
IET Computers & Digital Techniques
Review Article
Brain-inspired computing
IET Comput. Digit. Tech., pp. 1–7
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)
ISSN 1751-8601
Received on 1st October 2015
Revised on 14th November 2015
Accepted on 7th December 2015
doi: 10.1049/iet-cdt.2015.0171
www.ietdl.org
Steve B. Furber ✉

School of Computer Science, The University of Manchester, Manchester M13 9PL, UK
✉ E-mail: steve.furber@manchester.ac.uk

Abstract: The inner workings of the brain as a biological information processing system remain largely a mystery to
science. Yet there is a growing interest in applying what is known about the brain to the design of novel computing
systems, in part to explore hypotheses of brain function, but also to see if brain-inspired approaches can point to novel
computational systems capable of circumventing the limitations of conventional approaches, particularly in the light of
the slowing of the historical exponential progress resulting from Moore’s Law. Although there are, as yet, few
compelling demonstrations of the advantages of such approaches in engineered systems, a number of large-scale
platforms have been developed recently that promise to accelerate progress both in understanding the biology and in
supporting engineering applications. SpiNNaker (Spiking Neural Network Architecture) is one such large-scale
example, and much has been learnt in the design, development and commissioning of this machine that will inform
future developments in this area.
1 Introduction

There has recently been a significant increase worldwide in interest
in, and funding for, research into brain function, exemplified by
the European €1B ICT Flagship Human Brain Project and the US
White House $300M BRAIN (Brain Research through Advancing
Innovative Neurotechnologies) initiative. Why is there such a
consensus that the time is right for new initiatives in what remains
a very challenging frontier of science?

Two complementary answers to this question suggest themselves:

† Computer technology is now (and only now) approaching the
capability required to contemplate constructing large-scale
computer models of the brain.
† At the same time, computer technology is approaching
fundamental physical limits, motivating the quest for alternative
approaches to the historic reliance on making transistors ever
smaller. The brain is seen as a potential source of such alternative
approaches to computation, but this is impeded by our partial
understanding of how the brain works.

Of course, alongside these advances in computer technology there
have been advances in neuroscience and a growing appreciation of
how to build computer and electronic models of neural systems. A
greater understanding of the brain should also facilitate progress in
the development of treatments for the many debilitating diseases
of the brain, but this is not a new issue, and while it may provide
further support for the various international initiatives it does not
explain the timing of them. Likewise, the natural human desire to
expand our understanding of ourselves motivates research in this
area – what could be more fundamental to understanding humanity
than understanding the organ that embodies our personalities and
memories, and determines our every action? – but this motivation
is long-standing and does not explain ‘why now?’.

Research into the brain is, of course, not new. Neuroscientists
have been engaged in the very demanding work of understanding
the brain from the bottom up for more than a century, while
psychologists have been pursuing a top-down approach to the
problem for even longer, and some of the world’s great religions
have been exploring consciousness and the nature of mind for
millennia. More recently, brain-imaging machines have been
added to the toolset. However, the brain spans many orders of
magnitude in scale, and there is a very large gulf between the
scales that are tractable from the bottom up, even with today’s
advancing multi-electrode array technology, and those that can be
resolved from the top down with imaging techniques. Somewhere
in this gulf are the most important scales for understanding
information processing in the brain – how is information
represented, communicated, processed and stored? So far the only
tools available to explore these intermediate scales are computer
models, and computational neuroscientists have been exploring
this space since the very earliest days of computers.

Computational neuroscience has been able to take advantage of
the exponential progress in the capabilities of computer
technology, informed, of course, by progress in neuroscience and
psychology. However, the scale of the problem is daunting even
for today’s most advanced machines. Scale is important. There are
many examples of artificial neural systems (that may or may not
bear some relationship to biological brains) that depend critically
on scale. The key concepts are deeply rooted in the
counter-intuitive geometric properties of high-dimensional spaces
and, if these models are scaled down to accommodate the
limitations of the computers they run on, their functionality will be
compromised, if not totally lost – an example of such a model is
Kanerva’s sparse distributed memory [1]. Thus we have seen a
growth in interest in the design and construction of specialised –
brain-inspired – computer systems built both to explore the
benefits of deploying our partial knowledge of brain function and
to push back the boundaries that constrain computational
neuroscience models on conventional machines.

The key contributions of this paper are as follows:
† a discussion of the major challenges impeding progress in
computer technology (Section 2);
† an introduction to the brain from a computer engineer’s
perspective (Section 3);
† metrics for comparing computers with brains (Section 4);
† the major challenges in building brain-inspired machines (Section
5) and an overview of current large-scale projects building
brain-inspired machines (Section 6);
1

† details on the SpiNNaker (Spiking Neural Network Architecture)
project (Section 7), and lessons from early user experience on
SpiNNaker (Section 8).

2 The end of Moore’s law

Progress in computer technology since the first electronic
stored-program computer ran its first program on 21st June 1948
in Manchester, England, has been nothing short of formidable.
The Manchester ‘Baby’ executed around 700 instructions per
second, while a modern processor – even a fairly simple mobile
phone processor of the sort used in SpiNNaker – is around a
million times faster. ‘Baby’ consumed 3.5 kW of electrical power,
while the SpiNNaker processor consumes a hundred thousand
times less.

Most of this progress has resulted from Moore’s Law [2] – the
observation made by Gordon Moore in 1965 that the number of
transistors that could be manufactured on a single silicon chip
doubled every 18 months to two years. This started as an
observation, but rapidly became the major planning tool for the
entire semi-conductor industry (and hence a self-fulfilling
prophecy!). The principal means for delivering Moore’s Law has
been to make transistors ever smaller. As CMOS transistors get
smaller they become cheaper to make, faster, and more
energy-efficient. This win-win scenario has driven the industry
forward for five decades and has led to the prevalence of computer
technology in every walk and aspect of life.

However, no exponential growth pattern can continue forever, and
in the case of shrinking transistors, there is the obvious physical limit
of the size of the atom. Many seemingly insuperable obstacles have
been overcome getting to where we are today, but this one really
does seem to be insuperable! We are rapidly approaching this
limit, at least in the sense that the statistics of the bulk properties
of the semi-conductor material in the active region of a transistor
are being compromised by the small number of atoms in the region.

Alongside this approach to physical limits, economic limits are
also slowing progress. The cost of designing a billion-transistor
chip and the cost of building a ‘fab’ (fabrication facility) are
growing alarmingly. Furthermore, as we approach the physical
limit, transistors are becoming less reliable and less predictable in
their performance characteristics. Energy-density is also increasing
to infeasible levels, leading to the concept of ‘dark silicon’ – the
idea that it will not be feasible to have all of the regions on a chip
active at the same time. Software will have to make decisions as to
which chip functions are most vital at any time, and switch other
functions off to keep power consumption within acceptable limits.
All these factors suggest that Moore’s Law progress is slowing,
and we need to seek alternative ways forward if historic rates of
progress are to be maintained into the future.

The first tremor in this impending technology quake was the
transition made in the early years of this century by all of the
major microprocessor manufacturers away from ever-faster clock
speeds and to multicore processors. Instead of using the additional
transistors delivered by Moore’s Law to deliver a faster single
processor, they are now used to deliver more processors (on a
single chip). This move, first to multicore and then to many-core
architectures, is a result of power constraints. As a consequence,
most computer systems now operate with multiple processor cores,
and understanding how to deploy these resources – how to write
parallel computer programs – is a problem that cannot be ignored,
though it has been the ‘Holy Grail’ of computer science for half a
century and remains very challenging for general-purpose software.

Computer engineers are therefore facing a range of new issues
concerned with designing energy-efficient parallel systems that are
resilient to component variability and failure. This is hard enough,
but application domains are also spreading into new areas that
create even greater challenges: cognitive systems that sense and
respond to their environment are emerging in many areas, from
driverless cars and driver-assist technologies through to robot lawn
mowers and domestic vacuum cleaners, many increasingly
dependent on very challenging forms of computer vision. Such
2 This is an open access article publi
applications require the computer-controlled systems to have
flexible capabilities that move them ever closer to the capabilities
of biological systems. Maybe biology can help find new solutions
to these challenges?
3 Brains

The nearest biological analogue to the computer is the brain. The
brain is an information processing system that accepts inputs from
a wide range of sensors, from vision through audition, taste, smell,
touch through to the many proprioceptive sensors that provide
feedback on the state of the biological machine. The brain
processes these inputs in the light of stored memories of past
experience and ‘hard-wired’ instinctive knowledge to move
through and interact with its environment using its many actuators
(muscles). How the brain does this is far from fully understood,
though a lot is known about the physiology of the brain and about
its construction. What follows is a computer engineer’s perspective
on the key features of the biological brain.

The fundamental building block of the brain is the neuron, or
brain cell. From a computer engineer’s perspective, neurons are a
bit like logic gates in that they have multiple inputs and a single
output. The typical fan-in/fan-out (or in neuroscience terminology,
convergence/divergence) numbers are quite different, however:
whereas logic gates typically have two, three or four inputs,
neurons have thousands or tens of thousands of inputs, and some
have hundreds of thousands. The connections between neurons are
synapses. Neurons communicate principally by issuing
electro-chemical spikes that are pure impulses – no information is
conveyed in the shape of the spike, the information is simply in its
timing. Biological networks learn primarily through synaptic
plasticity – whereby a synapse adjusts is efficacy in response to
local activity – and through structural plasticity – whereby
ineffective synapses may be removed and new synaptic
connections formed.

Thus a thought is simply a spatio-temporal pattern of spikes in the
brain, as are sensory inputs and motor command outputs. Memories
are somehow formed through the plasticity mechanisms, though this
is far from fully understood.

The above rather simple picture of brain function is, of course,
over-simplified. Some neurons do not emit spikes but rather emit
neuromodulators – chemicals that have a global effect on neurons
and especially synapses within their sphere of influence. One of
these is dopamine, which is known to represent a reward
mechanism that can confirm otherwise tentative plasticity changes.
Some neurons make direct electrical connections through gap
junctions, and there is debate about the active role of other cells in
the brain – the glial cells that form the scaffolding around which
the neurons assemble their complex wiring structures. Then we
can go inside the cells and look at the role of the DNA that
defines the resident protein mix, the mix of ion channels that
generate the spiking behaviour, or even consider the ∼1,500
proteins at work in each synapse, small variations in which have
significant effects on the synapse’s operation. Some argue that
quantum effects in the neuron may be vital to understanding deep
phenomena such as consciousness. Overall this is a very complex
picture, much of which has yet to be unravelled and understood.

What is clear is that brains are highly parallel, very
energy-efficient, and highly resilient to component failure. They
are also extremely accomplished in performing complex cognitive
tasks involving sensing and interacting with their environment.
Biology has thus addressed many of the major issues now facing
computer engineers and has much to teach us, if only we could
understand how it works.
4 Computers against brains

There have been many attempts to compare computers with brains,
for example on the basis of energy efficiency, but as we still do
not understand the information processing principles at work in
IET Comput. Digit. Tech., pp. 1–7
shed by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

the brain all such comparisons are at best provisional. Most
comparisons look at the energy used by computers modelling
brain components and compare this with the ∼25 W consumed by
the brain itself. On this basis computers come out very badly! The
best estimates of the computing power required to model a full
human brain come out in the exascale region – 1018 operations per
second. Exascale is the next target in high-performance
computing, and it is proving formidably difficult to deliver this
level of performance on a 20 MW power budget, but even if this
is achieved that is still a million time less energy-efficient than
biology.

On the other hand, it might be argued that an equally valid
comparison would be to consider a brain modelling a computer. A
32-bit binary number represents a 10-digit decimal integer. A
human might take perhaps 5 s to add two such 10-digit numbers
written one above the other on a sheet of paper, consuming 100 J.
An efficient microprocessor system running at 40 mW could
perform 200 M such additions per second, hence each addition
consumes 200 pJ, around 1012× less energy than the human. Of
course, a brain performing 10-digit addition is not just doing the
addition, it is also carrying out a complex vision task to recognise
the numbers on the sheet of paper, and also maintaining body
functions such as breathing and circulation.

Brains use a number of recognisable techniques to achieve
efficient operation and robustness. Spikes are ∼100 mV pulses,
around one tenth of the ∼1 V signals typically used on microchips.
On the usual capacitive model of energy consumption this
represents a 100× energy saving. The very low signal swing leads
to poorer noise immunity, but the robustness mechanisms at work
in the biology are highly tolerant of such noise. Computers use
dense binary codes which lead to high levels of activity, whereas
brains use sparse codes wherein fewer than 10% of neurons are
highly active at any time, giving a ∼10× energy saving. The
computations in a neuron do not carry the overhead of instruction
fetch and decode, saving ∼10× energy, and are carried out by
analogue processes in the synapses, dendrites and soma, perhaps
representing a further 100× energy saving over the digital
processes in computers. Overall these simple engineering
considerations suggest that brain technology could be six orders of
magnitude more efficient than digital computers, so perhaps the
first comparison above is closer to the truth?

To achieve robustness to component failure brains deploy several
techniques worthy of consideration:

† Parameter representation: computers use binary numbers, which
are dense but non-uniform – as the names suggest, the most
significant bit (MSB) carries far more significance than the least
significant bit (LSB). Thus a failure of the MSB is far more
catastrophic than is a failure of the LSB. Brains use a far more
evenly distributed representation that is far less skewed, and a
failure of a single neuron has little detrimental effect irrespective
of which neuron it is.
† The use of pulse communication (spikes) in neurons makes
fault-tolerance more straightforward, as neurons fail silent, in a
known state. This is much easier to accommodate within a
fault-tolerance framework than is the conventional level signalling
in a computer, where a component may fail stuck at 0 or 1 and
failure is indistinguishable from a valid signal – components
effectively fail noisily and in an unknown state.
† The plasticity of a biological neural network allows it to
compensate for a component failure – nearby neurons will retune
their representations to minimise the loss of representational
capacity of the population.

Thus we see that whereas in a computer a component failure may
be severe (such as an MSB), is hard to ignore, and is permanent, in a
brain a component failure is minor, minimally interfering, and will
be further compensated for through plasticity.

Can any of these advantages of the biological system be transferred
across to the engineered system? This is not straightforward – it is not
obvious how you would build an efficient adder for two
IET Comput. Digit. Tech., pp. 1–7
This is an open access article published by the IET under the Creative
(http://creativecommons.org/licenses/by/3.0/)
population-coded parameters, for example – but it might be easier if
we understood more deeply how the brain achieves its superiority,
particularly in resilience.

Some of the differences between brains and computers are more
understandable if you look at their origins and their intent.
Computers are designed to meet the need for exact symbolic
operation. In the Turing Machine concept there is no scope for
approximation or error – the result is either exactly correct or it is
irrelevant. A brain, on the other hand, just has to be right enough,
or perhaps a little bit faster or cleverer than another brain that
plans to eat it! However, computers are increasingly being used
for more brain-like tasks, such as understanding complex visual
scenes. Here precision may not be of the essence, and biological
principles may be applicable. Certainly, there is increasing interest
worldwide in trying to understand how to build machines that
operate on more brain-like principles than do conventional
computers.
5 Building brains

There are a number of current projects aimed at building large-scale
brain models, though none is currently aiming at models as large as
the human brain. Many complex issues must be taken into
consideration in these undertakings, and many unknowns
accommodated.

The biggest challenge in any brain-modelling project is to achieve
the very high degree of connectivity found in the brain. There are in
the region of 1015 synapses in the human brain, and 1011 ‘wires’
making those connections. This is clearly beyond the capacity of
any electrical wiring technology, but we can exploit the fact that
electrical wires are much faster than their biological counterparts
to multiplex many biological spikes through far fewer electrical
wires. The all-or-nothing nature of the neural spike also helps
here, as its nature as a pure asynchronous event allows it to be
conveyed efficiently in digital form using address event
representation (AER) [3]. In AER systems each neuron is given a
unique numerical identifier or ‘address’, and this address is
transmitted to other neurons whenever this neuron spikes.
Multiplexing AER events through a single bus or channel will
clearly introduce some timing errors as simultaneous events must
be sent sequentially, but these errors can be a small fraction of a
microsecond, which is negligible in comparison with the time
constants at work in neurons, which are of the order of
milliseconds. Of course, multiplexing also has its limits, and a
single shared channel will not scale to arbitrarily large networks.
As a result, a major challenge in large-scale systems is the design
of the overall communication fabric and protocols that must
distribute and manage the AER event traffic across many channels.

Once the communication has been sorted out, there is then the
question of the level of abstraction at which the neural and
synaptic processes should be modelled, and what technology
should be used to support those models. The full details of the
biological cell are very complex, and it is unclear which of these
details can safely be abstracted away before there is a risk of
losing some vital function. Many large-scale models use ‘point
neuron’ models, such as the leaky integrate-and-fire model and the
Izhikevich model [4], which abstract away all of the cell’s physical
details such as the disposition of its dendritic trees. More complex
models based on the Hodgkin–Huxley equations [5] and Rall
cable equations [6] may also be used, though these incur several
orders of magnitude more computational cost in the ordinary
differential equation (ODE) solvers if these are implemented in
conventional digital processing hardware.

Similar considerations come to bear on the implementation of
synaptic processes, where many different learning rules are of
interest to the neural modelling community. The original idea –
due to Donald Hebb – is that ‘neurons that fire together wire
together’ [7]. Today there are many variations on this theme, with
strong interest in spike timing dependent plasticity (STDP) [8]
where a causal relationship between a presynaptic spike and a
postsynaptic spike leads to a strengthening of that synapse,
3Commons Attribution License

whereas an anti-causal relationship leads to weakening of the
synapse. Dopamine-reinforced STDP allows a subsequent ‘reward’
to confirm a tentative reinforcement, and so on. This is a very rich
and diverse area of research (e.g. [9]), and a brain-inspired
machine should allow for this diversity.

Implementation technologies range from conventional computers
though special purpose many-core machines, GPUs, FPGAs, ASICs
to custom analogue circuits that implement the differential equations
directly. Analogue circuits may use above-threshold transistors,
when it is common to operate significantly faster than biological
speeds, or sub-threshold devices – which we digital designers
simply describe as ‘off’ – where the computations are carried out
on tiny leakage currents.

All brain-inspired systems, whether designed primarily to support
models of the brain itself or to support engineering applications,
represent design compromises. There are trade-offs to be made, for
example, between energy-efficiency, where sub-threshold analogue
circuits represent the optimum technology, and modelling
flexibility, where programmable digital systems offer the greatest
potential. Similarly, there are trade-offs between synaptic
resolution and integration density, since the synaptic weight
matrices are the largest data structures to be accommodated. This
is perhaps best illustrated by looking at some examples of
large-scale brain-inspired systems.
6 Large-scale brain-inspired systems

Not all brain-inspired systems are based on novel hardware. It is
possible to apply ideas from the brain in software systems that run
on conventional computers. Perhaps the highest-profile example of
this is the rather recent interest shown in deep networks [10],
which have become the leading machine learning technology for a
range of applications since Geoff Hinton revisited the issues
around training deep multi-layer perceptrons (MLPs) and came up
with a new approach that has transformed the cost of training
these networks. There have been huge investments in deep
networks and their close relative, the convolutional neural network
(CNN), the latter being particularly well-suited to automated
image classification.

MLPs are not especially brain-like: they do not communicate with
spikes (though spiking versions of deep networks are under
investigation [11]) and they are trained using error
back-propagation, which is not directly biologically plausible.
However, they are neural networks, hence their original inspiration
is biological. CNNs are a little more biological in that the early
convolutional layers resemble the regular patterns of filters found
in the retina and early visual processing in the cortex, but they
have taken this principle and extended it a long way into the
engineering application domain.

In a similar vein, Jeff Hawkins has developed concepts based on a
different perspective on cortical processing into his hierarchical
temporal memory model [12]. This model is based on viewing
dendrite branches as separate processes, and exploits the properties
of high-dimensional binary spaces through the use of sparse
distributed representations of information. The model runs on
conventional computers, using long binary strings to represent
information, and the system is especially effective at recognising
anomalous inputs in temporal data sequences.

Looking now at brain-inspired hardware, the IBM TrueNorth chip
[13] is a very impressive silicon implementation of a neural network.
TrueNorth implements 4,096 neurosynaptic cores each of which
models 256 neurons with 256 synaptic inputs. The chip uses 5.4
billion transistors but runs at only 70 mW, using an event-driven
hardware style to minimise activity (and thereby save power). The
neuron model is fixed, and each synapse is binary with a per-input
strength modulation shared across the 256 neurons in a core. A
feature of the design is the deterministic behaviour of the system
corresponding exactly to a software model that can be used for
development and network training.

Other approaches are represented by the Stanford Neurogrid [14],
which employs sub-threshold analogue circuits for real-time
4 This is an open access article publi
performance, the Heidelberg HiCANN system [15], which uses
wafer-scale above-threshold analogue circuits to run 10,000× faster
than biology, and the Cambridge Bluehive system [16], which
uses digital circuits on FPGAs to deliver real-time performance.
Our own contribution is the SpiNNaker machine, summarised in
the next section.
7 SpiNNaker

SpiNNaker, a contraction of “Spiking Neural Network
Architecture”, is a massively-parallel computer designed
specifically to accelerate our understanding of the brain through its
ability to support very large-scale systems of spiking neurons in
biological real time. The goal is to integrate a million small mobile
phone processors in a single system capable of modelling up to a
billion neurons and a trillion synapses. A billion neurons is only
1% of the human brain, or ten whole mouse brains! There is
nothing magical about the million-core objective, except that it
requires scalability to be a first-class consideration from the outset.
Why not more than a million? The answer here is really
economics – a million processors is about the limit of what can be
achieved with a (generous) academic research budget. We aimed
from the outset for a build cost of £1 per processor, and despite
many individual costs deviating significantly from the planned
budget, these deviations approximately cancelled each other out in
the final reckoning. The design costs – principally manpower –
were significantly higher than the build costs, but again achievable
within academic research funding constraints.

The design of the machine has been covered extensively elsewhere,
from the silicon [17] to the architecture [18] and the software
philosophy [19, 20]. The key ‘brain-inspired’ feature of the
machine is the mechanism it uses to deliver biological levels of
connectivity between the spiking neuron models, which is to map
AER into a very lightweight packet-switched communication fabric
[21] with a packet router at the heart of each SpiNNaker chip. A
neural spike represents of the order of one bit of information, and in
SpiNNaker this is conveyed in a 40-or 72-bit packet with a 32-bit
AER ‘key’, 8 bits of management data, and an optional 32-bit data
payload (which is typically not used for pure spike packets).

A SpiNNaker package contains a processing chip with 18 ARM
processor cores together with a 128 Mbyte memory chip, access to
which is shared between the processors. 48 of these packages are
mounted on an extended double-height Eurocard circuit board
(Fig. 1), giving 864 cores per board. 24 boards can be mounted in
a 19-inch card frame, and five card frames stacked in a standard
19-inch cabinet (Fig. 2). This cabinet then contains over 100,000
processors and is capable of modelling a spiking neural network
of the scale of a mouse brain – 100 million neurons – in
biological real time, though of course using simplified
point-neuron models. The full million-core machine will require
ten of these cabinets.

The machine is supported by software tools that compile a neural
network description written in a standard language such as PyNN or
Nengo into a form suitable for loading onto the machine, thereby
removing from the user any requirement for a detailed
understanding of its principles of operation. The model can
interface to external AER sensors and actuators for real-time
robotics applications.

The use of general-purpose processors in SpiNNaker allows for
very flexible modelling of the neuronal and synaptic equations as
these are implemented in software. Although the machine is
optimised in terms of architectural balance for the simpler ‘point
neuron’ models on the principle that complex networks of simple
neurons are probably more interesting than simple networks of
complex neurons, nothing here is set in stone. Synaptic plasticity
is clearly a vital aspect of neuronal learning, and providing for a
range of plasticity mechanisms is key to the usefulness of a
research platform such as SpiNNaker. There are trade-offs, of
course, as more complex neuron or synapse models will take more
compute cycles and therefore each core will be able to model
fewer neurons/synapses, but most things turn out to be possible
IET Comput. Digit. Tech., pp. 1–7
shed by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

Fig. 1 48-node SpiNNaker circuit board with 48 packages incorporating 864 ARM processor cores in total
with a little (sometimes a lot of) thought. The flexibility of the
software approach has already been richly demonstrated in our
early encounters with real users.
8 Real users

With any generic platform such as SpiNNaker, the designers make
certain assumptions about how the machine will be used.
Subsequent encounters with real users quickly put those
assumptions to the test!

In SpiNNaker’s case, the major assumptions were based around
the typical characteristics of biological neural systems – variable
connectivity in the region of thousands to tens of thousands of
inputs per neuron; sparse connectivity whereby each neuron in a
population connects to perhaps 10% of the neurons in a population
onto which this population projects; mean firing rates in the region
of 5 to 10 Hz, with peak firing rates in the hundreds of Hz; and so
on. Many users, it turns out, are interested in networks that operate
outside these biological settings. Of particular interest is our ability
to support the neural engineering framework (NEF) [22] from the
University of Waterloo, Canada. The NEF, and its associated
language Nengo, is used to support the most advanced
multi-behavioural neurocognitive system built to date, Spaun [23].
A major strength of the NEF is that it is built on a solid theoretical
foundation, control theory. Currently Spaun runs on a large cluster
IET Comput. Digit. Tech., pp. 1–7
This is an open access article published by the IET under the Creative
(http://creativecommons.org/licenses/by/3.0/)
computer, but this takes 2.5 h to compute each second of real
time. A major early goal for SpiNNaker is to run Spaun in real
time. However, the NEF generates neural populations with mean
firing rates in the hundreds of Hz, and population-to-population
projections are generally dense – fully connected. This has led the
Nengo SpiNNaker back-end to use techniques rather different from
those originally conceived [24]. Instead of communicating
individual spikes, the Nengo system decodes the population firing
patterns to recover the parameter(s) that they represent, and it is
that parameter that is communicated in every 1 ms time-step. Note
that this is only possible because the underpinning control
theoretic model defines such a decoding.

At a more detailed level, the assumptions regarding computational
requirements were based on published examples of neural ODE
solvers using basic Euler integration with 1 ms time steps.
However, many users want more accurate ODE solvers [25]
particularly for the stiffer models, and these inevitably shift the
architectural balance towards greater computational complexity.
Some users also want greater accuracy through the use of 0.1 ms
time steps; on SpiNNaker this may be best achieved by running
10× slower than real time.

The major computational load in SpiNNaker is processing
synaptic connections, where a single core handles up to 5 million
connections per second (compared with up to one million neuron
ODE time steps per second). Adding plasticity to the synapse
model increases the computational cost per synapse significantly,
5Commons Attribution License

Fig. 2 SpiNNaker cabinet incorporating over 100,000 ARM processor
cores
and this has led to considerations of using more than one core per
neural population – for example one to handle the ODE solvers
and one to handle the synaptic plasticity [26]. A similar approach
is under consideration to employ multiple cores to process
individual dendritic branches, thereby improving the overall
efficiency of the synaptic processing algorithms and, perhaps,
allowing each branch to support local non-linear processes.

All these new considerations have emerged as users have
attempted to use SpiNNaker to support models that were not
anticipated at design time, and perhaps underline the advantages
inherent in basing all aspects of the model support apart from the
communication primitives in software rather than hardware. The
universality of software has its costs in terms of both performance
and energy-efficiency, but it offers a flexibility that is hard to
achieve any other way, and is particularly valuable in a research
platform such as SpiNNaker.
9 Conclusions

Although brains and computers are both primarily information
processing systems, there are very great differences in their
6 This is an open access article publi
principles of operation. There are many aspects of the operation of
brains that are little understood, yet there is evidence that there are
lessons to be learnt that could be applied in the design of
machines and that address impending challenges in the design of
those machines. These lessons are in areas such as the efficient use
of massive parallelism, energy-efficiency and resilience to
component failure, none of which requires us to solve the Grand
Challenge problem of how the brain supports intelligence and
consciousness.

SpiNNaker is one of several projects worldwide addressing the
challenge of building large-scale brain-inspired computing
platforms. The primary goal of SpiNNaker is to offer a generic
platform for modelling large-scale brain models based on spiking
neurons, and a bespoke communications infrastructure enables the
machine to deliver real-time performance that is unachievable on
computing platforms with conventional communication fabrics.
Other aspects of the machine are based on conventional (if rather
constrained) software mechanisms, which give the machine a
degree of flexibility that is proving to be its major strength. It is
also enabling users to exploit the machine in ways unanticipated
during its design that stretch the initial design assumptions in
many ways, all of which will feed into the design of the next
generation machine.

Understanding the brain remains as one of the great frontiers of
science. Major progress depends primarily on the emergence of
theories offering explanations of how the brain encodes, stores and
processes information, but those theories need testing, and
computers such as SpiNNaker are configured to offer platforms for
such hypothesis testing, as well as supporting more experimental
explorations from which the data to inspire new theories can
emerge. After 15 years in conception and ten in development,
SpiNNaker is now available and in use. Where it will lead, and
what we will learn from it, remains to be seen!
10 Acknowledgments

The design and construction of the SpiNNaker machine was
supported by EPSRC (the UK Engineering and Physical Sciences
Research Council) under grants EP/D07908X/1 and EP/G015740/
1, in collaboration with the universities of Southampton,
Cambridge and Sheffield and with industry partners ARM Ltd,
Silistix Ltd and Thales. Ongoing development of the software is
supported by the EU ICT Flagship Human Brain Project
(FP7-604102), in collaboration with many university and industry
partners across the EU and beyond, and our own exploration of
the capabilities of the machine is supported by the European
Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant agreement 320689.

SpiNNaker has been 15 years in conception and 10 years in
construction, and many folk in Manchester and in our various
collaborating groups around the world have contributed to get the
project to its current state. We gratefully acknowledge all of these
contributions.
11 References

1 Kanerva, P.: ‘Sparse distributed memory’ (The MIT Press, 1988)
2 Moore, G.E.: ‘Cramming more components onto integrated circuits’, Electronics,

1965, 38, (8), pp. 114–117
3 Mahowald, M.: ‘VLSI analogs of neuronal visual processing: a synthesis of form

and function’. Ph.D. dissertation, California Inst. Tech., Pasadena, CA, 1992
4 Izhikevich, E.M.: ‘Which model to use for cortical spiking neurons?’, IEEE Trans.

Neural Netw., 2004, 15, pp. 1063–1070
5 Hodgkin, A., Huxley, A.F.: ‘A quantitative description of membrane current and its

application to conduction and excitation in nerve’, J. Physiol., 1952, 117,
pp. 500–544

6 Rall, W.: ‘Branching dendritic trees and motoneuron membrane resistivity’, Exp.
Neurol., 1959, 1, pp. 491–527

7 Hebb, D.O.: ‘The organization of behavior: a neuropsychological theory’ (Wiley,
New York, NY, 1949)

8 Bi, G.Q., Poo, M.M.: ‘Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type’,
J. Neurosci., 1998, 18, pp. 10464–10472
IET Comput. Digit. Tech., pp. 1–7
shed by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

9 Tully, P.J., Hennig, M.H., Lansner, A.: ‘Synaptic and nonsynaptic plasticity
approximating probabilistic inference’, Front. Synaptic Neurosci., 2014, 6, (8),
pp. 1–16

10 LeCun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521,
pp. 436–444

11 Stromatias, E., Neil, D., Pfeiffer, M., et al.: ‘Robustness of spiking deep nelief
networks to noise and reduced bit precision of neuro-inspired hardware
platforms’, Front. Neurosci., 2015, 9, (222), doi: 10.3389/fnins.2015.00222

12 Ahmad, S., Hawkins, J.: ‘Properties of sparse distributed representations and their
application to hierarchical temporal memory’, CoRR, 2015, abs/1503.07469,
pp. 1–18

13 Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., et al.: ‘A million spiking-neuron
integrated circuit with a scalable communication network and interface’, Science,
2014, 345, (6197), pp. 668–673

14 Silver, R., Boahen, K., Grillner, S., et al.: ‘Neurotech for neuroscience: unifying
concepts, organizing principles, and emerging tools’, J. Neurosci., 2007, 27,
(44), pp. 11807–11819

15 Schemmel, J., Bruderle, D., Grubl, A., et al.: ‘A wafer-scale neuromorphic
hardware system for large-scale neural modeling’. Proc. Int. Symp. Circuits
System, 2010, pp. 1947–1950

16 Fox, P.J., Moore, S.W., Marsh, S.J.T., et al.: ‘BluehiveVA field-programmable
custom computing machine for extreme-scale real-time neural network
simulation’. Proc. IEEE 20th Int. Symp. Field-Programmable Custom Comput.,
March 2012, pp. 133–140
IET Comput. Digit. Tech., pp. 1–7
This is an open access article published by the IET under the Creative
(http://creativecommons.org/licenses/by/3.0/)
17 Painkras, E., Plana, L.A., Garside, J.D., et al.: ‘SpiNNaker: a 1W 18-core
system-on-chip for massively-parallel neural network simulation’, IEEE
J. Solid-State Circuits, 2013, 48, (8), pp. 1943–1953

18 Furber, S.B., Lester, D.R., Plana, L.A., et al.: ‘Overview of the SpiNNaker system
architecture’, IEEE Trans. Comput., 2013, 62, (12), pp. 2454–2467

19 Furber, S.B., Galluppi, F., Temple, S., et al.: ‘The SpiNNaker project’, Proc. IEEE,
2014, 102, (5), pp. 652–665

20 Brown, A.D., Furber, S., Reeve, J.S., et al.: ‘SpiNNaker – programming model’,
IEEE Trans. Comput., 2015, 64, (6), pp. 1769–1782

21 Plana, L.A., Clark, D., Davidson, S., et al.: ‘SpiNNaker: design and
implementation of a GALS multi-core system-on-chip’, ACM J. Emerg. Technol.
Comput. Syst., 2011, 7, (4), pp. 17:1–17:18

22 Eliasmith, C., Anderson, C.H.: ‘Neural engineering: computation, representation,
and dynamics in neurobiological systems’ (MIT Press, Cambridge, MA, 2003)

23 Eliasmith, C., Stewart, T., Choo, X., et al.: ‘A large-scale model of the functioning
brain’, Science, 2012, 338, (6111), pp. 1202–1205

24 Mundy, A., Knight, J., Stewart, T., et al.: ‘An efficient SpiNNaker implementation
of the neural engineering framework’. Proc. IJCNN 2015, Killarney, Ireland, 2015

25 Hopkins, M., Furber, S.: ‘Accuracy and efficiency in fixed-point neural ODE
solvers’, Neural Comput., 2015, 27, (10), pp. 2148–2182

26 Galluppi, F., Lagorce, X., Stromatias, E., et al.: ‘A framework for plasticity
implementation on the SpiNNaker neural architecture’, Front. Neurosci., 2014,
8, (429), doi: 10.3389/fnins.2014.00429
7Commons Attribution License

	1 Introduction
	2 The end of Moore's law
	3 Brains
	4 Computers against brains
	5 Building brains
	6 Large-scale brain-inspired systems
	7 SpiNNaker
	8 Real users
	9 Conclusions
	10 Acknowledgments
	11 References

