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ABSTRACT
Simultaneously co-adapting agents in an uncooperative set-
ting can result in a non-stationary environment where opti-
misation or learning is difficult and where the agents’ strate-
gies may not converge to solutions. This work looks at sim-
ple simultaneous-move games with two or three actions and
two or three players. Fictitious play is an old but popular al-
gorithm that can converge to solutions, albeit slowly, in self-
play in games like these. It models its opponents assuming
that they use stationary strategies and plays a best-response
strategy to these models. We propose two new variants of
fictitious play that remove this assumption and explicitly
assume that the opponents use dynamic strategies. The op-
ponent’s strategy is predicted using a sequence prediction
method in the first variant and a change detection method
in the second variant. Empirical results show that our vari-
ants converge faster than fictitious play. However, they do
not always converge exactly to correct solutions. For change
detection, this is a very small number of cases, but for se-
quence prediction there are many. The convergence of se-
quence prediction is improved by combining it with fictitious
play. Also, unlike in fictitious play, our variants converge to
solutions in the difficult Shapley’s and Jordan’s games.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Self-play convergence; opponent modelling; sequence pre-
diction; change detection; fictitious play; Nash equilibrium;
iterated normal-form games; empirical distribution
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1. INTRODUCTION
Evolutionary computation techniques, such as evolution-

ary algorithms, swarm intelligence methods, artificial im-
mune systems, etc, often focus on co-adapting agents to solve
a shared optimisation problem in a static environment. This
is like a game where each agent shares the same reward func-
tion, which returns higher rewards for better optimisations.
However, in many problems each agent has its own optimisa-
tion problem or reward function, which can depend on the
other agents’ strategies. In these uncooperative cases, co-
adapting agents can result in a non-stationary environment
making optimisation or learning difficult because the opti-
mal strategies are changing. Examples include auction bid-
ding agents, poker-playing agents, competing agents placing
advertisements on web pages, and so forth.

A population of simultaneously co-adapting or coevolving
agents in an uncooperative setting may converge or exhibit
complex dynamics [37, 12, 13, 14, 38, 9, 7, 8, 2, 11, 44,
6, 23]. The goal of this work is to address the question
of whether convergence is enhanced if each agent assumes
that the other agents are changing their strategies over time.
We study this using simultaneous-move games with two or
three actions and two or three players. We compare fictitious
play, which is an adaptive mechanism that assumes that the
opponent uses a stationary strategy, with two new variants
that remove this assumption and explicitly assume that the
opponent uses a dynamic strategy. The opponent’s strategy
is predicted using a sequence prediction method in the first
variant and a change detection method in the second variant.

Ideally, we want each agent in a multiagent system to
consistently learn and change its strategy to increase its ex-
pected rewards. If an agent did this, then eventually it would
learn and converge to a best-response strategy that max-
imises its expected rewards against the other agents’ strate-
gies. If all agents did this, then eventually they would learn
and converge to a Nash equilibrium. This is why much of
the literature about learning in multiagent systems searches
for learning rules that will result in agents’ strategies con-
verging to a Nash equilibrium. At each step in our approach,
we observe the opponent’s action, predict its strategy, and
play a best-response strategy to the predicted strategy.

We specifically compare the convergence in self-play of our
variants and fictitious play to mixed strategy Nash equilib-
ria. Only the empirical distributions of plays over games are
considered because they almost always play pure strategies.
Our convergence results are purely experimental and find
that our variants converge faster than fictitious play. How-
ever, unlike in fictitious play, our variants do not always
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exactly converge to the Nash equilibria. For change detec-
tion, this is a very small number of cases, but for sequence
prediction there are many. Combining sequence prediction
with fictitious play improves its convergence, reducing these
cases. Also, unlike in fictitious play, our variants converge to
the mixed strategy Nash equilibria in Shapley’s and Jordan’s
games, which are considered difficult [29].

2. CONVERGENCE TO SOLUTIONS

2.1 Solution Concepts
In an n-player finite normal-form game each player, i ∈ {1,

2, . . . , n}, has a finite set of actions (or pure strategies),
Ai = {a1, a2, . . . , a|Ai|}, and a utility function that maps
tuples of actions, where each tuple contains one action per
player, to rewards, ui :

∏n
j=1 Aj → R. Each player i also

has a strategy, σi ∈ Σi ≡ ∆(Ai), where ∆(·) is the space
of probability distributions over a set. We define the strat-
egy profile, σ, as the tuple containing each player’s strat-
egy, σ = (σ1, σ2, . . . , σn) ∈ Σ =

∏n
j=1 Σj , and σ−i as the

same as σ but excluding player i’s strategy, σ−i = (σ1, σ2,
. . . , σi−1, σi+1, . . . , σn) ∈ Σ−i =

∏n
j=1,j 6=i Σj . Finally, we

define player i’s expected reward for the strategy profile σ
as ui(σ) ≡

∑
a∈

∏n
j=1 Aj

ui(a)
∏n
k=1 σk(a(k)), where a(k) is

player k’s action in a. When playing, each player i simul-
taneously chooses an action according to their strategy σi
producing the tuple a ∈

∏n
j=1 Aj and gets a reward of ui(a).

Our definitions follow those by Fudenberg and Levine [22].
Typically, we want to learn a best-response strategy to

maximise a player’s expected rewards.

Definition 1. A best-response strategy for player i, σ∗i ∈
Σi, would give it its most preferred outcome against all other
players’ strategies, σ−i ∈

∏n
j=1,j 6=i Σj , such that

ui(σ
∗
i , σ−i) = max

σi∈Σi

ui(σi, σ−i) (1)

Note that for a mixed best-response strategy, all pure strate-
gies with non-zero probabilities have equal expected rewards
to each other and to the mixture. This must be true because
otherwise the pure strategy with a lower (higher) expected
reward than the mixture could be chosen less (more) often,
creating a strategy with a higher expected reward, meaning
that the original strategy was not a best-response strategy.

If all agents are playing a best-response strategy, then they
are mutually playing a Nash equilibrium. A Nash equilib-
rium is a solution concept of a non-cooperative game with
two or more players that was proposed by Nash in 1950 [33].

Definition 2. A Nash equilibrium is a strategy profile,
σ∗ ∈ Σ, where each player’s strategy, σ∗i ∈ Σi, is a best-
response strategy to the other players’ strategies such that

ui(σ
∗
i , σ−i) ≥ ui(σi, σ−i) for all σi ∈ Σi and i ∈ {1, 2, . . . , n}

(2)

Nash proved that if players can use mixed strategies, then
at least one Nash equilibrium exists for all n-player games,
where each player has a finite number of pure strategies [33].

Although players may not have high expected rewards at
a Nash equilibrium, each player is playing optimally given
that the other players do not change their strategies. Craw-
ford showed that it is difficult to converge to a Nash equilib-
rium despite highly favourable settings e.g. simple games,

two-players, noiseless feedback, infinite repeats, a unique
Nash equilibrium, etc. He found that if the agents adapted
their strategies using gradient ascent on their expected re-
wards, then they would fail to converge under these settings
in zero-sum normal-form games [12], general-sum normal-
form games [13], and evolutionary games [14]. Thus, a lot
of research in multiagent systems looks at developing learn-
ing rules that will lead to agents’ strategies converging to a
Nash equilibrium. In this paper, we focus on a simple, old,
but also popular approach called fictitious play.

2.2 Convergence Concepts
Throughout this paper we will be interested in a very

weak form of convergence, which we will call empirical Nash
convergence. The obvious and desirable form of conver-
gence would be one in which the agent’s strategy converges
to a best-response strategy against agents with stationary
strategies, and to a Nash equilibrium against similar learn-
ing agents or at least in self-play. If the Nash equilibrium
has mixed strategies, then the agents would converge in a
statistical sense; they would play stochastically, but from
distributions that are converging to stationary distributions
that are the Nash equilibrium. Several gradient-based algo-
rithms have been shown to do this in some situations, such as
Dahl’s algorithm [15, 11, 36], WoLF [9], experience-weighted
attraction [23], etc. In other situations these algorithms fail,
which is an interesting topic but not the subject of our work.

Consider the traditional version of fictitious play that we
use as well as our variants. Each one of these players al-
ways plays a best-response strategy to its model. This is al-
most always a pure best-response strategy and is only mixed
if multiple pure best-response strategies to its model exist.
Thus, its strategy typically cannot converge to a mixed strat-
egy, but its empirical distribution of plays (pure strategy
choices) over games can. If, in a game, the empirical dis-
tributions of players who almost always play pure-strategies
do converge to a mixed strategy profile (possibly a Nash
equilibrium), then this often results in their joint strategy
cycling around that profile. We define an empirical distribu-
tion, and its convergence to another distribution, as follows.
Given a finite set, A = {α1, α2, . . . , αk}, and an infinite se-
quence of elements from A, S = (α1, α2, . . . ), αj ∈ A,

Definition 3. The empirical distribution of S at time t is

P tS(αi ∈ A) =
1

t

t∑
j=1

Jαi = αjK (3)

=

(
1− 1

t

)
P t−1
S (αi ∈ A) +

(
1

t

)
Jαi = αtK,

(4)

where J·K is the Iverson bracket such that JφK = 1 if the
predicate φ is true, otherwise JφK = 0. Given a probability
distribution over A, P (αi ∈ A),

Definition 4. The empirical distribution of S converges
to P if for any ε > 0, and for any divergence measure
D(·||·) between distributions, there exists a time tε such that
D(P tS ||P ) < ε for all times t > tε.

Finally, given a Nash equilibrium, we define empirical Nash
convergence as each player’s empirical distribution of plays
converging to their strategy in this Nash equilibrium.
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2.3 Measuring Nash Equilibrium Convergence
To measure the convergence of a tuple of strategies to a

Nash equilibrium, we need to be able to measure the differ-
ence between each player’s strategy in that tuple and and its
corresponding Nash equilibrium strategy. In a normal-form
game, each of these strategies can be represented as a dis-
crete probability distribution. Thus, we want to be able to
measure the difference between two discrete probability dis-
tributions P and Q. To do this, we use the Jensen-Shannon
divergence metric because it is a true metric, meaning it is
non-negative, zero if P and Q are equal, symmetric, and
satisfies the triangle inequality. It is calculated using the
Jensen-Shannon divergence, and is based on the Kullback-
Leibler divergence. In particular, for each player, we calcu-
late the Jensen-Shannon divergence metric between its em-
pirical distribution of plays and its Nash equilibrium strat-
egy, and we take the average of these values to give an av-
erage Jensen-Shannon divergence metric i.e.

DJSM =
1

n

n∑
i=1

DJSM (σi||σ∗i ), (5)

where n is the number of players, σi is player i’s empirical
distribution of plays, and σ∗i is player i’s Nash equilibrium
strategy. Here we are assuming that σi and σ∗i can each be
represented by a discrete probability distribution, which is
the case for a mixed strategy in a normal-form game.

The Kullback-Leibler divergence between P and Q,
DKL(P ||Q), is defined as

DKL(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
, (6)

whereDKL(P ||Q) ≥ 0. This only holds if P (i) = 0 whenever
Q(i) = 0. Also, if P (i) = Q(i) = 0, then it is assumed that
0 ln 0 = 0. If Q is a uniform distribution, then DKL(P ||Q) =
−H(P ) (i.e. negative Shannon entropy, see Equation (12)).

The Jensen-Shannon divergence between P and Q,
DJS(P ||Q), is defined as

DJS(P ||Q) =
DKL(P ||M) +DKL(Q||M)

2
, (7)

where M(i) =
P (i) +Q(i)

2
,

and 0 ≤ DJS(P ||Q) ≤ ln(2) if log to the base e is used, or
0 ≤ DJS(P ||Q) ≤ 1 if log to the base 2 is used.

The Jensen-Shannon divergence Metric between P and Q,
DJSM (P ||Q), is defined as

DJSM (P ||Q) =
√
DJS(P ||Q), (8)

where 0 ≤ DJSM (P ||Q) ≤ ln(2) if log to the base e is used,
or 0 ≤ DJSM (P ||Q) ≤ 1 if log to the base 2 is used.

3. FICTITIOUS PLAY

3.1 Description
Fictitious play is an algorithm that was originally pro-

posed by Brown in 1951 to explain Nash equilibrium play [10].
It assumes that its opponent is playing a stationary, possibly
mixed, strategy and estimates this strategy using a frequen-
tist approach. It then plays a best-response strategy to its
estimate i.e. a best-response strategy to its opponent’s em-
pirical distribution of plays. If its opponent’s strategy is

stationary, then as more games are played its estimate be-
comes more accurate and in turn its best-response strategy
becomes more accurate. In an iterated normal-form game,
fictitious play would update its estimate of the opponent’s
strategy using Equation (4), where P tS is its estimate of the
opponent’s strategy at time t, P tS = σ̃topp ∈ Σopp, A is the
opponent’s set of actions, A = Aopp, and S is the sequence
of opponent actions observed in the games. The factor 1/t
in Equation (4) is like a learning rate and variants could
change this (e.g. geometric fictitious play replaces 1/t with
a constant z ∈ [0, 1]). Thus, at each iteration t, fictitious
play predicts that the opponent will play σ̃topp and there-
fore plays a best-response strategy to σ̃topp, i.e. a strategy
σ∗FP ∈ ΣFP where uFP(σ∗FP) = maxσFP∈ΣFP uFP(σFP, σ̃

t
opp).

3.2 Convergence of Fictitious Play
Fudenberg and Levine showed that for fictitious play in

self-play, strict Nash equilibria are absorbing states [20].
This means that in an iterated game, if a strict Nash equi-
librium is played at some point, then it will also be played at
all subsequent points. For a strict Nash equilibrium, the in-
equalities in Equation (2) are strict, and so it is always a pure
strategy Nash equilibrium. For a weak Nash equilibrium, the
inequalities in Equation (2) are equalities, and so it is either
a pure or a mixed strategy Nash equilibrium. Thus, if in
self-play fictitious play converges to a pure strategy profile,
then it must be a Nash equilibrium, and if its empirical dis-
tributions of plays converge to some (mixed) strategy profile,
then that strategy profile must also be a Nash equilibrium.
Finally, the empirical distributions of plays of two fictitious
players have been shown to converge to Nash equilibria in
self-play in: two-player, zero-sum games [35], two-player,
two-action games [31], games with an interior evolutionary
stable strategy [25], potential games [32], and certain classes
of supermodular games [30, 28, 24].

However, for fictitious players in self-play, their empirical
distributions of plays do not always converge to a Nash equi-
librium. This has been shown in Shapley’s game, a general-
sum version of rock-paper-scissors, and Jordan’s game, a
three-player version of matching pennies, despite it not be-
ing true in rock-paper-scissors and two-player matching pen-
nies [37, 27]. Fudenberg and Kreps also showed with their
persistent miscoordination example that even if its empiri-
cal distribution of plays converges, its expected rewards may
differ from the expected rewards of the strategy after conver-
gence [20]. Finally, if multiple Nash equilibria exist and fic-
titious play converges to one in self-play, then it may not be
the “best” Nash equilibrium. In fact, it may be objectively
worse than another Nash equilibrium, where some players
would be strictly better off. In summary, fictitious play-
ers usually cannot converge to mixed strategy profiles (e.g.
Nash equilibria) as they almost always play pure strategies,
but their empirical distributions of plays can. If these distri-
butions converge to a Nash equilibrium, and they are inde-
pendent from one another, then their expected rewards will
also converge to those at that Nash equilibrium. This last
point captures the convergence notion we consider.

3.3 Fictitious Play Example
In this example, we play two fictitious players, in self-play

in an iterated game of matching pennies. The row player
wins if it matches the action of the column player; otherwise
the column player wins. A (loss) win is worth (−)1. This
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is shown in Table 1. Let heads be represented by 1, tails be
represented by −1, x be the mean of the row player’s actions,
and y be the mean of the column player’s actions. So, for
example, x = 0 would mean that the row player has played
equal numbers of heads and tails. The row player updates y
after observing each of the column player’s actions, and will
play its sign. The column player updates x after observing
each of the row player’s actions, and will play minus its sign.
The dynamics in expectation, of x and y, obey

x(t) =

(
1− 1

t

)
x(t− 1) +

(
1

t

)
sign(y(t− 1)), (9)

y(t) =

(
1− 1

t

)
y(t− 1)−

(
1

t

)
sign(x(t− 1)), (10)

where sign(z) = 1 if z > 0, 0 if z = 0, and −1 if z < 0. If
a player has played equal numbers of heads and tails, then
under fictitious play dynamics, its opponent would play a
(usually uniform) random action. Thus, the expectation of
its opponent’s play in this situation is zero. This is why
these are the expected dynamics. The players’ actions will
never converge, because the signs of x and y will never stop
changing. However, the means do converge, albeit slowly.
To illustrate these expected dynamics, we ran 10000 itera-
tions of recurrence relations (9) and (10). The initial values
of x and y were each randomly set to either −1 or 1 with
equal probability. The results are shown in figures 1a, 1b, 1c,
and 1d. Note that many two-player, two-action, zero-sum,
normal-form game with a mixed strategy Nash equilibrium
will be similar, with x and y measuring the difference of the
strategy distribution from the equilibrium strategy.

We view this as a dynamical system. We can say the
following about recurrence relations (9) and (10):

1. The origin (Nash) point (x = 0, y = 0) is a fixed point.
2. The system cycles towards the origin, by switching

strategies, as seen in figures 1a and 1b.
3. The period of a cycle grows linearly with time (see

Corollary 1).
4. The amount the system moves towards the origin per

cycle decreases inversely with time (see Corollary 2).
5. As a consequence of 3 and 4, the convergence rate is

Θ(1/
√
t), where t is time (iteration) (see Corollary 3).

Point 1 is obvious, Appendix A shows points 2, 3, 4, and 5
through its corollaries to Theorem 1, which postulates the
first cycle period and the origin distance after it.

The fact that fictitious play undergoes empirical Nash
convergence here, but very slowly, as shown empirically in
figures 1a, 1b, 1c, and 1d, as well as theoretically in Ap-
pendix A, is part of the motivation of this work. Conver-
gence is very slow because each agent takes an increasingly
long time to respond to the change in its opponent’s strategy.
If an agent could identify its opponent’s strategy switches
more quickly, then it might converge faster, perhaps opti-
mally like 1/t (proven in Appendix B), as well as in more
situations. This is the idea that we set out to investigate.

4. RELATED WORK

4.1 Fictitious Play Extensions
In this paper, we only consider the traditional fictitious

play algorithm as described in Section 3.1. However, to help
put this work into context, we will briefly describe some

extensions to it. These extensions can allow fictitious play to
model changing opponent strategies, to use mixed strategies,
and can improve its convergence to solution concepts. Two
popular extensions, by Fudenberg and Levine, are geometric
fictitious play and stochastic fictitious play [22].

Geometric fictitious play can model changing opponent
strategies. It works by giving bigger weights to more recent
opponent actions when updating opponent action probabil-
ities. In comparison to the traditional update, equivalent to
Equation (4), the only change is that the factor 1/t, where
t is the iteration, is replaced by a constant z ∈ [0, 1]. The
constant z is a“forgetting factor”, with higher values placing
less weight on past opponent actions.

Stochastic fictitious play can play mixed strategies and
has exploration. It does this by smoothing the best-response
function i.e. instead of selecting a strategy with the max-
imum expected reward, strategies are selected with proba-
bilities proportional to their expected rewards. A common
approach is for player i to play strategy σi with probability

Pr(σi) =
eui(σi,σ−i)λ

−1∑
σ′i∈Σi

eui(σ
′
i,σ−i)λ−1 , (11)

where λ is a randomisation parameter. As λ approaches
zero, this becomes a regular best-response. A similar ap-
proach is the κ-exponential fictitious play algorithm [21].

Various extensions are examined by Ny in [34], who looks
at traditional (discrete-time) fictitious play, stochastic (smooth)
fictitious play, continuous-time fictitious play, and dynamic
fictitious play. Two more extensions are proposed by Smyr-
nakis and Leslie [39, 40], which can model a changing oppo-
nent strategy based on recent observations. The first uses a
particle filter algorithm, whilst the second uses a heuristic
rule to adaptively update the weights of opponent actions.

4.2 Reinforcement Learning
In this paper, we consider convergence to solution con-

cepts, which reinforcement learning can also achieve. An
agent using reinforcement learning adapts its strategy based
on its rewards. In a game, this implicitly models opponents
since rewards are usually determined by them. One group
of reinforcement learning methods include gradient ascent,
value or policy iteration, and temporal-difference learning.
Singh et al. studied agents using gradient ascent on their
expected rewards, specifically an Infinitesimal Gradient As-
cent (IGA) algorithm, in two-player, two-action, general-
sum, iterated normal-form games [38]. They proved that
although the agents’ strategies may not always converge,
their asymptotic average rewards always do converge to the
expected rewards of some Nash equilibrium. Dahl proposed
the lagging anchor learning model, which draws a player’s
strategy towards a weighted average of its earlier strategies
to improve this convergence [15]. Bowling and Veloso pro-
posed the Win or Learn Fast (WoLF) principle for varying
the learning rate, or step-size in the case of gradient ascent,
to improve this convergence [9]. The idea is to learn quickly
(larger steps) when losing, and slowly (smaller steps) when
winning. They proved that WoLF can cause not just the
expected rewards, but also the strategies of the gradient
ascent agents to converge to those at a Nash equilibrium
in two-player, two-action, iterated general-sum games. Sev-
eral algorithms have been proposed that are based on WoLF
including: WoLF-IGA [9], WoLF-PHC (Policy Hill Climb-
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(a) At the start, x(1) = 1, y(1) = 1, and at the end,
x(10000) = 0.000080, y(10000) = 0.014. They are con-
verging to the Nash equilibrium at the centre, but more
slowly as time goes on as the distance between points is
decreasing.
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(b) One cycle between iterations 866 and 1040. At the
start, x(866) ≈ 0 but positive, y(866) = 0.047, and at
the end, x(1040) ≈ 0 but positive, y(1040) = 0.043. Note
that at iterations 866 and 1040, x has just switched signs
i.e. at iterations 865 and 1039 x ≈ 0 but negative.
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(c) The abs(x) is converging towards 0.
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(d) The average Jensen-Shannon divergence metric is
converging towards 0. See Section 2.3 for a definition
of the average Jensen-Shannon divergence metric.

Figure 1: Expected dynamics of fictitious play in self-play in matching pennies over 10000 iterations. The
parameters of the best-fit lines were calculated using MATLAB’s Trust-Region-Reflective Least Squares
algorithm [1].
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ing) [9], (Policy Dynamics based WoLF) PDWoLF-PHC [7],
and (Generalised IGA) GIGA-WoLF [8].

Abdallah and Lesser proposed a slightly different approach
to WoLF, to speed up learning when the gradient changes
direction, and to slow down learning when the gradient has
the same direction [2]. They proposed an algorithm called
Weighted Policy Learner (WPL) based on this idea, and
found that it converges faster to a Nash equilibrium and
is less sensitive to parameter tuning compared to WoLF-
PHC, PDWoLF-PHC and GIGA-WoLF. Zhang and Lesser
proposed augmenting IGA with policy prediction (IGA-PP)
by using gradients for anticipated strategies [44]. They pro-
posed a practical version of this algorithm called Policy Gra-
dient Ascent with Approximate Policy Prediction (PGA-
APP), and found that it converges to a Nash equilibrium
more quickly and in more situations than WoLF-PHC, WPL,
and GIGA-WoLF. A shared feature between WoLF-PHC,
GIGA-WoLF, PDWoLF-PHC, WPL, and PGA-APP is that
they use Q-Learning [42] to estimate their rewards. More
recently, Awheda and Schwartz have proposed using the Ex-
ponential Moving Average (EMA) mechanism to update a
Q-Learning agent’s policy, and have empirically shown that
it converges to a Nash equilibrium in more situations than
WoLF-PHC, GIGA-WoLF, WPL, and PGA-APP [6].

Adversarial bandits are a second group of reinforcement
learning methods that learn using regrets, which are based
on rewards. In an adversarial multi-armed bandit problem,
at each time step, an adversary sets a reward for each one of
k arms, the player selects an arm, and gets its reward. The
player’s goal is to maximise its rewards over all time steps.
This problem is like learning to play in an iterated normal-
form game but without prior knowledge of your utility func-
tion and against an opponent who knows their utility func-
tion as well as your strategy at each iteration. Auer et al.
proved that, in this adversarial setting, for T plays the best
rate that the per-round reward of an algorithm can approach
that of the best-arm is O(1/

√
T ) [5]. Many algorithms have

been proposed to tackle this problem. A popular example is
by Auer et al. who proposed the Exploration-Exploitation
with Exponential weights (Exp3) algorithm [5]. It selects ac-
tions according to a mixture between a uniform distribution
(exploration) and a Gibbs distribution based on the empiri-
cal importance-weighted rewards of the arms (exploitation).
Another example is by Audibert and Bubeck who proposed
the Implicitly Normalised Forecaster (INF) algorithm [4]. It
assigns a probability to each action as a function of its esti-
mated regret. Different parameters allow it to be reduced to
Exp3, or to give an improved regret upper bound compared
to Exp3. The adversarial bandit problem uses pessimistic
assumptions and although the algorithms that tackle it have
bounded regret, and thus guarantees on their rewards, other
algorithms not based on these assumptions may get higher
rewards. In particular, if we accurately modelled the oppo-
nents and played a best-response strategy to these models
at each time step, then we would get higher rewards.

Population-based coevolutionary algorithms are a third
group of reinforcement learning methods that learn by ag-
gregating outcomes from interactions between evolving en-
tities. They are stochastic search methods that can find
or approximate solutions in interactive domains like games.
In biology, coevolution is co-adaptation between distinct
populations, but in evolutionary computation it is also co-
adaptation within a population. An example is the Nash

memory mechanism of Ficici and Pollack [19], which like our
sequence prediction method, relies on a memory to learn. It
can learn a mixed strategy that monotonically approaches a
Nash equilibrium strategy. It works by maintaining two sets
of pure strategies. The first set has unbounded size and is
the support set for a mixed strategy that is secure against
its support set (i.e. its expected payoff is zero or positive
against each strategy in its support set). The goal is for the
mixed strategy to be secure against strategies that an exter-
nal search heuristic finds. The second set has finite size and
acts as a memory containing strategies that may be useful.

5. OUR FICTITIOUS PLAY VARIANTS
We compare fictitious play with two new variants, which

do not assume that the opponent uses a stationary strategy.
The opponent’s strategy is predicted by the first variant us-
ing a sequence prediction method, and by the second variant
using a change detection method.

5.1 Sequence Prediction
One approach to opponent modelling is to use a Markov

model. A Markov model is a stochastic model that assumes
that the Markov property holds. This property holds if the
probability of the future depends only on the immediate
past i.e. Pr(bt+1|b1, b2, . . . , bt) = Pr(bt+1|bt). When applied
to opponent modelling, the assumption is that the probabil-
ity of an opponent’s action, at+1

opp , only depends on informa-
tion from the previous iteration. This can be expressed as
Pr(at+1

opp |I1, I2, . . . , It) = Pr(at+1
opp |It), where It is the infor-

mation available to the agent at time t.
A sequence prediction method uses a model that does

not assume that the Markov property holds. Instead, it as-
sumes that the probability of the future can, in general, de-
pend on any subset of the past i.e. Pr(bt+1|b1, b2, . . . , bt) =
Pr(bt+1|H) where H ⊆ {b1, b2, . . . , bt}. When applied to
opponent modelling, the assumption is that the probability
of an opponent’s action, at+1

opp , can depend, in general, on
any subset of information from past iterations. This can be
expressed as Pr(at+1

opp |H) where H ⊆ {I1, I2, . . . , It}.
Sequence prediction methods usually have two compo-

nents, a short-term memory, and a long-term memory. The
short-term memory, S, is an ordered sequence of the pre-
vious k ∈ Z observations i.e. S = (bt−k+1, bt−k+2, . . . , bt)
where bt is the observation at time t. The long-term mem-
ory, L, is a map from sequences of observations and obser-
vations to counts i.e. L : (b1, b2, . . . , bi) × B → Z, where
bi is the i-th symbol in the sequence, 0 ≤ i ≤ k, and B
is the set of values an observation can take. These map-
pings can be used to form conditional probability distribu-
tions such that the probability of an observation, b, given
a sequence of observations, S′, is the count of that obser-
vation given that sequence, L(S′, b), divided by the sum
of the counts of any observation given that sequence i.e.
Pr(b|S′) = L(S′, b)/

∑
b′∈B L(S′, b′).

5.1.1 Entropy Learned Pruned Hypothesis space
We use the Entropy Learned Pruned Hypothesis space

sequence prediction method proposed by Jensen et al. [26].
It works as shown in Algorithm 1.

Here, the Shannon entropy of P , H(P ), is defined as

H(P ) = −
∑
i

P (i) lnP (i). (12)
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Algorithm 1 Entropy Learned Pruned Hypothesis Space

Require: Short-term memory size k ∈ Z, entropy threshold
(0 ≤ Hl ≤ 1) ∈ R, and a set of possible observations B

1: Initialise short and long term memories S ← (), L← {}
2: function Observe(an observation b)
3: Get set of all subsequences of S, P(S) ← {(),

(S(1)), . . . , (S(|S|)), (S(1), S(2)), . . . , (S(1), S(|S|)),
. . . , (S(1), S(2), . . . , S(|S|))}

4: for all S′ ∈ P(S) do
5: if (S′, b) 6∈ L then
6: Initialise b count for S′, L(S′, b)← 0
7: end if
8: Increment b count for S′, L(S′, b)← L(S′, b) + 1
9: end for

10: if H(L(S′) > Hl then . High entropy
11: Remove counts for S′, L \ (S′, b′) for all b′ ∈ B
12: end if
13: Add b to end of S, S ← (S, b)
14: if |S| > k then
15: Remove start of S, S ← (S(2), . . . , S(k + 1))
16: end if
17: end function
18: function Predict
19: Get set of all subsequences of S, P(S)
20: S′′ ← arg minS′∈P(S) Hrel(L(S′)) . Low entropy

21: return Pr(b|S′′) = L(S′′,b)∑
b′∈B L(S′′,b′) for all b ∈ B

22: end function

The reliable Shannon entropy of P is calculated by altering
the underlying counts that P is assumed to be based on.

Given P (i) = c(i)∑
i c(i)

, where c(i) is the count of i, a sin-

gle count is added for an unknown and new category. The
reliable Shannon entropy of P , Hrel(P ), is then defined as

Hrel(P ) =− 1∑
i c(i) + 1

ln
1∑

i c(i) + 1

−
∑
i

c(i)∑
j c(j) + 1

ln
c(i)∑

j c(j) + 1
. (13)

The (reliable) Shannon entropy of P has a minimum value of
0 and a maximum value of ln(m), where m is the number of
categories in P . Thus, it can be normalised, the normalised
(reliable) Shannon entropy, H[rel](P ), is defined as

H[rel](P ) =
1

ln(m)
H[rel](P ). (14)

5.2 Change Detection
A change detection method observes a sequence of obser-

vations and attempts to identify abrupt changes in the pa-
rameters of the underlying probability distribution describ-
ing those observations. It may consider if a single change has
occurred, or if several changes have occurred, and may try to
identify when any change(s) occurred. Any change detection
method must trade-off between three metrics: false positive
rate, false negative rate, and detection delay. When applied
to opponent modelling, the assumption is that the underly-
ing probability distributions describing the opponent’s strat-
egy are changing abruptly. The change detection method
would then infer when the most recent changes have oc-
curred. Observations prior to the times of these inferred

changes can then be given lower weights or discarded when
predicting the new distributions.

5.2.1 Bayesian Online Changepoint Detection
We use the Bayesian online changepoint detection method

proposed by Fearnhead and Liu [17] as well as by Adams and
MacKay [3]. This method allows you to specify a model for
the distribution and so we model the opponent’s strategy as
a categorical distribution using a Dirichlet conjugate prior.
It works by calculating a posterior distribution over the run-
length, where the runlength is the number of steps since
the distribution last changed, and then using it to estimate
the sample distribution [17, 3]. It assumes that the sample
distribution, conditioned on a particular runlength, can be
computed. This allows the marginal sample distribution to
be calculated by integrating over its posterior distribution
conditioned on the current runlength as follows

Pr(xt+1|x1:t) =
∑
rt

Pr(xt+1|rt, x1:t) Pr(rt|x1:t). (15)

Here, rt is the runlength at time t, xt is the sample at time
t, and xi:j are the samples from time i to time j inclu-
sive. To predict the last changepoint optimally, this method
considers all possible runlengths and weights them by their
probabilities given the samples. The authors show that ex-
act inference on the runlength can be done using a message
passing algorithm. The inference procedure is as follows

Pr(rt|x1:t) =
Pr(rt, x1:t)

Pr(x1:t)
=

∑
rt−1

Pr(rt, rt−1, x1:t)

Pr(x1:t)

=

∑
rt−1

Pr(rt, xt|rt−1, x1:t−1) Pr(rt−1, x1:t−1)

Pr(x1:t)

=

∑
rt−1

Pr(rt|rt−1) Pr(xt|rt−1, x1:t−1) Pr(rt−1, x1:t−1)

Pr(x1:t)
.

Note that the sample distribution, Pr(xt|rt−1, x1:t−1), is de-
termined by the most recent data. The derivation just ap-
plies the laws or rules of probability (conditional probabil-
ity and joint probability). The last line assumes that the
runlength is independent of the previous samples and only
depends on the previous runlength i.e. Pr(rt|rt−1, x1:t−1) =
Pr(rt|rt−1). This is a message passing algorithm as rt can
only take values based on rt−1. Specifically, either rt = 0 if
a change occurs, or rt = rt−1 + 1 if a change does not occur.

The probability Pr(rt|rt−1) is given by a switching rate or
“hazard” function h(t) for both values. A simple approach
is to assume that the hazard function returns a constant
probability for a change Pr(rt = 0|rt−1) = h(0) = γ. The
probability of no change would then be one minus this i.e.
Pr(rt = rt−1 + 1|rt−1) = h(rt−1 + 1) = 1 − γ. The hazard
function would return zero for all other values of t. Setting
its value is a trade-off; high values decrease the detection
delay, but increase the number of false positives/negatives.
Conversely, low values increase detection delay, but decrease
the number of false positives/negatives. Methods have been
proposed by Wilson et al. [43] as well as by Turner et al. [41]
to learn the hazard function from the data. The former can
learn a hazard function that is piecewise constant using a
hierarchical generative model, whilst the latter can learn
any parametric hazard function via gradient descent.
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The space complexity grows linearly with the number of
samples because there is a possible runlength for each sam-
ple. The time complexity also grows linearly because each
possible runlength requires an update. To place an upper
limit on the number of possible runlengths, and in turn the
memory requirements, a particle filter is used as suggested
by Fearnhead and Liu [17], which maintains a finite sample
of the runlength distribution. A particle filter is a Monte-
Carlo method that estimates a sequential Bayesian model.
Each particle represents a point in the distribution with its
weight being its approximate probability. If the number of
particles grows too large, then resampling takes place where
some particles are thrown away and the weights of the re-
maining particles are updated. The resampling scheme used
is called Stratified Optimal Resampling (SOR). Under this
scheme the reweighting ensures that the expected values of
the new weights are equal to the original weights. It is op-
timal in that the expected squared difference between the
original and the new weights is minimised. The SOR proce-
dure is shown in Section 3.2 of Fearnhead and Liu [17].

6. RESULTS
In the following experiments, we compare the convergence

in self-play of fictitious play to our variants of it. Specifically,
since each of the algorithms play pure strategies, we look at
the convergence of their empirical distributions of plays (i.e.
their empirical Nash convergence). For each game, we mea-
sure the distances of their empirical distributions of plays
from the unique mixed strategy Nash equilibrium. Distances
are measured using the Jensen-Shannon divergence metric
as defined in Section 2.3. From these distances, we calculate
estimates of their empirical Nash convergence speeds.

The first experiment looks again at matching pennies.
The second experiment looks at various two-player, two-
action, normal-form games derived from generalised match-
ing pennies. The third experiment looks at Shapley’s game.
Finally, the fourth experiment looks at Jordan’s game. In
all of the experiments, the sequence prediction method we
use is Entropy Learned Pruned Hypothesis Space (ELPH)
by Jensen et al. [26] with a short-term memory size of k = 1
and an entropy threshold of Hl = 1, whilst the change de-
tection method we use is Bayesian online change detection
using a categorical model (BayesCPD-C) with a switching
rate or hazard function of h(0) = 1× 10−4 and 100 particles
for Stratified Optimal Resampling (SOR).

In the second, third, and fourth experiments we also test a
simple hybrid algorithm that combines sequence prediction
with fictitious play to try to improve its empirical Nash con-
vergence. It works by playing a best-response strategy to the
distribution predicted by sequence prediction if a category in
that distribution has a probability greater than some thresh-
old, Pl, where in these experiments Pl = 0.95, otherwise it
plays a best-response strategy to the distribution predicted
by fictitious play.

6.1 Normal-form Games

6.1.1 Matching Pennies
Matching pennies is a two-player, two-action, zero-sum,

normal-form game. Each player’s actions are heads or tails.
Player one wants to match the coin face of player two, and
player two wants to mismatch the coin face of player one.
There is a unique mixed strategy Nash equilibrium, which

is for each player to play each of its actions with equal prob-
ability of 1/2. Table 1 shows its rewards.

Table 1: Matching pennies rewards.
H T

H 1,-1 -1,1
T -1,1 1,-1

6.1.2 Generalised Matching Pennies
We create a variety of two-player, two-action, normal-form

games derived from generalised matching pennies. Most
are general-sum, and some are zero-sum. In these games,
a player’s strategy has one parameter, which is the proba-
bility of it playing its first action. Let these probabilities be
p and q for the row and column players respectively. For
each of these games, the rewards are set to those shown in
Table 2. This creates a game with a single mixed strategy
Nash equilibrium at (p = p∗, q = q∗), where we can choose
p∗ and q∗. This is proven in Appendix C. If we set p∗ = q∗,
then the game is zero-sum, otherwise it is general-sum.

Table 2: Rewards for a two-player, two-action,
normal-form game with a Nash equilibrium at
(p∗, q∗), where p∗ and q∗ are the row player’s and
the column player’s Nash equilibrium probabilities
of playing their first actions respectively.

C1 C2

R1
2
q∗ - 3,- 2

p∗ + 3 -1,1

R2 -1,1 1,-1

6.1.3 Shapley’s Game
Shapley’s game [37] is a two-player, three-action, general-

sum, normal-form game. It is the same as rock-paper-scissors,
which is a zero-sum game, but negative rewards are replaced
with zero rewards, which turns it into a general-sum game.
The unique mixed strategy Nash equilibrium is the same as
in rock-paper-scissors, i.e. for each player to play each of its
actions with equal probability of 1/3. Shapley showed it as
an example of where the empirical distributions of plays of
two fictitious players’ fail to converge to the Nash equilib-
rium in self-play [37]. Table 3 shows its rewards.

Table 3: Shapley’s game rewards.
R P S

R 0,0 0,1 1,0
P 1,0 0,0 0,1
S 0,1 1,0 0,0

6.1.4 Jordan’s Game
Jordan’s game [27] is a three-player, two-action, general-

sum, normal-form game. It extends matching pennies to
include a third player. Each player can select heads or tails.
Player one wants to match the coin face of player two, player
two wants to match the coin face of player three, and player
three wants to mismatch the coin face of player one. The
unique mixed strategy Nash equilibrium is for each player
to play each of its actions with equal probability of 1/2.
Table 4 shows its rewards.
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Table 4: Jordan’s game rewards. Player 1 chooses
the outer row, player 2 chooses the column, and
player 3 chooses the inner row.

H T

H
H 1,1,-1 -1,-1,-1
T 1,-1,1 -1,1,1

T
H -1,1,1 1,-1,1
T -1,-1,-1 1,1,-1

6.2 Observations

6.2.1 Matching Pennies
The results for sequence prediction and change detection

in matching pennies are shown in Figure 2. They show that
the empirical Nash convergence of each method is faster
compared to fictitious play in Figure 1. Specifically, compar-
ing their average Jensen-Shannon divergence metrics, each
method is converging nearly optimally like 1/t, whereas fic-
titious play is converging like 1/

√
t. Similarly to fictitious

play, their agents’ empirical distributions of plays cycle around
the Nash equilibrium to some degree, with successive cycles
getting smaller. However, the cycles of these methods get
smaller more quickly. Change detection, like fictitious play,
has cycles that get consistently closer to the Nash equilib-
rium whereas sequence prediction has more irregular cycles.

6.2.2 Generalised Matching Pennies
The results for a variety of two-player, two-action, normal-

form games derived from generalised matching pennies are
shown in Figure 3. They show that fictitious play has empir-
ical Nash convergence in all of the games, which is expected
theoretically. This is not the case for sequence prediction,
which does not have empirical Nash convergence in most
cases. In fact, the results for sequence prediction in match-
ing pennies seem to be more of an exception rather than the
rule. It seems to converge further away from a Nash equilib-
rium when at that Nash equilibrium at least one player has
a strategy with a large magnitude. Conversely change de-
tection has empirical Nash convergence in almost all cases.
The handful of cases where it does not converge are where
the Nash equilibrium is for one player to be almost indiffer-
ent between its actions, and the other player to be almost
certain of its actions. The hybrid algorithm, sequence pre-
diction and fictitious play, improves on sequence prediction
by having empirical Nash convergence in more cases. The
cases where it does not are where at the Nash equilibrium
at least one player has a strategy with a large magnitude.

The results also show estimates for the mean empirical
convergence rate, b, and the mean asymptotic convergence
distance from the Nash equilibria, c, for each method. These
estimates are calculated by fitting the equation DJSM =
a/tb + c to the results of each game and finding the mean b
and c parameters. For fictitious play, b = 0.55, which corre-
sponds to an empirical convergence rate like 1/

√
t. Whereas

for sequence prediction, change detection, and sequence pre-
diction with fictitious play, b = 0.93, b = 0.98, and b = 0.95
respectively, which corresponds to a nearly optimal empir-
ical convergence rate like 1/t. Also for both fictitious play
and change detection, c = 0.00, so they empirically converge
to the Nash equilibria on average. Whereas for sequence pre-
diction and sequence prediction with fictitious play, c = 0.09

and c = 0.01, so they sometimes empirically converge away
from the Nash equilibria.

6.2.3 Shapley’s Game
The results for Shapley’s game are shown in Figure 4.

They show that fictitious play does not have empirical Nash
convergence. Its average Jensen-Shannon divergence metric
decreases slightly but eventually oscillates around a value
away from zero with constant amplitude and an ever in-
creasing period. Change detection follows a similar pattern,
except its oscillations decrease in amplitude until they even-
tually fade out, and its value is much closer to zero such that
it essentially has empirical Nash convergence. Sequence pre-
diction with or without fictitious play both have empirical
Nash convergence at a nearly optimal rate like 1/t.

6.2.4 Jordan’s Game
The results for Jordan’s game are shown in Figure 5. They

show that fictitious play does not have empirical Nash con-
vergence. Its average Jensen-Shannon divergence metric os-
cillates around a value away from zero with constant ampli-
tude and an ever increasing period. But sequence prediction
with or without fictitious play as well as change detection
have empirical Nash convergence, each at a nearly optimal
rate like 1/t.

7. CONCLUSIONS
We have proposed two new variants of fictitious play, which

assume that the opponents have dynamic strategies. The
first variant uses sequence prediction to predict an oppo-
nent’s strategy based on different contexts of its most recent
actions and its empirical distributions of plays that have oc-
curred after these contexts. The second variant uses change
detection to infer a distribution over possible changepoints in
an opponent’s strategy and uses this distribution to predict
its strategy. Each variant, like fictitious play, plays a pure
best-response strategy to its predicted opponent strategies.
We experimentally compared the convergence in self-play of
the empirical distributions of plays of fictitious play and our
variants to mixed strategy Nash equilibria. The results show
that our variants converge faster than fictitious play. How-
ever, in generalised matching pennies games, whilst fictitious
play and change detection always converge, sequence predic-
tion does not converge in most cases. Also in these games,
combining sequence prediction with fictitious play decreases
the estimate of its mean convergence distance from Nash
equilibria, and increases the estimate of its mean conver-
gence speed. The results also show that, unlike in fictitious
play, our variants and the hybrid algorithm converge to the
Nash equilibria in Shapley’s and Jordan’s games, which is
known to be difficult. Overall, we find that whilst sequence
prediction is somewhat unstable, change detection has bet-
ter self-play performance than fictitious play in these games.

Future work will investigate why our variants converge
and how our ideas and results generalise beyond the exam-
ined games. We suspect that convergence mainly depends
on the amount of history used, if too low, then the agent
may have insufficient resolution to predict accurately. For
example, using a sliding window of size one, it would always
appear as if the opponent will repeat their last action. We
also suspect that our ideas and results will generalise to sim-
ilar normal-form games and situations where fictitious play
has been successful like in limit Texas hold’em [16, 18].
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(a) Sequence prediction. At the start, x = 1, y = 1, and
at the end, x = 0, y = 0. They are converging towards
the Nash equilibrium at the centre.
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(b) Change detection. At the start, x = −1, y = 1, and
at the end, x = 0, y = 0. They are converging towards
the Nash equilibrium at the centre.
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(c) Sequence prediction. The average Jensen-Shannon
divergence metric is converging towards 0.
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(d) Change detection. The average Jensen-Shannon di-
vergence metric is converging towards 0.

Figure 2: Sequence prediction and change detection each in self-play in matching pennies over 10000 iterations.
The parameters of the best-fit lines were calculated using MATLAB’s Trust-Region-Reflective Least Squares
algorithm [1].
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(a) Fictitious play, b = 0.5484, c = 0.0004. Each average
Jensen-Shannon divergence metric is converging towards
0.
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(b) Sequence prediction, b = 0.9307, c = 0.0923. Each
average Jensen-Shannon divergence metric is converging
towards c ≥ 0, where it tends to be larger if at least
one player has a Nash equilibrium strategy with a large
magnitude.
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(c) Change detection, b = 0.9829, c = 0.0010. Almost all
average Jensen-Shannon divergence metrics are converg-
ing towards 0. Only a few are converging towards c > 0
where one player has a Nash equilibrium strategy near 0
and the other player does not.
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(d) Sequence prediction and fictitious play, b = 0.9546,
c = 0.0088. Most average Jensen-Shannon divergence
metrics are converging towards 0. Some are converging
towards c > 0 where at least one player has a Nash equi-
librium strategy with a large magnitude.

Figure 3: Empirical Nash convergence of various methods in self-play in two-player, two-action, normal-form
games with Nash equilibria at positions {(x∗, y∗)|x∗ ∈ {−0.8,−0.6, . . . , 0.8}}, y∗ ∈ {−0.8,−0.6, . . . , 0.8}}. Each arrow
points from a Nash equilibrium position to the position of the method’s empirical distribution of plays after
10000 iterations. An estimate for the mean empirical Nash convergence rate, b, is shown for each method. This
is calculated by fitting the equation ln(DJSM ) = ln(a/tb + c) to the results of each game and taking the average
of the b values. The parameters of the best-fit lines were calculated using MATLAB’s Trust-Region-Reflective
Least Squares algorithm [1].
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(a) Fictitious play. The average Jensen-Shannon diver-
gence metric is oscillating around a value away from 0.
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(b) Sequence prediction. The average Jensen-Shannon
divergence metric is converging towards 0.
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(c) Change detection. The average Jensen-Shannon di-
vergence metric is converging towards a value near 0.
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(d) Sequence prediction and fictitious play. The average
Jensen-Shannon divergence metric appears to be converg-
ing towards 0.

Figure 4: Empirical Nash convergence of various methods in self-play in Shapley’s game over 10000 iterations.
The parameters of the best-fit lines were calculated using MATLAB’s Trust-Region-Reflective Least Squares
algorithm [1].
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(a) Fictitious play. The average Jensen-Shannon diver-
gence metric is oscillating around a value away from 0.
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(b) Sequence prediction. The average Jensen-Shannon
divergence metric is converging towards 0.
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(c) Change detection. The average Jensen-Shannon di-
vergence metric is converging towards 0.
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(d) Sequence prediction and fictitious play. The average
Jensen-Shannon divergence metric appears to be converg-
ing towards 0.

Figure 5: Empirical Nash convergence of various methods in self-play in Jordan’s game over 10000 iterations.
The parameters of the best-fit lines were calculated using MATLAB’s Trust-Region-Reflective Least Squares
algorithm [1].
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APPENDIX
A. FICTITIOUS PLAY EXAMPLE DETAILS

We solve the system for one cycle (e.g. Figure 1b). Each
arm of the diamond is a period of time when one agent is
playing the correct strategy and the other is playing the
incorrect one. At the end of the cycle the system is closer to
the origin. The calculation works as follows. One calculates
the time to traverse each of the diamond’s four arms, and its
vertex locations. The calculation is slightly complicated by
the first step of each arm, where one strategy is updated by
0 instead of ±1. The next theorem shows the calculation.
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Theorem 1. Starting the dynamical system at time t0
with y(t0) = y0 and x(t0) = 0, and assuming that y(t0)
is the time average of a series of ±1 values (so that when
it changes sign, it will go through the value 0 exactly), the
time taken to traverse the first cycle is

T1 = 4t0y0 + 10, (16)

and the value of y at the end of the first cycle is,

y(t0 + T1) =
t0y0 + 4

t0(1 + 4y0) + 10
. (17)

Proof. A solution to recurrence relations (9) and (10)
will take the form,

ai(t+τ) =
tai(t)

t+ τ
±
{ τ−1

t+τ
if opponent a−i(t) = 0,

τ
t+τ

otherwise.
(18)

Here ai is either x or y, a−i is the alternative, and the sign is
positive if ai is increasing or negative if ai is decreasing. The
time period, τ , is between changes of strategy. Traversing an
arm of the cycle (or a quarter cycle), starts with ai = 0 and
finishes when a−i = 0. The time taken, and values of ai and
a−i after this time will be

τ = tai + 1, (19) a−i = ± tai + 1

t+ tai + 1
(20) ai = 0. (21)

Here t is the time at the start of the traversal of this arm.
To get the properties of the cycle, we just have to iterate this
four times starting at time t0, with x(t0) = 0 and y(t0) pos-
itive, and alternate the roles of x and y. First, subtracting
from y and adding to x until y = 0 (arm 1), then subtract-
ing from y and x until x = 0 (arm 2), then adding to y
and subtracting from x until y = 0 (arm 3), then adding to
y and x until x = 0 which completes the cycle. Iterating
Equations (19) and (20) four times gives the result.

To verify the claims in Section 3.3, we use the following.

Corollary 1. The period of the ith cycle is proportional
to i, and the time after the ith cycle is O(i2).

Proof. Define Ti as the period of the ith cycle, ti as
the time after the ith cycle, and yi as the value of y af-
ter the ith cycle. The recurrence relations implied by Equa-
tions (16) and (17) are,

Ti = 4ti−1yi−1 + 10, (22)

y(ti−1 + Ti) = yi =
ti−1yi−1 + 4

ti−1(1 + 4yi−1) + 10
(23)

Using ti−1 = ti−2 + Ti−1 and the value for yi−1 from Equa-
tion (23) yields the recursion relation

Ti = 4(ti−2(1+4yi−2)+10)
ti−2yi−2 + 4

ti−2(1 + 4yi−2 + 10
= Ti−1 +16.

(24)
This is solved as Ti = Ti−1 + 16(i− 1). From an asymptotic
perspective, this proves the result. The time after i cycles is

ti = t0 +

i∑
j=1

Tj = t0 + iT1 + 16

i−1∑
j=1

j = t0 + iT1 + 16
i(i− 1)

2

= t0 + i(T1 − 8) + 8i2 which is O(i2). (25)

A starting point consistent with our assumptions is t0 = 1,
y0 = 1, and x0 = 0. Thus T1 = 4t0y0 + 10 = 14, and

ti = t0 + i(T1 − 8) + 8i2 = 1 + 6i+ 8i2. (26)

So, the cycle period grows like i, and the time between cycles
grows like i2.

Corollary 2. The system converges to 0 in inverse pro-
portion to the number of cycles.

Proof. The task is to show that y decreases like 1/i. We
need to solve recursion relation (23). It is helpful to see that
ti from Equation (26) (where t0 = 1, y0 = 1, and x0 = 0)
can be factorised as (1 + 2i)(1 + 4i). We solve recursion
relation (23) by ansatz, guessing that yi = 1/(1 + 2i). Due
to the factorisation, yiti = 1 + 4i, which gives

yi+1 =
4i+ 5

(1 + 2i)(1 + 4i) + 4(1 + 4i) + 10
=

4i+ 5

8i2 + 22i+ 15

=
1

2i+ 3
=

1

1 + 2(i+ 1)
(27)

So the ansatz works, and y shrinks per cycle like Θ(1/i).

Corollary 3. The system defined by recurrence relations (9)
and (10) converges like inverse square-root of time.

Proof. According to Corollary 2, the system gets closer
to the fixed point inversely with the number of cycles, and due
to Corollary 2, the time to complete i cycles scales like i2.
Thus, in time t2 the system gets closer to the fixed point by
1/t, so in time t it gets closer to the fixed point by 1/

√
t.

B. MAXIMUM CONVERGENCE RATE OF
AN EMPIRICAL PROBABILITY

We claim Equation (4) cannot converge faster than 1/t.

Proof.

1. For any α ∈ A, its empirical probability in Equation (4),∑t
i=1Jαi = αK/t, cannot converge to any probability,

0 ≤ p ≤ 1, faster than S(t) = nint(tp)/t where nint is
the nearest integer (or round) function.

2. If f(t) = D(S(t)||p) where D is the divergence, then

(a) f(t) ≤ 0.5/t, and

(b) f(t) > c/t infinitely often where 0 < c < 0.5.

From point 2a it follows that f(t) = O(1/t), and from
point 2b it follows that @g(t) : g(t) = o(1/t), f(t) = O(g(t)).

C. PROOF OF NASH EQUILIBRIUM IN GEN-
ERALISED MATCHING PENNIES

We claim that the game in Table 2 has one mixed strategy
Nash equilibrium at (p = p∗, q = q∗).

Proof. The expected reward to player 1 is V1 = pq
(

2
q∗ − 3

)
−

p(1 − q) − (1 − p)q + (1 − p)(1 − q). The gradient of V1

with respect to p is ∂V1
∂p

= q
(

2
q∗

)
− 2. Thus, if q = q∗,

then ∂V1
∂p

= 0. The expected reward to player 2 is V2 =

pq
(
− 2
p∗ + 3

)
+ p(1− q) + (1− p)q− (1− p)(1− q). The gra-

dient of V2 with respect to q is ∂V2
∂q

= p
(
− 2
p∗

)
+ 2. Thus, if

p = p∗, then ∂V2
∂q

= 0.
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