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ABSTRACT

Wearable devices are starting to revolutionise healthcare by

allowing the unobtrusive and long term monitoring of a range

of body parameters. Embedding more advanced signal pro-

cessing algorithms into the wearable itself can: reduce system

power consumption; increase device functionality; and en-

able closed-loop recording–stimulation with minimal latency;

amongst other benefits. The design challenge is in realising

algorithms within the very limited power budgets available.

Wearable algorithms are now emerging to answer this chal-

lenge. Using a new review, and examples from a case study

on EEG analysis, this article overviews the state-of-the-art in

wearable algorithms. It demonstrates the opportunities and

challenges, highlighting the open challenge of performance

assessment and measuring variability.

Index Terms— Wearables, power, performance metrics

1. INTRODUCTION

Wearable devices are starting to revolutionise healthcare and

mobile healthcare by allowing the easy, unobtrusive and long

term monitoring of a range of body parameters. Activity

trackers using accelerometers, such as the fitbit [1], have

been the most successful initial devices, and emerging units,

such as the Samsung Simband [2], can monitor a range of

parameters including accelerometry for activity monitoring,

electrodermal activity for arousals, and heart rate via pho-

toplethysomgraphy. Wearable algorithms is the name given

to the new signal processing approaches that are emerging

for wearable devices which embed signal processing into the

device hardware [3]. Illustrated in Fig. 1, historically the

focus of online signal processing inside a sensor node has

been for real-time data reduction. In wireless sensors it is

the transmitter that dominates power consumption and if the

data rate can be reduced prior to transmission significantly

better battery life can be achieved [4]. Today, there are many

additional benefits that are being enabled by the use of signal

processing embedded in the wearable itself [3]:

• Reduced system power consumption.

This work was supported by the Engineering and Physical Sciences Re-

search Council grant number EP/M009262/1.
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Fig. 1. Low power wearable algorithms can be used to enable

a range of benefits to wearable devices.

• Increased device functionality.

• Reliable, robust operation over unreliable wireless links.

• Minimized system latency.

• Reduction in the amount of data to be analysed offline.

• New closed-loop recording–stimulation devices.

• Better quality records (e.g. with motion artefact removal).

• Real-time data redaction for privacy.

As a result there have been rapid developments in wear-

able algorithms in recent years, and this is opening new op-

portunities in signal processing techniques, algorithms, and

applications for delivering healthcare benefits. Using a new

review, and examples from a case study on EEG analysis, this

article overviews the 2015 state-of-the-art in wearable algo-

rithms (Section 2). These then highlight (Section 3) the gaps

in the research landscape that are emerging, and the corre-

sponding opportunities and challenges.

2. WEARABLE ALGORITHMS

Wearable algorithms is a new discipline in signal processing

distinguished by the requirements for very low power hard-

ware implementations and power consumption aware perfor-

mance testing [3]. This was a key driver in the development

of compressive sensing as a major signal processing area as it

provides low power consumption compression with little dis-

tortion [4]. Nevertheless, the underlying aim of compressive

sensing is data reduction for reduced power consumption. It

does not enable the other potential benefits of wearable al-

gorithms highlighted in the introduction. To do this, specif-
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Fig. 2. Principal stages of a wearable algorithm.

ically designed algorithms for each application are required.

Although there are open challenges in each stage, the gen-

eral flow for these algorithms is shown in Fig. 2. The key

stages are low power feature extraction and low power clas-

sification. To investigate the state-of-the-art in these blocks

Table 1 presents a new review of papers published in IEEE

Transactions since 2011 that implement some form of algo-

rithm in hardware for use in wearable sensors. Our focus is

on full hardware implementations for the lowest power con-

sumption, rather than software implementations with some

hardware accelerators. Table 1 thus provides key insights into

the main approaches that are currently being used in algo-

rithms for wearables, and the current state-of-the-art.

3. GAPS IN THE SIGNAL PROCESSING

LANDSCAPE

Focusing on power consumption, in 2010 authors in the IEEE

Signal Processing magazine discussed the question: What

does ultra low power consumption mean? They came to the

conclusion that it is where the “power source lasts longer than

the useful life of the product” [25]. To operate for 10 years

from a miniature 1000 mAh battery, the average current draw

needs to be approximately 10 µA or less. The largest current

draw in Table 1 is ∼170 µA, and there are a number of algo-

rithms that are in the <10 µA range, making this goal close

to being realised. Such low power levels are possible due to

the low frequency nature of human physiology. Few param-

eters need to be sampled at more than 1 kHz and this allows

the signal processing electronics to be heavily duty cycled or

power scaled. As a case study, Fig. 3 shows a Continuous

Wavelet Transform (CWT) circuit which is designed for pro-

cessing brainwave (EEG) signals in the 2 Hz region. This low

frequency allows the average current draw to be scaled to 60

pA, giving signal processing information essentially for free

in terms of power consumption. As a result the most substan-

tial opportunities and challenges for wearable algorithms lie

in the interface with algorithmic approaches as opposed to in

pure circuit design.

Focusing on feature extractions, the majority of wearable

algorithms created so far (12 out of the 20 in Table 1) are

based upon frequency information, with wavelet transforms

being particularly popular. Given the results in Fig. 3 this

focus is not surprising as it leads to very low power con-

sumptions. However, it indicates a potential over reliance

on time–frequency decompositions as the best algorithmic

starting point. It seems unlikely that wavelet decompositions
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Fig. 3. Microphotograph and operation of a low frequency,

60 pW, CWT for real-time EEG analysis [7].

would provide the best, or even suitable, feature extraction

across all signal types and all potential applications. There is

a clear opportunity for creating wearable algorithms that are

based on other feature extraction methods, such as the frac-

tal dimension [26] or Empirical Mode Decomposition [27].

Similarly focusing on classifiers, while there has been re-

cent work on low power implementations of Support Vector

Machines (SVMs) (e.g. [15]), many current wearable algo-

rithms are based on threshold detection. The wide range of

machine learning approaches have not yet been explored.

Recent results [28] have suggested that many disparate clas-

sifiers actually achieve very similar algorithm performance.

If confirmed this is an ideal opportunity for wearable algo-

rithms. It means the classification procedure can be selected

for minimum power consumption, with little impact on the

classification accuracy.

Investigating this requires studying the three-way trade-

off between algorithm performance (e.g. correct detections),

algorithm cost (e.g. false detections), and power consump-

tion. This is a large design space, which leads to difficult

decisions for the system designer: is it preferable to maxi-

mize performance, or to minimize cost or to minimize power

consumption? Is an algorithm with very low power consump-

tion, but comparatively low algorithm performance a better

choice than a higher power, higher performance algorithm?

Fully, and systematically, exploring this design space is the

major challenge facing wearable algorithms. The algorithms

in Table 1 are beginning to populate the space, but there is

much more to do. It is an open challenge to formally inves-

tigate the trade-offs present (as opposed to making individual

algorithms and finding where they lie) which could lead to

more automated tools for helping designers choose the most

appropriate trade-off point for their application.

The above challenge is compounded by the difficulties in

assessing algorithm performance and cost in healthcare appli-

cations. Many applications in healthcare are highly variable

between different people, and within the same person over

time. For example, recent compressive sensing results have

highlighted that the level of algorithm success is dominated

by the variance in performance over time, not the average

performance level [4, 29]. Similarly, Fig. 4 shows the algo-

rithm performance results of a CWT based spike detection

method when multiple records are analysed [30]. Ideal per-

formance would be in the top left hand corner. Performance



T
a
b

le
1
.

P
er

fo
rm

an
ce

o
f

st
at

e-
o
f-

th
e-

ar
t

w
ea

ra
b
le

al
g
o
ri

th
m

s:
al

g
o
ri

th
m

p
er

fo
rm

an
ce

an
d

p
o
w

er
p
er

fo
rm

an
ce

.

R
ef

.
A

im
F

ea
tu

re
s

C
la

ss
ifi

er
A

lg
o
ri

th
m

p
er

fo
rm

an
ce

P
o
w

er
p
er

fo
rm

an
ce

[5
]

E
C

G
ad

ap
ti

v
e

sa
m

p
li

n
g

fr
eq

u
en

cy

F
re

q
u
en

cy
in

fo
rm

at
io

n

(B
an

d
p
as

s
fi

lt
er

)

M
u
lt

ip
le

th
re

sh
o
ld

s
x
7

d
at

a
co

m
p
re

ss
io

n
3
0
µ

W
,

2
V

[6
]

E
E

G
b
an

d
p
o
w

er
ex

tr
ac

ti
o
n

F
re

q
u
en

cy
in

fo
rm

at
io

n

(B
an

d
p
as

s
fi

lt
er

)

–
–

3
µ

W
,

1
.2

V

[7
]

E
E

G
b
an

d
p
o
w

er
ex

tr
ac

ti
o
n

F
re

q
u
en

cy
in

fo
rm

at
io

n
(C

W
T

)
–

–
6
0

p
W

,
1

V

[8
]

E
C

G
h
ea

rt
b
ea

t
d
et

ec
ti

o
n

F
re

q
u
en

cy
in

fo
rm

at
io

n
(D

W
T

)
M

u
lt

ip
le

th
re

sh
o
ld

s
9
9
.8

%
se

n
si

ti
v
it

y,
9
9
.9

%

se
le

ct
iv

it
y

2
9
µ

W
,

1
V

[9
]

S
ig

n
al

ag
n
o
st

ic
co

m
p
re

ss
io

n

(E
E

G
,
E

C
G

,
o
p
ti

ca
l)

L
o
ss

le
ss

co
m

p
re

ss
io

n
(d

is
cr

et
e

p
u
ls

e
co

d
e

m
o
d
u
la

ti
o
n
)

x
2

d
at

a
co

m
p
re

ss
io

n
1
7
0
µ

W
,

1
V

[1
0
]

E
C

G
ar

te
fa

ct
re

m
o
v
al

T
im

e
d
o
m

ai
n

el
ec

tr
ic

al

im
p
ed

an
ce

to
m

o
g
ra

p
h
y

L
M

S
ad

ap
ti

v
e

fi
lt

er
1
0

d
B

in
cr

ea
se

in

S
ig

n
al

-t
o
-A

rt
ef

ac
t

p
o
w

er

–

[1
1
]

E
C

G
h
ea

rt
b
ea

t
d
et

ec
ti

o
n

F
re

q
u
en

cy
in

fo
rm

at
io

n
(D

W
T

)
M

ax
im

u
m

-l
ik

el
ih

o
o
d

–
0
.8

8
p
J/

sa
m

p
le

,
0
.3

2
V

[1
2
]

E
E

G
ap

p
li

ca
ti

o
n

ag
n
o
st

ic

co
m

p
re

ss
io

n

C
o
m

p
re

ss
iv

e
se

n
si

n
g

1
0

d
B

S
N

D
R

,
x
1
0

d
at

a

co
m

p
re

ss
io

n

2
µ

W
,

0
.6

V

[1
3
]

E
C

G
h
ea

rt
b
ea

t
d
et

ec
ti

o
n

F
re

q
u
en

cy
in

fo
rm

at
io

n
(D

W
T

)
M

u
lt

ip
le

th
re

sh
o
ld

s
9
9
.3

%
se

n
si

ti
v
it

y,
9
9
.7

%

se
le

ct
iv

it
y

0
.8
µ

W
,

1
.8

V

[1
4
]

E
C

G
h
ea

rt
b
ea

t
d
et

ec
ti

o
n

F
re

q
u
en

cy
in

fo
rm

at
io

n
(D

W
T

)
M

ax
im

u
m

-l
ik

el
ih

o
o
d

E
rr

o
r

ra
te

0
.2

%
1
4
µ

W
,

3
V

[1
5
]

E
E

G
se

iz
u
re

d
et

ec
ti

o
n

F
re

q
u
en

cy
in

fo
rm

at
io

n
(F

IR
fi

lt
er

)
S

V
M

8
3
%

d
et

ec
ti

o
n

ra
te

,
4
.5

%
fa

ls
e

2
µ

J/
cl

as
si

fi
ca

ti
o
n
,
1

V

E
E

G
b
li

n
k

d
et

ec
ti

o
n

8
4
%

d
et

ec
ti

o
n

ra
te

1
2
8

cl
as

si
fi

ca
ti

o
n
s/

s

[1
6
]

E
C

G
h
ea

rt
b
ea

t
d
et

ec
ti

o
n

F
re

q
u
en

cy
in

fo
rm

at
io

n
(D

W
T

)
M

u
lt

ip
le

th
re

sh
o
ld

s
9
9
%

se
n
si

ti
v
it

y,
9
9
%

se
le

ct
iv

it
y

3
µ

W

[1
7
]

E
C

G
h
ea

rt
b
ea

t
d
et

ec
ti

o
n

A
n
al

o
g
u
e-

to
-i

n
fo

rm
at

io
n

co
n
v
er

te
r

9
7
.8

%
se

n
si

ti
v
it

y,
9
8
.6

%

se
le

ct
iv

it
y

2
2
0

n
W

,
0
.3

V

[1
8
]

E
C

G
h
ea

rt
b
ea

t
d
et

ec
ti

o
n

F
re

q
u
en

cy
in

fo
rm

at
io

n
(D

W
T

)
M

u
lt

ip
le

th
re

sh
o
ld

s
9
9
.3

%
se

n
si

ti
v
it

y
4
3
5

n
W

,
0
.5

V

[1
9
]

E
C

G
ap

p
li

ca
ti

o
n

ag
n
o
st

ic

co
m

p
re

ss
io

n

L
o
ss

le
ss

co
m

p
re

ss
io

n
(s

lo
p
e

b
as

ed
li

n
ea

r
p
re

d
ic

to
r)

x
2
.3

d
at

a
co

m
p
re

ss
io

n
2
.1

4
µ

W
,

2
V

[2
0
]

E
C

G
ar

te
fa

ct
re

m
o
v
al

an
d

h
ea

rt
b
ea

t
d
et

ec
ti

o
n

A
d
ap

ti
v
e

fi
lt

er
in

g
an

d

fr
eq

u
en

cy
in

fo
rm

at
io

n
(C

W
T

)

M
u
lt

ip
le

th
re

sh
o
ld

s
9
9
.8

%
se

le
ct

iv
it

y
4
3
µ

W
,

1
.2

V

[2
1
]

E
C

G
co

m
p
re

ss
io

n
an

d
h
ea

rt

b
ea

t
d
et

ec
ti

o
n

S
lo

p
e

b
as

ed
li

n
ea

r
p
re

d
ic

to
r

M
u
lt

ip
le

th
re

sh
o
ld

s
9
9
.6

%
se

n
si

ti
v
it

y,
9
9
.8

%

se
le

ct
iv

it
y,

x
2
.3

d
at

a

co
m

p
re

ss
io

n

4
9
0

n
W

,
1
.8

V

[2
2
]

E
C

G
co

m
p
re

ss
io

n
an

d
h
ea

rt

b
ea

t
d
et

ec
ti

o
n

F
re

q
u
en

cy
in

fo
rm

at
io

n
(D

W
T

)
M

u
lt

ip
le

th
re

sh
o
ld

s
9
9
.7

%
se

n
si

ti
v
it

y,
9
9
.5

%

se
le

ct
iv

it
y,

x
1
3
.7

d
at

a

co
m

p
re

ss
io

n

3
3
µ

W
,

0
.7

V

[2
3
]

A
p
n
o
ea

d
et

ec
ti

o
n

fr
o
m

p
re

ss
u
re

se
n
so

r

T
im

e
d
o
m

ai
n

am
p
li

tu
d
e

an
d

d
u
ra

ti
o
n

M
u
lt

ip
le

th
re

sh
o
ld

s
1
0
0
%

se
n
si

ti
v
it

y,
8
5
.9

%

se
le

ct
iv

it
y

3
3
µ

W
,

5
V

[2
4
]

E
E

G
se

iz
u
re

d
et

ec
ti

o
n

T
im

e
d
o
m

ai
n

si
g
n
al

m
ea

su
re

s
L

o
g
is

ti
c

re
g
re

ss
io

n
9
1
%

F
1

sc
o
re

3
7

n
W

,
1

V



0 20 40 60 80 100
0

20

40

60

80

100

Cost: Percentage of data transmitted / %

P
e

rf
o

rm
a

n
ce

: P
e

rc
e

n
ta

g
e

 o
f 

sp
ik

e
s 

co
rr

e
ct

ly
 d

e
te

ct
e

d
 /

 %

Fig. 4. Performance variances. Red: across inter- and intra-

subject records [30]; Blue: due to circuit non-idealarities.

results in different records (red lines) show the common pat-

tern of: many records have high performance and acceptably

low cost; some records have high performance, but too high

cost; and a few records have both performance and cost too

poor. Overlaid (blue lines) is the variance in the average per-

formance introduced due to the non-ideal CWT of Fig. 3 be-

ing used. The variance in performance between records is

much larger than the variance introduced due to the non-ideal,

and very low power, circuit implementation. As a result there

is potential for designing even lower power algorithms with

more variance, without substantially impacting the average

algorithm performance. However, just as early wearable al-

gorithms often did not report measures of both algorithm and

power performance [3], many current wearable algorithm ap-

proaches report only an average performance level. There is

no assessment of intra- and inter- person variability. This is

because there is a substantial challenge in devising new meth-

ods for accurately and compactly summarising and report-

ing algorithm variances which can be compared between ap-

proaches. This is essential for algorithms to be usable in clin-

ical grade healthcare applications (as opposed to consumer

grade applications) and to accelerate the creation of future

wearable algorithms. Unfortunately at present there are few

methodological tools avaiable, and little consensus for how to

best measure and quantify this variability.

Finally, Fig. 5 shows the average performance of the CWT

based algorithm from Fig. 4 as the amount of input noise

is increased. Traditional design approaches always endeav-

our to minimize the effective noise present in a system, of-

ten by trading-off with increased power consumption. How-

ever, noise-enhanced algorithms are a branch of signal pro-

cessing theory where algorithm performance is not only ro-

bust in the presence of noise, but up to a certain point it gets

better as more noise is introduced [31]. Noise-enhancement is

therefore of great interest for simultaneously reducing power

consumption and improving signal processing performance in

low power wearables. While compressive sensing is the best
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Fig. 5. CWT algorithm [30] gets better average performance

with small amounts of extra noise deliberately added in.

known recent development in signal processing theory appli-

cable to wearable algorithms, there are undoubtedly major op-

portunities for the greater use of noise-enhancement, and also

in using innovations from other branches of signal processing

theory which have not yet been identified.

4. CONCLUSIONS

Wearable algorithms are an emerging truly multi-disciplinary

problem where, to achieve better functionality at the low-

est levels of power consumption, innovations are required on

multiple levels: in the human-monitoring application design,

in the signal-processing design, in the performance-testing

design and in the circuit design. This presents a large, four-

dimensional, multi-disciplinary design space that has not yet

been fully explored by a long way. Many challenges and

opportunities are present, and while innovative design at all

of the four levels in isolation will be beneficial, for future

systems it is critical to exploit the multi-disciplinary factors

present and the interactions between the different levels.
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