
1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

Opponent Modelling by

Expectation-Maximisation and Sequence

Prediction in Simplified Poker

Richard Mealing and Jonathan L. Shapiro

Abstract

We consider the problem of learning an effective strategy online in a hidden information game

against an opponent with a changing strategy. We want to model and exploit the opponent and make

three proposals to do this; firstly, to infer its hidden information using an expectation-maximisation

algorithm, secondly, to predict its actions using a sequence prediction method, and finally, to simulate

games between our agent and our opponent model in-between games against the opponent. Our approach

does not require knowledge outside the rules of the game, and does not assume that the opponent’s

strategy is stationary. Experiments in simplified poker games show that it increases the average payoff

per game of a state-of-the-art no-regret learning algorithm.

Index Terms

Opponent modelling, expectation-maximisation algorithms, sequence prediction, counterfactual re-

gret minimisation, simplified poker, learning in games.

I. INTRODUCTION

The question of how to make a learning agent that can play a game with hidden or incomplete

information, such as poker, is an ongoing and challenging problem (see, for example, the Annual

Computer Poker Competition 2014 results [1]). In a two-player game with perfect information

R. Mealing and J. L. Shapiro are with the Machine Learning and Optimisation Group in the School of Computer Science at

The University of Manchester, M13 9PL, UK, E-mails: {mealingr,jls}@cs.man.ac.uk.

Manuscript received October 21st, 2014; revised March 8th, 2015, June 30th, 2015, and September 26th, 2015; accepted

October 7th, 2015.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 2

(i.e. where each player knows all prior events), such as backgammon or go, the optimal strategy

is deterministic. It can often be learned with conventional methods such as backwards induction.

Poker, however, requires you to be unpredictable to play optimally (e.g. by bluffing), which can

only be expressed using a “mixed strategy” in the language of game theory. It has been known

for a long time that learning an optimal mixed strategy is difficult [2]–[4]. Although there have

been many advances to this problem, particularly for playing a learning algorithm against itself

in a process called “self-play” [5]–[7], it is still challenging especially in large games with many

hidden states.

Our problem is that of learning an effective strategy online in a hidden information game

against an opponent with a changing strategy. Our approach is to model the opponent, and to use

this model to improve our strategy. The purpose of an opponent model is to predict the opponent’s

actions given its information. Thus, to learn an opponent model, we must observe the opponent’s

actions with its corresponding information. However, in our case, it has hidden information,

which may only be partially revealed at the end of each game. The actions of a typical opponent

will give indications of its hidden information e.g. often betting with strong hands and folding

with weak hands. Our first proposal is then to infer its hidden information, when it is not

revealed, based on its actions using expectation-maximisation. This is an iterative procedure to

compute maximum likelihood estimates of model parameters given partially observed data. In

our case, the model is of the opponent’s strategy, the observed data is the opponent’s actions

given our information (public actions and our hidden information), and the hidden data is its

hidden information. We do not assume that the opponent’s strategy is stationary. Our second

proposal is then to use sequence prediction to predict a changing opponent strategy such that

for each of its decision points, identified using its inferred hidden information, its actions are

predicted using its actions at that point from previous games. Sequence prediction finds effective

predictive contexts amongst different interaction memories. Finally, we need to decide how to

use our opponent model to improve our strategy, which is more difficult if it has inaccuracies.

Our third proposal is then to simulate games against our opponent model. If our agent learns

from games, then this will improve its strategy against our opponent model, which if accurate

will improve its strategy against the opponent. Simulating games is advantageous as it lets us

control computational cost, control our reliance on our opponent model, and use any algorithm

that uses game results.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 3

In short, we make three proposals, which can be used online; two for building an opponent

model, specifically to handle hidden information as well as changes in the opponent’s strategy,

and one for using an opponent model, which may have inaccuracies. Our proposals are as follows:

1) To use expectation-maximisation to infer the opponent’s hidden information when it is not

revealed.

2) To use sequence prediction to model the opponent’s strategy and predict its actions based

on its inferred hidden information and its actions from previous games.

3) To simulate games against our opponent model in-between games against the opponent to

improve learning.

We use a state-of-the-art no-regret learning algorithm to update our strategy using rewards

from actual and simulated games. If our opponent model is completely accurate, then playing a

best-response strategy against it would maximise our expected rewards. However, it is unlikely to

be completely accurate, particularly near the start with data from only a few games. This matters

as Johanson et al. showed that even a slightly inaccurate best-response strategy can give very

low expected rewards [8]. This proposal will exploit the opponent less if our opponent model

is completely accurate, but is likely to be less exploitable if it is inaccurate. Many opponent

models require knowledge outside game rules, or assume a stationary opponent strategy, or both.

Our opponent model has several advantages: 1) it can be built and used online; 2) it does not

require knowledge outside the game rules; 3) it can infer the opponent’s hidden information via

expectation-maximisation; 4) it can predict the actions of an opponent with a changing strategy

via sequence prediction, and 5) it can be used with any strategy update method that only requires

results from games.

We test our proposals in a pair of two-player simplified poker games against various opponents.

However, our proposals can be used with more than two agents by modelling each agent

separately and training against all of them. Our primary idea is that our proposals will give

higher average payoffs per game than not using them. Our secondary ideas are as follows. Firstly,

that inferences of the opponent’s hidden information based on its behaviour using expectation-

maximisation will give higher average payoffs per game in our approach than inferences ignoring

its behaviour. Secondly, predictions of the opponent’s actions using a sequence prediction method

will give higher average payoffs per game in our approach than predictions using empirical

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 4

probabilities. Experiments in the pair of simplified poker games measuring the change in our

agent’s average payoff per game confirm these ideas.

II. RELATED WORK

A large part of opponent modelling research in games with hidden information, otherwise

known as imperfect information games, has focused on poker due to its huge popularity. Some

approaches use domain-specific heuristics and expert knowledge. For example, Billings et al.

propose a multi-player Texas hold’em agent named Loki whose strategy is based on poker-

specific heuristics i.e. effective hand strength, which is calculated using hand strength, hand

potential, pot odds, and opponent models [9]. Other approaches use large databases of human

play. For example, the opponent modelling by Billings et al. [9] is improved by Davidson et al.

through experiments with neural networks trained on hands played in the Internet Relay Chat

(IRC) poker server [10]. A second example is by Ponsen et al. where they use games played in

an online multi-player no-limit Texas hold’em room to learn a relational regression tree-function

to adapt prior opponent models to specific opponents [11]. A third example is by Broeck et

al. where they apply Monte-Carlo Tree Search (MCTS) to multi-player no-limit Texas hold’em

and learn opponent models using games played in an online casino [12]. A final example is by

Rubin and Watson, where they look at a two-player limit Texas hold’em agent named SARTRE

(Similarity Assessment Reasoning for Texas hold’em via Recall of Experience), which acts by

re-using solutions similar to its situation from a large database of human poker hands [13].

Many approaches use Bayesian probabilistic models. For example, Korb et al. propose a

Bayesian Poker Program for two-player five-card stud poker, which learns through experience

using a Bayesian network to model each player’s hand, opponent behaviour conditioned on its

hand, and betting curves that govern play given a probability of winning [14]. A second example

is by Southey et al. where they propose a Bayesian probabilistic opponent model for two-player

poker games, which infers a posterior opponent strategy given a prior and observations of its

play [15]. A final example is by Baker and Cowling, where they use Bayesian opponent modelling

in multi-player one-card poker to classify each opponent based on its behaviour as loose or tight,

as well as passive or aggressive, and to counter the most dangerous type [16].

Another set of approaches use best-response strategies, or approximate Nash equilibrium

strategies, or both. For example, Risk and Szafron use approximate Nash equilibrium strategies in

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

three-player limit Texas hold’em, which they find using counterfactual regret minimisation [17].

Two more examples are by Johanson et al. firstly using Restricted Nash Response (RNR)

strategies, and secondly using Data Biased Response (DBR) strategies, the latter being an

enhancement of the former, which they also find using counterfactual regret minimisation. RNR

and DBR strategies tradeoff between exploiting an opponent and being exploitable by solving a

modified game to potentially achieve strategies with lower exploitability for a given degree of

exploitation [8], [18]. Ponsen et al. use Monte-Carlo sampling to speed up the convergence of

RNR strategies [19]. A fourth example is by Bard et al. where they compute a set of RNR and

DBR strategies against certain opponents offline and find the mixture that maximises its expected

reward online using a multi-armed bandit algorithm [20]. A final example is by Ganzfried and

Sandholm, where they propose Deviation Based Best-Response, which initialises prior opponent

action distributions as if it has played a number of fictitious hands according to an approximate

Nash equilibrium strategy, and then updates them through observations of its play. It uses these

posterior distributions to compute an opponent model that is close to the approximate Nash

equilibrium, making it less exploitable, and plays a best-response strategy against it [21].

For more information we refer the reader to the review by Sandholm on the state of solv-

ing incomplete-information games [22], and the review by Rubin and Watson on algorithms,

approaches, and agents in computer poker [23]. Our expectation-maximisation algorithm is

related to approaches that use Bayesian probabilistic models in that it makes use of Bayes’

rule. Additionally, the state-of-the-art no-regret algorithm that we use is based on counterfactual

regret minimisation, which is an algorithm that is also used by [8], [17]–[20] to calculate best-

response strategies, approximate Nash equilibria, and combinations between both. Our work

differs from [9]–[14], [16] in that we avoid using knowledge outside the rules of the game

and update our opponent model online using only information accessible to our agent. Our

work also differs from [8]–[10], [15]–[21] in that we do not assume that the opponent uses a

stationary strategy. One advantage of these differences is that it makes our work applicable to

more opponents and more imperfect information turn-based games (or situations that can be

modelled as such). Another advantage is that by simulating games against the opponent model,

instead of immediately playing a best-response strategy against it, which can be brittle [8], our

strategy will be more robust to inaccuracies in the opponent model. Out of the prior exploitation

approaches designed to model dynamic opponents in real-time, only the MCTS approach by

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 6

Broeck et al. reports effective results [12]. If their approach did not require prior knowledge in

the form of training its opponent model using a large database of games, it could have served

as a fair comparison to our approach.

III. BACKGROUND

We consider two-player, zero-sum, imperfect information, turn-based games of finite length

and with discrete actions. Before formally explaining our approach we need a representation

for these games, which is described in Section III-A. Additionally, we want to empirically test

our three proposals to see if training our agent against our opponent model in-between games

against the opponent improves its average payoff per game. To do this we need: 1) candidate

two-player, zero-sum, imperfect information, turn-based games of finite length and with discrete

actions, for which we use two simplified poker games described in Section III-B, and 2) candidate

opponents, for which we use a mixture of state-of-the-art and popular algorithms described in

Section III-C. In Section III-D we describe, in general, expectation-maximisation as well as the

online variant that we use as the first component in our opponent model. In Section III-E we

describe, in general, sequence prediction as well as the specific method that we use as the second

component in our opponent model. Finally, in Section III-F and in more detail in Appendix A,

we describe counterfactual regret minimisation and the online variant that we use to update our

agent’s strategy.

A. Extensive-Form Game

An extensive-form game is a model of sequential decision-making and can represent these

games effectively. It can be visualised as a game tree, with nodes as game states and edges as

actions. At each non-terminal node a player acts or is “on turn”, which means that it chooses

the action to take at that node. The chosen action determines the edge that is followed to the

next node. Each node has only one parent and so can be represented by a unique history or

sequence of actions taken to reach it, h = (a1, a2, . . . , am), where each action, ai, 1 ≤ i ≤ m,

is taken by one of the players. These actions include “chance” actions such as die rolls or card

deals, which are taken by the “chance” (sometimes called “nature”) player. Thus, h represents

all of the information seen by an omniscient observer. The set of all nodes is H and the subset

Z ⊆ H contains terminal (leaf) nodes, which have no children.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 7

If one or more actions are hidden from a player, such as the dealing of opponent cards in

poker, then that player cannot be sure of what node it is at in the game tree. What it does know

is that the node belongs to a subset of nodes, where each node in that subset is represented by an

interleaved sequence of observed actions and actions that could represent the hidden information.

For example, in poker a node could be (A♥A♠, K♦K♣, R) where player one was dealt aces,

player two was dealt kings, and player one raised. At this point neither player has seen the

other’s private cards. From player two’s perspective, this node could be any (C1C2, K♦K♣, R),

where C1 and C2 are unique cards out of a standard fifty-two card deck other than the kings

being held. From player one’s perspective, this node could be any (A♥A♠, C3C4, R), where C3

and C4 are unique cards out of a standard fifty-two card deck other than the aces being held.

This subset of nodes from a player’s perspective is called an information set and is denoted by

I . The set of all of player i’s information sets is called an information partition and is denoted

by Ii. It is called a partition because each node belongs to exactly one information set and there

are no empty information sets. If there is no hidden information, then each node belongs to its

own information set. We denote the (possibly empty) set of edges or actions at a node h by A(h),

and the player who acts at that node by P (h). Note that, in our games, the available actions and

the player who acts at an information set are equal to the available actions and the player who

acts at any node in that information set respectively i.e. A(I) = A(h) and P (I) = P (h) for any

h ∈ I . Each player i has a strategy, which is a set of discrete probability distributions, one for

each of its information sets where it acts over the actions available at that information set. We

denote player i’s strategy as σi = {fA(I) : I ∈ Ii and P (I) = i}, where fA(I) is a probability

mass function over the available actions at information set I , A(I).

B. Games in our Experiments

We use a pair of two-player, zero-sum, imperfect information, turn-based poker games of

finite length and with discrete actions in our experiments. We assume that the players in both

games have perfect recall, meaning that they can remember the exact sequence of observable

actions. In both of these poker games each player has, at most, three actions when it acts. It

can fold (F) giving up the pot, or call (C) matching its opponent’s current bet (if bets are equal,

then this is also called a check and just passes the turn), or raise (R) matching and exceeding its

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 8

opponent’s current bet by a fixed amount. If no one folds, then a showdown eventually occurs

and the player with the best hand (of dice or cards) wins the pot.

1) Die-Roll Poker: The first game we use in our experiments is die-roll poker, which was

introduced by Lanctot et al. [24] and uses dice instead of cards. The game is as follows:

1) Each player antes one chip into the pot.

2) Each player rolls its first private six-sided die.

3) First public betting round occurs, each raise (maximum of two in total) is two chips.

4) If no one folded, each player rolls its second private six-sided die.

5) Second public betting round occurs, each raise (maximum of two in total) is four chips.

6) If no one folded, a showdown occurs and the player with the highest dice sum wins the

pot.

Die-roll poker has imperfect information due to each player’s die rolls initially being hidden from

its opponent. If the game ends in a fold, then each player’s die rolls remain hidden. Otherwise

a showdown occurs and the sum of each player’s die rolls are revealed to its opponent, but each

individual die roll that constituted that sum is not revealed. For example, at a showdown a player

might reveal to its opponent that the sum of its die rolls is three, but its opponent cannot tell

if the sum is either or . Fig. 1 shows the game tree, including die-rolls and a betting

round.

2) Rhode Island Hold’em: The second game we use in our experiments is Rhode Island

hold’em, which was introduced by Shi and Littman [25] and uses a standard fifty-two card

deck. Each player is dealt only one private card and only two public cards are dealt. The game

is as follows:

1) Each player antes five chips into the pot.

2) Each player is dealt one private card from a standard fifty-two card deck.

3) First public betting round occurs, each raise (maximum of three in total) is ten chips.

4) If no one folded, the first public “flop” card is dealt.

5) Second public betting round occurs, each raise (maximum of three in total) is twenty chips.

6) If no one folded, the second public “turn” card is dealt.

7) Third public betting round occurs, each raise (maximum of three in total) is twenty chips.

8) If no one folded, a showdown occurs and the player with the best three-card hand wins the

pot.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 9

Rhode Island hold’em has imperfect information due to each player’s private card initially being

hidden from its opponent. If the game ends in a fold, then each player’s private card remains

hidden. Otherwise a showdown occurs and each player’s private card is revealed to its opponent.

Fig. 2 shows the game tree, including card deals and a betting round.

3) Bucketed Rhode Island Hold’em: This is an abstraction of Rhode Island hold’em, which

reduces its number of information sets where players act from 2.50 × 107 for player one, and

2.46× 107 for player two, to 2.52× 103 each. This allows the agents we use to learn effective

strategies within 1 × 105 games, which is the number of games we evaluate agents over in

our experiments. Evidence for this is discussed in Section V-A. The abstraction uses percentile

bucketing based on expected hand strength squared. Expected hand strength is the probability of

a player’s private cards combined with the public cards winning against a uniform random draw

of the opponent’s private cards combined with the public cards. Expected hand strength squared

is simply the square of the expected hand strength. This gives more weight to initially weak

hands that could become strong such as straights or flushes. Percentile bucketing divides all

n-card hands evenly between a set of buckets, bn, where in Rhode Island hold’em n ∈ {1, 2, 3}.

For more information on percentile bucketing and expected hand strength see Johanson’s MSc

thesis [26, pp. 24–26].

C. Opponents in our Experiments

We use opponents based on popular and state-of-the-art algorithms in our experiments. These

opponents are as follows:

• OS-MCCFR (without our model) by Lanctot et al. [27].

• PGA-APP (Policy Gradient Ascent with Approximate Policy Prediction), a state-of-the-art,

Q-Learning based, reinforcement learning method by Zhang and Lesser [7].

• UCB (Upper Confidence Bounds), a popular adaptive bandit algorithm, see Auer et al. [28].

• CFRX (CFR with X iterations) by Zinkevich et al. [29], not an agent in itself but used to

generate approximate Nash equilibrium strategies (only used in die-roll poker).

As UCB is designed for a single-state environment, we use an instance of it for each of the

opponent’s information sets where it acts. The average reward for each UCB instance is set to

the average of the rewards from the games involving its associated information set. We measure

the change in the average payoff per game of OS-MCCFR against these opponents when trained

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 10

against our opponent model. We label our agent OS-MCCFR with an Opponent Model (OS-

MCCFR OM).

D. Expectation-Maximisation

We use an expectation-maximisation algorithm to infer the opponent’s hidden information

based on its actions. The expectation-maximisation (EM) algorithm, first proposed by Dempster

et al. [30], can iteratively calculate maximum likelihood estimates of parameters in a statistical

model dependent on latent (unobserved) variables. The EM algorithm alternates between an ex-

pectation (E) step and a maximisation (M) step. The E-step creates a function for the expectation

of the log-likelihood evaluated using current parameter estimates. The M-step updates parameters

by maximising the expected log-likelihood computed in the E-step. The new parameters are

then used to determine the probability distribution of the latent variables in the next E-step and

the algorithm iterates. The EM algorithm will always converge to a, possibly local, maximum

likelihood estimate, which may be improved through multiple runs with different initialisations.

We use what Liang and Klein refer to as a stepwise EM algorithm [31], first proposed by Sato and

Ishii [32], generalised by Cappé and Moulines [33], and applied to poker by Butterworth [34].

The idea is to stochastically approximate the E-step by incorporating each new observation

iteratively, whilst leaving the M-step unaltered. The stepwise EM algorithm is also guaranteed

to converge to a, possibly local, maximum likelihood estimate if the step size, ηt, is restricted

such that
∑∞

t=0 ηt = ∞ and
∑∞

t=0 η
2
t < ∞, where t is the update number (i.e. t = 0 is initial,

t = 1 is first update). Our step size is set to ηt = 1
t
.

E. Sequence Prediction

We use a sequence prediction method in our opponent model to observe and predict the

opponent’s actions. Its target is an opponent who changes its strategy over time (i.e. learns), but

it will also work against an opponent with a stationary strategy. A sequence prediction method

assumes that the probability of the future can, in general, depend on any subset of the past i.e.

Pr(st+1|s1, s2, . . . , st) = Pr(st+1|H) where H ⊆ {s1, s2, . . . , st}, each observation is from some

alphabet si ∈ Σ for (t−k+1) ≤ i ≤ t, and t is time. It usually has two main components, a short-

term memory, and a long-term memory. Its short-term memory, S, stores the last k observations

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 11

acting as a size-k first-in-first-out stack i.e. S = (st−k+1, st−k+2, . . . , st), where k is the short-

term memory size or lookback. Its long-term memory, L, stores conditional distributions acting

as a map from observation sequences and observations to counts i.e. L : Σi × Σ → N0 for

0 ≤ i ≤ k. The probability of an observation, s ∈ Σ, given a sequence of up to k observations,

S ′, is Pr(s|S ′) = L(S ′, s)/
∑

s′∈Σ L(S ′, s′). The sequences or conditioning contexts used for

predictions depend on the sequence prediction method.

F. Outcome Sampling Monte-Carlo Counterfactual Regret Minimisation

The agent that we use to test our three proposals, to see if they can improve its average

payoff per game, is a state-of-the-art no-regret learning agent based on counterfactual regret

minimisation (CFR). CFR is a state-of-the-art algorithm which, in self-play, computes an ap-

proximate Nash equilibrium in two-player, zero-sum, imperfect information games. It works by

minimising counterfactual regret in self-play, which Zinkevich et al. showed minimises overall

regret, causing the average strategy profile to approach a Nash equilibrium strategy profile [29].

Before minimising an agent’s counterfactual regret, it calculates the agent’s counterfactual regret

for not playing each of its actions at each of its information sets where it acts. An agent’s

counterfactual regret for not playing an action at an information set is the difference between its

expected reward for playing that action at that information set and its expected reward for playing

its strategy at that information set, weighted by the probability of reaching that information set if

the probability of each of its actions leading to it is set to one. If an agent has a high counterfactual

regret for an action, then in expectation it would have received a higher cumulative reward if it

had played it more often and so the algorithm increases its probability of playing that action.

Using CFR to learn a strategy online is problematic. Firstly, calculating an agent’s expected

reward for playing an action requires the entire sub-tree under that action to be traversed, which

is computationally costly. Secondly, if an agent action leads to an opponent action, then CFR

needs that opponent’s strategy to calculate the agent’s expected reward for that action. Also, if

an opponent action leads to an agent information set, then that opponent’s strategy is needed to

calculate the probability that the agent reached that information set if it had tried to do so. To

tackle the first problem, Lanctot et al. proposed Monte-Carlo Counterfactual Regret Minimisation

(MCCFR) [27], a family of sample-based CFR algorithms. MCCFR works by replacing an exact

calculation of expected reward with an unbiased estimate. CFR calculates an agent’s expected

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 12

reward for playing an action as the sum over each reward it could receive after playing that action

multiplied by the probability of reaching the point where that reward is received. An MCCFR

algorithm performs the same calculation, but only for an unbiased sample of the possible rewards.

Thus, an agent’s expected reward for an action is estimated by traversing only part of the sub-

tree under that action, which reduces the computational cost. In expectation, MCCFR algorithms

perform the same regret updates as the CFR algorithm but require more iterations. However, the

cost per iteration is much lower. Generally, this speeds up convergence and makes the algorithm

applicable to larger games [27]. To solve the second problem, Lanctot et al. proposed outcome

sampling MCCFR (OS-MCCFR) [27], which is a particular sample-based algorithm that only

takes one sample per iteration corresponding to the reward at the end of a game. If the rewards

are sampled from games against the opponent, and it is assumed that the opponent is acting

according to its true strategy, then it does not need to know the opponent’s strategy and can

be used to minimise regret online. We use OS-MCCFR to update our agent’s strategy, and test

to see if its average payoff per game is improved by simulating games between it and our

opponent model in-between games against the opponent. For derivations of the key equations of

OS-MCCFR see Appendix A.

IV. OUR APPROACH

Our approach, which incorporates our three proposals, aims to improve our agent’s average

payoff per game by training it against our opponent model in-between games against the oppo-

nent. The first question is: how do we build our opponent model? To model the opponent’s

strategy we must model its hidden information. To do this, for each opponent information

set I , we create a categorical distribution over its actions, aopp, i.e. Pr(aopp|I). The opponent

information set, I , represents its knowledge, which consists of prior actions, including its private

actions (hidden information), Hopp, and public actions, S, I = {Hopp, S}. At the end of a game,

if we do not see the opponent’s hidden information, then we do not know which information sets

it acted at. In this case, for each opponent action, we consider all possible opponent information

sets it could have originated from and treat it as a sample from a mixture of the associated

categorical distributions. We then use an expectation-maximisation algorithm to: 1) infer a

distribution over the opponent’s hidden information using the categorical distributions parameters

(E-step), and 2) update the categorical distributions parameters by maximising their likelihood

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 13

given the opponent’s hidden information distribution (M-step). Finally, we sample the opponent’s

hidden information.

We model the opponent’s, possibly changing, strategy by using, for each opponent information

set, an instance of a sequence prediction method. Each of these predicts a distribution over the

opponent’s actions aopp conditioned on that information set (its knowledge) I as well as a

sequence of previous actions taken at that information set from previous games (a1
opp, a

2
opp, . . .)

i.e. Pr(aopp|I, (a1
opp, a

2
opp, . . .)). After the opponent’s hidden information is either revealed or

predicted, then the information sets it acted at are identified and the corresponding sequence

prediction method instances observe the opponent’s actions taken in them. This is explained in

more detail in sections IV-A and IV-B.

The second question is: how do we use our opponent model? We could play a best-response

strategy against it, but if it is inaccurate, then Johanson et al. showed that this could yield much

lower rewards than expected [8]. Thus, instead our approach simulates games between our agent

and our opponent model in-between games against the opponent. Each simulated game uses the

sequence prediction method instances to predict the opponent’s actions. OS-MCCFR updates our

strategy using rewards from the actual game and simulated games. In expectation it minimises our

agent’s overall regret [27] against the opponent and the opponent model and gradually moves

its average strategy towards a best-response strategy against them. If the opponent improves

its strategy (i.e. learns towards a best-response strategy), then in expectation OS-MCCFR will

reduce the exploitability of our agent’s average strategy and move it towards a Nash equilibrium

strategy, which has zero exploitability. Whereas there are no guarantees on the exploitability of

our agent’s average strategy if it always plays a best-response strategy to its opponent model.

The overall process of building and using our opponent model is explained in more detail in

Section IV-C.

A. Expectation-Maximisation in our Opponent Model

We want to model the opponent’s strategy, σopp, which is a set of discrete probability distri-

butions, one for each of its information sets where it acts, σopp = {fA(I) : I ∈ Iopp and P (I) =

opp}, where fA(I) is a probability mass function over A(I). To do this we create a set of

sequence predictors, E , one for each of the opponent’s information sets where it acts, E = {pI :

I ∈ Iopp and P (I) = opp}. Each sequence predictor, pI , observes the opponent’s actions in

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 14

its associated information set, I , and predicts a discrete probability distribution over its future

actions. The problem is that in order to know which opponent information sets the opponent

acted in, we need to know its hidden information, which is only sometimes revealed at the end

of a game. Thus, we wait until the end of a game before updating our opponent model. If the

opponent’s hidden information is not revealed, then we infer it. The observation or inference of

the opponent’s hidden information allows its information sets that it acted in to be identified,

and the associated sequence predictors to observe the actions taken in them.

The first question is: how do we infer the opponent’s hidden information? We infer the oppo-

nent’s hidden information by sampling from a probability distribution over its possible instances

of hidden information. Recall from Section III-A that a node or history can be represented

as a unique sequence of actions taken to reach it, h = (a1, a2, . . . , am), where each action,

ai, 1 ≤ i ≤ m, is taken by one of the players. An information set can also be represented

as a sequence of actions, except some of those actions are hidden. For example, in die-roll

poker a node could be h = (, , r, c, , , f), where player one rolled two, player two rolled

four, player one raised, player two called, player one rolled five, player two rolled three, and

player one folded. At this point, neither player has seen the other’s die-rolls. From player two’s

perspective, its information set would be (D1, , r, c,D3, , f) ∈ I2, where D1 and D3 are

player one’s hidden six-sided die-rolls. From player one’s perspective, its information set would

be (, D2, r, c, , D4, f) ∈ I1, where D2 and D4 are player two’s hidden six-sided die-rolls.

Let player i’s information set I = {Hi, S} ∈ Ii, where Hi is its private or hidden information

and S is the sequence of actions visible to both players. Using the last example, we can

write (D1, , r, c,D3, , f) = {H2, S} = {(,), (r, c, f)} ∈ I2 and (, D2, r, c, , D4, f) =

{H1, S} = {(,), (r, c, f)} ∈ I1.

Using this notation, we observe our own information set {Hpla, S} ∈ Ipla, and want to infer

the opponent’s information set {Hopp, S} ∈ Iopp. Since we already know the public actions S,

we just want to infer the opponent’s hidden information Hopp. Using Bayes’ rule, we can infer

the probability of the opponent’s hidden information given our hidden information and the public

actions as

Pr(Hopp|Hpla, S) =
Pr(S|Hpla,Hopp) Pr(Hpla,Hopp)∑
H′

opp
Pr(S|Hpla,H′opp) Pr(Hpla,H′opp)

. (1)

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 15

The second question is: how do we infer Pr(S|Hpla,Hopp)? The probability of the public actions

given the hidden information is the product of the probability of each public action given the

prior public actions and the hidden information i.e.

Pr(S|Hpla,Hopp) =

|S|∏
i=1

Pr(ai|(a1, a2, . . . , ai−1),Hpla,Hopp). (2)

We can substitute Equation 2 into Equation 1 giving

Pr(Hopp|Hpla, S) =
Pr(S|Hpla,Hopp) Pr(Hpla,Hopp)∑
H′

opp
Pr(S|Hpla,H′opp) Pr(Hpla,H′opp)

=

∏|S|
i=1 Pr(ai|(a1, a2, . . . , ai−1),Hpla,Hopp) Pr(Hpla,Hopp)∑

H′
opp

∏|S|
i=1 Pr(ai|(a1, a2, . . . , ai−1),Hpla,H′opp) Pr(Hpla,H′opp)

. (3)

We can simplify Equation 3 by cancelling out our action probabilities as these are the same for

each possible instance of the opponent’s hidden information and so

Pr(Hopp|Hpla, S) =∏|S|
i=1 Pr(ai|(a1, a2, . . . , ai−1),Hopp)

bi Pr(Hpla,Hopp)∑
H′

opp

∏|S|
i=1 Pr(ai|(a1, a2, . . . , ai−1),H′opp)

bi Pr(Hpla,H′opp)
,

where bi =

 1 if ai is an opponent action

0 otherwise
. (4)

The third question is: how do we calculate Pr(Hpla,Hopp)? The probability of the player and

the opponent having particular instances of hidden information depends on the game. In die-

roll poker, each six-sided die-roll is independent, thus Pr(Hpla,Hopp) = Pr(Hpla) Pr(Hopp) =

1

6
|Hpla|+|Hopp| . In Rhode Island hold’em, each card draw is not independent as card draws are from

the same fifty-two card deck, thus Pr(Hpla,Hopp) = 1
|D|(|D|−1)

, where |D| is the size of the deck.

For die-roll poker and Rhode Island hold’em, the joint probability of the players’ hidden informa-

tion is independent of what that hidden information is, meaning that Pr(Hpla,H′opp) would factor

out in the denominator and cancel with Pr(Hpla,Hopp) in the numerator of Equation 4. However,

in general this is not the case. For example, in bucketed Rhode Island hold’em, if the public cards

have a high squared expected hand strength, then the probability of each player’s hand being in a

high bucket sequence is higher, and if a player’s hand is in a particular bucket sequence, then it is

slightly less likely that the opponent’s hand is in the same bucket sequence. For bucketed Rhode

Island hold’em, in Equation 4 we first substitute Pr(Hpla,Hopp) = Pr(Hopp|Hpla) Pr(Hpla) and

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 16

Pr(Hpla,H′opp) = Pr(H′opp|Hpla) Pr(Hpla) and since our hidden information is fixed then Pr(Hpla)

can be factored out of the denominator and cancelled with the same term in the numerator. We

calculate Pr(Hopp|Hpla) exactly by considering each card the opponent could have, counting how

many times its hand is in the bucket sequence, Hopp, and dividing by the number of times its

hand is in any bucket sequence.

The fourth question is: how do we infer Pr(ai|(a1, a2, . . . , ai−1),Hopp), where ai is an opponent

action? If ai is an opponent action, then the opponent’s hidden information,Hopp, and all previous

public actions, (a1, a2, . . . , ai−1), represent an opponent information set where the opponent acts,

I = {Hopp, (a1, a2, . . . , ai−1)} ∈ Iopp, where P (I) = opp. We could use the sequence predictor

pI to predict Pr(ai|I). The problem with this is that it can create a sort of negative feedback loop.

If the sequence predictor is inaccurate, which it probably will be initially, then its prediction

of Pr(ai|I) will be inaccurate, making the inference of Pr(Hopp|Hpla, S) inaccurate, which will

result in the wrong sequence predictors being updated, possibly making the next prediction of

Pr(Hopp|Hpla, S) even more inaccurate. Instead of using sequence predictors, which cannot be

partially updated by making fractional observations to account for uncertainty, we use empirical

probabilities, which can be.

Specifically, the EM component assumes that each distribution, fA(I), in the opponent’s strat-

egy, σopp = {fA(I) : I ∈ Iopp and P (I) = opp}, is a fixed categorical distribution. The parameters

of fA(I) are the opponent’s action probabilities at I . We want to set each parameter of each fA(I)

to its maximum likelihood estimate given our observations. If we could observe samples from

fA(I), then maximising its parameters would be easy but, we may not know how many times each

action has been played in I because if we do not observe the opponent’s hidden information, then

we do not know which of its information sets it acted in. Thus, instead of observing samples from

fA(I), they are from a mixture of categorical distributions, which include fA(I). The maximum

likelihood estimate for the probability of sampling c from a categorical distribution d given N

samples from a mixture of K categorical distributions (including d) each with D categories is

µdc =

∑N
n=1 γ(znd)xnc∑D

i=1

∑N
n=1 γ(znd)xni

, γ(znd) =
πd Pr(~xn|~µd)∑K
j=1 πj Pr(~xn|~µj)

. (5)

Here µdc is the probability of category c from categorical distribution d, znd is the d-th component

of the 1-of-K encoded vector ~zn, γ(znd) is the responsibility of d to sample n, xnc is the c-

th component of the 1-of-D encoded vector ~xn, and πd is the probability of sampling from

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 17

d. This is derived in Appendix D. We can use Equation 5 to set the parameters of the EM

component’s categorical distributions to their maximum likelihood estimates. Here, πd is the

probability of having played into the opponent information set associated with d, and Pr(~xn|~µd)

is the probability of the opponent’s action sampled from d. Thus, γ(znd) is equal to Equation 4.

We can update µdc iteratively by rewriting Equation 5 as

µdc =

(∑N−1
n=1 γ(znd)xnc

)
+ γ(zNd)xNc(∑D

i=1

∑N−1
n=1 γ(znd)xni

)
+
∑D

i=1 γ(zNd)xNi

. (6)

We use a map from opponent information sets to real numbers Mv : Iopp → R to store the

numerator of Equation 5. For example, given an opponent information set, I ∈ Iopp, where the

opponent acts, P (I) = opp, the probability of sampling action c ∈ A(I) from its categorical

distribution d = fA(I) is

µdc =

∑N
n=1 γ(znd)xnc∑D

i=1

∑N
n=1 γ(znd)xni

=
Mv((I, c))

Mv(I)
. (7)

We call Mv the expected visit counts as the numerator of Equation 7 can be seen as the expected

times action c is sampled from distribution d at opponent information set I , which in our case

is the expected times opponent information set (I, c) is visited. Likewise, the denominator of

Equation 7 can be seen as the expected times any action is sampled from d at I , which in our

case is the expected times I is visited.

At the end of a game, let the opponent’s terminal information set be {Hopp, S} ∈ Iopp. For

each I ∈ Iopp, that it could have acted at, P (I) = opp, where I = {Hopp, (a1, a2, . . . , ai)} and

i < |S|, update the parameters of the categorical distribution d = fA(I) associated with I using

the action that the opponent could have sampled from it ai+1 as follows:

1) E-step: Calculate γ(znd) via Equation 4.

2) M-step: Update the parameters of d via Equation 6.

For each possible path, the E-step calculates the product of the opponent’s action probabilities

along it (via the categorical distributions) multiplied by the probability of the opponent being

dealt the hidden information along it given the player’s hidden information and then normalises

these probabilities, the M-step increments the visit count of each opponent information set

along it by its normalised path probability from the E-step. For example, if I = (, D2, r, f),

then the E-step would calculate Pr(D2|Hpla = , S = (r, f)) = Pr(f |Hopp = D2, S =

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 18

(r))/
∑

D′
2=

Pr(f |Hopp = D′2, S = (r)). The M-step would increment Mv((D1, D2, r, f)),

Mv((D1, D2, r)), . . . , Mv(()) by Pr(f |Hopp = D2, S = (r)). We can now sample the opponent’s

hidden information, hopp, from Pr(Hopp|Hpla, S) and update the relevant sequence predictors.

Observe action ai+1 with the sequence predictor

Mpred({hopp, (a1, a2, . . . , ai)}) for all 0 ≤ i ≤ |S|,

where P ({hopp, (a1, a2, . . . , ai)}) = opp. (8)

Mpred maps from opponent information sets where it acts to sequence predictors, Mpred : {I :

I ∈ Iopp, P (I) = opp} → E .

B. Sequence Prediction in our Opponent Model

We use a sequence prediction method named Entropy Learned Pruned Hypothesis space

(ELPH) by Jensen et al. [35], [36], to predict probability distributions over the opponent’s future

actions. Its main advantage is that it can rapidly learn a non-stationary opponent strategy, which

has allowed it to be used to defeat human and agent players in simple games and will allow it to be

helpful against dynamic opponents. It works by forming distributions conditioned on interaction

histories of different lengths, pruning those with high entropies, and predicting using one with

the minimum entropy. Given an observation, s ∈ Σ, it generates the set of all subsequences

of its short-term memory, P(S), and for each subsequence creates or updates a distribution

conditioned on it by incrementing the count for the subsequence and the observation in its

long-term memory, L(S ′, s) ← L(S ′, s) + 1 for all S ′ ∈ P(S). It then prunes each conditional

distribution (by removing its counts) if its normalised Shannon entropy, H , is above a passed in

threshold, Hl, for each S ′ ∈ P(S) L\ (S ′, s) for all s ∈ Σ if H(L(S ′)) > Hl. Finally it adds the

observation to the end of its short-term memory and removes the first observation if S is above

its size-k limit. To make a prediction, it again gets the set of all subsequences of its short-term

memory, P(S), and predicts using the distribution conditioned on one of these subsequences

with the minimum reliable Shannon entropy, Hrel, arg minS′∈P(S) Hrel(L(S ′)).

Our opponent model creates a set of ELPH instances, E , one for each opponent information

set where it acts, E = {pI : I ∈ Iopp and P (I) = opp}. At the end of each game, the opponent’s

hidden information is sampled from a probability distribution inferred using online expectation-

maximisation. Using this, the opponent’s information sets that they acted at during the game

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 19

are inferred, and the sequence predictors for them observe the opponent’s actions taken in them.

For each opponent information set, its associated ELPH instance observes opponent actions in it

across different games and models the opponent’s action distribution at it. If a dynamic opponent

changes this action distribution, then the ELPH instance will rapidly learn the new distribution

from its set of observation-based hypothetical conditional distributions favouring those with low

entropy and high predictability.

C. Our Algorithm

Fig. 3 shows our overall algorithm and Fig. 4 shows our opponent modelling algorithm. We

update our agent’s strategy via OS-MCCFR [37, pp. 50] (see Section III-F & Appendix A)

with rewards from games vs the real/model opponent. The time complexity of one iteration of

our algorithm is dominated by the following (from most costly): 1) Simulating games. In each

simulated game, at each non-terminal node, an action is sampled from a distribution, where

a sequence predictor predicts each opponent distribution, and our agent updates its strategy

using OS-MCCFR. This scales like O(g[2kdmax,{opp} + dmax,{pla,cha}]amax) where g is simulated

games, k is the lookback, dmax,N is maximum decisions in a game for players in N , and amax is

maximum actions at a node. 2) Sequence prediction. In general, a sequence predictor predicts

using a number of distributions exponential in its lookback, which is the worst case for an ELPH

instance. With a sequence predictor at each opponent information set where it acts predicting its

distribution, this quickly becomes the bottleneck if the lookback grows faster than logarithmically

with the game size. As shown above, this scales like O(g2kdmax,oppamax). 3) EM algorithm. After

each game against the opponent it predicts probabilities and updates counts for each possible

path. This scales like O(dmax, {opp,pla,cha}|Hopp|) where |Hopp| is the number of opponent hidden

information possibilities. 4) OS-MCCFR. After each game it updates regrets and probabilities

at each of our agent’s information sets where it acted. This scales like O(gdmax,{pla}amax).

The space complexity of our algorithm is as follows. It stores regrets and probabilities for

our agent’s actions at its information sets where it acts, a sequence predictor for each opponent

information set where they act, which has a number of distributions exponential in its lookback,

and a count for each opponent information set. This scales like O([|I ′pla|+ 2k|I ′opp|]amax + |Iopp|)

where I ′i = {I : I ∈ Ii, P (I) = i}.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 20

Our algorithm’s efficiency mainly depends on game size. Larger games have more nodes,

actions, and probably information sets, requiring more space, and more observations for EM

and sequence prediction to learn to given overall accuracies. Exactly how time to converge/reach

given overall accuracies or required lookback scales to larger games are open questions. Also,

although overall regret after a number of OS-MCCFR iterations is bounded by theory [27], we

cannot yet say how our algorithm affects this. To prevent bottlenecks, a large game may need

an abstraction to reduce its size, and simulated games and lookback should be set sufficiently

small.

V. RESULTS

Our experiments test if our opponent model improves the average payoff per game of OS-

MCCFR against several opponents in die-roll poker and Rhode Island hold’em. We test four

variations of our opponent model: 1) without expectation-maximisation or sequence prediction

(UN); 2) with just expectation-maximisation (EM); 3) with just sequence prediction (SP), and

4) with expectation-maximisation and sequence prediction (EM + SP); To infer the opponent’s

hidden information, (EM) and (EM + SP) use expectation-maximisation (see Section IV-A),

whereas (UN) and (SP) sample from Pr(Hopp|Hpla). For example, (UN) and (SP) sample die

face(s) after a fold in die-roll poker with probability 1/6round number, and one card after a fold

in Rhode Island hold’em with probability 1/(52 − round number). To predict the opponent’s

actions, (SP) and (EM + SP) use sequence prediction (see Section IV-B), whereas (UN) and

(EM) use empirical probabilities. The empirical probability of an action at an information set

is the number of times it was played there divided by the total number of actions played there.

Table I shows all parameters in our experiments.

A. Benefit of bucketed Rhode Island Hold’em

In Rhode Island hold’em players one and two have 2.50×107 and 2.46×107 information sets

where they act respectively. This is too many for any agent we use to learn a high-reward strategy

within 1×105 games, which is the number of games we evaluate agents over in our experiments.

This is because even if an agent updates its strategy at the maximum of 6 information sets per

game (3 betting rounds × 2 decisions per betting round and player), then it would take at

least 4.2 × 106 games to update each information set once. Thus, making it impossible for an

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 21

agent to learn a perfect strategy in Rhode Island hold’em within 1× 105 games. Even learning

an imperfect, but effective strategy, would probably require each information set to be visited

many times. Learning an effective strategy within this number of games requires learning to be

generalised across information sets using an abstraction.

To test the benefit of the abstraction, we compared the average payoff per game of OS-MCCFR,

PGA-APP, and UCB against a simple strategy that always raises. The abstraction reduces the

number of information sets where each agent acts to 2.52×103 using percentile bucketing based

on expected hand strength squared with five buckets for the pre-flop, flop, and turn stages in the

game i.e. b1 = 5, b2 = 5 and b3 = 5 (see Section III-B3). We found that each agent’s average

payoff per game is negative in the unabstracted version, and positive in the abstracted version.

Thus, the abstraction allows each agent to learn to win against always raise. Linear least squares

regression on the last 5×104 games in the unabstracted version estimates that it would take these

agents 4.73×105, 1.22×106, and 1.69×106 games respectively to break even with zero average

payoff per game. Thus, the abstraction allows these agents to learn effective strategies within

1×105 games. From this point for Rhode Island hold’em agents use the bucketed version and are

restricted to playing strategies within it. Better strategies likely exist in larger (finer) abstractions,

but would take longer to learn. An agent might perform better with a smaller abstraction as it

allows them to adapt faster.

B. Performance in Die-Roll Poker and Rhode Island Hold’em

Fig. 5 shows the change in the average payoff per game of OS-MCCFR with the four variations

of our opponent model. Firstly, it is always better with (EM) rather than with (UN) except in

die-roll poker against CFR0. This is because CFR0 plays actions uniformly at random and

so its strategy does not depend on its hidden information. This supports our first secondary

idea, showing that inferences of the opponent’s hidden information based on its behaviour using

expectation-maximisation give higher average payoffs per game than inferences ignoring its

behaviour. Secondly, it is always better with (SP) rather than with (UN) or with (EM). This

supports our second secondary idea, showing that predictions of the opponent’s actions using

sequence prediction give higher average payoffs per game than predictions using empirical

probabilities. Finally, it is always increased with (EM + SP), supporting our main idea, showing

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 22

that playing extra games between our agent and our opponent model improves our agent’s average

payoff per game.

Using our results, we want to estimate how OS-MCCFR with each of the four variations of

our opponent model will perform in the long term. To estimate long-term average payoffs per

game, we fitted exponential functions of the form f(x) = ae−bx+c to model the average payoffs

per game. Here f(x) is the average payoff per game, x is the game number divided by 1× 105

(the number of games), and a, b, and c are parameters. We are particularly interested in the c

parameter, which represents the asymptotic average payoff per game, as well as the number of

iterations it takes to get close to c. We fitted these functions using MATLAB’s Trust-Region-

Reflective Least Squares algorithm with Bisquare weights, which is a non-linear least squares

regression method found in its Curve Fitting Toolbox [38]. Table II shows each estimated c

parameter and the estimated iterations to reach 99% of c. The c estimates reflect our results,

showing that (EM) is always better than (UN) (except against CFR0), (SP) is always better than

(UN) or (EM), and (EM + SP) always increases average payoffs per game. This implies that

our approach will continue to improve average payoffs per game in the long-term.

The average payoff per game of (EM + SP) is not statistically significantly greater than that

of (SP) in Rhode Island hold’em against PGA-APP and UCB. This could be because it takes

longer to learn in Rhode Island hold’em as, firstly, even abstracted it has more information sets,

and secondly, it has more hidden information (53 = 125 bucket sequences vs 62 = 36 die rolls),

which causes noisier play. In general, the EM component accuracy depends on the accuracy of its

categorical distributions (one per opponent information set where it acts), so with more opponent

information sets where it acts (due to more actions or hidden information) the more categorical

distributions there will be, increasing learning time. To test this, we measured the difference in

the average payoff per game between (EM + SP) and (SP) against OS-MCCFR, PGA-APP and

UCB in die-roll poker with an increasing amount of hidden information (die faces). Table III

shows that as we increase die faces, the difference decreases. Also, expectation-maximisation

offers no advantage in Rhode Island hold’em if it infers the opponent has the same bucket as

the agent as this indicates they have the same chance of winning.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 23

VI. CONCLUSIONS AND FUTURE WORK

We propose an online opponent modelling algorithm that needs no knowledge outside game

rules, and does not assume a stationary opponent strategy. Building it has two proposals: an

expectation-maximisation algorithm to infer the opponent’s hidden information in an imperfect

information game, and a sequence prediction method to specialise in predicting an opponent’s

changing strategy. Using it has a third proposal: simulating games between our agent and our

opponent model in-between games against the opponent. Experiments in simplified poker games

show that our approach improves the average payoff per game of a state-of-the-art no-regret

learning agent based on counterfactual regret minimisation. They indicate that our approach

would improve performance in similar situations where opponents are exploitable, hidden in-

formation possibilities are sufficiently small, and iterations are sufficiently large. Future work

will look at optimising the expectation-maximisation, increasing training with model accuracy,

and larger domains, e.g. Texas hold’em, which may require scalability improvements and further

abstractions.

APPENDIX

A. Counterfactual Regret Minimisation

The Counterfactual Regret Minimisation (CFR) algorithm proposed by Zinkevich et al. [29]

is a state-of-the-art no-regret algorithm for two-player, zero-sum, imperfect information games

which, in self-play, minimises the maximum counterfactual regret over all information sets and

actions. By minimising counterfactual regret, they proved that it minimises overall regret and

converges towards a Nash equilibrium.

1) Counterfactual Value: Player i’s counterfactual value of information set I ∈ Ii given

strategy profile σ is

vi(I|σ) =
∑
h∈I

Pr(h|σ−i)ui(h) (A.9)

where ui(h) =
∑

z∈Z[h] Pr(z[h]|σ)ui(z), Pr(z[h]|σ) is the probability of reaching node z from

node h given strategy profile σ, Pr(h|σ−i) is the probability of reaching node h given strategy

profile σ except player i’s action probabilities are all set to one, and Z[h] is the set of terminal

nodes reachable from h.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 24

2) Counterfactual Regret: Player i’s counterfactual regret for not playing action a ∈ A(I) at

information set I ∈ Ii is

ri(I, a) = vi(I|σI→a)− vi(I|σ), (A.10)

where σI→a is the same as σ except action a is always played at information set I . With positive

regret player i prefers action a rather than its strategy, with zero regret it is indifferent, and with

negative regret it prefers its strategy.

3) Regret Matching: Regret matching is used to update each action probability at each

information set as follows

σT+1
i (I, a) =

RT,+

i (I,a)∑
a′∈A(I) R

T,+
i (I,a′)

if denominator > 0

1
|A(I)| otherwise

, (A.11)

where RT,+
i (I, a) = max

(∑T
t=1 r

t
i(I, a), 0

)
, σT+1

i (I, a) is player i’s probability of playing action

a at information set I at iteration T +1, rti(I, a) is player i’s counterfactual regret of not playing

action a at information set I at iteration t, RT,+
i (I, a) is the maximum of zero and player i’s

cumulative counterfactual regret of not playing action a at information set I between times t = 1

and t = T . For the CFR algorithm, one iteration calculates the counterfactual regrets for all of

player i’s actions at all of its information sets, updates its cumulative counterfactual regrets, and

uses them with regret matching to update action probabilities.

B. Monte-Carlo Counterfactual Regret Minimisation

The Monte-Carlo Counterfactual Regret Minimisation (MCCFR) family of algorithms pro-

posed by Lanctot et al. [27] are each the same as the CFR algorithm except they replace exact

expected rewards with unbiased estimates. The number of iterations required for convergence

increases but each iteration is faster and so convergence time generally decreases [27].

Sampled Counterfactual Value: Player i’s sampled counterfactual value of information set

I ∈ Ii given strategy profile σ is

ṽi(I|σ,Qj) =
∑
h∈I

Pr(h|σ−i)ũi(h|Qj) (A.12)

where ũi(h|Qj) =
∑

z∈Qj∩Z[h]
1

q(z)
Pr(z[h]|σ)ui(z), Qj is a subset of terminal nodes Qj ⊆ Z

sampled by MCCFR with probability qj > 0 from Q = {Q1, Q2, . . . , Qj, . . . , Q|Q|},
⋃

Qj∈QQj =

Z and q(z) =
∑

j:z∈Qj
qj is the probability of sampling terminal node z.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 25

C. Outcome Sampling Monte-Carlo Counterfactual Regret Minimisation

The Outcome Sampling Monte-Carlo Counterfactual Regret Minimisation (OS-MCCFR) al-

gorithm defines the set of subsets of terminal nodes, Q, such that each subset contains exactly

one terminal node, i.e. |Qj| = 1 for all Qj ∈ Q. This means that, on each iteration, only one

terminal node is sampled, and the information sets along the path from the root to it are updated.

The probability of sampling a terminal node, q(z), is then equal to the probability of sampling

the subset that contains that terminal node, q(z) = qj . The probability distribution, or sampling

scheme, is selected such that q(z) = qj = Pr(z|σ′). The sampled counterfactual value is then

calculated as ṽi(I|σ,Qj) =
∑

h∈I Pr(h|σ−i)ũi(h|Qj)

=
∑
h∈I

Pr(h|σ−i)

 ∑
z∈Qj∩Z[h]

1

q(z)
Pr(z[h]|σ)ui(z)

=

Pr(h|σ−i) Pr(z[h]|σ)ui(z)

q(z)
=

Pr(h|σ−i) Pr(z[h]|σ)ui(z)

Pr(z|σ′)

=
Pr(h|σ−i) Pr(z[h]|σi) Pr(z[h]|σ−i)ui(z)

Pr(z|σ′i) Pr(z|σ′−i)

=
Pr(z[h]|σi) Pr(z|σ−i)ui(z)

Pr(z|σ′i) Pr(z|σ′−i)
≈ Pr(z[h]|σi)ui(z)

Pr(z|σ′i)
. (A.13)

Since Qj only contains one terminal node (i.e. |Qj| = 1), and the probability of reaching this

terminal node Pr(z ∈ Qj|σ) is zero for all nodes in I except one, the sums can be dropped. The

probability of reaching a node given a strategy profile, can be factored into the probability of

reaching that node given player i’s strategy multiplied by the probability of reaching that node

given the other players’ strategies i.e. Pr(z[h]|σ) = Pr(z[h]|σi) Pr(z[h]|σ−i) and Pr(z|σ′) =

Pr(z|σ′i) Pr(z|σ′−i). Finally, by assuming that the sampling strategy profile for the other players

is approximately equal to their actual strategy profile i.e. σ′−i ≈ σ−i we arrive at the final equation.

This equation for the sampled counterfactual value only depends on the player’s strategy, the

player’s sampling strategy, and the player’s utility function.

D. Mixture of Categorical Distributions Maximum Likelihood

Consider a mixture of K categorical distributions with parameters ~µ = (~µ1, ~µ2, . . . , ~µK) and

~π = (π1, π2, . . . , πK). Each ~µk = (µk1, µk2, . . . , µkD), where µki is the probability of sampling

category i from categorical distribution k,
∑D

i=1 µki = 1, 0 ≤ µki ≤ 1 for all 1 ≤ i ≤ D.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 26

Each πk is the probability of sampling categorical distribution k,
∑K

k=1 πk = 1, 0 ≤ πk ≤ 1

for all 1 ≤ k ≤ K. A categorical variable drawn from this mixture is a 1-of-D encoded vector

~x = (x1, x2, . . . , xD), where one component is 1 and the rest are 0. The probability of sampling

~x given ~µ and ~π is

Pr(~x|~µ, ~π) =
K∑
k=1

πk Pr(~x|~µk). (A.14)

Given a data set X of N samples from this mixture X = {~x1, ~x2, . . . , ~xN}. The likelihood of ~µ

and ~π given X is

L(~µ, ~π;X) = Pr(X|~µ, ~π) =
N∏

n=1

K∑
k=1

πk Pr(~xn|~µk). (A.15)

The log-likelihood of ~µ and ~π given X is

lnL(~µ, ~π;X) = ln Pr(X|~µ, ~π) =
N∑

n=1

ln
K∑
k=1

πk Pr(~xn|~µk). (A.16)

Since a summation is in the logarithm this does not have a closed-form solution, so we will

derive expectation-maximisation equations for maximising this likelihood. For each ~x introduce

a latent variable, which is a 1-of-K encoded vector ~z = (z1, z2, . . . , zK), where one component is

1 and the rest are 0, its value indicates which categorical distribution generated ~x. The probability

of ~x and ~z given ~µ and ~π is

Pr(~x, ~z|~µ, ~π) =
K∏
k=1

πzk
k Pr(~x|~µk)zk . (A.17)

The likelihood of ~µ and ~π given X and Z is

L(~µ, ~π;X,Z) = Pr(X,Z|~µ, ~π)

=
N∏

n=1

K∏
k=1

πznk
k Pr(~xn|~µk)znk =

N∏
n=1

K∏
k=1

πznk
k

(
D∏
i=1

µxni
ki

)znk

. (A.18)

The log-likelihood of ~µ and ~π given X and Z is

ln Pr(X,Z|~µ, ~π) = ln
N∏

n=1

K∏
k=1

πznk
k

(
D∏
i=1

µxni
ki

)znk

=
N∑

n=1

K∑
k=1

znk

(
ln πk +

D∑
i=1

xni lnµki

)
. (A.19)

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 27

Taking the expected value with respect to the posterior distribution of Z gives EZ [ln Pr(X,Z|~µ, ~π)] =

N∑
n=1

K∑
k=1

γ(znk)

(
lnπk +

D∑
i=1

xni lnµki

)
, (A.20)

where γ(znk) = E[znk] is the posterior probability, or responsibility, of categorical distribution

k for sample ~xn. This is evaluated in the E-step as γ(znk) = E[znk] =∑
~zn
znk
∏

k′ [πk′ Pr(~xn|~µk′)]
znk′∑

~zn

∏
j[πj Pr(~xn|~µj)]znj

=
πk Pr(~xn|~µk)∑K
j=1 πj Pr(~xn|~µj)

. (A.21)

Using a Lagrange multiplier ~λ = (λ1, λ2, . . . , λK) to create a new function, which takes into

account the constraint
∑D

i=1 µki = 1 for all 1 ≤ k ≤ K, gives

G(~µ, ~π,~λ;X,Z) = EZ [ln Pr(X,Z|~µ, ~π,~λ)]

=

[
N∑

n=1

K∑
k=1

γ(znk)

(
ln πk +

D∑
i=1

xni lnµki

)]

−

[
K∑
k=1

λk

[(
D∑
i=1

µki

)
− 1

]]
. (A.22)

Taking the partial derivatives of this function, firstly with respect to one probability µdc, and

secondly with respect to one Lagrange multiplier component λd gives

∂

∂µdc

([
N∑

n=1

K∑
k=1

γ(znk)

(
lnπk +

D∑
i=1

xni lnµki

)]

−

[
K∑
k=1

λk

[(
D∑
i=1

µki

)
− 1

]])
=

[
N∑

n=1

γ(znd)
xnc
µdc

]
− λd, (A.23)

∂

∂λd

([
N∑

n=1

K∑
k=1

γ(znk)

(
lnπk +

D∑
i=1

xni lnµki

)]

−

[
K∑
k=1

λk

[(
D∑
i=1

µki

)
− 1

]])
= 1−

D∑
i=1

µdi. (A.24)

To find the maximising parameters, we set the partial derivatives equal to zero, which gives

λd =
1

µdc

N∑
n=1

γ(znd)xnc, (A.25)
D∑
i=1

µdi = 1. (A.26)

With some manipulations we can find µdc as follows
D∑
i=1

λdµdi = λd

D∑
i=1

µdi = λd =
D∑
i=1

N∑
n=1

γ(znd)xni,

µdc =

∑N
n=1 γ(znd)xnc∑D

i=1

∑N
n=1 γ(znd)xni

. (A.27)

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 28

ACKNOWLEDGEMENTS

This work was supported by the Engineering and Physical Sciences Research Council [grant

number EP/P505631/1] and the University of Manchester.

REFERENCES

[1] “The annual computer poker competition,” http://www.computerpokercompetition.org/, accessed: 13/10/2014.

[2] V. P. Crawford, “Learning the optimal strategy in a zero-sum game,” Econometrica, vol. 42, pp. 885–891, 1974.

[3] ——, “Learning behavior and mixed-strategy Nash equilibria,” JEBO, vol. 6, pp. 69–78, 1985.

[4] ——, “Learning and mixed-strategy equilibria in evolutionary games,” JTB, vol. 140, pp. 537–550, 1989.

[5] M. Bowling and M. Veloso, “Multiagent learning using a variable learning rate,” AI, vol. 136, pp. 215–250, 2002.

[6] S. Abdallah and V. R. Lesser, “Non-linear dynamics in multiagent reinforcement learning algorithms,” in AAMAS, 2008,

pp. 1321–1324.

[7] C. Zhang and V. Lesser, “Multi-agent learning with policy prediction,” in AAAI, 2010, pp. 927–934.

[8] M. Johanson et al., “Computing robust counter-strategies,” in NIPS. MIT Press, 2008, pp. 1128–1135.

[9] D. Billings et al., “Opponent modeling in poker,” in AAAI, 1998, pp. 493–499.

[10] A. Davidson et al., “Improved opponent modeling in poker,” in ICAI, 2000, pp. 1467–1473.

[11] M. Ponsen et al., “Bayes-relational learning of opponent models from incomplete information in no-limit poker,” in AAAI,

2008, pp. 1485–1486.

[12] G. Broeck et al., “Monte-Carlo Tree Search in poker using expected reward distributions,” in ACML, 2009, pp. 367–381.

[13] J. Rubin and I. Watson, “Similarity-based retrieval and solution re-use policies in the game of Texas hold’em,” in ICCBR,

2010, pp. 465–479.

[14] K. Korb et al., “Bayesian poker,” in UAI, 1999, pp. 343–350.

[15] F. Southey et al., “Bayes’ bluff: Opponent modelling in poker,” in UAI, 2005, pp. 550–558.

[16] R. Baker and P. Cowling, “Bayesian opponent modeling in a simple poker environment,” in CIG, 2007, pp. 125–131.

[17] N. Risk and D. Szafron, “Using counterfactual regret minimization to create competitive multiplayer poker agents,” in

AAMAS, 2010, pp. 159–166.

[18] M. Johanson and M. Bowling, “Data biased robust counter strategies,” in AISTATS, 2009, pp. 264–271.

[19] M. Ponsen et al., “Computing approximate Nash equilibria and robust best-responses using sampling,” JAIR, vol. 42, pp.

575–605, 2011.

[20] N. Bard et al., “Online implicit agent modelling,” in AAMAS, 2013, pp. 255–262.

[21] S. Ganzfried and T. Sandholm, “Game theory-based opponent modeling in large imperfect-information games,” in AAMAS,

2011, pp. 533–540.

[22] T. Sandholm, “The state of solving large incomplete-information games, and application to poker,” AI Magazine, vol. 31,

no. 4, pp. 13–32, 2010.

[23] J. Rubin and I. Watson, “Computer poker: A review,” AI, vol. 175, no. 5–6, pp. 958–987, 2011.

[24] M. Lanctot et al., “No-regret learning in extensive-form games with imperfect recall,” in ICML, 2012, pp. 65–72.

[25] J. Shi and M. L. Littman, “Abstraction methods for game theoretic poker,” in Revised Papers from CG 2, 2000, pp.

333–345.

http://www.computerpokercompetition.org/

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 29

[26] M. Johanson, “Robust strategies and counter-strategies: Building a champion level computer poker player,” Master’s thesis,

UOFA, 2007.

[27] M. Lanctot et al., “Monte Carlo sampling for regret minimization in extensive games,” in NIPS, 2009, pp. 1078–1086.

[28] P. Auer et al., “Finite-time analysis of the multiarmed bandit problem,” ML, vol. 47, no. 2–3, pp. 235–256, 2002.

[29] M. Zinkevich et al., “Regret minimization in games with incomplete information,” in NIPS, 2008, pp. 905–912.

[30] A. Dempster et al., “Maximum likelihood from incomplete data via the EM algorithm,” JRSS, vol. 39, pp. 1–38, 1977.

[31] P. Liang and D. Klein, “Online EM for unsupervised models,” in NAACL, 2009, pp. 611–619.

[32] M.-A. Sato and S. Ishii, “On-line EM algorithm for the normalized Gaussian network,” Neural Computation, vol. 12, pp.

407–432, 2000.

[33] O. Cappé and E. Moulines, “On-line Expectation-Maximization algorithm for latent data models,” JRSS, vol. 71, no. 3,

pp. 593–613, 2009.

[34] J. M. Butterworth, “Stability of gradient-based learning dynamics in two-agent imperfect-information games,” PhD, 2010.

[35] S. Jensen et al., “Non-stationary policy learning in 2-player zero sum games,” in AAAI, 2005, pp. 789–794.

[36] S. Jensen, “Learning in dynamic temporal domains using contextual prediction entropy as a guiding principle,” PhD, 2010.

[37] M. Lanctot, “Monte Carlo sampling and regret minimization for equilibrium computation and decision-making in large

extensive form games,” PhD, 2013.

[38] “Least-squares algorithms,” http://www.mathworks.com/help/optim/ug/least-squares-model-fitting-algorithms.html, ac-

cessed: 13/10/2014.

Richard Mealing was born in Chester, U.K., in 1987. He received a B.Sc. degree (with honours) in

Astrophysics and Computer Science, and an M.Sc. degree (with distinction) in Computer Science

from the University of Liverpool, Liverpool, U.K., in 2009 and 2010 respectively. He received a

Ph.D. degree in Computer Science from the University of Manchester, Manchester, U.K., in 2015.

His main research interests include (with a particular focus on games) non-cooperative learning,

dynamic opponent modelling, and finding equilibrium solutions. He is currently working in industry

looking to apply his knowledge and gain experience.

Jonathan L. Shapiro received his Ph.D. degree in physics from the University of California at Los

Angeles (UCLA), Los Angeles, in 1986. He is a Reader in Computer Science at the University of

Manchester, Manchester, U.K., where he heads the Machine Learning and Optimisation Research

Group. His current research is in reinforcement learning in dynamic environments and in games,

probabilistic modelling, and theoretical approaches to evolutionary dynamics. Industrial applications

include localisation, and anomaly detection in sensor networks.

http://www.mathworks.com/help/optim/ug/least-squares-model-fitting-algorithms.html

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 30

LIST OF FIGURES

1 Die-roll poker game tree (die rolls and betting rounds). The top shows each player
rolling a private six-sided die. The bottom left shows a betting round where “ter-
minal or chance nodes” are terminal in the second betting round and chance in the
first betting round. There are 1.12×105 nodes with 5.58×102 decision information
sets per player. 31

2 Rhode Island hold’em game tree (private card deals and betting rounds). The top
shows each player being dealt a unique private card out of a standard fifty-two card
deck. The bottom left shows a betting round where “terminal or chance nodes” are
terminal in the third betting round and chance in the first and second betting rounds.
Not shown are public chance node branches, with 50 branches from each “flop”
chance node and 49 branches from each “turn” chance node. There are 6.71× 109

nodes with 2.50× 107 and 2.46× 107 decision information sets for players one and
two respectively. 32

3 Overall algorithm. Here (i-j) refers to lines i to j in Fig. 4 33
4 Opponent Model using EM and Sequence Prediction. Here E is a set of sequence

predictors, ai:j = (ai, ai+1, . . . , aj), dom(f) is the domain of function f , and
Pr(Hopp|Hpla) depends on the game (see Section IV-A). 34

5 These bar charts show the change in the “final” (i.e. after 1×105 iterations) average
payoff per game of OS-MCCFR (shown at the top) when used with variations
of our opponent model including neither expectation-maximisation nor sequence
prediction (UN), just expectation-maximisation (EM), just sequence prediction (SP),
and both expectation-maximisation and sequence prediction (EM + SP). The results
are shown for die-roll poker (Fig. 5a) and Rhode Island hold’em (Fig. 5b). The
values are averaged over both positions and 80 repeats with the standard error of
the mean shown. 35

(a) Die-roll poker . 35
(b) Rhode Island hold’em . 35

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 31

123456 123456 123456 123456 123456 123456

1 2 3 4 5 6

F C R

F

F

F

F

F

C

C

C

C

CR

R

R

Player	one	chance	node

Player	two	chance	node

Player	one	decision	node

Player	two	decision	node

Terminal	node

Terminal	or	chance	node

Fig. 1

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 32

1... 52

Player	one	chance	node

Player	two	chance	node

Player	one	decision	node

Player	two	decision	node

Terminal	node

Terminal	or	chance	node

C R

RF

F

F

F

F

F

F

C C

C

C

C

C

C

R

R

R

Fig. 2

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 33

1: (1-7) Initialise a visit count per I ∈ Iopp and a sequence predictor
per I ∈ Iopp where P (I) = opp

2: Play game vs opp, update strategy (OS-MCCFR), call OBSERVE
3: (10-14) E-step: for each terminal node (path) in your terminal

information set, multiply opp’s action probabilities (from the
categorical distributions/visit counts) and the probability of its
hidden information given your hidden information. Normalise
these probabilities

4: (15-18) M-step: for each terminal node, increment visit counts
of I ∈ Iopp along it by its E-step probability

5: (19) Sample hopp according to E-step distribution
6: (20-22) Have each sequence predictor along path for hopp observe

opp’s action taken in its information set
7: Simulate games vs model, update strategy (OS-MCCFR), call

PREDICT (23-25) for its actions (using sequence predictors)
8: Repeat from 2 for a number of games vs the opponent

Fig. 3

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 34

Require: Player, Opponent information sets Ipla, Iopp, Lookback k
1: Initialise Mv : Iopp → R such that ⊲ Start initialisation

Mv(I)←
{
1 if I ⊆ Z∑

a∈A(I) Mv((I, a)) otherwise
2: Initialise Mpred : {I : I ∈ Iopp, P (I) = opp} → E
3: for all I ∈ dom(Mpred) do
4: Initialise predictor pI with k lookback Mpred(I)← pI
5: for i = 1 to k do
6: Sample action a with probability Mv((I,a))

Mv(I)

7: Observe action a with Mpred(I) ⊲ End
8: function OBSERVE((I ′ ⊆ Z) ∈ Ipla) ⊲ Call after real game
9: Initialise Mt : {I : I ∈ Iopp, I ∩ I ′ 6= ∅} → R

10: for all a1:m ∈ dom(Mt) do ⊲ Start E-step
11: Mt(a1:m = (Hopp, S))← Pr(Hopp|Hpla)
12: for l← 0 to m do
13: if P (a1:l) = opp then
14: Mt(a1:m)←Mt(a1:m)

Mv(a1:(l+1))

Mv(a1:l)
⊲ End

15: for all a1:m ∈ dom(Mt) do ⊲ Start M-step
16: Mt(I)← Mt(I)∑

I′′∈dom(Mt)
Mt(I′′)

17: for l← 0 to m do ⊲ Update categoricals (visits)
18: Mv(a1:l)←Mv(a1:l) +Mt(a1:m) ⊲ End
19: Sample I = a1:m with probability Mt(I) ⊲ Get hopp
20: for l← 0 to m do ⊲ Update sequence predictors
21: if P (a1:l) = opp then
22: Observe action al+1 with Mpred(a1:l)

23: function PREDICT(h ∈ {h : h ∈ H \ Z,P (h) = opp}) ⊲ Call
during simulated games

24: Get I where h ∈ I and I ∈ Iopp
25: return a prediction from Mpred(I)

Fig. 4

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 35

CFR0 CFR10 CFR20 OS−MCCFR PGA−APP UCB

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Opponent

C
h
a
n
g
e
 i
n
 F

in
a
l
A

v
e
ra

g
e
 P

a
y
o
ff
 P

e
r

G
a
m

e

3.20 0.10 −0.22 0.00 −0.17 −0.19

OS−MCCFR Final Average Payoff Per Game (all standard errors are ± 0.01)

UN

EM

SP

EM + SP

(a)

OS−MCCFR PGA−APP UCB

−3

−2

−1

0

1

2

3

4

5

6

Opponent

C
h

a
n

g
e

 i
n

 F
in

a
l
A

v
e

ra
g

e
 P

a
y
o

ff
 P

e
r

G
a

m
e

0.0 ± 0.1 2.5 ± 0.2 9.2 ± 0.3

OS−MCCFR Final Average Payoff Per Game

UN

EM

SP

EM + SP

(b)

Fig. 5

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

FIGURES 36

LIST OF TABLES

I Parameters used in our experiments. 37
II Die-roll poker (DRP) (a-f) and Rhode Island hold’em (RIH) (g-i) modelled average

payoffs per game f(x) = ae−bx+c, where x is the game number divided by 1×105

and t0.99 is the iterations to reach 99% of c. 38
(a) DRP CFR0 . 38
(b) DRP CFR10 . 38
(c) DRP CFR20 . 38
(d) DRP OS-MCCFR . 38
(e) DRP PGA-APP . 38
(f) DRP UCB . 38
(g) RIH OS-MCCFR . 38
(h) RIH PGA-APP . 38
(i) RIH UCB . 38

III Final (i.e. after 1 × 105 iterations) average payoff per game of (EM + SP) - (SP)
in die-roll poker. 39

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

TABLES 37

TABLE I
Player Parameters

CFRX N/A

OS-MCCFR explore rate = 0.05

PGA-APP explore rate = 0.05, learning rate = 0.9, discount
factor = 0.99, step-size = 0.01, prediction length =
1.0

UCB constant = 3

OS-MCCFR OM explore rate = 0.05, sequence predictor = ELPH
(lookback = 5, entropy threshold = 0.1), games
played against opponent model in-between games
against the opponent = 100 in die-roll poker and 10
in Rhode Island hold’em

Other parameters

number of games = 1× 105, number of repeats = 80, both positions
played per game

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

TABLES 38

TABLE II
(a)

Opponent model c t0.99

None 3.2 1.2 ×105

UN 3.6 6.2 ×104

EM 3.6 6.4 ×104

SP 3.7 5.3 ×104

EM + SP 3.7 3.8 ×104

(b)

c t0.99

0.15 2.4 ×105

-0.12 2.3 ×105

0.23 2.1 ×105

0.30 1.7 ×105

0.53 1.2 ×105

(c)

c t0.99

-0.16 2.7 ×105

-0.71 1.5 ×105

-0.36 1.6 ×105

-0.19 1.6 ×105

0.05 1.9 ×105

(d)

Opponent model c t0.99

None N/A N/A

UN -0.69 6.9 ×104

EM -0.41 2.1 ×104

SP -0.049 2.8 ×105

EM + SP 0.22 1.9 ×105

(e)

c t0.99

-0.18 7.4 ×104

-0.96 7.2 ×104

-0.71 3.5 ×104

-0.1 1.1 ×105

0.085 8.7 ×104

(f)

c t0.99

-0.24 1.0 ×104

-1.8 1.4 ×105

-0.22 3.3 ×104

-0.15 1.5 ×105

0.10 1.4 ×105

(g)

Opponent model c t0.99

None N/A N/A

UN -3.2 7.4 ×104

EM -1.4 5.6 ×104

SP 2.9 2.0 ×105

EM + SP 3.3 2.1 ×105

(h)

c t0.99

1.8 2.8 ×105

0.82 3.0 ×105

1.9 2.5 ×105

6.4 1.9 ×105

6.1 2.2 ×105

(i)

c t0.99

9.8 2.0 ×105

12 1.7 ×105

14 2.3 ×105

16 1.5 ×105

16 1.5 ×105

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2491611, IEEE Transactions on Computational Intelligence and AI in Games

TABLES 39

TABLE III
Opponent 6 Sided 9 Sided 10 Sided

OS-MCCFR 0.26 ± 0.01 0.17 ± 0.01 0.12 ± 0.01

PGA-APP 0.19 ± 0.01 0.17 ± 0.01 0.09 ± 0.01

UCB 0.25 ± 0.02 0.24 ± 0.02 0.14 ± 0.02

