
Is Code Quality Related to Test Coverage?

Jorge Arturo Wong-Mozqueda, Robert Haines and Caroline Jay
School of Computer Science

The University of Manchester
Manchester, United Kingdom

Email: caroline.jay@manchester.ac.uk

Abstract—A good test suite is vital for minimising errors, and
ensuring that software is easy to maintain. Another factor viewed
as being important for the success and longevity of software is
code quality. We report on work examining whether there is a
correlation between code quality and test coverage, using seven
different metrics: lines of code, McCabe’s cyclomatic complexity,
number of local methods, depth of inheritance tree, coupling
between objects, improvement of lack of cohesion in methods
and lack of documentation.

An analysis of three large, open source Java projects showed
that all of the response variables had a modest but significant
relationship with line coverage, and a stronger relationship with
branch coverage: as coverage rose, so did software quality. We
propose that writing tests may help people to adopt a ‘software
quality’ mindset, by encouraging them to think about how code
will be used as it is written. Testing may improve software
sustainability not only by helping to ensure code does not regress,
but also by supporting developers in adopting good software
engineering practices.

I. INTRODUCTION

Test coverage is a metric that tells us how much of a
codebase is covered by unit tests. We know that testing is
important for checking that the software meets requirements,
and for ensuring maintainability, but is the relationship be-
tween testing and software quality more complex than that?
The aim of the reported study is to discover if code quality
is related to the proportion of code that is covered by tests.
We hope that by understanding the relationship between test
coverage and wider software quality measures, we will gain
additional information that can be used for improving software
engineering practices, ultimately promoting the development
of more sustainable software.

II. METHODOLOGY

A. Metric Selection

A set of seven well known metrics were selected from
the suite described in [2], formally described in the ISO/IEC
9126 standard [5]. The metrics in this suite are divided into
the following categories: size, interface complexity, structural
complexity, inheritance, coupling, cohesion and documenta-
tion. Metrics that were hypothesized to be related to test
coverage were chosen from across these categories.

Lines of Code (LOC) is used as an indication of class
size, where a higher value means longer and potentially more
complex code. A lower value is deemed desirable as the code
is likely to be easier to comprehend and analyse. Shorter
classes often follow good design practices, like the Single
Responsibility Principle [3].

Number of local Methods (NOM), an indicator of interface
complexity, measures the number of methods locally declared
in a class. As the interface grows, the class usually becomes
more complex, and consequently more difficult to test.

McCabe’s Cyclomatic Complexity (CC), is a frequently
used measure of structural complexity. It calculates the com-
plexity of a software entity through the number of paths that
could be taken within it. As the number of paths increases,
the control flow usually becomes more complex and therefore
more difficult to test.

Depth of Inheritance Tree (DIT) was selected because
inheritance is a basic yet powerful concept of object oriented
languages. DIT calculates the complexity of a software entity
based on the distance between a node and its root down the in-
heritance tree [2]. As the code goes down the inheritance tree,
the control flow becomes more complex, and consequently
more difficult to test.

Coupling Between Objects (CBO) calculates the complex-
ity of a class through its dependencies: a class is considered
well designed when it is loosely coupled. As the number
of dependencies increases within a class, it increases the
complexity and decreases the maintainability of the code,
making it more difficult to test.

Improvement of Lack of Cohesion in Methods (ILCOM)
provides a measure of class cohesion. ILCOM calculates the
number of connected components in a class. High cohesion
is a desirable characteristic within a class in object oriented
languages, and this metric is a possible indicator of how well
a class was designed. It is usually harder to test classes that
do not have cohesion between their components.

Finally, Lack of Documentation (LOD) was chosen as an
interesting metric that considers comments in the code, with at
least one comment per method and one per class as a minimum
target. Comments often make the purpose of methods and
classes clearer, increasing maintainability and facilitating the
reuse of the code. Comments in Java code can also be used
to automatically build API documentation for a project, so
one might expect well maintained code to include at least one
comment per method and per class for this purpose.

B. Selection of Projects

Projects were selected from the set of Java projects hosted
at GitHub with the highest number of forks 1. Projects were
not included if they: did not run in the standard Java Runtime

1Project code and data is available from https://github.com/arturowmex/
metrics merger.



Environment; were deprecated or no longer maintained, or;
did not build and run without intervention upon cloning from
GitHub. Results are presented here for the top three projects
meeting these criteria: Netty, Spring-boot and Alibaba-dubbo.
The number of sub-projects and classes for each project, along
with the number of contributors and the project creation date,
are shown in Table I.

Project Sub-projects Classes Contributors Creation Date
Netty 19 983 165 2010-11-09
Spring-boot 8 838 180 2012-10-19
Alibaba-dubbo 24 723 10 2012-06-19

TABLE I. ANALYSED PROJECTS

C. Statistical Analysis

Cobertura was used to determine values for the line cover-
age, branch coverage and cyclomatic complexity of each class.
The remaining metrics were gathered using the VizzMainte-
nance Eclipse plugin [1]. The results of a Pearson correlation
analysis can be seen in Table II, which reports R and P values
for line coverage (LC) and branch coverage (BC). A star (*)
indicates that P < 0.05.

III. DISCUSSION

The results demonstrate a relationship between test cov-
erage and code quality, with the quality metrics correlating
negatively with test coverage, where a lower value indicates
less complex and more maintainable code. Whilst the cor-
relations are modest, the low P values indicate they are
unlikely to be due to chance. Branch coverage also appears
to correlate more consistently and more strongly with the
quality metrics than line coverage. Whilst line coverage tells
us whether a statement, such as a conditional, has been tested,
branch coverage checks whether every case has been tested,

Netty R (LC) P (LC) R (BC) P (BC)
LOC -0.095868* 0.002622 -0.221626* 2.10E-12
NOM -0.077280* 0.015371 -0.170306* 7.78E-08
CC -0.030399 0.341030 -0.250631* 1.52E-15
DIT -0.037586 0.239053 -0.073661* 0.020905
ILCOM -0.145504* 4.64E-06 -0.388049* 1.12E-36
CBO -0.074325* 0.019775 -0.240969* 1.88E-14
LOD -0.232389* 1.61E-13 -0.285402* 7.02E-20
Spring-Boot R (LC) P (LC) R (BC) P (BC)
LOC 0.022020* 5.24E-01 -0.138774* 5.56E-05
NOM 0.002319 0.946549 -0.140619* 4.41E-05
CC -0.054081 0.117727 -0.328804* 1.41E-22
DIT -0.137022* 6.91E-05 -0.023515 0.496623
ILCOM -0.022677 0.512088 -0.110849* 0.001308
CBO -0.019527 0.572423 -0.036011 0.297754
LOD -0.143052* 3.23E-05 -0.227835* 2.50E-11
Alibaba-dubbo R (LC) P (LC) R (BC) P (BC)
LOC -0.043691 0.240661 -0.223800* 1.17E-09
NOM -0.024219 0.515559 -0.168959* 4.92E-06
CC -0.100579* 0.006797 -0.358705* 2.24E-23
DIT -0.245059* 2.39E-11 -0.138653* 0.000184
ILCOM -0.098263* 0.008193 -0.197943* 8.03E-08
CBO -0.136590* 0.000229 -0.187666* 3.72E-07
LOD -0.239555* 6.78E-11 -0.265597* 3.87E-13
All Projects R (LC) P (LC) R (BC) P (BC)
LOC -0.074303* 0.000176 -0.208734* 1.93E-26
NOM -0.071241* 0.000323 -0.173464* 1.23E-18
CC -0.147314* 8.18E-14 -0.340957* 2.81E-70
DIT -0.163916* 8.80E-17 -0.124169* 3.30E-10
ILCOM -0.079201* 6.36E-05 -0.220375* 2.36E-29
CBO -0.059043* 0.002890 -0.169025* 9.24E-18
LOD -0.220845* 1.78E-29 -0.268367* 3.23E-43

TABLE II. CORRELATION RESULTS

and highlights where they have not. It is better at identifying
weak points in the test suite, and is therefore a better indicator
of robustly-tested code than line coverage.

The fact that quality is more strongly correlated with
branch coverage than line coverage is noteworthy, as it in-
dicates that it is not merely the presence of tests that appears
to improve code, but the presence of ‘good’ tests. There are
two possible explanations for this relationship. One is that a
developer who writes high quality code is likely to be the type
of developer who writes tests. Another is that the act of writing
tests itself causes code to be structured in a particular way,
and that this practice results in less complex, and therefore
higher quality, software. These explanations are not mutually
exclusive, and it is possible that both are in play. The effect
of writing tests on software architecture is a strongly-debated
topic [6]; here we appear to have some evidence that producing
a robust test suite has a positive effect on code structure.

An interesting correlation is with LOD. Comments in the
code have no direct effect on the tests as comments are ignored
when the code is run. Nevertheless, the results across the three
projects show that the classes and methods that are documented
have a higher percentage of code covered by tests. The P
values of LOD all present a value below 0.05, and in the case
of line coverage LOD is the metric with the highest value of
R. This suggests that when people write a test, they also write
a comment – or vice versa.

Inevitably, this analysis produces more questions than it
answers. It appears that Spring-Boot has fewer quality met-
rics showing significant correlations with either test coverage
metric than the other projects, and we need to examine this
outcome in more depth to understand why it might be. To
confirm the results, it will be important to include more
projects in the analysis, and also to understand the results in
the context of other factors known to affect quality, such as
team size [4]. The current work has a focus on Java. It will
be interesting to explore the relationship in other languages.

Nevertheless, the consistent correlation between software
quality and test coverage indicates that the value of writing
tests may go beyond simply checking correctness and prevent-
ing regression, by encouraging developers to produce higher
quality, more sustainable code.

REFERENCES

[1] Barkmann, H., Lincke, R., & Löwe, W. (2009, May). Quantitative
evaluation of software quality metrics in open-source projects. In
Advanced Information Networking and Applications Workshops, 2009.
WAINA’09. International Conference on (pp. 1067-1072). IEEE.

[2] Lincke, R., & Löwe, W. (2005). Compendium of software quality
standards and metrics. http://www.arisa.se/compendium/

[3] Martin, Robert C. (2009). Clean code: a handbook of agile software
craftsmanship. Pearson Education, ISBN: 9780132350884

[4] Bernstein, M. (2014). Does Team Size Impact Code Quality? http://blog.
codeclimate.com/blog/2014/05/21/does-team-size-impact-code-quality/.
[Accessed 10 Aug. 2015].

[5] ISO (2000). ISO/IEC FIDS 9126-1 Information technology Software
product quality. First Edition. [online] http://www.cse.unsw.edu.au/
∼cs3710/PMmaterials/Resources/9126-1%20Standard.pdf. [Accessed 10
Aug. 2015].

[6] Holub, A. (2014). Test-Driven Design http://www.drdobbs.com/
architecture-and-design/test-driven-design/240168102. [Accessed 16
Aug. 2015].


