 

described in Section 1.7 where the GAIA protocol for building and testing QCTFF kriging 

models is outlined. 

1.6. Multipole Moments against Atomic Point Charges 
It has been stated that the inclusion of higher order multipole moments should provide an 

improved description of the electrostatic term in a MM force field. What follows is a review 

of the literature where multipole moments have been applied. The review first addresses 

polar systems and the many intermolecular interactions that exist in such systems, and 

then moves to assess the advantages of multipole moments in the prediction of the crystal 

structures of organic molecules. 

1.6.1. Polar systems and Intermolecular Interactions 
Chemistry is overwhelmingly polar. One consequence of this polarity is that chemical 

systems are dominated by electrostatic interactions between partially charged atoms, both 

attractive and repulsive. It is beyond the scope of this work to present a comprehensive list 
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of all the different classes of intermolecular interactions, systematically providing each 

with a comparison of point charge electrostatics and multipolar methods- not only are 

there too many classes of interaction to cover them all, but also not all have, as yet, 

received comprehensive multipolar treatment. What this review does aim to achieve is to 

present a selection of ‘key’ interactions and systems, and to provide the reader with 

enough information to draw their own, informed, conclusions. It is the opinion of the 

authors that the accurate modelling of polar systems requires multipole moments, 

preferably with polarization taken into account, and it will be seen that the point charge 

approximation is unable to outperform the more complete description given by multipole 

moments. The discussion initially shall address descriptions of water where it will be seen 

that to accurately model water, a system dominated by hydrogen bonds, one must capture 

the anisotropy of the electron density through use of multipole moments. The discussion 

shall then move to show that this is the case for many other types of intermolecular 

interaction and chemical phenomenon. 

1.6.1.1. Water  

Water is a highly polar molecule with bulk properties unusual for a molecule of its size; it is 

a liquid in standard conditions and it is less dense in the solid phase than the liquid. These 

are known to be a consequence of strong hydrogen bonds between adjacent molecules. As 

biological processes occur predominantly in aqueous medium, an accurate electrostatic 

model for water is vital, and this need is represented by the multitude of potentials 

developed specifically to describe water for use in molecular simulations [45, 46]. Early 

electrostatic potentials for water consisted of atomic point charges that are fit to 

reproduce the bulk properties of liquid water. Examples include the simple point charge 

(SPC) model of Berendesen et al. and the TIP3P potential of Jorgensen et al.  These 

potentials are still used today, however they both are known to suffer from the same 

pitfalls- notably they are unable to accurately reproduce the experimentally observed 

radial distribution function for O…O, gOO(r), and provide poor description of the density vs. 

temperature profile.  

Many attempts at improving the description of water within a point charge approximation 

involve the use of additional charge sites, away from the nuclear positions. This is to 

accurately capture the anisotropic electronic density around the molecule, in particular the 

oxygen lone pairs. This method is analogous to the use of additional charge sites often 

placed above and below the plane of an aromatic ring to model the delocalised electron 

clouds. The TIP4P and TIP5P potentials of Jorgensen et al. [47, 48] and the ST2 potential of 

Stillinger and Rahman [49] are of this type, and remain  the most widely used in 

simulations involving water to date [46]. The TIP4P model shifts the negative partial 

charge of the oxygen towards the centre of mass, whereas the TIP5P model consists of a 

tetrahedral arrangement of charges with two partial positive charges centred on the 

hydrogen atoms and two equal and opposite partial charges located at the lone pair sites of 
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the oxygen atom. Despite an improved representation of the dielectric constant of bulk 

water and gOO(r) over TIP4P and TIP3P, TIP5P still poorly reproduces properties such as 

the heat capacity and the density vs. temperature profile. The inaccuracies of simple point 

charge water potentials have led to the development of many new water potentials 

incorporating multipolar electrostatics [50-52].  

The anisotropic site potential for water (ASP-W) of Stone and Millot [53] uses an atom 

centred distributed multipole analysis (DMA) expansion, with multipole moments up to 

quadrupole on the oxygen atom and dipole on the hydrogen atoms, computed at the MP2 

level. The need for the quadrupole moments on the oxygen atoms in particular are 

reportedly needed for accurate description of the electronic distribution about a water 

molecule. When the ASP-W potential was compared with the point charge potentials CKL 

[54] and NCC [55], and the multipolar potential PE [56], only PE provided comparably 

accurate minimum energy geometry for the water dimer. The ASP-W potential has been 

further improved to give the ASP-W2 and ASP-W4 potentials [57, 58]. The atomic 

multipolar expansions for the ASP-W4 model is now truncated at hexadecupole moments, 

and all interaction terms up to rank L=5 are included in the model. The ASP-W2/4 

potentials were found to give a more detailed description of the potential energy surface of 

the water dimer than many other water potentials in the literature, although perfect 

agreement with the high level ab initio calculations of Smith et al was not achieved [239]. 

ASP-W2/4 gave values for the second virial coefficient, B(T), close to the experimental 

values over the temperature range of 373-973K, an improvement over point charge 

models such as the TIP(X)P potentials as previously discussed.  

As a result of being parameterised for the reproduction of the bulk properties of liquid 

water, most point charge potentials, such as TIPXP, provide a poor description at ice 

surfaces and for small clusters. Xantheas et al. [51] showed the importance of higher order 

multipoles for the accurate modelling of the electric field of ice surfaces and water clusters. 

In their work they present the ‘induction model’, in which each water molecule is modelled 

by a centre of mass multipolar expansion. The induction model was tested by comparison 

of the electric field inside a vacancy in ice to first principle calculations (MP2 and the 

density functional PW91). It was found that 70% of the electric field is dipolar and that a 

centre-of-mass multipolar expansion up to hexadecupole is needed to obtain good 

agreement with the ab initio calculations. The authors comment that the induction model 

showed that “accurate description of the electrostatic interactions of water molecules can be 

achieved without having to carry out the computationally demanding first principle 

calculations for large systems”. The TIP4P model predicted the electric field within the 

studied ice vacancy to be 20% higher than that obtained from first principles, despite the 

TIP4P model expressing “acceptable overall properties”. 
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In another direct comparison of point charge electrostatics against multipolar methods, 

TIP4P and ASP-W4 were used to model the behaviour of water adsorbed onto a NaCl 

surface [59]. The experimental adsorption isotherm for water on NaCl shows four distinct 

regions; a low coverage region, a transition region, a high coverage region and a presolution 

region [60]. Monte Carlo simulations of the low coverage and high coverage regions were 

performed using both water potentials. The results of the low coverage simulation for both 

water potentials showed clustering of water molecules, which agreed with experimental 

FTIR data. At high coverage only the ASP-W4 potential showed a more ordered structure, 

with three distinct layers of water due to interactions between water molecules with the 

Na+ and Cl- ions. The TIP4P potential did not reproduce this layering, with only a single 

layer of water strongly bound to the surface with the rest acting as bulk water. Similar 

conclusion to that of Xantheas et al is drawn: the fitting of simple point potentials to 

reproduce the properties of bulk liquid water are unable to accurately reproduce the 

behaviour of water at surfaces and interfaces. In fact, the electrostatic interaction between 

the water molecule and the surface was found to be “significantly smaller” for the TIP4P 

model than for ASP-W4.  

1.6.1.2. Hydrogen Bonding 

Hydrogen bonds are amongst the most abundant and important non-covalent bond types, 

ubiquitous in both biochemistry [61-63] and materials chemistry [64-66]. Such 

interactions are not only strong, but are also observed to be highly directional, in many 

cases due to the geometry of the lone pairs on the acceptor atom [67-69]. Isotropic atomic 

point charges have been proven unable to accurately reproduce experimental bonding 

geometries for a range of molecules [70-76]. Efforts to model the directionality of 

hydrogen bonding within a point charge framework generally fall into two categories; the 

first being additional functions applied only to hydrogen bonding atoms, and the second 

being the addition of partial charges, typically in the positions of lone pairs. Although the 

two approaches have been successfully used to improve the description of hydrogen 

bonding in the simulation of polar molecules, both approaches are highly empirical and 

lack strong theoretical foundation. Allinger et al. implemented a directionality term into 

the hydrogen bonding potential of the MM3 force field and found that the interaction 

energies for 40 hydrogen bonded dimers was generally in better agreement with the ab 

initio MP2/6-31G** value [77, 78] than the standard MM3 force field. Kollman et al. 

developed a methodology for deriving additional lone pair point charges for use within a 

revised version of the AMBER force field [79]. The new potentials were tested on small 

dimers such as NMA…H2O, and the results showed that the inclusion of the additional sites 

was able to reproduce much of the directionality observed in MP2 calculations. The 

additional point charges also led to improved molecular dipole moments, leading to more 

accurate thermodynamic properties upon molecular simulation.  
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Multipole moments have been shown capable of describing correctly both the 

directionality and strength of hydrogen bonding for many systems. Kong and Yan [80] 

found that multipole moments up to minimum interaction rank L=3 were required to 

reproduce the bent structures of the hydrides of N, O, F, S, and Cl. ‘Bending’ forces arising 

from dipolar and quadrupolar interactions played a key role in determining intermolecular 

bond angles. Similar results were found by Shaik et al. [35] where minimum interaction 

rank of L=5 was needed to reproduce the optimised ab initio structures for water clusters 

and the hydrated amino acids serine and tyrosine. Models including QCT multipole 

moment interactions of rank L=1-6 were compared with various point charge potentials, 

AMBER, CHARMM, MMFF, OPLS, TAFF and TIP4P. Again, in models where only point 

charges were included, equivalent to multipolar interaction rank L=1, pseudo-planar ring 

geometries were predicted that were too “flat” with the hydrogen atoms not enough 

sticking out of the plane of the oxygen atoms. It is, however, noted that as the number of 

water molecules in the cluster increases, models including only lower order moments such 

as monopole and dipole moments did recover to some extent. This is reasoned to be a 

result of two effects; the first being that for larger clusters there is an increase in the 

number of long range interactions, which are well described by low rank terms, and the 

second reason being that water molecules in larger clusters are locked into more rigid 

hydrogen bonding networks. If the torques generated from the interactions between 

higher moments are not strong enough to break the hydrogen bonds then the point charge 

should indeed perform comparably to higher order descriptions. This is in strong 

agreement with the observed success of many point charge potentials capable of 

describing ‘bulk’ properties such as the TIPxP potentials for water, despite their inability to 

provide reliable results when implicit water molecules are present. The superiority of 

multipolar electrostatics over point charges for describing hydrogen bonding is seen again 

in work by Ponder et al. [81]. The hydrogen bond association energy of the 

formaldehyde…water dimer O-H…O=C interaction with changing angle was calculated 

using both their own multipolar force field AMOEBA and also the point charge OPLS-AA 

force field. The results were compared to the MP2/aug-cc-pVTZ BSSE corrected values as 

an assessment of their ability to model the directionality. From Figure 1.2 it is clear that 

the isotropic electrostatic potential of the OPLS-AA force field was incapable of 

reproducing the energy minima at ~100o and ~260o only showing the slightest of 

maximum at 180o. The AMOEBA results were more satisfactory, showing similar shape to 

the MP2 curve.  
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Figure 1.2: Change in the association energy of an O-H…O=C hydrogen bond interaction with 
changing bond angle for three different levels of theory. Reference [81]. 

In recent years, there has been a growing interest in what is termed the ‘weak hydrogen 

bond’ [63]. This is a hydrogen bond type interaction where the donor atom is not a 

strongly electronegative atom as found in conventional hydrogen bonding, for example C-

H…N/O [82] or C-H…π [83, 84]. These interactions, although weaker, can be of significance 

for the chiral recognition of a substrate by proteins and also for stabilising the 

conformations adopted by important biomolecules [62]. Simulations utilising classical 

point charge force fields do to some extent pick up on such interactions, however the work 

of Westhof et al. showed that the cut-off distance for electrostatic interactions must be 

large for weak hydrogen bonds to be observed [85]. In simulations of a loop of tRNAAsp in 

water, upon increasing the cut-off distance from 8-16 Å the stabilising effects of two C-H...O 

interactions were observed to play a more important role in maintaining the structure of 

the loop. Solute-solvent interactions between non-polar C-H groups with water were 

observed, and were seen to play a small role in the solvation of tRNAAsp [86]. Despite 

interactions involving higher order multipole moments contributing little to the total 

energy of a system, their inclusion can be crucial where weak hydrogen bonding is present. 

DMA quadrupole and octopole moments were found to be necessary to find the full range 

of observed structures of aromatic heterocycles interacting with water compared to when 

only monopole and dipole moments were used [87]. Obviously, the widely used point 

charge models such as AMBER, CHARMM and OPLS are currently unable to account for 

such interactions, and until high rank multipolar electrostatics are widely implemented, 

their subtle influence on many chemical systems and processes will remain unaccounted 

for.  

1.6.1.3. Halogen Bonding 

Halogen atoms are traditionally thought of as partially negatively charged nucleophilic 

atoms, interacting typically as hydrogen bond acceptors. Although this is often the case, 

there is a growing literature describing what has been termed the ‘halogen bond’, where 

the halogen atom acts as an electrophile and interacts with a nucleophilic partner in a 

linear fashion. These linear halogen bonds can be both as strong as hydrogen bonding, 
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ranging from ~4-160 kJ mol-1, and can also influence the structure of a system as a result of 

their directionality in similar fashion to hydrogen bonds. This pattern of bonding was first 

reported by Ramasubbu et al in 1986, where upon inspection of the adopted crystal 

structures of halogen atoms within the Cambridge Crystallographic Data Base, he wrote 

that “the halogen X in a C-X bond is capable of significant interactions with electrophiles, 

nucleophiles, and other halogens. The electrophiles approach X of the C-X “side-on”, nearly 

normal to C-X, and the nucleophiles nearly “head-on” and behind the C-X bond.” [88]. Since 

their discovery, the halogen bond has been the subject of many studies in order to 

elucidate their origin and nature [89-92]. Torii and Yoshida showed that the quadrupole 

moment Θzz of halogen atoms, where the z-axis is defined as the direction of the C-X bond, 

describe a positive region opposite the C-X bond. This region is commonly referred to as 

the σ-hole, and it is the position of this which accounts for the observed linear bonding to 

nucleophiles [90]. Halogen bonding was proven to be dictated primarily by electrostatic 

effects through the work of Tsuzuki et al. [89] through study of C6F6X and C6H6X interacting 

with pyridine, although induction and dispersion interactions were found to contribute. It 

was observed that the strength of a halogen bond is dependent upon the halogen atom 

involved, where I > Br > Cl, and F does not form halogen bonds. Due to the observed 

anisotropy in the electronic distribution, point charges fail to correctly model halogen 

bonding, and this has resulted in both the modification of existing potentials and the 

development of new potentials to reproduce these effects in molecular simulation. In an 

attempt to introduce halogen bonding into the molecular mechanics (MM) force field 

AMBER, an extra-point (EP) of positive charge was added to the halogen atoms of 27 

halogen containing molecules [93]. The EP charge was placed opposite the C-X bond, and 

the partial atomic charges were recalculated via a restrained electrostatic potential (RESP) 

approach. MM interaction energies of the halogen containing molecules with a variety of 

Lewis bases were compared with DFT and MP2 energies, where the MM interaction 

energies had a RMS error of only 1.3 kcal mol-1 relative to the MP2 energies. The inclusion 

of the EP charge sites also improved the molecular dipole moment for a range of 

halogenated molecules compared to when it was absent. In a medicinal chemistry 

application of the EP model [93], a simulations of 4,5,6,7-tetrachloro-, bromo-, and iodo-

benzotriazoles in the active site of the enzyme phospho-CDK2/cyclin were performed. Two 

halogen bonds between the halogenated substrate and two carbonyl containing amino 

acids are known to be present from the x-ray crystal structure. The distributions of the 

halogen bond angles were in good agreement with the known order of strengths of the 

different halogens in their bonding, where the strongest bond, I…O was most linear and the 

weakest bond Cl…O was least linear. When the standard AMBER potentials were used 

without the EP charge sites, no halogen bonding was observed, with the X…O distances too 

large. This shows some success in accounting for halogen bonding within a point charge 

model, however when considering a multipolar force field, one would not have to deal with 

such “messy” extensions to the model, as the multipole moments, particularly the 
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quadrupole moments, would describe the electronic distribution sufficiently well. Until 

such force fields are readably available, QM/MM calculations have been suggested as an 

alternative to force fields [94], where halogen bonding between substrate and enzyme are 

described  in the QM scheme.    

1.6.1.4. Biomolecular  
Biological macromolecules such as proteins and nucleic acids are highly polar molecules 

which engage in a wide range of interactions. Structural motifs such as the commonly 

observed α-helical and β-sheet structures of proteins are held together by networks of 

hydrogen bonds, and the double helix structure of DNA has been found to be stabilised 

largely by the stacking interactions between aromatic bases. Biological molecules 

frequently interact with and/or through their own aromatic π-electron density during such 

processes as recognition and catalysis. Point charges are known to provide a poor 

description of the electronic distribution of aromatic systems, and the XED force field of 

Chessari et al. was an early effort to capture the anisotropy by the addition of extra point 

charge sites [95]. The XED force field was able to correctly predict the edge to face stacking 

for a range of substituted polyphenyl species, where AMBER, OPLS, MM2 and MM3 were 

not. The work showed that “a good electrostatic description is necessary in order to model 

non-covalent interactions due to electron anisotropy.” Hill et al. have also expressed the 

need for good description of electrostatics when considering aromatic systems. Their work 

demonstrates that electrostatics play an important role in determining the stabilisation of 

aromatic stacking interactions due to a degree of cancelling of the attractive correlation 

dispersion term by exchange repulsion and delocalisation effects [96]. Ghosh et al. used 

their ‘Effective Fragment Potential’ (EFP) method to investigate the interactions between 

nucleic acid bases, both the hydrogen bonding between base pairs and also the π-stacking 

interacting between the ‘rungs’ of bases[97]. The EFP method is described as a low cost 

alternative to ab initio calculations, and can be considered as a polarisable multipolar force 

field without empirically fitted parameters. A DMA is performed on atomic centres and 

bond midpoints up to octopole moment, with the interactions considered being charge-

charge/dipole/quadrupole/octopole, dipole-dipole/quadrupole, and quadrupole-

quadrupole. The EFP method was able to accurately reproduce the interaction energies 

between stacked dimers AA and TT, with deviation from MP2 energies within 1.5 and 3.5 

kcal mol-1 respectively. They too found that the electrostatic interactions were key in 

describing the relative stabilities of different orientations of the stacked dimers, and the 

results can be seen in Figure 1.3. The coulombic contribution can be seen to have clear 

importance for the energies when rotating the dimers. 
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Figure 1.3: Effect of  rotating the AA (left) and TT (right) base pairs around angle   on total 

interaction energy and on the individual contributions to the total energy. Reference [97]. 

An extension to the AMOEBA force field has been implemented by Tafipolski and Engles, 

which shows a much improved description of stacked aromatic systems [98]. This 

approach includes atomic multipole moments up to hexadecapole, with dipolar 

polarisabilities reparameterised from the existing AMOEBA values. The new model also 

includes a specific short range charge penetration term. When compared against AMOEBA, 

MM3 and OPLS-AA, the new model showed values for the energies of both the stacked and 

T-shape dimers of benzene closer to accurate SAPT values. The new model was successful 

over a range of dimers of many poly aromatic hydrocarbons (PAHs), and the results can be 

seen in Figure 1.4.  
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Figure 1.4:  Scatter plots of electrostatic energies for selected dimers of PAHs (in kcal/mol). From 
left to right: naphthalene (35 configurations), anthracene (32 configurations), pyrene (44 

configurations), and coronene (56 configurations). The reference data are taken from Podeszwa et al. 
[99, 100] 

Cation-π interactions are important both in biomolecular recognition and in the structure 

adopted by biological macromolecules. Marshall et al. [101] ran simulations on β-hairpin 

structures of model polypeptides involving cation-π interactions between cationic (Me)N-

Lys+ (MeNK) residues and two aromatic tryptophan side chains (where N = 0, 1, 2, 3). 

Simulations were run using the multipolar polarisable force field AMOEBA, and the point 

charge force fields OPLS-AA, CHARMM and AMBER. The results of the simulations were 

compared to experimental NOE values for distances between the lysine and tryptophan 

side chains. Only the AMOEBA force field was able to reproduce the experimental NOEs 

with any consistency, accurately predicting over 80% of the observed NOEs across the four 

systems (Figure 1.5). The point charge force fields only predicted 40-50% of the observed 

NOEs in two simulations, and performed worse still for the remaining ten simulations with 

a prediction success rate of ~10%. The relative success of AMOEBA over the point charge 

force fields is clear indication that detailed description of electrostatics is a requirement 

for modelling cation-π interactions. 

 

Figure 1.5: Fraction of successfully predicted experimental NOEs by the four force fields OPLSAA, 
AMBER, CHARM and AMOEBA for the four different residues Lys(K), MeK, Me2K and Me3K. Ref. [101] 

1.6.1.5. Solvation 
When designing novel drugs, catalysts, and other novel compounds, considerations must 

be made for their behaviour upon solution. Drug molecules may be protonated or 

deprotonated, leading to inactive and even toxic forms, and inorganic materials may 

remain in their crystalline forms. A key contribution to the solvation of a material in polar 
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solvents is its ability to form hydrogen bonds with solvent molecules. Abraham et al 

introduced a scale designed to describe the hydrogen bond donor/acceptor strength of a 

molecule, labelled α2
H and β2

H respectively[102]. An AIM based multipolar method for the 

prediction of α2
H values for 39 hydrogen bond donor molecules with hydrogen cyanide was 

tested against a point charge only scheme [103]. The results showed that the correlation 

between α2
H and donor hydrogen atomic charge was poor, R2= 0.567, however this 

correlation improved to R2=0.635 upon the use of atomic dipole moments, and improved 

further to R2=0.725 upon inclusion of atomic quadrupole moments. The correlation of α2
H 

with dipole and quadrupole only (no charge) was only slightly worse than when the donor 

hydrogens charge was included, with an R2=0.721. It was found that a large charge on the 

donor hydrogen gives a larger α2
H, whereas a large dipolarity on the donor hydrogen gives 

a smaller α2
H. This is described qualitatively by there being more of the donor hydrogens 

electron density in weaker, less polarised X-H bonds. 

Experimentally, measuring the thermodynamic properties relating to the solvation of a 

single ionic species is very difficult due to the presence of the counter ion(s). This is 

overcome by experimentalists through the application of extrathermodynamic 

assumptions. Computational methods, however, are able to model single ions in solution to 

obtain properties such as single ion enthalpies of solvation. One caveat to this is that ions 

are highly polarising and hence polarise their surrounding solvent molecules. This effect is 

not captured by force fields employing fixed isotropic point charges for their electrostatics, 

as polarization requires dipole moments, typically with their associated dipolar 

polarisabilities. Another dilemma concerning the use of traditional force fields such as 

AMBER, CHARMM and OPLS is that they commonly use ionic solvation free energies during 

their parameterisation. In an attempt to capture some degree of polarisation in the 

condensed phase, Kollman et al. [104] derived new atomic point charges for the AMBER 

force field using ab initio calculations performed with continuum solvent and dielectric 

constant of ε=4, chosen to mimic the hydrophobic interior of a protein. The new charges 

were reported to give “encouraging results”, and were able to reproduce the experimental 

Ramachandran maps for two tripeptides.  

 The AMOEBA force field of Ponder has been designed to overcome the incapability of 

classical force fields such as AMBER and CHARMM of dealing with polarisation. Each atom 

in AMOEBA is represented by a permanent partial charge, dipole moment and quadrupole 

moment, and many body terms such as polarisation are handled explicitly through a self-

consistent dipole polarisation procedure. The AMOEBA force field has been applied to 

investigate the solvation of many ions in water [105-107], including Cl-, Na+, K+, Mg2+ and 

Ca2+. Work by Grossfield et al. [106] showed that despite the parameters for AMOEBA 

being derived from calculations of gas phase molecules, inclusion of polarisation terms 

allows both accurate and transferrable single ion solvation free energies and also solvation 
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free energies of whole salts in both water and formamide. The whole salt free energies of 

solvation varied from experimental results on average by only 0.55 kcal mol-1, whereas the 

OPLS-AA and CHARM27 force fields deviated from experiment by 9.8 and 6.6 kcal mol-1 

respectively. The radial distribution of solvent molecules around the K+ and Cl- were 

plotted (Figure 1.6), and it is observed that the non-polarisable force fields show over 

structuring, which is a consequence of fixed point charges, favouring only a limited range 

of geometries.  

                        

Figure 1.6: Radial distribution functions of left: the oxygen atoms of water (top left) and formamide 
(bottom left) around a K+ ion and right: the hydrogen atoms of water (top right) and amide hydrogen 

of formamide (bottom right) around a chloride ion. Ref. [106] 

1.6.2. Crystal Structure Prediction 

Despite advances in the area over the last thirty years, there is still no reliable way to 

accurately predict the crystal structure adopted by a particular molecule. Reliable 

predictions will streamline many industrial processes such as pharmaceutical 

development, the screening of compounds for non-centrosymmetric lattices for use in non-

linear-optics, development of novel metal organic frameworks where the pore size 

influences catalysis and potential for gas storage, and even in the synthesis of new 

explosives [108]. To accurately predict the structure into which a molecule will crystallise, 

a computational model must provide a rigorous description of both bonded and non-

bonded terms, as well as sampling the entirety of the potential energy surface. In the 

context of this review, the discussion will be restricted primarily to detailing how a more 

detailed multipolar description of the non-bonded electrostatic term can improve 

prediction accuracy relative to point charges. Factors effecting other contributions are 

discussed in detail elsewhere [108].  

The most commonly used criteria for assessing the accuracy of a predicted crystal 

structure is by lattice energy calculation. It is suggested that a given molecule will adopt a 

crystal structure with the lowest possible lattice energy. This ranking criterion was used 
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by the Cambridge Crystallographic Data Centre (CCDC), who have been highly active in 

encouraging groups to participate in a series of four blind tests [109-112], where 

participants were invited to predict a range of unknown crystal structures as seen in 

Figure 1.7. In each test a range of computational methods were used by the participating 

groups including point charge, multipolar and statistical approaches. At first glance, the 

results of the early tests CSP1999, CSP2001 and CSP2004 suggested that methods with a 

multipolar description of the electrostatics provided no greater reliability for predicting 

the correct crystal structure relative to point charge models. For example the point charge 

electrostatics of Verwer and Leusen’s MSI-PP [113, 114] method outperformed the 

multipolar DMAREL [115] method of Price in the CSP1999 test. It was found during post 

results analysis that DMAREL had found the experimental crystal structure during the 

search procedure, it would have predicted the experimental structure to have lower 

energy than the global minimum of earlier runs, indicating that the searching algorithm 

was to blame rather than the multipolar force field. This was the recurring message across 

all three early tests- small, rigid molecules containing only C, H, N and O were generally 

predicted correctly (with multipolar electrostatics providing a slight advantage over point 

charges), but molecules with a high degree of conformational flexibility were not being 

sampled thoroughly and as a result, the experimental structures were not identified. The 

results of the fourth blind test, CSP2007, showed that with the implementation of 

improved searching algorithms, the multipolar electrostatic methods of both Price et al. 

and of Ammon consistently outperformed methods with point charge electrostatics.  

Within the assumption that the crystal structure adopted by an organic molecule will be 

that with the lowest lattice energy, it is important that the force field used to calculate the 

energy is the most accurate possible. Considering the electrostatic component only, 

multipole moments have been shown to provide more reliable contribution to the lattice 

energy than simple point charges. Work by Day et al. found that for 50 organic molecules, 

using atomic multipole moments up to hexadecupole increased the number of compounds 

for which only five or fewer crystal structures were predicted to have lower energy than 

the experimentally observed structure [116]. Of the 64 experimentally observed crystal 

structures for the 50 compounds, when using multipolar electrostatics 44 were predicted 

with fewer than five structures lower in energy than experiment, compared to only 36 

when point charge electrostatics were used. Multipolar electrostatics also correctly 

predicted 32 of the compounds to have structures within 0.5 kJ mol-1 compared to only 23 

by point charges. In a response to the poor results of the CSP1999 blind test, Mooij and 

Leusen combined multipole moments with the Dreiding force field and compared the 

predictive capabilities of the new model to point charges [117]. Multipole moments were 

able to correctly predict three out of the five experimental crystal structures as the most 

stable crystal polymorph, compared to only one by point charges.  
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The assumption that the structure with the lowest lattice energy will be the observed 

experimental structure is unfortunately an oversimplification of the problem. The 

presence of multiple crystal polymorphs and locally bound “metastable” structures can 

result in the experimental structure of a given molecule being higher in energy than the 

predicted global minimum [118]. Kinetically stable structures often arise due to strong 

intermolecular electrostatic forces such as hydrogen bonding, and as has been described 

elsewhere in this work, hydrogen bonds are strong and highly directional and require 

higher order moments for accurate description. It was observed by Day et al. that for 50 

organic molecules with many polymorphic crystal structures, lattice energy minimisation 

using atomic point charges was considerably less accurate for molecules with hydrogen 

bond donor-acceptor groups than for those without [66] The primitive isotropic point 

charge descriptions within the FIT [119, 120], W99 [121-123], DREIDING [124], CVFF95 

[125-127] and COMPASS [128] force fields used were described as being too simplistic to 

describe strong, highly directional bonds that guide crystal formation. The presence of 

strong hydrogen bonding leads to higher energy barriers between different minima on the 

potential energy surface, and acts to trap crystals in the local “metastable” states. An 

atomic point charge description flattens these barriers resulting in structures moving to 

lower energy minima during relaxation stages in the lattice energy calculation. For 

example, point charges were unable to predict the experimental “stepped sheet” structure 

of 2-amino-3-nitropyrimidine due to the crystal relaxing into the energy well of another 

polymorph. A similar result was seen by Price et al. [240] where an electrostatic potential 

containing DMA atomic multipoles moments up to hexadecupole failed to predict an 

experimental “buckled sheet” polymorph of 2-ammino-5-nitropyrimidine. Three 

polymorphs of 2-amino-5-nitropyrimidine are found experimentally: (i) Layered planar 

sheets with molecules linked by a network of hydrogen bonds, (ii) the previously 

mentioned “buckled” sheet structure which consists of the same hydrogen bonding motif 

as polymorph (i), and finally (iii) a highly symmetric non-layered structure. Polymorphs (i) 

and (iii) were correctly predicted by the multipolar methods, however the multipolar 

potential was too repulsive and polymorph (ii) always flattened during minimisation. This 

result was attributed to the isotropic repulsive terms in the force field used rather than 

inadequacies of a multipolar potential, and as such can be considered to support the use of 

anisotropic multipole moments over isotropic point charges. 

There are sometimes cases in the literature where the use of multipole moments does not 

appear to offer any clear advantage over point charges although generally it is found that 

factors other than the electrostatic potential are responsible for the observed non-

superiority of multipole moments. A novel electrostatic potential built for the MM3 force 

field was tested on the crystal structures of oligothiophenes [129] and it was found that 

atomic point charges outperformed multipole moments for all but one case, α-

perfluorosexithiophene (PFT4). The crystal structure for PFT4 was the structure most 
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influenced by electrostatic interactions, an instance where one should not be surprised 

that multipolar electrostatics were superior. The RMSD between the reference and fitted 

electrostatic energies was also significantly higher for PFT4 than other test molecules, 

suggesting that fitted point charges were insufficient to model the electrostatic 

contribution to crystal structure. Other examples have been discussed where factors such 

as the flexibility of a molecule and the searching algorithms used in the lattice energy 

calculation were responsible for “hiding” the improved accuracy offered by atomic 

multipole moments. Brodersen et al. compared five electrostatic models including both 

ESP derived point charges and multipole moments were tested for the prediction of 48 

crystal structures, again using the DREIDING force field [130]. Due to strong dependence 

on intramolecular terms in the force field, such as angle bends, bond stretches and torsion 

angles, the use of multipoles did not improve the accuracy of the predicted crystal 

structures for flexible molecules. They did however greatly improve the prediction for 

rigid molecule crystal structure, where the bonded terms are of less importance.  
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1.7. The GAIA Protocol 
An automated process has been developed for the streamlined generation of kriging 

models, named GAIA. In previous publications from the group, it has often been referred to 

by its older names "Pipeline" and "Autoline". GAIA is a Perl script written and maintained 

by a postdoctoral research assistant in our group, and so I claim no credit for its 

development, however the processes which it performs are fundamental to much of the 
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Figure 1.7: The 15 molecules used across the four blind studies of crystal structure 
prediction CSP1999, CSP2001, CSP2004 and CSP2007. Ref. [1] 
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work in this thesis, in particular Chapters 2 and 3 so a discussion and overview is 

required.  

An overview of the GAIA protocol is provided in Figure 1.8. GAIA was developed in 

response to the high throughput nature of the work performed in the group. Here, a 

discussion of the default parameters is provided and unless specified in the corresponding 

results chapters apply to the work in all subsequent chapters. 

 

Figure 1.8: The fully automated GAIA protocol for building and testing QCTFF kriging models 

Kriging requires two large sets of molecular geometries, one for training the models and 

the other for testing the models. Therefore, the first stage of the GAIA protocol is to sample 

a large number of relevant molecular geometries. A normal modes sampling approach is 

used, where pseudorandom quantities of energy are put into the normal vibrational modes 

of at least one “seed” geometry, and as the molecule is allowed to vibrate, “snapshots” of 

the molecular coordinates are taken. Each snapshot is a sampled molecular geometry that 

can then be used to build kriging models. The input seed geometries can be obtained, in 

theory, by any chemically justifiable approach. In the work discussed in this thesis three 

methods have been used. The first method is to take the seed structures direct from an 

external source, and this approach is followed in Chapter 2 where molecular complexes 

are taken from the S22 database[131]. The second approach for obtaining seed geometries 

is to perform a search of the potential energy surface of the molecule, and to identify local 

energetic minima through a configurational space search. The local energy minima are 
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then used as seeds for the GAIA protocol. This is one of the two approaches used in 

Chapter 3, where the local energetic minima of the amino acids alanine and lysine are 

used. The details of the search used to obtain the energetic minima of alanine and lysine 

can be found in reference[132, 133]. The third method of obtaining seed geometries is to 

sample from X-ray crystal structures. I have developed a code named MOROS that enables 

the selective extraction of an amino acid from a number of protein crystal structures. An in 

depth discussion of sampling amino acids from both energetic minima and from protein 

crystal structures is provided in Chapter 3. A description of MOROS will now be provided, 

however a more technical description of the MOROS code can be found in Appendix D. 

The first stage of sampling amino acids from crystal structures is to add hydrogen atoms to 

the .pdb files as these are not included in standard X-ray structures. Hydrogen atoms are 

added to all protein crystal structures using the HAAD code of Li et al.[134]. The HAAD 

algorithm was developed to add accurately hydrogen atoms by analysing the positions of 

nearby heavy atoms, following the basic rules of orbital hybridisation and through 

optimisation of steric and electrostatic parameters. HAAD was found to outperform the 

popular software CHARMM and REDUCE[135] with the RMSD of predicted hydrogen atom 

positions decreased by 26% and 11%, respectively, when compared to high resolution X-

ray and neutron diffraction structures (that are able to locate the positions of hydrogen 

atoms unlike standard X-ray structures). MOROS then searches through the set of crystal 

structures for all examples of a given amino acid and uses the coordinates to output a 

Gaussian job file (.gjf) file for each sampled amino acid. Because we are interested in 

"capped" amino acids, i.e CH3CO-(amino acid)-NHCH3, the peptide bond and alpha carbon 

atoms of the residues either side of the extracted amino acids are extracted with the 

central amino acid and then hydrogen atoms are added. Figure 1.9 shows the atoms 

extracted by MOROS including the amino acid of interest (blue box), and also atoms that 

make up the caps (red box).   

 

Figure 1.9: Diagrammatic representation of the atoms extracted by MOROS including the target 
amino acid (blue box) and also the full set of atoms including those used to make the peptide caps 

(red box). 
 

Once a set of seed geometries has been obtained, the next step of the GAIA protocol is to 

use normal modes sampling. TYCHE is the program responsible for performing the normal 

modes sampling. A frequencies calculation using Gaussian is required for each seed 

geometry, and then TYCHE inserts energy into the normal modes of the seed molecule in a 

pseudo-random distribution. As the molecule is allowed to vibrate, snapshots of the 

distorted molecule are taken and these are then used to build the training sets for kriging. 
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A maximum bond-stretch parameter is defined to ensure that no molecule is over-

distorted, and this is typically set to ±10%. This means that any sampled geometry with a 

bond length greater than 1.1 times the sum of the van der Waals radii of the bonded atoms 

is discarded. When using seed geometries that are not energetic minima, a non-stationary 

normal modes sampling approach must be used. This is because the first derivative term of 

the Taylor expansion used to calculate the vibrational modes is no longer zero and thus 

must be included in the calculation of the normal modes. The derivation of the non-

stationary normal modes approach has been provided by Cardamone et al (in press) and is 

also provided in the supplementary information of Hughes et al[136]. 

The next stage in the GAIA protocol is to obtain molecular wave functions for each sampled 

geometry output from TYCHE. This is performed by Gaussian[137]. The level of theory 

used for the results in this work is stated in each chapter. The molecular wave functions 

are then used as input for the topological analysis, performed by AIMAll [138]. The 

integration grids used by AIMAll may be adjusted by changing the keywords “-breaq=“ and 

“-boaq=”. The parameters used as standard in the current work are “-boaq=high” and “-

briaq=auto” as this gives a reliable number of low error results. Depending on the 

energetic components you want modelled by the kriging models, different levels of AIMAll 

calculation are available. The "-encomp=" keyword allows the user to determine what 

calculation AIMAll will perform, with the quickest calculation providing standard QTAIM 

metrics (BCP densities, values of the Hessian and energy densities for example), as well as 

the atomic multipole moments, and the most comprehensive calculation providing all IQA 

      
   terms explicitly. When only kriging the atomic multipole moments of a system “-

encomp=1” was used. In Chapter 2 where the IQA      
  and       

    
 energies were used to 

build kriging models “-encomp=3” was used. In Chapter 6 where the explicit AB pairwise 

terms such as    
   were needed, “-encomp=5” was used. 

At this point, each molecular geometry undergoes "scrubbing", where the integration 

errors of AIMAll for a given molecular geometry are compared to a user defined threshold, 

and any geometries with an error above the cut-off are discarded. The standard value of 

the cut-off is 0.001 a.u. as this provides a compromise between high quality topological 

energy terms but not discarding too many geometries. Next, the molecular geometries are 

divided into two sets- the training set and the test set. The training sets are used to build 

the kriging models, and the test sets are used for testing of the kriging models once they 

have been built. The kriging is performed by the in-house code FEREBUS. There are many 

parameters that must be defined when kriging, and the following parameters listed apply 

to all calculations unless specified in the corresponding results chapter.  

1. The full training set size was used to build models for all atomic multipole 

moments. It has been shown that some time can be saved at a negligible cost to the 
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accuracy if the higher order multipole moments have a reduced training set size. I 

did not do this, I used the full training set for all kriging models.  

2.   was allowed to optimise during all kriging calculations (see Equation 1.31).  

3. Particle swarm optimisation was used for all kriging models (see Section 1.5). An 

option to use an alternative differential evolution optimization algorithm has been 

recently added to FEREBUS, but this was not used in the current work. 

FEREBUS then uses the models that it builds to make predictions for a set of untrained 

molecular geometries. Because GAIA includes the test set geometries in the Gaussian and 

AIMAll calculations, the true values of the given energy terms are known and so the 

prediction error can be calculated as the difference between the true value and that 

predicted by FEREBUS using the kriging model. If the models are describing an IQA energy 

term then the FEREBUS predictions can be plotted directly as S-curves. In Chapter 2 of 

this work, kriging models are built the IQA atomic      
 and       

    
 energies. In this case, the 

sum of all IQA energy prediction errors to give a total IQA energy prediction error: 

                      

              
                 

               
    

                 
    

  

       

 

 

(1.35) 

If the kriging models built have been for multipole moments, as is the case in both 

Chapters 2 and 3, the FEREBUS predictions are read by NYX and all 1,4 and higher 

electrostatic interactions between multipole moments up to interaction rank L=5 are 

interacted by the program NYX. The total error in this case is given by 

                   
            

         
       

    

 

  

     
         

 

  

        

 

  

  

(1.36) 
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Chapter 2 

Kriging the S22 Dataset 
 

Summary 
When applied to large biomolecular systems, QCTFF will be required to accurately model a 

wide range of intermolecular interactions. In the following chapter, kriging models have 

been built for molecules from the S22 dataset of small molecular dimers. For H-bonded 

dimers, such as the water dimer and the adenine-thymine base pair, the atomic multipole 

moments have been kriged as the interactions between such molecules are dominated by 

the electrostatic interaction term. Models were built at three levels of theory: HF/6-31G**, 

B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was 

measured by their ability to predict the electrostatic interaction energy between atoms in 

external test examples for which the true energies are known. At all levels of theory, >90% 

of test cases for small van der Waals complexes were predicted within 1 kJ mol-1, 

decreasing to 60-70% of test cases for larger base pair complexes. Models built on 

moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. 

For all systems the individual interactions were predicted with a mean unsigned error of 

less than 1 kJ mol-1.  For a selection of dispersion bound complexes (benzene dimer, 

ammonia benzene dimer and water benzene dimer) where the electrostatic interaction is 

much weaker, the IQA self and interaction energies have been kriged instead. The IQA 

models were built using the M06-2X level of theory. The three systems had an average 

prediction error of less than 1.9 kJ mol-1 for the sum of the self and interaction energies, 

with 100% of the test systems predicted within 10.1 kJ mol-1. 

A note: 

Much of the work in this chapter regarding hydrogen bonded complexes has been published 

in  

“T.J. Hughes, S.M. Kandathil, P.L.A. Popelier, Spectrochimica Acta Part A: Molecular 

and Biomolecular Spectroscopy, 136, (2015), 32–41” 

found in Appendix F. The work presented in this chapter contains only my own work, with all 

contributions from co-authors omitted. 
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2.1 Introduction 
Within a protein one may expect to find many different types of atomic interactions 

including hydrogen bonds, halogen bonds,  -  stacking interactions, ionic bonds, etc. It is 

important, therefore, that QCTFF is capable of accurately modelling all interaction types 

with ease. Building kriging models direct from ab initio data should in theory describe all 

interaction types without the need for specific interaction types. The one requirement is 

that the input training data includes molecular geometries where examples of the 

interaction types are included. Issues surrounding the sampling of molecular systems are 

discussed in a later Chapter 3 and are not considered in detail here. 

The following work is divided into two sections. The first section (Section 2.2) details the 

treatment of seven hydrogen bonded complexes present in the S22 dataset[139] and the 

second (Section 2.3) details the treatment of three weakly bound complexes that include a 

mix of  -  stacking and weak hydrogen bonding interactions. The S22 database was 

designed originally by Jurecka et al. [139] as a collection of highly accurate MP2 and 

CCSD(T)/CBS interaction energies as a means of validating the accuracy of new 

computational techniques. The database consists of 22 molecules (as the name suggests), 

that belong to one of three subgroups. There are seven hydrogen bonded complexes, eight 

dispersion bound complexes and seven complexes held together by a combination of both 

dispersion and hydrogen bonding.  

2.2. Hydrogen Bonded Dimers 
Kriging models were built for the atomic multipole moments of the seven hydrogen 

bonded complexes of the S22 dataset. As an interaction between atoms of partial charges, 

hydrogen bonds are highly electrostatic in nature. Atomic multipole moments are essential 

for accurately describing electrostatic interactions (see Chapter 1.6) so the first 25 atomic 

multipole moments of each atom were kriged for all systems. The hydrogen bonded dimers 

can be seen in Figure 2.1. Figure 2.1 was built using the MORPHY software package, and 

topological features such as bond critical points, ring critical points, and bond paths can be 

observed. The surfaces are cut at 0.0005 au of electron density. The bond path between the 

two ammonia molecules is not what one may typically expect, as it appears to be 

connecting the two nitrogen atoms. This is not an error in the QCT analysis, but an 

interesting topological phenomenon that has been well documented for many small 

molecular dimers by Bone and Bader[140]. A notable example in their work is that of the 

CO2 dimer in which bond paths between the oxygen atoms are observed for the side-on 

dimer.  

2.2.1 Computational Methods 
Kriging models were built using the GAIA protocol at three different levels of theory: HF/6-

31G**, B3LYP/aug-cc-pVDZ, and M06-2X/aug-cc-pVDZ. This allows comparison of how 

well kriging performs at different levels of theory. Unpublished work has shown that 
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B3LYP/apc1 consistently outperforms HF/6-31G**, in that kriging models lead to 

interaction energies closer to the true energy. This is due to the higher levels of theory 

including electron correlation, which produces atomic monopole moments of smaller 

absolute value. It is possible to prove mathematically[141] why for the same kriging 

settings (e.g. number of data points in the training set) models built at a level of theory that 

included electron correlation will outperform Hartree-Fock. 

The reason for including the Hartree-Fock level of theory in this work requires some 

justification in the light of its well-known limited accuracy. The first reason for its inclusion 

is that many currently used force fields, such as AMBER, include parameterisation from 

Hartree-Fock level data. Showing that our methods are able to produce accurate 

predictions relative to the “true” Hartree-Fock value proves we can compete with, and 

eventually supersede, the methodologies currently in place. The second justification for the 

use of Hartree-Fock is that the work presented here is intended to prove that 

intermolecular interactions, in particular hydrogen bonding, can be accurately described 

by a kriging model mapping ab initio values to nuclear coordinates. Assuming that any 

changes in the ab initio values for the multipole moments follow the correct patterns with 

respect to nuclear coordinates, the use of a lower level of theory is justified. It is stressed 

that all errors presented in this paper are relative to the correct value given at a specific 

level of theory, not relative to a true experimental or high level of theory ab initio value 

such as CCSD(T)/CBS. 

 

Figure 2.1: The hydrogen bonded dimers studied in this work. Topological atoms are capped at their 
0.0001 a.u isosurface. Dimers are i) the ammonia dimer, ii) the water dimer, iii) the formic acid 
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dimer, iv) the formamide dimer, v) the uracil dimer, vi) the dimer of 2-pyridoxine and 2-
aminopyridine, and vii) the adenine thymine base pair 

A common criticism of the B3LYP density functional is that it is unable to provide 

description of long- range electron correlation effects which play a key role in the binding 

of many van der Waals complexes[142-145]. The M06-2X functional [146] has been 

specifically designed to provide accurate interaction energies for a range of intermolecular 

interaction types, in particular van der Waals dimers. In this work we use both the B3LYP 

and M06-2X functionals to see if improved modelling of the long-range electron correlation 

lowers the magnitude of the prediction errors of intermolecular interactions provided by 

our kriging models. In recent work [147] by Friesner et al., a database of highly accurate 

CCSD(T) noncovalent interaction energies was assembled. The database was then used to 

fit a correction term to be added to the B3LYP density functional to allow for accurate 

intermolecular interactions (see Appendix B for more information). This was tested using 

the aug-cc-pVDZ and LACVP* basis sets, and was compared with both the B3LYP-D3 

method[148], and the M06-2X hybrid functional. In an effort to maintain some level of 

consistency with the work of Friesner et al., the aug-cc-pVDZ Dunning basis set was chosen 

in this work for building of the B3LYP and M06-2X kriging models.  

2.2.2 Effect of the Level of Theory on the Training set 

The training set geometries are sampled by putting energy into the normal modes of 

vibration of the system. These normal modes are calculated directly from the derivatives of 

the potential energy surface, and so are affected by the level of theory used to construct the 

Potential Energy Surface (PES). Therefore, one must keep in mind that true comparisons 

cannot be made between the performances of kriging models at different levels of theory. 

To generate the training set geometries at each level of theory, the maximum amount of 

energy is pumped into the sample without breaking any bonds. This maximum amount of 

energy changes when the PES is built at a different level of theory. For example, Hartree-

Fock theory is known to predict bonds to be too polar. Subsequently, the force constants 

for these bonds are higher than those at B3LYP level, for example. This means that less 

vibrational motion may take place when pumping a large amount of energy into a HF PES 

compared to pumping a smaller amount of energy into a B3LYP PES. Table 2.1 shows the 

amount of energy put into the systems at different levels of theory. Hartree-Fock does 

indeed show the greatest tendency to have the most energy pumped in, although is noted 

that this is not seen throughout. This is in part due to the random way in which energy is 

put into the vibrational modes.  
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Table 1.1: Energy (kJ mol-1) pumped into the hydrogen bonded complexes. The highest values are in 
bold and the lowest values in italics. Numbers in brackets indicate the first lowest average prediction 

error across 600 external test examples, the second lowest and the highest. 

System M062X B3LYP HF 

Ammonia Dimer 150 (1) 120 (3) 90 (2) 

Water Dimer 90 (1) 40 (2) 69 (3) 

Formic acid Dimer 50 (2) 46 (1) 90 (3) 

Formamide Dimer 60 (2) 50 (1) 110 (3) 

Uracil Dimer 180 (1) 180 (2) 225 (3) 

2-Pyridoxine…2-Aminopyridine 200 (3) 190 (2) 240 (1) 

Adenine…Thymine 150 (1) 210 (2) 180 (3) 

 

As stated above, previous unpublished work of our group has shown that for the same 

training set geometries, B3LYP/apc-1 consistently outperforms HF/6-31G**, yielding 

kriging models that generate more accurate predictions of the electrostatic interaction 

between two topological atoms. To confirm that B3LYP/aug-cc-pVDZ also outperforms 

HF/6-31G**, kriging models were built at B3LYP/aug-cc-pVDZ level using the geometries 

sampled from the HF/6-31G** PES surface for the ammonia dimer and plotted in Figure 

2.2 as an S-curve. It can be seen for the red line of Figure 2.2 that 50% of the test set of 

geometries had absolute prediction errors of less than 0.02 kJ mol-1. Thus it follows that an 

S-curve that lies to the left is superior to one right of it. The results seen in Figure 2.2 

confirm that B3LYP outperforms HF methods when the same training geometries and test 

geometries are used. The results also show that the training set geometries obtained from 

a PES calculated at the B3LYP/aug-cc-pVDZ level (Fig.2.2, green line) lead to higher 

prediction errors for the two curves corresponding to the HF/6-31G** PES sampled 

training sets (Fig.2.2, red and blue lines). Table 2.1 shows that more energy was put into 

the B3LYP PES than into the HF PES. Hence, one would expect the training set geometries 

to span a larger conformational space for kriging to capture in its models, and hence 

prediction errors will be slightly higher.  
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Figure 2.2: Comparison between the effect of the level of theory of the PES and the level of theory of the 
wave functions obtained to build kriging models for the ammonia dimer. Blue: training set geometries 

obtained from HF PES and training set wave functions obtained at HF; Red: training set geometries 
obtained from HF PES and training set wave functions obtained at B3LYP; Green: training set geometries 

from B3LYP PES and training set wave functions obtained at B3LYP. 

 

 

2.2.3 Prediction of the Total Electrostatic Energy of the Hydrogen Bonded 

Complexes 

Figure 2.3 shows the S-curves obtained, for all seven hydrogen bonded complexes of the 

S22 data set at all three levels of theory, and using 600 training examples. Looking at 

equation 1.49, we emphasize that the individual interaction errors (for each test geometry) 

are summed before the absolute value of this sum is taken. Hence, “cancellation of errors” 

is possible and indeed likely for each point on the S-curve. This cancellation is justified as 

the Coulomb law is itself additive. In other words, there is no summation of absolute values 

of atom-atom interactions when calculating a total electrostatic energy, but a summation of 

the actual values themselves (whether positive or negative). Analysis of the individual 

interactions is dealt with in Section 2.1.5.  

Figure 2.3 shows that, for all three levels of theory used, the smaller systems lie furthest to 

the left, with a lower error, and the larger systems lie to the right. This is partially due to 

increased number of interactions present in the larger systems, and this is an almost linear 

relationship. Despite this increase in error with number of interactions, even the larger 

aromatic complexes are predicted within 1 kJ mol-1 for 70% of the test geometries, both at 

B3LYP and M06-2X level. For the ammonia dimer and the water dimer, almost 100% of 

test structures were predicted within 1 kJ mol-1. None of the complexes have a single test 

geometry with an error greater than 9 kJ mol-1. Almost all interactions are predicted within 

1 kcal mol-1, which is often referred to as “chemical accuracy”.  
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Figure 2.3: S-curves of the prediction error for the seven hydrogen bonded dimers in this 
work at the HF/6-31G** (top left), B3LYP/aug-cc-pVDZ (top right) and M06-2X/aug-cc-pVDZ 

(bottom left) levels of theory. 
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The errors for the Hartree-Fock complexes are on average higher than the error of the 

same complex at either B3LYP or M06-2X levels of theory, as expected. This is a 

consequence of the improved description of electron correlation as previously mentioned 

in Section 2.1.1. Figure 2.4 shows the mean absolute prediction errors of the seven 

hydrogen bonded systems plotted against the number of intermolecular atomic 

interactions, for three levels of theory (wave functions and PES obtained at the same level). 

Figure 2.4 demonstrates that neither of the two density functionals consistently 

outperforms the other. Plotting a trend line through the values of the average prediction 

error of each system against total number of interactions for B3LYP and M06-2X levels of 

theory yields overlapping lines (red and blue lines). Plotting a similar line for the HF level 

of theory (green line) shows that one can expect the average error to increase with a 

higher number of interactions at a faster rate. The    value of 0.93 for the B3LYP data is 

higher than that of both HF and M06-2X (        for both), suggesting that there is a 

stronger correlation between average error and number of interactions. However, due to 

the random sampling of the geometries this cannot be stated with certainty. 

 

2.2.4 Assessment of Individual Interactions Errors 

For all seven systems, there is a general trend for the prediction errors for individual 

interactions to decrease with interaction distance. This is primarily due to the longer range 

interactions being smaller in magnitude, and hence any errors will be smaller in magnitude 

also. Because electrostatic interactions are dependent on 
 

  ; the higher order interactions 

rapidly decrease in magnitude and hence the major interaction at longer distances is the 

monopole-monopole interaction. The decrease in interaction error with distance is good 

news when studying intramolecular interactions where only the 1,4 and higher 

interactions are taken into account as many such interactions are at a distance where 

individual interactions are typically predicted within ±1 kJ mol-1. When studying 

intermolecular interactions (or indeed intramolecular interactions in which the molecule 

Figure 2.4: Mean absolute prediction errors of the seven hydrogen bonded systems plotted against the number 
of intermolecular atomic interactions. 
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folds back on itself) where interaction distances may be little of 1 Å it is still observed that 

the majority of interactions are predicted within ±2 kJ mol-1 of the true value. 

Table 2.2 contains the average interaction error for each system at each level of theory, 

the standard deviation, and the average total error of all the points that make up the 

corresponding S-curve. It is seen that M06-2X performs best overall, with the lowest 

average interaction errors. The standard deviations for the M06-2X interaction errors is 

also the lowest, and this is can be observed by the smaller spread of interaction errors seen 

in Figures 2.8-2.15. Plots of the average interaction error of each system against the total 

S-curve energy, the number of atoms of each system against the average interaction error 

and the average interaction error of each system against the standard deviation of the 

interactions for each level of theory can be seen in Figures 2.5, 2.6 and 2.7 respectively. 

Figure 2.5 shows that as the S-curve moves to the right (increasing total error), the 

average interaction error increases also. However, most points in Figure 2.5 lie below the 

line of y=x. indicating that the increase in the error of the individual interactions increases 

faster than the increase in the total error. Kriging models built at the Hartree-Fock level of 

theory are seen to have the highest interaction errors. 

Figure 2.6 shows that the average interaction error is also seen to increase with the 

number of atoms in the system. Predictions by models built at the M06-2X level of theory 

appear to perform slightly better than B3LYP, with Hartree-Fock performing by far the 

worst, with the average interaction error for the larger systems significantly higher. Figure 

2.7 shows that as the average interaction error increases, the standard deviation, and 

hence the spread of the errors, increases. This is unsurprising. 
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Table 2.2: Average interaction errors, total errors, and standard deviations of the interaction errors 
for each of the seven hydrogen bonded dimers at all three levels of theory used. All errors in kJ mol-1. 

  No. Atoms Int. error Total Error Standard 
Deviation 

Ammonia Dimer 8    

HF  0.237 0.075 0.870 

B3LYP  0.366 0.195 0.711 

M06-2X  0.126 0.062 0.305 

Water Dimer 6    

HF  0.186 0.084 0.534 

B3LYP  0.181 0.045 0.274 

M06-2X  0.060 0.037 0.138 

Formic Acid Dimer 10    

HF  0.425 0.196 0.763 

B3LYP  0.228 0.127 0.349 

M06-2X  0.237 0.156 0.354 

Formamide Dimer 12    

HF  0.529 0.354 1.096 

B3LYP  0.316 0.175 0.531 

M06-2X  0.327 0.219 0.543 

Uracil Dimer 24    

HF  1.473 0.815 3.030 

B3LYP  0.654 0.68 1.294 

M06-2X  0.575 0.664 1.153 

2-Pyridoxine 2-Aminopyridine 25    

HF  0.511 0.595 1.224 

B3LYP  0.427 0.683 1.052 

M06-2X  0.355 0.799 0.965 

Adenine Thymine 30    

HF  1.321 0.951 4.224 

B3LYP  0.883 0.802 2.013 

M06-2X  0.912 0.715 2.031 

 

 

Figure 2.5: Average interaction error vs. average s-curve total error 
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Figure 2.6: Average interaction error vs. standard deviation 

 

Figure 2.7: Number of atoms against average interaction error 

It is observed in Figure 2.8 that kriging models built at the M06-2X level of theory gave the 

most accurate predicted interaction energies for the ammonia dimer. The prediction errors 

for the individual interactions are observed to be clustered most tightly around 0 kJ mol-1 

in the scatter plot. This is also seen in the histogram, where the peak around zero for M06-

2X is highest and also narrowest. Hartree-Fock is seen in the scatter plot to produce the 

worst energy predictions out of any level of theory, with both highly negative and highly 

positive errors. The Hartree-Fock peak around zero is both higher and narrower than the 

B3LYP peak, indicating that despite producing the worst errors, it still predicts more 

interactions with a lower energy than B3LYP. The average interaction error for the B3LYP 

model of 0.366 kJ mol-1 is larger than the Hartree-Fock error of 0.237 kJ mol-1. The similar 

standard deviations of the Hartree-Fock and B3LYP interactions reflects the fact that 

despite the histogram peak for Hartree-Fock being taller and narrower than the B3LYP 

peak, this is balanced by Hartree-Fock producing the worst individual interactions. 

 



57 

 

 
Figure 2.8: Top Scatter plot of the prediction errors for all interactions between atoms of the 

ammonia dimer against the interaction distance and bottom histogram depicting the number of 
interactions predicted at different errors. 
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Figure 2.9: Top Scatter plot of the prediction errors for all interactions between atoms of the water 
dimer against the interaction distance and bottom histogram depicting the number of interactions 

predicted at different errors. 

The same trends that were observed for the ammonia dimer are also observed for the 

water dimer (Figure 2.9). M06-2X performs best overall, with Hartree-Fock predicting the 

worst interactions out of any of the levels of theory. Unlike for the ammonia dimer, B3LYP 

has a lower average interaction energy than Hartree-Fock (0.181 and 0.186 kJ mol-1 

respectively), however it can be seen from the histogram in Figure 2.9 that B3LYP again 

has the lowest peak and the widest peak around 0 kJ mol-1. Therefore B3LYP models are 

concluded to be more reliable than Hartree-Fock models because they do not predict large 

errors, however they do predict consistently less accurate interaction energies than M06-

2X. 

Kriging models for the ammonia dimer and the water dimer were both reconstructed using 

1000 training examples rather than 600 at the B3LYP level of theory. The hypothesis is 
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that increasing the training set size should lower the error of the interactions. The results 

can be seen in Figure 2.10. Firstly, it is stated that increasing the training set size is 

computationally expensive due to the    scaling of kriging, where   is the number of 

training examples. For both systems the mean unsigned error and standard deviation of 

the interaction prediction errors decreased (Table 2.3), and also the “worst offenders” are 

no longer present. 

 

Figure 2.10:  Scatter plots of and histograms for the individual interaction prediction errors for the 
B3LYP water dimer (left) and the B3LYP ammonia dimer (right) given by kriging models built with 

600 examples (blue) and 1000 examples (red). 

Table 2.3: Effect of increasing the training set size from 600 to 1000 examples for the ammonia 
dimer and the water dimer at the B3LYP level of theory. 

System Number of training examples Standard deviation MUE 

Ammonia 600 0.71 0.37 

Ammonia 1000 0.60 0.32 

Water 600 0.27 0.18 

Water 1000 0.23 0.15 
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The Hartree-Fock level of theory performs consistently worse than both M06-2X and 

B3LYP for the formic acid dimer (Figure 2.10). Again the worst predictions of any level of 

theory are made by the kriging models built at the Hartree-Fock level of theory. B3LYP 

outperforms the M06-2X level of theory in this instance, with both MUE and standard 

deviation lower for the interaction predictions at the B3LYP level than those from M06-2X. 

The scatter plot in Figure 2.11 shows clearly four groups of interactions. The group 

around a distance of 6 Å corresponds to the interaction between the two C-H hydrogen 

atoms. This group is predicted most consistently well, which is to be expected because the 

interaction between the two hydrogen atoms is weak due to both the long range (
 

   

dependence) and also because H…H interactions are weak. Although this is to be expected, 

it is worth note as it shows that the kriging models have a level of stability- the rapidly 

increasing number of weak interactions within larger systems will not introduce large 

errors to the total energy of the system. It is also pleasing to observe that the interactions 

at short distances which correspond to the hydrogen bonds are predicted no worse than 

the mid-range interactions between, for example C…C.  

Figures 2.12-2.15 show that the overall decrease in interaction error with interaction 

distance is also present for the formamide dimer, uracil dimer, the 2-pyridoxine 2-

aminopyridine complex and the adenine thymine base pair. In all cases Hartree-Fock 

performs worse, with the largest spread of interaction errors, the smallest and widest peak 

around 0 kJ mol-1, and the highest MUE. B3LYP and M06-2X perform similarly, with M06-

2X performing overall best. For all levels of theory, the range of interaction energies 

increases with increasing system size, however the histograms show that despite larger 

errors becoming more common, the vast majority may still be found within ±2 kJ mol-1.  
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Figure 2.11: Top Scatter plot of the prediction errors for all interactions between atoms of the 
formic acid dimer against the interaction distance and bottom histogram depicting the number of 

interactions predicted at different errors. Blue: HF level of theory, Red: B3LYP level of theory, Green: 
M06-2X level of theory 
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Figure 2.12: Top Scatter plot of the prediction errors for all interactions between atoms of the 
formamide dimer against the interaction distance and bottom histogram depicting the number of 

interactions predicted at different errors. Blue: HF level of theory, Red: B3LYP level of theory, Green: 
M06-2X level of theory 
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Figure 2.13: Top Scatter plot of the prediction errors for all interactions between atoms of the uracil 
dimer against the interaction distance and bottom histogram depicting the number of interactions 
predicted at different errors. Blue: HF level of theory, Red: B3LYP level of theory, Green: M06-2X 

level of theory 
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Figure 2.14: Top Scatter plot of the prediction errors for all interactions between atoms of the 2-
pyridoxine 2-aminopyridine complex against the interaction distance and bottom histogram 

depicting the number of interactions predicted at different errors. Blue: HF level of theory, Red: 
B3LYP level of theory, Green: M06-2X level of theory 
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Figure 2.15: Top Scatter plot of the prediction errors for all interactions between atoms of the 
adenine-thymine complex against the interaction distance and bottom histogram depicting the 

number of interactions predicted at different errors. Blue: HF level of theory, Red: B3LYP level of 
theory, Green: M06-2X level of theory 
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2.3 Weakly Bound Complexes 
The discussion now moves to three weakly bound complexes where hydrogen bonding is 

not the dominant interaction. The three systems studied are the ammonia-benzene 

complex, the water-benzene complex and the stacked benzene dimer. The ammonia-

benzene and water-benzene complexes involve a weak hydrogen bond between the 

hydrogen atom of the donor ammonia or water molecule interacting with the delocalised 

 -system of the benzene ring. The benzene dimer involves a  -  stacking interaction. 

Topological pictures of the molecules can be seen in Figure 2.16. The electrostatics of the 

three systems discussed does not play as dominant a role as in H-bonded complexes. For 

this reason the choice was made to build kriging models for the IQA [25] self and 

interaction energies for the complexes instead (see Chapter 1 for details of the IQA energy 

decomposition). It is noted that a rigorous, multipolar description of the electrostatic 

interaction is still important for a potential that aims to accurately model the energy 

profile of aromatic systems. For more details see Chapter 1, Section 1.6. The IQA self 

interaction energy,       
    

refers to the total interaction energy that atom   has with all 

other atoms in the system.       
    

 includes both Coulombic and non-classical components. It 

is the Coulombic component that has been expanded using spherical harmonics to give rise 

to the atomic multipole moments kriged for the hydrogen bonded systems. Thus, the 

treatment of the weakly bound complexes goes beyond that which was performed on the 

hydrogen bonded complexes. 

In this work, dimers from the extended S22x5 dataset [149] were used in addition to the 

standard S22 dimer geometries as input for normal modes sampling. The former dataset 

includes the S22 molecules at 5 non-equilibrium geometries, where the molecules have 

been translated along the axis in the direction of the main intermolecular interaction. 

Further details of the sampling methods are provided below in Section 2.3.2.  

 

 

 

 

 

Figure 2.16: The three weakly bound complexes studied in this work: the ammonia benzene 
complex (left), the water benzene complex (middle) and the stacked benzene dimer (right) 

Unlike the treatment of the H-bonded dimers, kriging models built for the non-H-bonded 

systems were only obtained at the M06-2X level of theory. This functional has been 

developed with the aim of improving the description of intermolecular energies, and has 
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been widely adopted by the DFT community due to its success [150-153]. As a 

consequence of the widespread use of M06-2X, an algorithm has been included in AIMAll 

version 14.11.23 [138] that allows the IQA decomposition to be performed on M06-2X 

wave functions. Both the HF and B3LYP levels of theory give poor interaction energies of 

weakly bound systems without the use of dispersion corrections [148]. Additionally, 

Figure 2.4 in Section 2.2.3 shows that training sets built using the M06-2X level of theory 

gave average errors lower than those obtained at HF and comparably to B3LYP. These 

reasons more than justify the exclusion of the HF and B3LYP levels of theory. 

2.3.1 Computational Details 

The GAIA protocol was followed in order to obtain the IQA kriging models of the three 

molecular complexes studied. As a consequence of using the S22x5 dataset, non-

equilibrium geometries of the molecular complexes were present. This means that the 

standard normal modes sampling was not possible. Instead, Cardamone's non-equilibrium 

normal modes sampling algorithm (Chapter 1 section 1.7) implemented in TYCHE was 

used for the vibrational sampling of the hydrogen bonded dimers. All ab initio calculations 

were performed using the Gaussian09 software package at the M06-2X/aug-cc-pVDZ level 

of theory. The aug-cc-pVDZ basis set was chosen for its compromise between speed and 

accuracy. The IQA calculations were performed by AIMAll version 14.11.23 and the kriging 

models were built with the FEREBUS kriging engine. A training set size of 1000 was used 

for each of the three molecular complexes. Kriging IQA self and interaction energies means 

that NYX is not required as there is no need to interact atomic multipole moments. Instead, 

predictions made by FEREBUS were used to construct S-curves.  

2.3.2 Sampling of the Molecular Complexes 
Further details are now provided regarding the method by which the training set and test 

set geometries were obtained. For each molecular complex the S22x5 and S22 geometries 

were obtained directly from references [149] and [131], respectively, and then each of 

these 6 geometries had one molecule in each complex rotated by 90, 180 and 270 degrees 

to give a total of 24 molecular geometries (referred to from now as "seeds", or "seed 

geometries"). For example, in the case of the water-benzene complex, for each S22x5 and 

S22 geometry the water molecule was rotated around the axis defined as a line from the 

oxygen of water to the centre of the benzene ring. All 24 seed geometries were then input 

as minima for the non-equilibrium normal modes sampling routine within TYCHE. During 

the distortion, sampled geometries with angle bends and bond stretches in excess of 10% 

from the equilibrium distance were discarded. This ensured that the geometries were 

chemically reasonable. By including seed geometries from the S22x5 data set in addition to 

the geometries found in the S22 set, a greater sampling of conformational space is 

achieved. This gives rise to potentially more useful kriging models as they are able to 

predict energies for a greater number of systems- they describe a larger volume of 

configurational space. Although the example of weakly bound complexes is a relatively 
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trivial case, a sampling approach that covers a large area of conformational space is 

important when dealing with more complex systems such as amino acids. This is a topic of 

much discussion in Chapter 3. Wireframe images of 20 randomly selected sampled 

geometries for each of the three weakly bound complexes are shown in Figure 2.17.   

 

Figure 2.17: Wireframe images of 20 randomly selected geometries of the ammonia-benzene 
complex (top), water-benzene complex (middle) and bezene dimer (bottom). 
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2.3.3 Kriging Accuracy of Non-Hydrogen Bonded Complexes 

The performance of the kriging models obtained from FEREBUS for the three complexes 

studied can be displayed using S-Curves, and these are provided in figure 2.18. The       

and        energies were predicted for 500 test geometries for both ammonia-benzene and 

the benzene dimer, and 400 test geometries for the water-benzene complex. The smaller 

test set for the water-benzene complex was required due to a greater number of 

geometries being filtered out due to high integration errors during the IQA analysis. Each 

point in the S-curve is equal to the sum of all atomic        and       energy prediction 

errors. The exact formula is provided below: 

                      

              
                 

               
    

                 
    

  

       

 

 

(2.1) 

 

Figure 2.18: S-curve displaying the prediction error of the total IQA energy for the three weakly 
bound complexes: the ammonia-benzene complex (blue), the water-benzene complex (red) and the 

benzene dimer (green). 

It is observed that the ammonia-benzene (blue line) and water-benzene (red line) complex 

kriging models perform comparably to one another and outperform the models obtained 

for the benzene dimer. In all instances, the total IQA energy is predicted within 10 kJ mol-1 

accuracy. The ammonia-benzene and water-benzene complexes have 90% of the test 

structures predicted within 3 kJ mol-1. Table 2.4 contains the range in the total energy for 

each weakly bound complex as well as average prediction errors for the total energy. 
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Included is the average prediction error as a percentage of the range of the total IQA 

energy. The total IQA energy is predicted within 2% accuracy for all systems. The values in 

table 2.4 show that as the range in the total energy increases, the average S-curve error 

also increases; however the increase in S-curve error is slower than that of the range, and 

therefore the average error is a smaller percentage of the range. This shows that the 

QCTFF protocol is capable of handling large ranges in molecular energies with only small 

cost to the accuracy of the kriging predictions. 

The kriging performance of the separate      
  and       

    
 energetic terms has also been 

analysed, where the two terms on the right hand side of Equation 2.1 are each plotted as 

separate S-curves. Thus, each point on the      
  curve is given by: 

                                    
                 

  

       

 

 

(2.2) 

and each point on the       
    

 curve given by: 

                                            
    

                 
    

 

       

 

 

(2.3) 

The two sets of S-curves can be seen in Figure 2.19. Both sets of curves perform similarly 

to the total energy S-curve with all kriging predictions within 10 kJ mol-1. The average S-

curve errors can be found in Table 2.4 alongside the range in the self and interaction 

energies. The ranges in the two separate IQA energy terms are seen to be much larger than 

the range in the total IQA energy. For example, the ranges in the       and        energies 

for the ammonia-benzene dimer are 235.5 kJ mol-1 and 244.4 kJ mol-1, respectively, 

whereas the range in the total energy is only 69. kJ mol-1. This is due to a cancellation 

between the energetic components. When the two molecules are close to one another, the 

self-energy is more positive than when they are at greater separation. This is because the 

atoms are deformed when brought close together. This always gives rise to a positive 

change in the self-energy,      . Conversely, the interaction energy,       , is more negative 

the closer two molecules are because the intermolecular bonding is stronger. This effect 

has been previously documented by Pendas in his work on diatomics and hydrogen 

bonded dimers [39, 154]. Table 2.4 shows that despite the large range in total       and 

       values, the average S-curve error is relatively similar to the total IQA energy S-curve 

average error for all complexes. This means that the average S-curve error is much less 

than 1% of the range in the total self and interactions energies of all three weakly bound 

complexes. 
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Table 2.4: Summary of the kriging performance of the weakly bound complexes. Energies in kJ mol-1. 

 Ammonia-
Benzene 

Water-Benzene Benzene Dimer 

Total Energy    
Range 69.42 88.81 159.20 

Standard deviation 8.58 12.44 17.43 
Average S-curve error 1.30 1.22 1.86 
Average Error as % of 

Range 
1.87 1.38 1.17 

Total Self-Energy    
Range 235.53 363.00 282.35 

Standard deviation 35.92 39.82 48.88 
Average S-curve error 1.42 1.57 2.16 
Average Error as % of 

Range 
0.60 0.43 0.77 

Total Interaction 
Energy 

   

Range 244.36 387.35 250.28 
Standard deviation 36.71 42.91 40.65 

Average S-curve error 1.23 1.46 1.53 
Average Error as % of 

Range 
0.50 0.38 0.61 

 

Figure 2.19: S-curve displaying the prediction error of the total self-energy (top) and total 
interaction energy (bottom) for the three weakly bound complexes: the ammonia-benzene complex 

(blue), the water-benzene complex (red) and the benzene dimer (green) 
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2.4. Conclusions and Further Work 
The results of this chapter demonstrate that the high-rank multipole moments up to 

hexadecapole can be modelled by kriging as a function of nuclear coordinates to high 

accuracy for intermolecular hydrogen bonded systems. As these systems are ubiquitous 

within chemistry, the accurate modelling of intermolecular interactions is of great 

importance in the design of a next-generation force field such as QCTFF. Additionally, the 

work demonstrates that atomic energy components obtained from the IQA energy 

decomposition also may be described using kriging models. The models are built on ab 

initio values for the moments and IQA terms, and kriging allows for near-ab initio 

electrostatic interaction energies and atomic energies to be obtained in a fraction of the 

time. The models are able to model intermolecular interactions, including hydrogen 

bonding, mostly within ±2 kJ mol-1, and the standard deviation and mean unsigned error of 

intermolecular interactions are shown to decrease with an increase in training set size. For 

the IQA kriging models, the predicted total energy of the test geometries for all three 

systems was within 10 kJ mol-1.   

The effect of the ab initio level of theory on the performance of the kriging was investigated 

for the hydrogen bonded dimers. In general, models built from moments obtained at the 

Hartree-Fock level of theory lead to larger errors in the prediction of electrostatic 

interactions than models built at B3LYP and M06-2X levels. There is no obvious difference 

between the accuracy of our results for the two density functionals, especially for larger 

systems. 

The current work delivers proof-of-concept that machine learning can be used to 

accurately describe intermolecular interactions. This allows progress to be made on larger, 

more complex chemical systems. For example, knowledge that the hydrogen bond in the 

water dimer can be kriged to a high accuracy opens the door to working on larger water 

clusters as well as hydrated molecules. Recent work has been started by others in the 

group on such systems. 
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Chapter 3 

PDB Sampling of Amino Acids 

Summary 
The Quantum Chemical Topological Force Field (QCTFF) uses the machine learning 

method kriging to map atomic multipole moments to the coordinates of all atoms in the 

molecular system. It is important that kriging operates on relevant and realistic training 

sets of molecular geometries. The traditional sampling method used within the group 

consists first of a search of the potential energy surface to find local minimum energy 

geometries. The minima are then used as "seeds" for a normal modes (NM) sampling 

approach where energy is pumped into the normal modes and snapshots of the vibrating 

molecule are taken. An alternative sampling of the "seed geometries" is presented in the 

current work, where single amino acid geometries were sampled directly from protein 

crystal structures stored in the Protein Databank (PDB). This sampling enhances the 

conformational realism (in terms of dihedral angles) of the training geometries. However, 

these geometries can be fraught with inaccurate bond lengths and valence angles due to 

artefacts of the refinement process of the X-ray diffraction patterns, combined with 

experimentally invisible hydrogen atoms. To address these issues, the hybrid PDB/non-

stationary normal modes sampling approach was developed. I call this method "PDB/NM". 

This method is superior over standard normal modes sampling, which captures only 

geometries optimised from the stationary points of single amino acids in the gas phase. 

Indeed, PDB/NM combines the sampling of relevant dihedral angles with chemically 

correct local geometries. Geometries sampled using PDB/NM were used to build kriging 

models for alanine and lysine, and their prediction accuracy was compared to models built 

from geometries sampled from three other sampling approaches. Bond length variation, as 

opposed to variation in dihedral angles, puts pressure on prediction accuracy, potentially 

lowering it. Hence, the larger coverage of dihedral angles of the PDB/NM method does not 

deteriorate the predictive accuracy of kriging models, compared to the NM sampling 

around local energetic minima used so far in the development of QCTFF. 

 

A couple of notes to the reader: 

First, much of the work in this chapter may be found in the following publication: 

 “T.J. Hughes, S. Cardamone, P.L.A. Popelier, Journal of Computational Chemistry, 

2015, 36, 1844-1857" 

found in Appendix F. The work presented in this chapter contains only my own work, with all 

contributions from co-authors omitted. 

Second, the sampling of amino acids in the context of this work corresponds to the sampling 

of the amino acid with H3CC(O)- and –N(H)CH3 caps to complete the peptide bonds. These 
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structures are often referred to as “(amino acid) dipeptide” or “capped amino acids”. Here 

they are simply referred to as “amino acids”. 

 

3.1. Introduction 
To build a QCTFF kriging model, example molecular geometries must be obtained in order 

to train the model. QCTFF development targets the simulation of biomolecules, in 

particular proteins, hence amino acids are molecules of key interest. When sampling amino 

acid geometries as input for kriging models, the sampled geometries must include all the 

conformations that one may reasonably expect to occur during the simulation of a protein. 

In Chapter 2, the sampling approach used to obtain the S22 dimer molecules was a normal 

modes (NM) approach, as discussed in the description of the GAIA protocol in Chapter 1. 

In summary, this approach requires a small number of stationary points on the potential 

energy surface of a given molecule, and the normal modes at each stationary point (or local 

energy minimum) are calculated. Energy is then put randomly into the normal modes to 

distort the molecule, and “snapshots” are taken to obtain distorted geometries. The 

minimum energy conformations of all twenty naturally occurring amino acids have been 

reported in a comprehensive study[132], all obtained at the same level of theory. Kriging 

models built from normal modes sampled geometries have been used to predict 

successfully the atomic multipole moments of a range of molecules. These include small 

organics, amino acids and hydrogen bonded dimers[141, 155-160]. Recently, the kinetic 

energy of QCT atoms has been successfully incorporated into kriging models for methanol, 

NMA, glycine and triglycine[161]. The only other alternative sampling approach 

investigated draws snapshots from a molecular dynamics simulation, which has been 

done[162] for liquid water. In the current work, a third sampling method is investigated, 

one that is pivotal for a realistic sampling of amino acid conformations and one that 

incorporates experimental information (X-ray structures). 

Amino acids are typically described as consisting of two units: a back bone and a side 

chain. The conformational preference of the backbone unit is dictated by the secondary 

structure of the proteins and is well understood. The dihedral angles denoted   and    

(Figure 3.1) describe the back bone and may be visualised using Ramachandran plots. 

These plots relate the values of   and   to a particular secondary structure. Different 

amino acids display preferences for different regions of the Ramachandran plot, and a 

thorough investigation of the preferences for all 20 naturally occurring amino acids has 

been performed before[163, 164]. The side chain of an amino acid may exist as a number 

of different rotamers depending on the side chain dihedrals. Extensive work has been 

undertaken by other groups to understand the relative populations of the different 

rotamers occupied by each amino acid, and this has led to a number of rotamer libraries 

being constructed[165-170]. A rotamer library is a comprehensive guide, drawn from 
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molecular dynamics simulation or protein crystallography, detailing the statistical 

populations and frequencies of the dihedral angles adopted by amino acid side chains. 

These libraries may then be used to predict, build, design and solve new protein 

structures[171].  

 

Figure 3.1: Definition of the   and   dihedral angles of a peptide backbone.  

Normal modes sampling has proved successful at sampling conformational space around 

an input energetic minimum or stationary point. However, one must consider whether the 

gas phase minimum energy geometries of an amino acid accurately mimic the amino acid 

geometries found in proteins. It is accepted that amino acids and polypeptides have an 

intrinsic propensity for specific molecular configurations, and that this preference can 

differ depending on whether the amino acid exists in a folded protein tertiary structure or 

a disordered, solvated state[172]. Ramos et al.[173] performed ab initio calculations on all 

20 natural amino acids using both gas phase and PCM solvation. Of the 323 chemical bonds 

and 469 angles present, they found mean unsigned errors of less than 0.02 Å and 3o 

between the PCM and gas phase bonds and angles, respectively. However, the environment 

of a globular protein is different to that of a hydrated polypeptide due to a number of 

factors such as intra-residue hydrogen bonding and steric considerations that have an 

effect on the amino acid conformation.  

The work of Jha et al.[174] clearly shows the effect of the environment on the backbone 

angles   and  . They compared the geometric preferences of all 20 amino acids using data 

from two protein coil libraries: one including residues in structural motifs, and the other 

only those residues in disordered sections of the proteins. The ratios of geometries found 

in the  -sheet, PPII and  -helical regions were clearly different between the two libraries. 

To further demonstrate the effect of environment on the structural preferences of amino 

acids, the distribution of geometries obtained from both coil libraries also differed 

significantly from those obtained experimentally for the central residue of Gly-X-Gly 

tripeptides (where X is a naturally occurring amino acid) [175, 176]. It has been shown, 

both experimentally (using NMR J couplings) and computationally, that disordered amino 

acid residues favour specific regions of the Ramachandran plot (typically  -sheet and PPII 

regions) in contrast to the conformational populations found in ordered protein secondary 

structures [177] [174, 178-180]. It has also been shown that the side chain rotamer 

preference of an amino acid is related to the secondary structure of the polypeptide in 

Φ Ψ 
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which it resides[181], and this relationship between environment and structure has been 

used successfully in rotamer libraries to predict side chain conformations[182]. In the long 

term, these results imply that gas phase energy minima of single amino acids used to 

sample geometries from, are insufficient to sample all important chemically relevant 

geometries. 

The efficient sampling of molecular geometries is a challenging problem due to the rapid 

increase in the available conformational space as molecules grow in size. A systematic 

search of conformational space to find low energy geometries is impractical and inefficient. 

A number of efficient approaches have been presented in the literature including the use of 

molecular dynamics[183, 184], Monte Carlo[185], transition path sampling[186-188] and 

metadynamics[189]. Additionally, fragment based approaches may be used in order to 

improve a systematic approach by reducing the number of conformations searched though 

elimination processes. An example of such an approach is that of Luo et al.[190] where, by 

fragmenting the Gly-Tyr-Gly-Arg tetrapeptide, they reduced 19.6 billion possible 

candidates for the global minimum conformation down to only 5760.  

An alternative to computational sampling approaches for finding important amino acid 

geometries is to source them from protein crystal structures. Unfortunately, crystal 

structures cannot be used directly as input into kriging models for several reasons. Firstly, 

only heavy atoms are detectable by X-ray crystallography and so the hydrogen atom 

coordinates are dependent upon the refinement process used. Secondly, removing an 

amino acid from a crystal structure breaks the peptide bonds at either end of the 

backbone, which drastically changes the chemical environment and results in incomplete 

valence of the terminal atoms. Therefore some post-PDB-extraction modifications to the 

sampled amino acids are required before input to QCTFF. Thirdly and finally, the 

resolution of the atomic coordinates varies from one crystal structure to another, and 

sometimes unrealistic bond lengths and angles may be present within a crystal structure.  

Despite some challenges associated with the direct sampling of amino acids from protein 

crystal structures, the protein data bank (PDB sampling) remains an highly desirable 

source of amino acids for QCTFF development. Sections 3.3.1-3.3.3 of this chapter are a 

study of the potential advantages that PDB sampling of amino acids has over normal 

modes sampling, and then in Section 3.3.4 the chapter introduces a novel sampling 

approach that has been designed with the intention of overcoming the previously 

mentioned problems associated with direct PDB sampling. This methodology is named 

PDB/NM and a detailed technical description of this method is given in Section 3.3.  
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3.2 Computational Methods 
Amino acids were sampled from protein crystal structures using the MOROS code (see 

Chapter 1 and Appendix D for detailed discussion). The normal modes sampling was 

performed using TYCHE with a maximum bond stretch and angle bend of +/-10% of the 

equilibrium value. All ab initio calculations were performed by Gaussian09 at the 

B3LYP/aug-cc-pVDZ level of theory. Kriging models were built by following the GAIA 

protocol outlined in Chapter 1. A list of the protein crystal structures is provided in 

Appendix C. 

3.3 Results 

3.3.1 Normal Modes Sampling vs. PDB Sampling 

As stated above, normal modes sampling require the generation of input “seed” geometries 

that are local minima on the potential energy surface of a molecule. The sampled 

geometries are all distortions of the seed structures, and the program TYCHE is very 

successful at sampling around the input minima. Clearly it is important that the collection 

of input seed geometries allows the sampling of all chemically important molecular 

geometries. Consider a hexane molecule, C6H14. The dihedral angle around each of the six 

C-C bonds has three minimum energy positions, +60o, -60o and 180o. This means that there 

are 36=729 valid combinations of dihedral angles available that will give rise to a local 

minimum energy structure. Some of these geometries will have very high energy steric 

clashes and so could be omitted due to being inaccessible in standard conditions. Even if 

the possible number of local minimum geometries was halved due to these clashes, there 

would still be more than 350 possible local minima available to the hexane molecule. If one 

was to try to build a kriging model for hexane that comprehensively was able to describe 

all regions of conformational space using a normal modes approach, this means that 

roughly 350 minima would be needed.  

Obviously, an exhaustive collection of minima is impractical as the molecules studied 

become larger and more complex. The minimum number of internal coordinates that 

describe a molecule is 3N-6 where N is the number of atoms. Assuming that each 

coordinate has three local minimum energy states, there are 33N-6 potential input minima 

for each molecule. To limit the number of minima obtained for the 20 amino acids, a 

previous member of the Popelier group enforced a root mean squares approach (   ) to 

describe how similar two minima   and   are from one another. Sampled molecules that 

had an       value greater than a threshold of 40o were determined as unique, whereas 

structures below that threshold were discarded. This criterion produced a manageable 

number of minima for each amino acid, however 40o is a very high threshold. The result of 

the high threshold value is minima that are well-spaced throughout conformational space, 

however it means that some experimentally important regions of conformational space 

and certain combinations of internal coordinate “states” are omitted. It is for this reason 
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that alternative methods for sampling structures are of interest, for example the PDB 

sampling of amino acids presented here. 

Figure 3.2a shows the obtained sampling of the dihedral angle around the   -   bond of 

glutamic acid (termed dihedral 1) via a normal modes approach using the minima obtained 

using the     approach given above as seeds. It is observed that there are no structures 

sampled at a dihedral angle of 60o where one may expect a local minimum to exist (and 

therefore geometries to be present). Figure 3.2b shows the same data, only for geometries 

obtained from a collection of protein crystal structures (PDB sampling). The sampling from 

the PDB method sows that the population of dihedral 1 values sampled is highest around 

60o. This is an example of the normal modes sampling approach failing to sample 

important experimentally observed molecular geometries due to a seed not being present 

with corresponding set of internal coordinates. In this example, one would be able to add 

an additional input seed geometry with a dihedral 1 value of 60o to correct this problem, 

but with larger more complex systems, an increasingly large number of additional seeds 

will require being added, and this is unfeasible in the long run. 

To expand upon the previous point, now consider the next dihedral angle along the 

glutamic acid side chain around the   -   bond (dihedral 2). Figures 3.3a and 3.3b show 

the values of dihedral 1 and 2 for glutamic acid structures sampled from normal modes 

and the PDB, respectively. One would expect a cluster of sampled geometries around all 

the combinations of the -60o, 60o and 180o minima for both dihedrals, but normal modes 

sampling is unable to sample geometries with a dihedral 1 value of 60o. PDB sampling, 

however, samples all the expected combinations of the local minima around each dihedral.  

Figures 3.2 and 3.3 also provide an example another advantage that PDB sampling has 

over normal modes sampling, which will be referred to henceforth as “correlated 

dihedrals”. This term relates to the sampled combinations of dihedral angles. Using a 

restricted set of seed geometries, as is the case when using the normal modes sampling 

approach, a complete spread of values for a given dihedral angle may be present, but 

important combinations of two dihedral angles may not be. In Figure 3.2a it appears that 

all values of dihedral 1 are sampled, with the exception of the previously discussed 60o 

local minimum. When the dihedral 1 values are plotted against the dihedral 2 values 

(Figure 3.3a), however, it is observed that there are no glutamic acid geometries sampled 

with dihedral 1 values of 180o when dihedral 2 has a value of 60o. This means that there is 

no seed geometry with this particular combination of dihedral angles. A more exhaustive 

discussion of the “correlated dihedrals” is provided in the results section. 
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Figure 3.2a: (top) The frequency of occurrence of different side chain dihedral angles of glutamic 
acid molecules sampled using normal modes. Figure 3.2b: (bottom) The same as 3.2a but for 

geometries sampled from the PDB 

When sampling geometries from which kriging models will be built, it is important to 

consider the application that the kriging models will be applied to. For amino acids one 

would expect the kriging model to be applied to the simulation of a protein. Therefore, the 

amino acid geometries used to build the kriging models should cover regions of 

conformational space that one may expect the amino acid within a protein may exist 

during the simulation. PDB sampling satisfies this condition, as the amino acids are 

sampled direct from protein structures. It also allows one to be confident that the 

dihedrals that are not well sampled by the approach are unimportant because they are not 

present in the experimental crystal structures. The energetic minima used as seeds for the 

traditional normal modes approach obtained from gas phase calculations, and so there is 

no way to check the relevance of the obtained minima to the conformations of the amino 

acids in a proteins. Building training sets using geometries sampled from the PDB should 

also result in regions of conformational space that are common in nature, and therefore of 

interest in biomolecular simulation, being well represented within the training set. Equally, 

regions that are of less biological interest will be more poorly sampled. This will result in 

kriging models that are able to well describe regions of conformational space that are 

biochemically relevant. 
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Figure 3.3a: (Left) plot of the two side chain dihedral angles of glutamic acid molecules sampled 
using normal modes. Figure 3.3b: (Right) the same but for geometries sampled from the PDB 

3.3.2. Ramachandran Plots of the 20 Naturally Occurring Amino Acids 

As stated earlier, sampling from the PDB should produce training set geometries that 

mimic the conformational preferences of peptides in nature. The Ramachandran plots for 

the 20 naturally occurring amino acids are well understood. In such a plot, the backbone   

and   angles (Figure 3.1) are plotted, and regions on the plot correspond to the different 

secondary structural motifs that are adopted by polypeptides. MOROS was used to sample 

amino acids from 80 protein crystal structures (listed in Appendix C). From the sampled 

geometries, Ramachandran plots have been drawn for all 20 naturally occurring amino 

acids. These are displayed in Figure 3.4. 
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Figure 3.4: Ramachandran plots of the 20 naturally occurring amino acids. The geometries are 
sampled from the PDB. 

The plots in figure 3.4 illustrate the previously discussed point that PDB sampled 

geometries are found predominantly in the areas of conformational space associated with 

the secondary structural motifs of polypeptides. Negative   angles are typically well 

described, and in many cases (for example ASN, GLN, LEU and ASP) the two islands 

corresponding to  -helicies and  -sheets are bridged by a large number of intermediate 

geometries. One of the potential strengths of sampling geometries from the PDB is that the 

regions of conformational space between clusters should be better described than if 

normal modes were used as a sampling method. The Ramachandran plot of Gly shows a 

much greater range of   and   angles than the other amino acids. This is due to the role 

that Gly plays within protein secondary structure. Due to the lack of side chain on Gly, it is 

significantly more flexible than other amino acids and therefore exists largely in loops and 

turns in the protein. All plots in Figure 3.4 display a strong agreement with Ramachandran 

plots presented in work by Beck et al. where a much larger pool of crystal structures were 

sampled from[163]. 

The plots in Figure 3.4 do not all contain the same number of points. Being sampled from a 

set number (260) of protein structures, more geometries were sampled for the more 

common amino acids such as Asp, Ala, Lys, and Leu, whereas the less frequently occurring 

such as Cys and Thr are sampled less frequently. It was discussed in section 3.2.3 that 

although PDB sampled geometries will show bias towards the regions of the 

Ramachandran corresponding to the  -helix and  -sheet secondary structures, as the 

number of sampled geometries increases, the other regions of the Ramachandran will 
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become more populated. This is seen in Figure 3.4, as highly sampled amino acids, such as 

Ala show a greater coverage of the Ramachandran plot than the less sampled residues, 

such as Cys. 

To illustrate the above point further, geometries of Asn were obtained from an expanded 

pool of proteins (260 total crystal structures with codes provided in Appendix C), and the 

increased spread of geometries can be seen in Figure 3.5a. The expanded pool of proteins 

contained a total of 7476 Asn residues, while the original set of proteins contained 1183 

residues. The right hand side of the Ramachandran plot that was previously poorly 

covered is now significantly more populated, particularly around the region corresponding 

to the left handed  -helical secondary motif. The left hand side of the Ramachandran is 

where the majority of the ~6000 new geometries lie (as can be observed in Figure 3.6, the 

shape of the Ramachandran does not change), giving a very complete description of 

regions of conformational space where   is negative. Obviously, if sampling by normal 

modes, increasing the number of sampled geometries will not add geometries to empty 

regions of conformational space as there are still no minima in that region to sample. 

Figure 3.5b shows a plot of the side chain dihedral against the back bone   angle for both 

the 1183 and the 7476 geometries. It is seen that an increase in the number of geometries 

sampled from the PDB results in the full range of possible side chain dihedral angles 

described for all sampled values of  . 

 

Figure 3.5a: (Left) Ramachandran plot of the   and   angles of Asn residues sampled from a large 
pool of proteins (7476  sampled geometries) and a smaller pool of proteins (1183 sampled 

geometries). 3.5b: (Right) Plot of   against side chain dihedral for the same residues 
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Figure 3.6: 3D Ramachandran plots of Asn. The top plot contains the 7476 residues sampled from 
the larger pool of proteins, and the bottom plot contains the 1183 residues from the smaller pool of 

proteins. 

3.3.3. Correlated Dihedrals- A study of the Lysine Side Chain Rotamer 

Populations 
Lysine is an amino acid with a particularly long and flexible side chain with four dihedral 

angles around C-C bonds (shown in Figure 3.7). For each of the dihedrals, there are three 

local minima- trans, gauche+ and gauche-. If using normal modes sampling,         

   minima would therefore be needed to ensure that geometries are sampled for all 

combinations of these dihedrals. Obviously, some of the possible rotamers are not 

energetically likely, due to factors such as steric clashing, so not all rotamers are equally 

likely. For example, the dynameomics rotamer library of Daggett and Scouras [165] shows 

that dihedrals 3 and 4 both strongly favour the trans conformation (66-75%), whereas 

dihedral 1 exists gauche- >75% of the time. Search of the potential energy surface of the 

gas phase lysine dipeptide molecule produced only 39 minima[133] to describe Lys, 

meaning that normal modes sampling is expected to struggle to cover all chemically 

relevant geometries. This is seen in figure 3.8 where the number of sampled geometries 

-1
8

0
 

-8
0

 2
0

 

1
2

0
 0 

100 

200 

300 

400 

500 

600 

700 

-1
8

0
 

-1
0

0
 

-2
0

 

6
0

 

1
4

0
 

600-700 

500-600 

400-500 

300-400 

200-300 

100-200 

0-100 

-1
8

0
 

-8
0

 2
0

 

1
2

0
 0 

20 

40 

60 

80 

100 

120 

140 

-1
8

0
 

-1
0

0
 

-2
0

 

6
0

 

1
4

0
 

120-140 

100-120 

80-100 

60-80 

40-60 

20-40 

0-20 



86 

 

against dihedral angle is plotted for each of the four side chain dihedrals. It is seen that 

only dihedral 3 (green line) has geometries sampled for all three minima. Alarmingly, there 

is no example of dihedral 1 in the gauche- conformation, the most populous rotamer 

according to dynameomics. 

 

Figure 3.7: The four dihedral angles in the side chain of Lys, referred to as dihedral 1 (blue), dihedral 
2 (red), dihedral 3 (green) and dihedral 4 (purple) in the text. 

 

Figure 3.8: Plot of the number of geometries with a given dihedral angle obtained by normal modes 
sampling. 2964 geometries sampled in total. 

Unlike the geometries sampled from normal modes, the geometries sampled from the PDB 

do include geometries for each of the three minimum energy conformations one would 

expect for the four side chain dihedrals (Figure 3.9). This reiterates one of the problems 

related to sampling using normal modes- due to the dependance on input minima, 

chemically relavent conformations of the molecule may be left unsampled. Because the 

PDB sampling produces these geometries direct from experimental crystal structures, one 

must accept that the geometries obtained by PDB sampling but ommited by normal modes 

are indeed chemically relevant. PDB sampling successfully reproduces the rotamer 

populations present in the dynameomics library, where dihedral 1 is primarilly gauche- 

with the majority of remaining geometries being trans, and dihedrals 2-4 favouring the 

trans conformation. 

 1     2       3     4 
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Figure 3.9: Plot of the number of geometries with a given dihedral angle obtained by PDB. 1556 
geometries sampled in total. 

Figure 3.10 is the same as Figure 3.9, however it is obtained with geometries sampled 

from the larger pool of proteins. There are 1556 geometries represented in Figure 3.9 and 

9425 in Figure 3.10, however both graphs show the same structure. This is in good 

aggreement with Figure 3.6 where increasing the number of Asn residues sampled from 

the pdb had little effect on the relative peak heights of the Ramachandran plot. The peaks 

in Figure 3.1 appear smoother than Figure 3.9 due to the larger sample size. The relative 

peak heights for dihedrals 2-4 in Figures 3.9 and 3.10 show the expected sizes- the peak 

at ±180 degrees (corresponding to the trans conformation) is larger than the peaks at ±60 

degrees (the gauche+ and gauche- conformations).  

 

Figure 3.10: Plot of the number of geometries with a given dihedral angle obtained by PDB. 9425 
geometries sampled in total. 

The discussion now moves to address the previously introduced issue of “corellated 

dihedrals”. A quick look at Figure 3.8 would mislead one into thinking that using normal 
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modes sampling, all chemically relevant conformations of dihedral 3 are included in the 

training set (trans, gauche+ and gauche-). This is seen not to be the case. Figure 3.11 is 

analogous to the green line in Figure 3.8 however only geometries where dihedral 2 lies 

within the range of 0-120o are included. It can be seen that there are no sampled 

geometries where dihedral 3 and dihedral 2 lie in the ranges -120-0o and 0-120o 

respectively. This is shown in the boxed region of Figure 3.12.  

For geometries sampled from the PDB (Figures 3.13 and 3.14), it is observed that there 

are geometries with dihedral 3 and dihedral 2 in the ranges -120-0o and 0-120o 

respectively. Because the PDB sampled geometries come from real protein geometries, any 

areas of conformational space that are sampled are “chemically relevant”. Because the 

strucures obtained by normal modes sampling miss regions of conformational space that 

are seen to be chemically relevant (as illustrated by the previous example), normal modes 

sampling had failed in this instance. As one would expect, the PDB sampled geometries do 

exhibit a clear preference for the less sterically hindered trans-trans geometry (clustering 

of points in the corners of Figure 3.14).  

 

 

Figure 3.11: Plot of the number of geometries sampled for different values of dihedral 3 when 
dihedral 2 is between 0-1200. Geometries sampled by normal modes. 



89 

 

 

Figure 3.12: Scatter plot of dihedral 2 vs dihedral 3 for geometries sampled by normal modes. The 
boxed region corresponds to the geometries plotted in figure 3.11. 

Spider plots can be drawn to display the dihedral sampling of a molecule efficiently. Each 

line on a spider plot corresponds to a sampled molecular geometry and each axis 

corresponds to a dihedral angle. Example spider plots for the four dihedral angles in the 

Lys side chain are provided for both PDB (blue) and normal modes (green) sampled 

geometries are given below in Figure 3.15. The spider plots reinforce the above 

arguments that normal modes sampling provides a set of locally clustered molecular 

geometries that poorly reproduce the distribution of molecular geometries sampled from 

real proteins. An important point must be made regarding the spider plot of the 

geometries sampled by normal modes as the geometries are not the same as those in the 

above histograms. The reason for this is that the geometries used in the spider plot were 

sampled for use in kriging models, and thus stricter requirements on quality of the 

geometries was required, such as lower allowed deviations in bond lengths. The means 

that the energy pumped into the normal modes is lower, leading to reduced dihedral 

sampling. In the histograms, the geometries were sampled purely for illustrative purposes 

with relaxed structural criteria, and hence the energy input to the minima was higher, and 

greater dihedral sampling was obtained. Due to the random input of energy to the normal 

modes by TYCHE, no formal quantitative comparison is available. 
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Figure 3.13: Plot of the number of geometries sampled for different values of dihedral 3 when 
dihedral 2 is between 0-1200. Geometries sampled from the PDB, with the top graph sampled from a 

small pool of proteins, and the bottom graph sampled from a large pool of proteins. 
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Figure 3.14: Scatter plot of dihedral 2 vs dihedral 3 for geometries sampled from the PDB (both 
from a large and a small pool of proteins containing 9425 and 1556 geometries respectively). The 

boxed region corresponds to the geometries plotted in Figure 3.13. 

 

Figure 3.15: Spider diagrams of the four side chain dihedrals on Lys for geometries sampled from 
the PDB (top, in blue) and from normal modes (bottom, in green). 
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3.3.4 Development of the PDB/NM Hybrid Sampling Approach 

The above discussion conveys to the reader that normal modes sampling of amino acid 

geometries is not able to sample the full conformational space occupied by a given amino 

acid when using gas phase energetic minima as input geometries. The simplest way to 

improve the performance of normal modes sampling is to increase the number of input 

minima in order to “fill the gaps” in conformational space. It has been discussed, however, 

that the number of possible geometries that a molecule may occupy increases rapidly with 

the size of the molecule, resulting in an increasingly large number of “gaps” that need 

filling. PDB sampling has been explored as an alternative method of sampling and shows 

promise. Dihedral sampling is better performed by PDB sampling than normal modes, and 

the amino acid geometries are inherently biologically relevant. The main problem 

associated with PDB sampling lies in the quality of the crystal structure of the protein and 

the possibility of unrealistic bond-lengths and angles included in the sampled geometries. 

The hybrid PDB/normal modes sampling approach has been developed, hereafter referred 

to as PDB/NM, with the aim of getting the positive features of both sampling approaches 

whilst avoiding their shortcomings. 

An overview of the PDB/NM sampling approach is provided in Figure 3.16. The first stage 

of the sampling process is extraction of amino acids from protein crystal structures. The 

program MOROS performs this task. A large number (hundreds) of the PDB sampled amino 

acids are then randomly selected to be used as input minima for normal modes sampling. 

Before the normal modes sampling is performed, a partial optimisation is performed on 

each sampled structure where all dihedral angles are fixed but bond lengths and angles are 

allowed to relax. The relaxed amino acid geometries are then used as “seeds” for the 

normal modes sampling. The normal modes sampling of the partially optimised seeds 

requires the non-equilibrium normal modes of the molecule to be sampled (see Chapter 

1). This is due to the first order term of the Taylor expansion to not be zero when not at an 

energetic minimum. A key difference to standard normal modes sampling of energetic 

minima at this stage in the sampling process is that a much smaller number of geometries 

are sampled per seed in the PDB/NM scheme due to the larger number of seeds. The 

molecular geometries output by TYCHE are then run though GAIA, starting at the Gaussian 

stage. 
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Figure 3.16: Flowchart outlining the stages of the PDB/NM sampling procedure. 

The partial optimisation of the sampled geometries before input to TYCHE is of key 

importance in the PDB/NM sampling scheme for a number of reasons. By allowing the 

molecule to relax in this way poor quality information in the crystal structure in the form 

of poor bond lengths and angles is “tidied up”. In addition, the program Haad[134] (which 

is used to add hydrogen atoms to the extracted amino acid geometries) adds all hydrogen 

atoms at fixed bond lengths. Relaxation gives more realistic R-H bond lengths. An early 

suggestion for the cleaning up of PDB sampled structures for use as a QCTFF training set 

was to sample all geometries from the PDB and to relax each structure in this way and 

input the relaxed structures into GAIA. Although this method is successful at “cleaning up” 

training set it ultimately leads to a poor sampling of conformational space as all bond 

lengths in the training set are at, or close to, their equilibrium value. PDB sampling in this 

manner offers improved dihedral sampling of an amino acid than normal modes sampling, 

but offers a poorer sampling of bond lengths and angles than normal modes. The normal 

modes component of PDB/NM is responsible for the sampling of the regions 

conformational space described by variation in bond lengths and angles. 

Extract amino acid 

geometries from protein 

crystal geometries using 

MOROS 

Randomly select hundreds of 

sampled geometries 

Optimise bond lengths and 

bond angles whilst keeping 

dihedral angles fixed 

Perform non-equilibrium 

normal modes sampling on 

partially optimised 

geometries 

Input sampled geometries to 

the GAIA procedure 
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In this work, kriging models have been built for the two amino acids, Ala and Lys, using 

four different sampling approaches (resulting in 8 sets of kriging models). The four 

approaches are detailed in Table 3.1. A comparative analysis of each sampling approach is 

given ranging from qualitative comparison of the dihedral sampling to quantitative 

analysis of the molecular energies and performance of the kriging models. 

Table 3.1. An overview of the four sampling approaches. 

PDB_OPT Molecular geometries sampled directly from crystal structure 

coordinates and H atoms added by the HAAD program. GAUSSIAN fully 

optimises bond lengths and valence angles but all dihedral angles remain 

fixed. 

PDB_NO_OPT Molecular geometries taken directly from PDB coordinates and H atoms 

added by HAAD.  Single-point GAUSSIAN calculations without any 

geometry relaxation. 

NM Standard normal modes sampling procedure using TYCHE to sample 

molecular geometries from a number of local energy minima in the gas 

phase. The local energy minima themselves are not included in either 

training or test sets. 

PDB/NM 300 randomly selected PDB “seed geometries” sampled with PDB_OPT, 

each acquiring 7 geometries generated from the non-stationary normal 

modes. The “seed geometries” themselves are not included in either 

training or test sets. 

 

All PDB sampling was performed using the larger pool of 260 protein crystal structures. 

Alanine was chosen because it is the smallest amino acid with a (non-trivial) side chain. 

Because there is only one side chain dihedral angle (χ1), as opposed to the four dihedral 

angles (χ1, χ2, χ3, χ4) controlling the side chain of lysine, the   and   angles dominate the 

dihedral motion of alanine. Lysine has the most flexible side chain of all 20 naturally 

occurring amino acids, and therefore has been chosen as a rigorous test of the performance 

of kriging when dealing with highly flexible molecules. Figure 3.7 shows the four side 

chain dihedrals in lysine around C-C bonds, χ1, χ2, χ3 and χ4.  

3.3.4.1 Testing the PDB/NM sampling approach 

Kriging models were built for the amino acids Ala and Lys using the four sampling 

strategies defined in Table 3.1. Ramachandran plots for the sampled alanine geometries 

by each of the sampling methods are shown in Figure 3.17. The dihedral angles are fixed 

to the same values in both the PDB_OPT and PDB_NO_OPT approach, which is why Figure 

3.17 assigns the same colour (blue) to the distribution of  and  angles of their 
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geometries. As expected, the PDB-sampled Ramachandran plots for both Ala and Lys 

display a sampling bias towards the  -helix and  -sheet regions with additional clusters of 

geometries in the left-handed helix region. The green Ramachandran plots display the 

sampled geometries obtained by the NM method. A number of islands of geometries 

around the gas-phase energy minima are observed. Several islands are clearly 

disconnected but some may overlap, such as the long island in lysine (bottom box) at the 

bottom right of the whole cluster of islands. Because there are regions of conformational 

space populated by the PDB sampling approaches but not the NM approach, it is concluded 

here that normal modes sampling from gas phase energy minima is inadequate for 

building kriging models to be used in biomolecular simulation. This is most noticeable in 

the case of Lys, where the NM Ramachandran plot appears sparsely populated compared 

to both the other sampling methods and the Ala NM Ramachandran plot. This is because 

the side chain of lysine is very flexible, and for each of the nine actual islands in the 

Ramachandran plot, there are multiple overlapping energy minima with different side 

chain conformations. This explains why the 39 input minima only appear as 9 islands on 

the Ramachandran. The orange Ramachandran plots, containing the Ala and Lys 

geometries sampled by the PDB/NM approach, strongly resemble the plots of both 

PDB_OPT (blue) and PDB_NO_OPT (blue) but with fewer points in regions away from the 

 -helix and  -sheet region. This is because the 300 “seed” geometries used as input for the 

normal modes sampling were randomly selected from the PDB_OPT sampled geometries 

and, statistically, they are most likely to be sampled from these well populated  -helix and 

 -sheet regions. The benefit of PDB/NM (orange) is that, on top of realistic distributions of 

dihedral angles, bond lengths and angles are more realistic and they are both varied.  

Figure 3.18 shows spider plots of the side chain dihedral angles sampled by each of the 

sampling approaches. In a spider plot, each of the four axes (meeting at the origin) 

corresponds to all values that each of the four side chain dihedrals χn (n=1, 2, 3 or 4) can 

adopt, i.e. from -180 o to 180o. Each sampled geometry then corresponds to a quadruplet of 

dihedral values (χ1, χ2, χ3, χ4), each marked by a point on each of the four corresponding 

axes. These four points are then linked by four coloured lines, which form a (typically 

lozenge-like) pattern. From the density of these patterns one obtains an instant glimpse of 

the conformational diversity (or lack thereof) of the side chain geometries.  

Clearly, the NM sampling approach (green) samples a very limited range of side chain 

geometries and does not return the regions of high sampling frequency obtained by the 

PDB_OPT and PDB_NO_OPT (blue) approaches. For example, the gauche- (-60o) 

conformation of χ1 is the most sampled conformation in the protein crystal structures but 

this conformation is not at all present in NM. The preference of χ1 to be in the gauche- 

conformation in proteins is a well-documented phenomenon[165] and thus NM sampling’s 

shortcomings are highlighted. The PDB/NM spider plot (orange) shows a better sampling 

of side chain dihedral angles than that of NM. However, the former shows a sparser 
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sampling of the less populated combinations of dihedral angles compared to PDB_OPT and 

PDB_NO_OPT (blue). 

 

Figure 3.17: Ramachandran plots of Ala (top box) and Lys (bottom box) sampled using PDB_OPT and 
PDB_NO_OPT (blue), NM (green) and PDB/NM (orange). In the bottom right panel of the top box is a 
guide to the regions corresponding to the secondary structural motifs, β-sheet (labelled β), α-helix 

(labelled α), and left-handed alpha helix (labelled LH). 

 

 

 

 

 

 
 
 

β 

α 

LH 



97 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.18: Spider plots displaying the Lys side chain conformations sampled by each of the four 
sampling approaches: PDB_OPT and PDB_NO_OPT (blue), NM (green) and PDB/NM (orange). Each 

axis ranges from -180 o to 180o. 

 

Table 3.2 presents a summary of the relative performance of each sampling approach and 

the resulting kriging model accuracy for both amino acids. The range in the B3LYP/aug-cc-

pVDZ energy of the Ala and Lys geometries sampled by each of the four methods is also 

included in Table 3.2. For both amino acids the NM sampled geometries show the smallest 

range in ab initio energy. This is because the NM sampling method uses the lowest energy 

gas phase conformations as the input minima, and hence all sampled geometries from this 

method are distortions of these low energy geometries. Therefore large deviations from 

the various energy minima cannot occur because the distorted geometries are confined by 

their respective well. This situation is different to that found in PDB geometries. Here, the 

lysine geometries sampled by the PDB/NM method have the largest range in ab initio 

energy, 421 kJmol-1, which is much larger than found in any other sampling approach. This 

is expected as the PDB/NM geometries undergo substantial dihedral sampling, as well as 

bond length and angle distortions caused by the non-stationary normal modes sampling. 

Table 3.2 also lists the average bond length range for all bonded atom pairs in the sampled 

Ala and Lys geometries, calculated for each sampling method. For both Ala and Lys, 

PDB_OPT yields the lowest average bond length range, 0.02 Å, due to the relaxation of the 

bonds to their optimal lengths (and obviously no bond length variation is introduced by 

normal modes). The average bond length ranges of 0.07 Å and 0.08 Å for PDB_NO_OPT Ala 

and Lys, respectively, are the next lowest values. The reason for the low average bond 
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length range of the PDB_NO_OPT geometries is that the hydrogen addition software used, 

HAAD, adds hydrogens at a fixed length of 0.985 Å. Therefore the average range in bond 

length is reduced by all bonds containing a hydrogen atom. A more informative metric to 

describe the sampling of bond lengths by each method is to study the range of a single 

bond containing two heavy atoms. The bond between Cα and Cβ was chosen for this 

purpose. Again, the PDB_OPT showed the lowest ranges of 0.03 Å and 0.05 Å, respectively, 

but the PDB_NO_OPT Ala geometries showed the highest range in Cα-Cβ distance of 0.22 Å 

as expected. NM and PDB/NM showed the same range in Cα-Cβ bond length of 0.14 Å. This 

highlights the similarity of both the stationary and non-stationary normal modes sampling 

algorithms in TYCHE.  

Table 3.2. Statistical information detailing the sampling of Ala and Lys by the four sampling 
methods. All energies are in kJmol-1 and all distances in Å. 

Alanine PDB_OPT PDB_NO_OPT NM PDB/NM 

Range in ab initio Energy 132.5 281.0 84.4 111.0 

Average Bond Length Range a 0.02 0.07 0.11 0.12 

Cα-Cβ Bond Length Range 0.03 0.22 0.14 0.14 

Average             0.7 1.8 4.0 3.4 

Average     
        

    
         

  0.1 0.2 0.4 0.4 

Max            6.8 25.8 18.4 17.2 

Max     
        

    
         

  10.0 9.4 13.7 9.4 

          

Lysine  PDB_OPT PDB_NO_OPT NM PDB/NM 

Range in ab initio Energy  126.0 310.6 111.1 420.9 

Average Bond Length Range a 0.02 0.08 0.13 0.14 

Cα-Cβ Bond Length Range 0.05 0.12 0.13 0.13 

Average            1.6 2.5 3.3 3.8 

Average     
        

    
         

  0.2 0.3 0.3 0.4 

Max            20.4 23.1 15.2 18.1 

Max     
        

    
         

  32.5 34.2 7.1 28.4 

a The set of training geometries provides a range (i.e. maximum – minimum) for each bond length. 
The ranges of all bonds appearing in the system are then averaged (over these bonds).  

Kriging models were built for both Ala and Lys using 1000 molecular geometries obtained 

from each of the four sampling approaches and were tested on 400 previously unseen (i.e. 

external and not trained for) molecular geometries obtained by the corresponding 

sampling approach. For example, kriging models built using geometries sampled using the 

PDB_NO_OPT method were tested on PDB_NO_OPT geometries, PDB/NM kriging models 

were tested on PDB/NM geometries, etc. Figure 3.19 shows the S-curves for all four 

sampling methods. As an reminder of how to read such an S-curve: 88% of geometries in 
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the external test set for alanine’s PDB_NO_OPT kriging models (top, red curve) have an 

error of maximum 4 kJmol-1 (or 1 kcalmol-1) (where the red curve intersects the purple 

dashed line).  

In connection with the information shown in Figure 3.19, note that Table 3.2 also reports 

the average absolute total error and the highest total error for each S-curve. The alanine 

models built using PDB_OPT geometries (blue curve) had the lowest average error of 0.7 kJ 

mol-1. This is attributable to the lack of bond length and angle variation in the training and 

test sets and so the kriging problem is “less challenging” as there are fewer dimensions of 

conformational space being sampled. The second left-most S-curve corresponds to the 

predictions made using the models built using PDB_NO_OPT geometries (red curve). This 

is most likely a result of the lack of bond length variation of all hydrogen-containing bonds. 

However, the PDB_NO_OPT does have the highest maximum total error of all sampling 

approaches, amounting to 25.8 kJmol-1, despite the low average error. This is attributable 

to an alanine residue extracted from a crystal structure with a significantly stretched Cα-Cβ 

bond length and the Hα-Cα-Cβ angle of 115o, which is significantly distorted from the 

stationary value of ~108o. This fact illustrates the unsuitability of sampling amino acid 

geometries directly from crystal structures for QCTFF development, and emphasises the 

need for a PDB/NM hybrid sampling approach. The kriging models obtained from the 

PDB/NM and NM sampled geometries perform worst overall, which is due to the large 

quantity of bond length sampling relative to the PDB_OPT and PDB_NO_OPT approaches. 

Despite being the S-curves furthest to the right, PDB/NM and NM have average S-curve 

errors of only 3.4 kJmol-1 and 4.0 kJmol-1, respectively. More than 60% of the test 

geometries of alanine were predicted by kriging models with an error of less than 1 

kcalmol-1, a value often described as “chemical accuracy”. 



100 

 

  

 

Figure 3.19: Errors in the predicted total electrostatic interaction energies (1-4 and higher) of 
alanine (top) and lysine (bottom) for kriging models trained with molecular geometries obtained by: 

PDB_OPT (blue), PDB_NO_OPT (red), NM (green) and PDB/NM (orange). The dashed purple lines 
mark the 1 kcal mol-1 threshold. 

It is interesting to note that the dihedral sampling appears to have less effect on the 

difficulty of the kriging problem than well-sampled bond lengths. Figure 3.20 plots the 

average bond length range against average total (S-curve) error for all four sampling 

approaches for Ala. The correlation between bond length and average S-curve error 

 
 

      
             

      
     is fairly strong, with an R2 value of 0.90 (see Figure 3.20). To 

illustrate this point further, the difference in average total error (S-curve error or 
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|ΔEsystem|) between PDB/NM and NM is 0.6 kJmol-1 (see Table 2), although the PDB/NM 

approach samples a much larger range of dihedral conformational space than NM. In 

contrast to this, PDB_OPT, which has a much larger sampling of dihedral space than NM 

but also the smallest average range of bond lengths, has an average total error 3.3 kJmol-1 

lower than that of NM. This observation is a result of the following effect. Under the 

assumption of an identical dihedral sampling (as is the case for PDB_NO_OPT and 

PDB_OPT), increasing the range of bond lengths increases the volume of configurational 

space that the kriging models have to describe. This increase results in a more difficult 

kriging problem leading to increased prediction errors. It also is observed that changing a 

bond length has a dominant effect on the multipole moments of the atoms involved. This is 

illustrated in Figure 3.21 where plots of Cα charge against both N-Cα bond length and 

backbone ψ angle are provided for the Ala geometries sampled by the PDB/NM, PDB_OPT 

and NM approaches, respectively. In both the PDB/NM and NM sampled plots, the Cα 

charge shows correlation with the N-Cα bond length but not with the ψ angle. It is only in 

the plots obtained from the PDB_OPT geometries (where the N-Cα bond length range is 

significantly reduced as a result of partial geometry relaxation) that any correlation 

between Cα charge and ψ can be seen. In summary, the correlation patterns above prove 

the dominance of bond length variation over dihedral sampling in posing a challenge to 

kriging. 

 

 

 

 

 

 
 

 
Figure 3.20: Average bond length deviation against average total (S-curve) error for the different 
sampling approaches of Ala (left) and Lys (right): PDB_OPT (blue), PDB_NO_OPT (red), NM (green) 

and PDB/NM (orange).  

The same conclusions may be drawn from the Lys S-curves as from the Ala S-curves: 

average bond length deviation is the most import factor dictating the average S-curve error 

(Figure 3.20, right hand graph), and although larger dihedral sampling increases the 

average error, it does this to a lesser extent than a large average bond length deviation. 

PDB_OPT has the lowest average S-curve error (Lys: 1.6 kJmol-1 and Ala: 0.7 kJmol-1) due to 

the optimised bond lengths having the lowest average deviation (0.02 Å for both ALa and 

Lys). The PDB/NM S-curve has the highest average error due to having the largest average 

bond length deviation and also a large dihedral sampling. PDB_NO_OPT has the largest 

maximum S-curve error but, unlike the high error PDB_NO_OPT point on the Ala S-curve, 

there is no clear structural reason behind the highest energy geometry. This could indicate 
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that the geometry lies outside of the configurational space of the training set. The overall 

shape of an S-curve may be related to the quality of the test geometries and the range of 

conformational space. For example, the NM S-curve (green) is steep with only a small bend 

at the top. This is a result of the relatively small set of seed geometries causing the sampled 

geometries to be clustered close together. Therefore all test geometries are close to a 

training geometry within the kriging model and the errors remain constant throughout. In 

contrast, the PDB_NO_OPT (red) geometries are not clustered together and therefore the 

test geometries can be further away from the nearest training set geometry leading to 

larger errors. This gives rise to the less steep climb of this S-curve and its longer tail 

towards the 100% ceiling.     

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 
 

 

 
 

 
 
 

 
 
 

 
 
 
 

 

 
 

Figure 3.21: Dependence of Ala Cα charges (left) on N-Cα bond length and (right) on backbone ψ 
dihedral angle for PDB/NM sampled geometries (top), PDB_OPT sampled geometries (middle) and 

NM sampled geometries (bottom) 
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Each point on the S-curve is a sum of all 1,4 and higher intramolecular interaction 

prediction errors within a single test geometry (      
        

         
     from Equation 

1.36 in Chapter 1). Because of the sum, potential cancellation of positive and negative 

interaction errors is included within the S-curve. To increase the transparency of the 

results I now focus on the construction of the S-curve. Figure 3.22 shows all interaction 

errors for all Ala test geometries plotted against interaction distance for each sampling 

approach. The maximum absolute interaction error (max     
        

    
         

  ) and 

average absolute interaction error (average     
        

    
         

 ) for each approach is 

included in Table 2. Figure 3.23 shows a plot analogous to Figure 3.22 but for the 

sampled Lys geometries. The average absolute interaction errors follow the same trend as 

the total S-curve error (PDB/NM ≈ NM > PDB_NO_OPT > PDB_OPT). For all sampling 

approaches used, the largest average absolute interaction error was only 0.4 kJmol-1 (NM 

and PDB/NM sampled geometries). The correlation between average absolute interaction 

error and total error is very high with an R2 of 0.97 for Ala and 0.99 for Lys. The plots of 

the average interaction prediction error versus the total error can be seen in Figure 3.24.  

 

Figure 3.22: Individual intramolecular interaction prediction errors in Ala against interaction 
distance obtained for models built using the four sampling approaches: PDB_OPT (blue), 

PDB_NO_OPT (red), NM (green) and PDB/NM (orange). 
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Figure 3.23: Individual intramolecular interaction prediction errors in Lys obtained for models built 
using the four sampling approaches: PDB_OPT (blue), PDB_NO_OPT (red), NM (green) and PDB/NM 

(orange). 

 

The standard deviation of the interaction errors for each method is provided in Table 4 for 

both Ala and Lys. Both PDB_OPT and PDB_NO_OPT have significantly larger standard 

deviations for Lys (0.5 and 0.8 kJmol-1, respectively) than for Ala (0.2 and 0.4 kJmol-1, 

respectively) as is expected by comparison of the blue and green plots in Figures 8 and S4. 

The PDB/NM interactions in Lys also have a larger standard deviation (0.7 kJmol-1) than 

the PDB/NM interactions in Ala (0.6 kJmol-1). Larger standard deviations emerge for Lys 

because it is a larger, more flexible molecule than Ala and so the kriging problem for PDB 

sampled geometries is much harder. Thus the kriging model is unable to find as good a 

solution for Lys than for Ala. 

 
 

Figure 3.24: The average interaction energy prediction error versus average total (S-curve) error for 
Ala (left) and Lys (right) from kriging models trained with molecular geometries obtained by: 

PDB_OPT (blue), PDB_NO_OPT (red), NM (green) and PDB/NM (orange). 
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Table 3.3. Standard deviation of interaction prediction errors for both Ala and Lys from kriging 

models built from geometries sampled from the four sampling approaches (kJmol-1). 

 

Sampling Ala Lys 

PDB_OPT 0.2 0.5 

PDB_NO_OPT 0.4 0.8 

NM 0.7 0.5 

PDB/NM 0.6 0.7 

 

3.3.4.2. Optimum ratio of Input Geometries to Sampled Geometries for the 

PDB/NM Sampling Approach    

The hybrid PDB/NM sampling approach has been presented as a means of sampling 

chemically relevant amino acid geometries for kriging models, taking advantage of the 

benefits afforded by both PDB and NM sampling whilst avoiding the problems associated 

with either method. The ratio (denoted 1:n) of PDB-seed geometries (set to 1) to non-

stationary NM sampled geometries (set to n) will now be discussed. The maximum 

dihedral sampling corresponds to a 1:1 ratio of PDB sampled “seed geometries” to NM 

sampled geometries. However, this ratio is computationally expensive because each PDB-

sampled amino acid seed geometry then needs to be partially geometry-relaxed. 

Conversely, a ratio smaller than 1:1 (i.e. 1:n where n>1) requires fewer geometry 

optimisations, but decreases the sampling of (dihedral) conformational space. A smaller 

number of sampled geometries per PDB-seed geometry will also affect the difficulty of the 

kriging problem as the sampling of conformational space will increase (assuming a 

constant training set size). 

Training sets have been built, using the PDB/NM sampling approach, for ratios of seed 

geometries to NM-sampled geometries of 1:20, 1:10, 1:4, 1:2 and 1:1, always with a total of 

1200 NM-sampled geometries in each case. These geometries were randomly reshuffled 

and then kriging models were built using 800 training geometries, and were tested on 400 

(external) geometries. 

Figure 3.25 shows the total energy S-curve obtained for each training set. Increasing the 

number of PDB-seed geometries does not significantly reduce the quality of the kriging model 

obtained. The average values of the S-curve energies have been plotted against the number 

of input minima in Figure 3.26. There is a trend for a larger number of PDB-seed 

geometries to have a higher average S-curve error, but not dramatically so. The range of 

errors is only ~0.6 kJmol-1, between a 1:20 ratio of PDB-seed geometries to sampled 

geometries (average error of 3.8 kJmol-1) and a 1:1 ratio (average error of 4.4 kJmol-1).  
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Figure 3.25: Errors in the predicted total 1-4 and higher electrostatic interaction energies of lysine 
by kriging models trained with molecular geometries obtained by the PDB/NM approach with 

different numbers of PDB-seed geometries (see key on graph, 1200 corresponds to the 1:1 ratio in 
the main text). 
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Figure 3.26: Average total error versus the number of PDB seed geometries for kriging models of 

lysine obtained from the PDB/NM sampling methodology. 

3.4. Conclusions and Further Work 
The topological force field QCTFF contains a machine learning component that handles 

polarisation and charge transfer (in a unified way). The machine learning method used, 

kriging, needs a data set of molecular geometries to train on. Here I focus on obtaining a 

more realistic and relevant training set for amino acids. Before the current study the 

training sets were sampled by distorting the local energy minima of (peptide-capped) 

amino acids (in the gas phase) according to normal modes obtained at those stationary 

points. Using the Protein Data Bank (PDB) I show here that these gas phase stationary 

points miss a number of important amino acid geometries that are present in a folded 

protein. 

I have presented a new sampling approach that combines sampling of amino acid 

geometries from the Protein Data Bank (PDB) with non-stationary normal modes (NM) 

distortion. This hybrid approach is called PDB/NM and is tested on alanine and lysine, the 

most flexible amino acid of all. The use of the PDB greatly expands the sampling in the 

space of dihedral angles, both in range and density. The increased sampling in dihedral 

space by the PDB/NM approach does not cause a significant worsening of the quality of the 

kriging modes as it turns out that the range in bond lengths is actually the prime factor in 

determining the difficulty and hence the predictive accuracy of the kriging models. As a 

result, the new PDB/NM sampling method (which is more “informed”) performs as well as 

the original “gas phase energy minimum” NM sampling. All kriging models lead to very 

good electrostatic energy prediction errors where more than 60 % of external test 

geometries have a value of less than 4 kJmol-1.  Within the PDB/NM paradigm, the quality 

of the kriging models is not compromised much even if the training set consists of PDB-

sampled geometries only, which corresponds to maximum coverage of conformational 

space. 
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As further work I recommend that the next step should be to utilise rotamer libraries to 

guide the generation of seed geometries. Using rotamer libraries will allow the generation 

of seed geometries that allows for a bias towards the experimentally observed, biologically 

relevant amino acid geometries, and will allow a greater measure of control than is 

obtained by simply sampling the seeds directly from crystal structures. An important 

further test of any sampling method is to compare with other methodologies, and PDB/NM 

is no exception. Sampling approaches such as molecular dynamics and Monte-Carlo should 

be employed and their performance compared to the PDB sampling. 
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Chapter 4 

How Are Protein Substrate Interactions Affected by the 

Surroundings? Application of the “Atomic Horizon Sphere” 

to Crambin and the tRNA-Guanine Transglycosylase-3,5-

DAPH Complex 
 

Summary 
Molecular fragments of increasing size up to a radius of 10 Å have been built around 

selected atoms for three systems; the protein crambin, the cytochrome P450-camphor-

carbon monoxide ternary complex and the tRNA-guanine transglycosylase-3,5-DAPH 

complex. Multipole moments have been obtained for both the central atom and a number 

of “probe” atoms, and the electrostatic interaction between the central atom and the 

probes have been calculated for each fragment to identify at what distance the 

environment no longer effects the electrostatic interaction between two atoms. This 

distance is given the name the “atomic horizon sphere”. 

4.1. Introduction 
Although kriging models have been successfully built for amino acids, it is acknowledged 

that building kriging models from gas phase ab initio data will not produce kriging models 

immediately applicable to an amino acid within a protein in the condensed phase. It is well 

known that molecular properties obtained from gas phase ab initio calculations do not 

always show strong agreement with experimental condensed phase properties. An often 

used example is that of the molecular dipole moment of water. The dipole moment of 

gaseous water is calculated to be 1.855 D [191], whereas in the condensed phase, this 

increases to ~2.5 D [192]. This change is due to polarisation by the environment. 

One of the core driving forces behind the development of QCTFF is to provide a rigorous 

treatment of the electrostatic interactions between atoms. This is achieved through the use 

of atomic multipole moments to describe the electronic distribution around an atom in 

place of atomic point charges (which is the first term of the multipolar expansion). 

Multipole moments provide an anisotropic description of the electron density around an 

atom, whereas point charges are spherically symmetric. This allows atomic multipole 

moments to describe non-spherical features of the electron density such as lone pairs and 

 -electron density, and has led to the development of a number of “next generation” force 

fields that include a multipolar description of the electrostatics, most notably AMOEBA [16, 

193]and SIBFA[194]. It is the aim of the current work to determine at what distance the 

environment no longer has a significant polarizing effect on the value of the multipole 

moments of individual atoms. This is achieved by building multiple fragments of proteins 
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that include all atoms within a defined horizon radius,   , centred on an atom of interest. 

By calculating the multipole moments of the central atom in fragments of increasing   , one 

may identify the size of the fragment at which adding new atoms no longer has a polarising 

effect on the multipole moments. The polarisation of the multipole moments can be both 

directly observed, and can also be “probed” by interacting the atom with a number of 

“probe” atoms within the system, using fixed values for the probe atom multipole moments 

for all values of   . The minimum radius where both the atomic multipole moments and the 

central atom-probe atom interaction is no longer affected by increasing    is termed the 

“atomic horizon sphere”. 

Long range polarizing effects in the condensed phase is a problem when trying to derive 

generalised reference charges for atom types and so new approaches have been developed 

to tackle this issue. The most brute force approach is to perform ab initio molecular 

dynamics, where atom types are no longer required, and atomic charges may be extracted 

simply from a wave function. This is a computationally intensive approach, however 

studies have showed that charge transfer and polarization is well described by such a 

method[195]. A less computationally heavy approach is to obtain atomic charges from the 

system one wishes to study, then run the simulation, as usual, and use those charges. The 

DDEC/ONETEP approach of Lee et al. [241] is one such approach, and was shown to 

predict NMR coupling constants “at least as well as AMBER”. DDEC/ONETEP was much 

better than AMBER when reproducing the electrostatic potential of protein crystal 

structures, but one would expect this due to the atomic charges being derived directly 

from the individual proteins. QM/MM approaches are another approach where 

polarization of an atom by the local environment is captured by both the QM part of the 

calculation and by the interactions between the MM and QM atoms. QM/MM approaches 

have been successfully applied to a number of biochemical systems[196-199]. 

Two test systems have been used to probe the atomic horizon sphere. The first system is 

the protein crambin (PDB code 2EYA), which has been extensively studied both by the 

Popelier group and also by others. Crambin has been isolated from the seeds of the 

cabbage Crambe abyssinica and is the smallest naturally occurring protein, consisting of 

only 46 amino acids. Previous horizon sphere studies on the protein crambin [157] found 

that the    of Ser6 has an atomic horizon sphere of 10 Å. In this study, the horizon sphere is 

built around the carbonyl oxygen and the amide nitrogen of Phe13. This is shown in Figure 

4.1. 

The second system that will be investigated in this work is the tRNA-guanine 

transglycosylase-3,5-DAPH complex (TGT-DAPH, PDB code 1F3E). TGT is involved in post-

transcriptional modification of tRNA, catalysing the exchange of a guanine base with preQ1. 

TGT is implicated in the pathogenicity of a number of bacteria, and so is a common drug 

target. 3,5-DAPH was identified as an inhibitor of TGT, and it is the inhibited enzyme that is 
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used in the studied. A horizon sphere will be built around one of the carbonyl oxygen 

atoms in 3,5-DAPH, as seen in Figure 4.2. This oxygen is involved in hydrogen bonding 

with multiple residues within the active site of the enzyme. 

   

Figure 4.1: The protein crambin with Phe13 visible 

  

Figure 4.2: TGT with 3,5-DAPH visible 

4.2. Building the molecular fragments 
A simple process was followed to obtain the horizon sphere fragments. Before building the 

molecular fragments, hydrogen atoms were added to the protein crystal structure using 

the program HADD[134]. Molecular fragments were then built by including all atoms 

within a specified radius,   from a central atom of interest. The fragments ranged in size 

from a radius of 1.5 Å up to a   10 Å, with increasing radius of 0.5 Å. This resulted in 18 

fragments of increasing size built around each atom probed. For each fragment, atoms 
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located on the edge of the fragment that had incomplete valency (due to bonded atoms 

lying beyond the fragment radius) had hydrogen atoms added to satisfy the valencey. 

Where possible, the valency was maintained (i.e sp2 vs sp3 carbon atoms), however when 

this was not possible (see Figure 4.3), the best possible alternative was chosen. Where 

two equally acceptable possibilities exist, a choice was made, and consistency over all 

fragments was maintained. The multipole moments of the probe atoms were obtained 

from the largest   calculation, and the same multipole moments are used to probe the 

central atom at all values of   .  

4.3. Computational Details 
Crystal structures for all three systems were downloaded from the protein data bank, and 

hydrogen atoms were added to the structures by HAAD[134]. The in house code MOROS 

extracted the protein fragments. All ab initio calculations were carried out using the 

Gaussian09 software package at the B3LYP/cc-pVDZ level of theory. Atomic multipole 

moments were calculated by AIMAll, and interaction energies were calculated by the in-

house software NYX. Unless otherwise stated, all images were created using MOE. 

 

Figure 4.3: Illustration of where multiple possible capping alternatives exist. It can be seen 

that the rightmost carbon atom of the benzene ring lies outside of the fragment radius 

(shown as a red line). The top two capping possibilities on the right are both acceptable, 

despite one carbon in each case going from sp2 to sp3. Despite keeping hybridisation for 

both carbons constant, the bottom possibility is unfeasible, as the valence of at least one 

carbon is not fully satisfied due to the requirement of a double bond. Image drawn in 

GaussView. 
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4.4. Results 

4.4.1 Crambin 

Fragments of the protein crambin have been built around the amide nitrogen (Namide) and 

amide oxygen (Oamide) of Phe13 (see Figure 4.1), and have been probed by three probe 

atoms, P, at the edge of the horizon sphere. The multipole moments and distance from the 

both Namide and Oamide are given for each of the probes in Table 4.1. Plots of the 

electrostatic interaction energy between Namide and the three probe atoms can be seen in 

Figure 4.4. Because it is only the moments of Namide that are changing, all three graphs 

show the same overall shape as one another. The difference between the three graphs lies 

in the strength of the interaction between Namide and the probe.  

Table 4.1: The distance between the probe atoms and the amide nitrogen and oxygen atoms of Phe13 
of crambin, and the values used for the multipole moments of the probe atoms 

Probe, P      /Å 
 

     /Å 
 

Q[0] Q[1] Q[2] Q[3] Q[4] 

H279 10.71 13.5 -0.01E+00 -2.58E-02 -7.20E-02 -4.75E-02 7.75E-03 

    -6.35E-02 -2.82E-03 5.43E-02 -1.79E-02 

    1.27E-01 1.07E-02 1.25E-01 5.13E-02 

     -5.30E-02 2.02E-02 1.69E-01 

     -1.67E-01 -1.86E-03 -1.52E-01 

      -1.79E-01 3.84E-02 

      -8.86E-03 1.80E-03 

       1.66E-01 

       4.59E-02 

N296 9.4 10.1 -1.11E+00 1.36E-01 6.68E-01 5.58E-01 -1.40E+00 

    1.39E-02 -2.21E-02 3.06E-01 -8.58E-01 

    -8.30E-02 -9.36E-02 -6.57E-01 7.64E-01 

     -8.03E-01 1.84E-01 4.46E-01 

     -1.12E-01 -2.65E-01 2.98E+00 

      6.86E-01 -3.15E+00 

      4.43E-01 -1.54E+00 

       -1.08E+00 

       5.18E-01 

O166 9.8 7.5 -2.12E+00 -1.05E-02 -3.80E-01 -2.70E-01 1.15E-01 

    -2.10E-01 1.87E-02 -2.79E-01 -2.38E-01 

    1.01E-01 -8.36E-02 9.01E-02 5.50E-01 

     2.08E-01 -5.95E-03 -4.55E-01 

     3.25E-01 -2.80E-01 9.94E-01 

      5.63E-02 -1.76E-01 

      -3.06E-01 -2.57E-01 

       4.55E-01 

       -1.49E+00 
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Figure 4.4: Plots of electrostatic interaction between the amide nitrogen of Phe13 and three probe 
atoms, H279 (top), N296 (middle) and O166 (bottom). 

All three graphs appear to have reached a steady value around 7 Å. Thus, the horizon 

sphere of Namide is defined as 7Å. The weakest probe interaction is that of Namide…H279 and 

can be considered “converged” from the 1.5Å fragment onwards, as the interaction energy 

changes by less than 0.1 kJ mol-1 from the 1.5Å fragment for all other fragments of a 

greater size. The strongest probe interaction is that of Namide…N296. Namide…O166 is similar 

in magnitude to Namide…N296. The graphs show a “jump” in the interaction energy between 
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values of    = 6.5 Å and 7 Å. Inspection of the fragments of crambin at these values of   , 

show that two sulphur atoms involved in a disulphide bridge are present on the edge of the 

7 Å fragment but absent at 6.5 Å. These atoms have a significant polarising effect on Namide. 

Although converged according to our set criterion, the   = 10 Å fragment shows another 

jump, although smaller than the jump between 6.5 Å and 7 Å.. 

Multipolar interactions between atoms   and   become increasingly short ranged as the 

expansion rank of the interacting moments,  , increases. A      
   dependence (where   is 

the interaction rank, defined by          ) is observed. The electrostatic interaction 

between Namide and O166 at different values of maximum   can be seen in Figure 4.5. As 

expected for an interaction of a distance of 9.8 Å the charge-charge interaction 

(         ) dominates. Although the shape of the graph is dictated by the charge-

charge term, the higher order interactions, in particular the charge-dipole interactions 

included when    , act to scale the interaction. The difference between the     and 

    interactions are given in Table 4.2. After 8.5 Å the difference remains constant, 

around 1.05 kJ mol-1. In the later example of TGT, the effect of   on interaction energies at 

different    is discussed in more detail. 

 

Figure 4.5: The electrostatic interaction energy between the amide nitrogen of Phe13 with the O166 
at different interaction ranks for a number of   . The lines for     and     lie below the line for 

   . 

 

 

 

 

 



116 

 

Table 4.2: The electrostatic interaction energy in kJ mol-1 at different rank L between the amide 
nitrogen of Phe13 and the O166 probe atom for different values of   . The difference between the 

    and     energy is provided in the right hand column. 

                           -      

1.5 195.86 196.40 196.25 196.27 196.27 0.41 
2 195.86 196.40 196.25 196.27 196.27 0.41 

2.5 201.05 202.50 202.35 202.37 202.37 1.32 
3 200.16 201.44 201.31 201.33 201.33 1.16 

3.5 199.32 200.46 200.37 200.38 200.38 1.06 
4 197.19 198.50 198.39 198.40 198.40 1.21 

4.5 198.61 199.87 199.76 199.78 199.77 1.16 
5 199.29 200.44 200.35 200.36 200.36 1.07 

5.5 199.32 200.44 200.35 200.36 200.36 1.04 
6 199.16 200.29 200.20 200.21 200.21 1.05 

6.5 199.10 200.27 200.18 200.19 200.19 1.09 
7 198.48 199.63 199.55 199.56 199.56 1.08 

7.5 198.43 199.59 199.51 199.52 199.52 1.09 
8 198.52 199.67 199.59 199.60 199.60 1.09 

8.5 198.64 199.81 199.72 199.73 199.73 1.10 
9 198.63 199.76 199.68 199.69 199.69 1.06 

9.5 198.55 199.67 199.60 199.61 199.61 1.06 
10 198.39 199.49 199.42 199.43 199.43 1.04 

 

The effect of increasing    on the magnitude of the atomic moments of Namide is now 

discussed. The magnitude of the atomic monopole, dipole, quadrupole, octopole and 

hexadecupole moments of Namide plotted against    can be seen in Figure 4.6. The 

monopole moment curve reproduces the (inverse) shape of the probed interaction 

energies observed in Figure 4.4. It is the interactions involving the monopole moment that 

dominate the total probed interaction energy (due to the      dependence of the 

interaction). It is, therefore, not surprising that both the interaction of Namide with a probe 

and the monopole curves show similar shape. With the exception of the dipole moment, all 

other moments have converged to reache a stable value by ~7 Å. The dipole moment 

remains stable from   = 5 Å up to 8.5 Å, until a small increase between   =9 Å and 10 Å. 

The change corresponds to <3% of the total dipole moment so it will have a largely 

insignificant impact on the electrostatic interactions in which it takes place. The large jump 

in dipole moment between   = 4.5 Å and 5 Å corresponds to two nitrogen atoms being 

introduced to the system, one directly above and one directly below Namide. These polarise 

the amide nitrogen, flattening it. 
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Figure 4.6: Magnitude of the multipole moments 

(y-axis) of the amide nitrogen of Phe13 in crambin 

with increasing   (x-axis). 

 

A horizon sphere has also been built around the amide oxygen (Oamide) in Phe13, and the 

probed interaction energies can be seen in Figure 4.7. The interactions exhibit a much 

smoother behaviour than the amide nitrogen interactions. The interactions between Oamide 

and the probes clearly have plateaued at   = 9 Å. The interaction with the O166 probe is 

particularly strong (nearly 250 kJ mol-1) due to the short range (7.5 Å) of the interaction.  

Despite this, the difference in interaction energy between   = 9.5 Å and   = 10 Å is only 

0.29 kJ mol-1, which is less than 0.2% total interaction energy. There is a jump in the 

interaction energy between   = 6.5 Å and   = 7 Å, and this is due to the inclusion of a 

polarising sulphur atom when   = 7 Å. The jump is less significant for the amide oxygen 

that for the nitrogen due to the greater polarisability of the nitrogen atom. It is the 

“harder” nature of the oxygen atom that leads to the smooth shape of the curves in Figure 

4.8. The effect of interaction rank on the interaction between Oamide and the O166 probe at 
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different    can be seen in Figure 4.7. As was observed for Namide, increasing the 

interaction rank has no effect on the shape of the curve or the rate of convergence due to 

the dominance of the charge-charge interaction. Inclusion of the higher order interactions 

only shifts the interaction energy. The shift in interaction energy for Oamide … O166 

interaction is greater than for Namide interaction (around 1.2% of the total interaction 

energy at   = 10 Å for Oamide and only 0.5% for Namide). This is expected due to the shorter 

interaction distance meaning that the higher order interactions are more involved.  

 

Figure 4.7: The electrostatic interaction energy between the amide oxygen of Phe13 with the O166 at 
different interaction ranks for a number of   . The lines for       and   lie below the line for    . 
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Figure 4.8: Plots of electrostatic interaction between the amide oxygen of Phe13 and three probe 
atoms, H279 (top), N296 (middle) and O166 (bottom). 
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The magnitude of the moments of Oamide have been plotted in the same way as for Namide, 

and can be seen in Figure 4.9. The charge exhibits a gentle increase in magnitude from -

1.15 a.u. to -1.21 a.u. between   =5-10 Å, however by   =6 Å the charge has already 

reached -1.18 a.u. This is the same shape the probe interactions for the same reasons as 

described for Namide. Similarly the dipole moment changes by less than 0.20 Debye as    

increases from 6 – 10 Å. Quadrupole, octopole and hexadecapole moments have all 

converged by 6 Å.  

 

    

 

 

 

 

 

 

Figure 4.9: Magnitude of the multipole moments (y-axis) of the amide oxygen of Phe13 in crambin 
with increasing   (x-axis). 

4.4.2 TGT-3,5-DAPH  
A horizon sphere was built around a carbonyl oxygen of 3,5-DAPH involved in a hydrogen 

bond with the H-N of an active site glutamine side chain (H137). H137 was used as the 

probe atom, with the multipole moments calculated for H137 in the largest horizon sphere 

fragment used. Figure 4.10 shows the interaction energy of the O…H137 interaction with 
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increasing values of interaction rank  . The separation between the lines in Figure 4.10 is 

much more apparent than in Figures 4.5 and 4.7. This is because the interaction is much 

shorter and hence the higher order interactions play a greater role (due to the      

dependance). The separation between the lines is increasingly smaller as   increases. 

Despite the greater separation of the lines in Figure 4.10, the overall shape of each line is 

the same due to the dominance of the charge-charge interaction. The     interaction 

appears to have reached a steady value at        Å which is shorter than the crambin 

amide oxygen investigated above. It is at this value of   that the monopole moment of the 

carbonyl oxygen begins to converge (Figure 4.11). 

 

Figure 4.10: The electrostatic interaction energy of the O…H137 interaction at different interaction 
ranks for a number of   . 

 

Figure 4.11: The monopole moment of the central carbonyl oxygen in the horizon sphere 
experiment for TGT at different values of   . 
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4.5 Conclusions and Further Work 
Horizon sphere experiments have been performed on a number of atoms inside proteins 

and the central atoms have been probed. The interaction energies are dominated by the 

charge-charge interaction, and it is this interaction that dictates the convergence of an 

interaction between two atoms. Higher order multipole moments appear to converge 

quicker than the lower order moments, typically converged by    5-6 Å. The charge takes 

longer to converge, with the smallest observed   value being 6.5 Å. Oxygen atoms appear 

to converge sooner than nitrogen atoms, however more tests are needed to confirm this. 

The inclusion of polarising atoms such as sulphur, oxygen and nitrogen atoms at the edge 

of a horizon sphere fragment can cause large changes in the multipole moments of the 

central atom relative to smaller fragments in which they are not present.  

The above observations all indicate that kriging models built from gas phase calculations of 

capped amino acids are not suitable for direct implementation into an MM force field. 

Three lines of investigation must be pursued for the horizon sphere problem to be 

answered: 

1. The building of a greater number of horizon sphere fragments to obtain a more 

solid value of    for different atom types. 

2. The effect of strongly polarizing atoms such as nitrogen, oxygen, sulphur and 

metal ions on the multipole moments of the central atom. 

3. A comparison of the multipole moments of a given atom type in a protein to those 

obtained from gas phase calculations of the amino acid dipeptide, and the 

moments obtained from an amino acid dipeptide under a number of different 

solvation models. 

Other work in the group related to the horizon sphere is taking place regarding liquid 

water. Because proteins are typically solvated in aqueous media, the work on water may 

have implications towards this work. 

Another interesting avenue of research that requires investigation is that of the horizon 

spheres of the IQA self and interaction energies. The computational cost of IQA calculations 

on large fragments is very high and so this project has not been possible in the current 

work. 
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Chapter 5 

Where does charge lie in amino acids? The Effect of Side 

Chain Protonation State on the Atomic Charges of Asp, Glu, 

Lys, His and Arg 

Summary 
Quantum topological atomic charges have been calculated at the B3LYP/apc-1 level to 

identify where the charge is located on amino acid residues when the side-chain has been 

either protonated (Arg, Lys, His) or deprotonated (Glu, Asp). All local energy minima in the 

Ramachandran map of each (neutral) amino acid were populated with a number of 

distorted molecular geometries, summing up to a thousand geometries for each amino 

acid. The majority of the molecular charge is found on the side-chain (81-100%), with a 

large percentage of the charge located on the functional group undergoing 

protonation/deprotonation. Side-chain methylene groups were found to act as insulators 

for the amino acid backbone by accepting the majority of charge not located on the 

functional group. This results in no significant charge on backbone atoms relative to the 

neutral molecule. In the case of His+ and Arg+ where the charge is spread over a large 

number of atoms due to resonance, this reduces the influence of the positive charge on the 

backbone atoms. 

A note: 

Much of the work in this chapter has been published in  

 “T.J. Hughes and P.L.A. Popelier, Computational and Theoretical Chemistry, 1053, 

(2015), 298-304” 

found in Appendix F. The work presented in this chapter contains only my own work, with all 

contributions from co-authors omitted. 
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5.1 Introduction 
The complex mechanisms of enzymatic catalysis have been studied intensively for decades. 

A common feature in these mechanisms is the protonation and deprotonation of the active 

site amino acid side-chains involved in the catalysis. For example, the rate limiting step in 

the conversion of             
     by the enzyme carbonic anhydrase is a proton 

transfer involving the residue His64 [200, 201]. Similarly, a proton transfer mechanism 

involving a Glu residue in the active site is found to be the rate-determining step in the 

mechanism of the enzyme glutaminylcyclase[202]. The subtle changes in the electronic 

charge of the active site atoms of glutaminylcyclase play a role in determining the path that 

the reaction follows. This effect arises through strengthening of hydrogen bonds within the 

active site upon proton transfer. The mechanism employed by enzyme horseradish 

peroxidase includes a nucleophilic attack by the hydroxyl oxygen of Ser195. However, this 

step requires activation through the deprotonation of the hydroxyl group[203]. 

Deprotonation results in the charge of the oxygen atom becoming more negative and hence 

more nucleophilic. 

The above examples show that when developing a computational model to describe 

enzymatic reactions, any changes in electronic structure must be captured. Early potentials 

that enabled the modelling of reactions include the empirical valence bond approach[204] 

and the “ReaxFF” force field[205]. The popularity of QM/MM approaches is increasing in 

the study of such systems due to increases in computer power[206] . Currently under 

development in our lab is the quantum chemical topological force field (QCTFF). This is a 

novel approach to building a molecular mechanics force field, in which machine learning is 

used to map quantum mechanical properties (such as atomic multipole moments[141, 159, 

207], kinetic energy[161] and exchange-repulsion) directly to the coordinates of the 

system. Preliminary work has shown that this methodology enables the modelling of 

changes in atomic charge as a reaction path is followed.  

There is a perhaps surprising lack of literature detailing the changes in the atomic charges 

of amino acids upon a change of the side-chain protonation state, with studies [208-211] 

typically focusing on the zwitterionic states of amino acids. To address this gap in the 

literature, a thousand geometries for each of a total of five amino acids that most 

commonly undergo changes in protonation state (Asp, Glu, His, Lys, Arg) have been 

sampled for both the protonated and deprotonated state, and the changes in average 

atomic charges have been compared. In this work, charges have been obtained from the 

Quantum Theory of Atoms in Molecules (QTAIM) [22, 23]. The extensive QTAIM work[212-

214] of Matta and Bader on all natural amino acids, provides a rich background to the 

current work but does not specifically address the question of where an excess or 

depletion of a formal unit charge resides compared to the neutral amino acid. 
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There are many methods of obtaining atomic charges but the question of which protocol 

produces the “best” atomic charges is contentious.  Arguments for and against the different 

charge methods typically fall into one of two competing schools of thought. The first is a 

belief that the atomic charge should be capable of reproducing the electrostatic potential 

around an atom, and the second being that the charge should describe well the charge 

transfer in a molecule. The Hirshfeld charge[215] is an example of a charge that 

reproduces well the electrostatic potential around an atom, however it offers poor 

description of charge transfer effects, resulting in atoms with unrealistically low charges. 

The improved “iterative” Hirshfeld charge (Hirshfeld-I) method corrects for this to some 

extent[216]. QTAIM charges fall into the second category of charges- reproducing well the 

charge transfer in a molecule. This has led to QTAIM charges being been criticised for being 

unrealistically high[217]. The criticism that QTAIM charges do not reproduce the 

electrostatic potential is remedied by performing a multipolar expansion (of which the 

QTAIM charge is the first term of the expansion, the monopole moment) where it was 

shown[218] that reproduction of the ab initio electrostatic potential was achieved at 

interaction rank L=5. To quote from this work, “This work makes clear that the atomic 

population (or rank zero multipole moment) is just one term of the expansion of a physically 

observable quantity, namely the electrostatic potential. Hence, QTAIM populations (and thus 

charges) cannot be judged on their reproduction of the electrostatic potential. Instead, they 

must be seen in the context of a multipolar expansion of the exact electrostatic potential of a 

topological atom.”.  

5.2 Geometry Generation 
Each amino acid was capped by a [CH3C=O] group at the N-terminal, and by a [NHCH3] 

group at the C-terminal to create the so-called “dipeptide”. The minimum energy 

geometries for each neutral amino acid were obtained through a comprehensive search of 

the potential energy surface[219]. The number of energetic minima for each amino acid is 

given in Table 5.1. 

Table 5.1: Number of local energy minima for each amino acid studied in this work. 

Amino acid No. Minima 

Asp 36 

Glu 36 

His 24 

Lys 39 

Arg 61 

 

A thousand geometries for each amino acid were obtained by normal modes sampling 

using TYCHE (see Section 1.7). All charged amino acid residues except Arg were obtained 

by direct addition or removal of a proton on the side-chain of the distorted geometries. For 

each of the thousand sampled neutral Asp and Glu residues, the acidic proton was removed 
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in order to obtain the geometries of the Asp- and Glu-, respectively. A similar approach was 

also taken in the case of Lys+, where a proton was added to the primary amine to give the 

positively charged tetrahedral ammonium group. His+ was similarly obtained by 

protonating the lone pair position of N29 to give the positively charged imidazolium group. 

Due to the more complex structural changes that take place in Arg upon protonation a 

different approach was taken in obtaining the Arg+ geometries. In particular, the neutral 

Arg has a guanidine system with two pyramidal nitrogen atoms (N19 and N16) and one 

planar nitrogen (N34). However, in Arg+ this group formally becomes a guanidinium group, 

which has three planar nitrogen atoms. The addition of a proton to N34 causes the 

geometrical change between guanidine and guanidinium. Therefore, an alternative 

approach was taken; a proton was added to each of the minimum energy geometries and 

then the guanidinium group alone ([-NH-C(NH2)2]+) was allowed to relax by partial 

geometry optimisation. These new “minima” were then input to TYCHE to sample the 

thousand distorted Arg+ geometries. 

Appendix E contains a table that includes the average atomic charge, the range in atomic 

charge and the standard deviation in atomic charge of all atoms in both the neutral and 

charged amino acid systems studied in this work. 

5.3 Computational methods 
Normal modes sampling was performed by the in-house code TYCHE. The bond stretch 

parameters were set to ±10% max distortion from the equilibrium distance (see Section 

1.7). All ab initio calculations were performed by GAUSSIAN09[137] at the B3LYP/apc-

1[220] level of theory, taking advantage of a basis set with polarisation and diffuse 

functions optimised for use with density functionals. QTAIM charges for all atoms were 

calculated with the program AIMAll [221]. A topological representation of the protonated 

lysine can be seen in Figure 5.1, and this was obtained using MORPHY[222]. 

 

Figure 5.1: Finite-element representation of a molecular geometry of protonated lysine. 
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5.4 Results  
Numbered geometries for all five protonated amino acids (Asp, Glu, Lys+, His+ and Arg+) are 

provided in Fig. 5.2. For convenience, both the protonated and deprotonated amino acids 

share a common numbering system. The following discussion refers to the amino acids as 

consisting of both side-chain atoms and backbone atoms. The set of side-chain atoms 

consist of all atoms starting with Cβ (including its methylene hydrogens), whereas the 

backbone corresponds to the Cα, the two peptide groups and the methyl caps, as well as all 

associated hydrogen atoms.  

5.4.1 Acidic Amino Acids 

The atomic charge (averaged over all thousand geometries) for all atoms of both Asp and 

Asp- can be seen in Figure 5.3. The difference between the atomic charges in the neutral 

and in the charged amino acid is also plotted. Atom H25 is the acidic proton that is 

removed upon deprotonation. In the neutral molecule, the acidic proton has a charge of 

+0.56 a.u. (see Figure 5.3), which means that upon deprotonation a charge of (-1) + 0.56 = 

-0.44 a.u. is left over to be distributed over the remaining geometry. Of this 0.44 of an 

electron, 57% (-0.25 a.u.) moves onto the side-chain atoms. The remaining 43% (-0.19 a.u.) 

is found on the backbone atoms. 

          

             

 

Figure 5.2: Numbered geometries for Asp (top left), Glu (top right), Lys+ (bottom left),  His+ (bottom 
middle) and Arg+ (bottom right). The numerical labels of the atoms (“atom number”) of the 

deprotonated geometries are the same. In all five cases the proton removed upon deprotonation is 
the highest numbered proton. 



128 

 

 

Figure 5.3: The averaged atomic charges of both Asp (green) and Asp- (red) and the difference (blue) 
between the neutral and charged atomic charges. 

Despite the even spread of H25’s charge over the whole molecule upon deprotonation, the 

total molecular charge is highly concentrated on the side-chain of the molecule of Asp-. 

Upon deprotonation the sum of all side-chain atomic charges (including H25 for the 

neutral side-chain) decreases from -0.01 a.u. to -0.81 a.u. meaning that 81% of the total 

molecular charge is found on the side-chain atoms. The carboxylate group of Asp- has a 

summed charge of -0.89 a.u. (89% of the molecular charge). The methylene group of the 

side-chain increases in charge from Asp to Asp-, with a summed (group) atomic charge of 

0.08 a.u. (= |-0.89 – (-0.81)|). There are no chemically significant changes in atomic charges 

of the backbone atoms. Curiously, one of the most significant changes in backbone charge 

is that the hydrogen atoms on the methyl capping groups undergo a difference in summed 

charge of -0.10 a.u. when going from Asp to Asp-. 

Similar results are found for the deprotonation of Glu to Glu-. The differences in average 

atomic charge over a thousand conformations are shown in Figure 5.4. Atom H28 

corresponds to the acidic proton that is removed when going from Glu to Glu-. The charge 

of H28 in Glu is 0.55 a.u. meaning that in Glu- only -0.45 a.u. of additional negative charge is 

available to the molecule for redistribution. A value of -0.33 a.u. of the additional charge 

(73%) remains on the side-chain atoms, and the remaining -0.12 a.u. is shared by the 

backbone atoms.  
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Figure 5.4: The averaged atomic charges of both Glu (green) and Glu- (red) and the difference (blue) 
between the neutral and charged atomic charges. 

Similar to Asp-, it is apparent that the majority of the negative molecular charge of Glu- is 

found on the side-chain atoms (-0.88 a.u., 88% of total molecular charge). A similar 

situation to that of Asp- arises where the majority of the side-chain charge of Glu- is 

concentrated on the carboxylate group.  In Glu- the carboxylate atoms have a summed 

charge of -0.93 a.u., which is an increase in charge of -0.73 a.u. relative to the summed 

charge of the neutral carboxylic acid group. There is no significant change in backbone 

atom charges. The methyl hydrogens increase in summed charge by -0.7 a.u., which is less 

than in the case of Asp-. 

There are differences between the changes seen in atomic charges for the two systems Asp- 

and Glu-. Eight percent more charge is located on the side-chain of Glu- than on the side-

chain of Asp-. Also, less of the additional charge available upon deprotonation is found on 

the backbone atoms for Glu- (26%) compared to Asp- (43%). This observation has led to 

the idea of a “buffering” methylene group. Methylene groups are neutral fragments in the 

side-chain that act to separate the polar carboxylic acid/carboxylate group from the rest of 

the amino acid. The additional methylene group in the side-chain of Glu- creates a more 

insulating buffer between the charged carboxylate group and the amino acid backbone. 

This buffering is responsible for the increased localisation of the charge on the side-chain 

in Glu- than in Asp-. 

In summary, the deprotonation of the acidic hydrogen in Asp and Glu, causes the newly 

available negative charge to predominantly reside on the side-chain atoms (81% and 88% 

for Asp- and Glu-, respectively). In particular, the charge is localised on the three 
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carboxylate atoms (COO-). Changes in the charge of backbone atoms, when going from the 

protonated to the deprotonated state, are insignificant due largely to “buffering” 

methylene groups. The buffering effect is greater in the case of Glu- where there are two 

methylene groups. 

5.4.2 Basic Amino Acids 
Figure 5.5 shows the atomic charges of Lys and Lys+. The acidic proton in Lys+ (H33) has a 

charge of 0.48 a.u. This means that the atoms present in Lys undergo a sum increase in 

positive charge of 0.52 a.u. when going from neutral Lys to protonated Lys+ (because 0.52 

of an electron has moved onto H33). A positive charge of 0.44 a.u. (85%) is generated on 

side-chain atoms. As one would expect, the backbone atoms of Lys+ remain relatively 

unaffected by the protonation of the amine group due to the four methylene groups 

“buffering” the ammonium group from the backbone. This explains the summed charge of 

the backbone atoms increasing by only (0.52 - 0.44 =) 0.08 a.u. upon protonation.  

 

Figure 5.5: The averaged atomic charges of both Lys (red) and Lys+ (green) and the difference (blue) 
between the neutral and charged atomic charges. 

Fragmenting the molecule into side-chain atoms and backbone atoms and summing the 

atomic charges gives a clear illustration of the buffering effect. The summed charge of all 

side-chain atoms in Lys is 0.09 a.u., whereas in Lys+ the summed charge is 1.01 a.u. (an 

increase of 0.92 a.u.), whereas the backbone atoms have a summed charge of -0.01 a.u. This 

shows that all of the positive molecular charge is found on the side-chain. The ammonium 

atoms ([-NH3]+) of Lys+ have a summed charge of 0.43 a.u. , which is the largest 

contribution to the molecular charge. The remaining charge resides on the methylene 

groups. The summed charge of each methylene group is plotted in Figure 5.6 against the 

number of covalent bonds between the carbon atom and the ammonium nitrogen. The 
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summed charge of the methylene atoms decreases as the number of covalent bonds away 

from the ammonium nitrogen increases. The summed charge of the methylene groups in 

the neutral Lys molecule are also plotted in Figure 5.6. From left to right, the gap between 

the neutral and charged values narrows, and by the fourth methyl carbon the difference 

between the charged and neutral methylene groups is only a summed charge of 0.02 a.u. 

This illustrates clearly the “buffering” effect of the methylene groups; the backbone atoms 

are almost unaware of the protonation of the amine group. 

 

Figure 5.6: Summed charges of the methylene groups of Lys (red), Lys+ (green) and their difference 
(blue) against the number of covalent bonds from the side-chain nitrogen atom (N31). (1=Cε , 2=Cδ , 

3=Cγ  and 4=Cβ). 

The atomic charges of His and His+ can be seen in Figure 5.7. The acidic proton of His+ 

(H30) has a charge of 0.51 a.u. meaning that 0.49 a.u. of positive charge much be built up 

on the atoms present only in His (0.49 of an electron has moved onto H30). Of this charge, 

76% (0.37 a.u.) lies on the side-chain atoms. The summed charge of the side-chain atoms is 

0.93 a.u, which is 0.88 a.u more positive than the neutral side-chain. This again shows that 

the molecular charge is predominantly located on the side-chain, with the backbone atoms 

of His+ undergoing a change in summed charge of 0.12 a.u. The only other amino acid that 

only has a single methylene group to protect the side-chain from the effects of side-chain 

protonation is Asp/Asp-. The backbone atoms of Asp- experience a greater change in 

summed charge (-1.9 a.u.). An incorrect assumption would be that the methylene 

(C5H7H8, Fig.2) in Asp- is a worse “buffer” than the methylene (C5H7H8) in His+. This is 

not true. Instead, in His+ the positive charge is delocalised over the imidazolium and 

therefore its methylene group is no longer directly bonded to a charged atom but rather a 

group of atoms charged to a lesser extent. Thus, the methylene group in His+ is only 0.07 

a.u. more positive than the methylene in the neutral His, compared to a difference of -0.16 

a.u. for the methylene of Asp and Asp-.  
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Figure 5.7: The averaged atomic charges of both His (red) and His+ (green) and the difference (blue) 
between the neutral and charged atomic charges. 

The atomic charges of Arg and Arg+ can be seen in Figure 5.8. The acidic proton of Arg+ 

(H36) has a charge of 0.48 a.u. meaning that 0.52 a.u. of positive charge is built up on the 

atoms present in the neutral Arg molecule. The side-chain atoms of Arg increase by a total 

summed charge of 0.44 a.u. when the proton is added, which accounts for 86% of the 

charge build up. The small contribution to this charge by the backbone atoms is due to a 

combination of the factors previously discussed. Firstly, there are three buffering 

methylene groups to separate the protonated guanidinium group from the backbone. The 

summed charge of the methylene groups can be seen in Figure 5.9. By the second methyl 

group (Cγ) the difference between the charged and neutral methylene groups is less than 

0.05 a.u. The second reason for the low increase in backbone charge is that the positive 

charge is stabilised by the delocalised  -system of the guanidinium group. The eight 

guanidine atoms present in Arg account for 81% of the total side-chain increase in 

summed charge of Arg+. 

The side-chain atoms of Arg+ have a summed charge of 1.01 a.u., accounting for all of the 

positive charge of the molecule. The backbone atoms have a summed charge of -0.01 a.u. 

due to the three “buffering” methylene groups and the spread of the charge over the 

guanidinium group. The guanidinium group has a summed charge of 0.45 a.u, which is the 

largest contribution to the molecular charge. The next largest contributor to the molecular 

charge is the methylene group adjacent to the guanidinium group, with summed charge of 

0.41 a.u. 
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Figure 5.8: The averaged atomic charges of both Arg (red) and Arg+ (green) and the difference (blue) 
between the neutral and charged atomic charges. 

 

Figure 5.9: Summed charges of the methylene groups of Arg (red), Arg+ (green) and their difference 
(blue) against the number of covalent bonds counting from the side-chain nitrogen atom (N16) 

(1=Cδ, 2=Cγ and 3=Cβ). 

5.5 Conclusions 
The atomic charges of five amino acids that undergo protonation (Lys, His and Arg) and 

deprotonation (Asp and Glu) have been studied. The QCT atomic charges of all atoms, 

averaged over a thousand conformations, for both charged and neutral amino acids have 

been compared. For Asp and Glu, which are deprotonated to form Asp- and Glu-, the 

majority of the negative charge is located on the side-chain atoms (81% and 88% 

respectively). Less charge is found on the backbone of Glu- than Asp- due to the additional 

side-chain methylene group “buffering” the charge. The buffering effect of methylene 

groups is more apparent in the positively charged amino acids Lys+, His+ and Arg+ due to 

the large number of methylene groups in Lys+ and Arg+. By the third methylene group 

counting from the site of protonation, the summed charge of the CH2 group is comparable 
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to that of the neutral molecule. Spread of the charge over multiple side-chain atoms (such 

as in the imidazolium ring of His+ and the guanidinium group of Arg+) also reduces the 

effect of the charge on backbone atoms. 
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Chapter 6 

Relating the IQA Exchange-Repulsion Energy to Classic 

Repulsive Potentials 

Summary 
The short-range repulsion between atoms and molecular fragments is considered within 

the context of QCTFF. Following a brief recap on the IQA energy decomposition, the IQA 

interpretation of the exchange-repulsion (XR) energy is calculated for a selection of small 

molecular systems (R-OH...HOH and R-NH2...HOH where R=H, Me, Et, as well as 

serine...HOH and lysine...HOH) and  it is then compared to a number of classical force fields. 

The concept of a transferable atom type is central to the ideology of classical force fields, 

and therefore transferability in the IQA XR energy is investigated. The XR energy consists 

of both a sum of pairwise     interactions and also the deformation energy of the 

atoms/fragments, and it is the latter energy that prevents one from obtaining pairwise 

potentials between IQA atom types due to the definition of the deformation energy as a 

self-term, rather than an interaction. Despite this, the deformation energy is found to be 

within 6.4% of the R=H systems when R=Me and Et and so some transferability is 

observed. 

6.1. Introduction 
Short range repulsion between atoms is responsible for a number of chemical effects that 

are taken for granted by most chemists, most notably preventing all matter from falling 

into infinitely attractive potential energy wells. It also plays a major role in describing 

steric clashes between atoms, which has consequences ranging from reaction pathways to 

crystal structure formation. The quantum mechanical origin of short range repulsion arises 

as a consequence of the Pauli principle. This states the requirement that the wave function 

must be anti-symmetric with respect to exchanging electrons between molecular orbitals. 

As a consequence, no two electrons may occupy the same spin orbital. This effect gives rise 

to repulsive “exchange holes” around each electron that becomes increasingly repulsive as 

two electron approach one another.  

As stated above, an important consequence of the atomic short range repulsion is that of 

the steric interaction. Being of such great importance, many models have been developed 

to describe the steric interaction between atoms in a system. Often, people include the 

electron-electron and nucleus-nucleus Coulombic repulsion in addition to the short range 

repulsion when discussing sterics, and so the reader is reminded that the short range 

repulsion and steric interaction are not always equivalent terms, however due to short 

range repulsion being a large contributor to the effect it is still considered relevant to 

warrant discussion in the present work. 
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Because the steric energy is a concept defined by chemists to explain the effects of short 

range repulsive interactions, there have been very few attempts to derive a “steric energy” 

from ab initio methods. One exception is the 2007 work of Liu, where a DFT derived 

definition of the steric repulsion between atoms was provided[223]. By assuming that the 

total DFT energy of a chemical system,     , is a sum of electrostatic, quantum and steric 

contributions (     ,       and      , respectively), the steric energy of a system is simply 

defined as the total DFT energy minus the electrostatic and quantum contributions to the 

total energy  

                       

(6.1) 

The electrostatic term includes all nucleus-nucleus repulsion, all electron-electron 

repulsion and all electron-nucleus attraction, and so includes all the electrostatic 

interactions within the system. The quantum mechanical term,      , is equal to the sum of 

the exchange correlation energy (defined by the exchange-correlation functional used), 

      , and the Pauli energy,       defined as the difference between the non-interacting 

kinetic energy and the Weizsäcker kinetic energy[224]: 

                  

(6.2) 

Which when substituting all the terms into Equation 6.1 leads to the steric energy being 

equal to the Weizsäcker kinetic energy. 

            
 

 
 

        

    
     

(6.3) 

This partition successfully excludes all of the electrostatic energy from the steric energy, 

therefore providing a purely quantum mechanical value. The steric energy was then 

calculated for a number of small chemical systems to provide analysis of the steric 

contributions. For example the ethane rotation barrier was shown to be consequence of 

the steric energy being highly positive. This approach has since been applied to a number 

of model chemical problems where the steric interaction has been considered a key 

contributor, for example the anomeric effect in sugars[225], and the origin of more 

rotation barriers[226]. Despite the success of the method in providing quantitative results 

that agree with chemical intuition, the authors describe the steric effect as a “noumenon”, 

stating “there is no physically observable value associated with the steric effect and thus, it is 

an object , though chemically significant and conceptually relevant in understanding the 

behaviour of molecules, of purely rational apprehension and intellectual intuition”[223]. 
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As stated previously, the short range repulsion energy is a quantum mechanical effect and 

is a function of the molecular wave function. By this reasoning, the assumption that the 

repulsion between atoms is a pairwise interaction is an oversimplification. However, when 

building quick chemical potentials, such as MM force fields, the use of pairwise potentials 

has proven itself a successful method for the estimation of atomic repulsion. These pair-

wise potentials typically take one of two forms, the first being       where   is an 

integer. The Lennard-Jones potential is one such potential and it is applied to chemical 

systems to model both short range repulsion and the attractive dispersion interaction. The 

full Lennard-Jones potential is provided in Equation 6.4, however the     term may be 

overlooked as this relates to the attractive dispersion interaction. 

         
   

  

   
   

   
 

   
   

(6.4) 

where     is the depth of the potential well, and     is the value of     where      . 

Many popular force fields use a Lennard-Jones potential to describe the short range 

repulsion between atoms including CHARMM[227], AMBER[12] and GROMOS[15]. The 

pairwise constants used in the Lennard-Jones potential are usually obtained through the 

use of mixing rules. These are functions used to calculate pairwise constants from 

monatomic constants corresponding to the atom-types being interacted. There are a 

number of mixing rules that may be used, however the most common are the Lorentz and 

Bethelot rules, 

          
 
                 

 

 
        

(6.5) 

The theoretical reasoning underlying the Lorentz and Berthelot rules is weak, however 

they do yield reasonable pairwise constants at an insignificant computational cost. There 

are instances where the coefficients given by mixing rules yield poor results, particularly in 

simulations involving ionic species, however this is often “overcome” by modifying the 

monatomic coefficients [228, 229]. Despite the existence of more involved combination 

rules [230-232], little improvement is gained through their use, although some perform 

better for specific tasks[233]. The use of      in      potentials is an arbitrary choice 

made only to produce a steeply repulsive potential that mimics repulsion. Other values for 

  may be used, for example, both Halgren’s MMFF94[234] and the AMOEBA force field of 

Ponder et al[16, 193] use an      potential with pair-wise constants obtained from mixing 

rules given by Halgren in 1991[18]. 

The second form of potential commonly used to describe the short-range repulsion 

between two atoms is an exponential function             where   is the interatomic 
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separation. The Born-Mayer potential was an early implementation of such a potential 

where the interactions between two atoms   and   is given by 

         
     

   
    

 
 

(6.6) 

where    ,     and     
are constants and     is the internuclear distance. The pairwise 

constants are often obtained by combining monatomic constants through the use of mixing 

rules. The MM2[235], MM3[236] and MM4 [237] force fields of Allinger et al describe 

repulsion in this way. 

The use of the functional forms         and      to model repulsion has no theoretical 

grounding (whereas, for example, the     attractive term in the Lennard-Jones potential 

does roughly describe the induced dipole-induced dipole interaction between atoms). They 

are chosen only because they form a steep repulsive potential. The accuracy and wide 

ranging applicability of a molecular potential is determined by both its theoretical 

grounding and also the accuracy of the fitting procedures used to obtain constants. It is, 

therefore, desirable to find a potential for short range repulsion that has a theoretical 

foundation when developing new molecular potentials. The theory of interacting quantum 

atoms (IQA) [25], is a theoretically rigorous energy decomposition that breaks down the 

energy of a chemical system into atomic self and pairwise contributions, and therefore fits 

the above criterion as a basis for developing a novel potential. IQA is described in detail in 

the following section. A comparison of the IQA exchange repulsion (XR) energy with 

classical MM potentials is provided and then the concept of transferable IQA atom-types is 

investigated, whereby a discussion of potential mixing rules will be included.  

6.2. DFT IQA Calculations 
Until recently, the IQA decomposition has been restricted to the HF level of theory, 

however new releases of the AIMAll software package (versions 14.11.23 onwards) [138] 

have included algorithms capable of performing full IQA analysis on both the B3LYP and 

M06-2X density functionals. In the current work both HF and M06-2X wave functions are 

used. M06-2X has been developed by Truhlar et al [146] with the aim of improved 

description of intermolecular interaction by including some dispersion effects. The energy 

that the M06-2X functional aims to account for, which both HF and other density 

functionals fail to describe, is the electronic correlation energy. Thus    should be written 

in full as     when considering the M06-2X functional. Unfortunately the correlation energy 

is a two-electron property whereas density functionals, including M06-2X, are one electron 

functionals and so approximations must be made in the IQA decomposition. It is for this 

reason that there is work both inside the group and by others to extend IQA to MP2 wave 

functions that include the dynamic two electron correlation effects. Until this is readily 
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available, the following assumptions concerning the IQA decomposition of density 

functionals have been made: 

1. The inter-atomic exchange-correlation energy between two atoms is treated in an 

identical fashion for both HF and density functional theory (DFT) wave functions, 

   
           

       . 

2. The DFT intra-atomic exchange correlation is the total exchange-correlation 

energy of atom   minus the HF exchange between atom   and all other atoms   , 

   
            

         
    

    . 

Although not wholly satisfactory due to the neglect of inter-atomic correlation energy, the 

above assumptions reproduce the total energy of the system (when used as part of a whole 

IQA decomposition) therefore accounting for the improved description of intermolecular 

interactions offered by the M06-2X functional.  

6.3. Computational Details 
All ab initio calculations were performed using Gaussian09[137] at either HF/6-

31++G(d,p) or M06-2X/6-31++G(d,p) levels of theory. The topological analysis including 

the IQA analysis was performed by AIMAll version 14.11.23[138]. The default integration 

grids used by AIMAll in the presence of the “briaq=auto” and “boaq=auto” keywords gave 

erratic results, and so finer grids were employed using the “briaq=skyhigh” and 

“boaq=skyhigh” keywords. Although, the results presented in figures 6 and 7 in section 

4.2 do not show smooth curves, they represent a marked improvement over the original 

results obtained using default parameters. The non-linear least squares fit used to obtain 

equation 14 was obtained using a simple Perl script. 

6.4. Results and Discussion 

6.4.1. Fitting XR to Classical Potentials 

First, we shall compare the overall shape of the IQA XR energy profile to the repulsive 

potentials included in the classical potentials AMBER, MM2, OPLSAA, MMFF94 and 

AMOEBA. Figure 6.1 shows the total IQA XR energy of the water dimer as the two water 

molecules are brought towards one another at both the HF and M06-2X levels of theory. 

Also plotted on Figure 6.1 are the repulsive components of the classic potentials listed 

above. It is immediately apparent that the IQA decomposition partitions energy in a much 

different way to classical force fields and so a quantitative comparison is not possible. The 

overall shape of the XR energy curves are much softer than the classical potentials, with 

the energy rising at a relatively more gradual rate over a longer distance. The classical 

potentials do not begin to introduce significant intramolecular repulsion until a H-bond 

distance of 2 Å. As previously stated, the overall shape of the two IQA XR curves is similar 

to the classical descriptions of repulsion. When fitted to Born-Mayer type potential by a , 
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an average error of only 9 kJ mol-1 from the HF XR energy is obtained. The optimum 

potential is given below. 

         
     

   
    

 
 

(6.7) 

where     is the OH…O separation and     
 is the equilibrium separation (2.04 Å).  

The M06-2X functional is parameterised to account for some electron correlation effects 

and this leads to a lower XR energy than that which is obtained at the HF level. The total 

interaction energy of the water dimer at the two levels of theory can be seen in Figure 6.2.  

The XR curve in Figure 6.1 at the M06-2X level of theory is lower in energy than the HF XR 

curve and this is in agreement with inclusion of correlation effects. The difference in 

energy is particularly apparent at short H-bond distances, with a difference of 94 kJ mol-1 

at a distance of 1.25 Å. The difference in total energy in Figure 6.2 is much smaller than 

the observed difference in XR energy in Figure 6.1 but because the XR energy is not the 

only IQA component to be affected by a change in the level of theory, the disagreement in 

energy difference gives no undue concern (for example,    
  is affected as the HF level of 

theory gives much more polar atoms than M06-2X giving a larger     interaction for the HF 

results). 

 

Figure 6.1: Comparison of the different repulsive potentials in popular force fields with the IQA XR 
energy at both the HF and M06-2X levels of theory. 
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Figure 6.3 breaks down the XR energy into its individual contributions and shows the 

difference in energies obtained from the M06-2X and HF levels of theory. Note that the     

value given in Figure 6.3 corresponds to the sum of all nine intermolecular     interactions 

in the water dimer. At all distances, >85% of the difference in the XR energy is accounted 

for by a change in the     
  energy. This initially gives rise to concern, as the inclusion of 

correlation effects would be expected to express itself the exchange-correlation term (   ). 

As stated at the end of the Section 6.2, however, only the calculation of the atomic self-

exchange-correlation energy is different in the DFT IQA calculations. Because the self-

exchange-correlation energy is a component of     
  and not    

  , the     
  should account 

for a large amount of the difference between the HF and M06-2X XR energies. The small 

difference in the    
   between the HF and M06-2X levels of theory seen in Figure 6.3 is 

attributable to the different molecular electron density obtained at different levels of 

theory. 

 
Figure 6.2: The total interaction energy of the water dimer against the H-bond separation relative to 
the energy at a 30 Å separation. Blue line obtained at the M06-2X level of theory and the red line at 

the HF level. 
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Figure 6.3: Plot of the difference between the M06-2X and HF values of a number of IQA energy 

terms and also the total IQA energy. 

In conclusion, it is not possible to directly compare the IQA XR energy with the repulsive 

components of classical potentials, despite the roughly exponential form of the XR vs 

distance profile. The HF level of theory gives rise to a more repulsive XR energy than that 

obtained using the M06-2X functional as one would expect from the capturing of electron 

correlation effects in the M06-2X parameterisation. Misleadingly, the deformation energy 

obtained from M06-2X analysis is more affected than the     term due to the DFT IQA 

algorithm, and so the HF level will be used exclusively from this point. The overall shape of 

the HF IQA is similar to that of M06-2X. 

6.4.2. Does the XR Energy Produce Transferable Atom Types? 

Classic repulsive potentials have been developed as a fast means of obtaining reasonable 

estimates of the energy at the expense of some chemical accuracy. In order to achieve this, 

the concept of a transferable atom type has been successfully developed over many years. 

In Section 6.4.1 it was shown that the XR energy can be fit to a Born type exponential with 

an average error of 9 kJ mol-1. Hence, the next question asked is “do transferable IQA atoms 

types allowing accurate reproduction of the XR energy exist?” In an attempt to answer this 

question, transferability of the atoms within two model systems has been studied. The first 

system is that of an amine nitrogen (R-NH2) acting as a hydrogen bond donor to a water 

molecule, with a range of R groups. The second model system is that of a hydroxyl oxygen 

(R-OH) also acting as a hydrogen bond donor to a water, again with a range of R groups. 

Topological representations of all complexes studied in this work may be seen in Figure 

6.4, and a numbered schematic of the two functional groups is provided in Figure 6.5. The 

changes in selected      and    
   energies at H-bond distances between 1.25 – 4 Å are 

analysed.  
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Figure 6.4: The eight dimers studied, clockwise from the top right: the water dimer, methanol-water, 
ethanol-water, serine-water, lysine-water, ethylamine-water, methylamine-water, ammonia-water.  

As stated above, a number of R groups were used to test transferability. For both the amine 

nitrogen and hydroxyl oxygen tests, the R groups were H, methyl (Me) and ethyl (Et). In 

addition, the full amino acids lysine (Lys) and serine (Ser) were also used. The fully 

extended side rotamer of Lys (all side chain dihedrals trans) was used in order to minimise 

any perturbation of the amine and water atoms by the polar amino acid back bone atoms. 

Serine has a much shorter side chain, with only one methylene group separating the 

hydroxyl group from the amino acid backbone and as a result it is not possible to achieve 

the same separation as achieved in the case of Lys. Because the hydroxyl oxygen can act as 

a H-bond acceptor to the peptide hydrogen atoms, care was taken to select a structure 

where this was not present in order to prevent polarisation and delocalisation of the O-

H…O hydrogen bond. In order to assess the transferability of individual atoms in the 

presence of  different R groups, the difference in the value of the IQA terms relative to 

those when R=H has been plotted.  
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Figure 6.5: The atoms studied in this work. 

Because the deformation energy of an atom is sensitive to small changes in molecular 

geometry, an effort was made to ensure that all systems with different R groups were as 

similar as possible. For example, in the hydroxyl case, the following steps were taken in 

order to obtain the molecular geometries: 

1. The water dimer (R=H system) was optimised at the HF/6-31++G(d,p) level of 

theory. This geometry was then used as a “template” for all systems with different 

R groups. 

2. Next, the methanol, ethanol and serine monomers were optimised at the  HF/6-

31++G(d,p) level. 

3. The H-atom of the hydrogen-bond-donating water molecule that is not involved in 

the hydrogen bond was then substituted for each of the optimised monomers (see 

Figure 6.4). 

4. Each system then had the R-H…OH2 H-bond artificially stretched 1.5 Å to 4 Å with 

the coordinates taken at intervals of 0.25 Å. 

5. A single point calculation of each intermediate structure was taken and the 

molecular wave function was input to AIMAll for IQA analysis. 

For the amine case, a similar strategy was employed with the following amendments. In 

step 1 the ammonia-water complex replaced the water dimer, and in step two the 

methylamine, ethylamine and lysine monomers were optimised. 

All of the atoms studied excluding the amine nitrogen display a degree of transferability in 

     as the R group is changed. The mean absolute deviation (MAD) and mean percentage 

deviation from R=H for all systems can be found in Table 6.1. In all cases other than that of 

the amine nitrogen, the deformation energy stays within 5 kJ mol-1 of the value obtained 

when R=H. Plots of the difference between the R=H and R=methyl, ethyl and amino acid 

     values for both amine and hydroxyl systems are provided in Figures 6.6 and 6.7.  
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Table 6.1: Mean absolute deviations (MADs) and mean % deviations from the R=H values for the 
atoms studied in this work. All energies in kJ mol-1. 

 

In the amine systems, Figure 6.6 shows that the H2 and O3 atoms show clear 

transferability across the different R groups, with very little deviation from the R=H value. 

The MAD values in Table 6.1 for the larger R groups are all lower than 0.8 kJ mol-1 with 

low % differences. The % differences are misleadingly large, as at short range where the 

     values are large, the % differences are very small. The % differences are larger when 

the magnitude of the      energies are very small. This explains the low MAD values. The 

N1 atom in the amine systems does not present transferability relative to the R=H system, 

with MAD values of 42%,49% and 25% for R=Me, Et and Lys, respectively. The volume of 

the N1 atomic basin is much larger (~15 au) in the R=H system than when R=Me, Et and 

Lys, and it is therefore reasonable to suggest that it more polarisable, leading to much 

larger deformation as the H-bond distance is reduced. This hypothesis is supported by the 

observation that the N1 deformation energy when R=H is between 30-40 kJ mol-1 greater 

than the R=Me, Et and Lys cases. To support the hypothesis of greater polarizability of the 

R=H system being responsible for the irregular behaviour of the N1 atom one would expect 

the magnitude of the atomic dipole moment to be larger in the R=H case at short H-Bond 

separation. Unfortunately this is not observed, with a negligable difference in dipole 

moments between the N1 atoms when different R groups are present. 

Similar to the amine systems, the atoms in the alcohol systems present some elements of 

transferability, with MADs from the R=H system of less than 3.1 kJ mol-1 for all atoms. The 

H2 atom is particularly stable with MAD values of 0.77, 0.90 and 0.14 kJ mol-1 for R=Me, Et 

and Ser, respectively. It is unsurprising that the H2 atom      values in both the alcohol 

and amine systems remains similar to the R=H cases for the following reasons: the H atom 

is small and not easily polarisable (having a partial positive charge due to being bonded to 

 

MAD from R=H   Mean % Difference from R=H 

  Methanol Ethanol Serine Methanol Ethanol Serine 

O1      2.4 2.4 3.1 4.1 2.0 7.0 

H2      0.8 0.9 0.1 1.2 2.0 0.7 

O3      2.1 2.3 2.3 2.4 5.5 6.8 

H2_O3     0.1 0.1 0.1 1.2 1.0 3.6 

 MAD from R=H Mean % Difference from R=H 

  Methylamine Ethylamine Lysine Methylamine Ethylamine Lysine 

N1      11.0 12.4 8.9 42.2 48.9 25.7 

H2      0.7 0.6 0.6 2.9 2.1 2.7 

O3      0.7 0.6 0.6 3.3 6.3 7.4 

H2_O3     0.1 0.1 <0.1 1.5 1.0 1.8 
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an electronegative nitrogen or oxygen atom), and also because it is being deformed by a 

nearly identical system in all cases (a water molecule). The same cannot be said about the 

O1, N1 and O3 atoms. In the cases of O1 and N1 the functional group directly attached is 

changing, and in O3 there is an increasingly bulky molecule moving towards it as the R 

groups are substituted from H to Me to Et and finally Ser/Lys. It is also noted that with the 

exception of the ethanol system, that the O1/N1 atoms are have greater mean % 

differences than the O3 water oxygen. This shows that changing the R group directly 

attached to an atom has a greater effect on the deformation pattern of that atom than on 

the H-bond acceptor. 

Studying the top two plots in Figure 6.7 (corresponding to the O1 and H2 deformation 

energies as a function of H-bond distance) it is clear that the Ser system behaves 

differently to the methanol and ethanol systems. The close proximity of the polarizing 

backbone atoms present in Ser clearly have an effect on the deformation profile. It is 

difficult to tell if this effect is as pronounced in the case of Lys due to the "volume problem" 

discussed previously.  

The previous point leads to the greatest conceptual problem when discussing IQA 

deformation energies in a pseudo pair-wise fashion: the deformation energy is defined as 

an atomic self-energy, and therefore, unlike for    , no explicit atomic contribution to the 

deformation of an atom may be obtained. Unfortunately, the deformation is still a function 

of the atoms around it but we have no way of determining the individual contribution of 

each atom to a given atomic deformation. It is for this reason that IQA atom types for use in 

a pair wise potential to describe the XR energy do not naturally arise. In the examples of 

the alcohol-water and amine-water dimers described above, it means that although one 

may observe similarities in an energy, one is unable to take this further and describe the 

specific contributions of each atom on the deformations. One is equally unable to derive 

pair-wise coefficients. Of course classical potentials are not claiming to be theoretically 

sound in their use of pair-wise potentials. These potentials are used due to convenience, 

simple parameterisation, and ability to provide some chemical insight. The concept that 

atomic repulsion is more complex than a pair-wise term is not new, for example the work 

of Badenhoop and Weinhold in 1997 studying steric interactions, showed that the 

repulsion was a complex function of the total system [238]. 
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Figure 6.6: Plot of the      values of the amine N1 (top), H2 (middle) and O3 (bottom) obtained from 

R=Me, Et and Lys relative to the value for R=H against NH…O hydrogen-bond distance. 
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Figure 6.7: Plot of the      values of the hydroxyl O1 (top), H2 (middle) and O3 (bottom) obtained 

from R=Me, Et and Lys relative to the value for R=H against OH…O hydrogen-bond distance. 

The H2…O3     interactions for both the hydroxyl and amine complexes remain highly 

transferable between the different R groups, showing on average less than a 2% deviation 
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well as the Ser and Lys systems all have more negative     interactions than R=H at short 

range indicating a more covalent interaction. The results obtained in the present work 

suggest that the methanol-water dimer is a stronger interaction than the ethanol-water 

dimer, however Suhm et al. [195] have shown that higher level calculations are needed to 

reproduce the correct order of ethanol-water being stronger than methanol-water. Despite 

this, it is believed that the high degree of transferability shown across all the hydroxyl-

water     interactions remains a favourable property in the search for IQA atom types for a 

repulsive potential. 

6.5. Conclusions and Further Work 
In Section 6.4.1 it was shown that the IQA XR energy is not directly comparable to the 

repulsive potentials present in a number of popular MD force fields due to a different 

partitioning of the total energy, however the XR energy does exhibit a similar shape to the 

classic potentials. In Section 6.4.2 it was shown that there is a high level of transferability 

in the behaviour of the IQA components that make up the XR energy. Thus one would hope 

to find a mixing rule that will allow the generation of pairwise constants that can be input 

into a Born-type potential. Such a methodology will require pairwise terms for both the 

   
   and     

  .  

In principle,    
  atomic terms could be parameterised from known    

   interactions using a 

list of atom pairs, however such an approach is not feasible for     
  . The deformation 

energy is a self-term, and so     
   is undefined. It is impossible to determine the 

deformation that one atom, a, inflicts upon another atom, b. To obtain such a value, one 

would be required to calculate the deformation energy of atom b in the system where a is 

present, and also in a system that is chemically identical except without the presence of 

atom a. The second system is impossible to obtain because atom a influences all other 

atoms in the system. Thus, removing a will have an effect on the deformation of b by all 

atoms, not just the deformation caused by a.  

The quantum chemical topological force field (QCTFF) removes the need for artificial 

pairwise potentials. Instead of the bonded and non-bonded potentials used in classic force 

fields, machine learning is used to build models capable of mapping changes in an atomic 

property to the coordinates of the system. By following such an approach, mapping IQA 

energetic components to a system’s coordinates, the XR energy may be extracted naturally 

from the      and     models without the need for pairwise potentials. Because of this, it is 

not necessary to obtain pair-wise XR atom types for QCTFF. The present work was simply 

an opportunity to compare the IQA description of chemical systems with the classical 

world. The fact that IQA is unable to fit into the pair-wise scheme is in no way a flaw in the 

methodology as the IQA derivation is rigorous. Rather it instead invites a fresh perspective 

on the analysis of chemical systems, where one is no longer able to think in the simplistic 
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pair-wise sense. When interpreting atomic repulsion, one has to think of an atom being put 

into an environment it is "uncomfortable" in, rather than a repulsive interaction pushing 

the atoms away. The IQA interaction terms may well be highly attractive in repulsive 

regions on the total PE surface. This has been seen by other work in the group studying the 

biphenyl rotation barrier, where there is an attractive interacting between "clashing" 

hydrogen atoms despite the repulsive total energy. 
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Chapter 7 

Conclusions and Further Work 
 

Complex biological systems require accurate potentials that are not too computationally 

taxing for molecular simulation. QCTFF takes a radical approach to this problem by using 

the machine learning method kriging to build models that model changes in QCT atomic 

properties with respect to the system’s coordinates. The work in this thesis provides 

examples of this methodology, where, for example, in Chapter 2 kriging models have been 

built for the atomic multipole moments of a number of hydrogen bonded complexes. The 

kriging models have then been used successfully to predict accurate electrostatic 

interaction energies for a number of test molecular geometries that were not present in 

the training set used to build the kriging models. Also in Chapter 2 kriging models have 

successfully been built to describe the atomic self- and interaction energies as defined by 

IQA for three weakly bound complexes. The systems that are described by both IQA self- 

and interaction energies have the entire energy of the system described by kriging models, 

therefore providing a complete molecular potential that is, in theory, ready for application 

in a molecular simulation. Currently, QCTFF is being implemented into the DLPOLY 

molecular dynamics package, and geometry optimisations have been performed for 

systems using IQA self- and interaction energy kriging models. The next stage must be to 

perform a molecular dynamics simulation using QCTFF kriging molecules. 

The potential applicability of a QCTFF kriging model is defined in part by the collection of 

molecular geometries that are used to train the kriging models. In Chapter 3, a new 

sampling approach has been provided that enables kriging models to be built for amino 

acids that use chemically important molecular geometries. The new approach, PDB/NM, 

has been compared to the traditional normal modes sampling approach used within the 

group, and shows that kriging models are fully capable of describing the changes in atomic 

multipole moments across a broad range of molecular geometries. In future, it is advised 

that other sampling approaches are tested, in particular sampling by molecular dynamics 

(MD). An argument against sampling using MD is the introduction of sampling bias due to 

the choice of potential used in the dynamics. MD sampling of water clusters and hydrated 

amino acids has now begun by others in the group, however the results are still in a 

preliminary stage and so I am unable to comment. A further method of sampling that I 

recommend is to use existing rotamer libraries to guide the construction of seed 

geometries for input to normal modes sampling. 

Transferability is essential for molecular potentials, and QCTFF is no exception. The 

“horizon sphere” experiments in Chapter 4 begin to address this issue by investigating the 
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maximum size of a protein fragment around an atom that is required for atomic properties 

to converge. Unfortunately, the fragment size is observed to be large, however further 

work is required to obtain a firm value for the “horizon sphere” radius. In my opinion, this 

must be performed as a matter of urgency. If the horizon sphere is indeed large, then 

additional polarization terms may be required. Work by others in the group shows that the 

horizon sphere of liquid water is also large, however there is evidence that the IQA self-

energy has a much smaller horizon sphere. It has been shown by others in the group that a 

single model can be used to describe a particular atomic property for multipole atoms 

along a repeating polymer chain. This demonstrates that the kriging models can indeed be 

transferable. Further experiments of this type must be performed on more complex 

systems and an automated procedure must be put in place to develop these transferable 

models. 

The future for QCTFF is bright, and I am optimistic that QCTFF will become a powerful tool 

for biomolecular simulation. The issue of transferability is the last major challenge, and 

this has begun to yield (see above). The decision to incorporate IQA energy terms in place 

of classic potentials is a bold choice due to the computational cost involved in running the 

calculations. Despite this cost, it is seen that as more groups are using the theory the 

algorithms used to perform the calculations are becoming faster. Using the IQA terms in 

place of the classical potentials will provide a greater level of interpretation when 

analysing the results when QCTFF simulations are performed. 
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Appendix A 

Literature review of Potential Applications of QCTFF in 

Medicinal Chemistry- Docking 
 

A note: 

Being sponsored by AstraZeneca, it was originally planned that during my PhD I would be the 

first group member to apply QCTFF to medicinal chemistry problems, namely that of small 

molecule docking. Instead, the direction that my research took led down related avenues of 

interest, however the docking application was never performed. For example, my work in 

chapter 2 looking at interactions between S22 dimers is highly relevant to how QCTFF will 

handle the intermolecular interactions identified during a docking experiment. Similarly, the 

work of chapter 4 describing the horizon sphere is important for deciding how big an active 

site of a protein may need to be to get reliable results of a docking experiment. 

Here I include the literature review of docking that I wrote in my first year of my PhD, as it 

represents a significant amount of my time and effort. 

Medicinal Chemistry 
Development of a novel force field, such as QCTFF, is a challenging and time consuming 

task. The motivation for undertaking such a project is that the new force field should be 

able to provide more accurate and reliable solutions to real world problems than those 

provided by existing methods. Therefore the discussion now moves from description of 

theoretical and methodological considerations of force field design to the possible 

applications of QCTFF. In particular, the discussion shall focus on the role of MM force 

fields in the drug discovery process which is one of the key aims of QCTFF.  

Rational Drug Design 

There are over 20,000 proteins encoded by genes within the human genome. Upon 

translation many proteins are then subject to a range of different post-translational 

modifications such as methylation, addition of both prosthetic groups and polysaccharides, 

and the formation of multiple subunit protein complexes. It has therefore been stated that 

it would be irrational to blindly purify and experimentally assay thousands of proteins 

with hundreds of thousands of possible drug candidates. This led to the development of 

new techniques and the application of protocol for the efficient screening large databases 

of drug candidates to provide shortlists of ‘lead molecules’, followed by more 

computationally expensive simulation and experimental studies. Such a process is given 
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the general title ‘rational drug design’. Docking and MD simulation are the two stages of 

rational drug design where MM force fields are most widely used with the former topic 

discussed here in greatest detail. 

Before discussing the above topics it is useful to provide brief definition of some of the 

language used by medicinal chemists. Receptor or drug target refers to a binding site, 

typically of a protein. This may be either the active site of the protein or any other region 

where a guest molecule may bind. A guest molecule is synonymous with ligand and simply 

refers to a small molecule. Such a molecule can also be thought of as a drug candidate. Drug 

candidates which have passed through a screening process are then referred to as leads, or 

lead compounds. The structure adopted by the ligand within the receptor is called its pose, 

binding mode, or conformation. Multiple binding modes may be possible for a given 

molecule. 

Docking 

Once a receptor such as a protein active site has been identified and an accurate 3D 

structure has been obtained (details of the methods used in the acquisition of such 

structures are not discussed here, typical sources are NMR, x-ray crystallography and 

homology modelling), the next step in the rational drug design process is to screen 

databases of small molecules for possible candidates. This task is performed typically by a 

piece of docking software such as GOLD[1], AutoDock[2], DOCK[3] and GLIDE[4]. The aim 

of docking is to rapidly insert a large number of small molecules into the binding site of a 

receptor and to score each molecule based on criteria such as the strength of interaction 

between ligand and receptor, the number of hydrogen bonds formed, and the internal 

energy calculated by a MM force field. Multiple orientations (binding modes) of each ligand 

may be docked, and the highest scoring ligands become lead compounds. Different pieces 

of docking software operate at differing levels of complexity. For example the flexibility of 

the receptor molecule may range from being fixed, to allowing the side chains to rotate 

based upon databases of commonly found rotamers, and even to combining the docking 

process with full MD simulation. The scoring function also ranges in complexity, from 

simple empirical scores to full MM energy calculation. 

The popular GOLD program of Jones et al.[1] uses a genetic algorithm (GA) to explore both 

the conformational space of flexible ligands and to simultaneously sample a range of 

different binding modes of a ligand. The active site of the protein is also partially flexible. 

The use of the genetic algorithm allows ‘good’ solutions to a docking problem to be found 

rapidly. The scoring function used by GOLD consists of three parts; an empirical hydrogen 

bonding term, a pairwise dispersion term to account for hydrophobicity, and an MM 

calculation of the ligand's internal energy. In a test of the GOLD program, NADPH was 
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docked into the active site of dihydrofolate reductase (DHFR), with the aim being to 

reproduce the experimental crystal structure. This was a challenging test, with the 

flexibility of NADPH described by 17 rotatable bonds and partial cyclic flexibility. Despite 

this the predicted structure of the complex from docking had a root mean square deviation 

of the heavy atoms from the experimental structure of only 1.2 Å. The ability of GOLD to 

predict 100 protein-ligand complexes was tested in order to analyse its strengths and 

identify any possible weaknesses. The systems were chosen due to the structures of the 

ligands being “drug like”. Each system was docked 20 times to allow the genetic algorithm 

to find its best solution, and the optimal docking solutions were then ranked based upon 

the scoring function as belonging to one of four categories; good, close, with errors, or 

wrong. In 71% of the test cases GOLD predicted either good or close docking solutions. As 

stated, each system was docked 20 times to allow GOLD a chance of finding the correctly 

docked structure, however 49 complexes were correctly predicted within only two 

docking runs, and 65 complexes predicted after just 10 docking runs. Thus it was 

concluded that generally GOLD does not need to be run 20 times to obtain accurate 

docking solutions. A failing of GOLD is that the scoring function used is largely dependent 

upon hydrogen bonding, resulting in difficulty in correctly predicting the experimentally 

observed binding mode of hydrophobic ligands. 

The AutoDock software package of Morris et al.[2] implements a hybrid Lamarckian 

genetic algorithm (LGA) in which a standard GA is used for global screening of ligand 

conformations with the addition of a local search method to perform an energy 

minimisation. The name Lamarckian comes from the now discredited theory of Jean 

Batiste de Lamarck that phenotypic characteristics acquired throughout an organism's life 

may be inherited by offspring. This relates to the ‘phenotypic traits’ picked up by a parent 

during the local search minimisation being ‘inherited’ by its offspring. The ability of the 

LGA to correctly predict the experimental crystal structure of seven protein-ligand test 

systems was assessed by comparison with both standard GA and simulated annealing (SA) 

search algorithms. For each search algorithm, 10 docking runs were performed, with the 

resulting optimised docked structures being grouped into clusters and then ranking the 

clusters based on the lowest energy docking solution in each cluster. LGA performed best 

overall, with 78% of the docked structures found in the lowest energy (rank 1) cluster and 

an average root mean squared deviation of heavy atoms from the experimental structure 

of only 0.88 Å. LGA also gave the fewest number of clusters across the seven test systems 

with an average of just 2.29 meaning that it was most consistent at finding the optimum 

docking solution across all 10 docking runs without becoming trapped in local minima. The 

average difference between the effective global minimum energy (the lowest docked 

energy for each complex as found by any of the three searching methods used) and the 

best docked solution for each complex found by the LGA search method was the lowest of 



165 

 

all search methods, 0.40 kcal mol-1, meaning that the effective global minimum was most 

often that found by LGA rather than GA or SA. The standard GA was the second most 

efficient search method with 40% of the docked structures in the cluster of rank 1 and an 

average RMSD of 3.06 Å. The SA approach suffered being trapped in local minima which 

resulted in a mean difference between the docked energy and the effective global 

minimum energy was 2.62x105 kcal mol-1, and a mean RMSD of 3.63 Å. Due to becoming 

trapped in local minima, SA was the worst performing search method used. 

DOCK, of Ewing and Kuntz [3], uses a more simple docking algorithm than the GAs of Gold 

and AutoDock where instead ligands are superimposed onto predetermined site points 

within the cavity of the receptor in multipole orientations. Although initially ligands were 

treated rigidly DOCK has been developed to include a flexible description of ligands[5]. The 

flexible docking algorithm proceeds via an incremental construction of the docked ligand 

within the receptor active site. Before docking the ligand is cut at each rotatable bond to 

give a number of rigid fragments. One or more of the fragments is defined as being an 

anchor, meaning that it is the initially docked fragment that will be built upon in sequential 

steps. Typically the anchor is the section of the ligand that forms strong intermolecular 

interactions with the receptor. The anchor is docked to find valid docking orientations and 

then the rigid groups are incrementally added to build up the ligand. At each stage of the 

incremental building of the ligand local optimisations are performed including the rotation 

of the flexible torsional angles, and the different structures are scored and ranked. The 

basic scoring function used is a sum of intermolecular van der Waals’s and Coulombic 

terms obtained from the AMBER force field and intramolecular terms to prevent steric 

clashes consisting of Coulombic, van der Waals and simplified torsional potentials.  

The flexible docking algorithm was tested in two ways: first in its ability to correctly 

predict the experimental crystal structure of a docked ligand in a receptor molecule, and 

secondly in the ability of the algorithm for the efficient screening of a molecule database. It 

was noted that the simple scoring function used lowers the accuracy of the docking 

process (for example the neglect of solvation effects) and it is stated that the aim of the test 

is to show that the flexible docking algorithm is capable of finding “reasonable binding 

modes” even with a “minimal scoring function”. For the former test, 15 test cases were 

docked and each was performed five times to allow DOCK to find the optimal docked 

structure. The RMSD of the top scoring binding mode for each test case from the crystal 

structure ranged from 0.9 Å to 6.8 Å. Seven of the docked complexes had an RMSD of less 

than 2 Å. For six out of the eight test systems where the best docked solution had an RMSD 

greater than 2 Å the score was more favourable than the score of the experimental 

structure. This indicated that the scoring function and not the flexible search algorithm 

was largely responsible for the large RMSDs. The two remaining test cases had less 
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favourable scores than the experimental structure and so in these cases the search 

algorithm was to fault. Despite this, the flexible algorithm was found to perform generally 

well. In the second test of the flexible search algorithm, 49 randomly selected molecules 

from the Current Medicinal Chemicals (CMC) database were selected and docked into two 

receptors, streptavidin (1stp) and dihydrofolate reductase (3dfr). To ensure that a strongly 

binding ligand was present for each of the receptors 1stp and 3dfr, the naturally occurring 

ligands biotin (complexes with 1stp) and methotrexate (complexes with 3dfr) were added 

to the database to give 51 test molecules in total. The performance of the incremental 

flexible algorithm was compared with the performance of both flexible and rigid 

algorithms that dock random ligand orientations into the receptor. The accuracy of a given 

method was determined by the number of times the optimal solution scored the most 

favourable score out of all the three different methods tested. For 1stp the incremental 

flexible algorithm gave the most favourable docking score for 63% of the ligands when 15-

30 s sampling time per molecule was allowed. At shorter sampling times all three methods 

were equivalent in accuracy. For 3dfr the incremental method was again the most 

successful technique, with a success rate of 82% at longer sampling times. For both test 

systems the naturally occurring ligands were given favourable scores. 

The final piece of docking software presented in this work is Glide of Friesner et al.[4]. 

Glide differs from the previously discussed software packages in that the search algorithm 

utilised by Glide approximates a complete systematic search of conformational, 

orientational and positional space of the docked ligand. This is achieved by a series of 

hierarchical filters that search for possible binding modes with increasingly more accurate 

scoring functions. Ligands are divided into core and rotamer groups and the core is then 

assigned a number of conformers dependent upon the number of degrees of freedom 

within the core. Methyl groups and primary amines are not classed as rotatable however 

all other rotatable bonds are classed as rotatable and so are defined as being part of a 

rotamer group. High energy conformations are removed though the screening of all of the 

combinations of rotamer conformations using a simplified version of the torsion angle 

term in the OPLS-AA force field. The remaining conformations are then docked into the 

receptor by superimposing the ligand onto defined site points within the binding site, and 

then screening for both steric clashes and also any hydrogen bonds. Successful structures 

are scored and the highest scoring proceed to energy minimisation and then Monte-Carlo 

simulation to probe remaining torsional conformations. The highest scoring conformations 

after this stage are then assigned a final score. This is a sum of an intermolecular OPLS-AA 

score, an internal ligand strain score, and a score given by a modified scoring function 

named GlideScore 2.5 that included solvation, metal ion-ligand and hydrogen bonded 

terms. The combination of GlideScore 2.5 and an MM score was found to be more reliable 

than either scoring method on their own. 
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The accuracy of Glide was evaluated by its ability to reproduce the experimentally 

observed structure of 282 co crystallised protein-ligand complexes. The list included the 

complexes that were used to test the GOLD and FlexX docking programs, which allowed for 

direct comparison of the performance of Glide relative to these programs. For the 93 

complexes that were used to test GOLD, Glide had an average RMSD from the crystal 

structures of only 1.85 Å compared to 3.06 Å by GOLD. For the 189 complexes that were 

used to test FlexX, Glide performed even more favourably with an average RMSD of 1.95 Å 

compared to 3.72 Å by FlexX. Overall, nearly half of the 282 test complexes predicted by 

Glide had an RMSD of less than 1 Å, with only one third of cases predicted with an RMSD of 

greater than 2 Å. 

Because the purpose of docking is to reduce large databases of compounds to a smaller 

subset of leads quickly and efficiently, a balance between accurate scoring functions, ligand 

flexibility and receptor flexibility must be struck. Kolb and Irwin outline two criteria that 

must be met by docking software for it to be deigned as successful. Docking software must 

be both able to correctly predict the ligand pose to allow a meaningful analysis of the 

observed binding interactions, and also to accurately score docked molecules from a 

database in order to identify ligands to proceed to later stages in the drug design process. 

Often the scoring function comprises of a sum of both empirical terms such as the number 

of hydrogen bonds between ligand and receptor and MM energies. Both terms are quick to 

evaluate however lack accuracy. In particular MM force fields typically use atomic point 

charges and so any directional bonding such through lone pairs in hydrogen bonding will 

not be accurately reproduced. This can lead to experimentally more stable ligands being 

scored lower than experimentally less stable ligands where, for example, the hydrogen 

bonding atoms are closer in distance despite the hydrogen bond not being at an angle 

where a lone pair would lie. This is an area in which QCTFF will offer improvement as the 

directionality of intermolecular interactions are only reproduced when using higher order 

multipole moments to describe electrostatics[6].  

It has been found that the first of the criteria, that docking must be able to correctly predict 

the experimental pose of a ligand in a receptor, is not always met, even when it appears 

that docking has been successful. For example, DOCK was used to screen a database of 55 

000 molecules docked into a binding site of thymidylate synthase (TS) [7]. Despite a 

number of phenolphthalein analogues found to inhibit TS, the pose predicted by DOCK was 

found to be considerably different to the crystal structure. Although docking was 

successful at correctly identifying the ligands that bind strongly to TS, the pose of binding 

was not the same as that observed experimentally. Hence the success of docking was 

somewhat fortuitous. In this case Kolb and Irwin state that they “feel that it is hard to 

argue that docking worked for the right reasons in this case”. Docking can, however, make 
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predictions very close to the crystallographic structure. The docking software LUDI [8] was 

used to screen 120 000 molecules for possible tRNA-guanine transglycosylase (TGT) 

inhibitors[9]. The screening narrowed the database down to three ligands, with the highest 

scoring compound being 4-aminophthalhydrazide. An x-ray structure of the docked 

compound was taken and it was seen that the docked pose had an RMSD of only 0.24 Å 

from experiment. This was described by Kolb and Irwin as “a clear success of docking”. 

Unfortunately, there are very few examples in the literature of where docking solutions 

have been directly compared to a crystal structure of the ligand-receptor complex. 

Therefore the question of whether the high scoring molecules in a given docking 

experiment are predicted in the “true” pose is difficult to answer. For example, GOLD has 

been used to screen a library of 58 855 compounds for ligands that bind to a protease of 

the SARS coronavirus[10]. Although docking was successful in producing two hits, and a 

crystal structure was obtained, no direct comparison was made and so whether the correct 

pose was predicted by docking is not clear. 

Beyond Simple Docking 

Due to the limited power of computers, early docking experiments made the assumptions 

of rigid ligands docked into rigid receptors, with scoring based solely on sterics. Peishoff et 

al. referred to early docking experiments as “a gentleman’s pursuit” and “at worst, a fool’s 

errand”[11]. Docking algorithms have since incorporated ligand flexibility and improved 

scoring functions that have made docking a viable technique in the rational drug design 

process. The next challenge facing docking methodology is the incorporation of flexible 

receptor molecules. This is done in a number of ways. Again, key considerations for the 

incorporation of receptor flexibility into docking algorithms are speed and efficiency. 

There have been many attempts to incorporate receptor flexibility ranging from statistical 

approaches to full MD simulation. 

The simplest approach to incorporate receptor flexibility into a docking experiment is 

simply to reduce the size of the van der Waals’s radii of the receptor atoms. This allows the 

ligand to “penetrate” the active site in an attempt to reproduce small amounts of receptor 

readjustment and flexibility, and has been termed “soft docking”[12]. This approach is 

included in the Glide software[4], where non-polar ligand and receptor atoms have scaled 

van der Waals’s radii. To achieve this practically, it is the repulsive term of the Lennard-

Jones potential that is scaled. It was found by Ferrari et al. [13] that a scoring function 

including soft docking performs better when only one configuration of a ligand is docked 

into a receptor, however as more configurations are allowed, “hard docking” recovers to 

such an extent that it is the superior model. Hence more involved treatment of ligand 

flexibility is required. Two methods are discussed here; the use of rotamer libraries to 
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explore the conformational space of specific active site residues, and combining docking 

with molecular dynamics simulation. 

One of the first to use rotamer libraries as a means to introduce molecular flexibility into 

docking experiments was Leach [14]. In this work, benzamide was docked into trypsin, 

where 61 side chains were allowed to vary. The allowed rotamers for each side chain were 

obtained from the library of Ponder et al. [15] and the possible ligand conformations were 

obtained before docking all combinations of receptor and ligand. The complexes were 

ranked in order of their AMBER MM energy. The advantage of such a model is that the 

optimum docking solution is guaranteed to be found, however calculating the energies of 

all receptor conformations is costly. An improvement is the SLIDE algorithm of Schneck 

and Kuhn [16] in which an “anchor” fragment of the ligand is docked into the receptor 

initially and then the ligand is built up by the addition of flexible ligand fragments. Early 

versions of SLIDE used a rotamer library in an attempt to remove any steric clashes 

between receptor and ligand. It was found, however, that using rotamer conformations 

directly from database values often led to new steric clashes. It is in fact found that side 

chains close to a ligand often adopt atypical conformations due to effects such as 

intermolecular interactions. Heringa et al. found in a study of 112 tertiary protein-ligand 

structures that Asp, Glu, His, Met and Asn residues within 9 Å of a ligand inside a protein 

active site are the most likely to adopt atypical rotamer conformations [17]. The use of 

rotamer libraries to incorporate side chain flexibility has since been dropped within SLIDE 

in favour of an approach based on mean-field theory. In this, each rotatable bond that has 

the ability to resolve a steric clash between two atoms is awarded a probability weighted 

by the minimum energy angle and the number of non-hydrogen atoms displaced upon 

rotation. The details of mean-field theory are not included here as it is beyond the scope of 

this review. The minimum amount of rotation is then performed in order to relieve the 

maximum amount of steric clash over ten iterations of the mean-field theory algorithm. 

In the above example of SLIDE, rotamer libraries were used to incorporate receptor 

flexibility after the ligand had already been docked into the receptor molecule. Kallblad 

and Dean [18] designed an approach in which an ensemble of receptor structures are 

generated using a rotamer library with a statistically representative sub set extracted. 

Docking experiments are then performed on each of the representative receptor 

conformations individually. This model was tested on the docking of an inhibitor (RS-

104966) of human collegenase-1 (MMP-1). It is known that the RS-104966 induces large 

conformational change within the active site of MMP-1. Due to this induced change in 

receptor conformation it was not possible to dock RS-104966 directly into the crystal 

structure of MMP-1. It was found that RS-104966 was able to fit into some members of the 

rotamer conformation ensemble highlighting the importance of molecular flexibility in 

docking experiments. 
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Receptor flexibility can be incorporated into a docking experiment using MD simulation in 

one of two ways. The first approach involves running a simulation of the protein before 

docking and then extracting a number of structures of the protein from its trajectory. It is 

sometimes possible to have multiple experimental structures of a protein for example both 

NMR and x-ray structures, however this is not often the case and so MD simulation 

presents an alternative. The multiple receptor structures can then be either docked 

individually or combined to generate a “docking grid”. Carlson et al. used the latter method 

to generate a “dynamic pharmacophore” for the HIV-1 integrase protein by combining 11 

conserved binding site structures from a 500 ps MD simulation. The dynamic model was 

more successful than the “static” model, correctly predicting 15 out of 20 very active HIV-1 

integrase inhibitors docked, 12 out of 23 active HIV-1 integrase inhibitors docked, and 

62% of the ineffective inhibitors docked. The static model was unable to correctly predict 

any inhibitors. 

The second way in which MD simulation may be used to incorporate ligand flexibility is in 

the refinement of docked complexes by MD simulation. In such an approach, rigid docking 

is performed to screen a database quickly, and then the highest scoring complexes are then 

simulated. Although this approach still involves a rigid description during the screening, 

effects such as induced fit and complete flexibility of both ligand and receptor are included 

during the simulation.  
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Appendix B 

Literature review of Empirical Dispersion Corrections for 

Density Functional Theory 
 

A note: 

During the first year of my PhD, before the uptake of IQA methods, it was thought that QCTFF 

may account for the dispersion energy of a system using an empirical dispersion correction 

term, similar to those present in the literature. I was assigned the project and I wrote the 

following review of DFT dispersion corrections for my first year report.  

As the group moved towards IQA, where the dispersion energy of a system will be accounted 

for by use of kriging models describing the exchange-correlation energy component 

(assuming a correlated ab initio method is used), the project was never undertaken as it did 

not follow the direction in which QCTFF was headed, and I instead began to look at the PDB 

sampling covered in chapter three of this thesis.  

This appendix contains the original review of dispersion corrections. I am loath to omit it 

from the thesis entirely as it represents a significant amount of time and effort familiarising 

myself with the topic, however I am of the opinion that it does not fit into the introduction 

and therefore may not sit in the main text. 

Dispersion Corrections 
Density functional theory (DFT) has been successful in providing accurate ab initio 

calculation at relatively low computational cost. Due to the aforementioned reasons, DFT 

methods have been applied to aid in the understanding of a multitude of different chemical 

systems. A major drawback of DFT methods is that they are unable to model dispersion 

interactions. This is due to approximations in the treatment of the exchange and 

correlation of electrons which are responsible for dispersion interactions. Subsequently 

intermolecular interaction energies calculated by DFT methods are typically under bound, 

and require correction[1]. It is important that when using DFT to obtain intermolecular 

interaction energies to correct for the lack of dispersion.  

There are a number of methods of correcting DFT to incorporate dispersion corrections. 

The first approach is to parameterise the density functional using data that includes the 

accurate binding energies of dispersion bound complexes. This is the approach that is 

taken by Truhlar et al. in the development of their “Minnesota” functionals [2]. The dataset 

used to parameterise a new functional, M05-2X, includes hydrogen-bonded complexes, 
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charge transfer complexes, dipole interaction complexes, π-π stacked complexes, and 

weakly bound complexes. The M05 and M05-2X functionals of Truhlar et al. were tested 

against 13 common density functionals including B3LYP, LSDA and PBE for their ability to 

reproduce the accurate binding energies of the 22 complexes of the S22 database 

(discussed in more detail in chapter 3). M05-2X outperformed all other functionals when 

predicting interaction energies for complexes bound only by dispersion. M05 also 

performed well, being the fourth best functional for dispersion bound complexes. For 

hydrogen bonded complexes, M05-2X and M05 performed third and eighth best, 

respectively, and for mixed dispersion bound and hydrogen bonded complexes M05-2X 

and M05 performed third and sixth best. More recently, Truhlar et al. have introduced the 

M06 family of density functionals. These are parameterised in a similar way to the M05 

family. M06-2X had a mean unsigned error (MUE) of only 0.47 kcal mol-1 for the interaction 

energies of the S22 complexes, whereas an MUE of 0.75 kcal mol-1 was calculated by M05-

2X for the same data. M06-2X had an MUE of only 0.36 kcal mol-1 for the dispersion only 

bound complexes. 

The second approach to correcting DFT interaction energies for dispersion interactions is 

the use of an empirical correction that is performed after the DFT energy has been 

obtained from standard functionals such that  

                                  (B.1)  

There are many such corrections,            , however most take a form similar to  

              
  

  

   
             (B.2)  

where   
   is a constant dependent on the atom types A and B,     is the interatomic 

separation, and          is a damping function that prevents the correction tending to 

infinity at small internuclear distances. Finally,   is a scaling factor that can be included to 

tailor the correction to different functionals. 

The most widely used dispersion correction of this type is DFT-D of Grimme[3-5]. There 

are three generations of DFT-D; DFT-D1,-D2 and –D3. DFT-D1 and DFT-D2 both take the 

form of equation B.1 with the main difference being the manner in which the   
   

coefficients are obtained. In DFT-D1, for interacting atoms A and B, 

  
    

  
   

 

  
    

      (B.3)  

where   
  and   

  are atomic coefficients that have been averaged across the possible 

hybridisation states of atoms A and B. Grimme acknowledged that the use of averaged   
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coefficients rather than hybridization dependent coefficients lowers the accuracy of the 

correction, however inclusion would lead to problems arising in situations when 

hybridisation state is poorly defined. It is estimated that the omission of hybridisation 

dependent coefficients may lead to errors 10-20% of the order of the binding energy. The 

  
  parameters are included in table B.1. 

Table B.1:    coefficients for 6 atoms used in the DFT-D1 dispersion correction 

 H C N O F Ne 

   / J nm6 

mol-1 

0.16 1.65 1.11 0.70 0.57 0.45 

   / pm 111 161 155 149 143 138 

For interacting atoms A and B, DFT-D2 calculates the   
   coefficients by 

  
      

   
       (B.4)  

where atomic   
  coefficients are no longer averaged constants, but are derived from the 

London formula for dispersion. Thus, 

  
         

        (B.5)  

where   is a constant that has values of 2, 10, 18, 36, and 54 for atoms of rows 1-5 on the 

periodic table respectively,   
  is the ionisation potential of atom   calculated at the 

DFT/PBE0 level of theory, and    is the static dipolar polarizability of  . Using such a 

method allows for    coefficients for almost all elements of the periodic table to be 

obtained. 

The damping function of both DFT-D1 and DFT-D2 is of the form 

           
 

                   (B.6)  

where   is either 23 or 20 for DFT-D1 and DFT-D2 respectively,     is the separation of 

atoms A and B, and    is the sum of the van der Waals radii of atoms A and B. At values of 

    greater than   ,            has a value close to one, however as     falls below   , 

           rapidly tends to zero. An example of the role played by the damping function is 

present in the discussion of DFT-D3. The performance of DFT-D2 using the B97 functional 

(B97-D2) was tested by the prediction of 40 noncovalent complex interaction energies. 

The test set included hydrogen bonded complexes, non-aromatic complexes, aromatic 
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complexes, rare gas dimers, complexes with third row elements, and DNA base pairs. The 

mean absolute error of interaction energy for all 40 complexes was only 0.39 kcal mol-1.  

Hillier et al. [6] tested DFT-D2//BLYP/TZV(2d,2p) on a large database of 142 complexes 

including the S22 dataset, hydrogen bonded DNA base pairs, interstrand base pairs, 

stacked base pairs, and amino acid pairs. The mean unsigned error (MUE) relative to the 

accurate database values for the prediction of the S22 complexes' interaction energies was 

0.72 kcal mol-1. For the stacked base pairs, for which the interaction is dominated by 

dispersion, the MUE was only 0.53 kcal mol-1. For all 142 complexes considered, the MUE 

was 0.76 kcal mol-1. It was concluded that DFT-D2 is worthy of consideration when 

performing DFT calculation of biologically relevant molecules. 

The most recent generation of DFT-D departed from the “elegant simplicity” of the 

previous generations. Three body terms are now considered, as well as pairwise    

coefficients. Both the pairwise    coefficients and the van der Waals radii are also now 

obtained from first principles. The coordination of atoms A and B is accounted for through 

use of fractional coordination numbers. The corrected DFT energy,        , is given by 

                       (B.7)  

where       is a sum of two body and three body terms, 

                    (B.8)  

The two body term can be generalised as  

         
  

  

   
              

         
 
      (B.9)  

The first sum runs over all atom pairs A and B, and the second sum is over all nth order 

dispersion terms   
   included (6th, 8th, 10th … etc). To maintain stability it is recommended 

to truncate the sum at   = 8. As before,    is a scaling factor dependent upon the density 

functional used in conjunction with the correction. The damping function              used 

in DFT-D3 differs to DFT-D1/2, although it is noted that the importance in choosing a 

particular form of damping function is often overcomplicated, as when averaged over a 

number of density functionals, DFT-D is only weakly dependent on the choice. The form of 

the damping function used in DFT-D3 is based on the work of Chi and Head-Gordon due to 

its stability over multiple dispersion orders. It takes the form 

             
 

              
     

      (B.10)  



176 

 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0 1 2 3 4 5 6 7 8 9 10 

rAB  / Å 

in which   
   is the cut off radius; this is calculated for all possible atom pairs, resulting in 

possible 4465 values.      is a scaling parameter dependent upon the density functional 

used, and    is a steepness parameter, set to 14. The effect of the damping function on the 

dispersion correction can be seen in figure B.1. Figure B.1 (top left) shows the undamped 

values of      where the energy can clearly be seen to become increasingly negative as     

falls below the equilibrium distance   
   = 2.9 Å. Figure B.1 (top right) shows the damping 

function switching from ~1 to ~0 as     falls below   
  , and the product of the two curves 

can be seen in figure B.1 (bottom right). 

 

 

Figure B.1: The role played by the damping function in the DFT-D3 correction of two sp3 
hybridised C atoms. Top left the undamped interaction, top right the damping function, 

bottom the damped interaction 

In DFT-D2 the dispersion coefficients were derived empirically from values such as the 

ionisation potential of an atom. In DFT-D3 the   
   coefficients are derived using time 

dependent DFT starting from the Casimir-Polder formula 

  
   

 

 
               

 

 
    (B.11)  
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where        is the averaged dipole polarisability at imaginary frequency  . The 

polarisability of free atoms is generally higher than that of an atom involved in chemical 

bonding, due to valence electrons being held tightly in covalent bonds. Therefore equation 

B.11 requires modification. Bonded   
   coefficients were obtained by using the hydride of 

each atom, rather than the free atoms to give 

  
   

 

 
   

 

 
           

 

 
        

 

 
 

 

 
           

 

 
          (B.12)

  

where  ,  ,   and   are stoichiometric factors,          ,           and         

correspond to the average dipolar polarisabilities of molecules AmHn, BkHl and H2 at 

imaginary frequencies  . The hydrides of each atom are used simply because every atom 

other than the noble gas atoms forms a stable hydride. In equation B.12 for each atom the 

contribution of the hydrogen atoms to the molecular polarisability is removed by use of the 

H2 dipolar polarisability. Although using reference molecules may be seen as a 

disadvantage, it allows the introduction of coordination number (CN) dependent 

coefficients   
           . This is achieved by replacing the reference hydride for 

common atoms such as carbon with a list of reference molecules with a range of 

coordination numbers for an atom. For example, a simple list of ethane, ethene, ethyne, C-H 

and C could be used to cover the different coordination environments in which carbon is 

found. When calculating the   
            for the interaction between two atoms during 

DFT-D3, initially a coordination number is assigned to each atom A and B using the formula 

     
 

                           
     

   
       (B.13)  

Equation b.13 is a sum that runs over all other atoms in the system.    and    are constants 

with values 16 and 4/3 respectively. The new   
           coefficient is obtained from a 

two dimensional interpolation based on the values of the reference compounds 

      
           . A larger number of reference compounds for a given element will mean 

a greater number of reference points during the interpolation and will produce more 

accurate   
   coefficients. 

As stated earlier, DFT-D3 introduces 8th order dispersion coefficients. These are obtained 

in a manner derived from the work of Starkschall and Gordon [7]: 

  
      

            (B.14)  

where  

              

     
      (B.15)  
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      and       are multipole expectation values that have been obtained from atomic 

charge densities. The nuclear charge stabilising factor,    is he nuclear charge, and     is a 

scaling factor that is redundant due to the scaling factor in equation B.9. 

Returning to equation B.8, the three body term is given by 

                    
    

       (B.16)  

where               is a damping function and      is given by 

     
  

                       

            
    (B.17)  

in which   ,    and    are the internal angles of the triangle formed by    ,     and    . 

  
    is approximated to be the geometric average of the    coefficients, 

  
        

    
    

       (B.18)  

Despite the inclusion of three body terms, Grimme states that their contribution to the 

total energy is very small, especially for small to medium sized systems. For that reason 

the default setting for DFT-D3 is for three body terms to be switched off. DFT-D3 was 

tested on a number of data bases of accurate interaction energies including the S22 

database, the large S22+ database, and others including PCONF, SCONF, ACONF and RG6, 

using a range of density functionals. In all cases DFT-D3 gave interaction energies with a 

mean absolute deviation lower than both the uncorrected density functional and the DFT-

D2 interaction energies. The improvement of DFT-D3 over uncorrected DFT is significant, 

and therefore recommended for consideration when performing DFT calculation on such 

systems. The improvement upon DFT-D2 is much lower, of the order of only a few tenths of 

a kcal mol-1. The increase in complexity from DFT-D1/2 to DFT-D3 is large, and although 

still insignificant with respect to the DFT calculation, DFT-D2 remains a simpler alternative 

to DFT-D3. DFT-D2 has the additional advantage of being incorporated into the popular 

GAUSSIAN ab initio software. 

More recently, Friesner et al. have amassed a large database of highly accurate 

CCSD(T)/CBS level interaction energies[8]. The database includes 2027 CCSD(T) energies, 

which includes almost all the published data available. The database has been used to 

parameterise a DFT correction for B3LYP consisting of three parts- a Lennard-Jones type 

dispersion correction     , a hydrogen bonded term     , and a cation-pi interaction 

correction    . The correction is named B3LYP-MM, and is described by 

                                 (B.19)  
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     takes the form of a Lennard-Jones 12-6 potential with parameters                 and 

    where  

   
           

     
      

        (B.20)  

and  

             (B.21)  

  in equation B.20 is a global scaling factor and   
    is the experimental van der Waals 

radius of  . Therefore the      correction term has only three parameters per atom that 

require parameterisation. 

     is given by 

      –           
    

       (B.22)  

and     is given by 

                
          (B.23)  

where    ,   
   and     are parameters that must be fit, and   

   was set to a value of 5.0 Å. 

Therefore only 5 parameters ( ,   ,    ,   
   and    ) need be fitted for the complete 

B3LYP-MM correction. The performance of the correction is very impressive. A 

comparison of B3LYP-MM, B3LYP-D3 and M06-2X can be seen in figure B.2. Overall it is 

seen that B3LYP-MM performs better than both M06-2X and B3LYP-D3. All three methods 

were used (with the aug-cc-pVDZ basis set and counterpoise corrections) to predict the 

interaction energy for 1715 test systems and the results were compared with the CCSD(T) 

values. B3LYP-MM had a mean unsigned error (MUE) of 0.32 kcal mol-1, M06-2X had an 

MUE of 0.67 kcal mol-1, and B3LYP-D3 had an MUE of 0.87 kcal mol-1. 
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Figure B.2: Comparison of B3LYP-MM (red line), B3LYP-D3 (blue line) and M06-2X (black line) for the 
prediction of the interaction energies of intermolecular complexes. Ref. 111 
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Appendix C 

List of Protein Crystal Structure Codes 
The 80 protein crystal structure codes that amino acids were sampled from in Chapter 3 
when referring to the “small” pool of crystal structures. 

1DP4 1HCL 1DMH 1CCD 1JW9 1REQ 1F6Y 

1KC1 1O70 1PT7 1GLJ 1B3Q 1Q8R 1JMO 

1A53 1CJC 1A6Q 1DOV 1JLY 1EWF 1N8P 

1FL7 1FHE 1GOH 1AZO 2ETA 1CD0 1GH7 

1KW8 1ILV 1JH5 1DT6 1QB3 1FC4 1JB6 

2MSB 1GQW 1GCO 1SZJ 1ZXQ 1I72 1QKI 

1B7V 1HBH 1DNC 1GMO 1AZY 1NUL 1QFJ 

1GRE 1QF7 1A39 1K8T 1DLM 1HLG 1DIR 

2BVW 1DZJ 1F8R 1AHP 1GSE 1QAG 

 1EAE 1B2P 1FG3 2FHI 1TRB 1AY9 

 1FUJ 1L5X 1M32 1TGJ 1FCJ 1C8B 

 1M3K 1A8O 1HMD 1L5Z 1QMV 1M6B 

  

The 260 protein crystal structure codes that amino acids were sampled from in Chapter 3 
when referring to the “large” pool of crystal structures. 

1A70 1PRG 1F9G 1K32 1GUZ 1JZ0 1FUJ 1QF9 1M5U 1HV8 

1DP4 1RA4 1YTI 1RWR 1G2V 1MVX 1F6Y 1KIU 1DM3 1ILV 

1KC1 1DIR 1A22 1N2M 1FAE 1AHP 1HXY 1E9N 1F8R 1SWA 

1A53 1F5W 1PYP 1CQK 1L5X 2FHI 1KEX 1VHH 1MHN 1GQW 

1FL7 1GN9 1GYV 2RAP 1BF2 1TGJ 3PFL 1FC5 1LNS 1TN3 

1MRU 1A48 1E0J 1B3Q 1HJ6 1K1O 1CR7 1QUS 1ATZ 1GR3 

1A99 1IO1 1IQA 1FD4 1BA1 1IJB 1JMO 1Q5Z 1FG3 1H4R 

1G0T 1KJN 1FC3 1JLY 1FEC 1L5Z 1N8P 1AZO 1SXB 1HBH 

1MA3 1DUV 1PT7 2ETA 1GMG 1A8O 1A7Q 1XWL 1GQN 1KMM 

1FT9 1VAL 1A6Q 1HYQ 1QQ2 1KAO 1GH7 1DT6 1M32 1QF7 

1KW8 1FDR 1E6J 1QB3 1H0O 1MB0 1MA1 1SZJ 1QAG 1BEE 

1H6V 1QMV 1FTX 1ZXQ 1GSE 1M3K 1JB6 1IHN 1A0D 1AYB 

1ZOO 1M6B 1KKE 1AZY 1IK4 1B7D 1QKI 1HQ0 1LM7 1EVQ 

1QOL 1HMD 1B6C 1SBP 1PCF 1VCP 1RBC 1K44 1AY9 1PCZ 

2MSB 1CCD 1CSM 1F6B 1TRB 1FEB 1QB4 1IHO 1I6I 1M0Z 

1B7V 1K0E 1D1P 1GL0 1A04 1MMI 1MVB 1G88 1C8B 1DZJ 

1DFN 1HF2 1GOH 1DLM 1I4W 1EZX 1JUQ 1REQ 2MHR 1YDV 

1GRE 1A7N 1FVR 1HQN 1GMJ 1GMO 1KZQ 1CJV 1QML 1VJS 

1TYF 1CJ1 1JH5 1HCL 1A0Z 1DMH 1K8T 1Q8R 1E2E 1DNC 

1CQP 1MOL 1QD9 1QQC 1KXG 1NYL 1QFJ 1EWF 1O70 1CJQ 

1MIZ 1K2F 1GCO 1O8Q 1IUG 1JW9 1O88 1QIM 1CJC 1A39 

1A5W 1IN5 1I01 1GMI 1FCJ 3LYN 1AGN 1CD0 1FHE 1RG7 

1IK3 1GOS 6PTD 1QC7 1LNH 1AYX 1B2P 1FC4 1BOI 1JV3 

1A2Z 1PM4 2BVW 1MXE 1AD1 1EAE 1JIZ 1J54 2DBV 1B24 

1I72 1QO4 1JA3 1TXX 1ML1 1A00 1LFK 1EH9 1MTZ 1GLJ 

1RJ1 1NUL 1CLL 1CII 1HLG 1GEG 1DFQ 1IK6 1LJP 1DOV 
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Appendix D 

MOROS.pl 
Latest stable version: MOROS2.1.pl 

Introduction 
MOROS is a Perl script that fulfils two roles. Firstly, it extracts all amino acid residues of a 

certain type from .pdb files and writes .gjf files for each extracted residue. It is intended for 

use as an alternative to normal modes as a means of sampling structures that will then be 

used to build kriging models from. The second role of MOROS is to perform hydrogen 

sphere experiments. 

This document aims to present the technical details of MOROS, and provide a discussion of 

the reasons why it works in the manner described. The structure of MOROS is based 

around seven core subroutines that extract perform the residue extraction experiments. A 

separate routine performs the horizon sphere experiment. This document will be split up 

according to the subroutine being discussed, with the following order: 

A. Amino acid Extraction: 

1) Setting up for MOROS 

2) Initial input and new directories 

3) Subroutine: ExtractResidue 

4) Subroutine: runHAAD 

5) Subroutine: ChangeAndRemove 

6) Subroutine: makeXYZ 

7) Subroutine: makeGJF 

8) Screening .gjf files, subroutines: checkAtoms and checkBonds 

9) Post subroutine file handling 

B. Horizon Sphere: 

An overview of each subroutine is given at the beginning of each section, followed by a 

technical discussion of key operations. 

Finally, a list of the future aims of MOROS will be presented. When writing MOROS, much 

care was taken to comment the code, almost line by line. If the reader finds that a section of 

this document is not clear, looking at the comments in code may make my description in 

this document clearer. 

Before discussing the code itself, a brief comment must be made on the choice of writing 

MOROS in Perl rather than a scientific language such as Fortran. The reason is simple- 

most of the actions performed by MOROS are file handling tasks, and so a scripting 

language was the obvious choice. There are very few mathematical operations performed 

within MOROS, so Fortran would not have provided any advantage. 

By looking at the structure of the code in more detail, one may initially think that it is doing 

more than it needs to just to write .gjf files (a .pdb and .xyz file is written before writing the 

.gjf file for each sampled geometry). This structure is a relic of how MOROS was originally 

written, but has been left as having a number of file formats for each sampled geometry is 

not a bad thing. Also, the most time consuming task of MOROS is searching the large .pdb 
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files for the desired residues, with the rewriting of the sampled structures being relatively 

very fast. Therefore there is no reason currently to change this structure. 

A. Amino Acid Extraction 

1) Setting up for MOROS 
MOROS is designed to be ran on the CSF, using a SSH client such as SSH Secure Shell. The 

directory that the user wishes to run MOROS from should include the following files: 

 MOROS.pl 

 haad.exe 

 A selection of .pdb files that the user wishes to sample from 

 A file called bondlist.txt that has simply a list of the bonded atoms (example 

below). 

Haad.exe is a program developed by Li et al1 that is used to add hydrogen atoms to the 

sampled geometries as .pdb files typically do not include hydrogen atoms. An executable 

may be downloaded from the web, or may be found on the shared drive of the Popelier 

group.  

There are no special requirements for the .pdb files included, and there is no limit on the 

number to be sampled from. Obviously, the more .pdb files, the more samples may be 

extracted. Some residues are very common, such as alanine and serine, and so relatively 

large numbers of structures may be sampled from a given set of .pdb files. Residues such as 

cysteine and tryptophan are less common and so require a larger number of .pdb files to 

obtain large numbers of sampled structures. 

Finally, bondlist.txt is required for one of the final stages of MOROS where the sampled .gjf 

files are screened for unreasonable bond lengths. The contents is simply a list of all bonds 

between atoms A-X in the system, without double counts (no need for B-A). An example 

content of a bondlist.txt is shown below. 

 

The observant reader will have realised that in to write the bondlist.txt file one needs to 

know the structure. This is unavoidable. Therefore it is recommended that a preliminary 

                                                           
1
 Y. Li, A. Roy, Y. Zhang, Haad: A Quick Algorithm for Accurate Prediction of Hydrogen 

Atoms in Protein Structures, PLoS ONE, 2009, 4, 1-9 
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run of MOROS is first performed on a single .pdb file with the option to screen structures 

by bond length turned off. This is to quickly obtain a structure that can be used to write a 

bondlist.txt file. MOROS can then be ran on a larger number of .pdb files with the screening 

turned on to obtain a large number of high quality structures. 

2) Initial input and new directories 
Upon running MOROS, the user is asked to input three items of information: 

1) The first item is the three letter code of the amino acid code that the user wishes 

to sample, for example SER, TRP, ALA, GLY. This must be in capitals because each 

line of the .pdb file is searched for a matching string of text and .pdb files are upper 

case. 

2) The user is then asked how many atoms the complete amino acid residue 

including methyl caps will have. This is used later to check the completeness of the 

extracted structures. Examples are 23 atoms for serine, and 22 for alanine. 

3) The third question asks the user if they wish to screen the output .gjf files for any 

unrealistically short or long bonds. Either enter “1” for yes or “2” for no. Doing this 

requires the bondlist.txt file to be present. 

At this stage a number of directories are created. The directory “NEWPDBS” is where 

intermediate .pdb files for each structure are written to and where much of the work of 

MOROS takes place. The haad.exe executable is moved into this directory also, and the new 

.gjf files are found in this directory once MOROS is finished. 

A directory for specific haad.exe output files is made: NEWPDBS/HHFILES. Details are 

outlined in the runHAAD subroutine explanation. 

A number of new directories are also created: 

 NEWPDBS 

 HHFILES 

 XYZFILES 

 GJFFILES 

 PDBFILES 

 PDBHFILES 

 BADBONDS 

 BADATOMS 

These directories will be discussed in their relevant sections. 

3) Subroutine: ExtractResidue 

OVERVIEW: 

The first subroutine, ExtractResidue, searches all .pdb files in the directory from which 

MOROS is being ran for the residue input by the user. When a residue of the correct type is 

found, the lines of the .pdb corresponding to the desired amino acid are written into a new 

.pdb file ready to have hydrogen atoms added by haad.exe. The atoms from the preceding 

and following amino acids that correspond to the methyl caps are included in the new .pdb 

file. 

DISCUSSION: 

In this subroutine, MOROS loops though the lines of a number of “parent” .pdb files 

searching for lines that match the format: 
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ATOM      atomnumber  atomtype   residuetype  strand   residuenumber     X coordinate  Y 

coordinate  Z coordinate  1.00 53.29           N   

When a line is found where the residue type matches the three letter code of the amino 

acid input by the user, a new .pdb file is created which has a name corresponding to the 

“parent” pdb file that the amino acids was found in, and the residue number of the amino 

acid in that protein. For example, if MOROS was looping through a .pdb file called 1a09.pdb 

looking for serine residues, and the 23rd residue was a SER, a .pdb file called 1a090023.pdb 

would be made. Into this file MOROS copies the following lines of the “parent” .pdb file: 

 The lines of the parent .pdb file that have the same residue number as the first line 

where the desired amino acid was found. Working by residue number (rather than 

residue type) is required to prevent other residues in the parent .pdb of the same 

type being included in the new .pdb file. 

 The lines of the parent .pdb file that have a residue number one less than the 

residue number of the desired amino acid, and with atom types CA, C and O. This is 

to complete the N-terminus peptide bond and methyl cap. The line for the amide 

nitrogen is also added. Although this will be rewritten as a proton later; including 

it here gives a greater degree of sampling around the methyl rotation. 

 The lines of the parent .pdb file that have a residue number one more than the 

residue number of the desired amino acid, and with atom types N and CA. This is 

complete the C-terminus peptide bond and methyl cap. The line for the acidic 

carbon is also added. Although this will be rewritten as a proton later, including it 

here gives a greater degree of sampling around the methyl rotation. 

A technical note here is that the residue type in the lines of the parent file with residue 

number one more or one less than the desired residue is substituted with “GLY”. By forcing 

the residues to be a glycine, during the next stage when haad.exe is used to add the 

hydrogen atoms, the alpha carbon atoms are seen as glycine residues and so two hydrogen 

atoms and a nitrogen are added, rather than one hydrogen, a side chain, and a nitrogen. 

This is an issue because as well as adding hydrogen atoms, if haad sees an incomplete 

residue it tries to “complete it” by adding the missing heavy atoms as well. Because the 

alpha carbon will become the methyl carbon in the cap, having the maximum number of  

hydrogen atoms bonded to it is desirable, and not having unwanted side chain heavy atoms 

and hydrogen atoms added in arbitrary places is also beneficial. 

An example of an output .pdb file from this subroutine can be seen below. Note the first 

and last two lines written by MOROS. These are required to maintain the format of a .pdb 

file. 
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4) Subroutine: RunHAAD 

OVERVIEW: 

Run haad.exe to add hydrogen atoms to new .pdb files. Haad.exe output files have the 

extension .pdb.h. 

DISCUSSION: 

Haad, standing for Hydrogen Atom ADdition, is an algorithm written by Li et al that MOROS 

uses to add missing hydrogen atoms to the .pdb files output by the previous subroutine. 

See the appended reference for details on the specifics of how haad.exe work. Factors such 

as minimising steric clashes and the possibility of forming a hydrogen bond are considered 

when deciding where to place hydrogen atoms. If there are two possible positions for a 

hydrogen, then a second output file is written with the extension .pdb.h.h. Currently these 

files are moved to the “NEWPDBS/HHFILES” directory and are unused. 

As previously stated, haad.exe also adds any missing heavy atoms in the .pdb files. Because 

the two residues at either end of the structure have been forced to be glycine residues, the 

only heavy atoms deemed to be missing are the oxygen atoms of the acid group of the 

following residue. These atoms along with unwanted hydrogen atoms are removed in the 

next subroutine. 

5) Subroutine: ChangeAndRemove 

OVERVIEW: 

Reads .pdb.h files and writes a .pdb file which has only the atoms desired for the final 

structure. The methyl caps are completed by changing non-hydrogen atom on each methyl 

carbon to hydrogen and scaling the bond length to a C-H bond length. Moves .pdb.h.h files 
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to “HHFILES” directory. Output .pdb files share the name of the .pdb and .pdb.h file, with 

the addition that “_two” is added to the name, for example “1a090032_two.pdb”. 

DISCUSSION: 

The ChangeAndRemove code has a very similar structure to the ExtractResidue subroutine 

because the task which it performs is very similar. ChangeAndRemove loops though each 

line of the .pdb.h files and extracts the atoms that correspond the methyl capped amino 

acid. It does this in a similar method to ExtractResidue, using the residue number and atom 

type specified in each line to identify the desired atoms to write into the output file. 

The notable difference to ExtractResidue is that ChangeAndRemove rewrites the nitrogen 

and carbon atoms bonded to the terminal methyl carbon atoms and shortens the bond 

length. This is illustrated below. 

                        

When the loop matches either the nitrogen atom or the carbon atom that needs replacing, 

the new distance is calculated by the subroutine ReDistance. This calculates new Cartesian 

coordinates that will give a bond length of 0.985 Å (as this is the default C-H bond length 

used within the haad.exe software).  

 Initially the distance between the methyl carbon and the atom of interest is 

calculated 

 A scaling factor,  , of  
     

        
 is then calculated. 

 The new coordinates are then calculated using the following relationships: 

                                            

                                            

                                            

The new distance of 0.985 Å has been chosen for consistency with the two methyl 

hydrogen atoms added by haad.exe, and therefor is open for discussion. If the user wishes 

to change this, simply changing the value of 0.985 Å in the code will do this. When writing 

the line for the output file, the old coordinates are substituted for the new ones and the old 

atom type is substituted for H. 

6) Subroutine: makeXYZ 

OVERVIEW: 

makeXYZ writes a .xyz file for each _two.pdb file and also a .xyz file containing all sampled 

geometries. Incomplete geometries ignored. 

DISCUSSION: 
A very straightforward subroutine. The only point worthy of discussion is that upon 

reading the .pdb file the number of atoms is compared to the expected value input by the 

user when initially running MOROS. The .xyz file is not written if the number of atoms is 

incorrect. 
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7) Subroutine: makeGJF 

OVERVIEW: 

Writes .gjf files from the .xyz file written above, numbered from SYSNAME0001.gjf to the 

total number of sampled structures. It also translates the Cartesian coordinates to the 

origin to prevent problems occurring later in the Pipeline process where .wfn files can be 

written incorrectly if the Cartesian coordinates have both three digits before the decimal 

place and a minus sign. Large coordinates are a consequence of large sampling geometries 

from large proteins where residues may exist large distances from the origin. 

DISCUSSION: 

The key point of discussion here is the translation of the structures to the origin. This has 

to be done otherwise Gaussian writes wavefunctions with coordinates ************* if they 

exceed the character limit. This is a problem when a sampled residue is far from the origin 

of the protein along the negative direction of the Cartesian axes, i.e y = -100.362 Å. Because 

Gaussian converts the coordinates into Bohr, coordinates in Angstroms that do not appear 

to be problematic will be upon conversion (Bohr are smaller than Angstrom!).  

To centre the molecule, the coordinates of the first atom are read and then all the atoms 

have the coordinates of the first atom subtracted from their own coordinates. To prevent 

all structures from having their first atom superimposed, a variable is calculated that is 

dependent upon the initial x-coordinate, , and this is added to the x-coordinate of each 

atom. The variable,  , is calculated as: 

   
   

 
 

Where      if   is negative and     if   is positive.  

The default .gjf header line is written as: 

# B3LYP/aug-cc-pVDZ integral=ultrafine 6D 10F nosymm out=wfn scf=tight 

This is open to discussion. Options to include B3LYP/apc-1 or HF/6-311G** could be 

added if desired, however, the Pipeline gives the option to compile the .gjf files with these 

levels of theory already, so this is not strictly necessary. 

8) Screening .gjf files, subroutines: checkAtoms and checkBonds 

SUMMARY: 
The subroutine checkAtoms ensures that all of the .gjf files have the same elements written 

in the same order in all .gjf files. Files with inconsistencies are moved to the 

“NEWPDBS/BADATOMS” directory. 

checkBonds calculates the distance between all bonded atoms (as specified in the input file 

bondlist.txt), and if the distance does not lie within a range of accepted values it the .gjf file 

is moved to the “NEWPDBS/ BADBONDS” directory. 

DISCUSSION: 

The two subroutines discussed here are included in MOROS because of the imperfect 

nature of .pdb files which can cause spurious geometries to be sampled. Example causes of 

these undesirable structures are incomplete residues, inclusion of hydrogen atoms, and 

averaged/low resolution structures that give unrealistic bond lengths.  
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BADATOMS reads the 0001.gjf file into an array and loops through the lines, writing a list 

of the elements present in the order that they are read. It then loops through all the .gjf 

files, reads the order of the elements in the same way as above, and then compares the list 

with that of the 0001.gjf list. If there are any differences then the .gjf file is moved to the 

directory “NEWPDBS/BADATOMS”. 

BADBONDS reads the bondlist.txt file and to get the list of the bonded atoms. It then loops 

through all the .gjf files and reads the Cartesian coordinates and calculates the distance 

between all bonded atoms. The distance is calculated by a separate subroutine, 

calcDistance. Once the distance is calculated a counter is added to i the value is greater 

than 1.7 Å or less than 0.8 Å. If the counter for a .gjf file is greater than 0, the .gjf file is 

moved to the directory “NEWPDBS/BADBONDS”. The upper and lower limits are arbitrary 

and may be changed. 

9) Post subroutines file handling 
The final task that MOROS takes is to move all output files into their relative folders and 

report how many files of each type are present. This is useful not only because the final 

number of sampled structures is written, but it also breaks down at what stage different 

files are being screened out. 

Nothing beyond simple file handling is involved at this stage and so no detailed discussion 

is warranted.  

The number of sampled structures before any screening is printed on the screen, followed 

by the number of files removed during the BADATOMS subroutine, the number removed 

during the BADBONDS subroutine, and finally the remaining number of complete, ready to 

use .gjf files. 

B. Horizon Sphere 
The second role of MOROS.pl is to build fragments of a protein around a central atom, 

including all atoms within an increasing radius. The default fragment radii are 1.5 Å up to 

10 Å, with a step size of 0.5 Å. When selecting to run a horizon sphere experiment, the user 

is asked for the .pdb file name and the central atom for the fragments to build around. 

The .pdb file used should already have hydrogen atoms added, however once the 

fragments have been build, they must then have hydrogen atoms added around the edge of 

the fragment to satisfy the valence of the outer atoms (which were bonded to atoms 

outside of the fragment radius). 

Final Comments 
As it currently exists, MOROS is able to extract amino acid residues from a number of .pdb 

files. The output structures are written as .gjf files. The structures have methyl caps 

constructed from the relevant atoms of the residues either side of the sampled residue. 

This is completed with no apparent bugs. 

MOROS.pl is also able to perform hydrogen sphere experiments, building protein 

fragments around a central atom. 
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Appendix E 

A List of Atomic Charges for all Systems Studied in Chapter 5 
 

The following table contains the range, standard deviation and average value of the charge 

for all atoms studied in Chapter 5. 

    Charged     Neutral   

  Range 
Standard 
Deviation Average Range 

Standard 
Deviation Average 

Glutamic 
acid             

N1 0.671 0.110 -1.074 0.710 0.110 -1.080 

H2 0.344 0.058 0.394 0.312 0.055 0.400 

C3 0.710 0.103 0.355 0.721 0.099 0.360 

H4 0.440 0.061 0.070 0.403 0.047 0.075 

C5 0.454 0.066 0.033 0.381 0.060 0.039 

C6 1.122 0.203 1.118 1.124 0.195 1.121 

H7 0.409 0.062 0.010 0.394 0.049 0.033 

H8 0.424 0.059 0.026 0.370 0.049 0.046 

C9 0.427 0.066 0.019 0.380 0.058 0.027 

O10 0.658 0.117 -1.006 0.577 0.113 -0.998 

H11 0.341 0.047 0.008 0.388 0.043 0.056 

H12 0.498 0.058 0.022 0.350 0.050 0.068 

C13 1.222 0.229 1.181 1.179 0.217 1.173 

O14 0.545 0.101 -1.017 0.518 0.105 -0.964 

O15 0.567 0.115 -1.096 0.656 0.133 -0.960 

C16 1.036 0.170 1.172 1.111 0.175 1.167 

C17 0.415 0.062 -0.043 0.410 0.062 -0.037 

O18 0.592 0.101 -1.033 0.543 0.100 -1.011 

H19 0.256 0.040 0.038 0.291 0.042 0.050 

H20 0.354 0.042 0.040 0.340 0.040 0.050 

H21 0.290 0.040 0.037 0.286 0.041 0.049 

N22 0.736 0.112 -1.051 0.800 0.108 -1.051 

C23 0.691 0.118 0.276 0.691 0.110 0.277 

H24 0.345 0.059 0.410 0.334 0.053 0.415 

H25 0.316 0.050 0.031 0.265 0.043 0.043 

H26 0.427 0.055 0.030 0.375 0.046 0.042 

H27 0.433 0.056 0.052 0.373 0.051 0.062 

H28       0.261 0.051 0.550 

Aspartic 
Acid             

N1 0.766 0.120 -1.033 0.758 0.121 -1.041 
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H2 0.384 0.062 0.401 0.316 0.054 0.411 

C3 0.684 0.109 0.342 0.658 0.108 0.357 

H4 0.387 0.059 0.070 0.320 0.045 0.082 

C5 0.407 0.060 0.014 0.399 0.051 0.014 

C6 1.165 0.210 1.115 1.135 0.211 1.105 

H7 0.414 0.055 0.034 0.381 0.044 0.072 

H8 0.447 0.054 0.030 0.444 0.048 0.079 

C9 1.292 0.242 1.206 1.208 0.225 1.213 

O10 0.682 0.126 -1.019 0.683 0.122 -0.996 

O11 0.563 0.111 -0.992 0.776 0.115 -0.982 

O12 0.582 0.123 -1.108 0.677 0.135 -0.965 

N13 0.898 0.122 -1.005 0.743 0.119 -0.998 

C14 0.756 0.122 0.239 0.757 0.114 0.243 

H15 0.358 0.066 0.404 0.327 0.057 0.417 

H16 0.473 0.056 0.033 0.331 0.048 0.051 

H17 0.487 0.058 0.031 0.377 0.048 0.052 

H18 0.439 0.057 0.058 0.432 0.052 0.067 

C19 1.061 0.191 1.144 1.177 0.191 1.147 

C20 0.425 0.058 -0.054 0.396 0.052 -0.051 

O21 0.577 0.113 -1.028 0.628 0.114 -1.016 

H22 0.308 0.047 0.046 0.294 0.039 0.066 

H23 0.385 0.048 0.040 0.334 0.040 0.055 

H24 0.402 0.045 0.033 0.411 0.043 0.054 

H25       0.337 0.055 0.563 

Lysine             

N1 0.657 0.103 -1.059 0.635 0.101 -1.058 

C2 0.651 0.098 0.351 0.657 0.094 0.347 

C3 0.851 0.118 1.242 0.843 0.123 1.246 

O4 0.416 0.053 -1.098 0.381 0.053 -1.099 

C5 0.351 0.049 0.040 0.334 0.047 0.040 

C6 0.337 0.048 0.037 0.316 0.048 0.036 

H7 0.358 0.051 0.393 0.336 0.051 0.392 

H8 0.345 0.041 0.059 0.317 0.040 0.055 

H9 0.383 0.047 0.013 0.350 0.041 0.009 

H10 0.320 0.042 0.033 0.295 0.036 -0.001 

H11 0.295 0.041 0.014 0.265 0.039 -0.007 

N12 0.658 0.101 -1.041 0.646 0.101 -1.042 

H13 0.331 0.051 0.414 0.322 0.052 0.404 

C14 0.646 0.100 0.293 0.669 0.101 0.297 

H15 0.354 0.042 0.040 0.343 0.042 0.033 

H16 0.366 0.040 0.051 0.382 0.042 0.041 

H17 0.373 0.044 0.047 0.359 0.046 0.039 

C18 0.896 0.116 1.256 0.905 0.120 1.261 

O19 0.406 0.060 -1.085 0.380 0.056 -1.098 

C20 0.333 0.046 -0.020 0.320 0.046 -0.019 
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H21 0.272 0.035 0.044 0.257 0.032 0.037 

H22 0.272 0.039 0.051 0.251 0.032 0.042 

H23 0.236 0.036 0.051 0.229 0.033 0.037 

H24 0.352 0.042 0.020 0.308 0.039 0.008 

C25 0.405 0.052 0.036 0.364 0.046 0.051 

H26 0.251 0.038 0.009 0.212 0.030 -0.009 

H27 0.263 0.038 0.012 0.229 0.030 -0.008 

C28 0.531 0.075 0.198 0.657 0.084 0.261 

H29 0.251 0.039 0.089 0.224 0.035 -0.004 

H30 0.235 0.036 0.080 0.249 0.034 -0.002 

N31 0.453 0.061 -1.001 0.562 0.091 -0.927 

H32 0.266 0.039 0.477 0.283 0.057 0.319 

H33 0.238 0.038 0.479 0.294 0.057 0.322 

H34 0.240 0.038 0.478       

Histidine             

N1 0.748 0.115 -1.050 0.662 0.111 -1.046 

H2 0.403 0.057 0.391 0.406 0.056 0.388 

C3 0.655 0.109 0.345 0.620 0.106 0.340 

H4 0.384 0.049 0.082 0.350 0.044 0.072 

C5 0.307 0.049 0.030 0.319 0.049 0.039 

C6 0.830 0.134 1.223 0.815 0.136 1.228 

H7 0.419 0.048 0.079 0.413 0.044 0.043 

H8 0.358 0.050 0.076 0.364 0.047 0.036 

C9 0.562 0.104 0.395 0.565 0.109 0.329 

O10 0.478 0.062 -1.070 0.415 0.058 -1.084 

N11 0.720 0.123 -1.070 0.650 0.118 -1.121 

C12 0.610 0.115 0.348 0.756 0.134 0.321 

H13 0.274 0.038 0.518 0.299 0.055 0.443 

C14 0.854 0.148 0.888 0.803 0.157 0.798 

H15 0.233 0.033 0.127 0.285 0.034 0.045 

H16 0.185 0.027 0.167 0.211 0.029 0.074 

C17 0.891 0.128 1.239 0.894 0.133 1.235 

C18 0.306 0.048 -0.033 0.304 0.047 -0.032 

O19 0.482 0.065 -1.074 0.422 0.063 -1.084 

H20 0.281 0.042 0.058 0.258 0.037 0.045 

H21 0.291 0.041 0.060 0.257 0.035 0.051 

H22 0.297 0.042 0.063 0.268 0.037 0.048 

N23 0.765 0.111 -1.016 0.753 0.109 -1.028 

C24 0.615 0.102 0.270 0.648 0.106 0.274 

H25 0.365 0.064 0.403 0.328 0.060 0.405 

H26 0.403 0.041 0.048 0.331 0.041 0.035 

H27 0.300 0.039 0.056 0.320 0.043 0.041 

H28 0.368 0.045 0.076 0.342 0.048 0.060 

N29 0.666 0.117 -1.137 0.792 0.137 -0.955 

H30 0.176 0.028 0.507       
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Arginine             

N1 0.309 0.056 -1.125 0.621 0.097 -1.072 

H2 0.141 0.017 0.426 0.311 0.045 0.397 

C3 0.288 0.041 0.367 0.618 0.083 0.355 

H4 0.156 0.022 0.038 0.252 0.031 0.051 

C5 0.151 0.022 0.083 0.278 0.046 0.047 

C6 0.647 0.097 1.379 1.060 0.182 1.193 

H7 0.187 0.028 0.000 0.331 0.040 0.020 

H8 0.192 0.029 -0.028 0.279 0.039 -0.004 

C9 0.130 0.021 0.081 0.354 0.046 0.047 

O10 0.302 0.039 -1.166 0.613 0.107 -1.055 

H11 0.161 0.024 0.002 0.311 0.030 -0.004 

H12 0.193 0.030 0.009 0.328 0.036 0.011 

C13 0.286 0.045 0.366 0.569 0.089 0.346 

H14 0.131 0.022 0.029 0.226 0.031 0.005 

H15 0.129 0.021 0.017 0.219 0.034 0.009 

N16 0.440 0.073 -1.087 0.785 0.106 -1.018 

H17 0.105 0.013 0.456 0.290 0.046 0.384 

C18 0.770 0.124 1.428 1.060 0.180 1.147 

N19 0.403 0.063 -1.138 0.737 0.117 -0.957 

H20 0.140 0.019 0.487 0.647 0.104 -1.030 

H21 0.154 0.016 0.480 0.307 0.055 0.317 

N22 0.402 0.063 -1.124 0.320 0.053 0.382 

C23 0.298 0.046 0.371 0.303 0.050 0.388 

H24 0.146 0.022 0.423 0.724 0.102 -1.052 

H25 0.201 0.035 0.025 0.620 0.094 0.297 

H26 0.222 0.030 0.029 0.307 0.042 0.409 

H27 0.208 0.033 0.024 0.255 0.040 0.043 

C28 0.575 0.081 1.392 0.294 0.043 0.040 

C29 0.125 0.020 0.049 0.370 0.043 0.041 

O30 0.297 0.036 -1.186 0.959 0.148 1.246 

H31 0.163 0.028 0.024 0.244 0.043 -0.010 

H32 0.126 0.023 0.013 0.558 0.087 -1.080 

H33 0.127 0.020 0.029 0.218 0.032 0.038 

N34 0.354 0.063 -1.133 0.275 0.032 0.030 

H35 0.111 0.015 0.480 0.186 0.029 0.041 

H36 0.100 0.015 0.481       
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Multipolar electrostatics

Salvatore Cardamone,ab Timothy J. Hughesab and Paul L. A. Popelier*ab

Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics

that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture

the anisotropic nature of electronic features such as lone pairs or p-systems. Higher order electrostatic

terms, such as those offered by a multipole moment expansion, naturally recover these important

electronic features. The question remains as to why such a description has not yet been widely adopted by

popular molecular mechanics force fields. There are two widely-held misconceptions about the more

rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments,

compared to point-charges, offers little to no advantage in terms of an accurate representation of a

system’s energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is

computationally prohibitive compared to simulation using point-charges. Whilst the second of these may

have found some basis when computational power was a limiting factor, the first has no theoretical

grounding. In the current work, we disprove the two statements above and systematically demonstrate that

multipole moments are not discredited by either. We hope that this perspective will help in catalysing the

transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

1. Introduction

Atomistic simulations of large systems over long time scales
can only be achieved by using energy potentials, rather than by
solving the Schrödinger equation on-the-fly. The question is

then how to best represent an atom such that it interacts with
other atoms in a realistic manner. A convenient and trust-
worthy way to answer this question is to start from the electron
density, because from the first Hohenberg–Kohn theorem we
know that a system’s total energy can be obtained just from its
electron density. The original question can then be rephrased
as to how one should represent the electron density of a given
atom while it is part of a system. Surprisingly, the current and
predominant view is to think of an atom in a system as being
spherical. This picture corresponds to representing the atomic
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electrostatic potential as being generated by an atomic point-
charge. This means that a single number (the point-charge) is
associated with the atom’s nucleus while assuming that this
number summarises the complexity of the atomic electron
density sufficiently well in order to predict its electrostatic
interaction behaviour.

A simple example shows that this view cannot be right. In
Fig. 1 we consider the global energy minimum of the water
dimer.1 This case serves to illustrate an essential argument that
also applies to hydrogen bonding in general, p–p stacking and
halogen bonding, which will be discussed in detail much later.
A typical ab initio calculation on the water dimer will produce
a ‘‘flap angle’’ a of about 451, while a point-charge model
(i.e. single charge for each atom) will generate an a angle about
251. Disregarding the irrelevant details of the level of theory
used or the exact nature of this point charge-model,2 it is clear
that the latter cannot predict the required tilt in the water
molecule at the right hand side. Only when extra off-nuclear
point-charges are added to oxygen does the geometry prediction
improve. Equally, if point multipole moments are added to
the oxygen then the prediction improves substantially. This
example shows that the currently ubiquitous treatment of
electrostatic interaction cannot be correct. This simply case
study is relevant because it is generally acknowledged that

medium-strength hydrogen bonds can be properly described
by the electrostatic interaction.

In summary, a point-charge is spherically symmetric
(or isotropic) and therefore it has no directional preference
while interacting with another point-charge. However, a point
multipole moment on a nuclear site prefers another point
multipole to be oriented in a certain way, in order to lower
the multipole–multipole interaction energy (for examples see
Fig. 3.2, 3.3 and 3.4 in ref. 3). This anisotropy makes a multi-
pole moment directional.

This perspective brings together contributions that high-
light the shortcomings of point-charges. It will argue, based on
clear and consistent evidence, that the point-charge model is
inherently limited in terms of accuracy, provided one intro-
duces only one charge per atom. If more off-nuclear charges are
introduced then the accuracy improves but this perspective
focuses on a mathematically more elegant solution, which is
that of multipole moments. As this perspective delivers the
evidence for the superiority of multipole moments over point-
charges it aspires that the status quo of the use of point-charges
will change.

We can ask, however, if the inadequacy of current point-
charge force fields actually matters over very long time scales,
when energy errors can perhaps cancel each other. Might these
errors become irrelevant fluctuations drowning in the large
scale (space and time) phenomena the molecular simulator
is interested in? Apparently not, if one reads a very recent
statement published4 in the Conclusions of 100 ms molecular
dynamics simulations on 24 proteins. For most of the 24
proteins studied, the simulations drifted away from their native
structure (initiated from homology models). The authors stated
that ‘‘In our view, it is probably more beneficial in the long run
to focus on the development of better force fields than on the
development of sophisticated methodologies for scoring structures
realized in simulation’’.

Multipole moments have been introduced decades ago in
the field of atomistic energy potentials but they are still not part
of the mainstream theoretical treatment of electrostatic inter-
action, its applications nor concomitant software. Yet, multipole
moments arise naturally and rigorously in the treatment of
interactions governed by an inverse distance (or 1/r) depen-
dence. In the following we focus on the essence of what a
multipole expansion achieves while omitting mathematical
details that can be found elsewhere.3,5,6 Fig. 2 schematically
shows two interacting charge distributions (left and right). To
simplify matters we put the origin inside the left charge
distribution and set the origin of the right distribution at R.
The position vector r describes the left distribution by sweeping
its volume, while the vector r0 does the same for the right
distribution while being based at R.

One can think of an infinitesimal bit of electronic charge
density, located at r, interacting with an infinitesimal bit of
charge density located at r0 + R. These two interacting charge
bits are separated by a distance |r � (r0 + R)|. If one wants to
know the total interaction between the two charge densities
then one needs to sum over all the possible pairs of interacting

Fig. 1 A schematic geometry of the global minimum of the water dimer
obtained by a point-charge model (a B 251, orange) and an ab initio
calculation (a B 451, green).
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infinitesimal charged density. This full summation is in fact a
six-dimensional (6D) integral running over the three-dimensional
coordinate space of the left charge distribution and that of the
right distribution. The use of so-called addition theorems3

enables the expression 1/|r � (r0 + R)| to be factorised into factors
that depend on a single variable only, that is r, r0 or R. This
factorisation leads to multipole moments. They can be pre-
computed, that is, calculated separately for the electron distribu-
tion described by r, and separately for that described by r0. It is
important to realise that this pre-computation of the multipole
moments is done independently of the geometry of their
interaction. This explains the enormous advantage of this
pre-computation because the 6D Coulomb integral does not
have to be calculated anymore. Instead, it can be replaced by
two 3D integrals, each yielding the numerical values of the
respective multipole moments. However, the price paid for this
huge advantage is possible divergence of the multipolar series
expansion. In any event, multipole moments describe the full
complexity of the charge distribution at hand, whether it is
molecular, atomic, ionic, covalent or metallic. With increasing
multipolar rank l the multipole moments ‘‘pick up’’ an increasing
number of features of this charge distribution. The more compli-
cated the deviation from isotropy of the charge distribution the
more multipole moments are necessary, exactly in order to capture
this anisotropy, which point-charges miss.

The atomic charge, which is intrinsically isotropic, corre-
sponds to the zeroth moment or the monopole moment (l = 0).
It should be clear from the discussion above that the atomic
charge offers only the simplest of descriptions of two inter-
acting electron distributions. Higher rank moments (i.e. dipole
moment or l = 1, quadrupole moment or l = 2, etc.) successively
add more detail in their description of the electron distribu-
tion. The various terms of the electrostatic energy (appearing in
the multipolar expansion) can be bundled by the interaction
rank L. This rank is defined as the sum of the ranks of the
interacting multipole moments on site A and B incremented by
one, or L = lA + lB + 1. This interaction rank is the inverse power
appearing in the expression R�L, in which R is the distance
between the respective sites at which the interacting multipole

moments are centred. The lowest possible rank of L is 1, which
corresponds to the interaction between point-charges, which is
the longest possible range of electrostatic interaction. It should
not come as a surprise that truncating the multipolar series
already at the very first term (L = 1) harms the proper descrip-
tion of the intricacy of a given electron distribution.

In summary, many mathematical details and technical
issues have been omitted in order to focus on the main points.
Interested readers can find them in a recent review.7 However,
this discussion has set the scene and simply introduced a few
important concepts that will recur. We should point out that
older literature has been omitted in order to make the perspec-
tive more timely or because a more recent case study makes the
same point as an older one. For example, a paper8 by Ritchie
and Copenhaver published in 1995 compared the electrostatic
potential generated by an atom-centered multipole expansion
(up to l = 3) with that generated by potential-derived charges
surrounding some natural and synthetic nucleic acid bases.
The multipolar electrostatics always improved the rms error, by at
least 10% to 30%, resulting in differences as large as 15 kJ mol�1.
Such conclusions are reminiscent of later work9 or much more
recent work10 by Slipchenko, Krylov, Gordon and co-workers, as
discussed in Section 2.1.4.

This perspective is organised as follows. The discussion
starts, in Section 2, by addressing the increased accuracy of
atomic multipole moments over point-charges when modelling
the electrostatic interactions between molecules. The application of
multipolar electrostatics to both polar systems (water, hydrogen
bonding, halogen bonding, biomolecules and solvation) and non-
polar systems is addressed. Section 2 also focuses on crystal
structure prediction of organic molecules in a separate subsection.
Subsequently, Section 3 addresses the efficiency of the imple-
mentation of atomic multipole moments in the context of both
molecular simulation and in the transferability of multipole
moments. Finally, Section 4 focuses on currently used multi-
polar methodologies are briefly discussed, in particular
AMOEBA, SIBFA and NEMO. A rather poignant conclusion
briefly summarises the current state-of-affairs.

2. Accuracy
2.1 Polar systems and intermolecular interactions

2.1.1 Water. Early electrostatic potentials for water consisted
of atomic point-charges fitted to reproduce the bulk properties of
liquid water. Examples include the simple point-charge (SPC)
model and the TIP3P potential. These potentials are still used11

today in spite of both suffering from the same known pitfalls,
such as accurately reproducing the experimentally observed
radial distribution function (RDF) for O� � �O (i.e. gOO(r)), or a
reliable dependence of liquid density on temperature. Attempts
at improving the description of water involve additional charge
sites, intended to represent the oxygen lone pairs. The TIP4P
and TIP5P potentials2,12 and the ST2 potential13 are of this type.
Despite an improved representation of the dielectric constant
of bulk water and gOO(r) over TIP4P and TIP3P, TIP5P still

Fig. 2 A schematic representation of the Coulomb interaction between
two charge distributions (left and right). Each distribution is described by a
vector (r or r0 + R) that sweeps the volume of the respective distribution.
The vector r marks the position of an infinitesimal charge density that
interacts with another infinitesimal charge density at position r0 + R. The
two infinitesimal charge distributions are separated by a distance |r� (r0 + R)|.
The inverse of this distance can be separated into factors depending only on
r, on r0 or on R.
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poorly reproduces properties such as the heat capacity and the
density versus temperature profile.

The anisotropic site potential for water (ASP-W)14 uses an
atom-centred Distributed Multipole Analysis (DMA)15 expan-
sion, with multipole moments up to quadrupole on oxygen and
dipole on the hydrogens, computed at MP2 level. When ASP-W
was compared with the point-charge potentials CKL16 and
NCC,17 and the multipolar potential PE,18 only PE provided
comparably accurate minimum energy geometry for the water
dimer. The ASP-W potential has been further improved to
ASP-W2 and ASP-W4.19,20 The atomic multipolar expansions for
ASP-W4 is now truncated at the hexadecapole level, and all inter-
action terms included up to rank L = 5. The ASP-W2/4 potentials give
a more detailed description of the potential energy surface (PES)
of the water dimer than that of many other water potentials.
This potential was also used by Saykally and co-workers21 in the
interpretation of their terahertz laser vibration-rotation-
tunneling spectra and mid-IR laser spectra22 of water clusters
from the dimer to the hexamer. Over a temperature range of
373–973 K, ASP-W2/4 gave values for the second virial coefficient,
B(T), close to the experimental values, which is an improvement
over TIPnP (n = 3, 4 or 5) point-charge models.

More recently, a novel non-polarisable, multipolar water
potential was published,23 with atomic multipole moments up to
hexadecapole moment on all atoms (here called ‘‘QCTwater’’).
Multipole moments of so-called topological atoms were introduced,
defined by Quantum Chemical Topology (QCT).24–26 QCT is a
generalisation of the Quantum Theory of Atoms in Molecules,27

which defines atoms as natural subspaces in the electron density
using the minimal concept of the gradient path.28 Molecular
dynamics simulations were run on 216 water molecules under
periodic boundary conditions using QCTwater in order to test the
reproduction of bulk thermodynamic and structural properties.
QCTwater predicted the maximum density to be at 6 1C, in good
agreement with the experimental value of 4 1C. Monte Carlo
simulations using TIP3P and SPC did not reproduce a maximum
density at all (within [�50 1C, 100 1C]). TIP4P and SCP/E predicted
maximum densities at �15 1C and �38 1C, respectively. At a
temperature of 300 K and pressure of 1 atm, QCTwater recorded
a density of 996 kg m�3, only 0.5 kg m�3 below the experimental
value. Upon increasing the pressure, the experimentally observed
increase in oxygen coordination number from 5 to B7.5 was also
reproduced by QCTwater.

QCTwater also outperformed29 TIP5P when predicting bulk
thermodynamic properties such as the diffusion coefficient,
thermal expansion coefficient and the isobaric heat capacity of
liquid water. QCTwater was also able to reproduce both the
experimental O� � �O RDF and the plot of the experimental diffusion
coefficient versus temperature to high accuracy. Due to the inclusion
of atomic multipole moments, QCTwater produced a more
organised, directional hydrogen-bonded network in the first
and second hydration shell compared to TIP4P and SPC.

Because they have parameterised for the reproduction of the
bulk properties of liquid water, most point-charge potentials poorly
describe ice surfaces and small clusters. The ‘induction model’
for water30 models each water molecule by a centre-of-mass

multipolar expansion. A comparison to ab initio calculations of
the electric field inside a vacancy in ice showed that 70% of the
electric field is dipolar and that a hexadecapole was needed.

TIP4P and ASP-W4 were also used to model the behaviour of
water adsorbed onto a NaCl surface.31 The experimental adsorp-
tion isotherm for water on NaCl showed four distinct regions: a
low coverage region, a transition region, a high coverage region
and a presolution region.32 Monte Carlo simulations of the low
coverage and high coverage regions were performed using both
water potentials. At high coverage, only ASP-W4 predicted a more
ordered structure, with three distinct layers of water due to
interactions between water molecules with the Na+ and Cl� ions,
while TIP4P did not reproduce this layering.

2.1.2 Hydrogen bonding. Hydrogen bond interactions are
not only strong, but are also observed to be highly directional.
In many cases this directionality is due to anisotropic features
in the electron density, most often as the lone pairs of the
acceptor atom.33–35 Isotropic atomic point-charges are unable
to accurately reproduce experimental bonding geometries for
a range of molecules.36–42 The Buckingham–Fowler model,43

which combines DMA’s multipolar electrostatics with a simple
hard-sphere repulsive potential, provides several examples44

where point-charges fail, either by leading to a spurious energy
minimum, or giving quite misleading electrostatic energies.
The multipolar electrostatics of this model also successfully
predicted the geometries of a great variety of van der Waals
complexes.45

Efforts to model the directionality of hydrogen bonding
within a point-charge framework either: (i) apply additional
functions only to hydrogen bonding atoms, or (ii) add partial
charges, typically at the positions of lone pairs. Allinger and
Lii46,47 implemented a directionality term into the hydrogen
bonding potential of the MM3 force field, improving agreement
with the ab initio MP2/6-31G** values. Kollman et al. developed48

a methodology for deriving additional lone pair point-charges for
use within a revised version of the AMBER force field. The new
potentials showed that the additional sites reproduced much of
the directionality observed in MP2 calculations. The additional
point-charges also led to improved molecular dipole moments,
in turn leading to more accurate thermodynamic properties
upon molecular simulation.

Kong and Yan49 showed that multipole moments correctly
describe both the directionality and strength of hydrogen
bonding for many systems. A minimum interaction rank of
L = 3 was required to reproduce the bent structures of the
dimers of the hydrides of N, O, F, S and Cl. ‘Bending’ forces
arising from dipolar and quadrupolar interactions played a key
role in determining intermolecular bond angles. Similar results
were found by Shaik et al.50 where at least L = 5 was needed to
reproduce the optimised ab initio structures for water clusters
and the hydrated amino acids serine and tyrosine. Again, in
models where only point-charges were included (i.e. L = 1),
pseudo-planar ring geometries were predicted that ended up
too ‘‘flat’’, i.e. the hydrogen atoms did not enough stick out of
the (approximate) plane formed by the oxygen nuclei. However,
as the number of water molecules in the cluster increased,
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models including only lower order moments made better
predictions than for smaller clusters. This is due to two effects:
(i) for larger clusters there is an increase in the number of long-
range interactions, which are well described by low rank terms,
and (ii) water molecules in larger clusters are locked into more
rigid hydrogen-bonded networks. This conclusion agrees with
the observed success of many point-charge potentials capable
of describing ‘bulk’ properties, despite their inability to provide
reliable results when implicit water molecules are present.

Ponder et al.51 also came across the superiority of multipolar
electrostatics in their work on hydrogen bonding. They calculated
the hydrogen bond association energy of the formaldehyde� � �water
complex as a function of the O–H� � �OQC angle, using both their
own multipolar force field AMOEBA,52 the point-charge force field
OPLS-AA, and MP2/aug-cc-pVTZ. OPLS-AA is incapable of repro-
ducing the energy minima at B1001 and B2601, while AMOEBA
showed a similar shape to the MP2 curve.

In comparisons such as the one above, one should keep in
mind the concept penetration of energy. At short range, even
when the multipole expansion still converges and were taken to
infinite order, the multipolar energy is in error by an amount
called the penetration energy.3,53 For a typical hydrogen bond
of 20 kJ mol�1, the penetration energy is about 8 kJ mol�1,
which amounts to about 40% of the bond energy. As a result,
improvements in the multipole expansion are of limited value
without simultaneous improvements in the penetration energy.
A simple analytic calculation of the electrostatic interaction
between a proton and a hydrogen-like atom of nuclear charge Z
shows that the electrostatic potential V(r) in a point at a
distance r from the origin is not �1/r. Instead one finds that
V(r) = �1/r + exp(�2Zr)(Z + 1/r). After trivial rearrangement one
can write V(r) = �1/r[1 � exp(�2Zr)(rZ + 1)], where the latter
correction factor is called a damping function. This function
becomes unity at long range and tends to zero at short range.
Damping functions54 specifically for the electrostatic interaction
appeared as late as 2000. The origin of the penetration energy is the
fact that the proton probe at whose position the electrostatic
potential is evaluated, lies within the electronic charge cloud that
generates the potential.55 It should be emphasised that topological
atoms (see QCT) do not need a correction for penetration energy
because their finite volume makes it possible for a given point
to lie completely outside the (topological) atom (that generates
the electrostatic potential).

Secondly, the ultimate reliability of a force field is only as
high as its overall balance of energy contributions. In other
words, the quality of the multipolar electrostatics needs to be
matched by a high-quality representation of the non-electrostatic
terms, as well as the treatment of polarisation. The latter receives
much attention in this article but this should not give the false
impression that the other terms are not important. This high
exposure to polarisation is because the main topic of this article
is the electrostatic treatment in force fields and polarisation is
tightly intertwined with it. In summary, one should recognise that a
force field using multipole moments may be successful more
because of better parameterisation of the exchange-repulsion, for
example, than because of the multipole moments themselves.

Indeed, van der Waals and exchange-repulsion energies can
introduce errors of similar sizes as the penetration energy.

Inspired by earlier multipolar simulations56 on liquid HF,
Shaik et al.57 ran simulations on liquid imidazole (a hetero-
cyclic aromatic ring) where the electrostatics are described by
atomic multipole moments up to hexadecupole. Compared
to both OPLS-AA and AMBER simulations, QCT predicted a
greater quantity of hydrogen-bonded imidazoles and a lower
quantity of stacked imidazoles. This is a consequence of higher
order multipolar electrostatics reproducing the directionality of
the hydrogen bond, organising the molecules to form a more
hydrogen-bonded network. QCT showed strong agreement with
the experimental densities, whereas AMBER predicted densities
consistently much lower than experiment.

The same authors also performed58 simulations at room
temperature and pressure for aqueous imidazole solutions at
different concentrations from 0.5 M to 8.2 M. The density of the
solutions in QCT simulations depended on concentration, in
very good agreement with experiment up to 5 M, after which QCT
started underestimating experiment. The AMBER potential consis-
tently underestimated the solution’s density for all concentrations
by almost 0.02 g cm�3. The QCT system recovered the diffusion
coefficient for pure water. In contrast, AMBER predicted a signifi-
cantly overestimated diffusion coefficient for pure water. The two
potentials generated notably different local environments, as seen
by RDFs and spatial distribution functions (SDFs).

In 2014, the same group published59 a dual study on the
hydration of serine: (i) static level, i.e. by geometry optimisation
via energy minimisation of a microhydrated cluster of serine and
(ii) dynamic level, i.e. or by the molecular dynamics simulation and
RDF/SDF. At static level, multipolar electrostatics best reproduces
the ab initio reference geometry. At dynamic level, multipolar
electrostatics produces more structure than point charge electro-
statics does, over the whole range. The SDF shows that only
multipolar electrostatics shows pronounced structure at long
range. Even at short range there are many regions where waters
appear in the system governed by multipolar electrostatics but
not in that governed by point charges.

Fig. 3 shows the distribution of water molecules58 in an
aqueous imidazole solution from the point of view of the
nitrogen atom in imidazole to which a hydrogen is bonded. This
atom is referred to as NH and each coloured dot (red or green)
represents the position of a water’s oxygen atom. This NH� � �O

Fig. 3 Comparison of QCT (green) and AMBER (red) in terms of Spatial
Distribution Functions (SDFs) of NH� � �O (isovalue = 2.0 (left) and 3.0 (right)).
The carbon atoms are shaded in light blue. [Source: J. Phys. Chem. B, 2011,
115, 11389.]
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SDF shows that the distribution of oxygen atoms adjacent to NH

(AMBER, red) is asymmetrical at lower isovalues, such as 2.0
(Fig. 3, left panel). At the higher isovalue of 3.0 (right panel), the
distribution becomes more circular and its centre coincides
with the N–H bond axis. In contrast, the distribution of
neighbouring oxygen atoms in the QCT simulations (green) is
always symmetrical and centred on the N–H bond axis. This
case study is a clear example of the qualitative difference in
predictions made on solute–solvent structure by point charges
versus multipole moments. Based on a dual RDF and SDF
analysis (beyond Fig. 3) this work58 also revealed pronounced
differences in the number and ratio of stacked versus hydrogen-
bonded imidazole dimer in water.

A ‘‘weak hydrogen bond’’60 is one where the donor atom is
not a strongly electronegative atom. Typical examples include
C–H� � �N/O61 or C–H� � �p.62,63 These interactions can be of signifi-
cance for the chiral recognition of a substrate by proteins and
also for stabilising the conformations adopted by important bio-
molecules.64 Simulations utilising classical point-charge force fields
do pick up on such interactions to some extent. However, the work
of Westhof et al. showed that the cutoff distance for electrostatic
interactions must be large in order for weak hydrogen bonds to be
observed.65 DMA quadrupole and octopole moments are necessary
to find the full range of observed structures of aromatic hetero-
cycles interacting with water compared to when only monopole and
dipole moments were used.66 Obviously, the widely used point-
charge models such as AMBER, CHARMM and OPLS are currently
unable to account for such interactions.

2.1.3 Halogen bonding. There is a growing literature
describing what has been termed the ‘halogen bond’, where
the halogen atom acts as an electrophile and interacts with a
nucleophilic partner in a linear fashion. These linear halogen
bonds can be both as strong as hydrogen bonding, ranging
from B4 to 160 kJ mol�1, and as directional. Because of this
directionality halogen bonds can also influence the structure of a
system in a similar fashion to hydrogen bonds. It may therefore be
assumed (correctly) that atomic point charges will be insufficient
to reproduce halogen bonding. The linear pattern of bonding was
first reported by Ramasubbu et al.67 in 1986, who inspected the
adopted crystal structures of halogen atoms within the Cambridge
Crystallographic Database. Since its discovery, the halogen bond
has been the subject of many studies on its origin and nature.68–71

Torii and Yoshida showed that the quadrupole moment Yzz

of halogen atoms, where the z-axis is defined as the direction of
the C–X bond, describes a positive region on the surface of the
halogen atom ‘‘on the opposite side’’ (or at 1801 degrees on the
z-axis where 01 is on the C atom). This region is commonly
referred to as the s-hole, and its position accounts for the
observed linear bonding to nucleophiles.69 Halogen bonding
was proven to be dictated primarily by electrostatic effects through
the work of Tsuzuki et al.68 who studied C6F6X and C6H6X each
interacting with pyridine.

Due to the observed anisotropy in the electronic distribu-
tion, point-charges fail to correctly model halogen bonding. In
an attempt to introduce halogen bonding into the molecular
mechanics (MM) force field AMBER, an extra-point (EP) of

positive charge was added to the halogen atoms of 27 halogen
containing molecules,72 to mimic the position of the s-hole.
The MM interaction energies of complexes of halogens with Lewis
bases had a rms error of only 1.3 kcal mol�1 relative to the MP2
energies. The inclusion of the EP charge sites also improved the
molecular dipole moment for a range of halogenated molecules. In a
medicinal chemistry application of the EP model, a simulation was
carried out on 4,5,6,7-tetrachloro-, bromo-, and iodobenzotriazoles
in the active site of the enzyme phospho-CDK2/cyclin. The distribu-
tions of the halogen bond angles were in good agreement with the
known order of strengths of the different halogens in their bonding.
When the standard AMBER potentials were used without the EP
charge sites, no halogen bonding was observed, with the X� � �O
distances much larger than in the X-ray structures. Compared to EP,
a multipolar force field avoids such ad hoc extensions altogether.
Until such force fields were readably available, QM/MM calculations
were suggested as an alternative to force fields.73 According to very
recent work74 an approach to describe the geometries by electro-
statics alone, without allowing for the anisotropy of the exchange
repulsion, is likely to be unsuccessful.

2.1.4 Solvation. AMOEBA has been designed to overcome
the incapability of AMBER (e.g. ref. 75) and CHARMM of deal-
ing with polarisation, especially that of solvated ions, which
create large local electric fields. Each atom in AMOEBA is
represented by a permanent partial charge, dipole moment and
quadrupole moment, and many-body terms such as polarisation
are handled explicitly through a self-consistent dipole polarisation
procedure. The AMOEBA force field has been applied to investi-
gate the solvation of many ions in water,76–78 including Cl�, Na+,
K+, Mg2+ and Ca2+. Grossfield et al.77 showed that despite the
AMOEBA parameters being derived from calculations of gas-phase
molecules, inclusion of polarisation terms allows both accurate
and transferable single-ion solvation free energies and also solva-
tion free energies of whole salts in both water and in formamide.
The whole-salt free energies of solvation varied from experimental
results by only 0.6 kcal mol�1 on average, whereas the OPLS-AA
and CHARM27 force fields deviated from experiment by 9.8 and
6.6 kcal mol�1, respectively. In the RDF of solvent molecules
around the K+ and Cl� the non-polarisable force fields show
overstructuring, a consequence of fixed point-charges, favouring
only a limited range of geometries.

2.2 Non-polar systems

The ability to replicate p-interactions rests on toroidal electronic
features above and below the electron-poor plane in ring systems.
Spherical electrostatic potentials emanating from atomic centres79

do not account for this type of system. The electrostatic properties
of saturated hydrocarbons were modelled80 by a point-charge, +p,
placed on hydrogen sites, and an opposing charge of �2p centred
on the carbon. Whilst this assignment allowed for the reasonably
accurate prediction of hydrocarbon crystal structures, the model
failed for aromatic systems, even qualitatively. Price81 demon-
strated that the use of DMA convincingly exposed deficiencies in
this ‘‘separated point-charge’’ model.

A study82 on aromatic stacking proposed that p-stacking
arises from an interaction between the electron-rich toroids out
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of the aromatic plane with the electron-poor s-backbone of
another aromatic species. As such, a point-charge of �p above
and below the aromatic plane, in addition to a compensatory
+2p point-charge on each carbon atom in the plane, accounts
for these electronic features. This model may recover the
preferred parallel-displaced conformation of two aromatic
molecules. Given a system of two aromatic complexes, for
example C6H6� � �C6H5X, one may postulate relative interaction
energies based upon the identity of X. An electronegative group
seizes electronic population from the p-system in C6H5X. This
effect results in a decreased electrostatic repulsion between the
two interacting p-systems, and enhances the net electrostatic
interaction. An electropositive group, on the other hand, would
contribute towards the p-system, thus inducing a net electro-
static repulsion by the opposing mechanism. Such a simplistic
model has been criticised by several groups,83 claiming that an
enhanced interaction is observed relative to the benzene dimer,
regardless of the identity of X. It was, however, confirmed that
electron-withdrawing groups enhanced the interaction more
than those which were electron-donating.

The subtle role of electrostatics in such small non-polar
systems implies that their modelling requires an equally subtle
description of underlying electronic properties, where dispersion
is also shown to be a key factor.84 Such distinct electrostatic
features may by captured by the implementation of multipole
moments, shown in work85 where three benzenoids with large
negative, neutral and large positive quadrupole moments were
complexed with a small molecule (HF, H2O, NH3 and CH4)
geometry optimised. The multipole moments clearly governed
the energetically favoured geometries of the various complexes.

Past work86 demonstrated that a single central multipole
moment expansion diverges with increasing expansion rank.
However, a distribution of the multipole moments over the
atoms, such as in DMA, overcomes this problem. Such a
method recovers correct orientations and electrostatic inter-
action energies. In a different study, electrostatic minima for
several van der Waals complexes were located87 by a point-
charge model and a full DMA up to hexadecapole moment. A
notable example in this work utilises the Buckingham–Fowler
model to predict five minimum energy conformations of the
benzene dimer. The point-charge model predicts the global
minimum to be the parallel dimer. In contrast, the DMA model
yields a conformation that complies with the ab initio level
calculation, whereby the most favourable conformation is that
of the parallel-displaced dimer. In addition to this, relative
energies between the five minima were found to be poorly
represented by the point-charge model compared to full DMA.

This inability of point-charge electrostatics to reproduce
ab initio derived conformations of benzene dimers has been
reiterated in the work of Koch and Egert.88 To demonstrate that
the inclusion of anisotropic electrostatic features is imperative not
only in small, isolated systems, they considered an additional,
supramolecular system of a benzene molecule situated within the
cavity of a hexa-oxacyclophane host. Here, a T-shaped complex
is formed between the benzene and hydroquinone fragments of
the cyclophane. A point-charge energy minimisation resulted in

a structure where hydroquinone fragments formed parallel-displaced
configurations with the benzene molecule. In contrast, the usage of
multipole moments recovered a T-shaped conformation.

Such aromatic complexes are dominant in biological systems,
forming essential stabilising elements in nucleic acids,89 proteins90

or carbohydrate–protein interactions in immune complexes,91

to name a few. Biological processes such as molecular recogni-
tion and catalysis are frequently stabilised by interactions
between the p-density of aromatic systems. Point-charges
provide a poor description of the electronic distribution of
aromatic systems, and the XED force field aimed79 at capturing
the anisotropy by the addition of extra point-charge sites. It was
able to correctly predict the edge-to-face stacking for a range of
substituted polyphenyl species, whereas AMBER, OPLS, MM2
and MM3 were not.

The work of Hill et al.92 also demonstrates the important role
of electrostatics in stabilising aromatic stacking interactions due
to a degree of cancelling of the attractive correlation dispersion
term by exchange repulsion and delocalisation effects. Gordon
and co-workers10 used their own ‘Effective Fragment Potential’
(EFP) method to investigate the interactions between nucleic
acid bases. The EFP method is described as a low cost alternative
to ab initio calculations, and can be considered as a polarisable
multipolar force field without empirically fitted parameters.
A DMA was performed on atomic centres and bond midpoints
up to octopole moment. The EFP method accurately reproduced
the interactions energies between stacked dimers AA and
TT, with deviations from MP2 energies within 1.5 and
3.5 kcal mol�1, respectively.

Tafipolsky and Engels implemented an extension to
AMOEBA showing a much improved description of stacked
aromatic systems,93 including atomic multipole moments up
to hexadecapole, with dipolar reparameterised polarisabilities,
and a specific short-range charge penetration term. When
compared against AMOEBA, MM3 and OPLS-AA, the new model
showed values for the energies of both the stacked and T-shape
dimers of benzene closer to accurate symmetry adapted perturba-
tion theory (SAPT)94 values.

Marshall et al.95 ran simulations on b-hairpin structures of
model polypeptides involving cation–p interactions between
cationic (Me)n-Lys+ residues and two aromatic tryptophan side
chains (n = 0, 1, 2, 3). Simulations were run using the multi-
polar polarisable force field AMOEBA, and OPLS-AA, CHARMM
and AMBER. Only AMOEBA reproduced the experimental NOEs
distances between the lysine and tryptophan with any consistency,
accurately predicting over 80% of the observed NOEs across the
four systems (Fig. 4). The point-charge force fields only predicted
40–50% of the observed NOEs in two simulations, and performed
worse still for the remaining ten simulations with a prediction
success rate of B10%.

2.3 Crystal structure prediction

To accurately predict the structure into which a molecule will
crystallise, a computational model must provide a rigorous
description of both bonded and non-bonded terms, as well as
sampling the entirety of the PES. We restrict the discussion to
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how a multipolar description of the non-bonded electrostatic
term can improve prediction accuracy relative to point-charges.
Factors effecting other contributions are discussed in detail
elsewhere.96

Typical work assumes that a given molecule will adopt a
crystal structure with the lowest possible lattice energy. The
corresponding ranking criterion was used by the Cambridge

Crystallographic Data Centre (CCDC), who encouraged groups
to participate in a series of five blind tests.97–100 These tests
were organised as competitions in which participants were
invited to predict a range of unknown crystal structures as seen
in Fig. 5 and 6. In each competition, the participating groups
used a range of computational methods by including point-
charge, multipolar and statistical approaches. A summary of
the results of the five blind tests can be seen in Table 1. At first
glance, the results of the early tests called CSP1999, CSP2001
and CSP2004 suggested that methods with a multipolar
description of the electrostatics provided no greater reliability
for predicting the correct crystal structure relative to point-
charge models. For example, the point-charge electrostatics of
Verwer and Leusen’s MSI-PP101,102 method outperformed the
multipolar computer program DMAREL103 method of Price
et al. in the CSP1999 test. Post-competition analysis revealed
that the searching algorithm was to blame rather than the
multipolar force field. This conclusion turned out to be the
recurring message across all three early tests. The test set of
small, rigid molecules containing only C, H, N and O were
generally predicted correctly (with multipolar electrostatics
providing a slight advantage over point-charges). However,
molecules with a high degree of conformational flexibility were
not being sampled thoroughly and as a result, the experimental

Fig. 4 Summary of the percentage of experimentally observed NOEs for
the four model b-hairpin peptides (lysine residues) predicted by 100 ns MD
simulation in explicit solvent by the four force fields compared. [Source:
J. Am. Chem. Soc., 2012, 134, 15970.]

Fig. 5 The structures used in the first four blind tests on crystal structure prediction (CSP). Source: Int. Rev. Phys. Chem., 2008, 27, 541.
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structures were not identified. The results of the fourth blind
test,100 CSP2007, showed that with the implementation of
improved searching algorithms, the multipolar electrostatic
method of Price et al.100 consistently outperformed methods
with point-charge electrostatics.

Following the success of the CSP2007, a fifth blind test104

was organised named CSP2010. The test molecules used in this
study can be seen in Fig. 6. The improved results of CSP2007
led to the introduction of two new categories of molecule: a
larger, highly flexible molecule and a hydrate with multiple
polymorphs (four polymorphs tested for prediction), leading
to a total of nine crystal structures to be tested. Three partici-
pating groups (Day,105–107 van Eijck,108 and Price et al.105,109)
used atomic multipole moments to describe the electrostatic
contribution to the crystal lattice energy. Multipole moment
methods clearly outperformed the point charge methods (see
Table 1), with multipolar methods correctly predicting four of
the nine structures, compared to only one correct prediction by
the point charge methods. It is interesting that for molecule
XIX van Eijck switched to point charges rather than multipole
moments and was able to predict the correct structure. This
highlights the importance of factors other than the electrostatic
description when predicting crystal structures. The most consistent
method was GRACE of Neumann et al.,110,111 which used plain-
wave DFT to calculate the electrostatic energy, which one would
expect to outperform even multipolar methods.

Day et al. compared two electrostatic schemes, one an atomic
point-charge scheme and the other including multipole moments,
for their ability to predict the 64 experimentally observed crystal
structures of 50 organic molecules. The multipolar scheme
reproduced 44 of the experimental structures to be within the
top five most stable crystal structures for each given molecule,
whereas the point-charge scheme was able to find only
36 structures. Multipolar electrostatics also correctly predicted
32 of the compounds to have structures within 0.5 kJ mol�1

compared to only 23 predicted by point-charges. In a response
to the poor results of the CSP1999 blind test, Mooij and Leusen

combined multipole moments with the Dreiding force field,
and compared the predictive capabilities of the new model to
point-charges.112 Multipole moments were able to correctly
predict three out of the five experimental crystal structures
as the most stable crystal polymorph, compared to only one
by point-charges.

Day et al. observed113 that for 50 organic molecules with
many polymorphic crystal structures, lattice energy minimisa-
tion using atomic point-charges were considerably less accurate
for molecules with hydrogen bond donor–acceptor groups
than for those without. The point-charge descriptions within
the FIT,114,115 W99,116–118 DREIDING,119 CVFF95120–122 and
COMPASS123 force fields used were described as being too
simplistic to describe strong, highly directional bonds that guide
crystal formation. The presence of strong hydrogen bonding leads
to higher energy barriers between different minima on the PES,
and acts to trap crystals in the local ‘‘metastable’’ states. An
atomic point-charge description flattens these barriers resulting
in structures moving to lower energy minima during relaxation
stages in the lattice energy calculation. For example, point-charges
were unable to predict the experimental ‘‘stepped sheet’’ structure
of 2-amino-3-nitropyrimidine due to the crystal relaxing into the
energy well of another polymorph.

Sometimes multipole moments do not appear to offer any
clear advantage over point-charges although, generally, it is found
that factors other than the electrostatic potential are responsible
for the observed inferiority of multipole moments. A novel
electrostatic potential built for the MM3 force field was tested
on the crystal structures of oligothiophenes124 and atomic point-
charges outperformed multipole moments for all but one case,
namely that of a-perfluorosexithiophene (PFT4). The crystal struc-
ture for PFT4 was the structure most influenced by electrostatic
interactions, an instance where one should not be surprised that
multipolar electrostatics were superior. Brodersen et al. compared
five electrostatic models including ESP derived point-charges
and tested multipole moments in the prediction of 48 crystal
structures, again using the DREIDING force field.125 Due to

Fig. 6 The six structures used in the CSP2010 blind test. [Source: Acta Crystallogr., Sect. B: Struct. Sci., 2011, 67, 535.]
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strong dependence on intramolecular terms in the force field,
such as angle bends, bond stretches and torsion angles, the use of
multipole moments did not improve the accuracy of the predicted
crystal structures for flexible molecules. They did, however, greatly
improve the prediction of rigid molecule crystal structure, where
the bonded terms are of less importance.

3. Computational efficiency of
multipolar electrostatics
3.1 Transferability

The idea of an atom type is inextricably linked with that of
transferability. Whilst complex definitions of an atom type have
been proposed, this area remains a source of debate and

competing methods.126 It is, however, widely regarded as a
necessary measure to define electrostatic properties as pre-defined
parameters for large scale molecular simulation to be truly viable.

The generation of a transferable set of multipole moments is
a far more delicate operation than trying to find a corresponding
set of partial charges. Whilst a monopole moment is relatively
transferable, higher order multipole moments are less so due to
their increasing directional dependencies. The latter make it
more difficult to obtain a generic set of higher order multipole
moments for a given atom type.

Many molecular and group properties are tractable when
attempting to demonstrate transferability. One finds that
experimental heats of formation, for example, may be repro-
duced for a generic hydrocarbon CH3(CH2)xCH3, by fitting to a
linear relationship DHf = 2A + xB. Here, A and B represent the
respective energies of methyl and methylene groups. Indeed,
this function is equally applicable to SCF single-point energies
for equivalent systems, such that E = 2E(CH3) + xE(CH2) is
accurate to approximately 0.06 kcal mol�1.127 Based on this
additivity of single point energies, the concept is easily
extended to imply the additivity of electron correlation ener-
gies. Because the correlation energy is a functional of a group’s
electron density, it implies that electronic properties must
additionally follow this transferability scheme.128

Armed with this, the demonstration that multipole moments
possess129 some amenability to atom typing should follow.
In one case study,130 a set of small molecules composed of
the functional groups present in proteins underwent DMA at
HF/3-21G level, and the multipole moments of each atom were
assessed. Atom typing by atomic number or hybridisation state
was seen to be ineffective, but atom typing by bonding to
specific functional groups proved to be more successful. Two
transferable schemes were developed: ATOM and PEPTIDE.
The former utilised the average multipole moments for specific
atom types generated from the data set mentioned previously.
The PEPTIDE model features a single multipole moment
expansion centre for each distinct amino acid. As such, the
local environment for each of these expansions centres is
conserved for a given amino acid. The usage of ATOM resulted
in substantial deviations from the ab initio electrostatic potential
while the PEPTIDE model gave far more satisfactory results.
Extending from this, a grossly distorted cyclic undecapeptide
(a derivative of the immunosuppressive cyclosporine) was ana-
lysed by the above two models. The authors compared the
electrostatic potentials generated by these models with one
generated from DMA. Again, the PEPTIDE model exhibited
lower average errors then ATOM.

Many years later, Mooij et al.131 focused on the generation of
an intermolecular potential function implemented in dimers
and trimers of methanol. Using a fitted electrostatic term in the
intermolecular potential resulted in relatively favourable
results: 0.2 kcal mol�1 and 1.6 kcal mol�1 deviations in the dimer
and trimer energies, respectively, from counterpoise-corrected
MP2/6-311+G(2d,2p) calculations. This is still more impressive
than similar studies on other less complex systems that
have attempted to parameterise point-charge electrostatics.132

Table 1 The number of successful predictions of the crystal structure of
the 21 molecules used in the CSP blind tests using different electrostatic
models (point charges, multipole moments or other). The number of
methods corresponds to the maximum number of groups using an
electrostatic method in the above test. This number may vary between
structures within a blind test as not all groups attempted to predict all
structures. The numbers outside of parentheses are the number of
successful predictions within the top three structures provided by a
method, and the numbers within parentheses are the number of correctly
predicted structures outside of the top three structures. Only successful
top three results are included in CSP1999 study

Point charge Multipole Other

CSP1999
Number of methods 6 2 3
I 4 0 0
II 1 0 0
III 1 0 0
VII 0 1 0

CSP2001
Number of methods 11 3 5
IV 1(8) 1(0) 0(0)
V 3(5) 1(1) 0(1)
VI 0(4) 0(0) 0(0)

CSP2004
Number of methods 11 3 4
VIII 1(4) 2(2) 1(1)
IX 0(5) 1(1) 0(2)
X 0(4) 0(2) 0(1)
XI 0(0) 0(2) 0(1)

CSP2007
Number of methods 5 4 5
XII 0(2) 1(2) 3(0)
XIII 0(2) 3(1) 1(0)
XIV 0(1) 2(1) 1(0)
XV 0(0) 1(1) 1(0)

CSP2010
Number of methods 5 3 6
XVI 0(2) 1(2) 1(0)
XVII 0(2) 1(2) 1(0)
XVIII 0(3) 0(0) 1(0)
XIX 1(2) 0(1) 1(0)
XX 0(0) 2(0) 0(1)
XXI (i) 0(0) 0(3) 0(1)
XXI (ii) 0(1) 2(1) 0(1)
XXI (iii) 0(2) 0(3) 0(1)
XXI (iv) 0(1) 0(3) 0(1)
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Mooij et al.131 also worked on a methanol� � �water and a
methane� � �dimethylether complex. Each of these molecules
was assigned a set of atom-centred multipole moments. Equally
impressive results were obtained, with all interaction energies
replicated to within B0.2 kcal mol�1 of the corresponding ab
initio calculations. As such, it was concluded that atom-centred
multipole moment expansions are indeed transferable between
the same molecules in differing environments.

There are several ways of allocating molecular electronic
charge to atoms (e.g. DMA,133 CAMM134 or QCT partitioning135).
Considering our group’s research interests, we focus here on
QCT-based techniques. Focusing on energy, Bader and Beddall136

demonstrated that:
(1) The total energy of a molecule is given by a sum over the

constituent atomic energies.
(2) If the distribution of charge for an atom is identical in

two different systems, then the atom will contribute identical
amounts to the total energy in both systems.

Although these conclusions are given in terms of energy,
they hold for any property density of an electronic distribution
over an atomic basin. In light of this fact, it was shown by
Laidig137 that multipole moments, under certain constraints,
adhere to the above conclusions, and so exhibit transferability.

The property of transferable multipole moments was success-
fully adopted by Breneman and co-workers,138 in a method
denoted Transferable Atom Equivalents (TAEs).139 Primarily, a
library was generated consisting of atom-based electron density
fragments generated from a QCT decomposition of a set of
molecules. DMA was subsequently performed on each of these
fragments. These TAEs may then be geometrically transformed
into a novel system for which the electrostatic potential is
required. The fact that atomic property densities are additive
in QCT implies that this recombination of TAEs is sufficient to
reproduce an electrostatic potential of the system to a quasi-
ab initio level of theory. It should, however, be noted that the
transferability of atomic basins is approximate, and so this
method will necessarily carry a small error.

The efficacy of this methodology was subsequently demon-
strated through three ‘‘peptide-capped’’ molecules: alanine,
diglycine and triglycine. The analytical electrostatic potentials
were computed on 0.002 au isodensity surfaces. Equivalent
electrostatic potentials were also generated from TAE-reconstructed
systems and Gasteiger point-charges for the extended (open)
and a-conformations. The TAE multipole analysis (TAE-MA)
reproduced the features of the electrostatic potential generated
at ab initio level much better than the Gasteiger point-charges
did. A point-charge electrostatic model is unable to accurately
predict extremes in electronic features.

In later work carried out in this group, all 20 naturally
occurring amino acids and their constituent molecular fragments
were rigorously assessed140 using QCT. A set of 760 distinct
topological atoms were generated and cluster analysis identified
a set of 42 atom types in total (21 for C, 7 for H, 6 for O, 2 for
N and 6 for S). The trivially assigned atom types implemented in
AMBER were either too fine-grained (e.g. too many for atom types
for N) or too coarse-grained (e.g. C atom types not diverse enough).

Later, an extensive investigation141 was carried out for atom typing
by atomic electrostatic potential rather than atomic multipole
moments as in the previous study. A retinal-lysine system was
considered, a prominent feature in the mechanism of bacterior-
hodopsin. This study focused on the aldehyde and terminal amino
groups of retinal and lysine, respectively. The electrostatic
potentials generated by these groups occurring in the full system
were compared with those of smaller derivatives of the system.
The electrostatic potential of lysine surrounding the terminal
amino group was relatively conserved for all derivatives in which
two (methylenic) carbon atoms were maintained along the
amino acid sidechain. However, the aldehyde group of retinal
was more responsive to more distant environmental effects.

This work has recently been further developed,142 where the
concept of a ‘‘horizon sphere’’ is proposed. This sphere con-
tains all the atoms that a given atom, at the sphere’s centre,
‘‘sees’’ in terms of their polarisation of the electron density on
the central atom. An a-helical segment of the protein crambin
was studied. The electrostatic energy was probed by considera-
tion of the multipole moment expansion (up to rank l = 4)
centred at a Ca. A new set of multipole moments for Ca was
calculated for each structure dictated by the growing horizon
sphere. The interaction energy between Ca and a set of probe
atoms was evaluated, leading to the conclusion that formal
convergence of this interaction energy is attained at a horizon
sphere radius of B12 Å. More work is underway to scrutinise
the validity and generality of this conclusion.

Crystallographers who strive for the generation of transfer-
able atomic electron densities,143 find qualms with the recon-
struction of molecular electron densities from these QCT-derived
atomic densities. This is due to the mismatch in interatomic surface
topologies between transferred atoms. As such, they believe that it
becomes very difficult to generate a continuous electron density
from these atomic fragments. Work has therefore been directed
towards the generation of pseudoatom databanks that may be
utilised to reconstruct experimental electron densities from pre-
viously elucidated structures. From this approach follows a natural
output in the form of atomic multipole moments. It is important to
point out that the aforementioned mismatch can be countered by
accepting that the interaction energy between atoms is what ultimately
matters, not the perfect construction of gapless sequences of
topological atoms. With this premise in mind we have shown that
the machine learning method kriging captures,144–146 within reason-
able energy error bars, the way a QCT atom changes its shape in
response to a change in the positions of the surrounding atoms.

Jelsch et al.,147 for example, demonstrated the capacity of
transferring experimental density parameters for small peptides,
based upon the Hansen–Coppens formalism,148 and subsequently
built a databank of pseudoatoms. The refinement of high resolution
X-ray crystallographic data by referral to this databank has been
demonstrated.149 A more computationally-orientated route has been
developed in parallel to the one above,143 whereby the experimental
density parameters for a set of pseudoatoms were derived from
ab initio electron densities of tripeptides. This method showed
an enhanced amenability to transferability compared to its
experimentally-derived counterpart.
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More recently this pseudoatom database has been built
upon.150 Atom types were defined by grouping atoms with the
same connectivity and bonding partners, while the atom type
properties were defined by averaging over all constituent
‘‘training set’’ pseudoatoms. Single point calculations were
initially carried out on a test set of amino acid derivatives at
B3LYP/6-31G** level. The geometry of each species was taken
directly from the Cambridge Structural Database (CSD).151

Multipole moment expansions for non-hydrogen atoms were
truncated at ranks l = 4 and l = 2 for the hydrogens. These
multipole moments were subsequently averaged and standard
deviations defined for the dataset. In terms of performance, the
databank model appears to give a slightly more pronounced
electrostatic potential surrounding oxygen atoms in carboxylate
and hydroxyl groups of Ser, Leu and Gln, compared to the more
extensive ab initio calculations. Further work showed that the
databank does relatively well in the prediction of most atomic
multipole moments. Exceptions take the form of higher order
multipole moments, most particularly for oxygens and nitrogens.
Finally, we mention that somewhat poorer results are obtained
when considering total intermolecular electrostatic energies in
dimers. The errors are of the same magnitude as those obtained
from AMBER99, CHARMM27 and MM3. The authors ascribe
these results to the implementation of a Buckingham-type
approximation, whereby non-overlapping electron densities are
assumed. This results in the underestimation of short-range
interactions, which is in keeping with the sign of DE in the above
calculations. The authors report much-reduced discrepancies in
these energies by use of their own refined method, which
accounts for this discrepancy.152

However, in spite of the issues of the reconstruction of crystal
structures by use of QCT, the technique remains amenable to the
elucidation of electrostatic properties. Woińska and Dominiak153

have given a thorough elaboration on the transferability of
atomic multipole moments based on various density partitions,
most notably directly comparing the Hansen–Coppens formal-
ism to both QCT and Hirshfeld partitioning. In their study,
multipole moments (up to l = 4) were assigned to each atom in
a set of biomolecular constructs, ranging from single amino
acids to tripeptides. Atom types were subsequently defined
from this molecule set based on criteria resembling those used
by a similar study.154 By averaging the multipole moments
for given atom types in differing chemical environments,
a standard deviation from this average value was obtained.
A lower standard deviation is indicative of a high degree of
transferability, and vice versa. A QCT analysis of ab initio
wavefunctions results in highly non-transferable lower-order
multipole moments (l = 0, 1, 2). Secondly, for the higher-order
Hansen–Coppens multipole moments (l = 3, 4) are particularly
unstable. The atom types found to be non-transferable from the
QCT analysis are generally carbons connected to two electro-
negative atoms (oxygen or nitrogen), or members of aromatic
systems. The decline in the level of transferability for higher-
order multipole moments for the Hansen–Coppens method is
relatively widespread throughout atom types, most prominently
carbon and nitrogen. It is, however, strange to note that for

both of these points, the poor level of transferability for QCT
and Hansen–Coppens pseudoatoms is constrained to specific
atom types; for the rest, these techniques generally give rise to
the most transferable multipole moments.

Whilst the lower-order QCT multipole moments are largely
non-transferable, they tend to be far more stable when derived
from crystallographic data. In spite of this, they are still the
least transferable multipole moments in the set, with both
Hirshfeld partitioning and the Hansen–Coppens pseudoatom
formalism yielding somewhat more stable multipole moments.
The authors conclude that the most transferable multipole
moments result from Hirshfeld partitioning. QCT discretely
partitions electron density into distinct basins and so is vulner-
able to numerical issues when undertaking mathematical
operations such as integration over the basin. The Hansen–
Coppens formalism, on the other hand, suffers from problems
with localisation: distant electron density may be incorrectly
assigned to a given nucleus. However, an exhaustive study of
standard deviations from average multipole moments for given
partitioning methods does little to confirm the dominance of
one scheme over another. Transferability matters little if the
multipole moments in question are incorrectly defined; their
subsequent variances over a dataset are inconsequential. In
fact, the difficulty in assigning transferable multipole moments
to given atom types may equally be indicative of poor atom type
definition, or the sheer inability to define a transferable atom
type in terms of multipole moments with any great stability. We
make a final note in that the atom types defined in this work
have been tailored for pseudoatom usage,154–156 and so may not
be useable with a discrete partitioning scheme (QCT), relative
to the so-called ‘fuzzy’ decompositions (Hirshfeld and Hansen–
Coppens). In fact, this is concomitant with an analysis of dimer
energies obtained from these three techniques.157 When one uses
multipole moments obtained by a QCT decomposition as opposed
to a Hirshfeld partitioning, the electrostatic energy obtained more
closely resembles that obtained from a Morokuma–Ziegler energy
decomposition scheme, by as little as 10%.

3.2 Simulation

A recent tour de force regarding the feasibility of biomolecular
simulation have seen the computation of time trajectories of systems
such as the ribosome.158 However, this study implemented techni-
ques not optimised for the output of particularly accurate results,
using a highly parallelisable CHARM++ interface in conjunction
with the AMBER force field and the NAMD molecular dynamics
package,159 i.e. a partial charge approximation.

Biomolecular simulation requires the implementation of per-
iodic boundary conditions to accurately model the environment
in which a system resides. Moreover, the electrostatic energy of a
system is slowly convergent. Many solutions to this problem have
been proposed over the years.7,160 It should be noted that the
interaction involving ‘higher order’ multipole moments (lZ 1) is
more short-range than that between monopole moments. As
such, the problem of slowly convergent long-range interactions
is shared by both isotropic point-charges and multipolar electro-
statics because the latter encompass point-charges.
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We wish to raise the issue of the conformational depen-
dence of electronic properties. In reality, this problem is not
unique to higher order multipole moments. Conventional force
fields, which employ partial charges, choose to reside in a
pseudo-reality of an invariable electrostatic representation, and so
rarely encounter conformational dependencies. It is rather more
difficult to simply ignore the obvious reality of molecules as flexible
entities when using multipole moments, and has been emphasised
in analyses using both DMA and CAMM algorithms.161,162 Use of
the electrostatic properties for one conformation correctly repro-
duces its corresponding electrostatic potential. However, use of
this parameterisation in an alternative conformation results in
highly unfavourable energies. It should be noted that this insuffi-
ciency is equally prominent when using a conserved set of partial
charges between conformers. As such, since the issue of flexible
molecules is a computational complexity that pervades all electro-
static approximations, it would be unfair to regard this as an
additional burden specifically for multipole moments. Instead, it
is a hurdle that both techniques are required to overcome in
enhancing the accuracy of simulation.

Evaluating multipole moments as a function of a conforma-
tional parameter is appealing. For example, the multipole
moments for both atoms in CO may be described analytically as
a function of the interatomic distance in the molecule.163 How-
ever, scaling this idea up to systems with far more conformational
degrees of freedom, such as an amino acid, is an appreciably
more difficult task. An ‘‘analytical compromise’’ has been
proposed in the past,164 whereby the multipole moments of an
atom in ethanol, glycine and acrolein are represented by a Fourier
series truncated at third order, whose free variables correspond to
the dihedral angles of the molecule.

Instead of analytical methods, machine learning methods
can be used to interpolate between a set of multipole moments
defined for different molecular conformations.146 As such,
one may then predict the multipole moments of an arbitrary
conformation that is not present within the initial training
set, which corresponds to a true external validation. Fig. 7
demonstrates the errors for (double peptide-capped) histidine
obtained in following such a scheme.

Alternative methods have been developed but the literature
on these techniques appears to be relatively sparse. For example,
it has been proposed165 that one may average the atomic multi-
pole moments over all conformers that are sampled during a
simulation. This has been done for alanine and glycine by
shifting the higher order (l = 1) atomic multipole moment
expansions to a smaller number of expansion sites distributed
throughout the molecule. An additional method, previously
tested for energy minimisations of crystal structures, revolves
around periodically recalculating the atomic multipole moments
for the molecule.166 This proved to give substantially better
results than the implementation of then-current methodologies,
particularly for systems whose structures are dictated by strong
hydrogen bonding.

Forces (and torques) must be calculated for the molecular
translational and rotational degrees of freedom to be sampled
during the course of a simulation. These may be formulated

directly by first and second derivatives of interactions energies,
by use of translational and rotational differential operators. If
one considers a molecule as a rigid body, the individual atomic
multipole moments of the molecule are invariant relative to
their stationary local axis systems. As such, the derivative of the
interaction energy between two molecular species is satisfied by
the derivative of the interaction tensor only. This has been
demonstrated in the spherical tensor formalisms167,168 and its
application (e.g. ref. 169). A simulation package that allows for
this rigid-body approximation in conjunction with multipolar
electrostatics exists170 and is called DL_MULTI.

The invariance of atomic multipole moments with respect to
a local axis system no longer holds when abandoning the rigid-
body approximation in favour of a realistic flexible-body proto-
col. As such, differentiation of the interaction energy function
requires the derivatives of multipole moments in addition to
the interaction tensor. Whilst this requires a more involved
series of calculations, it is still an attainable requirement.171

Somewhat more problematic is the fact that the local axis
systems in which the atomic multipole moments are referenced
evolve over the course of a simulation. Due the flexible nature
of the molecule, neighbouring atomic positions that make up a
local axis system change with respect to time. This results in the
subsequent net rotation of the atomic local frames. In the
context of QCT and the machine learning method kriging,
analytical forces can be calculated for ‘‘flexible, multipolar
atoms’’, although this is not trivial and will be published in
the near future.172

Literature quotations of CPU time differences between a
molecular dynamics simulation using point-charges versus
multipole moments (for a given number of nanoseconds, of a
given biomolecule with a given number of water molecules
surrounding it), are virtually non-existent. However, Sagui et al.173

Fig. 7 Error (kJ mol�1) in the total electrostatic energies predicted by
machine learning (kriging) for a set of 24 local energy minima of capped
histidine. The mean energy error of the sum of 328 atom–atom electro-
static energy values in capped histidine is 2.5 kJ mol�1. The maximum error
is 11.9 kJ mol�1. One can read off the curve that B80% (of the 539 test
configurations) have an error of less than 1 kcal mol�1 (B4 kJ mol�1).
[Source: J. Comput. Chem., 2013, 34, 1850.]
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reported a representative ratio of 8.5 in favour of point-charge
electrostatics (as implemented in AMBER 7) when most of the
calculation is moved to the reciprocal space (via the PME
method) with multipolar interactions up to hexadecapole–
hexadecapole being included. The only way a point-charge
model can ever match the accuracy of a nucleus-centred multi-
polar model is via the introduction of extra off-nuclear point
charges. What is rarely stated is that these additional charges
create an enormous computational overhead in a typical system
of tens of thousands of atoms because charge–charge interac-
tions are longer range (1/r-dependence) than any interaction
between multipole moments.

4. Implementation of multipolar
electrostatics
4.1 AMOEBA

Arguably one of the most successful next-generation force fields
is AMOEBA (Atomic Multipole Optimised Energetics for Bio-
molecular Applications).52 AMOEBA has been proven effective
in a variety of biomolecular simulations, ranging from solvated
ion systems77,174,175 to organic molecules176 and peptides.177–179

The electrostatic energy component of the force field is broken
down into two terms. The first term is concerned with permanent
atomic multipole moments (expansions truncated at l = 2), whilst
the second term corresponds to induced multipole moments as a
result of polarisation effects. The permanent atomic multipole
moments are generated by DMA of a set of small molecules such
that atom types may be defined. When implemented during a
simulation, these atomic multipole moments may be rotated into
various fixed local axis systems within the molecule. AMOEBA
proves to be competitive, even with ab initio level calculations. All
levels of theory tested perform in a uniform manner: the average
DE values across all conformations at the MP2/TQ, oB97/LP,
B3LYP/Q and AMOEBA levels of theory are 3.73, 3.15, 3.64 and
3.30 kcal mol�1, respectively. These are impressive values, but
one must remain aware that they correspond to total energies
as opposed to those arising specifically from the electrostatic
component of the force field.

A true demonstration of the benefits corresponding to
multipole moments arises from a direct comparison between
AMOEBA and the various force fields that employ point-charges.
Kaminský and Jensen,180 for example, sampled the number of
energetic minima of glycine, alanine, serine and cysteine one
recovers at MP2 level. The number of minima and their relative
energies were subsequently compared to those recovered by use
of AMOEBA and seven other point-charge force fields. The
results for serine and cysteine are outlined in Table 2, where
the ab initio data suggests 39 and 47 minima, respectively. We
see that AMOEBA consistently outperforms the large majority of
point-charge force fields in terms of the mean absolute deviation
(MAD) of energies relative to the MP2 results. AMOEBA addi-
tionally outperforms all other force fields in terms of the number
of the minima it predicts for each amino acid. Note that the
latter result gives rise to an artificially large MAD value relative to
the other force fields. Considering the aforementioned more
favourable MAD corresponding to AMOEBA, this only empha-
sises the predictive capacity of AMOEBA.

Another study that has directly compared AMOEBA to a
variety of other conventional force fields (AMBER, MM2,
MM3, MMFF and OPLS) is that of Rasmussen et al.,181 where
relative conformational energies were approximated. A set of
minima were generated for several molecules, each with inter-
mediary electrostatic properties ranging from entirely non-polar to
zwitterionic. The ability of the various force fields to predict relative
energies of the minima was probed, in addition to three separate
AMOEBA parameterisation schemes, differing in atoms typing or
level of theory. All force fields performed extremely well for the non-
polar molecules, largely due to the minor electrostatic contribution
to the conformational energy of non-polar molecules. As such, the
level at which electrostatics were calculated is essentially irrelevant.
However, as the molecular species become more polar in nature,
the point-charge force fields begin to display their erroneous nature
relative to the AMOEBA parameterisations, which demonstrate a
more uniform predictive capacity. The zwitterionic species were
modelled well by several of the point-charge force fields. This can
be explained by the fact that full charges are properly represented
by a spherical electrostatic potential as the charge is highly
localised. Thus, point-charge implementations of electrostatics
can model such a case with relative ease.

Table 2 The number of geometric minima predicted by a variety of force fields for serine and cysteine. Also given are the number of minima that the
various force fields predicted but that were not represented in the set of minima generated by ab initio calculations, and the mean average deviations
(MAD) for the molecular energies at each geometry

Serine AMBER94 MM2 MM3 MMFFs OPLS_2005 AMBER99 CHARMM27 AMOEBA

Number of correct minima 21 19 15 27 23 21 19 34
Number of erroneous minima 1 2 3 6 3 7 2 7
Percentage erroneous 4.8 10.5 20.0 22.2 13.0 33.3 10.5 20.6
MAD [kJ mol�1] 8.9 10.7 14.0 7.4 4.1 10.9 11.1 4.2

Cysteine AMBER94 MM2 MM3 MMFFs OPLS_2005 AMBER99 CHARMM27 AMOEBA

Number of correct minima 23 23 21 28 25 29 21 44
Number of erroneous minima 1 1 3 7 3 5 5 1
Percentage erroneous 4.3 4.3 14.3 25.0 12 17.2 23.8 2.3
MAD [kJ mol�1] 6.3 10.0 13.9 5.4 4.6 5.4 6.6 3.1
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The accurate reproduction of the properties of water has
long plagued simulation. Being able to account for explicit
binding of water molecules, in addition to accurate modelling
of bulk properties such as the dielectric constant are necessary
features if one wishes to accurately simulate solvated systems.
AMOEBA attempts to account for the lack of a universally
acceptable water model by specifically parameterising the water
molecule.182,183 Much like the generic AMOEBA force field,
atomic multipole moment expansions up to l = 2 are generated
using DMA. Polarisation is accounted for via induced atomic
dipoles, and van der Waals interactions are modelled by a
buffered 14–7 LJ potential. To the credit of the developers, this
model is continually improved upon and reparameterised.
Most recently,184 atomic multipole moments were generated
for a water model at MP2 level with various basis sets in order
to probe the reproduction of hydration free energies for a set of
small molecules. Whilst the aug-cc-pVTZ basis set was found to
give the best results, 6-311++G(2d,2p) gave a comparable accu-
racy at a much lower computational cost, and so is recom-
mended for larger simulations.

A direct comparison between an AMOEBA water model
parameterised at MP2/6-311++G(2d,2p) level and a widely used
point-charge water model reveals the benefits of atomic multi-
pole moment-parameterised electrostatics. A popular choice for
explicit solvation is the TIP3P model, which assigns a single
point-charge to each atomic centre and implements a 12–6 LJ
function. Since the LJ functions differ between the two models,
a ‘‘TIP3P-like’’ model was generated, which used the AMOEBA
water model, but removed all multipole moments (static and
induced), replacing them with point-charges. TIP3P and TIP3P-
like models were shown to be equivalent by comparison of
RDFs and bulk simulation properties. Deviation of the computed
hydration free energies from experimental benchmarks for a set
of small molecules are given in Table 3 for both AMOEBA and
TIP3P-like models. AMOEBA outperforms the TIP3P-like model
quite spectacularly, with an RMSD (AMOEBA) B3 times smaller
than RMSD (TIP3P-like).

4.2 SIBFA

The Sum of Interactions Between Fragments Ab initio, or SIBFA
force field185 is another force field that has gained esteem
within the scientific community. In a similar vein to AMOEBA,
the electrostatic term of the force field is split into two distinct
components: permanent and inducible. However, subtle differ-
ences arise in the computation of permanent multipole
moments, whereby a DMA protocol is called upon to generate
multipole moment expansions (truncated at l = 2) localised
to atomic centres and bond barycentres in the procedure

developed by Vigné-Maeder and Claverie.186 While AMOEBA
localises inducible dipole moments at atomic centres to account
for polarisation effects, SIBFA implements the procedure of
Garmer and Stevens187 to account for polarisabilities at hetero-
atom lone pairs and bond barycentres.

Several impressive demonstrations of the performance of
SIBFA relative to ab initio calculations are present in the
literature. For example,188 dimerisation energies of formamide
and glycyl-dipeptide have been established at the SCF/MP2 level
of theory, and decomposed into constituent energetic compo-
nents by use of the Kitaura–Morokuma (KM) procedure. We
specifically present energies corresponding to the electrostatic
interaction between monomers in Table 4. Equivalent calcula-
tions with SIBFA were carried out, with MMs parameterised at
the SCF/MP2 level of theory using the Gaussian-type basis set
derived by Stevens et al.,189 in excellent agreement with the KM
results. Analysis of the additional components of the total inter-
molecular interaction demonstrated the Coulombic portion to be
dominant in defining the preference of formamide dimerisation
relative to that of glycyl-dipeptide. Decomposition of the Coulom-
bic interaction predicted by SIBFA additionally shows that the
purely monopole–monopole interaction predicts the opposite
preference. In fact, it is the monopole–dipole and monopole–
quadrupole portions that recover the correct electrostatic inter-
action energy. A similar set of experiments was also performed
between cis-NMA and alanyl-dipeptide, resulting in equivalent
conclusions (not shown).

Many of the studies for which SIBFA is utilised appear to
focus mainly upon the solvation of metal ions190,191 or the
interaction energies of metal ions with biomolecular ligands.192,193 It
should be noted that this approach is highly extensible to more
complex biomolecular systems, such as metalloenzymes. This is
demonstrated in a study that characterised the reasoning behind
differential binding energies of a variety of ligands to thermolysin.194

Table 3 Free energies of hydration for a variety of molecules predicted by use of AMOEBA and TIP3P-like water potentials. Corresponding experimental
values are also given. Energies are in kcal mol�1

Ethylbenzene p-Cresol Isopropanol Imidazole Methylethyl sulfide Acetic acid RMSD

AMOEBA �0.73 �7.26 �5.58 �10.11 �1.78 �5.69 0.68
TIP3P-like �0.89 �10.72 �5.29 �10.87 �2.94 �7.46 1.96
Experiment �0.70 �6.10 �4.70 �9.6 �1.50 �6.70

Table 4 Dimerisation energies for formamide and glycyl dipeptide sys-
tems computed at the SCF level of theory and SIBFA force field (kJ mol�1).
Also given are the energies resulting from individual multipole–multipole
interaction ranks

Formamide Glycyl dipeptide Difference, d

ECoulomb(SCF) �22.1 �14.3 7.8
ECoulomb(SIBFA) �20.9 �13.2 7.7

E00(SIBFA) �16.2 �20.0 �3.8
E10(SIBFA) �1.6 5.8 7.4
E11(SIBFA) 0.5 �0.6 �1.1
E20(SIBFA) �3.1 1.8 4.9
E21(SIBFA) 0.1 �1.0 �1.1
E22(SIBFA) �0.5 0.8 1.3

PCCP Perspective

Pu
bl

is
he

d 
on

 1
6 

A
pr

il 
20

14
. D

ow
nl

oa
de

d 
by

 T
he

 U
ni

ve
rs

ity
 o

f 
M

an
ch

es
te

r 
L

ib
ra

ry
 o

n 
08

/0
9/

20
15

 1
0:

21
:2

9.
 

View Article Online

http://dx.doi.org/10.1039/c3cp54829e


10382 | Phys. Chem. Chem. Phys., 2014, 16, 10367--10387 This journal is© the Owner Societies 2014

However, this study primarily focused on the effects of polarisation
and charge transfer. As such, despite the impressive results, we
merely point it out as a demonstration of the power of SIBFA.
Instead, we focus upon the lower scale simulations of these systems
in which the role of electrostatics is explicitly defined.

The cation Zn2+ is the second most common transition state
metal utilised in biocatalysis, and so the characteristics of its
interaction with protein subunits are obviously of importance.
Focusing upon the interaction between Zn2+ and the most
basic amino acid, glycine, Rogalewicz et al.195 characterised
two low-energy isomers of the system at MP2/6-31G* level for all
non-zinc atoms. The lowest energy isomers correspond to the
metal ion interacting with the carboxylate portion of the zwitter-
ionic glycine, whilst those of higher energy are characterised by
the metal ion’s chelation of the amino nitrogen and carbonyl
oxygen of neutral glycine. The ability of SIBFA to reproduce the
relative energies of the seven isomers formed was probed by
parameterisation of the multipole moments and polarisabil-
ities by two differing approaches. The first of these, SIBFA-1,
corresponds to extracting the multipole moments directly from
Hartee–Fock wavefunctions of glycine or its corresponding
zwitterion in their entireties. The second (SIBFA-2) decomposed
glycine into two fragments (methylamine and formic acid for
the neutral form, protonated methylamine and formate for the
zwitterionic), followed by the generation of multipole moments
from HF wavefunctions and subsequent matrix rotation into
equilibrium geometries. This latter approach is obviously used
to probe the transferability of SIBFA multipole moments. The
result that appears to be most prominent is the particularly
poor performance of the SIBFA-2 scheme at predicting
Coulombic energies. However, this is by virtue of the fact that
these energies have been derived from fully charged species.
As such, the Coulombic attraction between these fragments is

not realistic. Upon integration into a larger system, the inten-
sity of the various multipole moments will decrease signifi-
cantly due to interaction between the formate moiety and the
methylammonium species. Analysis of Etot for this scheme
demonstrates the recovery from these overly emphasised multi-
pole moments by compensating through a smaller polarisation
energy for these fully charged species. However, it should be
pointed out that all isomer relative energies are correctly
recovered by both schemes, with the exception of the Coulom-
bic energy of one isomer as predicted by SIBFA-1. Nevertheless,
analysis of the total energies reveals that SIBFA performs far
better than conventional non-polarisable force fields.

Classical force fields have attempted to cling onto life by
giving the illusion of the accounting for anisotropic electronic
features by the addition of off-centre partial charges. The
authors of SIBFA appear to have hit the final nail in the coffin
of these classical force fields. These off-centre partial charges
are empirically localised, i.e. placement on expected lone pair
sites. However, these sites appear directly as a consequence of
the implementation of multipolar electrostatics.196 This is most
evident when considering halogen bonding. Energy Decompo-
sition Analysis (EDA) was performed on a system of halo-
benzenes interacting with two possible probes (the divalent
cation Mg2+ and water) with the Reduced Variational Space
Analysis (RVS) and the aug-cc-pVTZ(-f) basis set. Fig. 8 demon-
strates the angular preference for the C–X� � �P interactions for
the various halobenzenes (where X = F, Cl, Br or I and P = Mg2+,
H or O). Analysis of the Coulombic portion of the EDA shows
that the cation preferentially interacts with ‘out of bond’-axis
electronic features in both the chloro- and bromobenzene
species as a result of the s-hole. It is also immediately evident
that the multipolar electrostatics implemented in SIBFA
directly superimposes on these curves. As such, the effect of

Fig. 8 Energetic profiles as a function of the C–X� � �P angle for (from top left, clockwise) fluorobenzene-, bromobenzene-, and chlorobenzene-Mg2+

systems. Energy from the SIBFA force field is marked in red while Coulombic energy from the Reduced Variational Space (RVS) scheme is in blue.
Energetic minima that are not situated at 1801 are hallmarks of halogen bonding. [Source: J. Compt. Chem., 2013, 34, 1125.]
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the s-hole can be accounted for by multipole moments, with-
out the need for fictitious empirical partial charges. Further
decomposition of the SIBFA electrostatic energy was conducted,
whereby it was found that whilst the monopole–monopole
interaction favours a simple y = 1801 angular conformation, it
is largely due to the monopole–quadrupole that this conforma-
tion is favoured. Preference for the quasi-perpendicular con-
formations is dictated by the monopole–dipole interaction. The
authors suggest that for a perfect superposition of the two
curves, higher-order multipole moments may be required.

4.3 NEMO

The final model we consider is that of the NonEmpirical
MOdel, NEMO,197 used specifically to approximate intermole-
cular potentials. We only discuss the electrostatic portion of
this potential, which is calculated by expanding Hartree–Fock
SCF molecular wavefunctions as a sum of atomic natural
orbitals. A monopole moment between two atoms is defined
by calculation of an overlap integral between the basis func-
tions assigned to the atoms. Doing this for each pairwise
interaction of atoms in the system, one generates a ‘‘monopole
moment matrix’’, the diagonal elements of which correspond to
local atomic monopole moments. Higher-order multipole
moments may also be assigned by replacing the overlap integral
aforementioned with a corresponding multipole moment integral.
A more complete description of this technique is given else-
where.198 However, for flexible molecules, molecular charge
distributions evolve as a function of internal coordinates. The
authors overcome this by defining this charge distribution as a
function of the native molecular charge distribution and
corresponding atomic polarisabilities. Using this scheme,
dimer energies and geometries for the four dominant minima
on a dimethoxymethane (DME)� � �water PES were calculated
and compared to SCF calculations. The nomenclature for the
DME conformations correspond to the orientation of the three
dihedral bonds, with a, g and g0 representing antiperiplanar,
gauche and gauche0 geometries, respectively. Raman spectro-
scopy of DME in water predicts an aga 4 agg0 4 aag 4 aaa
order of stability. This diverges from that predicted by NEMO,
but the authors point out the non-equivalence of solvated DME
and a DME� � �water complex. This is a valid point since NEMO
energies generally agree well with the SCF energies.

More recently, higher level calibration of the NEMO
potential was carried out based on CCSD(T) benzene dimer
energies.199 The authors found an excellent agreement with
experiment for benzene trimer geometries. However, they
neglected to compare quantitative data with other computa-
tional work, citing their calculations to have been carried out at
too high a level of theory for direct comparison with other lower
levels of theory. Nevertheless, they reported a general agree-
ment with previous theoretical calculations, without mention-
ing specifics. More recent work200 has further developed upon
the NEMO formalism, and improved the level of theory for
parameterisation in addition to reporting improved perfor-
mance of the model.

5. Conclusions

In general, the electrostatic interaction between atoms cannot
be described accurately when using only one partial charge per
atom. Nevertheless, the ‘‘point-charge paradigm’’ continues to
dominate contemporary molecular simulation, with the vast
majority of practitioners either ignoring or being unaware of
the scientific repercussions of this paradigm. It is important that the
computational community has the will to progress beyond this
paradigm, especially because a solution is available: multipolar
electrostatics. In fact, this solution has been available for a long
time but an irreversible embrace of it remains absent, sadly. Journal
editors should also help overcoming this unacceptable status-quo.

Currently availability computing power offers the opportunity to
finally make a step change in the modelling of electrostatics at a
time when, certainly in the area of biomolecular simulation, the
trust of experimentalists towards computational predictions needs
to be gained. Errors of a few kilojoules per mole can already be
enough to draw the wrong qualitative conclusion from a calcula-
tion. How the use of point-charges can then be perpetuated at short
and medium range is baffling. We hope that this perspective has
made a convincing case by collecting and reporting the evidence
against point-charges. The message should be clear but it now
remains to be seen if a combination of powerful computers and
scientific goodwill will finally realise a long overdue transition to
multipolar electrostatics.
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180 J. Kaminský and F. Jensen, J. Chem. Theory Comput., 2007,

3, 1774–1788.
181 T. D. Rasmussen, P. Ren, J. W. Ponder and F. Jensen,

Int. J. Quantum Chem., 2007, 107, 1390–1395.
182 P. Ren and J. W. Ponder, J. Phys. Chem. B, 2003, 107,

5933–5947.

183 P. Ren and J. W. Ponder, J. Phys. Chem. B, 2004, 108,
13427–13437.

184 Y. Shi, C. Wu, J. W. Ponder and P. Ren, J. Comput. Chem.,
2011, 32, 967–977.

185 N. Gresh, G. A. Cisneros, T. A. Darden and J.-P. Piquemal,
J. Chem. Theory Comput., 2007, 3, 1960–1986.
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Accurate prediction of polarised high order electrostatic interactions for
hydrogen bonded complexes using the machine learning method kriging
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h i g h l i g h t s

� Charge transfer and dipolar
polarisation treated on a common
footing.
� Elimination of polarisation

catastrophe.
� No need for penetration corrections.
� Kriging successfully predicts

multipole moments directly from
coordinates.
� High rank multipole moments

guarantee accurate electrostatics.
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a b s t r a c t

As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment
of this term within force field methodologies should be mandatory. We present a method able of accu-
rately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole
moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the
machine learning method kriging. Models were built at three levels of theory: HF/6-31G**, B3LYP/aug-
cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to
predict the electrostatic interaction energy between atoms in external test examples for which the true
energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were
predicted within 1 kJ mol�1, decreasing to 60–70% of test cases for larger base pair complexes. Models
built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For
all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol�1.

� 2013 Elsevier B.V. All rights reserved.

Introduction

Until the development of more powerful computers, the simu-
lation of chemical and biochemical systems will require the use
of molecular mechanics force fields. These methods calculate the
energy of a system by a sum of both bonded and non-bonded

terms. The bonded terms include bond stretches, angle bends
and torsional terms, whereas the non-bonded terms include the
electrostatic and van der Waals contributions. Chemical systems
are dominated by intermolecular interactions such as the hydrogen
bond which are typically electrostatic in origin [1,2], and so the
electrostatic term should receive special attention. The accuracy
of the electrostatic term typically suffers from at least one of two
limiting assumptions. The first is an atomic point charge descrip-
tion and the second a lack of polarisation.

The majority of force fields currently in use model the electro-
static contribution to the total energy of a system through simple
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atom centred point charges, modelled with a 1/r dependence. Due
to their isotropic nature, point charges provide a poor description
of the electronic distribution around an atom and hence the corre-
sponding force field introduces a prediction error. For example,
hydrogen bonding of the general form O–H. . .O@C is a non-linear
interaction resulting from the partially positively charged hydroxyl
hydrogen interacting with the lone pairs on the carbonyl oxygen
[3–5]. Using only an isotropic atomic point charge, the observed
geometry is not reproduced. Force fields typically incorporate such
effects in one of two ways: either by the addition of additional non-
atomic point charges [6–8], or by the use of atomic multipole mo-
ments [9,10]. The former approach is heavily dependent on the
parameterisation of the additional charge sites and is not always
successful when applied to new systems. Despite their shortcom-
ings, additional charge site models are still widely used, for exam-
ple the TIP4P and TIP5P water potentials [11,12]. The use of atomic
multipole moments, however, is much more justifiable. The point
charge, or monopole moment, is simply the zeroth order term in
a multipolar expansion of electrostatic interaction. Hence, includ-
ing higher order terms such as the atomic dipole and quadrupole
moments is chemically more rigorous in that it describes more fea-
tures of the inevitably anisotropic (i.e. non spherical) atomic elec-
tron density. Phenomena such as the previously described non-
linearity of hydrogen bonding are captured when multipole mo-
ments are used rather than point charges, along with other aniso-
tropic effects such as describing the r-hole in halogen bonding.
The polarisable multipolar force field AMOEBA [13] is the most
widely used multipolar force field to date, and this uses multipole
moments up to quadrupole to describe each atom, obtained via
Stone’s distributed multipole analysis (DMA) [14]. The way confor-
mational changes influence DMA multipole moment was studied
[15] a long time ago.

Incorporating polarisation into a force field is typically done in
one of four ways, namely the drude oscillator approach [16,17],
fluctuating charges [18,19], induced dipoles with associated iso-
tropic atomic polarisabilities [20], and finally by fitting effective
charges to induced dipoles [21]. The method presented here, cur-
rently called QCTFF, differs from any of the above. Instead, the
machine learning method kriging [22] is used to build models
that directly map atomic multipole moments (up to the hexa-
decupole moment) to the nuclear coordinates of all other atoms
in the system. It should be emphasised that no explicit polaris-
ability is ever obtained here; the proposed method focuses imme-
diately on the effect of polarisation. In other words, it is capable
of predicting the multipole moments after the polarisation pro-
cess has been completed. The atoms used are defined by Quan-
tum Chemical Topology (QCT) [23,24], which partitions a
molecule or a complex of molecules in a minimal way, without
invoking a reference system, by letting the gradient vector reveal
a pattern of subspaces, each subspace corresponding to a (topo-
logical) atom.

In this work, we show that by using kriging, we are able to build
models capable of accurately reproducing the ab initio multipole
moments of topological atoms for a range of geometries of hydro-
gen bonded complexes taken from the so-called S22 dataset of
Hobza et al. [25] . This dataset consist of a list of 22 molecules that
is commonly used as a benchmark for new computational methods
to describe intermolecular interactions. This data set is divided into
three subsets: hydrogen bonded complexes, dispersion bound
complexes, and mixed complexes. Only the hydrogen bonded mol-
ecules are considered in this work.

Kriging has been shown to yield highly accurate reproduction of
the multipole moments on the small pilot system ethanol [26], and
single amino acids such as alanine [27] and histidine [28]. This is
validated by accurate intramolecular atomic interaction energies
predicted for all atom pairs separated by more than three covalent

bonds. This work is the first example of its application to intermo-
lecular systems, other than for an early study on water clusters
[29], which demonstrated the superiority of kriging compared to
neural networks. Our lab had used [30–32] the latter even earlier
for small clusters or single molecules. The long term aim is to
incorporate kriging models in the exploration of potential energy
surfaces [33], going beyond rigid-body multipolar electrostatics
[34,35], and also in molecular dynamics simulations [36–41],
which so far have only been achieved with unpolarised topological
atoms, again in the rigid body formalism.

In this work, we will apply our kriging method to a set of seven
van der Waals complexes, each consisting of two molecules each.
Five of these consist of a single molecular species; we will refer
to these systems as dimers.

Theory

Quantum Chemical Topology (QCT)

A key concept underpinning QCTFF is that of QCT, which de-
fines the atom in an arbitrarily large system. QCT puts the use of
the language of dynamical systems (e.g. basin, attractor, critical
point, separatrix, etc.) at the heart of its approach. The well-
known quantum theory of atoms in molecules [42] is then a spe-
cial case of this approach, applied to the electron density and its
Laplacian only. The electronic density of a molecule, or a van der
Waals complex for that matter, naturally partitions itself into
non-overlapping topological atoms by means of gradient paths.
A gradient path is a trajectory in 3D space, which can be seen
as consisting of infinitesimal vectors, each one orthogonal to
an envelope of constant electron density q. A gradient path fol-
lows the direction of increasing q, until it terminates at a critical
point. This latter is an attractor, which can only be a nucleus
(which is mostly the case), a bond critical point, or a ring critical
point. This partitioning method gives rise to well defined, non-
overlapping atoms [43] for which multipole moments may then
be obtained.

Fig. 1 shows the hydrogen bonded van der Waals complexes of
the S22 dataset, where the non-overlapping topological atoms are
readily observable. The bond path between the two ammonia mol-
ecules is perhaps unexpected in that it suggests a special interac-
tion between the two nitrogen atoms. However, one would
typically draw the interaction as a pair of hydrogen bonds between
the N and H atoms. The QCT description of the bonding situation is
a direct result of the topology of the electron density, and such pat-
terns have been found before elsewhere. For example, in their
QTAIM analysis [44] Bone and Bader reported many unusual bond
paths in a study of 11 van der Waals complexes. A notable example
is that of the CO2 dimer where a bond paths between the oxygen
atoms were observed for the side-on dimer. The meaning and par-
ticular appearance of bond critical points and concomitant bond
paths cannot be lightly dismissed given their deep connection with
the topological energy partitioning [45].

Returning to QCT, the Coulomb interaction [46] energy between
two topological atomic basins XA and XB is given by:

ECoul
AB ¼

Z
XA

dr1

Z
XB

dr2
qtotðr1Þqtotðr2Þ

r12
ð1Þ

where qtot is equal to the sum of minus the electron density q and
the nuclear charge density. The expression 1/r12 in Eq. (1)can be re-
placed by series expansion involving the spherical harmonics
[47,48] to give:

1
r12
¼
X1
lA¼0

X1
lb¼0

XlA

mA¼�lA

XlB

mB¼�lB

TlAlBmAmB
RlAmA

ðr1ÞRlBmB
ðr2Þ ð2Þ
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where Rlm(r) is a regular spherical harmonic. The interaction tensor
T depends upon the mutual orientation of the two interacting atoms
A and B, and their internuclear distance. The simplest interaction
term is that two monopole moments (or essentially atomic
charges), where T is simply 1/r. Substituting Eq. (2)into Eq. (1)gives:

ECoul
AB ¼

X
lAlBmAmB

QlAmA
TlAlBmAmB Q lBmB

ð3Þ

where Qlm represents a multipole moment:

Q lm ¼
Z

X
drqtotðrÞRlmðrÞ ð4Þ

that is obtained after a 3D integration over the potentially compli-
cated volume of the topological atom. It is convenient to define an
interaction rank L between two multipole moments of order lA and
lB by:

L ¼ lB þ lB þ 1 ð5Þ

Previous work [10,36] has shown that an interaction rank of L = 5
provides satisfactory description of structural and dynamic charac-
teristics of a system. The value of L is identical to the inverse power
in the 1/RL behaviour of an interatomic electrostatic interaction. For
example, dipole. . .dipole interactions behave by the well-known 1/
R3 law given that L = 1 + 1 + 1 = 3. Truncating at L = 5 requires
monopole, dipole, quadrupole, octopole and hexadecupole mo-
ments, meaning that the electron density of a topological atom is
described by 1 + 3 + 5 + 7 + 9 = 25 multipole moments each.

Kriging

Given a set of molecular configuration (geometries) we can cal-
culate the multipole moments for each atom using QCT. Then,
assuming that transitions between these configurations occur
smoothly, it is a reasonable approximation to interpolate the val-
ues of the various multipole moments for each of the intermediate
configurations instead of performing the calculations again each

time. This is especially true if the configurations are highly similar,
since the multipole moments, and hence the total electrostatic en-
ergy of the system, can be said to change predictably.

To interpolate the values of the multipole moments for each
atom in the system, we use the method of kriging or Gaussian pro-
cess regression. We have introduced this method elsewhere
[26,27,31], but for convenience, we will summarise the key points
of this strategy. First, a ‘‘training set’’ is created for each molecular
system of interest (details see next Section on the AUTOLINE pro-
cedure), which contains the atomic multipole moments as ob-
tained from ab initio wave functions. Training data sets are then
constructed for each atom, with each training data point consisting
of inputs and outputs (or response values). The inputs are the
internal coordinates of all the atoms for each molecular geometry
in the training set, while the outputs consist of the multipole mo-
ments of the given atom corresponding to each geometry. These
training data sets are then used to construct kriging models for
each multipole moment on each atom. A kriging model is a numer-
ical way of expressing the variation in the values of a multipole
moment as a function of the atomic coordinates of the surrounding
atoms. This can be imagined as constructing a d-dimensional
hypersurface of best fit that passes through the training points.
To do this, we model the correlation or covariance between each
pair of the n training points in an n � n correlation matrix R, whose
elements are given by:

Rij ¼ cor½�ðxiÞ; �ðxjÞ� ¼ exp �
Xd

h¼1

hhjxi
h � xj

hj
ph

" #
ð6Þ

where the vectors xi and xj are any two training points composed of
d components or so-called features in the language of machine
learning. In our case these are essentially the atomic coordinates
of the molecular system. The details of the exact way in which we
define these features is given elsewhere [28] as well as the details
of the local atomic frames installed on each nucleus in order to
fix the orientation of the multipole moments. In Eq. (6), hh and ph

Fig. 1. The seven hydrogen bonded van der Waals complexes studied: the ammonia dimer (top left), the water dimer (top middle), the formic acid dimer (top right), the
formamide dimer (middle left), the uracil dimer (middle right), the 2-pyridoxine. . .2-aminopyridine complex (bottom left) and the adenine. . .thymine base pair (bottom
right). Molecular graphs containing bond paths and critical points are superimposed on the topological atoms, which are capped at their q = 0.0001 a.u. isosurface.
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are two parameters to be determined, which convey the relevance
of each dimension ‘h’. Since there are d values of h and p, we can
write them as d-dimensional vectors h and p. Eq. (6)expresses the
simple idea that, for a well-conditioned function, if two training
points are close together, their response values relative to some da-
tum are likely to be similar. This is expressed as ‘‘a correlation be-
tween errors’’, which is represented by cor½�ðxiÞ; �ðxjÞ�.

The task now is to derive a maximum-likelihood model or func-
tion over the training data set that produces the response values
observed. This is done by maximising the logarithm of a likelihood
function.

log L ¼ � n
2

logðr̂2Þ � 1
2

logðjRjÞ ð7Þ

where

r̂2 ¼ ðy � 1l̂Þ0R�1ðy � 1l̂Þ
n

ð8Þ

l̂ ¼ 10R�1y
10R�11

ð9Þ

where y is a vector made up of the response values corresponding to
the n training data points, and 1 is a vector of ones (rank n).

Because n and y are constants, and R depends only on h and p,
logL depends only on these parameters. The task is therefore, to
find the optimal values of the h and p vectors that maximise logL.
We employ particle swarm optimisation (PSO) to achieve this.
Once the optimal h and p vectors have been derived for each mo-
ment, we can make predictions of the moment values for a new
geometry x⁄ through the following equation:

ŷðx�Þ ¼ l̂þ
Xn

i¼1

ai � ri ð10Þ

where ŷ is the response value, ai is the ith element of the vector
a ¼ R�1ðy � 1l̂Þ, and ri is the ith element of r, which is calculated as:

r ¼ fcor½�ðx�Þ; �ðx1Þ�; cor½�ðx�Þ; �ðx2Þ�; . . . ; cor½�ðx�Þ; �ðxnÞ�g0 ð11Þ

and each term of r is calculated using Eq. (6).
Note that each component of each multipole moment consti-

tutes a separate set of response values. Hence, each component
of each multipole moment must be trained for and predicted
separately. The process of deriving the optimal values of the h

and p vectors is achieved by PSO. This is implemented in our
in-house application FEREBUS (see Section 2.3), which has been
improved with OpenMP parallelisation for the calculation of
the correlation matrix R, thus reducing execution time. We have
described this approach in earlier publications [26–28,49].
Briefly, PSO achieves the optimisation of a single objective
function (here the log likelihood) through the evaluation and
comparison of several concurrent candidate solutions. This
‘‘swarm’’ of candidate solutions then evolves and finds its way
to an optimum by learning both from their own experiences,
as well as the best solution found by the swarm as a whole, until
no improvement in the objective function value is realised for a
number of consecutive iterations.

The AUTOLINE procedure

The AUTOLINE procedure was followed for the building of the
kriging models. This has been discussed in more detail elsewhere
[28] and is outlined in Fig. 2. The Cartesian coordinates for each
of the complexes were taken directly from the Benchmark Energy
and Geometry Database (BEGDB) [50]. The training set geometries
for each of the complexes were obtained by normal mode sam-
pling. This was a two-stage process. Initially, the second deriva-

tives of the potential energy surface for each complex were
calculated at the correct level of theory (using GAUSSIAN03 [51]
for HF/6-31G** and B3LYP/aug-cc-pVDZ, and GAUSSIAN09 [52] for
M06-2X/aug-cc-pVDZ), and then 2000 geometries were sampled
for each system by randomly pumping energy into the normal
modes and taking ‘‘snapshots’’.

Training set geometries are generated by the in-house program
EROS. The basic principle involves taking either the geometry of
the global energy minimum or a local energy minimum, and then
inputting quasi-random amounts of energy into the normal vibra-
tional modes. The energy is spread evenly over all vibrational
modes of the system. The motion of the vibrational modes is mod-
elled harmonically, and ‘snapshots’ of the nuclear coordinates at
random points during the vibrational motion are used as the train-
ing set geometries. If the input energy is too high, then bonds may
dissociate and atoms fly apart. Therefore an iterative process takes
place where initially a maximum input energy is defined, typically
about 200 kJ mol�1, and geometries are generated. If broken bonds
are present then the maximum energy is lowered and the process
is repeated until no broken bonds are present. A bond is defined as
broken if:

RAB > kðAmdW þ BmdWÞ ð12Þ

where RAB is the internuclear distance between bonded atoms A and
B, k is a constant, and Avdw and Bvdw are the van der Waals radii of
atoms A and B, respectively. In this work k = 1.2 was used as this
is the default value used by GAUSSIAN.

For systems such as amino acids multiple energy minima may
appear in the same training set. Assuming that the geometries of
the energy minima that are distorted are chemically relevant, en-
sures that the kriging models are constructed and later used in a
chemically relevant conformational space. In this work, only one

Fig. 2. The highly automated AUTOLINE procedure followed to build and test
kriging models for the prediction of multipole moments.
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minimum geometry was used for each van der Waals complex, gi-
ven by the Cartesian coordinates published elsewhere [50].

Wave functions were obtained for each of the geometries using
GAUSSIAN, and then AIMALL [53] was used to calculate the atomic
multipole moments for each of the 2000 geometries. Candidate
geometries were discarded if any atom in the geometry had an
integration error [54] L(X) larger than 0.001 a.u.. Subsequently,
kriging models relating each multipole moment to the nuclear
coordinates of the system were built using the in-house software
FEREBUS, with a training set of 600 randomly selected geometries.
Twelve particles were used for the FEREBUS PSO in all systems, and
the exponent parameters p were optimised, rather than all set
fixed to a value of 2. The performance of the kriging models for
each complex was then tested on 600 external test geometries. It
is important that none of the test geometries appear in the training
set, in order to simulate and test proper predictivity.

One could assess the performance of a kriging model by com-
paring a multipole moment that it predicts with its true calculated
value. However, the ultimate arbiter of performance is the error in
interaction energy rather than errors in multipole moments. There-
fore we assess the performance of all 25 kriging models for a given
atom, one for each multipole moment, by making this atom inter-
act with other atoms, and monitor the total interaction energy.
Note that energies were calculated up to interaction rank L = 5.
One possible way is to probe a given kriged atom with ‘‘true’’
atoms. However, it is more realistic to probe a kriged atom with
other kriged atoms because when QCTFF is applied to molecular
simulation ‘‘true’’ atoms will not be present. The in-house program
NYX performs the task of energy error calculation and assessment.
Expressed mathematically, the total absolute error of the predicted
interaction energies can be written as:

DEsystem

�� �� ¼ Etrue
system � Epredicted

system

��� ��� ¼ X
AB

Etrue
AB �

X
AB

Epredicted
AB

�����
�����

¼
X

AB

DEAB

�����
����� ð13Þ

where

DEAB ¼ Etrue
AB � Epredicted

AB ð14Þ

Eq. (14)is illustrated by means of Fig. 3, which shows how an atom B
probes a given atom A. Of course, one could equally state that atom
A probes a given atom B, which alerts one not to double count the
energy error expressed in Eq. (14).

The double sum in Eq. (14)needs to be specified. All atom–atom
interaction energies are purely inter-molecular. In other words,
only atom–atom electrostatic energies were calculated where
one atom is part of one monomer and the other atom part of the
other monomer; intra-molecular atom–atom interactions were
not assessed. Put more precisely, the subscript A in eq 13 runs over
all N atoms in molecule 1, and the subscript B includes all M atoms
in molecule 2.

Finally, the energy error |DEsystem| for all test configurations (i.e.
geometries) are plotted in a single curve, which we call a S-curve.
These curves appear for the first time in Fig. 4 where they will be
discussed in more detail. Essentially, an S-curve explicitly displays
the overall performance of a kriging model as tested on all the
external test geometries it predicted for.

The AUTOLINE procedure is a fully automated process. The time
taken for completion is dependent on a number of factors, the two
most significant being the level of theory of the ab initio GAUSSIAN
calculation and the number of training examples input to FEREBUS,
of which the latter takes the longest.

Computational methods

Kriging models were built at three different levels of theory: HF/
6-31G**, B3LYP/aug-cc-pVDZ, and M06-2X/aug-cc-pVDZ. This al-
lows comparison of how well kriging performs at different levels
of theory. Unpublished work has shown that B3LYP/apc1 consis-
tently outperforms HF/6-31G**, in that kriging models lead to inter-
action energies closer to the true energy. This is due to the higher
levels of theory including electron correlation, which produces
atomic monopole moments of smaller absolute value. One can
show mathematically [27] why for the same kriging settings (e.g.
number of data points in the training set) the Hartree–Fock level
will produce worse errors.

The reason for including the Hartree–Fock level of theory in this
work requires some justification in the light of its well-known lim-
ited accuracy. Firstly, some popular force fields such as AMBER or
CHARMM include parameterisation from Hartree–Fock level data.
Showing that our method is able to produce accurate predictions
relative to the ‘‘true’’ Hartree–Fock value proves we can compete
with, and eventually possibly supersede, the methodologies cur-
rently in place. Secondly, assuming that the multipole moments
obtained from HF wave functions behave similarly to the multipole
moments obtained at correlated levels of theory, using HF obtained
multipole moments is still a valid proof of concept. Indeed, when
future kriging models are to be implemented into a force field
and applied to molecular dynamics simulation it will be desirable
to use kriging models that have been built on the most chemically
accurate data. However, such models come at the cost of lengthy
and expensive ab initio calculations, which is why the latter have
to be carried out only when all the parameters for the process of
constructing the kriging models have been fine-tuned. To prove

Fig. 3. A schematic representation of DEAB as expressed in eq 14 and calculated by
the program NYX. Shaded atoms represent the predicted values of the multipole
moments from the kriging models and white atoms represent the true values of the
multipole moments.

Fig. 4. Comparison between the effect of the level of theory of the PES and the level
of theory of the wave functions obtained to build kriging models for the ammonia
dimer. Blue: training set geometries obtained from HF PES and training set wave
functions obtained at HF; Red: training set geometries obtained from HF PES and
training set wave functions obtained at B3LYP; Green: training set geometries from
B3LYP PES and training set wave functions obtained at B3LYP. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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for the first time that kriging is capable of modelling intermolecu-
lar interactions (other than in water clusters), i.e. the essence of the
current work, using a lower level of theory is justified.

A common criticism of the B3LYP density functional is that it
does not describe long-range electron correlation effects, which
play a key role in the binding of many van der Waals complexes
[55–58]. The M06-2X functional [59] has been specifically de-
signed to provide accurate interaction energies for a range of inter-
molecular interaction types, in particular van der Waals
complexes. In this work we use both the B3LYP and M06-2X func-
tionals to see if improved modelling of the long-range electron cor-
relation lowers the magnitude of the prediction errors of
intermolecular interactions provided by our kriging models. In re-
cent work [60] by Friesner et al. a database of highly accurate
CCSD(T) noncovalent interaction energies was assembled. The
database was then used to fit a correction term to be added to
the B3LYP density functional to allow for accurate intermolecular
interactions. This was tested using the aug-cc-pVDZ and LACVP*

basis sets, and was compared with both the B3LYP-D3 method
[61], and the M06-2X hybrid functional. In an effort to maintain
some level of consistency with the work of Friesner et al. the
aug-cc-pVDZ Dunning basis set was chosen in this work for build-
ing of the B3LYP and M06-2X kriging models.

As a final comment we stress that all errors presented in this
paper are relative to the correct value given at a specific level of
theory, rather than relative to an experimental or high level of the-
ory ab initio value such as CCSD(T)/CBS.

Results and discussion

Effect of level of theory on the training set

The training set geometries are sampled by putting energy into
the normal modes of vibration of the system. These normal modes
are calculated directly from the derivatives of the potential energy
surface, and so are affected by the level of theory used to construct
the Potential Energy Surface (PES). Therefore, one must keep in
mind that true comparisons cannot be made between the perfor-
mances of kriging models at different levels of theory. To generate
the training set geometries at each level of theory, the maximum
amount of energy is pumped into the sample without breaking
any bonds. This maximum amount of energy changes when the
PES is built at a different level of theory. For example, Hartree–Fock
theory is known to predict bonds to be too polar. Subsequently, the
force constants for these bonds are higher than those at B3LYP le-
vel, for example. This means that less vibrational motion may take
place when pumping a large amount of energy into a HF PES com-
pared to pumping a smaller amount of energy into a B3LYP PES. Ta-
ble 1 shows the amount of energy put into the systems at different
levels of theory. Hartree–Fock does indeed show the greatest ten-
dency to have the most energy pumped in, although is noted that

this is not seen throughout. This is in part due to the random way
in which energy is put into the vibrational modes.

As stated above, previous unpublished work of our group has
shown that for the same training set geometries, B3LYP/apc-1 con-
sistently outperforms HF/6-31G**, yielding kriging models that
generate more accurate predictions of the electrostatic interaction
between two topological atoms. To confirm that B3LYP/aug-cc-
pVDZ also outperforms HF/6-31G**, kriging models were built for
the ammonia dimer at the B3LYP/aug-cc-pVDZ level using the
geometries sampled from the HF/6-31G** PES. The use of the latter
‘‘mixed level’’ in the construction of a training (and test) set of
geometries needs a comment. We are at liberty to construct any
training set, as long as it consists of a representative range of
chemically relevant geometries. The training set geometries ob-
tained from the HF/6-31G** PES fulfil both of these criteria. There-
fore we may proceed with using these geometries for a training
(and test) set that will be built at a higher level of theory, in this
case B3LYP/aug-cc-pVDZ. This allows the direct comparison of
the effect on the accuracy of the kriging models, of different levels
of theory at which the atomic multipole moments are obtained.

Fig. 4 shows the S-curves of the effect of changing level of the-
ory. The following example guides the interpretation of a typical S-
curve. At a given point on the S-curve the y-value corresponds to
the percentage of the test set geometries that have a total predic-
tion error within the value on the x-axis. For example, it can be
seen for the red line of Fig. 4 that 50% of the test set of geometries
had absolute prediction errors of less than 0.02 kJ mol�1. Thus it
follows that an S-curve that lies to the left is superior to one right
of it. The results seen in Fig. 4 confirm that B3LYP outperforms HF
methods when the same training geometries and test geometries
are used. The results also show that the training set geometries ob-
tained from a PES calculated at the B3LYP/aug-cc-pVDZ level
(Fig. 4, green line) lead to higher prediction errors for the two
curves corresponding to the HF/6-31G** PES sampled training sets
(Fig. 4, red and blue lines). Table 1 shows that more energy was put
into the B3LYP PES than into the HF PES. Hence, one would expect
the training set geometries to span a larger conformational space
for kriging to capture in its models, and hence prediction errors
will be slightly higher.

Prediction of the total electrostatic energy of the hydrogen bonded
complexes

Fig. 5 shows the S-curves obtained, for all seven hydrogen
bonded complexes of the S22 data set at all three levels of theory,
and using 600 training examples. Looking at Eq. (13), we empha-
sise that the individual interaction errors (for each test geometry)
are summed before the absolute value of this sum is taken. Hence,
‘‘cancellation of errors’’ is possible and indeed likely for each point
on the S-curve. This cancellation is justified as the Coulomb law is
itself additive. In other words, there is no summation of absolute
values of atom–atom interactions when calculating a total electro-
static energy, but a summation of the actual values themselves
(whether positive or negative). Analysis of the individual interac-
tions is dealt with in Section 4.3.

Fig. 5 shows that, for all three levels of theory used, the smaller
systems lie furthest to the left, with a lower error, and the larger
systems lie to the right. This is partially due to increased number
of interactions present in the larger systems, and this is an almost
linear relationship. Despite this increase in error with number of
interactions, even the larger aromatic complexes are predicted
within 1 kJ mol�1 for 70% of the test geometries, both at B3LYP
and M06-2X level. For the ammonia dimer and the water dimer, al-
most 100% of test structures were predicted within 1 kJ mol�1.
None of the complexes have a single test geometry with an error

Table 1
Energy (kJ mol�1) pumped into the hydrogen bonded complexes. The highest values
are in bold and the lowest values in italics. Numbers in brackets indicate the first
lowest average prediction error across 600 external test examples, the second lowest
and the highest.

System M062X B3LYP HF

Ammonia dimer 150 (1) 120 (3) 90 (2)
Water dimer 90 (1) 40 (2) 69 (3)
Formic acid dimer 50 (2) 46 (1) 90 (3)
Formamide dimer 60 (2) 50 (1) 110 (3)
Uracil dimer 180 (1) 180 (2) 225 (3)
2-Pyridoxine. . .2-aminopyridine 200 (3) 190 (2) 240 (1)
Adenine. . .thymine 150 (1) 210 (2) 180 (3)
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greater than 9 kJ mol�1. Almost all interactions are predicted with-
in 1 kcal mol�1, which is often referred to as ‘‘chemical accuracy’’.

The errors for the Hartree–Fock complexes are on average high-
er than the error of the same complex at either B3LYP or M06-2X
levels of theory, as expected. This is a consequence of the improved
description of electron correlation as previously mentioned in the
Section on Computational Methods, and extensively explained in
Ref. [27]. Fig. 6 shows the mean absolute prediction errors of the
seven hydrogen bonded systems plotted against the number of
intermolecular atomic interactions, for three levels of theory (wave
functions and PES obtained at the same level). Fig. 6 demonstrates
that neither of the two density functionals consistently outper-
forms the other. Plotting a trend line through the values of the
average prediction error of each system against total number of
interactions for B3LYP and M06-2X levels of theory yields overlap-
ping lines (red2 and blue lines). Plotting a similar line for the HF le-
vel of theory (green line) shows that one can expect the average
error to increase with a higher number of interactions at a faster
rate. The R2 value of 0.93 for the B3LYP data is higher than that of
both HF and M06-2X (R2 = 0.88 for both), suggesting that there is a
stronger correlation between average error and number of interac-
tions. However, due to the random sampling of the geometries this
cannot be stated with certainty.

Prediction of intermolecular interactions

Inspection of the prediction errors for individual interactions
(Fig. 7 and related unpublished figures) shows that for all systems

the majority of interactions are predicted within ±2 kJ mol�1 of the
true value with the exception of the adenine. . .thymine base pair
where the errors are mostly within ±4 kJ mol�1. This is within
the bounds of the so-called chemical accuracy.

The global trend observed for all interactions is a general in-
crease in accuracy with range. This is explained by the magnitude
of the long-range interactions being smaller and therefore errors in
magnitude being smaller. Also, the 1/rL dependence of higher order
multipole moments, such as quadrupole and octopole moments,
results in the electrostatic interaction tending to zero at longer
range for these terms. This is most clearly seen in the larger sys-
tems of the uracil dimer, the 2-pyridoxine. . .2-aminopyridine com-
plex, and the adenine. . .thymine base pair. At large distances, the
main contribution is the monopole. . .monopole interaction

Fig. 5. S-curves of the prediction error for the seven hydrogen bonded dimers in this work at the HF/6-31G** (top left), B3LYP/aug-cc-pVDZ (top right) and M06-2X/aug-cc-
pVDZ (bottom left) levels of theory.

Fig. 6. Mean absolute prediction errors of the seven hydrogen bonded systems
plotted against the number of intermolecular atomic interactions.

2 For interpretation of color in Fig. 6, the reader is referred to the web version of
this article.
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(L = 1). This interaction is predicted with a low error as the isotro-
pic nature of the monopole moments means that there is no angu-
lar dependence. Therefore the interaction energy between two
distant atoms is mainly dependent only on the distance, which
presents an easier problem for kriging to model. Additionally, the
longest-range interactions are between two hydrogen atoms, for
which their moments vary only by small amounts due to being
on the outer edges of the system away from the highly polarising
heteroatoms on the interior.

There are some poorly predicted interactions for all systems.
However, in the geometries for which poor predictions are found,
errors can cancel so that when all interactions are summed for that
geometry, the net error is very low. This explains the absence of
high-error geometries on the total energy S-curves in Fig. 5. Due
to the cancellation of errors in all systems, the mean unsigned error
(MUE) for the prediction of all the individual interactions in a given
system is always higher than the average error for the total energy
S-curve.

It is not always the case that a system that has cancellation of
large errors will correspond to a point on the total energy S-curve
with a high error. For example, for the ammonia dimer, there is an
interaction that is predicted with an error of �7 kJ mol�1 (Fig. 7).
However, the geometry that this interaction belongs to has a total
error of -0.02 kJ mol�1, which is the 69th best overall prediction
out of 600 test geometries. Likewise, for the adenine. . .thymine
complex, there is a geometry in which an individual interaction
is predicted with an error of �38 kJ mol�1 (Fig. 7) but the total er-
ror for the test geometry is only 1 kJ mol�1, which is only the 173rd
worst predicted test geometry out of 600. However, for the ade-
nine. . .thymine complex, the second worst predicted test geometry
does contain the worst predicted individual atom–atom error out
of any in the test set.

The cancellation of errors seen in some of the large complexes is
not as large as it first appears. Inspection of Table 2 shows that for
all systems the mean unsigned error for the interaction predictions
is less than 1 kJ mol�1. For adenine. . .thymine there are 225 atomic
interactions between bases, so over 600 test geometries there are a
total of 135,000 interactions, of which 65,500 points are plotted in
Figs. 7 and 8. The great majority of predictions lie within
±4 kJ mol�1 (Fig. 8).

The symmetry of the predictions is also an interesting feature of
the results. Kriging is free from chemical intuition and does not
discriminate between different bond types such as hydrogen bonds
or C. . .C interactions. Therefore, if the models built by kriging pro-
vide a good answer to the problem asked of them, in this case the
values of the atomic multipole moments with respect to the geom-
etry of the system, then the models are successful. As a result there
is no preference for over- or underpredicting a specific interaction
between two atoms as long as the sum of all predictions in the test
geometry sums to the correct intermolecular interaction energy.

Fig. 7. Prediction errors for individual interactions for the adenine...thymine base pair (left) and the ammonia dimer (right).

Table 2
Mean unsigned errors of total net system error and of individual interactions
(kJ mol�1).

System Mean unsigned error of
total system interaction
energies

Mean unsigned error of
individual interaction
energies

Ammonia dimer 0.20 0.36
Water dimer 0.05 0.18
Formic acid dimer 0.13 0.23
Formamide dimer 0.18 0.32
Uracil dimer 0.68 0.68
2-Pyridoxine. . .2-

aminopyridine
0.68 0.43

Adenine. . .thymine 0.80 0.88

Fig. 8. Spread of prediction errors for 65,500 individual interactions of the adenine. . .thymine base pair. The graph on the right shows a logarithmic spread of errors (in
kJ mol�1) with the ±1 kcal mol�1 error bound being marked by the red lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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The error of the interactions can be lowered by increasing the
training set size. This is computationally expensive due to the N3

scaling where N is the number of training geometries. However,
the computational tractability is currently being tackled in our
group with early signs of success. Models were rebuilt for both
the B3LYP ammonia dimer and the B3LYP water dimer to see the
effect of increased training set size. For both systems the unsigned
mean error and standard deviation decreased upon moving from
600 to 1000 training set geometries (Fig. 9 and Table 3). For both
the ammonia and water dimer the highest errors (‘‘worst offend-
ers’’) disappear in going from 600 (blue) to 1000 (red). The CPU
time for training the kriging models went from between 2 and
3 days per atom to 6–7 days per atom for 600 examples and
1000 examples, respectively.

Conclusions

The current work shows that high-rank multipole moments up
to hexadecupole can be modelled by kriging as a function of nucle-
ar coordinates to high accuracy for intermolecular hydrogen
bonded systems. As such systems are ubiquitous within chemistry,

and the accurate modelling of intermolecular interactions is of
great importance in the design of a next-generation force field.
As the models are built on ab initio values for the moments, kriging
allows for near-ab initio electrostatic interaction energies to be ob-
tained in a fraction of the time. The models are able to model inter-
molecular interactions, including hydrogen bonding, mostly within
±2 kJ mol�1, and the standard deviation and mean unsigned error
of intermolecular interactions are shown to decrease with an in-
crease in training set size. In general, models built from moments
obtained at the Hartree–Fock level of theory lead to larger errors in
the prediction of electrostatic interactions than models built at
B3LYP and M06-2X. There is no observable difference between
the accuracy of our results for the two density functionals.

Future studies aim to lower the errors further by making more
technical changes to the kriging process, such as the number of
particles in the PSO, and also by improving the efficiency of the
program to allow greater training set sizes. The current work, how-
ever, delivers proof-of-concept that machine learning can be used
to accurately describe intermolecular interactions. Kriging models
for the dispersion bound and mixed dispersion/hydrogen bonded
complexes of the S22 set will be built in future work.
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a b s t r a c t

Quantum topological atomic charges have been calculated at B3LYP/apc-1 level to identify where the
charge is located on amino acid residues when the side-chain has been either protonated (Arg, Lys,
His) or deprotonated (Glu, Asp). All energy local energy minima in the Ramachandran map of each (neu-
tral) amino acid were populated with a number of distorted molecular geometries, summing up to a
thousand geometries for each amino acid. The majority of the molecular charge is found on the side-chain
(81–100%), with a large percentage of the charge located on the functional group undergoing proton-
ation/deprotonation. Each side-chain (or residue) methylene group was found to act as an insulator
between an amino acid’s backbone and its side-chain because it accepts the majority of charge not
located on the side-chain. As a result there is no significant charge on backbone atoms relative to the neu-
tral molecule. In the case of His+ and Arg+, where the charge is spread over a large number of atoms due to
resonance, the influence of the positive charge on the backbone atoms is reduced.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The complex mechanisms of enzymatic catalysis have been
studied intensively for decades. A common feature in these mech-
anisms is the protonation and deprotonation of the active site
amino acid side-chains involved in the catalysis. For example, the
rate limiting step in the conversion of CO2 þH2O! HCO�3 þHþ

by the enzyme carbonic anhydrase is a proton transfer involving
the residue His64 [1,2]. Similarly, a proton transfer mechanism
involving a Glu residue in the active site is found to be the rate-
determining step in the mechanism of the enzyme glutaminylcy-
clase [3]. The subtle changes in the electronic charge of the active
site atoms of glutaminylcyclase play a role in determining the path
that the reaction follows. This effect arises through strengthening
of hydrogen bonds within the active site upon proton transfer.
The mechanism employed by enzyme horseradish peroxidase
includes a nucleophilic attack by the hydroxyl oxygen of Ser195.
However, this step requires activation through the deprotonation
of the hydroxyl group [4]. Deprotonation results in the charge of
the oxygen atom becoming more negative and hence more
nucleophilic.

The above examples show that when developing a computa-
tional model to describe enzymatic reactions, any changes in elec-
tronic structure must be captured. Early potentials that enabled
the modelling of reactions include the empirical valence bond
approach [5] and the ‘‘ReaxFF’’ force field [6]. The popularity of
QM/MM approaches is increasing in the study of such systems
due to increases in computer power [7]. Currently under develop-
ment in our lab is the quantum chemical topological force field
(QCTFF). This is a novel approach to building a molecular mechan-
ics force field, in which machine learning is used to map quantum
mechanical properties (such as atomic multipole moments [8–10],
kinetic energy [11] and exchange-repulsion) directly to the coordi-
nates of the system. Preliminary work has shown that this method-
ology enables the modelling of changes in atomic charge as a
reaction path is followed.

There is a perhaps surprising lack of literature detailing the
changes in the atomic charges of amino acids upon a change of
the side-chain protonation state, with studies [12–15] typically
focusing on the zwitterionic states of amino acids. To address this
gap in the literature, a thousand geometries for each of a total of
five amino acids that most commonly undergo changes in proton-
ation state (Asp, Glu, His, Lys, Arg) have been sampled for both the
protonated and deprotonated state, and the changes in average
atomic charges have been compared. In this work, charges have
been obtained from the Quantum Theory of Atoms in Molecules
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(QTAIM) [16–18]. The extensive QTAIM work [19–21] of Matta and
Bader on all natural amino acids, provides a rich background to the
current work but does not specifically address the question of
where an excess or depletion of a formal unit charge resides com-
pared to the neutral amino acid.

There are many methods of obtaining atomic charges but the
question of which protocol produces the ‘‘best’’ atomic charges is
contentious. Arguments for and against the different charge meth-
ods typically fall into one of two competing schools of thought. The
first supports a belief that the atomic charge should be capable of
reproducing the electrostatic potential around an atom. The second
asserts that the charge should correctly describe the charge trans-
fer within a molecule. We subscribe to the latter assertion. Indeed,
an atomic charge should do no more than what the name says:
describe, and indeed correctly represent, the charge on an atom.
Demanding that the single number that is the atomic charge also
reproduces the electrostatic potential generated by the atom, is
problematic because it ignores the non-spherical features of an
atom in a molecule, which are prominent at short (and even med-
ium) range [22]. Atomic charges that are fitted to best reproduce
an electrostatic potential are just numbers [23], one of many pos-
sible solutions, and by no means guaranteed to capture true charge
transfer effects. QTAIM charges fall into the second category of
charges: they do reproduce well the charge transfer in a molecule,
even if they have been criticised for being ‘‘unrealistically’’ high
[24]. At the other end of the spectrum, the Hirshfeld population
analysis produces very small charges, which ironically become
more QTAIM-like, when corrected for the arbitrariness of the pro-
molecule, as done in Hirsheld-I [25]. The criticism that QTAIM
charges do not reproduce the electrostatic potential is remedied
by performing a multipolar expansion (of which the QTAIM charge
is the first term of the expansion, the monopole moment) where it
was shown [26] a long time ago that reproduction of the ab initio
electrostatic potential was achieved at a so-called interaction rank
of L = 5. To quote from this work, ‘‘This work makes clear that the
atomic population (or rank zero multipole moment) is just one term
of the expansion of a physically observable quantity, namely the elec-
trostatic potential. Hence, QTAIM populations (and thus charges) can-
not be judged on their reproduction of the electrostatic potential.
Instead, they must be seen in the context of a multipolar expansion
of the exact electrostatic potential of a topological atom’’.

2. Background and computational details

2.1. Topological atoms

The electron density of a system partitions itself, without the
need for setting any parameter values, or calculation through an
iterative procedure. The only concept required is that of the gradi-
ent vector of the electron density, denoted rq, which traces paths
of steepest ascent. The vast majority of these so-called gradient
paths terminate at a nuclear position, thereby carving out one sub-
space for each nucleus. These subspaces are identified with topo-
logical atoms. More details can be found in a very recent,
didactic, historic and refreshing account [27] of QTAIM. The central
idea of partitioning a quantum system by means of gradient paths
was first carried out [16] on q by the group of Bader, and later
[28,29] on the Laplacian of q. Meanwhile several other three-
dimensional quantum property density functions were investi-
gated (for a list of examples see Box 8.1 in [27]) justifying [30]
the overarching name Quantum Chemical Topology (QCT) [31].

Fig. 1 shows an example, relevant to the current work, of a pro-
tonated lysine falling apart into topological atoms, as generated
[32,33] by in-house software. The latter can be seen as bubbles,
touching each other without overlapping or leaving gaps; they

are malleable boxes that change their shape in response to a
change in the nuclear skeleton.

2.2. Geometry generation

Each amino acid was capped by a [CH3C@O] group at the
N-terminus, and by a [NHCH3] group at the C-terminus to create
the so-called ‘‘dipeptide’’. The minimum energy geometries for
each neutral amino acid were obtained through a comprehensive
search of the potential energy surface [34]. The number of
energetic minima for each amino acid is given in Table 1.

A thousand geometries for each amino acid were obtained by
distributing energy into the normal vibrational modes of each local
energy minimum for each neutral amino acid. These geometries
were generated by the in-house computer program EROS. Quasi-
random amounts of energy are put into the normal vibrational
modes, which then spreads evenly over all vibrational modes.
The motion of the vibrational modes is modelled harmonically,
and ‘snapshots’ of the nuclear coordinates at random points during
the vibrational motion formed the set of geometries. Bonds may
dissociate and atoms fly apart if the input energy is too high, which
is corrected by an iterative process where initially a maximum
input energy is defined, typically about 200 kJ mol�1 and geome-
tries are generated. If broken bonds are present then the maximum
energy is lowered and the process is repeated until no broken
bonds are present. More details can be found in Ref. [35].

All charged amino acid residues except Arg were obtained by
direct addition or removal of a proton on the side-chain of the dis-
torted geometries. For each of the thousand sampled neutral Asp
and Glu residues, the acidic proton was removed in order to obtain
the geometries of the Asp� and Glu�, respectively. A similar
approach was also taken in the case of Lys+, where a proton was
added to the primary amine to give the positively charged tetrahe-
dral ammonium group. His+ was similarly obtained by protonating
the lone pair position of N29 to give the positively charged imi-
dazolium group. Due to the more complex structural changes that
take place in Arg upon protonation a different approach was taken

Fig. 1. Finite-element representation of a molecular geometry of protonated lysine.

Table 1
Number of local energy minima for each amino acid studied in this work.

Amino acid No. minima

Asp 36
Glu 36
His 24
Lys 39
Arg 61

T.J. Hughes, P.L.A. Popelier / Computational and Theoretical Chemistry 1053 (2015) 298–304 299



in obtaining the Arg+ geometries. In particular, the neutral Arg has
a guanidine system with two pyramidal nitrogens (N19 and N16)
and one planar nitrogen (N34). However, in Arg+ this group for-
mally becomes a guanidinium group, which has three planar nitro-
gens. The addition of a proton to N34 causes the geometrical
change between guanidine and guanidinium. Therefore, an alter-
native approach was taken; a proton was added to each of the min-
imum energy geometries and then the guanidinium group alone
([ANHAC(NH2)2]+) was allowed to relax by partial geometry opti-
misation. These new ‘‘minima’’ were then input to EROS to sample
the thousand distorted Arg+ geometries.

2.3. Computational details

Normal modes sampling was performed by the in-house FOR-
TRAN code EROS. All ab initio calculations were performed by
GAUSSIAN09 [36] at the B3LYP/apc-1 [37] level of theory, taking
advantage of a basis set with polarisation and diffuse functions
optimised for use with density functionals. QTAIM charges for all
atoms were calculated with the program AIMAll [38], and are listed
in the Supporting Information, as averages over all configurations
(corresponding to all local energy minima), along with ranges
and standard deviations. An atomic charge is an atomic property
the least sensitive to integration error [39].

3. Results and discussion

Numbered geometries for all five protonated capped amino
acids (Asp, Glu, Lys+, His+ and Arg+) are provided in Fig. 2. For con-
venience, both the protonated and deprotonated amino acids share
a common numbering system. The following discussion refers to
the amino acids as consisting of both side-chain atoms and back-
bone atoms. The set of side-chain atoms consist of all atoms start-
ing with Cb (including its methylene hydrogens), whereas the
backbone corresponds to the Ca, the two peptide groups and the
methyl caps, as well as all associated hydrogen atoms.

Tables containing the average value, range and standard devia-
tion of all atomic charges for both the protonated and deproto-
nated systems studied in this work is provided as Supporting
Information. With the exception of Arg/Arg+ (due to the different
method of obtaining the structures), patterns in both the standard

deviation and the range of atomic charge for similar atom types are
observed.

A number of general observations can be made, across the var-
ious systems. For an atom in a neutral amino acid, both the range
of the atomic charge and its standard deviation maintain a similar
value in the charged amino acid. Within an amino acid, there is
also no clear distinction in the behaviour of the range of the charge
or the standard deviation between the side chain atoms and back-
bone atoms. Peptide nitrogen atoms have a range between 0.65
and 0.80 a.u. around the average value. Peptide oxygen atoms have
a smaller range, between 0.45 and 0.65 a.u. around the average.
Peptide hydrogen atoms have the smallest range in atomic charge
of the peptide group atoms, with a range of 0.30–0.40 a.u. around
the average value. Peptide carbon atoms show the largest range
of atomic charges with a range often over 1 a.u. around the average
value. Alpha carbon atoms have a smaller range of roughly 0.65 a.u.
The side chain methylene carbon atoms exhibit smaller ranges in
atomic charge than both the peptide and Ca atoms. The standard
deviation of the atomic charge does not show any correlation with
the magnitude of the charge. However, a larger range of charges
does correlate to a larger standard deviation. The standard devia-
tion of the hydrogen atoms is always less than 0.05 a.u., which is
considerably smaller than most carbon, nitrogen and oxygen
atoms. Hydrogen atoms within the functional groups of positively
charged amino acid side chains (for example H32, H33 or H34 of
Lys+) exhibit a decrease in the range of charges and the standard
deviation relative to the same hydrogen atoms when present in
the neutral side chain. This is due to less charge being available
to these atoms (overall charge of +1). The standard deviation of
the carbon, oxygen and nitrogen typically lie in the range of 0.5–
1.2 a.u.

3.1. Acidic amino acids (Asp and Glu)

The atomic charge (averaged over all thousand geometries) for
all atoms of both Asp and Asp� can be seen in Fig. 3. The difference
between the atomic charges in the neutral and in the charged
amino acid is also plotted. Atom H25 is the acidic proton that is
removed upon deprotonation. In the neutral molecule, the acidic
proton has a charge of +0.56 a.u. (see Fig. 3), which means that
upon deprotonation a charge of (�1) + 0.56 = �0.44 a.u. is left over

Fig. 2. Numbered geometries for capped amino acids Asp (top left), Glu (top right), Lys+ (bottom left), His+ (bottom middle) and Arg+ (bottom right). The numerical labels of
the atoms (‘‘atom number’’) of the deprotonated geometries are the same. In all five cases the proton removed upon deprotonation is the highest numbered proton.
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to be distributed over the remaining geometry. Of this 0.44 of an
electron, 57% (�0.25 a.u.) moves onto the side-chain atoms. The
remaining 43% (�0.19 a.u.) is found on the backbone atoms.

Despite the even spread of H25’s charge over the whole mole-
cule upon deprotonation, the total molecular charge is highly con-
centrated on the side-chain of the molecule of Asp�. Upon
deprotonation the sum of all side-chain atomic charges (including
H25 for the neutral side-chain) decreases from �0.01 a.u. to
�0.81 a.u. meaning that 81% of the total molecular charge is found
on the side-chain atoms. The carboxylate group of Asp� has a
summed charge of �0.89 a.u. (89% of the molecular charge). The
methylene group of the side-chain increases in charge from
Asp to Asp�, with a summed (group) atomic charge of 0.08 a.u.
(= |�0.89 � (�0.81)|). There are no chemically significant changes
in atomic charges of the backbone atoms. Curiously, one of the
most significant changes in backbone charge is that the hydrogen
atoms on the methyl capping groups undergo a difference in
summed charge of �0.10 a.u. when going from Asp to Asp�.

Similar results are found for the deprotonation of Glu to Glu�.
The differences in average atomic charge over a thousand confor-
mations are shown in Fig. 4. Atom H28 corresponds to the acidic
proton that is removed when going from Glu to Glu�. The charge
of H28 in Glu is 0.55 a.u. meaning that in Glu� only �0.45 a.u. of
additional negative charge is available to the molecule for redistri-
bution. A value of �0.33 a.u. of the additional charge (73%) remains
on the side-chain atoms, and the remaining �0.12 a.u. is shared by
the backbone atoms.

Similar to Asp�, it is apparent that the majority of the negative
molecular charge of Glu� is found on the side-chain atoms
(�0.88 a.u., 88% of total molecular charge). A similar situation to
that of Asp� arises where the majority of the side-chain charge
of Glu� is concentrated on the carboxylate group. In Glu� the car-
boxylate atoms have a summed charge of �0.93 a.u., which is an
increase in charge of �0.73 a.u. relative to the summed charge of
the neutral carboxylic acid group. There is no significant change
in backbone atom charges. The methyl hydrogens increase in
summed charge by �0.7 a.u., which is less than in the case of Asp�.

There are differences between the changes seen in atomic
charges for the two systems Asp� and Glu�. Eight percent more
charge is located on the side-chain of Glu� than on the side-chain
of Asp�. Also, less of the additional charge available upon deproto-
nation is found on the backbone atoms for Glu� (26%) compared to
Asp� (43%). This observation has led to the idea of a ‘‘buffering’’
methylene group. Methylene groups are neutral fragments in the
side-chain that act to separate the polar carboxylic acid/carboxyl-
ate group from the rest of the amino acid. The additional methy-
lene group in the side-chain of Glu� creates a more insulating
buffer between the charged carboxylate group and the amino acid
backbone. This buffering is responsible for the increased localisa-
tion of the charge on the side-chain in Glu� than in Asp�.

In summary, the deprotonation of the acidic hydrogen in Asp
and Glu, causes the newly available negative charge to predomi-
nantly reside on the side-chain atoms (81% and 88% for Asp� and
Glu�, respectively). In particular, the charge is localised on the
three carboxylate atoms (COO�). Changes in the charge of back-
bone atoms, when going from the protonated to the deprotonated
state, are insignificant due largely to ‘‘buffering’’ methylene groups.
The buffering effect is greater in the case of Glu� where there are
two methylene groups.

3.2. Basic amino acids (Lys, His and Arg)

Fig. 5 shows the atomic charges of Lys and Lys+. The acidic pro-
ton in Lys+ (H33) has a charge of 0.48 a.u. This means that the
atoms present in Lys undergo a sum increase in positive charge
of 0.52 a.u. when going from neutral Lys to protonated Lys+

(because 0.52 of an electron has moved onto H33). A positive
charge of 0.44 a.u. (85%) is generated on side-chain atoms. As
one would expect, the backbone atoms of Lys+ remain relatively
unaffected by the protonation of the amine group due to the four
methylene groups ‘‘buffering’’ the ammonium group from the
backbone. This explains the summed charge of the backbone atoms
increasing by only (0.52–0.44 =) 0.08 a.u. upon protonation.

-1.5

-1 

-0.5

0 

0.5

1 

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ch
ar

ge
 /

 a
u

Atom Number

Difference

Neutral

Charged 

Fig. 3. The averaged atomic charges of both Asp (green) and Asp� (red) and the
difference (blue) between the neutral and charged atomic charges. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 4. The averaged atomic charges of both Glu (green) and Glu� (red) and the
difference (blue) between the neutral and charged atomic charges. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 5. The averaged atomic charges of both Lys (red) and Lys+ (green) and the
difference (blue) between the neutral and charged atomic charges. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fragmenting the molecule into side-chain atoms and backbone
atoms and summing the atomic charges gives a clear illustration of
the buffering effect. The summed charge of all side-chain atoms in
Lys is 0.09 a.u., whereas in Lys+ the summed charge is 1.01 a.u. (an
increase of 0.92 a.u.), whereas the backbone atoms have a summed
charge of �0.01 a.u. This shows that all of the positive molecular
charge is found on the side-chain. The ammonium atoms
([ANH3]+) of Lys+ have a summed charge of 0.43 a.u., which is
the largest contribution to the molecular charge. The remaining
charge resides on the methylene groups. The summed charge of

each methylene group is plotted in Fig. 6 against the number of
covalent bonds between the carbon atom and the ammonium
nitrogen. The summed charge of the methylene atoms decreases
as the number of covalent bonds away from the ammonium nitro-
gen increases. The summed charge of the methylene groups in the
neutral Lys molecule are also plotted in Fig. 6. From left to right,
the gap between the neutral and charged values narrows, and by
the fourth methyl carbon the difference between the charged and
neutral methylene groups is only a summed charge of 0.02 a.u. This
illustrates clearly the ‘‘buffering’’ effect of the methylene groups;
the backbone atoms are almost unaware of the protonation of
the amine group.

The atomic charges of His and His+ can be seen in Fig. 7. The
acidic proton of His+ (H30) has a charge of 0.51 a.u. meaning that
0.49 a.u. of positive charge much be built up on the atoms present
only in His (0.49 of an electron has moved onto H30). Of this
charge, 76% (0.37 a.u.) lies on the side-chain atoms. The summed
charge of the side-chain atoms is 0.93 a.u, which is 0.88 a.u more
positive than the neutral side-chain. This again shows that the
molecular charge is predominantly located on the side-chain, with
the backbone atoms of His+ undergoing a change in summed
charge of 0.12 a.u. The only other amino acid that only has a single
methylene group to protect the side-chain from the effects of side-
chain protonation is Asp/Asp�. The backbone atoms of Asp� expe-
rience a greater change in summed charge (�1.9 a.u.). An incorrect
assumption would be at the methylene (C5H7H8, Fig. 2) in Asp� is
a worse ‘‘buffer’’ than the methylene (C5H7H8) in His+. This is not
true. Instead, in His+ the positive charge is delocalised over the imi-
dazolium and therefore its methylene group is no longer directly
bonded to a charged atom but rather a group of atoms charged
to a lesser extent. Thus, the methylene group in His+ is only
0.07 a.u. more positive than the methylene in the neutral His, com-
pared to a difference of �0.16 a.u. for the methylene of Asp and
Asp�.

The atomic charges of Arg and Arg+ can be seen in Fig. 8. The
acidic proton of Arg+ (H36) has a charge of 0.48 a.u. meaning that
0.52 a.u. of positive charge is built up on the atoms present in
the neutral Arg molecule. The side-chain atoms of Arg increase
by a total summed charge of 0.44 a.u. when the proton is added,
which accounts for 86% of the charge build up. The small contribu-
tion to this charge by the backbone atoms is due to a combination
of the factors previously discussed. Firstly, there are three buffering
methylene groups to separate the protonated guanidinium group
from the backbone. The summed charge of the methylene
groups can be seen in Fig. 9. By the second methyl group (Cc) the
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Fig. 6. Summed charges of the methylene groups of Lys (red), Lys+ (green) and their
difference (blue) against the number of covalent bonds from the side-chain nitrogen
atom (N31) (1 = Ce, 2 = Cd, 3 = Cc and 4 = Cb). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. The averaged atomic charges of both His (red) and His+ (green) and the
difference (blue) between the neutral and charged atomic charges. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 8. The averaged atomic charges of both Arg (red) and Arg+ (green) and the
difference (blue) between the neutral and charged atomic charges. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 9. Summed charges of the methylene groups of Arg (red), Arg+ (green) and their
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difference between the charged and neutral methylene groups is
less than 0.05 a.u. The second reason for the low increase in
backbone charge is that the positive charge is stabilised by the
delocalised – system of the guanidinium group. The eight guani-
dine atoms present in Arg account for 81% of the total side-chain
increase in summed charge of Arg+.

The side-chain atoms of Arg+ have a summed charge of 1.01 a.u.,
accounting for all of the positive charge of the molecule. The back-
bone atoms have a summed charge of �0.01 a.u. due to the three
‘‘buffering’’ methylene groups and the spread of the charge over
the guanidinium group. The guanidinium group has a summed
charge of 0.45 a.u, which is the largest contribution to the molecu-
lar charge. The next largest contributor to the molecular charge is
the methylene group adjacent to the guanidinium group, with
summed charge of 0.41 a.u.

4. Conclusions

The atomic charges of five amino acids that undergo proton-
ation (Lys, His and Arg) and deprotonation (Asp and Glu) have been
studied. The QCT atomic charges of all atoms, averaged over a
thousand conformations, for both charged and neutral amino acids
have been compared. For Asp and Glu, which are deprotonated to
form Asp� and Glu�, the majority of the negative charge is located
on the side-chain atoms (81% and 88% respectively). Less charge is
found on the backbone of Glu� than Asp� due to the additional
side-chain methylene group ‘‘buffering’’ the charge. The buffering
effect of methylene groups is more apparent in the positively
charged amino acids Lys+, His+ and Arg+ due to the large number
of methylene groups in Lys+ and Arg+. By the third methylene
group counting from the site of protonation, the summed charge
of the CH2 group is comparable to that of the neutral molecule.
Spread of the charge over multiple side-chain atoms (such as in
the imidazolium ring of His+ and the guanidinium group of Arg+)
also reduces the effect of the charge on backbone atoms.
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