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Abstract—To truly quantify the impact of electric vehicles (EVs) 

on the electricity network and their potential interactions in the 

context of Smart Grids, it is crucial to understand their charging 

behavior. However, as EVs are yet to be widely adopted, these 

data are scarce. This work presents results of a thorough statis-

tical analysis of the charging behavior of 221 real residential EV 

users (Nissan LEAF, i.e., 24kWh, 3.6 kW) spread across the UK 

and monitored over one year (68,000+ samples). Probability 

distribution functions (PDFs) of different charging features (e.g., 

start charging time) are produced for both weekdays and week-

ends. Crucially, these unique PDFs can be used to create sto-

chastic, realistic and detailed EV profiles to carry out impact 

and/or Smart Grid-related studies. Finally, the effects of the EV 

demand on future UK distribution networks are discussed. 

Index Terms-- Electric vehicles, real data, statistical analysis. 

I. INTRODUCTION  

The increasing adoption of electric vehicles (EVs) in the 
UK is expected to increase given their potential contribution to 
reduce greenhouse gases and dependency on fossil fuels [1]. 
This, nonetheless, may significantly stress the electricity net-
work. If integrated efficiently, however, EVs could be used as 
a crucial resource in the context of Smart Grids [2]. To truly 
quantify the corresponding impacts or benefits it is, nonethe-
less, critical to understand the charging behavior of EV users. 
However, as EVs are yet to be widely adopted, these data are 
currently scarce or limited to small samples [3]. 

The demand from EVs is a stochastic variable difficult to 
model given that it depends on customer behavior. Initial 
works have used Travel Survey data (e.g., [4]) to understand 
how consumers drive traditional combustion engine vehicles 
to estimate how they might drive an EV. However, EV users 
may exhibit new behaviors given that they are capable of ‘re-
filling’ (charging) the battery at home, instead of going to pet-
rol stations. Recent studies have used data from small-scale 
EV trials to model the EV demand (e.g., [3, 5, 6]). These stud-
ies have achieved their goal; however, the EV models pro-
duced may be limited to the particular set of EV users which 
were used to create them. 

Therefore, it is clear that EV data from large-scale trials is 
needed to truly understand the charging behavior of a more 
diverse population of EV users. This in turn will benefit the 
corresponding analysis required to truly quantify the impact of 

EVs on the electricity network (e.g., [7]) and their potential 
interactions in the context of Smart Grids (e.g., [6]). 

This work provides a set of results from a thorough statis-
tical analysis of more than 200 Nissan LEAFs [8] used by 
residential UK customers (i.e., 24 kWh battery capacity, 3.6 
kW demand), which have been monitored during the ‘My 
Electric Avenue’ project [9]. More than 68,000 charging 
events have been recorded over one year since Dec 2013. For 
each EV charging event, the onboard monitoring system rec-
ords the start time, end time, initial state of charge (SOC), and 
final SOC [8]. Probability distribution functions (PDFs) are 
presented here from these metrics. No significant variance in 
the charging behavior of EVs across seasons was found; 
charging across all four seasons is considered. The analysis 
includes both weekdays and weekends. By combining the data 
from these unique PDFs, researchers can create stochastic, 
realistic and detailed profiles to adequately model the EV de-
mand in a straightforward manner. Finally, the potential im-
plications of EV demand on UK networks are discussed. 

This paper is organized as follows. Section II creates the 
PDFs for the charging metrics required to model the EV de-
mand. Section III presents the methodology to create stochas-
tic, realistic and detailed profiles to adequately model the EV 
demand. Section IV analyzes the implications the EV adoption 
may have in the aggregated demand in UK networks, particu-
larly in residential low voltage networks. A discussion is pro-
vided in section V and conclusions are drawn in section VI. 

II. PROBABILITY DISTRIBUTION FUNCTIONS 

This section details the creation of weekday and weekend 
PDFs for the number of connections per day, the start charg-
ing time, the initial SOC, and the final SOC. 

It is known that EV users may require a period of time to 
familiarize themselves with the EV and establish their own 
charging needs. Indeed, an initial analysis found that charging 
behavior shows a more predictable pattern after one week, i.e., 
EV users understand how the battery level meets their driving 
requirements. Hence, the corresponding charging events 
(< 2%) are excluded from the analysis below. 

A. Number of Connections per Day 

The number of connections per day presented in Table I 
highlights that circa 70% of the EVs are connected only once 
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TABLE I.  PDF OF THE NUMBER OF CONNECTIONS PER DAY (%) 

No. Conns 1 2 3 4 5 6 7+ 

Weekday 71.26 21.15 5.41 1.51 0.44 0.14 0.09 

Weekend 68.99 21.51 6.62 1.90 0.63 0.24 0.11 
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Figure 1.  PDF of the start charging time per connection – Weekday. 
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Figure 2.  PDF of the start charging time per connection – Weekend. 

a day, irrespective of weekday or weekend. Previous EV stud-
ies have not explored multiple charging events, and as such 
this finding is unique. Although this may not have a signifi-
cant impact in the magnitude of the evening peak (as detailed 
in section III), it does affect the morning peak as well as the 
overall energy consumption. Since three or more connections 
are unlikely, and for simplicity, only two connections are stud-
ied below (the second is the aggregation of the rest). 

B. Start Charging Time 

Fig. 1 and Fig. 2 show the PDF per connection of the start 
charging time for weekday and weekend, respectively. As 
expected, EV users vary their start charging time. Overall, the 
first EV connection may occur any time during the day. None-
theless, a second is more likely to occur after midday. During 
weekdays, the first connection usually starts around 8h (before 
work) or 18h (after work); the second connection typically 
starts at 18h. This highlights that a number of EVs are charged 
at home before and after work. During weekends, the first 
connection usually starts between 9h and 18h and the second 
later in the evening. No significant differences were found 
among weekdays (i.e., Monday–Friday) and among weekends, 
though this is not shown in Fig. 1 and Fig. 2. 

C. Initial and Final SOC 

The initial and final SOC depend on the number of con-
nections and the time of the day. For instance, an EV charged 

TABLE II.  PDF OF THE INITIAL AND FINAL SOC PER CONNECTION (%) 

Units 

Weekday Weekend 

Initial SOC Final SOC Initial SOC Final SOC 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 

0 0.57 0.91 0.00 0.05 0.67 1.21 0.03 0.02 

1 3.52 4.23 0.15 0.28 3.74 5.28 0.10 0.44 

2 8.38 7.55 0.39 0.96 7.45 8.68 0.53 0.81 

3 11.75 9.59 0.74 0.89 9.45 9.91 0.62 0.79 

4 11.86 9.51 0.78 1.21 10.09 9.66 0.84 1.01 

5 10.87 9.34 1.27 1.42 10.31 8.93 1.47 1.63 

6 11.62 11.17 2.07 2.48 10.99 9.54 1.93 2.56 

7 12.21 10.51 2.58 3.18 11.80 9.76 2.65 2.81 

8 9.46 8.54 3.55 3.63 9.59 9.59 3.80 3.80 

9 6.56 6.79 7.05 6.31 7.63 7.22 7.28 6.53 

10 6.08 7.91 7.34 9.48 7.83 7.52 8.75 12.50 

11 4.03 6.94 5.16 6.46 5.99 6.51 6.20 8.53 

12 3.09 7.01 68.92 63.65 4.46 6.19 65.80 58.57 
 

overnight that is used in the morning for a short trip will have 
a relatively high initial SOC for the next charge. However, 
initial analysis highlights that time-dependency is not signifi-
cant; then, this work focuses on the number of connections. 

Table II shows the PDF per connection of the initial and 
final SOC during weekdays and weekends. The Nissan LEAF 
(24kWh) represents the SOC in 12 units/segments (2kWh per 
segment, i.e., 1 segment equals 8.3% of battery capacity). Irre-
spective of weekday or weekend, Table II highlights that the 
first connection starts in more than 70% of the EVs when their 
initial SOC is between 3 and 9 segments (i.e., 25 to 75%). It 
can also be seen that second connections occur with higher 
SOC. In terms of final SOC, Table II highlights that approxi-
mately 65% of the EVs finish their first connection with full 
battery. Table II finally shows that during weekends, discon-
nections are more frequent before EVs are fully charged. 

III. CREATION OF EV PROFILES 

A. EV Demand and Power Factor 

To create daily time-series EV profiles (see section III-B), 
it is important to understand the typical EV demand (in kW) 
as well as its power factor. To determine these features, the 
active, reactive, and apparent power monitored on a specific 
EV over a period of four months are used. Fig. 3 shows the 
monitored apparent and active demand of this EV for three 
different days (represented by different line styles). It should 
be noted that the EV demand is similar to a square waveform. 

A total of 78 days were fully monitored (1-min average 
samples, i.e., a total of 112,320). Fig. 4 shows the PDF of the 
EV demand. When the EV battery is being charged, it is clear 
that it typically demands 3.6kW. Although lower demand val-
ues exist, these occur when the battery is reaching full charge 
(see in Fig. 3 the charging event represented by the dotted 
line). This effect is ignored in this work. In terms of the power 
factor, Fig. 5 highlights that the typical EV power factor is 
0.98 (inductive, i.e., absorbing reactive from the grid). 

B. Methodology to Create EV Profiles 

Daily time-series EV profiles can be produced using the 
PDFs presented in section II. The initial and final SOC define 
how long the EV needs to be connected to the charging point. 
Typically an EV draws 3.6 kW (0.98 inductive power factor) 
of continuous demand. One segment (2 kWh) of charge in a 
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Figure 3.  Three examples of monitored active and apparent EV demand. 
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Figure 4.  PDF of the real EV demand monitored in the project. 
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Figure 5.  PDF of the real EV power factor monitored in the project. 

Nissan LEAF needs approximately 40 minutes (3.6 kW). 

With the above considerations, it is possible to create sto-
chastic, realistic and detailed EV profiles to be used in EV-
related studies. The next steps are required for each profile: 

1. Random selection of the number of connections using Ta-
ble I. Then, for each connection follow steps 2 to 5. 

2. Random selection of the start charging time using Fig. 1 
and Fig. 2. 

3. Random selection of the initial SOC using Table II. 

4. Random selection of the final SOC using Table II (larger 
than that of step 3). 

5. Calculation of the time needed from the initial SOC to the 
final SOC based on the required number of segments to be 
charged (final SOC minus initial SOC). 
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Figure 6.  Example of individual EV profiles – Weekday. 

Time of Day

D
iv

e
rs

if
ie

d
 E

V
 D

e
m

a
n

d
 (

k
V

A
)

 

 

0h 2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Two Connections

One Connection

 
Figure 7.  Example of diversified EV demand – Weekday. 
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Figure 8.  Example of diversified EV demand – Weekend. 

From the above steps, the charging process (i.e., a constant 
3.6 kW demand with a 0.98 power factor) for each connection 
occurs between the connection time (step 2) and finishing time 
(step 2 + step 5). If there are two connections, each charging 
process must not overlap with the other. 

C. Example of EV Profiles 

For weekdays, Fig. 6 shows examples of individual EV 
profiles. As observed, these EV profiles represent the connec-
tion of EVs at different times of the day. Moreover, they have 
different charging needs (duration). Finally, they consider one 
car connecting twice in the same day (EV Load 2). 

Fig. 7 and Fig. 8 further present the diversified demand for 
1000 profiles for both weekday and weekend, respectively. 
The diversified demand corresponds to the aggregated demand 
divided by the number of profiles. As expected, the diversified 
demand shows a similar behavior as that of the start time 
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Figure 9.  Monitored diversified EV demand per season – Weekday. 

(Fig. 1 and Fig. 2). Fig. 7 and Fig. 8 also compare the diversi-
fied demand when considering one and two connections. For 
weekdays, it is clear that the latter does not affect the evening 
peak (~1.2 kW in both cases) but it does affect the weekday 
morning peak (from 0.58 to 0.91 kW). 

Crucially, it is clear that two connections have a significant 
effect on the overall daily energy consumption. While the dai-
ly energy consumption considering a single connection during 
weekdays and weekends is 13.9 and 13.7 kWh, this value in-
creases to 17.8 and 16.9 kWh when two connections are con-
sidered for the same type of days. As previously highlighted, 
this analysis is unique given that previous EV studies have not 
explored multiple charging events. 

D. PDFs For Different Seasons 

No significant variance in the charging behavior of EVs 
across seasons was found; the above analysis considered the 
whole year. The analysis included both weekdays and week-
ends. To demonstrate the limited impact of seasonality, the 
diversified EV demand for different seasons during weekdays 
is shown here. Similar analysis for weekends is provided in 
[10, 11] as part of the ‘My Electric Avenue’ project. 

Fig. 9 shows the average diversified EV demand for 100 
sets of 1000 EV profiles for each season, as well as the yearly 
(overall) charging behavior (PDF created in section II). Fig. 9 
clearly shows no significant change in the EV demand across 
seasons. If the overall diversified peak-demand (1.20 kW) is 
considered as a reference, then the peak difference for each 
season is: -0.68, 0.89, -1.80 and 3.69% for winter, spring, 
summer and autumn, respectively. In terms of energy con-
sumed, seasonal differences were found; 2.11, -2.67, -2.90 and 
2.20%, considering again as a reference the diversified energy 
consumed for the whole year (17.92 kWh). 

IV. ANALYSIS OF EV PROFILES AND IMPLICATIONS ON 

UK DISTRIBUTION NETWORKS 

A. Diversified Peak Demand and Coincidence Factor 

The diversified peak demand (i.e., also known as the after 
diversity maximum demand) is typically used in the design of 
the electricity networks [12]. This section quantifies the diver-
sified peak demand for different numbers of EVs (from 0 to 
200 EVs) in a Monte Carlo approach. For each one, 100 ran-
dom selections (from the pool of 1000 EVs) are carried out 
and the corresponding diversified peak demand is calculated. 
Fig. 10 and Fig. 11 highlights that the lower the number of 
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Figure 10.  Diversified peak EV demand for various EV numbers – Weekday. 
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Figure 11.  Diversified peak EV demand for various EV numbers – Weekend. 
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Figure 12.  Coincidence Factor for various EV numbers. 

EVs, the higher the diversified peak demand. Crucially, it can 
be seen here that the diversified peak EV demand for more 
than 50 EVs decreases slowly. As expected this approaches a 
value of circa 1.2kW for large number of EVs. 

Given the diversified peak demand of EVs, it is possible to 
determine the coincidence factor among EVs, i.e., the diversi-
fied peak demand per individual EV. For both weekdays and 
weekends, Fig. 12 highlights that the higher the number of 
EVs, the lower the coincidence factor of EVs. Although not 
shown in Fig. 12, the coincidence factor for a large number of 
EVs (e.g., 1000) is 0.33 (i.e., 1.2 kW / 3.6 kW = 0.33). 

B. Net Demand Analysis 

The adoption of EVs is expected to increase the net de-
mand in electricity networks. Fig. 13 and Fig. 14 show the 
diversified demand of 1000 households (domestic unrestrict-
ed) in the UK for a typical weekday and weekend in winter - 
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Figure 13.  Diversified winter weekday profile: Residential + EV Demand. 
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Figure 14.  Diversified winter weekend profile: Residential + EV Demand. 

(e.g., January, maximum demand in the UK). These residen-
tial profiles were created using [13]. Fig. 13 and Fig. 14 also 
present the weekday and weekend diversified demand of 1000 
EVs and the net (residential + EV) demand. Irrespective of the 
type of day, the diversified peak demand increases from 0.8 
(without EVs) to about 2 kW when all houses have one EV. 
This means an increase of more than 100%. 

V. DISCUSSION 

The PDFs presented above represent the charging behavior 
of residential EV users. The behavior of a small set of com-
mercial EV users has also been analyzed in the project (see 
[11]). The residential and commercial charging behavior can 
be potentially combined to create demand scenarios to be used 
in planning of future UK electricity networks. 

To create the PDFs presented in section II, this work has 
investigated charging days only, thus resulting in the highest 
EV demand. However, it is expected that some EV users will 
not charge their vehicle every day (indeed, some days no EV 
may be charged). This information (i.e., the percentage of EVs 
charging during the same day) can be used to create different 
scenarios to be used in different EV studies (e.g., provision of 
reserves to the national or regional system operator). 

This work has quantified the changes in the net demand for 
large number of loads (1000 residential and 1000 EV loads). 
However, care should be taken when studying low voltage 
networks as the number of customers can be much lower. 

VI. CONCLUSIONS 

This paper has presented results of a thorough statistical 
analysis of the charging behavior of 221 real residential EV 
users (Nissan LEAF, i.e., 24kWh, 3.6 kW demand and 0.98 
inductive power factor) spread across the UK and monitored 
over one year (68,000+ samples). PDFs of the number of con-
nections per day (overlooked in most studies), start charging 
time, initial SOC, and final SOC (per connection) for both 
weekdays and weekends have been created. 

It has been shown that approximately 70% of the EVs are 
connected once a day, irrespective of weekday and weekend. 
In terms of the start charging time, EV users do change the 
start charging time from weekdays to weekends and the start 
charging time follows the UK residential load curve. The first 
connection typically happens (for more than 70% of the EVs) 
when the SOC is between 25 and 75%. Approximately 65% of 
the EVs finish their first connection with a full battery. Second 
connections normally occur with higher SOC, but disconnec-
tions before EVs are fully charged are more frequent. 

A methodology that uses these unique PDFs to create sto-
chastic, realistic and detailed EV profiles for impact and/or 
Smart Grid-related studies has also been proposed. It has been 
shown that multiple daily connections do not impact the even-
ing peak, but this behavior does affect the morning peak as 
well as the overall energy consumption, compared to most of 
the studies that only consider single daily connections. 
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