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Evolution of the  Giant Southern North Sea Shelf-Prism: Testing 

sequence stratigraphic concepts and the global sea level curve with 

full -three dimensional control  

 

Rachel Harding  

 

A thesis submitted to the University of  Manchester for the degree of Doctor of 

Philosophy  in the Faculty of Enginee ring and Physical Sciences, September 2015  

This thesis investigates the utility of sequence stratigraphy on a regional scale and the 

control of eustacy on basin infill in unprecedented detail. To achieve this, the thesis 

utilises a wealth of data, including a continuous 3D seismic MegaSurvey dataset 

covering 55,000 sq. km, combined with state of the art seismic interpretation software 

to interpret the basin infill of the Late Cenozoic southern North Sea. The prograding 

shelf-prism clinoforms of the Late Cenozoic are calibrated to high density borehole 

penetrations, high resolution chronostratigraphy and climate proxies. The 

chronostratigraphic control enables a correlation of geomorphology, seismic 

architectures and seismic facies with full 3D control to the global sea level curve, which 

enables an evaluation of the impact of eustatic change on sequence development.  

The control of eustacy and the limitations of sequence stratigraphy are highlighted by: 

1) Investigating the regional expression of chronostratigraphically calibrated seismic 

units, which are linked to the global sea level curve. This was carried out by mapping 

across the region, the dominance of oblique or sigmoidal clinoform types and seismic 

features such as iceberg scours, terrestrial channels and submarine fans in order to 

evaluate the lateral variation of depositional systems and accommodation. 2) 

Investigating sediment partitioning basinwards of the shelf edge and how deposition 

basinwards can be predicted via observations of seismic facies and architecture.  This 

was achieved by focusing on specific seismic architectures of forced regressive slope 

clinoforms and deep water sedimentary systems and the link updip to the shelf within 

the highly constrained chronostratigraphic framework.  
The thesis results suggest that sequence stratigraphic models do not represent lateral 

variation well or integrate other allocyclic forcings on sequence development. A holistic 

and observation based approach to understanding basin infill and recognising the 

importance of sediment supply, pre-existing geomorphology, process type of the feeder 

system, differential subsidence, as well as eustacy, is imperative. 
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PREFACE 

This thesis represents the conclusion of a PhD study carried out at the School of Earth, 

Atmospheric and Environmental Sciences, University of Manchester, UK under the main 

supervision of Dr. Mads Huuse (Reader in Geophysics at the University of Manchester) 

and Professor Rob Gawthorpe (Professor in Earth Science, University of Bergen). The 

study was initiated in July 2011 and submitted in September 2015. 

The PhD project ÉÓ ÅÎÔÉÔÌÅÄ Ȱ%ÖÏÌÕÔÉÏÎ ÏÆ ÔÈÅ 'ÉÁÎÔ 3outhern North Sea Shelf-Prism: 

Testing sequence stratigraphic concepts and the global sea-level curve with full -three 

ÄÉÍÅÎÓÉÏÎÁÌ ÃÏÎÔÒÏÌȱȢ 4ÈÅ ÓÔÕÄÙ ×ÁÓ initiated with the objective of interpreting the well 

dated Late Cenozoic clinoforms in the southern North Sea, using high resolution 

chronostratigraphic control to understand the evolution of the shelf/slope/basin 

system in the North Sea over an incredibly interesting time in the ÅÁÒÔÈȭÓ ÈÉÓÔÏÒÙ. The 

initial idea also was to use this case study to understand what seismic geometries and 

basin infill could tell us about the relative sea level changes (base level) and in turn how 

this could be related to the global sea level curve.  The overarching theme, which would 

be relevant not just to North Sea, was to test sequence stratigraphic concepts and how 

well the methodology could be applied at a basin scale, with full 3D control. 

The project first started in July 2011 with 2D seismic data and individual 3D seismic 

surveys supplied by TNO (Netherlands Geological Survey).  Continuous 3D seismic data 

over the southern North Sea in the form of the PGS Southern and Central North Sea 

MegaSurvey increased the power of the study in 2012 as now continuous interpretation 

could be carried out across the basin without mismatch problems between surveys. 

This increased the likeliness that the same reflection was being traced. It also allowed 

us to compare the different structural domains as the Central North Sea MegaSurvey 

area showed much greater subsidence that in the Southern North Sea MegaSurvey. 
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CHAPTER 1 INTRODUCTION 

 

This thesis investigates the development of a prograding clinoform wedge in the 

southern North Sea (sNS) during the Late Cenozoic using largely indirect geophysical 

imaging data; 3D seismic reflection and borehole data such as gamma ray and sonic 

logs. The development of the clinoforms and depositional systems such as incised 

valleys, slope fans and basin floor fans can be put in time context by the high resolution 

chronostratigraphic control and linked to the global sea level curve which creates a 

powerful tool to investigate many sequence stratigraphic concepts.  

1.1 PROJECT RATIONALE 
 

There are two overarching motivations for carrying out this study. The first relates to 

the case study of interpreting Late Cenozoic clinoforms in the southern North Sea using 

high resolution chronostratigraphic control to understand the evolution of the shelf-

prism depositional system in the North Sea over an incredibly interesting time in the 

ÅÁÒÔÈȭÓ ÈÉÓÔÏÒÙȟ ÔÈÅ ÄÅÓÃÅÎÔ ÉÎÔÏ ÉÃÅÈÏÕÓÅ ÃÏÎÄÉÔÉÏÎÓȢ Little is known of the depositional 

environments of the North Sea during the earliest Quaternary and this dataset covers an 

expanded section of the Gelasian (2.58 Ma to 1.78 Ma) which corresponds to the earliest 

large scale glaciations to affect the sNS (Gibbard et al., 1991; Zagwijn, 1992; Kuhlmann 

et al., 2004; Noorbergen et al., 2015).  

Prior studies of the Late Cenozoic have either focused on individual 3D seismic surveys 

in one area of the sNS (Kuhlmann and Wong, 2008; Benvenuti et al., 2012; Stuart and 

Huuse, 2012), or are regional in scale but use 2D seismic surveys (Cameron et al., 1987; 

Sorensen, 1998; Overeem et al., 2001; Anell et al., 2012; Thöle et al., 2014).  The 

stratigraphy of the Late Cenozoic Netherlands North Sea is constrained by high 

resolution chronostratigraphic, lithological, quantitative palynological and geochemical 

data from core; and palaeomagnetic logs for wells A15-03 and A15-04 in the north 

Netherlands North Sea (Kuhlmann et al., 2006ab; ten Veen et al, 2013) (Fig. 1.1). 

Biostratigraphy and benthic stable isotope analysis in the Noordwijk borehole, onshore 

Netherlands, has also been carried out (Meijer et al., 2006; Noorbergen et al., 2015) (Fig. 

1.1). 
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Linking local climate and sea level change  events from palynology and geochemical 

studies from the Netherlands North Sea and onshore Netherlands to the Marine Isotope 

Stages (MIS) of the global oxygen isotope curve (Lisiecki and Raymo, 2005) suggests a 

complex relationship between glacioeustacy and the sedimentary record in the sNS 

(Meijer et al., 2006; Kuhlmann et al., 2006ab; Noorbergen et al., 2015 Donders et al., in 

prep).   

This chronostratigraphic framework had yet to be extended across the sNS basin and 

utilised to understand in detail the regional basin infill in relation to the global sea level 

curve. The resolution in the earliest Gelasian (2.58 Ma to 2.43 Ma) combined with a high 

sediment supply allowed individual glacialɀinterglacial cycles to be matched to 

sediment packages. The application of this is to understand not only the evolution of the 

depositional environments during the descent to icehouse conditions but also to 

investigate fundamental geological principles. For an in-depth geological setting and 

previous work on the case study see Chapter 3). 

Interest in the Late Cenozoic, especially in the Netherlands North Sea, has increased in 

the last 15 years due to the exploration of a shallow gas play. The first shallow gas field 

(Block A12) is in production by Chevron and a second field in Block F02 is now being 

developed by Petrocanada/Dana (ten Veen et al., 2011). Kuhlman and Wong (2008) 

related the occurrence of gas related bright spots with specific units and 

palaeoenvironments of the shelf-prism, hence the importance of understanding the 

extent and characteristics regionally of the units. Recent hydrocarbon discovery 

LilleJohn in the Miocene Ustira formation in the Danish Sector of the North Sea is 

associated with a basin floor sands play (Trampe et al., 2013).  
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Figure 1.1 Regional setting and dataset map.   Left: Mid Miocene Unconformity (mMU) depth structure 

map. Map is the result of seismic interpretation from this study, (UK, NL and DK sectors) combined with 

the German mMU structure map from Geopotenzial Deutsch Nordsee project (www.gpdn.de). Key areas of 

accommodation creation marked, Central Trough and BFB (Broad Fourteens Basin). NL Netherlands; DE 

Germany; DK Denmark; NO Norway.  Top Right: GEBCO bathymetry for North Sea showing location of 

dataset within the contemporary setting. Bottom right: Dataset map. Grey areas represent 3D seismic 

coverage. 2D seismic lines and key boreholes used the lithological determination also shown.   

 

The second overarching motivation for the project was to map seismic geometries and 

basin infill of the regionally correlatable ÓÅÄÉÍÅÎÔ ÐÁÃËÁÇÅÓȟ ÏÎ ÔÈÅ ÓÃÁÌÅ ÏÆ ρππȭÓ ËÍ 

and link them to specific periods within the global sea level curve. This was carried out 

to determine the influence eustacy has on the depositional architecture and how well 

sequence stratigraphy methodology can be applied at basin scale, with full 3D control, 

to predict reservoir quality sands. 

 

http://www.gpdn.de/
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Figure 1.2 Exxon Mobil  Ȱ3ÌÕÇ -ÏÄÅÌȱȢ Illustrating traditional systems tracts from Vail (1987) 

Original sequence stratigraphic methodology was developed using 2D seismic lines and 

poorer seismic data than is available today. The original methodology was based on the 

idea that global sequences can be correlated, as eustacy was identified as the main 

control on the sequence of seismic architectures and this can be used in the prediction 

of key elements of the hydrocarbon play (Vail et al., 1977; Haq, 1988; Posamentier and 

Vail, 1988). The identification of eustacy as the main control on sequence development 

is apparent in the sequence stratigraphic nomenclature which impressed sea level 

terms on sequence architectures (e.g. Ȱ,Ï×ÓÔÁÎÄȱ ÏÒ Ȱ(ÉÇÈÓÔÁÎÄȱ). 

Modifications of the original sequence stratigraphic methodology have been large in 

number over the years with the attempts to standardise the methodology and 

terminology within the last ten years (Catuneanu et al., 2009). $ÕÒÉÎÇ ÔÈÅ ρωωπȭÓ 3D 

seismic data and higher resolution datasets became available and many studies 

recognised lateral variability in seismic architectures regionally. This led to publications 

questioning the governance of eustacy over sequence development and the ability to 

globally correlate sequences, recognising sediment supply, underlying geomorphology 

and tectonics as key factors which can override the eustatic sea level signal and create 

lateral variation (Posamentier and Allen, 1993; Gawthorpe et al., 1994; Martinsen and 

Helland-Hansen, 1995).  

Studies on the prediction of basin floor fans and the partitioning of reservoir quality 

sands across a basin also highlighted a flaw in the original sequence stratigraphic 

methodology. Early sequence stratigraphic models placed the sediment transfer 

basinwards of the shelf edge within lowstands of global sea level and within the 

Lowstand Systems Tract (LST), comprising the basin floor fan, slope fan and prograding 
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wedge (Vail et al., 1977; Posamentier and Vail, 1988) (Fig. 1.2). Fall in relative sea level 

below the shelf edge enables river systems to reach the shelf edge and directly supply 

coarser-grained sediment into deep water settings (Johannessen and Steel, 2005). Many 

modern submarine fans, such as the Indus, Amazon, Mississippi and Bengal, have 

become inactive during the Holocene highstand of sea level as sediment is stored on the 

shelf (Leeder, 2009). However, transfer of sediment to the basin floor occurs during the 

Highstand Systems Tract (HST) in ancient and modern systems  with high sediment 

supply, narrow shelf width and tectonic uplift  identified as key factors which can 

override eustatic sea level (Kolla and Perlmutter, 1993; Gawthorpe et al., 1994; Burgess 

and Hovius, 1998; Carvajal and Steel, 2006; Covault et al., 2007; Henriksen et al., 2011).  

In supply driven systems the coastline can reach the shelf edge regardless of the relative 

sea level condition (Porebski and Steel, 2006).  

If the coastline is entrenched at the shelf edge during LST conditions this does not 

necessarily translate to significant sand volumes transferred to the basin floor (Dixon et 

al., 2012b). Delta process regime influences whether sediment is transferred past the 

shelf edge.  River-dominated deltas are shown to transfer sediment regardless of base 

level, and wave-dominated and tidal-dominated deltas  are less likely to have associated 

basin floor deposition even in LST conditions (Dixon et al., 2012ab;  Jones et al., 2015) 

(Fig. 1.3). 

 

 

Figure 1.3  Basin floor deposition scenarios  Schematic representation of clinoformal successions with 

varying deltaic styles (including mixed-influence systems), shelf-edge trajectories (flat, rising, or falling) 

and deep-water depositional systems. From Dixon et al., (2012a). 
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Figure 1 .4 Stratal stacking p atterns.  From Neal and Abreu, (2009) 

 

Figure 1.5 Clinoform classification decision tree.  From Anell and Midtkandal (2015) 

The identification that eustacy was not the only control on sequence development led to more 

observation based approaches of Helland-Hansen and Hampson, (2009); Neal and Abreu, 

(2009) and Miller et al., (2013). These approaches utilise clinoform geometries, clinoform 

stacking patterns and trajectories (Fig. 1.4).  This approach does not press upon the physical 

controls on sequence formation on observations unlike traditional sequence stratigraphic 

terms such ÁÓ ȰÈÉÇÈÓÔÁÎÄȱ ÁÎÄ ȰÌÏ×ÓÔÁÎÄȱ which suggestive sea level as the dominant control 

(Helland-Hansen and Hampson, 2009). 
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The most recent studies on clinoform architectures and the ability to predict where 

specific elements of the depositional system recognise the complexity of lateral 

variation of sequences which comes with higher resolution seismic data and greater 

coverage (Ryan et al., 2009; Anell and Midtkandal, 2015; Fongngern et al., 2015; 

Patruno et al., 2015;) (Fig. 1.5).  These studies focus on quantitative measurements of 

clinoform architectures to understand accommodation and sediment partitioning and 

build on the observational based seismic stratigraphic techniques of Helland-Hansen 

and Hampson (2009) and Neal and Abreu (2009).  

 

1.2 AIMS 
 

The broad aims of this study are to: 

1) Develop a regional chronostratigraphic framework for the Late Cenozoic section 

of the southern North Sea using seismic and well correlation. 

2) UtilisÅ Ȱ-ÅÇÁ 3ÃÁÌÅȱ ÃÏÎÔÉÎÕÏÕÓ σ$ seismic data to investigate the 

geomorphology and depositional environment model of the sNS basin for an 

important period of time in climate history, the descent into icehouse conditions. 

3) Use the chronostratigraphic framework to link the southern North Sea 

stratigraphy to the Marine Isotope Curve in order to assess the control of eustacy 

on the formation of stratigraphic architectures and investigate other controlling 

forces on stratigraphic architecture and sequence development. 

4) Investigate the utility of  sequence stratigraphic concepts and methodologies to 

predict sediment dispersal basinwards of the shelf edge in full spatial-temporal 

detail. 

 

1.3 THESIS SYNOPSIS 
 

The thesis is divided into seven chapters. Chapter 1 acts as an introduction to the 

rationale of the project and the current state of literature. Chapter 2 details the 

methodology used to analyse and interpret the data available for the study.  Original 
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research is presented in Chapters 3, 4 and 5. A detailed geological setting and relevant 

literature  reviews form part of the original research chapters.    

Chapter 3 Regional evolution of a shelf-prism in the Late Cenozoic: Eustacy, 

sediment supply and subsidence in the southern North Sea focuses on the regional 

interpretation and the seismic stratigraphy of the case study during the Late Cenozoic. 

The chapter is the unabbreviated version of a paper which, when published will not 

contain the detailed/extensive unit descriptions present in Chapter 3. The challenge of 

this study and particularly this chapter is that we have a large amount of information, a 

huge study area and a time period which we want to understand in detail. The lateral 

variation of the units over such a large area means that we wanted to describe them in 

great detail in order to back up the interpretations and conclusions of this paper and in 

the thesis as a whole, as we feel that many papers do not include sufficiently detailed 

descriptions.  In the paper only one full unit description will be given and the rest will 

be given as supplementary information available online. This paper aims to unravel the 

controlling factors on the evolution of a large shelf-prism on the scale of a basin at the 

ÒÅÓÏÌÕÔÉÏÎ ÏÆ ρπȭÓ ËÙÁ ÅÕÓÔÁÔÉÃ ÃÙÃÌÅÓ ÁÎÄ ÔÏ ÔÁËÅ Á ÓÔÅp towards better visualisation of 

the lateral variation of sequences within a basin, whilst still having to conform to the 2D 

constraints of a paper based project. The paper will look to be submitted to Basin 

Research. The chapter does not just present a case study but invokes global implications 

in the rate of progradation seen in clastic systems and the importance of regional 

studies in the understanding  the amount of lateral variation and the translation of the 

eustatic signal in the sedimentary record. 

Chapter 4 Deep water sedimentary systems linked to shelf edge trajectory and 

global sea level is a long version of a post PhD paper targeting the journal Geology. 

However, the study became a more detailed study and therefore is still debating which 

journal the paper should be aimed at. This paper builds on the detailed unit description 

of Chapter 3 and focuses on using the chronostratigraphic framework to investigate 

submarine channel systems and associated basin floor deposition. The rationale of the 

paper is to provide a link up dip to the shelf edge trajectory and the conditions on the 

shelf at the time of each event and hitherto establish where the depositional systems fit 

within the sequence stratigraphic framework.  
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Chapter 5 Can enigmatic Intra  Slope Clinoforms provide an independent calibration 

of early Pleistocene eustatic changes? Builds on the results of the  previous two 

chapters focusing on one depositional architecture type, the Intra Slope Clinoforms, 

which are sand prone wedges present basinwards of the shelf edge cyclically though the 

Cenozoic of the southern North Sea. The depositional relevance and position within the 

sequence stratigraphic framework is the main focus.  

Chapter 6 presents two second author papers which have built upon the work of this 

thesis, and utilised the seismic reflection interpretation and the chronostratigraphic 

framework created during this PhD.  

Chapter 6.1  Evidence for repeated low latitude marine -terminating ice sheets in a 

41 kyr Early Quaternary world , authored with Andrew Newton (first author), Rachel 

Lamb, Dr Mads Huuse and Dr Simon Brocklehurst all of the University of Manchester 

was the product of interpretation of reflections where iceberg scouring events were 

identified and correlated across the sNS (by myself) and cNS (Rachel Lamb) and 

ÃÏÍÂÉÎÉÎÇ ÔÈÉÓ ×ÉÔÈ !ÎÄÒÅ× .Å×ÔÏÎȭÓ ËÎÏ×ÌÅÄÇÅ  ÏÆ ÇÌÁÃÉÏÌÏÇÙ ÔÏ ÃÒÅÁÔÅ Á ÐÁÐÅÒ ÔÈÁÔ 

reflects the importance of basin scale mapping of iceberg scouring events to 

understanding the magnitude of glaciations in the earliest Quaternary. This paper has 

been written as a Letter for Nature Journal, and this format has been kept for this thesis. 

The contribution of the author to this paper is the identification and interpretation of 

seismic reflections within the PGS SNS MegaSurvey and a small part of the PGS CNS 

MegaSurvey, where iceberg scours were identified; chronostratigraphic correlation of 

the surfaces, positions of shelf edge, and depositional environmental information and 

interpretation. The author has continued to have input in the editing process of the 

manuscript.  

Chapter 6.2 The Early Quaternary of the North Sea Basin, authored with Rachel 

Lamb, Dr. Mads Huuse, Margaret Stewart of BGS, Edinburgh and Simon Brocklehurst. 

This paper presents a new interpretation of the base Quaternary North Sea basin, 

interpreted using SNS and CNS MegaSurveys. This includes a new correlation for the 

base Quaternary in the central North Sea (cNS) and insight into the infill and paleo-

water depths throughout the time period 2.58-1.1 Ma.  The contribution of the author to 

this paper was the chronostratigraphic ties from the sNS to the cNS dataset area, the 
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base Quaternary interpretation and structure map for the sNS area (combined with 

2ÁÃÈÅÌ ,ÁÍÂȭÓ Ã.3 ÂÁÓÅ 1ÕÁÔÅÒÎÁÒÙ ÍÁÐ ÆÏÒ ÔÈÅ ÐÁÐÅÒɊ and data and interpretation 

ÁÂÏÕÔ ÔÈÅ Ó.3 ÏÒ ȰÓÏÕÔÈÅÒÎ ÃÌÉÎÏÆÏÒÍȱ as it is termed in the paper and manuscript 

editing. This paper was submitted to Quaternary Science Reviews in October 2015.  

Chapter 7  focuses on synthesising  the results and discussions of the previous chapters 

and discussing their contribution to the literature, the implications of the study and also 

talking about the limitations of the project. Looking to the future, further research 

questions are presented which have arisen during the PhD project.  

!ÄÄÉÔÉÏÎÁÌÌÙ ÔÈÅ ÁÕÔÈÏÒ ÐÕÂÌÉÓÈÅÄ Á ÐÁÐÅÒ Ȱ3ÁÌÔ ÏÎ ÔÈÅ ÍÏÖÅȡ -ÕÌÔÉÓÔÁÇÅ ÅÖÏÌÕÔÉÏÎ ÏÆ ÓÁÌÔ 

ÄÉÁÐÉÒÓ ÉÎ ÔÈÅ .ÅÔÈÅÒÌÁÎÄÓ .ÏÒÔÈ 3ÅÁȱȢ 4ÈÉÓ ÐÁÐÅÒ ÉÓ Á ÒÅÓÕÌt of data interpreted during a 

Masters project but was largely written as a paper and further interpretation was 

carried out during the PhD. This paper was published in March 2015 in Marine and 

Petroleum Geology.  
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CHAPTER 2 METHODOLOGY 

 

This chapter aims to set out the processes undertaken during the PhD to make the most 

ÏÆ ÔÈÅ ÌÁÒÇÅ ÁÍÏÕÎÔ ÏÆ ÄÁÔÁ ÁÖÁÉÌÁÂÌÅ ÆÏÒ ÔÈÅ ÐÒÏÊÅÃÔȢ Ȱ-ÅÇÁ3ÕÒÖÅÙȱ and large datasets 

are increasingly used in academia and industry and therefore key software and 

ÔÅÃÈÎÉÑÕÅÓ ÁÒÅ ÒÅÑÕÉÒÅÄ ÔÏ ȰÐÒÏÃÅÓÓȱ ÔÈÅ ÁÍÏÕÎÔ ÏÆ ÇÅÏÌÏÇÉÃÁÌ ÖÁÒÉÁÂÉÌÉÔÙ ×ÉÔÈÉÎ Á ÌÁÒÇÅ 

dataset. The approach to interpreting a large seismic dataset and seismic analysis 

techniques are described. The chapter also focuses on the chronostratigraphic control of 

the Late Cenozoic, an important component of the project and the basis for the link 

between the seismic interpretation and the global sea level curve.  

Figure 2.1 Mega Scale Dataset Methodology (following page). 
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2.1 DATASET 

 

The dataset comprises 3D continuous seismic PGS (Petroleum Geo-Services) SNS 

MegaSurvey, covering 40,000 km2   of the NL and UK sectors of the sNS, and part of the 

PGS CNS MegaSurvey covering ~15,000 km2 of the NL, DK and DE sectors (Fig. 1.1). The 

bin spacing is 50 m x 50 m, sampling rate 4 ms TWT with a maximum vertical 

resolution of 10-15 m and a dominant frequency of 40Hz in the top 1500 m. The sNS 

data is largely normal polarity (zero phase) and a hard kick represents positive (peak) 

reflection. The cNS is largely in reverse polarity (minimum phase 90 degrees) and a 

hard kick represents a negative (trough) reflection (Fig. 2.2). The MegaSurveys consist 

of individual seismic surveys stitched together to create the continuous dataset. 

Individual seismic datasets within the continuous MegaSurvey dataset retained original 

polarity differences as operators wished to maintain well ties and therefore there are 

inconsistencies of polarity. The CNS MegaSurvey is not internally consistent in terms of 

the wavelet character. For example in the eastern Netherlands North Sea section of the 

MegaSurvey shows a different character from the Dutch sector of the CNS MegaSurvey 

(Fig. 2.1). This has been taken into account during interpretation and subsequence 

analysis (discussed futher in section 2.2.2).   

The MegaSurvey data is complimented by individual 3D and 2D seismic surveys from 

TNO-DINO (Fig. 2.1).  The 3D surveys are 12.5 x 12.5 bin spacing, with a similar vertical 

resolution to the MegaSurveys, and the 2D surveys are of variable vintage. The most 

important of the individual 3D seismic datasets is the A15 seismic dataset 

(Z3WIN2000A seismic survey) located within the very north of the Netherlands North 

Sea which allows correlation from A15-03 and A15-04 wells to the MegaSurvey area.  
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Figure 2.2 . Comparison of polarity and phase of sections of the MegaSurvey.  Using the Top Chalk and the mMU (mid Miocene Unconformity) for 

comparison Top left , zero phase, SEG convention where an increase in acoustic impedance is represented by a positive peak (red-blue) as shown by the 

mMU and the Top Chalk; top right , same feature as top left, but this is part of the CNS MegaSurvey in zero phase and where an increase in acoustic 

impedance is represented by a negative trough (blue-red).  Likely the same original seismic survey but the polarity has been changed to fit the rest of 

the MegaSurvey.  bottom left , SNS  MegaSurvey further to the south to show the variation in the character of key surfaces across the MegaSurvey area. 

bottom right , In the Danish sector of the North Sea, the CNS MegaSurvey is in minimum phase rather than in zero phase and this leads to a red-blue-red 

peak-trough-peak configuration. 










































































































































































































































































































































































































































































































































