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Abstract— This mini-symposium talk will overview the state-
of-the-art in wearable algorithms: the new signal processing
approaches that are emerging for wearable devices which
embed signal processing into the device hardware. They can be
used to increase functionality and enable closed-loop recording–
stimulation with minimal latency, amongst other benefits.

I. OVERVIEW

Wearable devices are starting to revolutionize healthcare

and mobile healthcare by allowing the easy, unobtrusive and

long term monitoring of a range of body parameters. Activity

trackers using accelerometers, such as the fitbit [1], have

been the most successful initial devices. There is now a major

opportunity to monitor more physiological parameters using

wearables. For example, new devices such as the Samsung

Simband [2] can monitor a range of parameters including

activity, arousals, and heart rate. Wearable algorithms are

the new signal processing approaches that are emerging for

wearables which embed signal processing into the device

hardware itself [3]. Illustrated in Fig. 1, historically the focus

of online signal processing in sensor nodes has been real-time

data reduction [4]. Today, there are many additional benefits

to be realized by the use of signal processing embedded in

the hardware [3]:

• Reduced system power consumption.

• Increased device functionality.

• Reliable, robust operation over unreliable wireless links.

• Minimized system latency.

• Reduction in the amount of data to be analysed offline.

• New closed-loop recording–stimulation devices.

• Better quality recordings (e.g. with artefact removal).

• Real-time data redaction for privacy.

Using a new review, summarized in Table I, and ex-

amples from a case study on wearable algorithms for

EEG, this mini-symposium talk will overview the 2015

state-of-the-art in wearable algorithms. It will highlight
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Fig. 1. Wearable algorithms can be used to enable a range of benefits to
wearable devices, if they operate with sufficiently low power consumption.
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TABLE I

2014 AND 2015 WEARABLE ALGORITHMS. SENSITIVITY (SEN),

SELECTIVTY (SEL), DATA COMPRESSION (C), PERFORMANCE (PERF.).

Ref. Aim Algorithm perf. Power
perf.

[5] ECG heart beat detection Sen: 97.8%,
Sel: 98.6%

220 nW

[6] ECG heart beat detection Sen: 99.3% 435 nW
[7] ECG compression C: x2.3 2.14 µW
[8] ECG artefact removal

and heart beat detection
Sel: 99.8% 43 µW

[9] ECG heart beat detection
and compression

Sen: 99.6%,
Sel: 99.8%, C: x2.3

490 nW

[10] ECG heart beat detection
and compression

Sen: 99.7%,
Sel: 99.5%, C: x13.7

33 µW

[11] Apnoea detection Sen: 100%,
Sel: 85.9%

33 µW

[12] EEG seizure detection F1 score: 91% 37 nW

the truly multi-disciplinary approaches required, spanning:

human-monitoring application design; signal-processing de-

sign; performance-testing design; and circuit design. It will

demonstrate how the interactions between these different

domains can be used to improve performance.
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