
SPECIALISING DYNAMIC

TECHNIQUES FOR IMPLEMENTING

THE RUBY PROGRAMMING

LANGUAGE

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2015

By

Chris Seaton

School of Computer Science

2

Contents

List of Listings 7

List of Tables 9

List of Figures 11

Abstract 15

Declaration 17

Copyright 19

Acknowledgements 21

1 Introduction 23

1.1 Dynamic Programming Languages 23

1.2 Idiomatic Ruby . 25

1.3 Research Questions . 27

1.4 Implementation Work . 27

1.5 Contributions . 28

1.6 Publications . 29

1.7 Thesis Structure . 31

2 Characteristics of Dynamic Languages 35

2.1 Ruby . 35

2.2 Ruby on Rails . 36

2.3 Case Study: Idiomatic Ruby . 37

2.4 Summary . 49

3

3 Implementation of Dynamic Languages 51

3.1 Foundational Techniques . 51

3.2 Applied Techniques . 59

3.3 Implementations of Ruby . 65

3.4 Parallelism and Concurrency . 72

3.5 Summary . 73

4 Evaluation Methodology 75

4.1 Evaluation Philosophy and Goals 75

4.2 Benchmarking Language Implementations 80

4.3 Statistical Techniques . 84

4.4 Completeness . 90

4.5 Benchmarks Used . 94

4.6 Benchmark Harnesses . 95

4.7 Repeatability of Results . 96

4.8 Summary . 99

5 Optimising Metaprogramming in Dynamic Languages 101

5.1 Introduction . 101

5.2 Metaprogramming . 102

5.3 Existing Implementations . 102

5.4 Dispatch Chains . 103

5.5 Implementation . 106

5.6 Application In Ruby . 107

5.7 Evaluation . 108

5.8 Summary . 110

6 Optimising Debugging of Dynamic Languages 115

6.1 Introduction . 115

6.2 Ruby Debuggers . 117

6.3 A Prototype Debugger . 120

6.4 Debug Nodes . 121

6.5 Implementation . 128

6.6 Evaluation . 134

6.7 Related Work . 141

6.8 Summary . 142

4

7 Safepoints in Dynamic Language Implementation 145

7.1 Introduction . 145

7.2 Safepoints . 148

7.3 Guest-Language Safepoints . 150

7.4 Applications of Safepoints in Ruby 152

7.5 Implementation . 155

7.6 Evaluation . 160

7.7 Summary . 167

8 Interpretation of Native Extensions for Dynamic Languages 169

8.1 Introduction . 169

8.2 Existing Solutions . 171

8.3 TruffleC . 173

8.4 Language Interoperability on Top of Truffle 173

8.5 Implementation of the Ruby C API 180

8.6 Expressing Pointers to Managed Objects 183

8.7 Memory Operations on Managed Objects 184

8.8 Limitations . 185

8.9 Cross-Language Optimisations . 185

8.10 Evaluation . 186

8.11 Interfacing To Native Libraries 191

8.12 Summary . 191

9 Conclusions 195

A Dataflow and Transactions for Dynamic Parallelism 197

A.1 Introduction . 197

A.2 Irregular Parallelism . 198

A.3 Dataflow . 198

A.4 Transactions . 199

A.5 Lee’s Algorithm . 200

A.6 Implementation . 203

A.7 Analysis . 207

A.8 Further Work . 211

A.9 Summary . 212

5

B Benchmarks 213

B.1 Synthetic Benchmarks . 213

B.2 Production Benchmarks . 214

Bibliography 217

Word Count: 53442

6

List of Listings

2.1 Active Support’s adding the sum method to the existing Enumerable

class . 38

2.2 Active Support’s overwriting the <=> method to the existing DateTime

class . 38

2.3 Active Support’s IncludeWithRange using a metaprogramming send 39

2.4 include? from Listing 2.3 rewritten to use conventional calls . . . 40

2.5 Active Support using introspection on an object before attempting

a call which may fail . 40

2.6 Chunky PNG routine using send to choose a method based on input 41

2.7 PSD.rb forwarding methods using metaprogramming 42

2.8 Active Support’s Duration forwarding method calls to Time . . . 43

2.9 Active Support’s delegate method dynamically creating a method

to avoid metaprogramming (simplified) 44

2.10 Active Record’s define_method_attribute method dynamically

creating a getter for a database column (simplified) 44

2.11 PSD.rb’s clamp in pure Ruby . 45

2.12 PSD Native’s clamp in C using the Ruby extension API 45

2.13 A benchmark indicative of patterns found in PSD.rb 50

2.14 A sub-view of machine code resulting from Listing 2.13 50

5.1 JRuby’s implementation of send (simplified). 103

5.2 Rubinius’s implementation of send. 103

5.3 JRuby+Truffle’s implementation of dispatch chain nodes (simpli-

fied). 112

5.4 JRuby+Truffle’s implementation of a conventional method call

(simplified). 113

5.5 JRuby+Truffle’s implementation of send (simplified). 113

6.1 An example use of Ruby’s set trace func method 118

7

6.2 stdlib-debug using set trace func to create a debugger (simplified)119

6.3 Example Ruby code . 121

6.4 Example command to install a line breakpoint 126

6.5 Implementation of CyclicAssumption (simplified) 133

7.1 An example use of Ruby’s ObjectSpace.each_object method . . 146

7.2 Sketch of an API for safepoints 151

7.3 Example locations for a call to poll() 151

7.4 Using guest-language safepoints to implement each_object . . . 153

7.5 Using guest-language safepoints to implement Thread.kill . . . 153

7.6 Safepoint action to print stack backtraces 154

7.7 Safepoint action to enter a debugger 155

7.8 Simple implementation of guest-language safepoints using a volatile

flag. 156

7.9 Implementation of guest-language safepoints with an Assumption. 157

7.10 Example code for detailed analysis of the generated machine code. 162

7.11 Generated machine code for the api, removed and switchpoint safe-

point configurations. 163

7.12 Generated machine code for the volatile safepoint configuration. . 164

8.1 Function to store a value into an array as part of the Ruby API. . 170

8.2 Excerpt of the ruby.h implementation. 181

8.3 Calling rb ary store from C. 182

8.4 IRB session using TruffleC inline to call a library routine. 191

A.1 Parallel Lee’s algorithm using a global SyncVar 204

A.2 Parallel Lee’s algorithm using transactional memory 205

A.3 Parallel Lee’s algorithm using DFScala 206

8

List of Tables

6.1 Overhead of set trace func . 136

6.2 Overhead of setting a breakpoint on a line never taken (lower is

better) . 138

6.3 Overhead of setting breakpoint with a constant condition (lower is

better) . 139

6.4 Overhead of setting breakpoint with a simple condition (lower is

better) . 140

6.5 Summary of overheads (lower is better) 140

A.1 Mean algorithm running time (seconds) 208

A.2 Whole program running time on 8 hardware threads (seconds) . . 209

A.3 Code metrics . 209

9

10

List of Figures

1.1 Recommended minimum chapter reading order 33

2.1 A sub-view of IR resulting from Listing 2.13 47

2.2 Performance of the Acid Test benchmark in existing implementa-

tions of Ruby . 48

2.3 Performance of the Acid Test benchmark in JRuby+Truffle 48

3.1 Self-optimising ASTs in Truffle [114] 61

3.2 Graal and Truffle deoptimising from optimised machine code back

to the AST, and re-optimising [114] 63

3.3 Summary performance of different Ruby implementations on all of

our benchmarks . 69

3.4 Summary performance of different Ruby implementations on all of

our benchmarks, excluding JRuby+Truffle 69

3.5 Summary performance of historical versions of MRI on all of our

benchmarks . 70

3.6 Summary performance of JRuby with invokedynamic 70

4.1 Example lag plots [59] . 88

4.2 Example ACF plots [59] . 89

5.1 A conventional PIC. 104

5.2 A name-first dispatch chain. 105

5.3 A receiver-class-first dispatch chain. 105

5.4 Metaprogramming speedup on compose benchmarks. 109

5.5 Overhead for metaprogramming in SOM using dispatch chains. . . 110

6.1 AST of Listing 6.3 without wrappers 122

6.2 AST of Listing 6.3 with wrappers to implement line breakpoints . 123

11

6.3 AST of Listing 6.3 with a line breakpoint with condition y == 6 . 127

6.4 Overview of the Truffle compilation model as it applies to debug

nodes . 130

6.5 Explanation of how code in an inactive debug node (simplified) is

compiled to leave zero-overhead 131

6.6 Summary of relative performance when using debug functionality

(taller is exponentially worse) . 141

7.1 Phases of a guest-language safepoint 159

7.2 Peak performance of code with diferent safepoint implementations,

normalized to the removed configuration. 161

7.3 Mean compilation time for the Mandelbrot method across different

configurations. 165

7.4 Safepoint latency for the Mandelbrot for our implementation. . . . 166

8.1 Language independent object access via messages. 176

8.2 Summary of speedup across all native extensions. 187

8.3 Speedup for individual benchmarks. 190

8.4 Description of benchmarks and evaluation data. 192

A.1 Expand and trace phases of Lee’s algorithm[12] 201

A.2 A solution from Lee’s algorithm 201

A.3 Example dataflow graph for Lee’s algorithm 207

A.4 Algorithm speedup compared to sequential 208

12

List of Abbreviations

ABI Application Binary Interface. 169

ACF Autocorrelation Function. 11, 88

ACID Atomic, Consistent, Isolated and Durable. 71

API Application Programming Interface. 8, 25, 26, 62, 64, 83, 101, 118, 132,

150, 151, 152, 154, 160, 161, 162, 169, 170, 171, 172, 174, 180, 182, 183,

186, 191

AST Abstract syntax tree. 11, 27, 51, 52, 53, 54, 55, 59, 60, 61, 62, 63, 64, 65,

66, 67, 71, 78, 106, 107, 110, 111, 116, 120, 121, 126, 128, 129, 131, 132,

133, 142, 154, 157, 167, 175, 185, 191, 195, 196

CLR Common Language Runtime. 64, 72

DSL Domain-Specific Language. 61

FFI Foreign Function Interface. 172

GC Garbage collector. 76, 146, 147, 149, 150, 158, 167, 171, 186

GDB The GNU Project Debugger. 117

IC Inline Cache. 54, 58, 60

IR Intermediate Representation. 11, 47, 56, 59, 61, 63, 65, 67, 68, 118, 167

IRB Interactive Ruby. 8, 119, 125, 191

JIT Just-in-time (compiler or compilation). 28, 64, 65, 67, 71, 109

13

JNI Java Native Interface. 172, 186

JSON JavaScript Object Notation. 25

JSR Java Specification Request. 158

JVM Java Virtual Machine. 27, 28, 29, 56, 61, 62, 64, 66, 67, 71, 72, 73, 78,

83, 101, 109, 116, 146, 147, 149, 150, 152, 155, 157, 158, 159, 160, 167, 168,

172, 173, 188

LLVM Low Level Virtual Machine. 28, 56, 65, 66, 67, 71, 72, 73, 103, 172, 173

MRI Matz’s Ruby Interpreter. 11, 45, 47, 65, 66, 67, 68, 71, 81, 85, 93, 115,

116, 117, 118, 119, 135, 136, 139, 145, 146, 148, 169, 170, 172, 183, 184,

186, 188, 189, 191

MVC Model-View-Controller. 25, 36

ORM Object-Relational Mapping. 36

OSR On-Stack Replacement. 64

PIC Polymorphic Inline Cache. 11, 55, 57, 58, 60, 61, 103, 104, 110, 173, 175

PNG Portable Network Graphics. 37, 213

Rbx Rubinius. 68

REE Ruby Enterprise Edition. 71

REPL Read-eval-print loop. 119

REST Representational State Transfer. 25

SOM Simple Object Machine. 109

SQL System Query Language. 36

VM Virtual Machine. 28, 56, 64, 65, 71, 72, 99, 108, 120, 145, 147, 148, 149,

154, 161, 163, 164, 165, 167, 172, 188

YARV Yet Another Ruby Virtual Machine. 65, 68, 72, 170

14

Abstract

Specialising Dynamic Techniques for Implementing The
Ruby Programming Language

Chris Seaton
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2015

The Ruby programming language is dynamically typed, uses dynamic and

late bound dispatch for all operators, method calls and many control structures,

and provides extensive metaprogramming and introspective tooling functionality.

Unlike other languages where these features are available, in Ruby their use is

not avoided and key parts of the Ruby ecosystem use them extensively, even for

inner-loop operations. This makes a high-performance implementation of Ruby

problematic. Existing implementations either do not attempt to dynamically

optimise Ruby programs, or achieve relatively limited success in optimising Ruby

programs containing these features.

One way that the community has worked around the limitations of existing

Ruby implementations is to write extension modules in the C programming lan-

guage. These are statically compiled and then dynamically linked into the Ruby

implementation. Compared to equivalent Ruby, this C code is often more efficient

for computationally intensive code. However the interface that these C extensions

provides is defined by the non-optimising reference implementation of Ruby. Im-

plementations which want to optimise by using different internal representations

must do extensive copying to provide the same interface. This then limits the

performance of the C extensions in those implementations.

This leaves Ruby in the difficult position where it is not only difficult to

15

implement the language efficiently, but the previous workaround for that problem,

C extensions, also limits efforts to improve performance.

This thesis describes an implementation of the Ruby programming language

which embraces the Ruby language and optimises specifically for Ruby as it is used

in practice. It provides a high performance implementation of Ruby’s dynamic

features, at the same time as providing a high performance implementation of

C extensions. The implementation provides a high level of compatibility with

existing Ruby implementations and does not limit the available features in order

to achieve high performance.

Common to all the techniques that are described in this thesis is the concept of

specialisation. The conventional approach taken to optimise a dynamic language

such as Ruby is to profile the program as it runs. Feedback from the profiling

can then be used to specialise the program for the data and control flow it is

actually experiencing. This thesis extends and advances that idea by specialising

for conditions beyond normal data and control flow.

Programs that call a method, or lookup a variable or constant by dynamic

name rather than literal syntax can be specialised for the dynamic name by gen-

eralising inline caches. Debugging and introspective tooling is implemented by

specialising the code for debug conditions such as the presence of a breakpoint

or an attached tracing tool. C extensions are interpreted and dynamically opti-

mised rather than being statically compiled, and the interface which the C code

is programmed against is provided as an abstraction over the underlying imple-

mentation which can then independently specialise.

The techniques developed in this thesis have a significant impact on perfor-

mance of both synthetic benchmarks and kernels from real-world Ruby programs.

The implementation of Ruby which has been developed achieves an order of mag-

nitude or better increase in performance compared to the next-best implemen-

tation. In many cases the techniques are ‘zero-overhead’, in that the generated

machine code is exactly the same for when the most dynamic features of Ruby

are used, as when only static features are used.

16

Declaration

This thesis contains work that includes collaborations with other

researchers and has already formed joint publications.

Chapter 5 contains work on metaprogramming for dynamic lan-

guages that led to similar results to the work of Stefan Marr

at Inria. We combined our research for a single joint publica-

tion [73].

Chapter 6 contains work that initially supported a small set of

debugging functionality for dynamic languages, and was gener-

alised in work with Michael Van de Vanter and Michael Haupt

at Oracle Labs [92].

Chapter 7 contains work on exposing safepoints to guest lan-

guages running on a virtual machine, with the implementation

later improved in collaboration with Benoit Daloze at Johannes

Kepler Universität, Linz. It was later applied to JavaScript by

Daniele Bonetta at Oracle Labs [23].

Chapter 8 contains collaborative work with Matthias Grimmer

at Johannes Kepler Universität, Linz that applied an existing

implementation of the C programming language with the my

implementation of Ruby and an interoperability technique de-

veloped by Matthias Grimmer to provide support for C exten-

sions for the Ruby language [47, 46]. This collaborative work

will also form part of the doctoral thesis of Matthias Grimmer.

17

18

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, De-

signs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations

deposited in the University Library, The University Library’s regulations

(see http://www.manchester.ac.uk/library/aboutus/regulations) and

in The University’s policy on presentation of Theses

19

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations

20

Acknowledgements

I thank my wife Maxine for her eternal love and support, and my daughter Rosalie

for making life a joy.

I thank my supervisor Mikel Luján for introducing me to the academic world,

his invaluable advice, and his amazing patience throughout this process.

I thank all the people I have authored papers with, including Daniele Bonetta,

Benoit Daloze, Stéphane Ducasse, Matthias Grimmer, Michael Haupt, Christian

Humer, Mikel Luján, Stefan Marr, Hanspeter Mössenböck, Michael Van de Van-

ter, Ian Watson, Christian Wirth, Andreas Wöss, and Thomas Würthinger.

I thank the other people at Oracle Labs I worked with in California and Linz

including Mario Wolczko, Christian Wimmer and Peter Kessler, and the members

of JRuby+Truffle team that we built as the project matured, including Benoit

Daloze, Kevin Menard, Petr Chalupa, Brandon Fish and Lucas Allan. I’m proud

to say that this list includes students, academics, industrial researchers and open-

source collaborators.

This research was generously funded by a Doctoral Training Award from

Her Majesty’s Government, and an internship and later employment with Or-

acle Labs.

Oracle, Java, HotSpot, and all other Java-based mark may be trademarks or

registered trademarks of Oracle in the United States and other countries. All

other product names mentioned herein are trademarks or registered trademarks

of their respective owners.

21

22

Chapter 1

Introduction

1.1 Dynamic Programming Languages

Informally, a dynamic programming language is one where more decisions must

be taken as the program runs. The opposite of dynamic is static, and a static

programming language is one where more decisions are taken as the program is

compiled. This loose definition for dynamic can apply to various parts of the

language in different ways. This is a spectrum and few languages are entirely

static or entirely dynamic. Most languages have at least some features which can

be described as dynamic.

A dynamic type system is one where type checking of a program is not per-

formed until the code is executed. In dynamically typed languages, variable

names in the source code are often not annotated with types and instead values

carry information about their type, which is used at runtime to check typing

requirements. More static languages may discard this type information at the

compilation phase after statically checking typing requirements, or they may only

retain limited information.

A dynamically bound dispatch system, also known as late binding, is one where

for a given variable and a given method name, it is not possible to determine

until runtime which method will be called. In many dynamic languages, the

late binding is implemented as a lookup by name in the receiver object which is

logically executed for every method call.

The related term dynamic dispatch refers to selecting at runtime which version

of a method, having already determined which method to call. For example,

resolving which implementation of the same method to call in a hierarchy created

23

24 CHAPTER 1. INTRODUCTION

by inheritance is an example of dynamic dispatch. Dynamic dispatch such as

virtual calls in C++ are an example of a limited form of dynamic behaviour in a

language generally considered to be static.

Metaprogramming can also be described as a dynamic language feature. Metapro-

gramming, and the related technique reflection, allows a program to examine and

possibly modify the program, the data in it, and information about that data at

runtime. A simple case is calling a method based on a name that is a value not

present literally in the source code of the program. Some dynamic languages such

as Ruby have powerful metaprogramming features that allow most operations to

be executed as a meta-operation, supplying parameters that would normally be

static, such as a method name, as runtime data.

Tooling and instrumentation is another language feature that can be seen as

being on the dynamic spectrum. For example, whether or not a line of code is

running with a line breakpoint attached can be treated as a dynamic property –

not determinable at compile time and changing when the debugger is attached.

These terms used are, of course, not precise. As already stated, many lan-

guages have features that could be described as dynamic, as well as features that

could be described as static. It is also the case that although in a static language

all decisions may be made at compile time, but that does not mean that there

were other decisions that could have been made, or could have been made better,

at runtime. For example in the C programming language, which is on the very

static end of the spectrum, a call through a function pointer is dynamic in the

sense that the machine code location called is not in general determinable stat-

ically. However at runtime it may be possible to speculate on the function that

the pointer references.

Another complication in terminology is that there is not necessarily a clear

division between compile-time and runtime in many language implementations.

There are pure interpreters, where there is no processing of code before it is

executed, and pure compilers, where all code is generated ahead-of-time, but a

great many language implementations do not fit into these categories. Even a

very basic interpreter is likely to have a phase where source code is compiled to an

internal bytecode, and even ahead-of-time compiled language may defer machine

code generation until runtime.

In general, dynamic languages often offer less performance than static lan-

guages, because more decisions that must be taken to run the program means a

1.2. IDIOMATIC RUBY 25

greater overhead. Due to dynamic type systems, values may have overhead in

carrying about type information and types may have to be checked before oper-

ations can be performed. Due to dynamic binding, work may have to be done to

decide which method to run for a given receiver and method name every time a

call is made.

Even within the same language, more dynamic features often offer less perfor-

mance than their static equivalents, for the same reason that extra work must be

done. For example in Java a call using the java.lang.reflection API is around

6x slower than a method call written literally in the source code [73]. In many

cases this means that these dynamic features are avoided in writing programs, or

are used but then factored out when performance is poor.

These problems both encourage people to not use dynamic languages if they

want performance, and to avoid using the more dynamic features of the language

that they are using. As this thesis will describe, avoiding dynamic features can

be in conflict with the preferred programming style of the language and the

wider ecosystem, and means that programmers are not being well-served by the

language implementers.

The characteristics of dynamic programming languages in the context of Ruby

and the relevance of this to their optimisation is discussed in more depth in

Chapter 2.

1.2 Idiomatic Ruby

Most of this thesis is concerned with the Ruby programming language. Ruby is

a general purpose language, but it is probably most commonly used as a back-

end web development language, meaning that is is used to serve web pages with

content dynamically generated using a database, or to provide a web service API

with technologies such as REST and JSON.

As a web development language, Ruby is often used with the Ruby on Rails

framework [49]. Rails is an MVC web framework for creating web pages with

dynamic content provided by a database backend or requests to web services.

At various points in time, Rails has been a critical part of the infrastructure of

billion dollar companies including Twitter, Shopify, GitHub and Hulu.

26 CHAPTER 1. INTRODUCTION

Rails is often called an ‘opinionated’ framework, in that in strongly encour-

ages one way of writing web applications that they consider to be the best. De-

sign decisions make that way as easy as possible, and other approaches may be

much harder to implement, even intentionally so. As part of this philosophy,

Rails favours convention-over-configuration and don’t-repeat-yourself, meaning

that the framework provides sensible defaults which you are normally expected

to use without modification, and that repetitive boilerplate code is removed by

not having to specify this configuration.

This approach to developing web applications obviously works very well for

a great many people, but there is a trade-off. In order to provide a system

that works without configuration and without boilerplate code, Rails makes very

extensive use of Ruby’s dynamic language features. Classes are constructed at

runtime, objects are wrapped with proxies to intercept methods and modify be-

haviour, and methods are dynamically generated.

As Rails is so significant in the Ruby community, its approach to design has

influenced the rest of the Ruby. Dynamic typing, dynamic binding and metapro-

gramming are frequently used even for basic operations that in most languages

would be expressed statically. This programming style, preferring dynamic con-

struction of systems, leads to a common style of idiomatic Ruby code that uses

metaprogramming and other dynamic features extensively.

Another impact that this has had on the Ruby ecosystem is that high per-

formance code has been rewritten in C in the form of dynamically loaded native

extension modules, known as C extensions. Compared to the slowest implemen-

tation of Ruby, this does deliver a performance increase because it bypasses most

of the dynamic features. However, long term it is a self-defeating strategy. C

extensions are developed against a poorly defined API that is essentially the in-

ternals of the initial implementation of Ruby. Meeting this API at the same time

as providing higher performance for Ruby code is highly problematic for newer

implementations of Ruby. The problem of C extensions has grown as legacy code

has accumulated. As in other communities such as Python, poor support for C

extensions in alternative implementations of Ruby has limited their adoption.

The major implementations of Ruby are discussed in Chapter 3. The impact

of Ruby culture and idiomatic Ruby code practices on optimisation is explained

in Section 2.3.

1.3. RESEARCH QUESTIONS 27

1.3 Research Questions

The central research question that this thesis looks to answer is, is it possible to

optimise an implementation of the Ruby programming language for the language

as it is idiomatically used, including its most dynamic features?

• Can metaprogramming operations have the same performance as their static

equivalents?

• Can dynamic languages have tooling such as debuggers that do not impact

on the performance of the language when the tool is not being used, and

have minimal impact until the tool is actually activated?

• Can powerful optimisations be applied in an implementation of Ruby with-

out limiting the features that such an implementation supports?

• Can an alternative implementation of Ruby that works to achieve high

performance also provide a high performance of C extensions?

1.4 Implementation Work

The majority of the experiments in this thesis were undertaken using a novel im-

plementation of the Ruby programming language, JRuby+Truffle, implemented

in the Java programming language using the Truffle framework for writing self-

optimising AST interpreters, and the Graal dynamic compiler.

JRuby+Truffle began life as RubyTruffle, a standalone implementation of

Ruby, using only the lexical analysis and parsing phases from the existing JRuby

implementation [78]. JRuby is an implementation of Ruby also in Java, but

using conventional JVM language implementation techniques such as bytecode

generation and the invokedynamic instruction.

This was suitable for early experiments but in order to support more of the

Ruby language and libraries, beyond the level of a simple demonstrator, it was

necessary to re-use more code from JRuby. Therefore in early 2014 RubyTruffle

was open-sourced and merged into the master branch of the JRuby code base as

an optional backend and now known as JRuby+Truffle, where it is now part of

production releases of JRuby.

JRuby+Truffle also reuses a significant volume of code from the Rubinius

project [86]. Rubinius is an implementation of Ruby with a VM written in C++

28 CHAPTER 1. INTRODUCTION

and a dynamic compiler using the LLVM compiler framework. Some of the Ruby-

specific features that are normally implemented in C or Java are implemented in

Ruby in Rubinius, on top of an FFI and a system of primitive operations. By

implementing the same FFI and primitives, JRuby+Truffle re-uses this Ruby

code.

JRuby+Truffle is by far the fastest implementation of Ruby for a non-trivial

set of benchmarks, often performing an order of magnitude faster than any other

implementation on both synthetic benchmarks and kernels from real applica-

tions that people are using in production to make money today. JRuby+Truffle

out-performs implementations using competing state-of-the art compilation tech-

niques including the LLVM compiler, the JVM’s invokedynamic instruction, and

the RPython meta-tracing JIT compiler. This is while supporting compatibility

with over 93% of the Ruby language and over 85% of the Ruby core library which

is within around 10% of the level supported by other implementations (compati-

bility is discussed in Section 4.4). In some areas, such as support for the metapro-

gramming techniques discussed in Chapter 7, JRuby+Truffle’s compatibility is

better than the existing slower implementations.

JRuby+Truffle has now been used as a research foundation for other teams

working on dynamic languages and VMs, such as in [76, 91, 105, 102].

The implementation of JRuby+Truffle is discussed in more depth in Sec-

tion 3.3.5. Comparisons to JRuby and Rubinius are made in Subsection 3.3.

Availability of source code of the implementation is detailed in Subsection 4.7.2.

1.5 Contributions

The main contribution of this thesis is an approach to language implementation

that embraces and optimises the Ruby programming language as it is idiomati-

cally used, tackling the most dynamic and most difficult to implement parts of

the Ruby language rather than excluding them as has been the case in previous

work.

• Chapter 5 contributes a technique for, and implementation of, inline caches

generalised to optimise common metaprogramming operations. This re-

duces the cost of metaprogramming in most cases to be the same as using

the equivalent static operations.

1.6. PUBLICATIONS 29

• Chapter 6 contributes a technique for, and implementation of, zero-overhead

debugging. That is, a debugger which allows a line breakpoint to be at-

tached with no significant impact on peak performance until the breakpoint

is triggered. Conditional breakpoints have no significant impact on peak

performance beyond that which writing the condition inline in the original

source code would have.

• Chapter 7 contributes a technique for, and implementation of, safepoints for

guest languages on the JVM that allows program execution to be paused to

perform dynamic operations such as debugging, introspection and dynamic

reconfiguration.

• Chapter 8 contributes a technique for, and implementation of, C extensions

for Ruby that is compatible with high performance optimisations.

• Appendix A describes earlier work on a technique for parallelising applica-

tions where dependencies are dynamic and so, like in a dynamic language,

cannot be statically analysed.

1.6 Publications

The work in this thesis is documented in the following peer-reviewed publications:

• S. Marr, C. Seaton, and S. Ducasse. Zero-Overhead Metaprogramming.

In Proceedings of the 35th Conference on Programming Language Design

and Implementation, 2015

• C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at Full

Speed. In Proceedings of the 8th Workshop on Dynamic Languages and

Applications (DYLA), 2014

• B. Daloze, C. Seaton, D. Bonetta, and H. Mössenböck. Techniques and

Applications for Guest-Language Safepoints. In Proceedings of the 10th

Implementation, Compilation, Optimization of Object-Oriented Languages,

Programs and Systems Workshop (ICOOOLPS), 2015

• M. Grimmer, C. Seaton, T. Würthinger, and H. Mössenböck. Dynami-

cally composing languages in a modular way: supporting C extensions for

30 CHAPTER 1. INTRODUCTION

dynamic languages. In MODULARITY 2015: Proceedings of the 14th In-

ternational Conference on Modularity, 2015

• M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, and H. Mössenböck.

Memory-safe Execution of C on a Java VM. In Workshop on Programming

Languages and Analysis for Security, 2015

• M. Grimmer, C. Seaton, R. Schatz, T. Würthinger, and H. Mössenböck.

High-performance cross-language interoperability in a multi-language run-

time. In Proceedings of the 11th Dynamic Languages Symposium, 2015

• C. Seaton, D. Goodman, M. Luján, and I. Watson. Applying Dataflow

and Transactions to Lee Routing. In Proceedings of the 7th Workshop

on Programmability Issues for Heterogeneous Multicores (MULTIPROG),

2012 – awarded best paper prize

The author of this thesis also contributed to the following publications, which

are not the primary subject of any chapters in this thesis.

• A. Wö, C. Wirth, D. Bonetta, C. Seaton, and C. Humer. An object stor-

age model for the Truffle language implementation framework. In PPPJ ’14:

Proceedings of the 2014 International Conference on Principles and Prac-

tices of Programming on the Java platform: Virtual machines, Languages,

and Tools, 2014

• D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khan, M. Luján, and I.

Watson. DFScala: High Level Dataflow Support for Scala. In Data-Flow

Execution Models for Extreme Scale Computing. IEEE, 2012

Blog posts on the author’s website documented intermediate results:

• Deoptimising Ruby. What deoptimisation means for Ruby and how JRuby+Truf-

fle implements and applies it. http://www.chrisseaton.com/rubytruffle/

deoptimising/.

• Very High Performance C Extensions For JRuby+Truffle. How JRuby+Truf-

fle supports C extensions. http://www.chrisseaton.com/rubytruffle/

cext/

http://www.chrisseaton.com/rubytruffle/deoptimising/
http://www.chrisseaton.com/rubytruffle/deoptimising/
http://www.chrisseaton.com/rubytruffle/cext/
http://www.chrisseaton.com/rubytruffle/cext/

1.7. THESIS STRUCTURE 31

• Optimising Small Data Structures in JRuby+Truffle. Specialised opti-

misations for small arrays and hashes. http://www.chrisseaton.com/

rubytruffle/small-data-structures/

• Pushing Pixels with JRuby+Truffle. Running real-world Ruby gems. http:

//www.chrisseaton.com/rubytruffle/pushing-pixels

• Tracing With Zero Overhead in JRuby+Truffle. How JRuby+Truffle imple-

ments set trace func with zero overhead, and how we use the same technique

to implement debugging. http://www.chrisseaton.com/rubytruffle/

set_trace_func/

• How Method Dispatch Works in JRuby/Truffle. How method calls work

all the way from AST down to machine code. http://www.chrisseaton.

com/rubytruffle/how-method-dispatch-works-in-jruby-truffle/

• A Truffle/Graal High Performance Backend for JRuby. Blog post announc-

ing the open sourcing.

http://www.chrisseaton.com/rubytruffle/announcement/

1.7 Thesis Structure

This thesis continues in Chapter 2 by describing the relevant characteristics of

dynamic programming languages: what is meant by dynamism and why this

impacts on their implementation. The language that is the subject of the research,

Ruby, is introduced and is used to illustrate the relevant concepts.

Chapter 3 introduces the current techniques used to optimise dynamic pro-

gramming languages, which leads into a description of the state-of-the-art tech-

niques on which this thesis builds.

Chapter 4 explains the evaluation methodology that is used throughout the

thesis, including the benchmarks and statistical methods applied. A scope is

given within which results are evaluated and metrics for success are described

and justified.

Chapter 5 begins coverage of the specific scientific contributions of this thesis,

and explains how a dynamic language implementation can provide many impor-

tant metaprogramming features with zero-overhead compared to equivalent, more

static, features. Chapter 6 describes how debugging and introspection features

http://www.chrisseaton.com/rubytruffle/small-data-structures/
http://www.chrisseaton.com/rubytruffle/small-data-structures/
http://www.chrisseaton.com/rubytruffle/pushing-pixels
http://www.chrisseaton.com/rubytruffle/pushing-pixels
http://www.chrisseaton.com/rubytruffle/set_trace_func/
http://www.chrisseaton.com/rubytruffle/set_trace_func/
http://www.chrisseaton.com/rubytruffle/how-method-dispatch-works-in-jruby-truffle/
http://www.chrisseaton.com/rubytruffle/how-method-dispatch-works-in-jruby-truffle/
http://www.chrisseaton.com/rubytruffle/announcement/

32 CHAPTER 1. INTRODUCTION

can be provided for a dynamic programming language, also with zero-overhead.

Chapter 7 shows how an underlying virtual machine implementation technique,

safepoints, can be re-used in the implementation of a dynamic language to pro-

vide advanced dynamic features in the Ruby language. Chapter 8 describes how

dynamic languages are often extended using a static and natively compiled lan-

guage and how the same dynamic techniques as used for the dynamic languages

can be applied to also run the extensions. Chapter 9 concludes and describes

potential future work.

Following the main body of the thesis, Appendix A describes additional work

that describes a programming model for parallelising applications with dynamic

parallelism that cannot be statically analysed. Appendix B gives some additional

information on benchmarks introduced in Chapter 4.

A recommended reading path through the thesis depends on the interests of

the reader. Chapter 2 give background information that explains the motivation

for the work, but that a reader well-informed in the dynamic languages may

already be aware of. Chapter 3 describes techniques which are applied throughout

the thesis, and so is recommended prerequisite for all further chapters. Chapter 4

gives explanation of experimental methodology and so could be skipped unless the

reader needs detailed understanding of the techniques applied in the evaluation

sections of each contribution. Chapters 5 and 8, and Appendix A can be read

independently, but it is recommended to read Chapter 6 before 7 as the latter

builds on techniques from the former. Appendix A can be read separately to

the other chapters. Appendix B provides extra information for readers who want

more precise information on the benchmarks used.

1.7. THESIS STRUCTURE 33

1"

6"

3" 4"2"

5" 8"

7"

A"

B"

Figure 1.1: Recommended minimum chapter reading order

34 CHAPTER 1. INTRODUCTION

Chapter 2

Characteristics of Dynamic

Languages

In this chapter we begin by introducing the programming language on which this

thesis focuses, Ruby. We describe the key dynamic features of this language which

later chapters will reference. We describe the framework which Ruby applications

are probably most often written with, Rails. We then make a case study of

idiomatic Ruby code and show how the dynamic features of Ruby are applied in

key parts of the Ruby ecosystem and give examples of how their use can be found

on performance critical paths.

2.1 Ruby

Ruby [116] is probably best described as an imperative, dynamically typed, dy-

namically and late bound programming language with extensive metaprogram-

ming functionality [85]. Ruby has a heritage in Lisp and Smalltalk [74], and is

broadly similar in look, feel and application to languages such as JavaScript and

Python. A decade ago Ruby might have been described as a ‘scripting language’,

but it is a general-purpose language in which many large enterprise applications

are built which are critical to businesses’ operations.

GitHub is a major example of a very large infrastructure built using Ruby [61].

Twitter was also built using Ruby until they decided to solve some scaling prob-

lems using Java and later Scala [35]. TravisCI, AirBnB, Hulu, Kickstarter are

further examples of popular applications using Ruby.

Ruby is dynamically typed in that variables are not given explicit types by

35

36 CHAPTER 2. CHARACTERISTICS

the programmer, no types are statically inferred, and variables can hold objects

of any type. Typing is not checked ahead of time or as the program is loaded.

Type checks are made as the program runs and errors are reported in some cases

or in others, values may be converted to meet typing requirements.

Ruby is dynamically bound or late bound in that method calls are logically

resolved against the receiver object and based on the method name every time a

method is called. For an arbitrary Ruby program it is not possible to determine

what method will be called for a given call site in the program source code. The

type receiver expression may not be known due to dynamic typing, and even if

it were the set of methods in a class are mutable. For example, evaluating an

argument in preparation for calling a method could redefine the method that is

called, so the method must be logically looked up as the final action method

before a call is made, and logically cannot be be moved in the program.

Ruby features extensive metaprogramming functionality such as the ability

to call a method based on a name that is a dynamic runtime value, to evaluate

code at runtime, to intercept method calls that would fail, to redefine methods,

introspection of the environment and so on.

Ruby applications often make use of C extensions in order to work around the

low performance of many Ruby implementations or to interoperate with libraries

written in other language such as database drivers.

2.2 Ruby on Rails

Ruby on Rails, or just Rails [49], is the web-development framework that popu-

larised Ruby in the western development community. It is an MVC framework

and is famously opinionated in that it is designed to incorporate sensible defaults

and does not go out of its way to encourage alternative configurations for most

users.

Active Record is the ORM component of Rails, using metaprogramming to

map database tables to classes, rows to objects and columns to methods. It allows

a database to be accessed using objects instead of directly using SQL.

Active Support is a general utility library for Rails. It uses metaprogramming

to add a large number of methods to the Ruby core library to make writing web

applications more simple.

2.3. CASE STUDY: IDIOMATIC RUBY 37

2.3 Case Study: Idiomatic Ruby

In this section we identify patterns that are common in Ruby that make extensive

use of dynamic functionality. Many in the Ruby community accept these patterns

as an acceptable way to write programs, valuing the expressiveness and flexibility

they offer over more static functionality.

We use examples primarily from Rails and its component libraries Active

Record and Active Support, as they are such key libraries for many Ruby appli-

cations. We also identify patterns in a pair of Ruby libraries, Chunky PNG [107]

and PSD.rb [69]. These libraries are described in depth in Chapter 4, as kernels

from them are key benchmarks for the work in this thesis. As a short introduc-

tion, Chunky PNG is a library for reading and writing PNG image format files, as

well as editing them and managing data such as colour, and PSD.rb is a similar

library for working with the Adobe Photoshop image format files.

Although these two libraries are not used anywhere near as commonly as

Rails is, they provide clear additional examples of idiomatic Ruby patterns that

we identify below. These libraries both have versions rewritten as C extensions,

as operationally performance of the pure Ruby versions had been found to be too

low. This gave us a clear need for a faster implementation of Ruby, and as only

specific methods had been rewritten in C the areas which were too slow were also

clear, and the kind of Ruby code they used could be studied.

2.3.1 Monkey Patching

Ruby modules and classes are always open for modification. There can be mul-

tiple definitions of a module or class, and if there are multiple definitions of a

method then the last defined wins (in Ruby class and method definitions are ex-

ecutable statements so there will be an ordering). In the terminology of Liskov,

Ruby modules and classes are both open for extension and open for modification.

Adding and particularly overwriting existing methods is called monkey patching

or sometimes duck punching (a reference to duck typing) in the Ruby community.

The metaphor is one of mischief and indicates at the chaos this can potentially

cause, but it is frequently found in important Ruby libraries.

An example of adding a method is in the Active Support component of Rails,

shown in Listing 2.1. The sum method is added to the Enumerable mixin module,

as Ruby does not provide one by default. The syntax to add additional methods

38 CHAPTER 2. CHARACTERISTICS

to an existing module is exactly the same as is used to create a new module, which

indicates that adding additional methods after a first definition of the module is

not considered a special case.

1 module Enumerable

2 def sum(identity = 0, &block)

3 if block_given?

4 map(&block).sum(identity)

5 else

6 inject { |sum, element| sum + element } || identity

7 end

8 end

9 end

Listing 2.1: Active Support’s adding the sum method to the existing Enumerable

class

An example of overwriting a method can be found again in Active Support

in Listing 2.2, which replaces the DateTime.<=> method for comparing two date

values, with one that has special cases for the Infinity value. Again, the syntax

here is exactly the same as for an original definition of a method. If a method

with the same name already exists in the class, a subsequent definition will simply

overwrite the old one. No special syntax is needed to do this and no warning is

issued.

1 class DateTime

2 # Layers additional behavior on DateTime#<=> so that Time and

3 # ActiveSupport::TimeWithZone instances can be compared with a DateTime.

4 def <=>(other)

5 if other.kind_of?(Infinity)

6 super

7 elsif other.respond_to? :to_datetime

8 super other.to_datetime rescue nil

9 else

10 nil

11 end

12 end

13 end

Listing 2.2: Active Support’s overwriting the <=> method to the existing
DateTime class

2.3. IDIOMATIC RUBY 39

2.3.2 Dynamic Method Sends

The usual syntax to call a method in Ruby is the common receiver.method(args)

notation, where the method name is a literal in the source code, not a dynamic

value. Ruby also supports dynamic sends, similar to reflection in Java or metaob-

ject protocols in other languages. In these, the name of the method is a dynamic

value that can be produced from conditional statements, retrieved from a data

structure, calculated from scratch or anything else you can do with a normal data

value in Ruby.

Dynamic sends are often used where the method that needs to be called may

depend on some logic, but the receiver and the arguments are always the same.

Listing 2.3 is an example of this pattern. Line 4 uses a logical expression to select

one of two symbols (immutable identifier objects, similar to interned strings), :<

for less-than or :<= for less-than-or-equal-to. This is assigned to a local variable.

Line 5 then uses a dynamic send, with the name of the method to call being the

symbol that was chosen on the previous line. The argument is the same (the last

attribute) for a call to either operator, so the programmer here has factored out

the only part of the logic which varies, the name of the method. If conventional

wisdom that metaprogramming is slow is put aside, this decision is in accordance

with good software engineering practices, with the common parts of the code

factored out and the part that varies isolated.

1 module IncludeWithRange

2 def include?(value)

3 if value.is_a?(::Range)

4 operator = exclude_end? && !value.exclude_end? ? :< : :<=

5 super(value.first) && value.last.send(operator, last)

6 else

7 super

8 end

9 end

10 end

Listing 2.3: Active Support’s IncludeWithRange using a metaprogramming send

This particular example really shows how much Ruby developers value the

elegance afforded by metaprogramming, as this method can be rewritten with

just a little extra complexity to use conventional calls instead of dynamic sends,

40 CHAPTER 2. CHARACTERISTICS

as shown in Listing 2.4. This code is not accidentally written with metaprogram-

ming by a developer who does not understand the cost in most implementations.

The Rails code base is actively maintained with careful documentation and neat

formatting, and subject to code review.

1 if exclude_end? && !value.exclude_end?

2 super(value.first) && value.last < last

3 else

4 super(value.first) && value <= last

5 end

Listing 2.4: include? from Listing 2.3 rewritten to use conventional calls

Listing 2.5 is an example of a related metaprogramming operation, respond_to?.

This returns a value indicating whether or not an object responds to a message

(has or inherits a method with that name which we can call). Here it is used to

check that a call will succeed before the call is made. The actual call is made

using a conventional send.

1 class Object

2 # An object is blank if it’s false, empty, or a whitespace string.

3 # For example, ’’, ’ ’, +nil+, [], and {} are all blank.

4 def blank?

5 respond_to?(:empty?) ? !!empty? : !self

6 end

7 end

Listing 2.5: Active Support using introspection on an object before attempting a
call which may fail

We can see an even more extreme example of a dynamic send in the Chunky PNG

routine for determining the colour that is used to represent transparent from a

greyscale palette in an indexed image. The value needs to be interpreted in dif-

ferent encodings depending on the bit depth of the image. There are different

routines such as decode_png_resample_8bit_value and

decode_png_resample_16bit_value. Listing 2.6 shows how the name of the

correct method is created through string interpolation with the value of current

bit depth.

This is another example of where code duplication has been reduced by using

a dynamic send. It would have been possible to lookup the correct method based

2.3. IDIOMATIC RUBY 41

1 def grayscale_entry(bit_depth)

2 value = ChunkyPNG::Canvas.send(

3 :"decode_png_resample_#{ bit_depth} bit_value",

4 content.unpack(’n’)[0])

5 ChunkyPNG::Color.grayscale(value)

6 end

Listing 2.6: Chunky PNG routine using send to choose a method based on input

on a large conditional expression on the bit depth variable, and it would have

also been possible to factor that out into a helper method if desired, but the

programmers here have valued the simplicity of expressing the method to call as

a dynamically calculated name.

2.3.3 Dynamic Proxies and Forwarding

Another application of dynamic sends is to create a dynamic proxy of an object.

A proxy is an object that wraps another object and when it receives a method

call it sends it on to the wrapped object. The proxy may filter or modify these

calls in some way to change the behaviour from the wrapped object. A reduced

case of the proxy pattern is simple method forwarding from one object to another,

without an explicit wrapped object.

Listing 2.7 shows an interesting use case where a method is forwarded from

PSD.rb. The hard_mix method is an implementation of one technique for com-

posing two image layers, that is found in the Photoshop file format. It takes fore-

ground and background colours from the two layers and returns the composed

colour that results from their composition. The method calls r, g, b methods

on lines 10 to 15 to extract the channel components of the colours, but these

methods are not defined in this module. Instead, there is a method_missing

handler on line 19 which is run when a method is called but no such method is

found in the object. It checks if the ChunkyPNG::Color module responds to that

method instead on line 21. It it does respond to it, the method is called using

a send on line 20 (conditions can be written in Ruby with the condition after

the body, as in Perl), implementing a kind of dynamic namespace importing of

these methods. The most interesting thing about this method is that it is called

once per pixel when composing layers with this mode, so for large images it is

extremely important for performance, and it is an example of metaprogramming

42 CHAPTER 2. CHARACTERISTICS

in the innermost loop of compute-bound production code.

1 def hard_mix(fg, bg, opts={})

2 return apply_opacity(fg, opts)

3 if fully_transparent?(bg)

4

5 return bg if fully_transparent?(fg)

6

7 mix_alpha, dst_alpha = calculate_alphas(

8 fg, bg, DEFAULT_OPTS.merge(opts))

9

10 new_r = blend_channel(r(bg), (r(bg)

11 + r(fg) <= 255) ? 0 : 255, mix_alpha)

12 new_g = blend_channel(g(bg), (g(bg)

13 + g(fg) <= 255) ? 0 : 255, mix_alpha)

14 new_b = blend_channel(b(bg), (b(bg)

15 + b(fg) <= 255) ? 0 : 255, mix_alpha)

16

17 rgba(new_r, new_g, new_b, dst_alpha)

18 end

19

20 def method_missing(method, *args, &block)

21 return ChunkyPNG::Color.send(method, *args)

22 if ChunkyPNG::Color.respond_to?(method)

23 normal(*args)

24 end

Listing 2.7: PSD.rb forwarding methods using metaprogramming

An example of a more explicit proxy with a wrapped object is the Duration

class in Active Support, shown in Listing 2.8. This class wraps a Time value,

which is accessed by the value attribute defined on line 2, and adds methods

such as as_json (not shown) and modifying other methods such as inspect

(also not shown) to show the time as time period rather than an absolute point

in time. All other methods are just forwarded to the wrapped Time value, via

the dynamic send on line 17.

2.3.4 Dynamic Code Generation

Ruby programs often use dynamic code generation to extend the program at

runtime. In some cases this is done to avoid the overhead of metaprogramming

2.3. IDIOMATIC RUBY 43

1 class Duration

2 attr_accessor :value

3

4 def initialize(value)

5 @value = value

6 end

7

8 def as_json

9 ...

10 end

11

12 def inspect

13 ...

14 end

15

16 def method_missing(method, *args, &block)

17 value.send(method, *args, &block)

18 end

19 end

Listing 2.8: Active Support’s Duration forwarding method calls to Time

in current implementations. Instead of using a dynamic send, a new conventional

send is created at runtime by creating a string of Ruby code and evaluating it.

As method definitions in Ruby are normal, imperative, executable statements,

this can be done at any point in the program. It is also an application of monkey

patching.

Active Support includes a class for writing delegates, and can generate a for-

warding method as shown in Listing 2.9. method_def creates a string from several

lines of Ruby code. The name of the method is inserted via string interpolation

(the "##{ foo} " syntax in Ruby is a string literal with the expression in brackets

evaluated, converted to a string and inserted). Line 7 then evaluates that string

as Ruby code, in the context of the current module. The method definition runs

and adds the method to the module. The resulting method has a conventional

call site with the name of the method inserted by interpolation when the code is

generated, not when it is run. The advantage of this method is that it compen-

sates for the poor implementation of send in other implementations of Ruby, but

the downsides are that this complicates debugging (debuggers may find it hard

to visualise stepping into code created from a dynamic string). It could also be

44 CHAPTER 2. CHARACTERISTICS

described as less readable, as code is now in a string literal, defeating tools such

as syntax highlighters or the limited static analysis that is sometimes attempted

on Ruby programs.

1 def delegate(method)

2 method_def = (

3 "def #{ method} (*args, &block)\n" +

4 " delegated.#{ method} (*args, &block)\n" +

5 "end"

6)

7 module_eval(method_def, file, line)

8 end

Listing 2.9: Active Support’s delegate method dynamically creating a method
to avoid metaprogramming (simplified)

Listing 2.10 shows another instance of the same pattern, this time from Active

Record where methods are created to read and write fields that are dynamically

configured from a database schema. In this case an effort has been made with the

references to __FILE__ and __LINE__ to give the generated code proper source

location information for error messages and debuggers, which indicates that this

problem is known about. An alternate string literal syntax (the <<-STR and STR

delimiters are effectively alternate double quotes here).

1 def define_method_attribute(name)

2 generated_attribute_methods.module_eval <<-STR, __FILE__, __LINE__ + 1

3 def #{temp_method}

4 name = ::ActiveRecord::AttributeMethods::AttrNames::ATTR_#{name}

5 _read_attribute(name) { |n| missing_attribute(n, caller) }

6 end

7 STR

8 end

Listing 2.10: Active Record’s define_method_attribute method dynamically
creating a getter for a database column (simplified)

For these cases we would like the programmer to be able to use dynamic sends

rather than using code generation, if the only reason the programmer is avoiding

metaprogramming is because of the cost in current implementations.

2.3. IDIOMATIC RUBY 45

2.3.5 C Extensions

Both Chunky PNG and PSD.rb have optional C extension libraries that replace

key methods in the libraries with native code. These are called Oily PNG and

PSD Native. These extensions monkey-patch methods (which is Ruby’s termi-

nology for redefining a method while a program runs) in the original, pure Ruby,

versions of the libraries.

For example, the Ruby version of the PSD.rb utility method clamp, which

clamps a value between two bounds, uses high level constructs – an array, a sort

operation and indexing:

1 def clamp(num, min, max)

2 [min, num, max].sort[1]

3 end

Listing 2.11: PSD.rb’s clamp in pure Ruby

The equivalent C code does the same task but unlike the Ruby code it does

not create an array or call Ruby’s sort method. Instead it uses the Ruby C API

to convert the objects to C primitive types and uses primitive C operators on

them to clamp the value. This bypasses the dynamic nature of Ruby, and will

normally achieve much higher performance.

1 VALUE psd_native_util_clamp(VALUE self,

2 VALUE r_num, VALUE r_min, VALUE r_max) {

3 int num = FIX2INT(r_num);

4 int min = FIX2INT(r_min);

5 int max = FIX2INT(r_max);

6 return num > max ?

7 r_max

8 : (num < min ? r_min : r_num);

9 }

Listing 2.12: PSD Native’s clamp in C using the Ruby extension API

In the case of Chunky PNG and PSD.rb the authors have written a pure

Ruby version of everything that they have written a C extension version for.

This is ideal, because it means that slower implementations of Ruby such as

MRI and Rubinius can run the C extension to improve performance, but an

implementation with better performance may be able to run the Ruby code and

46 CHAPTER 2. CHARACTERISTICS

get high performance anyway. Not all C extensions are written in this way, and

in some cases functionality is only implemented in C code. In this case, the high

performance implementation of Ruby will need to be able to run the C code, as

there is no Ruby code to run.

2.3.6 An Acid Test

The benchmarks and evaluation methodology used in this thesis are described in

depth in Chapter 4, but we will pause here to give a concrete demonstration of

the effect on performance of some of the patterns identified above.

We isolated some of the key problematic parts of the PSD.rb kernels in a

synthetic benchmark, shown in Listing 2.13.

The benchmark defines a module, Foo with a method foo on line 2 which

accepts three arguments. The method creates a Hash on line 3 with the three

arguments, maps the hash’s key value pairs to just the values to produce an Array

on line 4. It takes the middle value of this array and assigns it to the temporary

value x on line 5. The method then creates an array of the three arguments, sorts

them and takes the middle value, assigning it to y on line 6. The two temporary

values are added together and returned on line 7.

A class, Bar, has no methods but does define Bar.method_missing on line 12

which is called if a method is called on the class but not found. It checks if the

Foo module responds to the method on line 13, and if so uses Foo.send to call

the method on line 14.

The benchmark creates an instance of Bar on line 21, and calls bar.foo on

it on line 27 with three constant arguments, in a loop, measuring the time for a

million iterations.

In a sufficiently advanced implementation of Ruby, we would expect that the

inner loop of this benchmark would be compiled to a constant value, as given this

as the whole program there is no way for the result to be anything else. Dynamic

functionality of Ruby such as monkey patching means that it is possible that

methods or operators used in the benchmark may be redefined, but in this case

they are not and the program will be stable. Achieving this requires deep inlining,

including through metaprogramming sends, escape analysis of non-trivial data

structures including hashes, compile time evaluation of library methods, including

higher order methods such as map, optimistic assumption that methods are not

redefined, and constant folding.

2.3. IDIOMATIC RUBY 47

Figure 2.1: A sub-view of IR resulting from Listing 2.13

Currently, JRuby+Truffle is the only implementation that is able to reduce

this benchmark to a constant value. We can verify that JRuby+Truffle can do

this in two ways.

We can examine the IR using the Ideal Graph Visualiser tool [113]. Figure 2.1

shows a sub-view of the IR that results from running the Acid Test benchmark.

The return node has a single data input (the blue edge), which is the boxed

constant value 22 - the correct folded result. There is also a control dependency

from the return node (the red edge), which leads to guards which check that

assumptions taken to produce that constant value still hold.

We can also examine the produced machine code. Listing 2.14 shows a sub-

view of a disassembly of the AMD64 machine code that results from running the

Acid Test benchmark. As with the IR, there is code resulting from guards (631

bytes), but the method ends with loading the cached boxed representation of 22,

and then returns.

We can also measure the performance of JRuby+Truffle for this benchmark

compared to other implementations. Figure 2.2 shows speedup for this benchmark

for other implementations of Ruby. JRuby and Topaz achieve up to around 3×
the performance of MRI, but Rubinius is slower than MRI. Figure 2.3 shows

48 CHAPTER 2. CHARACTERISTICS

Figure 2.2: Performance of the Acid Test benchmark in existing implementations
of Ruby

Figure 2.3: Performance of the Acid Test benchmark in JRuby+Truffle

the speedup of JRuby+Truffle in comparison to other implementations. As

JRuby+Truffle is the only implementation of Ruby able to remove the indirection

of all the metaprogramming and reduce the benchmark to a constant value, it is

able to achieve performance around three orders of magnitude higher than MRI

or any other implementation of Ruby. This benchmark give an early indication

that JRuby+Truffle can optimise the patterns that we find in idiomatic Ruby,

and what the impact of those optimisations is on performance.

Some of the techniques used to achieve this result, and a discussion of why

other implementations are not as capable, can be found in Chapter 4. Chapter 5

covers the novel techniques which are most important for optimisation of this

particular benchmark and those from which it was derived.

2.4. SUMMARY 49

2.4 Summary

A great deal of the existing literature on Ruby assumes that features such as

metaprogramming and C extensions are unimportant niche features which can

be safely disregarded in analysis and implementation of Ruby programs [9, 10,

24, 29, 33, 32, 71]. The common idiomatic patterns which we have identified in

core parts of the Ruby ecosystem show that this is not the case.

Existing workarounds for low performance of metaprogramming and other

dynamic features of the Ruby language such as C extensions have created a

situation where there is now legacy code written in C instead of Ruby. An

implementation of Ruby must be able to run this C code, even if the problems

which prompted them to be written have now been solved.

In this thesis we will describe our optimised implementation of Ruby where

these features are optimised in the same way as conventional programming fea-

tures. In performing this optimisation we do not sacrifice other aspects of Ruby

such as debugging and tooling, and support for C extensions.

50 CHAPTER 2. CHARACTERISTICS

1 module Foo

2 def self.foo(a, b, c)

3 hash = {a: a, b: b, c: c}

4 array = hash.map { |k, v| v }

5 x = array[0]

6 y = [a, b, c].sort[1]

7 x + y

8 end

9 end

10

11 class Bar

12 def method_missing(method, *args)

13 if Foo.respond_to?(method)

14 Foo.send(method, *args)

15 else

16 0

17 end

18 end

19 end

20

21 bar = Bar.new

22

23 loop do

24 start = Time.now

25 1_000_000.times do

26 # This block should be compiled to the constant Fixnum value 22

27 bar.foo(14, 8, 6)

28 end

29 puts Time.now - start

30 end

Listing 2.13: A benchmark indicative of patterns found in PSD.rb

...

movabs 0x11e2037a8, %rax ; {oop(a ’java/lang/Integer’ = 22)}

...

retq

Listing 2.14: A sub-view of machine code resulting from Listing 2.13

Chapter 3

Implementation of Dynamic

Languages

In this chapter we discuss some of the techniques which are used to create high

performance implementations of dynamic programming languages. We begin with

basic techniques which are widely applied, using Ruby as an example language to

illustrate them, and then describe the specific techniques which are used in the

implementation of the contributions of this thesis. We introduce the novel im-

plementation of Ruby that is the subject of this thesis, JRuby+Truffle, and then

describe the other existing implementations of Ruby which we will be compar-

ing against. We then provide a broad overview comparison of the performance

of these implementations of Ruby to set the context for the evaluation in the

contribution chapters.

3.1 Foundational Techniques

3.1.1 Lexical and Syntactical Analysis

Lexical and syntactical analysis for dynamic languages are usually conventional,

using a lexer and parser generator such as Flex and Bison. The output of syn-

tactical analysis is usually an AST, which is the point at which the work in this

thesis becomes relevant.

51

52 CHAPTER 3. IMPLEMENTATION

3.1.2 From ASTs to bytecode

An AST represents the source code of methods, functions or other such units of a

program as a tree of operations. Each node in the AST is some named compute

operation, with child nodes being either a control or data dependency for that

operation. Additional data dependencies may exist in for example access to local

variables which are not represented by edges in an AST, and by the sequential

ordering of child nodes. Edges can be conditional based on the logic in the nodes

to represent logic such as conditional statements, and child nodes can be executed

repeatedly to represent logic such as loops.

To implement an AST in an object oriented language such as Ruby, Java or

C++, there is usually a class for each type of node, and child nodes are connected

via a pointer or reference. The compute operation can be implemented as an

execute method in the class. An abstract base class or interface with a generic

execute method can abstract across all node classes.

ASTs are abstract in the sense that some of the concrete syntactical elements

found in the source code such as parentheses are not present in the AST. An AST

may also use a range of levels of abstraction. For example, in Ruby most oper-

ators are actually a form of method call. A Ruby AST may represent operators

explicitly, with a special class of node for operators, or it may represent operators

using the same nodes as are used for method calls.

An AST can be directly executed by walking the tree from the root node,

executing the compute action of each node in turn. The host language’s stack

is used to implicitly keep track of which node is currently executing and which

node to return to when it is finished. Whether or not a child node is executed

or executed repeatedly may depend on code in the compute action of the parent

node. Some languages have features which may complicate this simple model,

such as goto in C which may require a jump from one node to another.

Executing an AST by walking it is a conceptually simple way to run a program,

but it is not often an efficient technique. If the AST is represented simply as

a tree of objects then navigating the tree requires a lot of pointer or reference

indirections which may not make optimal use of memory cache. Another overhead

is the cost of making a method call to perform each compute action, and costs

such as boxing needed to provide an abstract interface.

Many implementations of programming languages begin by using this kind of

AST interpreter technique, due to the simplicity of implementation. When the

3.1. FOUNDATIONAL TECHNIQUES 53

overheads become a problem, an option is to convert the AST that the parser

gives you into a bytecode format.

Bytecode is an instruction set for a virtual machine. The program is rep-

resented as a linear set of instructions, similar to machine code but often at a

higher level of abstraction. While a machine code instruction may perform some

low-level action such as reading a memory location or native word arithmetic, a

bytecode instruction may perform a much higher level action such as indexing

a dynamically sized array with bounds checking. Nodes from the AST become

instructions, with child nodes placed in the stream before parent nodes. The

sequence of the instructions represents both the control and dataflow flow of the

program. Jumps from one point in the stream to another allow for conditional

execution of code or repeated execution.

Bytecode is usually executed by maintaining an instruction pointer that refer-

ences the current instruction, and running a loop which takes the next instruction

and performs the compute action. The body of the loop will often be a large

switch statement on some operation code. Instead of data being passed along

edges as in an AST, a bytecode format may use a stack where dependencies are

popped off and results pushed on, or may use named or numbered registers that

are referenced in the instruction stream [94].

More advanced techniques for executing bytecode include using a threaded in-

terpreter where instructions are encoded as runtime procedure calls. In a direct

threaded interpreter the instructions are literally the addresses of runtime rou-

tines, and the interpreter loop just runs each call in turn. In an indirect threaded

interpreter the instructions are indices into a table of runtime routines which the

interpreter loop looks up before making each call. In threaded interpreters data

is usually passed on a stack, as there is no convenient place to store the registers

to be used for each instruction. It would also be possible to have instructions

that are objects with an execute method, as with an AST interpreter, but as the

goal of bytecode is usually to have a more efficient representation of the program

this is an unlikely technique.

3.1.3 Method Caching

As was shown in Chapter 2, dynamic and late method binding and metapro-

gramming sends are an essential feature of Ruby that is used on the hot path

of key parts of the ecosystem. As all Ruby values are objects and most Ruby

54 CHAPTER 3. IMPLEMENTATION

operators are implemented as method calls on those objects, a Ruby program usu-

ally does very little but manipulate local variables and make method calls. The

performance of method calls is therefore essential for good overall performance.

Chapter 2 previously showed that in Ruby the type of the receiver of a call

cannot in general be statically determined, and that the set of methods defined

on a class can change at any point, but we can make the reasonable assumption

that they will most likely be stable. We can use this assumption to look up the

method once, which is the expensive operation, and then cache a mapping from

the tuple of the type and the method name to the correct method, in some shared

global data structure like a hash map. The next time we execute a method call,

if the type of the receiver and the method name is the same as before then we

can lookup in the cache and use the cached method instead of looking up the

correct method from scratch. If the set of methods in a class changes, then we

need to clear the cache. The cache can be cleared globally, or it may be possible

to selectively clear it based on a particular name or class.

This global method cache is the simplest form of method cache, but has sev-

eral limitations. Using the cache still involves looking up in a map, so although it

is useful in languages like Ruby which have very complicated method resolution

rules (with inheritance, mixins etc), if the resolution algorithm was simple any-

way then switching to looking up in a cache instead might not result in higher

performance. The global method cache is also limited in size, and the size will

probably not be related to the number of call sites in the program. As programs

grow in complexity it is possible that the cache may be too small for the number

of method calls in the hot path of the application, and the cache entries will be

continually cleared and added.

A more advanced technique is to store a single-entry method cache with the

instruction, as an inline cache (IC) [25]. In the case of an AST interpreter the

cache can be stored in the node objects. In a bytecode interpreter, the instructions

can be extended with a mutable field to store the cache. This is known as bytecode

quickening [19]. The advantage of an inline cache is that you automatically scale

the number of caches with the number of call sites. Disadvantages include that

method resolution needs to be performed to fill each cache, rather than once for

each tuple, which can be mitigated by pairing with a global cache that is used

when filling the inline caches. Another disadvantage is that to clear the caches

you now have to find many inline caches. This can be solved using a cache version

3.1. FOUNDATIONAL TECHNIQUES 55

number, which can be incremented to say that all caches with a previous version

are invalid. The caches can then be cleared lazily the next time they are accessed

and the version number is found to be out of date with the latest version.

Another disadvantage of inline caches is that they store only one value. A

single call site in most dynamic languages can see multiple receiver types, so a

cache that stores a single value could be continually missed and refilled. A solution

to this is a polymorphic inline cache (PIC), which stores multiple entries [54].

Unlike a global cache, a PIC is normally searched linearly rather than searched

by hashing. The test that is applied to check that an entry in the cache is suitable

is often called the guard.

With PICs there needs to be some mechanism to limit the size of the cache so

it does not grow beyond the point where the linear search is effective and memory

consumption is reasonable. A maximum size can be enforced, and beyond that

size the cache is described as megamorphic. The cache could be removed and full

method resolution used instead, or full resolution could be added to the end of

the PIC, keeping the previous entries.

3.1.4 Dynamic Optimisation

As already described, AST interpreters have considerable overhead due to method

calls and a non-linear data structure. Bytecode interpreters also have an overhead

in the instruction loop, the switch statement for simple interpreters or the calls

for threaded interpreters. Bytecode instructions also run independently of each

other, with little possibility to optimise across them. An option to further increase

performance is to dynamically optimise, or just-in-time compile the program to

machine code [25].

A simple case form of dynamic optimisation is a template compiler, where

each instruction is translated to a template of machine code. Like in a bytecode

interpreter, data flow between these blocks of instructions may use a stack or

some other standard interface. The performance of template compilers may be

limited because optimisations between instructions are not considered, and each

block of machine instructions are emitted independently of the next.

More advanced dynamic optimisation may use an advanced intermediate rep-

resentation and multiple optimisation phases, sophisticated register allocation

and instruction selection and scheduling, just like a powerful static compiler does,

although the techniques may be tuned to reduce the time they consume, given

56 CHAPTER 3. IMPLEMENTATION

that they may be competing with the application for processor time. This allows

the resulting machine code to be optimised across whole methods, just as a static

compiler would.

Another option is to use a compiler framework such as LLVM, or re-use an ex-

isting VM that already uses dynamic optimisation such as the JVM. Here instead

of emitting native machine instructions, the IR or bytecode of the framework or

VM is used instead. This means that the advanced parts of a compiler are pro-

vided for you, but the disadvantage is that they are not specialised for your lan-

guage. The best performing implementations of highly dynamic languages such

as Google’s V8 implementation of JavaScript often use finely specialised compiler

phases, and V8 has hand-written assembly templates for some key operations.

This isn’t easy to add when you have added a level of abstraction between your

implementation and the code generation.

Part of dynamic optimisation may be to gather profiling information while

the interpreter runs, and use this information to specialise the code produced

by the dynamic compiler for the program as it is actually running. Examples

of profiling information that could be gathered include counts of which side of

a branch is taken, what types are seen in variables, whether or not arithmetic

overflows, and so on. Gathering this data will likely slow down the interpreter,

so it trades-off cold-performance and time to warm-up with peak performance.

This is a trade-off that is discussed further in Chapter 4 and is considered fair

for our purposes.

3.1.5 Dynamic Deoptimisation

Dynamic optimisation can be made more effective with the ability to dynamically

deoptimise. That is, to go from the optimised machine code back to the interpreter

and resume running from the same point in the program but now running in the

interpreter [55]. This is more complex than simply jumping from machine code

into the interpreter, as the native code will likely use data structures such as

stack activation frames in a different format than the interpreter, and if so these

will need to be converted.

When machine code is deoptimised it may also be discarded so that it is not

used again if it has become invalid. Dynamic deoptimisation without discard-

ing the generated machine code can be called a transfer to interpreter and is

useful where the machine code does not handle some behaviour but there is no

3.1. FOUNDATIONAL TECHNIQUES 57

invalidation required and the same machine can be run next time.

If a language implementation is able to repeatedly dynamically optimise and

deoptimise then the compiler can make aggressive speculative optimisations, al-

ways knowing that it can back-out to the interpreter and start again if the spec-

ulative assumptions do not hold.

One example of this is that a PIC can be compiled into the machine code so

that it becomes a series of linear guards in the machine code. This means that

there is no separate data structure to represent the cache that has to be fetched

separately, and should improve cache efficiency. However the PIC is mutable and

may need to change if the cache misses and a new entry is added, or if the cache

transitions to a megamorphic configuration. One way to handle this is to always

compile a fallback case at the end of the cache, but if the cache becomes invalid

and the machine code cannot be discarded the cache will continue to miss and the

fallback case will be used every time. With dynamic deoptimisation the program

transfers to the interpreter where the cache is modified. New machine code with

the modified cache can be produced again in the future.

Another example of the use of dynamic deoptimisation is removing branches

that have not been executed in the interpreter, or that we know we will never

want to execute in machine code as they are uncommon or they are always going

to be slow even in machine code so there is no point trying to optimise them. This

is often called an uncommon trap, with trap referring to the jump to the inter-

preter. A key example of an uncommon trap is integer arithmetic overflow. Many

dynamic languages have two types of integer, an efficient machine word integer

and a much slower heap-allocated arbitrary precision integer. When arithmetic

on the machine word integer implementation overflows an arbitrary precision in-

teger is produced instead. This requires code after each arithmetic operation to

check if it has overflowed (or alternatively before to check if it will overflow), and

code to handle the conversion to arbitrary precision if it has.

Overflow is probably rare in many cases, so more compact machine code can

be produced if instead of handling the overflow case in the machine code an

uncommon trap is used, the program transfers to the interpreter to handle the

overflow.

This is effective on its own, but it becomes even more effective when the

program after the arithmetic operation is considered. If the overflow case is

compiled into the machine code, then all code after the arithmetic operation will

58 CHAPTER 3. IMPLEMENTATION

need to be able to handle either a machine word integer or an arbitrary precision

integer. If the overflow is turned into an uncommon trap then we can guarantee

that if the machine code is still running then the value must have fit in a machine

word integer.

Dynamic deoptimisation can be triggered by the thread which is running the

optimised code, in which case it is local, or it can be caused by another thread

running other code, in which case it is non-local. An example of this situation is

where one thread redefines a method that has been compiled as an inline cache

into machine code being run by another thread. There the redefining thread has

to cause another thread to deoptimise.

3.1.6 Inlining

When generating machine code in dynamic optimisation it is possible to replace

calls to methods with a copy of the body of the method, in a process known

as inlining. Inlining is often called the mother of all optimisations because it

increases the scope over which other optimisations can be applied. This has a

significant impact on reducing the cost of high abstraction that is present in many

dynamic languages.

Inlining in a language with dynamic and late binding would appear to be

problematic, but if an IC is used then the method which has been cached can be

inlined. If a PIC is used then multiple methods can be inlined. If methods that

have been inlined are redefined then the cache where they were inlined from can

be invalidated and the method replaced via dynamic deoptimisation. Inlining

can complicate dynamic deoptimisation however, as now a single optimised stack

activation can contain an arbitrary number of source-language methods.

3.1.7 Escape Analysis and Allocation Removal

Dynamic languages such as Ruby often work at a high level of abstraction. Data

structures such as arrays and maps are used liberally and memory management

is automatic so the programmer sees very little evidence in the source code of the

cost of the allocation that will be needed. Depending on the language implemen-

tation, even fundamental values may be heap-allocated, such as boxed integers

or floating point values.

An example of this is Listing 2.11, where we showed a Ruby implementation

3.2. APPLIED TECHNIQUES 59

of a clamp operation that constructed an array of three elements, sorted it and

selected the middle element. Logically, this allocates an initial array and a new

sorted array. This can be compared to the C version of the same method in

Listing 2.12 which does no allocations.

Allocations are expensive as they access the heap which may utilise cache

less efficiently than the program stack would (which will almost certainly already

be in cache), they may require synchronisation such as if the heap needs to be

expanded, and they create additional work later for the garbage collector. Avoid-

ing allocations to remove this extra level of abstraction is therefore important in

dynamic languages. The key techniques to achieve this are escape analysis and

allocation removal [21].

Escape analysis determines if an allocation is ever referenced from outside a

compilation unit. Escape is primarily caused by writing the object to another

object which is itself escaped. Allocation removal uses the result of escape analysis

to determine what objects do not need to be allocated on the heap. The simplest

alternative is to allocate objects on the program stack instead with exactly the

same layout, but it is also possible to allocate purely in registers if the objects are

small and registers are available, and it is also possible to not formally allocate

any space anywhere and instead connect producers of values which go into an

allocated object directly with their consumers which would have read from the

object, in the program’s IR. Allocation removal may not be ideal in all cases

even if an object does not escape, such as if an object would consume a large

amount of program stack space (program stacks are difficult to reallocate if space

is exhausted).

Even the HotSpot C2 compiler has only supported escape analysis only since

version 1.6, so while the technique is well understood it isn’t always widely ap-

plied.

3.2 Applied Techniques

3.2.1 Self-Optimising AST Interpreters

One of the two key technologies applied in this thesis is the Truffle language

implementation framework for self-optimising AST interpreters [115].

Truffle began with the observation that most language implementations begin

60 CHAPTER 3. IMPLEMENTATION

with an AST interpreter and then go through a long process of slowly adding the

more sophisticated runtime techniques described above as they gain users and

those users demand better performance.

When a Truffle AST node’s compute action method is run, as well as per-

forming the compute action the node can replace itself with a specialised version

based on the data it received. The simplest example of a specialisation is one

based on the types of values received from child nodes. An add operation in

many programming languages is polymorphic and may be able to add together

integers, floating point values, strings and so on. The add node in a conventional

AST interpreter will therefore also be polymorphic. In Truffle there are multiple

implementations of the add node, each designed to handle specific types. When

a Truffle AST is run the uninitialised add node will replace itself the first time it

runs with a new node specialised for that types that it has previously seen. If dif-

ferent types are seen the next time that node is executed, it may specialise again.

In order to prevent continual re-specialisation, a lattice of types may be used so

that specialisations always move towards a megamorphic node which handles any

types. This megamorphic node is effectively the same as the node that would be

used in a conventional AST interpreter.

Figure 3.1 shows the Truffle model of specialisation. Initially we will only

focus on the first two of the three stages shown. An AST begins with all nodes in

uninitialised state, shown with the labelling of nodes as U . As the program runs

and nodes see values produced by child nodes, nodes can specialise by replacing

themselves with versions that are suited to the type of those values. A node that

sees two integers, shown by I, produced by its children may rewrite as a version

specialised just for integers. So that these specialisations converge, the types

involved form a lattice and any specialisations usually move downwards towards

a completely general case which can handle any types. The lattice in this diagram

shows primitive integer I and double precision floating point D types, a string S

type and a generic G type. A generic node can handle any types and so does not

specialise further.

AST specialisation can be seen as similar to, but more general than bytecode

quickening [19]. One differentiator is that nodes do not have limited space to

expand into, and a node can specialise itself to a new sub-tree of nodes, rather

than replacing nodes one-for-one. An example of this is the dispatch chains that

will be shown in Chapter 5.

3.2. APPLIED TECHNIQUES 61

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U

I

D

G

Uninitialized Integer

Generic

DoubleString

Figure 3.1: Self-optimising ASTs in Truffle [114]

Self-optimising AST interpreters have proved to be a simple primitive which

can be used to represent many of the essential techniques of a high performance

language implementation. For example, ICs and PICs can be represented as

chains of nodes, with each containing the guard and a method to call.

Truffle is implemented in the Java programming language by a team of re-

searchers at Oracle Labs. Truffle node classes can be written by hand in Java,

or a DSL based on Java annotations can be used to automatically create nodes

based on multiple execute methods, with the types of their arguments declaring

the types that the node for that execute method will accept [56]. The Truffle

DSL has many sophisticated features which are not discussed further in this the-

sis, such as creating a chain of nodes to handle multiple types and avoid moving

to a megamorphic node, facilities to declaratively create PICs and more.

3.2.2 Partial Evaluation

Truffle improves the performance of AST interpreters, but on its own it does not

help language implementations achieve the kind of performance that is possible

with dynamic optimisation. To improve performance further, Truffle is combined

with a new dynamic compiler for the JVM, Graal [114].

Graal began as part of the Maxine project, which was a meta-circular reim-

plementation of the JVM in Java [111]. A meta-circular implementation of a

language is one that is itself written in that language. In the case of Maxine,

Java was used to implement the JVM. Maxine’s optimising compiler, C1X, be-

gan as a port the HotSpot C1 compiler into Java. C1X was put back into HotSpot

as C1X4HotSpot, and later became Graal with significant new optimisations that

make it comparable in performance to HotSpot’s peak performance compiler C2.

62 CHAPTER 3. IMPLEMENTATION

Graal now uses a sea-of-nodes [22] IR, similar to C2, that is designed to be exten-

sible [26] so that projects such as Truffle can be integrated easily. Today Graal

is at least competitive with the performance of C2 [98].

Graal is not writen in Java just for the sake of academic exercise in meta-

circular implementation. If the compiler is written in Java then it can expose a

Java API to the running program. Truffle’s Graal-specific backend uses this API

to directly control the compiler as a service, and use it to compile Truffle ASTs

after they have been specialised.

The final transition of Figure 3.1 shows how Truffle’s Graal backend takes all of

the execute methods from the nodes in an AST, inlines them all and all methods

they call into a single compilation unit, applies optimisations, and produces a

single piece of machine code for the whole AST. The technique that Graal uses

is called partial evaluation [93, 103]. This means that the compiler does not

just compile the program, it will also execute as much of it as it can, given the

information it knows at compile time. Truffle treats the AST data structure as

information known at compile time, resulting in a residual program that runs

the program that the AST described. This transformation is known as the first

Futamura projection [34].

Graal has very good support for speculative optimisations [27], and is able

to deoptimise from the compiled, partially evaluated representation of an AST

back to the unoptimised AST intepreter1. Truffle’s Graal backend will auto-

matically deoptimise if any nodes re-specialise, and it also provides two mech-

anisms to explicitly control deoptimisation. Threads can explicitly deoptimise

using transferToInterpreter(), they can deoptimise and invalidate the cur-

rent machine code using transferToInterpreterAndInvalidate(), and a third

option designed to support non-local cache invalidation is an Assumption object

which is referenced in compiled code and has a method to invalidate() that

transfers and invalidates the locations in compiled code which referenced that

object.

Figure 3.2 shows how Truffle’s Graal backend uses deoptimisation to be able to

continue to specialise ASTs even after they have been compiled. Control transfers

from the compiled machine code back to the AST. Additional specialisations may

be triggered by whatever change in state it was that caused the deoptimisation

1Note that the Truffle interpreter may itself be compiled by the conventional JVM dynamic
compiler, but we refer to this state as the unoptimised interpreter for simplicity.

3.2. APPLIED TECHNIQUES 63

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update
Profiling Feedback

Recompilation using
Partial Evaluation

Figure 3.2: Graal and Truffle deoptimising from optimised machine code back to
the AST, and re-optimising [114]

in the first place. After allowing for stabilisation, optimisation may again be

triggered and new machine code is produced.

3.2.3 Partial Escape Analysis

In conventional escape analysis, as soon as it is determined that an object may

escape at some point, the object will be considered escaped in all cases. Graal

supports a more sophisticated partial escape analysis, which will consider on which

branches an object escapes, and will allocate the object only as control flow

reaches a point where the object will escape [96, 101]. This allocation is called

reification, re-materialisation or de-virtualisation.

In a method with an object that is logically allocated ahead or two possible

branching control flow paths, on one of which the object escapes, and another

where it does not, conventional escape analysis would reify the object at the

allocation point, as the object would be considered escaped due to the one possible

control path where it escapes. Partial escape analysis would reify the object only

at the point where the control flow edge is taken which means that the object

will actually escape.

For Truffle’s Graal backend, the sophisticated partial escape analysis phase is

not just another optimisation phase. Truffle’s represents runtime structures such

as stack activation frames as normal Java objects, and relies on the partial escape

analysis phase to successfully remove their allocation.

3.2.4 Splitting and Inlining

Truffle’s AST model allows for conceptually simple inlining. To inline one method

(so one AST) into another, a node that would have made a call is replaced with a

node that references the called AST. Unlike in compilers which perform inlining

64 CHAPTER 3. IMPLEMENTATION

at a lower level IR, no special work is required to modify argument handling

in the inlined method. Inlined methods can just allocate their own new stack

activation object as normal and partial escape analysis is again relied upon to

collapse multiple stack activations into one.

Splitting is a related technique, where an inlined AST is not just referenced

from the call site, but is also copied so that the call site has a separate copy of

the method, which can specialise independently of any other.

3.2.5 Other Dynamic Language Optimisation Techniques

Truffle’s Graal backend is a method-at-a-time JIT, with additional support for

on-stack replacement (OSR) of a running method. OSR allows a method that

has entered a long-running loop to be transfer into compiled code while it is still

active on the stack.

Examples of more conventional method JITs include Google’s V8 engine and

Mozilla’s JägerMonkey and IonMonkey JavaScript implementations, the JRuby

and Rubinius implementations, as well as most JVM and CLR implementations.

The key alternative to method-at-a-time JITs is tracing and meta-tracing

compilers [58, 16, 14, 18]. A tracing JIT compiles loops, rather than methods,

and any code that is dynamically part of the loop is liable to be included in the

compilation unit which means that inlining comes naturally. The term tracing

refers to the way that the behaviour of the program is traced to produce a se-

quence of instructions that were on the critical path and should be compiled.

Meta-tracing means that the instructions being traced are not those of the ap-

plication itself, but those of an interpreter for the application. PyPy’s RPython

language implementation system [16], LuaJit [83], and Mozilla’s TraceMonkey

JavaScript implementation [36] are three key examples of tracing JITs.

Less common approaches for optimising dynamic languages include block-at-

a-time or tracelet-based JITs such as Facebook’s HipHop VM for PHP [8] and

the Higgs JavaScript implementation [20].

3.2.6 Additions to Truffle

Truffle and Graal are existing research projects [115, 114]. The additions for

debugging and tracing in Chapter 7 are now part of the public Truffle API. In

the course of this research, some additions were also made to the Assumption

3.3. IMPLEMENTATIONS OF RUBY 65

class, described in depth in Section 7.5.

3.3 Implementations of Ruby

3.3.1 Matz’s Ruby Interpreter

As with similar languages such as Python, Ruby has a single canonical imple-

mentation, with the behaviour of this implementation defining the behaviour of

the Ruby language. In the case of Ruby this is Matz’s Ruby Interpreter [116],

named for the creator of Ruby, Yukihiro Matsumoto. In some cases it is also

called CRuby.

The original implementation of MRI was a simple (not self-optimising) AST

interpreter implemented in C with a global method cache. This was the imple-

mentation used through to version 1.8 of Ruby, which was the period where Ruby

became popular with the Rails framework and was in use until around 2007. This

version of Ruby was standardised as ISO/IEC 30170:2012 [57].

After Ruby became popular with the Rails framework there was a desire to

improve the extremely limited performance. Around 2005 MRI was forked by

Koichi Sasada and the execution model was rewritten to use a bytecode format

and interpreter, rather than directly interpreting the AST, and to use inline

method caches [90]. This fork, known as YARV, was merged back into MRI for the

1.9 version of Ruby and increased performance by around 2× (see Section 3.3.6).

3.3.2 Rubinius

Rubinius [86] was started as a from-scratch implementation of Ruby, using the

Blue Book techniques that were applied in the implementation of Smalltalk [38]

(some of these techniques were discussed in Section 3.1) in order to try to achieve

higher performance. Rubinius supports the majority of the Ruby language and

libraries and are able to run significant applications in production.

The Rubinius VM is implemented in C++, but a substantial portion of the

Ruby-specific functionality such as the parser, bytecode compiler and core library

is implemented in Ruby. The first stage of execution in Rubinius is a bytecode

interpreter similar to that in MRI. In the next tier Rubinius uses LLVM [65] to

implement JIT compiler backend. The Rubinius compiler is not much more than

66 CHAPTER 3. IMPLEMENTATION

a template compiler, emitting a pattern of LLVM IR for each bytecode instruction

and relying on the optimisation phases provided by LLVM.

Rubinius has a simple form of dynamic deoptimisation in that it can transfer

from compiled code back to the interpreter and it can invalidate machine code,

but Rubinius rarely uses uncommon traps and often uses fallback code in machine

code rather than deoptimising on case that the machine code was not designed

for.

In practice, the performance of Rubinius on all benchmarks we tried was not

much better than that of MRI (see Section 3.3.6).

3.3.3 JRuby

JRuby [78] is an implementation of Ruby written in Java and running on the JVM.

Like many other implementations of Ruby it began as a simple AST interpreter

and has adopted more sophisticated techniques over time. JRuby 1.7 compiles

ASTs to JVM bytecode [41], without an intermediate bytecode as in Rubinius,

using a template compiler that visits the AST to emit a pattern of byecode for

each node. As with Rubinius and LLVM, JRuby relies on the JVM to apply

almost all optimisations beyond this point.

Like, Rubinius, JRuby also supports the majority of the Ruby language and

libraries and is able to run significant applications in production.

Invoke Dynamic

In an attempt to improve on the performance of dynamic languages on the JVM

in general, the Da Vinci Machine project added a new instruction to the JVM,

invokedynamic, and associated runtime infrastructure. This new instruction

allows application-defined call site semantics [87, 89].

JRuby was a key-motivator and an early adopter of invokedynamic. Until

the development of the new Nashorn JavaScript implementation, and implemen-

tation of lambdas on Java 8, JRuby was easily the most sophisticated and widely

deployed application of invokedynamic.

After several years of refinement, performance of invokedynamic for JRuby

is still perhaps not as good as was hoped. For the benchmarks that were evalu-

ated, JRuby with invokedynamic was often no faster than without, sometimes

worse, and never more than around twice as fast in exceptional cases. Overall

3.3. IMPLEMENTATIONS OF RUBY 67

it is only 13% +-5% better than without, for the benchmarks that we tried (see

Section 3.3.6).

JRuby IR

In both Rubinius and JRuby, the only optimisation phases are those provided

by the underlying system which is LLVM or the JVM. The JRuby project is

attempting to tackle this by using a high-level IR that represents Ruby code

more directly than JVM does, and can be used to manipulate the program to

apply optimisations such as constant folding.

At the time of writing, the JRuby IR does not demonstrate an overall speedup

compared to the old AST template compiler (see Chapter 4), but this is because

the foundation for IR has only just been finished and significant optimisations

have not been added yet.

3.3.4 Topaz

Topaz [37] is an implementation of Ruby written in Python using the RPython

language implementation system and its meta-tracing JIT [16]. Topaz uses a

bytecode format and the RPython implementation is an interpreter for this byte-

code, which is meta-traced for produce a JIT.

Unlike MRI, Rubinius and JRuby, Topaz is at an early stage in development.

It supports around 44% of the Ruby language and around 46% of the core lirbary

(see Section 4.4 for methodology), which is not enough to run much beyond the

small benchmarks evaluated here.

3.3.5 JRuby+Truffle

JRuby+Truffle is an implementation of Ruby using the Truffle language imple-

mentation framework and the Graal dynamic compiler. Originally a standalone

research implementation and known as RubyTruffle, JRuby+Truffle was later

open-sourced and merged into the exist JRuby project as an optional backend.

JRuby+Truffle supports around 93% of the Ruby language and around 87% of

the core library. This is enough to run simple web frameworks such as Sinatra [75],

but not yet Rails.

JRuby+Truffle is conceptually at least one level simpler than other contem-

porary implementations of Ruby, as it is still just an AST interpreter, although

68 CHAPTER 3. IMPLEMENTATION

a very sophisticated one. It does not have a bytecode format and has no manual

code or IR generation phase. All the stages beyond the AST interpretation and

specialisation are handled automatically by Truffle and the Graal compiler.

3.3.6 General Performance Evaluation

Before describing the research contributions of this thesis, it is important to

consider a very broad, general overview of the performance of the different im-

plementations of Ruby. Some of the techniques we describe such as in Chapter 5

aim to achieve zero overhead for using a particular language feature. However,

this is not useful if the baseline performance is poor.

Methodology for all of the evaluation in this thesis is discussed in Chapter 4.

Figure 3.3 shows speedup compared to MRI 2.2.2 for the released version of

JRuby with invokedynamic, Rubinius (abbreviated Rbx), Topaz, the develop-

ment version of JRuby with IR and also invokedynamic, and JRuby+Truffle

running with the Graal compiler. Performance for individual benchmarks varies

considerably; more precise results will be presented in specific chapters and this

figure is only intended to show that the performance of JRuby+Truffle is at the

very least extremely competitive.

For this set of benchmarks, neither Rubinius nor JRuby manage to achieve a

meaningful speedup compared to MRI, but JRuby+Truffle achieves and order of

magnitude increase in performance over MRI.

Figure 3.4 shows the same results, but without JRuby+Truffle so that the

other implementations may be more easily compared. Here the performance lead

that Topaz has over the other implementations is clear.

Figure 3.5 shows performance on historical versions of MRI. An increase in

performance is shown between versions 1.8 and 1.9 when YARV is merged. The

subsequent increase in performance between 1.9 and 2.0, and 2.0 and 2.1, was

probably caused by improved GC and other smaller optimisations. This shows

that the performance of the runtime system is probably as important as improving

the execution model.

Figure 3.6 shows the impact of invokedynamic on the performance of JRuby

for the benchmarks we evaluated.

3.3. IMPLEMENTATIONS OF RUBY 69

Figure 3.3: Summary performance of different Ruby implementations on all of
our benchmarks

Figure 3.4: Summary performance of different Ruby implementations on all of
our benchmarks, excluding JRuby+Truffle

70 CHAPTER 3. IMPLEMENTATION

Figure 3.5: Summary performance of historical versions of MRI on all of our
benchmarks

Figure 3.6: Summary performance of JRuby with invokedynamic

3.3. IMPLEMENTATIONS OF RUBY 71

3.3.7 Other Implementations of Ruby

MRI, Rubinius and JRuby are the only implementations of Ruby that are suffi-

ciently complete and up-to-date with the Ruby language for there to be significant

deployment in production. Compared to other similar languages such as Python,

there have been a large number of Ruby implementations over the years, although

most of them are now discontinued and none of them achieved performance even

comparable to modern JRuby or Rubinius.

MagLev [30] is an implementation of Ruby built on top of the GemStone

Smalltalk VM which provides a JIT. The unique feature of MagLev is that it

provides a distributed shared cache and a persistent object store with ACID

transactions. We were not able to benchmark MagLev due to licensing concerns,

but performance is known to be comparable to MRI 1.9, which when it was

originally released (in the 1.8 era) was a significant result [7].

Ruby Enterprise Edition was forked from MRI 1.8, when it was still using

a simple AST interpreter and performance was extremely limited. REE modi-

fied the garbage collector to interact better with copy-on-write when the forking

model of concurrency is used, and added an alternate implementation of malloc.

Claimed benefits at the time were reduced memory usage and increased perfor-

mance, although these were easily surpassed by the later YARV work that was

merged into MRI.

MacRuby and RubyMotion are related implementations of Ruby that use

the integrate into the Apple development ecosystem such as supporting the Cocoa

API on the Mac and UIKit API on iOS. MacRuby included a JIT compiler using

an LLVM backend, like Rubinius. RubyMotion also supports compilation to JVM

bytecode, and reportedly a Windows target is in development. RubyMotion is

a commercial product so it was not possible for us to evaluate the performance

or compatibility it achieves. The RubyMotion documentation says that it only

supports ‘a dialect of Ruby that is statically compiled’ and although we cannot

verify, we think it is unlikely that it either supports metaprogramming that we

are interested in, or that it implements it with the high performance that our

benchmarks require.

72 CHAPTER 3. IMPLEMENTATION

mruby is a very simple implementation of Ruby designed for embedded envi-

ronments. It does not aim to be compatible with standard Ruby.

IronRuby was an implementation of Ruby on Microsoft’s Dynamic Language

Runtime effort to improve dynamic language support on the CLR [3].

XRuby and InfraRuby were both statically compiled implementations of

Ruby targeting JVM bytecode. InfraRuby can also be statically typed using

non-standard type annotations and type inference.

Ruboto is JRuby packaged for the Dalvik VM and the Android platform.

HotRuby, RubyJS and Opal are all implementations of Ruby that are de-

signed to work on a JavaScript platform. HotRuby is a JavaScript interpreter

for the bytecode generated by YARV. RubyJS is just an implementation of the

core library to allow people to program in JavaScript but use a familiar library.

This may be designed to be used with the CoffeeScript language, which is a lan-

guage with Ruby-like syntax that is translated to JavaScript. Opal is a Ruby to

JavaScript translator. Of these three, only Opal is maintained and attempts to

implement a significant portion of the Ruby language and core library.

Crystal is a statically typed and statically compiled language that has has a

similar look and feel to Ruby, but does not support any forms of metaprogram-

ming. It uses the LLVM framework for static compilation.

We did not evaluate against these implementations either because they are

unmaintained, they do not support modern Ruby, they do not support enough

of the standard Ruby or core library to run our benchmarks, their performance

is known to be extremely limited, or they do not implement features which are

relevant to our evaluation such as metaprogramming and debugging.

3.4 Parallelism and Concurrency

Most implementations of Ruby support concurrency, with the Thread and Fiber

objects allowing for pre-emptive and cooperative concurrency. This is useful in

practice for IO operations, which may block one thread but allow another to con-

tinue until the result is available. Only Rubinius and JRuby support parallelism

3.5. SUMMARY 73

for the Thread object, which means actually executing more than one thread at

the same time on multiple cores. Other implementations of Ruby have a global

interpreter lock which can only be held by one thread at a time, to actively pre-

vent parallelism. JRuby+Truffle currently also has a global interpreter lock. This

is not an inherent limitation of the Truffle and Graal approaches, but removal of

the lock is still a fairly significant project and is not part of this thesis.

3.5 Summary

We have described existing techniques for implementing dynamic programming

languages. Many of these techniques are well understood but they aren’t always

applied in implementations of Ruby due to the complexity of implementation. A

system such as dynamic optimisation is a great deal of work, and previous efforts

to re-use that work from systems such as LLVM or the JVM have not shown a

huge increase in performance in Rubinius or JRuby for the benchmarks tested.

We think that this could be due to the existing techniques not working well for

the characteristics that were identified in Chapter 2. Novel techniques are needed

to optimise these Ruby language features, and that will be the contribution of

the following chapters.

In this chapter we also introduced JRuby+Truffle and the other implemen-

tations of Ruby that we will be comparing against, and stated why we are not

comparing against legacy implementations of Ruby that are unmaintained or do

not support the features we are evaluating.

74 CHAPTER 3. IMPLEMENTATION

Chapter 4

Evaluation Methodology

In this chapter we describe the key goal for the majority of work in this thesis.

We begin by describing the context in which Ruby is used and use this to inform a

philosophy for our evaluation and identify the goal that we are working towards.

We then set a metric that will be used to evaluate if that goal is being reached,

and describe how we measure, summarise, compare and present that metric. We

also identify non-goals which fall outside of the scope of the work in this thesis.

In Section 3.3.5 we already provided an overview of the performance of the sys-

tem implemented for this thesis, JRuby+Truffle. This chapter gives the method-

ology used for that overview, and for the evaluation sections in the following

chapters.

4.1 Evaluation Philosophy and Goals

We begin with an observation about the environments in which Ruby is used.

Ruby is generally used in a server environment, when long-running processes

handle a non-terminating stream of requests, each of which must be processed

and a response sent.

The customer or other end-user accessing a web server cares only about the

time taken for the request response to be returned. Reducing response time by

increasing the compute power in a server is difficult, due to the sequential nature

of most Ruby programs and implementations, and the slowing gains in sequential

single core performance of processors. This means that adding additional cores

will not reduce the response time for a single customer. Increasing the memory

capacity of a server is more easy as the limit on the quantity of memory that

75

76 CHAPTER 4. METHODOLOGY

can be attached to a server is very high and a single sequential process can take

advantage of all memory attached to a system. From this we identify that the

goal is to minimise the time taken to produce a response to a request, and that

we want to do that by reducing the compute resource used to handle a request,

possibly at the expense of using additional memory.

As Ruby programs generally run indefinitely, handling a stream of requests

until the service is upgraded to a new version, is no longer needed, or maybe

some other conditions such as migrating a service between servers, we identify

that the goal is more specifically to reduce the average response time in a long-

running process. The time needed to fulfil an initial sub-set of requests is not

as important, which means we may want to minimise the response time of the

majority of requests, possibly at the expense of the response time for initial

requests.

Our goal therefore is to minimise the time needed to perform some computa-

tion iteration in a Ruby program, as part of a long running process, allowing for

an initial set of iterations that can require more time.

4.1.1 Peak Temporal Performance

The metric that we use to evaluate performance toward this goal is peak temporal

performance.

By temporal we mean the time taken to complete an iteration of some compu-

tation, such as a request made to a service. We are concerned with real elapsed

wall-clock time, as that is what the individual user or customer perceives waiting

for a response. The customer does not differentiate between time spent in kernel

processes or user processes, or time spent in garbage collector or compilation, so

we ‘bill’ all time consumed by any part of the system to the benchmark.

By peak we mean the period of the process after it has had sufficient time to

reach its best performance. In practical terms and with reference to Chapter 3,

this means when the system has had a chance to gather profiling information, to

populate caches and to perform dynamic optimisation.

It would seem that it should be simple to determine the time when peak

performance starts. If we are measuring iteration sample times then maybe we

can observe when the times suddenly drop after dynamic optimisation. Or if

we can get feedback from the dynamic compiler maybe we can be notified when

dynamic optimisation is complete.

4.1. EVALUATION PHILOSOPHY AND GOALS 77

The problem with looking for a drop in iteration times is that although a drop

may have been seen, there is no way to know if there will be a further drop in

the future. With extremely sophisticated interaction with multiple systems such

as GC, it is also possible that runtime times could go up after a period of time.

The problem with using feedback from the dynamic compiler is that different

parts of the program will be compiled at different times and there is in practice no

big bang when compilation is complete. We informally experimented with using

this technique and found that when running benchmarks for many minutes meth-

ods would occasionally still be compiled, such as those involved in the benchmark

harness, or methods only called once per iteration. Dynamic compilers like Graal

are also entitled to compile whatever methods they want at any point, or even to

recompile a method based on new information.

In general, determining when a system has warmed up, or even providing a

rigorous definition of the term, is an open research problem that we are not able

to provide a solution to here.

Where we use the term performance without qualification, we mean peak

temporal performance. A related term to peak performance is steady state. An

implementation is running in a steady state if performance is not currently chang-

ing, or more strongly if it will not change in the future.

4.1.2 Non-Goals

There are many other legitimate goals for the implementation of a dynamic pro-

gramming language which fall outside of the scope of this thesis.

Start-Up Time

Start-up time is the time taken before the first line of the benchmark is executed.

The starting point for this measurement could be the point before the parent

process calls exec, or it could be in the first line of the main method of the

implementation.

The start-up time metric measures how fast the system can load and parse

source code, how fast any standard library code can be loaded, how long the

runtime takes to setup threads for services such as garbage collection, and so on.

Start-up performance has a big impact on certain use cases such as programs

written to be used as command-line utilities or as part of shell scripts. This is

78 CHAPTER 4. METHODOLOGY

the case of Ruby for some limited applications, and JRuby is often criticised for

its poor start-up performance.

We don’t consider start-up in this thesis as it does not impact on the use-case

of Ruby that we are interested in and that we have used to set our goal1.

Cold Temporal Performance

We do not consider cold temporal performance, which would mean the time taken

to perform a computation iteration for the first time in a process. In the case of

JRuby+Truffle and similar implementations, the cold performance is the phase

in which the interpreter is running and in which ASTs are being specialised and

profiling information gathered.

JRuby+Truffle deliberately accepts a trade-off of time to warm-up in return

for higher peak-performance. As a concrete example, a pair of branches which are

chosen between based on a Boolean condition in JRuby+Truffle are ordered in

the compiled machine code based on the probability of each branch being taken.

When they have no other information, either because the branch has never been

seen or the branch prediction cache is full, common processors will assume that a

backward jump is taken an a forward jump is not taken. We use this knowledge to

put higher probability branch behind a backward jump, and the lower probability

branch behind a forward jump, regardless of the original structure of the branches

in the user’s source code. In order to know the probability of the two branches,

the number of times each branch is taken must be measured and stored. This

adds overhead to the cold phase where the interpreter is running, as an expense

to improve the performance of the warm phase when the optimised compiled code

is running.

If the time taken to respond to every request is critical and initial slow re-

sponses cannot be tolerated, it is possible to send an initial stream of synthetic

requests designed to warm the system up to peak performance before the first

live request is received.

1For JRuby+Truffle the start-up time problem is being solved using the SubstrateVM,
an ahead of time static compiler and that builds a single statically linked binary version of
JRuby+Truffle, Truffle and Graal with no dependency on the JVM. This will give us fast start-
up as the whole native image, initialised and ready to start, can just be loaded via mmap and
started. It should also give us the same peak performance of JRuby+Truffle running on a JVM,
as the same dynamic compiler is available.

4.1. EVALUATION PHILOSOPHY AND GOALS 79

Time to Warm-up

If we know that there is a phase where performance may be lower followed by

the phase of peak performance then at some point there is a transition. This

transition between phases is called the point where the program warms-up. The

time taken to finish the initial low performance phase and to finish the transition

to high performance is called the time to warm-up.

Environments where warm-up time is more important include command line

utilities used by developers such as a compilers, but these are less common ap-

plications for Ruby and for our stated goals time to warm-up is not important as

long as it is reasonable.

As with cold temporal performance, time to warm-up is not evaluated through-

out this thesis. As was discussed in Subsection 4.1.1, a technique for determining

the atomic point in time where a system has warmed-up is not known, and it

is not clear how to quantify and visualise such a metric, especially in summary

across a range of benchmarks.

Memory Consumption

We already stated that memory consumption is out of scope for this thesis, be-

cause in the environments that Ruby is run it is easier to scale memory than

processor power, and because customers will typically only be able to observe re-

sponse time. As well as being out of scope, memory consumption is an extremely

problematic metric for a dynamic language implementation.

A key problem is the behaviour of the garbage collector. A tracing garbage

collector, that periodically recovers memory that is not reachable by the program,

operates in a cycle of increasing memory use and then sudden reclamation. This

means that the volume of memory allocated at any point depends on where in

the cycle we are, and the logic used to determine how far to let allocated memory

expand before memory is reclaimed.

With a tracing garbage collector it is not clear how to answer the simple

question ‘how much memory is this program using?’ We can determine how large

the heap is at a given point, but this will include objects which could be collected

if we wanted to. We can determine how large the heap is after a collection, and

so when it contains only objects which are reachable, but this is not the space

actually needed. A garbage collector will use the memory that you make available

to it, so that an application configured to have a larger heap size will. Further,

80 CHAPTER 4. METHODOLOGY

the application may create caches that are only cleared when there is memory

pressure. This makes us consider whether optimising for low memory usage is

even a desirable goal. If we have memory available in the system, why not use

it?

We end up with a problem with two degrees of freedom. We can discuss

the performance of a system only with a given volume of memory available, and

we can discuss the memory consumption of a system only with reference to the

performance that this constraint produces.

We do evaluate memory consumption in that we include the time needed for

garbage collection in the measured time for each iteration. Optimisations that

we have made in JRuby+Truffle such as allocation removal of temporary data

structures probably reduce runtime because they reduce the load on the garbage

collector–and in fact they would also reduce the load on a manual allocator if we

were using one. Beyond that, memory consumption is not evaluated throughout

this thesis.

4.2 Benchmarking Language Implementations

Evaluating the performance of dynamic language implementations through bench-

marking is highly problematic, and there exists no single universally accepted

methodology. Here we will describe a range of techniques and discuss whether

they are appropriate in evaluating out stated goal.

4.2.1 Basic Techniques

The naive technique for benchmarking a language implementation is to run a

program from start to finish and report the wall-clock time. This can be achieved

very simply with the time command-line utility. This metric includes start-up

and cold performance, and may include time to warm-up and then peak per-

formance if the program runs for long enough. Therefore it conflates multiple

metrics.

A more sophisticated technique is to run the benchmark in a loop, measuring

the time for each iteration. This excludes start-up time because only program

code is measured. It does not hide cold performance, as the first iteration of the

benchmark will be cold, but it does allow the cold performance to be excluded by

discarding the first iteration. It also does not hide time to warm-up, but again

4.2. BENCHMARKING LANGUAGE IMPLEMENTATIONS 81

the iterations of the benchmark while it was warming-up can be discarded. As

we said in Subsection 4.1.1, determining the atomic point in time when an imple-

mentation has warmed up is extremely problematic. A simple solution is to allow

the implementation an extremely generous time to warm-up before iterations are

sampled. It is also possible to use a simple metric such as the range of the samples

from a window of iterations to check that this has been successful.

4.2.2 Advanced Techniques

Automatic Iteration Scaling

A question that has yet to be solved is how long to make each iteration of the

benchmark. System timers have finite precision and resolution so timing a com-

putation that is very small is not likely to be sound. Most benchmarks will have

some parameter that we can vary to set the time for each iteration. For example

the Mandelbrot benchmark has a parameter for the size of the image to generate.

Smaller benchmarks that do not have such a parameter can be made to run for

a certain period of time by putting them in a loop of some constant length. A

problem that this can cause with optimisation is discussed below.

In JRuby+Truffle we determined parameters for the benchmarks which made

them generally take around 2s on JRuby. This means that the slower implemen-

tations, such as MRI don’t take over a minute for each iteration, and the faster

implementations such as JRuby+Truffle are not so fast that precision in reported

iteration times is not lost.

Another technique is to spend some time determining how fast an implemen-

tation is running a benchmark, and then set a number of iterations so that each

iteration takes some fixed period time, such as a few seconds. This is the approach

used by the popular Ruby benchmark utility benchmark/ips.

We discarded this approach, because it is only practical where the size of the

benchmark is varied by a number of iterations of an inner loop and not by a more

complex parameter such as the Mandelbrot size for example, which does not scale

the problem size linearly. It also effectively means that each implementation is

running a benchmark with different parameters, and with timing calls that are

different intervals.

82 CHAPTER 4. METHODOLOGY

Layers of Iteration

We are discussing running iterations of a benchmark in a loop, measuring the time

taken for each iteration. However, we could loop iterations at a level above this,

by also running the implementation process multiple times. This We can keep

examining further layers of the system, and could experiment with compiling the

implementation multiple times with variation such as randomised link ordering.

We did not experiment with multiple layers of iteration for reasons of simplic-

ity and limited compute resources. Researchers who are trying multiple layers of

iteration have seen time needed for benchmarking increase to levels that would

be unsustainable for this project. Informally, our continuous integration system

that benchmarked every commit we made when developing the system showed

us that our results are stable across multiple invocations of the implementation

process.

Replay Compilation

One option to improve the repeatability of an experiment is to record compilation

decisions taken by the dynamic compiler, and to perform them exactly the same

each time the benchmark is run.

We discarded this option because as because we have already ruled-out mul-

tiple layers of iteration it is not relevant. Also, replay compilation reduces the

normal flexibility afforded to the dynamic compiler.

Isolating Garbage Collection

Some researchers also choose to control for garbage collection. One option is to

disable the garbage collector for the entire run of the benchmark. This is not

practical for benchmarks that run for anything beyond a trivial length of time

and that allocate objects as they may very quickly run out of heap size, and it

is also possible that it will reduce benchmark performance, as an increasing heap

size may mean that locality suffers.

Another option is to perform a full garbage collection before each benchmark

iteration, in an effort to give each iteration a ‘clean slate’ and to reduce interde-

pendence between iterations. However some garbage collectors may not honour

requests for a collection from the user application, and if a full collection were

performed it may evict benchmark code and data from caches and so actually

4.2. BENCHMARKING LANGUAGE IMPLEMENTATIONS 83

reduce performance of the next iteration.

A third option is to calculate the time spent performance garbage collection

during a benchmark iteration, and to subtract that time from the sampled time.

This produces an even more artificial sample than the other two options–one that

never existed at all.

We disregarded all of these options as we consider garbage collection to be

part of the routine cost of ‘doing business’ in a garbage collected language, which

should be attributed to the benchmark.

Preventing Over-Optimisation

One of the key jobs of an optimising compiler for a dynamic language is to remove

unnecessary work, and we want to measure how well it does that. However the

risk is that the benchmark also becomes unnecessary from the point of view of

the compiler, and it is removed partially or entirely. Another risk is that the work

remains, but is constant-folded into the result value during compilation.

It is debatable how much of this we should allow. We want to exercise how

well implementations are able to remove redundant work, so perhaps we should

not try to prevent this optimisation. If an implementation is able to entirely

remove a benchmark then perhaps that is what should be measured.

JRuby+Truffle is sophisticated enough to complicate the problem even fur-

ther, as it has value profiling which looks at values at many points in the dataflow

graph and will turn an edge that has only ever seen one value into a guard com-

paring against that value and then a constant. Even if input to a benchmark were

read from a file, as long as it didn’t change JRuby+Truffle could still constant

fold it.

Solutions to this include techniques such as those employed by the Java Mi-

crobenchmarking Harness, which has an API for black holes–methods that use

internal knowledge of the implementation of the JVM to create a dataflow sink

that will not be removed2. However there is no such API for Ruby and we would

not want to add one specifically for JRuby+Truffle without implementing it to

the same standard in other optimising implementations as JRuby and Rubinius.

In our benchmarks we decided not to make any special effort to avoid over-

optimisation, as we could see no way to avoid it entirely. We have explained why

2Note that the Java Microbenchmarking Harness is a state-of-the-art tool, but still requires
time to warm-up to be manually specified.

84 CHAPTER 4. METHODOLOGY

we do not know of a total solution, and any partial solution would be hard to

justify–why prevent this part of the benchmark from being optimised but not

another part.

Dynamic Frequency Scaling

Some systems will vary the clock frequency to balance power consumption and

heat output with the demands of the current workload. Dynamic voltage scaling

is a related technique. The risk is that some implementations and iterations will

run with frequency at one level and another implementation or iteration with

another level.

It could be argued that frequency scaling is something that should be ‘billed’

to the implementation as a side effect of running a program, similar to garbage

collection or virtual memory paging. If the process being benchmarked causes

the kernel to decide to scale the processor frequency then it is arguable that it is

a factor which should be considered as any other factor is.

In practice, we believe this is a bit extreme and does not help us produce data

that can be related between implementations.

The systems on which we benchmarked had dynamic frequency scaling dis-

abled by setting them to the performance power management configuration.

4.3 Statistical Techniques

4.3.1 Basic Statistical Techniques

Aggregating Samples

There will likely be variation between sample times of multiple iterations of a

given benchmark. We have already established that the performance of imple-

mentations will change over time, but even if we are confident they have entered a

phase of steady-state we would expect to see variance caused by implementation

background processes such as compilation and garbage collection, background

system processes and possibly clock inaccuracy.

It is important to note that sequential iterations of a benchmark are absolutely

not independent samples. As one iteration runs it modifies the state of the heap

and other runtime data structures, processor caches, kernel data structures and

more.

4.3. STATISTICAL TECHNIQUES 85

We use the simple arithmetic mean average to aggregate multiple samples into

a single scalar value. The mean time T̄ for n times samples T1 to Tn is:

T̄ =
1

n

n∑
i=1

Ti

Scoring and Speedup

An absolute mean time per iteration is not a metric that can be compared across

benchmarks or that tells us much on its own. Additional problems are that a

lower average time is better, which may be confusing, the raw time measure is

linear which means that increases in performance become harder to see the larger

they are, and the value is tied to the unit of time which we used.

One alternative is to divide an arbitrary scalar value by the mean time and re-

port this as score. This produces an inverse so that large increases in performance

are easier to see. It also abstracts from the time unit, and a suitable dividend

can be used so that the result is large enough to be reported as an integer.

Another alternative is to always report mean iteration time relative to some

other reference implementation, or maybe a reference configuration of the same

implementation. This suits our purposes in this thesis because we can report

the performance of our implementation and others against the standard imple-

mentation of Ruby, MRI, and we can report the performance of different Ruby

functionality or implementation techniques relative to each other.

The speedup SSR for a subject implementation IS with mean average score

time T̄S against a reference implementation IR with mean average score time T̄R,

is:

SSR =
T̄S

T̄R

Note that a speedup of 1 indicates that the subject implementation ran at the

same speed as the reference implementation.

Summarising Across Benchmarks

This single scalar value representing the performance of an implementation across

multiple benchmarks is sometimes called the composite score, or composite speedup.

We use the geometric mean average to summarise speedup across multiple

benchmarks [1]. The composite speedup C for n benchmarks with speedups S1

86 CHAPTER 4. METHODOLOGY

to Sn is:

C =

(
n∏

i=1

Si

)1/n

Note that it is debatable how useful the composite speedup is as a metric.

Individual benchmark scores or relative speedups are an understandable mea-

sure of how fast that benchmark runs, but a composite score or speedup is not

understandable it applies to a theoretical composite benchmark.

For this reason we only report composite scores as a general guide in lim-

ited cases, and do not perform further visualisation of composite scores, such as

the error discussed below. Therefore these sections will only refer to the earlier

arithmetic mean.

Error

The mean average sample time is a scalar value, but we have already said that

some variation in individual sample times is to be expected. The error is the how

large this variation from the mean average to individual samples is. We want to

report that error for three reasons. First, an implementation that achieves a high

mean average peak performance but an extreme variation in sample times may

be less useful than an implementation with a slightly lower but more consistent

mean average. Some of your customers receiving responses to request in 1s might

not be worth it if others take 100s. Secondly, we are trying to use these statistics

to say with a degree of confidence that one implementation or technique has a

higher peak peak performance than another, so we need to distinguish between

two means that may appear to be different but really the range of samples overlaps

significantly, giving us low confidence that one mean is usefully above another.

Finally, a high error may also be an indication that peak performance has not

yet been reached.

There are multiple ways to calculate and report an error. We can report

the sample standard deviation, which is the square root of the variance of our

samples:

s =

√√√√ 1

n− 1

n∑
i=1

(Ti − T̄)2

4.3. STATISTICAL TECHNIQUES 87

We can also report the standard error of the mean, which is:

SET̄ =
s√
n

We did not employ more sophisticated statistical significance testing such as

confidence intervals or a t-test as is common in the natural sciences, as these

often rely on samples being independent. As we have already said, this is not the

case in our experiments.

Visualisation

The main tool we use to visualise speedup against a reference for a range of

implementations or configurations is a bar or column graph. We usually include

a bar for the reference implementation, of height or width 1.

We can show error by drawing error bars that extend above and below the top

of the bar to show the value of whatever error metric we are using. Informally,

we can say that if the error bars of two implementations do not overlap then the

result is likely to be statistically significant.

In some cases (see Chapter 6) differences in performance may be extreme —

up to several orders of magnitude. In these cases we employ a logarithmic scale.

4.3.2 Advanced Statistical Techniques

Lag Plots

A lag plot shows for a set of samples T the points (Ti, T(i−h)) where h is some

period such as 1 or 4. The distribution of points across the plot shows you

patterns in the sample for one iteration compared to some previous iteration. If

there is no discernible visual pattern in the points then there is likely to be little

correlation between one point and another, and we are more confident that the

system is stable and individual samples are independent of each other. If a visual

pattern can be identified then there may be an issue that should be examined

such as insufficient warm up. However, there are also natural reasons why there

may be a visual pattern – some benchmarks just appear to be cyclic in nature,

not matter how long they are given to warm up.

We are not aware of any technique to automatically examine a lag plot and

determine if there are patterns which may be of concern, so this is a manual task.

88 CHAPTER 4. METHODOLOGY

Figure 4.1: Example lag plots [59]

Figure 4.1 shows an example pair of lag plots from Kalibera et al [59]. The

plot on the left shows a clear visual pattern so may need further investigation to

check that there is sufficient warm-up. The plot on the right shows less cause for

concern.

We did not construct and manually examine a lag plot for all experimental

results as this would have been prohibitively time consuming. However, we did

consult lag plots h = 1 while benchmarks and experiments were being developed.

Autocorrelation Function Plots

A lag plot shows a single value of h which must be either picked arbitarily, or

multiple plots generated to see a range of possible values for h. An ACF plot, also

sometimes called correlograms, visualises a range of values for h by summarising

the lag points with the correlation function, which is a measure of the strength

of the relationship between a pair of samples.

Figure 4.2 shows an example pair of ACF plots from [59], again showing one

that invites further investigation and one that does not.

The Kalibera-Jones Method

Kalibera and Jones present a reasoned and detailed approach to benchmarking in

systems research [59]. Their technique is not a precise algorithm to be followed

for benchmarking, but rather a set of recommended techniques, including some

of the advanced techniques that we have discussed such as lag and ACF plots and

4.3. STATISTICAL TECHNIQUES 89

Figure 4.2: Example ACF plots [59]

multi-layered iterations. It still does not attempt to provide a single uniform way

to benchmark, and its application still requires reason, oversight and judgement

from the practitioner.

A key focus of the Kalibera-Jones method is a systematic process to determine

how many iterations of the benchmark to run at each level, and how many of those

iterations to discard. This is called a dimensioning experiment and will involve

manual steps for each pair of benchmarks and implementations. To do this they

take initial measurements and calculate an estimation of how much each level of

iteration contributes to overall variability in results. Part of the motivation for

this is to reduce wasted iterations caused by iteration counts that are sufficient

but excessive. Dimensioning should be repeated from scratch for any change

made to the implementation (or benchmark or the benchmark hardware), which

certainly makes it unrealistic for benchmarking in continuous integration.

Kalibera and Jones also recommend an alternative metric to the errors already

described: a bootstrap confidence interval that is closer to the confidence intervals

and significance tests commonly used in the natural and physical sciences. These

techniques often rely on samples being independent and identically distributed,

as for example the weight of rabbits sampled from a given field are. As we

have already said, this is not the case in the kind of research that we are doing.

The bootstrap technique uses a simulated version of the experiment by random

resampling of the sample population.

During the production of this thesis, the first research attempting to inde-

pendently apply the Kalibera-Jones method was published. As part of this work

90 CHAPTER 4. METHODOLOGY

they implemented a Python package for the statistical routines involved in the

method which is used in some experiments. The author of this thesis contributed

a Ruby implementation of the same routines.

We applied some of the recommended techniques from Kalibera-Jones, but

not the approach to multilayered iterations and experimental dimensioning. Part

of the reason that we did not invest more resources into using these methods (as

well as limited implementation time and limited compute resources) is that, as

they point out, their method is designed to tackle the problem of distinguish-

ing between small variations in performance. A median performance increase

reported as a successful result in the systems field is just 10%. However in this

thesis, the majority of our results are much more substantial than that. Therefore

the more precise techniques are not as necessary.

4.4 Completeness

In Chapter 3 we used one other metric when talking about Ruby implementa-

tions: their completeness. Ruby is an extremely complicated language with a

large builtin core library (builtin in the sense that it is normally provided by the

implementation rather than as Ruby code that any implementation could run).

This contains many routines that are rarely used but omitting functionality could

allow implementation shortcuts to be taken that are not sound.

In early development of JRuby+Truffle we tackled this issue head-on by work-

ing through a list of difficult parts of Ruby that should be implemented be-

fore making performance claims, that was independently produced by a third

party [77] and we have summarised here. Where reference is made to using func-

tionality available in Truffle and Graal, the key publications for more details are

Wüurthinger et al [115, 114].

Fixnum to Bignum promotion Ruby operators will automatically promote an

operation on fixed-size native Fixnum integers that overflow to produce an ar-

bitrarily sized Bignum value instead. This should be as simple as a jo machine

instruction or architecture-specific equivalent which can jump to a slow path on

overflow, but implementations using a conventional JVM or written in standards-

compliant C++ may not have access to a primitive that does this. Truffle and

Graal do provide such a primitive with the ExactMath class, which throws a

4.4. COMPLETENESS 91

slow-path exception on overflow.

Floating point performance In dynamic languages, where values need to

maintain their own type information, simple values such as integers and floating

point numbers often need a heap-allocated box structure to store both the value

and type pair. A common solution to this is tagging, where low bits are reserved

in words which can identify them as either a pointer to a full structure which

contains type information, or an immediate value which can have the low bits

shifted away to be then be used without further indirection and no need for an

allocated pair. Floating point values are often not tagged, as the logic is more

complicated and the technique only became possible on 64 bit architectures, and

so can be slower in implementations. JRuby+Truffle does not use tagging, as

a technique to do this on a conventional JVM is not known. Instead we use

a variant of storage strategies [17] and boxing combined with powerful partial

escape analysis to remove unnecessary boxes.

Closures A closure is an object that represents the lexical environment (the

local variables and sometimes other state) where a function was defined. Ruby’s

blocks are implemented using closures, and are used for much of the language’s

control structures. Closures can be difficult to implement, as they may require

storing local variables on the heap instead of the stack, which involves heap allo-

cation and indirection on access. JRuby+Truffle uses the existing functionality

in Truffle and Graal to always logically allocate frames on the heap, but to use

partial escape analysis to put them back onto the stack until they really need to

be stored on the heap.

Bindings and eval Closures can be converted into a full Ruby object known as

a Binding. This further complicates the implementation of closures, because now

they are subject to the full range of dataflow available to any Ruby object such

as storage in an another object or collection. They are also subject to metapro-

gramming methods such as local_variable_get and local_variable_set, so

that names in a binding cannot be statically determined. Most importantly, a

Binding object can be obtained from any block dynamically, so even if it stat-

ically looks like a closure does not escape and can be allocated on the stack, it

may escape later on. The existing functionality for frames in Truffle and Graal

92 CHAPTER 4. METHODOLOGY

already allow for on-demand materialisation of stack frames onto the heap, via

dynamic deoptimisation.

callcc and continuations JRuby+Truffle, like JRuby, Rubinius and Topaz,

does not implement continuations and the call-with-current-continuation callcc

method that would be familiar to Lisp programmers. This method is anyway

deprecated in MRI. Continuations are fundamentally at odds with the JVM’s

specified execution model. A patch does exist to add non-standard support to

HotSpot [100] but we have not explored using this yet.

Fibres Fibres are cooperatively scheduled threads. A fibre must decide to re-

lease control to another fibre, where a normal thread is usually pre-emptively

forced to release control. A coroutine is a similar concept, where the release of

control is through multiple returns from a subroutine. JRuby+Truffle, like JRuby,

implements fibres using threads and blocking queues for cooperative scheduling.

Frame-local variables Ruby has a kind of variable which appears to be local to

a frame, but can be implicitly set as a side effect of standard library methods. For

example the variable $ appears to be frame-local, but it is set by the core library

method #gets which reads a line. This means that implementations of Ruby need

to have variables stored in one frame, but set by another method. JRuby+Truf-

fle uses functionality from Truffle and Graal to access local variables in frames

earlier in the call stack. As long as methods are inlined, and we deliberately

inline methods which we know statically need to access local variables from earlier

frames, then there is no cost for this.

C extensions Chapter 8 defines and discusses the implementation of C exten-

sions.

String encodings Unlike other similar languages such as Python, Ruby has not

standardised on an encoding of Unicode such as UTF-8 or UCS-6 as a universal

encoding for internal representation3. Instead, strings contain raw bytes and also

a reference to the encoding of those bytes. This causes the problem that languages

3It has been suggested that the Ruby developers did not standardise on Unicode due to
technical disagreement with some of the decisions Unicode made on how to represent Asian
characters, such as the inability to round-trip some other character sets through Unicode [60].

4.4. COMPLETENESS 93

which do use an encoding of Unicode internally, such as Java, cannot correctly

represent Ruby strings. JRuby+Truffle re-uses the JRuby solution to this, which

is to represent strings simply as a byte[].

Garbage collection JRuby+Truffle, and both Truffle and Graal, reuse the

unmodified garbage collector from the JVM.

Concurrency and parallelism This thesis does not discuss concurrency or

parallelism, with the exception that Chapter 7 talks about coordinating and

communicating between different threads for runtime tasks such as attaching

a debugger.

Tracing and debugging Chapter 6 defines and discusses the implementation

of tracing and debugging.

ObjectSpace Chapter 7 defines and discusses the implementation of ObjectSpcae.

Method invalidation Method invalidation refers to the problem of efficiently

detecting when a method has been monkey-patched or for some other reason a

previously cached method for a given class may longer be valid. In JRuby+Truf-

fle this is implemented using assumptions as described in depth in Chapter 7,

and dispatch chains as described in Chapter 5.

Constant lookup and invalidation Constant lookup, caching and invalida-

tion is done in the same way as method caching and invalidation in JRuby+Truf-

fle.

Ruby on Rails JRuby+Truffle does not yet run Ruby on Rails. This is due to

completeness of the core library and large libraries such as OpenSSL and database

drivers, rather than any missing language functionality. At the time of writing,

the first layer of the Rails library stack, called Active Support, is mostly working.

Later in development we were able to run test suites to verify that our im-

plementation is correct. The completeness metric we use is the percentage of the

RubySpec [95] set of unit tests (this particular type of tests are called specifica-

tions in the Ruby community but they are not any kind of formal specification).

94 CHAPTER 4. METHODOLOGY

4.5 Benchmarks Used

There is no single unified Ruby benchmark suite, comparable to industry bench-

marks such as SPEC CPU and SPEC JVM or scientific benchmarks suites such

as SciMark. Porting one of these benchmark suites to Ruby would not be repre-

sentative of real Ruby code in any way. MRI and other implementations include a

set of benchmarks of key operations, and some slightly larger micro benchmarks.

One reasonable position to take is that the only useful benchmark is the

application which you are actually interested in running. This may be useful to

industry practitioners if they are comparing multiple implementations of the same

language and all implementations are capable of running their application. How-

ever it is not useful to industry practitioners who want to compare performance

of implementations of multiple languages, as they would have to implement their

entire system in each language, and it is not useful to early implementations of

an established language such as JRuby+Truffle or Topaz, which are not yet able

to run any complete applications. It is also not useful to language implementers,

as they do not have a single application they are interested in.

The other extreme is synthetic benchmarks. These are very small applica-

tions, generally a screenful or two of code, that performs a single simple task.

A key advantage of these benchmarks is that they are simple. For example,

JRuby+Truffle was able to run the fannkuch benchmark within a few weeks.

Another advantage is that they are typically very well understood by researchers

which allows new implementations to be quickly tuned to run them well, but they

are highly unrepresentative of real Ruby code. For example, nobody is making

money by running a web service in Ruby to provide solutions to n-body problems.

In between the two extremes is the option to take some representative pro-

duction applications, or libraries, and run parts of them as benchmarks. These

can still be easy to understand if they are small enough, but they will likely

stress very different parts of the language and library. In our case, we found that

synthetic benchmarks often tested simple object field access, floating point arith-

metic, and array accessing. The production benchmarks that we found instead

tested functionality that is much more idiomatic to Ruby such as large numbers

of small intermediate higher-level data structures such as hashes and more core

library routines.

4.6. BENCHMARK HARNESSES 95

4.5.1 Synthetic Benchmarks

The first set of benchmarks we use are those from the Computer Language Bench-

marks Game, formerly known as the Shootout benchmarks [31]. This includes

classic benchmarks such as Mandelbrot, fannkuch [11] and n-body. We also used

the key benchmark from the Topaz project, a neural network.

A complete list of synthetic benchmarks with a description and qualitative

properties of each can be found in Appendix B.

4.5.2 Production Benchmarks

The second set of benchmarks we use are kernels from two Ruby libraries that we

have already introduced: Chunky PNG [107] and PSD.rb [69], and their native

equivalents Oily PNG [67] and PSD Native [68].

We identified methods in these libraries that are performance critical for real

applications by looking at those that have been replaced with native versions

in the native equivalents of the libraries. We took each of those methods and

created a harness to exercise them, mocking out functionality unrelated to peak

performance, such as IO.

Examples of kernels include resampling an image, extracting a single colour

channel from a packed pixel value, replacing one image with another, encoding

and decoding run-length-encoded data, converting between colour spaces and sev-

eral different implementations of compose functions in the Photoshop file format.

A complete list of production benchmarks with a description and qualitative

properties of each can be found in Appendix B.

4.6 Benchmark Harnesses

Our benchmark harness has two components. This split is necessary to have a

simple component run by implementation under evaluation, as some implemen-

tations are not complete enough to do tasks such as reading and writing files.

The benchmark process itself runs a simple loop of benchmark iterations,

recording the time at the start of the iteration, and reporting the elapsed time

afterwards on stdout. Time is measured using a high performance monotonic

timer if the implementation provides one. Topaz does not, so user time is used

which is at risk of effects such as jumping (the clock jumping forward or backward

96 CHAPTER 4. METHODOLOGY

in time such as to correct for drift in comparison to a reference time source such as

an atomic time service) and smearing (the clock speeding up or slowing time for a

period as an alternative way to correct the same issue). The benchmark process

then listens on stdin for a command to either stop or continue with another

iteration. The benchmark process itself does not have any logic for warmup or

any other techniques.

The benchmark process is run as a child process of a driver process. We do

not believe that the extra process causes any unfair interference, as a system

will typically be running many processes anyway, and communication between

the processes is done outside the region of code which is timed. This process

determines when warmup is complete using a simple technique. The driver runs

the benchmark for at least Igrace iterations or at least Tgrace seconds (whichever

comes last) before considers warmup. The driver runs the benchmark in warmup

mode until the range of the most recent Iwindow of the T samples, relative to

the mean, is less than some value r, range(T)

T̄
< r. When those Iwindow samples

are seen, they become the first Iwindow measured iterations. If the benchmark

does not reach this state within Imax samples or Tmax seconds (whichever comes

first), a warning is printed and the benchmark is considered to have not reached

a steady state but starts measuring anyway. We then take the first Imeasured

samples, starting with the Iwindow samples we already have.

We set Igrace = 30, Iwindow = 20, Imax = 100, Imeasured = 100, Tgrace = 30s,

Tmax = 240s, r = 0.1. These numbers are arbitrary, but they are generous

and in practice allow for sufficient warmup time for all implementations, without

running too many iterations for the much slower implementations which reach

steady state very quickly as they do not use any dynamic optimisation.

The benchmark driver tells the child process to stop when it has enough mea-

surements. The driver stores all samples, performs the statistical methods, and

then runs the next benchmark or implementation. When all the data requested

is gathered, a human-readable interactive HTML and JavaScript report is gener-

ated, along with raw data output in a variety of formats for visualisation.

4.7 Repeatability of Results

Repeatability means a third party taking the same experiments as the original

experimenter and running them to verify that the same results are achieved. An

4.7. REPEATABILITY OF RESULTS 97

example of repeatability would be a third party taking your implementation,

benchmarks and configuration and running them on similar hardware to check

that they see the same results as you do.

This is different from the higher standard of reproducibility, which is addressed

later.

In the computer science systems research community, repetition of research is

not common, and can produce controversial results when it is attempted.

The experiments in Chapter 5 were submitted to the publication venue’s arte-

fact evaluation committee in the form of source code, benchmarks, configuration,

and a virtual machine image. Feedback from the committee showed that they

were able to successfully repeat our results, and awarded the work an ‘approved’

badge.

The experiments in Chapter 6 and 7 were made available to the reviewers in

a similar manner, but the venues in which the work was published [92, 23] did

not have a formal artefact evaluation stage.

Experiments in other chapters either were not possible to disclose to reviewers

as the implementation is proprietary, or were not submitted as the venue did not

have an artefact evaluation stage.

4.7.1 Hardware

Based on the expected working environment and goals we described earlier in

this chapter, our experiments were conducted on enterprise-grade server hardware

with generous memory capacity.

The majority of experiments in this thesis were conducted on a system with

two Intel Xeon E5345 processors based on the Core micro-architecture with four

cores each at 2.33 GHz and 64 GB of RAM, running 64bit Ubuntu Linux 13.04,

with kernel 3.8.8.

Experiments in Chapter 5 were conducted on a system with two Intel Xeon

E5520 processors based on the Nehalem micro-architecture with four cores each

at 2.26 GHz and 8 GB of RAM, running 64bit Ubuntu Linux 14.04, with kernel

3.11.

In both cases we used the distribution’s default versions of software such as

compilers and linkers.

98 CHAPTER 4. METHODOLOGY

4.7.2 Source Code

The primary research artefact resulting from this thesis is the JRuby+Truffle

implementation of Ruby. Source code is licensed as part of JRuby under the EPL

1.0, GPL 2 and LGPL 2.1 licenses.

Revision bbdd0ab4 of JRuby was used to obtain the summary results in Sec-

tion 3.3.5. The latest version of JRuby is also available from GitHub5.

Individual chapters used revisions of JRuby at the time the work was done.

As JRuby+Truffle is an evolving system and some techniques have developed

since the experiments described in this thesis, there is no single revision of JRuby

that contains all the implementation work in this thesis, although all the ideas

themselves are still a key part of above revision in some form.

Chapters 8 describes experiments that include proprietary implementation

that we are not able to make available for third party examination at this stage.

4.7.3 Benchmarks

The benchmarks and the harness described above are available as the bench9000

subproject of JRuby. Source code of the harness is licensed as part of JRuby

under the EPL 1.0, GPL 2 and LGPL 2.1 licenses. Individual benchmarks are

available under their own (generally permissive) licenses.

Revision f7d26949bf6 of bench9000 was used to obtain the summary results

in Section3.3.5. The latest version of bench9000 is also available from GitHub7.

4.7.4 Reproducibility of Results

Reproducibility is a higher standard than simple repeatability, and refers to the

same idea being applied and evaluated, from scratch, by a third party. An exam-

ple of reproducibility would be a third party taking a published research paper

and writing their own implementation and benchmarks and running on their own

hardware to check that they see the same results as the original experimenter.

Verification of reproducibility in the computer science systems research com-

munity is even less common than repeatability.

4bbdd0ab6028aa51f1edc0d0768038a7f96b5de22
5https://github.com/jruby/jruby
6f7d26949bf6f1ce77659b3b3cd5660b563073898
7https://github.com/jruby/bench9000

https://github.com/jruby/jruby
https://github.com/jruby/bench9000

4.8. SUMMARY 99

Of the work in this thesis, we can say that the ideas in Chapter 5 have been

effectively reproduced by a third party, as there was an independent simultaneous

implementation of dispatch chains in both the JRuby+Truffle and TruffleSOM

projects. This has shown that dispatch chains are applicable to both Ruby and

Smalltalk, and that the performance they achieved can be demonstrated by two

researchers with two independent implementations.

Work in other chapters has not been reproduced, but there has been a degree of

verification now that the ideas are being implemented in other Truffle languages.

For example, the debugging work described in Chapter 6 is now being applied to

the Truffle JavaScript and R implementations.

4.8 Summary

In this chapter we have set the goal that will be used for many of the experiments

in this thesis as minimising the real wall-clock time to solve a computation, and

so set our metric as the the peak temporal performance after an initial period of

warmup.

We have described how we assess the completeness of an implementation of

Ruby and how we use this to show that JRuby+Truffle supports almost all of

the Ruby language and core library and is not a trivial implementation missing

features that may invalidate our work.

We introduced the benchmarks that we have used, with more information

available in Appendix B, and described our benchmark harness.

Finally we have shown that parts of the work in this thesis have been subject

to verification through repetition and reproduction.

The novel techniques, benchmarks and harnesses developed for this thesis

have recently been applied by two independent groups of researchers for work on

ahead-of-time compilation of Java [105] and a project to re-purpose components

of a VM [102].

100 CHAPTER 4. METHODOLOGY

Chapter 5

Optimising Metaprogramming in

Dynamic Languages

5.1 Introduction

Conventional approaches to optimising dynamic programming languages, such

as those described in Section 3.1 including polymorphic inline caching, dynamic

optimisation and deoptimisation, have largely solved the problem of implement-

ing dynamic language features such as dynamic typing and dynamic dispatch.

However metaprogramming has not received the same research attention and is

often not optimised, even in mature language implementations. For example on

the HotSpot JVM reflective method calls using the java.lang.reflection API

has an overhead of around 6× [73].

In Chapter 2 we introduced metaprogramming features of the Ruby language

and showed how they are used in patterns in performance-critical parts of the

Ruby ecosystem. In Ruby, probably more so than in other languages, metapro-

gramming should not be viewed by implementers as a side-channel that does not

need to be optimised, but instead as just another form of dispatch.

This is the key contribution of this chapter: a generalisation of existing poly-

morphic inline caching techniques that are polymorphic in the name of the method

as well as the type of the receiver, that we call dispatch chains. We use dispatch

chains to implement Ruby’s metaprogramming features including dynamic sends,

testing if a class responds to a method, and the method_missing hook for meth-

ods that a class does not respond to.

We demonstrate the impact that this has on a sub-set of the benchmarks

101

102 CHAPTER 5. METAPROGRAMMING

described in Chapter 4 that use metaprogramming extensively.

The research contributions in this chapter were an independent piece of work,

initially presented informally in a blog post on the author’s website in July 20141.

Stefan Marr, a researcher at Inria, independently developed a similar technique

for use in his implementation of the Smalltalk language. Together we produced

a single joint publication [73], which covered the technique we had both inde-

pendently developed and evaluated it in the context of both of our language

implementations.

5.2 Metaprogramming

Metaprogramming is an informal term which means any kind of programming

that treats the program as normal application data in some way. In this thesis

we are primarily interested in the kind of metaprogramming where method calls

are made with a method name as application data, or other similar operations.

Other forms of metaprogramming available in Ruby include operations such as

redefining ‘constant’ values, and in other languages metaprogramming is much

more advanced and may allow the program itself to be modified in some way,

such as with a macro system.

In Chapter 2 we talked about a common workaround for the low performance

of metaprogramming in most implementations of Ruby, which was to program-

matically generate new methods. We also don’t consider this form of metapro-

gramming in this chapter, as it is our goal to optimise the dynamic method calls

themselves, rather than work around them.

5.3 Existing Implementations

Existing implementations of Ruby generally implement metaprogramming oper-

ations with a separate mechanism as is used for normal calls. Implementations

such as Rubinius and JRuby have complex systems for optimisation of inline

caching but they are not used for metaprogramming.

Listing 5.1 shows the JRuby implementation of the Ruby send method. The

call to searchMethod on line 4 is only subject to per-module caching, which is

implemented as an expensive lookup in a ConcurrentHashMap object. There is

1http://chrisseaton.com/rubytruffle/pushing-pixels/

http://chrisseaton.com/rubytruffle/pushing-pixels/

5.4. DISPATCH CHAINS 103

1 public IRubyObject send(ThreadContext context,

2 IRubyObject arg, Block block) {

3 String name = RubySymbol.objectToSymbolString(arg);

4 DynamicMethod method = searchMethod(name);

5 return method.call(context, self, this, name, block);

6 }

Listing 5.1: JRuby’s implementation of send (simplified).

1 Object* Object::send(STATE, CallFrame* caller, Symbol* name,

2 Array* ary, Object* block) {

3 LookupData lookup(this);

4 Dispatch dis(name);

5

6 Arguments args(name, ary);

7 args.set_block(block);

8 args.set_recv(this);

9

10 return dis.send(state, caller, lookup, args);

11 }

Listing 5.2: Rubinius’s implementation of send.

no caching of the method for this particular call site, and so no inlining. Part of

the reason for this is that the send operation is implemented as a Java method,

which provides no facility for storing state between calls.

Listing 5.2 shows the similar Rubinius implementation, which also does no

caching for the call site as it has no way to reference the call site. The Rubinius

code has an additional problem in that this is a compiled C++ method, so the

LLVM optimiser that is applied to the Ruby bytecode cannot reason about the

behaviour of this method and cannot inline it.

5.4 Dispatch Chains

Our solution to the problem of optimising metaprogramming sends in Ruby is to

generalise the idea of a PIC into something that we call a dispatch chain. A PIC

is usually a linear set of cache entries with the class of the receiver as the cache

key, and the method to call for that receiver, for a given name, is the cache value.

Figure 5.1 shows the shape of this conventional PIC. The receiver class is

104 CHAPTER 5. METAPROGRAMMING

class	==	Fixnum

class	==	Double

fallback

call	Fixnum#div

false

false

call	Double#div

true

true

Figure 5.1: A conventional PIC.

compared against the cached classes and when they match the resulting method

is called, or possibly inlined. Fallback cases will update the cache with a new

entry, using dynamic deoptimisation if machine code has been generated.

A logical extension of the idea of PICs therefore could be to have nested

caches. An initial cache could map from method names to a set of second-level

caches, which map from receiver classes to methods. This is the basic idea of a

dispatch chain.

There are multiple configurations that could be used for a dispatch chain. In

the examples given so far, we varied on the method name first, and the class of

the receiver second. The advantage of this approach is that the method name is

usually constant so checking for it first means that there only needs to be one

comparison in most cases. In Ruby, the String object is mutable, so comparing

strings for equality is not always a cheap operation. Another configuration could

be to vary the receiver class first, and the method name second. If the name is

usually constant then this approach may cause there to be multiple copies of the

name guard, with one for each method.

Figure 5.2 shows an example of the former, name-first dispatch chain, and

Figure 5.3 and example of the latter, receiver-class dispatch chain. If the case

where the name does not vary, it can be seen that in the first configuration only

one check against the name is done, but in the second configuration there are

two–one after each receiver-class cache passes.

With a strong optimising compiler such as Graal, we may not need to worry

5.4. DISPATCH CHAINS 105

class%==%Fixnum%

class%==%Double%

fallback%

Fixnum#div%

false%

false%

Double#div%

true%

true%

name%==%#div%

class%==%Fixnum%

class%==%Double%

fallback%

Fixnum#mul%

false%

false%

Double#mul%

true%

true%

name%==%#mul%
false% false%

true% true%

fallback%

Figure 5.2: A name-first dispatch chain.

name%==%#div%

name%==%#mul%

fallback%

Fixnum#div%

false%

false%

Fixnum#mul%

true%

true%

class%==%Fixnum%

name%==%#div%

name%==%#mul%

fallback%

Double#div%

false%

false%

Double#mul%

true%

true%

class%==%Double%
false% false%

true% true%

fallback%

Figure 5.3: A receiver-class-first dispatch chain.

106 CHAPTER 5. METAPROGRAMMING

about the difference between these two configurations, as any repeated guards

may be able to be de-duplicated and hoisted to where they are common between

multiple branches.

A third configuration option linearises the dispatch chain and has each cache

entry as a tuple of the method name and the receiver class. The advantage of

this approach is that it is simpler with no nested chains. The disadvantage is

that if there is a single method name it will get checked again for each receiver

class. Again, we may be able to rely on the optimising compiler to de-duplicate

these checks.

In the following evaluation, we used the first configuration and varied on the

method name first and the class of the receiver second. After the evaluation was

complete and the research published we have subsequently switched to the third

configuration where we vary on a tuple of the method name and the receiver

class at the same time. This was done for simplicity of implementation (as the

data structure is linear again) but a detailed evaluation for the relative perfor-

mance of these different configurations still needs to be done on large real-world

applications, and ideally could be made available as a tuning option.

Another open question is whether it is worth sorting the chains in any way,

such as based on how frequently each one is used, or if a simpler approach such as

always append or always prepend new entries would be better. In our approach

we always prepended. This handles the case where an initial call that is never

used again does not always have to be guarded against.

5.5 Implementation

Our second contribution in this chapter is to observe that the structures we have

described above are trees, and so can be implemented using the same nodes as

we use to implement the Ruby AST. Each condition in the chain is implemented

as a node with a child node for the cache-miss case, and a child node for the

cache-hit case, in the case of first level of caching, or a reference to the method

to be called in the case of the second level of caching.

Listing 5.3 shows simplified nodes representative of our implementation. The

name chain node caches a name and a child chain to be used if that name matches,

or another name chain node to try if it doesn’t. The class chain node caches a

class and a method to call if that class matches, or another class chain node to

5.6. APPLICATION IN RUBY 107

try if it doesn’t.

Not shown are nodes for the fallback cases. Again these are very elegantly

expressed as AST nodes, as to modify the cache they can simply specialise them-

selves to be a new cache entry.

A key property of the implementation of dispatch chains in JRuby+Truffle

is that it is the only type of method cache. Rubinius and JRuby both feature

multiple caching mechanisms and attempt to use the simplest possible, but in

JRuby+Truffle a full dispatch chain, that can handle a varying name, is always

used, even when the name is constant. This is for uniformity and simplicity.

5.6 Application In Ruby

In JRuby+Truffle, any location that makes a call will use the single unified dis-

patch chain technique. In effect, all sends in JRuby+Truffle are metaprogram-

ming sends of the form receiver.send(:name, arguments), and we rely entirely

on the partial evaluation in Truffle’s Graal backend to remove the degree of free-

dom in the method name if we are not using it.

Listing 5.4 shows a simplified version of the AST node for a conventional

call in JRuby+Truffle. Line 3 declares the name of the method that is being

called as a final field. The name is set statically in the source code for the

call site and never changes. Line 4 declares a dispatch chain node as a child (the

@Child annotation). Line 6 is the standard AST execute method, which somehow

executes child nodes to get the receiver and arguments (not shown). Line 9 then

executes the dispatch chain node call, passing the method name, which was final

as a runtime parameter. Therefore the method name is not a final value in the

dispatch chain itself, but we have confidence in the partial evaluation phase of

Truffle’s Graal backend to propagate that constant and entirely constant fold and

remove the logic in the dispatch chain that handles varying method names.

Listing 5.5 shows the JRuby+Truffle implementation of the send operation, so

our version of the JRuby code in Listing 5.1 and the Rubinius code in Listing 5.2.

Our core library methods are implemented as nodes, rather than Java or C++

methods, which means that they are an object and have a location for us to store

an inline cache. We use a child DispatchChainNode in exactly the same way as

we did in the node for conventional calls. The only difference between the use

of the dispatch chain node here is that the method name is now an argument,

108 CHAPTER 5. METAPROGRAMMING

where in the call node it was a final field.

However, if the expression going into that argument happens to be a constant

anyway, such as if it was a literal symbol, as is the case in an expression such

as receiver.send(:name, arguments), then the code is equivalent, and the

generated machine code will be the same with the same performance. If the

name is not constant then we will also compile the parts of the dispatch chain

which deal with the varying name.

5.7 Evaluation

We measured the impact of using dispatch chains to optimise reflective operations

in JRuby+Truffle using the eighteen image composition kernels from the PSD.rb

library as benchmarks. These compose operations, which produce a single colour

value from multiple inputs, are key for performance in image applications that use

them as they are run for every pixel in an image. In PSD.rb these are implemented

using multiple metaprogramming operations. Following the Ruby philosophy of

choosing convenient implementations over creating extra abstraction with classes,

the library developers chose to pass the name of the composition operation as an

argument, which is then used by the reflective method invocation send. Within

each composition operation, colour value manipulation methods are called that

are not part of the object. These are caught via method_missing, filtered with

respond_to? and delegated with send, in a form of ad hoc modularity. In an

extreme case for each pixel in the image there are seven calls to send and six

calls to each of method_missing and respond_to?.

This sequence of operations was summarised in the Acid Test benchmark

described and evaluated in Subsection 2.3.6.

When these benchmarks are run each in a separate invocation of the VM, the

dynamic method calls are monomorphic at the call site. That is, each call to

send in the benchmark source code will only actually see one method name for

the whole program run. This is a good example of metaprogramming being used

to make the program simpler (from the perspective of the Ruby community) but

the dynamism not actually being needed in practice. An important point to make

is that we rely on Truffle’s sophisticated splitting technique (Subsection 3.2.4) to

create a new copy of the send method each time it is used in the source code. If

this was not done then there would be a single call site for dynamic method calls

5.7. EVALUATION 109

SOM M T SOM PE

0.8

1.0

1.2

1.4

B
ou

nc
e

B
ub

bl
eS

or
t

D
is

pa
tc

h
Fa

nn
ku

ch
Fi

bo
na

cc
i

Fi
el

dL
oo

p
In

te
ge

rL
oo

p
Li

st
Lo

op
Pe

rm
ut

e
Q

ui
ck

S
or

t
R

ec
ur

se
S

to
ra

ge
S

um
To

w
er

s
Tr

ee
S

or
t

W
hi

le
Lo

op
D

el
ta

B
lu

e
M

an
de

lb
ro

t
N

B
od

y
R

ic
ha

rd
s

B
ou

nc
e

B
ub

bl
eS

or
t

D
is

pa
tc

h
Fa

nn
ku

ch
Fi

bo
na

cc
i

Fi
el

dL
oo

p
In

te
ge

rL
oo

p
Li

st
Lo

op
Pe

rm
ut

e
Q

ui
ck

S
or

t
R

ec
ur

se
S

to
ra

ge
S

um
To

w
er

s
Tr

ee
S

or
t

W
hi

le
Lo

op
D

el
ta

B
lu

e
M

an
de

lb
ro

t
N

B
od

y
R

ic
ha

rd
s

R
un

tim
e

no
rm

al
iz

ed
to

ru
n

w
ith

ou
tO

M
O

P

Figure 5. Overhead of running benchmarks with the OMOP, but without changing language behavior.

10.0

12.5

15.0

17.5

20.0

C
om

po
se

C
ol

or
B

ur
n

C
om

po
se

C
ol

or
D

od
ge

C
om

po
se

D
ar

ke
n

C
om

po
se

D
iff

er
en

ce
C

om
po

se
E

xc
lu

si
on

C
om

po
se

H
ar

d
Li

gh
t

C
om

po
se

H
ar

d
M

ix
C

om
po

se
Li

gh
te

n
C

om
po

se
Li

ne
ar

B
ur

n
C

om
po

se
Li

ne
ar

D
od

ge
C

om
po

se
Li

ne
ar

Li
gh

t
C

om
po

se
M

ul
tip

ly
C

om
po

se
N

or
m

al
C

om
po

se
O

ve
rla

y
C

om
po

se
P

in
Li

gh
t

C
om

po
se

S
cr

ee
n

C
om

po
se

S
of

tL
ig

ht
C

om
po

se
V

iv
id

Li
gh

t

S
pe

ed
up

ov
er

un
op

tim
iz

ed
(h

ig
he

ri
s

be
tte

r)

Figure 6. Speedup on psd.rb image composition kernels from op-
timizing reflective operations.

SOM M T SOM PE

0.98

1.00

1.02

D
nu

A
dd

D
nu

Pe
rfo

rm
A

dd

Pe
rfo

rm
A

dd

P
ro

xy
A

dd

D
nu

A
dd

D
nu

Pe
rfo

rm
A

dd

Pe
rfo

rm
A

dd

P
ro

xy
A

dd

R
un

tim
e

no
rm

al
iz

ed
to

no
n-

re
fle

ct
iv

e
op

er
at

io
n

Figure 7. Performance of using reflective operations and proxies.

tial evaluation also relies on size-based heuristics. Since dispatch
chains introduce additional operations, such heuristics might re-
quire further fine tuning. For the benchmarks used in this paper, the
standard heuristics were however sufficient.

Since the evaluation of dispatch chains focused on peak perfor-
mance, we did not evaluate their impact on interpreted performance
or on other dimensions of performance beyond running time, such
as memory consumption. Generally, they are caching data struc-
tures and thus consume additional memory. However, since the
length of dispatch chains is typically bounded to avoid the over-
head of long linear searches, they introduce only a memory over-
head with an upper bound per AST. Furthermore, we expect them
to also improve interpreter performance. On the one hand, travers-
ing a dispatch chain is less complex than the lookup operations of
languages such as Ruby and Smalltalk, and on the other hand, we
assume that most dispatch points are monomorphic. Similar to the
observations made for method dispatches [17], we expect programs
to exhibit much less dynamic behavior than that which the language
allows for. Thus, reflective operations have a high chance to be
monomorphic and caching will be effective. Highly polymorphic
or megamorphic usage of reflective operations can also be solved
by inlining to contextualize these operations. Thus, methods that
access various fields reflectively can be inlined into the callers to
expose that each caller only accesses a small number of fields. On
top of Truffle, such AST-based inlining is done by the framework
and in RPython the meta-tracing also provides the necessary con-
textualization. In the future, it should however be verified that re-
flective operations and MOPs exhibit similar restricted variability
at runtime.

6. Related Work
As mentioned before, dispatch chains are a common pattern in self-
optimizing interpreters and have been used for other optimizations
such as an efficient object storage model [35] or a fast C [14]. They
are similar to the method handle infrastructure introduced with
Java’s invokedynamic [25]. Method handles can also be used to
implement polymorphic inline caches. Most relevant for this paper
is however the insight that they can be used to remove the overhead
of reflective operations and complex metaobject protocols, which to
our knowledge has not been demonstrated before. On the contrary,
below we discuss a number of approaches that all restrict the
reflective power or burden the application or library level with
performance optimizations.

Compile-time Metaprogramming. Compile-time metaprogram-
ming techniques try to preserve the expressiveness of their run-

552

Figure 5.4: Metaprogramming speedup on compose benchmarks.

– that of send itself, which would very quickly become megamorphic.

Figure 5.4 shows the speedup produced by our dispatch chain technique on

the compose benchmarks, relative to a non-caching technique, similar to that

used by other implementations of Ruby. Dispatch chains give between 10× and

20× speedup over the conventionally optimised calls.

This form of graph shows a box plot, with the median, 25th and 75th per-

centiles, and whiskers at the maximum or minimum sample within 1.5 interquar-

tile range. Outliers beyond this range are shown as dots.

5.7.1 Application in Smalltalk

Marr et al [73] independently and concurrently developed the same technique

as we have described here, and applied it in the context of a reduced dialect of

Smalltalk called the Simple Object Machine (SOM).

In these experiments, an implementation of dispatch chains was tried in the

context of two high-performance programming language implementation frame-

works. The SOM-MT results implement SOM and dispatching chains using the

RPython meta-tracing JIT, as used in PyPy and the Topaz implementation of

Ruby, and the SOM-PE results use Truffle and Graal.

110 CHAPTER 5. METAPROGRAMMING

SOM M T SOM PE

0.8

1.0

1.2

1.4

B
ou

nc
e

B
ub

bl
eS

or
t

D
is

pa
tc

h
Fa

nn
ku

ch
Fi

bo
na

cc
i

Fi
el

dL
oo

p
In

te
ge

rL
oo

p
Li

st
Lo

op
Pe

rm
ut

e
Q

ui
ck

S
or

t
R

ec
ur

se
S

to
ra

ge
S

um
To

w
er

s
Tr

ee
S

or
t

W
hi

le
Lo

op
D

el
ta

B
lu

e
M

an
de

lb
ro

t
N

B
od

y
R

ic
ha

rd
s

B
ou

nc
e

B
ub

bl
eS

or
t

D
is

pa
tc

h
Fa

nn
ku

ch
Fi

bo
na

cc
i

Fi
el

dL
oo

p
In

te
ge

rL
oo

p
Li

st
Lo

op
Pe

rm
ut

e
Q

ui
ck

S
or

t
R

ec
ur

se
S

to
ra

ge
S

um
To

w
er

s
Tr

ee
S

or
t

W
hi

le
Lo

op
D

el
ta

B
lu

e
M

an
de

lb
ro

t
N

B
od

y
R

ic
ha

rd
s

R
un

tim
e

no
rm

al
iz

ed
to

ru
n

w
ith

ou
tO

M
O

P

Figure 5. Overhead of running benchmarks with the OMOP, but without changing language behavior.

10.0

12.5

15.0

17.5

20.0

C
om

po
se

C
ol

or
B

ur
n

C
om

po
se

C
ol

or
D

od
ge

C
om

po
se

D
ar

ke
n

C
om

po
se

D
iff

er
en

ce
C

om
po

se
E

xc
lu

si
on

C
om

po
se

H
ar

d
Li

gh
t

C
om

po
se

H
ar

d
M

ix
C

om
po

se
Li

gh
te

n
C

om
po

se
Li

ne
ar

B
ur

n
C

om
po

se
Li

ne
ar

D
od

ge
C

om
po

se
Li

ne
ar

Li
gh

t
C

om
po

se
M

ul
tip

ly
C

om
po

se
N

or
m

al
C

om
po

se
O

ve
rla

y
C

om
po

se
P

in
Li

gh
t

C
om

po
se

S
cr

ee
n

C
om

po
se

S
of

tL
ig

ht
C

om
po

se
V

iv
id

Li
gh

t

S
pe

ed
up

ov
er

un
op

tim
iz

ed
(h

ig
he

ri
s

be
tte

r)

Figure 6. Speedup on psd.rb image composition kernels from op-
timizing reflective operations.

SOM M T SOM PE

0.98

1.00

1.02

D
nu

A
dd

D
nu

Pe
rfo

rm
A

dd

Pe
rfo

rm
A

dd

P
ro

xy
A

dd

D
nu

A
dd

D
nu

Pe
rfo

rm
A

dd

Pe
rfo

rm
A

dd

P
ro

xy
A

dd

R
un

tim
e

no
rm

al
iz

ed
to

no
n-

re
fle

ct
iv

e
op

er
at

io
n

Figure 7. Performance of using reflective operations and proxies.

tial evaluation also relies on size-based heuristics. Since dispatch
chains introduce additional operations, such heuristics might re-
quire further fine tuning. For the benchmarks used in this paper, the
standard heuristics were however sufficient.

Since the evaluation of dispatch chains focused on peak perfor-
mance, we did not evaluate their impact on interpreted performance
or on other dimensions of performance beyond running time, such
as memory consumption. Generally, they are caching data struc-
tures and thus consume additional memory. However, since the
length of dispatch chains is typically bounded to avoid the over-
head of long linear searches, they introduce only a memory over-
head with an upper bound per AST. Furthermore, we expect them
to also improve interpreter performance. On the one hand, travers-
ing a dispatch chain is less complex than the lookup operations of
languages such as Ruby and Smalltalk, and on the other hand, we
assume that most dispatch points are monomorphic. Similar to the
observations made for method dispatches [17], we expect programs
to exhibit much less dynamic behavior than that which the language
allows for. Thus, reflective operations have a high chance to be
monomorphic and caching will be effective. Highly polymorphic
or megamorphic usage of reflective operations can also be solved
by inlining to contextualize these operations. Thus, methods that
access various fields reflectively can be inlined into the callers to
expose that each caller only accesses a small number of fields. On
top of Truffle, such AST-based inlining is done by the framework
and in RPython the meta-tracing also provides the necessary con-
textualization. In the future, it should however be verified that re-
flective operations and MOPs exhibit similar restricted variability
at runtime.

6. Related Work
As mentioned before, dispatch chains are a common pattern in self-
optimizing interpreters and have been used for other optimizations
such as an efficient object storage model [35] or a fast C [14]. They
are similar to the method handle infrastructure introduced with
Java’s invokedynamic [25]. Method handles can also be used to
implement polymorphic inline caches. Most relevant for this paper
is however the insight that they can be used to remove the overhead
of reflective operations and complex metaobject protocols, which to
our knowledge has not been demonstrated before. On the contrary,
below we discuss a number of approaches that all restrict the
reflective power or burden the application or library level with
performance optimizations.

Compile-time Metaprogramming. Compile-time metaprogram-
ming techniques try to preserve the expressiveness of their run-

552

Figure 5.5: Overhead for metaprogramming in SOM using dispatch chains.

Figure 5.5 shows the results of an experiment at a smaller scale than the

one we have just presented, using microbenchmarks that just test the overhead

of the particular metaprogramming operation, compared to a conventional static

operation. Each benchmark uses a counter that implements an increment method.

The baseline for comparison calls the increment using a conventional static send.

PerformAdd calls the increment method reflectively. In DnuAdd the counter does

not implement increment and instead uses SOM’s missing-method handler to do

the integer increment. DnuPerformAdd combines missing-method handling with

a reflective method call. The ProxyAdd benchmark combines missing-method

handling with reflective calls to assess the overhead of dynamic proxies built with

it. The data is noisy, more so for the implementation of SOM based on the JVM,

but it shows that meta-programming operations can be implemented without

overhead.

5.8 Summary

In this chapter we have shown why existing implementations of Ruby do not

perform well in metaprogramming calls. We identified two problems in their

approach.

5.8. SUMMARY 111

First there was no caching technique that could vary on both a name and a

receiver class. We solved this with dispatch chains, a generalisation on PICs, and

we showed that the implementation of dispatch chains is particularly elegant in

the context of a self-optimising AST interpreter.

The second problem in existing implementations was that there was no suit-

able location to store a cache for a particular call site, because both JRuby and

Rubinius implement Ruby core library methods as Java or C++ methods. We

solved this problem by making our core library methods nodes, which are objects

in which we can store state. With inlining of ASTs by splitting (described in

Chapter 3), there is an instance of this object.

We finally identified that in an implementation with dynamic optimisation it

is possible to generalise to a single caching primitive, which is the dispatch chain,

and rely on optimisations to remove the unused logic for a varying name if it is

not used due to a constant name.

Subsequent results in Chapter 8 will look at the performance of the native

code which is usually used to replace these metaprogramming operations.

The techniques in this chapter have given us a way to implement metapro-

gramming operations as efficiently as conventional operations. In fact, in

JRuby+Truffle we replaced conventional operations with the same logic as metapro-

gramming operations. During peak performance, when the program is stable and

has been optimised as described in Chapter 4, the technique has zero-overhead

compared to conventional operations. There will however be overheads in compi-

lation time and memory consumed by the compiler, but we were not attempting

to reduce or maintain these other metrics at previous levels.

112 CHAPTER 5. METAPROGRAMMING

1 public static class DispatchNameChainNode {

2

3 private final String cachedName;

4 @Child private DispatchClassChainNode cacheHit;

5 @Child private DispatchNameChainNode cacheMiss;

6

7 public Object execute(VirtualFrame frame,

8 Object receiver, String methodName, Object... args) {

9 if (methodName.equals(cachedName)) {

10 return cacheHit.execute(frame, receiver, args);

11 } else {

12 return cacheMiss.execute(frame, receiver, args);

13 }

14 }

15

16 }

17

18 public static class DispatchClassChainNode {

19

20 private final Class cachedClass;

21 private final Method cacheHit;

22 @Child private DispatchClassChainNode cacheMiss;

23

24 public Object execute(VirtualFrame frame,

25 Object receiver, String methodName, Object... args) {

26 if (receiver.getClass() == cachedClass) {

27 return cacheHit.call(frame, receiver, args);

28 } else {

29 return cacheMiss.execute(frame, receiver, args);

30 }

31 }

32

33 }

Listing 5.3: JRuby+Truffle’s implementation of dispatch chain nodes (simplified).

5.8. SUMMARY 113

1 public class RubyCallNode extends RubyNode {

2

3 private final String methodName;

4 @Child private DispatchChainNode chainNode;

5

6 public Object execute(VirtualFrame frame) {

7 final Object receiver ...

8 final Object[] args = ...

9 return chainNode.call(frame, receiver,

10 methodName, args);

11 }

12

13 }

Listing 5.4: JRuby+Truffle’s implementation of a conventional method call (sim-
plified).

1 public static class SendNode {

2

3 @Child private DispatchChainNode chainNode;

4

5 public Object execute(VirtualFrame frame,

6 Object receiver, Object methodName, Object... args) {

7 return chainNode.call(frame, receiver,

8 methodName, args);

9 }

10

11 }

Listing 5.5: JRuby+Truffle’s implementation of send (simplified).

114 CHAPTER 5. METAPROGRAMMING

Chapter 6

Optimising Debugging of

Dynamic Languages

6.1 Introduction

The optimisation of a programming language implementation, and the ability

to debug programs running on that implementation are often conflicting goals.

Optimisations generally focus on removing redundant work and abstractions that

are not needed so that the program is simpler and runs in less time. Debuggers

may have needed this information in order to monitor and modify the running

program. The most common solution to this problem is to disable optimisations

when the user wants to use a debugger.

Static compilers for languages such as C often have optimisation levels that

are set by the programmer, and optimisations to include debug meta-information

into the produced binary. When the programmer anticipates needing to attach

a debugger, they will normally disable the optimisations and enable the debug

meta-information. If the programmer did not know ahead of time that they would

want to attach a debugger, and their program is already running, the experience

using the debugger is much worse, and it may not be reasonably practical to

debug the program at all.

Even many dynamic programming language implementations have similar

problems. As we will show in the next section, only the reference implementation

of Ruby, MRI, has the full set of debug and introspection features always enabled.

Alternative implementations such as JRuby and Rubinius disable debugging fea-

tures unless a special debug mode is set at startup, or do not implement them at

115

116 CHAPTER 6. DEBUGGING

all. As with a C program, programmers are expected to know ahead of time that

they will want to debug a program in order to use these features.

Based on our assessment of how Ruby is used in industry in Chapter 4, we

would like to let Ruby programmers debug long-running processes. The Ruby

program should always be running in a state where a debugger can be attached,

and should run with peak temporal performance until that happens. When the

debugger is removed, the process should then return to peak temporal perfor-

mance.

While the debugger is attached, we want to maintain peak temporal per-

formance wherever possible. For example, if a line breakpoint is installed in a

method, the method should still run at peak performance, until that breakpoint

is triggered. If there is a line breakpoint with a condition that should be eval-

uated to see if the breakpoint should be triggered, then the overhead should be

proportionate to the cost of that evaluating the condition. We do not want the

program to enter a special state where optimisations are disabled whenever the

program is being debugged.

As will be covered in more depth in the next section, this is an extremely high

bar to set. No other implementation of Ruby achieves this, including MRI, which

does not have optimisations to disable. In fact, even long-established program-

ming language implementations that have been highly tuned for tooling such as

the Java HotSpot JVM do not achieve the same performance for a method that

has a breakpoint attached as one that does not [4].

The key contribution of this chapter is the novel concept of AST wrapper

nodes for debugging. We begin by describing the current state of Ruby debuggers

and language features designed to aid debugging. For simplicity we outline a small

prototype debugger that we will implement to demonstrate our techniques. We

then introduce the high-level concept of AST wrapper nodes in the context of

a self-optimising AST interpreter. We show how wrapper nodes can be used

to implement our debugger and other Ruby language features. We evaluate our

technique against other Ruby implementations and show how for most cases it has

zero-overhead for the case where a debugger is able to be attached, is attached, or

has been attached, compared to a configuration where the debugger is disabled. In

cases where work cannot be removed entirely we will show how it has reasonable

overhead.

In this chapter we make the reasonable assumption that the optimisations

6.2. RUBY DEBUGGERS 117

that our compiler make are correct, and so do not consider the problem of opti-

misations changing the meaning of a program.

The research contributions in this chapter were initially independent work

that supported the Ruby set trace func language feature (described later).

The applicability of the technique for implementing a debugger was discussed

with Michael Van de Vanter at Oracle Labs and the technique generalised in col-

laboration with him to fit that purpose. The work was evaluated and written up

in collaboration with Michael Van de Vanter and Michael Haupt, also of Oracle

Labs for a joint publication [92].

6.2 Ruby Debuggers

We can consider two kinds of debugging features in the Ruby language. There are

debugging features built into the language that can be accessed by the running

program, which are a kind of metaprogramming, and there are more fully-featured

debugging tools, which are often implemented using the language features and

are similar to conventional tools such as GDB.

6.2.1 Language Debugging Features

In Chapter 2 we introduced some of Ruby’s powerful metaprogramming language

features such as dynamic sends, missing method interception and so on. An even

more advanced feature is Ruby’s set trace func method. This allows a Ruby

Proc (effectively an anonymous function) to be installed as a callback to be run

on various interpreter events. For example, it is called every time the interpreter

reaches a new line in the program’s source code.

Listing 6.1 shows a simple Proc being installed that prints the line number as

the program runs. The Proc receives various information in parameters each time

it is called by the implementation, including the type of event, the file and line

where the interpreter currently is, an identifier of the current method, a binding

which is an object representing the current lexical environment (a set of local

variables) and the current class’s name.

The default implementation of Ruby, MRI supports set trace func and there

is no option to enable or disable it. MRI implements set trace func with a

dedicated trace instruction in the bytecode that is always present. It checks a

flag to see if tracing is enabled and if so calls the trace Proc. This means there

118 CHAPTER 6. DEBUGGING

1 set_trace_func proc { |event, file, line,

2 id, binding, classname|

3 puts "We’re at line number #{ line} !"

4 }

Listing 6.1: An example use of Ruby’s set trace func method

is always an overhead on performance because the instruction is always present,

even if it does not do a lot of work without an installed Proc. There is another

overhead when a Proc is installed, in making the call.

JRuby allows set trace func to be used only when a special --debug flag

is set. This flag completely disables all optimisations and adds frequent checks

to a flag, similar to the approach used in MRI. Work is underway using the new

IR system in JRuby to implement set trace func using an approach similar to

ours1.

Topaz is the only other implementation of Ruby beside JRuby+Truffle that al-

ways has set trace func enabled and also achieves relatively high performance.

Topaz declares the variable that holds the current trace Proc to be a green vari-

able [16]. A green variable is one that should be the same every time a trace (see

Subsection 3.2.5) is entered. When no trace Proc is installed, the variable is nil

upon entering the trace and can be assumed to be nil throughout, meaning that

the check at each line if there is a trace method installed is a constant. If a trace

method is installed, the compiled trace will be found to be invalid when the green

variables are checked, and will be recompiled. A downside of this approach com-

pared to ours is that it is a global field in Topaz’s top level object and so any new

language requiring similar functionality would require another global field. Our

approach is localised, with Assumption objects that can be declared anywhere in

the program, not just at the top level.

Rubinius and MagLev do not have any support for set trace func. The op-

timisation techniques they have applied are not easily compatible with set tra-

ce func, which is an example of the conflict between performance and optimisa-

tion that we described at the beginning of this chapter.

set trace func is also used as a fundamental construct to implement debug-

ging tools, as described below. It was historically used to implement tools such as

1See Chapter 7 and the discussion on Switchpoint for the underlying primitive they will
use

6.2. RUBY DEBUGGERS 119

coverage, until specific APIs were introduced to Ruby to improve performance.

6.2.2 Debugging Tools

The Ruby community is strongly in favour of different forms of testing, includ-

ing unit-testing, specifications, testing-driven-development and behaviour-driven-

development. Coupled with the Ruby REPL, IRB, where code can be tried and

refined interactively, and the poor performance of what debuggers there are avail-

able (shown later), many Ruby programmers may not be routinely using a con-

ventional debugger tool.

The Ruby standard library includes a simple debugger that is implemented

using set trace func. The name of the library is debug, but for clarity we will

refer to it as stdlib-debug. Listing 6.2 shows an illustrative example of the Proc

installed by stdlib-debug and how it looks for the line event and calls a method

to see if it should break on this line, and if so it calls a method to do that. Our

prototype debugger, described below, is loosely based on this interface with some

simplifications.

1 set_trace_func proc { |event, file, line, id, binding, klass, *rest|

2 case event

3 when ’line’

4 if check_break_points(file, nil, line, binding, id)

5 debug_command(file, line, id, binding)

6 end

7 end

8 }

Listing 6.2: stdlib-debug using set trace func to create a debugger (simplified)

As will be shown, performance of stdlib-debug is extremely poor. Providing

a superset of the functionality of stdlib-debug, ruby-debug (also referred to as

rdebug) is implemented as a C extension to MRI to reduce overheads. It uses

internal interfaces in MRI which crucially do not require the per-line logic to be

written in Ruby, which MRI executes very slowly. This library is the foundation

for most debugging tools commonly used with Ruby, eg, in RubyMine.

As JRuby has limited support for C extensions, ruby-debug has been ported

to Java as jruby-debug. In the same way as ruby-debug it uses internal interfaces

to try to improve performance, but as with set trace func, using jruby-debug

120 CHAPTER 6. DEBUGGING

requires the --debug flag to be set, which disables all optimisations.

Rubinius includes a debugger that is integrated into the VM, providing a

debug protocol and user interface. Unfortunately, we found that the Rubinius

debugger silently failed to work in combination with JIT compilation2 so we were

forced to disable compilation manually.

Topaz does not support any debugger. MagLev has a debugger, but it is

highly integrated into the underlying Smalltalk VM so the interface presented

is not what a Ruby programmer would understand, and, crucially, it will not

compile a method with a breakpoint so performance is always going to be very

limited.

6.3 A Prototype Debugger

We designed a simple prototype debugger with limited features to experiment

with implementation on JRuby+Truffle. The debug operations it provides in-

cludes the ability to:

• Set a line breakpoint that halts execution.

• Set a line breakpoint with an associated action: a fragment of Ruby code

that might be guarded by a conditional expression and which might halt

execution or anything else.

• Set a data breakpoint on a local variable in some method that halts exe-

cution immediately after an assignment, which is implemented with a line

breakpoint on each line where the local variable is modified with an action

to examine the value.

• Set a data breakpoint with an associated action, as with a line breakpoint.

• Continue execution.

• Basic introspection of the program structure and current state such as ex-

amining the value of variables and reporting the halted position.

2We reported this issue along with test cases to demonstrate the problem (https://github.
com/rubinius/rubinius/issues/2942) but have not received a response at the time of writing.

https://github.com/rubinius/rubinius/ issues/2942
https://github.com/rubinius/rubinius/ issues/2942

6.4. DEBUG NODES 121

6.4 Debug Nodes

6.4.1 Wrappers

The central construct in the Ruby Truffle debugger is the wrapper node or simply

wrapper. This is a Truffle AST node with one child that:

• is transparent to execution semantics,

• by default just propagates the flow of program execution from parent to

child and back, and

• performs debugging actions when needed.

Note that the logic of this node can be implemented without overhead, which will

be explained later on. Starting with an AST produced by a conventional parser,

we insert a wrapper as the parent of the first node corresponding to each location

where we may want to install some debug action.

Listing 6.3 shows Ruby code that increments a local variable x and decrements

a local variable y while x < y. This code has three locations where we might

want to set a breakpoint, and two locations where we might want to break on

assignment of a local variable.

1 while x < y

2 x += 1

3 y -= 1

4 end

Listing 6.3: Example Ruby code

Figure 6.1 shows the AST of this code as produced by the parser. Figure 6.2

shows the same AST with wrappers inserted wherever the Ruby parser tells us

that the line number has changed, to implement line breakpoints. Each wraps a

single child node.

6.4.2 Debug Operations

Potential debugging operations are implemented in the form of wrappers at every

location where the user might want to request a debug action. The wrappers are

always added, whether or not a debug action is initially installed, and whether

122 CHAPTER 6. DEBUGGING

WriteLocal ‘x’

Call ‘+’

ReadLocal ‘x’

FixnumLiteral 1

WriteLocal ‘y’

Call ‘-’

ReadLocal ‘y’

FixnumLiteral 1

Sequence Call ‘<’

ReadLocal ‘x’

ReadLocal ‘y’

While

Figure 6.1: AST of Listing 6.3 without wrappers

6.4. DEBUG NODES 123

LineBreakpoint

Call ‘+’

ReadLocal ‘x’

FixnumLiteral 1

LineBreakpoint

Call ‘-’

ReadLocal ‘y’

FixnumLiteral 1

Sequence LineBreakpoint

While

Call ‘<’

ReadLocal ‘x’

ReadLocal ‘y’

WriteLocal ‘x’

WriteLocal ‘y’

Figure 6.2: AST of Listing 6.3 with wrappers to implement line breakpoints

124 CHAPTER 6. DEBUGGING

or not a debugging tool is currently attached. When added, the wrappers are

initially in an inactive state. An inactive wrapper is simple: during each execution

it only checks to see if it should be enabled, and if not propagates the flow of

program execution to the wrapped node. The debug operation at a particular

location can be enabled by replacing just the relevant inactive wrappers with

active versions. The action that the active wrapper performs depends on the

functionality it implements, and we describe several active wrapper nodes in

section 6.4.4. When no longer needed, an active wrapper replaces itself again

with an inactive version.

6.4.3 Assumptions

Many wrappers follow this pattern: a debugging node replaces itself with an al-

ternate version when some presumably rare condition occurs. Truffle aggressively

optimises code when given hints about what conditions should be treated as the

normal case; instances of the Assumption class are one way to do this.

An Assumption is implemented as a boolean that is initially true until in-

validated, at which time it becomes permanently false. For example, debugging

code might create an instance to represent the fact that there is no breakpoint at

a particular line of source code, and will only invalidate that assumption should

a breakpoint be created.

Truffle applies important optimisations speculating that

Assumption.isValid() always returns true. When an instance is invalidated

(i. e., its value is set to false), Truffle deoptimises any method code that de-

pends on that assumption (i. e., any code that calls Assumption.isValid() on

the instance). Typically the program then replaces the node associated with the

invalid Assumption and creates a new (valid) instance of Assumption.

6.4.4 Wrapper Roles

Our implementation of a Ruby debugger uses wrapper nodes to implement debug

and metaprogramming functionality that is similar to that provided by other

implementations.

6.4. DEBUG NODES 125

Tracing

Ruby’s core library method Kernel#set trace func registers a method to be

called each time the interpreter encounters certain events, such as moving to a

new line of code, entering or leaving a method, or raising an exception (Listing 6.1

shows an example). This method is used to implement other Ruby debuggers

(such as the debugger library, detailed in section 8.10), profilers, coverage tools

and so on. The trace method receives a Binding object that represents the current

environment (local variables in lexical scope) as well as other basic information

about where the trace was triggered. One trace method at a time can be installed,

and it may be removed by calling set trace func with nil.

The Ruby Truffle debugger implements set trace func as an (initially inac-

tive) trace wrapper at the location of each line. Each time it is executed, the

inactive node checks the assumption that there is no trace method installed be-

fore propagating the flow of program execution. When the check fails, the node

replaces itself with an active trace wrapper.

The active wrapper correspondingly checks the assumption that there is a

trace method before first invoking the method and then propagating the flow of

program execution. When the trace method has been removed, the check fails and

an inactive wrapper is swapped back in. Using an Assumption object ensures that

in the most common case the only overhead is the (inactive) wrappers performing

the check.

Line Breakpoints

The line breakpoint and set trace func implementations are similar. However,

instead of a single trace method, line breakpoint wrappers check if a method

has been installed for their associated line of source code. The debugger main-

tains a map that relates source locations to Assumption objects. A newly con-

structed line breakpoint wrapper is given access to the Assumption that the

current method for that line has not changed.

A triggered breakpoint halts program execution and starts an interactive ses-

sion similar to the standard interactive Ruby shell, IRB. This debugging session

runs in the execution environment of the parent scope at the breakpoint, so that

local variables are visible in the debugger. Additional Ruby methods available in

the shell include Debug.where (displays the source location where the program is

halted) and Debug.continue (throws an exception that exits the shell and allows

126 CHAPTER 6. DEBUGGING

program execution to continue). We have not yet implemented debug operations

such as next, but believe these can be implemented with combinations of these

techniques.

The action taken by an active line breakpoint node could be anything that

can be expressed in Java (Truffle’s host language) or, as with set trace func,

a method written in Ruby. Listing 6.4 shows an example command to install a

line breakpoint. This could have been written as part of the program, or typed

into an interactive shell. The example prints a message to the log, but it could

contain arbitrary Ruby code, including entry into the debugger.

1 Debug.break(’test.rb’, 14) do

2 puts "The program has reached line 14"

3 end

Listing 6.4: Example command to install a line breakpoint

Conditional Line Breakpoints

Conditional line breakpoints are a simple extension to line breakpoints. Since

the breakpoint wrapper is a legitimate Truffle AST node, an if statement can

be wrapped around the action that invokes the debugger. To support conditions

written in Ruby, we can call a user-defined method to test the condition, in exactly

the same way as we call a user-defined method in set trace func. Again, it is

also possible to inline this method, so the condition becomes part of the compiled

and optimised method.

Figure 6.3 shows the AST of Listing 6.3 with a line breakpoint installed on

line 3 that contains the condition y == 6. The condition forms a first-class part

of the AST, alongside the original program, with no distinction between debug

code and user code that might inhibit optimisation.

Local Variable Watchpoints

Breakpoints on the modification of local variables, as well as the conditional

version of the same, are implemented almost exactly as are line breakpoints.

A local breakpoint wrapper is inserted at each local assignment node, and the

debugging action happens after the child has executed, i. e., when the local holds

the newly assigned value.

6.4. DEBUG NODES 127

LineBreakpoint

Call ‘+’

ReadLocal ‘x’

FixnumLiteral 1

LineBreakpoint

Call ‘-’

ReadLocal ‘y’

FixnumLiteral 1

Sequence LineBreakpoint

While

Call ‘<’

ReadLocal ‘x’

ReadLocal ‘y’

WriteLocal ‘x’

WriteLocal ‘y’

Call ‘==’

ReadLocal ‘y’

FixnumLiteral 6

If

Figure 6.3: AST of Listing 6.3 with a line breakpoint with condition y == 6

128 CHAPTER 6. DEBUGGING

Profiling

Other researchers have explored the use of wrapper nodes for profiling [91].

6.5 Implementation

This section describes the properties of the underlying Truffle/Graal platform

that makes this approach to debugging effective.

6.5.1 The Truffle Compilation Model

The Truffle-based implementation of Ruby is expressed as an AST interpreter [115].

Unlike all other modern implementations of Ruby, we do not generate bytecode

and do not explicitly generate machine code. Instead, when running on a JVM

with the Graal compiler, Truffle will profile AST execution. When it discovers a

frequently executed tree, it takes the compiler intermediate representation of all

the methods involved in executing the AST—primarily, all the execute meth-

ods on the AST nodes—and inlines them into a single method. The powerful

intra-method optimisations that the JVM normally applies within methods are

applied across all the methods, and Truffle produces a single machine code func-

tion for the AST. In our case this is a single machine code function for a single

Ruby method. This by-default inlining of AST interpreter methods removes the

overhead introduced by inactive wrappers.

6.5.2 Overview

Figure 7.1 summarizes the transitions of an AST with debug nodes under the

Truffle compilation model.

The AST is generated from source code by the parser using conventional

techniques. In the prototype implementation evaluated in this thesis, the debug

wrapper nodes, illustrated as a double circle, were inserted by the parser at each

statement. As wrapper nodes are added, a mapping between file names and line

numbers to the wrapper node inserted at that location, if any, is built up. A more

sophisticated implementation would allow wrapper nodes to be inserted only as

they are needed, which would reduce memory consumption.

After enough executions of this AST to trigger compilation, a single machine

6.5. IMPLEMENTATION 129

code method is produced from all nodes in the AST, including the inactive wrap-

per node.

When the user wishes to install a line breakpoint, the corresponding wrapper

node is found by looking up the source location in the mapping which was built

as the wrapper nodes were added. Each wrapper node maintains an Assumption

object (explained further in Section 6.5.3), which is then invalidated to flag the

wrapper node as needing to be replaced with an active wrapper node because a

debug action is needed at that location. Invalidating the assumption also trig-

gers deoptimisation (again, this is explained further later on), and the program

continues to run in the interpreter, rather than in the compiled code. In the in-

terpreter, inactive wrapper nodes when executed check if they have been flagged

to be replaced with active wrapper nodes, because a debug action is needed at

that location. When a flagged inactive wrapper node is executed it will specialise,

or replace itself, with an active wrapper node with the debug action attached.

Execution continues, and after a period to allow the AST to re-stabilize (for

example we have to determine the type of operations and fill inline caches in

the modified AST) we again reach the threshold of executions for the AST to be

compiled. Graal caches parts of the compilation of the AST so compilation with

the replaced node does not have to take as long [99].

With the active wrapper node in the place, the debug action is now run each

time that line of the program is executed.

The active wrapper node can be replaced with an inactive node if the debug

action is removed, using exactly the same procedure. This cycle can continue

repeatedly as the program runs.

Figure 6.5 illustrates how a simplified inactive debug node is compiled to

leave zero overhead. The semantic action method of the node, execute, checks

the assumption that the node should still be inactive. If the assumption is no

longer valid the node is replaced. Under compilation, the check is constant and

valid. The compiler sees that no exception is thrown and removes the entire

catch block. The only remaining action is to directly execute the child of the

wrapper (the node that is being wrapped). Truffle inlines by default, so there is no

method call overhead to execute the child. If the assumption was no longer valid,

for example because the user is installing a breakpoint, execution will transition

to the interpreter. There the check on the assumption is always performed. Then

the exception will be thrown and caught, a new active node will be created and

130 CHAPTER 6. DEBUGGING

inactive

active

Compile:
produces partially

evaluated
machine code

from specialized
AST

Deoptimize:
transfers control
from the machine
code back to the
AST interpreter

Replace: the
inactive node
with an active
node to install

the debug action

Compile: produces
new machine code
from the modified

AST and the installed
debug action

Debug
action

installed by
user

Inactive
assumption check
completely elided
in compiled code

Debug actions can be repeatedly added and removed,
triggering deoptimisation and recompilation each time

to return to peak performance

Figure 6.4: Overview of the Truffle compilation model as it applies to debug
nodes

6.5. IMPLEMENTATION 131

!!!!public!Object'execute(…)!{!

!!!!!!!!try!{!

!!!!!!!!!!!!inactiveAssumption.check(…);!

!!!!!!!!}!catch!(InvalidAssumptionException!e)!{!

!!!!!!!!!!!!final!ActiveDebugNode!activeNode!=!createActive();!

!!!!!!!!!!!!replace(activeNode);!

!!!!!!!!!!!!activeNode.execute(…);!

!!!!!!!!}'

''''''''return'child.execute(…);!

!!!!}!

1)#Inac(ve#assump(on#assumed#
to#be#constant#and#valid#in#
compiled#code#

2)#check()##therefore#
never#throws#an#
excep(on#and#the#en(re#
try>catch#block#can#
be#elided#

3)#The#only#ac(on#remaining#is#to#
directly#execute#the#child#of#the#
wrapper,#which#is#inlined,#leaving#no#
overhead#from#the#wrapper#

Figure 6.5: Explanation of how code in an inactive debug node (simplified) is
compiled to leave zero-overhead

will replace this current inactive node. Execution will then continue with the new

active node. At some point Truffle will decide to compile the method again, with

the new node in place.

Inactive wrapper nodes play several important roles in ASTs being debugged,

even though they compile to nothing most of the time. They make it possible

to map significant AST locations, for example the beginning of lines, that could

otherwise be reached only by tree navigation. They can be relied upon to persist,

even when nodes around them are replaced during Truffle AST optimisation. Fi-

nally, they can be activated and deactivated by self-replacement, which is Truffle’s

fundamental (and safe) mechanism for runtime AST modification.

6.5.3 Deoptimisation

Truffle provides two implementations of the Assumption class. When Graal is

unavailable or the method is being interpreted, Assumption is implemented with

a Boolean flag and explicit checks as described in section 6.4.3. Since Assumption

objects are checked often but invalidated rarely, a strategy that treats them as

132 CHAPTER 6. DEBUGGING

constant and valid during compilation, but ensures that invalidation of the as-

sumption occurs correctly, can bring large performance benefits. The Graal im-

plementation of Assumption on top of the HotSpot JVM provides the mechanism

to do this efficiently.

OpenJDK JIT compilers such as server [82] and client [64] emit machine code

at runtime after sufficient invocations of a method, and will then call the machine

code version of the method instead of interpreting it. The transition from the

initial interpreter into this compiled machine code does not have to be one-way.

The transition in the other direction, from machine code to interpreter is called

dynamic deoptimisation [55]. Part of the complexity of deoptimisation is that

invalidated machine code may be already running and on the stack, potentially

with more than one activation, and potentially on more than one thread. Multiple

activations in a single thread are deoptimised by examining the entire stack when

deoptimising and transitioning all activations of affected methods. Activations in

other threads are deoptimised by cooperatively halting them at a safepoint where

threads test a page that has its permissions changed to cause a segfault and

stop the thread. Safepoints are already emitted by the JVM to support systems

such as the garbage collector, so they add no overhead in our system to support

debugging multi-threaded applications.

The efficient implementation of Assumption is made possible by this mecha-

nism, which Graal exploits by maintaining a list for each Assumption object of

all machine code that depends on the Assumption being valid. The invalidate

method on an Assumption object instructs the underlying JVM to invalidate all

dependent machine code, which triggers OpenJDK JVM deoptimisation.

The Graal VM is specifically designed to enable aggressive speculative opti-

misations [28]. It uses dynamic deoptimisation internally, and so the mechanism

for using it (including safepoints, which are discussed in depth in Chapter 7) is

already present in all compiled code. We can therefore reuse that mechanism for

debugging with no additional runtime overhead.

6.5.4 Repeated Invalidations of Assumptions

When a debug node is initially added to an AST that is already compiled, de-

optimised is triggered for the first time by invalidating the Assumption object

associated with the AST. As shown in Figure 7.1, the AST can be recompiled

with the debug node in place. Assumption objects can only be invalidated once,

6.5. IMPLEMENTATION 133

and when invalidated they stay in the invalidated state. To support recompila-

tion, the Truffle API was modified to add a class CyclicAssumption. As shown

in Listing 6.5, the CyclicAssumption holds a mutable reference to a current

Assumption object. When this object is invalidated a new one is automatically

created. Assumptions which have been invalidated and are no longer referenced

are collected by the garbage collector as any object, so as many can be created as

are needed as the program runs, and the cycle of optimisation and deoptimisation

is not bounded to a limited number.

1 class CyclicAssumption {

2 private Assumption currentAssumption;

3

4 public void invalidate() {

5 Assumption oldAssumption = currentAssumption;

6 currentAssumption = Truffle.getRuntime().createAssumption();

7 oldAssumption.invalidate();

8 }

9

10 public Assumption getAssumption() {

11 return currentAssumption;

12 }

13 }

Listing 6.5: Implementation of CyclicAssumption (simplified)

6.5.5 Expectation

The inlining of AST interpreter methods and the use of dynamic deoptimisation

via Assumption objects instead of explicit checks to enable debug operations

means that our debugger implementation will have no peak temporal performance

overhead at all when debugging is enabled but not in use. After optimisation, a

tree with an inactive line breakpoint wrapper becomes no different in terms of the

JVM JIT compiler IR than if the wrapper had not been added, as it had no body

after the assumption check was removed, and we remove method boundaries.

It is also possible to inline a trace method or breakpoint condition, rather

than making a method call. A copy of the trace method’s AST can be inserted

as a child node of the active wrapper. In this position it is optimised in exactly

the same way as user code, as if inserted at that point in the source code. Part

134 CHAPTER 6. DEBUGGING

of the reason that set trace func is expensive in existing implementations (see

section 8.10) is that the trace method is passed the current environment as a

parameter. When our debugger inlines a trace method, Graal observes through

escape analysis [63] that the environment argument can be optimised.

However, to implement set trace func the developers of Topaz needed to

define the trace method as a green variable in their main JIT object and at each

merge point where the interpreter could enter a compiled trace. We believe that

our system where an Assumption is only of concern to the subsystem that is using

it, rather than a ‘global’ object, is more elegant.

6.6 Evaluation

We evaluated the performance of our implementation of set trace func and

debugging JRuby+Truffle against other implementations of Ruby interpreters

and debuggers, using the systems and techniques described in Chapter 4.

In this chapter we are primarily interested in the overhead. This is the cost

of using a feature in terms of how much performance is reduced by the feature.

We consider the overhead of each feature in each implementation in four con-

figurations. The disabled metric is our baseline. It is the performance of the

system when the feature has been disabled, either through normal configuration,

or through modification of the implementation. The before metric is the perfor-

mance of the system when the feature is enabled, but when it is not actually in

use, and before it has ever been in use in that process. The during metric is the

performance of the system when the feature has been enabled and is actually in

use. The after metric is the performance of the system after we have stopped

using the feature.

In an ideal case we would hope there there is no difference between disabled

and before, which would mean that having that feature available does not have

an impact on performance. There would be no, or reasonable and minimum,

difference between before and during, which would mean that actually using the

feature does not reduce the performance of the system. It is less of an obvious

requirement, but we would also like to have no difference between before and

after, meaning that the system is able to return to peak performance after the

feature is no longer being used and the process is no longer being debugged.

In our results we will show the absolute time for disabled, with standard

6.6. EVALUATION 135

deviation and standard error relative to the mean as a percentage. We then show

the performance of before, during and after relative to the performance of disabled

to make the overhead clear. Lower is therefore better, and a value of zero means

that there is no overhead.

We evaluated each configuration at its peak performance, so for each con-

figuration it is after a period of warmup after that particular configuration has

been reached. We did not evaluate the performance of a change in state, such as

hitting a breakpoint or entering the interactive debugging, as we consider these

to be offline operations and not relevant to our idea of peak performance.

6.6.1 Versions

We compared against version 2.1.0 of MRI and stdlib-debug, version 2.2.4 of

Rubinius, a development build of JRuby at revision 59185437ae86, a develop-

ment build of Topaz at revision 4cdaa84fb99c, built with RPython at revision

8d9c30585d33.

We used ruby-debug at version 1.6.5, and jruby-debug at version 0.10.4. jruby-

debug is not compatible with the development version of JRuby, so we ran ex-

periments using jruby-debug with the latest compatible version, JRuby 1.7.10.

The version of JRuby+Truffle evaluated for this chapter was as at revision

59185437ae86. The Graal dynamic compiler was at version 0.1 for this revi-

sion. The implementation of set trace func and debugging in later revisions

of JRuby+Truffle has been modified and expanded considerably, and has now

become part of the Truffle framework itself.

6.6.2 Benchmarks

For this chapter we only evaluated against two synthetic benchmarks, fannkuch

and mandelbrot. The benchmarks in this chapter are only used as a base on which

to install a set trace func Proc and debugger breakpoints, so the simplicity of

these benchmarks is not important.

6.6.3 Overhead of set trace func

We evaluated the overhead of enabling and using set trace func.

MRI and Topaz do not have an option to allow us to disable set trace func,

136 CHAPTER 6. DEBUGGING

Fannkuch

Disabled (s (sd) se) Before During After

MRI 0.995 (0.006) ±0.142% 0.1x 24.6x 0.1x
JRuby 0.358 (0.008) ±0.514% 3.9x 199.4x 3.7x
Topaz 0.154 (0.001) ±0.204% 0.0x 661.1x 0.0x

JRuby+Truffle 0.091 (0.003) ±0.692% 0.0x 4.0x 0.0x

Mandelbrot

Disabled (s (sd) se) Before During After

MRI 2.015 (0.001) ±0.014% 0.0x 30.7x 0.0x
JRuby 0.992 (0.013) ±0.304% 2.8x 153.5x 2.8x
Topaz 0.073 (0.000) ±0.054% 0.2x 5680.4x 0.0x

JRuby+Truffle 0.060 (0.000) ±0.179% 0.0x 5.0x 0.0x

Table 6.1: Overhead of set trace func

so were patched to remove the functionality. For JRuby we had ran in the de-

fault configuration for disabled, and with the --debug flag in order to be able

to use set trace func. For JRuby+Truffle we added an option to not create

the wrapper nodes, for the disabled configuration. Rubinius does not support

set trace func at all, so is not evaluated in this subsection.

Table 6.1 shows the overhead of set trace func in different implementations

and configurations.

MRI shows low overhead because one extra memory read per line is a tiny

proportion of the work done in executing the rest of the line under their execution

model. The overhead when a trace method is installed is high but not unreason-

able given it has no mechanism to elide the allocation of a Binding object and

so must actually allocate it on the heap for each trace event.

JRuby’s initial overhead results from having to disable compilation to JVM

bytecode, which is required in order to use the feature. The overhead of calling

the trace method is limited by having to allocate the Binding object.

Topaz has low but statistically significant overhead for enabling tracing. How-

ever the implementation does not appear to be optimised for having a trace

method actually installed, showing a pathological overhead as large as three or-

ders of magnitude.

JRuby+Truffle shows very low overhead for enabling tracing, and a reasonable

overhead of 4–5x to install a trace method. Our implementation inlines the trace

6.6. EVALUATION 137

method, allowing the binding (the object representing the current environment)

to be elided if not actually used. If the trace method is used, and if escape analysis

determines that the binding cannot be referenced outside the method, then the

frame can be allocated on the stack for better performance than via default heap

allocation.

6.6.4 Overhead of a Breakpoint on a Line Never Taken

We evaluated the overhead of using the various debuggers to set a breakpoint on

a line in a method which is on the critical path, but where the actual line is not

taken. This represents the cost of setting a line breakpoint on some rarely taken

erroneous path where the programmer wants to enter the debugger to diagnose the

problem. The breakpoint was set on a line in the inner loop of the benchmarks.

The condition we used to guard the line was not statically determinable to be

always false by any of the implementations, so that the condition would not be

optimised away.

The question we are asking is this: if such an erroneous state is only observed

intermittently, such as once a week, what is the cost of having the breakpoint set

during the whole run of the program to catch the one time when it is?

For this experiment, we considered multiple combinations of implementation

and debugger where possible. For example, we show JRuby with both stdlib-

debug and jruby-debug. In later summaries, we show only the best performing

combination. Normally, JRuby+Truffle would detect that the branch is never

taken during interpretation and speculatively elide it for compilation, but we

disabled conditional branch profiling for all these experiments.

Table 6.2 shows the performance of different implementations and debuggers.

The overhead of using stdlib-debug in either MRI or JRuby is extremely high as

it is based on the already inefficient implementations of set trace func. The

native extension variants ruby-debug and jruby-debug show two orders of magni-

tude less overhead, bringing it down to around a reasonable 5x. Rubinius also has

a reasonable overhead of 1.2–6.8x. JRuby+Truffle shows very low overhead for

all states. Overhead is negative in some cases due to normal error in sampling.

138 CHAPTER 6. DEBUGGING

Fannkuch

Disabled (s (sd) se) Before During After

MRI/stdlib-debug 1.043 (0.006) ±0.124% 154.2x 182.9x 196.3x
MRI/ruby-debug 1.043 (0.006) ±0.124% 4.3x 4.7x 4.3x

Rubinius 1.459 (0.011) ±0.174% 4.5x 6.8x 3.6x
JRuby/stdlib-debug 0.562 (0.010) ±0.402% 1375.2x 1609.2x 1573.3x
JRuby/jruby-debug 0.562 (0.010) ±0.402% 4.5x 43.3x 41.9x

JRuby+Truffle 0.091 (0.003) ±0.692% 0.0x 0.0x 0.0x

Mandelbrot

Disabled (s (sd) se) Before During After

MRI/stdlib-debug 2.046 (0.001) ±0.009% 139.6x 179.0x 166.8x
MRI/ruby-debug 2.046 (0.001) ±0.009% 5.5x 5.6x 5.5x

Rubinius 1.151 (0.002) ±0.031% 4.6x 11.7x 3.8x
JRuby/stdlib-debug 1.096 (0.008) ±0.170% 1698.3x 1971.4x 1884.1x
JRuby/jruby-debug 1.096 (0.008) ±0.170% 4.6x 49.8x 48.3x

JRuby+Truffle 0.060 (0.000) ±0.179% 0.0x 0.0x 0.0x

Table 6.2: Overhead of setting a breakpoint on a line never taken (lower is better)

6.6.5 Overhead of a Breakpoint With a Constant Condi-

tion

Finally, we evaluated the overhead of setting a line breakpoint with a constant

condition that is statically determinable to always evaluate to false. This tests

the overhead of a conditional breakpoint where the condition itself should have

no overhead. Again the breakpoint was set on a line in the inner loop of the

benchmarks.

We could not find any support in stdlib-debug for conditional breakpoints, so

it is not evaluated in this subsection.

Table 6.3 shows that results for MRI, Rubinius and JRuby are broadly the

same as before, except with a significant additional overhead caused by evalu-

ating the condition. JRuby+Truffle now shows a significant overhead when the

conditional breakpoint is installed. Although the condition is constant, we were

not yet able to inline the condition in the line where the breakpoint is installed,

so this overhead represents a call to the condition method.

6.6. EVALUATION 139

Fannkuch

Disabled (s (sd) se) Before During After

MRI/ruby-debug 1.043 (0.006) ±0.124% 4.3x 25.8x 4.2x
Rubinius 1.459 (0.011) ±0.174% 3.7x 187.4x 3.7x

JRuby/jruby-debug 0.562 (0.010) ±0.402% 4.6x 41.2x 41.4x
JRuby+Truffle 0.107 (0.003) ±0.528% 0.0x 1.7x 0.0x

Mandelbrot

Disabled (s (sd) se) Before During After

MRI/ruby-debug 2.046 (0.001) ±0.009% 5.5x 35.4x 5.5x
Rubinius 1.151 (0.002) ±0.031% 4.6x 662.8x 4.0x

JRuby/jruby-debug 1.096 (0.008) ±0.170% 4.3x 48.0x 47.4x
JRuby+Truffle 0.059 (0.001) ±0.188% 0.0x 8.1x 0.0x

Table 6.3: Overhead of setting breakpoint with a constant condition (lower is
better)

6.6.6 Overhead of a Breakpoint With a Simple Condition

Finally, we looked at the overhead of setting a line breakpoint with a simple

condition, comparing a local variable against a value it never holds. This tests

the normal use of conditional breakpoints, such as breaking when some invariant

fails. Again the breakpoint was set on a line in the inner loop of the benchmarks.

Table 6.4 shows that the overhead when there is a simple condition to test com-

pared to a constant condition is not great in MRI. The overhead in JRuby+Truffle

when the breakpoint is installed is increased but is still reasonable at up to 10x.

6.6.7 Summary

Table 6.5 summarizes the results across both benchmarks, using the highest per-

forming debugger implementation for each implementation of Ruby. We show

the overhead for different debug tasks, in each case compared to when set tra-

ce func or debugging is disabled. Figure 6.6 shows self-relative performance on

a logarithmic scale, with relative performance of 1 being no-overhead and one

vertical grid line being an extra order of magnitude of overhead.

JRuby+Truffle has on average 0.0x overhead for enabling tracing, debugging

and setting a breakpoint on a line never reached. For constant and simple condi-

tional breakpoints on lines in the inner loop of the benchmarks which we cannot

140 CHAPTER 6. DEBUGGING

Fannkuch

Disabled (s (sd) se) Before During After

MRI/ruby-debug 1.043 (0.006) ±0.124% 4.3x 31.6x 4.2x
Rubinius 1.459 (0.011) ±0.174% 3.7x 187.7x 4.5x

JRuby/jruby-debug 0.562 (0.010) ±0.402% 4.4x 86.2x 41.9x
JRuby+Truffle 0.107 (0.003) ±0.528% 0.1x 10.1x 0.1x

Mandelbrot

Disabled (s (sd) se) Before During After

MRI/ruby-debug 2.046 (0.001) ±0.009% 5.6x 50.7x 6.7x
Rubinius 1.151 (0.002) ±0.031% 4.7x 659.8x 4.5x

JRuby/jruby-debug 1.096 (0.008) ±0.170% 4.5x 105.3x 46.8x
JRuby+Truffle 0.059 (0.001) ±0.188% 0.0x 7.9x 0.0x

Table 6.4: Overhead of setting breakpoint with a simple condition (lower is
better)

MRI Rubinius JRuby Topaz JRuby+Truffle

Enabling set trace func 0.0x n/a 2.3x 0.1x 0.0x
Using set trace func 26.6x n/a 39.9x 2714.2x 4.5x
Enabling debugging 4.9x 4.6x 4.6x n/a 0.0x
Breakpoint on a line never taken 5.1x 9.3x 46.5x n/a 0.0x
Breakpoint with constant condition 30.6x 425.1x 44.6x n/a 4.9x
Breakpoint with simple condition 41.2x 423.7x 95.8x n/a 9.0x

Table 6.5: Summary of overheads (lower is better)

optimise away entirely JRuby+Truffle has a very reasonable overhead in the range

5–9x: about an order of magnitude less than other implementations.

When interpreting these results we should also keep in mind the extreme

performance variation among language implementations which we demonstrated

in Subsection 3.3.6. These overheads are on top of those differences. In terms of

absolute wall-clock performance, JRuby+Truffle is over two orders of magnitude

faster than the next fastest debugger, MRI with ruby-debug, when running with

a breakpoint on a line never taken.

6.7. RELATED WORK 141

 1

 10

 100

 1000

 10000

Enabling set_trace_func

Using set_trace_func

Enabling debugger

Breakpoint

Constant conditional

Simple conditional

Se
lf

R
el

at
iv

e
Ti

m
e

(s
/s

)

MRI
Rubinius

JRuby
Topaz

JRuby+Truffle

n/
a

ʜ�
�

n/
a

n/
a

ʜ�
�

n/
a

ʜ�
�

n/
a

n/
a

Figure 6.6: Summary of relative performance when using debug functionality
(taller is exponentially worse)

6.7 Related Work

6.7.1 The Self Programming Language

Debugging support was one of the primary motivations behind the development

of dynamic deoptimisation in the Self programming language, which was claimed

to be “the first practical system providing full expected [debugging] behavior with

globally optimised code” [55]. Along with other seminal innovations in Self, this

derived from its creators’ firm commitment that the experience of using a language

is fully as important as performance [106]. Research on the implementation of

Self produced many of the techniques applied and advanced in this thesis, such

as deoptimisation and polymorphic inline caching.

Debugging in the original Self was primitive; setting a breakpoint required

manually inserting “a send of halt into the source method”. It was also deeply

entwined with the language implementation. For example, the finish operation

was implemented by “changing the return address of the selected activation’s

stack frame to a special routine ...”.

Two decades of progress in the underlying technologies have led to the Truffle

platform, which supports multiple languages, and into which nearly transparent

debugging code can be inserted without the language specificity and fragility of

its original incarnation.

142 CHAPTER 6. DEBUGGING

6.7.2 Debugging optimised Code

Debugging statically compiled, optimised code has been a problem worthy of

many PhD dissertations. As the Self creators pointed out, that work generally

gave priority to optimisation, and results generally were complex and supported

only limited debugging functionality [55]. The Ruby debugger demonstrates that

the compromise can be avoided.

6.7.3 Wrapper Nodes

The idea of wrapping nodes to transparently introduce extra functionality was

applied before in a machine model for aspect-oriented programming languages

[52]. The abstractions used there are generic enough to be used for debugging as

well, as this work shows.

6.8 Summary

Early experience with an experimental Ruby debugger suggests that it is possible

to build debuggers on the Truffle platform without the compromises listed in the

introduction.

• Performance: Runtime overhead is extremely low, and is arguably minimal

relative to optimisation supported by Truffle. Inactive AST node wrappers

incur zero overhead when dynamically optimised along with program code.

Activated debugging actions, whether expressed in Java or the implemented

language, are subject to full optimisation.

• Functionality : We have yet to see any limitations imposed by Truffle on the

kind of debugging functionality represented in the prototype.

• Complexity : There is almost no interaction between the inserted debug-

ging code and Truffle’s mechanisms for compilation, dynamic optimisation,

and dynamic deoptimisation. Debugging code needs to only follow stan-

dard Truffle techniques for AST construction and use the Assumption class

correctly. The “wrapper” AST nodes that implement debugging actions

are almost completely transparent to the flow of program execution around

them.

6.8. SUMMARY 143

• Inconvenience: We see no reason that such a debugging infrastructure

should not be present in any environment, developmental or production.

This approach is applicable to the range of languages that can be implemented

on Truffle. Nothing reported here other than the set trace func functionality

is specific to Ruby.

Moreover, this approach places only modest demands on other parts of a

language implementation. We anticipate language implementers adding debug-

ging support incrementally during development, with evident advantage to both

themselves and early users. We also anticipate applying this general approach to

supporting development tools other than debugging.

As in Chapter 5, the techniques introduced in this chapter were shown to have

zero-overhead in run-time compared to the case without the language feature that

uses them, when the program is stable and has been optimised as described in

Chapter 4. There will however be overheads in compilation time and memory

consumed by the compiler, but we were not attempting to reduce or maintain

these other metrics at previous levels.

144 CHAPTER 6. DEBUGGING

Chapter 7

Safepoints in Dynamic Language

Implementation

7.1 Introduction

As with debugging and described in the previous chapter, optimisation can be

in conflict with some programming language features. In Ruby, some features of

the language seem to have evolved because their implementation was trivial given

the architecture of MRI at the time. Implementations of Ruby which want to

achieve higher performance using optimisations have found that the techniques

they want to use and the optimisations that they want to apply have made these

features problematic.

We would like to be able to support these language features without reducing

performance. As in the previous chapter, the ideal situation is for there to be

zero-overhead for providing the features compared to if they were disabled. Other

goals are to limit the performance impact when they are actually used.

An example of one of these features is the ObjectSpace module. This pro-

vides access to the object graph of the running program, such as being able to

iterate through all live objects of the program and produce a count, as shown in

Listing 7.1.

In MRI the implementation of each_object is trivial because as a VM im-

plemented from scratch in C they had to implement their own memory allocator

and garbage collector. To implement each_object all they had to do was walk

their own heap data structure in the same way as the garbage collector’s sweep

phase would. Indeed, in MRI, each_object is implemented in the gc.c file as a

145

146 CHAPTER 7. SAFEPOINTS

1 n = 0

2 ObjectSpace.each_object do |object|

3 n += 1

4 end

5 puts "there are #{ n} live objects"

Listing 7.1: An example use of Ruby’s ObjectSpace.each_object method

simple extension of the collector.

We can give a concrete example of an optimisation in conflict with this lan-

guage feature, allocation removal. If allocations are removed and objects either

allocated on the stack, or never allocated at all, then the implementation tech-

nique used in MRI does not work. The technique also does not work if the

implementation is reusing an existing garbage collector that does not provide a

similar language feature, which few high performance systems will do due to the

conflict with optimisations.

JRuby does not support each_object as the JVM does not allow running

programs to introspect the heap. If the -Xobjectspace.enabled=true option

is used, all objects will be added to a weak map (a map where the references

to the keys and objects is ignored by the garbage collector’s mark phase) when

they are allocated. As well as this option turning off compilation, limiting any

serious performance gains, adding all objects to a global data structure will cause

every allocation to escape. Topaz uses RPython’s sophisticated garbage collector

which does itself allow object enumeration, but this limits each_object in Topaz

to only work with objects that are managed by the garbage collector, which

does not include objects that have had their allocation removed. This makes the

Topaz implementation unsound1 as the programmer does not know which objects

are not managed by the GC. Worse than that, this is an example of where an

optimisation can change the behaviour of the program. Rubinius implements

each_object using the same technique as MRI, but does not perform any escape

analysis or allocation removal and therefore has lower performance anyway.

Note that a positive result from escape analysis and subsequent allocation

removal does not demonstrate that an object is not long-lived or important to

the application. In fact, that an object is not reachable globally and so does not

escape is actually a reason why the programmer could be trying to reach it via

1https://github.com/topazproject/topaz/issues/843

https://github.com/topazproject/topaz/issues/843

7.1. INTRODUCTION 147

each_object.

To solve this problem for JRuby+Truffle we decided instead of using the GC

we would manually walk the object graph. Objects which are referenced by the

VM are called root objects. This includes the main object, thread objects, global

variable values, and a few other similar objects. The set of root objects also

includes objects referenced on the stack, such as through local variables. To walk

the object graph to find all live objects, we need to have the complete set of root

objects. Finding objects such as those in global variables is easy, but accessing all

current stack frames on all threads is not possible on a conventional JVM. Truffle

and Graal provide functionality to introspect the stack of the current threads,

and will automatically reify (actually allocate) objects that had their allocation

previously removed. This only leaves us with the problem that stacks can only

be introspected as an action of the corresponding thread, and that we need to

stop the object graph being mutated as we read it.

Our solution and key contribution of this chapter is a technique for languages

implemented on top of the JVM to cause all managed threads to pause in a

consistent state that we call a guest language safepoint and to perform some action

that is dictated by the thread which triggered the safepoint. For each_object

this action is to introspect their stacks and continue to explore the object graph

to build the list of live objects that is needed.

We use the term safepoint because the technique is similar to, and is imple-

mented using VM safepoints which are already present for existing VM services

such as GC. Our implementation is zero-overhead in that peak performance when

enabled compared to when disabled is the same. In this chapter we take our eval-

uation further than we did in Chapter 6 and we show that the generated machine

code for these two configurations is the same, and we also evaluate the cost of the

transition from optimised to unoptimised and back that using the feature causes.

The research contributions in this chapter were developed independently,

initially to support the ObjectSpace.each_object language functionality (de-

scribed later). Generalisation and application for other functionality such as

examining call stacks, attaching a debugger and inter-thread communication (all

described later) were also independent contributions. The implementation was

improved and correctness improved in collaboration with Benoit Daloze at Jo-

hannes Kepler Universität, Linz, and the work was evaluated and written up in

collaboration with Benoit Daloze and Daniele Bonetta at Oracle Labs [23].

148 CHAPTER 7. SAFEPOINTS

7.2 Safepoints

Safepoints are probably most commonly thought of as a technique with which

to implement many garbage collection algorithms in multi-threaded VMs. Al-

though there are fully concurrent garbage collectors such as C4 [104], most tracing

garbage collectors at some point will need to stop-the-world, or pause all threads,

so that some operations can be performed on the heap without it being concur-

rently modified. The term safepoint is used because another requirement is that

the threads stop in a state where the runtime is able to examine them.

In a VM with no concurrency this isn’t needed as a single thread can simply

decide to pause itself. Likewise in systems where there is a global interpreter

lock [79] such as MRI each lock exchange allows the same goal to be achieved.

The term safepoint itself is overloaded and refers to several overlapping con-

cepts, so we will disambiguate by qualifying it. A safepoint action is some com-

putation we want to run. A VM safepoint is a state where all VM threads are

either running a safepoint action, or waiting for another thread to finish doing so.

Our contribution, a guest-language safepoint, is the same thing, but implemented

in the guest language implementation, rather than in the underlying VM. The

points within a program where any of these safepoints can be entered is called a

safepoint check, or some literature uses the term yieldpoint.

The key problem in safepoints is the implementation of the safepoint check.

We need the ability for one thread to be able to send a message to all others. Those

other threads may be deep inside tight computation loops that are potentially

endless, or they may be waiting inside a blocking system call, or waiting on a

lock.

7.2.1 Techniques

Implementation techniques for safepoint checks are surveyed by Yi Lin et al [70].

The simplest technique is condition polling. Here, there is a global variable

that acts as a flag. All threads periodically read this flag in a branch with logic

to pause or perform any other action if the flag is set. To pause all other threads,

a thread can set the variable and then use some other logic to communicate with

them to check they have entered the safepoint and to send the action that should

be run. The advantage of this technique is that it is very simple to implement.

7.2. SAFEPOINTS 149

The downsides of condition polling are that a volatile read is expensive, a reg-

ister must be used to read the flag into, two instructions are required in most

instruction sets for the read and then the conditional branch, and the processor is

relied upon to successfully predict the branch each time to avoid pipeline stalling.

This is the technique used in Rubinius. In fact, Rubinius has multiple flags for

different applications of safepoints that it must check regularly.

A more advanced technique used by most serious implementations of JVMs

such as HotSpot is trap-based polling. This technique improves on condition

polling by removing the branch instruction, and instead uses the processor’s

memory protection system. To trigger the safepoint, the permissions on the

page where the flag is stored are changed so that the thread cannot read the

variable. The next time the safepoint check runs the read will cause a protection

fault and a signal will be raised. The process can handle this signal by jumping

to logic for the safepoint, as before. The advantages of this approach are that we

have reduced the instructions needed from two to one, and as the value read is no

longer actually used, just the side effects of reading it, we can use an instruction

such as test on the x86 architecture which sets flags but does not clobber a

register. We are also not dependent on the branch predictor as there is no longer

a branch. The disadvantage of this approach is that it requires signal handling

that may be difficult to get right.

Another advanced technique is code patching. Here the generated code in-

cludes no instructions for the safepoint except for a sequence of noop instructions.

To trigger the safepoint these noop instructions are replaced by code that will

jump to the safepoint handling logic, such as with the explicit condition polling

described above. The advantage of this technique is that it may be the lowest

overhead of all [70], but the disadvantage is that it may be difficult to maintain

a list of all the locations in machine code that need to be patched and to update

them all quickly.

7.2.2 Safepoint Check Scheduling

Whichever way the safepoints are implemented, there needs to be a decision about

how to schedule them, or how often to insert them into the program. Safepoint

checks need to be scheduled often enough to meet two conditions. First, the

latency between requesting a safepoint and a check being executed to respond to

it needs to be low enough for the particular applications. A GC might need a

150 CHAPTER 7. SAFEPOINTS

very low latency to limit pause times (anecdotally some VMs spend more time

waiting for all threads to find a safepoint than they do doing the collection itself),

but a user interaction such as attaching a debugger may be content with higher

latency. Second, the latency must be bounded. High latency, or variable latency,

may be tolerable, but infinite latency is not. It must not be possible for a thread

to spin within a tight inner loop and never perform a safepoint check.

In general the accepted solution is to check for a safepoint request at least

once per method (or other unit of generated machine code such as a trace), and at

least once in inner-most loops. Optimisation phases may remove safepoint checks

from loops if they can be proved to not run long enough to cause significant

latency. For example, Graal will remove safepoints from inner-most loops with a

statically countable number of iterations, or with a counter that is of width less

than or equal to 32 bits, as such a loop will never run for very long (only so much

code can be executed dynamically without any kind of looping or method call).

We’ve disabled this optimisation in Graal for examples of machine code shown

below, as otherwise it can be hard to provoke Graal to include a safepoint in code

that is simple.

7.3 Guest-Language Safepoints

The JVM internally uses safepoints for several applications, such as GC, debug-

ging and invalidating speculative optimisations, but these are all services that are

transparent to the running program. We would like to make safepoints available

as an API so that we can use it in our implementation of Ruby, in order to imple-

ment Ruby language features such as each_object. We call these guest-language

safepoints.

In Listing 7.2 we sketch what this Java API could look like.

pauseAllThreadsAndExecute is a static method that accepts a lambda (or per-

haps an instance of an anonymous instance of Runnable) that is the safepoint

action. The method causes all threads to enter a guest-language safepoint, and

when they have done so it runs the action concurrently on each thread. When

all threads have completed the action, all can leave their safepoint and continue

running the program as normal. As safepoints are an exception to the normal

runtime condition and may not be reentrant or a safe place to run arbitrary

user code, we also have a method runAfter which also accepts an action, but

7.3. GUEST-LANGUAGE SAFEPOINTS 151

will run it after all threads have left their safepoint and are running under nor-

mal conditions. Normal useage of runAfter is to use it within the action of

pauseAllThreadsAndExecute to defer an action.

1 Safepoints.pauseAllThreadsAndExecute(() -> {

2 // logic to execute in the safepoint here

3 });

4

5 Safepoints.runAfter(() -> {

6 // logic to execute after the safepoint here

7 });

8

9 // Call at least once per method and once per loop iteration

10 Safepoints.poll();

Listing 7.2: Sketch of an API for safepoints

A final method, poll is inserted within the guest language implementation

with the same scheduling as we described earlier: once per method and once

per loop. Listing 7.3 shows example polls similar to those in the JRuby+Truf-

fle source code. As we will show later on, the scheduling needs to be at least

sufficient but does not need to be manually optimised beyond that.

1 // Poll at method root node execute method

2

3 public Object execute(VirtualFrame frame) {

4 Safepoints.poll();

5 return body.execute(frame);

6 }

7

8 // Poll at the head of a loop

9

10 while (...) {

11 Safepoints.poll();

12 body.execute(frame);

13 }

Listing 7.3: Example locations for a call to poll()

152 CHAPTER 7. SAFEPOINTS

7.4 Applications of Safepoints in Ruby

7.4.1 Enumerating Live Objects

In Section 7.1 we described one application of guest-language safepoints in

JRuby+Truffle, each_object.

The case with a single sequential thread can be implemented using existing

Truffle APIs that allow introspection of the guest-language stack. When running

on a standard JVM the guest-language stack is represented as a chain of heap-

allocated method activation objects. When dynamically optimising using the

Graal compiler, dynamic deoptimisation is used to cause reification of all objects

which have been subject to allocation removal, including the guest-language stack

and any escape-analysed objects.

All Ruby objects found on the stack become root objects, as well as a small

set of static roots such as the Ruby main object. From these roots we can find

all live objects by recursively visiting all the fields of each object to find further

live objects. An object graph may be cyclic, so we maintain a visited set. This is

effectively implementing our own sweep phase of a tracing garbage collector, and

gives us set of live objects.

This solves the case for a program with a single sequential thread. In a

program with multiple threads, or using other concurrent Ruby language features

such as finalisers, which run on a dedicated thread, we also need to be able to

instruct all other threads, as well as the current one, to stop and introspect their

stack to find more roots. Our guest-language safepoints API can be used to do

this.

Listing 7.4 shows the allocation of a set to hold live objects from all threads in

line 1. Line 2 uses the Safepoints.pauseAllThreadsAndExecute call, passing it

a lambda for the safepoint action which will be run on all guest-language threads.

Running the action, each thread visits its own call stack in line 5. As these actions

run concurrently, line 4 synchronizes on the live set.

7.4.2 Intra-Thread Communication

Ruby allows one thread to pre-emptively kill another with the Thread.kill

method, but the language we are writing our implementation in, Java, does not

have this functionality. Even if it did, we may want to run clean-up actions or

7.4. APPLICATIONS OF SAFEPOINTS IN RUBY 153

1 Set<Object> liveObjects;

2 Safepoints.pauseAllThreadsAndExecute(() -> {

3 synchronized (liveObjects) {

4 visitCallStack(liveObjects);

5 }

6 });

Listing 7.4: Using guest-language safepoints to implement each_object

application ensure blocks (the equivalent of Java finally blocks) which could

run arbitrary code.

We can implement this functionality using our guest-language safepoints. List-

ing 7.5 shows a variable targetThread set on line 1 to the thread we wish to

target. This variable is captured in the closure of the action that is run in the

safepoint. Each thread compares themselves against the target thread, and if the

action applies to them an exception is thrown. This causes the thread to exit

after normal unwinding behaviour.

1 targetThread = ...

2 Safepoints.pauseAllThreadsAndExecute(() -> {

3 if (currentThread == targetThread) {

4 Safepoints.runAfter(() -> {

5 throw new KillException();

6 }

7 }

8 });

Listing 7.5: Using guest-language safepoints to implement Thread.kill

Note that we use the Safepoints.runAfter method to defer actually throw-

ing the exception until all threads resumed normal running. This is because

handling the exception may cause arbitrary Java or Ruby code to run, which of

course may mean other routines that need to use safepoints. The guest-language

safepoint system is not re-entrant, and it is not clear that making it so would be

useful, given that Safepoints.runAfter is available.

In this example we have killed the thread by raising an exception, but really

we can do anything we want in the lambda passed to runAfter after identifying

the target thread, and it becomes a general mechanism for sending code from

one thread to be executed on another. For example, Ruby has another method

154 CHAPTER 7. SAFEPOINTS

Thread.raise that allows an arbitrary exception to be raised in the target thread,

which we implement in almost exactly the same way.

7.4.3 Examining Call Stacks

One simple way of finding out what a program is doing is to inspect its threads’

call stacks. jstack does this for Java programs, but its implementation requires

VM support and so it is normally not possible to implement the same functionality

for a guest language.

Using our API we implemented a version of jstack for JRuby+Truffle. We

added a VM service thread that listens on a network socket. Our equivalent

of the jstack command sends a message to this socket, and the service thread

uses our safepoint API to run an action on all threads that prints the current

guest-language stack trace.

1 Safepoints.pauseAllThreadsAndExecute(() -> {

2 printRubyBacktrace();

3 });

Listing 7.6: Safepoint action to print stack backtraces

7.4.4 Debugging

We discussed in Chapter 6 how to implement a zero-overhead debugger for pro-

gramming language built on a specialising AST interpreter and a compiler with

dynamic deoptimisation. We demonstrated that by re-using VM safepoints a

debugger can attach and remove breakpoints in a running program with zero

overhead until the breakpoints are triggered. In that work the debugger was

in-process and could only be used by writing application code to enter the debug-

ger where commands could be entered. Using our guest-language safepoints we

can extend that functionality to allow a debugger to be attached remotely. We

reused the same VM service thread as before that listens on a network socket.

When a message is received the service thread runs a safepoint action on the main

thread telling it to enter the debugger, from where breakpoints can be added and

removed and the program inspected.

Listing 7.7 shows the action, which is similar to Listing 7.5 except we un-

conditionally use the main thread to start the debugger. We could also provide

7.5. IMPLEMENTATION 155

an option to break on a particular thread, or to execute a debug action non-

interactively such as installing a breakpoint in order to break on a particular line.

Here we have decided to put the logic into the safepoint action itself, and not use

a deferred action, as we want all threads to stay paused while the user debugs.

1 Safepoints.pauseAllThreadsAndExecute(() -> {

2 if (currentThread == mainThread) {

3 enterDebugger();

4 }

5 });

Listing 7.7: Safepoint action to enter a debugger

7.4.5 Additional Applications

Additional applications of guest-language safepoints include deterministic par-

allel execution of JavaScript such as the RiverTrail model [53], where code is

optimistically run in parallel and monitored for conflicts. If a conflict is detected

the parallel approach is incorrect and all the threads involved need to be aborted.

This can be achieved by using a guest-language safepoint [23].

7.5 Implementation

7.5.1 A flag check

The simplest implementation of guest-language safepoints on the JVM would

be to use the condition polling technique, described above. We would define a

single field to act as a flag for whether threads should enter a safepoint. Each

time the poll() method is called the flag is read. If it is set to true then we enter

the safepoint logic itself. To trigger the safepoint, the value of the flag is simply

changed.

The variable we use as a flag needs to be volatile, as the JVM memory model

allows non-volatile fields to be read once and the value re-used unless there is a

synchronization point. In practice this may mean that a method containing an

infinite loop may only actually read the field once, and the check within the loop

156 CHAPTER 7. SAFEPOINTS

could just use a cached value. A thread running the infinite loop would never

detect the guest safepoint.

Listing 7.8 illustrates this. The flag variable is declared as volatile on line

1. The implementation of poll just has to read the flag on line 5. If it is set,

we enter the safepoint logically. Briefly, this needs to wait for all other threads

to realise the flag has been set, execute the action for this thread, wait again

for all other threads to finish running the action, and then run any deferred

actions before continuing. The implementation of pauseAllThreadsAndExecute

sets the flag to true, and then like poll() it runs the same safepoint action, but

including resetting the flag. Notice that the thread which triggers the safepoint

using pauseAllThreadsAndExecute won’t itself execute poll(), so the logic to

respond to the safepoint is in both places.

1 volatile boolean flag = false;

2

3 void poll() {

4 if (flag) {

5 // wait for other threads

6 // execute action

7 // wait for other threads

8 // run deferred actions

9 }

10 }

11

12 void pauseAllThreadsAndExecute(Action action) {

13 flag = true;

14 // wait for other threads

15 flag = false;

16 // execute action

17 // wait for threads

18 // run deferred actions

19 }

Listing 7.8: Simple implementation of guest-language safepoints using a volatile
flag.

A key limitation of the volatile flag technique is that the whole point of the

volatile modifier is that it prevents the compiler from performing some optimisa-

tions such as caching the value instead of performing multiple reads. When our

Ruby code is compiled and optimised by Graal we generally inline a very large

7.5. IMPLEMENTATION 157

number of methods, as in Ruby all operators are method calls. This means that

we are likely to end up with a large number of volatile reads in each method —

at least one for each operator application — and the compiler will not attempt

to consolidate them, as this is exactly what the volatile modifier is for.

7.5.2 Truffle Assumptions

In Chapter 6 we used Truffle’s Assumption abstraction to cause a node to re-

specialise to insert a debug action. To implement guest-language safepoints we

can use the same primitive, but instead of re-specialising the AST based on an

invalid assumption, we can just detect the invalidation, and then run the safepoint

logic as already described in the implementation with the condition polling.

Listing 7.9 shows how the assumption is used. Instead of a volatile flag

variable, we have a field holding the assumption. We annotate it as being

@CompilationFinal so that when Graal compiles references to it, it will treat it

as if it was a final field. The implementation of poll then just checks that the

assumption is valid. If it is not, the same safepoint logic as described above is

run.

1 // The assumption to implement the guest safepoint

2 @CompilationFinal Assumption assumption =

3 Truffle.getRuntime().createAssumption();

4

5 void poll() {

6 if (!assumption.isValid()) {

7 // safepoint logic

8 }

9 }

Listing 7.9: Implementation of guest-language safepoints with an Assumption.

On a conventional JVM, without the Graal compiler, the implementation of

Assumption is pretty much as was shown for the volatile polling condition tech-

nique. However when the Graal compiler is available, assumption is implemented

using dynamic deoptimisation, as was described in Chapter 6. When compiling a

method that uses poll(), Graal will treat the assumption as always valid. The

validity check will always succeed, and so to the Graal compiler the branch with

the safepoint logic is dead code, and both are removed. This leaves us with no

generated code from the poll() method.

158 CHAPTER 7. SAFEPOINTS

To trigger the safepoint, the Truffle Assumption object is invalidated. Con-

ceptually and on a conventional JVM we can say that this is equivalent to setting

the flag variable as in the condition polling technique. When on Graal, invalidat-

ing the assumption will trigger deoptimisation. The compiled machine code for

the poll() method does not actually do any checks, so we cause it to start doing

so by transitioning to the interpreter.

Figure 7.1 shows how this implementation works in practice. Guest language

application threads are represented as channels from left to right. At some point

the topmost thread requests a safepoint in order to execute some method such as

each_object. The safepoint assumption is invalidated, causing deoptimisation.

There is a period of time while this happens for each thread, and for some threads

it may take longer than others. The thread which takes longest to deoptimise

is the one that defines the length of the latency for the safepoint. All threads

are then within the guest-language safepoint and will execute the safepoint ac-

tion concurrently. There is another barrier while all threads finish executing the

action. Threads then begin executing normally again, and execute any deferred

actions that were created while in the safepoint. Not shown is that threads con-

tinue executing in the interpreter and it may take time before they are optimised

again and continue to execute at peak performance.

7.5.3 Switch Points

In our implementation we use a Truffle Assumption object, but there is actu-

ally an existing construct in the JVM that can achieve the same effect. The

SwitchPoint class [81] in the java.lang.invoke package is part of the JVMs

support for dynamic languages from JSR 292 [88], which also included the

invokedynamic instruction.

Like Assumption, SwitchPoint includes a method to test if it is still valid,

and a method to invalidate, and like Assumption when running on a JVM with

the Graal compiler, it uses dynamic deoptimisation and existing GC safepoints

to make testing validity zero-overhead.

JRuby [78], the implementation of Ruby on top of the JVM and a heavy user

JSR 292, uses them for constant invalidation and for modifications of methods in

existing classes.

7.5. IMPLEMENTATION 159

latency(

guest(
safepoint(
ac0on(

deferred(
ac0ons(

0me(

safepoint(
requested(

running&thread&

deop.mizing&thread&

wai.ng&thread&

thread&within&guest&safepoint&

host(
VM(

safepoint(

threads(

thread&within&deferred&ac.on&

Figure 7.1: Phases of a guest-language safepoint

7.5.4 Blocking

There is an additional complication beyond the implementation that we have

currently described. It will work with threads that are always running and always

performing computation in the guest language, but they rely on the thread being

able to actively respond to the request for a safepoint, and being able to run the

safepoint logic and the action.

This may not always be the case, and there are at least three different con-

ditions where a thread may be blocked so that it is not able to respond to a

safepoint in the normal way.

First, threads may be blocked on trying to acquire a lock, waiting on a con-

dition variable, a future, or some other concurrency primitive. Thankfully, the

JVM provides us the Thread.interrupt method that allows a thread that is

sleeping because it is blocked to be woken up. The blocking method that it was

awaken in the middle of fails, with an exception thrown. Normally, calls that

can throw this exception are run in a loop, with the operation retried, as the

interrupts may be spurious. All we have to do to make this compatible with our

guest-language safepoints implementation is to add a call to Safepoints.poll()

at the head of this loop, but this should be done in all loops anyway. We then

160 CHAPTER 7. SAFEPOINTS

add a call to Thread.interrupt on all guest language threads as part of the

safepoint triggering logic.

Secondly, we have other blocking operations, but those which do not honour

the Thread.interrupt system. In order to support as high a percentage of the

Ruby language and core library as we do (see Subsection 3.3.5), we often need to

make calls directly to the operating system rather than using the JVMs abstrac-

tions which are simpler but may not provide some key piece of functionality. If

a thread is blocked on one of these low level calls, Thread.interrupt will not

work. We do not currently have a perfect solution to this problem. One op-

tion is to run calls with timeouts of a few milliseconds and to poll() between

calls in a loop. This will result in busy-waiting though, which may not scale

well to a large number of blocked threads. Another option is to have threads

dedicated to running blocking tasks in the background. Foreground application

threads send a message to a background thread to perform a blocking call, and

then wait on that background thread in an interruptible state. That way it is the

background thread that is blocked, and the application thread remains able to

respond to safepoints. However the implementation of this would be complicated

and potentially introduce an overhead and reduce peak performance.

The third case is that of a thread that is running native code from a C ex-

tension. In conventional implementations of C extensions this would be the same

problem as a low-level, and so uninterruptible, blocking call as just described.

However, as will be described in Chapter 8, JRuby+Truffle supports C exten-

sions through interpreting the source code of C extensions, rather than running

the native code. In this case, our C interpreter can use the same guest-language

safepoints API and include the same calls to poll(), and so will respond to

requests for safepoints in exactly the same way as the Ruby code would.

7.6 Evaluation

7.6.1 Overhead on Peak Performance

We were initially interested in the overhead that JRuby+Truffle causes when our

safepoint API is available but not used. This scenario is relevant because it is

how we anticipate our safepoint mechanism to be used in most cases — always

available but not a common operation. We also wanted to compare the overhead

7.6. EVALUATION 161

removed api switchpoint volatile
0

0.2

0.4

0.6

0.8

1
S
p

ee
d
u
p

re
la

ti
ve

to
re

m
ov

ed

Figure 7.2: Peak performance of code with diferent safepoint implementations,
normalized to the removed configuration.

of our safepoint API implementation with that of alternative implementations.

We first measured the performance of JRuby+Truffle including references to

the safepoint API (the api configuration). Then we removed these references

and measured again (the removed configuration). As the API is simple and

compact, we only had to modify 74 lines of code to do this. We then measured the

performance of JRuby+Truffle when using alternative safepoint implementation

techniques. For example, we tried an implementation that explicitly checks a

volatile flag (the volatile configuration). We also tried an implementation of our

API that uses a JSR 292 SwitchPoint object (the switchpoint configuration) [88].

Figure 7.2 shows our results. There is no statistically significant difference in

performance between removed, api and switchpoint. This is because both api and

switchpoint are reusing the existing lower level VM safepoints, whose overhead

is already part of the VM. Thus, our API adds no penalty to peak performance,

and so we refer to it as zero-overhead.

There is, however, a statistically significant difference between the perfor-

mance of api and volatile. The geometric mean of the overhead for the volatile

configuration is 25%± 1.5%. Of course, this is the overhead on the whole bench-

marks and if we could compare the overhead of just the safepoint poll() opera-

tions it would be much greater.

162 CHAPTER 7. SAFEPOINTS

7.6.2 Detailed Analysis

To further explain these results, we examined the machine code produced by the

different configurations. We wrote a simple method that was run in an infinite

loop so that it is dynamically optimised. Our example code, written in Ruby

and executed by JRuby+Truffle, is shown in Listing 7.10. It is intentionally kept

small to improve the readability of the machine code and just contains a few

arithmetic instructions in the loop body to better show the effect of the different

configurations. Every arithmetic operator in Ruby (in this case, +, * and <) is

a method call. Therefore, any of these operations is a call site and conceptually

does the check for guest-language safepoints. The body of the loop simply adds

7 to the counter i at each iteration until i becomes greater or equal to n. The

method is called with different arguments to prevent argument value profiling,

which would eliminate the whole loop entirely in compiled code as it has no

side-effects.

1 def test(i, n)

2 while i < n

3 i += 1 + 2 * 3

4 end

5 end

6

7 while true

8 test(100, 200)

9 test(200, 300)

10 end

Listing 7.10: Example code for detailed analysis of the generated machine code.

We present the machine code with symbolic names for absolute addresses and

rename the specific registers to the uppercase name of the variable they contain.

We use the Intel syntax, in which the destination is the first operand.

The machine code produced by the removed, api and switchpoint configura-

tions is identical if we abstract from absolute addresses and specific registers,

and is shown in Figure 7.11. This supports our measurements and confirms that

our API really has zero overhead, rather than just a low or difficult-to-measure

overhead.

We can observe that the produced code is very close to the optimal code for

such a loop. The operations in the body of the loop are reduced to a single

7.6. EVALUATION 163

addition thanks to constant propagation. There are only two redundant move

instructions, which copy the variable i between registers I and I ′. The value of i

is copied in I ′ to perform the addition because, if the add overflows, the original

value of i needs to be accessed by the code performing the promotion to a larger

integer type. In theory, the promotion code could subtract the second operand

from the overflowed i, but this is a fairly complex optimisation to implement.

The second move reunifies the registers.

The loop begins with a read on the safepoint polling page, which checks for

VM safepoints2. In the api and switchpoint configurations, this check is also used

for guest-language safepoints at no extra cost. After the mov, we add 7 to i and

then check for overflow with jo, an instruction that jumps to the given address

if there was an overflow in the last operation. We then have the second mov,

followed by the loop condition i < n. The order of the operands in the machine

code is reversed, so we must jump to the beginning of the loop if n is greater than

or equal to i.

loop:
test safepoint polling page, eax # VM safepoint

mov I’ , I

add I’ , 0x7

jo overflow
mov I , I’

cmp N , I # n > i ?

jg loop

Listing 7.11: Generated machine code for the api, removed and switchpoint safe-
point configurations.

We now look at the machine code produced by the volatile configuration

(Figure 7.12). The generated code is much larger. The loop starts by testing the

condition i < n, again with reversed operands. The condition is negated, n ≤ i,

as the test is to break out of the loop. Otherwise we enter the loop body. The

body begins with 4 reads of the volatile flag from memory, and if it is found to

be 0, the code jumps to a deoptimisation handler with je. Of these 4 checks, the

first is for the loop itself and the other 3 are for the different calls to +, + and ×
in the loop body. We then have the read on the safepoint polling page checking

2Actually, Graal moves this check out of the loop as it notices this is a bounded loop. We
disabled that optimisation for clarity.

164 CHAPTER 7. SAFEPOINTS

for VM safepoints. The remaining code is identical to Figure 7.11, except for

the last two instructions. They perform a read on the volatile flag to check for

guest-language safepoints at the call site of <, in the loop condition. If the flag

is found to be valid, the control goes back to the beginning of the loop.

The 5 extra reads produced by the volatile flag are clearly redundant in the

presence of the existing lower-level VM safepoints. They increase the number of

instructions for the loop from 7 to 17, incurring a significant overhead as shown

in Figure 7.2.

loop:
cmp N , I # n ≤ i ?

jle break out of loop
cmp VOLATILE FLAG , 0x0 # while loop safepoint

je deopt
cmp VOLATILE FLAG , 0x0 # i += 1

je deopt
cmp VOLATILE FLAG , 0x0 # 1 + 2

je deopt
cmp VOLATILE FLAG , 0x0 # 2 * 3

je deopt
test safepoint polling page, eax # VM safepoint

mov I’ , I

add I’ , 0x7

jo overflow
mov I , I’

cmp VOLATILE FLAG , 0x0 # i < n

jne loop

Listing 7.12: Generated machine code for the volatile safepoint configuration.

7.6.3 Overhead for Compilation Time

We also considered the time taken for dynamic compilation for benchmarks in

different configurations by measuring the time taken to compile the main method

from the Mandelbrot benchmark. This is a relatively large method with a high

number of method calls which need to be inlined and several nested loops, all of

which add guest safepoint checks.

Figure 7.3 shows our results, with the columns showing mean compilation and

the error bars showing one standard deviation. We found no significant difference

7.6. EVALUATION 165

removed api switchpoint volatile
0

0.2
0.4
0.6
0.8

1
1.2

C
om

p
il
at

io
n

ti
m

e
(s

)

Figure 7.3: Mean compilation time for the Mandelbrot method across different
configurations.

in compilation time between removed, api and switchpoint. Compilation time for

volatile flag appeared to be only slightly higher. All of the techniques explored

require extra work in the compiler due to extra poll() calls, but this appears

to be insignificant compared to the rest of the work being done by the compiler.

The volatile flag is different to the other implementations in that the code is not

removed in early phases and adds extra work to later phases of the compiler.

7.6.4 Latency

Finally, we considered the time it takes for all threads to reach a guest-language

safepoint after one thread requested it — the latency. Comparing the different

configurations is not relevant here, as the costs can be primarily attributed to the

VM safepoint latency and the necessary deoptimisations to run the omitted Java

code, replaced in the compiled code by a VM safepoint check.

We ran the Mandelbrot benchmark with a variable number of threads. After

steady state was reached, a separate thread requested all others to enter a guest

safepoint.

Figure 7.4 shows our results, with the columns showing mean latency and

the error bars showing one standard deviation. Latency was reasonable for most

applications, responding to requests for a guest safepoint within about 1/100th

of a second when running 8 threads. Variance was surprisingly high, which would

make it hard to provide performance guarantees. Latency increases with the

number of threads running concurrently, however the trend is sublinear (for 64

threads the latency is just 3× that for one thread). Deoptimisation for multiple

threads is a parallel task, so although multiple threads add extra work, they also

166 CHAPTER 7. SAFEPOINTS

1 2 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

Number of threads

S
af

ep
oi

n
t

la
te

n
cy

(s
)

1 2 4 8 16 32 64
0

20

40

60

80

Number of threads

S
af

ep
oi

n
t

la
te

n
cy

(m
s)

Figure 7.4: Safepoint latency for the Mandelbrot for our implementation.

7.7. SUMMARY 167

add extra potential parallelism. For 1024 threads, a number well beyond typical

for normal modern Ruby applications, latency was half a second. It should also

be noted that due to deoptimisation, the use of a guest safepoint brings peak

performance down for some time before code can be reoptimised. Very frequent

use of guest safepoints could cause an application to run entirely in the interpreter.

Deoptimisation of the call stacks of different threads is implemented in the

underlying JVM to run in parallel using multiple cores if they are available. These

experiments were run on a system with two processors with four cores each, so

it should be possible to deoptimise up to eight threads in parallel. As the results

have a fairly high error margin, it does not appear to be possible to make any

connection between the parallelism available in the system and the safepoint

latency.

In the current implementation, using a safepoint triggers global deoptimisa-

tion. In a large application which has taken time to warm up, this could be a

lot of code being invalidated. However, Truffle and Graal do attempt to reduce

the cost in a couple of ways. Truffle will retain profiling information about the

program, so after deoptimisation profiled types, branch probabilities and so on

are still available. Method invocation and loop counts are also retained so that

the threshold to re-optimise is very low. Finally, Graal can cache IR from differ-

ent stages of compilation [99]. In the future this could be used to more quickly

compile methods where the ASTs have not changed since the last compilation.

7.7 Summary

We have shown how to use the existing safepoint system in a JVM and make

it available, with greater flexibility, to implementations of guest languages. We

have shown multiple diverse applications of this technique in the context of the

Ruby programming language.

Crucially, we have demonstrated that it has zero-overhead on peak temporal

performance when the safepoints are available but not used, and when the pro-

gram is stable and has been optimised as described in Chapter 4. The underlying

VM implementation of safepoints is already needed to support services such as

GC, and our re-use of them does not change how frequently potential safepoints

need to be inserted into the instruction stream. This means that we can use our

guest-language safepoints to provide the demonstrated Ruby language features,

168 CHAPTER 7. SAFEPOINTS

always enabled.

Although our implementation is based on functionality provided by Truffle

and the Graal backend for Truffle, we also showed how the technique can also be

implemented with functionality already available in a standard JVM.

Although it is out of the scope we set ourselves in Chapter 4, in this chapter

we did examine some additional metrics, such as the overhead on compilation

time and the latency for responding to a request for a safepoint and found them

both to be acceptable.

Chapter 8

Interpretation of Native

Extensions for Dynamic

Languages

8.1 Introduction

Due to the low performance of most existing implementations of Ruby, even lower

performance in the previous generation of implementations, and low relative per-

formance of language features which use metaprogramming, the Ruby community

has tended to write C extensions for applications where performance is important.

A C extension is a dynamic library, normally written using C but really it

could be written using any language which can export functions using the same

ABI, such as C++. A Ruby implementation such as MRI or Rubinius loads and

dynamically links the compiled library into the implementation. An initial call

is made into the library, which can then register Ruby modules, classes, methods

and so on, as if they had been defined in Ruby but backed by a C function.

The C code needs some way to interact with the Ruby interpreter, so MRI

provides an API with a header file to access Ruby values, call methods and

other operations. Listing 8.1 shows an example function from this API, the

rb_ary_store function, allows a C extension to store an element into a Ruby

array.

This model for C extensions works well for the original implementation of

Ruby. As the API directly accesses the implementation’s internal data structures,

the interface is powerful, has low overhead, and was simple for MRI to add: all

169

170 CHAPTER 8. EXTENSIONS

1 typedef void* VALUE;

2 void rb_ary_store(VALUE ary, long idx, VALUE val);

Listing 8.1: Function to store a value into an array as part of the Ruby API.

they had to do was make their header files public and support dynamic loading

of native modules.

The problem is that the extension API exposes almost the entire internal

structure of MRI. The header files that C extensions use are literally the internal

MRI header files. Even if we only consider MRI, this means that few changes

can be made to the internal structure of the implementation without breaking

this interface. This limits the innovation possible in MRI. The changes that were

introduced with the YARV bytecode interpreter for MRI 1.9 have been the most

significant attempted, and they only changed the execution model, not the major

internal data structures.

The problem is much worse for alternative implementations of Ruby that want

to provide optimisations. They have to find a way to provide exactly the same

API and somehow abstract over their optimisations.

As a concrete example, JRuby+Truffle provides optimised multiple implemen-

tations of the Ruby Array class, depending on the values stored in it. We apply

the storage strategies pattern [17] to represent an array that only contains small

integer values with a int[]. If some of the values are larger than 64 bits we may

use a long[] instead. We also support double[] for Float values, and a generic

Object[] for anything else or for heterogeneous arrays. This is a significant

optimisation as it reduces boxing allocations, and is key for our performance.

However, the Ruby C API has a macro to get the raw storage pointer that

backs a Ruby array, VALUE* RARRAY_PTR(array). This returns a VALUE*, which

is an array of Ruby’s internal tagged union for representing any object. When

a C library has this pointer it can access values directly. The problem that

will be solved in this chapter is, how we provide the API that the C extensions

expect, which use an array of tagged unions, when we want to optimise the

implementation to use multiple storage strategies.

In the context of MRI, C extensions provide a very good solution to the prob-

lem of limited performance, as the implementation of MRI is so limited. However

with more sophisticated implementations of Ruby that apply optimisations, na-

tive calls may actually be a barrier to performance. Implementations such as

8.2. EXISTING SOLUTIONS 171

JRuby+Truffle and Topaz achieve high performance through aggressive and deep

inlining and being able to trace objects through complicated control flow to see

where they are used and remove allocations and propagate constant values. A C

extension with a native call prevents these optimisations, as the dynamic com-

piler can only see the C extension method as an opaque function pointer. This

problem is also addressed by the techniques in the chapter.

C extensions are prevalent in the Ruby ecosystem, and anecdotally most large

Ruby applications will probably depend on at least one C extension at some point

in their deep chain of dependencies. We surveyed 421,817 Ruby modules (known

as gems) available in the RubyGems repository. Among these, almost 14% have

a transitive dependency on a gem containing a C extension—although without

actually running the gems it is not possible to clarify whether the C extensions

are optional or required.

An alternate reason that people write C extensions for Ruby is to access

existing native libraries, such as database drivers. This is not the key use case

considered here, and we do not evaluate for this use case, but we do mention how

we can support it at the end of this chapter.

The research contributions in this chapter were collaborative work with Matthias

Grimmer at Johannes Kepler Universität, Linz. The interpreter for C was ex-

isting work [44], and work to integrate with the Ruby interpreter to support C

extensions was joint work, but research contributions including support for in-

ner pointers from C to Ruby objects, representing high-level Ruby arrays as C

pointers, support for library routines such as malloc on Ruby objects and cross-

language optimisations were all novel research contributions by the author of this

thesis. The collaborative work described in this chapter will also form part of the

doctoral thesis of Matthias Grimmer.

8.2 Existing Solutions

This problem has been acknowledged for a long time, in multiple languages.

Python provides exactly the same kind of C extension API that exposes the

internals of the reference implementation, and the key alternative implementation

in that community, PyPy, has struggled to gain acceptance as it does not provide

any support for C extensions due to this problem [6]. In Python the problem is

actually worse, as the Python API dictates a reference counting GC algorithm,

172 CHAPTER 8. EXTENSIONS

which may not be easily compatible with more advanced tracing collectors used

by optimised implementations.

Some solutions to this problem are not realistic due to the scale at which these

languages are used and the number of existing C extensions which people want to

run. For example, both Ruby and Python provide a Foreign Function Interface

(FFI) with routines for dynamically linking and calling compiled C code and for

marshalling values in C’s type system. Here there is no need for a wrapper using

the language specific API as C functions are called directly and guest-language

values and data structures are marshalled by the application. However these FFIs

have come later in the language development, and asking developers to rewrite

their C extensions so that the FFI can use them is not realistic due to the large

body of existing code.

One more realistic solution is to implement a bridging layer between the API

that C extensions expect and the actual internal implementation of the language.

However, this introduces costs for lowering the optimised data structures used by

the more modern implementation in order to allow them to be accessed using the

existing API. Performance is usually one goal of using C extensions, so adding a

bridging layer is not ideal.

Rubinius supports C extensions through such a compatibility layer. This

means that in addition to problems that MRI has with meeting a fixed API, Ru-

binius must also add another layer that converts routines from the MRI API to

calls on Rubinius’ C++ implementation objects. The mechanism Rubinius uses

to optimise Ruby code, an LLVM-based JIT compiler, cannot optimise through

the initial native call to the conversion layer. At this point many other useful

optimisations no longer can be applied. Despite having a significantly more ad-

vanced implementation than MRI, Rubinius actually runs C extensions about

half as fast as MRI (see Section 8.10). This is clearly at odds with the whole

point of C extensions in most instances.

JRuby used to provide limited experimental support for C extensions until

this was removed after the work proved to be too complicated to maintain and

the performance too limited [2, 5]. Their implemented used the JVMs FFI mech-

anism, JNI, to call C extensions. This technique is almost the same as used in

Rubinius, also using a conversion layer, except that now the interface between

the VM and the conversion layer is even more complex. For example, the Ruby

C API makes it possible to take the pointer to the character array representing

8.3. TRUFFLEC 173

a string. MRI and Rubinius are able to directly return the actual pointer, but in

JRuby using JNI it is not possible to obtain the address of the character array

in a string. In order to implement this routine, JRuby must copy the string data

from the JVM onto the native heap. When the native string data is then mod-

ified, JRuby must copy it back into the JVM. To keep both sides of the divide

synchronized, JRuby must keep performing this copy each time the interface is

passed. We believe that this is the cause for the benchmarks in our evaluation

timing out for JRuby and Rubinius.

These implementations of C extensions are not just limited, but in the case

of JRuby where the requirement to copy can balloon, they are in some case

intractable.

8.3 TruffleC

Our solution is to combine the Truffle implementation of Ruby, JRuby+Truffle,

with an existing Truffle implementation of C, TruffleC [44, 42]. Truffle dynami-

cally executes C code on top of a JVM and performs well compared to industry

standard C compilers such as GCC or LLVM/Clang in terms of peak-performance.

While it may seem unusual to talk of an interpreter for C, C is a relatively sim-

ple language and apart from unrestricted native access to the heap, most of the

language features such as arithmetic and control flow are not much different than

are found in a language which is typically interpreted.

Despite C being a static language, TruffleC uses the self-optimisation capa-

bility of Truffle: It uses PICs to efficiently handle function pointer calls, profiles

branch probabilities to optimistically remove never executed code, or profiles

runtime values and replaces them by constants if they do not change over time.

TruffleC also has the ability to access native C libraries of which no source code

is available, using the Graal native function interface [45]. This interface can

directly access native functions from Java. However this functionality is not used

in this evaluation.

8.4 Language Interoperability on Top of Truffle

Existing work describes the novel idea of a cross-language mechanism that allows

us to compose arbitrary interpreters efficiently on top of Truffle [43].

174 CHAPTER 8. EXTENSIONS

The goal for this mechanism was to retain the modular way of implementing

languages on top of Truffle and to meet the following criteria:

• Languages can be treated as modules and are composable. An implemen-

tation of a cross-language interface, such as C extensions for Ruby, requires

very little effort because any two languages that support this mechanism

are already interoperable.

• We do not want to introduce a new object model that all Truffle guest

languages have to share, which is based on memory layouts and calling

conventions. Although some languages, such as Python and Ruby, have su-

perficially similar object models, a shared object model is not applicable to

a wider set of languages. For example, JRuby+Truffle uses a specific high-

performance object model [112] to represent Ruby runtime data, whereas

TruffleC stores C runtime data such as arrays and structures directly on

the native heap as is suitable for the semantics of C. We introduce a com-

mon interface for objects that is based on code generation via ASTs. Our

approach allows sharing language specific objects (with different memory

representations and calling conventions) across languages, rather than low-

ering all objects to a common representation.

• We want to make the language boundaries completely transparent to Truf-

fle’s dynamic compiler, in that a cross-language call should have exactly the

same representation as an intra-language call. This transparency allows the

JIT compiler to inline and apply advanced optimisations such as constant

propagation and escape analysis across language boundaries without mod-

ifications.

In the following sections we describe in detail how we extend the Truffle

framework with this mechanism. We use the mechanism to access Ruby ob-

jects from C and to forward Ruby API calls from the TruffleC interpreter back

to the JRuby+Truffle interpreter. Therefore our system includes calls both from

Ruby to C and from C back to Ruby.

Using ASTs as an internal representation of a user program already abstracts

away syntactic differences of object accesses and function calls in different lan-

guages. However, each language uses its own representation of runtime data such

as objects, and therefore the access operations differ. Our research therefore

8.4. LANGUAGE INTEROPERABILITY ON TOP OF TRUFFLE 175

focused on how we can share such objects with different representations across

different interpreters.

In this system we call every non-primitive entity of a program an object. This

includes Ruby objects, classes, modules and methods, and C immediate values

and pointers. An object that is being accessed by a different language than the

language of its origin is called a foreign object. A Ruby object used by a C

extension is therefore considered foreign in that context. If an object is accessed

in the language of its origin, we call it a regular object. A Ruby object, used by

a Ruby program is therefore considered regular. Object accesses are operations

that can be performed on objects, e.g. method calls or property accesses.

8.4.1 Language-independent Object Accesses

In order to make objects (objects that implement TruffleObject) shareable

across languages, we require them to support a common interface. We imple-

ment this as a set of messages :

Read: We use the Read message to read a member of an object denoted by the

member’s identity. For example, we use the Read message to get properties

of an object such as a field or a method, and to read elements of an array.

Write: We use the Write message to write a member of an object denoted by

its identity. Analogous to the Read message, we use it to write object

properties.

Execute: The Execute message, which can have arguments, is used to evaluate

an object. For example, it can evaluate a Ruby method or invoke the target

of a C function pointer.

Unbox: If the object represents a boxed numeric value and receives an Unbox

message, this message unwraps the boxed value and returns it. For example,

if an Unbox message is sent to a Ruby Fixnum, the object returns its value

as a 4 byte integer value.

We call an object shareable if we can access it via these language-independent

messages. Truffle guest-language implementations can insert language-independent

message nodes into the AST of a program and send these messages in order to

access a foreign object. Figure 8.1a shows an AST that accesses a Ruby array

176 CHAPTER 8. EXTENSIONS

Execute

Read 0 value

#[]=array

receiver	object method	 to	read
from	the	object

read	the	#[]=	method
from	the	array	object

execute	the	#[]=	method
with	the	index	0	and	the
value	to	be	stored

(a) Using messages to read the Ruby []= method, and then call it with an
index and value to be stored

Execute

Read 0 value

#[]=array

Ruby?

Ruby?

Array#[]=

Method#call

Ruby-specific	result	of	looking
up	the	#[]=	method	an	array

Ruby-specific	call	node

(b) The same AST with the messages resolved to Ruby-specific operations and
a language guard

Figure 8.1: Language independent object access via messages.

via messages in order to store value at index 0. This interpreter first sends a

Read message to get the array setter function []= from the array object (in Ruby

writing to an element in an array is performed via a method call). The language-

independent nodes are shown in blue. Afterwards it sends an Execute message

to evaluate this setter function. Figure 8.1a shows how these messages are re-

solved to Ruby-specific nodes in red the first time they are run. Each language-

independent node is resolved to the node to perform this action in the language

of the given object. As another object from a different language may be seen next

time, a guard is added between the language-independent and language-specific

nodes that checks the object is from the expected language. This is similar to

how a PIC checks the type of a receiver object before resolving to the correct

method. If this check failed, then another language could be added onto the end

8.4. LANGUAGE INTEROPERABILITY ON TOP OF TRUFFLE 177

of this chain. Again, this is similar to how a PIC handles multiple receiver types

at a single call site. This approach gives us a technique which could be called

language polymorphic call sites.

Given this mechanism, Truffle guest languages can access any foreign object

that implements this message-based interface. If an object does not support a

certain message we report a runtime error with a high-level diagnostic message.

8.4.2 Message Resolution

The receiver of a cross-language message does not return a value that can be

further processed. Instead, the receiver returns an AST snippet — a small tree

of nodes designed for insertion into a larger tree. This AST snippet contains

language-specific nodes for executing the message on the receiver. Message reso-

lution replaces the AST node that sent a language-independent message with a

language-specific AST snippet that directly accesses the receiver. After message

resolution an object is accessed directly by a receiver-specific AST snippet rather

than by a message.

During the execution of a program the receiver of an access can change if it is a

non-final value, and so the target language of an object access can change as well.

Therefore we need to check the receiver’s language before we directly access it. If

the foreign receiver object originates from a different language than the one seen

so far we access it again via messages and do the message resolution again. If an

object access site has varying receivers, originating from different languages, we

call the access language polymorphic. To avoid a loss in performance, caused by a

language polymorphic object access, we embed AST snippets for different receiver

languages in a chain similar to a conventional inline cache [54], except that here

the cache handles multiple languages as well as multiple classes of receivers.

Message resolution and building object accesses at runtime has the following

benefits:

Language independence: Messages can be sent to any shareable object. The

receiver’s language of origin does not matter and messages resolve them-

selves to language-specific operations at runtime. This mechanism is not

limited to C extensions for Ruby but could possibly be used for many com-

bination of languages.

No performance overhead: Message resolution only affects the application’s

178 CHAPTER 8. EXTENSIONS

performance upon the first execution of an object access for a given lan-

guage. Once a message is resolved and as long as the languages used remain

stable, the application runs at full speed.

Cross-language inlining: Message resolution allows the dynamic compiler to

inline methods even across language boundaries. By generating AST snip-

pets for accessing foreign objects we avoid the barriers from one language to

another that would normally prevent inlining. Our approach creates a sin-

gle AST that merges different language-specific AST parts. The language-

specific parts are completely transparent to the JIT compiler. Removing

the language boundaries allows the compiler to inline method calls even

if the receiver is a foreign object. Widening the compilation unit across

different languages is important [97, 13] as it enables further optimisations

such as specialization and constant propagation.

8.4.3 Shared Objects and Shared Primitive Values

Like a regular object access, a foreign object access produces and returns a result.

Our interoperability mechanism distinguishes between two types of values that a

foreign object access can return:

Object types: If a foreign object access returns a non-primitive value, this ob-

ject again has to be shareable in the sense that it understands the messages

Read, Write, Execute, and Unbox. If the returned object is accessed later,

it is accessed via these messages.

Primitive types: In order to exchange primitive values across different lan-

guages we define a set of shared primitive types. We refer to values with such

a primitive type as shared primitives. The primitive types include signed

and unsigned integer types (8, 16, 32 and 64 bit versions) as well as floating

point types (32 and 64 bit versions) that follow the IEEE floating point 754

standard. The vast majority of languages use some of these types, and as

they are provided by the physical architecture their semantics are usually

identical. In the course of a foreign object access, a foreign language maps

its language-specific primitive values to shared primitive values and returns

them as language-independent values. When the host language receives a

shared primitive value it again provides a mapping to host language-specific

values.

8.4. LANGUAGE INTEROPERABILITY ON TOP OF TRUFFLE 179

8.4.4 JRuby+Truffle: Foreign Object Accesses and Share-

able Ruby Objects

In Ruby’s semantics there are no non-reference primitive types and every value

is logically represented as an object, as in the tradition of languages such as

Smalltalk. Also, in contrast to other languages such as Java, Ruby array elements,

hash elements, or object attributes cannot be accessed directly but only via getter

and setter calls on the receiver object. For example, a write access to a Ruby

array element is performed by calling the []= method of the array and providing

the index and the value as arguments.

In our Ruby implementation all runtime data objects as well as all Ruby meth-

ods are shareable in the sense that they implement our message-based interface.

Figure 8.1 shows how a Ruby array can be accessed via messages.

Ruby objects that represent numbers, such as Fixnum and Float that can be

simply represented as primitives common to many languages, also support the

Unbox message. This message simply maps the boxed value to the relative shared

primitive. For example, a host language other than Ruby might send an Unbox

message whenever it needs the object’s value for an arithmetic operation.

8.4.5 TruffleC: Foreign Object Accesses and shareable C

Pointers

TruffleC can share primitive C values, mapped to shared primitive values, as well

as pointers to C runtime data with other languages. In our implementation,

pointers are objects that implement the message interface, which allows them

to be shared across all Truffle guest language implementations. TruffleC repre-

sents all pointers (so including pointers to values, arrays, structs or functions)

as CAddress Java objects that wrap a 64-bit value [48]. This value represents

the actual referenced address on the native heap. Besides the address value, a

CAddress object also stores type information about the referenced object. De-

pending on the type of the referenced object, CAddress objects can resolve the

following messages:

• A pointer to a C struct can resolve Read/Write messages, which access

members of the referenced struct.

• A pointer to an array can resolve Read/Write messages that access a certain

180 CHAPTER 8. EXTENSIONS

array element.

• Finally, CAddress objects that reference a C function can be executed using

the Execute message.

When JRuby+Truffle accesses a function that is implemented within a C exten-

sion, it will use an Execute message to invoke it. Message resolution will bridge

the gap between both languages automatically at runtime. The language bound-

aries are transparent to the dynamic compiler and it can inline these C extension

functions just like normal Ruby functions.

TruffleC allows binding foreign objects to pointer variables declared in C.

Hence, pointer variables can be bound to CAdress objects as well as shared foreign

objects. TruffleC can then dereference these pointer variables via messages.

8.5 Implementation of the Ruby C API

Developers of a C extension for Ruby access the API by including the ruby.h

header file. We want to provide the same API as Ruby does for C extensions,

i.e., we want to provide all functions that are available when including ruby.h.

To do so we created our own source-compatible implementation of ruby.h. This

file contains the function signatures of all of the Ruby API functions that were

required for the modules we evaluated, as described in the next section. We

believe it would be tractable to continue the implementation of API routines so

that the set available is reasonably complete.

Listing 8.2 shows an excerpt of this header file.

We do not provide an implementation for these functions in C code. Instead,

we implement the API by substituting every invocation of one of the functions at

runtime with a language-independent message send or directly access the Ruby

runtime.

We can distinguish between local and global functions in the Ruby API:

8.5.1 Local Functions

The Ruby API also offers a wide variety of functions that are used to access

and manipulate Ruby objects from within C. In the following we explain how we

substitute the Ruby API functions rb ary store, rb iv get, rb funcall, and

FIX2INT:

8.5. IMPLEMENTATION OF THE RUBY C API 181

1 typedef VALUE void*;

2 typedef ID void*;

3

4 // Define a C function as a Ruby method

5 void rb_define_method

6 (VALUE class, const char* name,

7 VALUE(*func)(), int argc);

8

9 // Store an array element into a Ruby array

10 void rb_ary_store

11 (VALUE ary, long idx, VALUE val);

12

13 // Get the Ruby internal representation of an

14 // identifier

15 ID rb_intern(const char* name);

16

17 // Get instance variables of a Ruby object

18 VALUE rb_iv_get(VALUE object,

19 const char* iv_name)

20

21 // Invoke a Ruby method from C

22 VALUE rb_funcall(VALUE receiver ID method_id,

23 int argc, ...);

24

25 // Convert a Ruby Fixnum to C long

26 long FIX2INT(VALUE value);

Listing 8.2: Excerpt of the ruby.h implementation.

• rb ary store:

Normally TruffleC would insert call nodes for regular function calls, how-

ever, TruffleC handles invocations of these API functions differently. Con-

sider the invocation of the rb ary store function (Listing 8.3): Instead of

a call node, TruffleC inserts message nodes that are sent to the Ruby array

(array). The AST of the C program (Listing 8.3) now contains two message

nodes (namely a Read message to get the array setter method []= and an

Execute message to eventually execute the setter method, see Figure 8.1a).

Upon first execution these messages are resolved (Figure ??), which results

in a TruffleC AST that embeds a Ruby array access (Figure 8.1b).

• rb iv get:

182 CHAPTER 8. EXTENSIONS

1 VALUE array = ... ; // Ruby array of Fixnums

2 VALUE value = ... ; // Ruby Fixnum

3

4 rb_ary_store(array, 0, value);

Listing 8.3: Calling rb ary store from C.

In contrast to Ruby object attributes, which are accessed via getter and

setter methods, Ruby instance variables can be accessed directly. Therefore

the substitution of rb iv get sends a Read message and provides the name

of the accessed instance variable.

• rb funcall:

The function rb funcall allows calling a Ruby method from within a C

function. We substitute this call again by two messages. The first one is a

Read message that resolves the method from the Ruby receiver object. The

second message is an Execute message that finally executes the method.

• FIX2INT:

We replace functions that convert numbers from Ruby objects to C primi-

tives (such as FIX2INT, Fixnum to integer) by Unbox messages, sent to the

Ruby object (VALUE value). As the naming convention suggests, FIX2INT

is usually implemented as a C preprocessor macro. For the gems we stud-

ied this difference did not matter, and if it did we could implement it as a

macro that simply called another function.

8.5.2 Global Functions

The Ruby API offers various different functions that allow developers to manip-

ulate the global object class of a Ruby application from C or to access the Ruby

engine.

The API includes functions to define global variables, modules, or global func-

tions (e.g., rb define method) etc. Also, these functions allow developers to re-

trieve the Ruby internal representation of an identifier (e.g. rb intern). In order

to substitute invocations of these API functions, TruffleC accesses the global ob-

ject of the Ruby application using messages or directly accesses the Ruby engine.

For instance, we substitute calls to rb define method and rb intern as fol-

lows:

8.6. EXPRESSING POINTERS TO MANAGED OBJECTS 183

• rb define method:

To define a new method in a Ruby class, developers use the rb define method

function. TruffleC substitutes this function invocation and sends a Write

message to the Ruby class object (first argument, VALUE class). The

Ruby class object resolves this message and adds the C function pointer

(VALUE(*func)()) as a new method. The function pointer (VALUE(*func)())

is represented as a CAddress object. When invoking the added function

from within Ruby, JRuby+Truffle uses an Execute message and can there-

fore directly invoke this C function.

• rb intern:

rb intern converts a C string to a reference to a shared immutable Ruby

object which can be compared by reference to increase performance. Truf-

fleC substitutes the invocation of this method and directly accesses the

JRuby+Truffle engine. JRuby+Truffle exposes a utility function that al-

lows resolving these immutable Ruby objects.

Given this implementation of the API we can run C extensions without modifi-

cation and are therefore compatible with the Ruby MRI API. Given the interop-

erability mechanism presented in this paper, implementing this API via message-

based substitutions was a trivial task: The implementation of TruffleC simply

uses the interoperability mechanism and replaces invocations of Ruby API meth-

ods with messages. Besides these changes, no modifications of JRuby+Truffle or

TruffleC were necessary to support C extensions for Ruby. This demonstrates

that our cross-language mechanism is applicable in practice and makes language

compositions easy.

8.6 Expressing Pointers to Managed Objects

The Ruby C API provides several functions which give direct access to the inter-

nals of data structures via pointers. This is often done for performance reasons.

For example we already described how it is possible to get the VALUE* that im-

plements a Ruby array. It’s then possible to iterate over this pointer without

using any further Ruby API calls, which may be faster than using an API call to

access each element of an array. Similar pointer access is commonly used for the

Ruby String class, which provides access to the underlying char*.

184 CHAPTER 8. EXTENSIONS

Implementing this pointer access is extremely problematic for existing imple-

mentations of Ruby that apply optimisations as they will likely want to use more

sophisticated representation for data structures, but they have to meet the same

API as MRI uses. We previously gave array storage strategy specialisation as an

example of an optimisation that pointer access conflicts with.

In the C extension support in JRuby+Truffle, a normal pointer to a Ruby

object is modelled in C as a simple Java reference to a sharable TruffleObject.

If additional indirection is introduced and a pointer is taken to a Ruby object,

TruffleC creates a TruffleObjectReference object (which itself is sharable) that

wraps the object that is pointed to. Additional wrappers can achieve arbitrary

levels of pointer indirection. As with any object that does not escape, as long as

the pointer objects are created and used within a single compilation unit (which

may of course include multiple Ruby and C methods) the compiler can optimise

and remove these indirections (see Section 8.10) and thus do not introduce a time

or space overhead.

When the pointer is dereferenced, a method is called on the sharable object

to return the byte at a given offset within the object. In this way, the object

can be dynamically asked to return the memory that would be at an address, if

the object were implemented in MRI. The JRuby+Truffle String class can then

return individual characters that would be at an offset if it were implemented

as a simple char*, even though in reality it is implemented as a managed Java

array.

C also allows arithmetic on pointers, and arithmetic on internal pointers to

Ruby objects is exercised in some of our benchmarks. To support this in TruffleC a

second wrapper, a sharable TruffleObjectReferenceOffset object, holds both

the object reference (TruffleObjectReference) and the offset from that address.

Further pointer arithmetic just produces a new wrapper with a new offset. Any

dereference of this object-offset wrapper will use the same messages to read or

write from the object as a normal array access would.

8.7 Memory Operations on Managed Objects

The C extensions that we experimented with not only used pointer arithmetic,

but then passed those pointers to standard library routines such as memcpy, a

routine which copies a number of bytes from one pointer to another.

8.8. LIMITATIONS 185

To implemented this we added specialisations for common memory routines

which use the same mechanism as described in the previous section to ask the

object to return the byte that would be at an offset if the object was not managed.

A memcpy into a managed object, rather than out of it, works in a similar way.

Memory operations outside the bounds of the object are not supported and throw

an exception.

8.8 Limitations

TruffleC only supports well-defined programs. Many parts of the C language

that would be more difficult to support are explicitly left undefined by the stan-

dard [108], so a valid implementation would be to throw an exception, or any

other action. Some other parts of the language are explicitly optional, so TruffleC

could still be a conforming implementation while not supporting them. Examples

of these operations include casts between different types of pointer, or between

pointers and integers. These are undefined at the point of dereferencing. TruffleC

does not support this and will report a runtime error. As these operations are

left undefined or optional by the C standard, this is a valid implementation.

In practice, this technical conformance may not be sufficient for other lan-

guages where we would also want to support C extensions, as they may rely on

the actual behaviour of operations in common compilers, even if they are techni-

cally undefined.

8.9 Cross-Language Optimisations

So far we have discussed techniques that allow JRuby+Truffle to run C exten-

sions without conflicting with optimisations that we are using to achieve high

performance and without the massive overhead of marshalling data back and

forth from managed to native heaps that limits the JRuby and Rubinius imple-

mentations. However, an implementation of C extensions where C and Ruby are

both implemented using a common dynamically optimising framework introduces

new optimisation opportunities.

The Truffle’s Graal backend only knows about ASTs, not different languages,

so a method call that crosses a language barrier can be inlined in exactly the

same way as a call that is from one language to the same language. This is

186 CHAPTER 8. EXTENSIONS

heavily exercised in the benchmarks which we evaluated below, where Ruby code

may call a C extension, which calls back into the Ruby code. Truffle is able

to inline through all three levels of call and through both languages, producing

a single piece of machine code for the original Ruby method and everything it

calls. Inlining is a key optimisation, and this then enables further optimisations

such as cross-language escape analysis and allocation removal. Objects which are

allocated in Ruby and passed into the C extension can be optimised away in the

same way as if both methods were written in Ruby.

8.10 Evaluation

8.10.1 Benchmarks

In this chapter we focus on the benchmarks from Chunky PNG [107] and PSD.rb [69],

as they are available in both the form of pure Ruby and the C extensions with

the Oily PNG [67] and PSD Native [68] libraries.

8.10.2 Required Modifications

Running these gems on our system required just one minor modification for com-

patibility: we had to replace two instances of stack allocation of a variable-sized

array with heap allocation via malloc and free. Variable-sized array allocation

on the stack is a feature from C99 which TruffleC does not support yet.

We also had to fix two bugs where an incorrect type was used, int instead

of VALUE, causing a tagged integer to be used as if it was untagged. This was

an implementation bug in the gem rather than a TruffleC incompatibility, as it

was causing a different result between the Ruby module and the C extension on

all Ruby language implementations. However, TruffleC was able to differentiate

between the two types where the error was missed by the original authors when

running with GCC1.

Apart from these minor modifications our system runs all the methods from

these two significant C extensions, unmodified.

8.10. EVALUATION 187

10.6

4.2
2.5

32.0

14.8

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

MRI W
ith C Extension

Rubinius W
ith C Extension

JRuby W
ith C Extension

JRuby+Truffle
 W

ith C Extension

JRuby+Truffle
 W

ith C Extension (N
o Inline)

M
ea

n
Sp

ee
du

p
R

el
at

iv
e

to
 M

R
I W

ith
ou

t C
 E

xt
en

si
on

 (s
/s

)

Figure 8.2: Summary of speedup across all native extensions.

188 CHAPTER 8. EXTENSIONS

8.10.3 Results

Figure 8.2 shows a summary of our results. We show the geometric mean speedup

of each evaluated implementation over all benchmarks, relative to the speed at

which MRI ran the Ruby code without the C extension. When using MRI the

average speedup of using the C extension (MRI With C Extension, Figure 8.2)

over pure Ruby code is around 11×. Rubinius (Rubinius With C Extensions,

Figure 8.2) only achieves around one third of this speedup. Although Rubinius

generally achieves at least the same performance as MRI for Ruby code, its per-

formance for C extensions is limited by having to meet MRI’s API, which requires

a bridging layer. Rubinius failed to make any progress with 3 of the benchmarks

in a reasonable time frame so they were considered to have timed out. The per-

formance of JRuby (JRuby With C Extensions, Figure 8.2) is 2.5× faster than

MRI running the pure Ruby version of the benchmarks without the C extensions.

JRuby uses JNI to access the C extensions from Java, which causes a significant

overhead. Hence it can only achieve 25% of the MRI With C Extension perfor-

mance. JRuby failed to run one benchmark with an error about an incomplete

feature. As with Rubinius, 17 of the benchmarks did not make progress in rea-

sonable time. Despite a 8GB maximum heap, which is extremely generous for the

problems sizes, some benchmarks in JRuby were spending the majority of their

time in GC or were running out of heap.

When running the C extension version of the benchmarks on top of our system

the performance is over 32× better than MRI without C extensions and over 3×
better than MRI With C Extension. When compared to the other alternative

implementations of C extensions, we are over 8× faster than Rubinius, and over

12× faster than JRuby, the previous attempt to support C extensions for Ruby

on the JVM. We also run all the extensions methods correctly, unlike both JRuby

and Rubinius.

In a conventional implementation of C extensions, where the Ruby code runs

in a dedicated Ruby VM and the C code is compiled and run natively, the call

from one language to another is a barrier that prevents the implementation from

performing almost any optimisations. In our system the barrier between C and

Ruby is no different to the barrier between one Ruby method and another. We

1We reported this issue to the module’s authors as https://github.com/layervault/psd_
native/pull/4.

https://github.com/layervault/psd_native/pull/4
https://github.com/layervault/psd_native/pull/4

8.10. EVALUATION 189

found that allowing inlining between languages is a key optimisation, as it per-

mits many other advanced optimisations in the Graal compiler. For example,

partial escape analysis can trace objects, allocated in one language but consumed

in another, and eventually apply scalar replacement to remove the allocation.

Other optimisations that benefit from cross language inlining include constant

propagation and folding, global value numbering and strength reduction. When

disabling cross-language inlining (JRuby+Truffle With C Extension) the speedup

over MRI is roughly halved, although it is still around 15× faster, which is around

39% faster than MRI With C Extension. In this configuration the compiler can-

not widen its compilation units across the Ruby and C boundaries, which results

in performance that is similar to MRI when running with C extensions.

Figure A.4 shows detailed graphs for all benchmarks and Figure 8.4 shows

tabular data. The first column of the tabular shortly describes the application

of each benchmark that we evaluate. All other columns show the results of our

performance evaluation of the different approaches. We show the absolute average

time needed for a single run, the error, and the relative speedup to MRI without

C extensions.

The speedup achieved for MRI With C Extensions compared to MRI running

Ruby code (the topmost bar of each cluster, in red) varies between slightly slower

at 0.69x (psd-blender-compose) and very significantly faster at 84x (chunky-oper-

ations-compose).

The speedup of JRuby+Truffle With C Extensions compared to MRI varies

between 1.37x faster (chunky-encode-png-image) up to 101x faster (psd-com-

pose-exclusion). When comparing our system to MRI With C Extensions we

perform best on benchmarks that heavily access Ruby data from C but other-

wise do little computation on the C side. These scenarios are well suited for

our system because our compiler can easily optimise foreign object accesses and

cross-language calls. In some benchmark such as chunky-colour-r the entire

benchmark, including Ruby and C, will be compiled into a single compact ma-

chine code routine. However, if benchmarks do a lot of computations on the C

side and exchange little data the performance of our system is similar to MRI

With C extensions.

If we just consider the contribution of a high performance reimplementation of

Ruby and its support for C extensions, then we should compare ourselves against

JRuby. In that case our implementation is highly successful at on average over

190 CHAPTER 8. EXTENSIONS

0 20 40 60 80 100 120

chunky-resampling-steps-residues

chunky-resampling-steps

chunky-resampling-nearest-neighbor

chunky-resampling-bilinear

chunky-decode-png-image

chunky-encode-png-image

chunky-color-compose-quick

chunky-color-r

chunky-color-g

chunky-color-b

chunky-color-a

chunky-operations-compose

chunky-operations-replace

psd-combine-rgb-channel

psd-combine-cmyk-channel

psd-combine-greyscale-channel

psd-decode-rle-channel

psd-parse-raw

psd-color-cmyk-to-rgb

psd-compose-normal

psd-compose-darken

Speedup Relative to MRI Without C Extension (s/s)

0 20 40 60 80 100 120

psd-compose-multiply

psd-compose-color-burn

psd-compose-linear-burn

psd-compose-lighten

psd-compose-screen

psd-compose-color-dodge

psd-compose-linear-dodge

psd-compose-overlay

psd-compose-soft-light

psd-compose-hard-light

psd-compose-vivid-light

psd-compose-linear-light

psd-compose-pin-light

psd-compose-hard-mix

psd-compose-difference

psd-compose-exclusion

psd-clippingmask-apply

psd-mask-apply

psd-blender-compose

psd-util-clamp

psd-util-pad2

psd-util-pad4

Speedup Relative to MRI Without C Extension (s/s)

MRI With C Extension Rubinius With C Extension JRuby With C Extension JRuby+Truffle With C Extension JRuby+Truffle With C Extension (No Inline)

Figure 8.3: Speedup for individual benchmarks.

8.11. INTERFACING TO NATIVE LIBRARIES 191

12× faster. However we also evaluate against MRI directly running native C and

find our system to be on average over 3× faster, indicating that our system might

be preferable even when it is possible to run the original native code.

8.11 Interfacing To Native Libraries

TruffleC is able to call into native libraries using the Graal native function inter-

face [45], which is an FFI understood by Graal for the purposes of optimisation.

Given a conventional header file declaration of a function, TruffleC is able to

transparently link the function from the current processes symbol table, or with

a reference also from an external shared library.

This technique should be enough to interface with libraries such as database

drivers, but we have not evaluated in depth. Listing 8.4 shows an example in the

Ruby interactive shell, IRB. The system header files <unistd.h> and <stdio.h>

are loaded from disk. These are not special versions of TruffleC, instead we are

simply loading the standard headers. We then use a JRuby+Truffle feature that

allows us to write C code inline, where we call printf with the result from getpid.

Both of these functions are called natively - they haven’t been reimplementd in

Java.

1 > bin/jruby -X+T bin/irb

2 irb(main):001:0> Truffle::CExt.inline %s{

3 irb(main):002:0: #include <unistd.h>

4 irb(main):003:0: #include <stdio.h>

5 irb(main):004:0: }, %s{

6 irb(main):005:0: printf("Hello, World! I’m %d\n", getpid());

7 irb(main):006:0: }

8 Hello, World! I’m 36641

9 => true

10 irb(main):002:0> exit

Listing 8.4: IRB session using TruffleC inline to call a library routine.

8.12 Summary

We have presented a novel solution to the major problem of supporting legacy

C extensions in optimised implementations of dynamic languages. We combined

192 CHAPTER 8. EXTENSIONS

Mean%Time%(s)

Error%(±%s)

Speedup%(s/s)

Mean%Time%(s)

Error%(±%s)

Speedup%(s/s)

Mean%Time%(s)

Error%(±%s)

Speedup%(s/s)

Mean%Time%(s)

Error%(±%s)

Speedup%(s/s)

Mean%Time%(s)

Error%(±%s)

Speedup%(s/s)

Mean%Time%(s)

Error%(±%s)

Speedup%(s/s)

chunky9resam
pling9steps9residues

Calculate%offsets%for%scaling%an%im
age

4.1615
0.0006

1.0000
0.8884

0.0003
4.6844

1.0955
0.0013

3.7986
0.6809

0.0075
6.1113

2.9943
0.0158

1.3898
chunky9resam

pling9steps
Calculate%just%the%integer%offsets%for%scaling

3.1536
0.0032

1.0000
0.1896

0.0003
16.6289

0.2635
0.0043

11.9675
0.1445

0.0002
21.8320

0.4222
0.0002

7.4695
chunky9resam

pling9nearest9neighbor
Scale%an%im

age%w
ith%no%interpolation

4.8069
0.0644

1.0000
0.5449

0.0001
8.8212

1.0989
0.0030

4.3744
0.2354

0.0022
20.4203

2.3568
0.0303

2.0396
chunky9resam

pling9bilinear
Scale%an%im

age%w
ith%bilinear%interpolation

4.9273
0.0262

1.0000
0.5445

0.0003
9.0496

1.0205
0.0103

4.8282
0.2513

0.0038
19.6074

2.3411
0.0295

2.1047
chunky9decode9png9im

age
Decode%a%PN

G%im
age%stream

%to%pixel%values
31.9720

0.3122
1.0000

32.0908
0.3098

0.9963
100.3601

2.3741
0.3186

13.7589
0.0101

2.3237
15.7590

0.0120
2.0288

chunky9encode9png9im
age

Encode%pixel%values%to%a%PN
G%im

age%stream
48.0001

0.5826
1.0000

10.0598
0.0503

4.7715
21.8336

0.0560
2.1985

34.8494
0.4705

1.3774
57.5937

0.4539
0.8334

chunky9color9com
pose9quick

Com
pose%one%colour%value%on%top%of%another

20.0624
0.0049

1.0000
1.2092

0.0017
16.5917

2.2468
0.0022

8.9293
5.2565

0.0749
3.8166

0.3366
0.0003

59.6119
0.4796

0.0028
41.8315

chunky9color9r
Extract%colour%channel%from

%packed%32bit%pixel%value
16.0452

0.0205
1.0000

11.2803
0.0221

1.4224
18.1816

0.1635
0.8825

25.5462
0.1627

0.6281
0.7479

0.0003
21.4537

1.6514
0.0133

9.7164
chunky9color9g

Extract%colour%channel%from
%packed%32bit%pixel%value

15.1524
0.0397

1.0000
10.6781

0.0188
1.4190

18.4940
0.0289

0.8193
25.2880

0.2154
0.5992

0.7403
0.0006

20.4679
1.6792

0.0222
9.0238

chunky9color9b
Extract%colour%channel%from

%packed%32bit%pixel%value
15.0363

0.0445
1.0000

10.1860
0.0042

1.4762
17.7032

0.0409
0.8494

24.7702
0.1849

0.6070
0.7503

0.0051
20.0391

1.6476
0.0234

9.1265
chunky9color9a

Extract%colour%channel%from
%packed%32bit%pixel%value

13.8268
0.0514

1.0000
10.0445

0.0244
1.3766

17.9353
0.0412

0.7709
24.6747

0.1415
0.5604

0.7377
0.0006

18.7418
1.6336

0.0144
8.4640

chunky9operations9com
pose

Com
pose%one%im

age%on%top%of%another
18.2619

0.0181
1.0000

0.2156
0.0000

84.7060
0.4620

0.0003
39.5269

0.2682
0.0018

68.1033
0.2689

0.0014
67.9133

chunky9operations9replace
Replace%the%contents%of%one%im

age%w
ith%another

7.5622
0.0063

1.0000
0.1411

0.0000
53.5976

0.8628
0.0004

8.7651
0.2409

0.0067
31.3914

0.2182
0.0045

34.6492
psd9com

bine9rgb9channel
Decode%RGB%channel%data%into%pixel%values

9.1537
0.0268

1.0000
0.4760

0.0002
19.2303

0.9657
0.0099

9.4787
0.2366

0.0014
38.6804

0.5347
0.0005

17.1209
psd9com

bine9cm
yk9channel

Decode%CM
YK%channel%data%into%pixel%values

8.7897
0.0080

1.0000
4.2160

0.0035
2.0848

11.3257
0.1693

0.7761
0.4161

0.0030
21.1240

0.9220
0.0153

9.5333
psd9com

bine9greyscale9channel
Decode%greyscale%channel%data%into%pixel%values

3.8683
0.0014

1.0000
2.1293

0.0003
1.8167

2.8351
0.0004

1.3645
0.3079

0.0035
12.5636

0.9681
0.0004

3.9960
psd9decode9rle9channel

Decode%run9length9encoded%data
3.6114

0.0474
1.0000

2.4145
0.0137

1.4957
0.5744

0.0029
6.2866

1.7794
0.0257

2.0296
psd9parse9raw

Decode%raw
%encoded%data

3.1876
0.0590

1.0000
0.5426

0.0054
5.8748

5.5173
0.0385

0.5777
0.2460

0.0018
12.9551

1.3409
0.0172

2.3773
psd9color9cm

yk9to9rgb
Convert%from

%CM
YK%to%RGB

25.4834
0.0056

1.0000
5.2850

0.0040
4.8218

24.4951
0.0086

1.0403
1.8211

0.0107
13.9934

2.2905
0.0221

11.1257
psd9com

pose9norm
al

Com
pose%tw

o%pixel%values
9.5798

0.0017
1.0000

0.3490
0.0024

27.4506
1.4110

0.0055
6.7895

3.1666
0.0602

3.0253
0.1370

0.0004
69.9514

0.2765
0.0008

34.6531
psd9com

pose9darken
Com

pose%tw
o%pixel%values%using%a%filter

12.4882
0.0021

1.0000
0.3358

0.0003
37.1902

1.4342
0.0015

8.7074
3.2332

0.0598
3.8625

0.1408
0.0003

88.6946
0.2770

0.0019
45.0837

psd9com
pose9m

ultiply
Com

pose%tw
o%pixel%values%using%a%filter

11.3139
0.0015

1.0000
0.3530

0.0021
32.0465

1.4093
0.0013

8.0278
3.2066

0.0541
3.5284

0.1390
0.0015

81.4240
0.2796

0.0006
40.4717

psd9com
pose9color9burn

Com
pose%tw

o%pixel%values%using%a%filter
13.6794

0.0028
1.0000

0.3846
0.0007

35.5709
1.4947

0.0008
9.1519

3.5064
0.0574

3.9013
0.1951

0.0012
70.1328

0.3208
0.0003

42.6349
psd9com

pose9linear9burn
Com

pose%tw
o%pixel%values%using%a%filter

11.2797
0.0020

1.0000
0.3664

0.0011
30.7812

1.4525
0.0009

7.7659
3.2223

0.0476
3.5005

0.1385
0.0003

81.4716
0.2822

0.0037
39.9707

psd9com
pose9lighten

Com
pose%tw

o%pixel%values%using%a%filter
12.7023

0.0023
1.0000

0.3389
0.0004

37.4836
1.4511

0.0032
8.7538

3.1088
0.0444

4.0860
0.1360

0.0017
93.3989

0.2780
0.0027

45.6998
psd9com

pose9screen
Com

pose%tw
o%pixel%values%using%a%filter

11.3777
0.0011

1.0000
0.3491

0.0012
32.5957

1.4418
0.0028

7.8913
2.9852

0.0430
3.8113

0.1344
0.0015

84.6555
0.2761

0.0008
41.2086

psd9com
pose9color9dodge

Com
pose%tw

o%pixel%values%using%a%filter
15.6079

0.0031
1.0000

0.3809
0.0007

40.9720
1.4253

0.0018
10.9508

3.0824
0.0449

5.0635
0.2448

0.0014
63.7576

0.3856
0.0031

40.4821
psd9com

pose9linear9dodge
Com

pose%tw
o%pixel%values%using%a%filter

13.9772
0.0024

1.0000
0.3381

0.0012
41.3362

1.3973
0.0011

10.0031
3.0626

0.0606
4.5639

0.1389
0.0010

100.6281
0.2850

0.0061
49.0516

psd9com
pose9overlay

Com
pose%tw

o%pixel%values%using%a%filter
13.7380

0.0025
1.0000

0.3597
0.0007

38.1892
1.4684

0.0004
9.3555

3.2616
0.0351

4.2120
0.1755

0.0013
78.2569

0.3188
0.0040

43.0996
psd9com

pose9soft9light
Com

pose%tw
o%pixel%values%using%a%filter

14.0483
0.0018

1.0000
0.3806

0.0003
36.9104

1.4558
0.0014

9.6496
3.2347

0.0554
4.3431

0.1829
0.0004

76.8086
0.3296

0.0037
42.6223

psd9com
pose9hard9light

Com
pose%tw

o%pixel%values%using%a%filter
13.2856

0.0020
1.0000

0.3765
0.0002

35.2864
1.4366

0.0034
9.2477

2.8690
0.0455

4.6307
0.1725

0.0003
77.0179

0.3191
0.0011

41.6411
psd9com

pose9vivid9light
Com

pose%tw
o%pixel%values%using%a%filter

15.7572
0.0020

1.0000
0.4015

0.0014
39.2481

1.4759
0.0008

10.6764
3.3599

0.0491
4.6898

0.3199
0.0004

49.2566
0.4782

0.0057
32.9510

psd9com
pose9linear9light

Com
pose%tw

o%pixel%values%using%a%filter
15.2815

0.0031
1.0000

0.3725
0.0002

41.0285
1.5195

0.0020
10.0569

3.1666
0.0423

4.8258
0.2426

0.0003
62.9775

0.3796
0.0010

40.2621
psd9com

pose9pin9light
Com

pose%tw
o%pixel%values%using%a%filter

15.1247
0.0016

1.0000
0.3601

0.0002
42.0034

1.4739
0.0010

10.2616
3.1750

0.0439
4.7636

0.1800
0.0026

84.0026
0.3203

0.0003
47.2277

psd9com
pose9hard9m

ix
Com

pose%tw
o%pixel%values%using%a%filter

11.2739
0.0022

1.0000
0.3966

0.0012
28.4271

1.5099
0.0017

7.4667
3.1402

0.0598
3.5902

0.1426
0.0003

79.0594
0.2816

0.0033
40.0422

psd9com
pose9difference

Com
pose%tw

o%pixel%values%using%a%filter
11.0951

0.0025
1.0000

0.3424
0.0001

32.4050
1.4161

0.0019
7.8352

2.9586
0.0324

3.7501
0.1372

0.0003
80.8976

0.2759
0.0019

40.2215
psd9com

pose9exclusion
Com

pose%tw
o%pixel%values%using%a%filter

14.0561
0.0016

1.0000
0.3503

0.0007
40.1213

1.4592
0.0029

9.6328
3.0012

0.0400
4.6836

0.1383
0.0003

101.6350
0.2833

0.0038
49.6157

psd9clippingm
ask9apply

Apply%a%clipping%m
ask%to%an%im

age
6.5653

0.0031
1.0000

0.2642
0.0004

24.8485
0.5486

0.0006
11.9680

0.1169
0.0002

56.1856
0.7980

0.0003
8.2272

psd9m
ask9apply

Apply%an%im
age%m

ask%to%an%im
age

10.3243
0.0192

1.0000
1.7499

0.0016
5.9001

0.2582
0.0033

39.9857
0.9720

0.0214
10.6212

psd9blender9com
pose

Blends%tw
o%im

ages%using%one%of%the%com
pose%m

odes
12.7997

0.0762
1.0000

18.6183
0.0019

0.6875
0.9081

0.0040
14.0959

1.3786
0.0199

9.2849
psd9util9clam

p
Return%a%value%or%m

inim
um

%or%m
axim

um
%bounds

27.3576
0.0123

1.0000
10.6073

0.0248
2.5791

20.0002
0.0430

1.3679
25.8236

0.2004
1.0594

2.5784
0.0043

10.6105
2.6979

0.0228
10.1401

psd9util9pad2
Round%an%integer%to%a%m

ultiple%of%2
14.4757

0.0443
1.0000

9.7852
0.0098

1.4793
17.8647

0.0140
0.8103

22.6366
0.1362

0.6395
0.8032

0.0004
18.0237

1.6267
0.0141

8.8991
psd9util9pad4

Round%an%integer%to%a%m
ultiple%of%4

15.1029
0.0098

1.0000
10.2633

0.0067
1.4715

17.8847
0.0408

0.8445
23.9633

0.1667
0.6303

0.8314
0.0005

18.1656
1.6326

0.0085
9.2508

failed
failed

failed

failed

failed

failed
failed
failed

failed

failed

failed

failed

failed

failed

failed

failed

failed

JRuby%With%C%
Extension

JRuby+Truffle%With%C%
Extension

JRuby+Truffle%With%C%
Extension%(No%Inline)

failed

failed
failed

Application
Benchm

ark

MRI%Without%C%
Extesnion

MRI%With%C%Extension

Rubinius%With%C%
Extension

Figure 8.4: Description of benchmarks and evaluation data.

8.12. SUMMARY 193

two self-optimising AST interpreters, one for C and one for Ruby, and provided an

implementation of the MRI API that abstracts over our optimised implementation

of language internals.

We could not only demonstrate that our system allows existing C code from

production gems can be run in combination with our optimisations, but also

that doing so improves performance on actually running the native code by 3×.

We therefore both solve the original problem of compatibility with existing C

extensions and a new optimising implementation of Ruby, but also improve on

performance of the C extensions at the same time.

194 CHAPTER 8. EXTENSIONS

Chapter 9

Conclusions

In this thesis we have presented JRuby+Truffle, an implementation of the Ruby

programming language that out-performs existing implementations of Ruby by

an order of magnitude on a set of both synthetic benchmarks, and a set of bench-

marks from real-world production libraries which exercise metaprogramming pat-

terns that are common in the Ruby ecosystem.

JRuby+Truffle optimises for complex metaprogramming patterns that Ruby

programmers use to reduce code duplication and add abstraction to simplify

programs. Existing implementations of Ruby do not optimise for these patterns,

and there previously existed no techniques to do so. We have introduced dispatch

chains as a generalised form of polymorphic inline caches to optimise a range of

metaprogramming features in the Ruby language, and shown the impact that this

has on benchmarks created from production libraries.

JRuby+Truffle does not achieve high performance by limiting the features of

the Ruby language that it supports to those which are easy to implement and

do not conflict with the optimisations we have used. In fact, it supports around

93% of the Ruby language and around 87% of the core library. It also does not

achieve high performance by putting difficult features of the language behind

debug flags which are disabled by default, and drastically limit performance if

they are enabled. In JRuby+Truffle there are no language feature flags, and

even complex language features such as ObjectSpace.each_object are always

enabled. No other implementation of Ruby achieves these two things at the same

time. We have introduced the new technique of guest-language safepoints to do

this.

195

196 CHAPTER 9. CONCLUSIONS

Tooling is also not compromised in our implementation. JRuby+Truffle fea-

tures debugging support which is always enabled and can be used on a long

running process and will not damage performance. Utilising the new concept of

wrapper nodes for dynamic instrumentation of an optimised AST, breakpoints

can be set in optimised code with no overhead, and conditional breakpoints only

incur cost proportional to the cost of evaluating the condition.

JRuby+Truffle does not discard support for legacy applications. The workaround

for low performance of existing implementations of Ruby is to write C extensions

which bypass much of the dynamic nature of Ruby and allow native primitives

to be used instead. JRuby+Truffle can run C extensions by interpreting them

using the same dynamic techniques as it uses to run Ruby code. The abstrac-

tion of interpretation allows optimisations made to runtime and application data

structures while still providing the illusion of a native interface to the C code.

We believe that JRuby+Truffle is the first high performance re-implementation

of a dynamic programming language that also provides a high performance im-

plementation of C extensions.

JRuby+Truffle is a demonstration that an extremely large and complex in-

dustrial language such as Ruby can be optimised for the way that programmers

want to use it, without limiting the features that are made available, and with

high performance tooling support. Although we have developed sophisticated

new techniques, the implementation of JRuby+Truffle itself is not complex and

many of our techniques are now being pushed down into the underlying Truffle

language implementation framework where they are being used by other language

implementations. In fact, JRuby+Truffle is a whole level of abstraction simpler

than any other implementation of Ruby, as it is an AST interpreter, and does

not include any bytecode interpretation or code generation phase.

Appendix A

Dataflow and Transactions for

Dynamic Parallelism

A.1 Introduction

This thesis has covered techniques for the implementation of dynamic languages

with optimisations that work for metaprogramming operations and are compat-

ible with debug tooling. This appendix considers a problem that is related and

may be a basis for future work in the JRuby+Truffle project, but is not at the

moment implemented as part of that project or using the Ruby language.

In this appendix we extend the group of concepts we are considering under

the dynamic umbrella to include dynamic parallelism. In the same way that it

is sometimes desirable to defer actions such as method binding until runtime

because it gives more flexibility, it can also be more flexible to allow a system of

parallel tasks to be defined at runtime. In particular we are interested in irregular

parallelism. This is the class of applications that we may wish to parallelise, where

the tasks to be executed and the dependencies between them may not be statically

determinable. In extreme cases, as is the case with the workload we have studied

in this appendix, dependencies between tasks may not be determinable without

knowing the results of the tasks.

In the past this has been solved with pessimistic locking schemes, which are

difficult to get right. Instead we can apply an optimistic system that speculates

that most tasks will not conflict, and works under that assumption until a prob-

lem is found. There is a parallel between this and the speculative optimisation

197

198 APPENDIX A. DYNAMIC PARALLELISM

that we have applied to solve metaprogramming and tooling problems in a high-

performance implementation of Ruby. There is also a parallel to the work in

Chapter 7 in the discussion of applications such as reverting biased locks and

aborting failed speculative parallelism–such techniques could have been applied

to the work in this appendix.

The work in this Appendix applied an existing framework for dataflow [40] and

transactional memory [39] in the Scala programming language The independent

research contribution was to produce a novel technique to solve a representative

irregular parallel application [12].

A.2 Irregular Parallelism

A great many strategies have been proposed to make writing parallel programs

that run on multicore shared-memory systems easier and less error prone, at the

same time as achieving a good return on the invested number of processors. This

endeavour becomes more pressing as multicore systems become the majority on

servers, desktops and mobile devices. The number of cores looks likely to continue

to increase, requiring more parallelism in our programs in order to exploit this

power.

We have looked at work to combine two existing constructs that have shown

considerable potential on their own – dataflow [110] and transactional mem-

ory [50]. We have used an established benchmark, Lee’s algorithm for routing

printed circuit boards, to make an early assessment of their utility for creating

efficient, simply written and correct parallel programs. This paper shows how

using the DFLib and MUTS [39] implementations of dataflow and transactional

memory makes the parallel implementation of our program simpler, at the same

time as achieving a real world performance increase compared to coarse locks on

typical desktop hardware, even when all overhead is included.

A.3 Dataflow

Dataflow decomposes a program into a directed acyclic graph with nodes that

perform computation and edges that take the output of one computation and

provide it as input to one or more other nodes. A node is runnable if all of the

nodes preceding it have finished their computation, and so all of the inputs are

A.4. TRANSACTIONS 199

available. In a model where the computations do not have any side effects, such

as in functional languages, the graph completely expresses dependencies between

nodes, and if more than one node is runnable at the same time then they may be

run in parallel. The name dataflow emphasises that it is the data flowing between

nodes that causes them to be scheduled to run, rather than the a program counter

reaching procedures and causing them to run, as in the von Neumann model.

As well as helping to expose parallelism by dividing a program into groups of

computations without interdependencies, dataflow can also help us by handling

the synchronisation between running threads. Threads will only run when all

of their inputs are already available, so there is no code needed to achieve the

common barrier or join operations as in Java threads. However, dataflow does

not help us to address the problem of a shared mutable state. As we shall show

using our example problem, Lee’s algorithm as described in Section A.5, shared

state can be a key part of the algorithm.

For this work we used the Scala dataflow library, DFLib, being developed as

part of the Teraflux project at the University of Manchester. A dataflow node is

created by wrapping a Scala function in a DFThread object that has methods to

either explicitly set an input, or to link an input to the result of another DFThread.

This allows a dataflow graph to be built up and implicitly run by DFLib, which

will schedule runnable functions using enough OS threads to occupy all hardware

threads.

A.4 Transactions

Transactional memory allows a series of memory reads and writes to be executed

as if they were a single indivisible, or atomic, operation. This removes the need for

explicit mutually exclusive locks around data structures. Instead, a data structure

is modified within an atomic block and so appears to be a single operation that

can be applied without excluding others. There are many different algorithms

that implement this basic transactional behaviour [50], but this programming

interface is common to most of them.

Locks can be a blunt tool that disallows concurrent access to memory based on

the assumption that such accesses will conflict. For some applications, this may

be a correct assumption, but given a particular problem we may be confident that

conflict is rare. Most implementations of transactional memory allow transactions

200 APPENDIX A. DYNAMIC PARALLELISM

that do not have conflicting memory accesses to proceed in parallel, dealing with

the less common case of conflicting memory access by restarting one or both of

the transactions involved. This is in contrast to a standard locking approach

which would disallow parallel memory accesses on the same data structure, even

when they do not conflict.

For the work presented here we used the Manchester University Transactions

for Scala (MUTS) library. Taking the Java Deuce transactional memory library

[62] as a starting point, MUTS extends and modifies this work to implement a

selection of different techniques for implementing software transactional memory

for the Scala programming language.

MUTS uses a Java agent to visit all Java classes as they are loaded into

the JVM. This allows it to create a transactional version of all methods that

instrument read and write operations. MUTS can then pass these reads and writes

to one of several implementations of software transactional memory algorithms

included in the library. A typical algorithm stores reads and writes in a log,

deferring writing to shared memory from the log until the transaction is complete

and values in the read log are verified to not have been written to by another

thread in the elapsed time.

A.5 Lee’s Algorithm

Lee’s algorithm [66] solves the problem of finding independent routes between

a set of pairs of points on a discrete grid. The applications originally proposed

included drawing diagrams, wiring and optimal route finding, but the algorithm is

now best known as a method for routing paths on a printed circuit board. There

are later algorithms for route finding with less computational complexity, but

Lee produces a shortest solution for any given route and board state, as opposed

to using heuristics to arrive at a good-enough solution in less time. Figure A.2

shows the output of one application of Lee’s algorithm – routing paths on a

printed circuit board – as generated by our implementation.

A simple overview of the Lee algorithm is that from the start point of the route

it looks at all adjacent points and marks them as having cost one. From each

point P so marked, it marks each adjacent point Padj as having cost cost(Padj) =

cost(P)+1, as long they were not already marked with a lower cost. If an adjacent

point is already part of another route then using that point would cost more, by

A.5. LEE’S ALGORITHM 201

S

E

S

E

S

E

S

E

Figure A.1: Expand and trace phases of Lee’s algorithm[12]

Figure A.2: A solution from Lee’s algorithm

202 APPENDIX A. DYNAMIC PARALLELISM

an arbitrary constant factor, as a bridge of one route over another needs to be

built. This expansion, as it is called, continues until the end point is a member

of the set of adjacent points. Typically, this expansion forms a circle around the

start point, enveloping obstacles such as existing routes, and finishing at the end

point.

A trace is then run from the end point to the start point, always moving to a

point of lower cost until the start point is reached. This produces a route which

can be marked on the grid. These two key steps are illustrated in Figure A.1.

Unlike classic problems such as finding Fibonacci numbers or merge sort, Lee

does not belong to the class informally known as embarrassingly parallel. Such

problems can be broken down into smaller problems that are entirely independent,

and so can be executed in parallel. There are several ways to decompose Lee’s

algorithm into a set of subproblems, but it cannot be guaranteed a priori that

any two subproblems will not want to lay a route in the same cell of the shared

grid, even when the route’s start and end points are known.

The key to the problem is that any set of subproblems still need to share

access to a single resource – the grid. It is not simple for each thread to have an

independent copy of the grid, as two threads could need use the same point for

multiple routes and would then have to synchronise between themselves. This

would add logic to the program that is unrelated to the algorithm that we are

implementing. It is also not simple for each thread to have one part of the larger

grid, as you can not guarantee which parts a route will use before the expansion

has been calculated and such a scheme would vastly increase the complexity of

the program. However, given all routes on a circuit board it is unlikely that any

two being routed at a particular time will conflict. The parallelism is there – it is

just that it is hard to determine statically and is more apparent as the program

is running.

Work has already been done to use Lee to evaluate the runtime characteristics

of a transactional program [109], and to evaluate the performance of implementa-

tions of transactional memory for Java [12]. Our work builds on this by evaluating

the combined use of transactions and dataflow, with Scala, MUTS and DFLib.

A.6. IMPLEMENTATION 203

A.6 Implementation

Scala [80] is a hybrid functional and imperative programming language that runs

on the Java Virtual Machine. The functional aspect allows a clean expression

of a problem in a way that is open to parallelisation with minimum shared or

mutable state. The imperative aspect allows us to have controlled mutation of

the shared state when we require it for efficient execution.

We wrote a set of programs in Scala to solve Lee. One sequential, seq ; one

using coarse locks, coaselock ; one using the MUTS library, muts and one using

both MUTS and DFLib, dataflow. They share common input and output formats

and many internal data structures. The output of the parallel implementations

is non-deterministic due to the interleaving of separate threads of execution, so

we check the the total routing cost of the solution to compare the equivalence of

different implementations.

A.6.1 Sequential

We first created a sequential implementation of Lee using a purely functional

approach, combined with a central mutable data structure to represent the board.

Our implementation of Lee is minimal and we excluded some refinements that

Lee described such as weighting against turns in paths. While these refinements

are sensible for actual routing applications, they do not have any effect on the

parallel characteristics of the program and can be considered constant factors to

performance in both space and time. We also allow only one level of bridging,

where one route can cross an existing route, as this is usually sufficient for our

test boards.

The sequential program, seq, represents a clear and succinct expression of

the algorithm. We are adding parallelism because we want the program to run

faster, not because the algorithm requires it, so ideally we want this optimisation

to require minimum new code and minimum modifications to existing code. The

perfect expression of parallelism would be completely orthogonal to the sequential

expression of the algorithm.

204 APPENDIX A. DYNAMIC PARALLELISM

A.6.2 Coarse Lock

Our first parallel implementation, coarselock, creates a thread for each hardware

thread in the system. Each thread works in a loop. First it allocates a route from

the input and obtains a private copy of the shared board data structure. Then it

expands and traces the route, using this private copy. The route is then validated,

to ensure that since the private copy was made the board has not been changed

by another thread to make the proposed solution invalid and then commits the

route to the shared board data structure.

There are three resources being shared here – the board data structure, the

list of available routes and the list of solutions. Additionally, the master thread

needs to know when all the solutions are in the list, which we achieve by waiting

for all threads to finish with the join() method.

We make access to these shared resources mutually exclusive using Scala’s im-

plementation of the M-structure [15], SyncVar[T]. For example, an instance of

SyncVar[MutableBoardState] holds the shared mutable board state data struc-

ture. When a thread wants to lock the data structure so it can validate its route

and commit it to the board without interruption by another thread, it calls the

take method to atomically remove the data structure and leave the SyncVar

empty. Any other thread trying to read or write from the same data structure

will block within take until the former thread is done with the data structure

and calls the put method to return it for other threads to use.

1 val boardStateForFreeze = boardStateVar.take() // Lock

2 val privateBoardState = boardStateForFreeze.freeze

3 boardStateVar.put(boardStateForFreeze) // Unlock

4

5 val expansion = expandRoute(board, route, privateBoardState)

6 val solution = traceRoute(board, route, expansion)

7

8 val boardStateForLay = boardStateVar.take() // Lock

9 val verified = verifyRoute(route, solution, boardStateForLay)

10 if (verified)

11 layRoute(route, solution, boardStateForLay)

12 else

13 scheduleForRetry(route)

14 boardStateVar.put(boardStateForLay) // Unlock

Listing A.1: Parallel Lee’s algorithm using a global SyncVar

A.6. IMPLEMENTATION 205

In this implementation we had a single lock for the entire board. Another

option would be to use multiple locks to control different parts of the board. We

haven’t created such an implementation, but we do refer to this strategy in the

analysis section.

A.6.3 MUTS

We used the MUTS library to create a parallel implementation by modifying

coarselock. Where coarselock acquires a resource with take to the exclusion of all

other threads before putting it back when it is done, we can instead perform that

action inside a transaction that will only allow other threads to read the same

values as long as they don’t write to them, and will automatically retry if such a

conflict is found.

1 // Atomically copy the shared data structure

2 val privateBoardState = atomic { boardState.freeze }

3

4 val expansion = expandRoute(board, route, privateBoardState)

5 val solution = traceRoute(board, route, expansion)

6

7 // Atomically write to the shared data structure

8 atomic {

9 if (verifyRoute(route, solution, boardState))

10 layRoute(route, solution, boardState)

11 else

12 scheduleForRetry(route)

13 }

Listing A.2: Parallel Lee’s algorithm using transactional memory

This code looks very similar to the use of a pthread_mutex_t, a Java

synchronized block or a SyncVar as used in coarselock. The idea that atomic

could be implemented as a global single lock is one model for thinking about

transactional memory [50]. However, in practice the atomic blocks will allow

multiple threads to read at the same time, and to write at the same time as long

as they do not try to write routes using the same point. If there is a conflict,

they will be retried, just as coarselock does explicitly.

206 APPENDIX A. DYNAMIC PARALLELISM

A.6.4 Dataflow

We then extended our muts implementation to use the Scala dataflow library,

DFLib. Where the muts implementation created parallelism by spawning Java

threads, the dataflow constructs provided by DFLib allow us to express this

creation of parallelism in a different way. Each route is a DFThread that will

have its inputs ready at the start of the program’s execution and so will all be

runnable. DFLib will schedule them for us so that only a sensible number are

running at any time.

A final DFThread, the collector thread will be then created that has each

route’s DFThread as one of its arguments. This will therefore be run when the

solutions are complete. This is a convenience construct provided by DFLib, as it

is expected to be a common pattern, and replaces the synchronisation needed to

create the list of solutions and the join operation to wait for all threads to finish

that we used in coarselock. Figure A.3 shows the resulting dataflow graph, and

illustrates how the scheduler executes a small subset of routes at time.

1 // Accepts solutions as arguments and build a list from them

2 val solutionCollector = DFManager.

3 createCollectorThread[Solution](routes.length)

4

5 for (route <- routes) {

6 // Create a thread to solve a route

7 val routeSolver = DFManager.createThread(solveRoute _)

8

9 routeSolver.arg1 = board

10 routeSolver.arg2 = route

11 routeSolver.arg3 = boardState

12

13 // It will send the solutions to this function

14 routeSolver.arg4 = solutionCollector.token1

15 }

Listing A.3: Parallel Lee’s algorithm using DFScala

A.7. ANALYSIS 207

Figure A.3: Example dataflow graph for Lee’s algorithm

A.7 Analysis

A.7.1 Methodology

The programs were compiled with Scala 2.9.1 and run on the JVM 1.6.0 27 on an

Intel Core i7 processor comprising four physical cores, each with two-way hyper-

threading for eight hardware threads. The OS was openSUSE 11.2 with Linux

2.6.31.14.

A.7.2 Results

Table A.1 shows the running time of the core part of each program, measured

using System.nanoTime(). This excludes the startup time for the JVM and in

the case of muts and dataflow, time to rewrite classes for transactional access.

Each program was run ten times with mean average and standard deviation taken,

rounded to three decimal places. programs were constrained to use 1, 2, 4, 6 or all

8 of the available hardware threads by replacing calls to availableProcessors()

with a constant value. These results indicate the relative performance than can

be achieved within a longer running system. All parallel implementations show

a decrease in performance when using all available hardware threads. This is

in line with other researchers’ findings [72] and is probably caused by higher

contention on resources, limits of hyper-threading, and time sharing with the

kernel and other system processes. We show these results as they are what would

be achieved with a simple implementation that would by default try to use all

available hardware threads.

Figure A.4 shows the resulting speedup of the algorithms, compared to the

sequential implementation. That is the time for the sequential implementation

divided by time for each other implementation, for a given number of hardware

208 APPENDIX A. DYNAMIC PARALLELISM

Impl.
Hardware Threads

1 2 4 6 8
Mean SD Mean SD Mean SD Mean SD Mean SD

seq 29.355 0.310 29.396 0.212 29.535 0.303 29.376 0.220 29.330 0.215
coarselock 30.374 0.321 17.485 0.396 14.986 1.266 13.748 0.776 21.961 1.550

muts 31.422 0.421 16.648 1.157 13.357 0.493 11.528 0.425 14.869 0.683
dataflow 32.093 0.282 16.994 1.149 13.630 1.105 11.805 0.460 14.570 0.401

Table A.1: Mean algorithm running time (seconds)

threads. These results indicate the return on investment for the number of hard-

ware threads applied to the problem.

Figure A.4: Algorithm speedup compared to sequential

Table A.2 shows the running time of the entire program shown next to the

algorithm time, when running on 8 hardware threads. This includes JVM startup

(common to all implementations), and for muts and dataflow the time to rewrite

classes for transactional access. These results are indicative of the total real-world

cost of implementing Lee’s algorithm for a medium sized board in each of the

implementations, including all overhead of the libraries that we have employed,

A.7. ANALYSIS 209

Implementation Algorithm Whole program Overhead
seq 29.330 29.697 0.367

coarselock 21.961 22.634 0.673
muts 14.774 17.136 2.267

dataflow 14.215 18.877 4.307

Table A.2: Whole program running time on 8 hardware threads (seconds)

Implementation Lines of code Parallel operations
seq 251 0
coarselock 330 (+79) 11
muts 328 (+77) 6
dataflow 300 (+49) 5

Table A.3: Code metrics

and the rewriting cost involved in MUTS. Rewriting could be done ahead of time,

and we show these numbers here to give an indication of this cost, whether it is

made at runtime or not. The overhead becomes a less significant proportion of

whole program time given larger problem sizes of a greater number of problems

processed in batch.

Table A.3 shows some informal metrics of the program code required to imple-

ment the different parallel algorithms. Parallel operations refers to the number of

operations at the source code level related to nothing but the parallel architecture

around the pure algorithm. This includes creating or joining a thread, reading

or writing a synchronisation variable and atomic blocks. Each parallel operation

detracts from the pure algorithm and is a potential source of error.

All of the parallel implementations are correct and usable, but we had two

goals that we can analyse them against. First, the only reason for creating paral-

lelism was that we wanted the program to run faster than our sequential version.

We therefore analysed their performance against the sequential implementation,

given a multicore system. Secondly, we said that ideally we didn’t want to distract

from the elegant expression of the algorithm that the sequential implementation

gives us. We wanted to introduce minimum new code and to modify minimum

existing code. Each addition or modification further ties the expression of the

algorithm and the parallelism together and makes modification or debugging to

the algorithm itself harder. We therefore analyse the changes needed to create

210 APPENDIX A. DYNAMIC PARALLELISM

the different parallel implementations.

A.7.3 Coarse Lock

Implementing Lee’s algorithm using coarse locks would probably be the default

approach by most industrial programmers. Shared data structures has been iden-

tified and locks placed around them. This has created a more verbose program

with 11 parallel operations.

The key problem with coarselock is that all threads need to read and write the

board to make any progress, and given that we are making that access mutually

exclusive, we are only allowing one thread to make progress at a time. There

is still a degree of work that can be done in parallel – after creating a private

copy of the board, the expansion can proceed in parallel – but when we add more

threads trying to complete the work faster, we just end up with a bigger queue

for the board lock.

As described in Section A.6, it would be possible to develop a finer grained

system of locks. However, coarselock is already the most complicated of the

programs that we have written, as shown in Table A.3, and that is with just one

lock. Multiple locks would require logic to work out which locks to acquire, as

well as a protocol for the order in which to acquire the locks in order to avoid

classic deadlock. Even if it tested well, how would we gain confidence that our

locking protocol worked every time?

A.7.4 MUTS

The muts implementation looks similar to coarselock, with the same thread cre-

ation and the same points of synchronisation on the same data structures. How-

ever, as we are using transactional memory, the semantics of the code is very dif-

ferent, and will not block another thread unless there is a conflict in the memory

locations that they want to read and write. The muts implementation achieves

better performance from essentially the same code as in coarselock because the

MUTS atomic block will allow more than one thread to run inside it, as long

as they are not conflicting on the memory that they use, which as we already

described, is unlikely.

Software transactional memory introduces a significant overhead to programs,

in that within a transaction all reads and writes have to be instrumented and

A.8. FURTHER WORK 211

logged. This will entail allocating and populating a data structure in proportion

to the number of reads and writes the transaction performs. For example, to cre-

ate a private copy of our test boards involves creating a log with a not-insignificant

6002 read entries. In MUTS, there is also the overhead at runtime of rewriting all

class files to include transactional variants of methods used within transactions.

In this evaluation we are looking at the resulting performance of the program, so

we included all of these overheads in our whole program timing measurements.

This transformation can alternatively be made ahead of time for a known set of

class files. Even with all of the overhead, muts still runs significantly faster than

seq and coarselock on 8 hardware threads.

A.7.5 Dataflow

The dataflow implementation uses the same code as muts to synchronise access

to the shared board data structure, but by structuring the program as dataflow

we simplify the parallel parts of the algorithm. As we create one DFThread for

each route, we have removed the synchronisation needed for sharing the available

remaining routes between worker threads. By creating a final DFThread to collect

the results we have also removed the synchronisation needed there. DFLib can

manage the scheduling and dependencies of both of these two problems for us.

This reduces the number of parallel operations to a lower number than that of

muts alone. We would argue that where less parallel constructs are required,

development is easier and there is less possibility for error, as has been found

empirically by other researchers [84].

A.8 Further Work

A.8.1 DFLib

Our implementation of Lee’s algorithm uses dataflow to express only a couple of

simple dependencies, and although this is a legitimate use of DFLib that does

reduce the volume of code needed for synchronisation and a work-queue, it is

likely that a more advanced dataflow decomposition of Lee’s algorithm, or another

problem entirely, will reveal much greater gains in elegant expression and runtime

performance available using DFLib.

212 APPENDIX A. DYNAMIC PARALLELISM

A.8.2 MUTS

MUTS will currently make any read or write operation within a transactional

block part of the transaction, regardless of whether or not the object is shared or

mutable. MUTS could be improved with static analysis to reduce the size of the

read and write sets. Other transactional memory implementations such as that of

Haskell achieve this with explicitly typed transactional objects [51], but if this was

the case with MUTS we could not have used our existing sequential board data

structure without modification, and modifying it to use a transactional type such

as Haskell’s TVar would have been more work unrelated to the actual algorithm.

A.9 Summary

Our evaluation shows that dataflow combined with transactional memory is a

succinct and efficient method for a parallel implementation of Lee’s algorithm

and is worth further development and investigation.

When applied to Lee’s algorithm, dataflow and transactions allow a parallel

implementation that is closest to the original sequential implementation. This

makes any modifications needed to the algorithm simpler, as one has to consider

less parallel code, and it reduces the chance of error as there are less instances of

their use that could be incorrect.

These methods expose more parallelism than simple coarse locks and even

with runtime transactional overhead the core of the implementation always runs

faster than coarse locks, and with 8 hardware threads will run faster even when

time consuming rewriting is included in timings.

We believe that transactions and dataflow in Scala using MUTS and DFLib

can be used in other research development and real world applications to express

parallel programs with minimal modifications and extra code, while achieving

good comparative performance and speedup.

Appendix B

Benchmarks

B.1 Synthetic Benchmarks

These are classic research synthetic benchmarks, collected by the Computer

Language Benchmarks Game [31] (formerly known as the Computer Language

Shootout) and the Topaz project [37].

Benchmark Exercises

classic-binary-trees Object allocation

classic-fannkuch-redux Array access [11]

classic-mandelbrot Floating point

classic-n-body Floating point and object access

classic-pidigits Bignum

classic-spectral-norm Floating point

classic-richards Polymorphic call sites

classic-deltablue Logic

classic-red-black Object allocation

classic-matrix-multiply Floating point and array access

topaz-neural-net Floating point, object access, higher order methods

213

214 APPENDIX B. BENCHMARKS

B.2 Production Benchmarks

B.2.1 Chunky PNG

Chunky PNG [107] is a Ruby library for reading and writing PNG image files,

managing colour values, simple drawing operations and algorithms such as re-

sampling. We have taken every method where a native equivalent is found in

Oily PNG [67] and packaged them as a benchmark.

Benchmark Description

chunky-canvas-resampling-steps-residues Integer and floating arithmetic

chunky-canvas-resampling-steps Integer and floating arithmetic

chunky-canvas-resampling-nearest-neighbor Integer and floating arithmetic

chunky-canvas-resampling-bilinear Integer and floating arithmetic

chunky-decode-png-image-pass Unpacking binary data

chunky-encode-png-image-pass-to-stream Unpacking binary data

chunky-color-compose-quick Integer arithmetic and packing

chunky-color-r Bit manipulation

chunky-color-g Bit manipulation

chunky-color-b Bit manipulation

chunky-color-a Bit manipulation

chunky-operations-compose Integer arithmetic and packing, array indexing

chunky-operations-replace Copying between arrays

B.2. PRODUCTION BENCHMARKS 215

B.2.2 PSD.rb

PSD.rb [69] is a Ruby library for reading and writing Photoshop Document image

files, accessing the graph of objects within them, manipulating font data, and

implementations of Photoshop standard composition functions. We have taken

every method where a native equivalent is found in PSD Native [68] and packaged

them as a benchmark.

Benchmark Description

psd-imagemode-rgb-combine-rgb-channel Bit manipulation

psd-imagemode-cmyk-combine-cmyk-channel Array sorting and indexing

psd-imagemode-greyscale-combine-greyscale-channel Bit manipulation

psd-imageformat-rle-decode-rle-channel Array accessing

psd-imageformat-layerraw-parse-raw Copying an array

psd-color-cmyk-to-rgb Hash maps, array sorting and index

psd-compose-normal Integer arithmetic and metaprogramming

psd-compose-darken Integer arithmetic and metaprogramming

psd-compose-multiply Integer arithmetic and metaprogramming

psd-compose-color-burn Integer arithmetic and metaprogramming

psd-compose-linear-burn Integer arithmetic and metaprogramming

psd-compose-lighten Integer arithmetic and metaprogramming

psd-compose-screen Integer arithmetic and metaprogramming

psd-compose-color-dodge Integer arithmetic and metaprogramming

psd-compose-linear-dodge Integer arithmetic and metaprogramming

psd-compose-overlay Integer arithmetic and metaprogramming

psd-compose-soft-light Integer arithmetic and metaprogramming

psd-compose-hard-light Integer arithmetic and metaprogramming

psd-compose-vivid-light Integer arithmetic and metaprogramming

psd-compose-linear-light Integer arithmetic and metaprogramming

psd-compose-pin-light Integer arithmetic and metaprogramming

psd-compose-hard-mix Integer arithmetic and metaprogramming

psd-compose-difference Integer arithmetic and metaprogramming

psd-compose-exclusion Integer arithmetic and metaprogramming

psd-renderer-clippingmask-apply Integer arithmetic and metaprogramming

psd-renderer-mask-apply Integer arithmetic

psd-renderer-blender-compose Integer arithmetic and metaprogramming

psd-util-clamp Array sorting and indexing

psd-util-pad2 Bit manipulation

psd-util-pad4 Bit manipulation

216 APPENDIX B. BENCHMARKS

Bibliography

[1] How Not To Lie With Statistics: The Correct Way To Summarize Bench-

mark Results. Communications of the ACM, 29, March 1986.

[2] Ruby Summer of Code Wrap-Up. http://blog.bithug.org/2010/11/

rsoc, 2011.

[3] Standard ECMA-335. Common Language Infrastructure (CLI).

http://www.ecma-international.org/publications/standards/

Ecma-335.htm, 2012.

[4] JDK-4836252: allow breakpoints in compiled code, 2013.

[5] jruby-cext: CRuby extension support for JRuby. https://github.com/

jruby/jruby-cext, 2013.

[6] Why shouldn’t I use PyPy over CPython if PyPy is 6.3 times

faster? http://stackoverflow.com/questions/18946662/

why-shouldnt-i-use-pypy-over-cpython-if-pypy-is-6-3-times-faster,

2013.

[7] Private correspondence with Tim Felgentreff, 2015.

[8] K. Adams, J. Evans, B. Maher, G. Ottoni, A. Paroski, B. Simmers,

E. Smith, and O. Yamauchi. The HipHop virtual machine. In OOPSLA

’14: Proceedings of the 2014 ACM International Conference on Object Ori-

ented Programming Systems Languages & Applications, pages 777–790, New

York, New York, USA, Oct. 2014. ACM Request Permissions.

[9] J.-h. An, A. Chaudhuri, and J. S. Foster. Static Typing for Ruby on Rails.

In Proceedings of the 24th IEEE/ACM International Conference on Auto-

mated Software Engineering, 2009.

217

http://blog.bithug.org/2010/11/rsoc
http://blog.bithug.org/2010/11/rsoc
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
https://github.com/jruby/jruby-cext
https://github.com/jruby/jruby-cext
http://stackoverflow.com/questions/18946662/why-shouldnt-i-use-pypy-over-cpython-if-pypy-is-6-3-times-faster
http://stackoverflow.com/questions/18946662/why-shouldnt-i-use-pypy-over-cpython-if-pypy-is-6-3-times-faster

218 BIBLIOGRAPHY

[10] J.-h. An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic Inference

of Static Types for Ruby. In Proceedings of the 38th ACM Symposium on

Principles of Programming Languages (POPL), 2011.

[11] K. R. Anderson and D. Rettig. Performing Lisp analysis of the FANNKUCH

benchmark. SIGPLAN Lisp Pointers, VII(4):2–12, Oct. 1994.

[12] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham, and I. Watson.

Lee-tm: A non-trivial benchmark for transactional memory. In Proceedings

of the 7th International Conference on Algorithms and Architectures for

Parallel Processin, 2008.

[13] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. A survey of adap-

tive optimization in virtual machines. Proceedings of the IEEE, 93(2):449–

466, 2005.

[14] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dy-

namic Optimization System. In Proc. of the Conference on Programming

Language Design and Implementation, PLDI ’00, pages 1–12. ACM, 2000.

[15] P. Barth, R. Nikhil, and Arvind. M-structures: Extending a parallel, non-

strict, functional language with state. 1991.

[16] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the Meta-

level: PyPy’s Tracing JIT Compiler. In Proc. of the Workshop on the

Implementation, Compilation, Optimization of Object-Oriented Languages

and Programming Systems, ICOOOLPS ’09, pages 18–25. ACM, 2009.

[17] C. F. Bolz, L. Diekmann, and L. Tratt. Storage strategies for collections

in dynamically typed languages. In OOPSLA ’13: Proceedings of the 2013

ACM SIGPLAN international conference on Object oriented programming

systems languages & applications, pages 167–182, New York, New York,

USA, Oct. 2013. ACM Request Permissions.

[18] C. F. Bolz and L. Tratt. The Impact of Meta-Tracing on VM Design and

Implementation. Science of Computer Programming, 2013.

[19] S. Brunthaler. Efficient Interpretation Using Quickening. In Proc. of the

Symposium on Dynamic Languages, number 12 in DLS, pages 1–14. ACM,

Oct. 2010.

BIBLIOGRAPHY 219

[20] M. Chevalier-Boisvert and M. Feeley. Simple and Effective Type Check Re-

moval through Lazy Basic Block Versioning. In Proceedings of the European

Conference on Object-Oriented Programming, pages 1–24, June 2015.

[21] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape

analysis for Java. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and appli-

cations, pages 1–19, New York, New York, USA, Oct. 1999. ACM Request

Permissions.

[22] C. Click and M. Paleczny. A Simple Graph-Based Intermediate Represen-

tation. Intermediate Representations Workshop, 30(3):35–49, 1995.

[23] B. Daloze, C. Seaton, D. Bonetta, and H. Mössenböck. Techniques and

Applications for Guest-Language Safepoints. In Proceedings of the 10th

Implementation, Compilation, Optimization of Object-Oriented Languages,

Programs and Systems Workshop (ICOOOLPS), 2015.

[24] M. T. Daly, V. Sazawal, and J. S. Foster. Work In Progress: an Empirical

Study of Static Typing in Ruby. In Proceedings of the PLATEAU Workshop

on Evaluation and Usability of Programming Languages and Tools, 2009.

[25] L. P. Deutsch and A. M. Schiffman. Efficient Implementation of the

Smalltalk-80 System, 1984.

[26] G. Duboscq, L. Stadler, T. Würthinger, D. Simon, C. Wimmer, and

H. Mössenböck. Graal IR: An Extensible Declarative Intermediate Rep-

resentation. In Proceedings of the Asia-Pacific Programming Languages

and Compilers Workshop, 2013.

[27] G. Duboscq, T. Würthinger, and H. Mössenböck. Speculation without re-

gret: reducing deoptimization meta-data in the Graal compiler. In PPPJ

’14: Proceedings of the 2014 International Conference on Principles and

Practices of Programming on the Java platform: Virtual machines, Lan-

guages, and Tools, pages 187–193, 2014.

[28] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon, and

H. Mössenböck. An intermediate representation for speculative optimiza-

tions in a dynamic compiler. In VMIL ’13: Proceedings of the 7th ACM

workshop on Virtual machines and intermediate languages, 2013.

220 BIBLIOGRAPHY

[29] M. J. Edgar. Static Analysis for Ruby in the Presence of Gradual Typing.

Master’s thesis, Dartmouth College, 2011.

[30] T. Felgentreff, M. Springer, et al. MagLev, 2014.

[31] B. Fulgham and I. Gouy. The Computer Language Benchmarks Game.

[32] M. Furr, J.-h. An, J. S. Foster, and M. Hicks. The Ruby Intermediate

Language. In Proceedings of the Dynamic Language Symposium, 2009.

[33] M. Furr, J.-h. D. An, and J. S. Foster. Profile-guided static typing for

dynamic scripting languages. In OOPSLA ’09: Proceeding of the 24th ACM

SIGPLAN conference on Object oriented programming systems languages

and applications, 2009.

[34] Y. Futamura. Partial Evaluation of Computation Process–An Approach to

a Compiler-Compiler. Higher-Order and Symbolic Computation, 12(4):381–

391, 1999, Originally published in 1971.

[35] K. Gade. Twitter Search is Now 3x Faster. 2011.

[36] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,

B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,

R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. Trace-based just-in-

time type specialization for dynamic languages. In Proceedings of the ACM

Conference on Programming Language Design and Implementation, 2009.

[37] A. Gaynor, T. Felgentreff, et al. Topaz, 2014.

[38] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Imple-

mentation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[39] D. Goodman, B. Khan, S. Khan, C. Kirkham, M. Luján, and I. Watson.

Muts: Native scala constructs for software transactional memory. In Pro-

ceedings of Scala Days, 2011.

[40] D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khan, M. Luján, and

I. Watson. DFScala: High Level Dataflow Support for Scala. In Data-Flow

Execution Models for Extreme Scale Computing. IEEE, 2012.

BIBLIOGRAPHY 221

[41] J. Gosling. Java Intermediate Bytecodes. In Proceedings of the ACM SIG-

PLAN Workshop on Intermediate Representations, 1995.

[42] M. Grimmer. A Runtime Environment for the Truffle/C VM. Master’s

thesis, 2013.

[43] M. Grimmer. High-performance language interoperability in multi-language

runtimes. In Proceedings of the 2014 Companion Publication for Conference

on Systems, Programming, Applications: Software for Humanity, SPLASH

’14, New York, NY, USA, 2014. ACM.

[44] M. Grimmer, M. Rigger, R. Schatz, L. Stadler, and H. Mössenböck. Truf-

fleC: dynamic execution of C on a Java virtual machine. In International

Conference on Principles and Practices of Programming on the Java Plat-

form: Virtual Machines, Languages and Tools, 2014.

[45] M. Grimmer, M. Rigger, L. Stadler, R. Schatz, and H. Mössenböck. An

Efficient Native Function Interface for Java. In International Conference

on Principles and Practices of Programming on the Java Platform: Virtual

Machines, Languages and Tools, 2013.

[46] M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, and H. Mössenböck.

Memory-safe Execution of C on a Java VM. In Workshop on Programming

Languages and Analysis for Security, 2015.

[47] M. Grimmer, C. Seaton, T. Würthinger, and H. Mössenböck. Dynami-

cally composing languages in a modular way: supporting C extensions for

dynamic languages. In MODULARITY 2015: Proceedings of the 14th In-

ternational Conference on Modularity, pages 1–13, Mar. 2015.

[48] M. Grimmer, T. Würthinger, A. Wöß, and H. Mössenböck. An efficient

approach for accessing C data structures from JavaScript. In ICOOOLPS

’14: Proceedings of the 9th International Workshop on Implementation,

Compilation, Optimization of Object-Oriented Languages, Programs and

Systems, 2014.

[49] D. H. Hansson et al. Ruby on Rails. http://rubyonrails.org.

[50] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan &

Claypool, second edition, 2010.

http://rubyonrails.org

222 BIBLIOGRAPHY

[51] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable memory

transactions. In Proceedings of the tenth ACM SIGPLAN symposium on

Principles and practice of parallel programming, 2005.

[52] M. Haupt and H. Schippers. A machine model for aspect-oriented program-

ming. In E. Ernst, editor, ECOOP 2007 – Object-Oriented Programming,

volume 4609 of Lecture Notes in Computer Science, pages 501–524. Springer

Berlin Heidelberg, 2007.

[53] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. River Trail: A

path to parallelism in JavaScript. In ACM SIGPLAN Notices, volume 48,

pages 729–744, 2013.

[54] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed

object-oriented languages with polymorphic inline caches. In P. America,

editor, ECOOP’91 European Conference on Object-Oriented Programming,

volume 512 of Lecture Notes in Computer Science, pages 21–38. Springer

Berlin Heidelberg, 1991.

[55] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with

dynamic deoptimization. In PLDI ’92: Proceedings of the ACM SIG-

PLAN 1992 conference on Programming language design and implemen-

tation, 1992.

[56] C. Humer, C. Wimmer, C. Wirth, A. Wöß, and T. Würthinger. A domain-

specific language for building self-optimizing AST interpreters. In Proceed-

ings of the International Conference on Generative Programming: Concepts

and Experiences, 2014.

[57] Information-Technology Promotion Agency, Japan. Programming Lan-

guages — Ruby, Final Draft. Technical report, 2010.

[58] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. Adaptive multi-level

compilation in a trace-based java jit compiler. In Proc. of the Conference on

Object Oriented Programming Systems Languages and Applications, OOP-

SLA ’12, pages 179–194, New York, NY, USA, 2012. ACM.

[59] T. Kalibera and R. Jones. Rigorous benchmarking in reasonable time.

In Proceedings of the 2013 ACM SIGPLAN International Symposium on

Memory Management (ISMM), 2013.

BIBLIOGRAPHY 223

[60] Y. Katz. Encodings, Unabridged. http://yehudakatz.com/2010/05/17/

encodings-unabridged/, 2010.

[61] B. Keepers. Ruby at GitHub. 2013.

[62] G. Korland, N. Shavit, and P. Felber. Noninvasive concurrency with java

stm. In Programmability Issues for Multi-Core Computer, 2010.

[63] T. Kotzmann and H. Mössenböck. Escape analysis in the context of dy-

namic compilation and deoptimization. In Proceedings of 1st Conference

on Virtual Execution Environments (VEE), 2005.

[64] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and

D. Cox. Design of the Java HotSpot client compiler for Java 6. ACM

Transactions on Architecture and Code Optimization (TACO), 5(1), 2008.

[65] C. Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Mas-

ter’s thesis, Computer Science Dept., University of Illinois at Urbana-

Champaign, 2002.

[66] C. Y. Lee. An algorithm for path connections and its applications. IRE

Transactions on Electronic Computers, 1961.

[67] R. LeFevre. OilyPNG. https://github.com/wvanbergen/oily_png.

[68] R. LeFevre et al. PSDNative. https://github.com/layervault/psd_

native.

[69] R. LeFevre, K. Sutton, et al. PSD.rb. https://github.com/layervault/

psd.rb.

[70] Y. Lin, K. Wang, S. M. Blackburn, A. L. Hosking, and M. Norrish. Stop

and Go: Understanding Yieldpoint Behavior. In Proceedings of the 2015

ACM SIGPLAN International Symposium on Memory Management, pages

70–80, New York, NY, USA, 2015. ACM.

[71] M. Madsen, P. Sørensen, and K. Kristensen. Ecstatic – Type Inference for

Ruby Using the Cartesian Product Algorithm. Master’s thesis, Aalborg

University, 2007.

http://yehudakatz.com/2010/05/17/encodings-unabridged/
http://yehudakatz.com/2010/05/17/encodings-unabridged/
https://github.com/wvanbergen/oily_png
https://github.com/layervault/psd_native
https://github.com/layervault/psd_native
https://github.com/layervault/psd.rb
https://github.com/layervault/psd.rb

224 BIBLIOGRAPHY

[72] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for multicore

haskell. In International Conference on Functional Programming, 2009.

[73] S. Marr, C. Seaton, and S. Ducasse. Zero-Overhead Metaprogramming. In

Proceedings of the 35th Conference on Programming Language Design and

Implementation, 2015.

[74] Y. Matsumoto. Lisp to Ruby to Rubinius. 2010.

[75] B. Mizerany, K. Haase, et al. Sinatra. http://www.sinatrarb.com.

[76] F. Niephaus, M. Springer, T. Felgentreff, T. Pape, and R. Hirschfeld. Call-

target-specific Method Arguments. In Proceedings of the 10th Implementa-

tion, Compilation, Optimization of Object-Oriented Languages, Programs

and Systems Workshop (ICOOOLPS), 2015.

[77] C. Nutter. So You Want To Optimize Ruby? http://blog.headius.com/

2012/10/so-you-want-to-optimize-ruby.html, 2012.

[78] C. Nutter, T. Enebo, et al. JRuby. http://jruby.org/.

[79] R. Odaira, J. G. Castanos, and H. Tomari. Eliminating global interpreter

locks in Ruby through hardware transactional memory. In PPoPP ’15: Pro-

ceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, 2014.

[80] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. artima,

second edition, 2010.

[81] Oracle. Class SwitchPoint, 2015. http://docs.oracle.com/javase/8/

docs/api/java/lang/invoke/SwitchPoint.html.

[82] M. Paleczny, C. Vick, and C. Click. The Java HotSpot server compiler. In

Proceedings of the Java Virtual Machine Research and Technology Sympo-

sum, 2001.

[83] M. Pall et al. LuaJIT. 2015.

[84] V. Pankratius and A.-R. Adl-Tabatabai. A study of transactional memory

vs. locks in practice. In Symposium on Parallel Algorithms and Architec-

tures, 2011.

http://www.sinatrarb.com
http://blog.headius.com/2012/10/so-you-want-to-optimize-ruby.html
http://blog.headius.com/2012/10/so-you-want-to-optimize-ruby.html
http://jruby.org/
http://docs.oracle.com/javase/8/docs/api/java/lang/invoke/SwitchPoint.html
http://docs.oracle.com/javase/8/docs/api/java/lang/invoke/SwitchPoint.html

BIBLIOGRAPHY 225

[85] P. Perrotta. Metaprogramming Ruby 2. Pragmatic Bookshelf, 2014.

[86] E. Phoenix, B. Shirai, et al. Rubinius. http://rubini.us/.

[87] J. Rose, D. Coward, O. Bini, W. Cook, S. Pedroni, and J. Theodorou. JSR

292: Supporting dynamically typed languages on the Java platform, 2008.

[88] J. Rose et al. JSR 292: Supporting Dynamically Typed Languages on the

Java Platform, 2011. https://jcp.org/en/jsr/detail?id=292.

[89] J. R. Rose. Bytecodes meet Combinators: invokedynamic on the JVM. In

Proc. of the Workshop on Virtual Machines and Intermediate Languages,

pages 1–11. ACM, Oct. 2009.

[90] K. Sasada. YARV: yet another RubyVM: innovating the ruby interpreter.

OOPSLA Companion, pages 158–159, 2005.

[91] G. Savrun-Yeniceri, M. L. Van de Vanter, P. Larsen, S. Brunthaler, and

M. Franz. An efficient and generic event-based profiler framework for dy-

namic languages. In Proceedings of the Principles and Practices of Pro-

gramming on The Java Platform, 2015.

[92] C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at Full Speed. In

Proceedings of the 8th Workshop on Dynamic Languages and Applications

(DYLA), 2014.

[93] A. Shali and W. R. Cook. Hybrid Partial Evaluation. In Proc. of the

Conference on Object Oriented Programming Systems Languages and Ap-

plications, OOPSLA ’11, pages 375–390. ACM, 2011.

[94] Y. Shi, D. Gregg, A. Beatty, and M. A. Ertl. Virtual machine showdown:

stack versus registers. VEE, pages 153–163, 2005.

[95] B. Shirai et al. RubySpec. http://rubyspec.org.

[96] L. Stadler. Partial Escape Analysis and Scalar Replacement for Java. PhD

thesis, 2014.

[97] L. Stadler, G. Duboscq, H. Mössenböck, and T. Würthinger. Compilation

queuing and graph caching for dynamic compilers. In Proceedings of the

Sixth ACM Workshop on Virtual Machines and Intermediate Languages,

VMIL ’12, pages 49–58, New York, NY, USA, 2012. ACM.

http://rubini.us/
https://jcp.org/en/jsr/detail?id=292
http://rubyspec.org

226 BIBLIOGRAPHY

[98] L. Stadler, G. Duboscq, H. Mössenböck, and T. Würthinger. An Experi-

mental Study of the Influence of Dynamic Compiler Optimizations on Scala

Performance. In Proceedings of the 4th Workshop on Scala, 2013.

[99] L. Stadler, G. Duboscq, T. Würthinger, and H. Mössenböck. Compilation

Queuing and Graph Caching for Dynamic Compilers. In Proceedings of the

Sixth ACM Workshop on Virtual Machines and Intermediate Languages,

2012.

[100] L. Stadler, C. Wimmer, T. Würthinger, H. Mössenböck, and J. Rose. Lazy

continuations for Java virtual machines. In PPPJ ’09: Proceedings of the

7th International Conference on Principles and Practice of Programming

in Java, page 143, New York, New York, USA, Aug. 2009. ACM Request

Permissions.

[101] L. Stadler, T. Würthinger, and H. Mössenböck. Partial Escape Analysis

and Scalar Replacement for Java. In Proceedings of the Symposium on

Code Generation and Optimization (CGO), 2014.

[102] M. Stoodley. Multi-language runtime. In Proceedings of the JVM Language

Summit, 2015.

[103] G. Sullivan. Dynamic Partial Evaluation. In Programs as Data Objects,

volume 2053 of LNCS, pages 238–256. Springer, 2001.

[104] G. Tene, B. Iyengar, and M. Wolf. C4: the continuously concurrent com-

pacting collector. In ISMM ’11: Proceedings of the international symposium

on Memory management, pages 79–88, New York, New York, USA, June

2011. ACM Request Permissions.

[105] C. Thalinger. Java goes aot. In Proceedings of the JVM Language Summit,

2015.

[106] D. Ungar and R. B. Smith. Self: The power of simplicity. In Conference

Proceedings on Object-oriented Programming Systems, Languages and Ap-

plications, OOPSLA ’87, pages 227–242, New York, NY, USA, 1987. ACM.

[107] W. van Bergen et al. Chunky PNG. https://github.com/wvanbergen/

chunky_png.

https://github.com/wvanbergen/chunky_png
https://github.com/wvanbergen/chunky_png

BIBLIOGRAPHY 227

[108] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich, and M. F. Kaashoek.

Undefined behavior: what happened to my code? In ACM Asia-Pacific

Workshop on Systems, 2012.

[109] I. Watson, C. Kirkham, and M. Luján. A study of a transactional parallel

routing algorithm. In Proceedings of the 16th International Conference on

Parallel Architecture and Compilation Techniques, 2007.

[110] I. Watson, V. Woods, P. Watson, R. Banach, M. Greenberg, and

J. Sargeant. Flagship: a parallel architecture for declarative programming.

In Proceedings of the 15th Annual International Symposium on Computer

architecture, 1988.

[111] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan, L. Daynès, and

D. Simon. Maxine: An approachable virtual machine for, and in, Java.

Transactions on Architecture and Code Optimization (TACO, 9(4):1–24,

Jan. 2013.

[112] A. Wöß, C. Wirth, D. Bonetta, C. Seaton, and C. Humer. An object storage

model for the Truffle language implementation framework. In PPPJ ’14:

Proceedings of the 2014 International Conference on Principles and Prac-

tices of Programming on the Java platform: Virtual machines, Languages,

and Tools, pages 133–144, Sept. 2014.

[113] T. Würthinger. Visualization of Program Dependence Graphs. PhD thesis,

Aug. 2007.

[114] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,

G. Richards, D. Simon, and M. Wolczko. One VM to rule them all. In

Onward! ’13: Proceedings of the 2013 ACM international symposium on

New ideas, new paradigms, and reflections on programming & software,

2013.

[115] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and C. Wim-

mer. Self-optimizing AST interpreters. In Proceedings of the 8th Symposium

on Dynamic languages, 2013.

[116] M. Yukihiro et al. Matz’s Ruby Interpreter. https://www.ruby-lang.

org/.

https://www.ruby-lang.org/
https://www.ruby-lang.org/

	List of Listings
	List of Tables
	List of Figures
	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Dynamic Programming Languages
	Idiomatic Ruby
	Research Questions
	Implementation Work
	Contributions
	Publications
	Thesis Structure

	Characteristics of Dynamic Languages
	Ruby
	Ruby on Rails
	Case Study: Idiomatic Ruby
	Summary

	Implementation of Dynamic Languages
	Foundational Techniques
	Applied Techniques
	Implementations of Ruby
	Parallelism and Concurrency
	Summary

	Evaluation Methodology
	Evaluation Philosophy and Goals
	Benchmarking Language Implementations
	Statistical Techniques
	Completeness
	Benchmarks Used
	Benchmark Harnesses
	Repeatability of Results
	Summary

	Optimising Metaprogramming in Dynamic Languages
	Introduction
	Metaprogramming
	Existing Implementations
	Dispatch Chains
	Implementation
	Application In Ruby
	Evaluation
	Summary

	Optimising Debugging of Dynamic Languages
	Introduction
	Ruby Debuggers
	A Prototype Debugger
	Debug Nodes
	Implementation
	Evaluation
	Related Work
	Summary

	Safepoints in Dynamic Language Implementation
	Introduction
	Safepoints
	Guest-Language Safepoints
	Applications of Safepoints in Ruby
	Implementation
	Evaluation
	Summary

	Interpretation of Native Extensions for Dynamic Languages
	Introduction
	Existing Solutions
	TruffleC
	Language Interoperability on Top of Truffle
	Implementation of the Ruby C API
	Expressing Pointers to Managed Objects
	Memory Operations on Managed Objects
	Limitations
	Cross-Language Optimisations
	Evaluation
	Interfacing To Native Libraries
	Summary

	Conclusions
	Dataflow and Transactions for Dynamic Parallelism
	Introduction
	Irregular Parallelism
	Dataflow
	Transactions
	Lee's Algorithm
	Implementation
	Analysis
	Further Work
	Summary

	Benchmarks
	Synthetic Benchmarks
	Production Benchmarks

	Bibliography

