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Evolution of the Giant Southern North Sea Shelf-Prism: Testing
seguence stratigraphic concepts and the global sea level curve with
full -three dimensional control

Rachel Harding

A thesis submitted to the University of Manchester for the degree of Doctor of
Philosophy in the Faculty of Enginee ring and Physical Sciences, September 2015

This thesis investigateghe utility of sequence stratigrgohy on a regional scale anthe
control of eustacy on basin infilin unprecedented detail. To achievehis, thethesis
utilises awealth of data, includng a continuous 3D seismic Megzurvey dataset
covering 55,000 sg. kmcombined with state of the art seismic interpretation software
to interpret the basin infill of the Late Cenozoicsouthern North Sea The prograding
shelf-prism clinoforms of the Late Cenozoic arealibrated to high density borehole
penetrations, high resolution chronostratigraphy and climate proxiesThe
chronostratigraphic control enables a correlation ofgeomorphology, seismic
architectures and seisnic facies with full 3D controlto the global sea level curve, which
enables an evaluation of the impact cdustatic changeon sequence development.

The control of eustacy and the limitations of sequencstratigraphy are highlighted by.
1) Investigating the regional expression of ctonostratigraphically calibrated seismic
units, which are linked to the global sea level curve. This was carried out by mapping
across the regionthe dominanceof oblique or sigmoidalclinoform types and seismic
features such as iceberg scours, terrestrial channels and submarine fansrder to
evaluate the lateral variation of depositional systems and accommodatiof)
Investigating sediment partitioning basinwards of the shelf edgend how deposition
basinwards can be predicted via observations ¢feismic facies and architecture This
was achieved by focusing ospecific seismic architectures of forced regressive slope
clinoforms and deep water sedimentary systemand the link updip to the shelfwithin
the highly constrained chronostratigraphic framework.

The thesisresults suggestthat sequence stratigraplic models do not representateral
variation well or integrate other allocyclic forcings on sequence development. A holistic
and observation basedpproach to understanding basin infill and recognising the
importance of sediment supply, preexisting geomorphology, process type of the feeder
system, differential subsidence, as well as eustacy, is imperative.
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PREFACE

This thesis represens the conclusion of a PhD studgarried out at the School of Earth,
Atmospheric and Environmental Sciences, University of Manchester, UK under the main
supervision of Dr. Mads Huuse (Reader in Geophysiasthe University of Manchester)
and Professor Rob Gawthorpe (Professor in Earth Science, University of Bergen). The

study was initiated in July 2011 and submitted irSeptember2015.

A

The PhD projecE O AT OEO1 AA O %ObuthddriNbrithiSeabh@tPsthA ' EAT O 3
Testing sequence stratigraphic concepts and the global séavel curve with full-three

AEI AT OET T AT AT 1 Ointlatedwh tie Bhlecti@e®Oniebreting tBe well

dated Late Cenozoic clinoforms in the suthern North Seausing high resolution

chronostratigraphic control to understand the evolution of the shelf/slope/basin

initial idea also was touse this casestudy to understand whatseismic gcometries and

basin infill could tell us about he relative sea level changes (baseuel) and in turn how

this could be related to the global sea level curvelhe overarching theme, which would

be relevant not just toNorth Segwas to test sequence stridgraphic conceptsand how

well the methodology could beapplied at a basin scalewith full 3D control.

The project first started in July 2011 with 2D seismic data and individual 3D seismic
surveys supplied by TNO (Netherlands Geological Surveygontinuous 3D seismicdata
over the southern North Sean the form of the PGS Southern and Central North Sea
MegaSurveyincreased the power of the studyn 2012 as now continuous interpretation
could be carried out across the basin without mismatch problems betves surveys
This increased the likeliness that the same reflectiorwas being traced. It also allowed
us to compare the diffeent structural domains as the @ntral North Sea MegaSurvey

area showed much greater subsidence that in th®uthern North SeaMegaSurvey.
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CHAPTER 1 INTRODUCTION

This thesis investigates thadevelopment of a prograding clinoform wedge in the
southern North Sea (sNS) during the Late Cenozoic using largelylirect geophysical
imaging data;3D seismic reflection and borehole data such as gamma ray and sonic
logs. The development of the clinoformsnd depositional systems such as incised
valleys, slope fans andbasin floor fans carbe put intime context by the high resolution
chronostratigraphic control andlinked to the global sea level curve which creates a

powerful tool to investigate manysequence stratigraphicconcepts.

1.1 PROJECT RATIONAE

There are two overarching motivatians for carrying out this study. he first relates to

the case study ofnterpreting Late Cenozoic clinoforms in the southern North Seusing

high resolution chronostratigraphic control to undergand the evolution of the shelf

prism depositional system in the North Sea over an incredibly interesting time in the
AAOOES O EEOOI Ouh OEA A AL@Aa & knGwn Bfith®depoBitdfaE T O O A
environments of the North Sea duringhe earliest Quaternary and thisdataset covers an
expanded section of the Gelasian (2.58 Ma to 1.78 Ma) which corresponds to the earliest
large scale glaciations to affect the sN&ibbard et al., 1991 Zagwijn, 1992 Kuhlmann

et al, 2004; Noorbergen et al., 201p

Prior studies of the Late Cenozoic have either focused on individual 3D seismic surveys
in one area of the sN®uhlmann and Wong, 2008Benvenuti et al., 2012; Stuart and
Huuse, 2012) or are regional in scale but use 2D seismic survey€ameron et al., 1987
Sorensen, 19980vereem et al., 2001Anell et al., 2012; Thole et al., 2014)The
stratigraphy of the Late Cenozoic Netherlands North Sea is constrained lmgh
resolution chronostratigraphic, lithological, quantitative palynological and geochemical
datafrom core; and palaeomagnetic logs for well&15-03 and A15-04 in the north
Netherlands North Sea (Kuhlmanret al.,2006ab;ten Veenet al,2013) (Fig. 1.1)
Biostratigraphy and benthic stable isotope analysis the Noordwijk borehole, onshore
Netherlands, has also been carried oMeijer et al., 2006; Noorbergen et al., 2015Fig.
1.1).
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Linking local climate and sea level change events fropalynology and geochemical
studies from the Netherlands Mrth Sea and onshore Netherlands to the Marine Isotope
Stages (MIS) of the global oxygen isotope curyeisiecki and Raymo, 2005ysuggests a
complex relationship between glacioeustag and the sedimentary record in the sNS
(Meijer et al., 2006 Kuhlmann et al., 2006abNoorbergen et al., 2013onderset al., in

prep).

This chronostratigraphic framework had yet to be extendedcross the sNS basin and
utilised to understand in detail theregional basin infill in relation to the global sea level
curve. The resolution in the earliest Gelasian (2.58 Ma to 2.43 Ma) combined with a high
sediment syply allowed individual glacialzinterglacial cycles to be matched to

sedment packages. The applicationf this is to understand not only theevolution of the
depositional environments during thedescent to icehouse conditions but alsdo
investigate fundamental geologicaprinciples. For anin-depth geological setting and

previous work on the case study see Chapter 3).

Interest in the Late Cenozoic, especially in the Netherlands NorBea, has increased in
the last 15years due to theexploration of ashallow gasplay. The first shalow gas field
(Block A12) is in production byChevron and a second field inlBck FO2 is now being
developed by Petrocanada/Dana @n Veen et al., 2011). Kuhlman and Wor{g008)
related the occurrence of gas related bright spots with specific units and
palaeoenvironmentsof the shelfprism, hence the importance of understanding the
extent and characeristics regionally of the units Recent tydrocarbon discovery
LilleJohn inthe Miocene Ustiraformation in the Danish Sector of the North Sea is

associated with a basin floor sands plagTrampe et al., 2013)
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Figure 1.1 Regional setting and dataset map. Left: Mid Miocene Unconformity (mMU) depth structure

map.Map is the result of seismic interpretation from this study, (UK, NL and DK sectors) combined with
the German mMU structure map from Geopotenzi@eutsch Nordsee project (vwww.gpdn.dg. Key areas of

accommodation creationmarked, Central Trough and BFB (Broad Fourteens Basin). NL Netherlands; DE
Germany; DK Denmark; NO Norway. Top Rigi@EBCO bathymetry for North Sea showing location of
dataset within the contemporary setting.Bottom right: Dataset map. Grey areas represé 3D seismic
coverage. 2D seismic lines and key boreholes used the lithological determination also shown.

The secondoverarching motivation for the project was to map seismic geometries and
basin infill of the regionally correlatableOAAET AT O PAAEACAOh 11 OEA
and link them to specific periods within the global sea level curv& his was carried out

to determine theinfluence eustacy has on the depositional architecturand how well

sequence stratigraphy methodology ca be applied atbasin scale, with full 3D control

to predict reservoir quality sands.
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Original sequence stratigrafmic methodology was developed usin@D seismic lines and
poorer seismic data than is available today. The original methodology wassed on the

idea that globalsequences can be correlatedas eustacy was identified as the main

control on the sequence of seismic architectures anthis canbe used in the prediction

of key elements of the hydrocarbon playVail et al., 1977 Haq, 1988; Posamenter and

Vail, 1988). Theidentification of eustacyas the main controlon sequence development

is apparent in thesequence stratigraphicnomenclature which impressed sea level

terms on sequence architectures (e.d®, 1T x OOAT A6 1)O O( ECEOOAT Ao

Modifications of the original sequence stratigraphic methdology have been large in

number over the years with the attempts to standardise the methodology and

terminology within the last ten years(Catuneanu et al., 2009 OOET ¢ OBA pwwmnd O
seismic data and higher resolution datasetbecame available ananany studies

recognised lateral variability in seismic architectures regionally Thisled to publications

guestioning the governance of eustacy over sequence development and the ability to

globally correlate sequencesrecognisingsediment supply,underlying geomorphology

and tectonics as key factors which can overridehe eustatic sea levebkignaland create

lateral variation (Posamentier and Allen, 1993Gawthorpe et al., 1994; Mamsen and
Helland-Hansen, 1995.

Studies on he prediction of basin floor fans and the partitioning of reservoir quality
sands across a basin also highlighted a flaw in the original sequence stratigraphic
methodology.Early sequence stratigraphic models placed the sediment transfer
basinwards of theshelf edge within lowstands of global sea leveind within the

Lowstand Systems Tract (LSTomprising the basin floor fan, slope fan and prograding
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wedge(Vail et al., 1977 Posamentierand Vail, 1988) (Fig. 1.2). Fall in relative sea level
below the shelf edge enables river systems to reach the shelf edge and directly supply
coarse-grained sediment into deep water settinggJohannessen and Steel, 2008ylany
modern submarine fans, such as the Indus, Amazon, Mississippi and Bengal, have
become inactive during the Holocene highstand of seael as sediment is stored on the
shelf (Leeder, 2009) However, transfer of sediment to the basin floor occurs during the
Highstand Systems Tract (HST) in ancient and modern systems with high sediment
supply, narow shelf width and tectonic uplift identified as key factors which can
override eustatic sea leve(Kolla and Perimuter, 1993; Gawthorpe et al., 1994Burgess
and Hovius, 1998; Carvajal and 8él, 2006; Covault et al., 20QHenriksen et al., 2011)
In supply driven systemsthe coastline can reach the shelf edge regardless of the relative

sea level condition(Porebski and Steel, 2006)

If the coastline is entrenched at the shelf edge during LST conditions this does not
necessarily translate to significant sand volumes transferred to the basfioor (Dixon et
al., 2012b) Delta process regime influencewhether sediment is transferred past the
shelf edge. Rivedominated deltas are shown to transfer sediment rgardless of base

level, and wavedominated and tidakdominated deltas are less likely to have associated

basin floor deposition even in LST conditiongDixon et al., 2012ab;Jones et al., 2015)
(Fig. 1.3).

River Dominated
Wave Dominated [l T
Tide Dominated |l I R

902 BASIN FLOOR

@ Shelf-edge position

@ Shelf-margin example

Figure 1.3 Basin floor deposition scenarios Schematic representation of clinoformal successions with
varying deltaic styles (including mixed-influence systems), shelfedge trajectories (flat, rising, or falling)
and deepwater depositional systems From Dixon et al., (2012a).
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Figure 1.5 Clinoform classification decision tree. From Anell and Midtkandal(2015)

The identification that eustacy was not the only control on sequence development led to more
observation based approaches dflelland-Hansen and Hampson(2009); Neal and Abreu,
(2009) and Miller et al., (2013). These approaches utiliselinoform geomeries, clinoform
stacking patternsand trajectories (Fig. 1.4) This approach does not press upothe physical
controls on sequence formatioron observationsunlike traditional sequence stratigraphic
termssuchAO OEECEOOAT A dvhicA $udgesiveseaxldanitheiidminant control
(Helland-Hansenand Hampson, 2009)
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The most recent studies on clinoform architectures and the ability to predict where
specific elements othe depositional systemrecognise the complexity of lateral
variation of sequences which comes with higher resolution seismic data and greater
coverage(Ryan et al., 2009Anell and Midtkandal, 2015; Fongngern et al., 2015;
Patruno et al., 2015;)Fig. 1.5). These studies focus ajuantitative measurements of
clinoform architectures to understand accommodation and sedimet partitioning and
build on the observational based seismic stratigraphic techniques éfelland-Hansen
and Hampson(2009) and Neal and Abrey(2009).

1.2 AIMS

The broad aims of this study are to

1) Develop a regional chronostratigraphic framework for the Late Cenozogection
of the southern North Sea using seismic and well correlation.

2) UtlisA- ACA 3 AA1 Ao skibniicOdfaltodniedtiGatedt
geomorphologyand depositional environment model of thesNSbasin for an
important period of time in climate history, the descent into icehouse conditions.

3) Usethe chronostratigraphic framework to link the southern North Se&a
stratigraphy to the Marine Isotope Curve in order to assedke control of eustacy
on the formation of stratigraphic architectures and investigate othecontrolling
forceson stratigraphic architecture and sequence development

4) Investigatethe utility of sequence stratigraphic concepts and methodologigs
predict sediment dispersal basinwards of the shelf edge full spatial-temporal

detail.

1.3 THESIS SYNOPSIS
The thesis is divided into seven chaptersChapter 1 acts as an intraluction to the

rationale of the project and thecurrent state of literature. Chapter 2 details the

methodology used to analyse and interpret the datavailable for the study Original
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research is presented inChapters 3,4 and 5. A detailed geological sding and relevant

literature reviews form part of the original research chapters.

Chapter 3 Regional evolution of a shelf-prism in the Late Cenozoic: Eustacy,

sediment supply and subsidence in the southern North Seafocuses on the regional
interpretation and the seismic straigraphy of the case studyduring the Late Cenozoic.
The chapter is the unabbreviated version of a paper whichwhen publishedwill not
contain the detailed/extensive unit descriptionspresent in Chapter 3 The challengeof
this study and particularly this chapter is that we have a large amount of information, a
huge study area and a time period which we want to understand in detail. The lateral
variation of the units over such a large area means that we wanted to descrithbeem in
great detail in order to back up the interpretations and conclusions of this paper and in
the thesis as a whole, as we feel that mangpersdo not include sufficiently detailed
descriptions. In the paper only one full unit description will be gien and the rest will

be given as supplementary information available online. This paper aims to unravel the
controlling factors onthe evolution of a large sheHlprism on the scale of a basin at the
OAOGI 1 OOETT 1T &£ pndO EUA phrévarGshénter Aisudlishiloh & O AT A C
the lateral variation of sequences within a basin, whilst still having to conform to the 2D
constraints of a pape based project. The paper will look to besubmitted to Basin
ResearchThe chapter does not just present aase study but invokes global implications
in the rate of progradation seen in clastic systems and the importance of regional
studies in the understanding the amount of lateral variation and the translation of the

eustatic signal in the sedimentary record.

Chapter 4 Deep water sedimentary systems linked to shelf edge trajectory and

global sea level is a long versionof a post PhD paper targeting the journal Geology.
However, the study became a more detailed study andhérefore is still debating which
journal the paper should be aimed at. This paper builds on the detailed unit description
of Chapter 3and focuses on using the chronostratigraphic framework to investigate
submarine channel systems and associated basin floor deposition. The ratioeaf the
paper is to provide a link up dip to the shelf edge trajectory and the conditions on the
shelf at the time of each event and hitherto establish where the depositional systems fit

within the sequence stratigraphic framework.
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Chapter 5 Can enigmatic Intra Slope Clinoforms provide an independent calibration

of early Pleistocene eustatic changes?Builds on theresults of the previous two
chapters focusing on one depositional architectureype, the Intra Slope hoforms,
which are sand prone wedges presertasinwards of the shelf edge cyclically though the
Cenozoic of the southern North Sed he depositional relevance and position within the

sequence stratigraphic framework is the main focus.

Chapter 6 presents two second author papers which have built upothe work of this
thesis, and utilised the seismic reflection interpretation and the chronostratigraphic

framework created during this PhD

Chapter 6.1 Evidence for repeated low latitude marine -terminating ice sheets in a

41 kyr Early Quaternary world , authored with Andrew Newton (first author), Rachel
Lamb, Dr Mads Huuse and Dr Simon Brocklehurst all of the University of Manchester
was the product of interpretation of reflections where iceberg scouring events were
identified and correlated across the BIS py myself) and cNS (Rachel Lamb) and

AT T AETET ¢ OEEO xEOE !'TAOAx . AxOiI160 ETT xI AAC
reflects the importance of basin scale mapping of iceberg scouring events to
understanding the magnitude of glaciations in the eaigst Quaternary. This paper has
been written as a Letter forNature Journal and this format has been kept for this thesis.
The contribution of the author to this paper is the identification and interpretation of
seismic reflections within the PGS SNS Megarvey and a small part of the PGS CNS
MegaSurvey, where iceberg scounsere identified; chronostratigraphic correlation of
the surfaces, positions of shelf edge, and depositional environmental information and
interpretation. The author has continued to hae input in the editing process of the

manuscript.

Chapter 6.2 The Early Quaternary of the North Sea Basin, authored with Rachel

Lamb, Dr. Mads Huuse, Margaret Stewart of BGS, Edinburgh and Simon Brocklehurst.
This paper presents a new interpretation of he base Quaternary North Sea basin,
interpreted using SNS and CNS MegaSurveys. This includes a new correlation for the
base Quaternary in the central North Sea (cNS) and insight into the infill and paleo
water depths throughout the time period 2.581.1 Ma. The contribution of the author to

this paper was the chronostratigraphic ties from the sNS to the cNS dataset area, the
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base Quaternary interpretation and structure map for the sNS area (combined with

2AAEAT , Ai A0 A.3 AAOA 1Hddad antl idt@petatiohd &£l O OE
AAT OO0 OEA 0.3 1 O adi0d téroed ik dé paget ad miasEbchpt 6

editing. This paper wassubmitted to Quaternary Science Reviews i@ctober 2015.

Chapter 7 focuses on synthesising the results and discussions of the previous chapters

and discussing their contribution to the literature, the implications of the study and also

talking about the limitations of the project. Looking to the future, further research

guestions are presented which have arisen during the PhD project.

| AAREGET T AT T U OEA AOOETI O PpOAI EOEAA A PAPAO O3
AEAPEOO ET OEA . AOEAOI Al Aofdath ox@pieted duAing8 4 EEO
Mastersproject but was largely written as a paper and fcther interpretation was

carried out during the PhD. This paper was published in March 2015 Marine and

Petroleum Geology
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CHAPTER 2
DATASET AND METHODOLOGY
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CHAPTER 2 METHODOLOGY

This chapteraims to set out the processes urettaken during the PhD to makeéhe most

I £ OEA 1 AOCA AiT 010 1T £ AAOA /abdidige dafases £ O OE
are increasingly used in academia and industry and therefe key software and

OAAET ENOAOG AOA OANOEOAA OI ODPOI AAOGOGS OEA Al
dataset.The approach to interpreting a large seismic dataset and seismic analysis

techniques are described. The chapter also focuses on the chragtratigraphic control of

the Late Cenozoic, an important component of the project and the basis for the link

between the seismic interpretation and the global sea level curve.

Figure 2.1 Mega Scale Dataset Methodolodfollowing page).
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Evolution of the Giant Southern North Sea Shelf Prism: Testing
sequence stratigraphic concepts and the global sea level curve with

full-three dimensional control

Import seismic and well data into

Compare datasets to understand
misties between seismic surveys (Fig.
2.1).

Petrel. Understand polarity and phase. :> relationship in the basin and tying

Evaluate additional

chronostratigraphic data and create I
well tops to constrain seismic <:| confidently link well log events to

interpretation (Appendix).

U

Chronostratigraphically significant
reflections interpreted along strike of
the basin, then taken landwards onto

% and isochrons made for each time
topsets of the clinoforms. Extended as |:> interval to evaluate overall regional [:>

far as possible, where the same
reflection is no longer identified
because of resolution or erosion, the
reflection below is taken.

To understand depositional
environment in absense of core data,
the principles of seismic
geomorphology were used

4 studied to understand large scale <:|
(Posamentier & Kolla, 2003). The first <:I sodientirende (coarsering

step is to run two key seismic attributes;
RMS and Variance on the seismic
volumes in Petrel, (Fig. 2.9).

U

Combining seismic attributes and time
slicing, stratal slicing and horizon slicing
between the chronostratigraphically
significant reflections. Auto-interpretation
package Eliis Paleoscan used for horizon
slicing entire seismic volume (Fig. 2.10).

Understanding time depth

wells to seismic.

Create synthetic seismogram using
Petrel Synthetics module to

specific seismic reflections (Figs.
R.7 &2.8).

Reflections interpreted on a 50 x 50
grid spacing. Grided TWT surfaces

depositional trends and
geomorphology of the basin.

Gamma ray well logs and
lithological descriptions in key well
sections along basin strike and dip

upwards, fining upwards).

—>

Correlate key chronostratigraphic
events in gamma ray log in A15 to
CNS MegaSurvey seismic dataset

(Fig. 2.4).
U

Well correlation basinwards of 2.58
Ma shelf edge of chronostratigraphic
events in the gamma ray log from
the CNS MegaSurvey to SNS
MegaSurvey area (Figs. 2.5 & 6).

Using Seismic stratigraphy
techniques from Mitchum et al.
(1977) to identify stratal terminations|
and changes in seismic character to
identify significant surfaces within
the chronostratigraphic framework.

U

Observation of large scale
geometries, clinoform styles, heights|
and large scale stacking patterns to
identify seismic architectures
(Chapter 3) across the basin.

Plan-form seismic character from the
seismic amplitudes and the RGB blended
data are combined with the traditional
observations to identify key seismic facies
and the depositional architectures and
environments within the basin.

U

< —

Seismic attribute maps generated using
RGB blending frequency decomposition
volumes. Only carried out on horizons
where key features already identified, such
as channels or scour features to improve
imaging (Fig. 2.9).

Legend

U

Data Management

Additional gamma ray logs and lithological
information from wells consulted in areas
where key features are identified to aid
interpretation of depositional environment.

Chronostratigraphic
Framework

Seismic Imaging

Chapter 3 Regional evolution of a shelf
prism in the Late Cenozoic: Eustacy,
sediment supply and subsidence in the
southern North Sea.

Chapter 6 Second Author Papers

Chapter 4 Submarine channels
and shelf edge trajectories. A
seismic stratigraphic analysis of
the Late Cenozoic southern
North Sea.

of early Pleistocene
eustatic changes.

Chapter 5 Enigmatic Intra

Observation

Slope Clinoforms provide

an independent calibration

Interpretation
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2.1 DATASET

The dataset comprises 3D continuous seismic PGS (Petroleum G@ervices) SNS
MegaSurvey, covering 40,000 kiof the NL and UK sectors of the sN&nd part of the
PGS CNS MegaSurvey covering ~15,000 %ofi theNL, DK and DE sectorg-ig. 1.). The
bin spacing is 50 m x 50 msampling rate 4 ms TWTwith a maximum vertical

resolution of 10-15 m and a dominant frequency of 40Han the top 1500 m The sNS

data islargely normal polarity (zero phase)and a hard kick represents positive (peak)
reflection. The cNS igargely in reverse polarity (minimum phase 90 degrees)and a

hard kick represents a negative (trough) reflection(Fig. 22). The MegaSurveys consist
of individual seismic surveys stitched dgether to create the continuous dataset.
Individual seismic datasets within the continuous MegaSurvey dataset retained original
polarity differences as operators wished to maintain well ties and therefore there are
inconsistencies of polarity.The CNS MegSurvey is not internally consistent in terms of
the wavelet character. For example in the eastern Netherlands North Sea section of the
MegaSurvey shows a different character from the Dutch sector of the CNS MegaSurvey
(Fig. 2.1). This has been taken intaccount during interpretation and subsequence

analysis(discussed futher in section 2.2.2)

The MegaSurvey data is complimented by individual 3Bnd 2Dseismic surveys from
TNO-DINO(Fig. 2.1) The3D surveys are 12.5 x 12.5 bin spacing, with a similaertical
resolution to the MegaSurveysand the 2D surveysare of variable vintage The most
important of the individual 3D seismicdatasessis the A15 seismic dataset
(Z3WIN2000A seismic survey) located within the very north of the Netherlands North

Seawhich allows correlation from A15-03 and A1504 wellsto the MegaSurvey area
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Figure 2.2. Comparison of polarity and phase of sections of the MegaSurvey. Using the Top Chalk and the mMU (mid Miocene Unconformity) for
comparisonTop left, zero phase, SEG convention where an increase in acoustic impedance is represented by a positive peatblwedl as shown by the
mMU and the Top Chalkiop right , same featire as top left, but this is part of the CNS MegaSurvey in zero phase and where an increase in acoustic
impedance is represented by a negative trough (blueed). Likely the same original seismic survey but the polarity has been changed to fit the rest of
the MegaSurvey.bottom left , SNS MegaSurvey further to the south to show the variation in the character of key surfaces across the MegaSurvey area.
bottom right , In the Danish sector of the North Sea, the CNS MegaSurvey is in minimum phase rather thaenm phase and this leads to a retllue-red

peak-trough-peak configuration.
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