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Abstract

The University of Manchester
Tianhui Zhu

Master of Philosophy
Experimental and Numerical Investigation of

the Dynamics of Interacting Vortex Rings in Superfluid Helium
2015

This thesis focuses on the dynamics of the vortex rings and how they interact with each
other in superfluid helium. A pulse of charged vortex rings (CVRs) is injected into the
experimental cell for different pulse lengths, voltages and temperatures. It is shown
that the properties of the large charged tangle near the injection tip, which releases
CVRs by reconnections, present little voltage-dependence or temperature-dependence.
In the zero temperature limit, the experimental time of flight agrees with the analytical
calculations of an isolated CVR at low drive voltages. At drive voltages above 50 V,
reconnections start to occur, which leads to the production of small rings, the wider
spread of the radii of the CVRs and the change of dominant charge carriers to charged
vortex tangles. At finite temperatures, when mutual friction cannot be ignored, many
of the CVRs are dissipated before reaching the collector on the other side of the cell.

The interactions between a pair of vortex rings, both circular and deformed, have
been simulated using vortex filament method and the exact Biot-Savart law. Depending
on the impact parameter, the rings can reconnect to produce one larger and one smaller
rings or to merge into one large deformed loop. The interaction with a secondary
deformed loop, created from previous ring collision, has a relatively high probability of
generating small rings less than half of the size of the incoming circular ring, compared
to the interaction between two circular rings.

It is also shown that the electric field has a smoothing effect on the deformed vortex
rings, which explains why the vortex rings in experiments behave like perfectly circular
rings even though they should be deformed after being released by the charged tangle
near the tip.
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Chapter 1

Introduction

1.1 Superfluid Helium

A state known as a superfluid occurs in helium when it is cooled down to temperatures

below the λ-point Tλ, which is approximately 2.17 K for 4He. This phenomenon was

first recognised in two independent papers by Kapitza [1] and Allen and Misener [2] in

1938. The phase diagram of 4He is shown in Figure 1.1. A feature unique from other

substances is that there is no conventional gas-liquid-solid triple point. The boiling

point at 1 bar is 4.2 K. Solid 4He only exists at pressures above 25 bar. Liquid helium

between 0 K and Tλ is known as He II, compared to the name He I for liquid helium

above Tλ.

According to the two-fluid model by London [4], Tisza [5] and Landau [6], He II is

composed of two interpenetrating fluids: the normal fluid (with density ρN and velocity

vN ) has conventional entropy and viscosity while the superfluid (ρS , vS) possesses no

entropy or viscosity. Therefore, the total density of He II is given by ρ = ρS + ρN and

the mass flux is j = ρNvN + ρSvS . As shown in Figure 1.2, experimental evidence [7]

indicates that the proportion of superfluid in He II, ρS/ρ, rises up with decreasing

temperature and the normal component becomes almost negligible below 1 K.

13



1.1. SUPERFLUID HELIUM

Superfluid 

(He II) 

Normal liquid 

(He I) 

Figure 1.1: Phase diagram of 4He [3].

Figure 1.2: Temperature dependence of the fraction of superfluid (ρS/ρ) and nor-
mal fluid (ρN/ρ) in He II [3].
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CHAPTER 1. INTRODUCTION

Now we look at the properties of superfluid helium microscopically. At very low

temperatures, the particles tend to stay at the lowest possible energy level [3]. For a

boson system such as liquid 4He below the λ-point, there exists a condensate, where a

single quantum state is occupied by a macroscopically large number of particles. This

condensate can be described using a single coherent wave function, in the form of

ψ (r, t) = ψ0 (r, t) exp [iS (r, t)] , (1.1)

where the phase S (r) is a real function of position r and time t [8]. Application of

the momentum operator p̂ = −ih̄∇ to Equation 1.1 gives us the canonical momentum

p = h̄∇S. The superfluid component moves with the velocity of the condensate, vS .

The momentum of one constituent particle is p = m4vS , with m4 being the mass of

4He atom. Combining the above two equations , we obtain

vS =
h̄

m4

∇S, (1.2)

i.e., the velocity of superfluid is proportional to the gradient of the phase. From this,

we know that∇× vS = 0 and the superfluid component of He II is irrotational.

An important concept in fluid dynamics is the circulation, which is defined as the

integral of the velocity around a closed path,
∮

vS ·d`. The idea of quantised circulation

in superfluid helium was first raised by Onsager [9]. If ψ (r, t) in Equation 1.1 is to

have a physical meaning, it must be single-valued and thus the phase change around a

loop must be an integral multiple of 2π or zero. We have

∮
vS · d` = 2πn

h̄

m4

= n
h

m4

, (1.3)

where n = 0, 1, 2, . . .. The circulation is quantised in units of κ = h/m4 ≈

9.98× 10−4 cm2 s−1.
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1.2. VORTEX RING

The first experiment to detect the quantum of circulation in He II was carried out by

Vinen [10] in 1961, using a fine wire stretched along the centre of a cylindrical vessel

containing He II. A circulation of superfluid was established by rotating the whole

apparatus uniformly about the axis of both the wire and the cylinder. The measurement

was achieved owing to the Magnus effect on the modes of transverse vibrations of the

wire. The results have showed that the quantised circulation is in units of h/m.

This thesis is concerned with the dynamics of vortex rings in superfluid helium and

how they interact with each other. The plan for this thesis follows. The rest of this

chapter introduces the basic concepts and relevant research work. Chapter 2 contains

the analysis of the on-going experiments performed at Manchester on charged vortex

rings in 4He. Chapter 3 is for the simulations on the collisions of two vortex rings

initially travelling in the same direction. Chapter 4 is devoted to the dynamics of a

singly-charged vortex ring in an electric field. Chapter 5 discusses the results and

makes conclusions.

1.2 Vortex Ring

The topic of vortex rings has a long and rich history. In classical fluid mechanics,

Saffman and Baker [11] defined a vortex as a finite volume of rotational fluid bounded

by irrotational fluid or solid walls. A vortex line is a curve tangent to its vorticity

ω = ∇ × v. A vortex tube is a cylinder of small to infinitesimal cross section whose

surface comprises of vortex lines. A vortex tube surrounded by irrotational fluid makes

a vortex filament. In 1955, Feynmann [12] suggested that the vortices in superfluid

might take the form of a vortex filament with a hollow core of atomic dimensions.

Considering a single straight vortex line among the vortices in He II at absolute

16



CHAPTER 1. INTRODUCTION

Figure 1.3: A vortex ring with radius R and core radius a [13].

zero, i.e., pure superfluid helium, if we take the contour of radius r, we have

κ =

∮
vS · d` = 2πrvS (r) = n

h

m4

, (1.4)

which gives

vS (r) =
κ

2πr
. (1.5)

The velocity is proportional to the inverse of radius r. For a vortex line with core radius

a, the kinetic energy per unit length is

K =

∫ b

a

1

2
ρSv2

Sdr2 =
ρSκ

2

4π
ln (b/a), (1.6)

where b is of the order of the mean distance between vortices.

Another simple vortex structure is a circular vortex ring, which could be seen

roughly as a vortex line with its head connected to its tail. A schematic plot of a vortex

ring with radius R and core radius a is presented in Figure 1.3. Roberts and Donnel-

ley [14] proved that vortex rings could be described by a total energy E equivalent

to a Hamiltonian such that their velocity and impulse satisfy the Hamilton’s equation

v = ∂E/∂P . When the core radius a of a thin vortex ring is negligible compared to

17



1.2. VORTEX RING

the ring radius R, the energy is

E =
1

2
ρκ2R

[
ln

(
8R

a

)
− α

]
. (1.7)

The impulse is expressed as

P = ρκπR2. (1.8)

The vortex ring moves forward with its self-induced velocity

v =
κ

4πR

[
ln

(
8R

a

)
− β

]
=
∂E

∂P
=

κ

4πR

[
ln

(
8R

a

)
+ 1− α

]
.

(1.9)

For classical vortex ring with hollow core at constant pressure, the parameters are

α = 3/2 and β = α− 1 = 1/2.

One of our research interests is the behaviour of a charged vortex ring inside an

electric field in superfluid helium. The force on a ring moving in electric field E with

N particles of charge e trapped on it could be written as

F = eNE =
dP

dt
= 2πρκR

dR

dt
. (1.10)

Quantised vortex rings were first studied by Rayfield and Reif [46] in 1964, using

an ion time-of-flight spectrometer. Accelerated ions from a radioactive cathode could

lead to charged vortex rings in He II. The behaviours of the charge carriers were tested

at 0.3 K with little dissipation and the theoretical calculations were based on a solid

core vortex model with slightly different α and β. It was shown that the charge carriers

behave exactly like vortex rings with circulation κ = h/m4 and the expressions for

energy, impulse and velocity in an inviscid fluid were verified.
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CHAPTER 1. INTRODUCTION

1.3 Quantum Turbulence

In the study of the flow of classical fluids, turbulence, as a complex non-linear phe-

nomenon, is involved in fields ranging from engineering to meteorology to astro-

physics, and thus understanding turbulent behaviours is of great importance to us. It is

possible to describe turbulence of an incompressible fluid via the Navier-Stokes equa-

tion [16]:

∂tv + v · ∇v = −∇p+ ν∇2v, (1.11)

∇ · v = 0, (1.12)

where v is the velocity, p is the pressure and ν is the kinematic viscosity.

A dimensionless control parameter of the flow, the Reynolds number, is defined

as, [17]

R =
LV

ν
, (1.13)

with L being a characteristic scale, V the velocity of the flow and ν the viscosity. High

Reynolds number describes turbulent flows and low Reynolds number is associated

with smooth laminar flows.

Although classical turbulence has been studied and modeled by scientists since the

time of Leonardo da Vinci, a relatively young research field called quantum turbulence

has only been brought to our attention in the last century. Quantum fluids, such as su-

perfluid, exhibit quantum turbulence phenomenon. Feynman [12] first raised the theo-

retical possibility of turbulence in superfluid due to the quantised vortex lines in 1955.

Later, Hall and Vinen [18] found experimental evidence of turbulent characteristics in

rotating He II. The theoretical and experimental discoveries of mutual friction [18,19],

which arises from the scattering of thermal excitations in the normal component of the

superfluid by the vortex lines, contribute to our knowledge of quantum turbulence.

19



1.4. VORTEX FILAMENT METHOD

The decay of the quantum turbulence in the zero temperature limit has become an

important topic in recent years. Walmsley and his coworkers in Manchester [20, 21]

used negative ions in the form of electron bubbles to probe the decay of turbulence in

superfluid 4He between 0.08 K and 1.6 K. A vortex tangle was produced by an impul-

sive spin-down of the cubic experiment cell from rotational equilibrium to rest. Pulses

of electrons were injected by tungsten field-emission tips. The dominant charge carrier

changes from free ions at temperatures higher than 0.8 K to trapped electron bubble

inside the core of vortex rings below 0.7 K. They discovered two types of late-time

decays of the density of quantised vortex lines.

1.4 Vortex Filament Method

In the pioneering work by Schwarz [22] in 1985 and 1988, the vortex filament model

was developed, which treats the vortex line as an infinitely thin curve. A vortex fil-

ament is divided into small vortex segments of the form s = s (ξ, t), where ξ is the

length of each segment and t is the time. In the zero temperature limit, dissipation is

absent and only the Magnus force acts on the vortices. Each segment moves with the

velocity of the superfluid component vS given by Biot-Savart law:

vS (s, t) =
κ

4π

∫
(s1 − s)× ds1
|s1 − s|3

. (1.14)

Here s1 refers to a particular point on the curve. The line integral is along all the

vortices. It has a singularity at s, which could be solved if the finite vortex core size a

is taken into account:

vS =
κ

4π
ŝ′ × s′′ ln

(
2
√
`+`−

e1/2a

)
+

κ

4π

∫ ′ (s1 − s)× s1
|s1 − s|3

, (1.15)
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CHAPTER 1. INTRODUCTION

where ŝ′ and s′′ are the unit tangent and normal vectors at s respectively. `+ and `−

refer to the lengths of the two vortex segments connecting at point s and the integral

is over the other segments that are not connected to s. The first term on the right hand

side is called the local term and the second term is for the non-local contribution.

In the local induction approximation (LIA) [23,24], only the local term is retained.

This is more convenient both analytically and computationally compared to the Biot-

Savart approach, as the growth in the cost of the computation is proportional toN under

LIA while the inclusion of the non-local term raises the constant of proportionality

to N2. However, the use of LIA is limited. It is sufficient to describe turbulence

where the long-range effects cancel out. For turbulence under rotation or strongly

perturbed vortex filaments, the non-local term is essential. One such example is that

LIA generates unreliable results in the evolution of vortex knots [25].

1.5 Relevant Research

NLSE model

Another common model for quantised vortex rings is the non-linear Schrödinger

equation (NLSE), also known as the Gross-Pitaevski (GP) equation. NLSE works ac-

curately for a system of weakly interacting bosons but can only be seen as a qualitative

model for superfluid helium due to stronger interactions. For Bose particles with mass

m, we have [26, 27]

ih̄
∂Ψ

∂t
=

(
− h̄2

2m
∇2 + V0|Ψ|2 − E

)
Ψ, (1.16)

where Ψ is the condensate wave function, V0 describes the boson-boson repulsion and

E is the increase in energy when one boson is added. Compared to the vortex filament

method in the previous section, NLSE describes the quantum effects on very small
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1.5. RELEVANT RESEARCH

lengths scales with high resolution, which in turn limits its performance on calculations

involving large vortex rings. NLSE applies only to superfluid at absolute zero while the

mutual friction term could be easily taken into account in the vortex filament model.

Vortex reconnection

One unique feature of quantum turbulence is the vortex reconnection, occurring

upon close approach of vortices. Schwarz [22] gave explicit descriptions of a few dif-

ferent reconnection scenarios using an added algorithm in the vortex filament method.

It was later demonstrated using NLSE, where the reconnections would occur naturally,

by Koplik and Levine [28] in 1993, when they studied the reconnections of vortex lines

of different initial orientations.

Dissipation mechanisms at T = 0

The cascade of the Kelvin waves, i.e., the helical waves on vortex filaments, serves

as one of the dissipation mechanisms in the zero temperature limit that transfers energy

to higher and higher wave numbers. Kerr [29] showed that a cascade could be initiated

by vortex stretching of a pair of perturbed antiparallel quantum vortices using the GP

equations, which lead to the generation of a series of vortex rings. Kursa et al. [30]

demonstrated a cascade of vortex rings initiated by the reconnection of two nearly an-

tiparallel vortex lines, which should be an efficient decay mechanism for less dense

tangles at very low temperatures. By the application of a driving force to a rectilinear

vortex between two parallel sheets with periodic boundaries, Vinen et al. [31] con-

firmed the development of a steady state cascade, which was remarkably insensitive to

strength and frequency of the drive.

Two competing theories were proposed by L’vov and Nazarenko [32] and by Kozik

and Svistunov [33], regarding the approaches for the Kelvin wave cascade. Baggaley

and Laurie [34] modeled a single periodic vortex line forced from rest and obtained
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CHAPTER 1. INTRODUCTION

data in agreement with the theory by L’vov and Nazarenko [32]. In 2011, Baggaley

and Barenghi [35] analysed a few different configurations of vortex filaments and in-

vestigated the conditions for a Kelvin wave cascade in superfluid helium. No Kelvin

wave cascade was observed for a single perturbed vortex line, a perturbed vortex ring

or two circular vortex rings linked together, but three parallel perturbed vortex lines,

three perturbed rings in the same direction and two linked perturbed rings could all

induce the cascades. The simulations showed that the Kelvin wave cascade could be

initiated not only by the reconnections but also by the interactions of nearby vortices

via the velocity field.

Vortex ring interactions

Understanding the interactions between a pair of vortex rings can shed light on

the microscopic processes in quantum turbulence. In 1996, Koplik and Levine [36]

considered the symmetric annihilation in a head-on collision and the semisymmetric

scattering of two identical vortex rings for the generation of vorticity in superfluids.

Leadbeater et al. [37] collided two vortex rings of the same size with axes offset by a

distance and showed that reconnections could result in the radiation of energy through

sound pulses. The reconnections of vortex rings in three different configurations (in

offset collision, with different radii and linked at 90 ◦) with small Reynolds number

were investigated by Chatelain et al. [38] by solving the Navier-Stokes equations and

an intensification of dissipation was observed. Caplan et al. [39] studied the scattering

of two unit circulation vortex rings, but unlike aforementioned work by Koplik and

Levine [36], they focused on the co-planar offset collisions. For rings with opposite

circulation, depending on the offset, the two rings could annihilate, miss each other, or

merge and then split into two new perturbed rings travelling away from each other at a

scattering angle, which was a function of initial radii and impact parameter. In addition,

they proposed effective equations of motion for a pair of co-axial vortex rings of the
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same circulation, which produced good agreement when tested against the original

NLSE model for leapfrogging evolution. In the case of reconnecting two linked planar

vortex rings at finite temperatures done by Hänninen [40], it was found that Kelvin

waves induced by the reconnection could increase energy dissipation greatly but not

angular momentum. In contrast to what Kivotides et al. have discovered [41], no

Kelvin wave cascade was observed to be triggered by a single reconnection event;

rather the energy was dissipated through mutual friction damping.

Although numerous simulations have been performed using vortex rings, the case

where two rings are initially travelling in the same direction has not attracted much at-

tention. In 2003, Leadbeater et al. [42] considered the situation where a large ring and

a small ring both propagated in +x direction with their axes offset by a certain amount

and then collided, leading to the disappearance of the small ring. As Kelvin waves were

excited on the merged vortex ring due to the reconnections, they examined the loss of

line length during the process and found a constant Kelvin-wave decay coefficient,

which was consistent with established experimental results. One well-studied case in

this setup is when two rings are coaxial, which results in the leapfrogging motion, as

confirmed by Caplan et al. [39] and Wacks et al. [43]. In a study of the inverse energy

transfer induced vortex reconnections, Baggaley et al. [44] injected a large number

of rings of random radius travelling in the same direction into a periodic box. They

discussed the outcomes of the two types of collisions between the rings: the radii of

the rings roughly remained the same after head-on collisions, while the collisions from

behind created rings with considerably different sizes. The interactions between two

vortex rings travelling in the same direction with certain axial offset are investigated in

detail in Chapter 3, in attempt to fill the void in this research area.
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Chapter 2

Experimental Analysis

This chapter includes an analysis for the experimental data from the ongoing experi-

ment at the University of Manchester. The experiment is set up as stated in Section 2.1.

In Section 2.2, we provide a comprehensive analytical calculation for the dynamics of

a charged vortex ring (CVR) inside the experimental cell. The experimental analysis is

divided into two main sections according to the aims of the experiments: Section 2.3

discusses the voltage dependence while Section 2.4 considers the temperature depen-

dence.

2.1 Experiment Setup

The setup is shown in Figure 2.1, which is a modified version of an earlier experiment

[45]. The experimental cell is filled with liquid 4He at temperature below 0.8 K. The

cell is divided into two compartments by a mid-plate of negligible thickness. The

height of the first part is d1 = 15 mm. A drive voltage, Vdrive, is applied across this

region to impose an electric field. The mid-plate has a hole in the centre with a diameter

of 5 mm, which allows vortex rings to come through. The second section is twice

the size of the first one and has a height of d2 = 30 mm. The electric field in this
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d2 = 30 mm 

d1 = 15 mm 

Collector 

 ① 

③ ③ Top plate 

②  

Frisch grid 
E = 0 

E > 0 

Vtip 

Vdrive 

Φ = 5 mm Mid-plate ④ 

Φ = 13 mm 

Φ = 20 mm 

Figure 2.1: The experiment setup. The cell is divided into two sections by a mid-
plate of negligible thickness, which has a hole in the centre with a diameter of
5 mm. Drive voltage is applied in the 15 mm space between the bottom plate and
the mid-plate. There is no electric field in the 30 mm region between the mid-plate
and the top-plate. A collector is located behind the Frisch grid in the middle of the
top plate. The Frisch grid has a mesh of Φ = 13 mm, which is bounded on a metal
ring with a diameter of 20 mm. Current measurements are made at the 4 locations
inside the cell labelled in the graph.

section is kept at zero. A Frisch grid with a mesh, which has a geometric transparency

of 92%, is embedded in the middle of the top plate. The mesh has a diameter of

13 mm and is bounded on a metal ring with a diameter of 20 mm, as shown in the

enlarged dashed panel. A collector is hidden behind this grid and is shielded from

displacement current. The currents received by the collector, the Frisch grid, the top

plate and the mid-plate are simultaneously monitored and analysed. The time constant

of the detection electronics is approximately 0.1 s.

Pulses of CVRs are fired from a tungsten tip into the cell. Tip voltage, Vtip, refers

to the voltage between the tip and the bottom grid which pushes the rings into the

cell. Both the tip voltage and the pulse duration are varied during the experiment.
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The CVRs are actually injected in a broad range of angles. Although the electric field

imposed by the drive voltage is able to align the rings to travel almost parallel to its

direction, the size of the beam is still much greater than the 5 mm diameter of the hole

in the mid-plate. Consequently, most of the CVRs hit the plate and only a few percent

are able to travel through. We assume that the hole poses no effect on the velocity or

the direction of the rings that are moving through. The remaining rings now enter the

field-free region and proceed until they hit the top plate, the Frisch grid or the collector.

The drive voltage is switched between certain values for each tip voltage applied.

The motivation to modify the cell upon previous design is to observe CVRs and

their interactions in the field-free region. It also serves to investigate the release of the

CVRs from the localised compact charged tangle that builds up near the tip, which is

realised by the insertion of the mid-plate.

2.2 Time of Flight Calculation

The experimental results are compared against the results of theoretical calculations.

The equations for the energy and the velocity of a CVR of radius R carrying one

elementary charge e at absolute zero are discussed in Chapter 1 and can be found in

Equations 1.7 and 1.9. The density of superfluid helium is ρ = 0.145 g cm−3 and κ =

9.98× 10−4 cm2 s−1 is the quantum of circulation. Since the logarithm term ln
(
8R
a

)
does not vary much with the change in radius R in our analytical calculation, it is

treated as a constant and is given the Greek symbol Λ. The specific value of Λ is

discussed in each section below.

The calculation of the time of flight for a CVR to reach the collector at zero tem-

perature limit can be split into two parts. In the first part, we consider the time for the

ring to travel across the electric field and arrive at the mid-plate. For a singly-charged

vortex ring with initial radius R0, its energy is proportional to its radius R and the
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change in the energy equals to the energy gained or lost by the charge in the electric

field at position x, i.e.,

∆E =
1

2
ρκ2 (R−R0)

(
Λ− 3

2

)
=
eVdrive
d1

x. (2.1)

The radius of the ring at the mid-plate, in other words, at position x = d1 = 15 mm, is

R1 =
2eVdrive

ρκ2 (Λ− 3/2)
+R0. (2.2)

The velocity of the CVR is derived by substituting the ring radius at this point into

Equation 1.9:

v1 =
κ

4πR1

(
Λ− 1

2

)
. (2.3)

The time of flight to the mid-plate is

t1 =

∫ d1

0

dx′

v
=

∫ d1

0

4πR1

κ
(
Λ− 1

2

)dx′

=
2π (R1 +R0)

κ (Λ− 1/2)
d1.

(2.4)

If the CVR has successfully passed through the hole in the mid-plate, assuming

that there are no interactions with other CVRs, it travels at constant velocity v1 in the

absence of electric field until it reaches the top of the cell. The ring radius remains

unchanged. The time of flight in this field-free region is

t2 =
d2
v1

=
4πR1d2

κ (Λ− 1/2)
, (2.5)

with d2 = 30 mm. Combining the time of flight in these two separate regions gives us

the total time of flight in the cell,
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t = t1 + t2

=
2π (R1d1 +R0d1 + 2R1d2)

κ (Λ− 1/2)
.

(2.6)

The above calculations are based on the approximation that the temperature is so

close to absolute zero that the mutual friction term, which arises from the interactions

between the vortex lines and the thermal excitations in the normal component, could be

ignored. A detailed calculation of the dynamics of a vortex ring with elementary charge

e moving in a uniform electric field E at finite temperature T is given by Rayfield and

Reif [46]. At T , the drag force per unit length due to mutual friction on the same CVR

is ακρv. The dimensionless dissipative mutual friction parameter, α (T ), is [47]

α (T ) = 25.3 exp

(
−8.5

T

)
T−1/2 + 5.78× 10−5T 5, (2.7)

where T is in Kelvins. Therefore, the total force on the ring is

FT = eE − 1

2
αρκ2

(
Λ− 1

2

)
. (2.8)

The behaviour of the CVR depends on the magnitudes of the electric field term and the

mutual friction term: the CVR grows linearly with distance if the field term is larger,

maintains its size if the two terms are equal or shrinks if the mutual friction term is

larger. The change in ring energy corresponds to the work done by the total force,

which writes

∆E ′ =
1

2
ρκ2 (R−R0)

(
Λ− 3

2

)
= FTx. (2.9)

Simplifying the above equation and substituting in x = d1 give the radius at the mid-

plate,

R′1 =
2FTd1

κ2ρ
(
Λ− 3

2

) +R0. (2.10)
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The equation for time of flight is the same as Equation 2.4:

t′1 =
2π (R′1 +R0)

κ (Λ− 1/2)
d1. (2.11)

As soon as the CVR enters the region with no electric field, the first term in the

total force disappears and the ring starts to shrink. The new total force on the CVR is

F ′T = −1

2
αρκ2

(
Λ− 1

2

)
. (2.12)

Applying the same energy and work analysis used for Equation 2.9, the final radius is

derived as

R′2 =
2F ′Td2

κ2ρ
(
Λ− 3

2

) +R′1. (2.13)

Time spent in the field-free region is

t′2 =
2π (R′1 +R′2)

κ (Λ− 1/2)
d2. (2.14)

Hence the total time of flight is

t′ = t′1 + t′2

=
2π

κ (Λ− 1/2)
(R0d1 +R′1d1 +R′1d2 +R′2d2) .

(2.15)

2.3 Voltage Dependence

Charged vortex rings are injected into the cell with a pulse length of 0.05 s or 0.10 s.

The next pulse is injected only when most of the CVRs in the current pulse have arrived

at the top plate after typically 200 - 300 s, allowing any turbulence to dissipate. Three

tip voltage values, 400 V, 350 V and 300 V, were selected for the 0.05 s case and more

values, 400 V, 375 V, 350 V, 330 V, 310 V, 290 V and 270 V, were used in the 0.10 s
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case. For each tip voltage, the drive voltage was varied for 23 different values between

2 V and 200 V. The experimental temperature was set to approximately 0.1 K with

small fluctuations, at which the effects of the mutual friction can be ignored. These

small differences in temperature did not show any impact on our results, as the data

remains consistent with reasonable errors.

Figure 2.2 offers an overview of the currents received at the four channels inside

the cell for six selected drive voltages. The time t = 0 corresponds to the middle of the

injection pulse. The tip voltage is kept at 400 V. The currents for CVRs injected with

a pulse length of 0.05 s are plotted in solid curves and compared to the dashed curves

for the 0.10 s pulse length. A clear increase in currents on every channel is observed

due to the longer pulse length, but it is not in proportion to the doubling in pulse

length. The widths of the current peaks, twidth, which are defined as the full width at

half maximum (FWHM) of the time, vary as the drive voltage increases. The currents

start to rise earliest for the mid-plate and latest for the collector, indicating the time of

first occurrence of the CVRs at locations inside the cell. The peak position of the mid-

plate current stays at around 0.25 s regardless of the increasing drive voltage, while the

peaks of the currents on the other three channels shift considerably from about 0.5 s to

1.3 s, of which the indications will be explained in the following paragraphs.

The current data from each channel was processed. Useful numbers, including peak

time, tpeak, peak current, Ipeak, time at the edge of the peak where current starts to rise,

tedge, and the width of the peak, twidth, were extracted. Calculations were performed to

provide the total charge received, Qtotal, the percentage of the rings through the mid-

plate, rthrough, the ratio of the spread on the top plate, rspread, as well as the effective

transparency of the Frisch grid, Tg. The analytical time of flight in the two regions of

the experimental cell was computed according to the equations listed in Section 2.2.

The analysis for the mid-plate data and the collector data is among our primary points

of concern. Since the two sets of data acquired for different pulse lengths mostly
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Figure 2.2: Currents received at four different locations inside the cell at the same
tip voltage of 400 V for six selected drive voltages specified in the legend. Position
of each channel is as labeled in Figure 2.1. t = 0 corresponds to the middle of the
injection pulse. The solid curves represent the case with 0.05 s pulse length and
the dashed curves are for the pulse length of 0.10 s.

resemble each other, we focus on the 0.05 s case for most of the demonstration and

only discuss the 0.10 s case when major differences occur.

The injection tip generates a dense tangle of charged vortices, which is pulled to-

wards the injector grid by the electric field created from the tip voltage. Figure 2.3 (a)

helps to demonstrate what is happening between the tip and the injector grid. CVRs

are released from the dense tangle and travel in different directions, which should then

be aligned by the electric field. Although a rectangular pulse of charge is injected, the

injection of the CVRs into the cell is actually according to a distribution similar to what
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Figure 2.3: (a) The release of CVRs from the dense charged vortex tangle near the
tip. The released CVRs are pushed by the tip voltage to travel through the injector
grid into the experimental cell. The solid black dots represent the electric charges
and most CVRs carry one elementary charge. (b) Distribution of the number of
seed CVRs injected into the experiment with respect to time. Plotted in dashed line
is the rectangular pulse of tip voltage, during which electrons are injected from the
tip.

is shown in Figure 2.3 (b). The signal received on the mid-plate is representative of the

time scales and distribution for the release of the seed CVRs from this tangle near the

tip. Time at the edge of the peak reflects the time of the CVRs first entering the cell,

since displacement current is produced on the plate when the CVRs pass through the

injector grid. According to Figure 2.4, tedge decreases to a very small degree with the

increasing drive voltage, roughly from 0.09 s to 0.07 s, suggesting that the drive volt-

age has helped to pull the CVRs into the cell. tpeak tells us the time when the largest

number of CVRs are being released from the tip tangle and entering the cell, which

stays at about 0.25 s for the whole range of drive voltages. This invariance indicates

that the release of the CVRs from the tangle only weakly depends on the drive voltage

and the tip voltage.

The collector is shielded from the displacement current by hiding behind the Frisch

grid, but the top plate is still sensitive. Time at the edge of the peak for the top plate

currents points out the time when first group of vortex rings has travelled past the mid-

plate and entered the second section of the cell, because the charge on the CVRs will
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Figure 2.4: (a) Peak time and (b) time at the edge of the peak derived from the
currents received by the mid-plate, for pulse length of 0.05 s. Three tip voltage
values, 300 V, 350 V and 400 V, were applied. The average temperature during
the measurement was indicated in the legend and we have two sets of data for tip
voltage 300 V with slightly different temperatures.
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induce current on the top plate. If we ignore the thickness of the mid-plate, this tedge

can be regarded as the experimental time of flight to the mid-plate. The analytical cal-

culation for a CVR to cross the electric field and reach the mid-plate was repeated for

initial radii of 0.5µm, 1.0µm and 1.5µm, using Equation 2.4. Altering the logarithm

term Λ in the equations results in the change of the line slope. For the best fit to the

experiment data, it was set to be a constant 12, which corresponds to a constant radius

of' 2.6µm. The drive voltage was varied from 2 V to 200 V to match the experiment.

The experimental time at the edge for the top plate is given in Figure 2.5, together

with the analytical time of flight to the mid-plate. tedge increases as the drive voltage

goes up and generally agrees with the analytical results, especially at low drive volt-

ages. The best fit for the experimental data is the analytical calculation with initial

radius of 1.0µm. It can be deduced that the charged tangle near the tip tends to release

CVRs with initial radius close to 1.0µm. This can be checked against the prediction

of Kozik and Svistunov [33] that the emitted ring radius r∗ ∼ `/[ln `/a]1/2, where `

is the inter-vortex separation. Assuming that all power generated by the tip goes into

the energy of the vortex tangle, for tip current I ∼ 300 pA, tip voltage U ∼ 500V

and typical distance between the tip and grid dtg ∼ 1 mm, we have ` ∼ 3µm and thus

r∗ ∼ 1µm, agreeing with our conclusion above. At low drive voltages when the preci-

sion of the data is still high, tedge has a value of about 0.2 s, which suggests that it takes

that amount of time for the fastest rings to pass through the mid-plate. The deviation

of the experimental curves from the analytical data at higher drive voltage probably

indicates the occurrence of the vortex ring interactions even before the mid-plate.

Apart from the mid-plate, the currents received by the collector are also of great

interest. Since the collector is not affected by the displacement current, the peak time

indicates the time that is most probable for CVRs to arrive and the time at the edge

should provide the time of arrival for the fastest rings. Both of them are plotted in

Figure 2.6, along with the analytical time to reach to the collector for the same three
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Figure 2.5: Time at the edge of the peak for currents on the top plate, for pulse
length of 0.05 s. The analytical time of flight for a CVR to reach the mid-plate is
provided for comparison, with Λ in equations set to 12. The three straight lines
each represent a CVR of a different initial radius (0.5µm, 1.0µm and 1.5µm) to
reach the mid-plate at drive voltages from 2 V to 200 V, calculated using Equa-
tion 2.4.

initial radii as before. The gradient of the experimental data generally agrees with the

slope of the analytical calculation, particularly at drive voltage below 100 V. The line

for initial radius of 1.0µm is the closest match to tpeak and it can be inferred that the

injected CVRs are most likely to have an initial radius of 1.0µm. tedge is closest to

the calculation for radius of 0.5µm, which suggests that the first rings to arrive have a

initial size similar to 0.5µm. At drive voltages higher than 100 V, the experimental time

of flight has become smaller than expected due to the increasing interactions between

CVRs. As observed by Walmsley et al. [48], for a fixed tip voltage, the seed CVRs

reconnect more frequent and generate more secondary vortex loops at higher drive

voltage. The small secondary rings created travel faster and arrive at the collector

early, leading to a much earlier rise in the time of the edge.
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Figure 2.6: (a) Peak time and (b) time at the edge of the peak derived from the
currents received by the collector, for pulse length of 0.05 s. The three straight
lines in each graph are the analytical time of flight for a ring with initial radius
of 0.5µm, 1.0µm and 1.5µm respectively to reach the collector at different drive
voltages, according to Equation 2.6.
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The early arrival of the smaller rings can be explained more explicitly by the

schematic plots given in Figure 2.7. Here, the sizes of the rings are enlarged for demon-

stration purposes and are not in real proportion to the experimental cell. Ideally, when

a CVR passes through the hole in the mid-plate, it continues its journey towards the

collector with fixed velocity and radius, which is the case for majority of the rings at

lower drive voltages. But since a large number of CVRs are injected into the cell to-

gether, it is likely for one CVR to reconnect with another, leaving behind at least one

smaller vortex ring. The specific conditions for this kind of reconnection to happen are

simulated and discussed in Chapter 3. As the velocity of a CVR is proportional to the

inverse of the radius, the smaller rings travel fast and arrive at the collector early whilst

the larger ones drag behind. This kind of interactions becomes more frequent at high

drive voltages. It is possible for another CVR to catch up with the large secondary ring

and reconnect again. Recurrence of the situation leaves us with a large charged vortex

tangle, which takes a long time to finally arrive at the collector or the top plate.

Although the rings are injected with a wide range of angles, they should be quickly

aligned to the direction of the drive electric field by the electric forces. The schematic

plot in Figure 2.7 (b) also provides an answer to how some of the CVRs end up on the

top plate rather than the collector. If two vortex rings reconnect, the magnitudes of the

velocities are reassigned along with their directions. As long as the total momentum is

conversed, the rings could have velocities in any directions depending on their relative

positions during reconnection. Consequently, many CVRs have deviated from their

original routes along the vertically upward direction and arrive at the top plate instead

of the collector in the middle.

As interpreted by Golov et al. [49], the first component of the charge to arrive

at the collector is carried by isolated CVRs, mostly the smaller rings created during

reconnection. The last component to arrive is due to the slowly-moving large tangle of

charged loops generated by the reconnections of the seed CVRs. These were explained
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Figure 2.7: Schematic plots of the motion of a vortex ring inside the experimental
cell: (a) the ring travels as an isolated ring until reaches the collector, (b) the ring
reconnects with another ring and a smaller ring is generated with faster velocity,
which arrives at the collector earlier than the initial ring. The sizes of the vortex
rings are not in real proportion to the cell.

in detail by the schematic plots above. The width of the current peak indicates the

variation in the radii of the arriving rings. From Figure 2.8, twidth for the mid-plate

appears to be only weakly dependent on the drive voltage. It barely increases as the

voltage goes up and stays at around 0.4 s for voltage below 100 V, which is reflective

of the properties of the charged tangle near the tip. The tangle emits CVRs in similar

sizes regardless of the drive voltage. The change in twidth for the collector is more

39



2.3. VOLTAGE DEPENDENCE

obvious: it decreases with the drive voltage until reaching a minimum at about 50 V,

and then starts to go up again. The decline is again explained by Golov et al. [49]

that at small drive voltages, the currents are affected by the range of initial radii and

appear to be weak and broader; while at higher voltages, the ring’s radius and velocity

become less sensitive to the spread of initial radius and the current peak narrows. The

increase in width is probably because larger and slower tangle of CVRs is created due

to the increasing number of reconnecting events. Therefore, the drive voltage of 50 V

is likely to serve as the division between the dominant charge carrying mechanism:

under 50 V, the charge is mostly carried by isolated CVRs, while above that voltage,

the charge is carried by the vortex tangles and the CVRs produced by reconnections.

It can be inferred that the distribution of the radii is narrow at 50 V.

Figure 2.9 presents the changes in the peak current on the collector and the mid-

plate against the drive voltage. Ipeak on the collector tells us the largest amount of CVRs

arriving at the same time for each voltage configuration. Ipeak on the mid-plate should

represent the largest number of CVRs being released by the charged tangle near the tip

at one time. For the collector data, Ipeak reaches a maximum at around 50 V. Higher tip

voltage leads to larger peak current value and lower drive voltage at the maximum. The

change in the mid-plate data is more gradual and a maximum can only be noticed for

higher tip voltage. The tip voltage has more influence on Ipeak of the mid-plate than that

of the collector, which again suggests that the mid-plate is sensitive to the processes

occurring near the tip whilst the collector is sensitive to the processes occurring within

the cloud of the emitted CVRs.

The charge accumulated on the mid-plate and the collector, obtained by integrating

the current transients from 0 to 4 s, is plotted in Figure 2.10. This duration should be

enough for most of the CVRs to reach any channel and be detected. The number of

the CVRs that have hit the mid-plate is almost two orders of magnitude larger than

that have reached the collector, because the beam of injected CVRs is much wider than
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Figure 2.8: Width of the current peak on (a) the collector and (b) the mid-plate
versus the drive voltage for pulse length of 0.05 s. It is derived by finding the time
interval between the half maximum points of the peak.

the diameter of the hole in the mid-plate and majority of the rings cannot travel past.

These plots reflect the trends that we observe in the peak current plots. The collector

data peaks at the drive voltage of about 50 V. The mid-plate data goes up to a small

degree with the increasing drive voltage.
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Figure 2.9: Magnitude of the peak current received by (a) the collector and (b) the
mid-plate at each drive voltage for pulse length of 0.05 s.
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Figure 2.10: Charge accumulated on (a) the collector and (b) the mid-plate, ob-
tained by integrating the current data from 0 to 4 s, against the drive voltage for
pulse length of 0.05 s.
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Figure 2.11 offers a comparison of the total charge fired into the cell from 0 to 4 s

between the two cases with pulse length of 0.05 s and of 0.10 s. The total charge, Qtotal,

is derived by summing the charge received by the mid-plate, Qmp, the Frisch grid, Qg,

the top plate, Qtp and the collector, Qc. It is dominated by the charge on the mid-plate,

since the charge on the other channels is orders of magnitude smaller. Longer pulse

length does result in more CVRs injected into the experiment, but the magnitude does

not double as the pulse length does. The increase in the total charge for longer pulse

length is more obvious for larger tip voltage. It can be concluded that the tip voltage is

important in pushing CVRs into the cell. The slow increase in the total charge, which

is more obvious at higher tip voltage, suggests that the drive voltage also has some

effect on this, but probably not as huge as we would assume.

Since the beam of CVRs injected into the cell has a width much larger than the size

of the hole in the mid-plate, a large number of rings are stopped by the mid-plate. The

position of a vortex ring arriving at the mid-plate determines whether it is able to make

through the hole. This was looked into by running simulations on the dependence on

the drive voltage and on the initial injecting direction of the ring. A ring is injected

into the experimental cell at an elevation angle from 0 ◦ to 90 ◦ in the steps of 1 ◦ while

the azimuth angle is kept at 0 ◦. The drive voltage is varied from 2 V to 200 V, in

accordance with the experiment. Due to the symmetry of the experimental cell, we are

only looking at half of the cell. The hole ranges from x = 0 to x = 2.5 mm and the

cell wall is at x = 22.5 mm.

The trajectories of the ring in the xz-plane at every 10 ◦ for drive voltages of 2 V

and 30 V are provided in Figure 2.12, with positions of the mid-plate, the hole rim and

the cell wall indicated by arrows in (a). When the drive voltage is low, e.g., at 2 V,

only rings injected at elevation angle higher than 75 ◦ can go through the hole, making

a passing rate of 16.5 % out of the 91 angles of injection. Stronger electric field aligns

the rings to its direction faster and thus the width of the vortex ring beam quickly
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Figure 2.11: Total charge injected into the experimental cell from 0 to 4 s for pulse
length of (a) 0.05 s and (b) 0.10 s, derived by summing up the integration of the
current transients on the four channels, Qtotal = Qmp +Qg +Qtp +Qc.

reduces. At 30 V, even rings injected horizontally travel through the hole. At drive

voltage above 30 V, we should expect that all rings are able to travel beyond the mid-

plate. However, experimental results in Figure 2.10 show that the number of the CVRs
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reaching the collector drops rapidly above 50 V, which suggests that the interactions

induced by high drive voltage produces larger spread of CVRs and the ratio of the rings

through the mid-plate drops.

We are curious about the proportion of CVRs that are actually able to travel through

the hole during the experiment. From previous current plots, the current on the mid-

plate is orders of magnitude larger than on any other channel. Dividing the charge on

the three channels other than the mid-plate by the total charge emitted into the cell

gives us this ratio rthrough = (Qg +Qtp +Qc) /Qtotal. From Figure 2.13, rthrough starts

at about 0.02 and experiences an increase for low drive voltages until 50 V. After that,

the ratio slowly decays. At the same drive voltage, lower tip voltage enables more

rings to come through the mid-plate. The highest percentage of rings through the mid-

plate does not exceed 10% and is reached at around 50 V. According to the analysis

on the width of the peak, this voltage is also where the distribution of ring radii is the

narrowest, which could have made it easier for rings to travel beyond the hole.

Due to the interactions between vortex rings, many CVRs would deviate from

their initial directions and arrive at the top plate rather than the grid and the col-

lector located in the centre of the plate. A ratio of transverse spread is defined as

rspread = Qtp/ (Qtp +Qg +Qc) to roughly describe the range of the CVRs that eventu-

ally reach the top of the cell. As seen in Figure 2.14, the ratio starts off with a value of

about 0.2 then experiences a dip before goes up again to as high as 0.6 with increasing

drive voltage. The width of the vortex ring beam has become much larger at higher

drive voltage, indicating the increase in interactions. For the same drive voltage, higher

tip voltage leads to wider spread of the charge. At drive voltage of 50 V, the narrow

spread of charge, together with the highest successful rate of passing through the mid-

plate, results in the largest number of CVRs reaching the collector and thus maximum

amount of charge is received at 50 V as shown in Figure 2.10 (a).
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Figure 2.12: Projection of the trajectories of the vortex ring in the xz-plane in-
jected with elevation angle from 0 ◦ to 90 ◦ in the steps of 10 ◦, at drive voltages of
(a) 2 V and (b) 30 V. The beam of vortex rings narrows with the increasing drive
voltage, making the ring injected at all angles through the hole at 30 V.
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Figure 2.13: Ratio of rings that have travelled through the hole in the mid-plate
for pulse length of 0.05 s, calculated as rthrough = (Qg +Qtp +Qc) /Qtotal.
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Figure 2.14: Transverse spread of charge on the top plate for pulse length of 0.05 s,
derived as rspread = Qtp/ (Qtp +Qg +Qc).

With the Frisch grid in front, not all CVRs travelling towards the centre of the top

plate are able to reach the collector. Hence, the effective transparency of the grid, Tg,

with regard to the voltage is investigated. As mentioned in Section 2.1, the grid has

a wire mesh with a geometric transparency of 92%. However, in the experiment, the
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Figure 2.15: Effective transparency of the Frisch grid, defined as Tg =
Qc/ (Qc +Qg), for data with pulse length of 0.05 s.

current on the mesh cannot be separated from the current on a metal ring that the mesh

is attached to. The current on the Frisch grid actually refers to the total current on both

the mesh and the ring and the ring has no transparency at all. Taking the size of the ring

into consideration, the transparency is expected to be around 0.6. The experimental

transparency is defined as the charge accumulated on the collector divided by the total

charge on both the collector and the Frisch grid, Tg = Qc/ (Qc +Qg), and is presented

in Figure 2.15. From the plot, the transparency starts at approximately 0.55 at low

drive voltages, which agrees with our expectation. Then it goes down slowly as the

drive voltage becomes higher and reaches 0.3 at 200 V. As confirmed by the ratio of

spread on the top plate, the beam of CVRs becomes less-collimated at higher drive

voltages. More rings will end up on the metal ring and the decline of transparency is

expected. The tip voltage does not show much impact on the result.

In the comparison between the analysis results for data with pulse length of 0.05 s

and of 0.10 s, the only significant difference is that more CVRs are injected into the

cell when the pulse length is doubled, leading to an increase in the current and the
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charge data. The properties of the charged vortex tangle near the injection tip are not

affected by the pulse length since the release time of the CVRs and the width of the

current peak for the mid-plate data have approximately the same constant values in

both cases. Other physical parameters, such as the ratio of rings through the mid-

plate, the transverse spread and the transparency of the grid, do not display strong

dependence on the pulse length either.

2.4 Temperature Dependence

Measurements were carried out while the tip voltage was kept at 350 V to check the

temperature dependence. The pulse length was 0.05 s. The drive voltage was switched

between six values: 10 V, 20 V, 30 V, 40 V, 60 V and 100 V. The temperature went from

as low as 0.08 K to as high as 0.70 K in small steps. The currents received on each

channel are processed the same way as for the voltage dependence data. The analytical

time of flight was computed for every experimental temperature for each of the six

drive voltage values using Equations 2.11 and 2.15. The most appropriate value of the

constant logarithm term Λ for the calculations was found to be 11, corresponding to a

radius of 0.97µm.

Peak time and time at the edge of the peak for currents on the mid-plate with

regard to temperature are given in Figure 2.16, which are reflective of the time scales

of the seed CVRs entering the cell. tedge has a value of about 0.07 s throughout the

temperature range of the experiment. This value 0.07 s is close to the average of 0.08 s

that we obtained for the voltage dependence case with the same 0.05 s pulse length,

revealing that the release time of the seed CVRs from the tangle near the tip is not

much affected by temperature or the voltage. tpeak stays at about 0.3 s and only goes up

to a small degree at high temperatures. Thus, the properties of the charged tangle near

the injection tip do not present a strong temperature dependence.
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Figure 2.16: (a) Peak time and (b) time at the edge of the peak of the currents
received by the mid-plate versus temperature, for pulse length of 0.05 s. t = 0
starts from the middle of the pulse. The tip voltage was kept at 350 V and the
temperature was varied from 0.08 K to 0.70 K in small steps.
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Figure 2.17: Time at the edge of the peak for currents from the top plate versus
temperature. The dashed curves are the analytical time of flight for a CVR of initial
radius 1.0µm to reach the mid-plate at different drive voltages. The logarithm term
Λ in Equation 2.11 is set to have a constant value 11.

Time at the edge of the peak for currents from the top plate can be translated as

the time that induced currents are received by the detector, i.e., the time that the CVRs

successfully pass through the mid-plate, and is shown in Figure 2.17. tedge remains

almost constant with small fluctuations until 0.5 K and quickly decreases to almost

zero at 0.7 K. The experimental data are compatible with the analytical time of flight

to the mid-plate for a CVR with initial radius of 1.0µm at different drive voltages,

which is calculated using Equation 2.11. At the same temperature, the higher the drive

voltage is, the longer it takes for the rings to travel past the mid-plate.

Figure 2.18 shows the peak time and time at the edge of the peak for the collector

data with respect to temperature. Since the first group of CVRs to arrive at the collec-

tor should be the smaller rings created during reconnections, tedge is compared to the

analytical time of a CVR with initial radius of 0.5µm using Equation 2.15 and those

rings appear to have radii even smaller than 0.5µm. tpeak is plotted with analytical cal-

culation for a ring of 1.0µm. Both sets of data are independent of temperature until the
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temperature reaches 0.5 K, then decrease slightly before climbing up again. The gra-

dient of the analytical calculation agrees with the experimental data till around 0.6 K,

when the experimental time starts to go up and the analytical time drops to zero. The

occurrence of the unphysical zero analytical time of flight results from the shrinking of

the ring under the large mutual friction at high temperatures. The reason for the sudden

rise in the experimental time of flight is that the small rings are quickly dissipated due

to mutual friction, leaving behind a stationary bare ion in the field-free region which

might never reach the collector; whereas the large impulse of the tangles allows them

to make it to the collector eventually.

The widths of the current peaks for the collector and the mid-plate are presented

in Figure 2.19. For the mid-plate data, twidth has an almost constant value of 0.4 s

before slightly increasing at temperature above 0.6 K, which means the difference in

the radii of the arriving CVRs on the mid-plate is not much dependent on the increasing

temperature. This again shows that temperature does not have much impact on the

release of the CVRs from the tangle near the tip. For the collector data, the magnitude

is kept constant at about 0.6 s but climbs up after the temperature reaches 0.6 K. This

observation confirms the assumption that at high temperatures above 0.6 K, instead of

isolated vortex rings, the charge is carried by large vortex tangles which move at a low

velocity.

The peak current on the collector and the mid-plate from 0.08 K to 0.70 K for each

drive voltage is given in Figure 2.20. In general, the curves exhibit a downward trend

but begin to drop faster after 0.5 K. For the collector, it almost drops to zero at 0.7 K,

which indicates there are very few charge carriers that are able to travel across the cell

at high temperatures. The mid-plate data is approximately two orders of magnitude

higher than the collector data since a large number of CVRs cannot travel beyond the

hole in the plate due to the width of the beam. At drive voltages between 10 V and

40 V, for the same temperature, the peak current increases with the increasing drive
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Figure 2.18: (a) Peak time and (b) time at the edge of the peak against temperature
for the collector, for pulse length of 0.05 s. The time t = 0 starts from the middle
of the pulse. The dashed curves are the calculated time of flight for a CVR to reach
the collector at the different drive voltages, with the initial radius of the ring being
1.0µm for peak time and 0.5µm for time at edge. The logarithm term Λ is 11.
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Figure 2.19: Width of the current peak for (a) the collector and (b) the mid-plate
against varying temperature. It is derived by calculating the time interval between
the half maximum points of the peak.
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voltage, but at higher voltages, the opposite happens. A jump in the peak current is

noticed at around 0.3 K, which is caused by a sudden change in the characteristics of

the injection tip.

Figure 2.21 displays the charge accumulated on the collector and the mid-plate

respectively, derived by integrating the currents on those two channels from 0 to 4 s.

The collector data experiences some relatively huge fluctuations in the experimental

temperature range but it can still be deduced that generally less charge is received by

the collector as the temperature rises. The charge on the mid-plate follows the obser-

vation in the peak current analysis: overall, it is decreasing, with a jump in magnitude

at 0.3 K due to a faulty injection tip. Above 0.5 K, small rings are quickly dissipated

under the influence of the mutual friction, which accounts for the rapid decrease in the

accumulated charge at high temperatures.
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Figure 2.20: Peak current received by (a) the collector and (b) the mid-plate at each
temperature varying from from 0.08 K to 0.70 K. The noticeable jump at around
0.3 K is due to a sudden change in the characteristics of the injection tip.
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Figure 2.21: Charge accumulated on (a) the collector and (b) the mid-plate versus
temperature at six different drive voltages, derived from integrations of the current
transients from 0 to 4 s.
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Chapter 3

Double Ring Collision

3.1 Introduction

The interactions between a pair of vortex rings can provide information on the pro-

cesses that occur in quantum turbulence at microscopic scales, such as reconnections

between rings, self-reconnections and the transfer of energy to Kelvin waves. One

important example is that the generation of much smaller vortex rings observed dur-

ing experiment could be tested through simulation on vortex ring reconnections. A lot

of research work has been devoted to the interacting and reconnecting vortex rings,

as reviewed in Chapter 1. In this chapter, we provide a detailed study of the interac-

tions between two vortex rings, both circular and deformed, initially travelling in the

same direction. The chapter starts with a discussion of the case of two circular rings

in Section 3.2, then we look into the interactions between rings with manually im-

posed perturbation in Section 3.3, and with deformation generated from ring collision

in Section 3.4.

In superfluid 4He, the vortex core radius a is much smaller compared to any other

characteristic length scale such as the radius of the vortex ringR, which makes the vor-

tex filament method appropriate for our simulations on the interactions between vortex

59



3.1. INTRODUCTION

rings in superfluid 4He. Although local induction approximation is computationally

cheaper, it does not cover the long-range non-local effects between the vortex rings.

Therefore the exact Biot-Savart law is employed for all our simulations.

A C++ program was developed, initially by Matthew Evans and Rory Brown, to

fulfill our simulation on the dynamics of a pair of vortex rings in superfluid helium,

using the vortex filament method and the full Biot-Savart law. A characteristic length

of the ring segments, δ, is introduced to maintain the resolution of the filaments. This

length is chosen to be' 6×10−8 m such that a ring of 1 µm radius comprises of' 100

mesh points, where 1 µm is in accordance with the typical order of magnitude of the

size of the vortex rings observed in superfluid helium experiments [20]. We follow

Baggaley and Barenghi [35] by using an adaptive meshing to maintain the resolution

of the simulation. If the separation between two neighbouring points exceeds δ, a new

point is added in between; if any ring segment is below δ/2 in length, a point is taken

out. In the event that the local curvature at any mesh point surpasses 1.9/δ, that point

is removed to smooth out the filament, which results in a small loss of line length

and energy. This process is thought to crudely mimic the phonon emission for Kelvin

waves with large wavenumber occurring at zero temperature limit [35]. In order to

account for the variation in mesh sizes along the vortex filaments, all spatial derivatives

are approximated using a fourth-order finite difference schemes given by Baggaley and

Barenghi [35]. The derivatives of the ith point s′i and s′′i have a dependence on the

positions of the two points in front and the two points behind. Since the calculation

involves at least 5 mesh points, any ring with less than 6 mesh points is not allowed to

exist and must be eliminated from the simulation.

Time evolution is achieved using the fourth-order Adams-Bashforth scheme (AB4).

For a mesh point i with velocity vi, the calculation of its position si at time step n+ 1

involves velocities from four prior time steps:
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sn+1
i = sni +

∆t

24

(
55vni − 59vn−1i + 37vn−2i − 9vn−3i

)
, (3.1)

where ∆t is the time step with magnitude of ' 10−10 s in our simulations. During the

initialisation of a new mesh point, whether at the beginning of the entire simulation

or afterwards when a new point is called for, its velocity at the first four time steps is

determined according to lower-order schemes, i.e., Euler, AB2 and AB3.

The vortex filaments in superfluid helium are expected to reconnect when they be-

come sufficiently close to each other. In our simulations, reconnection algorithm must

be supplemented manually to the vortex filament model. Baggaley [50] provided a

detailed comparison on the effects of various reconnection models. When the distance

between two non-adjacent mesh points drops below a critical distance ∆ = δ/2, a

reconnection is initiated. Following Baggaley [50], we employ one of the simplest

reconnection algorithms denoted by Type II. A schematic plot for the reconnection

process in presented in Figure 3.1. If two points fall within distance ∆, they simply

reconnect and the other points in the vicinity of those two points are reassigned ac-

cordingly. No dissipation algorithm is considered at this stage. To ensure that only

anti-parallel filaments will reconnect, the inner product of the positions of the two re-

connecting points is checked and the reconnection proceeds only when negative value

is obtained. Further details on the implementation of the vortex filament method can

be found elsewhere [51].

To better compare the sizes of the CVRs with minimal impact from ring deforma-

tion, an effective radius, Reff, is defined to give the radius of a smoothed version of

the deformed ring, which is an equivalent circular ring with the same momentum but

without the Kelvin waves. This is valid provided the deformation on the ring is small.

The effective radius can be derived from computing the impulse, P = πκR2
eff, where

the definition of the impulse is [52]
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< Δ 

Figure 3.1: Reconnection of two anti-parallel vortex filaments. The black dots
represent the mesh points on the filament, and the orientation is indicated by the
little arrows. The plot on the left shows the configuration before reconnection, and
the reconnection result is on the right.

P =
1

2
ρκ
∑
i

ri × ξi, (3.2)

for i from 0 to the total number of mesh points on that ring, with ri being the position

vector and ξi the length of the vortex segment.

Analysing the components of the total energy can provide insight on the interac-

tions between vortex rings. We assume that the Kelvin waves on the vortex rings in our

simulations have small enough amplitude, such that the effective smoothed ring moves

in the same direction as the original deformed ring. The total energy of a system of

vortex rings can be seen as having contributions from two main sources,

ET = Ering + EKW, (3.3)

where Ering is the energy of the smoothed rings and EKW is the energy stored in

the distortion caused by Kelvin waves on the ring. Performing line integral E =

ρκ
∮
vs ·s× ŝ′dξ [52] proves that the total energy is conserved within 0.1 % during the

simulation and that the decrease in energy after reconnections can be neglected. The
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energy fractions with regard to the total energy are expressed as

Ering

ET
=

1

R1 +R2

∑
Reff (3.4)

EKW

ET
= 1−

Ering

ET
= 1− 1

R1 +R2

∑
Reff. (3.5)

Here, the summation is over all existing rings.

3.2 Circular Rings

The first scenario to be explored is when two perfectly circular vortex rings with radii

R1 and R2 (R1 ≥ R2) initially moving in the z-direction interact. The axes perpendic-

ular to the ring planes are offset by an impact parameter, b, which was varied to test

the effect of relative position on the interactions. The ring with larger initial radius R1

is always placed before the smaller one with a distance of d, so the coordinates of the

centres of the two rings at the beginning of the simulation are (0, 0, d) and (b, 0, 0).

Since the ring velocity is proportional to the inverse of the radius, the smaller ring in

the back is able to catch up with the larger one and the non-local interactions between

them can initiate a series of reactions depending on the impact parameter. The separa-

tion d is set to be 5µm, which is a safe distance for the two rings to be approximated

as independent and non-interacting at the start. The simulations were performed for a

duration of ' 1 ms, allowing enough time for the rings to interact and evolve to a final

state where the rings are far apart.

An interesting configuration to study is when R1 = 1.2µm and R2 = 0.7µm.

Figure 3.2 shows sequences of snapshots for two examples of the interacting vortex

rings, each with three frames. The smaller ring has a larger velocity and sets off to

catch up with the larger ring in front as soon as the simulation starts. The long-range

interaction causes the ring in front to expand and the one behind to shrink in size.
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Figure 3.2: Snapshots for the interactions of two different sets of vortex rings,
evolving with time from left to right as indicated. Same initial conditions are
applied: rings start off 5µm apart and travel in the z-direction, with initial radii
R1 = 1.2µm and R2 = 0.7µm. The red arrows indicate the directions of the ring
velocities. Top panel: for impact parameter b = 0.4µm, the smaller ring safely
passes through the larger one without reconnection. Bottom panel: for impact
parameter b = 0.95µm, both rings reconnect and merge into a single ring, which
later self-reconnects and produces a small ring.

This can lead to a leapfrogging motion: if the two rings are initially co-axial, the

rings continue to move forward along the z-direction; if not, the rings also tend to

push each other sideways. The top panel is an example when the impact parameter

(b = 0.4µm) is small enough for the smaller ring to pass through the other one without

reconnecting, leaving both rings deformed and deviated from previous direction due to

interactions. In the bottom panel, a larger impact parameter (b = 0.95µm) is applied

and reconnection is observed. The vortex rings collide after approaching each other

and reconnect, merging into one large deformed loop, which then self-reconnects and

generates a small ring. The deformation seen on the large loop results from the Kelvin

waves created from reconnection.
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After each run, the momenta of all remaining rings are calculated using Equa-

tion 3.2 and the effective radii, Reff, are derived to compare the results of the interac-

tions. Since the circular rings are symmetric about both x and y axes, the interactions

at different impact parameters should also have the same symmetry about the axes.

The final effective radii are plotted in Figure 3.3 with respect to the impact parameter

b in +x direction, which is reflective of the ring interaction outcomes in all other di-

rections. Based on the types and the results of the interactions that have taken place

between the two rings, the whole range of impact parameters is separated into four

different regimes by three b values b1, b2, b3, marked as the vertical dashed lines in the

figure. The window of impact parameters for ring reconnection is b1 ≤ b ≤ b3.

For b < b1, the lower ring passes through the upper one from inside without recon-

necting, as demonstrated in the top panel of Figure 3.2. Compared to the initial radii,

the changes in the final effective radii of the two rings are limited, although both rings

are left with certain deformation. The movements of the rings slightly deviate from the

initial strictly upward direction due to sidewards interactions.

When b1 ≤ b < b2, the second ring collides with the first ring on the side. They

reconnect and produce one smaller and one larger rings. The difference between the

final Reff of the rings grows as b increases. Close to the boundary b2, the smaller

ring produced is nearly 4 times smaller than the initial one, which offers potential

explanation for the sources of the very small rings observed during experiments.

When b2 ≤ b ≤ b3, the rings reconnect and then merge into one large deformed

loop, as shown in the bottom panel of Figure 3.2. Sometimes this deformation is strong

enough for a small ring to be emitted later due to loop self-reconnection. From the

conservation of momentum and Equation 1.8, the maximum radius of the loop formed

by the merging is given by Rmax =
√
R2

1 +R2
2 ≈ 1.39µm, which agrees with our

simulation results and shows that momentum is indeed conserved in our simulations.

For b > b3, the lower ring slides from below the upper one to miss it on the outside
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Figure 3.3: Final effective radii of the rings, Reff, against the impact parameter, b.
The solid symbol is for the larger ring and the open symbol is for the smaller one.
The initial conditions include R1 = 1.2µm and R2 = 0.7µm, which are indicated
by the horizontal dashed lines, with the first ring placed d = 5µm above the second
one. The impact parameters are divided into 4 regimes by b1, b2, b3, based on the
results of interactions between the rings. Ring reconnection occurs in the region
b1 ≤ b ≤ b3. Rmax =

√
R2

1 +R2
2 ≈ 1.39µm is the maximum radius expected for

the single ring formed by the merging of the initial vortex rings, derived from the
conservation of momentum.

with no reconnection observed. There is barely any deformation on the rings after-

wards and the final effective radii Reff are almost identical to the initial radii. Without

the vortex ring interactions, the upper limit of the impact parameter for ring reconnec-

tion should be the sum of the initial radii, brec
max = R1 + R2 = 2.1µm. However, the

simulations suggest that b3 < brec
max, because of the sidewards repulsion between the

rings.

The transfer of energy between each component of the total energy versus the im-

pact parameter b is shown in Figure 3.4. The three boundaries (b1, b2, b3) in the final

radii plot still serve as the regime separators in this case. For b < b1, the rings remain

almost circular after interaction, thus EKW is negligible. In region b1 ≤ b < b2, the

rings reconnect, which results in the decrease of the energy of the smoothed ring Ering,
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Figure 3.4: Fraction of each energy component (Ering and EKW) compared to the
total energy against the impact parameter, for the interactions between two circular
rings with R1 = 1.2µm and R2 = 0.7µm. Based on the interactions between the
rings, the three dashed vertical lines marked by parameters b1, b2 and b3 indicate
the boundaries of the four regimes. The solid horizontal line is for the maximum
possible fraction of energy stored in Kelvin waves.

and the rising of the Kelvin wave energy EKW. When b2 ≤ b ≤ b3, maximum fraction

of the total energy is stored in the excited Kelvin waves, as the two rings merge into a

largely deformed loop. According to the conservation of energy and momentum, this

fraction can be calculated as Emax/ET = 1 − Rmax/ (R1 +R2). Emax is marked by a

solid horizontal line in the figure, which agrees with the simulation results well. For

b > b3, the rings fly past each other without much interaction therefore the total energy

is nearly all taken up by Ering.

3.3 Manually Imposed Perturbation

In most of the realistic cases, we are not dealing with perfectly circular rings, because

the interactions between one vortex ring and another leaves them deformed. One situ-

ation that is of special interest to us is when Kelvin waves are imposed on the vortex
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rings. Barenghi et al. [53] proposed a model for the initial conditions of rings with

Kelvin waves. The formulae for the perturbation imposed on the vortex rings in our

simulations have a slight deviation from theirs. The Cartesian coordinates of each

mesh point on the ring can be converted from the cylindrical coordinates (r, φ, z) and

are expressed as:

x = R sinφ+ A cos (Nφ) cosφ,

y = R cosφ+ A cos (Nφ) sinφ,

z = −A sin (Nφ),

(3.6)

where A controls the amplitude of the perturbation and N is the number of waves.

We manually impose this kind of perturbation onto a circular vortex ring of initial

radius 1µm while a second circular ring of radius 0.8µm is initialised at 5µm below

in z direction, and observe their behaviours with respect to the changing impact pa-

rameters. The amplitude of the perturbation is expressed as the ratio A/R, which is

fixed at 0.05. The deformation of a vortex ring with initial radius of 1µm at N = 2

and 3 is presented in Figure 3.5 for both xy- and xz- planes. Also plotted in dashed

curve is the circular ring with the same initial radius. The shape of the ring becomes

more irregular with increasing N . The effective radii of the rings can all be regarded

as 1µm, since the deviation is negligible.

The addition of the perturbation changes the motion of the vortex rings. If the ring

in front is to travel along +z-direction alone without any constraints or interactions, its

final position after 1 ms is shown in Figure 3.6. The ring’s movement in the z-direction

has been hindered, as it travels less with larger N , which is similar to the conclusions

obtained by Barenghi et al. [53] on the average translational velocity of the vortex ring.

A second vortex ring of radius 0.8µm is released 5µm below the first one, also

moving upwards in the +z-direction. Due to the asymmetric shape of the ring with the

imposed Kelvin waves, the impact parameter was varied in both x- and y- directions,
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Figure 3.5: Deformation of a vortex ring of initial radius of 1µm with perturbation
of constant amplitude-to-radius ratios A/R = 0.05 and N = 2 and 3, compared to
a circular ring of the same initial radius, in (a) xy-plane and (b) xz-plane, at t = 0.

denoted by b = (bx, by). Figure 3.7 shows the final effective radii, Reff, of a ring with

perturbation of N = 2 or 3 after 1 ms versus the impact parameters (bx, 0) and (0, by)

respectively, as well as Reff for a circular ring. The plots have the same form as what

we obtained in the case of two circular rings with R1 = 1.2µm and R2 = 0.7µm

(∆R = 0.5µm) in Figure 3.3, although the smaller difference in initial radii (∆R =

0.2µm) has lead to a narrower region for ring reconnection. The final radii do not

exceed the maximum radius allowed for this setup, Rmax = 1.28µm.

69



3.3. MANUALLY IMPOSED PERTURBATION

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−6

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−6

 

x (m)

 

y 
(m

)

N = 2
N = 3
Circular

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−6

8.8

8.85

8.9

8.95
x 10

−5

 

x (m)

 

z 
(m

)

N = 2
N = 3
Circular

(b)

Figure 3.6: Final status of the vortex ring in front after 1 ms, with perturbation of
constant amplitude-to-radius ratios A/R = 0.05 and N = 2 and 3, and compared
to the final position of a circular ring of 1µm radius in the (a) xy-plane and (b)
xz-plane.

For b in the x-direction, the final radii plots of the perturbed cases display slight

deviations from the circular case. They still possess the four typical regimes as the

circular case does, but more impact parameters can lead to the production of two new

rings from reconnection. The possibility for the two rings to merge into one large

deformed loop is reduced.
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Figure 3.7: Final effective radii, Reff, for the first ring with manually imposed
perturbation versus b varying in the (a) x-direction and (b) y-direction. The initial
conditions include R1 = 1.0µm and R2 = 0.8µm, which are indicated by the
dashed horizontal lines in plots, and d = 5µm. The solid symbol is for the larger
ring and the open symbol is for the smaller one. Perturbation of N = 2 and 3 is
imposed with the same amplitude A/R = 0.05. The maximum expected radius
of the large loop formed by the merging of the initial vortex rings is Rmax =√
R2

1 +R2
2 ≈ 1.28µm, indicated by the solid horizontal line.
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3.4 Deformed Ring From Collision

In the previous sections, we investigated the interactions between two circular rings

and between rings with manually imposed perturbation. However, these conditions are

more ideal than the real experiments. In experiments, a pulse of vortex rings is fired

into the cell in a very short duration. It is more likely that in a beam of many vortex

rings, two rings reconnect and merge into one large and slow ring, which will then be

hit by faster-moving small rings from behind. These secondary interactions possibly

provide a better mechanism for small rings to be produced. This was simulated by

shooting small circular rings into a large deformed ring created from the reconnection

between two circular rings.

The initial setup for creating this deformed ring includes two circular rings with

radii R1 = 1µm, R2 = 0.8µm, separated by d = 3µm, with impact parameter

b = 0.48µm. As shown in Figure 3.8 (a), this ring is largely deformed compared

to a circular ring with radius same as its effective radius Reff = 1.28µm. The ring

is strongly deformed from viewing in the xz-plane as shown in Figure 3.8 (b) as well.

After the deformed loop has been formed and become stabilised in a few steps, another

circular ring of radius 0.8µm is added at 2µm below. The asymmetric deformation

of the large loop again requires the impact parameter to be varied in both x- and y-

directions, and instead of the origin, this time b = (bx, by) is varied with regard to the

centre of the deformed ring.

The final radii Reff with impact parameter being varied along both axes are plotted

in Figure 3.9. The plots still possess some general features observed in the previous

cases but their forms are very different not only between each other but also from the

other cases. Now small rings are much easier to produce, and sometimes it is even

possible to produce more than one small rings following one collision. On the rare

occasion when there is only one large loop formed from the reconnection of the two
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Figure 3.8: The deformed ring created from colliding two circular rings seen in
(a) xy-plane and (b) xz-plane, plotted in the same scale. The initial configurations
for the circular rings are R1 = 1µm at (0, 0, 3)µm and R2 = 0.8µm at (0.48, 0,
0)µm. An equivalent circular ring of the same effective radiusReff as the deformed
ring is shown in dashed circle in (a).

rings, the loop often self-reconnects after some evolution in time and emits a small

ring. It is highly unlikely to be left with only one single vortex ring. If we have some

of these deformed loops created from ring collision in the experiment, it is probable to

end up with quite a few small rings from the interactions with these secondary rings.
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Figure 3.9: Final effective radii, Reff, against varying b in the (a) x-direction and
(b) y-direction. Initially, the first deformed ring as shown in Figure 3.8 is obtained
from collision and a circular ring of radius 0.8µm is placed 2µm below the first
one. The solid symbol is for the larger rings and the open symbol is for the smaller
ones. The green triangles indicate the occurrence of more than one small rings.
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Chapter 4

Dynamics of Charged Vortex Ring

4.1 Introduction

Charged vortex filaments have been used in experiments to study superfluid turbulence

since Rayfield and Reif [46]. The dynamics of a charged circular ring in electric field

is well known both experimentally and theoretically [20,54,55]. In recent experiments

performed in Manchester [48] and in the experiments discussed in Chapter 2, vortex

rings with an electron trapped in its core were injected into an electric field to probe

superfluid turbulence. Although the rings are initially released due to reconnections at

the surface of a large charged vortex tangle and are thus unlikely to be perfectly circu-

lar, the experimental time of flight agrees with the analytical calculation of a circular

ring, providing that there are no ring-ring interactions. It is proposed that the electric

field might have a smoothing effect on the rings and simulations of deformed vortex

rings were run to test this theory.

In an early attempt to model the ion attached to a vortex ring, Samuels and Donnelly

[55] found that despite the asymmetric location of the ion, it could cause a symmetric

growth in ring radius and that the ring would be turned into rough alignment with

the electric field. A simple model for the dynamics of the charged vortex filaments
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was implemented in our vortex filament program following the work by Tsubota and

Adachi [54]. If a vortex ring with an ion of charge e and radius Rion trapped by its core

moves in a uniform electric fieldE in the zero temperature limit, an electric force acts

on the charged part and we have

ds

dt
= vS +

e

2RionρSκ
s′ ×E, (4.1)

where ρS is the superfluid density, vS is the velocity of the superfluid component, Rion

is calculated as the average length of the neighbouring segments of the mesh point with

charge and s, s′ refer to the coordinate of a point on the filament and its derivative. This

equation does not account for the sliding motion of the ions along vortex lines [56]

when s′ can be parallel to the direction of the field E. In the simulation performed by

Tsubota and Adachi [54] of a perfectly circular vortex ring with a localised charge on

one point, small-amplitude Kelvin waves excited by the electric field resulted in the

expansion of the ring radius.

In our simulation, a singly charged vortex ring is placed in an unphysically high

electric field with amplitude of 105 V/m such that the changes induced by the field can

be more obvious in a very short amount of time. The ratio of the total line length to the

effective circumference, L/2πReff, is possible to give us some idea on the amplitude

of the deformation relative to the smoothed line length. This and the effective radius of

the ring are monitored to see the effect of the field. We study the motion of a charged

deformed ring created from ring collision in electric field in Section 4.2 and that of a

charged ring with manually imposed perturbation in field in Section 4.3.
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4.2 Deformed Ring From Collision

The same deformed ring created from ring collision used in Chapter 3 is chosen to be in

this simulation. The initial conditions for creating this ring and its shape can be found

in Figure 3.8. This ring originally has 131 mesh points and has an effective radius of

1.28µm. Due to the asymmetric shape of the ring, we performed simulations with a

charge imposed on a few different mesh points to validate the effect of the electric field

on a localised charge.

An elementary charge e is placed on point 1, 30, 60, 90 or 120 of the deformed

ring respectively. The change in the effective radius, Reff, of the ring from 0 to 3 ms

is plotted in Figure 4.1. The location of the charge does not have a huge impact on

Reff. The deformed ring expands quickly in the extremely large electric field to about

1.58µm at 3 ms. The growth in size is over 20%. The amplitude of the Kelvin waves

on the deformed ring is so large that on a few occasions, it is forced to self-reconnect

and emit a small ring. The evolution of a circular ring with the same effective radius

1.28µm and 131 mesh points is given in dashed curve. This circular ring expands

even faster, to approximately 1.64µm at the end of the simulation. From Equation 4.1,

ds/dt is proportional to the cross product s′ × E. For a perfectly circular ring with

velocity aligned in the direction of the electric field, s′ is perpendicular to E at all

time. But this is not always the case for a deformed ring. There can exist a component

of s′ that is parallel to E, since a trapped ion is able to slide along a vortex filament

to dissipate energy into Kelvin waves [56]. This ability of an ion to move along the

vortex line is not accounted for in our model and thus the apparent suppression of the

growth of the deformed ring is an artifact.

Now we look at the ratio L/2πReff in Figure 4.2 to examine the variation of the

ring deformation in the electric field. The field does induce some Kelvin waves on

the singly-charged circular ring [54], but the amplitude of them is too small to be
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Figure 4.1: Evolution of the effective radius,Reff, of the deformed ring with charge
e imposed at 5 different mesh points (1, 30, 60, 90, 120). The dashed curve is for a
circular ring with radius of 1.28µm, same as the effective radius of the deformed
ring, with charge e placed on the first mesh point.

resolved in our plot. L/2πReff for the circular ring can be regarded as 1 throughout

the time range, i.e., the ring remains circular to high accuracy. Without the charge, the

deformed ring grows more distorted in time, which results in its self-reconnection at

2 ms and the emitting of a much smaller ring. However, when a charge is introduced,

the deformation reduces in the electric field, proving that the field has a smoothing

effect on charged vortex rings. The resemblance in the curves for charged deformed

ring reaffirms the conclusion that the location of the charge is not important.

4.3 Manually Imposed Perturbation

The distortion on the ring created from collision is so strong that self-reconnection is

almost unavoidable. A more controllable way of studying the dynamics of a charged

deformed vortex ring is to use rings with manually imposed perturbation provided by
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Figure 4.2: Ratio of total line length to the effective circumference, L/2πReff, of
the deformed ring created from ring collision, with charge e imposed at 5 different
mesh points. The dashed curve is for a circular ring with effective radius same as
the deformed ring at 1.28µm. Also plotted in dark yellow curve is the change in
ratio for the deformed ring carrying no charge.

Equation 3.6, which proves to be more stable. The perturbation was applied on a cir-

cular ring with initial radius of 1µm. The amplitude A and the number N were varied

during the simulations. The electric field was kept at 105 V/m for more distinguishable

results.

The vortex ring initially has a perturbation of constant amplitude A/R = 0.05 and

N = 1, 2, 3 and 5. An elementary charge e is placed on the first mesh point. The

plots are compared to the result for a singly-charged circular ring with the same initial

radius of 1µm. The effective radius plot is given in Figure 4.3. The curves are mostly

indistinguishable for the rings with N ≤ 3 from 0 to 0.04 s but the ring with N = 5

expands slightly faster in the field, which indicates that the number N helps with the

growth in radius.

Figure 4.4 displays the ratio L/2πReff of a singly-charged ring with perturbation of

N = 1, 2, 3 and 5 from 0 to 0.04 s. The deformation on the ring reduces smoothly with

a decreasing derivative in the electric field. The ring with N = 5 is the most deformed
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Figure 4.3: The effective radius, Reff, of a charged vortex ring with perturbation
of constant amplitude A/R = 0.05 and N = 1, 2, 3 and 5 from 0 to 0.04 s. The
initial radius of the ring is 1.0µm and Reff of a singly-charged circular ring of the
same size is plotted for comparison. One elementary charge e is placed on the first
mesh point of the ring.

to begin with, but ends up with a L/2πReff value of 1.003, similar to that of the ring

with N = 3 at 0.04 s.

Comparison between the projections of the deformed ring in the xy-plane before

and after the simulation, i.e., at t = 0 and 0.04 s, is offered in Figure 4.5. The rings are

aligned according to the positions of their centres. Perturbation of amplitude A/R =

0.05 and N = 5 is imposed on the ring. Apart from the growth in size, it is obvious

that the initial ring in red is largely deformed with the perturbation but at the end of the

simulation the ring in blue becomes much more circular. The large electric field has a

strong smoothing effect on the ring.
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Figure 4.4: The ratio, L/2πReff, of a charged vortex ring with perturbation of
constant amplitude A/R = 0.05 and N = 1, 2, 3 and 5, along with the ratio for a
circular ring, from 0 s to 0.04 s. The initial radius of the ring is 1.0µm. The first
mesh point of the ring has charge e.
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Figure 4.5: The projections of a deformed vortex ring in the xy-plane at t = 0
(red) and 0.04 s (blue), for a vortex ring with perturbation of A/R = 0.05 and
N = 5. The rings are aligned according to the positions of their centres.
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Chapter 5

Conclusions

The main purpose of this thesis is to study the dynamics of vortex rings in superfluid

helium and how they interact with each other. This was achieved both experimentally

and numerically.

We have analysed the data provided by the experiment performed at Manchester on

charged vortex ring in superfluid 4He. The experiment cell design was modified upon

a previous version [45], in order to investigate the release of the charged vortex rings

(CVRs) from the charged tangle near the injection tip and to observe the behaviours

of the CVRs in a field-free region. Our analysis suggests that the release time and the

initial size of the seed CVRs are almost constant and thus the properties of the charged

tangle near the tip are neither voltage-dependent nor temperature dependent. It is also

shown that the pulse length has limited impact on the experiments, except that more

CVRs are injected into the cell when the pulse length is longer.

In the zero temperature limit, where the effect of mutual friction can be ignored, at

low drive voltages below 50 V, the experimental time agrees with the analytical time of

flight for an isolated CVR. As the drive voltage increases towards 200 V, the number of

the reconnection events starts to rise, resulting in the early arrival of some secondary

small rings and a wider spread of the radii of the CVRs. The formation of charged
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tangles is also expected with the reconnections, which serve as the dominant charge

carriers at high voltages. When the temperature becomes higher, the mutual friction

term is no longer negligible. Many of the CVRs are dissipated before reaching the top

of the cell, leaving behind a stationary bare ion, and only large charged tangles have

enough energy to finally reach the collector after some time.

The interactions between a pair of vortex rings initially travelling in the same direc-

tion in superfluid helium have been simulated employing the vortex filament method

and the exact Biot-Savart law, for both circular and deformed rings. For two circu-

lar rings, depending on the impact parameters, four different scenarios can occur: the

lower ring passes through the upper one without reconnecting; the lower ring clips the

other one on the side, producing one larger and one smaller rings; the two rings merge

into one large ring; the rings miss each other on the outside. The region for ring re-

connection narrows if the difference in the initial radii reduces. The perturbation on

the rings changes their interactions upon the same impact parameter. When a circular

ring interacts with a deformed secondary large ring created by ring collision, there is a

relatively large possibility of generating at least one small ring less than half of the size

of the initial circular ring. Further insight could be provided if simulations on multiple

interacting vortex rings are performed.

By constructing a model for the CVRs, it is shown that the electric field has a

smoothing effect on the perturbation of the vortex rings, which explains why the rings

behave like perfectly circular rings in the experiments even though they should be

deformed after being released by reconnections in the charged tangle near the tip.
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