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Abstract

AN ELECTROMAGNETIC SPECTRUM AWARE INDOOR
POSITIONING SYSTEM

Myrna Margarita Rodrı́guez Frı́as
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2015

The principal objectives of this research are: to investigate the performance of
different fingerprint-based WiFi Indoor Positioning Systems (IPS), analyse historical
long-term data signals, detection of signal change points and outliers; then present an
enhanced method that generates temporal based fingerprints.

The proposed method consists of analysing signal strength profiles over time and
detecting points at which the profile behaviour changes. This methodology can be
used to dynamically adjust the fingerprint based on environmental factors, and with
this select the relevant Wireless Access Points (WAPs) to be used for fingerprinting.
The use of an Exponentially Weighted Moving Average (EWMA) Control Chart is
investigated for this purpose.

A long-term analysis of the WiFi scenery is presented and used as a test-bed for
evaluation of state-of-the-art fingerprinting techniques. Data was collected and anal-
ysed over a period of 18 months, with over 840 different WAPs detected in over 77,000
observations covering 47 different locations of varying characteristics.

A fully functional IPS has been developed and the design and implementation is
described in this thesis. The system allows the scanning and recording of WiFi signals
in order to define the generation of temporal fingerprints that can create radio-maps,
which then allow indoor positioning to occur. This thesis presents the theory behind the
concept and develops the technology to create a testable implementation. Experiments
and their evaluation are also included.

Based on the timestamp experiments the proposed system shows there is still room
level accuracy, with a reduction in radio-map size.
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Chapter 1

Introduction

1.1 Hypothesis

Constantly analysing signals from Wireless Access Points (WAPs) in an indoor envi-
ronment can lead to identification of the most valuable or trustworthy WAPs to be used
in radio-maps for fingerprinting techniques.

1.2 Testing the Hypothesis

For testing the hypothesis, existing state-of-the-art fingerprinting techniques are eval-
uated and compared against the proposed Exponentially Weighted Moving Average
(EWMA) fingerprinting technique. The evaluation is carried out using real-life data
collected over a period of one year.

The updating mechanisms are evaluated simulating a real-time data stream of ob-
servations feeding into the system. A radio-map is maintained and updated for each
technique and this is used for simulating real-time positioning, where an incoming
“query-observation” is used for finding the best-matched fingerprint on each radio-
map. Root Mean Square Error (RMSE) and Euclidian distance are computed and used
as comparison mechanisms. Accuracy plots and error plots are generated for compari-
son and evaluation, and are discussed on the evaluation chapter. Some expected results
are:

• A high accuracy can be achieved by using only the top most trusted WAPs on
the fingerprint.
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• A smaller number of well selected WAPs can achieve the same accuracy as sys-
tems employing all WAPs.

Measurements were also recorded in every office within the Research Computing Ser-
vices (RCS), a suite of offices at The University of Manchester. A set of measurements
was recorded at the start of the data collection period, and a second set of measure-
ments was recorded at the end of this period. This is used to evaluate positioning
performance over an extended time period for each fingerprinting technique.

1.3 Motivation

There is an increasing demand for applications providing location based services,
[Kaa03, JW08, GKT10, Mad14, RK05] , and technologies such as Global Position-
ing System (GPS) [VDB76] are now widely used for outdoor positioning. The success
of GPS combined with the convenience of GPS technology generates an impetus to
develop a technology providing a similar service for indoor environments.

Accurate indoor positioning, where GPS is unavailable, has been significantly re-
searched. Approaches have considered using signals across the electromagnetic spec-
trum (Wireless Fidelity (WiFi) [VSK+10], Bluetooth [Oks14, LKJ+14], visible light
[MT11], infrared) and other sources of data such as audible sound [HHZ+14], ultra-
sound [FCC10, WJH97] and inertial measurements [LCC+10].

This research considers the addition of temporal information available within WiFi
technology that can be exploited over an existing wireless network infrastructure. Us-
ing only the passive information broadcast by Wireless Access Points (WAPs) in a
locality, we show how temporal information can be incorporated and show how this
improves WiFi-based localisation algorithms. In the past, some attempts have been
made to analyse system performance over extended periods of time by mapping and
monitoring any changes to the wireless network.

The interest in Indoor Positioning Systems (IPSs) is showing a significant increase.
There is a large number of applications currently using IPSs, this coupled with the large
number of potential applications has attracted the attention of many researchers around
the world. A common thread in all this research is to find both a faster and more ac-
curate positioning system. There are two main approaches being developed to achieve
this goal. The first is the use of specialised hardware such as Radio-frequency identifi-
cation (RFID), lasers or wireless sensors networks. These technologies have proven to
be accurate. However the need for specialised hardware results in an expensive system
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when deployed in large and public areas. The second approach, is an opportunistic
approach, where the positioning techniques make use of existing infrastructure such as
cellular and WiFi networks. These pervasive communication technologies can present
the perfect set of characteristics for indoor positioning when GPS performs poorly.

WiFi Positioning Systems (WPSs) are already popular and are currently used com-
mercially by companies such as Skyhook, Ekahau, Ubisense and Google. The two
principal models used in WPS are the propagation-based model and fingerprint-based
model. The latter has grown in popularity because it provides a more tractable solution
to the fact that indoor WiFi signal propagation is affected by obstacles such as walls,
furniture and people.

The Fingerprinting method consists of collecting and storing the signal strength
of all the detected WAPs in a physical location. Then creating a WiFi signature that
uniquely identifies that particular location. The earliest work successfully implement-
ing fingerprinting using the signal strength from 802.11 beacons was presented by
[BP00] in early 2000 and later by [HRF+04]. The Fingerprint at a location is in
essence calculated by finding and storing a representative value for each WAP found.
This value is then used to match new measurements from unknown or new locations.

However, Fingerprint-based positioning is not without challenges, some such chal-
lenges are listed below:

• Large effort is required to build and maintain the Fingerprint database.

• Updating the Fingerprints due to WiFi infrastructure changes such as removal or
addition of WAPs.

• Updating the database to reflect changes in physical environments such as build-
ing renovations and/or refurbishment.

• The difficult task of detecting when the physical layout of an environment has
changed.

• Large data storage requirements, as potentially all measurements need to be
stored.

Clearly, methods are needed to effectively compress and/or reduce the amount of
stored data. Also better methods to detect environment change are needed. These two
needs are closely related and form the basis of this research. The result is a system that
can better learn and adapt to the WiFi environment.
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The widespread adoption of WiFi technology in consumer electronics such as smart
phones and laptops presents a convergence in technology. This convergence can be
utilised to construct an enhanced IPS. The system designed, created and maintained
allows for indoor environment radio-maps to be built that can be used to provide an
increased level of spatial awareness.

1.4 Contribution Overview

This thesis introduces an improvement to indoor positioning systems, that extends cur-
rent works in the concept of WiFi fingerprinting.

The concept presented in this document goes further by incorporating the use of
control charts into the fingerprint definition. There are four key contributions of this
work:

1. New method of evaluating the contribution of WAPs to fingerprinting. Consist-
ing of the following:

i. First time implementation of configurable EWMA for fingerprint-based
Positioning Systems

ii. Principle of WAP discrimination based on changes and outliers

iii. Scoring function for ranking WAPs

2. Development of a unique and highly valuable dataset of observations

3. Database schema

4. Data capture scripts

1.5 Research Scope

It is argued that it is possible to achieve positioning by combining readings from dif-
ferent bands of the electromagnetic spectrum. The scope of this study addresses the
use of only a specific band of the Radio Frequency, more specifically the one used
by WiFi technology, to create new and more accurate dynamic mappings of indoor
environments.
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1.5.1 Research Objectives

• This project aims to create a novel fingerprint definition for fingerprint-based
IPS to improve positioning performance.

• Testing and evaluating the proposed fingerprint definition using a dataset com-
prising of WiFi data captured over a period greater than 1 year.

1.5.2 Reasearch Achievements

The following publications are original contributions of the research:

• A unique and highly valuable dataset of observations [RFTM14]. Publicly avail-
able (see http://dx.doi.org/10.5281/zenodo.12913)

• The database schema and it Enhanced Entity-Relationship (EER) Model [RFTM15].
Publicly available (see http://dx.doi.org/10.5281/zenodo.13793) is the
SQL script for generating the database.

• Scripts for WiFi data collection [RFMT15a]. Publicly available (see http://

dx.doi.org/10.5281/zenodo.18130)

• Functional fingerprint based WiFi Positioning System (WPSv1) [RFMT15b] that
collects data, generates fingerprints using state of the art fingerprinting tech-
niques and the improved EWMA Fingerprint. Publicly available (see http:

//dx.doi.org/10.5281/zenodo.19737)

The remainder of this thesis is organised as follows:
Chapter 2, Background - A technical background, discussing work related to the local-
isation problem.
Chapter 3, System Architecture - Definition of the system designed in this research,
data sources used, the hardware used to acquire the signals and the process of data
acquisition.
Chapter 4, Methodology - The methods and techniques that have been employed and
the implementation detail.
Chapter 5, Data Analysis - The data set used as a test-bed is presented and its descrip-
tive statistics are explained

http://dx.doi.org/10.5281/zenodo.12913
http://dx.doi.org/10.5281/zenodo.13793
http://dx.doi.org/10.5281/zenodo.18130
http://dx.doi.org/10.5281/zenodo.18130
http://dx.doi.org/10.5281/zenodo.19737
http://dx.doi.org/10.5281/zenodo.19737
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Chapter 6, Fingerprinting and Positioning - Describes the techniques for enhancing the
fingerprinting process. The radio-map creation and update is covered, as well as the
WAPs selection techniques.
Chapter 7, Evaluation and Results - Evaluation of the proposed fingerprinting tech-
niques on the data set is presented.
Chapter 8, Conclusions and Further Work - Presents the main conclusions of the work
and discusses further work.



Chapter 2

Background

This chapter presents the concepts required to comprehend the ideas that will be elab-
orated on throughout the rest of this thesis. The main issues around IPSs are described;
including applications, challenges, technologies and techniques.

WiFi technology is then presented as a suitable, opportunistic, low-cost and perva-
sive solution for an IPS. In order to highlight and illustrate the pervasiveness of WiFi
technology, a single measurement was made at a shopping centre (Derby, UK), and
this observation resulted in a list of 67 different uniquely identifiable Wireless Access
Points (WAPs). This single example is presented just to illustrate the large amount of
hotspots available at any time in many private and public places. A more exhaustive
analysis of a large data set covering various locations is described in further chapters.

An important concept covered in this chapter is the “Fingerprinting” approach; this
technique is explored to highlight its advantages for use within an IPS. Comparisons
with other existing approaches show that fingerprinting is a technique that can be made
to be less vulnerable to environmental changes and therefore more robust in use.

2.1 Indoor Positioning

To introduce the concept of IPS consider the following scenario. You are arriving at a
building where a very important meeting is taking place. It is in a building were you
have never been before and unforeseen events make you arrive with little time to spare;
so you are at the entrance of a building that is difficult to navigate and all you have is
the office number and absolutely no idea of which way to go. This is a scenario that
can be solved by using an IPS based on a mobile app.

The mobile device would detect signals from surrounding wireless networks to
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identify the user’s current location, with knowledge of the user’s location, the mo-
bile device would compute the route to the destination, displaying graphical guidance
and/or spoken instructions of the route to follow in order to reach the sought-after of-
fice room. This would provided a similar functionality for indoor environments as that
provided outdoors by GPS devices.

Indoor Positioning is a promising, exciting and exponentially increasing area of
research. The large number of potential applications makes it an appealing challenge to
undertake as well as being able to be integrated within many academic and commercial
opportunities. Indoor Positioning considered here involves the physical location of
someone (user/client) or something (asset, electronic device, lost object, robot) in areas
where technologies such as Global Positioning System GPS perform poorly or are
not available. Many daily activities could benefit from the implementation of Indoor
Positioning, and some potential applications include:

Mobility / Transportation/ Navigation (e.g. robotics, unmanned vehicle tracking,
semi-unmanned vehicles, and navigation in universities, museums, airports, train
stations, hospitals, shopping centres, etc...)

Education (e.g. handheld guides in museums, navigation in universities, image-based
reconstruction of museums, academic performance)

Health (e.g. navigation in hospitals, locating staff/patients within a hospital, health
services, providing help for elderly and visual impaired people)

Security (e.g. surveillance, probation tracking, access control)

Personal (e.g. location based reminders, lost property recovering, video-games, aug-
mented reality, videoconferencing)

Industrial (e.g. process automation, inventory management and asset tracking)

Social (e.g. enhancing social networks, locating friends)

Commercial (e.g. locating staff within the office, personalised advertising, shopping
centre navigation, automatic check-outs)

Private companies [urla] [urlc] [urld] [urlh] [urlg] [urlf] [urli] are actively working
on indoor positioning and aim to cover one or several of these previously mentioned
application areas. The In-Location Alliance (ILA) [urle], established in August 2012
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is an attempt to achieve standardisation. The main ILA aim is to create a technology
independent indoor localisation using WiFi and Bluetooth technologies, and is formed
by well-known companies including Nokia®, Samsung® and Sony®.

2.1.1 Indoor Positioning Challenges

Achieving an accurate IPS is not an easy task and some of the concepts that should be
addressed in solving indoor positioning are the following:

Nonlinearity. The construction materials, thicknesses of walls, pipes and electromag-
netic sources, all make the environment highly variable and unpredictable. Be-
cause of this, the development of an Indoor Positioning System that fits any
indoor environment is a challenge.

Multi-path. Refers to the different paths followed by an electromagnetic signal be-
fore reaching a receiver. This could generate interference, fading of the original
source and generating signal duplication.

Reflection, Refraction and Absorption. Reflection and refraction are causes of multi-
path. Reflection is presented when the signal impacts a body or surface and
the signal is propagated back. Refraction is presented when propagated waves
change in direction at the interface between two mediums due to the change in
propagation velocity. Absorption refers to the signal being reduced in signal
strength; partially or completely, by the medium and/or the surfaces impacted.
These phenomena affect all types of sound, light, and EM based systems. The
uncertainty about the materials of the impacted surfaces affects the propagation,
hence systems based on mathematical modelled propagation may work poorly
indoors.

Change of indoor scenery. Changes in indoor environments include: moving ob-
jects, building renovations, refurbishing, or people walking around. All these
changes affect temporarily or permanently the propagation of the surrounding
signals.

All these situations should be taken into consideration when designing an IPS. Fur-
thermore, it is required to handle wisely the tradeoffs regarding Accuracy, Scalability,
Cost, Coverage, Complexity, Time response and Adaptability.
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Figure 2.1: Indoor Positioning Technologies.

2.2 Indoor Positioning Technologies

Technologies that have been used for indoor positioning include: Motion (Inertial Nav-
igation), Sound, Ultrasound, Optical, Infrared, Magnetic field and Radio-Frequency.
Figure 2.1 presents a diagram listing these indoor positioning technologies. A brief
description of non-radio-frequency-based technologies is covered here but please re-
fer to [LDBL07], [MT11], [ZFI13] and [Gos13] for more detailed reviews of these
technologies.

Motion based Positioning Systems are also known as inertial navigation systems,
and they rely on the motion of the target device to estimate the position. Data gathered
by sensors such as accelerometers and gyroscopes are used to compute the speed and
direction of the target device. A common downside of this system is that small drifts
can add up, leading to a large absolute error in the positioning so it is often used
along with other positioning systems with fixed beacons in the environment to increase
accuracy and reduce the number and size of errors.

Infrared Positioning Systems are based on infrared sensors (transmitters/receivers),
that emit a unique infrared identification/code, installed at known locations. The user’s
position can be determined by the proximity principle, where the closest receiver is
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considered the position of the user’s location. A downside to using Infrared technology
is that dedicated and expensive hardware is required in order to achieve high accuracy
and it is highly sensitive to the Line-Of-Sight (LOS) error, which means that if there
are obstacles between the transmitter and the receiver the signal may not be detected.
A representative example system using infrared is the Active Badge [WHFaG92], that
achieves an accuracy of 7cm, and a 5m range.

Ultrasound based Positioning Systems consist of a transmitter installed on the
target device that emits ultrasonic waves at a particular frequency. The waves are
detected by receivers fixed at known locations within the room so that the target po-
sition is estimated based on the Time-Of-Arrival (TOA) attribute. Some limitations
using ultrasound for indoor positioning include; dedicated hardware is required and
the speed of sound can be affected by temperature and humidity. Active Bat [WJH97]
is an example that can achieve 3D positioning with an accuracy of 10cm in the three
dimensions with a 50m coverage. Another ultrasound based system is Cricket [Pri05]
achieving up to 2cm accuracy within a 10m range of coverage.

Optical Positioning Systems use optic or vision based techniques in order to
achieve positioning, some of these techniques include: QR codes, landmark images,
light intensity, image matching techniques, rotational laser, or fluorescent light. Op-
tical positioning systems require dedicated hardware, are affected by changes in illu-
mination and are limited to LOS. A detailed survey about optical indoor positioning
systems is presented in [MT11].

Radio Frequency based systems use electromagnetic radio waves for positioning,
exploiting the large coverage offered within this range of the Electromagnetic Elec-
tromagnetic (EM) spectrum. Some advantages of a radio frequency based positioning
system include that it can achieve longer range than optical, ultrasound and infrared
based systems, and it is not limited by line-of-sight restrictions.

Positioning based on radio frequency can be subdivided into Wireless Local Area
Network (WLAN), RFID, Bluetooth, ZigBee, Ultra Wide Band (UWB) and Frequency
Modulation (FM). Figure 2.2 presents a classification of the Radio Frequency based
technologies for Positioning Systems.

Figure 2.2 highlights the system which this research will focus on. WLAN, more
specifically WiFi technology, will be thoroughly explained in the following section.



32 CHAPTER 2. BACKGROUND

WLAN RFID FMUWB HybridZigBeeBluetooth

Radio Frequency based 
Positioning Systems

Figure 2.2: Positioning Systems Taxonomy.

2.2.1 WiFi Technology

The term WiFi stands for Wireless Fidelity. WiFi is a wireless networking technol-
ogy based on electromagnetic radio waves for data transmission. The WiFi technology
enables electronic devices such as computers, smart-phones, printers, digital audio
players and video game consoles to interconnect amongst each other and to have un-
tethered Internet connectivity. Many emerging electronic devices by default include a
Network Interface Card (NIC) for wireless connectivity.

WiFi can now be considered a ubiquitous technology as it is used extensively in
offices, universities, private residences and public places such as: shopping centres,
museums, airports, train stations or libraries.

WiFi follows standards set by the Institute of Electrical and Electronics Engineers
(IEEE). The standards currently in use are the IEEE 802.11 b/g/n, and a new standard,
the 802.11ac is under development. The purpose of the Wireless Ethernet Compat-
ibility Alliance (WECA), also known as WiFi Alliance, is to test and to certify the
compliance of electronic devices implementing the IEEE 802.11 standards.

The frequencies established for communication under the IEEE 802.11 a/b/g/n
standards for WiFi are 2.4GHz and 5GHz, and these frequencies are within the in-
dustrial, scientific and medical (ISM) radio bands.

The Basic Service Set (BSS) for WiFi networking includes a Wireless Access Point
(WAP) and at least one associated station or device equipped with a NIC. In accordance
with the WiFi Alliance, the radio signal emitted by WAP devices covers a range of
about 200m (656 feet) outdoors, in a wide open area with no obstacles. However,
it has been known for successful transmissions to up to 305 meters (1,000 feet) and
even up to 1.6 kilometres (1 mile) under optimal conditions. Nevertheless, the covered
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distance is drastically reduced indoors. Blockage by objects such as walls, furniture
and people cause signal attenuation or signal loss and typically an indoor signal travels
within a range of 20 to 46 meters (65 to 150 feet).

Some of the parameters used in WiFi wireless communication are:

• The Service Set IDentifier (SSID) or WAP/network name, which consists of a
32 byte long string that identifies the network.

• The Basic Service Set Identifier (BSSID) also called the Media Access Control
(MAC) address. This is a serial number 48 bits long often shown as a combina-
tion of hexadecimal characters that is stored in hardware and acts as the NIC’s
unique identifier. It can be changed but its modification is not an easy or common
task.

• The Received Signal Strength Indicator (RSSI) is the strength of the signal mea-
sured in dB and its range varies based on the electronics, but the empirical data
varies in a range from -10dB to -100dB.

• The Channel is the number of sub-divisions of the ISM range of the spectrum
used by the WAP at the particular moment the data was transmitted.

• High Throughput (HT) is a binary parameter indicating the standard employed.
If the HT value is equal to one, it means that the standard used by the WAP is
the IEEE 802.11n.

• Country Code (CC) indicates the country where the WAP is registered.

• The Security information string reveals the security settings employed by the
WAP and can vary between: None, Wired Equivalent Privacy (WEP), Wireless
Protected Access (WPA) and the second version of Wireless Protected Access
(WPA2). The function of these encryption algorithms is to protect the content
transmitted within data frames. WPA2 is the most secure out of the three current
standards.

All these parameters are broadcasted by the WAPs and are received by WiFi en-
abled devices.

WiFi technology has become a popular research subject for indoor positioning
([BP00], [BBP00], [KKJ+04], [GJ04],[AKS04] ,[PKL07], [YAUS03], [SL14], [XSC+04])
and outdoor positioning. Some advantages of using WiFi for indoor positioning are:
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• Existing infrastructure can be used.

• The space around is full of electromagnetic radio-waves emitted by WAPs.

• WiFi technology is now ubiquitous in many locations.

• There is no need for specialised or expensive hardware to be added.

• It is growing in popularity.

• It is based on regulated IEEE standards.

• Signals can be detected using smartphones or light-weight sensors.

• WiFi signal transmitters also called WiFi Access Points (WAPs) broadcast their
physical address which can be used as a unique identifier.

• WiFi technology presents an opportunistic approach for positioning systems

Some disadvantages of a WiFi based positioning system include signal attenuation,
multi-path effects and it can suffer from low accuracy.

2.3 Indoor Positioning Techniques

Locating techniques can be classified as follows: Time-based, Angle-based and Power-
based. Figure 2.3 presents the classification diagram for existing locating techniques.

The work in this thesis has focused on Power-based techniques and specifically in
the RSSI-based technique. The RSSI-based technique has the advantages that can be
easily deployable and implemented without requiring specialised hardware. This min-
imal hardware requirements are because modern smart phones, tablets and laptops are
equipped with a NIC able to report the RSSI of an incoming packet. another advantage
is that it does not require the knowledge of the WAP position, or time synchronisation.
Furthermore, it is less susceptible to signal reflection complexities presented within
crowded indoor environments unlike the angle-based and time-based methods. Angle-
based and time-based techniques are suitable for outdoors environments with direct
LOS. Angle-based techniques present problems in presence of multi-path, noise, and
interference [PLM02]. LOS is not always possible in indoor environments, where a
target device to be located is most of the time surrounded by objects, resulting in sig-
nal reception from multiple angles. Measurements from multiple angles can limit the
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Figure 2.3: Indoor Positioning Techniques

system accuracy. On the other hand time-based techniques depend on highly accurate
clock synchronisation. Both techniques, angle-based and time-based, require relatively
large and complex hardware.

In summary the RSSI-based method was chosen to overcome real-world issues
associated with angle and time-based methods.

When considering Figure 2.3 there are three main sub-areas to this area which are
explained below.

2.3.1 Proximity Technique

This is a simple technique based on the proximity principle, where the closest beacon is
considered the user’s location. A drawback of this technique is that it is a requirement
for the system to know the position of all the beacons. It is possible to estimate the
location when the WAPs are correctly located at known places. But unfortunately this
is not the case in “real-life” scenarios.

2.3.2 Attenuation Model

An attenuation model relies on a pre-defined characterisation of the signal strength at-
tenuation. In other words, it is assumed that signal intensity detected by the receiver
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is the inverse of the distance squared; this applies within scenarios where there is no
significant environmental effect to signal propagation. The work [CK02] investigates
radio propagation modelling on a simulated experiment and compares results of dif-
ferent regressions models. It is concludes that WAPs should be “properly placed” in
order to control the location error. In real life this scenario is unrealistic, where the
WAP are previously placed for communication purposes. Also, an attenuation model
can be complex, especially indoors, where the signal can be affected by other signals
on the same frequency emitted by electronic devices, or obstructed by objects or people
in the environment. Also, signal propagation errors, such as multi-path, interference,
diffraction around corners, multiple reflections, and shadowing are commonly present.
Other parameters affecting WiFi localisation are: sensor’s quality, type of antenna,
attenuation of the signal over time, ambient conditions and scene characteristics.

2.3.3 Fingerprinting

The “Fingerprinting” term in a positioning context was first coined by U.S. Wireless
Corp. in 1998. It was named after its resemblance with the identification technique
based on people’s fingerprints so in a similar way, a geo-location can be identified
based on a set of signal signatures (“fingerprints”). The Fingerprinting model can also
calculate position taking into consideration the signal propagation issues as previously
mentioned. Fingerprinting consists of collecting and storing a set of information that
identifies uniquely a physical location. The actual concept of Fingerprints based on
Radio Frequency signals, was first presented in 2000 in the work RADAR [BP00].

Within a WiFi context a Fingerprint is the relationship between the symbolic loca-
tion and the set of BSSIDs and RSSIs received from each WAP within the user’s device
range. The symbolic location refers to a descriptive string that fits the application, and
this could be a name, number or grid coordinates (x,y) within a large open space.

By comparing fingerprinting with other techniques, it is concluded that Finger-
printing is relatively easy to implement as it requires no extra physical infrastructure to
be installed or specially aligned. It uses existing WiFi infrastructure and sensors that
are built into most mobile phones. It can be said that the fingerprinting problem could
be addressed and modelled as a Database problem.

2.3.4 Fingerprinting Challenges

Listed below are some of the challenges that fingerprinting currently faces.
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• The effort required to build and maintain the fingerprint database.

• Efficiently managing a constantly growing database.

• Detecting changes in database due to changes in the WiFi infrastructure (e.g.
removal, moving or addition of WAPs).

• Detecting changes in the physical environment (e.g. building renovations or
refurbishing)

• System scalability for the database and database searches.

• Determining how often fingerprints/radio-map should be updated.

• Finding the optimal number of measurements required to have a trustworthy
fingerprint.

• Defining the number of measurements required in order to provide an accurate
fingerprint.

There has been a significant amount of research addressing these challenges [VA14]
and state-of-the-art methodologies on Fingerprint-based WiFi Positioning Systems are
described in the following section.

2.4 Fingerprint-based WiFi Positioning Systems

The Fingerprinting process of WiFi Positioning Systems takes place in two stages, the
“off-line” or calibration stage, and the “on-line” or positioning stage.

The off-line stage consists of data collection such as a manual survey carried out
by an expert. This survey involves making observations (BSSID and RSSI detected
values from all WAPs in range) at every desired location. The observation then is
tagged with the description of the location and the relationship between the WiFi data
and the location creates a unique fingerprint. The complete set of fingerprints is called
a “radio-map” and is stored into a database (DB) for use within the second stage.

The second stage is the “on-line” or user location stage. Assuming the system is a
client-server application. The client (user) to be located makes an observation at a par-
ticular point. This observation consists of detecting the BSSID and RSSI from WAPs
in the vicinity. The BSSID and RSSI are then compared with fingerprints in the radio-
map/DB stored in the server. The fingerprint that best matches using some criteria
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the user observation is selected and presented as the possible current user’s location.
Several algorithms exist in order to find the best match from the DB in the fastest and
lowest-computational cost possible [BB05] [DMM12] [HPALP09] [LWL+05]. Figure
2.4 presents some of the main different algorithms used in fingerprinting.

Most of the state-of-the-art research focuses on improving the time and accuracy
within the second stage of the process, and also in how to improve the data collection
process. The data collection approaches available are: manual/wardriving, crowd-
sourcing and beacons. These approaches will be described below.

2.4.1 Manual Fingerprinting

One of the basic approaches to fingerprint generation is to survey the location manu-
ally. This survey/data collection is also called “Wardriving”. Wardriving consists of a
person or vehicle with a WiFi enabled device scanning the wireless networks. Signal
strength measurements are stored into a database to create fingerprints. Updates are
then carried out by overwriting old fingerprints with new ones.

Some companies implementing this approach are: Ekahau® [urlb], Skyhook® [urlj],
Ubisense® [urlk], and Google®. This manual process may involve a large amount of
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labour in order to re-survey the locations every time a new set of fingerprints is re-
quired. It represents a potentially large cost to ensure the DB is up-to-date and it is
unclear when the locations should be surveyed again.

2.4.2 Crowdsourcing based Fingerprinting

The survey could be also done by crowdsourcing, where observations are collected
by many final users. Crowdsourcing reduces the time for taking surveys and can be
a faster approach for collecting data. Work presented by Gallagher et al [GLDR10]
proposes updating the database through user feedback. As it maintains the fingerprint
DB, the system monitors changes in the wireless environment. The method proposes a
“points” based system where a WAP’s score is incremented every time the WAP is seen
in a particular location and decremented each time it is not seen in the location. This
running count is the basis for adding or removing the WAP from the fingerprint/radio-
map. By using a threshold value they determine whether the WAP should be used in
the fingerprint/radio-map or not. A second threshold value can be applied to the WAP’s
signal strength. So for example when a WAP is detected with a signal strength lower
than -80 dB, such a WAP is not included in the computations. Their objective is not
just to update the fingerprint, but also to control the size of the fingerprint/radio-map
DB. The system initially relies on a DB created by a skilled surveyor, then the system
makes users to contribute for reducing survey effort. Users are asked their true position
periodically. This information is the feedback and it is used for DB update.

Gallagher et al, do not consider the historical changes in the signal strength, instead
they focus on the WAPs’ frequency of appearance. Their updating methodology is
based on the average between the previous value from the fingerprint and the latest
value from user feedback.

Work presented by Jun-Sung et. al [LJYH13] introduces a more sophisticated scor-
ing function. Their work uses an exponential approach for accelerating the inclusion
of WAPs into fingerprints. This method modifies the simple counting based approach
of the earlier work, by introducing a windowed range and an exponential term for the
count reduction. The scoring function increments each time the WAP is seen and a
threshold value is again used to decide if the WAP should be included in the finger-
print or not. In the instances that the WAP is not seen an exponential term is used to
reduce the score which effectively reduces the score by smaller amounts initially. A
second threshold value is used to decide when the WAP should be removed from the
fingerprint. This approach results in fewer required observations to include a WAP
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into the fingerprint and requires more absences to remove the WAP. It is proposed that
this results in a more stable fingerprint and takes into account more of the reality of
WAPs absences. However similar to the previous works this method does not take into
account the possibility of fluctuating signal strength values from the WAPs. Instead it
relies on the average of the signal strength measurements.

Work in [LDGZ12] titled “WiFi Fingerprint Indoor Positioning System Using Prob-
ability Distribution Comparison” presents a fingerprint technique based on the proba-
bility distribution of the last n (n = 100) points of the captured data. The off-line stage
takes the historic measurements and creates a probability distribution for each WAP.
This probability is then stored as the fingerprint value for each WAP. The quoted figure
for the number of points used to create the distribution in this paper is 100. The effects
of using a smaller or larger number of points is not discussed or evaluated. During
the online stage, a smaller set of measurements is taken to create a new distribution.
Therefore for each common access point to the user and the map, there exists a distri-
bution. The comparison for likeness of these distributions is the basis for the classifier.
Although [LDGZ12] shows that for the datasets used, their classifier does result in ac-
curate results, there appears to be no consideration for the profile of the time history of
signal strength measurements.

Barry et al. [BFC09] present a long-term analysis of a crowdsourced positioning
system. In this study the dataset spans more than a year and focuses on analysing the
system usage, such as: users locations, patterns on binding fingerprints with locations.
They presented solid evidence regarding the practicality of using crowdsourcing as a
method for data collection.

This work highlights three key areas for future work. The first is the need for
a long term analysis on the ageing of fingerprints. Secondly they state the need for a
weighted fingerprint update methodology, presumably to handle the effects of different
ageing rates of fingerprints. Finally they note the need for a metric study on changes to
the environment and how that affects the fingerprints in order to minimise localisation
errors.

2.4.3 Beacons and Sensor Network

Finally, fixed beacons could be used instead of wardriving or crowdsourcing. The
fixed beacons record observations periodically, and these beacons could be any client-
like-device, or the actual WAPs as proposed in the work by Atia et al [ANK13]. These
authors [ANK13] present an appropriate solution where the WAPs act as fixed beacons
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for positioning. This solution is a paradigm-change, and it requires re-programming
the WAPs firmware, changing standards and WAPs manufacturing. If this scenario
proposed is embraced by the community, it would represent a good scenario for the
implementation of the work presented in this thesis.

The work considered in this thesis presents a novel approach that could be imple-
mented on existing IPS. It involves the analysis of the temporal nature within historical
data, and the presentation of statistical analysis for improving fingerprinting.

Most of the results from previous work on WiFi fingerprinting agreed that the fin-
gerprinting calibration process should be periodically repeated to maintain an accurate
radio-map/database. Although work has been done to overcome these issues, no pre-
vious work has investigated how often this calibration should take place. The previous
researches also fail on:

- Understanding and detecting temporal signal patterns from WAPs

- Long-term analysis of fingerprints

- Specification of the radio-map updating time-interval

- Keeping radio-maps up-to-date

- Adaptive and more representative parameters for fingerprinting

- Identifying trustworthy WAPs

- Detection of unwanted behaviour on WAP’s signal strength

This thesis aims to cover these gaps, proposing a technique that will allow a system
to identify signal changes/environmental changes on the signal strength.

2.5 Relevant Statistical Methods

2.5.1 State Estimation

State estimation is the process of estimating the current internal state of a system given
the data available. In robotics, for example, it could refer to the computation of a
robot’s pose. Knowing its current state is vital to determining the appropriate next ac-
tion to take to accomplish its mission. Recursive state estimation is when the previous
state is considered along with new data available. From the robot example, once the
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robot moves it is clear that its state changes. From this, a new state estimate should
be carried out based on the previous state, recent action and new measurement. In
other words the state is continuously updated based on input available. An iteration,
considering time series, comprises the calculation of the state at time (t) from the state
at time (t−1) along with the most recent measurement. This iteration is then repeated
with every new measurement [TBF06].

Recursive state estimation is relevant for this thesis because a similar approach
is employed. Using a recursive state estimator, the “state” of fingerprints is updated
continuously based on new WiFi measurements.

Three relevant state estimators are covered in this section: the Weighted Arith-
metic Mean a state estimator, the Exponentially Weighted Moving Average (EWMA)
a recursive state estimator, and the Kalman Filter an optimal recursive state estimator.

Weighted Arithmetic Mean

The Weighted Arithmetic Mean, also called “Weighted Mean” is a measure of central
tendency, it differentiates from the arithmetic mean (sum of all elements divided by
element count) in the incorporation of the weighting of certain elements. From this,
the arithmetic mean is an special case of the Weighted Arithmetic Mean for when the
elements have the same weight, and these weights are normalised with a sum of all
weight equal to one. The weighted arithmetic mean of a set of numbers x1,x2, ...,xn

having weights w1,w2, ...,wn is presented in Equation 2.1 where the weights are non-
negatives and normalised.

x̄ =
n

∑
i=1

wixi (2.1)

Exponentially Weighted Moving Average

Exponentially Weighted Moving Average (EWMA) also known as exponential smooth-
ing was presented by Robert Goodell Brown [BRO56] in 1956. It was designed for pre-
dicting demand within inventory-control and quality control for inspection processes.
As presented in [BRO56], the EWMA statistics for a time series t=1,2,...,T, is:

x̂(t) = λx(t)+(1−λ)x̂(t−1), 0 < λ≤ 1 (2.2)

where

• x̂(t) is the estimated average
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• x(t) is the observation/sample at time t

• x̂(t−1) is the previous estimated average

• λ is called the smoothing parameter or smoothing factor, it is a constant that
determines the depth of memory of the EWMA

The larger the value of λ (e.g. close to 1) the higher the weight given to recent observa-
tions. The opposite occurs for small values of λ (e.g. close to 0), the smaller the value
of λ the lower weight is given to recent observations, hence, more weight is attached
to observations from distant past. Indifferently to the value assigned to λ, when fixed,
the weight given to observations decreases exponentially as the observations get older.

The initial value given to x̂(t−1) from Equation 2.2 can be significant when using
a small λ, for this it should be considered to initialise the algorithm by assigning to
x̂(t− 1) the average of a sample set. The number of samples used for computing this
initial average can be selected according to the application.

Figure 2.1 illustrates the effect of the parameter λ when EWMA is applied to a step
function (step function generated with random numbers). Six EWMA were applied to
the step function with the values λ = 0, λ = 0.1, λ = 0.3, λ = 0.6, λ = 0.9 and, λ = 1.
In this example, for initialisation, a sample set of the first 10 data points is averaged and
assigned to x̂(t−1), applying the EWMA from Equation 2.2 from sample 11 onwards.

It appears that Exponentially Weighted Moving Average (EWMA) has not been
applied on fingerprinting techniques previously. Although a relevant work presented
by Chen et al [CCLH08] proposes the use of Moving Average Convergence Divergence
(MACD) for estimate user’s motion. (The MACD scheme, developed by Gerald Appel
[App85], is used for identifying market trends.) MACD involves two EWMA filters
for computing an agile and a stable response.

In the work [CCLH08], the difference between the two EWMAs, a fast EWMA
(large λ) and a slow EWMA, (small λ) is analysed on time series data with purpose
of estimating when a user is walking towards or away from a particular WAP. Being
[CCLH08] the only work know by the author where Exponentially Weighted Moving
Average is applied on WiFi signal strengths.

Kalman Filter

Although the Kalman Filter is not used within the work proposed in this thesis it is
briefly mention in this section since it is an optimal estimator. Proposed in 1960 in
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Random step function and EWMAs computed with different values of λ
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Table 2.1: Random step function and EWMAs computed with different values of λ

The signal, a step function generated with random numbers (blue), is overlapped with
EWMAs (red) computed with different weights (λ). Figure a) shows EWMA with
λ = 0 the EWMA stays immovable form data point 11 onwards, since when using
λ = 0 every new coming sample is ignored. Figures b), c), d) and e) illustrate how
EWMA performs by changing the value of λ, the closer its value to 1, the closer the
EWMA follows the samples. Figure f) shows the EWMA computed with λ = 1, for
this value the resulting EWMA follows exactly the samples, ignoring completely any
previous sample.
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[Kal60], the Kalman filter is a recursive solution for estimate the state of a process. It
could be seen as a cycle involving two main stages: “prediction” and “correction” [?],
where with every time update a projection of the state ahead is predicted and with a
measurement update, then a posteriori state estimate is updated.

Time update (“Predict”)
1. Project the state ahead

Xt|t−1 = FtXt−1|t−1 +Btut +wt (2.3)

2. Project the error covariance ahead

Pt|t−1 = FtPt−1|t−1FT
t +Q (2.4)

Measurement Update (“Correct”)
1. Compute the Kalman gain

yt = z−HtXt|t−1 (2.5)

St = HtPt|t−1HT
t +Rt (2.6)

Kt = Pt|t−1HT
t S−1

t (2.7)

2. Update estimate with measurement

Xt|t = Xt|t−1 +Ktyt (2.8)

3. Update the error covariance

Pt|t = (I−KtHt)Pt|t−1 (2.9)

Where:

• X , is the system state vector.

• F , is the state transition matrix.

• B, is the control matrix, maps control input to the state.

• w, is the process noise vector.
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• P, is the covariance matrix.

• Q, is the process noise covariance matrix.

• y, is the innovation.

• z, is a measurement from the system.

• H, is a matrix that relates the state to the measurement.

• S, is the innovation covariance.

• R, is the measurement noise covariance.

• K, is the Kalman Gain.

Two key concepts introduced in the Kalman filter are the innovation and the Kalman

gain. The innovation is the difference between the measurement and the expected
measurement. The gain is the weight given to the innovation, but differently to the
weight in EWMA the gain is computed on every iteration. The evaluation into how
EWMA performs versus Kalman filter is beyond the scope of this thesis and it could
be proposed as further work.

Please refer to [WB95] for an introduction on Kalman Filter and Extended Kalman
Filter (designed for nonlinear systems). For further details on Kalman filter please refer
to [BH97] and [REI99]. Work applying Kalman filter on indoor positioning system is
presented in [EM06].

Some other approaches that are used for state estimation are: Histogram Filter,
Bayes Filter and Particle Filter. Details on these algorithms are covered in [Thr02,
TBF06] and [GGB+02] were the advantages of particle filters on positioning naviga-
tion and tracking are presented.

The work [MHYM13] proposes a localisation system that simultaneously gener-
ates 3D models, 2D floor plans and signatures from multiple sensors such as WiFi,
cameras, laser scanners and Inertial Measurement Units (IMUs). The system consist
on a man-portable backpack equipped with a laptop and sensors. Particle Filter al-
gorithms are used to fuse data from the inertial sensors, WiFi readings and images to
localise a mobile device with an average error of under 2m.
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2.5.2 Statistical Quality Control

Statistical Quality Control (SQC) is the term referred to a collection of statistical tools
that are used to identify quality problems in manufacture [RS05]. An important cat-
egory within SQC is the Statistical Process Control (SPC). SPC refers to statistical
methods used for monitoring the quality in processes and products. These methods
are used to determine the amount of natural random variation in the process. Leading
to the identification of problems in the process by detecting variations larger than the
natural random variation.

Within SPC methods the Control Chart is the most common tool used for process
monitoring [RS05]. The Control Chart is employed in this thesis for understanding and
monitoring variation in the RSSI from WAPs. This method resulted in a useful tool for
establishing a normal range of variation in the RSSI and to detect signal changes and
outliers.

Control Charts

The standard Control Chart also called Shewhart Chart was proposed in 1924 by Walter
Andrew Shewhart, who is also known for developing the basis of process quality con-
trol [She31] and [SD86]. A Control Chart is a quality control tool usually employed in
manufacturing processes to determine when a process’ variable is in statistical control.
On monitoring the process’ variable with a Control Chart it is possible to differentiate
controlled variations within the process from uncontrolled variations non-intrinsic to
the process. Controlled variations are the measurements that move away from the tar-
get value, but still are within control limits, on the other hand, uncontrolled variations
are those that go outside the control limits. From this, the Control Chart is effective for
detecting outliers, large shifts, change points and indicates when a process’ variable is
drifting unacceptably.

The elements within a Control Chart are the following:

• Initialisation data points. A set of data points that are used to establish baseline
performance

• Target. Statistics such as mean, range, or proportion that are used as a base-
line/target for the variable. this statistic is computed from the initialisation data
points. It is considered the “Central Line” (CL) of the Control Chart. Ideally
future observations should be around this value
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• Standard deviation. The standard deviation of the initialisation data points is
computed for the establishment of thresholds

• Control limits. Upper Control Limit (UCL) and Lower Control Limit (LCL) are
equidistant from the central line

• Observations. Data points measured after the implementation of the Control
Chart. An incoming observation/measurement is plotted on the Control Chart.
If this value is located close to the Central Line and within the Control Limits,
then it is considered that the process is under statistical control. On the other
hand, if the plotted measurement lies outside the control limits, (over UCL or
below LCL) then the variable is considered out of control

• Rules. Specification of what to undergo in the case that signal values drifts away
from established mean.

The specific Control Chart employed in this thesis is the EWMA Control Chart.
The EWMA Control Chart was initially proposed by [Rob59], described in [Cro87],
[Shu08] and [CY08] It is differentiated form Shewhart in that the state of the system
depends on the statistic EWMA (see Equation 2.2), rather that using only the latest
measurement.

The weight given to λ can be tune according to the process to be monitoring, mak-
ing the Control Chart able to detect gradual drifts away from the target, rather than
react based solely on the latest observation. In the work [LSB+90] they suggest values
of λ that can be useful for detecting small shifts.

The advantages of EWMA Control Chart are:

• It is effective for detecting small shifts in the mean or variance

• It combines historical data with the current data

• It can be used in forecasting

The EWMA initialisation involves the computation of the mean (µ) and standard
deviation (σ) from preliminary data. These are used as baseline for the system where
µ is the target. The variance is computed as shown in Equation 2.10

σ̂
2 =

λ

(2−λ)
σ

2 (2.10)
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The upper and lower control limits are given by Equation 2.12

UCL = µ+Lσ̂ (2.11)

LCL = µ−Lσ̂ (2.12)

Where L is the number of standard deviations away from the target. In this thesis
is presented for the first time the EWMA Control Chart applied to WiFi fingerprint
IPS. The EWMA Control Chart is used for detecting changes and outliers in the WAP
signal strength, this allows to identify and remove from the fingerprint those WAPs
presenting outliers and other unwanted signal profiles. This will be clear in Section
6.1.6 in Chapter 6.

2.5.3 Positioning

The fingerprinting approach to positioning can be classified as a pattern recognition
problem, where the fingerprints created from observed WiFi data are label with a loca-
tion and stored in a database. Then a new observation (unlabelled) enters the system
and it is compared against the labeled fingerprints. A metric is used to evaluate the
similitude between the fingerprints and the new observation. It can be said that the use
of the Nearest Neighbour and its variant k-Nearest Neighbour (KNN) [LDBL07], are
a common approach in fingerprint-based indoor positioning systems [BP00], [BBP00]
and [SCSB03] .

The Nearest Neighbour operates as follows; given a set of classified elements, find
the most similar to a new and unlabelled element by determining their similitude based
on a metric. Some metrics used for determining the similitude in NN are:

• Euclidian Distance

• Root Mean Square Error (RMSE)

• Manhattan Distance

• Mahalanobis

The Nearest Neighbour is relevant to this work since it was implemented on the
positioning stage, using Root Mean Square Error (RMSE) as metric for fingerprint
selection. The work [LYHS13] employs the NN technique for WiFi fingerprint-based
indoor localisation.
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Another relevant method that have being used in WiFi Fingerprint-based localisa-
tion is the Support Vector Machine (SVM). Introduced in [BGV92] developed from
Statistical Learning Theory, SVM are a set of supervised learning algorithms, com-
monly used for classification and regression. A SVM consist basically in a hyperplane
that divide two classes, this hyperplane is built to maximise its distance between both
classes. This model then is used to determine the class for a new unclassified ob-
servation. A drawback of SVM is that it is applicable for two-class problems. WiFi
positioning is a multi-class problem, SVM has to be used along with algorithms that
reduced the data from multi-class to several two-class sub-problems. The work [BB05]
implements Support Vector Machine (SVM) paradigm by mapping the input data into
a higher-dimension employing Kernel functions. The research compares the SVM
with three existing techniques used in WiFi fingerprinting such as: Weighted k nearest
neighbours (WKNN), Bayesian modelling and Multi-layer perceptron. From compar-
ison on the same data, their conclude that SVM outperforms the rest of the algorithms
except for WKNN which matches closely their SVM results for spatial localisation.

Further references on the use of SVM can be found in [KPV07] and [VWG+03].
Research [LSDR06] presents a comparison between deterministic and probabilis-

tic methods. It concludes that the Bayesian method is more reliable for moving lo-
calisation where it outperforms NN. It also recommends Bayesian localisation since
it facilitates the incorporation of probabilities from other sensors. Finally it concludes
that the Bayesian based localisation outperforms only marginally the NN method when
compare on static localisation. The static localisation is the one tested in this thesis.

Please refer to [DC11] and [HPALP09] for further comparative surveys including
deterministic and probabilistic methods.

2.6 Chapter Summary

The concepts presented in this chapter show the importance of IPS and some of the
current approaches were described. This chapter also presented some of the advantages
that highlight WiFi technology as an existing infrastructure that provides the suitable
conditions for an IPS to be built upon. The concept of fingerprinting was presented
as well as some relevant fingerprinting methods and the following chapter will present
the research Methodology that was undertaken.



Chapter 3

Methodology

“The only man I know who behaves sensibly is my tailor; he takes my measurements
anew each time he sees me. The rest go on with their old measurements and expect
me to fit them.”

George Bernard Shaw

“Errors using inadequate data are much less than those using no data at all.”

Charles Babbage

This chapter presents a review of the research method followed during this thesis, a
discussion of the data collection method, and details on how the hypothesis was tested.

3.1 Data collection and measurements

The data collection method is designed as a passive scanning longitudinal study. In
this case the quantity being measured is the observable occurrence of radio frequency
signals from 802.11 networks.

The research study was designed to collect weekly measurements, carried out dur-
ing an extended period of time lasting more than one year.

Custom software was created to capture the observations required. In order to
maintain consistency across all the observations, a standard operational procedure in-
volving the locations and hardware used was created. This procedure was adhered to
for all the measurements taken.

51
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3.1.1 Experimental Setting

The study was designed to capture data from real world scenarios, measuring WiFi
signals from real and complex wireless environments with multiple 802.11 networks.
In order to examine the variability of the WiFi environments presented in everyday
settings some exploratory observations were carried out.

These exploratory observations were conducted in locations visited by the author
during working days. Table 3.1 presents the schedule of times and locations visited
during one of these days and indicates the period spent at each particular location. A
set of measurements were then taken during these time periods.

Three significant locations were selected for in-depth analysis and evaluation.

These three locations are: Research Computing Services (Office 1.035) at The Uni-
versity of Manchester, Manchester Piccadilly Railway Station and a Private Residence.

These locations were selected based on the following criteria: convenience, con-
sistency and repeatability. These locations also presented different types of WiFi envi-
ronment characteristics.

This was of interest due to the potential differences in long term analysis of the dif-
ferent environment characteristics. The three locations can be broadly classified as fol-
lows: Manchester Piccadilly Railway Station as a highly crowded location, Research
Computing Services (Office 1.035) as a medium crowded location and the Private Res-
idence as a low crowded location.

During the extended period of data capture these three physical locations were
measured with a higher degree of consistency.

Time Selected Locations
8:00 - 8:50 Derby train station, Derby, UK
9:13 - 9:42 Train Derby-Sheffield, UK

9:45 - 10:05 Sheffield train station, Sheffield, UK
10:11 - 11:05 Train Sheffield-Manchester, UK
11:50 - 15:30 Research Computing Services,

The University of Manchester, Manchester, UK
16:00 - 16:17 Piccadilly Railway Station, Manchester, UK
16:20 - 17:05 Train Manchester-Sheffield, UK
17:23 - 17:50 Train Sheffield-Derby, UK
18:30 - 24:00 Private residence, Derby, UK

Table 3.1: Schedule and locations: captured by the author of a typical working day.
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3.1.2 Wi-Fi Data Sampling

All data capture was carried out using a MacBook (late 2008) running OS X 10.8
Mountain Lion. A unix script was designed and implemented to scan the 802.11 net-
works using the AirPort utility from Apple Private Frameworks.

The data capture script is started manually by the user. Once the script is running,
the user is asked the name of the room, after 10 seconds if no name is provided a
default unknown is set. A folder is created where new observations are going to be
recorded. The folder is named after the current date, time and room name.

Then, a initial request is prompted by broadcasting a Probe Request Frame, that
results in a response (Probe Response Frame) from every WAP within range. The
script receives the Probe Response Frames from these WAPs and stores the returned
information. This request process is repeated for a pre-defined number of times, with
new requests prompted 5 seconds after the end of the previous one. The number of
requests and the waiting time are configurable in the script.

The time it takes to detect and to record measurements varies based upon the num-
ber of WAPs detected. Hence, using a time interval once the previous measurement
set has finished provides a higher certainty that all nearby WAPs are detected and their
responses are recorded before requesting more measurements.

The script was tested in real world cases. From all the locations sampled, the
location Piccadilly Railway Station presented the larger number of WAPs in a single
observation (67 WAPs). A waiting time of 5 seconds was enough for receiving and
storing the data from those 67 WAPs. For a location having significative larger number
of WAPs, (e.g. more than 70) it is recommended to test the script, and potentially
increase the waiting time, which is a configurable parameter in the script. This for
allowing the data from all the surrounding WAPs to be received and stored before the
following Probe Request Frame is broadcasted.

Once the specified number of request is complete, the responses are stored within
the folder as an ASCII txt file. Finally the script indicates the end of the process and
provides information about the route and name of the folder where the observations
where stored. Please refer to appendix B.1 where this data collection script is provided.

Parameters are set, including the number of requests and waiting time in seconds,
The user is asked the name of the room, after 10 seconds if no name is provided a
default unknown is set. A folder is created where new observations are going to be
recorded. The folder is named after the current date and time and the name of the
room. A request is carried out, and the response is stored within the folder as an
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ASCII txt file. After the response the script waits a pre-defined number of seconds
before doing another request. This request process is carried out for a pre-defined
number of times (numRequest). Then the script indicates the end of the process and
provides information about the route and name of the folder where the observations
where stored. Please refer to appendix B.1 where this data collection script is provided.

For each physical location the attributes of the measurement session undertaken is
summarised in the list below:

• Measurements recorded at Piccadilly Railway Station were taken over a period
between 15 and 20 mins, with an interval of 5 seconds between each measure-
ment.

• Measurements recorded at Office 1.035 RCS, The University of Manchester,
were carried out on periods of around 3 hours, also with intervals of 5 seconds
between measurements.

• Measurements recorded at the Private Residence were extended to periods of
around 5 hours with again 5 seconds delays between measurements.

3.1.3 Sampling System

All the data presented was collected using the same MacBook (late 2008) laptop and
in order to provide consistent reproducibility the locations and position of the mea-
suring device was carefully defined on every session. The observations were done
statically, with the laptop placed in approximately the same position ±1m for each of
the subsequent surveys. The observations were made with minimal variation on device
orientation and height above ground. The complete software and hardware system was
made simple to use to minimise variation over the complete study period.

3.1.4 Variables

Each observation includes: timestamp, location and the set of WAPs detected. For
each WAP the following parameters are recorded, BSSID, RSSID, RSSI.

3.1.5 Independent Variables

The Independent variables considered in this study are:
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BSSID The BSSID is the identity of a particular WAP. The Basic Service Set
Identification (BSSID), also known as the Media Access Control (MAC) address, is a
key element for each WAP and is designed to be a unique identifier.

The Service Set Identification (SSID). Commonly known as the “name” of the
network is a 32 bytes string that publicly identifies the network. This is designed to
be human readable and understandable. Although it identifies the network, it is not
necessarily unique and could be easily copied by other WAPs or changed.

3.1.6 Dependent Variables

Received Signal Strength (RSSI). The RSSI is a variable by which the WAP can
be referenced. The RSSI is dependent on the WAPs location and the location where
the measurement is taken and is one of the main parameters to be analysed. Gener-
ally speaking the closer to the WAP the higher the intensity with measured values for
this parameter in the range -11dB to -96dB, with -11dB being the highest intensity
(strongest signal) recorded in our datasets.

WAP score. This is the internal calculated metric to score the WAP trustwor-
thiness. It is dependent on the RSSI, the EWMA (exponentially weighted moving
average) values and the number of occurrences of the WAPs appearance.

The statistical procedures used to analyse the data are:

• Descriptive Statistics

- Measures of central tendency (mean, median and mode)

- Measures of variability about the average (range and standard deviation)

• Exploratory Data Analysis

• Confirmatory Data Analysis

• Temporal order analysis

• Analyse relationships between variables

• Correlation between variables

• Identify changes over time

• Identify long term behaviour
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• Analysing the mean and the distribution of the measurements

• Analysis in the spatial domain

• Analysis in the temporal domain

3.2 Limitations

Some imitations in the research are:

• The extended period of time it requires for data collection

• Changes over small periods of time are not included (e.g. signals strength varia-
tions over one day)

• Only two dimensions coordinates for the space grid

• Only one orientation is considered (The orientation of the measuring device was
fixed for each measurement session. Hence variations due to changes on the
device orientation are not considered)

3.3 Summary

The purpose of this chapter was to describe the research methodology of this study,
data collection details and define a plan for testing the hypothesis as well as present
some of the limitations in the research.



Chapter 4

System Architecture

This chapter describes a Fingerprint-based WiFi Positioning System Architecture that
has been implemented within this thesis. The components of the system, fundamental
processes and interactions are all covered within this chapter.

4.1 Conceptual Overview

A Fingerprint-based WiFi Positioning System Architecture is formed by the following
four components: WAPs, Client, Server and Database (DB). The system takes place
in two stages, an on-line or calibration stage, and an off-line also called a positioning
stage. Figure 4.1 is a conceptual overview diagram of the system. It presents the sys-
tem divided by stages (rows) and components (columns), it also depicts the interactions
between the components. The components highlighted on the diagram are covered in
more detail in subsequent chapters.

4.2 Inter-Subsystem Data Flow

This section is a detailed description of the Research Architecture that was designed
and implemented. The tasks carried out by each of the components are presented as
subsystems. The Client is divided into three subsystems: Client Management, Data
Acquisition and User Interface. The server is divided in five subsystems: Server Man-
agement, Data management, Fingerprinting, Positioning and Storage management.
These subsystems are explained below. Figure 4.2 is the Inter-Subsystem Data Flow
diagram. The subsystems are presented along with the interaction among them. The
interactions or data flow is labelled with a number, each number represents the data

57
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Figure 4.1: Conceptual Overview Diagram.
The key processes for each stage in a fingerprint-based positioning system are high-
lighted in blue. The process “Create Radio-Map” involves the creation of fingerprints
from Survey observations. The algorithms for creating fingerprints are based on spe-
cific definitions (more detail on fingerprint definitions is discussed in chapter 6). The
key process in the on-line stage is the “Positioning” component, this component in-
volves algorithms for estimating a location by finding the best-match between the
Query observation and the fingerprints stored in the radio-map. The algorithms used
in finding the best match can follow a variety of probabilistic and/or deterministic ap-
proaches (see chapter 2).
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elements flowing throughout the subsystems. Table 4.1 lists the names for each data
element.

Figure 4.2: Inter-Subsystem Data Flow.
This diagram represents the implementation of a fingerprinting-based positioning sys-
tem. Key subsystems “Fingerprinting” and “Positioning” are highlighted in blue, these
are equivalent to “Create Radio-Map” and “Positioning”, highlighted in diagram 4.1.
The numbered lines in this diagram represent data elements transmitted between the
subsystems. These data elements are named in Table 4.1 and described in section 4.2.1.
Data element number 5 shown as a dashed line represents the storage of raw data for
research analysis, and would not be required in an actual IPS implementation.

4.2.1 Inter-Subsystem Data Elements

This section covers in more detail the inter-subsystem data elements from Table 4.1.
Number: 1
Name: Probe Response Data Frame
Description: Information broadcasted by WAPs in response to the Probe Request Data
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Data Elements
1. Probe Response Data Frame
2. Observations TXT Folder
3. Symbolic Location
4. tagged Observations TXT Folder
5. survey-Observations CSV Folder
6. survey-Observations CSV Folder
7. SQL statements
8. DB results
9. New/Updated Fingerprint
10. Fingerprint
11. query-Observation CSV Folder
12. Radio Map
13. Best Matched Fingerprint
14. Estimated Location
15. Estimated Location

Table 4.1: Inter-Subsystem Data Elements.
The abbreviation TXT used in data elements 2 and 4 refers to the filename extension,
these files are stored as a plain text in ASCII file format. The abbreviation CSV used in
data elements 5, 6 and 11 is the filename extension to files stored as character-separated
values. The CSV file contains lines, these lines are considered records formed by fields.
The fields within a record are separated by comma character. This CSV structured
format facilitates the posterior database insertion.
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Frame used by the client in an attempt to discover the available networks.

Number: 2
Name: ObservationsTXT Folder
Description: Folder containing one or several observations in txt format (Observation
TXT). Each folder contains one or several observations taken at a specific time and
location containing the following information per WAP detected: SSID, BSSI, RSSI,
CHANNEL, CC, SECURITY. (refer to section acronyms if not recognised). Figure
4.3 is an example of an Observation TXT

Number: 3
Name: Symbolic Location
Description: A descriptive alphanumeric string, number or coordinates representing a
physical location. This data element is a symbolic string, describing the location where
measurements took place.

Number: 4
Name: tagged Observations TXT Folder
Description: Folder named after the location if it is known (survey), or after timestamp
when location is unknown (query)

Number: 5,6
Name: survey-Observations CSV Folder
Description: Observations in Comma Separated Values (CSV), observations stored on
DB for future analysis (number 5) and Observations for realtime fingerprinting (num-
ber 6). Figure 4.4 shows an example of an Observation CSV.

Number: 7
Name: SQL statements
Description: SQL queries for database interaction (e.g. insert, update and data re-
trieval)

Number: 8
Name: DB results
Description: Rows and tables from the database containing results requested thought
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the SQL statements (data element number 7)

Number: 9
Name: New Fingerprint and Updated Fingerprint
Description: A data structure containing a new fingerprint or an updated fingerprint.
These are the data structures resulting from the fingerprinting process. These finger-
prints are formatted for database storage (to be included in the radio-map).

Number: 10
Name: Fingerprint
Description: Fingerprint stored in the database.

Number: 11
Name: query-Observation CSV Folder
Description: Folder containing observations from an unknown location

Number: 12
Name: Radio Map
Description: Selection of fingerprints to be matched with the query observation

Number: 13
Name: Best Matched Fingerprint
Description: Best matching fingerprint between query observations and the radio map
fingerprints stored in the DB

Number: 14,15
Name: Estimated Location
Description: String representing the location of the best matched fingerprint.

4.2.2 WAPs

The Wireless Access Points (WAPs), also called WiFi Access Points are a funda-
mental component on this architecture. The WAPs are electronic devices acting as
transceivers. They form part of a pre-existing WiFi infrastructure whose function is
primarily networking for communication.
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Figure 4.3: Example of an ObservationTXT (file in .txt format). This example presents
WiFi data recorded at Piccadilly train station.
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Figure 4.4: Example of a ObservationCSV
The ObservationCSV (file in CSV format) is a collection of records (lines) formed by
fields (columns). This particular example is the result after processing the Observa-
tionTXT shown in figure 4.3, after processing, the fields are separated with commas
and column titles are removed.
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WAPs transmit radio frequency (RF) signals, where the information on the signal
transmitted is structured based on a protocol. It can be received and recorded by any
WiFi enabled device sharing the medium (air) and the protocol standard. Hence, any
client device on the WAP coverage area can receive the signals.

The WAPs broadcast a specific data frame that contains the SSID, BSSI, RSSI,
channel, HT, CC and security. This data and the strength (dB) at which the signal was
received can be recorded by the client device.

Existing WAPs were used on the implementation stages and no WAPs were in-
stalled for this research. All the information here presented is based on “real-life”
WAPs whose fundamental propose is communication.

4.2.3 Client

A client is a Wi-Fi enabled device, any electronic device with a built in 802.11 network
interface. Example of diverse clients are: mobile phone/smart phone, tablet, laptop
computer. The functions of the client device is to interact with the networks and to
gather information about the WAPs in the vicinity. It is used on both stages of the
system; used by experts for wardriving, or by users for requesting position.

The device employed as client device was a MacBook laptop with processor 2.4
GHz Intel Core 2 Duo, 8 GB in memory. The laptop has a built-in wireless network
adapter with the following details:
Card Type: AirPort Extreme (0x14E4, 0x8D)
MAC Address: 00:23:12:53:ca:3a
Country Code: GB
Supported PHY Modes: 802.11 a/b/g/n
Supported Channels: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 36, 40, 44, 48, 52, 56, 60,
64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140.

A script was implemented, using the software AirPort Utility version 6.2 (620.33)
for scanning the 802.11 networks.

Devices having a wireless network adapter with distinct characteristics are ex-
pected to provide different measurements. However, if measurements are consistent
using a single client device the results of the fingerprinting algorithms presented in this
thesis are expected to be equivalent. Nevertheless, for measurements using a variety of
devices (having distinct wireless network adapters), a calibration mechanism must be
implemented for managing the potential offset in the data. The implementation of this
calibration mechanism is out of the scope of this research.
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4.2.4 Data Acquisition Subsystem

Data Acquisition Subsystem is the subsystem used to scan an area for available net-
works and recording the data. Table 4.2.4 provides the Data Acquisition input, func-
tions and output for the subsystem.

Input Request Response Data Frames

Functions Accessing client’s hardware

Performing a wireless broadcast scan

Recording Probe Response frames from near APs

Output Observations TXT Folder

Table 4.2: Data Acquisition Subsystem

4.2.5 Client Management Subsystem

Input Observations TXT Folder

Symbolic Location (for tagging survey-observations)

Estimated Location (result from positioning )

Functions Interfacing between client systems

Routing data and handling communication between client and server

Output tagged Observations TXT Folder

Estimated Location (positioning result)

Table 4.3: Client Management Subsystem

4.2.6 User Interface Subsystem

4.2.7 Server

The server is a dedicated computer running the fingerprinting and positioning related
algorithms. It reduces the computational analysis on the client. Functions carried out
on the server include: receiving data, processing observations, generating and updating
fingerprints, interacting with the database and computing position. The server is a
MacBook laptop with processor 2.4 GHz Intel Core 2 Duo, 8 GB in memory, running
the following software: MATLAB ®, and Sequel Pro 1.0.2 .
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Input Estimated Location

Functions Start/Stop survey

Off-line observations capture (survey observations)

On-line observations capture (query observations)

Display Location (Positioning Results)

Output Symbolic Location (string for tagging off-line observations)

Table 4.4: User Interface Subsystem

4.2.8 Server Management Subsystem

Input tagged Observations TXT Folder

Best Matched Fingerprint

Functions Communication with client and routing within the server.

Output tagged Observations TXT Folder

Estimated Location

Table 4.5: Server Management Subsystem

4.2.9 Data Mangement Subsystem

The Data Management Subsystem processes the WiFi data by extracting the significant
information. It generates the observations as a data element formatted for insertion on
the database or for direct processing for other subsystems such fingerprint and posi-
tioning.

Input query-Observation CSV Folder

Functions Importing Observations

Processing observations for appropriate format

Routing observations to Fingerprinting or Positioning subsystem accordingly

Output survey Observations CSV Folder

query-Observation CSV Folder

Table 4.6: Data Mangement Subsystem
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4.2.10 Fingerprinting Subsystem

A fingerprint is a unique identification of a physical location. It is formed by the
relationship between a signature and its symbolic location. A large set of fingerprints
is stored on the database. The fingerprint generation is an off-line process consisting on
the analysis the survey-observations per location. The fingerprinting process is covered
in depth in chapter 6.

Input Survey-ObservationsCSV Folder

Fingerprint

Functions Fingerprint Generation

Fingerprint Update

Output New/Updated Fingerprint

Table 4.7: Fingerprinting Subsystem

4.2.11 Positioning Subsystem

Query-Observations are the input for Positioning. These observations do not include
a location. The set of WAPs from a Query-Observation are compared against the fin-
gerprints in order to identify the best matched fingerprint and link it with the estimated
location for the query-observation. See chapter 6 for details on the positioning algo-
rithms.

Input Query-ObservationCSV Folder

Radio Map

Functions Running positioning algorithms

Output Best Matched Fingerprint

Table 4.8: Positioning Subsystem

4.2.12 Storage Mangement Subsystem

The storage management subsystem’s function is to act as a link between the database
and the other subsystems on the server.
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Input SQL statements

New/Updated Fingerprint

DB results (Data rows, tables, and messages from the database)

Functions Create SQL statements for interacting with the database such as:

DB connection

DB population (e.g. Insert observations, insert fingerprints,

update fingerprints)

DB retrievals (e.g. fetch observations, fetch fingerprints)

Output SQL statements

Fingerprint

Radio Map

Table 4.9: Storage Mangement Subsystem

4.2.13 Database

The Database stores the system’s data in a structured way, which allows the server to
insert, store, and retrieve the data when required.

The database was carefully designed for research purposes. It provides the re-
quired structure for storing observations, fingerprints (from five different fingerprint
definitions), and the logs of fingerprint’s changes/updates (per fingerprint definition).
Storage of observations is required for historical records and for a data analysis which
is presented in chapter 5. Fingerprints from several definitions and their logs are kept
on the database for analysis, comparison, and generation of results presented in chap-
ters 6 to 8.

For clarity, the database’s tables are presented in figures 4.5, 4.6 and 4.7 separated
by functionality. The Enhanced Entity-Relationship Model of the Database in its en-
tirety is shown in Appendix A.3.

Figure 4.5 includes tables used for storing the observations. These tables can
stand alone as a separate database. The Entity-Relation Diagram and the metadata for
database generation is publicly available (see http://dx.doi.org/10.5281/zenodo.
13793). Also a database containing the observations collected during this research is
publicly available (see http://dx.doi.org/10.5281/zenodo.12913).

Figure 4.6 presents the tables used for storing fingerprints. Although these tables
are presented separately, they are not stand alone, they are directly related with tables
presented in figure 4.5.

http://dx.doi.org/10.5281/zenodo.13793
http://dx.doi.org/10.5281/zenodo.13793
http://dx.doi.org/10.5281/zenodo.12913
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Figure 4.7 presents the tables used for storing the log of fingerprint’s changes.
These tables are not stand alone, they are related to tables presented in 4.6 and 4.6.

The database resides on the server, but it can be placed on a remote database ded-
icated server. It was implemented using the open-source relational database manage-
ment system MySQL 5.5.28.

4.2.14 Database Subsystem

Input SQL statements

Functions Storage of observation and fingerprints/radio-map

Output DB results

Table 4.10: Database Subsystem

4.3 Chapter Summary

This Chapter presented the system architecture of a Fingerprint-based WiFi Position-
ing System. The components, functions and relation were explained. The following
chapter presents a detailed analysis of the data set collected using the components of
this architecture.
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Figure 4.5: Database Entity-Relationship Diagram. The tables presented in this Figure
are the ones used for the storage of the survey-observations and query-observations.
Also the tables that have a direct relation are included (e.g. Location, Room, Building,
City, etc.) Every observation remainds in the database for purposes of data analysis.
In a final implementation, the storage of all the observations would not be requiered.
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Figure 4.6: Database Entity-Relationship Diagram. The tables in this Figure are for
the storage of the fingerprints generated with the five fingerprint definitions
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Figure 4.7: Database Entity-Relationship Diagram. The tables in this Figure are for the
systematic recording of the fingerprints for the five fingerprint definitions implemented



Chapter 5

Data Analysis

This chapter presents an analysis of data from extensive temporal and spatial WiFi
scanning that was designed specifically for this project and was undertaken for a period
of over one year. The aim of this chapter is to present the data sets and provide a better
understanding of the statistics and discuss certain features within them. Three different
localities are the subject for this chapter. These localities represent three very different
scenarios, each which can be used to understand the developments of a WiFi fingerprint
system and assist in addressing the project’s hypothesis. The following sections cover
a description of the locations selected and the reason why they were chosen. Also
descriptive statistics are presented for the top 10% most seen WAPs for each location
and related graphs synthesising the data are shown.

5.1 Data Set

There are many WiFi data sets available for fingerprint analysis, with many being syn-
thetic or set-up under controlled circumstances and often for a specific demonstration
or paper. It was considered that a large temporally changing real environment dataset
was required for this project. This data set would be useful for both answering the
hypothesis questions raised as well as being a useful future resource for further studies
and comparisons.

A large data set has been collected during a period of over one year (see chapter 3
for details on data collection). In brief this data set includes: 1,224 WAPs with unique
MAC addresses, over 125,300 observations taken in 48 distinct locations(see Appendix
A.1 for a display of all locations surveyed).

Within the entire data set, three locations were selected for extensive analysis, due

74
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to their differing characteristics, the selected locations are:

• Manchester Piccadilly Railway Station, Manchester, UK

• RCS offices within Devonshire House at The University of Manchester, Manch-
ester, UK

• Private residence, Derby, UK.

The measurements gathered and statistics extracted from these three locations are
presented and discussed in the subsequent sections.

5.1.1 Manchester Piccadilly Railway Station

Manchester Piccadilly railway station is the busiest station in Manchester. It comprises
14 rail platforms and has an estimated usage of 18.584 million rail passengers annually
(information based on tickets sale in year 2011/12 [oRR]). The main station building
was the subject of analysis, which is a large building formed by a lower and upper
concourse areas with shops, food and drink outlets, ticket office and seats for people to
rest.

Figure 5.1 is a modification of the Manchester Piccadilly Railway Station guide
map from the Network Rail [web].

The data collection point was adjacent to the glass wall partitioning the main station
concourse from the platforms at platform 6. Figure 5.2 presents a panoramic view of
the Manchester Piccadilly rail station, which was taken from the same location that the
WiFi data was collected.

In comparison with all the surveyed locations, Manchester Piccadilly Railway Sta-
tion, presented the largest number of WAPs, a total of 555 distinct WAPs. Out of these
only 20 WAPs were seen across 90% + of the observations. Describing the tail of the
observations, 491 WAPs were seen for under 10% of the observations. Table 5.1 lists
those high frequency WAPs that were detected within 90% to 100% of the observa-
tions. In the table the WAPs are ordered by the number of times each WAP was seen,
called frequency of occurrence ( f ). As observed in the table, the WAP #1 has an SSID
“Virgin Train” and was seen a total of 3,727 out of 3,728 observations, this is 99.97%
of the total observations recorded in the railway station. On the other hand WAP #555
with SSID “virgintrainswifi” was seen in 1 out of 3,728 observations, which represents
circa 0.03% of the total measurements.
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Figure 5.1: Data collection point at the Manchester Piccadilly Railway Station. This
figure is a modification of a guide map taken from the Network Rail website

Figure 5.2: Manchester Piccadilly Railway Station, Manchester, UK
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In analysis we can classify the WAPs from those detected into the following two
types:

• Static WAPs. The static WAPs are the ones held approximately stationary, such
as installed on the ceiling or walls. These WAPs are measured into the client
receiving devices as a relatively stable signal strength (RSSI). A static WAP can
have a low and fluctuating RSSI or can be a recently installed, or semi-temporary,
appearing only in few recent or as a cluster of observations.

• Mobile WAP. Mobile WAP can have variable physical locations (e.g. mobile
phones, tablets, portable computers and WAPs installed on board trains). The
RSSI from mobile WAP almost always appears unsteady to the client device.
They can be consistent in strength, for example train hosted WAPs will appear
at very specific locations in the railway station and at specific times/dates.

Table 5.2 presents the descriptive statistics for the WAPs detected at Piccadilly
Railway Station. Including the following information per WAP: ranking, WAP ID,
mean, mode, median, minimum and maximum values of RSSI.

Table 5.2: Descriptive Statistics, Piccadilly Railway Station,
Manchester, UK.

# WAP ID mean mode median min max
1 137 -71.63 -71 -72 -77 -66

2 127 -70.35 -71 -70 -77 -64

3 150 -70.46 -71 -70 -90 -42

4 161 -74.53 -74 -74 -90 -57

5 194 -62.28 -62 -62 -73 -52

6 199 -63.67 -63 -63 -72 -55

7 197 -72.95 -71 -73 -82 -60

8 195 -77.52 -76 -77 -87 -69

9 193 -73.12 -74 -73 -84 -62

10 146 -54.24 -55 -54 -87 -1

11 198 -69.52 -70 -70 -81 -59

12 192 -73.01 -72 -73 -89 -61

Continued on next page
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Table 5.2 – continued from previous page
# WAP ID mean mode median min max
13 246 -70.01 -70 -70 -79 -62

14 215 -70.43 -69 -70 -90 -55

15 251 -74.55 -77 -75 -88 -55

16 444 -70.09 -70 -70 -78 -62

17 442 -76.77 -77 -77 -83 -70

18 441 -76.94 -77 -77 -82 -69

19 163 -80.3 -81 -81 -88 -63

20 245 -79.68 -80 -80 -86 -71

Figure 5.3 is a plot including all the WAPs detected at Piccadilly railway station
sorted by frequency of occurrence. The long tail in the figure can be attributed to the
WAPs with a low frequency of occurrence, such as mobile WAP.
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5.1.2 Research Computing Services

The second location to be analysed is a university building. Located within Devonshire
House, the RCS is part of The University of Manchester in Manchester, UK. RCS is a
restricted access premises comprising offices mainly used by university staff.

Two sets of data were collected within RCS:

• Snapshot data collection. A “snapshot” data collection refers to a short-term
collection of Wi-Fi data.

• Long-term data collection. The long-term data collection refers to a longstanding
and repeated data collection at a particular office within RCS department.

Snapshot Data Collection

A “snapshot” data collection was carried in the majority of offices at RCS. The so
called snapshot collection is the Wi-Fi scanning and recording of few observations
(around 4 observations) per room/area. Two snapshot data collection sessions were
executed in most of the RCS offices in two different dates; the first was at the beginning
of data gathering period (October 2012) and the second one was done towards the
end of data gathering period (August 2013). Figure 5.5 presents the blueprint of the
floor where RCS is situated, highlighted in red are those rooms where snapshot data
collection was carried out.

The objectives of collecting these snapshots are twofold; first to build up a WiFi
radio-map (used for positioning) covering most of RCS offices, and second to analyse
WiFi scenery changes occurring within a lapse of several months.

Long-term Data Collection

The long-term data collection consists of weekly data measurements. The measure-
ments were carried out on a period covering over one year. The location subject to
long-term data collection was an office (1.035) within the RCS department. Office
1.035 is allocated for the author’s exclusive use. Therefore, it provides a controlled
environment for repeatable data collection. Figure 5.6 shows the blueprint of the RCS
department and office 1.035 is highlighted with a red mark.

Observations in office 1.035 were performed as similar to each other as possible.
This was done by placing the receiving client device (MacBook laptop) on a static
position on every data collection session.
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Figure 5.5: RCS department Blueprint, highlighted in red are those rooms where WiFi
snapshot data was collected.

Figure 5.7 is a panorama image taken inside of office 1.035.

Figure 5.6: Office 1.035 at RCS, The University of Manchester, Manchester, UK

Analysis of data collected at office 1.035 revealed around 46,161 observations ac-
commodating a total of 141 WAPs with distinct MAC addresses. Out of these 141
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Figure 5.7: Panorama view from within Office 1.035 at RCS, The University of Manch-
ester, Manchester, UK

WAPs, 13 were seen in 90%+ observations, and an average of 32 WAPs were detected
per observation.

Table 5.3 presents details for the top 10% WAPs collected in office 1.035, which
are ranked by frequency of occurrence. The columns on the table are: ranking number,
WAP identifier, BSSID (MAC address), SSID (name of the network), RSSI average
(µ), RSSI standard deviation (σ), frequency of occurrence ( f ) and percentage of rela-
tive frequency. The WAP that was seen in most of the observations is ranked #1, with
SSID “UoM WIFI” and BSSID “d8:c7:c8:ad:cd:b1”, it was detected in 99.97% of the
measurements. The WAP with lowest frequency of occurrence is ranked in position
#141 with a SSID “Connectify-Jen” and BSSID “22:df:9a:38:b1:38”, was detected in
one single observation.
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Table 5.4 presents the descriptive statistics for the top 10% WAPs detected in office
1.035. The table presents the mean, mode, median, maximum value and minimum
value of the RSSI measurements. WAPs are sorted by frequency of occurrence.
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Figure 5.8 is an histogram of all the WAPs detected at office 1.035 sorted by fre-
quency of occurrence. The number of WAPs on the tail of the figure can be attributed
to the WAPs with a low frequency of occurrence, such as mobile WAPs.
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5.1.3 Private Residence

The third location to be analysed is a private residence located close to the city centre
in Derby, UK. The private residence is a stand alone detached maisonette.

In brief the residence comprises: Entrance Hallway, Lounge/Dining area, Kitchen,
two double bedrooms and bathroom.

The dimensions of the property are:

• Lounge / Dining Kitchen 5.74m (max) x 4.33 (max)

• Master Bedroom 3.63m (extending) x 3.28 (max)

• Bedroom Two 2.79 (max) x 2.46m(extending)

• Bathroom 2.05m (max) x 1.66m (max)

Figure 5.10 presents the floor plan of the private residence, this figure shows the
position where the WAP is installed within the master bedroom, position of the receiv-
ing client device (MacBook laptop) and a red camera icon indicating the place from
where the panorama image (figure 5.11) was taken. Figure 5.11 is a panoramic image
taken within the private residence.

Data collection at the property was done by a MacBook laptop. The positioning of
the device was on the work-station placed at the corner of the lounge/dining area. At
the residence there was only one WAP installed. Nevertheless, a total of 97 WAPs were
detected over one year, which was the period of data collection. The number of obser-
vations recorded on the residence were 58,131, with an average of 23 WAPs detected
per observation and 9 out of the 97 WAPs were seen in 90%+ of the observations.

Table 5.5 presents details for the top 10% WAPs collected at the private residence,
these WAPs are are ranked by frequency of occurrence.
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Figure 5.10: Private Residence floor plan, the position of the WAP is highlighted by a
red circle, the client device recording observations is highlighted by a red square, and
the position were the panoramic image was capture is indicated by a red camera.

Figure 5.11: Panorama image within the Private Residence, Derby, UK
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Table 5.6 presents the descriptive statistics for the WAPs detected at the Private
Residence.

Table 5.6: Descriptive Statistics, Private Residence, Derby,
UK.

# WAP ID mean mode median min max
1 363 -73.69 -72 -73 -91 -35

2 360 -73.67 -73 -73 -91 -35

3 350 -77.14 -75 -77 -90 -43

4 361 -73.62 -73 -73 -92 -35

5 353 -74.98 -74 -74 -93 -37

6 352 -79.59 -78 -80 -96 -44

7 365 -78.33 -80 -79 -92 -42

8 358 -80.13 -80 -80 -94 -44
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When analysing data from the three locations, the location Platform 6 at Piccadilly
Railway Station is different from the other two (Office 1.035 at RCS and the Private
Residence) in the large number of WAPs and the probabilities presented in their fre-
quency of occurrence.

This particular location (Platform 6 at Piccadilly Railway Station) is a highly crowded
public space, not only regarding human presence, also highly crowded with WAPs. A
total of 555 WAPs were detected, with an average count of 47 WAPs per observation.
Nevertheless, as observed in Figure 5.3, most WAPs have a low frequency of occur-
rence. This is because of the detection of mobile WAPs (WAPs that are not fixed, such
as mobile phones, or WAPs on board vehicles).

From analysing the data in Figure 5.3, 90% of the WAPs are unlikely to be ob-
served, having a probability of occurrence lower than 0.25. From this it can be said
that around 500 of the WAPs detected at this location provide little or no relevant infor-
mation for positioning. With only 6% of the WAPs having a probability of occurrence
higher than 0.5.

On the other hand, data from the locations Office 1.035 at RCS and Private Resi-
dence presented in Figure 5.8 and 5.12, showed a significative lower number of WAPs
detected.

Office 1.035 had a total of 141 WAPs detected with an average WAP count of 32
per observation and location Private Residence had a total of 97 WAPs detected, with
an average WAP count of 23 per observation. Both locations coincide in a 20% of
WAPs with a probability higher than 0.5.

As result of comparing Figures 5.3, 5.8 and 5.12, it can be said that fingerprints
for locations similar to the Piccadilly Railway Station would benefit from a ranking
mechanism such as the proposed by the EWMA fingerprint presented in this thesis.

The EWMA fingerprint implements this ranking mechanism which takes into con-
sideration the WAP frequency of occurrence (presence of the WAP), useful to generate
light weight fingerprints by scoring WAPs on their “trustworthiness”. This is highly
valuable for crowded locations such as Piccadilly Railway Station, where including
all the WAPs when fingerprinting would result in larger fingerprints that require more
computation.

Also, on analysing Figures 5.3, 5.8 and 5.12 an initial reasoning could be to ex-
pect a relation between the frequency of occurrence and signal strength. It could be
expected that WAPs detected most of the time are those presenting a strong signal
strength.
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Figures 5.4, 5.9 and 5.13, corresponding to locations Platform 6 at Piccadilly Rail-
way, Office 1.035 at RCS and Private residence respectively, present the mean and
standard Dseviation of the RSSI per WAP. WAPs are arranged by frequency of occur-
rence (same order than presented in Figures 5.3, 5.8 and 5.12) where the WAP plotted
at the far left is the one with the highest frequency of occurrence.

From Figures 5.4, 5.9 and 5.13 it is observed that there does not exist a substantial
relationship between the mean of the signal strength and frequency of occurrence.

A misleading assumption of using only WAPs with the strongest signal for finger-
printing can result in the discrimination of valuable WAPs.

The proposed EWMA fingerprint takes into consideration not only the signal strength
but also the frequency of occurrence. Furthermore, the EWMA fingerprint also con-
siders historical values of the frequency of occurrence per WAP, which can result in
robust better fitted fingerprints.

5.1.4 Timestamp Analysis

The figures 5.14, 5.15 and 5.16 present the RSSI (dB), mean, standard deviation, min-
imum and maximum values, over time for the WAP ranked #1 (most seen WAP) per
location.

Table 5.7 presents a summary of the data collected in the three locations, including:
the total observations recorded, the total number of WAPs detected, the top WAPs
(number of WAPs detected in over 90%+ of the observations), and the average of
WAPs detected per observation.

Location Total Total Top WAPs Average WAP
Observations WAPs (Present 90%+) count per

Observation
Platform 6, Piccadilly 3,727 555 21 46

Railway Station

Office 1.035 46,161 141 13 32

RCS, UoM

Living Room 58,132 97 9 23

Private Residence

Table 5.7: Summary of the dataset for the three locations subject to analysis
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Figure 5.14: WAP 137. Piccadilly Railway Station, Platform 6
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Figure 5.15: WAP 63. RCS, office 1.035.
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Figure 5.16: WAP 363. Private Residence
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5.2 Chapter Summary

The chapter “Data Analysis” described in detail the locations selected for data col-
lection. A data analysis was also presented, providing a better understanding of the
real-life data collected. In the following chapter, the empirical technique called fin-
gerprinting is explained. A variation of fingerprinting techniques is presented. This
real-life data is used for demonstration and evaluation purposes.



Chapter 6

Fingerprinting and Positioning

As mentioned in Chapters 2 & 3, a fingerprint-based Indoor Positioning System con-
sists of two stages; fingerprinting and positioning. This chapter develops the design
and implementation for these two stages. The first section titled “Fingerprinting” ex-
plains the process for recording measurements, fingerprint generation and fingerprint
updating. Also in this section, the EWMA Fingerprint is presented, an enhanced fin-
gerprint definition that is adaptable to temporal changes in the WiFi environment. The
second part of the chapter is the section titled “Positioning”, which presents three dif-
ferent but incremental positioning methods; these are based on WAP presence, WAP
signal strength and a novel metric for ranking the WAPs.

Both processes, fingerprinting and positioning, require the input of observations.
Therefore, observations are described before any further discussion.

Observations

The input for the WiFi based Indoor Positioning System is the data broadcast by WAPs
within range of the measuring device. Every WAP broadcasts a Probe Response data
frame containing information including: SSID, BSSI, RSSI, channel, HT, CC and se-
curity. The RSSI, in units of decibels (dB), indicates the strength at which the signal is
received at the measuring device.

An observation includes: a location, a timestamp, and a set of WAPs. A formal
definition of an observation is presented in Equation 6.1.

104
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Observation = [l, t,{WAP1,...,N}] (6.1)

WAPn = [SSID,BSSID,RSSI,Channel,HT,CC,Security] (6.2)

Descriptions for the parameters in an observation are as follows:

• Location (l). The location is the information about the place where the observa-
tion was recorded. This parameter is optional since it can be null in the situation
where the physical place is unknown.

• Timestamp (t). The timestamp refers to the date and time with precision in
seconds, defining when the observation was taken.

• WAPs ({WAP1,...,N}). Set of WAPs detected within range of the device recording
the observation, where N is the number of WAPs within the set. As an example,
in this study, the largest number of WAPs detected in a given observation is 67.
Each WAP in the set includes the following parameters: SSID, BSSID (MAC
address), RSSI, Channel, HT, CC and Security. A formal definition is presented
in Equation 6.2, where n in WAPn indicates the index of the WAP.

Recorded observations fit into one of two categories: “Survey-Observations” (so), ob-
servations tagged with a known location and “Query-Observations” (qo), observations
from unknown location. Survey-observations are used to create and update finger-
prints, whereas query-observations are processed for positioning. Fingerprinting and
positioning are described in the following sections.

6.1 Fingerprinting

Fingerprinting, in the context of positioning, refers to the processing of data from the
“WiFi scenery” recorded at a particular location. Fingerprinting is an iterative process
and consists of the steps presented in Table 6.1. Steps 1 to 3 are related to initialisa-
tion also called training, these steps are executed for every new location to be added
to the radio-map. Steps 4 to 6 are related to updating, these steps are repeated every
time an update to the fingerprint is required. The fingerprint update is carried out when
a survey-observation recorded at a location already fingerprinted is received into the
system.
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Fingerprinting
Initialisation

1. Collection of survey-observations for fingerprint initialisation
2. User validation
3. Fingerprint generation

Maintenance
4. Collection of survey-observations for fingerprint update
5. User validation
6. Fingerprint update

Table 6.1: Fingerprinting Process.

Fingerprint Initialisation

• Collection of survey-observations for fingerprint initilisation. The initial step
for fingerprinting is to establish the locations to be scanned. This includes de-
termining the size of the locations by considering: bulding layout and intended
accuracy (for the final application). For example, within a building, a set of ob-
servations can be recorded in every room, then each room becomes a definable
location. The RCS testbed presented in Chapter 5, is an example of a setting
with room level accuracy. When scanning a big open space inside a building it
can be partitioned into a grid where each square is considered a location. The
sizes of the locations determines the resolution of the radio-map in the system.
Once defined the locations, survey-observations are collected by an expert at the
pre-defined locations. These survey-observations are labelled with an appropri-
ate name (alphanumeric string) that describes each location. The label can be the
name or number of a room (e.g. 1.005) and, if applicable, the grid coordinates.
Survey-observations are required for fingerprint initialisation and updates once
the user is validated.

• User validation. The user validation is an important aspect for fingerprinting.
When survey-observations are received the user is validated against a set of au-
thorised users. Survey-observations, coming from unauthorised users are not
or may not be used for fingerprint initialisation nor for updates. The user is
validated through the MAC address of the WiFi enabled device collecting the
survey-observations. The input of deliberate or unintentional erroneous data is
potentially reduced by carrying out user validation.

• Fingerprint generation. A fingerprint is initialised every time a survey-observation
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with a new location (not already existing in the database) is received. In order
to carry on with the initialisation, firstly, new location details from the survey-
observation are stored in the database. These details, embedded into the survey-
observation by the user, can include: Country, City, Building, Room and Coor-
dinates. Once the location is in the database, a new fingerprint is generated and
linked with the location.

Fingerprint Maintenance

• Collection of survery-observations for fingerprint update. Fingerprints are
maintained up-to-date by collecting further survey-observations. Fingerprints
(fp) are updated with the incoming survey-observations (so) coinciding in loca-
tion.

• User validation. The survey-observations used for updating fingerprint are also
subject to user validation. Only those survey-observations coming from an au-
thorised user are considered for updating existing fingerprints.

• Fingerprint update. An up-to-date fingerprint is computed based on the exist-
ing fingerprint and the survey-observation.

This up-to-date fingerprint includes also a set of WAPs with their estimated ex-
pected signal strength value. This set is generated based on the WAPs in the fin-
gerprint (fpWAPs) and the WAPs in the current survey-observation (soWAPs).
The specific mechanism of how the fpWAPs and the soWAPs are “merged” for
creating the up-to-date fingerprint, depends on the technique implemented.

Including the proposed fingerprint (EWMA Fingerprint) there are five finger-
print techniques, (from here onwards called fingerprint definitions) explained
and tested in this thesis.

Once the WAPs for the up-to-date fingerprint are computed, the updating process
is completed by replacing the existing/previous fingerprint with the up-to-date
fingerprint.

The initialisation and maintenance processes explained are general purpose pro-
cesses independent of the fingerprint definition. Differences and details of how the
fingerprint is generated and updated per definition will be clear in the following sec-
tion, where the different fingerprint definitions are explained.
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6.1.1 Fingerprint

A fingerprint can be defined as a tuple formed by the location l and its set of WAPs. A
fingerprint can be formally defined by,

FP = [l,{WAP1,...,N}] (6.3)

from where

• Location (l). An alphanumeric string that is considered the physical location
“name”. This location string can include the following: country, building (e.g.
RCS), room (e.g. 1.035), and grid coordinates within the room (if appropriate)

• WAPs ({WAP1,...,N}). The set of WAPs that were detected at the location. The
number of WAPs within the set is indicated by N. Equation 6.4 presents the
parameters stored per each WAP

WAPn = [WAP IDn, x̂n] (6.4)

• WAP Identifier (WAP ID). Parameter that identifies a WAP uniquely in the sys-
tem. This identifier is directly related with the BSSID (MAC address) of the
WAP

• Expected signal strength value (x̂). Estimated expected value for the WAP sig-
nal strength. An estimated x̂ is computed per each WAP within the set in the
fingerprint

• Number of WAPs (N). Integer that indicates the number of WAPs included in
the set {WAP1,...,N} within the fingerprint

• WAP index (n). Index for referencing individually the WAPs in the set {WAP1,...,N}
from where n = 1, ...,N

This fingerprint is the foundation on which other fingerprint definitions are based.
Fingerprint definitions can be differentiated by the method used to calculate the ex-
pected signal strength value x̂ per WAP. Another difference between fingerprints defi-
nitions is the number of parameters per WAP. Including less or more information that
can be used for improving positioning. The estimate x̂ is stored for each WAP in the
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fingerprint as an expected value of the WAP’s RSSI. The computation of this value is
critical since it is used for comparison in the positioning stage.

In order to understand the novel EWMA Fingerprint proposed in this thesis, the
following existing methods of computing a fingerprint are described:

• Basic Fingerprint

• Default Fingerprint

• Gallagher Fingerprint

• Jung-Sung Fingerprint

Following is a description of every one of these listed techniques.

6.1.2 Basic Fingerprint

The simplest of the fingerprints techniques is referred by the author as a “Basic Fin-
gerprint”. This definition is a starting point for understanding fingerprint generation.
A Basic Fingerprint is created based solely on the latest survey-observation. The set
of WAPs in the Basic Fingerprint is exactly the same that the most recent survey-
observation, furthermore the WAP’s expected signal strength value x̂ is simply the
latest measure signal strength (RSSI). When using this technique, the historical in-
formation about the detected WAPs and their signal strength are lost. The fingerprint
updating process consists in overwriting the fingerprint when a new observations is
recorded. The Basic Fingerprint formal definition is identical to the one presented in
Equations 6.3 and 6.4, the peculiarity about the Basic Fingerprint is the value assigned
to x̂, which is defined as follows:

x̂i = xi = RSSI (6.5)

Using the Basic fingerprinting method, all estimated values (x̂i) are equal to the
current observed value (xi). It is assumed that only the latest/current observation is
important, and prior observations are not considered in the estimation of the expected
value. This process can be seen as a weighted average, where the last observed value
has all the weight.

The Basic Fingerprint was implemented. The data set described in Chapter 5 Data
Analysis, was used as survey-observations for Basic Fingerprints initialisations and
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updates. Figure 6.1 presents the raw data for WAP63 from Location Office 1.035 at
RCS (Location referred as Location 20 in the Figures).
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Figure 6.1: Raw data observed from WAP 63, Location Office 1.035, RCS (Location
20).

Figure 6.2 plots the values of x̂ for WAP 63 when implementing the Basic Finger-
print approach on survey-observations collected at Location 20.

Figure 6.3 is the raw data plotted along with the Basic Fingerprint, as it is appreci-
ated the x̂ value (red line) overlaps the RSSI data (blue points).

The Basic Fingerprint approach is simple and the computation of the value x̂ is
remarkably straightforward, nevertheless this approach suffers from some limitations
such as:

• Fingerprint is overwritten with every incoming observation

• Contains no knowledge of historical information

• It is not robust in the presence of signal changes and outliers



6.1. FINGERPRINTING 111

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
B asic F ingep rint. [L oc 20, WAP 63]

x̂
(d

B
)

Observation

 

 
x̂

Figure 6.2: Expected RSSI computed with the Basic Fingerprint approach from WAP
63, Location Office 1.035, RCS (Location 20).
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Figure 6.3: Raw data and Basic Fingerprint from WAP 63. It is observed from this
figure that the Basic Fingerprint (blue) follows identically the RSSI (red).
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6.1.3 Default Fingerprint

The Default Fingerprint, named as such in [FLMG13] and defined in [BP00], consists
of a location and a list of WAPs with their corresponding expected signal strength value
(x̂). Similarly to the Basic Fingerprint, the Default Fingerprint is defined by Equations
6.3 and 6.4. The difference is in the computation of x̂. The Default Fingerprint uses
a statistical parameter (mean or median) [FLMG13] as x̂. A common approach is to
use a simple average. Equation 6.6 is the formal definition for the estimation of the
expected signal strength value on the implementation of a Default Fingerprint.

x̂ = µ =
1
I

I

∑
i=1

xi (6.6)

The estimated value x̂ is the mean of all the RSSI values observed up-to-date per
WAP.
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Figure 6.4: Raw data (red) and Default Fingerprint expected signal strength x̂ (blue)
from WAP 63, Location 20.



114 CHAPTER 6. FINGERPRINTING AND POSITIONING

The computation presented in Equation 6.6 is not straightforward, a naı̈ve approach
is to store all the previous values of RSSI, and then compute the mean as required. The
problem with storing every single value is that it requires a large storage that would
increase with every new survey-observation received. Also, the amount of data re-
ceived in a crowdsourced fingerprint based IPS can be large and it can increase over
time. Therefore the use of a simple arithmetic mean and standard deviation would not
be suitable. In order to remove the requirement of storing every one of the survey-
observations a recursive method was employed on the implementation of the Default
Fingerprint. The implemented method takes the new data point and the previous av-
erage to arrive at both the new average and standard deviation. In other words, rather
than storing every one of the RSSI values per WAP per observation, it is only required
to store the latest average and an intermediate variable used for computing the standard
deviation. This method [Wel62], [Lin74] and [CGL83] consists of one-pass iterative
calculation of the mean, where signal strength measurements are used once only and
therefore measurements do not need to be stored. In this thesis the programming of the
Default Fingerprinting algorithm implements this iterative approach to compute the
mean and standard deviation.

The process is the following:

First, the mean µ and an intermediate value Q, are initialised to 0 (zero),

µ0 = 0 (6.7)

Q0 = 0 (6.8)

Second, the mean is computed using Equation 6.9

x̂ = µi = µi−1 +
xi−µi−1

i
(6.9)

(6.10)

For i= 1...I, where i is the number of observation, its value increases by one with every
new survey-observation and I is the total number of observations made up-to-date. The
value for xi it the RSSI from incoming survey-observations,

xi = RSSI (6.11)
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Then, the intermediate value is computed using Equation 6.12

Qi = Qi−1 +(xi−µi−1)(xi−µi) (6.12)

Finally, the standard deviation si is computed with the value Q and the number of
observations, as shown in Equation 6.13

si =

√
Qi

i−1
(6.13)

From this, the value x̂ per WAP within a Default Fingerprint is µi from equation
6.9, and it is updated every survey-observation.

Figure 6.4 presents the changes on the value x̂. For this, survey-observations from
WAP 63 (Location 20) were processed following the Default Fingerprint definition.

A Default Fingerprint includes every one of the WAPs detected at the location.
This can be considered as a limitation since it has no mechanisms to filter the WAPs.
Hence, Default Fingerprint does not handle the addition and removal of WAPs. Also,
the average method used to compute the expected signal strength assumes that all ob-
servations are equally important. This can be thought as a weighted average where the
first observation is weighted exactly the same as the latest observation, even if the first
observation was made in the very distant past. (e.g. Considering the recorded dataset,
an observation made in March 2013, is weighted the same as an observation made in
January 2014).

6.1.4 Gallagher Fingerprint

The third fingerprinting technique to discuss is the one proposed by Gallagher et al
[GLDR10]. Gallagher Fingerprint is formed by a tuple of location and a set of WAPs,
like the previously explained definitions. Nevertheless, Gallagher Fingerprint includes
(in addition to WAP ID and x̂) two extra parameters per WAP: score and pending.
Thus, Gallagher Fingerprint can be formally defined as equation 6.14 and 6.15.

GFP = [l,{WAP1,...,N}] (6.14)

WAPn = [WAP IDn, x̂n,scoren, pendingn] (6.15)
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• Expected value (x̂) In Gallagher Fingerprint the expected value per WAP is the
latest RSSI value.

x̂i = xi = RSSI (6.16)

Similarly to Basic Fingerprint, Gallagher’s x̂ is identical to the RSSI, as it is
shown in Figure 6.5 were it is presented the RSSI and the estimated x̂ for WAP
63, Location 20.
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Figure 6.5: Raw data and Gallagher’s x̂ from WAP 63, Location 20.

• Score. Gallagher’s fingerprint is based on ‘points’ per WAP, where the points are
a score assigned to each WAP. The score increases by one every time the WAP
is detected, and decreases by one when the WAP is not detected. It is established
[GLDR10] that only WAPs with score over a threshold are included in the finger-
print. The threshold is an arbitrary value, [GLDR10] presents experiments using
a threshold of 30. WAPs with a score over the threshold are identified using the
boolean value pending.
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• Pending. Parameter pending indicates when the WAP is included or not in the
fingerprint, pending= 0 means the WAP is included in the fingerprint, pending=

1 means the WAP is not included in the fingerprint. In order to include a WAP
in the fingerprint (setting pending = 0) the score should be over the specified
threshold.

The implementation of Gallagher Fingerprinting technique is presented in the Algo-
rithm 1.

Algorithm 1 Gallagher Fingerprinting
Require: MAX SCORE

1: soWAPs = {WAP |WAP in survey-observation, where WAP = (WAP ID,RSSI)}
2: f pWAPs ={WAP |WAP in fingerprint, where WAP = (WAP ID, x̂ , score, pend-

ing)}
3: for all soWAPs such that WAP ∈ f pWAPs do . Stage 1
4: if WAP ∈ soWAP then
5: if pending = 1 then
6: score++
7: else
8: score = MAX SCORE
9: else

10: score−−
11: if score < 0 then
12: pending = 1
13: f pWAPs← f pWAPs−{WAP} . Remove WAP
14: for all f pWAP such that WAP ∈ soWAPs do . Stage 2
15: if WAP ∈ f pWAPs then
16: if score≤MAX SCORE and pending = 1 then
17: pending = 0
18: else
19: pending = 1
20: else
21: pending = 1
22: score = 1
23: f pWAPs← f pWAPs∪{WAP} . Insert WAP

Figure 6.6 presents the score and pending values for WAP 63 at Location 20, com-
puted using the Gallagher Fingerprinting algorithm. This graph shows the increase and
decrease for the score when the WAP is detected or not detected. The threshold in the
score, for this particular implementation was set to 15 (Similarly to the threshold used
in [LJYH13]).
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Figure 6.6: Gallagher’s fingerprint technique applied to the RSS data from WAP 63.
WAP 63 is detected in most of the observations at Location Office 1.035, RCS. The
score increases and reaches the threshold rapidly, setting pending to 0 (zero). This
includes the WAP in the fingerprint after 15 observations. Because WAP 63 is stable
and observed most of the time, then the score stays on the maximum (max) value.
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Figure 6.7: Gallagher’s fingerprint from WAP 85, Location 20. When WAP 85 is
absent the score decreases by one, when the score reaches 0 (zero), the value of pending
is set to one indicating that this WAP is not in the fingerprint.
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Although the technique presented by Gallagher in [GLDR10] does not process
data from WAPs with RSSI values below -80 dB, meaning that WAPs in the survey-
observation with a RSSI lower than -80 dB are ignored and are not considered for
fingerprinting.

In this thesis, the -80 dB restriction was removed, thus in the implementation of
the Gallagher Fingerprint every single one of the measurements is employed on the
computation of the fingerprint no matter how low is the signal strength. This allows an
equitable comparison of fingerprinting techniques.

Regarding the estimation of expected signal strength the Gallagher Fingerprint only
considered the last observation. This is equivalent to give all the weight to the last
observation, ignoring historical observations (similarly to Basic Fingerprint).

6.1.5 Jun-Sung Fingerprint

The fingerprinting technique presented by Jun-Sung et al. in the work [LJYH13],
proposes a improvement on computing the expected signal strength, and includes extra
parameters per WAP within the fingerprint. Jun-Sung Fingerprint is also a tuple of a
location and a set of WAPs. A formal Jun-Sung Fingerprint definition is the following:

JSFP = [l,{WAP1,...,N}] (6.17)

WAPn = [BSSIDn, x̂n,scoren,basen, f reqinn, f reqoutn,δn, pendingn] (6.18)

It differs from previous definitions on the parameters stored per WAP. In addition
to BSSID and x̂, the following parameters are included: score, base, f reqin, f reqout , δ,
pending.

• Estimating Expected Signal Strength (x̂). In order to estimate the value x̂ the
following procedure is carried out for every WAP within the incoming survey-
observation. The estimated x̂ is initialised with the value of the first measurement
RSSI from the corresponding WAP. The formal representation of this initialisa-
tion is the following,

x̂i = xi = RSSI, for i = 1 (6.19)

Index i indicates the current state/iteration of the measurement xi and the current
expected value x̂i. For following measurements, the value of the x̂i is computed
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with Equation 6.20.

x̂i =
x̂i−1 + xi

2
(6.20)

Where xi is considered the current RSSI per WAP. The x̂i is the recently esti-
mated signal strength and x̂i−1 is the previous one. The previous estimated value
is retrieved from the database, and it is overwritten with the new estimated x̂i.
When there is no x̂i−1 stored in the database, the WAP is new in the fingerprint.
Figure 6.8 presents the raw data and the x̂ computed with Jung-Sung’s algorithm.
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Figure 6.8: Jun-Sung’s expected signal strength xi and raw data from WAPs 63, Loca-
tion 20.

• Score. The score is computed by an exponential function. Only a few obser-
vations are required to increase the score into a acceptance window. On the
contrary, a large number of observations, where the WAP is absent, are required
in order to remove the WAP from the fingerprint. The score increasing function
is computed as Equation 6.21, and the score decreasing function is defined by
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Equation 6.22.

score = base+(e f reqin++−1) (6.21)

score = base− (e
f reqout++

δ −1) (6.22)

Where the subtraction of 1 (one) in both Equations 6.21 and 6.22 is done to set
the initial score value to 0 (zero).

• Base (base). Previous value of the score, the base is added to the exponential
function for the situations when the WAP is present. When WAP is absent the
corresponding exponential function is subtracted from base. The new value for
score is the result of these computations, as shown in Equations 6.21 and 6.21

• Frequency In ( f reqin). The parameter f reqin is the number of consecutive ob-
servations that a WAP has been detected, and it is reset to 0 (zero) when the WAP
is not detected

• Frequency Out ( f reqout). Value f reqout is the number of the consecutive ob-
servations of the WAP not being detected, and it is reset to zero once the WAP is
detected again

• Pending (pending). The value pending is a flag that determines when the WAP
is used in the fingerprint, pending is set to 0 (zero) when the WAP score is within
a survival window, and 1 (one) when outside the same window

• Acquisition Probability (δ) . Value δ is the acquisition probability of a WAP
to be detected, the document [LJYH13] (where the Jun-Sung Fingerprint is pro-
posed) does not specify how this acquisition probability is computed. After an
email request, the following information was provided directly by the authors of
[LJYH13]:

“The signal acquisition probability of an [W ]AP varies depending on its RSS[I].

The lower the signal strength of an [W ]AP is, the lower its acquisition probability

is. This means that [W ]APs with low signal strengths are not always captured

when we collect fingerprints many times at the same location. We confirmed that

from about 2,200 [W ]AP signals (averaged from 20 fingerprints at each location)

collected from a large-scale shopping mall (COEX, Seoul, Korea, 189,000m2).”

They also provided a graph with their results of signal acquisition probability
with different RSSI. This is shown in Figure 6.9
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Figure 6.9: Acqusition Probability function and Ratio of WAPs. Where the Ratio of
WAPs is the percentage of the presence count per RSSI. This image was provided by
Jun-Sung Lim

The process of programming Jun-Sung Fingerprinting algorithm involved per-
forming a mechanism to implement an Acquisition Probability based on infor-
mation provided by Figure 6.9.

First, Jun-Sung’s Acquisition Probability function from Figure 6.9 was sam-
pled. The vector of sampled data points was then fitted using Matlab’s function
plolyfit. A 6th degree polynomial presented a fit approximation to sampled data
points. The approximating 6th degree polynomial is presented with the respec-
tive coefficients in Equation 6.23.

f (x) = 0.0292x6−0.0611x5−0.0658x4

+0.2461x3−0.1976x2 +0.0661x+0.9617
(6.23)

Jun-Sung’s Signal Acquisition Probability, was fitted appropriately by the poly-
nomial within the range (-93,-34). Figure 6.10 presents the sampled data from
Jun-Sung’s Acquisition Probability, the fitted polynomial, and the limits show-
ing the range where the fitted polynomial was useful. The fitted polynomial was
used for computing the probability for RSSI values between -93 to -34 (dBm).
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Constant values were used for RSSI outside that range.

δ =


0.0379 for xi <=−93
f (xi) for −93 < xi <−34
0.9986 for xi >=−34

(6.24)

The probability 0.0379 corresponding to -93 dB was used for RSSI equal to -93
dB and below. Probability 0.9986 corresponding to -34 dB was used for RSSI
equal to -34 dB and over. From this, the Empirical Signal Acquisition Probability
function is presented in Equation 6.24, and illustrated in Figure 6.10 by a blue
solid line.
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Figure 6.10: Empirical Signal Acqusition Probability.

Jun-Sung Fingerprinting technique was implemented for comparison. Algorithm 2
illustrates the pseudo code of this implementation. Figure 6.11 presents the Jun-Sung
Fingerprint values for WAP 63 at Location 20 (Office 1.035, RCS). Figure 6.12 illus-
trates how the parameters for the Jun-Sung Fingerprint change for a less stable WAP.
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Algorithm 2 Jun-Sung Fingerprinting
1: soWAPs = {WAP |WAP in survey-observation, where WAP = (WAP ID,RSSI)}
2: f pWAPs ={WAP | WAP in fingerprint, where WAP = (WAP ID, x̂ , score,base,

f reqin, f reqout , δ , pending)}
3: for all WAP such that WAP ∈ soWAPs∪ f pWAPs do
4: if WAP ∈ soWAP and WAP ∈ f pWAP then . WAP Update
5: if f reqin = 0 then
6: f reqin← 1, f reqout ← 0, base← score
7: x̂← (x̂+RSSI)/2
8: δ← 1/acquisition probability(x̂)×100
9: score← base+(e f reqin++−1)

10: if pending = true and score≥ min then
11: pending← f alse
12: else
13: if score > max then
14: score← max
15: else
16: if WAP ∈ soWAPs and WAP /∈ f pWAPs then . WAP Addition
17: base← 0, pending← true , f reqin← 1 , f reqout ← 0
18: x̂← RSSI
19: δ← 1/acquisition probability(x̂)×100
20: score← base+(e f reqin++−1)
21: f pWAPs← f pWAPs∪{WAP}
22: else
23: if WAP /∈ soWAPs and WAP ∈ f pWAPs then . WAP Removal
24: if f reqout = 0 then
25: f reqout ← 1, f reqin← 0, base← score
26: score← base− (e f reqout++/δ−1)
27: if pending = f alse and score < min then
28: pending← true
29: else
30: if score≤ 0 then
31: f pWAPs← soWAP−{WAP}
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Figure 6.11: Jun-Sung Fingerprint technique applied to the RSSI data from WAPs 63,
Location 20.
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Figure 6.12: Jun-Sung Fingerprint technique applied to the RSSI data from WAPs 85,
Location 20.
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A disadvantage presented in Jun-Sung Fingerprinting algorithm is that WAPs stayed
within the window for a large period of time. The estimation of the expected value
in Jun-Sung Fingerprint is equivalent to a weighted average where all past observa-
tions are given half of the weight, and the latest observation is given the other half of
the weight. In other words, the expected value computed with Jun-Sung algorithm is
equivalent to a EWMA (see Equation 6.25) with a fixed value of 0.5 for the weight. A
comparison between these techniques is presented in Chapter 7.

6.1.6 EWMA Fingerprint. An Improved Fingerprint Definition

This thesis introduces the EWMA Fingerprint definition designed by the author. EWMA
stands for Exponentially Weighted Moving Average. The EWMA Fingerprinting was
designed to address issues discussed previously by proposing the following improve-
ments:

• An estimation of the expected signal strength value x̂ based on EWMA, with
weights computed per WAP that minimises error.

• WAP filtering based on a WAP ranking

• WAP filtering based on detection of changes and outliers in WAP’s signal strength.

EWMA fingerprinting is a data driven approach proposing a WAP fitted computa-
tion of the estimated value, based on an analysis of WAP’s signal profile.

The principles of EWMA (see Chapter 2.5) algorithm were used in EWMA Fin-
gerprint for the following:

• Computing the estimated value x̂

x̂i = (1−λx)x̂i−1 +(λx)xi (6.25)

• Ranking WAPs
p̂ j = (1−λp)p̂ j−1 +λp(p j) (6.26)

• Detecting changes and outliers in the WAPs’ signal

µ̄i = (1−λc1) ¯µi−1 +(λc1)µ̄i (6.27)

zi = (1−λc2)zi−1 +(λc2)µ̄i (6.28)
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A formal definition of the EWMA Fingerprint is the following:

EWMAFP = [l, tc, tu,{WAP1,...,N}] (6.29)

where,

• l is the location

• tc is the creation time, this parameter stores the timestamp when the fingerprint
was first created and stored

• tu is the last update time, every time a fingerprint is updated this parameter is
also set with the timestamp from the latest observation used for the update

• {WAP1,...,N} is the set of Wireless Access Points

Within the set of WAPs, each WAP holds its own parameters. A formal definition
of the parameters stored per WAP in a EWMA Fingerprint is given by

WAPn = [WAP IDn, x̂n,sn, pn, p̂n,an,ucn, pendingn] (6.30)

where,

• x̂ is the expected signal strength value computed with Equation 6.31

x̂i = (1−λx)x̂i−1 +(λx)xi (6.31)

• s is the score, a parameter used for ranking WAPs, it is considered as the level
of trustworthiness given to the WAP. The score range is (0-2) from which 2
is considered the highest. The WAP with highest score within a fingerprint is
considered first in the positioning stage.

• uc is a binary parameter for identifying when x̂ value of the WAP signal strength
is within the upper and lower boundaries established by the control charts. The
name uc stands for Under Control

• p is the WAP presence. It is the number of consecutive observations that a WAP
has been detected, and it is reset to 0 (zero) when the WAP is not detected.

• a is the WAP absence. The value of a indicates the number of consecutive ob-
servations with the WAP absent (not being detected). Once the WAP is detected
again the value of a is reset to 0 (zero).
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• pending is the parameter that determines when the WAP is included in the fin-
gerprint, pending is set to 0 (zero) when the WAP is in use within the fingerprint,
and 1 (one) when not used.

The fingerprinting process using an EWMA Fingerprint definition can be divided
into four components:

• State estimate. The estimated average for the expected signal strength value for
a future observation. It is a prediction computed per WAP

• Metric. The metric is a value per WAP computed based on the estimated average
and its variation. It is used as an initial ranking mechanism

• Score. The score is computed considering the metric and also considering WAP’s
occurrence. It can be said that the score is the metric affected by the presence/ap-
pearance or absence/disappearance of the WAP. The value of the score increases
when the WAP is detected until it reaches its maximum. The maximum value per
WAP corresponds to the value of its metric. The score decreases when the WAP
is absent, until it reaches 0 (zero) then the WAP is removed from the EWMA
Fingerprint

• Control Chart. The last component functionality is to detect changes and out-
liers in WAP’s signal strength. This equips the system with the functionality of
removing from the fingerprint those WAPs that are presenting unwanted or er-
ratic behaviour. Leading to the mitigation of the positioning error by not includ-
ing them until their profile is acceptable or once the new behaviour is considered
as a permanent alteration

Figure 6.13 presents a block diagram of these components. The components within
EWMA fingerprinting are depicted as blocks. The inputs and outputs are labeled with
their respective parameters. A detailed explanation of these components in covered in
the subsequent sections.
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State Estimation

From previous techniques, the computation of the expected value x̂ using only the last
observation (Basic Fingerprint and Gallagher Fingerprint) fails in considering the valu-
able information provided by past observations. On the contrary, the expected value
computed using a simple average (Default Fingerprint) gives the same weight to every
single observation, this can present some disadvantages such as failing to provide an
accurate expected average in situations when the signal is volatile or when it changes.
Moreover, when considering the running average approach of computing the expected
value x̂, as performed by [LJYH13] (Jun-Sung Fingerprint), it can immediately be seen
that this estimate value will be affected by outliers, step changes and ramp changes to
the signal strength profile. Therefore we can recognise that using the running aver-
age is just one way of computing the expected signal strength in the presence of noisy
measurements.

Although the aforementioned techniques could be suitable for particular signal’s
profiles, it is difficult to consider that a single estimation technique would be suitable
for every WAP detected. Analysis from data collected in real-world scenarios showed
that signals propagated by WAPs present distinct behaviours, hence they should be
processed differently. The EWMA Fingerprint proposes a data driven computation of
x̂ per each WAP. Resulting in a specific lambda per WAP.

The formula for estimating the expected average employed by EWMA Fingerprint
is the following:

x̂i = (λx)xi +(1−λx)x̂i−1, 0 < λx ≤ 1 (6.32)

where, the expected average x̂i is computed as a recursive method that employs the
latest observation xi and the previous estimated average x̂i−1. The value of λx is the
weight given to the current observation xi, and λx’s complement (1−λx) is the weight
given to the previous expected average.

The standard deviation is computed by

σ̂i = (λx)|x̂i− xi|+(1−λx)σ̂i−1 (6.33)

Equations 6.32 and 6.33 are the basis for the State Estimate component. Following
is explained the data driven approach used to obtain an appropriate λx per WAP.

Algorithm 3 presents the Matlab script implemented for computing the EWMA
state estimate.



6.1. FINGERPRINTING 133

Algorithm 3 EWMA State Estimate

function [x_hatNew ,s_hatNew] = IPSv2_fnEWMAse(RSSI ,x_hatOld ,
s_hatOld ,LambdaX)
DefaultStdDev = 0.001;
x(2) = RSSI;
x_hat = x_hatOld;
s_hat = s_hatOld;

if (isempty(s_hat))
s_hat = DefaultStdDev;

elseif (s_hat == 0)
s_hat = DefaultStdDev;

end

i=2;

%Calculate the new expected value
x_hat(i) = (x_hat(i-1)*(1-LambdaX)) + (x(i)*LambdaX);

%Calculate the new standard deviation
s_hat(i) = (s_hat(i-1)*(1-LambdaX)) + (abs((x_hat(i) - x(i)))*

LambdaX);

x_hatNew = x_hat(2);
s_hatNew = s_hat(2);

end
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Identifying a suitable λx per WAP The computation of an adaptive λx value per
WAP is one of the key features that makes EWMA Fingerprint distinguishable from
fingerprints previously mentioned.

The EWMA Fingerprint performance depends on the appropriate selection of the
EWMA parameters. It is hypothesised that the optimal value for λx can be tuned
according to the characteristics presented in the WAP’s signal profile. For this, EWMA
was applied to the WAP’s RSSI, using linearly spaced values for λx in the range (0,1).
The sum of the errors per λx was computed, and the λx generating the minimum error
was identified.

ελ = ∑
k0<i<n

|x̂i−1− xi| (6.34)

Equation 6.34 is the sum of errors per WAP per location. The error is the absolute
difference between the estimated value from the previous iteration and the actual ob-
served value in the current iteration. The value of λx which minimises the sum of
errors, is selected as suitable for computing the expected value for the WAP.

The algorithm 4 illustrates how values for λx were computed per each WAP.

Algorithm 4 Computing Lambda
1: Identify WAPs per location observed longer than starting point k0
2: Establish the number of λx values to be tested. (e.g. 100 values of λx linearly

spaced within the restriction 0 < λx ≤ 1)
3: Evaluate every potential λx using all observations
4: Compute the sum of differences between expected and actual signal strength per

λx per WAP is computed by Equation 6.34
5: Select the λx generating the smallest error

A value of λx is stored per WAP, this value can become obsolete when the signal
profile on the WAP goes through changes. A potential solution is to analyse the signal
strength in order to identify changes. Adjustments of λx can be automatised according
to the nature of the changes detected in the signal. This detection of changes and
outliers is discussed in the section titled “Control Chart”.

It is clear that signals from WAPs are different, then not all of the WAPs detected
in a location are “worth” the same. In other words, not all the WAPs can be trusted
equally when carry out positioning. Hence a mechanism to rank WAPs by their “trust-
worthiness” is proposed. This mechanism is the next feature to be discussed within
EWMA Fingerprint, and it is composed by parameters: metric and the score.
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Metric

The metric is a measure based on a WAP’s average and standard deviation. As shown
in Chapter 5 Data Analysis, the number of WAPs detected for any particular location
can be large, potentially increasing the database size and substantially increasing the
computational time for positioning. In order to solve these problems, a WAP ranking
process is proposed. This ranking process provides a score for WAP classification.
Once classified, only trustworthy WAPs can be included in EWMA Fingerprints, in-
stead of including every WAP. Ranking the WAPs is an important part of the algorithm
in order to create a practical fingerprinting positioning system. The metric per WAP is
given by

mi =Wx̄x̄i +Wσ̄σ̄i (6.35)

where

• x̄i is the expected signal strength normalised. It is computed using Equation
6.36 from where x̂i is the expected signal strength value (output from the state
estimate process), RSSImin and RSSImax are the minimum and maximum empir-
ical values registered for RSSI. Both values where retrieved from the dataset
discussed in Chapter 5.

x̄i =
x̂i−RSSImax

RSSImax−RSSImin
(6.36)

RSSImin =−100, RSSImax = 0

• σ̄i is the standard deviation normalised. It is computed using Equation 6.37
from where σ̂i is the standard deviation (output from the state estimate process),
σmax is the maximum standard deviation value identified from the dataset, its
value corresponds to WAP 596 which presented the highest standard deviation
in overall measurements.

σ̄i =
σmax− σ̂i

σmax
, σmax = 12 (6.37)

• Wx̄ is a weight given to x̄i, its value is a number in the range (0 <Wx̄ < 1). The
higher its value, the higher the weight (importance) is assigned to the average
value
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• Wσ̄ is a weight given to σ̄i, its value is a number within the range (0 <Wσ̄ < 1)
with the restriction Wσ̄ = 1−Wx̄

The constant values RSSImin, RSSImax and σmax are fixed in the system settings, and
are unique to the dataset analysed. The weights Wx̄ and Wσ̄ are constants defined in the
system settings. Their values are established by the system administrator. They repre-
sent the level of importance given to the signal strength and to the standard deviation.
For the generation of the results in this thesis, both weights are set to 0.5, this means
that the same importance is given to the signal strength and to the standard deviation.

The metric is used along with the WAP persistence, for generating the WAP’s score.
The scoring technique is explained in detail in the following section. The code imple-
mented to compute the metric is the following:

Algorithm 5 EWMA Metric

function [metric]= IPSv1_fnMetric(mu,s)
[settings]=IPSv1_Settings();
minSS = settings.minSS;
maxSS = settings.maxSS;
w1=settings.w1;
w2=settings.w2;
maxs=settings.maxs;
if (s > maxs)

s=maxs;
end
mu_norm = (mu-minSS) / (maxSS -minSS);
s_norm = (maxs -s)/maxs;
metric = w1*mu_norm + w2*s_norm ;

end

Score

The score s, computed for each WAP, quantifies the level of trustworthiness. WAPs
within the fingerprint are ordered based on this parameter. The score provides an
insight into how each WAP affects the positioning performance, and also determines
when a WAP should be removed from the fingerprint. The score is computed as a
function of the metric and the WAP’s presence (detected or undetected WAP). The
score has three states:

• Increasing Score. When a new WAP is detected, it is added into the fingerprint.
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Its score is initialised according to Equation 6.38.

si = si−1 +
mi− si−1

k0− p
(6.38)

• Steady Score. When the number of observations that a WAP has been detected
is larger than a initialisation value (k0) the WAP is considered stable. Hence the
score is equal to the metric as shown in Equation 6.39

si = mi (6.39)

When the WAP has been detected for more than k0 consecutive observations its
score is at its maximum value, this maximum value is the metric.

• Decreasing Score. When the WAP is in the fingerprint and is absent (not de-
tected) in an observation, the score decreases. Then it decreases with each con-
secutive observation that is missing the WAP. The number of observations that
it takes to remove the WAP is dependent on the average number of observations
the WAP was consecutively detected. It takes longer to remove (from the fin-
gerprint) a WAP that was present for long time, than a WAP that was present on
just few observations. When the WAP is absent, its score decreases according
to Equation 6.40 until it reaches the value of 0 (zero), then the WAP is removed
from the fingerprint.

si = si−1−
si−1

p̂−a
(6.40)

From Equation 6.40, p̂ is the average of continuous observations where the WAP
was detected. This average is given by Equation 6.41, which is an EWMA, with
weight λp.

p̂ j = (1−λp)p̂ j−1 +(λp)(p j) (6.41)

The value for the weight is λp = 0.5, this value can be configurable in the sys-
tem’s settings. An evaluation for different values of λp is left for future work.

The three functions used in computing the score are summarised by,

si =


si−1 +

mi−si−1
k0−p for 0 < p≤ k0

mi for k0 < p

si−1− si−1
p̂−a for 0 < a < p̂

(6.42)
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where k0 is configured in the system settings, p is the number of times the WAP
was detected consecutively before being undetected, p̂ is an average (EWMA with
λp = 0.5) of the previous consecutive times the WAP was seen. The WAPs are ranked
into the fingerprint according to their score, the higher the score the more trustworthy
the WAP.

The implemented function computing the score is the following:

Algorithm 6 EWMA Score

function [score]= IPSv1_fnScore(metric ,old_score ,fin,fout ,xfin ,sp)
p = fin;
a = fout;
tsp = sp+1;
hat_p = (ceil(xfin))+1;
if (fin >0)

if (fin<tsp) %If fin is lower than the Starting Point
%Increasing
score = old_score + ( (metric - old_score)/(tsp-p) );

else
%Stedy
score= metric;

end
else

%fout(a) is larger than 0
%Decreasing
if (tfout >=txfin)

score = old_score;
else

score = old_score - (old_score/(hat_p -a));
end

end
end

EWMA Control Chart

The third feature that makes EWMA Fingerprint unique is the implementation of an
EWMA control chart. In this thesis the author proposes for the first time a fingerprint-
ing mechanism implementing a EWMA control chart that allows detecting outliers and
changes in signal from WAPs. The EWMA control chart is a variation of a standard
control chart (see Section 2.5.2 for a description on EWMA control chart). Control
charts detect large shifts in the mean value of the process. However, the signal strength



140 CHAPTER 6. FINGERPRINTING AND POSITIONING

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

−90

−80

−70

−60

−50

−40

R
S

S
I

a
n

d
x̂

(d
B

)

EWMA Fingerprint. λx=0.33.  [Loc20, WAP 63]

 

 

Raw Data x̂ EWM A .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

0

0.5

1

1.5

2

2.5
x 104

p
r
e
s
e
n

c
e

c
o
u

n
t

 

 
present (p) absent (a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

−0.5

0

0.5

1

1.5

2

2.5

sc
o
re

 

 
sc ore (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

−0.5

0

0.5

1

1.5

p
e
n

d
in

g

Ob se rvation s

 

 
pending

Figure 6.15: EWMA Fingerprint from WAP 63, Location 20.
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Figure 6.16: EWMA Fingerprint from WAP 85, Location 20
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measurements recorded shows a variety of changes to the profile of the signal. To
counter this, the Exponentially Weighted Moving Average (EWMA) control chart is
used instead.

The detection of outliers, and drifts in the signals is a powerful mechanism that
has not been explored for fingerprinting before. The use of control chart within the
EWMA Fingerprint generates two significant advantages:

• WAP removal. Identify when a WAP’s signal strength is out of control, this is
being used to support the removal of WAP from the fingerprint for those WAPs
presenting unwanted behaviour.

• WAP reincorporation. The control chart monitors the signal and it is used to
reincorporate a WAP into the fingerprint in the situation for when the signal is
stable.

Also, the control chart is proposed as a mechanism to determine when it is required to
update the value of λx, which is used in the estimation of the expected signal strength.
Input parameters for the EWMA control chart are the following:

• The current observation (xi), is the RSSI

• A static λc1, set as a constant value pre-defined in the system’s settings.

• A static λc2, weight establish on the system settings

• Recursive average computed with EWMA ẑi−1

• Multiple of standard deviation (L)

The EWMA control chart was implemented according to the following process:

1. Smoothing the raw data. The control chart is computed when the number of
data points (i) are larger than k0.
The EWMA algorithm is designed to recursively smooth data around the current es-
timate of the process mean; Equation 6.43 shows the EWMA calculation, where the
EWMA response can be affected by changing λc1. Then, by using equations 6.43 and
6.44 to perform the normalisation, then it can be controlled to what degree changes in
the data are retained post normalisation. Therefore in our change point detection we
follow this process to normalise the raw data.
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µi = (λc1)xi +(1−λc1)µi−1 (6.43)

σi = (λc1)|µi− xi|+(1−λc1)σi−1 (6.44)
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Figure 6.17: Smoothed raw data with λc1 = 0.001 from WAP 63 at Location 20

2. Normalising smoothed data. From the body of work carried out on the EWMA
control chart there are two main ways to apply it, either on the raw data or on a nor-
malised version of the raw data. Essentially by applying normalisation it is possible
to use the same settings for the EWMA control chart for data that originates from
different distributions.

In general, the normalisation process is carried out by Equation 6.45; however there
are a number of statistical methods to calculate the mean and standard deviation that
could be used.

µ̄i =
xi−µi

σi
(6.45)
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3. Smoothed normalised data using Weight (λc2) Once the data has been nor-
malised a second EWMA with weight λc2 is implemented. Equation 6.46 presents this
EWMA.

zi = (λc2)µ̄i +(1−λc2)zi−1 (6.46)

z0 = µ̄i (6.47)

Where the initial value for zi−1 is z0, the normalised mean µ̄i computed in the previous
step by Equation6.45.

4. Calculate Control Limits The upper and lower limits are calculated using
Equation 6.48, where L is the number of standard deviations.

CL =±L

√
λc2

2−λc2
(6.48)

5. Calculate the confidence The ratio between zi and the control limit is found to
allow us to set bounds between (-1,1) to detect when the change points occur.

Ci =
zi

CL
(6.49)

The output of the EWMA control chart is the parameter under-control (uc), this
parameter indicates when the signal is within boundaries.

Selecting the parameters for the Control Chart

The values λc1 = 0.05, λc1 = 0.10 and λc1 = 0.20 were suggested by [Mon08], with
L=3 being the usual limit. It is claimed that particularly λc1 = 0.05 and L = 2.492
performs very well against both normal and non-normal distributions. These values
were used as a starting point for evaluating the EWMA control chart for RSSI-based
fingerprinting. Results are presented in Chapter 7.

The implemented function for computing the control chart in Matlab is presented
in Algorithm 7.

Figure 6.18, presents the parameters resulting from EWMA control chart with
λc1 = 0.001, λc2 = 0.25 and L=6 for WAP 63, location Office 1.035, RCS, The Uni-
versity of Manchester. This parameters are the ones that showed suitable results on
detecting outliers and changes for the three locations under analysis (their selection is
based on results showed in Chapter 7).
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Algorithm 7 EWMA Control Chart

function [EWMAnew ,EWMANormNew ,StdNew ,ConfidenceNew] =
IPSv2_fnEWMAcc(RSSI ,EWMAold ,STDold ,EWMANormOld , FF,W,T)

Lc1 = FF;
Lc2 = W;
L = T;

rawData(2) =RSSI;
%Initlize the algorithm
EWMA = EWMAold;
Std = STDold;

if (isempty(Std))
Std = 0.001;

elseif (Std == 0)
Std = 0.001;

end

i=2;

%Step 1. Smooth the raw data and calcuate the standard
deviation

EWMA(i) = (EWMA(i-1)*(1-Lc1)) + (rawData(i)* Lc1);
Std(i) = (Std(i-1)*(1-Lc1)) + (abs(rawData(i) - EWMA(i))*Lc1);

%Step 2. Normalize the data
if (Std(i) == 0)

Std(i) = 0.001;
end
dataNorm(i) = (rawData(i) - EWMA(i)) / Std(i);

%Step 3. Smooth the normalized data using the weight (Lc2)
if isnan(EWMANormOld)

EWMANorm = dataNorm(i);
else

EWMANorm = EWMANormOld;
end
EWMANorm(i) = EWMANorm(i-1)*(1-Lc2) + (dataNorm(i)*Lc2);

%Step 4. Calculate the Control Limits
CL = L * (sqrt(Lc2 / (2-Lc2)));

%Step 5. Calculate the confidence
Confidence(i) = EWMANorm(i)/CL;

EWMAnew = EWMA(2);
StdNew = Std(2);
ConfidenceNew = Confidence(2);
EWMANormNew = EWMANorm(2);

end
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Algorithm 8 EWMA fingerprinting
Require: k0, λx, λp, λc1, λc2, Wx̂, Wσ̂, dStdDev = 0.001

1: soWAPs = {WAP |WAP in survey-observation, where WAP = (WAP ID,RSSI)}
2: f pWAPs ={WAP |WAP in fingerprint, where WAP = (WAP ID, x̂, s, p, p̂, a, uc,

pending)}
3: for all WAP such that WAP ∈ soWAPs∪ f pWAPs do
4: if WAP ∈ soWAP and WAP ∈ f pWAP then . WAP Update
5: p++, a← 0
6: if p≤ ko then
7: [x̂, σ̂,Q]← f unction De f ault se(RSSI,µ,Q, p)
8: else
9: if p > ko then

10: [x̂, σ̂]← f unction EWMAse(RSSI, x̂, σ̂,λx)
11: [µ̂, σ̂,z,uc]← f unction EWMAcc(RSSI,µ,σ,z,λc1,λc2,L)
12: m← f unction Metric(x̂, σ̂)
13: s← f unction Score(m,s, p,a, p̂,k0)
14: pending← f unction Pending(uc,s)
15: else
16: if WAP ∈ soWAPs and WAP /∈ f pWAPs then
17: x̂← RSSI, Q← 0 , σ̂← dStdDev
18: p← 1, a← 0, p̂← 1, uc← f alse
19: m← f unction Metric(x̂, σ̂)
20: s← f unction Score(m,s, p,a, p̂,k0)
21: pending← f unction Pending(uc,s)
22: f pWAPs← f pWAPs∪{WAP} . WAP Insertion
23: else
24: if WAP /∈ soWAPs and WAP ∈ f pWAPs then . WAP Absent
25: if a = 0 then
26: a← 1
27: else
28: a++

29: if p > 0 then
30: p̂← f unction EWMA p(p̂, p,λp)
31: p← 0
32: m← f unction Metric(x̂, σ̂)
33: s← f unction Score(m,s, p,a, p̂,k0)
34: pending← f unction Pending(uc,s)
35: if pending = f alse and s > 0 and uc = true then
36: pending← true
37: else
38: if s≤ 0 then
39: f pWAPs← soWAP−{WAP} . WAP Removal
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6.2 Positioning. Location Estimation Algorithm

The data analysis and fingerprinting methods presented earlier have the ultimate pur-
pose of improving positioning. Positioning refers to locating a person or asset by
means of a WiFi enabled electronic and mobile device. This positioning can be carried
out once an initial WiFi radio-map has been created. Input measurements from the
user are compared against the radio-map, then after comparison, a particular or small
set of fingerprints are selected as a possible best match.

This thesis aims to achieve a positioning resolution of room level accuracy (at say
2mx2m). The granularity is dependent on scale so in Piccadilly station granularity of
a few metres would be for many application of little added value.

This section describes the methods for estimating the user’s position based on the
input measurements and EWMA Fingerprints. The Positioning process is listed in
Table 6.2:

Positioning
1. Input Query-observation
2. Computing the best-Match fingerprint
3. Location Estimation Level 1
4. Location Estimation Level 2
5. Location Estimation Level 3
6. Display estimated location

Table 6.2: Positioning Process.

6.2.1 Query-Observation

An observation is called a “Query-Observation” when it is recorded by the user, from
an “unfamiliar” position. The query-observations are recorded using the same script
used for survey-observations (see script in Appendix B.1). The distinctive feature
about query-observations is the fact that they are not tagged with a specific location
but are tagged with the default location: “unknown”.

An example of a query-observation (qo) from the database is shown in Figure 6.19
and its corresponding qoWAPs is depicted in Figure 6.20. The term fpWAPs is used to
refer to the set of WAPs within a fingerprint (fp), and the term qoWAPs refers to the set
of WAPs within a query-observation (qo). Query-Observations are compared against
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Figure 6.19: The record of an observation in the DB

the fingerprints in the radio-map in order to find the best matching fingerprint. The
best matched fingerprint can be considered coming from the same or a close location.

6.2.2 Location Estimation

The location estimation stage is the process of calculating the position from a query-
observation. This is done by finding a fingerprint from the radio-map that has signifi-
cantly close WiFi data. For this, the query-observation is compared against fingerprints
in the DB. The “best fit” or “best matched” fingerprint according to specific criterion
defined below is considered the location for the query-observation.

The following three levels of positioning were implemented for identifying the best
matching fingerprint:

• Level 1: WAP-based Positioning

• Level 2: RSSI-based Positioning

• Level 3: Metric-based Positioning

6.2.3 Level 1: WAP-based Positioning

A basic approach to define a location when a query-observation is recorded is based
on counting the number of coincident WAPs. This number gives us a first positioning
level, and it is used for computing a rough estimation of where a query-observation
was recorded. The methodology of this approach is as follows

• The classifier receives a query-observation.

• WAPs from the query-observation are compared with WAPs stored in the database.

• Fingerprints with matching WAPs are fetched from the database.

• The fingerprint with the highest number of matching WAPs is chosen as the best
matching fingerprint.
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Figure 6.20: List of WAPs and their respective RSSI from observation 108



6.2. POSITIONING. LOCATION ESTIMATION ALGORITHM 151

This approach is easy to implement and can provide some level of accuracy but it
suffers from one major drawback. Several fingerprints can result with the same number
of matching WAPs, hence the final location can be ambiguous.

This first level of positioning can be suitable for particular applications where a
rough positioning is good enough and it is not necessary to allocate more compu-
tational power to improve positioning. Nevertheless, there are situations when this
approach is not good enough, and for these cases the second level of positioning has
been developed.

6.2.4 Level 2: RSSI based Positioning

Positioning level 2 uses the result from positioning level 1, but rather than using only
the WAPs presence it also uses the RSSI from the WAPs in the query-observation and
the x̂ from the WAPs in the coincident fingerprints.

The best fingerprint is selected by computing a distance metric, for example, the
Root Mean Square Error (RMSE) between the WAPs in the query-observation (qo) and
the WAPs from every fingerprint retrieved at positioning level 1. The fingerprint with
the smallest error is considered as the most likely match. The RMSE ( ε) is presented
in Equation 6.50

ε =

√
1
n

n

∑
j=1

(x j− x̂ j)2 (6.50)

where x̂ j is the RSSI value for the jth WAP in the query-observation; x̂ j is the
expected value for the jth WAP in the fingerprint; and n is the number of WAPs in the
query-observation.

6.2.5 Level 3: Score based Positioning

Positioning level 3 is based on the score for selecting the WAPs to be included in the
comparison. Only the top n ranked WAPs from the fingerprint are taken into consider-
ation for comparison against the WAPs in the query-observation. Hence, the number
of comparisons is reduced, so computational power and response time required is con-
trolled. The RMSE and Euclidian distance is computed for the top n WAPs on every
fingerprint, and the most likely matching fingerprint is the one with the smallest RMSE
and minimum Euclidian distance.
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d =

√
n

∑
j=1

(x j− x̂ j)2 (6.51)

If any further ambiguity exists, a comparison using the n+1 ranked WAPs is car-
ried out and so on, until a final single matching fingerprint is estimated. Any WAP
that is out of control (according to the EWMA upper and lower control limits) is not
included within this positioning stage. Nevertheless, the WAP that is out of control is
still updated with every new measurement, and once its x̂ is under control it is again
considered for positioning.

6.2.6 Displaying Estimated Location

Once the best-match is computed, the result is sent to the user’s mobile device with the
addition of graphical information such as a floor plan indicating the room and images
from that particular room. The estimated location is displayed to the end user as the
result from positioning algorithms.

Positioning was carried out, using the fingerprints generated from offices within
RCS (as explained in 5.1.2 section Snapshot Data Collection).

A text example of an output after positioning is:
The best Matched location is :
Country: ‘UK’
City: ‘Manchester’
Building: ‘RCS’
Room: ‘1.031b’
Number of matching WAPs: 24
RMSE: 31.7249

The display of the information can be customised according to the final application.
Figures 6.21 and 6.22 illustrate results from positioning level 1 and 2 respectively.

6.2.7 Updating Map based on Query-Observations

User feedback and collaborative fingerprinting has been shown to be useful [LHC13].
It reduces the need for constant surveys by experts, and keeping the radio-map up-to-
date.

The results from the location estimation can be positive (A location was matched,
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Figure 6.21: Position display based on WAPs presence. The pale blue squares indicate
the rooms containing at least one matching WAP. The larger the size of the square, the
larger the number of matching WAPs. The room with the largest number of matching
WAPs is marked with a red edged square.
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Figure 6.22: Position display based on WAPs RSSI. The room with the smallest RMSE
is marked with a red dot on the floor plan.

with a certain degree of accuracy) or can be negative (No location was found at all).
The potential for radio-map updates presented by query-observations is considered in
the proposed system. After presenting the result to the user, the estimation parameters
are analysed. In the case of a negative result, the query-observation is stored and
labelled with an “unknown” location, and it is kept there for future analysis. On the
other hand, when the location estimation result is positive, and the accuracy achieved
has a high degree of certainty (an error smaller than a pre-defined threshold), the query-
observation is then used for EWMA Fingerprint updating.



Chapter 7

Evaluation and Results

This chapter presents results on the selection of the parameters for computing the state
estimate and control chart. It also presents results from implementing the five finger-
printing techniques, including the EWMA Fingerprint proposed by the author. The
following fingerprinting algorithms are evaluated: Basic Fingerprint, Default Finger-
print, Gallagher Fingerprint, Jun-Sung Fingerprint and EWMA Fingerprint. These
algorithms have been tested with the dataset described in Chapter 5.

The fingerprints are generated progressively, using observations from the three lo-
cations (Piccadilly Railway Station, RCS and Private Residence). Once the results
are presented individually, the fingerprints are further analysed and compared with the
EWMA Fingerprint method.

Also presented are the results of the scoring function that leads to the removal of
certain WAPs from the EWMA Fingerprint, according to the signal strength, standard
deviation and historical frequency of occurrence.

7.1 Results on Identifying a Suitable λx per WAP

It is hypothesised that the optimal value for λx can be tuned according to the charac-
teristics presented in the WAP’s signal profile. For this, EWMA was applied to the
WAP’s RSSI, using linearly spaced values for λx in the range (0,1). The sum of the
errors per λx was computed, and the λx generating the minimum error was identified.
The sum of the errors per λx is plotted in Figures 7.1, 7.2 and 7.3 for WAPs 137, 63
and 363 respectively. This process was performed for all WAPs detected in the three
locations subject to analysis: Office 1.035, RCS (Location 20); Platform 6, Piccadilly
(Location 36); Lounge, Private Residence (Location 39).

155
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Figure 7.1: Sum of errors per λx for WAP 137 at Piccadilly
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Figure 7.2: Sum of errors per λx for WAP 63 in Office 1.035, RCS
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Figure 7.3: Sum of errors per λx for WAP 363 in Private Residence
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Figure 7.4: Sum of errors per λx for the top 10 WAPs, arranged by frequency of occur-
rence. Location Platform 6, Piccadilly Railway Station
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Figure 7.5: Sum of errors per λx for the top 10 WAPs, arranged by frequency of occur-
rence. Location Office 1.035, RCS
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Figure 7.6: Sum of errors per λx for the top 10 WAPs, arranged by frequency of occur-
rence. Location Lounge, Private Residence
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Figures 7.4, 7.5 and 7.6 show the errors for the 100 values using data from the
top 10 WAPs at each location, the minimum error per WAP is highlighted by the red
triangle.

Data resulting from processing the top 10 WAPs (WAPs with highest frequency of
occurrence) are presented in Table 7.1 for WAPs at location Piccadilly (Platform 6),
Table 7.2 for WAPs at location RCS (office 1.035) and Table 7.3 for WAPs at location
Private Residence (Lounge). The values presented per column are the following: rank-
ing number by frequency of occurrence (#), identifier of the WAPs (WAP ID), mean
of RSSI (µ), standard deviation of RSSI (σ), the value registered as a minimum error
(min Error), and finally the value of λx that generated the minimum Error.

Table 7.1: Generating a minimum error per WAP. Location
Platform 6, Piccadilly Railway Station.

# WAP ID µ σ min Error λx

1 137 -71.629 1.7995 4045.2 0.33

2 127 -70.345 1.9086 4174.8 0.39

3 150 -70.457 3.6036 8429.9 0.14

4 161 -74.532 3.4526 8045.3 0.7

5 194 -62.277 3.2507 6531.2 0.25

6 199 -63.667 2.8502 5781.9 0.2

7 197 -72.946 2.9551 4745.8 0.2

8 195 -77.525 3.1464 5620 0.14

9 193 -73.122 3.4918 6879.9 0.17

10 146 -54.239 3.2449 5550.1 0.59

Table 7.2: Generating a minimum error per WAP. Location
Office 1.035, RCS.

# WAP ID µ σ min Error λx

1 63 -62.506 5.303 48211 0.33

2 33 -75.555 3.7583 36599 0.35

Continued on next page
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Table 7.2 – continued from previous page
# WAP ID µ σ min Error λx

3 42 -75.507 3.8149 38188 0.38

4 49 -63.573 4.8422 45795 0.32

5 52 -63.619 4.8559 46108 0.3

6 68 -70.687 5.2232 47451 0.31

7 67 -70.611 5.2514 48080 0.34

8 83 -71.927 3.6536 67256 0.41

9 65 -69.565 3.2566 47864 0.55

10 55 -73.612 3.7673 36448 0.29

Table 7.3: Generating a minimum error per WAP. Location
Lounge, Private Residence

# WAP ID µ σ min Error λx

1 363 -73.693 4.1614 1.3514e+05 0.08

2 360 -73.669 4.1022 1.3017e+05 0.09

3 350 -77.141 3.0698 60374 0.18

4 361 -73.624 4.0404 1.2412e+05 0.1

5 353 -74.979 3.6876 82488 0.31

6 352 -79.594 3.3709 71932 0.61

7 365 -78.33 4.2151 71278 0.63

8 358 -80.134 3.1299 56462 1

9 362 -80.836 2.8749 53702 1

10 370 -80.566 3.512 56600 1

The used of a λx per WAP provides a more accurate state estimate of the RSSI.
Therefore it might be possible to have a better match using existing fingerprint based
positioning techniques. This is because the expected signal strength for all the WAPs
in the fingerprint have been estimated with a λx that minimises the error.

The parameter λx is experimentally tuned for each WAP. The timing on computing
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λx for a WAP per location is presented in Table D.1. The script used to compute the
λx is presented in Appendix C. This script has been programmed aiming to proof the
concept. Therefore, it can be optimised for reducing its processing time in the final
implementation of the system.

Location WAP WAP Total time on
Observations ID computing λx

(seconds)
Platform 6 3,727 137 1.18

Piccadilly Railway Station

Office 1.035 46,145 63 4.27

RCS, UoM

Private Residence 58,062 363 4.98

Derby, UK

Table 7.4: Timing on computing λx for a single WAP per Location

The timing on computing λx of all the WAPs per locations is presented in Appendix
D.

7.1.1 Updating Strategy for λx

The parameter λx is experimentally tuned for each WAP and this will have to be up-
dated as the temporal signal of the WAP changes. Two strategies are discussed to
accomplish this update:

• Time based. An updating strategy based on a fix time, or in a specific number
of observations is an approach to solve the problem of the value of λx. Establish
a mean number of observations between updates requires an in-depth analysis
of the data set. Although it is a potential solution, a fix updating time does
not provides the best updating strategy, since the WAPs signals strength profiles
differs dramatically even in when recorded at the same location. For this the
author proposes a second approach, a condition based strategy.

• Condition based. The Control Chart discussed previously detects when the data
is out of control, and is used for managing the WAPs. This same data from the
Control Chart can be used to determine when the λx should be updated. This pro-
vides a data driven mechanism that triggers alerts or automatically computes a
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new λx. The proposed strategy would consist of two steps. First, detecting when
a WAP is out of control and removing it from the fingerprint. Second, monitoring
the number of observations it takes the WAP to go back under control, if it takes
larger than for example 100 observations, as shown in WAP 596 Figure 7.19,
then the λx is updated using k0 number of observations. The implementation of
this updating strategy done is left as further work.

7.2 Comparing Estimated Value

A comparison of the estimated value x̂ from the five fingerprinting techniques is pre-
sented in Figures 7.7, 7.8, 7.9 and 7.10. The estimated value corresponding to the
EWMA Fingerprint was computed using λx that minimises the error per WAP. As it
is observed the x̂ values for EWMA method 7.10 are less volatile, nevertheless they
respond to changes in the signal.

7.2.1 Comparing EWMA and Jun-Sung Fingerprints

The error between the raw data and the estimated value from the Jun-Sung algorithm
was generated and compared with the error between raw data and the EWMA algo-
rithm. Results showed that by selecting an optimal value of λx the error using EWMA
can be lower than the error generated by Jun-Sung algorithm. Figures 7.11, 7.12 and
7.13 present the error differences between Jun-Sung and EWMA.

It is observed from the green sections on the curves that a smaller error can be
achieved by implementing the EWMA algorithm with the optimal λx value, rather
than the average as implemented by Jun-Sung. As explained in section 6.1.5 the Jun-
Sung approach to compute the expected value performs as an EWMA with a value of
λx = 0.5. This is illustrated in Figures 7.11,7.12 and 7.13 where the error difference is
0 (zero) for λx = 0.5.

7.3 EWMA on Detecting Changes and Outliers

This section presents the results of finding candidate parameters for detecting when
the signal is out of control in the EWMA control chart. As explained in the section
Control Chart in Chapter 6, for detection of changes two EWMA are employed. The
parameter λc1 has the function of smoothing the data, smaller values for λc1 allow for
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Figure 7.7: Comparison of the expected signal strength value x̂ computed with the Ba-
sic Fingegerprint/raw data and the Default Fingerprint using observations taken from
WAP 363.



7.3. EWMA ON DETECTING CHANGES AND OUTLIERS 167

0 1 2 3 4 5 6
x 104

−100

−90

−80

−70

−60

−50

−40

−30
Raw Data and Gal laghe r F ingep rint. [L oc 39, WAP 363]

Observation

R
S

S
I

a
n

d
x̂

(d
B

)

 

 

Raw Data

x̂ Gal laghe r .

Figure 7.8: Comparison of the expected signal strength value x̂ computed with the
Basic Fingegerprint/raw data and the Gallagher Fingerprint using observations taken
from WAP 363.
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Figure 7.9: Comparison of the expected signal strength value x̂ computed with the
Basic Fingegerprint/raw data and the Jun-Sung Fingerprint using observations taken
from WAP 363.
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Figure 7.10: Comparison of the expected signal strength value x̂ computed with the Ba-
sic Fingegerprint/raw data and the EWMA Fingerprint using observations taken from
WAP 363.
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Figure 7.11: Location Piccadilly
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Figure 7.12: Location RCS
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Figure 7.13: Location Private Residence
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the shape of the data to be retained post normalisation, which is better for identifying
changes.

7.3.1 Analysis on WAP 596

WAP 596 was selected due to its signal strength profile presenting a good example of
a step change. Also, WAP 596 has the largest standard deviation within the WAPs de-
tected at RCS. It was detected in a total of 1,363 observations with a standard deviation
of σ = 12.55.

Figure 7.14 shows the signal strength measurements for WAP 596, a significant
increase is shown at observation number 385.
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Figure 7.14: RSSI from WAP ID 596 at RCS
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Varying parameter λc1

EWMA was applied to RSSI data from WAP 596, varying the values of λc1 in the
range (0,1) whilst fixing weight (λc2=0.5) and threshold (L=6). Acceptable results
were found for small values of λc1. For example, Figure 7.15 was computed with
a λc1 = 0.1, λc2 = 0.5 and L = 6, this parameter of λc1 did not provide a desirable
outcome since the confidence values are within boundaries when the step change is
presented. It was noticed that for values of λc1 larger than 0.1, the confidence was
not large enough to detect the change in the signal. From this the range for λc1 was
narrowed to (0.001, 0.1).
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Figure 7.15: This Figure presents the EWMA control chart applied to data from
WAP 596. Three plots are presented here: the RSSI, the Normalised EWMA and the
confidence. The top plot presents the RSSI (blue line) and EWMAc1 computed with
a λc1 = 0.1. The middle plot presents the Normalised EWMA (red line) which was
computed with EWMAc2 ( the second EWMA in the control chart) having a weight
(W) equal to 0.5 (W=λc2=0.5). Finally, the bottom plot presents the confidence and
control limits with L=6
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By reducing the value to λc1 = 0.01 as shown in Figure 7.16 the change in RSSI
at observation 385 is detected by the control limits, but the confidence values go out
of control limits during just a few observations, since the signal in WAP 596 has the
higher σ a more significant change in the confidence value is desirable.

Results found with a value of λc1 = 0.001, λc2 = 0.5 and L= 6 are presented in Fig-
ure 7.17, from the confidence plot at the bottom of the figure it can be appreciated that
the step change is detected since the confidence value changes significantly enough. It
can be said that the value λc1 = 0.001 is a suitable candidate for step changes using
WAP 596.
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Figure 7.16: λc1 = 0.01, λc2=0.5, L=6

Varying parameter λc2

Then changes to the parameter λc2 were analysed, an initial approach was to imple-
ment EWMA with values suggested by [Mon08], which are λc2 = 0.05 and L=2.492.
Figures 7.18 presents results using the suggested parameters. From these results, it
can be stated that the suggested values perform poorly for this particular RSSI data. It
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Figure 7.17: λc1 = 0.001, λc2=0.5 ,L=6
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is determined from this that other values should be identified. The second approach
was to use λc2 = 0.34 which is the optimal value found for estimating x̂ for WAP 596
(see section 6.1.6 State Estimation). Results of implementing λc2 = 0.34 are presented
in Figure 7.19. A value of λc2 = 0.34 presented a desirable outcome for detecting
changes in the signal for WAP 596.
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Figure 7.18: λc1 = 0.001, λc2 = 0.05 and L = 2.492. Values λc2 and L sugested by
[Mon08] applied for detecting changes and outliers in observation from WAP 596.

7.3.2 Analysis on WAP 63

WAP 63 was subject to analysis, results of fitting parameters (λc1 = 0.01, λc2 = 0.5
and L = 6 ) are observed in the confidence graph in Figure 7.20, these results are
not the most desirable since the changes in the raw data are faintly reflected in the
confidence. Also tested were the values within the range (0.05≤ λc2≤ 0.25) suggested
in [Mon08] suitable results were found using the λc2 = 0.25. As presented in Figure
7.21, parameters (λc1 = 0.001, λc2 = 0.25 and L=6) were found for WAP 63, resulting
in a more accurate detection of changes by the confidence and control limits.
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Figure 7.19: λc1 = 0.001, λc2 = 0.34 and L = 6. Varying λc2 values for detecting
changes and outliers for WAP 596.
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Figure 7.20: λc1 = 0.01, λc2 = 0.5 and L= 6. Varying parameters for detecting changes
and outliers for WAP 63.
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Figure 7.21: λc1= 0.001, λc2=0.25, L=6. Varying parameters for detecting changes and
outliers for WAP 63.

7.3.3 Analysis on WAPs 137 and 363

These candidate values for λc1, λc2 and L are then tested on other WAPs with vary-
ing signal strength profile in order to identify well suited parameters for all of the
WAPs at the RCS location. EWMA was applied to WAP 137 (Piccadilly Railway
Station, Platform 6), and to WAP 363 (Private Residence), using the following param-
eters λc1 = 0.001, λc2 = 0.25 and L = 6. Results are shown in Figures 7.23 and 7.24
respectively.

7.3.4 Analysis on WAPs 193, 197, 198 and 214

Results from WAPs 193, 197, 198 and 214 are shown in Figures 7.25, 7.26, 7.27
and 7.28. The parameters used are those that showed suitable results on previously
analysed WAPs. These values are λc1 = 0.001, λc2 = 0.25 and L = 6. In the figures,
the top subplot shows the raw measurements with the mean estimate overlaid. Control
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Figure 7.22: λc1 = 0.001, λc2 = 0.25 and L = 6 for EWMA control chart applied to
WAP 596
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Figure 7.23: λc1 = 0.001, λc2 = 0.25 and L = 6 for EWMA control chart applied to
WAP 137



7.3. EWMA ON DETECTING CHANGES AND OUTLIERS 183

0 1 2 3 4 5 6

x 10
4

−100

−80

−60

−40

−20

[WAP_ID=363  SSID=BTHub3−3458] Location=PrivateResidence  RSSI and EWMA.λ =0.001

R
S

S
I 
(d

B
)

 

 

RSSI EWMA StdDev

0 1 2 3 4 5 6

x 10
4

−10

0

10

20
Normalised RSSI and EWMA.  W=0.25

N
o
rm

a
lis

e
d
 E

W
M

A

 

 

Norm. RSSI Norm. EWMA

0 1 2 3 4 5 6

x 10
4

−4

−2

0

2

4
EWMA Confidence Output.  L=6

C
o
n
fi
d
e
n
c
e

Observations

 

 

Confidence Control limits

Figure 7.24: λc1 = 0.001, λc2 = 0.25 and L = 6 for EWMA control chart applied WAP
363
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limits are placed at ±6σ (L=6).
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Figure 7.25: EWMA control chart with parameters λc1 = 0.001, λc2 = 0.05 and L = 6
applied to WAP 193

From the analysis and figures presented, it can be said that λc1 = 0.001, λc2 = 0.25
and L = 6 are a suitable a set of values for the EWMA control chart. Detecting changes
and outliers succesfully for WAPs within this dataset.

It is clear from the visualisations in these figures, that whenever the confidence
output values exceeds the boundaries (illustrated with the red lines in the third subplot)
then the WAP is in transition or unstable and therefore should not be included when
doing a fingerprint signature comparison. It is also clear that when stability is restored
then the confidence output values revert to being within the boundary and thus indicate
that this particular WAP could be and should be again used in a fingerprint signature
comparison. These results illustrate that EWMA can be a useful tool for all the consid-
ered cases; of ramps (Figure 7.27) and steps (Figures 7.25 and 7.26). Outliers as shown
in figure in Figure 7.28, can be accepted if isolated, even if there are many values, as
shown, meaning that the confidence values remain within bounds.
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Figure 7.26: EWMA control chart with parameters λc1 = 0.001, λc2 = 0.05 and L = 6
applied to WAP 197
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Figure 7.27: EWMA control chart with parameters λc1 = 0.001, λc2 = 0.05 and L = 6
applied to WAP 198



7.3. EWMA ON DETECTING CHANGES AND OUTLIERS 187

0 500 1000 1500 2000 2500 3000 3500
−100

−80

−60

−40

−20

[WAP_ID=214  SSID=T−mobile WiFi] Location=PiccadillyTrainStation  RSSI and EWMA.λ =0.001

R
S

S
I 

(d
B

)

 

 

RSSI EWMA StdDev

0 500 1000 1500 2000 2500 3000 3500
−15

−10

−5

0

5
Normalised RSSI and EWMA.  W=0.25

N
o

rm
a

lis
e

d
 E

W
M

A

 

 

Norm. RSSI Norm. EWMA

0 500 1000 1500 2000 2500 3000 3500
−4

−2

0

2

4
EWMA Confidence Output.  L=6

C
o

n
fi
d

e
n

c
e

Observations

 

 

Confidence Control limits

Figure 7.28: EWMA control chart with parameters λc1 = 0.001, λc2 = 0.05 and L = 6
applied to WAP 214
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7.3.5 Filtering WAPs using EWMA Confidence

The addition or removal of a WAP can be determined by using the confidence bound-
aries. It can be detected when the WAP is out of control and should not be used for
positioning until it is back under control. Even though it may be detected for the ma-
jority of the time. Effectively, the author is stating that appearance count alone does
not provide robust decision making logic to manage the inclusion of a WAP into the
fingerprint.

A solid example of the value of using control chart confidence levels is show in
Figure 7.32.
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Figure 7.29: Raw data from WAP 214 at Location 36

Signal strength from WAP 214 (Figure 7.29) presents several data points that can
be considered as outliers. In the presence of such characteristics the WAP should not
be trusted. However, when analysing the scores computed by Gallagher (Figure 7.30)
it is observed that the value pending only changes to 1 (one) briefly for when the WAP
is not detected. Remembering that the value of pending determines when a WAP is
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included in the fingerprint, so when pending = 0 then the WAP is included in the
fingerprint.
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Figure 7.30: Gallagher Fingerprint for WAP 214 at Location 36

Considering Jun-Sung Fingerprint in Figure 7.31, this fingerprint technique has
no mechanism for detecting a signal presenting outliers. Furthermore, even when the
absence of the signal is reflected by the score the outliers in the signal strength are not
reflected by the value of pending, as shown in the bottom plot from Figure 7.31. From
these results it is clear that WAP 214 is indeed considered at all times for positioning
when using the Jun-Sung algorithm.

Results from the EWMA control chart are presented in Figure 7.32. The under

control parameter detects when data points shift away from the estimated value. The
boundaries in this particular case are set at ±6σ. From the bottom plot in Figure 7.32
it is observed that parameter under control is actually detecting the outliers (shifts)
in the signal from WAP 214. Here the control chart confidence states that the signal
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Figure 7.31: Jun-Sung Fingerprint for WAP 214 at Location 36
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strength measurements have changed significantly and that the WAP should no longer
be trusted. Furthermore, EWMA Fingerprints can detect when changes and outliers
are occurring to a large number of WAPs in the fingerprint, which can be used as an
indicator when a complete radio-map update is required.
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Figure 7.32: EWMA control chart computed with values λc1 = 0.001,λc1 = 0.25 and
L = 6. The bottom plot is the under control parameter, which indicates when outliers
are detected by EWMA control chart. Data from WAP 214, Location 36

Furthermore, Figure 7.33 presents the EWMA Fingerprint, where it is observed in
the bottom plot that the score does respond to the outliers by decreasing it value, this
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will situate WAP 214 lower in the rank. The score along with the results from the
EWMA control chart provide a more robust mechanism to filter out WAPs presenting
outliers.
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Figure 7.33: EWMA Fingerprint from WAP 214, Location 36
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7.4 Comparing Score Functions

From analysing the algorithms presented by Gallagher et al. [GLDR10] and Jun-Sung
et. al [LJYH13], it was noticed that the logic to add/remove the WAP to/from a fin-
gerprint is based on a predefined count threshold. Although Jun-Sung goes further and
introduces the exponential growth and decay, nevertheless it is still based on counting
the number of appearances the WAP makes.

In order to address the addition and removal of the WAPs, two methods were pro-
posed, the EWMA confidence value (discussed in previous section) and the score de-
cay.

Accordingly, a simple version of the EWMA was employed for computing a gra-
dient for score decay. In this case the weight (λp) is predefined as 0.5, with this same
value being applied to all of the historical data and the current data. Nevertheless, this
λp can be changed in the system settings. The analysis on modifying the weight λp is
left for future work.

Figures 7.34, 7.35, 7.36 and 7.37 present a comparison of Gallagher, Jun-Sung
and EWMA Fingerprints. Parameters score and pending from Gallagher and Jun-Sung
Fingerprint and the parameter uc proposed in the EWMA control chart, are compared
using the real-world data collected from WAP 527. Figure 7.34 shows the raw data
for WAP 527, this WAP was detected in just a few, sparse observations. It illustrates
clearly the advantage of the proposed scoring function.

EWMA Fingerprint for WAP 527 is shown in Figure 7.35, the score in EWMA Fin-
gerprint is more responsive because the WAP signal strength, variation and averaged
WAP presence p̂ are considered. In comparison the score in Jun-Sung Fingerprint
(Figure 7.37) reaches the acceptance window within a few observations, and it takes
a larger amount of observations (minimum of 100) to remove it from the fingerprint.
Therefore the proposed gradient function based on the metric m and averaged WAP
presence p̂ can be seen to provide a more data driven approach to reducing trust in the
WAP.

It is observed in Figure 7.35 that EWMA score increases when the WAP is present,
and decreases when the WAP is absent, but it goes beyond the inclusion o exclusion
of the WAP. It is also a ranking mechanism within the fingerprint, and it affects the
arrange of WAPs in the positioning stage. The score includes the WAP in the finger-
print for applications requiring as much WAPs as possible/available (e.g. Emergencies
and rescue), but a low rank WAP can be leaved out for applications with not such
requirements (e.g. finding a store within a mall).
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Figure 7.34: Raw data from WAP 527 at location 39
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Figure 7.35: EWMA Fingerprint scoring function
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Figure 7.36: Gallagher score for WAP 527
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On the other hand, the scores proposed by Jun-Sung and Gallagher have the single
purpose of determine if the WAP should or not be included in the fingerprint by chang-
ing the value of parameter pending. As commented previously, a value of pending = 0
indicates that the WAP is used in the fingerprint. Figures 7.38, 7.39 and 7.40 reflect
how the scores affect the WAP inclusion by modifying pending. Another disadvan-
tage of Jun-Sung’s technique is the large number of observations it takes to exclude
the WAP from the fingerprint as seen in Figure 7.35. This potentially affects position-
ing results since the WAP is in the fingerprint although is has been absent for a large
number of the observations.
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Figure 7.38: Historical values of parameter pending for WAP 527 computed with
EWMA Fingerprint
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Figure 7.39: Historical values of parameter pending for WAP 527 computed with Gal-
lagher Fingerprint
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Figure 7.40: Historical values of parameter pending for WAP 527 computed with Jun-
Sung Fingerprint



Chapter 8

Conclusions and Further Work

From analysing historical data streams from nearby WiFi Access Points (WAPs), cap-
tured over an extended period, a novel fingerprint definition based on control charts
has been designed. Also, a metric for ranking WAPs was incorporated. This has led to
an improved process of mapping and positioning over the tested WiFi indoor environ-
ments.

8.1 Contributions

This thesis makes the following contributions:

1. New method of evaluating the contribution of WAPs to fingerprinting. Consist-
ing of the following:

i. First time implementation of configurable EWMA for fingerprint-based
Positioning Systems

ii. Principle of WAP discrimination based on changes and outliers

iii. Scoring function for ranking WAPs

2. Development of a unique and highly valuable dataset of observations

3. Database schema

4. Data capture scripts
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8.1.1 Unique Data Set

From the collection of a large amount of data carried out over a long period of time we
have shown graphically that there are time variant features in the signal strength profile
of the WAPs. These features are likely to cause issues for IPS when considering the
average as an estimated parameter. The findings presented increase the understanding
of WiFi-fingerprint based IPS, having implications for their use to improve existing
IPS.

8.1.2 EWMA and Control Charts

This work presents for the first time a system that incorporates a fingerprint algo-
rithm based on a configurable EWMA control chart to improve fingerprint based IPS.
The control chart is used primarily to include or remove WAPs from the fingerprints.
Whereas an additional EWMA is used as a tuneable estimator to calculate the esti-
mated value in the fingerprint. It was discovered that two implementations of EWMA
were required in order to detect change points and estimate the fingerprint value, rather
than a single implementation of EWMA attempting to accomplish both tasks.

8.1.3 Score Function

It was envisioned that the use of a metric for selecting the usable WAPs for fingerprint-
ing is an efficient way to maintain a light weight and up-to-date radio-map. Developed
initially in order to rank WAPs based on their signal strength, stability and variance
there is a second advantage of using the score function as a discriminator. This states
that even when the WAP is included into the fingerprint but its score is small it may
not be considered; hence even if it has a strong signal if the score does not reach the
potential good metric condition then the WAP is not included, due, for example, to low
occurrence count.

8.1.4 General Conclusions

We conclude that timestamps and environment characteristics (scenarios) should be
taken into account in order to develop an accurate, robust and scalable positioning
system based on fingerprinting.

The control chart method that has been applied to the measurements has shown two
key results. The first is that some process of smoothing the measurements is required
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in order to have an efficient and accurate estimation of the WAP signal strength. The
second is that locations of ‘change points’ can be accurately detected by using the
control chart. These results lay an important basis for the construction and comparison
of fingerprints for an IPS. From this work it has been demonstrated that changes to the
environment can be detected by identifying change points in signal strength behaviour.
This in an important result that takes into consideration the history of the time series
measurements.

It is concluded that the EWMA algorithm is an effective way to improve the detec-
tion of RSSI changes for fingerprinting based IPS.

This work investigates the possibility of localisation based on devices emitting
electromagnetic signals, focusing mainly in the frequency used by WiFi communica-
tions. Although, it is argued that it is possible to achieve improvements in localisation
by combining other data with the WiFi readings, for example using vision enabled de-
vices and incorporating other bands of the electromagnetic spectrum to create a more
accurate mapping.

Key results show that analysis of timestamps play a crucial role within WiFi-based
positioning. These results are important for increasing the understanding of the per-
formance of WiFi-based Indoor Positioning Systems that might be used over very long
time periods and in large and complex environments.

8.2 Further Work

Following on from the results, an in-depth study of different smoothing constants and
potentially different smoothing algorithms will be carried out. Also the methodology
of using the change points will be explored. In order to maximise the potential of
dynamically adjusting the fingerprint based on changes to signal strength trends.

Development of software for capturing observations from a mobile device.
Consideration of emerging IEEE standards, and its impact on existing fingerprint

based positioning systems.
Exploring the inclusion of visual information into the fingerprint definition, to anal-

yse the benefits and drawbacks of adding images into the fingerprinting and positioning
processes.

As future work it is proposed to analyse the data collected on board trains whilst in
motion, as this presents a challenging analysis of a dynamic environment.
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Appendix A

Database

A.1 Locations

Table A.1: Locations where data collection took place.

Location ID Country City Building Room
1 UK Manchester RCS 1.004a

2 UK Manchester RCS 1.004b

3 UK Manchester RCS 1.005

4 UK Manchester RCS 1.006a

5 UK Manchester RCS 1.006b

6 UK Manchester RCS 1.009a

7 UK Manchester RCS 1.009b

8 UK Manchester RCS 1.011a

9 UK Manchester RCS 1.011b

10 UK Manchester RCS 1.021

11 UK Manchester RCS 1.023

12 UK Manchester RCS 1.026

13 UK Manchester RCS 1.027

14 UK Manchester RCS 1.028

15 UK Manchester RCS 1.029

16 UK Manchester RCS 1.030

17 UK Manchester RCS 1.031a

Continued on next page
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Table A.1 – continued from previous page
Location ID Country City Building Room

18 UK Manchester RCS 1.031b

19 UK Manchester RCS 1.032

20 UK Manchester RCS 1.035 1.014

21 UK Manchester RCS 1.036 1.015

22 UK Manchester RCS 1.037 1.016

23 UK Manchester RCS 1.038 1.017

24 UK Manchester RCS 1.041 1.018

25 UK Manchester RCS 1.042 1.019

26 UK Manchester RCS 1.043 1.020

27 UK Manchester RCS 1.044

28 UK Manchester RCS 1.046

29 UK Manchester RCS 1.048a

30 UK Manchester RCS 1.048b

31 UK Manchester RCS 1.050

32 UK Manchester RCS 1.051a

33 UK Manchester RCS 1.051b

34 UK Manchester RCS 1.056

35 UK Manchester RCS 1.057

36 UK Manchester PiccadillyTrainStation Platform6

37 UK Derby DerbyTrainStation Costa Coffee Premises

38 UK Derby Gym Computer Stations

39 UK Derby PrivateResidence Living Room

40 UK Derby Westfield Food Court

41 UK Manchester PiccadillyTrainStation Platform5

42 UK Manchester KilburnBuilding 2.107

43 UK Sheffield SheffieldTrainStation RoomPlatform8a

44 UK Manchester PiccadillyTrainStation Platform4

45 UK Manchester PiccadillyTrainStation Platform8

46 UK Manchester PiccadillyTrainStation Platform9

47 UK Manchester University Place UoM Food Court

48 UK Manchester RCS 1.022
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A.2 Database Statistics

Table A.2: Database Statistics

Loc Total Total Average Mean StdDev Mode Median Min Max
ID Obs WAPs WAP count RSSI RSSI RSSI RSSI RSSI RSSI

per Obs
1 4 26 24 -77.22 10.68 -85.00 -82.00 -88 -46

2 4 26 21 -79.82 7.20 -84.00 -82.50 -88 -58

3 8 42 24 -82.49 3.32 -86.00 -83.00 -88 -69

4 4 27 25 -72.96 8.56 -81.00 -74.00 -84 -49

5 4 32 30 -67.69 14.39 -67.00 -70.00 -87 -31

6 4 49 42 -74.35 9.37 -77.00 -77.00 -87 -46

7 4 54 47 -73.25 10.03 -86.00 -76.00 -88 -45

8 29 59 25 -73.23 13.22 -82.00 -78.00 -87 -25

9 31 58 27 -72.52 13.73 -84.00 -76.00 -90 -13

10 9 40 25 -77.39 8.50 -78.00 -80.00 -88 -48

11 16 37 24 -77.70 6.42 -86.00 -78.00 -89 -60

12 10 32 23 -71.30 10.29 -83.00 -73.00 -87 -52

13 11 40 26 -68.81 9.75 -67.00 -69.50 -87 -45

14 10 55 34 -74.68 6.33 -73.00 -74.00 -89 -58

15 15 53 32 -77.80 5.57 -77.00 -78.00 -87 -59

16 12 59 39 -76.90 7.81 -83.00 -79.00 -88 -57

17 10 59 37 -74.42 9.14 -83.00 -76.00 -88 -51

18 12 60 38 -74.30 9.89 -85.00 -77.00 -88 -44

19 22 56 31 -75.70 8.81 -85.00 -76.00 -88 -48

20 46161 141 32 -71.10 9.07 -69.00 -71.00 -92 -28

21 72 50 32 -70.78 10.68 -79.00 -73.00 -89 -25

22 80 49 29 -72.89 13.66 -77.00 -77.00 -90 -26

23 69 42 22 -72.19 14.74 -80.00 -78.00 -88 -25

24 67 42 20 -74.26 12.56 -85.00 -79.00 -89 -37

25 84 47 18 -75.36 10.38 -84.00 -78.00 -90 -44

26 86 45 18 -75.73 9.38 -85.00 -78.00 -91 -45

27 14 38 25 -75.89 8.10 -81.00 -77.50 -88 -49

Continued on next page
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Table A.2 – continued from previous page
Loc Total Total Average Mean StdDev Mode Median Min Max
ID Obs WAPs WAP count RSSI RSSI RSSI RSSI RSSI RSSI

per Obs
28 4 41 37 -74.08 9.05 -85.00 -76.00 -86 -53

29 4 36 36 -71.99 11.78 -68.00 -75.00 -86 -38

30 4 37 32 -75.21 10.64 -84.00 -79.00 -87 -48

31 5 43 41 -74.56 8.22 -78.00 -77.00 -89 -51

32 8 53 42 -75.93 9.03 -85.00 -79.00 -88 -50

33 5 52 48 -77.34 6.78 -80.00 -80.00 -87 -57

34 4 36 33 -72.08 8.42 -80.00 -71.00 -86 -52

35 18 42 26 -75.96 7.87 -86.00 -76.50 -88 -56

36 3727 555 47 -75.35 7.74 -78.00 -76.00 -92 -1

37 8954 113 11 -80.76 8.53 -87.00 -83.00 -98 -12

38 5331 14 5 -78.24 11.64 -89.00 -85.00 -92 -14

39 58132 97 23 -79.58 6.90 -81.00 -81.00 -96 -11

40 56 66 33 -66.88 11.18 -60.00 -68.00 -89 -39

41 210 111 50 -75.96 7.49 -80.00 -77.00 -92 -45

42 198 21 14 -70.04 15.17 -79.00 -77.00 -90 -33

43 1560 75 7 -78.12 10.07 -88.00 -80.00 -92 -18

44 15 58 47 -74.28 9.90 -83.00 -76.00 -88 -37

45 14 60 51 -74.21 9.11 -75.00 -75.00 -88 -42

46 15 58 47 -71.05 9.22 -75.00 -72.00 -87 -46

47 91 25 22 -70.49 14.08 -82.00 -74.50 -91 -47

48 6 24 16 -82.12 4.99 -83.00 -83.00 -89 -68

A.3 Enhanced Entity-Relationship Model
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Appendix B

Data Collection

B.1 Data Collection Script

1 #!/bin/bash

2 #WiFi Observations. Recording WiFi data from nearby wireless networks

3 # The Aiport Utility in OSX (10.10.1)

4 strAirport=”/System/Library/PrivateFrameworks/Apple80211.framework/Versions/

Current/Resources/airport”

5 #Number of requests. It can be configurable according to the desired number of

request

6 numRequests=4

7 # Waiting time (in seconds) between requests.

8 # It can be configurable according to the desired waiting time

9 waitInSeconds=5

10 # Obtain directory where script is installed, and where observations will be stored

11 SCRIPTPATH=$(dirname ”$BASH SOURCE”)

12 # Change directory

13 cd $SCRIPTPATH

14 # Name of the folder for the session of observations

15 strFolderDate=$(date ”+%Y-%m-%d %H-%M-%S”)

16 # Reads the name of the room (You have 10 seconds for entering the name of the

room, otherwise the default ”Unknown” will be set)

17 echo -n ”Enter location name (with no spaces, e.g. Office 1) >”

18 if read -t 10 roomNameText; then #The -t option followed by a number of seconds

provides an automatic timeout for the read command.
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19 echo ”You entered location name: $roomNameText”

20 else

21 roomNameText=”Unknown”

22 echo ”Time out”

23 fi

24 echo ”Room name: $roomNameText”

25 strName=$roomNameText@$strFolderDate

26 strFolder=”New Observations/${strName}”
27 # Create the new folder

28 mkdir -p $strFolder

29 # Requests

30 for i in `seq 1 $numRequests`;
31 do

32 echo ”Request $i ... wait”

33 # Creating the string str with the date and the WiFi data

34 strDate=$(date ”+%Y-%m-%d %H-%M-%S”)

35 # Probe Request

36 strWiFi=$($strAirport -s)

37 # Saving Response to a File

38 echo ”$strWiFi” > $strFolder/”$strDate”.txt

39 sleep $waitInSeconds

40 done

41 echo ”[- Done -] ”

42 echo ”A session of $numRequests Observations has been recorded.”

43 echo ”File $SCRIPTPATH/$strFolder”

B.2 Instructions for Data Collection Script

The script WiFiSamplingScript records WiFi data from nearby wireless networks.

This script employs the Aiport Utility in OSX (10.10.1)

Instructions

1. Crate in your computer a new directory (e.g. WiFiData), make sure the name of

the file and its path contains no spaces. (e.g. /Users/Myrna/Desktop/WiFiData)

2. Copy WiFiSamplingScript.exe into the directory

3. Double click on the script WiFiSamplingScript.exe will execute the program
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4. A new terminal will open

5. It will ask immediately to enter the location name. (This version of the script does

not support spaces in the name. Enter a location with no spaces or use a

underscore instead.) It will wait for 10 seconds, if no name is entered, it will be

named unknown by default.

6. The script is set to do four requests. (This is configurable by modifying the

variable numRequest within the script).

7. After every request, will be a waiting time of 5 seconds. (The waiting time is also

configurable by modifying the variable waitInSeconds )

8. Once the requests have completed, the script will display [- Done -] and the

number of observation that were recorded.

9. Also displayed is the path and directory created, which contains the WiFi

observations recorded.

10. Repeat from step 3. for each location to be sampled.



Appendix C

Script for λx Identification

function IPSv2_generateLambdaEWMAse

% Computes the optimal LambdaX per WAP for all the Locations

tic

k0 =10; % Initialization (The Lambda is computed for WAPs that

are being in observed 10+ times)

allLocations = false; %[true -Compute LambdasX for all locations]

[false -Compute LambdasX for one location]

allWAPs = true; %[true -Compute LambdasX for all WAPs per

Location] [false -Compute LambdasX for a specific WAP per

location]

% LambdasX

numberPoints = 100; %Number of Lambdas to be evaluated

Y = linspace(0.0,1.0,numberPoints);

allLambdas = roundn(Y,-2);

if (allLocations==true)

for im =1:48

strLocation_ID = num2str(im);

end

else

% Selecting the Location to be analysed

% strLocation_ID = '20'; %Office 1.035 , RCS

strLocation_ID = '36'; %Platform6 , Piccadilly

% strLocation_ID = '39'; % Living Room , Private Residence
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end

if (allWAPs == true)

%% All WAPs

[allWAP_IDs_perLoc] = fnSQL_v2_LoadWAPsPerLocation(

strLocation_ID);

%% All the APs Sorted By Observation Count (DESC)

WAPs = allWAP_IDs_perLoc;

else

% Specific WAPs

if strcmp(strLocation_ID , '36')

% top10Piccadilly =

[137;127;150;161;194;199;197;195;193;146];

top1Pic=137;

WAP_IDs_perLoc = top1Pic;

elseif strcmp(strLocation_ID , '20')

top1RCS = 63;

%top10RCS =[63;33;42;49;52;68;67;83;65;55];

WAP_IDs_perLoc = top1RCS;

elseif strcmp( strLocation_ID , '39')

%top10PR =[363;360;350;361;353;352;365;358;362;370];

top1PriRes = 363;

WAP_IDs_perLoc = top1PriRes;

end

%% WAPs

WAPs = WAP_IDs_perLoc;

end

numWAPs = size(WAPs ,1); %Number of WAPs

matWAP_minError_lambda = zeros(1, 5); %initilizing the matrix

for results

l=0;

for i=1:numWAPs

currentWAP = WAPs(i);
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strAP_ID = sprintf('%d',WAPs(i));

%% Loading Observations (Per Location and WAP)

cellAllMeasurementsPerAP=

fnSQL_ObservationsPerWAPorderedByCreationTime(

strLocation_ID ,strAP_ID);

iRSSI = cell2mat(cellAllMeasurementsPerAP(:,1));

rowsRSSI = size(iRSSI ,1); %Size of RSSI vector

if (rowsRSSI > k0) % Checking that the size of the vector is

bigger than k0

matSumErrors = zeros(1,numberPoints);

for j=1:numberPoints

currentLambdaX = allLambdas(j);

[vecError]=IPSv2_fnEWMA_Lambda(iRSSI ,

currentLambdaX , k0);

matSumErrors(j) = sum(vecError);

end

minError =min(matSumErrors); % Finding the lambda with

the smaller error

minErrorIndx = find(matSumErrors==minError);

m = mean(iRSSI);

s = std(iRSSI);

l=l+1;

matWAP_minError_lambda(l,:) = [currentWAP ,m,s,minError

(1),allLambdas(minErrorIndx(1))];

end

end

%% Inserting the Lambda in the Database

if (l>0)

fnSQL_InsertNewLambdaEWMAseInDB(matWAP_minError_lambda ,

strLocation_ID);

end

toc

end



Appendix D

Timing on computing λx for all WAPs
per Location

Location Total Total Number Total time on
Observations WAPs WAPs computing λx

with λx (seconds)
Platform 6 3,727 555 459 276.99

Piccadilly Railway Station

Office 1.035 46,161 141 126 162.37

RCS, UoM

Private Residence 58,132 97 92 140.54

Derby, UK

Table D.1: Timing on computing λx for all WAPs per Location
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