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Abstract

We consider the problem of learning an effective strategy online in a hidden information game
against an opponent with a changing strategy. We want to model and exploit the opponent and make
three proposals to do this; firstly, to infer its hidden information using an expectation-maximisation
algorithm, secondly, to predict its actions using a sequence prediction method, and finally, to simulate
games between our agent and our opponent model in-between games against the opponent. Our approach
does not require knowledge outside the rules of the game, and does not assume that the opponent’s
strategy is stationary. Experiments in simplified poker games show that it increases the average payoff

per game of a state-of-the-art no-regret learning algorithm.

Index Terms

Opponent modelling, expectation-maximisation algorithms, sequence prediction, counterfactual re-

gret minimisation, simplified poker, learning in games.

I. INTRODUCTION

The question of how to make a learning agent that can play a game with hidden or incomplete
information, such as poker, is an ongoing and challenging problem (see, for example, the Annual

Computer Poker Competition 2014 results [1]). In a two-player game with perfect information
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(i.e. where each player knows all prior events), such as backgammon or go, the optimal strategy
is deterministic. It can often be learned with conventional methods such as backwards induction.
Poker, however, requires you to be unpredictable to play optimally (e.g. by bluffing), which can
only be expressed using a “mixed strategy” in the language of game theory. It has been known
for a long time that learning an optimal mixed strategy is difficult [2]-[4]. Although there have
been many advances to this problem, particularly for playing a learning algorithm against itself
in a process called “self-play” [5]—[/7], it is still challenging especially in large games with many
hidden states.

Our problem is that of learning an effective strategy online in a hidden information game
against an opponent with a changing strategy. Our approach is to model the opponent, and to use
this model to improve our strategy. The purpose of an opponent model is to predict the opponent’s
actions given its information. Thus, to learn an opponent model, we must observe the opponent’s
actions with its corresponding information. However, in our case, it has hidden information,
which may only be partially revealed at the end of each game. The actions of a typical opponent
will give indications of its hidden information e.g. often betting with strong hands and folding
with weak hands. Our first proposal is then to infer its hidden information, when it is not
revealed, based on its actions using expectation-maximisation. This is an iterative procedure to
compute maximum likelihood estimates of model parameters given partially observed data. In
our case, the model is of the opponent’s strategy, the observed data is the opponent’s actions
given our information (public actions and our hidden information), and the hidden data is its
hidden information. We do not assume that the opponent’s strategy is stationary. Our second
proposal is then to use sequence prediction to predict a changing opponent strategy such that
for each of its decision points, identified using its inferred hidden information, its actions are
predicted using its actions at that point from previous games. Sequence prediction finds effective
predictive contexts amongst different interaction memories. Finally, we need to decide how to
use our opponent model to improve our strategy, which is more difficult if it has inaccuracies.
Our third proposal is then to simulate games against our opponent model. If our agent learns
from games, then this will improve its strategy against our opponent model, which if accurate
will improve its strategy against the opponent. Simulating games is advantageous as it lets us
control computational cost, control our reliance on our opponent model, and use any algorithm

that uses game results.
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In short, we make three proposals, which can be used online; two for building an opponent
model, specifically to handle hidden information as well as changes in the opponent’s strategy,
and one for using an opponent model, which may have inaccuracies. Our proposals are as follows:

1) To use expectation-maximisation to infer the opponent’s hidden information when it is not

revealed.

2) To use sequence prediction to model the opponent’s strategy and predict its actions based

on its inferred hidden information and its actions from previous games.

3) To simulate games against our opponent model in-between games against the opponent to

improve learning.

We use a state-of-the-art no-regret learning algorithm to update our strategy using rewards
from actual and simulated games. If our opponent model is completely accurate, then playing a
best-response strategy against it would maximise our expected rewards. However, it is unlikely to
be completely accurate, particularly near the start with data from only a few games. This matters
as Johanson et al. showed that even a slightly inaccurate best-response strategy can give very
low expected rewards [8]]. This proposal will exploit the opponent less if our opponent model
is completely accurate, but is likely to be less exploitable if it is inaccurate. Many opponent
models require knowledge outside game rules, or assume a stationary opponent strategy, or both.
Our opponent model has several advantages: 1) it can be built and used online; 2) it does not
require knowledge outside the game rules; 3) it can infer the opponent’s hidden information via
expectation-maximisation; 4) it can predict the actions of an opponent with a changing strategy
via sequence prediction, and 5) it can be used with any strategy update method that only requires
results from games.

We test our proposals in a pair of two-player simplified poker games against various opponents.
However, our proposals can be used with more than two agents by modelling each agent
separately and training against all of them. Our primary idea is that our proposals will give
higher average payoffs per game than not using them. Our secondary ideas are as follows. Firstly,
that inferences of the opponent’s hidden information based on its behaviour using expectation-
maximisation will give higher average payoffs per game in our approach than inferences ignoring
its behaviour. Secondly, predictions of the opponent’s actions using a sequence prediction method

will give higher average payoffs per game in our approach than predictions using empirical
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probabilities. Experiments in the pair of simplified poker games measuring the change in our

agent’s average payoff per game confirm these ideas.

II. RELATED WORK

A large part of opponent modelling research in games with hidden information, otherwise
known as imperfect information games, has focused on poker due to its huge popularity. Some
approaches use domain-specific heuristics and expert knowledge. For example, Billings et al.
propose a multi-player Texas hold’em agent named Loki whose strategy is based on poker-
specific heuristics i.e. effective hand strength, which is calculated using hand strength, hand
potential, pot odds, and opponent models [9]]. Other approaches use large databases of human
play. For example, the opponent modelling by Billings et al. [9] is improved by Davidson et al.
through experiments with neural networks trained on hands played in the Internet Relay Chat
(IRC) poker server [10]. A second example is by Ponsen et al. where they use games played in
an online multi-player no-limit Texas hold’em room to learn a relational regression tree-function
to adapt prior opponent models to specific opponents [[11]. A third example is by Broeck et
al. where they apply Monte-Carlo Tree Search (MCTS) to multi-player no-limit Texas hold’em
and learn opponent models using games played in an online casino [[12]]. A final example is by
Rubin and Watson, where they look at a two-player limit Texas hold’em agent named SARTRE
(Similarity Assessment Reasoning for Texas hold’em via Recall of Experience), which acts by
re-using solutions similar to its situation from a large database of human poker hands [13].

Many approaches use Bayesian probabilistic models. For example, Korb et al. propose a
Bayesian Poker Program for two-player five-card stud poker, which learns through experience
using a Bayesian network to model each player’s hand, opponent behaviour conditioned on its
hand, and betting curves that govern play given a probability of winning [14]]. A second example
is by Southey et al. where they propose a Bayesian probabilistic opponent model for two-player
poker games, which infers a posterior opponent strategy given a prior and observations of its
play [15]. A final example is by Baker and Cowling, where they use Bayesian opponent modelling
in multi-player one-card poker to classify each opponent based on its behaviour as loose or tight,
as well as passive or aggressive, and to counter the most dangerous type [[16].

Another set of approaches use best-response strategies, or approximate Nash equilibrium

strategies, or both. For example, Risk and Szafron use approximate Nash equilibrium strategies in
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three-player limit Texas hold’em, which they find using counterfactual regret minimisation [17].
Two more examples are by Johanson et al. firstly using Restricted Nash Response (RNR)
strategies, and secondly using Data Biased Response (DBR) strategies, the latter being an
enhancement of the former, which they also find using counterfactual regret minimisation. RNR
and DBR strategies tradeoff between exploiting an opponent and being exploitable by solving a
modified game to potentially achieve strategies with lower exploitability for a given degree of
exploitation [8], [[18]]. Ponsen et al. use Monte-Carlo sampling to speed up the convergence of
RNR strategies [19]. A fourth example is by Bard et al. where they compute a set of RNR and
DBR strategies against certain opponents offline and find the mixture that maximises its expected
reward online using a multi-armed bandit algorithm [20]. A final example is by Ganzfried and
Sandholm, where they propose Deviation Based Best-Response, which initialises prior opponent
action distributions as if it has played a number of fictitious hands according to an approximate
Nash equilibrium strategy, and then updates them through observations of its play. It uses these
posterior distributions to compute an opponent model that is close to the approximate Nash
equilibrium, making it less exploitable, and plays a best-response strategy against it [21]].

For more information we refer the reader to the review by Sandholm on the state of solv-
ing incomplete-information games [22]], and the review by Rubin and Watson on algorithms,
approaches, and agents in computer poker [23[]. Our expectation-maximisation algorithm is
related to approaches that use Bayesian probabilistic models in that it makes use of Bayes’
rule. Additionally, the state-of-the-art no-regret algorithm that we use is based on counterfactual
regret minimisation, which is an algorithm that is also used by [8]], [17]—[20] to calculate best-
response strategies, approximate Nash equilibria, and combinations between both. Our work
differs from [9]-[14]], [16] in that we avoid using knowledge outside the rules of the game
and update our opponent model online using only information accessible to our agent. Our
work also differs from [8]—[10], [15]-[21] in that we do not assume that the opponent uses a
stationary strategy. One advantage of these differences is that it makes our work applicable to
more opponents and more imperfect information turn-based games (or situations that can be
modelled as such). Another advantage is that by simulating games against the opponent model,
instead of immediately playing a best-response strategy against it, which can be brittle 8], our
strategy will be more robust to inaccuracies in the opponent model. Out of the prior exploitation

approaches designed to model dynamic opponents in real-time, only the MCTS approach by
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Broeck et al. reports effective results [[12]. If their approach did not require prior knowledge in
the form of training its opponent model using a large database of games, it could have served

as a fair comparison to our approach.

III. BACKGROUND

We consider two-player, zero-sum, imperfect information, turn-based games of finite length
and with discrete actions. Before formally explaining our approach we need a representation
for these games, which is described in Section Additionally, we want to empirically test
our three proposals to see if training our agent against our opponent model in-between games
against the opponent improves its average payoff per game. To do this we need: 1) candidate
two-player, zero-sum, imperfect information, turn-based games of finite length and with discrete
actions, for which we use two simplified poker games described in Section [[II-B| and 2) candidate
opponents, for which we use a mixture of state-of-the-art and popular algorithms described in
Section In Section we describe, in general, expectation-maximisation as well as the
online variant that we use as the first component in our opponent model. In Section we
describe, in general, sequence prediction as well as the specific method that we use as the second
component in our opponent model. Finally, in Section [lII-H and in more detail in Appendix [A]
we describe counterfactual regret minimisation and the online variant that we use to update our

agent’s strategy.

A. Extensive-Form Game

An extensive-form game is a model of sequential decision-making and can represent these
games effectively. It can be visualised as a game tree, with nodes as game states and edges as
actions. At each non-terminal node a player acts or is “on turn”, which means that it chooses
the action to take at that node. The chosen action determines the edge that is followed to the
next node. Each node has only one parent and so can be represented by a unique history or
sequence of actions taken to reach it, h = (ay,as,...,a,), where each action, a;, 1 < i < m,
is taken by one of the players. These actions include “chance” actions such as die rolls or card
deals, which are taken by the “chance” (sometimes called “nature”) player. Thus, h represents
all of the information seen by an omniscient observer. The set of all nodes is /' and the subset

7/ C H contains terminal (leaf) nodes, which have no children.
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If one or more actions are hidden from a player, such as the dealing of opponent cards in
poker, then that player cannot be sure of what node it is at in the game tree. What it does know
is that the node belongs to a subset of nodes, where each node in that subset is represented by an
interleaved sequence of observed actions and actions that could represent the hidden information.
For example, in poker a node could be (AQAM, KK, R) where player one was dealt aces,
player two was dealt kings, and player one raised. At this point neither player has seen the
other’s private cards. From player two’s perspective, this node could be any (C1Cy, KO Ké, R),
where C; and C) are unique cards out of a standard fifty-two card deck other than the kings
being held. From player one’s perspective, this node could be any (AQAd, C5Cy, R), where C;
and C are unique cards out of a standard fifty-two card deck other than the aces being held.

This subset of nodes from a player’s perspective is called an information set and is denoted by
1. The set of all of player 7’s information sets is called an information partition and is denoted
by Z,. It is called a partition because each node belongs to exactly one information set and there
are no empty information sets. If there is no hidden information, then each node belongs to its
own information set. We denote the (possibly empty) set of edges or actions at a node h by A(h),
and the player who acts at that node by P(h). Note that, in our games, the available actions and
the player who acts at an information set are equal to the available actions and the player who
acts at any node in that information set respectively i.e. A(/) = A(h) and P(I) = P(h) for any
h € I. Each player 7 has a strategy, which is a set of discrete probability distributions, one for
each of its information sets where it acts over the actions available at that information set. We
denote player ¢’s strategy as o; = {faq) : I € Z; and P(I) = i}, where fa(;) is a probability

mass function over the available actions at information set 1, A([).

B. Games in our Experiments

We use a pair of two-player, zero-sum, imperfect information, turn-based poker games of
finite length and with discrete actions in our experiments. We assume that the players in both
games have perfect recall, meaning that they can remember the exact sequence of observable
actions. In both of these poker games each player has, at most, three actions when it acts. It
can fold (F) giving up the pot, or call (C) matching its opponent’s current bet (if bets are equal,

then this is also called a check and just passes the turn), or raise (R) matching and exceeding its
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opponent’s current bet by a fixed amount. If no one folds, then a showdown eventually occurs
and the player with the best hand (of dice or cards) wins the pot.

1) Die-Roll Poker: The first game we use in our experiments is die-roll poker, which was
introduced by Lanctot et al. [24] and uses dice instead of cards. The game is as follows:

1) Each player antes one chip into the pot.

2) Each player rolls its first private six-sided die.

3) First public betting round occurs, each raise (maximum of two in total) is two chips.

4) If no one folded, each player rolls its second private six-sided die.

5) Second public betting round occurs, each raise (maximum of two in total) is four chips.

6) If no one folded, a showdown occurs and the player with the highest dice sum wins the

pot.

Die-roll poker has imperfect information due to each player’s die rolls initially being hidden from
its opponent. If the game ends in a fold, then each player’s die rolls remain hidden. Otherwise
a showdown occurs and the sum of each player’s die rolls are revealed to its opponent, but each
individual die roll that constituted that sum is not revealed. For example, at a showdown a player
might reveal to its opponent that the sum of its die rolls is three, but its opponent cannot tell
if the sum is either (.7 or (). Fig. |1| shows the game tree, including die-rolls and a betting
round.

2) Rhode Island Hold’em: The second game we use in our experiments is Rhode Island
hold’em, which was introduced by Shi and Littman [25] and uses a standard fifty-two card
deck. Each player is dealt only one private card and only two public cards are dealt. The game
is as follows:

1) Each player antes five chips into the pot.

2) Each player is dealt one private card from a standard fifty-two card deck.

3) First public betting round occurs, each raise (maximum of three in total) is ten chips.

4) If no one folded, the first public “flop” card is dealt.

5) Second public betting round occurs, each raise (maximum of three in total) is twenty chips.

6) If no one folded, the second public “turn” card is dealt.

7) Third public betting round occurs, each raise (maximum of three in total) is twenty chips.

8) If no one folded, a showdown occurs and the player with the best three-card hand wins the

pot.
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Rhode Island hold’em has imperfect information due to each player’s private card initially being
hidden from its opponent. If the game ends in a fold, then each player’s private card remains
hidden. Otherwise a showdown occurs and each player’s private card is revealed to its opponent.
Fig. 2| shows the game tree, including card deals and a betting round.

3) Bucketed Rhode Island Hold’em: This is an abstraction of Rhode Island hold’em, which
reduces its number of information sets where players act from 2.50 x 107 for player one, and
2.46 x 107 for player two, to 2.52 x 10® each. This allows the agents we use to learn effective
strategies within 1 x 10° games, which is the number of games we evaluate agents over in
our experiments. Evidence for this is discussed in Section [V-Al The abstraction uses percentile
bucketing based on expected hand strength squared. Expected hand strength is the probability of
a player’s private cards combined with the public cards winning against a uniform random draw
of the opponent’s private cards combined with the public cards. Expected hand strength squared
is simply the square of the expected hand strength. This gives more weight to initially weak
hands that could become strong such as straights or flushes. Percentile bucketing divides all
n-card hands evenly between a set of buckets, b,,, where in Rhode Island hold’em n € {1, 2, 3}.
For more information on percentile bucketing and expected hand strength see Johanson’s MSc

thesis [26, pp. 24-26].

C. Opponents in our Experiments

We use opponents based on popular and state-of-the-art algorithms in our experiments. These
opponents are as follows:
o OS-MCCFR (without our model) by Lanctot et al. [27].
o PGA-APP (Policy Gradient Ascent with Approximate Policy Prediction), a state-of-the-art,
Q-Learning based, reinforcement learning method by Zhang and Lesser [7].

UCB (Upper Confidence Bounds), a popular adaptive bandit algorithm, see Auer et al. [28].

CFRX (CFR with X iterations) by Zinkevich et al. [29], not an agent in itself but used to
generate approximate Nash equilibrium strategies (only used in die-roll poker).

As UCB is designed for a single-state environment, we use an instance of it for each of the
opponent’s information sets where it acts. The average reward for each UCB instance is set to
the average of the rewards from the games involving its associated information set. We measure

the change in the average payoff per game of OS-MCCFR against these opponents when trained
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against our opponent model. We label our agent OS-MCCFR with an Opponent Model (OS-
MCCFR OM).

D. Expectation-Maximisation

We use an expectation-maximisation algorithm to infer the opponent’s hidden information
based on its actions. The expectation-maximisation (EM) algorithm, first proposed by Dempster
et al. [30], can iteratively calculate maximum likelihood estimates of parameters in a statistical
model dependent on latent (unobserved) variables. The EM algorithm alternates between an ex-
pectation (E) step and a maximisation (M) step. The E-step creates a function for the expectation
of the log-likelihood evaluated using current parameter estimates. The M-step updates parameters
by maximising the expected log-likelihood computed in the E-step. The new parameters are
then used to determine the probability distribution of the latent variables in the next E-step and
the algorithm iterates. The EM algorithm will always converge to a, possibly local, maximum
likelihood estimate, which may be improved through multiple runs with different initialisations.
We use what Liang and Klein refer to as a stepwise EM algorithm [31], first proposed by Sato and
Ishii [32], generalised by Cappé and Moulines [33]], and applied to poker by Butterworth [34].
The idea is to stochastically approximate the E-step by incorporating each new observation
iteratively, whilst leaving the M-step unaltered. The stepwise EM algorithm is also guaranteed
to converge to a, possibly local, maximum likelihood estimate if the step size, 7, is restricted
such that Y ° n = oo and Y .~ n? < oo, where ¢ is the update number (i.e. ¢t = 0 is initial,

=1 is first update). Our step size is set to 7, = %

E. Sequence Prediction

We use a sequence prediction method in our opponent model to observe and predict the
opponent’s actions. Its target is an opponent who changes its strategy over time (i.e. learns), but
it will also work against an opponent with a stationary strategy. A sequence prediction method
assumes that the probability of the future can, in general, depend on any subset of the past i.e.
Pr(si1]s1, 82, ..,8;) = Pr(s;11|H) where H C {sq, S2,..., S}, each observation is from some
alphabet s; € ¥ for (t—k+1) < i < ¢, and ¢ is time. It usually has two main components, a short-

term memory, and a long-term memory. Its short-term memory, .S, stores the last k observations
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acting as a size-k first-in-first-out stack i.e. S = (s;_g+1, St—g12,---,5t), where k is the short-
term memory size or lookback. Its long-term memory, L, stores conditional distributions acting
as a map from observation sequences and observations to counts i.e. L : X! x ¥ — N° for
0 <14 < k. The probability of an observation, s € ¥, given a sequence of up to k observations,
S', is Pr(s|S") = L(S',5)/ > e, L(S',s'). The sequences or conditioning contexts used for

predictions depend on the sequence prediction method.

F. Outcome Sampling Monte-Carlo Counterfactual Regret Minimisation

The agent that we use to test our three proposals, to see if they can improve its average
payoff per game, is a state-of-the-art no-regret learning agent based on counterfactual regret
minimisation (CFR). CFR is a state-of-the-art algorithm which, in self-play, computes an ap-
proximate Nash equilibrium in two-player, zero-sum, imperfect information games. It works by
minimising counterfactual regret in self-play, which Zinkevich et al. showed minimises overall
regret, causing the average strategy profile to approach a Nash equilibrium strategy profile [29].
Before minimising an agent’s counterfactual regret, it calculates the agent’s counterfactual regret
for not playing each of its actions at each of its information sets where it acts. An agent’s
counterfactual regret for not playing an action at an information set is the difference between its
expected reward for playing that action at that information set and its expected reward for playing
its strategy at that information set, weighted by the probability of reaching that information set if
the probability of each of its actions leading to it is set to one. If an agent has a high counterfactual
regret for an action, then in expectation it would have received a higher cumulative reward if it
had played it more often and so the algorithm increases its probability of playing that action.

Using CFR to learn a strategy online is problematic. Firstly, calculating an agent’s expected
reward for playing an action requires the entire sub-tree under that action to be traversed, which
is computationally costly. Secondly, if an agent action leads to an opponent action, then CFR
needs that opponent’s strategy to calculate the agent’s expected reward for that action. Also, if
an opponent action leads to an agent information set, then that opponent’s strategy is needed to
calculate the probability that the agent reached that information set if it had tried to do so. To
tackle the first problem, Lanctot et al. proposed Monte-Carlo Counterfactual Regret Minimisation
(MCCFR) [27]], a family of sample-based CFR algorithms. MCCFR works by replacing an exact

calculation of expected reward with an unbiased estimate. CFR calculates an agent’s expected
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reward for playing an action as the sum over each reward it could receive after playing that action
multiplied by the probability of reaching the point where that reward is received. An MCCFR
algorithm performs the same calculation, but only for an unbiased sample of the possible rewards.
Thus, an agent’s expected reward for an action is estimated by traversing only part of the sub-
tree under that action, which reduces the computational cost. In expectation, MCCFR algorithms
perform the same regret updates as the CFR algorithm but require more iterations. However, the
cost per iteration is much lower. Generally, this speeds up convergence and makes the algorithm
applicable to larger games [27]]. To solve the second problem, Lanctot et al. proposed outcome
sampling MCCFR (OS-MCCFR) [27], which is a particular sample-based algorithm that only
takes one sample per iteration corresponding to the reward at the end of a game. If the rewards
are sampled from games against the opponent, and it is assumed that the opponent is acting
according to its true strategy, then it does not need to know the opponent’s strategy and can
be used to minimise regret online. We use OS-MCCEFR to update our agent’s strategy, and test
to see if its average payoff per game is improved by simulating games between it and our
opponent model in-between games against the opponent. For derivations of the key equations of

OS-MCCFR see Appendix

IV. OUR APPROACH

Our approach, which incorporates our three proposals, aims to improve our agent’s average
payoff per game by training it against our opponent model in-between games against the oppo-
nent. The first question is: how do we build our opponent model? To model the opponent’s
strategy we must model its hidden information. To do this, for each opponent information
set I, we create a categorical distribution over its actions, aopp, i.6. Pr(acpp|/). The opponent
information set, /, represents its knowledge, which consists of prior actions, including its private
actions (hidden information), Hpp, and public actions, S, I = {Hepp, S}. At the end of a game,
if we do not see the opponent’s hidden information, then we do not know which information sets
it acted at. In this case, for each opponent action, we consider all possible opponent information
sets it could have originated from and treat it as a sample from a mixture of the associated
categorical distributions. We then use an expectation-maximisation algorithm to: 1) infer a
distribution over the opponent’s hidden information using the categorical distributions parameters

(E-step), and 2) update the categorical distributions parameters by maximising their likelihood
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given the opponent’s hidden information distribution (M-step). Finally, we sample the opponent’s
hidden information.

We model the opponent’s, possibly changing, strategy by using, for each opponent information
set, an instance of a sequence prediction method. Each of these predicts a distribution over the

opponent’s actions a,p, conditioned on that information set (its knowledge) I as well as a

sequence of previous actions taken at that information set from previous games (a})pp, agpp, o)
i.e. Pr(aopp|!, (abyp @opp: - - - ))- After the opponent’s hidden information is either revealed or

predicted, then the information sets it acted at are identified and the corresponding sequence
prediction method instances observe the opponent’s actions taken in them. This is explained in
more detail in sections and

The second question is: how do we use our opponent model? We could play a best-response
strategy against it, but if it is inaccurate, then Johanson et al. showed that this could yield much
lower rewards than expected [8]]. Thus, instead our approach simulates games between our agent
and our opponent model in-between games against the opponent. Each simulated game uses the
sequence prediction method instances to predict the opponent’s actions. OS-MCCFR updates our
strategy using rewards from the actual game and simulated games. In expectation it minimises our
agent’s overall regret [27] against the opponent and the opponent model and gradually moves
its average strategy towards a best-response strategy against them. If the opponent improves
its strategy (i.e. learns towards a best-response strategy), then in expectation OS-MCCFR will
reduce the exploitability of our agent’s average strategy and move it towards a Nash equilibrium
strategy, which has zero exploitability. Whereas there are no guarantees on the exploitability of
our agent’s average strategy if it always plays a best-response strategy to its opponent model.

The overall process of building and using our opponent model is explained in more detail in

Section

A. Expectation-Maximisation in our Opponent Model

We want to model the opponent’s strategy, o,pp, Which is a set of discrete probability distri-
butions, one for each of its information sets where it acts, oopp = {fa(r) : I € Zopp and P(I) =
opp}, where fu( is a probability mass function over A(I). To do this we create a set of
sequence predictors, £, one for each of the opponent’s information sets where it acts, £ = {p; :

I € I, and P(I) = opp}. Each sequence predictor, p;, observes the opponent’s actions in
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its associated information set, /, and predicts a discrete probability distribution over its future
actions. The problem is that in order to know which opponent information sets the opponent
acted in, we need to know its hidden information, which is only sometimes revealed at the end
of a game. Thus, we wait until the end of a game before updating our opponent model. If the
opponent’s hidden information is not revealed, then we infer it. The observation or inference of
the opponent’s hidden information allows its information sets that it acted in to be identified,
and the associated sequence predictors to observe the actions taken in them.

The first question is: how do we infer the opponent’s hidden information? We infer the oppo-
nent’s hidden information by sampling from a probability distribution over its possible instances
of hidden information. Recall from Section that a node or history can be represented
as a unique sequence of actions taken to reach it, h = (ay,as,...,a,), where each action,
a;, 1 < ¢ < m, is taken by one of the players. An information set can also be represented
as a sequence of actions, except some of those actions are hidden. For example, in die-roll
poker a node could be h = ((J,63, r, ¢, (7, f), where player one rolled two, player two rolled
four, player one raised, player two called, player one rolled five, player two rolled three, and
player one folded. At this point, neither player has seen the other’s die-rolls. From player two’s
perspective, its information set would be (Dy,(3d 7 ¢, D3,E, f) € Z,, where Dy and D3 are
player one’s hidden six-sided die-rolls. From player one’s perspective, its information set would
be (3, Dy, 7,6, Dy, f) € Z,, where Dy and D, are player two’s hidden six-sided die-rolls.

Let player i’s information set [ = {#,;, S} € Z;, where H; is its private or hidden information
and S is the sequence of actions visible to both players. Using the last example, we can
write (Dy,63 7, ¢, D3, f) = {H2, S} = {(E3,)), (r,c, f)} € T, and (I, Do, 7, ¢, Dy, f) =
{H1, 5} ={( &), (r,c, )} € Tn.

Using this notation, we observe our own information set {#Hpa, S} € Zy,, and want to infer
the opponent’s information set {Hopp, S} € Zopp. Since we already know the public actions .5,
we just want to infer the opponent’s hidden information #,,,. Using Bayes’ rule, we can infer
the probability of the opponent’s hidden information given our hidden information and the public
actions as
_ Pr(S[Hpia, Hopp) Pr(Hpta, Hopp)

Zygpp Pr(SHpta, Hopp) PT(Hpla, ngp) .

opp

Pr(Hopp|Hpla, S) (D
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The second question is: how do we infer Pr(.S|Hi, Hopp)? The probability of the public actions
given the hidden information is the product of the probability of each public action given the

prior public actions and the hidden information i.e.
S|
Pr(S|Hpta: Hopp) = [ [ Pr(ail(ar, az, .., ai-1), Hyra, Hopp)- 2)
i=1

We can substitute Equation [2] into Equation [1] giving

Pr(Sallaa Hopp) Pr(lea, HOpp) _
ZH(,pP Pr(S|Hpra, Hiyo) Pr(Hpa, ’ngp)

opp
leil1 Pr(a;|(ai, as; - - -, ai—1), Hpla, Hopp) Pr(Hpias Hopp)
Y H‘Zi‘l Pr(a;|(ay, az, ..., ai-1), Hpta, Hipp) Pr(Hpta, Hipp)

opp

Pr(%opp‘%plm S) =

3)

We can simplify Equation |3| by cancelling out our action probabilities as these are the same for

each possible instance of the opponent’s hidden information and so

Pr(Hoplepla, S) =

[T, Pr(a;|(ar, as, ..., ai_1), Hopp)? Pr(Hpta, Hopp)
S T12 Pr(a|(ar, as, - .., 1) Hiy ) Pr(Hopna, Hipp)

opp

1 if a; is an opponent action
where b; = : “4)
0 otherwise

The third question is: how do we calculate Pr(Hp1a, Hopp)? The probability of the player and
the opponent having particular instances of hidden information depends on the game. In die-
roll poker, each six-sided die-roll is independent, thus Pr(H i, Hopp) = Pr(Hpn) Pr(Hopp) =
W' In Rhode Island hold’em, each card draw is not independent as card draws are from

the same fifty-two card deck, thus Pr(Ha, Hopp) , where | D] is the size of the deck.

_ 1
— [DIIDPI-1)
For die-roll poker and Rhode Island hold’em, the joint probability of the players’ hidden informa-

/

tion is independent of what that hidden information is, meaning that Pr(#,, Hopp

) would factor
out in the denominator and cancel with Pr(H,, Hopp) in the numerator of Equation EIL However,
in general this is not the case. For example, in bucketed Rhode Island hold’em, if the public cards
have a high squared expected hand strength, then the probability of each player’s hand being in a
high bucket sequence is higher, and if a player’s hand is in a particular bucket sequence, then it is
slightly less likely that the opponent’s hand is in the same bucket sequence. For bucketed Rhode

Island hold’em, in Equation 4 we first substitute Pr(H i, Hopp) = Pr(Hopp| Hpla) Pr(Hpn) and
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Pr(Hpia; Hepp) = Pr(Hepp| Hpta) Pr(H,p1a) and since our hidden information is fixed then Pr(#,,)
can be factored out of the denominator and cancelled with the same term in the numerator. We
calculate Pr(Hopp|Hpia) exactly by considering each card the opponent could have, counting how
many times its hand is in the bucket sequence, H,pp, and dividing by the number of times its
hand is in any bucket sequence.

The fourth question is: how do we infer Pr(a;|(a1, ag, ..., ai—1), Hopp), Where a; is an opponent
action? If a; is an opponent action, then the opponent’s hidden information, H,p,, and all previous
public actions, (a1, as, ..., a;_1), represent an opponent information set where the opponent acts,
I = {Hopp, (a1,02,...,a;-1)} € Ly, where P(I) = opp. We could use the sequence predictor
pr to predict Pr(a;|I). The problem with this is that it can create a sort of negative feedback loop.
If the sequence predictor is inaccurate, which it probably will be initially, then its prediction
of Pr(a;|I) will be inaccurate, making the inference of Pr(Hop,|Hpn, S) inaccurate, which will
result in the wrong sequence predictors being updated, possibly making the next prediction of
Pr(Hopp| Hplas S) even more inaccurate. Instead of using sequence predictors, which cannot be
partially updated by making fractional observations to account for uncertainty, we use empirical
probabilities, which can be.

Specifically, the EM component assumes that each distribution, f4(r), in the opponent’s strat-
egy, Oopp = 1.Sa(r) : I € Lopp and P(I) = opp}, is a fixed categorical distribution. The parameters
of fa(r) are the opponent’s action probabilities at /. We want to set each parameter of each fp
to its maximum likelihood estimate given our observations. If we could observe samples from
far), then maximising its parameters would be easy but, we may not know how many times each
action has been played in [ because if we do not observe the opponent’s hidden information, then
we do not know which of its information sets it acted in. Thus, instead of observing samples from
facn, they are from a mixture of categorical distributions, which include f4(;). The maximum
likelihood estimate for the probability of sampling ¢ from a categorical distribution d given N
samples from a mixture of K categorical distributions (including d) each with D categories is

Gt maPr(@i) )

S S G S Pzl )

Here 114, 1s the probability of category c from categorical distribution d, z,4 is the d-th component

Hde

of the 1-of-K encoded vector Z,, v(z,q) is the responsibility of d to sample n, z,. is the c-

th component of the 1-of-D encoded vector ¥,, and m,; is the probability of sampling from
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d. This is derived in Appendix D] We can use Equation [5 to set the parameters of the EM
component’s categorical distributions to their maximum likelihood estimates. Here, 7, is the
probability of having played into the opponent information set associated with d, and Pr(Z,|/i)
is the probability of the opponent’s action sampled from d. Thus, 7(z,4) is equal to Equation

We can update i, iteratively by rewriting Equation [5] as
<Zﬁ:11 V(an)xnc) + P)/(ZNd)ch

Hde = _ .
(Zi’il 25:11 V(an)l"m‘) + Zil Y(2Na)TNi

We use a map from opponent information sets to real numbers M, : Z,,, — R to store the

(6)

numerator of Equation [S| For example, given an opponent information set, I € Zy,, where the
opponent acts, P(I) = opp, the probability of sampling action ¢ € A([) from its categorical

distribution d = fa( is

YT ML) -
Zizl Zivzl V(2nd) Tni M, (I)

We call M, the expected visit counts as the numerator of Equation [/| can be seen as the expected

Hde

times action c is sampled from distribution d at opponent information set /, which in our case
is the expected times opponent information set (I, c) is visited. Likewise, the denominator of
Equation [/ can be seen as the expected times any action is sampled from d at I, which in our
case is the expected times [ is visited.

At the end of a game, let the opponent’s terminal information set be {Hopp, S} € Zopp. For
each I € 7, that it could have acted at, P(I) = opp, where I = {Hopp, (a1, a2,...,a;)} and
i < |S|, update the parameters of the categorical distribution d = f (1) associated with I using
the action that the opponent could have sampled from it a;;; as follows:

1) E-step: Calculate +y(z,4) via Equation

2) M-step: Update the parameters of d via Equation [6]

For each possible path, the E-step calculates the product of the opponent’s action probabilities
along it (via the categorical distributions) multiplied by the probability of the opponent being
dealt the hidden information along it given the player’s hidden information and then normalises
these probabilities, the M-step increments the visit count of each opponent information set
along it by its normalised path probability from the E-step. For example, if I = (£, Dy, 7, f),
then the E-step would calculate Pr(Ds|Hpa = 6,5 = (1, f)) = Pr(f|Hop = D2, S =
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(T))/Z:E] Pr(f|Hopp = D5, S = (r)). The M-step would increment M, ((D1, D2, r, f)),
M,((D1, Dy, 7)), ..., My(()) by Pr(f|Hoepp = D2,.S = (r)). We can now sample the opponent’s

hidden information, Aqp,, from Pr(Hopp|Hpia, S) and update the relevant sequence predictors.
Observe action a;,; with the sequence predictor
Mprea({ hopp, (@1, a2, ..., a;)}) for all 0 <7 < |S],
where P({hopp, (a1, 0a2,...,a;)}) = opp. (8)

M,

p
I € Iy, P(I) =opp} — £.

red Maps from opponent information sets where it acts to sequence predictors, Mpyeq : {I :

B. Sequence Prediction in our Opponent Model

We use a sequence prediction method named Entropy Learned Pruned Hypothesis space
(ELPH) by Jensen et al. [35]], [36]], to predict probability distributions over the opponent’s future
actions. Its main advantage is that it can rapidly learn a non-stationary opponent strategy, which
has allowed it to be used to defeat human and agent players in simple games and will allow it to be
helpful against dynamic opponents. It works by forming distributions conditioned on interaction
histories of different lengths, pruning those with high entropies, and predicting using one with
the minimum entropy. Given an observation, s € I, it generates the set of all subsequences
of its short-term memory, P(.S), and for each subsequence creates or updates a distribution
conditioned on it by incrementing the count for the subsequence and the observation in its
long-term memory, L(S’,s) «<— L(S’,s) 4+ 1 for all S" € P(S). It then prunes each conditional
distribution (by removing its counts) if its normalised Shannon entropy, H, is above a passed in
threshold, H;, for each S" € P(S) L\ (S, s) for all s € ¥ if H(L(S')) > H,. Finally it adds the
observation to the end of its short-term memory and removes the first observation if S is above
its size-k limit. To make a prediction, it again gets the set of all subsequences of its short-term
memory, P(S), and predicts using the distribution conditioned on one of these subsequences
with the minimum reliable Shannon entropy, Hyei, arg mingep(sy Hret(L(S")).

Our opponent model creates a set of ELPH instances, £, one for each opponent information
set where it acts, £ = {p; : I € Iy, and P(I) = opp}. At the end of each game, the opponent’s
hidden information is sampled from a probability distribution inferred using online expectation-

maximisation. Using this, the opponent’s information sets that they acted at during the game
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are inferred, and the sequence predictors for them observe the opponent’s actions taken in them.
For each opponent information set, its associated ELPH instance observes opponent actions in it
across different games and models the opponent’s action distribution at it. If a dynamic opponent
changes this action distribution, then the ELPH instance will rapidly learn the new distribution
from its set of observation-based hypothetical conditional distributions favouring those with low

entropy and high predictability.

C. Our Algorithm

Fig. |3| shows our overall algorithm and Fig. 4| shows our opponent modelling algorithm. We
update our agent’s strategy via OS-MCCFR [37, pp. 50] (see Section & Appendix [A)
with rewards from games vs the real/model opponent. The time complexity of one iteration of
our algorithm is dominated by the following (from most costly): 1) Simulating games. In each
simulated game, at each non-terminal node, an action is sampled from a distribution, where
a sequence predictor predicts each opponent distribution, and our agent updates its strategy
using OS-MCCFR. This scales like O(g[2"dmax {opp} T Dimax,{placha}|Gmax) Where g is simulated
games, k is the lookback, d.xn 1s maximum decisions in a game for players in NV, and apm,y 1S
maximum actions at a node. 2) Sequence prediction. In general, a sequence predictor predicts
using a number of distributions exponential in its lookback, which is the worst case for an ELPH
instance. With a sequence predictor at each opponent information set where it acts predicting its
distribution, this quickly becomes the bottleneck if the lookback grows faster than logarithmically
with the game size. As shown above, this scales like O(g2kdmax70ppamax). 3) EM algorithm. After
each game against the opponent it predicts probabilities and updates counts for each possible
path. This scales like O(dmax, {opp.placha}| Hopp|) Where |Hopp| is the number of opponent hidden
information possibilities. 4) OS-MCCFR. After each game it updates regrets and probabilities
at each of our agent’s information sets where it acted. This scales like O(gdmax,{pla}amax).

The space complexity of our algorithm is as follows. It stores regrets and probabilities for
our agent’s actions at its information sets where it acts, a sequence predictor for each opponent
information set where they act, which has a number of distributions exponential in its lookback,
and a count for each opponent information set. This scales like O([|Z},| + 2*|Z7 || amax + |Zopp|)

where Z = {I : I € Z;, P(I) = i}.
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Our algorithm’s efficiency mainly depends on game size. Larger games have more nodes,
actions, and probably information sets, requiring more space, and more observations for EM
and sequence prediction to learn to given overall accuracies. Exactly how time to converge/reach
given overall accuracies or required lookback scales to larger games are open questions. Also,
although overall regret after a number of OS-MCCEFR iterations is bounded by theory [27]], we
cannot yet say how our algorithm affects this. To prevent bottlenecks, a large game may need
an abstraction to reduce its size, and simulated games and lookback should be set sufficiently

small.

V. RESULTS

Our experiments test if our opponent model improves the average payoff per game of OS-
MCCEFR against several opponents in die-roll poker and Rhode Island hold’em. We test four
variations of our opponent model: 1) without expectation-maximisation or sequence prediction
(UN); 2) with just expectation-maximisation (EM); 3) with just sequence prediction (SP), and
4) with expectation-maximisation and sequence prediction (EM + SP); To infer the opponent’s
hidden information, (EM) and (EM + SP) use expectation-maximisation (see Section [[V-A),
whereas (UN) and (SP) sample from Pr(#Hop,|Hpi). For example, (UN) and (SP) sample die
face(s) after a fold in die-roll poker with probability 1/6™d nmber - and one card after a fold
in Rhode Island hold’em with probability 1/(52 — round number). To predict the opponent’s
actions, (SP) and (EM + SP) use sequence prediction (see Section [[V-B)), whereas (UN) and
(EM) use empirical probabilities. The empirical probability of an action at an information set
is the number of times it was played there divided by the total number of actions played there.

Table [I| shows all parameters in our experiments.

A. Benefit of bucketed Rhode Island Hold em

In Rhode Island hold’em players one and two have 2.50 x 107 and 2.46 x 107 information sets
where they act respectively. This is too many for any agent we use to learn a high-reward strategy
within 1 x 10° games, which is the number of games we evaluate agents over in our experiments.
This is because even if an agent updates its strategy at the maximum of 6 information sets per
game (3 betting rounds x 2 decisions per betting round and player), then it would take at

least 4.2 x 10° games to update each information set once. Thus, making it impossible for an
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agent to learn a perfect strategy in Rhode Island hold’em within 1 x 10° games. Even learning
an imperfect, but effective strategy, would probably require each information set to be visited
many times. Learning an effective strategy within this number of games requires learning to be
generalised across information sets using an abstraction.

To test the benefit of the abstraction, we compared the average payoff per game of OS-MCCFR,
PGA-APP, and UCB against a simple strategy that always raises. The abstraction reduces the
number of information sets where each agent acts to 2.52 x 10? using percentile bucketing based
on expected hand strength squared with five buckets for the pre-flop, flop, and turn stages in the
game ie. by =5, by = 5 and by = 5 (see Section [[II-B3). We found that each agent’s average
payoff per game is negative in the unabstracted version, and positive in the abstracted version.
Thus, the abstraction allows each agent to learn to win against always raise. Linear least squares
regression on the last 5 x 10* games in the unabstracted version estimates that it would take these
agents 4.73 x 10°, 1.22 x 10°, and 1.69 x 10® games respectively to break even with zero average
payoff per game. Thus, the abstraction allows these agents to learn effective strategies within
1 x 10° games. From this point for Rhode Island hold’em agents use the bucketed version and are
restricted to playing strategies within it. Better strategies likely exist in larger (finer) abstractions,
but would take longer to learn. An agent might perform better with a smaller abstraction as it

allows them to adapt faster.

B. Performance in Die-Roll Poker and Rhode Island Hold em

Fig.[5|shows the change in the average payoff per game of OS-MCCFR with the four variations
of our opponent model. Firstly, it is always better with (EM) rather than with (UN) except in
die-roll poker against CFRO. This is because CFRO plays actions uniformly at random and
so its strategy does not depend on its hidden information. This supports our first secondary
idea, showing that inferences of the opponent’s hidden information based on its behaviour using
expectation-maximisation give higher average payoffs per game than inferences ignoring its
behaviour. Secondly, it is always better with (SP) rather than with (UN) or with (EM). This
supports our second secondary idea, showing that predictions of the opponent’s actions using
sequence prediction give higher average payoffs per game than predictions using empirical

probabilities. Finally, it is always increased with (EM + SP), supporting our main idea, showing
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that playing extra games between our agent and our opponent model improves our agent’s average
payoff per game.

Using our results, we want to estimate how OS-MCCFR with each of the four variations of
our opponent model will perform in the long term. To estimate long-term average payoffs per
game, we fitted exponential functions of the form f(x) = ae~" +c to model the average payoffs
per game. Here f(z) is the average payoff per game, x is the game number divided by 1 x 10°
(the number of games), and a, b, and c are parameters. We are particularly interested in the c
parameter, which represents the asymptotic average payoff per game, as well as the number of
iterations it takes to get close to c. We fitted these functions using MATLAB’s Trust-Region-
Reflective Least Squares algorithm with Bisquare weights, which is a non-linear least squares
regression method found in its Curve Fitting Toolbox [38]. Table [lIl shows each estimated c
parameter and the estimated iterations to reach 99% of c. The c estimates reflect our results,
showing that (EM) is always better than (UN) (except against CFRO), (SP) is always better than
(UN) or (EM), and (EM + SP) always increases average payoffs per game. This implies that
our approach will continue to improve average payoffs per game in the long-term.

The average payoff per game of (EM + SP) is not statistically significantly greater than that
of (SP) in Rhode Island hold’em against PGA-APP and UCB. This could be because it takes
longer to learn in Rhode Island hold’em as, firstly, even abstracted it has more information sets,
and secondly, it has more hidden information (5% = 125 bucket sequences vs 6 = 36 die rolls),
which causes noisier play. In general, the EM component accuracy depends on the accuracy of its
categorical distributions (one per opponent information set where it acts), so with more opponent
information sets where it acts (due to more actions or hidden information) the more categorical
distributions there will be, increasing learning time. To test this, we measured the difference in
the average payoff per game between (EM + SP) and (SP) against OS-MCCFR, PGA-APP and
UCB in die-roll poker with an increasing amount of hidden information (die faces). Table |III
shows that as we increase die faces, the difference decreases. Also, expectation-maximisation
offers no advantage in Rhode Island hold’em if it infers the opponent has the same bucket as

the agent as this indicates they have the same chance of winning.
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VI. CONCLUSIONS AND FUTURE WORK

We propose an online opponent modelling algorithm that needs no knowledge outside game
rules, and does not assume a stationary opponent strategy. Building it has two proposals: an
expectation-maximisation algorithm to infer the opponent’s hidden information in an imperfect
information game, and a sequence prediction method to specialise in predicting an opponent’s
changing strategy. Using it has a third proposal: simulating games between our agent and our
opponent model in-between games against the opponent. Experiments in simplified poker games
show that our approach improves the average payoff per game of a state-of-the-art no-regret
learning agent based on counterfactual regret minimisation. They indicate that our approach
would improve performance in similar situations where opponents are exploitable, hidden in-
formation possibilities are sufficiently small, and iterations are sufficiently large. Future work
will look at optimising the expectation-maximisation, increasing training with model accuracy,
and larger domains, e.g. Texas hold’em, which may require scalability improvements and further

abstractions.

APPENDIX
A. Counterfactual Regret Minimisation

The Counterfactual Regret Minimisation (CFR) algorithm proposed by Zinkevich et al. [29]
is a state-of-the-art no-regret algorithm for two-player, zero-sum, imperfect information games
which, in self-play, minimises the maximum counterfactual regret over all information sets and
actions. By minimising counterfactual regret, they proved that it minimises overall regret and
converges towards a Nash equilibrium.

1) Counterfactual Value: Player i’s counterfactual value of information set I € Z; given

strategy profile o is
vi(Ilo) =Y Pr(hlo_)u;(h) (A.9)

hel
where u;(h) = >_ 4 Pr(2[h]|o)ui(2), Pr(z[h][o) is the probability of reaching node 2 from
node h given strategy profile o, Pr(h|o_;) is the probability of reaching node h given strategy
profile o except player i’s action probabilities are all set to one, and Z[h] is the set of terminal

nodes reachable from h.
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2) Counterfactual Regret: Player i’s counterfactual regret for not playing action a € A(I) at
information set I € Z; is

ri(l,a) = vi(I|lor—ae) — vi(I]0), (A.10)

where o;_,, 1s the same as o except action a is always played at information set /. With positive
regret player ¢ prefers action a rather than its strategy, with zero regret it is indifferent, and with
negative regret it prefers its strategy.

3) Regret Matching: Regret matching is used to update each action probability at each

information set as follows

R (L) if denominator > 0
T+1 (L a) — >aream B F(1La) , (A.11)
Wlm otherwise

g

where R (I, a) = max <ZtT:1 ri(1,a), O) , 0l (I, a) is player ’s probability of playing action
a at information set I at iteration 7'+ 1, (1, a) is player i’s counterfactual regret of not playing
action a at information set [ at iteration ¢, RZT’JF([ ,a) is the maximum of zero and player i’s
cumulative counterfactual regret of not playing action a at information set / between times ¢t = 1
and ¢t = T'. For the CFR algorithm, one iteration calculates the counterfactual regrets for all of
player ¢’s actions at all of its information sets, updates its cumulative counterfactual regrets, and

uses them with regret matching to update action probabilities.

B. Monte-Carlo Counterfactual Regret Minimisation

The Monte-Carlo Counterfactual Regret Minimisation (MCCFR) family of algorithms pro-
posed by Lanctot et al. [27] are each the same as the CFR algorithm except they replace exact
expected rewards with unbiased estimates. The number of iterations required for convergence
increases but each iteration is faster and so convergence time generally decreases [27]].

Sampled Counterfactual Value: Player i’s sampled counterfactual value of information set
I € 7, given strategy profile o is

i(Il0,Q;) = Y Pr(hlo_;)a:(h|Q;) (A.12)

hel

where @;(h|Q;) = > co,nzm ﬁPr(z[hHa)ui(z), (), is a subset of terminal nodes @); C Z

sampled by MCCFR with probability ¢; > 0 from Q = {Q1,Q2,...,Qj,..., Qg }s UQ]EQ Q; =
Z and q(z) = > jizeq, 1j 1s the probability of sampling terminal node z.
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C. Outcome Sampling Monte-Carlo Counterfactual Regret Minimisation

The Outcome Sampling Monte-Carlo Counterfactual Regret Minimisation (OS-MCCFR) al-
gorithm defines the set of subsets of terminal nodes, O, such that each subset contains exactly
one terminal node, i.e. ]Qj\ =1 for all @); € Q. This means that, on each iteration, only one
terminal node is sampled, and the information sets along the path from the root to it are updated.
The probability of sampling a terminal node, ¢(z), is then equal to the probability of sampling
the subset that contains that terminal node, ¢(z) = ¢;. The probability distribution, or sampling
scheme, is selected such that ¢(z) = ¢; = Pr(z|o’). The sampled counterfactual value is then

calculated as ;(1|o, Q;) = >, c; Pr(h|o_;)u;(h|Q;)

Y Pie )| Y ﬁ Pr(z[h]]o)us(2)
hel 2€Q,NZ[A]

_ Pr(hlo_;) Pr(z[h]|o)ui(z) _ Pr(hlo_;) Pr(z[h]|o)ui(z)
q(2) Pr(z]o’)

_ Pr(hlo_;) Pr(z[h]|o;) Pr(z[h]|o_i)ui(z)
Pr(z|o}) Pr(z|o”;)

_ Pr(z[h]|o;) Pr(z]o_;)u;(2) - Pr(z[h]|o;)u;(2)

Pr(z|o!) Pr(z]o”,) Pr(z|lol)

(A.13)

Since (); only contains one terminal node (i.e. |();| = 1), and the probability of reaching this
terminal node Pr(z € )j|0) is zero for all nodes in I except one, the sums can be dropped. The
probability of reaching a node given a strategy profile, can be factored into the probability of
reaching that node given player ¢’s strategy multiplied by the probability of reaching that node
given the other players’ strategies i.e. Pr(z[h]lo) = Pr(z[h]|o;) Pr(z[h]lo_;) and Pr(z|o’) =
Pr(z|o}) Pr(z|o’ ;). Finally, by assuming that the sampling strategy profile for the other players
is approximately equal to their actual strategy profile i.e. 0’ , &~ o_; we arrive at the final equation.
This equation for the sampled counterfactual value only depends on the player’s strategy, the

player’s sampling strategy, and the player’s utility function.

D. Mixture of Categorical Distributions Maximum Likelihood
Consider a mixture of K categorical distributions with parameters i = (jiy, 2, - - ., fix) and
T = (m, 7o, ..., 7). Bach iy = (px1, fg2, - - -, p)> Where pi; is the probability of sampling

category ¢ from categorical distribution £, Zi e = 1,0 <y < 1foralll <@ < D.
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Each 7 is the probability of sampling categorical distribution £, Zszl e = 1,0 < m <1
for all 1 < k < K. A categorical variable drawn from this mixture is a 1-of-D encoded vector
Z = (x1,29,...,2p), where one component is 1 and the rest are 0. The probability of sampling

Z given fi and T is

7) =Y m Pr(lji). (A.14)
Given a data set X of N samples from this mixture X = {&}, 7, ..., Zn}. The likelihood of /i
and 7 given X is
N K
L(ji, 7 X) = Pr(X|fi, 7) = [ [ D mi Pr(&alix). (A.15)
n=1 k=1

The log-likelihood of ji and 7 given X is

In L(ji,7; X) = InPr(X|f, 7) ZIHZM Pr(Z,,|fix ). (A.16)
n=1

Since a summation is in the logarithm this does not have a closed-form solution, so we will
derive expectation-maximisation equations for maximising this likelihood. For each & introduce
a latent variable, which is a 1-of-K encoded vector Z = (z1, 2s, . . ., 2k ), where one component is
1 and the rest are 0, its value indicates which categorical distribution generated . The probability

of ¥ and 2’ given ;i and 7 is

K
Pr(Z, 2ji, 7) = | [ =i Pr(| i)™ (A.17)
k=1
The likelihood of /i and 7 given X and Z is
N K N K Znk
_ H H Znk PI" |,Uk an: _ H H ’/T Humm . (A.18)
n=1 k=1 n=1 k=1 =
The log-likelihood of ji and 7 given X and Z is
Znk

In Pr(X, Z|ji, #) = In H H o H o

Nn Z: 1 .
- Z Z Znk | In e + Z T I pugs | - (A.19)
n=1 k=1 i=1
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Taking the expected value with respect to the posterior distribution of Z gives E,[In Pr(X, Z|ji, 7)] =

N K D
DD v(zm) (ln T+ Y Ty ln um) : (A.20)

n=1 k=1 =1

where 7y(z,x) = E[zn] is the posterior probability, or responsibility, of categorical distribution

k for sample Z,. This is evaluated in the E-step as v(zux) = E[zn] =

S 2o [lme @) m Pr(f, i)
e T TR — . (A.21)
>z, 1Ll Pr(d| ;)] > ™ Pr(d| ;)
Using a Lagrange multiplier X = (A1, A9, ..., Ak) to create a new function, which takes into
account the constraint Zz‘i1 e =1 forall 1 <k < K, gives
G(ii, 7 N X, Z) = Ez[lnPr(X, Z|j7, 7, N)]
N K D
= Z Z’Y(znk) <1H7Tk + Zﬂcm 1n,uki>]
[n=1 k=1 i=1
[ K D
-3 [(Z Mm) —1 ] . (A.22)
[ k=1 i=1

Taking the partial derivatives of this function, firstly with respect to one probability pi4., and

secondly with respect to one Lagrange multiplier component \; gives

0 (liim’“) <1 s lnmﬁ.)]

Optde i —
- [Z Ak [(Z Nkzi) - 1”) = [Z v(znd)z’:] = Aa, (A.23)
ai/\d ( [; Zl Y(Znk) (ln T + Zzl Tpiln um)]

S () )

To find the maximising parameters, we set the partial derivatives equal to zero, which gives

N D

1

A== )T, (A.25) > ha=1. (A.26)
¢ n=1 i=1

With some manipulations we can find p4. as follows

D D D N
Z Adftdi = Ad Z Hdi = A\g = Z ZW(an)wm',
=1 =1

i=1 n=1

N
— DEn:l}\?(an)l'nc ‘ (A27)
D iz Dan=1 V(2nd)Tni

Hdc
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FIGURES 3

1: (1-7) Initialise a visit count per I € Z,, and a sequence predictor
per I € Loy, where P(I) = opp

2: Play game vs opp, update strategy (OS-MCCFR), call OBSERVE

3: (10-14) E-step: for each terminal node (path) in your terminal
information set, multiply opp’s action probabilities (from the
categorical distributions/visit counts) and the probability of its
hidden information given your hidden information. Normalise
these probabilities

4: (15-18) M-step: for each terminal node, increment visit counts
of I € Iy along it by its E-step probability

5: (19) Sample hopp, according to E-step distribution

6: (20-22) Have each sequence predictor along path for hop, observe
opp’s action taken in its information set

7: Simulate games vs model, update strategy (OS-MCCFR), call
PREDICT (23-25) for its actions (using sequence predictors)

8: Repeat from 2 for a number of games vs the opponent

Fig. 3
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FIGURES 34

Require: Player, Opponent information sets Zp1., Zopp, Lookback k

1: Initialise My : Zopp — R such that > Start initialisation
1 ifICZ
M,y (1) < =
o 2aca Mu((I,a)) otherwise

Initialise Mprea : {I : I € Zopp, P(I) = opp} — &
for all I € dom(Mpreq) do
Initialise predictor p; with k& lookback Mpea(I) < pr
for i =1 to k do
Sample action a with probability %&‘)‘))
Observe action a with Mirea(I) > End

function OBSERVE((' C Z) € Zp.) b Call after real game
9:  Initialise My : {I : [ € Zopp, INT #0} = R

R AN RBN

10: for all a1.,,, € dom(M;) do > Start E-step

11: Mt(alzm = (Hup}n S)) — PT(HUPP|HP13)

12: for [ < 0 to m do

13: if P(a1.;) = opp then

14: Mi(arm) += Mi(arm) “ortittn) > End

15: for all a1.., € dom(M,) do > Start M-step
. My (1)

16: Mi(I) < 211 cdom(my) Me(I")

17: for [ < 0 to m do > Update categoricals (visits)

18: Mv(alzl) — Mu(au) + Mt(a1;m) > End

19: Sample I = ai.n, with probability M, (I) > Get hopp

20: for [ < 0 to m do > Update sequence predictors

21: if P(a1.;) = opp then

22: Observe action a; 1 with Mprea(@1:1)

23: function PREDICT(h € {h: h € H\ Z, P(h) = opp}) > Call
during simulated games

24: Get I where h € I and I € Zyy

25: return a prediction from Mprea (1)

Fig. 4
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FIGURES 35

OS-MCCFR Final Average Payoff Per Game
OS-MCCFR Final Average Payoff Per Game (all standard errors are + 0.01)
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FIGURES 36

LI1ST OF TABLES
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TABLES 37
TABLE 1
Player Parameters
CFRX N/A
OS-MCCFR explore rate = 0.05
PGA-APP explore rate = 0.05, learning rate = 0.9, discount
factor = 0.99, step-size = 0.01, prediction length =
1.0
UCB constant = 3

OS-MCCFR OM | explore rate = 0.05, sequence predictor = ELPH
(lookback = 5, entropy threshold = 0.1), games
played against opponent model in-between games
against the opponent = 100 in die-roll poker and 10
in Rhode Island hold’em

Other parameters

number of games = 1 x 10%, number of repeats = 80, both positions
played per game
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TABLES 38

TABLE II
(b)

(a) ©)
Opponent model c t0.99 c to.99 c t0.99
None 3.2 | 1.2 x10° 0.15 | 2.4 x10° -0.16 | 2.7 x10°
UN 3.6 | 6.2 x104 -0.12 | 2.3 x10° -0.71 | 1.5 x10°
EM 3.6 | 6.4 x10% 0.23 | 2.1 x10° -0.36 | 1.6 x10°
SP 3.7 | 5.3 x10% 030 | 1.7 x10° -0.19 | 1.6 x10°
EM + SP 3.7 | 3.8 x10% 0.53 | 1.2 x10° 0.05 | 1.9 x10°
(d) (e ®
Opponent model c t0.99 c to.99 c to.99
None N/A N/A -0.18 | 7.4 x10% -0.24 | 1.0 x10%
UN -0.69 | 6.9 x10* -0.96 | 7.2 x10% -1.8 | 1.4 x10°
EM -041 | 2.1 x10% -0.71 | 3.5 x10% -0.22 | 3.3 x10%
SP -0.049 | 2.8 x10° -0.1 1.1 x10° -0.15 | 1.5 x10°
EM + SP 022 | 1.9 x10° 0.085 | 8.7 x10% 0.10 | 1.4 x10°
(2) (h) @)
Opponent model c t0.99 c t0.99 c t0.99
None N/A N/A 1.8 | 2.8 x10° 9.8 | 2.0 x10°
UN 32 | 74 x10% 0.82 | 3.0 x10° 12 | 1.7 x105
EM -1.4 | 5.6 x104 1.9 | 2.5 x10° 14 | 2.3 x10°
SP 29 | 2.0 x10° 64 | 1.9 x10° 16 | 1.5 x10°
EM + SP 33 | 2.1 x10° 6.1 | 2.2 x10° 16 | 1.5 x10°
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TABLES 39

TABLE III
Opponent 6 Sided 9 Sided 10 Sided
OS-MCCFR | 0.26 £0.01 | 0.17 £ 0.01 | 0.12 4 0.01
PGA-APP 0.19 £ 0.01 | 0.17 £ 0.01 | 0.09 &+ 0.01
UCB 0.25 £0.02 | 0.24 £0.02 | 0.14 &+ 0.02
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