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Abstract 
 

On-line Identification of Power System Dynamic Signature Using PMU 
Measurements and Data Mining 

Miss Tingyan Guo, The University of Manchester, May 2015 

This thesis develops a robust methodology for on-line identification of power system 
dynamic signature based on incoming system responses from Phasor Measurement 
Units (PMUs) in Wide Area Measurement Systems (WAMS). Data mining 
techniques are used in the methodology to convert real-time monitoring data into 
transient stability information and the pattern of system dynamic behaviour in the 
event of instability. 

The future power system may operate closer to its stability limit in order to improve 
its efficiency and economic value. The changing types and patterns of load and 
generation are resulting in highly variable operating conditions. Corrective control 
and stabilisation is becoming a potentially viable option to enable safer system 
operation. In the meantime, the number of WAMS projects and PMUs is rising, 
which will significantly improve the system situational awareness. The combination 
of all these factors means that it is of vital importance to exploit a new and efficient 
Transient Stability Assessment (TSA) tool in order to use real-time PMU data to 
support decisions for corrective control actions. Data mining has been studied as the 
innovative solution and considered as promising. 

This work contributes to a number of areas of power systems stability research, 
specifically around the data driven approach for real-time emergency mode TSA. A 
review of past research on on-line TSA using PMU measurements and data mining is 
completed, from which the Decision Tree (DT) method is found to be the most 
suitable. This method is implemented on the test network. A DT model is trained and 
the sensitivity of its prediction accuracy is assessed according to a list of network 
uncertainties. Results showed that DT is a useful tool for on-line TSA for corrective 
control approach. Following the implementation, a generic probabilistic framework 
for the assessment of the prediction accuracy of data mining models is developed. 
This framework is independent of the data mining technique. It performs an 
exhaustive search of possible contingencies in the testing process and weighs the 
accuracies according to the realistic probability distribution of uncertain system 
factors, and provides the system operators with the confidence level of the decisions 
made under emergency conditions. After that, since the TSA for corrective control 
usually focuses on transient stability status without dealing with the generator 
grouping in the event of instability, a two-stage methodology is proposed to address 
this gap and to identify power system dynamic signature. In this methodology, 
traditional binary classification is used to identify transient stability in the first stage; 
Hierarchical Clustering is used to pre-define patterns of unstable dynamic behaviour; 
and different multiclass classification techniques are investigated to identify the 
patterns in the second stage. Finally, the effects of practical issues related to WAMS 
on the data mining methodologies are investigated. Five categories of issues are 
discussed, including measurement error, communication noise, wide area signal 
delays, missing measurements, and a limited number of PMUs.  



 

17 

Declaration 
 

No portion of the work referred to in this thesis has been submitted in support of an 

application for another degree or qualification of this or any other university or 

institute of learning. 

  



 

18 

Copyright Statement 
 

The author of this thesis (including any appendices and/or schedules to this thesis) 

owns certain copyright or related rights in it (the “Copyright”) and s/he has given The 

University of Manchester certain rights to use such Copyright, including for 

administrative purposes. 

Copies of this thesis, either in full or in extracts and whether in hard or electronic 

copy, may be made only in accordance with the Copyright, Designs and Patents Act 

1988 (as amended) and regulations issued under it or, where appropriate, in 

accordance with licensing agreements which the University has from time to time. 

This page must form part of any such copies made. 

The ownership of certain Copyright, patents, designs, trademarks and other 

intellectual property (the “Intellectual Property”) and any reproductions of copyright 

works in the thesis, for example graphs and tables (“Reproductions”), which may be 

described in this thesis, may not be owned by the author and may be owned by third 

parties. Such Intellectual Property and Reproductions cannot and must not be made 

available for use without the prior written permission of the owner(s) of the relevant 

Intellectual Property and/or Reproductions. 

Further information on the conditions under which disclosure, publication and 

commercialisation of this thesis, the Copyright and any Intellectual Property and/or 

Reproductions described in it may take place is available in the University IP Policy1, 

in any relevant Thesis restriction declarations deposited in the University Library, 

The University Library’s regulations2
 and in The University’s policy on presentation 

of Theses. 

  

                                                
1 See http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf 
2 See http://www.manchester.ac.uk/library/aboutus/regulations 



 

19 

Acknowledgements 
 

I would like to express my sincere gratitude to my supervisor Prof Jovica V. 

Milanović for his expert guidance and encouragement throughout this research. Prof 

Milanović has been a tremendous mentor and the best example for me. His 

commitment to excellence and his noble personal qualities have inspired me to 

become a better professional and a better human being. 

A special acknowledgement must go to the Engineering and Physical Sciences 

Research Council (EPSRC) and School of Electrical and Electronic Engineering at 

The University of Manchester who have jointly sponsored this project. I would 

particularly like to thank all the members in the Self* Network Operation and Control 

(SNOC) work stream in the Autonomic Power Systems (APS) project for their 

support.  

I am extremely appreciative of the excellent academic and social environment 

provided to me by the Power Quality and Power Systems Dynamics group at the 

University of Manchester, as well as the Electrical Energy and Power Systems 

department. The opportunities to develop ideas and to exchange knowledge have 

been invaluable. Special thanks go to Dr Robin Preece who has selflessly given up 

countless hours to discuss this research, and to Dr Jairo Quirós-Tortós who 

introduced me to the volunteer work in the IEEE Student Branch Power and Energy 

Society (PES) Chapter. 

I would also like to congratulate all my friends from North China Electric Power 

University for recently completing their PhDs in Manchester. Without their good 

companionship this period would have been far less enjoyable. 

Most importantly, I would like to extend my deepest appreciation to Xiaolong Hu, for 

his patience throughout this research – and particularly during the writing of this 

thesis. His unconditional love and unwavering belief in me have helped me to get 

through many difficult times. 



 

 



 

 

 

 

 

 

 

 

 

 

To my parents,  

for their unlimited love, support and encouragement  

during my long lasting education 

 

谨以此论文，献给我的父亲母亲 

感谢他们在我漫长的学生生涯中 

无止境的爱，支持和鼓励 

  



 

 



Chapter 1: Introduction 
 

23 

1 Introduction 

As it is widely stipulated, the power systems may become increasingly stressed in the 

future due to numerous reasons, including increasing load demand, the difficulty to 

install new transmission lines, changing generation and load types and patterns, and 

market requirements, etc. Under such conditions the occurrence of disturbances is 

more likely to push the systems over the stability limits. Therefore, system stability, 

which has always been one of the most important areas of study in electrical power 

system design and operation, is currently attracting even more attention than ever 

before. 

This chapter consists of three sections. The first presents a general introduction, the 

background, and the motivation of this research. The second reviews and summarises 

the past work in the area. The third section gives the aims and contributions of the 

research, and describes an overview of the thesis.  

1.1 General Introduction 

1.1.1 Power System Stability Terms, Definitions and Classification 

Stability is a condition of equilibrium between opposing forces. Power system 
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stability may be broadly defined as the ability of a power system to maintain a stable 

operation under normal conditions and to regain an acceptable stable operating point 

after being subjected to a disturbance [1]. The disturbance may be small or large. 

Small disturbances occur continually on the system because of small variations in 

loads and generations. The system must be able to adjust itself to operate 

satisfactorily under these conditions and successfully supply the maximum amount of 

load. Large disturbances, such as a short circuit on a transmission line, loss of a large 

generator or load, or loss of a tie between two subsystems, can and do occur in the 

power systems though less frequently than small disturbances. Under these 

circumstances, following the operation of protection equipment to remove the faulty 

component from the network, the remaining system must regain stable operation and 

restore the supply of power to the affected loads. 

The understanding of power system stability is greatly facilitated by the classification 

of it into various categories. 

Rotor Angle Stability indicates the ability of interconnected synchronous machines of 

the power system to remain in synchronism. In a stable system, the input mechanical 

torque and output electrical torque of each machine are in equilibrium so that all 

machines are operated at the same frequency. If the system is perturbed and 

unbalance between the torques is caused, the rotor of one or more machines would 

deviate from the synchronous speed. Instability that can result is either a steady 

increase in rotor angle due to lack of sufficient synchronising torque, or rotor 

oscillations of increasing amplitude due to a lack of sufficient damping control. The 

way in which rotor angle stability is maintained is a complex process, depending on 

both the inherent properties of the rotating machines themselves and the control used 
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for the regulation of their operation.  

According to the type of disturbances, rotor angle stability can be further divided into 

small-signal (or small-disturbance) stability and transient stability: 

 Small-signal stability is the ability of the power system to maintain 

synchronism under changes which are considered sufficiently small and so for 

the purposes of analysis the system equations can be linearized. Since changes 

such as day to day load fluctuations occur continuously, a practical power 

system would not be physically operable if it is not small-signal stable. In 

modern power systems, the main problems surrounding the small-signal 

stability is to ensure the electromechanical oscillations are well damped [1, 2].  

 Transient stability, on the other hand, is the ability of the power system to 

maintain synchronism when subjected to severe disturbances. System 

responses would involve significant changes in generator rotor angle, power 

flows, bus voltages and other system variables, which are influenced by the 

non-linear characteristics of the system. The post-disturbance operation state 

is usually different from the pre-disturbance operating state. 

Voltage Stability is the ability of a power system to maintain acceptable voltages at 

all buses. It deals only with the electrical components in the system and is much more 

localised than rotor angle stability. A system can be considered to be voltage unstable 

if an increase in reactive power injection at any system bus yields a drop in the 

voltage at the same bus. Voltages may collapse if a sequence of system events 

accompanies underlying unknown voltage instability, resulting in unacceptably low 

voltages for significant parts of the power system. According to the type of 

disturbances, it can be further divided into small-disturbance voltage stability and 
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large-disturbance voltage stability. 

Mid and Long-Term Stability are concerned with the slow system dynamic responses 

following severe system disturbances and significant frequency deviations. Study 

periods typically range from minutes to tens of minutes and incorporate the thermal 

properties of boilers and generating equipment in addition to electromechanical 

components.  

The classification of power system stability is summarised by Figure 1-1 [1]. As is 

highlighted in the figure, this research only focuses on transient stability. It is 

described in detail in the following section.  

 

Figure 1-1: Classification of power system stability. 

1.1.2 Transient Stability Description 

1.1.2.1 Basic Concept 

In order to demonstrate the basic concept of transient stability, a simple model 

consisting of a single generator connected to an infinite bus using a transformer and 

two parallel transmission lines is considered. Figure 1-2 shows the diagram of the 

system whilst Figure 1-3 is its reduced equivalent circuit. All resistances are 

neglected. 
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V

 

Figure 1-2: Diagram of a simple one machine infinite bus system. 

'E 

eqX

eP 0V 

 

Figure 1-3: Reduced equivalent circuit. 

Representing the generator with a voltage 'E  behind its transient reactance, and 

assuming the mechanical power mP  is a constant value, the output electrical power of 

the generator eP  is given by equation (1.1) [1, 3, 4],  

'

sine
eq

EVP
X

  (1.1) 

where δ is the generator rotor angle, V  is the voltage of infinite bus and eqX  refers 

to the equivalent network impedance. 

The pre-fault relationship between the electrical power and generator rotor angle can 

be displayed by the power-angle curve in Figure 1-4. The stable equilibrium point 

with the rotor angle value of 0  indicates the pre-fault steady state operating point A. 

Consider a three-phase fault at the bus between the transformer and the transmission 

lines. As a result of the fault, the terminal voltage of the generator drops to 0. There 

would be no electrical power produced and hence the power-angle curve becomes 0. 



Chapter 1: Introduction 
 

28 

Since there is a continuous input of mechanical power, the generator rotor angle 

would increase due to the lack of opposing torque resulting from electrical power 

production. The kinetic energy of the rotor therefore increases during the fault. 

After the fault is cleared at clear  without disconnecting any line, the post-fault power 

angle curve is the same as the pre-fault one since the system configuration and the 

value of eqX  has not changed. The rotor angle keeps increasing with a progressively 

declining rate because of the momentum gained during the fault, and reaches its 

critical value until all kinetic energy is dissipated. Compared to the angle value limit  

of the unstable equilibrium point B, if critical  is smaller, as in Figure 1-4 (a), the rotor 

angle begins to decrease and would oscillate around the original operating point A 

until damping makes it settle. Otherwise the system would lose transient stability with 

infinitely increasing rotor angle, as in Figure 1-4 (b). 

mP

0 clear critical limit 

P

mP

0 clear limit 

P

 

t t
 

Figure 1-4: Power-angle curve for one machine infinite bus system: (a) short clearing time; (b) long 
clearing time. 

Although the example above is simple, it clearly describes the basic concept of 

transient stability. The underlying principle is the ability of the power system to 
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return to the original equilibrium point after large disturbances, or to move from one 

steady state to another. The swing curve of the generator rotor angle (i.e., evolution 

according to time) describes the generator’s dynamic behaviour. 

1) Equal Area Criterion 

To determine the transient stability of the system, the simplest method is to utilise the 

Equal Area Criterion (EAC) [1, 4]. Referring again to Figure 1-4, area (1) represents 

the amount of kinetic energy the system accrued during the fault whilst area (2) refers 

to the amount of energy that the system absorbs after the fault. In order for the system 

to reach the stable equilibrium and maintain synchronism, all the kinetic energy must 

be absorbed and this can be represented by equating the areas (1) and (2).  

2) Influences on Transient Stability 

There are many factors that may influence the transient stability of a power system, 

including [1]: 

 Generator(s) loading 

 Generator(s) excitation  

 Generator(s) parameters 

 Fault location 

 Type of fault  

 Fault clearing time 

 Post-fault transmission system impedance 

Some of these above factors are related to the disturbance itself whilst the others are 

related to the operating condition of the system at the time when the disturbance 

occurs. 

1.1.2.2 Types of Instability 
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In small systems which can be simplified into a single generator infinite bus model as 

in Section 1.1.2.1, there are two types of unstable cases for the rotor angle response 

after a larger disturbance. In the first type, the rotor angle continues to grow steadily 

until synchronism is lost (within 1 to 2 seconds). The transient instability of this type 

is referred to as first-swing instability. In contrast, the system could be first swing 

stable but then becomes unstable after several seconds as the result of growing 

oscillations.  

In large interconnected power systems, the transient stability problems can be roughly 

divided into the following situations [4]: 

 The generator (or generators) nearest to the disturbance may lose synchronism 

within the first swing, whilst other generators in the system experience a 

period of synchronous oscillations until returning to synchronous operation. 

 The generator (or generators) nearest to the disturbance loses synchronism at 

the first place and other generators in the system then follow. 

 The generator (or generators) nearest to the disturbance loses synchronism 

after exhibiting synchronous swings. 

 The generator (or generators) nearest to the disturbance exhibits synchronous 

swings without losing synchronism, but one or more other generators away 

from the fault lose synchronism with the system. 

In transient stability studies, the period of interest is usually 3 to 5 seconds following 

the disturbance, and can be extended to about 10 seconds due to the configuration of 

very large systems [1]. 

1.1.3 Transient Stability Assessment for Different Purposes 

Transient Stability Assessment (TSA), as the name suggests, involves the evaluation 
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of the ability of a power system to maintain synchronism under abnormal conditions. 

Due to the diversity in power system topology and operation strategies, TSA is 

carried out for different purposes. 

1.1.3.1 Off-line Transient Stability Assessment 

Historically, TSA is performed off-line for the purpose of power system planning, 

months to years before the planned system is finally designed, and operation planning 

where the time horizon is days or hours. The primary concern is whether a system in 

its normal state is able to withstand every possible contingency for a known operating 

point. A large number of disturbance scenarios must be screened to identify the 

situations on which the planner should concentrate. Since the time allotted to the 

process of screening is relatively long, the speed of assessment is not a critical factor. 

1.1.3.2 On-line Transient Stability Assessment 

As modern power systems are increasingly being operated closer to the boundaries of 

stability in order to increase the efficiency and economics of their use, TSA needs to 

be conducted in real-time to provide early warnings and help determine control 

actions.  

1) Preventive Mode 

The only on-line TSA scheme used in industry at present time is in preventive mode. 

Preventive TSA is concerned with forecasting the projected situation [5]. Similar to 

off-line analysis, a large number of contingencies are screened following each 

generator re-scheduling in order to identify the potentially harmful ones when the 

power system is operated in a steady state. If any contingency with high probability 

of occurrence leads the system to exceed its stability limit, appropriate preventive 

control action can be deployed. However, in practice only some (tens of) minutes are 
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left for the process of assessing stability of different contingencies in real-time, so 

that the speed of assessment becomes more crucial.  

2) Emergency Mode 

Since predicting future disturbances is difficult, preventive TSA essentially aims at 

balancing the reduction of the probability of losing stability with the economic cost of 

operation [5]. Because of the combinational nature of the events which might occur, it 

is very unlikely that control actions can be optimized in the preventive mode even in 

the context of real-time operation. Ideally, the control decision should be taken for the 

actual system state, after a large disturbance has actually occurred. This type of 

emergency (or corrective) control is near optimum since it addresses the real problem. 

For the need of corrective control, emergency TSA aims at assessing whether the 

system is in the process of losing stability following an actual disturbance inception. 

An extremely short time (fractions of second) is left to make decisions and take 

actions and therefore the assessment speed is critical. 

 

Figure 1-5: Different purposes of TSA. 

Different purposes of TSA are illustrated in Figure 1-5. As highlighted, this research 

only looks into fast on-line TSA in emergency mode, since corrective control and 

stabilisation is becoming a potentially viable option and needs to be explored in detail 

to enable safer system operation. 
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1.1.4 PMUs and Wide Area Measurement Systems 

In recent years, Wide Area Measurement Systems (WAMS) have been developed to 

collect data from various points within large interconnected networks. These 

measurement systems use Phasor Measurement Units (PMUs) to sample time-

stamped phasors which can be used to significantly improve the situational awareness 

for operational decision making. This opens up the possibilities to predict the system 

dynamic behaviour after disturbances are cleared in real-time, to help trigger the 

corrective control schemes. 

1.1.4.1 Phasor Measurement Units 

 

Figure 1-6: Block diagram of PMU. 

PMUs were firstly developed at Virginia Polytechnic Institute and State University 

(Virginia Tech) in 1988 [6, 7]. They are devices which sample voltages and currents 

waveforms and use signals from the Global Positioning System (GPS) in order to 

achieve a synchronisation accuracy of 1 μs [7]. Figure 1-6 shows the hardware block 

diagram of a PMU [8, 9]. The inputs are analogue signals of three-phase voltages and 

currents measured respectively by potential transformers and current transformers 

installed in substations. They are sent into an anti-aliasing filter to filter out 

frequencies above the Nyquist rate, and are converted into digital signals via a 16 bit 

A/D converter. The phase locked oscillator converts the GPS’s one pulse per second 
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into a sequence of high-speed timing pulses used in the waveform sampling. The 

phasor microprocessor executes phasor calculations and phasors are finally time 

stamped and transmitted by means of a modem. 

The format of the data files created and transmitted by commercially available PMUs 

is presently governed by an Institute of Electrical and Electronic Engineers (IEEE) 

standard (i.e., IEEE Std C37.118.1 - 2011) [10]. PMUs must sample voltage and 

current measurements with sufficient incidence to ensure the accurate calculation of 

phasor quantities and are required to report measurements at the system frequency 

(typically 50 Hz or 60 Hz), though faster reporting rates are encouraged. 

The difference between the information from a PMU that describes a phasor and the 

true phasor itself is measured by the Total Vector Error (TVE), which combines the 

magnitude and angle error bands into a single error quantity [10]. The IEEE 

C37.118.1 - 2011 standard establishes a criterion for the TVE to be less than 1%. 

1.1.4.2 Generator Rotor Angle Measurement 

Although synchronised measurements of voltage and current phasors are a set of 

signals required to track the dynamic performance of power systems, there is another 

important signal, i.e., the rotor angle of the synchronous generator. This parameter is 

mechanical which cannot be directly measured through PMUs. However, it can be 

developed using electrical phasor measurements together with other measurement 

techniques.  

As indicated in Annex F of [10], the techniques can be categorised into two types. 

The first one, Electrical Calculation Method, derives generator rotor angles from the 

knowledge of the direct-axis reactance Xd, the quadrature-axis reactance Xq and PMU 

measurements representing the terminal voltage and current. This method may lead to 
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errors because the values of Xd  and Xq  might vary with the generator operating 

conditions [4]. It is, therefore, usually not adopted in the industry application. The 

other one, Rotor Position Measurement Method, calibrates generator rotor angles 

against the rotor position (monitored by optical or magnetic means) and terminal 

voltage. This method is generally accurate and is suitable for real time rotor angle 

measurement when the power system is subject to a disturbance. The measurement 

error of the generator rotor angle in this case comes from the Total Vector Error 

(TVE) of the voltage phasor, and the error introduced in the process of developing the 

electrical phasor measurements into the mechanical one. 

1.1.4.3 Wide Area Measurement Systems 

The synchronised signals produced by the PMUs are collected at Phasor Data 

Concentrators (PDCs), and then transformed into Monitoring and Control Centre 

(MCC), both using high speed data communication networks. Different system 

parameters such as active and reactive power and generator rotor speed can then be 

computed, providing crucial information to monitoring and control applications. 

Since the devices are geographically widespread, the WAMS usually have a 

hierarchical structure as shown in Figure 1-7. 

Transmitting signals from the remote locations to MCC incurs some time delays. 

These depend on the physical distances involved as well as the communication media, 

and have been reported as ranging from 7 – 185 ms for fibre optic cables [11-13] and 

between 100 – 500 ms for satellite communications [12, 14]. When the satellite links 

are used, the delays can be randomly increased and the signals can even be 

completely lost. Furthermore, communication noises in the signals are unavoidable 

during the data transfer process. 
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Figure 1-7: General WAMS structure. 

1.1.4.4 Recent Implementations 

A large number of WAMS projects are being or have been implemented all over the 

world, with an increasing number of PMUs installed. In China, by the end of 2006, 

ten WAMS projects were completed or partly completed, i.e., 70 PMUs were put into 

service, and another 35 PMUs were under construction. They were deployed in five 

regional systems (including Northern, North-eastern, Central, Southern, and Eastern 

China power grids) and five provincial systems (including Jiangsu, Henan, 

Guangdong, Yunnan, and Guizhou provincial power grid). By the end of 2005, the 

Western Electricity Coordinating Council (WECC) system in North America had 

reached the size of 11 PDCs (operated by 9 data owners), 53 integrated PMUs and 7 

stand-alone PMUs. Hydro-Québec had 8 PMUs installed in 2004 [15]. In 2011 the 

Finnish WAMS consisted of 12 PMUs and one PDC [16]. More examples and reports 

can be found for Brazil [17], Mexico [18], Great Britain [19], Denmark [20], Norway 

[21], Switzerland [22], Japan [23], etc.   

With all of these projects, variations in voltage, current, power flows and generator 

rotor angle and their changing rates at various points within the networks can be 

monitored. A wide range of novel applications have been made with the incoming 

measurements, among which a very important stream is to assist the assessment of 
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different types of system stability and suggestion of control.  

1.1.5 Scope of the Thesis 

Under this context, this thesis aims to look at the methodologies which can assess 

power system transient stability in real-time after a disturbance has been cleared, 

using the incoming monitoring data measured by WAMS and PMUs. The decision 

making process aims to be as fast as possible, so that time can be saved for deploying 

corrective control. 

1.2 Review of the Past Work 

1.2.1 State-of-the-Art of Methodologies for Transient Stability 

Assessment  

In power system engineering, TSA has always been one of the most important and 

most active theoretical research areas. Many practical implementations of TSA 

algorithms have also been recently developed or are currently under development. 

The literature on this topic is extremely extensive. In this section, an overview of the 

state-of-the-art of TSA methodologies is presented. This overview does not attempt to 

make a critical survey nor an exhaustive description of all existing approaches. Rather, 

it attempts to briefly introduce the main streams of methodologies with the purpose 

for which they are usually applied (i.e., off-line, on-line preventive and on-line 

corrective). Apart from several fundamental books and papers, the majority of the 

references have been published within the last 20 years. 

1.2.1.1 Time Domain Method 

The most straightforward and conventional approach to determine the transient 

stability of a power system is the time domain simulation [1, 4, 5]. As shown in 

Figure 1-8, the synchronous generators, including their controls (Power System 
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Stabiliser, Automatic Voltage Regulator, excitation, turbine and governor), induction 

motors and other dynamic devices are modelled with differential equations as (1.2) 

whilst the transmission network and static load are modelled with algebraic equations 

as (1.3), 

x 


f (x, y, p) (1.2) 

0 ( , , )g x y p  (1.3) 

where x represents the vector of states of all dynamic devices, y is the vector of non-

integrable inputs and p represents the vector of other parameters that influence the 

system dynamic.  

 

Figure 1-8: Power system model for TSA. 

For a given disturbance, the set of non-linear equations are solved using numerical 

integration methods to compute the generator swing curves (i.e., rotor angle evolution 

with time) as well as other important system parameters in both during-fault and post-

fault configurations. 

This approach is very common in practice and yields very accurate and reliable 

results provided that the modelling of a power system is appropriate and system 



Chapter 1: Introduction 
 

39 

parameters accurately known. However, the approach involves extremely intensive 

computation and it is very time consuming, and therefore it is traditionally used in 

off-line studies. In the 1990s, much effort was put into the increase of computational 

speed through methods like parallel processing [24-29]. With the increased Central 

Processing Unit (CPU) speeds of high performance workstations in recent years, the 

time required for a single simulation with high order models of a power system has 

also dramatically shrunk from half an hour to a few seconds [5], and time domain 

simulations become even “faster than real-time” in many contemporary applications. 

Furthermore, time domain simulations are essential for the design of many other 

modern TSA methods which will be presented later in this section.  

1.2.1.2 Direct Method 

Another famous method for TSA is the direct method (or generally referred to as 

energy function method) based on Lyapunov’s stability theory and the energy-type 

function. Proposed in the late 1940’s to 1960’s [30-32], this method has always been 

one of the most academically appealing topics in power system research. An 

impressive number of contributions have been made to the field, which is still being 

fed by new publications. 

Physically, using this approach, the assessment of system stability is done by 

comparing the kinetic energy gained during disturbances and potential energy 

dissipated in the post-fault duration, instead of solving any differential-algebraic 

equations. From a mathematical point of view, it consists of the construction of an 

energy-type Lyapunov’s function ( )V x to describe the transient energy in the 

dynamic system. The stability of the system is based on computing 

clear criticalV V V    in which criticalV  is the value of ( )V x  on the boundary of stability 
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(i.e., the critical energy required for the system to lose synchronism), and clearV  is the 

system energy at the instant of fault clearing. The system will be considered as 

unstable if V  is bigger than zero. For a simple two-machine system, the direct 

method is equivalent to the EAC as described in Section 1.1.2.1. 

The main advantages that this method can provide, compared to the time domain 

method, are: i) it is much faster than full scale simulations and thus more suitable for 

on-line (preventive) applications; ii) it allows the computation of a stability margin 

which shows how far away the state of the system is at the instant of fault clearing 

from the stability boundary and facilitates quantitative as well as qualitative 

assessment of stability. It is extremely difficult, however, to construct a good energy-

type function for a multi-machine power system unless over-simplified (actually 

unacceptably simplified) modelling is used. Different types of Lyapunov’s functions 

have been investigated [33-35]. The analysis has been mostly limited to power system 

modelling with synchronous generators represented by classical model and loads 

represented as constant impedance, although efforts have been put into the 

incorporation of more detailed models [36-39]. Furthermore, it is also difficult to 

determine a good value of criticalV , i.e., the critical energy on the stability boundary. 

Different methods are used such as the closest Unstable Equilibrium Point (UEP) 

approach, the controlling UEP approach, the Boundary of stability-region-based 

Controlling UEP (BCU) approach and sustained-fault approach. Extensive references 

related to these methods can be found in [1, 40]. As a result of these difficulties, the 

direct method is usually considered to be too mathematically complicated and less 

accurate than time domain simulation. 

1) Extended Equal Area Criterion 
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The Extended Equal Area Criterion (EEAC) is related to the direct method, and offers 

the same advantages and disadvantages as previously described. It can be considered 

as the EAC designed for the multi-machine power system. The essence of this 

approach is to decompose the system generators into two groups, based on the 

approximations about the machine coherency and their (over)simplified models at the 

instance of disturbance inception, transfer them into two equivalent machines and 

further into a One Machine Infinite Bus (OMIB) system, so that the EAC can be 

applied. The method has also been extensively investigated in the literature [5, 40-43]. 

1.2.1.3 Hybrid Method 

To combine the advantages of time domain simulation (like accuracy and reliability) 

with the benefits that can be obtained from the direct method (such as the 

computation of stability margins and other stability indices), hybrid methods have 

been developed. A large number of publications have been devoted to the hybrid 

methods, and they generally can be grouped into two families.  

The first family is of the multi-machine type. The idea is to construct a Lyapunov’s 

function for a multi-machine system from the post-fault trajectories of related system 

parameters gained through the step by step computation of a time domain programme 

with the desired detailed network model [44, 45]. The resulting energy function 

actually becomes path-depending and is not a true Lyapunov’s function, and is 

usually used as an early stopping criterion for the time domain simulation. 

The second family of hybrid method is of the single-machine equivalent type [5, 46]. 

For a given disturbance, based on the post-fault trajectories of system parameters 

resulting from the time domain simulation, the generators in a multi-machine system 

are divided into a group of “critical machine” and another group of the remaining 
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generators. A one-machine equivalent system is then constructed from these two 

groups and the study of its stability is based on the EAC. The most typical example of 

this family of hybrid method is the Preventive SIME (for SIngle Machine Equivalent) 

[5, 47-50]. 

All the methodologies that have been reviewed so far can only be used in preventive 

mode. Most of the currently existing commercial programmes for on-line TSA use 

one of the above mentioned methods or combinations of them [40].  

1.2.1.4 Emergency SIME 

As previously mentioned, with an increasing level of situational awareness provided 

by WAMS and PMU based measurements, the emergency TSA that is able to quickly 

recognise the potentially dangerous condition of a post-fault power system and allow 

sufficient time to take corrective control actions is crucial to be developed, and is the 

focus of this research.  

One of the most studied methods is the Emergency SIME [5, 51]. When a large 

disturbance actually occurs in a power system, instead of time domain simulation 

results, the post-fault swing curves coming from the network are sent as input to the 

SIME assessment procedure. At each sample time, all generators are sorted in 

decreasing order based on the measured rotor angle values and the group of critical 

machines, which are above the largest angular distance between two successive 

machines, are identified. The One Machine Infinite Bus (OMIB) analysis is then 

performed to decide whether the system remains stable and the corresponding 

stability margin is calculated. 

It has been stated that the Emergency SIME method can identify the impending 

instability of the system within a very short time (less than 0.5 s) after the clearance 
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of a large disturbance [5] so that the corrective control actions can be taken early 

enough. Furthermore, the stability margin can also be provided as the benefit of using 

the energy related method. However, as with all methods that utilise the OMIB 

approach, the massive simplification made in the process of transforming a multi-

machine system into its equivalent make this method much less reliable. More 

importantly, only the transient stability status of the system as a whole can be 

predicted without any information of the dynamic behaviour of individual generators.   

1.2.1.5 Data Mining Method 

Another category of innovative methods that has also been extensively studied and 

considered promising as the solution to on-line TSA using PMU measurements is 

data mining [52-81].  

Generally, data mining is an analytic process designed to automatically explore large 

amounts of data to extract previously unknown interesting patterns or systematic 

relationships between variables. These patterns or relationships may then be used for 

future prediction. The process of data mining usually consists of the initial 

preparation of a database, model building or pattern identification with validation, 

and maybe the application of the model to new data in order to make predictions. In 

recent years, it has been used widely in the area of business, science and engineering, 

etc. 

In the particular context of power system on-line TSA, an overall description of the 

data mining approach can be illustrated by Figure 1-9. A database of contingencies 

needs to be generated in the off-line stage using time domain simulation, which 

covers a wide range of prospective operating conditions and disturbances. These 

contingencies are recorded as a series of parameters (i.e., predictors) with classes of 
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the transient stability status of their resulting system (i.e., targets). A classification 

algorithm is then applied to train a classifier that learns the underlying relationships 

between the predictors and targets. In the on-line stage, the monitoring data coming 

from the PMUs in the network will be used as input to the classifier. Intelligent 

decisions regarding the stability of the system are expected to be made with a high 

level of speed and accuracy. 

 

Figure 1-9: Overall description of data mining approach for on-line TSA. 

In the literature, the data mining approach has been applied in both preventive and 

corrective modes. The main difference for building the model in the off-line stage is 

the selection of parameters to describe the contingencies. For preventive control [52, 

53, 56, 57, 61, 63, 64, 67, 70-72, 75, 76, 81], the parameters include fault dependent 

variables such as contingency ID and the fault type and location, and fault 

independent variables taken from the pre-fault system such as bus voltage angles, bus 

voltage angle differences, active power flow, reactive power flow or current flow on 

transmission lines, and output of generators. In real-time, the fault independent 

variables are obtained from PMU measurements and sent into the data mining model 

to screen a pre-selected list of contingencies every 10 to 20 minutes. If the output of 

the model is predicted to be unstable and the associated contingency has a high 

probability of occurrence, an appropriate preventive control will be designed and 

armed. For corrective control [54, 55, 58-60, 62, 64-66, 69, 77], in contrast, the 
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parameters that describe the contingencies in the off-line database are taken from the 

post-fault system, including generator rotor angles, speeds, and accelerations, voltage 

magnitudes and angles, and apparent resistance along with its changing rate measured 

near the electrical centre of the intertie of a system (which will change during loss of 

synchronism). For on-line application, corrective control will be taken when the 

system is predicted to be unstable after a fault has actually occurred.  

A lot of advantages make the data mining approach the most active direction of 

research for on-line TSA based on PMU measurements. Although a large number of 

time domain simulations needs to be done off-line, in real-time application, the 

monitoring data will be the only input in the Monitoring and Control Centre for the 

model to make decisions. Furthermore, the decision making process is extremely fast 

with a high level of confidence and so control actions, if necessary, can be taken early 

enough.  

1.2.1.6 Other Methods 

Finally, some completely different approaches for power system TSA have been tried 

and used.  

The analytical tool named trajectory sensitivity was applied in the late 1990’s [82-87]. 

The root theory, which indicates that the sensitivity of a system can be described 

using ordinary differential equations or differential-algebraic equations, comes from 

control engineering, and has usually been used for parameter identification in 

adaptive control systems. In this approach, the sensitivities of variations in the state 

trajectories (such as rotor angle swing curve) in the post-fault power system are 

computed according to changing system parameters (such as generator output). It has 

been discovered that when the system is more stressed, the state trajectories become 
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more sensitive to parameter variations. Thus these trajectory sensitivities can be used 

as a measure of system stability. However, this method has only been discussed for 

off-line system analysis or preventive control. 

The curve fitting based trajectory extrapolation method is also used to predict the first 

swing instability [88-94]. In real time operation, the monitoring data of system 

parameters, usually three or four data points of generator rotor angles and speeds 

equally sampled after the clearance of disturbance, are used as input to curve fitting 

algorithms. The small chunk of resulting trajectory right after the input data points is 

considered as the prediction of the swing curve. However, the trajectory generated 

from the curve fitting can, more or less accurately, predict the rotor angle or speed of 

the generator only within the range from 0.2 s up to 0.5 s, which is both unreliable 

and insufficient for on-line corrective control application. Further work on this 

method has not been reported. 

Furthermore, reference [95] uses maximal Lyapunov exponent computed from PMU 

measurements in real time to determine if a post-fault power swing will lead to 

system instability.  

1.2.1.7 Summary  

The methodologies that have mostly been studied for power system TSA are 

summarised in Table 1-1. The purposes for which they can usually be applied and 

whether on-line PMU measurements are needed as input are outlined in the table. 

As previously stated, the task of this research is to predict the system dynamic 

behaviour in terms of transient stability after the fault clearance in real-time system 

using on-line monitoring data. It can be seen from the table that the main methods 

proposed in the literature that match the requirements are Emergency SIME and Data 
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Mining. Although the Emergency SIME does not involve a large number of off-line 

simulations, the process that reduces a multi-machine power system into OMIB will 

only be able to give the impending transient stability status of the post-fault system. 

Data mining, however, as the advanced technique to extracting valuable information 

from big data, provides the possibility to extend the object of prediction from 

transient stability to more detailed information about dynamic behaviour of individual 

generator or groups of generators.  

Therefore, the data mining method is of particular interest in this thesis, as indicated 

in Table 1-1. The past research on on-line TSA with PMU measurements for 

corrective control using data mining approach will be reviewed in detail in the next 

section.  

Table 1-1: Summary of the state-of-the-art of methodologies for power system TSA. 

Method Off-line On-line 
Preventive Mode 

On-line 
Emergency Mode Use PMU Data 

Time Domain 
Simulation √ √   

Direct √ √   

Hybrid √ √   

Emergency 
SIME   √ √ 

Data Mining  √ √ √ 

 

1.2.2 Past Research on On-line Transient Stability Assessment 

Using PMU Measurements and Data Mining 

1.2.2.1 A Typical Structure of Past Publication 

The need for predictive tools to convert real time PMU data into transient stability 

status and support decisions under emergency conditions has led to widespread 
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research into the field of data mining. Almost all the past work firstly proposed a data 

mining technique, developed a framework as in Figure 1-9 in Section 1.2.1.5, and 

then implemented it on a test network to demonstrate its effectiveness. A typical 

publication in this area of research usually follows a structure that consists of the 

following points:  

 The technical background of the proposed data mining technique 

 The test network 

 The offline simulations 

 The training of model 

 Performance evaluation 

Although this thesis only looks into TSA in emergency mode, some references that 

aim for different studies (such as preventive TSA, small-signal stability assessment 

and voltage stability assessment) are also used for the discussion. The purposes of 

these applications are different. However, the overall framework for using data 

mining to help operational decision making is the same. 

1) Data Mining Technique 

Over the past 20 years, many different techniques have been proposed for this 

application. The mostly explored one is Decision Tree (DT). Pioneered by [52, 53] in 

the late 1980’s, DT was firstly proposed to assess power system transient stability 

using real time PMU measurements for preventive control. Since the 1990’s, it has 

been extensively researched for TSA in both preventive [56, 61, 63, 64, 67, 68, 70, 71, 

75] and emergency [54, 55, 58-60, 62, 64-66, 69] mode, and also applied for on-line 

small-signal stability [96, 97] and voltage stability [96, 98, 99] assessment. The most 

commonly used tree building algorithm is the Classification And Regression Tree 
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(CART), as in [55, 58, 59, 61, 63, 66, 69, 71]. The CHi-square Automatic Interaction 

Detector (CHAID) algorithm is investigated in [60]. Some ensemble DT methods, 

such as Random Forest (RF) in [71], boosting in [68], and random subspace with 

boosting in [81] have also been applied to increase the accuracy and robustness of 

prediction.  

Support Vector Machine (SVM) has been proposed in recent years and shown to be 

promising technique to use for on-line TSA for both preventive [72]  and corrective 

[73, 74] control. 

Artificial Neural Network (ANN) has also been frequently investigated. Different 

types of algorithms have been explored, such as fuzzy neural network in [77], 

Probabilistic Neural Network (PNN) in [78], adaptive ANN in [80] and recurrent 

ANN in [79]. 

Furthermore, some other data mining techniques have been developed for on-line 

TSA using PMU measurements. In [100], a hybrid intelligent system is proposed 

which is composed of a pre-processor, an array of neural networks and an interpreter. 

A new intelligent system that consists of a series of extreme learning machines has 

been developed in [76]. 

2) Test Network 

Standard IEEE test systems have often been selected in the past research, including 

the 3-machine 9-bus system [79, 80], the 10-machine 39-bus New England system 

[54, 55, 68, 72, 73, 77, 81, 100], and the 50-machine 145-bus system [76]. A number 

of realistic large systems with a high level of complexity and interconnectivity have 

also been used to demonstrate the effectiveness and robustness of the methodology, 

such as different sizes of the WECC system in the western United States [60, 63, 66, 
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68, 69, 96], the Entergy power system which is a part of the Eastern Interconnection 

in North America [61, 64], the Hydro-Québec grid [65], the Brazilian system [72], the 

western Danish power system [70, 71, 75], the Brittany region of the French system 

[99], a dynamic equivalent of the power grid of China [76] and the system for 

Peninsular Malaysia [78, 80]. 

3) Off-line Simulations 

Generation of Contingencies 

To implement the data mining approach on the test network, the first step is to 

generate a database of contingencies by time domain simulations for the purpose of 

training. Key to the success of on-line TSA in emergency mode is to cover a wide 

range of system dynamic signatures (i.e., post-fault responses of the synchronous 

generators in the system characterized by their rotor angle behaviours) for the 

database to have enough useful information. In theory, training is the most reliable 

when this database includes system post-fault behaviour similar to that encountered in 

real-time. However, as power networks are rapidly evolving into systems with a high 

level of uncertainty due to a different temporal and spatial mix of distributed 

generation technologies, increased reliance on renewable energy resources, different 

operating conditions and topologies of the network and different types and 

composition of load, it is extremely difficult to capture the full range of variation of 

system dynamic behaviour using a limited number of simulations. Ideally, a well-

trained data mining model should be able to assess transient stability of the system 

with a required confidence level, without complete information about the system 

composition and operating state. 

In past publications, a contingency in the test system is usually determined by the 
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system operating condition (characterised by system load level and topology) and the 

transient disturbance itself (characterised by fault type, location and duration). For 

standard test systems, to ensure the comprehensiveness of the database, the uncertain 

factors of the operating conditions are usually sampled randomly or uniformly within 

a certain range, with the disturbances assumed to be widely distributed in the system. 

In [74], for instance, disturbances simulated for the New England system are three-

phase faults on each bus, and three locations on each transmission line. The fault 

duration is assumed to be five cycles. The system loading levels are selected to be 

base level plus 5%, 7% and 10%. For realistic systems, operating conditions and 

disturbances are selected according to historical record, experiences, or forecasted 24-

hour data. For example, for the Salt River Project model which is a part of the WECC 

system in [63], a series of loading levels that can accurately represent different system 

snapshots during a representative day, July 21, 2008, is selected. A list of critical N-1 

and N-2 disturbances, provided by the system operators, is created. Moreover, in [101] 

which develops a pattern recognition algorithm to determine the post-contingency 

dynamic vulnerability regions of power systems in real time, a Monte Carlo approach 

is used to generate the contingency database for training. 

Efficient sampling has been researched for the generation of a training database to 

maximise information content whilst minimizing computing requirements. A two- 

stage strategy is developed in [99]. It firstly finds the high information content region 

in the multidimensional operating parameter state space using a linear sensitivity 

based method, and then biases the sampling process towards that region using 

importance sampling. The purpose of training in this work though was to predict 

voltage stability. Similarly, in [71, 75] (which aim to predict both transient and 

voltage stability for preventive control) a bisection method is used to approximately 
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identify a region that contains the security boundary. The boundary is created by 

polynomial curve fitting of points located between a stable and unstable case. 

Importance sampling is then applied to select the contingencies that can provide more 

useful information.  

Predictors and Target 

Within the database, all the contingencies are recorded using a series of parameters, 

i.e., predictors, and the class to which they belong, i.e., target, so that they can be 

constructed into the input matrix for training. As introduced in Section 1.2.1.5, for the 

purpose of TSA in emergency mode, the predictors are taken from the post-fault 

system. A variety of parameters, including generator rotor angles, speeds, and 

accelerations [54, 55, 60, 74, 77], voltage magnitudes and angles [66, 73, 74], and 

apparent resistance along with its changing rate measured near the electrical centre of 

the intertie of a system (which will change during loss of synchronism) [58, 59, 69], 

have been used and proved to be effective for different data mining techniques. 

When the power system grows in size, the number of predictors increases and so the 

dimension of the data mining problem becomes extremely high. As some of the 

originally selected predictors may be redundant and do not contribute to the 

classification, feature selection has been investigated to reduce and optimise the input 

parameters to the training algorithm. Within all the publications that utilised DT [52-

71, 75, 81, 96-99, 102], one of the most important advantages it offers is that no 

feature selection technique is needed. The tree building algorithm itself automatically 

selects the best predictor to test at each node and so the training data set can be best 

classified. An extensively grown tree is pruned to avoid over-fitting so that the test of 

predictors, which do not contribute significantly to the accuracy of the tree, is 
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removed. As a result, only the features helpful for the classification are selected in the 

resulting tree whilst the others do not get used. With SVM, [72] uses two feature 

selection techniques, sequential search and genetic algorithms, to reduce the 

dimensionality of the training space from 224 to 150, 100, and 50, respectively. In 

[78], both the Correlation Analysis Technique and the Principle Component Analysis 

are used for feature selection and extraction before the training of PNN. The training 

time has been extremely reduced. A distance-based algorithm called RELIEF is used 

in [76] to remove noisy and irrelevant features for the extreme learning machine it 

uses. 

In the extensive past research that focus on the on-line prediction of transient stability 

for corrective control, the target of prediction is typically whether the system remains 

stable or goes unstable after the clearance of transient disturbance. During the off-line 

training process, the post-fault behaviour of a power system is classified only into 

two classes, stable or unstable. 

Construction of Training Database  

Using the post-fault system parameters as the predictors for corrective control, two 

approaches have been utilised to construct the training database. The first one, as in 

[58-60, 66], treats a single data point as an individual object in the training set. For 

one contingency which is simulated for n cycles, n pairs of predictors-target are 

created, the targets of which are all assigned as the stability status of this contingency. 

Therefore a training database constructed from m contingencies includes m n  

objects. Using this approach, the decisions in real-time can be made based on a single 

point of PMU measurements. If, for example, the decision needs to be made 0.5 s 

after a fault is cleared from the system, the single data point of predictors sampled at 
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0.5 s are used as input to the model trained using this method. The other one, as in [55, 

73, 74, 77], treats one contingency as one object and uses cumulative data points after 

fault clearance as predictors. A training database constructed from m contingencies 

includes m objects, with a larger number of predictors to describe each of them. In 

real-time application the decisions are made based on a window of PMU 

measurements. The classifiers are trained with various window lengths to investigate 

the minimum length of measurements that would give satisfactory prediction results 

[73, 74]. With a model trained using cumulative data points, the predictors within the 

window between 0 and 0.5 s are all used as input for the decision to be made 0.5 s 

after fault clearance.  

4) Building the Model 

With the training databases constructed from off-line simulations, data mining models 

are usually built using the proposed technique.  

A scheme is proposed in [61, 63, 67, 98] to build the model in two steps before the 

on-line application. A DT is firstly trained 24-hour ahead using a series of operating 

conditions representing the projected variation in daily load together with the unit 

commitment based generation pattern, short term network topology, and the probable 

disturbances. When it is close-to-real-time, the 24-hour time horizon is divided into 

periods of equal length (several minutes to tens of minutes). During each period, 

prospective operating conditions and disturbances for the next period will be used to 

generate new contingencies to test the existing DT. If its performance is not 

satisfactory the new contingencies together with the old ones will be used to build a 

new DT so that the model on-line is periodically updated. This scheme is designed to 

increase the robustness of the model to variations in uncertain factors such as load 



Chapter 1: Introduction 
 

55 

and topology. 

Looking at the models themselves, DT is the one that offers the advantage of high 

human readability, compared to SVM, ANN and some other more compressive 

methods. It uses a white-box model, whose internal logic and reasoning process is 

very easy to comprehend. The threshold values of predictors which distinguish the 

contingencies from one class to the other are identified, and they help system 

operators to understand how decisions are made. In contrast, classifiers such as SVM 

and ANN are black-box. The mathematical processes behind the decision making are 

not easily explainable. The models produced do not naturally provide any useful 

intuitive reasons about why a particular contingency is classified into one class rather 

than another. 

5) Performance Evaluation 

To demonstrate the effectiveness of the models, a number of contingencies which 

have not been included in the training database are used for testing. A number of 

factors are usually considered when assessing the performances. The accuracy of 

prediction is clearly important, since incorrect decisions under the emergency 

conditions (i.e., a large disturbance has actually happened) can cause undesirable 

consequences: predicting stable contingencies as unstable will trigger unnecessary 

control whilst predicting unstable contingencies as stable will lead to lateness or 

failure of control and ultimately the instability of the system. The speed of decision 

making is also a crucial factor. The shorter the time that the model needs to wait 

(after the clearance of disturbance) to get all the needed measurements is, the longer 

the time to deploy corrective control will be. In addition, the robustness of the model 

is of great concern since the system conditions become more variable and the level of 
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uncertainty increases. 

Great performances of different types of data mining models have been claimed in 

past publications for on-line corrective TSA. Their accuracy of prediction is reported 

to range from about 90% to almost 100%, with the decisions made from four cycles 

to approximately 1 s after the disturbances are cleared. However, the claimed 

accuracies are quantified in various, not very consistent, ways. Typical approaches to 

selecting the test database include: i) Picking up a list of representative individual 

contingencies which are not used for training [60, 73, 103]; ii) Creating one set of 

new contingencies using the same way in which the training database is sampled, or 

generating a larger database in the first place and randomly choosing a portion of it 

for training and the rest for testing [58, 59, 66, 77]; iii) Creating multiple sets of new 

contingencies, each of them under the variance of one uncertain factor [55, 74]. For 

example, in paper [55], the DT models generated for the New England 39-bus test 

system are tested based on three data sets, containing contingencies with various fault 

locations and system operating points. Paper [74] generates a SVM model for the 

same network. The accuracy of transient stability prediction is tested against factors 

such as type of fault, topology change and type of load, one at a time. Paper [73], on 

the other hand, used six different contingencies to test its SVM model for the New 

England test system. The reported accuracies of these models can only demonstrate 

the robustness of the data mining models to a certain extent, but cannot describe their 

overall performance in the context of complex and uncertain networks, and the 

reported accuracy of the models is not comparable to each other. There is still a need 

for a thorough assessment of the prediction accuracy so that the system operators will 

know how confident the model is in making the right decision at the right time under 

emergency conditions.  
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1.2.2.2 Identification of Generator Grouping in Event of Instability 

As previously presented, the targets of the prediction for on-line corrective TSA in 

most of the past works are binary: whether the post-fault impending system is going 

to be stable or unstable. When a system goes unstable, however, the generators can be 

separated into different groups based on the similarity of their dynamic behaviour, i.e., 

transient responses of generator rotor angles. It is also of interest to the system 

operators to identify i) The grouping of generators, ii) which groups will lose 

synchronism and iii) which groups will remain stable. This information can not only 

assist the selection of appropriate corrective control actions, e.g., generator tripping, 

load shedding, fast-valving and dynamic braking to prevent instability or to limit the 

effect of losing some of the generators, but it can also determine the level of stability 

of stable generators and subsequently apply appropriate damping control. The 

grouping of generators can also be used as input to controlled islanding schemes 

which separate the system into smaller islands to avoid cascading outages and system 

blackouts [104]. Splitting of the system into appropriate islands or dynamically 

coherent zones can be carried out based on the grouping of generators to maintain the 

static and dynamic constraints of islands with pre-defined limits and to minimize 

disruption of customers. 

Although great effectiveness of binary classification methods have been shown for 

on-line transient stability prediction, very little work has been done to further predict 

the dynamic behaviour of generators in the event of instability. In both [100] (Neural 

Network based) and [54] (DT based), the method of building parallel classifiers has 

been proposed to predict the grouping of unstable generators. A series of classifiers 

needs to be trained to determine whether every pair of generators is in the same 

synchronized group. Reference [54] also discusses the idea of defining patterns of 
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grouping in advance and predicts the pattern with a single classifier. The grouping 

pattern for each contingency was identified by firstly making a similarity matrix, the 

elements of which depend on the relationship between every pair of generators, and 

then reconstructing the global behaviour from the matrix. However, not all the 

patterns in the training database are listed for the test system, and only DT is used as 

the multiclass classification technique to build the single classifier in [54]. 

1.2.2.3 Effect of Practical Issues Related to WAMS  

In most of the studies reported in the past, it is assumed that the WAMS provide 

perfect signals required by the data mining models. In a practical environment, 

however, there are many issues related to the measurements. For example, 

communication delays will be involved when transferring signals from remote 

locations to the control centre. Some of the measurements may not be available when 

needed, due to reasons like randomly increased delays, complete loss of 

communication links, and unexpected failure of PMUs or PDCs, etc. Furthermore, 

there might not be enough PMUs installed at the locations where signals are required. 

The quality of the measurements can also be reduced due to measurement error and 

noise involved within the data transfer process. All these issues would have an effect 

on the application of data mining tools. 

The issue of missing PMU measurements was addressed in [81], although the 

application there was for TSA in preventive mode and the predictors for DT were 

selected as pre-fault quantities. Surrogate split, which is a fully automated mechanism 

included in CART algorithm [105], is firstly investigated. During the training process, 

one or more surrogate splits, that can achieve similar splitting results to the primary 

split, may be generated for every tree node. Therefore, if the value of a predictor is 
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missing for a test case, the surrogates will be used to decide which child node it 

should go to for final classification. It is observed, however, that the surrogates splits 

generated are often parameters measured by the same PMU as the primary split. So 

the signals of the primary predictor and its corresponding surrogate are always 

missing at the same time. This fact limits the number of surrogates that can be used. 

A comprehensive and advanced ensemble DT algorithm which combines random 

subspace and boosting is then developed to improve the robustness to the missing 

data. Specifically, multiple small DTs are firstly trained offline using random 

subspace considering the location information of predictors and the availability 

information of PMU measurements. Then, the performance of these small DTs is re-

checked by using new cases in near real-time. Viable small DTs are identified in case 

of missing PMU data and boosting is then used to re-weight them when making the 

decision.   

In [81], the impact of measurement error has also been investigated. Since the voltage 

and current phasor provided by PMU are directly used as predictors, errors are 

randomly generated using standard Gaussian distribution with maximum TVE not 

more than 1%. Results show that the misclassification rate of the ensemble DT 

slightly increases. In [74], in order to test the prediction accuracy of SVM under 

measurement errors, a random error between 0 and 1% is added to all bus voltage 

phasors in the testing. The performance is very poor if the SVM is originally trained 

with perfect signals and can be improved through retraining using signals with errors. 

Furthermore, although [106] uses the data-driven approach for coherency 

identification in interconnected power systems instead of transient stability 

assessment, a White Gaussian Noise (WGN) with Signal-to-Noise Ratio (SNR) of 25 

is added to the original data to assess the performance of the Independent Component 
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Analysis (ICA) and Principal Component Analysis (PCA) method in the presence of 

noise.  

1.2.2.4 Summary of Past Research  

Having reviewed the past research on on-line TSA for corrective control using PMU 

measurements and data mining, DT is found to be the most suitable for this 

application. Obvious advantages are offered compared to other techniques: it directly 

finds out critical values of power system parameters which distinguish a contingency 

between stable and unstable and are easy for humans to comprehend. It also 

automatically carries out feature selection. DT is therefore adopted as the main 

classification tool in this thesis. Several areas have been identified which need to be 

addressed. These are summarised as follows:  

 The sensitivity of DT-based accuracy of prediction for transient stability 

needs to be investigated to different uncertainties in the network. For the 

corrective control application, the robustness of the DT method has not been 

tested against a complete list of uncertain factors, including type, location, 

duration of fault and loading level and topology of the network, one at a 

time. It is still unclear to which factors the DT method is the most sensitive. 

 A framework for the assessment of the accuracy of data mining models for 

on-line prediction of transient stability is currently lacking. Previous 

published research in this area has used a variety of, not very consistent, 

approaches. The system operators need to know the confidence level of the 

decision that they are making. 

 The majority of the existing research classified the transient status of post-

fault real-time system into stable and unstable. Very few studies concerning 
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the patterns of generator grouping in the event of instability have been 

completed. A methodology which combines the assessment of system 

stability and the generator grouping is a logical extension of existing work 

on TSA which is along the way towards application of corrective control. 

 Only the issues of measurement error and missing measurements have been 

discussed in the previously published research. The effect of other practical 

issues that exist in real life WAMS environment on the on-line identification 

of power system dynamic signature need to be investigated. 

1.3 Aims, Contributions and Thesis Overview 

1.3.1 Aims and Objectives 

This thesis aims to address many of the unresolved issues which have been identified 

within the current body of research. The main aim of this research is to develop a 

robust methodology for on-line identification of dynamic signature, in power systems 

with an increasing level of uncertainty. Based on incoming system responses from 

monitoring devices (i.e., PMUs in WAMS), a decision should be reached as soon as 

possible regarding the stability of the system and the pattern of its dynamic behaviour 

in the event of instability. In order to achieve these aims, the following research 

objectives have been defined: 

1. To review and summarise existing methodologies for fast detection of power 

system transient stability based on PMU measurements for the purpose of 

corrective control, and to identify the appropriate methodologies for future 

development and application. 

2. To implement the selected method for on-line transient stability prediction on 

suitable test network developed in MATLAB/Simulink. 
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3. To establish the sensitivity of the accuracy of the selected method for on-line 

transient stability prediction to a list of power system uncertainties.  

4. To develop a generic framework for the assessment of the accuracy of 

prediction of data mining models, dealing with different levels and types of 

power system uncertainties. 

5. To develop a methodology for real-time prediction of power system dynamic 

signature, which includes, both transient stability status and the pattern of 

generator grouping in the event of instability, using PMU measurements and 

data mining. 

6. To assess the robustness of developed methodology to practical issues related 

to WAMS application. 

1.3.2 Main Contributions of this Research 

The work within this thesis contributes to a number of areas of power systems 

stability research, specifically around the data-driven real-time emergency mode 

Transient Stability Assessment (TSA). The main outcome of this research is the 

methodology of on-line identification of power system dynamic signature using PMU 

measurements and data mining techniques. The robustness of the developed 

methodologies has been evaluated considering a wide range of uncertainties 

surrounding transient disturbance, operating conditions and WAMS. 

The main contributions within this thesis can be summarised as follows (Note: 

References prefixed with the letter 'B' refer to author’s thesis based publications. A 

full list of international journal and conference publications resulting from this thesis 

is included in Appendix B): 

 The sensitivity of the accuracy of the DT method for on-line corrective 
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transient stability prediction to a series of power system uncertainties, 

including fault duration, location, system operating point and pre-fault 

topology, has been established [B3].  

 A generic probabilistic framework for the assessment of the accuracy of a 

data mining model for on-line prediction of transient stability is developed. 

The framework allows a consistent comparison of different data mining 

models based on the accuracy of the prediction [B1]. This is the first 

original contribution of the thesis. 

 A two-step methodology is proposed for PMU-based on-line identification 

of power system dynamic signature. It firstly predicts transient stability 

using traditional binary classification and then predicts the pattern of 

unstable system dynamic behaviour using both clustering and multiclass 

classification [B2, B5, B6]. This is the second original contribution of the 

thesis. 

 The Hierarchical Clustering has been applied to a database of unstable 

contingencies to automatically identify characteristic patterns of generator 

grouping without specifying the number of groups in advance [B2, B5]. This 

is the third original contribution of the thesis.  

 Different multiclass classification techniques, including Decision Tree, 

Ensemble Decision Tree and Multiclass Support Vector Machine, have been 

evaluated for the first time for the prediction of generator grouping in the 

event of instability [B2, B6]. This is the fourth original contribution of the 

thesis. 

 The practical issues related to WAMS implementation have been divided 

into five categories, including measurement error, communication noise, 
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wide area signal delays, missing signals and limited number of PMU devices, 

and the effects of each of them on the performance of data mining methods 

have been investigated.  

 The off-the-shelf ensemble methods for Decision Tree, including bagging, 

boosting and Random Forest have been critically assessed and compared, 

with respect to their ability of dealing with missing measurements when 

predicting power system transient stability [B7].  

1.3.3 Thesis Overview 

This thesis consists of eight chapters in total. The seven chapters which follow this 

introductory chapter are outlined below: 

Chapter 2 – Power System Modelling and Simulation Tools 

This chapter provides the basis of the power system modelling and simulation tools 

used within this thesis. It firstly presents the mathematical descriptions of power 

system components. The way in which different types of faults are represented is then 

explained. Following this, brief descriptions of the tools that are used to perform the 

dynamic simulation are given, alongside the test network utilised throughout the 

thesis. 

Chapter 3 – Data Mining Techniques 

The technical background of all the data mining algorithms used in this thesis is 

introduced within this chapter, and therefore it is not repeated when the specific 

algorithms are applied in Chapter 4 to 7. The data mining algorithms considered 

include DT (both CART and C5.0), Ensemble DT (using bagging, boosting and RF), 

Multiclass SVM, and Hierarchical Clustering. 
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Chapter 4 – On-line Identification of Power System Transient Stability Using 

Decision Tree Method 

This chapter firstly outlines the methodology of using DT for on-line prediction of 

transient stability for corrective control. An implementation of the method is 

presented on the test network. The CART algorithm is applied to train a DT model 

using a database of system contingencies, containing generator rotor angles and 

speeds as predictors. Test datasets are designed to incorporate various uncertainties in 

the system, including fault duration and location, system operating point and pre-fault 

system topology. The sensitivity of the accuracy of the DT model is assessed against 

these uncertainties. 

Chapter 5 – Probabilistic Framework for Assessing the Accuracy of Data Mining 

Tools 

A generic framework to assess the accuracy of a data mining model for on-line 

prediction of transient stability for corrective control is developed within this chapter. 

The framework performs testing by exhaustively searching a wide range of possible 

contingencies and then weighs the accuracies according to realistic probability 

distribution of system uncertainties. DT is used to illustrate the framework, with 

probabilistic distributions assumed for the test network. 

Chapter 6 – On-line Identification of Power System Dynamic Signature 

This chapter proposes a novel methodology for PMU-based on-line identification of 

power system dynamic signature using data mining. The proposed methodology 

firstly predicts the transient stability status using traditional binary classification and 

then predicts detailed generator dynamic behaviour in the event of instability. The 

second step applies unsupervised learning to pre-process the off-line simulated 
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unstable contingencies, and uses multiclass classifiers to perform prediction. The 

effect of changes in system operating conditions on the proposed methodology is also 

discussed. 

Chapter 7 –Effect of Practical Issues Related to WAMS 

The practical issues related to Wide Area Measurement System application for data 

provision for real time TSA are categorised at the start of this chapter. The effects of 

each individual category on the prediction of transient stability are investigated and 

discussed one after another in the rest of the chapter.  

Chapter 8 – Conclusions and Future Work 

In this chapter the main conclusions of the research are presented and discussed. 

Suggestions are also given for the future development and improvement of the 

presented methodologies, as well as for future work in the general area of real-time 

TSA.   
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2 Power System Modelling and 

Simulation Tools 

2.1 Introduction 

There are various well documented tools available to engineers for power system 

modelling and analysis. This chapter describes the fundamental techniques required 

to complete the transient stability studies (i.e., simulations of power system dynamic 

response). The mathematical models of all the main system elements are firstly 

presented, including synchronous generators, excitation systems, power system 

stabilisers, transformers, transmission lines, system loads and the electrical network. 

The representation of different types of faults is also presented. Following this, the 

tools used to perform the dynamic simulation is introduced. Finally, a description of 

the test network used in this research and its WAMS is presented. 

2.2 Modelling Power System Components 

This section introduces the models of all main power system components which are 

used throughout the research to provide the simulation results presented later. The 
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power system, and all included components are modelled with an orthogonal phase 

representation, under the assumption that all three phases are balanced [4]. 

2.2.1 Synchronous Generators 

The synchronous generator is the fundamental source of energy within modern 

electrical power systems. The modelling and analysis of it has been subject of 

investigations since 1920 [1], and has been covered in a number of books [1, 4, 107]. 

Accurate modelling of its dynamic performance is extremely important in transient 

stability studies.  

Physically, a synchronous generator consists of two essential elements: the rotor and 

the stator. The field winding on the rotor carries direct current and produces a 

magnetic field which induces alternating voltages in the armature windings on the 

stator. The three-phase windings of armature are distributed 120 degrees apart in 

space so that the uniform rotation of the magnetic field generates voltages displaced 

by 120 degrees in time domain. When carrying balanced three-phase currents, the 

armature will produce a magnetic field in the air-gap rotating at synchronous speed. 

The field produced by the direct current in the rotor winding, on the other hand, 

revolves with the rotor. For production of a steady torque, the fields of stator and 

rotor must rotate at the same speed and therefore the rotor must run at the 

synchronous speed. 

There are two basis rotor structures used, depending on speed. Hydraulic driven 

generators, which operate at low speeds, usually use salient pole rotors with a high 

number of magnetic poles.  Steam or gas powered generators, the speeds of which are 

much higher, usually have round rotors with two or four field poles. Separate damper 

windings or amortisseurs are equipped with salient rotors whilst round rotors do not 
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have such circuits since the solid steel rotors themselves have equivalent effects.  

A symbolic representation of a two-pole round rotor synchronous machine is 

illustrated in Figure 2-1. 

'a

'b

'c

 

Figure 2-1: Symbolic representation of a two-pole round rotor synchronous machine. 
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Figure 2-2: Stator and rotor circuits of a synchronous machine. 

The circuits involved in a synchronous generator are shown in Figure 2-2, where a, b, 

c represents stator phase winding. fd represents filed winding. kd and kq are d-axis 

and q-axis amortisseur circuit, respectively, whilst k is the index of amortisseur 

circuits. θ is the angle by which d-axis leads the centreline of phase a winding in 

electrical radians. r  is the rotor angular velocity in electrical rad/s. The electrical 
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performance of a generator can be developed based on the dynamic equations of the 

coupled circuits. Park’s transformation [1] is used to refer the stator variables to the 

rotor side with only d-axis and q-axis.   

The mathematical descriptions (i.e., the state equations) with varying state variables 

and various assumptions for model simplifications for a synchronous generator can be 

found in [1, 4, 107]. Within this thesis, a sixth order model is used. The first order 

differential equations for it are given by (2.1) to (2.6).  

      22
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 1
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d P P D
dt H

       (2.5) 

 r r syn
d
dt
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The algebraic equations are given by (2.7) to (2.10), assuming that the generator 

armature resistance is negligible. 

2
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e q q d dP E I E I   (2.9) 

2 2
t q dE E E   (2.10) 

The detailed derivation of all the above equations is included in [107]. The electrical 

quantities and torques are in p.u.; time in seconds; rotor angle in electrical radians and 

rotor speeds in electrical rad/s. The subscript d and q indicate d- and q- axis. fdE  is 

the field voltage. '
dE  and '

qE  are the transient stator emfs. 1d  and 2q  are the rotor 

circuit flux linkage. dX  and qX  are the synchronous reactance. '
dX  and '

qX  are the 

transient reactance whilst ''
dX  and ''

qX  are the sub-transient reactance. '
0dT  and '

0qT  are 

the transient open circuit time constant whilst ''
0dT  and ''

0qT  are the sub-transient open 

circuit time constant. lsX is the stator leakage reactance. mP  and eP  are the 

mechanical power and electrical real power, respectively. D is the damping factor. H 

is the inertia constant. δ is the rotor angle. r  and syn  are the absolute and 

synchronous speed of rotor and therefore r  is the rotor relative speed. dI  and qI  

are the stator currents. dE  and qE  are the stator voltage and tE  is the combined value 

of them. 

2.2.2 Generator Excitation Systems 

The function of an excitation system is to provide direct current to synchronous 

machine field winding. At the same time, by controlling the field voltage and thereby 

the field current, the excitation system should contribute to the effective control of 

voltage and enhancement of system stability [1]. Through the Automatic Voltage 
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Regulator (AVR), the filed voltage is manipulated in order for the generator stator 

terminal voltage, tE , to reach its reference set-point, ref
tE , and to ensure the first-

swing stability of the machine. In addition, a Power System Stabiliser (PSS) may also 

be included to provide an additional input signal to the regulator to damp power 

system oscillations.  

The functional relationship between the synchronous generator, excitation system, 

and PSS (if included) is illustrated in Figure 2-3. 

ref
tE

tE

 

Figure 2-3: Relationship and signals between the synchronous generator, excitation system and power 
system stabiliser. 

Many forms of excitation systems are used in practice. Description of them can be 

found in [108]. Three different types of excitation system used in this thesis are 

described. 

2.2.2.1 Manual Excitation 

Manual excitation is the simplest excitation scheme. No AVR is included in this 

scheme and the field voltage is maintained at a constant value determined through the 

synchronous generator parameter initialisation. As a result, the generator terminal 

voltage may deviate from the desired value if operating conditions change. 

2.2.2.2 Static Excitation (IEEE Type ST1A) 

Static excitation systems directly supply the field winding of synchronous generators 

through rectifiers which are fed by either transformers or auxiliary machine windings 
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[108]. The simplified version of the IEEE Type ST1A static exciter used in this thesis 

is shown in Figure 2-4. It only consists of the voltage transducer delay block and the 

exciter block with no time constant. No transient gain reduction block is included. 

The signal PSSE  is a stabilising signal from the PSS if one is used with the exciter. 

max
fdE  and min

fdE  are the upper and lower limit of filed voltage fdE , respectively. 

tE
fdE

PSSE

1
1 RsT



ref
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





ex
AK

max
fdE

min
fdE

 

Figure 2-4: Simplified block diagram for the IEEE Type ST1A static exciter. 

2.2.2.3 DC Excitation (IEEE Type DC1A) 

The excitation systems which use a DC current generator and commutator are 

referred to as DC exciters. Typically, they respond more slowly than static excitation 

systems [108]. The block diagram of a simplified version of the IEEE Type DC1A 

excitation system used in this thesis is illustrated in Figure 2-5. max
exE  and min

exE  are the 

upper and lower limit of the exciter input voltage, respectively. 
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Figure 2-5: Simplified block diagram for the IEEE Type DC1A DC exciter. 
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2.2.3 Power System Stabilisers 

A power system stabiliser adds damping to the generator oscillations by controlling 

the generator’s excitation with supplementary stabilising signal(s). The most 

commonly and logically used signal to monitor generator rotor oscillations is the 

rotor speed deviation r , and it is therefore adopted in this thesis.  

r 1

PSS
W

PSS
W

sT
sT

1

2

1
1
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sT
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


3

4

1
1

PSS

PSS

sT
sT


 PSSK

PSSE

max
PSSE

min
PSSE

 

Figure 2-6: Block diagram of a PSS. 

The block diagram of PSS is illustrated in Figure 2-6. Since the electrical damping 

torque component introduced by PSS must be in phase with the rotor speed deviation 

due to the phase characteristics of the excitation system, the PSS must include 

suitable phase compensation blocks. A number of phase lead/lag blocks are needed 

together with a washout filter to ignore steady state changes and a gain to maximise 

damping. A low-pass filter may also be required to reduce the high frequency output 

of the PSS so that potential interactions with the torsional mechanical modes of larger 

steam turbines can be avoided [1]. Within this research, no mechanical system is 

modelled so that there is no requirement to include the low-pass filter. max
PSSE  and min

PSSE  

are the upper and lower limit of the output signal. 

Although PSS is tuned with respect to the damping of small-signal oscillations (using 

linearised power system model), it also improves system damping under large-

disturbances (if properly tuned). However, the use of PSS does not improve transient 

stability. After a fault occurs it is the AVR that improves the transient stability by 

forcing the generator excitation voltage to its upper limit. This serves to maximise 
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generator load torque and minimise rotor angle swing. Over this crucial during-fault 

and post-fault period the PSS occasionally acts in opposition to the AVR (to maintain 

the generation of damping signal in phase with speed deviation), so that when a PSS 

is employed the field voltage gets off the upper limit value earlier than in the case for 

the AVR alone. Hence, to avoid reducing transient stability during fault and 

immediate post-fault period, a PSS signal needs to be suitably limited to ensure the 

maximum field voltage is continuously maintained until the peak rotor angle swing is 

reached.  

2.2.4 Transmission Lines 

Throughout the work presented in this thesis, transmission lines are modelled using 

the common π circuit with lumped parameters as shown in Figure 2-7 [1]. The length 

of all lines are assumed to be short enough so that this model is applicable and that 

more complex π section or distributed parameter representation is not required [109]. 

SV  and SI  are the voltage and current at the sending end of the line, whilst RV  and RI  

are voltage and current at the receiving end. Z represents the series impedance of the 

line and Y is the total line admittance. 

SV RV

SI RI

Z

2
Y

2
Y

 

Figure 2-7: Equivalent π circuit of a transmission line [1].  

2.2.5 Transformers 

An equivalent π circuit of a two-winding transformer is used. As shown in Figure 2-8, 

1 /e eY Z  in which eZ  is the equivalent leakage impedance of the transformer and
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1/c n  where n  is the off-nominal turns ratio of the transformer [1]. 

ecY

( 1) ec c Y (1 ) ec Y

 

Figure 2-8: Equivalent π circuit of a two winding transformer [1]. 

2.2.6 Loads 

Load characteristics have an important influence on system stability and the way in 

which power system loads are modelled can significantly affect the results of 

dynamic simulation [110, 111]. Since voltage magnitude and frequency across the 

network can be affected by electromechanical oscillations, more detailed models may 

be required for loads which are sensitive to these changes and so accurate results can 

be ensured. A summary and examples of load modelling for dynamic performance 

analysis can be found in [110, 111]. 

In this thesis, a constant impedance load model is used, represented as shunt 

admittance load
iY  connected to the thi  load bus, as in (2.11) where load

iP  and load
iQ are 

the active and reactive power component of the load and iV is the bus voltage. Within 

the time frame of transient stability simulation, the elements of the node admittance 

matrix of a transmission network are constant except for changes introduced by 

network switching operations. Load with constant impedance characteristics are 

included in the node admittance matrix and therefore the simplest to handle. However, 

the modelling of different types and patterns of loads can be included in the future. 

2

load load
load i i

i
i

P jQY
V


  (2.11) 
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2.2.7 Network 

The whole power system network is modelled by combining all transmission lines, 

transformers and constant impedance loads. The nodal network equation for a 

network with N buses, which describes the relationship between system voltage V and 

points of current injection I [4], is shown in (2.12), 
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 or I YV  (2.12) 

where subscripts i and j are bus numbers such that iiY is the self-admittance at bus i, 

and ijY is the mutual-admittance between bus i and j. 

The network model can be reduced by neglecting all zero-injection buses, and 

consequently the order of the nodal network equation becomes much smaller [107]. 

This lowers the computational burden during simulations and power system analysis. 

Furthermore, a coordinate transformation is applied between each individual machine 

model reference frame (d-q), which rotates at its rotor speed r , and the network 

common system reference frame (D-Q), which rotates at synchronous speed syn . 

Figure 2-9 shows the relative position of the two coordinates offset by the rotor angle 

δ. DV , QV  and dV , qV  are the direct and quadrature component of the generator 

terminal voltage tV  according to individual machine model reference frame and the 

network common system reference frame, respectively. Equations (2.13) and (2.14) 

are used to complete the transformations. Similar transformations can be applied for 

system current injections.  
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Figure 2-9: Relative position of the individual machine model reference frame (d-q) with respect to the 
network common system reference frame (D-Q) [4]. 

2.3 Modelling Different Types of Faults 

With a single phase representation of the network, the use of symmetrical 

components allows any type of fault, including balanced three-phase, unbalanced 

single line to ground, line to line, and line to line to ground, to be modelled by a fault 

shunt impedance FZ  connected between the point of the fault and the neutral. The 

value of FZ  depends on the type of fault and is given in Table 2-1 [1, 4]. When 

assessing the non-linear dynamic responses of the network, these are simulated by 

adding a shunt admittance to the self-admittance iiY  of the faulted bus i in the nodal 

admittance matrix. A value of 910  is used within this thesis for the iiY  of three-phase 

fault. 

In Table 2-1, 2Z  and 0Z  are the negative and zero sequence Thevenin equivalent 

impedance of the network, respectively, as seen from the fault terminal. They are 



Chapter 2: Power System Modelling and Simulation Tools 
 

79 

calculated using a graph theory based algorithm as in [112]. The negative sequence 

network has the same topology as the positive one whilst the zero-sequence network 

topology is different and constructed according to the transformer winding 

connections. In this thesis, only the Y-Y connection of transformer windings with 

both neutrals grounded is used, the equivalent circuit of which is shown in Figure 

2-10. Since both neutrals are grounded, there is a path for the zero sequence current to 

flow in the primary and secondary, and the transformer is represented as the 

equivalent leakage impedance per phase. 

Table 2-1: Shunt impedance and admittance representing different types of faults. 

Fault Type 
Fault Shunt Impedance 

( FZ ) 
Fault Shunt Admittance 

( iiY ) 

Three Phase 0 910  

Single Line to Ground 2 0Z Z  
2 0

1
Z Z

 

Line to Line 2Z  
2

1
Z

 

Line to Line to Ground 2 0

2 0

Z Z
Z Z

 2 0

2 0

Z Z
Z Z
  

 

 

Figure 2-10: Zero-sequence equivalent of Y-Y connected two-winding transformer with both neutral 
grounded. 

2.4 Simulation Tools 

Throughout this thesis, all modelling has been completed using MATLAB/Simulink 
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environment (version 8.2.0.701 R2013b) with direct implementation of the 

mathematical component descriptions provided within this chapter. For all transient 

stability simulations, initial load flows are performed using either standard power 

flow (in Chapter 4) or Optimal Power Flow (OPF) (in Chapter 5 to 7) functions in 

MATPOWER [113]. Dynamic simulations are carried out with the variable-step type 

ode23s (stiff/Mod. Rosenbrock) solver in Simulink, which utilises the implicit 

numerical method based on a second-order modified Rosenbrock formula [114].  

2.5 Test Network 

 

Figure 2-11: NETS-NYPS five-area test network diagram. 

A large 16-machine, 68-bus, 86-branch system is utilised throughout this thesis to 

demonstrate the on-line identification of power system dynamic signature using PMU 

measurements and data mining. The test system is shown in Figure 2-11 and was 

originally introduced in [115]. The network represents a reduced order equivalent 

model of the New England Test System (NETS) and the New York Power System 

(NYPS). There are five distinct areas in this system: NETS is formed by G1 to G9, 

NYPS consists of G10 to G13, and three other neighbouring areas are represented by 

G14, G15 and G16, respectively. The inter-area ties between different areas are 

highlighted.  
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All generators are represented by full sixth order models. G1 to G8 are under slow 

DC excitation (IEEE-DC1A) whilst G9 is equipped with a fast static exciter (IEEE-

ST1A) and a PSS [116]. All the remaining generators (G10-G16) use constant manual 

excitation. Power system loads are modelled as constant impedance. 

All system details including line parameters, standard loading, dynamic machine 

parameters and OPF data are included in Appendix A. 

2.5.1 WAMS in the Test Network 

Since G13 is modelled as the reference generator with a constant value of rotor angle, 

it represents an external system which is not of concern for this study. Throughout the 

thesis, it is assumed that all the other 15 generators in the test network have a PMU 

and other required measurement devices installed so that generator rotor angles can 

be directly calibrated in real time from the terminal voltage and rotor position 

(monitored by optical or magnetic means) without any electrical calculations. 

2.6 Summary 

This chapter has presented the fundamental modelling and analysis tools which will 

be used throughout this thesis. Only essential information is given due to wide 

availability of relevant references books. 

The chapter began by presenting the mathematical models of the relevant components 

of the power systems. These included synchronous generators and their associated 

controls (excitation systems and PSS), transmission lines, transformers and loads. An 

explanation was then given as to how different types of faults, including three-phase, 

single line to ground, line to line, and double line to ground fault, are represented. 

The simulation tools described after that are used throughout the thesis for all 

simulations presented in the thesis. Finally, the test network used throughout this 



Chapter 2: Power System Modelling and Simulation Tools 
 

82 

research was introduced, alongside the assumption related to availability and location 

of PMUs in WAMS.  
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3 Data Mining Techniques  

3.1 Introduction 

Data mining is used to describe the computational process of discovering information 

from large data sets and transforming it into an understandable structure for future 

uses. The term is a buzzword, and is frequently generalised to any kind of computer 

decision support system including artificial intelligence, machine learning, statistics, 

etc. It has multiple facets and approaches, encompassing diverse techniques under a 

variety of names, in different business, science, and social science domains. For 

instance, firms may commonly apply data mining to business data, to describe, 

predict, and improve their business performance. In this thesis, the term data mining 

is used to emphasise that the methodology, for on-line identification of power system 

dynamic signature based on PMU measurements, focuses on analysing quantities of 

offline data for predictive purposes.  

Two types of data mining techniques will be used in this thesis, namely classification 

and clustering. Classification falls into the category of supervised learning. The aim 

of it is to create a predictive model which can map a new object to one of a set of 
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classes, on the basis of a training dataset containing both objects and related decisions. 

Clustering, on the other hand, belongs to the category of unsupervised learning. It 

applies when the objects are not pre-labelled but are to be divided into natural groups. 

The purpose of clustering techniques is to split a dataset into clusters by maximising 

some measure of dissimilarity between objects.  

This chapter presents the technical background of both classification and clustering. 

For each of these two, it starts off by introducing the basic concepts, and then 

describes the specific algorithms that will be used in this thesis, including Decision 

Tree (DT), Ensemble Decision Tree (EDT), and Support Vector Machine (SVM) for 

classification, and Hierarchical Clustering (HC) for clustering. The software packages 

used in this research to implement these algorithms are also introduced.  

3.2 Classification 

A bank loan officer needs analysis of his or her data to learn which loan applicants 

are "safe" and which are "risky". A marketing manager at an electronics company 

needs data analysis to help guess whether a customer with a given profile will buy a 

new computer. A medical researcher wants to analyse breast cancer data to predict 

which of the three specific treatments a patient should receive. In the scope of this 

research, the power system operator needs analysis of the off-line simulated 

contingency database to predict the transient stability of the power system in real-

time. In each of these examples, the data mining task is classification, where a model 

or classifier is constructed to predict class labels, such as "safe" or "risky" for the loan 

application data; "yes" or "no" for the marketing data; "treatment A", "treatment B", 

or "treatment C" for the medical data, or "stable" or "unstable" for the power system 

dynamic data. 
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Many classification methods have been proposed by researchers in data mining. The 

general idea of them will be firstly described in this section. The methods of DT, 

EDT and SVM will then be introduced. The topic of multiclass classification will also 

be discussed. 

3.2.1 Basic Concepts 

The general approach to classification is a two-step process, consisting of a learning 

or training step where a classification model or classifier is constructed, and a 

classification step in which the model is used to predict class labels for given input.  

In the first step, a classification algorithm builds a model to describe a predetermined 

training database which is made up of a set of objects and their associated class labels. 

Within the training database, an object, X, is represented by an n-dimensional 

attribute vector 1 2, ,x x , nx . The attributes are typically referred to as "predictors". 

Each X is assumed to belong to a predetermined class. The class label y is categorical 

(or nominal) and usually referred to as the "target" of classification. The process of 

supervised learning can be viewed as the construction of a model or a function, 

( )y f X , which can predict the associate class label y of a given object X. 

In the second step, the model is used to classify new objects which are not used 

during the learning process. For a given test set, the accuracy of classification is the 

percentage of the test set objects that are correctly classified. 

In the bank loan example as previously described (adopted from [117]), within the 

database of the officer, the objects are the loan applications. The attributes of them 

(i.e., the predictors) are the age and income of the applicants. The learning process for 

the officer is to build a model to classify the applicants in the database into the target 

of the loan decision (i.e., "safe" or "risky"). 
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In this thesis, the objects in the training database are the contingencies simulated for a 

power system under various operating conditions and disturbances. The attributes of 

them (i.e., predictors) are the post-fault system parameters such as generator rotor 

angles and speeds. The class labels (i.e., targets) are either the transient stability status 

of the post-fault system, or the pattern of the post-fault system behaviour.  

The key advantage of classification algorithms that makes them particularly relevant 

in on-line dynamic security assessment of power systems is their ability to discover, 

comprehend and generalise relationships between predictors and targets which may 

not be immediately obvious to a human operative. Furthermore, classification 

algorithms are also able to identify relationships across a large number of dimensions. 

3.2.2 Decision Tree 

DT is a type of high dimensional classifier which has been successfully applied to a 

broad range of tasks in various disciplines such as medicine, financial analysis, 

manufacturing and production, and molecular biology [117]. A DT is composed of 

nodes, branches and terminal decisions. Each internal node specifies a test of a 

predictor, which splits the set of examples within that node into subsets. Each branch 

descending from a node corresponds to one of the possible outcomes of this test. The 

leaf nodes with terminal decisions represent the classes to which input examples 

belong. Essentially, a path from the root to a leaf in a DT is a series of if-then rules, 

which makes the internal logic and reasoning process behind the model easy to 

comprehend.  

A typical DT which classifies input contingency into two classes is shown in Figure 

3-1. It represents the concept of Transient Stability Assessment (TSA), indicating 

whether the transient stability status of a power system is stable or not. In each of the 
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internal node, denoted by rectangle, the values of predictors (generator rotor angles in 

degree in this illustrative example) are compared to their corresponding thresholds. 

Each of the leaf nodes, denoted by oval, represents a class to which the post-fault 

power system transient stability status belongs (either stable or unstable). Given a 

contingency in which the values of rotor angle 1, 2, 4 are 54.5°, 175.8° and 60.1°, 

respectively, a path indicated with the dashed arrows in Figure 3-1 is traced from the 

root to the leaf node which holds the stable class.  

 

Figure 3-1: A simple decision tree for illustration purposes. 

As shown in the example, the representation of acquired knowledge in the tree form 

is intuitive and easy to assimilate by humans. The learning and classification steps of 

DT are simple and fast. In general, DT classifiers have good accuracy [117]. 

3.2.2.1 Tree Building Algorithms 

There are many different algorithms to build DTs. They are all similar in the way that 

the training dataset is recursively split into smaller and smaller groups in a top-down 

manner, by selecting the most useful predictor to test at each node, until splitting no 

longer adds value to the predictions [118, 119]. The differences among them are the 

ways in which they determine the most useful predictor to test (the quantitative 

measure of predictor selection) at each node. 
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Figure 3-2 summarises the basic algorithm named Generate_DT. The input to the 

algorithm includes three parameters: D, predictor_list, and 

predictor_selection_method. D is the given data set for training. predictor_list is the 

list of predictors describing the objects within the data set. 

predictor_selection_method   specifies  a  procedure  for  selecting  the  predictor  that 

jD

jD

jD

 

Figure 3-2: Basic algorithm Generate_DT for building a decision tree from training objects. 
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"best" discriminates the  given objects according to class. The tree starts as a single 

node N, representing the training objects in D (Step 1). If the objects in D are all of 

the same class, the node N becomes a leaf and is labelled with the class (Step 2). Note 

that Step 3 is a terminating condition which will be explained later. Otherwise, the 

algorithm calls predictor_selection_method to determine the splitting criterion (Step 

4). The splitting criterion indicates which predictor to test at node N and which 

branches to grow from node N with respect to the outcomes of the chosen test. It is 

determined so that, ideally, the resulting child nodes are as "pure" as possible.  After 

that, the node N is labelled with the splitting criterion, which serves as a test at this 

node (Step 5). A branch is grown from the node for each of the outcomes of the 

splitting. The objects in D are partitioned accordingly (Step 7). There are three 

possibilities for partitioning objects based on the splitting criterion, as illustrated in 

Figure 3-3 with examples. Let P be the selected predictor which has v distinct values, 

1 2, ,p p  , ,jp  , vp .  

 As in Figure 3-3 (a), if P is discrete-valued and multi-way splits are allowed (not 

restricted to binary tree), for instance when the income of the applicants in the 

bank loan example have three levels: low, medium and high, one branch is grown 

for each known value, jp , of P. Partition jD  is the subset of objects in D having 

value jp of P. Since all the objects in a given partition have the same P value, 

the predictor P does not need to be considered in any future partitioning. It is 

therefore removed from predictor_list (Step 6).  

 As in Figure 3-3 (b), if P is continuous-valued, for instance when the income is 

represented by numerical values, the test at node N is of the form "P > 

Threshold?". Two branches are grown from N. The objects are partitioned such 
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that 1D  holds the subset in which the predictor exceeds its threshold, whilst 2D  

holds the rest. In the context of this research, the predictors of generator rotor 

angles and speeds are also continuous-valued and therefore the partition of 

contingencies follows this scenario.  

 As in Figure 3-3 (c), if P is discrete-valued and a binary tree must be produced, 

i.e., each node must have exactly two outgoing branches, the test at node N is in 

the form " PP S ?", where PS  is the subset of the known value of P. The objects 

are partitioned such that 1D  holds the subset that satisfies the test whilst 2D  

holds the subset that does not satisfy the test. 

1D 2D 3D

1p 2p vp

1D 2D vD

1D 2D
1D 2D

1D 2D
1D 2D

?PP S { , }?income medium high

 

Figure 3-3: Three possibilities for partitioning objects based on the splitting criterion, each with 
examples. 

The algorithm uses the same process recursively to form a DT for the objects at each 

resulting partition jD (Step 9). The recursive partition stops only when one of the 

three terminating conditions is true: i) All the objects in partition D belong to the 
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same class (Step 2); ii) There are no remaining predictors on which the objects may 

be further partitioned (Step 3). In this case, node N is converted into a leaf and 

labelled with the most common class in D; and iii) There are no objects for a given 

branch jD , in which case a leaf is created with the majority class in D (Step 8). 

Finally, the resulting DT model is returned (Step 10). 

Commonly used tree building algorithms include Iterative Dichotomiser 3 (ID3), 

C4.5 (a successor of ID3), C5.0 (a successor of C4.5) and Classification And 

Regression Tree (CART), etc. Short descriptions of each of those are given below 

whilst numerical examples can be found in [117]. 

1) ID 3 

ID 3, developed during the late 1970s and early 1980s by J. R. Quinlan [117], uses 

information gain as its predictor selection measure. This measure is based on the 

information theory, which studies the value or "information content" of messages.  

Let node N represents the data set D in which m distinct classes of objects can be 

found. The expected information needed to classify an object in D is given by (3.1), 

where ip  is the probability that an object in D belongs to class iC  (for i = 1,  , m) 

and is estimated by , /i DC D . The log function to base 2 is used since the information 

is encoded in bits. Info(D) is the average amount of information needed to identify the 

class label of an object in D, also known as the entropy of  D. 

2
1

( ) log ( )
m

i i
i

Info D p p


   (3.1) 

Supposing the objects in D are split based on some predictor P having v distinct 

values, 1 2, ,p p  , vp . If P is discrete-valued, it can be used to split D directly into v 



Chapter 3: Data Mining Techniques 
 

92 

partitions 1 2, ,D D  , vD , where jD  contains the objects in D that have the value jp

of P. The information required to classify an object from D based on the partition by 

P is given in (3.2). The term /jD D  acts as the weight of the jth partition. 

Information gain is defined as the difference between the original information 

required (i.e., based on just the proportion of classes) and the new requirement (i.e., 

after partitioning on P), as in (3.3). The information gain therefore is the expected 

reduction in the information requirement caused by knowing the value of P. The 

predictor with the highest information gain is selected as the splitting predictor at 

node N. This predictor minimises the information needed to classify the objects in the 

resulting partitions and reflects the highest "purity" in these partitions. Such an 

approach minimises the expected number of tests needed to classify a given object. 

If, however, the predictor P is continuous-valued as the generator rotor angles and 

speeds in this research are, the threshold of P needs to be determined. Typically, the 

values of P are sorted in increasing order, and the midpoint between each pair of 

adjacent values is considered as a possible threshold. For every possible threshold for 

P, PInfo (D)  is evaluated. The point with the minimum value of PInfo (D)  is selected 

as the threshold of P.  

2) C4.5 

The information gain measure is biased toward tests with many outcomes (i.e., it 

prefers to select predictors having a large number of values). To overcome this bias, 

1

( ) ( )
v

j
P j

j

D
Info D Info D

D

   (3.2) 

( ) ( ) ( )PGain P Info D Info D   (3.3) 



Chapter 3: Data Mining Techniques 
 

93 

C4.5, a successor of ID 3, uses an extension to information gain known as gain ratio. 

It applies normalisation to the information gain using “split information” defined as 

in (3.4), which represents the potential information generated by splitting the training 

data set D into v partitions. The gain ratio is defined as (3.5). The predictor with the 

maximum gain ratio is selected as the splitting predictor. 

2
1

( ) log ( )
v

j j
P

j

D D
SplitInfo D

D D

    (3.4) 

( )( )
( )P

Gain PGainRatio P
SplitInfo D

  (3.5) 

3) C5.0 

Although C4.5 has been a benchmark to which newer classification algorithms are 

often compared, in recent years, its successor C5.0 is available commercially. The 

tree building algorithm seems to be essentially the same as that used by C4.5. 

However, its training process is greatly sped up and clearly applies some different 

techniques, although this has not been described in the open literature [120].  

4) CART 

Classification And Regression Tree (CART) was developed in 1984 and has been one 

of the most popular algorithms currently applied in practice [105, 117, 119]. It only 

constructs binary trees. The criterion used to select predictors is based on “Gini Index” 

[105, 117, 119].  

Using the notation previously described, the Gini Index measures the impurity of D, a 

data partition or set of training objects, as (3.6), where ip  is the probability that an 

object in D belongs to class iC  and is estimated by , /i DC D . The sum is computed 

over m classes. 
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2

1

( ) 1
m

i
i

Gini D p


   (3.6) 

The Gini Index considers a binary split for each predictor. If P is a discrete-valued 

predictor, to determine the best binary split on P, all the possible subsets that can be 

formed using known values of P are examined. Each subset, PS , can be considered as 

a binary test for predictor P of the form " PP S ?". A weighted sum of the impurity 

of each of the two resulting partitions is computed. If a binary split on predictor P 

splits D into 1D  and 2D , the Gini Index of D, due to that split, is calculated with (3.7). 

For each predictor, each of the possible binary splits is considered. For continuous-

valued predictor, the strategy which is similar to that described earlier for information 

gain is used to determine the threshold. 

1 2
1 2( ) ( ) ( )P

D D
Gini D Gini D Gini D

D D
   (3.7) 

The reduction in impurity that is incurred by a binary split on a predictor P is given in 

(3.8). The predictor that maximises the reduction (or, equivalently, has the minimum 

Gini Index) is selected as the splitting predictor. 

( ) ( ) ( )PGini P Gini D Gini D    (3.8) 

In the rest of the thesis, CART and C5.0 (as the most recent version of the algorithm 

in the series of ID 3, C4.5 and C5.0) will be used for the training of DT. 

3.2.2.2 Overfitting 

When building the tree, it is usually expected to train the model based on the known 

dataset to a certain extent so that it will also be able to predict the correct output for 

unknown input. However, overfitting usually occurs when the model is excessively 
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complex, such as having too many branches and too many leaf nodes. Although a 

model like this classifies the existing dataset perfectly, it may have poor prediction 

performance for unknown inputs.  The main reason is the fact that the training dataset 

may have some random error or noise that cannot describe the underlying relationship 

between the input and output. Therefore some of the generated nodes and branches 

may have no causal relation to the target function of the tree. 

There are two main approaches that can be used to avoid overfitting. One approach is 

to stop growing the tree earlier, i.e., before it perfectly classifies the training set. The 

commonly used stopping criteria include maximum tree depth and minimum records 

in parent and child branch which prevent a split if the number (or percentage) of 

records in the node to be split is less than the specified value. Another approach, 

known as pruning, allows full development of the tree and then removal of the 

bottom-level splits that do not contribute significantly to the accuracy of the tree. 

Details about pruning methodologies can be found in [105]. 

3.2.3 Ensemble Decision Tree 

Ensemble methods are frequently used in data mining to increase classification 

accuracy. As shown in Figure 3-4 (adopted from [117]), an ensemble combines a 

series of k base classifiers, 1M , 2M , …, kM , with the aim of creating an improved 

composite model. A given data set D is used to create k training sets, D1, D2,  , Dk 

where Di (1 i k  ) is used to build classifier iM . With the predictors of a new 

object, the base classifiers each vote by returning a prediction. The ensemble returns a 

final class according to all the votes. The existing ensemble creation techniques 

include (but they are not limited to) bagging, boosting, and Random Forest (RF). 

Each of them is briefly described below and further details can be found in [121].  
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Figure 3-4: Ensemble methods [117]. 

Within this thesis, the classification technique used to train the base classifiers in 

ensembles is DT (including both CART and C5.0).  

3.2.3.1 Bagging 

The basic idea behind bagging can be explained by the following example [3]. When 

a patient would like to have a diagnosis made based on his or her symptoms, instead 

of asking one doctor, he or she may choose to ask several. If a certain diagnosis 

occurs more than any other, the patient may choose it as the final or best diagnosis. 

That is, the final diagnosis is made based on a majority vote, where each doctor gets 

an equal vote. Similarly, bagging creates an ensemble of classification models for a 

classification technique (such as CART and C5.0) where each model gives an equally 

weighted prediction. 

Bagging stands for bootstrap aggregation. With the given data set D, of d objects, it 

works as follows. For iteration i ( 1,2,...,ki  ), a training set, Di, of d objects, is 

sampled with replacement from the original set (i.e., some of the original objects of D 

may not be included in Di, whereas others may occur more than once). Each training 

set is called a bootstrap sample. A base classifier, iM , is learned for each training set, 

Di. To classify an unknown object, X, each classifier iM  returns its prediction which 

counts as one vote. The bagged classifier, *M , counts the votes and assigns the class 
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with the most votes to X. The algorithm is summarised in Figure 3-5. 

iD

iD
iM

 

Figure 3-5: Bagging algorithm. 

The bagging algorithm often has significantly greater accuracy than a single classifier 

derived from D, the original training data set and is more robust to the effects of noisy 

data and overfitting. 

3.2.3.2 Boosting 

As in the previous section, suppose that a patient who has certain symptoms chooses 

to consult several doctors instead of one. If the patient assigns different weight in 

terms of value or worth to each doctor's diagnosis based on the accuracies of previous 

diagnoses they have made, then the final diagnosis is a combination of weighted 

diagnoses. This represents the essence behind boosting. 

Boosting works by building a series of classifiers in a sequence. The basic idea is that 

when one base classifier is built, it focuses more on the misclassified objects of the 

previous round. Initially, with the data set D which has d objects, each object is 

assigned with an equal weight of 1/ d . Generating k classifiers for the ensemble 
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requires k rounds through the algorithm. In round i, d objects are sampled from D, 

with replacement, to form the training set iD . Each object’s chance of being selected 

is based on its weight. A base classifier model iM  is derived from iD . Its error is 

then calculated using iD  as a test set. The weights of the original training objects are 

then adjusted according to how they are classified. If an object is incorrectly 

classified, its weight increases. If an object is correctly classified, its weight decreases. 

These weights will be used to generate the training samples for the base classifier in 

the next round. In this way, a series of classifiers that complement each other is built. 

The algorithm is summarised in Figure 3-6. 

Within the algorithm, the error rate of model iM  is calculated by (3.9), where jw  is 

the weight of object jX  in iD . ( )jerr X  is the misclassification error of object jX . If 

the object is misclassified, ( )jerr X  is 1; otherwise it is 0. If the performance of 

classifier iM  is so poor that its error rate exceeds 0.5, this classifier is abandoned. 

1
( ) ( )

d

i j j
j

error M w err X


   (3.9) 

The error rate of  iM  affects how the weights of the training objects are updated. If 

an object in round i was classified correctly, its weight is multiplied by

( )/(1 ( ))i ierror M error M . Once the weights of all the correctly classified objects are 

updated, the weights for all objects including the misclassified ones are normalised so 

that their sum remains the same as it was before. The normalisation is done by 

multiplying it by the sum of the old weights and dividing it by the sum of the new 

weights. As a result, the weights of the misclassified objects are increased and the 

weights of the correctly classified ones are decreased.  
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iD

iD
iM

iM

iM

iD

 

Figure 3-6: Boosting algorithm. 

Finally, to classify an unknown object, X, boosting assigns a weight to each 

classifier's vote based on how well the classifier performed. The weight of the vote of 

classifier iM  is given in (3.10). The lower its error rate, the more accurate it is, and 

therefore the higher its weight. For each class, c, the weights of each classifier that 

assigned c to X is added up. The class with the highest sum is returned as the class 

prediction for the object X. 
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1 ( )log
( )

i

i

error M
error M
  (3.10) 

Due to the way in which boosting focuses on the misclassified objects, it is more 

susceptible to the problem of overfitting than bagging. Although both of these two 

algorithms can significantly improve accuracy in comparison to a single model, 

boosting tends to achieve greater accuracy [117].  

3.2.3.3 Random Forest 

Another ensemble method is called Random Forrest (RF). Each of the classifiers in 

the ensemble is a decision tree and therefore the collection of classifiers is a "forest".  

The RF technique applies bagging in tandem with random predictor selection. With a 

data set D of d objects, the general procedure to generate k decision trees for the 

ensemble is as follows. For each iteration, i (i = 1, 2, ..., k), the training set iD  

consists of d objects sampled with replacement from D, so some examples may occur 

more than once whilst others may be excluded (i.e., iD  is a bootstrap sample of D). 

To construct a decision tree classifier, iM , F predictors are randomly selected to 

determine the split at each node, where F is much smaller than the number of 

available predictors. The trees are grown with CART algorithm to maximum size and 

are not pruned. The optimal number of base trees can be determined by observing the 

out-of-bag error: classifying and voting on each example in D by only those trees 

which did not use this example for training [22]. During classification, each base tree 

votes and the most popular class is returned.  

RF is comparable in accuracy to boosting. Since it considers much fewer predictors 

for each split, it is efficient on very large databases and it can be faster than either 

bagging or boosting. 
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3.2.4 Support Vector Machine 

Support Vector Machine (SVM) was first presented in 1992 and has attracted a great 

deal of attention lately [117]. It is a method for the classification of both linear and 

nonlinear data. In a nutshell, SVM works as follows. It uses non-linear mapping to 

transform the original training data into a higher dimension. Within the new 

dimension, it searches for the linear optimal separating hyperplane (i.e., a decision 

boundary separating the objects of one class from another). Due to the ability to 

model complex nonlinear decision boundaries, SVM is highly accurate, and therefore 

has been applied to a number of areas, including handwritten digit recognition, object 

recognition, and speaker identification, etc. [117].  

3.2.4.1 The Case When the Data is Linearly Separable 

The simplest case in which SVM can be applied is a two-class problem where the 

training data is linearly separable. Let the data set D be given, in which Xi  is one of 

the objects with associated class label being either +1 or -1 (in this research 

corresponding to the class post-fault system will be stable and unstable, respectively). 

An example based on two predictors, P1 and P2, is shown in Figure 3-7 to aid 

visualisation. 

1P

2P  

Figure 3-7: The 2-D linearly separable training data set with the best separating hyperplane [117].  
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Since an infinite number of straight lines can be drawn to separate all the two classes 

of objects, the best one, which will have minimum classification error on previously 

unseen objects, needs to be found. Generalising to n dimensions, the best hyperplane 

is needed. As shown in Figure 3-7, the best hyperplane is the one with the largest 

margin. It can be written as (3.11), where W is a weight vector 1 2, ,w w  , nw , X is the 

predictor vector of a training object 1 2, ,X X  , nX , n is the number of predictors and 

b is a scalar, often referred to as a bias. Any object that lies above the separating 

hyperplane satisfies (3.12) and any object that lies below the separating hyperplane 

satisfies (3.13). Any training objects that fall on the sides of the margin are called 

support vectors. 

W · X + b = 0 (3.11) 

W · X + b > 0 (3.12) 

W · X + b < 0 (3.13) 

The best hyperplane can be found through a constrained quadratic optimisation 

problem; it involves complex mathematics, beyond the scope of this thesis. Further 

details can be found in [117]. When a trained SVM classifies a test object, the 

decision depends on whether the data point lies above or below this hyperplane. 

3.2.4.2 The Case When the Data is Linearly Inseparable 

When the data set is not linearly separable, as shown in Figure 3-8, i.e., no straight 

line can be found to separate the classes, the original data set firstly needs to be 

transformed into a high dimensional space using a non-linear mapping. 

In the new higher dimensional space, when searching for the hyperplane, the training 

objects appear only in the form of dot products, ( ) ( )i jX X  , where ( )X  is the  
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1P

2P  

Figure 3-8: The 2-D linearly inseparable training data set [117]. 

non-linear mapping function applied to transform the training objects. 

Mathematically, this is equivalent to applying a kernel function, ( , )i jK X X , to the 

original input data, which is represented by (3.14). As a result, everywhere that 

( ) ( )i jX X   appears in the training algorithm it can be replaced with ( , )i jK X X . 

By using this substitution, the mapping can be completely avoided. 

( , )i jK X X  =  ( ) ( )i jX X   (3.14) 

The commonly used kernel functions include Polynomial, Gaussian Radial Basis 

Function (RBF), and Sigmoid. There are no rules for choosing the best one. In this 

thesis, RBF is selected since it gives the most accurate SVM based on the data in 

hand. In the RBF kernel, as in (3.15), parameter σ is the width of the Gaussian 

distribution. 

( , )i jK X X  =  
2 2/2i jX Xe    (3.15) 

During the process of finding the best separable hyperplane, a parameter C is 

involved, which represents the trade-off between maximising the margin and 

minimising the training error.  

The choice of values for C and σ will affect the classification performance of the 

SVM. To obtain a high level of accuracy, the optimal values of these two parameters 
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can be found using a grid-search. 

3.2.5 Multiclass Classification 

Among the existing classification algorithms, some of them, such as DT, naturally 

permit the use of more than two classes. An example of DT for multiclass 

classification is shown in Figure 3-9. 

 

Figure 3-9: A multiclass decision tree for illustration purpose.  

Other algorithms, like SVM, are by nature binary. Several methods have been 

proposed to effectively extend them for multiclass classification. They fall into two 

different approaches: one is to combine a series of binary classifiers whilst the other 

is to consider all data in one optimisation formulation directly. Reference [122] 

compares several of these methods and indicates that the “one-against-one” is the 

most suitable for practical use. It builds a binary classifier between every pair of 

classes so that for a training data set with m classes, ( 1) /2m m  binary classifiers are 

constructed. Each of them is trained using the objects of the two classes it should 

discriminate. To classify an unknown object, each classifier votes and the object is 

assigned the class with the maximum number of votes.  

For example, for a given data set D in which the training objects have class labels of 

three types. D1, D2 and D3 are the subsets of objects with class label C1, C2 and C3, 



Chapter 3: Data Mining Techniques 
 

105 

respectively. Three binary classifiers are trained, using D1 and D2 to distinguish C1 

and C2, D1 and D3 to distinguish C1 and C3, and D1 and D3 to distinguish C1 and C3. If 

the output of the three classifiers for an unknown object is C1, C3 and C3, respectively, 

the final decision of this object is class label C3.  

This “one-against-one” approach is adopted in this thesis to extend SVM to 

Multiclass Support Vector Machine (MSVM). 

3.3 Clustering 

When the Customer Services Director at an electronics company needs to organise all 

the customers into groups and assign a different manager to each group, strategically, 

he or she would like the customers in each group to be as similar as possible in terms 

of their business patterns, to develop customer relationships that specifically target 

each group. In this research, when the system operators need to divide the generators 

in a post-fault power system into groups, they want the generators in each group to be 

as similar as possible based on their dynamic behaviour so that they can be controlled 

together. In these examples, the data mining task is clustering, where the class label 

of each customer or generator is unknown. 

The basic concepts of clustering are firstly given in this section. Hierarchical 

Clustering (HC) which will be used in this research is then introduced in detail. 

3.3.1 Basic Concepts 

Clustering is the process of partitioning a set of objects into subsets (or groups). Each 

subset is a cluster. The objects within a cluster have high similarity, but are dissimilar 

to objects in other clusters. The similarity between groups of objects can be 

customised depending on the target problem. In this context, different clustering 

algorithms may generate different clusters on the same data set. The partitioning is 



Chapter 3: Data Mining Techniques 
 

106 

not performed by humans, but by the algorithm automatically. Therefore, clustering is 

useful in that it can lead to the discovery of previously unknown groups within the 

data. Compared to classification, it is a form of learning by observation, rather than 

learning by example, and therefore known as unsupervised learning.   

As a data mining function, clustering can be used as a standalone tool to obtain 

insight into the distribution of data and to observe the characteristics of each cluster. 

Alternatively, it can serve as a pre-processing step for other algorithms, such as 

classification, which would then operate on the result of cluster analysis. In this thesis, 

clustering is applied for the latter purpose. 

There are a large number of clustering algorithms in the literature, such as k-means, k-

medoids, Hierarchical Clustering (HC), probabilistic model-based clustering, etc. 

[117, 123]. Most of these algorithms use the number of clusters as the starting point. 

Hierarchical Clustering, however, groups data over a variety of levels by creating a 

dendrogram, which represents the results of grouping not by a single set of clusters 

but a multilevel hierarchy where clusters at one level are merged to form clusters at 

the next level. The number of clusters is not needed in advance. Since the number of 

groups of generators varies in different contingencies in power systems and needs to 

be found out automatically, HC is selected in this thesis. 

3.3.2 Hierarchical Clustering 

HC can either be agglomerative or divisive. The agglomerative method uses a 

bottom-up strategy. It starts by letting each object in the data set form its own cluster. 

The single cluster becomes the hierarchy’s root. The clustering procedure firstly finds 

the two clusters that are closest to each other according to some similarity measure, 

and combines the two to form one cluster. Through a linkage criterion, two clusters 
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are merged at per iteration until all objects are linked into a hierarchical cluster tree. 

The divisive method, on the other hand, employs a top-down strategy. It starts by 

putting all objects in one cluster, which is the hierarchy’s root. It then divides the root 

cluster into several smaller sub-clusters, and recursively partitions those clusters into 

smaller ones, until each cluster at the lowest level is coherent enough (i.e., either 

containing only one object or the objects within a cluster are sufficiently similar to 

each other). Figure 3-10 illustrates the application of HC on data objects a, b, c, d, e. 

The arrows indicate the process for the agglomerative and divisive methods. 

 

Figure 3-10: Agglomerative and divisive hierarchical clustering on data objects a, b, c, d, e [117]. 

With the divisive method the challenge is how to partition a large cluster into several 

smaller ones. There are 12 1n   possible ways where n is the number of objects. When 

n is large, it is computationally prohibitive to examine all possibilities. Heuristics is 

usually used in such cases however it can lead to inaccurate results. Therefore, to 

ensure accuracy and computational efficiency, the agglomerative method is selected 

in this thesis. 

A tree structure called a dendrogram is commonly used to represent the process of 

HC. It shows how objects are grouped together step-by-step. Figure 3-11 is a 

dendrogram for the agglomerative process presented in Figure 3-10. A vertical axis is 
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used to show the similarity scale between clusters. The most appropriate clusters can 

be determined by cutting off the dendrogram. 

 

Figure 3-11: Dendrogram representation for agglomerative hierarchical clustering of data objects a, b, 
c, d, e. 

3.3.2.1 Similarity Measure 

There is a variety of similarity measures that can be used in HC to quantify how close 

two objects are, such as Euclidean distance, Squared Euclidean distance, Manhattan 

distance, and Maximum distance. When kp  and kq  are the value of object p and q on 

the kth dimension, these distances are defined as follows. 

Euclidean distance 2
k k

k

(p q )   (3.16) 

Squared Euclidean distance 2
k k

k
(p q )   (3.17) 

Manhattan distance k k
k

p q   (3.18) 

Maximum distance k kk
max p q   (3.19) 

Among these measures, Euclidean distance is the most widely used and generally 

gives satisfactory clustering results. It is therefore adopted in this thesis. 

3.3.2.2 Linkage Criterion 

Within the process of HC, the linkage criterion determines the distance between two 
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clusters, where each cluster is generally a set of objects. Commonly used linkage 

criteria include single-linkage, complete-linkage, centroid-linkage, and average-

linkage. The distance between clusters for each of them is defined by (3.20) to (3.23), 

where p q  is the distance between two objects, p and q; im  and jm  are the mean 

for cluster iC  and jC ; and in  and jn  are the number of objects in iC  and jC . 

 
i j

sin gle linkage i j p C ,q C
dist ( C ,C ) min p q  

   (3.20) 

 
i j

complete linkage i j p C ,q C
dist ( C ,C ) max p q  

   (3.21) 

centroid linkage i j i jdist (C ,C ) m m    (3.22) 

1

i j

average linkage i j
p C ,q Ci j

dist (C ,C ) p q
n n

 

   (3.23) 

As given in the equations above, the single-linkage criterion defines the distance 

between clusters as the distance between two individual objects, one from each 

cluster, that are closest to each other. Complete-linkage criterion is the opposite, in 

which the distance between clusters is determined as the distance between two 

objects, one from each cluster, that are farthest away from each other. In the centroid-

criterion, clusters are represented by their mean values, and the distance between 

clusters is defined as that between these two means. In the average-criterion, the 

average of the distances between all pairs of individual objects, one from each cluster, 

is taken as the distance between two clusters. 

In this thesis, the linkage criterion selected is the complete-linkage. This is because 

the two nearest clusters of generators will not be linked together if the difference 

between any two of the generator rotor angles, one from each cluster, exceeds a 
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threshold. 

3.3.2.3 A numerical Example 

A numerical example of the operation of agglomerative HC using Euclidean distance 

and complete-linkage is given below. The method is applied to five (arbitrarily 

chosen) two-dimensional data points, as shown in Figure 3-12. The value of each 

point on the x-axis and y-axis are listed in the first and second row of matrix M, 

respectively.  

 

Figure 3-12: Two-dimensional plot for the five arbitrarily chosen data points.  

1 2 2 6 6
2 2 5 5 7

M  
  
 

 (3.24) 

The similarity matrix of the data points is as follows: 

1

1 0 1 3 16 5 83 7 07
2 1 0 3 5 6 4
3 3 16 3 0 4 4 47
4 5 83 5 4 0 2
5 7 07 6 4 4 47 2 0

. . .
.

D . .
.
. . .

 
 
 

  
 
 
  

 (3.25) 

The smallest element in the matrix is that for object 1 and 2, consequently these are 

joined to form a two-member cluster. Distances between this new cluster and the 

other three individuals are obtained as: 

1 2 3 4 5 
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 (12)3 13 23 13max , 3.16d d d d    (3.26) 

 (12)4 14 24 14max , 5.83d d d d    (3.27) 

 (12)5 15 25 15max , 7.07d d d d    (3.28) 

A new similarity matrix can now be constructed whose elements are inter-object and 

cluster-object distances. 

2

(12) 0 3.16 5.83 7.07
3 3.16 0 4 4.47
4 5.83 4 0 2
5 7.07 4.47 2 0

D

 
 
 
 
 
 

 (3.29) 

The smallest element in D2 is that for object 4 and 5, so these now form a second two-

member cluster. A new set of distances is found as: 

 (12)3 13 23 13max , 3.16d d d d    (as before) (3.30) 

 (12)(45) 14 15 24 25 15max , , , 7.07d d d d d d    (3.31) 

 (45)3 34 35 35max , 4.47d d d d    (3.32) 

These can be arranged in a matrix D3. 

3

(12) 0 3.16 7.07
3 3.16 0 4.47

(45) 7.07 4.47 0
D

 
   
  

 (3.33) 

The smallest element now is (12)3d  (indicated as the dashed line in Figure 3-12) so 

object 3 is added to the cluster containing objects 1 and 2. Finally, the cluster 

containing objects 1, 2, 3 and 4, 5 are combined into a single cluster. The distance 

between these two clusters (shown as the dotted line in Figure 3-12) is calculated as 

(12) 3 4 5 

(12) 3 (45) 
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(3.34). 

 (123)(45) 14 15 24 25 34 35 15max , , , , , 7.07d d d d d d d d    (3.34) 

The corresponding dendrogram is shown in Figure 3-13.  

 

Figure 3-13: Dendrogram illustrating the clustering process in the numerical example. 

3.4 Data Mining Software 

Various software packages are available (either commercially or for free) to help 

customers develop data mining models and bring predictive intelligence to decisions. 

They have different capabilities, ease or difficulty of use, and user interface. Several 

of them have been used in past research related to on-line dynamic security 

assessment, such as SAS Enterprise Minder [60], Salford Predictive Modeler [58, 59, 

66], WEKA [99] and ORANGE [99].  

The three packages used in this research are IBM SPSS Modeler (version 14.2) [124], 

MATLAB Statistics and Machine Learning Toolbox (version 8.2.0.701 R2013b) 

[125], and LIBSVM (version 2.8) [126].  

3.4.1 IBM SPSS Modeler 

IBM SPSS Modeler is a data mining software application built by IBM. The 

workbench has an easy-to-use interface and allows users to quickly develop 

predictive models without programming. Working with IBM SPSS Modeler is a 
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three-step process of working with data, including uploading the data onto the 

software, running the data through a series of manipulations, and sending the data 

into a destination (either a model or a type of data output). The results can easily be 

directed to other databases. 

A variety of modelling methods is offered by IBM SPSS Modeler. For DT, apart 

from the CART algorithm, C5.0 is also available which provides a high level of 

classification accuracy, especially with the powerful boosting function.  

3.4.2 MATLAB Statistics and Machine Learning Toolbox 

The Statistics and Machine Learning Toolbox in MATLAB provides functions to 

describe, analyse, and model data. Only the CART algorithm is available to build DT, 

with the ensemble methods of boosting, bagging and RF. The advantage of using 

MATLAB is that the model trained can be called in a loop when it needs to be tested 

multiple times (for instance, for a large number of scenarios of missing predictors). 

Hierarchical Clustering algorithm is provided in the toolbox for unsupervised 

learning. 

3.4.3 LIBSVM 

LIBSVM is a widely used and open source library for support vector classification, 

regression and distribution estimation. It supports multiclass classification with the 

“one-against-one” algorithm. Developed at the National Taiwan University, LIBSVM 

is written in C++ and a simple interface is provided to allow users to easily link it 

with their own programs in MATLAB. Functions are available to find the optimal 

values of parameters (C and σ as introduced in Section 3.2.4.2) using a grid-search, 

which leads to high accuracy of classification. 

For each data mining model developed within this thesis, the software package used 
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for implementation will be outlined along with the presentation of the training 

process. 

3.5 Summary 

The technical background of all the data mining algorithms that will be used in this 

thesis was introduced in this chapter. Classification is the process of supervised 

learning, and is going to be the core technique that implements the on-line 

identification of power system dynamic signature. The algorithms described include 

CART and C5.0 for DT, bagging, boosting, and RF to create EDT, and SVM. All DT 

methods allow both binary and multiclass applications whilst SVM has to be 

extended into Multiclass SVM (MSVM) through a one-against-one strategy for 

classification tasks with more than two categories. On the other hand, clustering is 

unsupervised learning, and is going to be used as the pre-processing step of 

classification. The agglomerative Hierarchical Clustering was presented. Finally, the 

software packages that are used to implement the data mining techniques in this thesis 

were introduced.  

In both Chapter 4 and Chapter 5, only CART algorithm of DT will be used for the 

purpose of binary classification. In Chapter 6, C5.0 will be used for binary 

classification whilst CART, C5.0, boosted C5.0, RF and MSVM will be compared for 

multiclass application. Hierarchical Clustering will also be utilised in this chapter. 

Bagged CART, boosted CART and RF will be compared in Chapter 7 in terms of the 

ability to deal with missing input data. Further details on the implementation of these 

algorithms and their performance evaluation can be found in later chapters.  

  



Chapter 4: On-line Identification of Power System Transient Stability Using Decision Tree Method 
 

115 

4 On-line Identification of 

Power System Transient 

Stability Using Decision Tree 

Method 

4.1 Introduction  

As introduced in Chapter 1, in the context of increased epistemic and aleatory 

uncertainties, network complexity and variable power transfers, future power systems 

will operate closer to their stability limits. To enable safer system operation, 

corrective control and stabilisation is becoming a potentially viable option. Extensive 

research efforts have been consequently devoted to fast and reliable on-line 

identification of power system transient stability using PMU measurements and data 

mining. A review of this work has been presented in Section 1.2.2.  

In the framework of wide-area measurements in power systems, data mining has been 

investigated as the predictive tool to convert PMU data into transient stability 
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information and support decisions under emergency conditions. A data mining model 

is generally trained using a large number of off-line simulated post-fault system 

responses. When applied in real-time, it makes use of PMU data to “warn” operators 

and system-level controllers about impending transient stability issues, and to trigger 

appropriate control actions so that a loss of stability can be avoided or the 

consequences of it minimised. The aim of developing such a model is to enable safer 

system operation closer to its stability limit, in the context of increasingly stressed 

power networks with ever increasing model, parameter and operational uncertainties. 

This chapter demonstrates the implementation of the Decision Tree (DT) method on 

the 16-machine, 68-bus NETS-NYPS test network. The study investigates the 

sensitivity of the prediction accuracy of the DT to a number of system uncertainties, 

including the duration and location of fault, system operating point and pre-fault 

network topology. 

4.2 Methodology 

Figure 4-1 provides an overall description of the methodology for on-line prediction 

of transient stability for corrective control using PMU measurements and DT. The 

shaded portion in the flowchart shows the off-line stream which is the training of DT. 

Predictors are usually selected as post-disturbance system parameters, such as 

generator rotor angles, speeds, and accelerations [54, 55, 60, 74, 77], voltage 

magnitudes and angles [66, 73, 74], and apparent resistance along with its changing 

rate measured near the electrical centre of the intertie of a system (which will change 

during loss of synchronism) [58, 59, 69]. The target of training is the system stability 

status after the disturbance is cleared. The library of system dynamic signatures is 

generated through time domain simulation [20]. The underlying relationships 
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between predictors and targets are automatically learned by the DT during training so 

that the model can fit into the on-line stream (presented by the unshaded portion of 

the flowchart).  

 

Figure 4-1: DT approach for on-line prediction of transient stability. 

In real-time application, after it is detected that a fault has just been cleared from the 

system (by conventional methods such as monitoring voltages, frequency or the status 

of circuit breakers in the network [21]), samples of predictors will be taken and 

constructed as the input to the DT model. The patterns of input are expected to be 

recognised and intelligent decisions are expected to be made. As mentioned in 

Chapter 1, incorrect decisions under emergency conditions can cause undesirable 

consequences: predicting stable cases as unstable will trigger unnecessary control 

actions whilst predicting unstable cases as stable will lead to lateness or failure of 

control and ultimately the instability of the system. 

4.3 Applications on Test Network 

The NETS-NYPS five-area system as described in Chapter 2 is used as the test 

network. The pre-fault system initial conditions are performed using standard power 

flow. 
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4.3.1 Training of Decision Tree 

4.3.1.1 Predictors and Targets 

Generator rotor angles and speeds are selected as predictors in this chapter since their 

variation after disturbance best describes the transient behaviour of the power system 

and they are the most straightforward to use when assessing the degree to which the 

system is disturbed. Since it is assumed that each of the 15 generator buses (excluding 

G13 which is the reference with constant rotor angle) has a PMU and other required 

measurement devices installed, the rotor angles can be directly provided without any 

electrical calculation. It is assumed in this study that rotor speeds are calculated as the 

rate of change of rotor angle after the signals are transferred into the Monitoring and 

Control Centre. 

In total, 30 predictors are chosen for the test system including 15 rotor angles (of G1 

to G12 and G14 to G16) and 15 rotor speeds. The target of training is whether the 

system will be stable or unstable after the fault is cleared. 

4.3.1.2 Generation of Training Set 

To generate the training database, three-phase self-clearing faults (one at a time) with 

various fault location (from bus 1 to bus 68) and fault clearing time were simulated in 

the test network.  The fault clearing time was varied between 0.05 s and 0.29 s, with 

an increment of 0.01 s in order to generate a mix of stable and unstable system 

conditions. In total, 1700 different faults were simulated. The post-fault system 

behaviour (rotor angle responses) was recorded for 6 s following each fault, since in 

most of the unstable contingencies at least one of the generators in the test system 

experiences the loss of synchronism within this period of time. The transient stability 

of the system is assessed based on the recorded generator rotor angle responses. 
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It is generally difficult to distinguish between stable and unstable responses within a 

short period of time after the fault. The criterion used to detect the instability is 

usually a matter of operational practice [5]. In this chapter, as in some past work [55, 

62], it is defined as follows: If the difference between any two of the generator rotor 

angles exceeds 360 degrees within the 6 s of simulation the system is considered to be 

unstable, otherwise it is stable. Using this criterion, 1238 (72.8%) out of 1700 

simulated cases were classified as stable whilst 462 (27.2%) were classified as 

unstable. An example of the swing curves is given for a stable and an unstable case in 

Figure 4-2 and Figure 4-3, respectively. All the rotor angles oscillate in the stable 

case with decreasing amplitude whilst two generators start to lose synchronism after 

about 3 s in the unstable case. 

 

Figure 4-2: Example of post-fault generator rotor angle swings in a stable case. 

 

Figure 4-3: Example of post-fault generator rotor angle swings in an unstable case. 
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In the simulations of system dynamic behaviour, the post-fault generator rotor angles 

are computed by solving a set of differential-algebraic equations which describes the 

power system. Therefore, the computation results are discrete collections of 

numerical data on rotor angle values along with the corresponding time stamps. The 

“time series” function in MATLAB is used to construct the data collections into 

curves and then resample them with the user defined sampling rate.  

In each simulation, all 15 rotor angles are sampled every cycle (i.e., 0.0167 s), which 

is the same as the required PMU reporting rate [10]. The rotor speed for each 

generator is then calculated using a backward difference approximation [60, 103], as 

given by (4.1), 

[ ( ) ( )]( ) t t tt
t

   



 (4.1) 

where ω(t) and δ(t) are the  rotor speed and angle  of the generator at time t, 

respectively. Δt is the sampling time interval, i.e., 0.0167 s for the 60 Hz system.  

Although the post-fault system behaviour was simulated for 6 s, only the first 5.01 s 

of rotor angles and speeds data are converted into training data [62]. Therefore 300 

collections of predictors (sets containing information on rotor angles and speeds) are 

created for one simulation. Each collection is assigned a target variable which holds a 

binary value “1” (unstable) or “0” (stable). The targets of all 300 collections from 

unstable simulations are set as unstable and vice versa, in order to allow the DT 

building algorithm to find the threshold value of predictors as early as possible [66]. 

For the 1700 faults, 510,000 predictor-target pairs are constructed in total. Each of 

them is used as an individual example for training. The information about their time 

stamps however, cannot be seen by the DT.  
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4.3.1.3 Building the Tree 

The DT in this chapter is built using the CART algorithm in IBM SPSS Modeler 

[124]. As the software allows users to specify parameters such as maximum tree 

depth, minimum records in parent and child branch (either in percentage or absolute 

value) and tree pruning rule, which will affect the presentation of the resulting tree, 

multiple DTs are built so that the one with best performance on new test data can be 

chosen. The problem of overfitting can be avoided by abandoning those trees with too 

many nodes or splits. The final DT chosen takes 5 min and 50 s to build (on a PC 

with 2.66 GHz quad core CPU and 3.25 GB RAM) and has 11 levels below the root 

node. It was found that 12 out of the 30 predictors (rotor angles and speeds of 12 

generators), listed in Table 4-1, contribute to making a decision. The test at each node 

sets a threshold value for that particular predictor, which essentially distinguishes 

stable and unstable simulations far earlier than the time when the loss of stability 

actually happens.  

Table 4-1: Predictors contributing to the final decision tree. 

Predictors (Generator Bus #) 

Rotor Angle Rotor Speed 

2, 4, 9, 10, 11, 12, 14 3, 7, 8, 11, 16 

 

4.3.2 Sensitivity of Prediction Accuracy to Different Uncertainties 

4.3.2.1 Generation of Test Sets 

The chosen set of uncertain factors in the network consists of fault duration, fault 

location, the system operating point and the pre-fault system topology. Different sets 

of test data, previously unseen by the DT, are used to investigate the sensitivity of the 

prediction accuracy to each factor. In all simulations, only one three-phase self-
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clearing fault at a time is applied in the system and the post-fault system is simulated 

for 5 s. The asymmetrical faults were not considered at this stage of research. 

1) For fault duration: The system operating point and pre-fault topology is 

unchanged, i.e., loading and generation is as provided in [115, 127] and all 

lines are in service. The location of the fault is from bus 1 to bus 68.  The fault 

duration was varied randomly between 0.01 s and 0.29 s and 25 different fault 

durations were selected. Selected fault durations were different from the ones 

used in the training set. A test set containing 1700 different faults is designed 

in this way. 

2) For fault location: The system operating point and pre-fault topology is 

unchanged. The fault durations are the same as those in the training set. The 

fault location varies among 6 points on each transmission line (at 20%, 30%, 

40%, 50%, 60%, and 70% of the length). As there are 66 lines without 

transformer in the test system, a test set consisting of 9900 faults is designed.   

3) For system operating point: The faults with the same duration and location as 

in the training set are repeated for 7 different loading conditions (loading 

levels of 0.5, 0.9, 0.95, 1.05, 1.1, 1.15, and 1.2 of base load), with the pre-fault 

system topology unchanged. (In the UK, the extremely low level of 0.5 p.u. 

usually occurs from 3 am to 5 am during summer days [128].)  The number of 

faults simulated for each loading level is 1700.  

4) For system pre-fault topology: 8 different cases are investigated 

independently. In each case, one of the following transmission lines (indicated 

as red dashed lines in Figure 4-4) is removed from service:  L14-15, L4-14, L1-30, 

L3-52, L9-30, L25-26, L40-41, and L40-48. The first and last two lines are selected for 

disconnection since they will alter the system’s pre-fault power flow and 
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voltage profile very little (L14-15 and L4-14) and significantly (L40-41 and L40-48). 

The rest of the cases are evenly chosen between these extremes. For each case, 

a set of 1700 faults is repeated as at the training stage, with the system 

operating point unchanged. 8 test sets are created in total. 

 

Figure 4-4: NETS-NYPS five-area test network with removed transmission line indicated (lines were 
removed one at a time in 8 independent cases). 

All the above sets of test data are sent as inputs into the DT model in IBM SPSS 

Modeler. Since the speed of processing is extremely fast the outputs to 510,000 

predictor collections were obtained within 10 s on the same PC as previously 

described. 

4.1.1.1 Results and Discussions 

In real-time application, the PMU measurements from the network are transmitted 

into the control centre every cycle. After it has been identified that a fault is cleared 

(e.g., by monitoring voltages, frequency or the status of circuit breakers in the 

network) a time series of predictor collections are sent into the DT as input. A 

decision regarding whether the system will be stable or unstable is made for each 

collection so that the output from DT is also a time series. As a result, in this chapter, 

for a single set of test data the accuracy of prediction is evaluated at every instance 
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when decisions are made based on values of predictors at that time. For example, for 

the test set designed for uncertainty of fault duration, which contains 1700 different 

faults, 92% prediction accuracy at 0.2 s indicates that the transient stability of the test 

system is predicted correctly for 1564 faults using the predictors sampled at 0.2 s 

after the clearing of the fault.  

The evolutions of prediction accuracy for different test sets, according to the time 

after which the fault is cleared, are shown in Figure 4-5 to Figure 4-8. Each figure 

demonstrates the sensitivity of DT performance to one of the four assumed 

uncertainties, by comparing the results for test sets to the classification accuracy 

curve for the training database. 

Generally speaking, as shown in all these figures, the level of DT prediction accuracy 

increases with time. After the fault is cleared from the system, the longer the DT 

waits, the more confident it will be in making the decision of system transient 

stability. Take the training set as an example, using the predictors sampled about 0.5 s 

after the fault is cleared, the stability is classified correctly in 95% of the cases. Using 

predictors sampled approximately 3 s after fault is cleared, close to 100% of the cases 

are correctly classified. 

Looking first at Figure 4-5 and Figure 4-6, the shape of prediction accuracy curve is 

very weakly affected by the uncertainty of fault duration and location in the test sets. 

This indicates that the DT model generated previously is robust to unseen inputs that 

involve these two uncertain factors.  

In Figure 4-7, each prediction accuracy curve is obtained from the test set designed 

for a separate system Loading Condition (LC). Numbers in the legend indicate the 

level of loading and generation. When system loading is as low as 0.5 p.u., the system  
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Figure 4-5: Sensitivity of decision tree based prediction accuracy to different fault durations. 

  

Figure 4-6: Sensitivity of decision tree based prediction accuracy to different fault locations. 

is much less stressed than before and very far from its stability limit. The accuracy of 

prediction is higher than 95% when predictors are sampled immediately after the fault 

is cleared, and reaches 100% when decisions are made after about 0.3 s. When the LC 

is close to 1 (from 0.9 to 1.05), the shape of the curve changes. However, the curves 

corresponding to these LC can be considered as similar. When the system is highly 

loaded (from 1.1 to 1.2) it becomes more stressed and, the accuracy of prediction 

becomes lower. The accuracy does not increase to over 98% until 4 s after fault is 
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cleared. 

 

Figure 4-7: Sensitivity of decision tree based prediction accuracy to different system operation points. 

The prediction accuracy curves of the 8 test sets designed for assessing the effect of 

uncertainty in pre-fault system topology are separately shown in Figure 4-8 (a) and 

(b). The legends indicate the line taken out from service in different cases. In Figure 

4-8 (a), the removal of line L14-15, L4-14, L3-52, or L25-26, makes the pre-fault system 

slightly more stressed. The shapes of corresponding curves stay close to the training 

set’s curve. The removal of line L1-30, or L9-30, however, pushes the pre-fault system 

into a much more stressed operating condition. Compared to previous cases, the 

prediction accuracy of these two test sets is lower, especially when the time exceeds 2 

s. 

Figure 4-8 (b) demonstrates that the performance of the DT can be much worse 

compared to previous cases if one of the key transmission lines in the system is 

removed. When the line L40-41, or L40-48, is taken out, the pre-fault system becomes 

extremely stressed. The prediction accuracy in this case dropped between 70% and  

75% within the first 2 s after fault is cleared and does not go over 95% until after 4 s. 

As a whole, the DT based prediction accuracy for system transient stability is much 
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more sensitive to the uncertainty in system loading and pre-fault topology than to that 

of the fault duration and location. The more stressed the pre-fault system is, the 

poorer the prediction performance. The reason can be explained through closer 

inspection of simulations in different test sets. In the set constructed from the system 

with a high stress level, a larger portion of the faults will cause the system to be 

marginally stable (or unstable). The post-fault generator rotor angles and speeds 

either oscillate for a very long time or go out of step towards the end of simulation 

(after few seconds), and therefore it is very difficult for the DT to predict whether the 

system will be stable or unstable.  

 
 

 

Figure 4-8: Sensitivity of decision tree based prediction accuracy to different pre-fault system topology: 
(a) An arbitrary line in the system is removed from service. (b) Key line in the system is removed from 

service. 
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Furthermore, Figure 4-9 was obtained by plotting all curves from Figure 4-5 to Figure 

4-8 in the same figure. The shaded area indicates the range in which the prediction 

accuracy of DT will most probably be, no matter which type of uncertainty is 

involved in the inputs. The curves above and below the area demonstrate the 

extremely good and poor performance of DT when the system is under extremely 

unfavourable operating conditions and/or topology. 

 

Figure 4-9: Most likely range of decision tree based prediction accuracy to different uncertainties. 

4.4 Summary 

In this chapter, the application of DT method for PMU based online identification of 

transient stability was illustrated. The prediction accuracy of the DT model for unseen 

inputs was evaluated every time when the predictors are sampled during the post-fault 

period. The sensitivity of prediction accuracy has been investigated considering four 

types of uncertainties in the system.    

It has been shown that the accuracy of prediction is more sensitive to the uncertainty 

in system operating point and pre-fault network topology, than to fault duration and 

fault location. It should be pointed out though that only three-phase fault has been 

used at this stage of research as they are the most critical for system stability.  

The developed DT is typically able to predict system post-fault behaviour with 
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accuracy between 88% and 92% as fast as 0.25 s after the fault is cleared and with 

accuracy between 90% and 99% about 1 s after the fault. These initial results suggest 

that DT is a useful tool for online assessment of system transient stability and hence 

applicable to corrective control approaches.  

Although the test results provide useful information about the prediction accuracy of 

the trained DT, a more thorough assessment of the model robustness is required for a 

wide range of feasible operating conditions and disturbances. This will be addressed 

in the following chapter.  
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5 Probabilistic Framework for 

Assessing the Accuracy of 

Data Mining Tools 

5.1 Introduction 

In the previous chapter, the accuracy of DT for on-line prediction of transient stability 

was tested according to a list of power system uncertainties. Other frequently used 

ways of constructing test databases in the literature include selecting several 

individual representative contingencies and sampling one set of contingencies 

according to the distributions of all uncertain factors or past experiences. The system 

operators (or system level controllers), however, need to be confident regarding the 

accuracy of prediction when making control decision under emergency conditions.  

This chapter presents a generic probabilistic framework to assess the accuracy of a 

data mining model, which is the first original contribution of this research. The 

framework allows a thorough and realistic evaluation of the reliability of a data 

mining model in that it makes the right decision at the right time. It also, and more 
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importantly, allows a consistent comparison of different data mining models based on 

the accuracy of the prediction.  

The probabilistic approach is applied in the testing process. The algorithm performs 

an exhaustive search of possible contingencies and then weighs the accuracies 

according to the realistic probability distribution of uncertain system factors. The 

assessment results highlight the effect of different uncertain factors on the accuracy of 

prediction of system transient stability, and identify the confidence level of a data 

mining model in real time. 

The data mining technique used as an example in this chapter is also DT. Any other 

data mining techniques could have been used to illustrate the methodology without 

any loss of generality. 

5.2 Proposed Methodology 

Many basic initiating factors that can affect transient stability are probabilistic in 

nature, including the type and location of the fault, operating times associated with 

the fault clearing equipment, and the system operating conditions at the time of fault 

inception such as loading levels, generation capacities and network topology [129-

131]. A probabilistic approach is therefore the most suitable way to establish a 

thorough evaluation of the prediction accuracy of a data mining model.  

To simplify the description and illustration of the proposed methodology only four 

probabilistic factors are used in the procedure of testing. They are: i) fault clearing 

time; ii) fault location; iii) fault type; iv) system loading level. The inclusion of more 

factors for practical implementations would be straightforward and would not affect 

the methodology, though the numerical results would be different. 

For a certain type of fault, at one possible location and a certain load level, the fault 
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clearing time is varied in a probabilistic manner to generate a set of contingencies. 

The probabilistic distribution of fault clearing time is defined according to the 

protection system in the network [129, 130, 132]. The accuracy of prediction ijkA  at a 

location ݅ for a fault type ݆ and at load level ݇ can be found based on the test results 

of this set.  

At the same time, system faults can be categorised into single line to ground (LG), 

line to line (LL), line to line to ground (LLG) and three phase (LLL) faults. The faults 

can be located at different buses or on various transmission lines (including both 

close-in and mid-line region [130]). The system load varies during the day and 

through the year. The probability distribution of the above three factors for a practical 

power system can be found in historical data. Since the type and location of fault and 

the system conditions at the time of the fault occurrence are all independent, 

according to the probability theory, the probability, ijkP , of prediction accuracy being 

ijkA  is given by (5.1), where iP , jP  and kP  are the probability of having a fault at 

location i, of type j, and at load level k, respectively. Therefore, the probabilistic 

accuracy of prediction (A) at all possible locations (I) for all fault types (J) and all 

system load levels (K) can be calculated from (5.2). 

ijk i j kP P P P    (5.1) 

1 1 1

I J K

ijk ijk
i j k

A A P
  

   (5.2) 

The expression for accuracy of prediction (5.2) can be easily extended to include 

other uncertain factors including network topology changes, generation patterns, load 

models and parameters, presence and output of renewable generation, etc. This 

extension would result in (5.1) and (5.2) being modified to include further 
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probabilities on the right hand side of (5.1) and summations on the right hand side of 

(5.2). The extension would yield different quantitative results for A and more 

computational effort to get them; however, the methodology to obtain the result 

would remain the same. 

5.3 Probabilistic Distribution Used in the Test System 

The probabilities associated with the clearing time, type and location of fault, and 

system loading level are expected to be obtained from the available system data. In 

the absence of such data for the NETS-NYPS test system, the distributions are 

assumed as follows. 

5.3.1 Fault Clearing Time 

In this study, a discrete uniform distribution of fault clearing time, ranging from 0.05 

s to 0.29 s with an increment of 0.02 s, is assumed for any location in the network. 

This assumption allows a reasonable mix of stable and unstable post fault system 

conditions to be generated. However, in practical networks more complex 

distributions based on reliability modelling of the protection system, such as normal 

distribution, could be used [129, 130, 132]. 

5.3.2 Fault Location 

For an existing power system the probabilities of fault location can usually be 

obtained from the historical transmission outage statistics. It is also often the case that 

during the study period, some buses and lines did not experience transient faults at all 

[130]. Since the data for the test network used in this study is not available, the 

probabilities listed in Table 5-1 are arbitrary. It can be seen from the table that 25 

different locations are chosen for this study. Five of them are generator buses whilst 

the remaining 20 locations are on the transmission lines (in the middle of each line for 
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simplicity). Furthermore, as highlighted in the table, Line 16-19 is the most probable 

location where faults can happen (the probability is 0.1382) whilst Bus 54, Line 1-31, 

Line 33-34 and Line 39-44 all have the lowest probability of 0.0046.  

Table 5-1: Fault location probabilities. 

No. Location Probability No. Location Probability 

1 Bus 54 0.0046 14 Line 1-30 0.0369 

2 Bus 57 0.0138 15 Line 30-31 0.0414 

3 Bus 61 0.0099 16 Line 1-31 0.0046 

4 Bus 62 0.0276 17 Line 32-33 0.0690 

5 Bus 63 0.0185 18 Line 33-34 0.0046 

6 Line 17-36 0.0369 19 Line 16-37 0.0967 

7 Line 16-19 0.1382 20 Line 39-44 0.0046 

8 Line 16-21 0.0876 21 Line 37-52 0.0277 

9 Line 22-23 0.0230 22 Line 3-4 0.0834 

10 Line 16-24 0.0276 23 Line 10-11 0.0311 

11 Line 26-27 0.0415 24 Line 15-16 0.0089 

12 Line 26-28 0.0507 25 Line 1-27 0.01 

13 Line 28-29 0.1012    

 

5.3.3 Fault Type 

Table 5-2: Fault type probabilities. 

No. Fault Type Probability 

1 Single Line to Ground 0.7 

2 Line to Line 0.15 

3 Line to Line to Ground 0.1 

4 Three Phase 0.05 

Although less severe in terms of consequences that they leave on power systems, 
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most of the faults in realistic power systems are unbalanced faults. The most severe, 

three-phase faults, in contrast, have relatively low probabilities of occurrence. The 

distribution of the fault type used in this study is adopted from [133] and it is shown 

in Table 5-2. 

5.3.4 System Loading Level 

As shown in previous work, a multi-step loading model derived from a Load 

Duration Curve (LDC) can be used to describe the variations in system loading [129, 

134, 135]. Therefore, a six-step approximate LDC as illustrated in Figure 5-1 is 

assumed for the test network. Different loading levels (as percentage of maximum) 

and their probabilities, as detailed in Table III, are all arbitrary.  

 

Figure 5-1: Multi-step load model for the test system. 

Table 5-3: System load probabilities. 

Load Step 
Load Level as 
Percentage of 

Maximum 

Loading Factor 
Based on Given 

Load 
Probability 

1 100% 1.173 0.05 

2 95% 1.114 0.1 

3 88% 1.03 0.3 

4 79% 0.927 0.3 

5 66% 0.774 0.15 

6 58% 0.681 0.1 
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To determine the maximum load of the test network, all nominal loads as given in 

[115, 127], either real or reactive, are initially multiplied by the same Loading Factor 

(LF). The OPF is then run repeatedly with a gradual increase of the LF. The 

maximum load can be found just before the non-converge of OPF occurs. As a result, 

the maximum load level (100%) corresponds to the LF 1.173. The LFs for the other 

five levels are calculated and listed in Table 5-3. 

5.4 Training of Decision Tree 

5.4.1 Predictors and Target  

As in the previous chapter, 30 predictors are chosen including 15 rotor angles (of G1 

to G12 and G14 to G16) and the 15 rotor speeds. The target of training is the system 

stability status after the fault is cleared. 

5.4.2 Generation of Training Set 

To generate the training database, only three-phase self-clearing faults (one at a time) 

with varying fault location (from bus 1 to bus 68) and fault clearing time (from 0.05 s 

to 0.29 s, with an increment of 0.02 s) were simulated in the test network, at the given 

nominal load level (LF equals 1). The pre-fault system initial conditions are obtained 

using OPF. In total, 884 different faults were simulated and the post-fault system 

behaviour (rotor angle responses) was recorded for 6 s following each fault.  

The transient stability of the system is assessed again according to the criterion that if 

the difference between any two of the generator rotor angles exceeds 360 degrees 

within the 6 s of simulation the system is considered to be unstable, otherwise it is 

stable. As a result, 746 simulations (84.4%) among the 884 were classified as stable 

whilst 138 simulations (15.6%) were unstable. 

In each simulation, all 15 rotor angles are sampled every cycle (i.e., 0.0167 s, based 
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on 60Hz system) [10]. The rotor speed for each generator is calculated using a 

backward difference approximation [60, 103], as given by (4.1). 

The first 5.01 s of rotor angles and speeds are converted into training data [62] and so 

for one simulation 300 vectors of predictors are created. Each vector has 30 elements, 

and is further assigned a target variable which has a binary value “1” (unstable) or “0” 

(stable). The targets of all the 300 vectors from one unstable simulation are set as 

unstable and vice versa. For the 884 faults, 265,200 predictor-target pairs are 

constructed in total. Each of them is used as an individual example for training.  

5.4.3 Building the Tree 

The DT in this chapter is also built using the CART algorithm in IBM SPSS Modeler, 

in 4 min and 7 s (on a PC with 2.66 GHz quad core CPU and 3.25 GB RAM) and has 

11 levels below the root node. Only 12 (mix of speeds and rotor angles of 11 

generators) out of the original 30 predictors are used to make a decision, due to the 

feature selection of the training process. They are listed in Table 5-4.  

Table 5-4: Predictors contributing to the final decision tree. 

Predictors (Generator Bus #) 

Rotor Angle Rotor Speed 

3, 5, 7, 9, 10, 11, 12, 16 2, 4, 8, 9 

5.5 Probabilistic Evaluation of Prediction Accuracy 

The methodology for the probabilistic evaluation of prediction accuracy outlined in 

Section 5.2 is applied to the DT model, using the probability distributions assumed in 

Section 5.3. The procedure is described in detail as follows.  

For each of the four types of fault, at each of the 25 locations and at each of the six 

system loading levels, a testing set containing 13 self-clearing faults is simulated by 
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varying the fault clearing time from 0.05 s to 0.29 s with an increment of 0.02 s. Both 

symmetrical and asymmetrical faults are modelled as presented in Section 2.3. The 

post-fault system is simulated for 6 s for each fault. In total, there are 600 testing sets 

including 7800 different faults which are not used during the training of DT. The 

system stability status, after each fault, is assessed using the criterion previously 

described, and then later compared to the output of DT. 

After predictor vectors are constructed from the first 5.01 s of data from the above 

simulations (in the same way as for training set), they are sent as inputs into the DT 

model in IBM SPSS Modeler. For each simulation (including 300 predictor vectors) 

the outputs can be obtained within approximately 6 ms execution time on the same 

PC as previously described. 

As presented in the last chapter, for a single testing set, the accuracy of prediction is 

evaluated at every instance when decisions are made based on the values of predictors 

at that time. For example, for the testing set which contains 13 three-phase faults at 

bus 2 when system LF is 1.173, prediction accuracy of 76.9% at 0.1 s indicates that: 

in 11 of the faults, the post-fault transient stability status of the test system 

(stable/unstable) is predicted correctly using the predictors sampled at 0.1 s after fault 

clearing. Therefore, ijkA  for each of these 600 testing sets is actually an array with 

300 elements which represent the prediction accuracies from 0.0167 s to 5.01 s (with 

an increment of 0.0167 s) after the fault is cleared from the system.       

After calculating ijkA  for all 600 testing sets, the probability of having a fault at 

location i, of type j, and at load level k can be applied. There are three types of 

prediction accuracy which can firstly be worked out. They are: i) The probabilistic 

accuracy at 25 different locations for all types of faults and at all possible load levels; 
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ii) The probabilistic accuracy for four different types of faults at all possible locations 

and all possible load levels; iii) The probabilistic accuracy at six different load levels 

for all types of fault and at all possible locations. They can be calculated using (5.3) 

to (5.5) and the results can indicate to what extent each of them affects the accuracy 

of prediction. 

4 8

1 1
i ijk ijk

j k

A A P
 

   (5.3) 

25 6

1 1
j ijk ijk

i k
A A P

 

   (5.4) 

25 4

1 1
k ijk ijk

i j

A A P
 

   (5.5) 

5.6 Results and Discussion 

The evolutions of different types of probabilistic accuracy of prediction according to 

the time after the fault is cleared are presented in Figure 5-2 to Figure 5-5. The data in 

these figures corresponds to the accuracy of prediction by the DT algorithm made at 

different times following the fault clearance. The algorithm detects an event and waits 

for a pre-determined time to use the output from one time sample to make a 

prediction. As shown in all these figures, the level of DT prediction accuracy 

increases with time. After the clearance of the fault, the longer the DT waits, the more 

confident it will be in making the decision about system transient stability. However, 

the sooner the prediction is made the longer the time available to take control actions 

to avoid loss of stability will be; therefore these figures can help balance the trade-off 

between the decision making time and the acceptable level of accuracy of prediction. 

Looking first at Figure 5-2, the 25 overlapped curves show that for any fault type and 

at any system load level, the probabilistic accuracy of prediction of the DT varies 
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depending on the fault location. However, it can also be seen that based on the 

probability distribution assumed for this test system, the effect of the fault location on 

the probabilistic accuracy of prediction is very small. All of the 25 accuracies go 

above 98% after about 0.2 s and the differences between their values are low (within 

2%). 

  

Figure 5-2: Probabilistic accuracy of prediction at 25 different possible locations. 

Figure 5-3 presents the curves of probabilistic accuracy of prediction for the four 

different types of fault, at any possible location and any possible system loading level. 

In fact, unbalance faults in the test system cause fewer stability problems since the 

system itself is designed to withstand the “worst case” scenario. The number (or 

percentage) of unstable simulations increases when the fault type varies from single 

line to ground to three phase fault, as listed in Table 5-5. Therefore, the straight line 

at the top of Figure 5-3 which has the value of 100% throughout the 5 s, demonstrates 

the high reliability of the DT model to predict the most frequent type of fault, single 

line to ground fault, correctly, i.e., to predict stable simulations as stable. For line to 

line and double line to ground fault, which cause comparatively more unstable 

simulations, the probabilistic accuracies are approximately 98% when predictors are 
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sampled immediately after the fault is cleared, and reaches more than 99% after about 

0.5 s. For the most severe but least frequent type of fault, i.e., the three-phase fault, 

the probabilistic accuracy of prediction becomes lower. It is only around 90% 

immediately after the clearance of the fault and does not increase to above 98% until 

0.8 s following the fault clearance. 

 

Figure 5-3: Probabilistic accuracy of prediction for 4 different types of fault. 

Table 5-5: Simulation results based on fault types. 

Fault Type Stable Unstable 

LG 1949 (99.95%) 1 (0.05%) 

LL 1818 (93.23%) 132 (6.77%) 

LLG 1778 (91.18%) 172 (8.82%) 

LLL 1420 (72.18%) 530 (27.18%) 

 

In Figure 5-4, the accuracy of prediction at six different system loading levels for any 

type of fault and at any possible location is shown. When the LF is lower, the system 

operates at a less stressed level and is further away from its stability limit. A smaller 

number (or percentage) of unstable simulations are generated, as detailed in Table 5-6. 

The curves in Figure 5-4 for LF from 0.681 to 1.03 are all above 99% immediately 
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after the fault is cleared, which demonstrates the DT model’s high reliability to 

predict the system at normal loading level. When LF is 1.114, the probabilistic 

accuracy also exceeds 98% after approximately 0.2 s. When the system is under 

extremely unfavourable operating conditions and the load level is at its maximum 

value, approximately 35% of the faults simulated (of all types of fault and at all 

possible locations) are unstable. The prediction accuracy of DT can only achieve 92% 

accuracy immediately following the fault clearance, and does not go above 98% until 

0.9 s. 

 

Figure 5-4: Probabilistic accuracy of prediction at 6 different loading levels. 

Table 5-6: Simulation results based on system loading factor. 

LF Stable Unstable 

0.681 1289 (99.15%) 11 (0.85%) 

0.774 1282 (98.62%) 18 (1.38%) 

0.927 1253 (96.38%) 47 (3.62%) 

1.03 1197 (92.08%) 103 (7.92%) 

1.114 1100 (84.62%) 200 (15.38%) 

1.173 844 (64.92%) 456 (35.08%) 
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Finally, Figure 5-5 shows the overall accuracy of prediction of the DT model 

developed in Section 5.4.3. The curve in Figure 5-5 is obtained by applying different 

weights on the curves in Figure 5-2, Figure 5-3 or Figure 5-4, according to the 

probabilities listed in Table 5-1, Table 5-2, or Table 5-3 respectively. It can be seen 

that this DT model is generally very reliable for making the right decision under 

emergency conditions of the test system, considering all four probabilistic factors. For 

any type of fault at any possible location and any system load level, the DT predicts 

the system stability status with 99% accuracy within 0.2 s after the clearance of fault, 

and close to 100% accuracy after about 2.5 s. 

 

Figure 5-5: Overall probabilistic accuracy of prediction. 

5.7 Summary 

This chapter presented a probabilistic framework for the assessment of a data mining 

model’s accuracy of prediction for on-line transient stability. This has been applied to 

the 16-machine, 68-bus NETS-NYPS test network. Although the DT based 

methodology was used to illustrate the proposed approach, the probabilistic 

framework for the assessment itself is data mining technique independent.  

The training of DT was only based on three-phase faults at different buses and at the 

given nominal load level of the test system. However, for assessing the probabilistic 
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accuracy of prediction, the probabilistic nature in fault type, fault location, fault 

clearing time and system load level are all taken into consideration. Although 

probability distributions of these factors in the test network were assumed arbitrarily, 

historical data of existing power systems can be used for practical applications if 

available.  

Finally, the results were presented as the evolution of probabilistic accuracy of 

prediction according to the time after the fault clearance. It has been shown that the 

model developed in this study is generally very reliable. 

Both the DTs in this and the previous chapter only predict power system transient 

stability to assist with corrective control. The next chapter, however, will go a step 

further in predicting the dynamic behaviour of generators in the event of instability. 
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6 On-line Identification of 

Power System Dynamic 

Signature  

6.1 Introduction 

As in much of the past research on on-line transient stability prediction using PMU 

measurements and data mining, the DT in both Chapter 4 and 5 predict whether the 

post-fault power system remains stable or goes unstable. The post-fault behaviour of 

the system is classified only into two classes during the off-line supervised training 

process.  

This chapter proposes a two-stage methodology for the problem of PMU-based on-

line identification of power system dynamic signature. After a transient disturbance is 

cleared in real-time, the first stage is to predict the transient stability status using 

traditional binary classification. If the system is determined to be unstable, then the 

second stage predicts detailed generator dynamic behaviour. A novel methodology is 

developed in this chapter to implement the second stage. It is also based on data 
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mining, but firstly applies unsupervised learning to pre-process the off-line simulated 

database of unstable contingencies, and then trains multiclass classifiers through 

supervised learning. A variety of multiclass classification techniques, including DT, 

EDT and multiclass SVM (MSVM), are compared in order to determine the most 

suitable one for the task in hand. The proposed two-stage methodology is 

demonstrated on the test network. 

This chapter presents the second, third, and fourth original contribution of this thesis. 

6.2 Proposed Methodology 

6.2.1 Generating a Library of System Dynamic Responses  

To predict the dynamic signature of a system in real time, the first step is to produce a 

library of system dynamic responses (characterised by post-disturbance rotor angle 

swings of individual generators) by performing extensive off-line contingency 

simulations. The probabilistic nature of phenomena considered is taken into account 

to ensure comprehensiveness of the library. The uncertainties associated with system 

topology, loading levels, generation capacities [129, 130], type and location of 

disturbance and fault clearing times need to be modelled. The library generation 

procedure is shown by the flow chart of Figure 6-1.  

The sampling of uncertain factors can be uniform or random according to their 

individual probability distributions which are obtained from historical or forecasted 

24-hour data [99]. In the contingency analysis, the length of time domain simulation 

after the fault clearance is dependent on the dynamic behaviour of the system. It 

should be long enough so that: i) The grouping of generators are fully developed and 

can be clearly distinguished in most of the contingencies; ii) Cases in which some of 

the generators experience loss of synchronism towards the end of the simulation are 
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avoided. 

 
Figure 6-1: Procedure for generating a library of system dynamic response. 

6.2.2 Developing a Binary Classifier for Transient Stability Status  

A binary training database is firstly constructed from all contingencies in the library. 

Generator rotor angles are used as predictors and system transient stability status is 

the target of prediction. The criterion to distinguish between stable and unstable 

contingencies is the difference between rotor angles of any two generators in the 

system [55, 62]. If this difference exceeds 360 degrees within a certain simulation 

time the system is labelled as unstable, otherwise it is stable. A classification 

technique, C5.0 algorithm of DT, is then applied to train a binary classifier to be used 

in the first stage of on-line application.   

6.2.3 Developing a Multiclass Classifier for Unstable Dynamic 

Behaviour  

In the second stage of the proposed methodology, only the unstable contingencies 

from the library are further processed. The characterization of unstable dynamic 

behaviour involves two off-line steps:  

Step 1. The patterns of unstable dynamic behaviour are identified within the database 

using an unsupervised learning approach. Each contingency is labelled with the 
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category of pattern. The purpose of this step is to find prototype examples in the 

training database so that the on-line prediction task becomes a supervised 

classification problem.  

Step 2. Following Step 1, multiclass classifiers are trained through supervised 

learning. The predictors are again generator rotor angles whilst the target is the 

pattern of unstable dynamic behaviour, instead of transient stability status.  

Further details about each of the above steps are given below. 

6.2.3.1 Step 1: Data Pre-processing  

Finding the patterns of post-disturbance rotor angle swings in a large number of 

simulations is very difficult for the following reasons. In each individual contingency, 

the post-disturbance rotor angle swings of all generators in the system need to be 

grouped using a clustering algorithm. The number of groups, however, varies for 

different contingencies and is not known in advance. To group generators for all 

contingencies automatically, a uniform standard that specifies under what conditions 

two generators should be grouped together needs to be defined. A variety of 

clustering algorithms have been applied in the past to identify the coherency of 

generators using trajectory of rotor angles or speeds, including Fuzzy C-means, 

Principle Component Analysis, Independent Component Analysis, Support Vector 

Clustering, Hierarchical Clustering (HC), etc. [106, 136-138].  In all these studies, 

however, the number of groups of generators exhibiting similar behaviour, or other 

types of parameters, need to be decided in advance for specific contingencies.  

The methodology proposed in this chapter uses HC, as a pre-processing step of the 

supervised classification problem, to identify characteristic patterns of unstable 

dynamic behaviour of a power system from the database of unstable post-disturbance 
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system responses. The number of groups therefore is not specified in advance as was 

the case in past published work where clustering algorithms were used to identify the 

coherency of generators.  

The illustrative, arbitrarily drown, post-disturbance generator rotor angle swings in 

one contingency are shown in Figure 6-2. They are saved as a matrix of time series in 

the generated database, as shown by (6.1), 

1 2

1 2

1 2

1 1 1
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 (6.1) 

where tn is the length of simulation time whilst m is the total number of generators. 

The time interval between every two data samples is selected as one cycle. 

 

Figure 6-2: Illustration of post-disturbance generator rotor angle swings. 

Two different approaches are proposed to apply HC to group the generators. 

1) Approach I 

In this approach, only the single sample of rotor angles at the last instant of 

simulation is used to identify the grouping of generators. The objects of Hierarchical 

Clustering therefore become m data points ranging from ( nt , 1
nt ), ( nt , 2

nt ) to ( nt , 

nt
m ). Euclidean distance [123] is used to measure the similarity between pairs of 

points. Complete-linkage is chosen as the linkage criterion, i.e., the distance between 
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clusters is determined as the distance between two elements, one from each cluster, 

that are farthest away from each other [123]. The unit of height in the resulting 

dendrogram is degree.  

As 360 degrees is usually the threshold of rotor angle difference that determines the 

system transient stability [55, 62], it is used here as the cut-off value to form the 

clusters from the dendrogram of each contingency. In Figure 6-3, for instance, the 

first five generators are divided into three separate clusters. G4 and G5 are placed in 

cluster 1, G1 and G3 in cluster 2, and G2 in cluster 3. In this way, the difference 

between any two rotor angles in each cluster is less than 360 degrees at the end of the 

simulation.  

 
Figure 6-3: Example dendrogram constructed from data points at the end of simulation. 

Applying the above approach to generators in every unstable contingency, a 

dendrogram can be created for each of them. By using a uniform threshold to cut all 

the trees, the grouping of generators, which can vary from one contingency to another, 

can be found for all contingencies. In this way, the number of clusters/groups does 

not need to be specified for each loop in advance. Instead it is identified automatically. 

The way in which the dendrogram is cut off represents the key novelty of the applied 

Hierarchical Clustering. 

The procedure of Approach I for identifying patterns of generator dynamic behaviour 

for all unstable contingencies is presented in Figure 6-4. As indicated by the dashed 
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line frame, a further step can be taken on the result of Hierarchical Clustering to 

identify the groups of generators that lose synchronism. Whether to take this step or 

not depends on the aim of the study, i.e., what one wants to predict on-line for the 

purpose of corrective control. Within a library of responses, multiple (a limited 

number) patterns of unstable dynamic behaviour can usually be identified. A 

label/category can be assigned to each contingency according to which pattern it 

results in. This label will be used as the target for subsequent supervised learning.  

 

Figure 6-4: Procedure for identifying patterns of generator dynamic behaviour for all unstable 
contingencies: Approach I. 

Although this approach is simple and effective, it has some shortcomings. It only 

utilises the information of rotor angles at the last instant, and does not take into 

account the complete rotor angle responses. When the number of Monte Carlo 

simulations is large, there can be a few cases in which two separate curves happen to 

join together around the end of the simulation and will be separated again if the 

simulation time is extended. In these cases, the grouping results obtained through this 

approach may not be optimal. 

2) Approach II 

The second approach proposed here considers the complete simulated swing curves 

of the generator rotor angles instead of one individual sample. The objects of 
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Hierarchical Clustering change to m n-dimensional vectors represented by the rows of 

matrix X in (6.1). Euclidean distance [123] between two vectors for generator j and k 

is shown in (6.2) whilst the complete-linkage criterion is used again.  

2

1

( , ) ( )i i
n

t t
j k j k

i

d    


                                                     (6.2) 

The threshold value used to cut the dendrogram, however, cannot easily be defined. 

To find this value, all the stable contingencies (identified using the criterion 

mentioned before) within the database are collected first. The maximum Euclidean 

distance between any of the two rotor angle curves maxd  is found in each of the stable 

contingencies. The threshold value is then determined based on the distribution of  

maxd  for all stable contingencies. The procedure of this approach is summarised in 

Figure 6-5.  

 

Figure 6-5: Procedure of identifying generator grouping patterns for all unstable contingencies: 
Approach II. 

6.2.3.2 Step 2: Multiclass Classification 

In order to predict which pattern the post-disturbance system will fall into using a 

short period of real-time rotor angle samples, a multiclass classifier needs to be 
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trained. As introduced in Section 3.2.5, different classification algorithms exist, some 

of which naturally permit the use of more than two classes. Others are by nature 

binary, but can be developed into multi-class [117]. The most popular algorithms that 

have been successfully applied in various disciplines, including DT, EDT and MSVM, 

are investigated and compared in this chapter.  

6.2.4 Identifying Power System Dynamic Signature in Real-Time 

Finally, in real-time application, after it has been detected that a transient disturbance 

has just been cleared (using conventional methods such as monitoring voltages, 

frequency or status of circuit breakers), generator rotor angles are recorded and sent 

to  the binary classifier to predict the system transient stability status. If the system is 

identified as unstable, predictors are sent into the multiclass classifier. The result 

predicts the behaviour of rotor angles of the unstable generators at the time 

corresponding to the duration of the off-line simulation (i.e., tn ). If the system is 

defined as stable, on the other hand, appropriate damping control could be deployed if 

required, i.e., if the system oscillations are deemed to be poorly damped. 

A summary of the complete methodology for online identification of power system 

dynamic signature is presented in Figure 6-6. 

6.3 Test System Uncertainties 

The NETS-NYPS five-area system is again used as the test network. The pre-fault 

system initial conditions are performed using OPF. 

For the system operating conditions, the load variation is considered as the only 

uncertain factor in this chapter. It follows a normal distribution with nominal mean 

values as given in [115] and standard deviation of 3.33% (10% at 3σ). All the loads 

are modelled as completely dependent by scaling them with the same loading factor  
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Figure 6-6: Flow chart summary of the proposed methodology. 

at a time. The generation output at each loading level is determined using OPF that 

minimises the generation cost based on traditional quadratic cost functions for each 

generator. Topology change is not considered at this stage of research. Only three-

phase faults are used at this stage of research as the most critical for system stability. 

It is assumed that all faults occur on transmission lines, and not on buses or within 

transformers. The faulted line is selected uniformly among the 66 available lines. The 

fault position along the length of the line is randomly selected following a uniform 

distribution. The duration of the fault is modelled as a normal distribution as in [130] 

with a mean value of 13 cycles and a 0.667 cycles standard deviation (2 cycles at 3σ). 

Although this is a long fault clearing time for high voltage systems and only realistic 
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when circuit breakers fail or when delayed tripping is involved [1], it is selected to 

generate a reasonable mix of stable and unstable conditions in the test system. The 

faults are assumed to be cleared without tripping any line. Clearly, many other 

different contingencies and cases could be simulated; however, these are deemed 

sufficient for the illustration of the proposed methodology. 

6.4 Applications, Results and Discussions 

The methodology described in Section 6.2 has been applied to the test system. The 

performance of it is evaluated based on two criteria. The first is how fast the 

prediction can be made after the fault clearance. The sooner it is, the longer the time 

is available for corrective control. The second is how accurate the prediction is. The 

misclassification of dynamic signature (post fault behaviour of the system) can lead 

to inappropriate control actions and in turn to instability or even system blackout. 

6.4.1 Generation of Training Database 

To generate the training database, 5000 contingencies are simulated using a Monte 

Carlo approach. The uncertain factors for each contingency, including system loading 

level, fault location and fault duration, are randomly sampled according to their 

corresponding distributions as presented in Section 6.3. In many of these cases a few 

generators lost synchronism after 10 to 15 s. Therefore, the test system is simulated 

for 20 s after the fault clearance. The time interval between samples of the rotor angle 

swings is 0.0167 s for the 60 Hz system (sampling rate of 60Hz). Since there are 15 

generators (excluding the slack G13 with constant rotor angle), the matrix X in (6.1) 

for each contingency has 15 rows and 1197 columns.  

In the MATLAB/Simulink environment, simulating 1000 contingencies 

(approximately 90% of which are stable whilst 10% are unstable) for the test system 
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for 20 s after the fault clearance takes about 14 hours of computation time on a PC 

with 2.66-GHz quad core CPU and 3.25 GB of RAM. For practical power systems, 

the time domain simulation can be executed by software such as DIgSILENT/Power 

Factory and Transient Security Assessment Tool (TSAT) as in [71] and [61], 

respectively.  

6.4.2 Binary Classification 

Table 6-1: Training databases with different length of post-fault rotor angle responses. 

Training 
Database 

No. 

Length of rotor 
angle data in cycles 

(p) 

Length of rotor 
angle data in second  

( pt )  
No. of Predictors 

(15*p) 

1 10 0.167 150 

2 20 0.334 300 

3 30 0.501 450 

4 40 0.668 600 

5 50 0.835 750 

6 60 1.002 900 

 

All 5000 contingencies are used in the training for transient stability status. Although 

the post-fault system is simulated for 20s, only the first p cycles (i.e., tp s) of each 

generator rotor angle are used as predictors. Training databases have been created 

with varying values of p (varying lengths of rotor angle responses), detailed in Table 

6-1. This has been completed to assess the influence of the length of the training data 

on the prediction accuracy. According to the criterion specified in Section 6.2.2, 438 

(8.76%) contingencies are identified as unstable whilst the remaining 4562 (91.24%) 

are stable. Binary targets with the value of “1” (unstable) or “0” (stable) are then 

assigned to every contingency. As a result, the binary training database can be 

represented by the matrix Y, as shown in (6.3), which has 5000 rows and (15 1)p 
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columns. In (6.3), ,
kt

i j is the rotor angle of generator j in the ith contingency at time kt

whilst iT  is the stability status of the ith contingency. 
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(6.3) 

6.4.3 Multiclass Classification 

Only the 438 unstable contingencies are used for further analysis of unstable dynamic 

behaviour. Training databases have been created again according to Table 6-1. 

Having completed the procedure of data pre-processing in both of the two approaches 

outlined in Section 6.2.3.1, two types of nominal targets can be defined depending on 

whether the step in the dashed line frame in Figure 6-4 and Figure 6-5 is taken and 

assigned to each contingency. They are:  

 Target I:  Pattern which indicates generator grouping only. 

 Target II: Pattern which indicates both, generator grouping and groups that 

lose synchronism.  

6.4.3.1 Dynamic Signatures Identified from Approach I 

Using Approach I, 12 different patterns are identified for target I, shown in Table 6-2. 

Pattern No. 1, with G10 and G11 becoming unstable, occurs most frequently. This is 

the result of many factors such as the generator controls, generator parameters, and 

system topology. As mentioned before, G10 to G16 have constant excitation while 

the other generators are equipped with AVRs. Furthermore, the inertia constants of 

G10 and G11 are relatively small compared to the inertia constants of G12 to G16. 

Therefore, G10 and G11 are the most likely to become unstable following system 

disturbances.  
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Table 6-2: Patterns of unstable dynamic behaviour in training database – Target I. 

Pattern
# 

No. of 
Contingencies Grouping of Generators 

1 243 (G1-G9, G12, G14-G16) (G10) (G11) 

2 110 (G1-G8, G10-G12, G14-G16) (G9) 

3 2 (G1, G3-G9) (G2) (G10) (G11) (G12) (G14-G16) 

4 18 (G1-G9) (G10) (G11) (G12) (G14-G15) (G16) 

5 45 (G1-G9) (G10) (G11) (G12) (G14-G16) 

6 1 (G1, G2, G4-G9, G12, G14-16) (G3) (G10) (G11) 

7 11 (G1-G9, G14, G15) (G10) (G11) (G12) (G16) 

8 4 (G1, G2, G4-G16) (G3) 

9 1 (G1, G4-G9) (G2, G3) (G10) (G11) (G12) (G14, G15) (G16) 

10 1 (G1-G8) (G9) (G10) (G11) (G12) (G14-G16) 

11 1 (G1-G10, G12-G16) (G11) 

12 1 (G1-G9, G11-G16) (G10) 

 

For target II, the groups of generators that lose synchronism are identified. The 

criterion is whether the rotor angle difference between any generator in a group and 

the reference generator (G13) is greater than 360 degrees within the simulation time. 

The number of patterns increases to 16 as detailed in Table 6-3. This indicates that for 

some patterns in Table 6-2, although the generator groupings of all contingencies are 

the same, the groups that lose synchronism can actually be different. 

Examples are given in Figure 6-7 to show how the post-fault rotor angle responses 

look like for the patterns listed in Table 6-3. 

In this database, the situation where two separate curves join together at the end of 

the simulation, as mentioned before, does not occur due to long enough simulation 

after fault clearance (i.e., 20 s).    
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Table 6-3: Patterns of unstable dynamic behaviour in training database – Target II. 

Pattern 
# 

No. of Contin-
gencies 

Grouping of Generators with Unsynchronised Groups 
Highlighted 

1 243 (G1-G9, G12, G14-G16) (G10) (G11) 

2 110 (G1-G8, G10-G12, G14-G16) (G9) 

3 1 (G1, G3-G9) (G2) (G10) (G11) (G12) (G14-G16) 

4 1 (G14-G16) (G1, G3-G9) (G2) (G10) (G11) (G12) 

5 9 (G1-G9) (G10) (G11) (G12) (G14-G15) (G16) 

6 9 (G1-G9) (G10) (G11) (G12) (G14-G15) (G16) 

7 9 (G1-G9) (G10) (G11) (G12) (G14-G16) 

8 31 (G14-G16) (G1-G9) (G10) (G11) (G12) 

9 5 (G1-G9) (G10) (G11) (G12) (G14-G16) 

10 1 (G1, G2, G4-G9,G12, G14-16) (G3) (G10) (G11) 

11 11 (G1-G9, G14, G15) (G10) (G11) (G12) (G16)  

12 4 (G1, G2, G4-G16) (G3) 

13 1 (G1, G4-G9) (G2, G3) (G10) (G11) (G12) (G14, G15) (G16) 

14 1 (G14-G16) (G1-G8) (G9) (G10) (G11) (G12) 

15 1 (G1-G10, G12-G16) (G11) 

16 1 (G1-G9, G11-G16) (G10) 

 

 

 

(a)  Pattern 1 

 

(b)  Pattern 2 
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 (c)  Pattern 3 

 

 (d)  Pattern 4 
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Figure 6-7: Examples of post-fault rotor angle behaviour for the 16 patterns listed in Table 6-3. 

6.4.3.2 Dynamic Signatures Identified from Approach II 

The distribution of maxd which is the maximum Euclidean distance between any of the 

two rotor angle curves in one stable contingency is shown in Figure 6-8. It can be 

seen that the highest value of maxd  among the 4562 stable cases is less than 2800. 

Since the database may not contain any marginally stable cases, 3000 is selected as 

the threshold distance to cut the dendrogram. The dynamic signatures identified in 
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this approach (for both targets) are exactly the same as those in the previous approach, 

as shown in Table 6-2 and Table 6-3. It is important to emphasise that the threshold 

value here is not suitable for different applications. It depends on the dynamic 

behaviour of the test system and the length of post-fault simulation. 

 
Figure 6-8: Frequency distribution of dmax in 4562 stable contingencies. 

Nominal targets are then assigned to every contingency, the value of which range 

from 1 to 12 for target I and from 1 to 16 for target II. The multi-class training 

database can be represented by the matrix Z, as shown in (6.4), which has 438 rows 

and (15 1)p  columns. In (6.4), ,
kt

i j is the rotor angle of generator j in the ith 

contingency at time kt whilst iT  is the pattern number of the ith contingency. 
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 (6.4) 

6.4.4 Building the Models 

All the DTs except RFs used in this study are built with IBM SPSS Modeler. 10 basic 

trees are built for each boosted model. RFs are built using MATLAB Statistics and 

Machine Learning Toolbox. 5 predictors are selected at random for each decision 

split and 50 basic trees are generated for each RF.  

LIBSVM [126] is used to develop all the Multiclass Support Vector Machine 
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(MSVM) models. As described in Section 3.2.2, the kernel function selected work is 

Radial Basis Function (RBF). The two parameters in RBF that need to be set for a 

given training set are C and σ. The optimal values of them are firstly found using a 

grid-search and a 5-fold cross-validation process, and then used to train the whole 

training database.  

6.4.5 Generation of Testing Databases 

A further 2000 contingencies which were not included in the training database are 

simulated for testing, using the Monte Carlo approach with the same probability 

distribution. 167 (8.35%) of these contingencies are unstable whilst 1833 (91.65%) 

are stable. Furthermore, the patterns of dynamic behaviour that each unstable 

contingency belongs to are labelled so that they can be compared with the classifiers’ 

predictions. Within the 167 unstable contingencies, 165 fall into the patterns that are 

included in the training database, as detailed in Table 6-4 and Table 6-5 for target I 

(i.e., Pattern which indicates generator grouping only) and target II (i.e., Pattern 

which indicates both, generator grouping and groups that lose synchronism), 

respectively. The remaining 2 which do not occur during training are listed in Table 

6-6. 

Table 6-4: Patterns of unstable dynamic behaviour in testing database included in training – Target I*. 

Pattern # 1 2 3 4 5 7 8 

No. of 
Contingencies 92 40 1 9 20 2 1 

* Pattern which indicates generator grouping only. 

Table 6-5: Patterns of unstable dynamic behaviour in testing database included in training – Target II*. 

Pattern # 1 2 4 5 6 7 8 9 11 12 

No. of 
Contingencies 92 40 1 2 7 3 14 3 2 1 

*Pattern which indicates both, generator grouping and groups that lose synchronism. 
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Table 6-6: Two patterns of unstable dynamic behaviour in testing database excluded in training. 

No. of 
Contingencies Grouping of Generators with Unsynchronised Groups Highlighted 

1 (G1, G4-G9) (G2, G3) (G10) (G11) (G12) (G14-G16) 

1 (G1-G8) (G9) (G10) (G11) (G12) (G14, G15) (G16) 

 

6.4.6 Results and Discussions  

6.4.6.1 Transient Stability Status 

For each of the 6 binary training databases (of varying length), a separate DT is 

trained using C5.0. The 2000 test data are sent into the DTs as input. The speed of 

processing is extremely fast so that in real time application more time can be saved 

deploying control actions. The computation time required to obtain the output of each 

contingency is in the order of 10-5 seconds using the same PC as previously described. 

Table 6-7: Classification accuracy for transient stability status. 

Length of 
rotor angle 

(cycle) 
Overall Accuracy Stable (classified as 

stable) 
Unstable (classified as 

unstable) 

10 98.7% (1974/2000) 98.96% (1814/1833) 95.81% (160/167) 

20 98.85% (1977/2000) 99.02% (1815/1833) 97.01% (162/167) 

30 99.25% (1985/2000) 99.45% (1823/1833) 97.01% (162/167) 

40 99.55% (1991/2000) 99.73% (1828/1883) 97.6%  (163/167) 

50 99.75% (1995/2000) 99.84% (1830/1883) 98.8%  (165/167) 

60 99.75% (1995/2000) 99.84% (1830/1883) 98.8%  (165/167) 

 

The results are summarised in Table 6-7. Separate accuracies are listed for stable and 

unstable contingencies. The plots in Figure 6-9 show that the accuracy of prediction 

increases with the amount of data used. The longer it waits to collect the predictors 

after the fault clearance, the more confident it will be in making the right decision 
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about the system transient stability status. The binary classification method is 

demonstrated to be very effective. At 10 cycles (0. 167 s) after the fault clearance, 

close to 99% of the stable contingencies and more than 95% of the unstable ones are 

correctly identified. At 60 cycles (1 s) after the fault, only 3 out of 1883 stable cases 

and 2 out of 167 unstable cases are misclassified.  

 

Figure 6-9: Variation of transient stability status prediction accuracy with length of post-fault rotor 
angle responses. 

6.4.6.2 Unstable Dynamic Behaviour – Target I 

For each of the 6 multiclass training databases with the target of generator grouping 

(i.e., target I), a separate classifier is trained with the five classification techniques: 

DT (including CART and C5.0), EDT (including Boosting and RF), and MSVM. 

This results in a total of 30 multiclass classifiers. In real-time application, all the 

contingencies that are determined to be unstable in the first stage will be sent for 

further processing into the second stage. These include the unstable cases that are 

correctly classified and the stable cases that are misclassified. In this work, only the 

correctly classified unstable cases in the binary classification are used as input to 

corresponding multiclass classifiers for the purpose of further analysis. For instance, 

using 10 cycles of rotor angles, 160 out of the 167 unstable cases are correctly 

identified by the binary classifier (according to Table 6-7), and therefore send into the 
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second stage. With the CART model 134 out of these 160 cases are classified into the 

correct pattern of generator grouping, as indicated by (134/160) in Table 6-8.  For the 

ensemble models, although it takes slightly longer to give the output compared to an 

individual model, the order of computation time for a single contingency is still 10-4 

seconds. The results are shown in Table 6-8 and Figure 6-10. 

Table 6-8: Classification accuracy for unstable dynamic behaviour – Target I*. 

Length of 
rotor angle 

(cycle) 
CART C5.0 Boosted C5.0 RF MSVM 

10 83.75% 
(134/160) 

87.50% 
(140/160) 

89.38% 
(143/160) 

89.38% 
(143/160) 

88.13% 
(141/160) 

20 83.95% 
(136/162) 

88.27% 
(143/162) 

90.12% 
(146/162) 

90.12% 
(146/162) 

88.89% 
(144/162) 

30 88.27% 
(143/162) 

89.51% 
(145/162) 

91.36% 
(148/162) 

90.12% 
(146/162) 

89.51% 
(145/162) 

40 87.12% 
(142/163) 

90.18% 
(147/163) 

91.41% 
(149/163) 

90.18% 
(147/163) 

88.96% 
(145/163) 

50 87.88% 
(145/165) 

90.91% 
(150/165) 

91.52% 
(151/165) 

91.52% 
(151/165) 

89.70% 
(148/165) 

60 88.48% 
(146/165) 

91.52% 
(151/165) 

92.12% 
(152/165) 

91.52% 
(151/165) 

90.91% 
(150/165) 

* Pattern which indicates generator grouping only. 

 
Figure 6-10: Variation of unstable dynamic behaviour prediction accuracy (target I) with length of 

post-fault rotor angle responses. 

Looking first at the trends of curves along the x-axis in Figure 6-10, it can be seen 
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that the classification accuracy for patterns of generator grouping also increases with 

the amount of rotor angle data used. The comparison of different curves indicates that 

among all the multiclass classification methods applied, CART performs the worst 

since the accuracy of it is only 83.75% with 10 cycles of post-fault rotor angles, and 

does not go over 88% until 60 cycles of rotor angles data are used. C5.0 and MSVM 

perform better. Their accuracies are around 88% at 10 cycles after the fault clearance 

and over 90% at 60 cycles after the fault clearance. The performance of the two EDT 

methods, Boosted C5.0 and RF, is comparable and the best in this application. Their 

accuracies are over 89% at 10 cycles after the fault. After 20 cycles, Boosting C5.0 

performs slightly better than RF.  

6.4.6.3 Unstable Dynamic Behaviour – Target II 

Table 6-9: Classification accuracy for unstable dynamic behaviour – Target II*. 

Length of rotor angle (cycle) 

10 20 30 40 50 60 

86.88% 
(139/160) 

87.04% 
(141/162) 

87.65% 
(142/162) 

87.12% 
(142/163) 

87.88% 
(145/165) 

88.48% 
(146/165) 

*Pattern which indicates both, generator grouping and groups that lose synchronism. 

 
Figure 6-11: Comparison of unstable dynamic behaviour prediction accuracy for target I and II using 

Boosted C5.0. 

For the training databases with the target that indicates both generator grouping and 

unsynchronised groups (i.e., target II), only Boosted C5.0 is applied because of its 
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best performance in the previous cases. The testing results are listed in Table 6-9. 

Figure 6-11 compares the accuracy of Boosted C5.0 when classifying the unstable 

contingencies for the two different targets.  The accuracy is lower for target II as 

expected but still about 87% at 10 cycles after the fault clearance. The reason for the 

lower accuracy is discussed in the next subsection. 

6.4.6.4 Discussions: The Multiclass Unbalance Problems 

It is clear from the above results that the accuracy of on-line identification of dynamic 

behaviour for unstable contingencies is not as good as that of identifying transient 

stability status. This is because the multiple classes increase the data complexity and 

negatively affect the classification performance. More importantly, the multiclass 

training data is highly unbalanced. Many of the classes are extremely 

underrepresented compared to others due to the low probability of such patterns. As 

shown in Table 6-2, for target I, the first two classes have 353 cases in total whilst the 

remaining 85 cases are distributed in 10 different classes. There are 5 classes with 

only one case. This makes the conventional classification methods less effective since 

they tend to achieve high accuracy by always predicting the majority classes, and 

therefore the minority classes are often misclassified. The data distribution is even 

more skewed for target II as shown in Table 6-3, making the task of multiclass 

classification more difficult.  

In fact, the class unbalance problem is very common in the research area of data 

mining [139]. A number of solutions have been proposed at the data and algorithm 

levels. They either change the distribution of data in the training set by over-sampling 

or under-sampling, or modify existing learning algorithms, e.g., apply cost-sensitive 

learning where the costs of errors, per class, are not equal. However, these methods 

work relatively well only for two-class unbalance problems, and have been shown to 
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be less effective or even cause a negative effect in dealing with multiclass tasks [139]. 

The most common ensemble methods, which are also popular and important solutions, 

have been investigated in this application. The results indicate that they do help to 

increase the accuracy but not significantly. More complicated and effective solutions 

remain an area for future research. 

6.5 Effect of Changes in Operating Conditions 

In the application of the proposed methodology, the load variation is the only 

uncertain factor involved in the system operating conditions. It follows a normal 

distribution with a given mean value, which can be considered as modelling of the 

short-term forecast error. Changes in system loading level and pre-fault topology, 

which are common in the day-to-day operation of power systems, are not taken into 

consideration. However, as the previous studies in Section 4.3.2 demonstrate, these 

two factors significantly affect the accuracy of prediction of the DT method for 

transient stability status, and should be carefully considered when designing the 

training database. 

 

Figure 6-12: NETS-NYPS five-area test network with removed transmission line indicated. 

To initially investigate the effect of pre-fault system topology change on the unstable 
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dynamic behaviour of power systems, a case study is carried out in which L40-41 in the 

test network (the transmission line connected bus 40 and 41 as indicated in Figure 

6-12) is removed from service. 1000 contingencies are simulated according to the 

same probability distributions of uncertain factors provided in Section 6.3, within 

which 185 are unstable. Table 6-10 shows the 13 patterns of unstable dynamic 

behaviour identified using the Hierarchal Clustering approach described in Section 

6.2.3.1. These patterns only indicate generator groupings without the groups that lose 

synchronism. 

Table 6-10: Patterns of unstable dynamic behaviour in the 185 unstable contingencies generated with 
pre-fault system topology change. 

Pattern
# 

No. of 
Contingencies Grouping of Generators 

1 2 (G1-G10, G12-G16) (G11) 

2 2 (G1-G9, G11-G16) (G10) 

3 88 (G1-G9, G12, G14-G16) (G10) (G11) 

4 3 (G1-G9, G12) (G10) (G11) (G14-G16) 

5 10 (G1-G9, G12) (G10) (G11) (G14-G15) (G16) 

6 2 (G1-G9, G14, G15) (G10) (G11) (G12) (G16) 

7 1 (G1-G9) (G10) (G11) (G12, G14-G15) (G16) 

8 13 (G1-G9) (G10) (G11) (G12) (G14-G16) 

9 33 (G1-G9) (G10) (G11) (G12) (G14-G15) (G16) 

10 17 (G1-G8, G10-G12, G14-G16) (G9) 

11 5 (G1-G8, G12, G14-G16) (G9) (G10) (G11) 

12 8 (G1-G8) (G9) (G10) (G11) (G12) (G14-G15) (G16) 

13 1 (G1, G4-G9) (G2) (G3) (G10) (G11) (G12) (G14-16) 

 

Comparing Table 6-10 to Table 6-2 which shows the patterns used for previous 

training, it can be seen that when the pre-fault system topology is changed, 6 new 
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types (as highlighted) of unstable dynamic behaviour occur, containing 28 unstable 

contingencies. After constructing all the 185 unstable contingencies into a test 

database, they are sent into the Boosted C5.0 multiclass classifier built in Section 

6.4.4 with 60 cycles of rotor angles as predictors. The accuracy of prediction is only 

63.78%. Although preliminary, this result indicates that the topology change has a 

significant impact on the effectiveness of the proposed methodology. 

Since the target of this research is to identify system dynamic signature in real-time 

for corrective control, it is not feasible to train a model which is able to deal with 

contingencies under variations of topology and loading level over a very long time 

(say a year or even a month). The feasible way is to divide the time into intervals and 

train different models based on the most probable topologies and loading levels 

within each interval. As mentioned in the review of past research in Chapter 1, in [61, 

63, 67, 98], a scheme is proposed to handle the changes in load and topology. In this 

scheme, a DT is firstly built offline for a 24-hour horizon for the system, using the 

prospective operating conditions in the next 24 hours which can be obtained from a 

short-term load forecast and network topologies. Then the time horizon is divided 

into periods of equal length (typically several minutes to tens of minutes). Prospective 

operating conditions in the next period can be predicted. If they are close to the 

conditions which have already been used during the previous training, the DT will 

remain unchanged until the next period. If new conditions appear, the DT will be 

updated by using new contingencies to re-train the tree. 

Another framework may solve the problem of uncertainties involved in system 

operating conditions. Based on the historical information of a network, a set of data 

mining model pairs (one binary for the prediction of transient stability and one 

multiclass for the prediction of unstable dynamic behaviour) can be pre-trained 
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offline for a finite number of representative operating conditions (characterised by 

load, topology and some other probable uncertain factors such as patterns of 

renewable generation), so that each pair of models can be mapped to a particular hour 

of a day at a particular time of a year. In real-time application, according to the short-

term forecast of system operating conditions, the most appropriate pair of models can 

be selected from the set. A lot of future research needs to be carried out to implement 

this initial idea. With this overall picture of research, the methodology proposed in 

this chapter can be considered as the way of building one individual model pair for a 

particular representative operating condition.  

6.6 Summary 

This chapter proposed a two-stage methodology for on-line identification of power 

system dynamic signature using PMU measurements and data mining.  

In the available literature, the transient stability assessment for corrective control 

usually focuses on transient stability status without dealing with the dynamic 

behaviour of generators in the event of instability. The methodology presented in this 

chapter addresses this gap. It takes the traditional binary classification to identify 

system transient stability in the first stage, and establishes a novel methodology to 

identify the unstable dynamic behaviour in the second stage. The method firstly 

applies Hierarchical Clustering in order to pre-define patterns of unstable dynamic 

behaviour, within a database of post-disturbance system responses obtained by the 

Monte Carlo simulation. Two different approaches are proposed to cut off the 

dendrogram so that generators can be grouped based on the similarity of their rotor 

angle behaviour for a large number of contingencies automatically. The results are 

used to label the training data for on-line prediction. Different multiclass 
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classification techniques, including DT, EDT and MSVM, are then applied to identify 

characterised unstable responses.  

Finally, the effect of changes in operating conditions on the proposed methodology 

has been initially investigated. A case study of pre-fault system topology change is 

presented to demonstrate significant change in the system dynamic behaviour and 

consequently significant reduction of the prediction accuracy of the multiclass 

classification. A potential analysis framework that may overcome the issue of 

reduced accuracy due to uncertainties associated with system operating conditions 

(e.g., loading level and topology) is briefly discussed and proposed for future study. 

The two-stage methodology presented in this chapter can help with the selection of 

corrective control actions in real-time and more importantly, inform decision making 

regarding the most effective controlled islanding scheme. 
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7 Effect of Practical Issues 

Related to WAMS 

7.1 Introduction 

Until now, this thesis has shown that data mining approaches can be used to predict 

power systems transient stability and dynamic signature in real-time based on 

incoming monitoring data. Within the previous three chapters, it is assumed that 

signals from the WAMS are perfect, which is not realistic in a practical environment. 

In the past research, the effect of missing measurements [81] and errors in the signals 

[74, 81, 106] are investigated to demonstrate the robustness of the proposed data-

driven methodologies.  

This chapter, for the first time in the literature, divides the practical issues related to 

WAMS into five categories: including measurement error, communication noise, 

wide area signal delays, missing measurements, and limited number of PMUs. Each 

of these five will be discussed, although some investigations are preliminary. The 

identification of power system dynamic signature consists of two sequential steps as 

proposed in Chapter 6; however, all the cases studies in this chapter only deal with 
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the prediction of the system transient stability status. 

7.2 Effect of Measurement Error and Communication Noise 

Measurement error is the difference between a measured value of quantity and its true 

value. According to the IEEE C37.118.1 - 2011 standard, the Total Vector Error 

(TVE) of the phasor measured by PMU should be less than 1% [10]. For mechanical 

parameters such as generator rotor angles, other required devices are involved to 

measure the rotor position (using Rotor Position Measurement Method) and the limit 

of error is not provided in [10]. Communication noise, by contrast, occurs during the 

process of transmitting signals from the remote locations to the Monitoring and 

Control Centre (MCC).  

To investigate the effect of measurement error and communication noise present in 

the practical signals on the performance of the DT method, the DT model which has 

been generated in Chapter 5 for the NETS-NYPS test network is used in this section. 

A large number of faults which are not included in the training database are simulated 

for testing. Six different system loading levels are assumed to model the variations in 

the demand of the test network as in Figure 5-1. The loading factors based on a given 

load are chosen to be 1.173, 1.114, 1.03, 0.927, 0.774 and 0.681. 25 different fault 

locations are arbitrarily chosen as listed in Table 5-1, including 5 generator buses and 

the middle points of 20 transmission lines. At each loading level and each location, 

four types of self-clearing fault including single line to ground, line to line, double 

line to ground and three phase fault are applied with a clearing time ranging from 

0.05 s to 0.29 s (with an increment of 0.02 s). The post-fault system is simulated for 

5.01 s for each fault. In total, 7800 faults are simulated and constructed into the 

original test database in the same way as in Section 5.4.2. Following 6965 (89.3%) of 
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these faults, the system remains stable whilst it becomes unstable for the remaining 

835 (10.3%) of faults. 

Since the generator rotor angles and speeds are selected as predictors, the 

measurement errors can come from both the terminal voltages and the rotor positions. 

Noise will be involved in the data transfer process. As a result, White Gaussian Noise 

(WGN), which is a linear addition of white noise with a constant spectral density and 

a Gaussian distribution of amplitude, is added to the original simulated test database 

with various Signal-to-Noise Ratio (SNR) [106]. Three cases are designed with the 

SNR of 50, 40, and 30 dB. The smaller the SNR is, the higher the level of background 

noise. Figure 7-1 illustrates an example of rotor angle signal with WGN. 

 

Figure 7-1: Example of generator rotor angle signal with the addition of WGN with SNR of 40 dB. 

The result for each of these three cases alongside the original test database is 

presented in Figure 7-2. The accuracy of prediction is evaluated at every instance 

when decisions are made based on the values of predictors at that time, i.e., every 

0.0167 s after the fault is cleared from the system. It can be seen that the accuracy 

drops slightly when the SNR of WGN is 50 or 40 dB, compared to that of the original 

test database. When the SNR goes down to 30 dB, however, the accuracy experiences 

a significant reduction. It oscillates approximately between 86% and 92% over the 
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5.01 s after the fault clearance. 

 

Figure 7-2: Accuracy of prediction for signals with the addition of WGN with various SNR. 

7.3 Effect of Wide Area Signal Delays 

The devices in the WAMS, including PMUs and PDCs, are usually geographically 

widespread in practical power systems. Therefore measurement signals from remote 

locations will often be sent through pre-existing satellite communication links as 

dedicated hard-wired links may prove prohibitively expensive. As such, they could 

potentially be subject to delay of several hundreds of milliseconds. If faster 

communication channels (for example, fibre optic links) are available then there 

should be shorter associated delays. 

Due to the physical distances from various PMUs to the MCC, the measurements 

within the WAMS sampled at the same instant synchronised through the GPS system 

would arrive at the MCC after different time of delays. In Figure 7-3, for example, 

rotor angle signals from three different PMUs (along with their rotor position 

measurement devices) are shown according to the time when they arrive at the MCC, 

using the instant when a transient disturbance is identified to be cleared from the 

system as the starting point. The three signals are delayed by 1t , 1 2t t  and 1 2 3t t t  , 

respectively. If the rotor angles of length t  are needed for the data mining model (e.g., 
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DT) to make a decision, it has to wait 1 2 3t t t t    for all the measurements to be 

collected (i.e., until the last signal arrives). Therefore the effect of wide area signal 

delays (if the delays are not randomly increased or even completely lost) is that the 

decision would be made until the farthest signal has been collected.   
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Figure 7-3: Illustration of effect of wide area signal delays. 

7.4 Effect of Missing Measurements 

Following the discussions above, randomly increased delays or even complete loss of 

signals can be further involved in practical WAMS, especially when satellite links are 

used. Therefore, in real-time application, some of the input data needed by the data 

mining model can be missing when the decision has to be made. Moreover, the 

unexpected failure of the PMUs or PDCs can also result in the unavailability of 

measurement signals. As a result, it is necessary to investigate the impact of the 

availability of real-time signals on the application of data mining tools. 

7.4.1 Handling Missing Measurements Using Surrogate Split 

Method in Decision Tree 

Handling missing data in the predictors during the prediction process has been a topic 

of great interest in the field of data mining. Various techniques have been studied 

along with their effect on the prediction accuracy of classification models [140]. For 
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example, imputation is a type of method by which an estimation of missing values is 

used [140]. In the on-line prediction of power system dynamic signature, one possible 

way of estimating the missing signals could be by treating them as targets and using 

the remaining PMU measurements as predictors of a regression model. However, due 

to the various possibilities of losing different combination of signals, a large number 

of regression models need to be built offline, which is time and effort consuming. 

Although [81] has claimed that the surrogate split method provided by CART 

algorithm is not effective enough due to the fact that the surrogates generated are 

usually parameters measured by the same PMU as the primary predictors, it will be 

explored again in this thesis.  

7.4.1.1 The Surrogate Split Method 

As introduced in Chapter 3, CART is one of the most commonly used DT building 

algorithms [141]. It constructs binary trees by splitting a node into exactly two “child” 

nodes in a top-down manner, beginning with the root node that contains the whole 

training data. At each node, the Gini Index is used as the criterion to determine the 

most useful split to best classify the data, i.e., make the resulting child node the 

“purest”. Supposing that  X a   is the best split at a node, its surrogate split is a split 

based on another predictor Y, e.g., Y b , such that the most similar splitting results 

can be achieved. During the training process, one or more surrogate splits may be 

generated for every tree node. Therefore if the value of X is missing for a test case, 

the best surrogate split will be used to decide which child node it should go to for 

final classification. If the best surrogate is also missing, the second best is used, and 

so on. 

With the surrogate split method described above, the problem of missing data in the 

predictors can be handled during the on-line prediction of transient stability.  
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7.4.1.2 Applications, Results and Discussions 

1) Training of Decision Tree and Generation of Test Database 

In this section, the same DT model and the original test database as in the previous 

section are utilised. The primary predictor and its two best surrogates of each node in 

the model are listed in Table 7-1. These nodes are ranked according to the 

improvement scores of their primary predictors [119]. The greater the improvement is, 

the greater the reduction in impurity (measured by the Gini Index) between the parent 

and child nodes if that predictor is used. In other words, a high improvement 

generally indicates a useful split for this DT. The numbers of rotor angles and speeds 

in the table are the numbers of generators from which these signals are measured.  

Table 7-1: Surrogates in the DT. 

Node Primary Predictor First Surrogate Second Surrogate 

1 Angle 11 Speed 11 Angle 1 

2 Angle 9 Speed 9 Angle 1 

3 Angle 10 Speed 10 Angle 15 

4 Angle 3 Speed 3 Angle 2 

5 Angle 16 Speed 16 - 

6 Angle 5 Speed 5 Angle 4 

7 Speed 8 Angle 8 - 

8 Angle 12 Speed 12 - 

9 Angle 7 Speed 7 Angle 6 

10 Speed 2 Angle 2 - 

11 Speed 4 Angle 4 - 

12 Speed 9 Angle 9 Angle 14 

 

It can be seen from the table that the best surrogate for every primary predictor of 

rotor angle is its corresponding speed and vice versa. Since the rotor speed of a 
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generator is calculated from its rotor angle using a backward difference 

approximation, these two predictors certainly have the highest correlation, and are 

always unavailable at the same time. Therefore, the first surrogate listed in the table 

cannot be used in on-line applications. Furthermore, there are several nodes in the DT 

which do not have a second surrogate. If the primary predictors of these nodes are 

missing, the majority rule is used so that the child node with a larger number of 

training data would be chosen.  

2) Effect of Missing Measurements 

Although it is quite obvious that the accuracy of the prediction of transient stability 

would degrade when surrogate split is used in the DT, and the more useful the 

missing predictor is, the greater the impact on the performance of the tree, case 

studies are carried out to quantify the extent of this impact. Five cases are considered 

for illustrative purposes, as listed in Table 7-2, despite the fact that the total number 

of missing signals scenarios is very large.  

Table 7-2: Cases of missing measurements. 

Case No. The Generator from which Signal is Missing 

1 None 

2 G4 

3 G9 

4 G11 

5 G4, G2, G7, G12, G8, G5, G16, G3, G10, G9, G11 

 

In Case 1, all the measurements needed by the DT are available so the original test 

database is used directly. For Cases 2 to 4, it is assumed that the PMU measurement 

is missing from only one generator. The test database for each of these cases is 
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obtained by replacing all the values of rotor angle and speed of that generator in the 

original test database by empty strings. The signal from G4 is located at the bottom 

node of the DT whilst the signals from G11 and G9 are located at the top two nodes, 

respectively. To investigate the worst case scenario, in Case 5, it is assumed that all 

the primary predictors in the DT (along with their first surrogate as shown in Table 

7-1) are missing. 

The test database for each of the five cases is sent as input into the DT model. The 

evolutions of the accuracy of the prediction, according to the time after the clearance 

of the fault for the five cases, are presented in Figure 7-4. It can be observed that 

there is no significant difference between the performance of the DT for the test set in 

Case 2 and Case 1. The accuracy of the prediction in both of these two cases reaches 

96% when the assessment is made about 0.13 s after the fault is cleared, and reaches 

almost 100% if the assessment is made approximately 2.7 s after the fault clearance. 

This is not surprising since the predictor at the bottom node only contributes very 

slightly to the performance of the tree. In Case 3 and Case 4 where the most useful 

predictors are missing, however, the accuracy does not get to 96% until about 0.3 s 

and 0.6 s, respectively, and can only reach 99% and 98% for Case 3 and Case 4, 

respectively. Furthermore, the test result for Case 5 demonstrates that in the worst 

case, the accuracy of prediction cannot get to 96% until about 0.8 s and can only 

reach 96.7%. 

Through closer inspection of the test results, it is found out that the reduction of the 

prediction accuracy when measurements are missing is mainly caused by the decrease 

of the accuracy for classifying the unstable simulations. Figure 7-5 shows the 

accuracy of the prediction of unstable simulations only. As indicated by the arrows, at 

0.35 s after the clearance of the fault, about 80% of the unstable simulations are 
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correctly predicted in Case 1 and 2. However, only 70%, 50% and 40% of the 

unstable simulations are correctly predicted in Case 3, 4 and 5, respectively. Until 

approximately 2.7 s, all unstable simulations have been identified in Case 1 and 2 

whilst only 90%, 80% and 70% of them are found in the remaining three cases. 

Therefore, although the reduction of the overall prediction accuracy does not seem to 

be huge even in the worst case scenario, Figure 7-5 indicates that the performance of 

the surrogate split method on handling missing signals of the DT for the on-line 

prediction of transient stability is in need of further improvement. 

 

Figure 7-4: Accuracy of prediction for five cases of missing measurements. 

 

Figure 7-5: Accuracy of prediction of unstable simulations for five cases of missing measurements. 

7.4.2 Comparison of Ensemble Decision Tree Method Considering 

Availability of PMU Measurements 

This section applies a series of commonly used EDT methods, including bagging, 
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boosting, and Random Forest (RF) which are directly available in most of the data 

mining software packages, for the on-line identification of power system transient 

stability with missing PMU measurements. Although [81] develops a comprehensive 

and advanced ensemble algorithm which combines random subspace and boosting 

together to improve the DT’s robustness to missing data, the aim of this section is to 

critically assess and compare these off-the-shelf and easy to use ensemble techniques 

for the first time, so that the most effective ones can be suggested. 

7.4.2.1 Methodology for Performance Evaluation 

1) Availability of PMU Measurements 

As introduced in Section 1.4, the WAMS utilises the highly precise synchronous 

clock system GPS to build a unified time-space ordinate for the whole system. It 

consists of PMUs, PDCs, MCC, as well as the high-speed data communication 

networks [142]. It usually has a hierarchical structure as shown in Figure 1-7. The 

availability of the signal from an individual PMU can be calculated using (7.1), 

PMU PDC PDC MCCLink LinkPMU PDCA A A A A      (7.1) 

where PMUA  is the availability of the PMU, PDCA  is the availability of the PDC that 

this PMU is connected to, PMU PDCLinkA   and PDC MCCLinkA   are the availability of the 

communication link from PMU to the PDC and from PDC to the MCC, respectively.  

2) Probabilistic Performance Evaluation 

To predict the post-fault power system transient stability status in real-time, a library 

of system dynamic responses is firstly generated by performing extensive off-line 

contingency simulations. The probabilistic nature of power systems is taken into 

consideration to ensure comprehensiveness of the training database. The uncertainties 

surrounding initiating factors, including type and location of disturbance, the 
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operating time associated with fault clearing equipment, and system operating 

conditions at the time of disturbance inception such as system topology, loading 

levels, and generation capacities [129, 130], can be modelled using a numerical 

Monte Carlo approach according to their independent probability distribution 

obtained from realistic historical data or forecasted 24-hour data [99]. A training 

database is then constructed from the library, with which an ensemble model is 

trained by applying one of the EDT algorithms. 

In real-time application, after it has been detected that a transient disturbance has just 

been cleared from the system, the on-line PMU measurements, some of which may be 

missing, will be sent into the Monitoring and Control Centre to make a decision. For 

the purpose of performance evaluation, a number of contingencies which have not 

been used in training are further generated and constructed into a testing database. 

For a system which has N PMUs installed, assuming that signals from all of them are 

used as predictors in the training process, there are 2N possible failure scenarios in 

total. This test is repeated for all scenarios in a loop. For the jth scenario represented 

by S(j), the testing database is sent into the EDT model M with all the predictors from 

signals (directly measured or derived from actually measured signals) of the failed 

PMUs missing, i.e., the values of these predictors are removed from every 

contingency. The misclassification error in this scenario is the percentage of the 

incorrectly classified contingencies within the test database and is represented by 

e(M|S(j)). When all the PMUs are unavailable, e(M|S(j)) is set to be 1. After finishing 

all the scenarios, an overall probabilistic misclassification error is calculated by (7.2) 

[81] to indicate the performance of the model M to identify post-fault transient 

stability status with missing PMU measurements. 
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2

1

N

j
e( M ) Prob(S(j)) e( M | S( j ))



   (7.2) 

In the above equation Prob(S(j)) is the probability of S(j) to happen. Assuming that 

all the PMU measurements in the network have the same availability (i.e., the value 

of A for all PMU measurements are the same), with n PMUs available and (N-n) 

failed, Prob(S(j)) is calculated using (7.3). 

1n N nPr ob(S(j)) A ( A)     (7.3) 

The process of evaluating the performance of an ensemble DT for on-line transient 

stability prediction probabilistically considering the availability of PMU 

measurements can be summarised by Figure 7-6. 

Generate a library of system 
dynamic responses

Construct training database

Train an EDT model

EDT model

Generate a testing database

Create the testing database 
in the jth PMU failure 

scenario

Send the database with 
missing predictors into the 

EDT model

Save the misclassification 
error of this scenario

Finish all possible 
scenarios ?

Calculate the overall 
Probabilistic 

misclassification error

Yes

No

 

Figure 7-6: Flow chart summary of the process to evaluate the performance of an ensemble DT 
algorithm for on-line transient stability prediction considering the availability of PMU measurements. 

7.4.2.2 Availability of PMU Measurements in the Test Network 

As previously assumed, each of the 15 generators in the NETS-NYPS test network 

has a PMU and other required measurement devices installed so that generator rotor 
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angles can be directly calibrated in real time from the terminal voltage and rotor 

position with good accuracy. Based on the reliability modelling of PMUs using fuzzy 

sets in reference [81, 143], the availability PMUA  is in the range of [0.979975, 

0.998920], and is assumed to be the same for all the PMUs in a system. All 

communication links from the PMUs to PDC have the same availability

= 0.999PMU PDCLinkA  . Moreover, the availability of all the PDCs and the communication 

links from the PDC to the MCC is assumed to be 1. By using (7.1), the availability of 

the signal from an individual PMU is 0.999 1 1 0.999PMU PMUA A A     . Therefore 

A ∈ [0.97897, 0.997921]. 

7.4.2.3 Applications, Results and Discussions 

In this study, the three types of EDT, the theoretical background of which are all 

introduced in Section 3.2.3, are trained for the test network. Their performances with 

missing PMU measurements are evaluated during testing. 

1) Training of Ensemble Decision Tree and Generation of Test Database 

The 5000 contingencies simulated to generate the training database in Chapter 6 are 

used in this section for training. The first 30 cycles (i.e., 0.501 s in the 60 Hz system) 

of each generator rotor angle response (excluding G13) are used as predictors. The 

target is the transient stability status, i.e., stable or unstable.  As a result, the training 

matrix has 5000 rows and 451 columns (15*30 = 450 columns of predictors and 1 

column of target). 

For each of the three ensemble methods (i.e., bagging, boosting and RF), an ensemble 

model is trained using CART method (with surrogate on) to build base classifiers. A 

single CART with surrogate is also generated as a benchmark. Since an extremely 

large number of signal failure scenarios needs to be tested in a loop, these four 
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classification models are built using MATLAB Statistics and Machine Learning Tool 

Box [125]. 

Furthermore, the 2000 contingencies which were used in Chapter 6 as the test 

database are utilised here for testing. Since there are 15 PMUs, the total number of 

possible failure scenarios is 152 32768 . For each of the four classification models, 

the test is repeated for all scenarios, by sending the 2000 contingencies as input with 

a certain number of predictors removed. The overall probabilistic misclassification 

error of each classification model is calculated as presented in Section 7.4.2.1. 

2) Results and Discussions 

As previously described, the availability of measurements from all 15 PMUs are the 

same, and in the range of [0.97897, 0.997921]. The tests of classification models are 

performed for various values of A, and the results are illustrated in Figure 7-7. It is 

obvious that the ensemble models are much more robust to the missing PMU 

measurements compared to a single DT with surrogate. The overall probabilistic 

misclassification errors of the three ensemble models are almost straight lines with 

values under 2%. The error of the single CART model, however, is always 

significantly higher than 2% and only drops to about 3% when A is 0.995. The gap 

between the errors increases as A decreases. The error of the single CART model is 

about 14% when A is 0.975. 

Looking into the three ensemble models, as shown in Figure 7-8, although their 

performances are comparable, RF is the best one with the error only slightly higher 

than 1% even when the value of A decreases to 0.975. 

Figure 7-9 and Figure 7-10 show the performance of all four models for classifying 

stable and unstable cases, respectively. The overall probabilistic misclassification  
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Figure 7-7: Overall performance of all the four classification models with various values of A. 

 

Figure 7-8: Overall performance of the three ensemble models with various values of A. 

errors are calculated with equation (7.2) as well, but the error in one scenario is the 

percentage of the stable contingency classified as unstable in Figure 7-9, and the 

percentage of the unstable contingency classified as stable in Figure 7-10. It can be 

seen that the overall error has been reduced by using any of the ensemble methods for 

both, stable and unstable cases, although there is a smaller reduction in error for 

unstable cases especially with a low value of A. RF is again shown to be the most 

effective one among the three. 

From Figure 7-7 to Figure 7-10 it can also be seen that the larger the availability of 

PMU measurements is, the more confident the models (all of them) are when making 

the predictions. 
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Figure 7-9: Performance of all the four classification models for classifying stable cases with various 
values of A. 

 

 

Figure 7-10: Performance of all the four classification models for classifying unstable cases with 
various values of A. 

7.5 Effect of Limited Number of PMUs 

The final practical issue that will be discussed is a limited number of PMU devices. 

As stated in Section 2.5.1, it is assumed that all the 15 generators (excluding the 

reference G13) in the test network are equipped with a PMU and other required 

measurement devices for generator rotor angle measurements throughout the thesis. 

In practical power systems, there might not be enough PMUs installed at the locations 

where feasible signals can be provided. Although thorough research is required, a 

very simple case study is provided here to reveal the possible problems to be studied. 
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Supposing that there are actually only four PMUs (with rotor position measurement 

devices) in the NETS-NYPS system, as shown in Figure 7-11, each of which is 

installed at the terminal bus of G3, G8, G12, and G15, respectively. The four 

generators are arbitrarily, randomly, selected, for initial investigation. Under such 

conditions, the question may arise as whether to train the data mining model with all 

15 rotor angles available in the off-line simulations, or to train it with the four 

available rotor angles only. Using the 5000 contingencies in the training database in 

Chapter 6 again, two different RFs are built for binary target (i.e., transient stability 

status): one (RF1) with 30 cycles of all 15 generator rotor angles (excluding G13) as 

predictors whilst the other (RF2) with 30 cycles of the four available generator rotor 

angles. When sending the 2000 contingencies into these two RFs for testing, surely 

only four inputs are given. RF1 treats the measurements it needs for the remaining 11 

rotor angles as missing.  

 

Figure 7-11: NETS-NYPS five-area test network with only four PMUs with rotor position 
measurement devices. 

Table 7-3 lists the test results of the two RFs trained with different numbers of signals. 

If all 15 rotor angles are used (i.e., RF1), with only the four PMUs (with rotor position 

measurement devices) in the network, all the 2000 contingencies in the test database 
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are classified as stable, i.e., no unstable contingencies are identified. However, if only 

the rotor angles from the four generators equipped with PMUs are used for training in 

the first place (i.e., RF2), 98.8% stable contingencies are correctly predicted as stable 

and 78.44% unstable contingencies are correctly predicted as unstable. 

Table 7-3: Accuracy of prediction of the two RFs trained with different numbers of rotor angle signals. 

 Overall Accuracy Stable (Classified as 
Stable) 

Unstable (Classified 
as Unstable) 

RF1 91.65% (1833/2000) 100% (1833/1833) 0% (0/167) 

RF2 97.5% (1950/2000) 98.8% (1811/1833) 78.44% (139/167) 

 

Although the study of a limited number of PMUs in the WAMS is extremely 

preliminary in the above example, it is shown that this practical issue will have a 

significant effect on the data mining methods discussed in this thesis for the on-line 

identification of power system dynamic signature. It is of vital importance to look 

into this issue more thoroughly in future study. 

7.6 Summary 

This chapter looked into the effect of practical issues related to WAMS on the data 

mining methodologies for on-line identification of power systems transient stability. 

Five categories of issues were discussed, including measurement error, 

communication noise, wide area signal delays, missing measurements, and a limited 

number of PMUs. 

The presence of measurement error and communication noise in the real-time rotor 

angle signals were firstly modelled by adding WGN with various levels of SNR to the 

original signals. The degradation of the performance of the DT method was 

quantified. The accuracy of the prediction drops significantly when the SNR 



Chapter 7: Effect of Practical Issues Related to WAMS 
 

193 

decreases to 30 dB.  

Secondly, the effect of wide area signal delays due to the physical distances from 

various PMUs to the MCC was presented. As long as the delays do not randomly 

increase or are not completely lost, the decision of data mining models would be 

made until the farthest signal has been collected. Then the problem of missing 

measurements was handled with surrogate split included in the CART algorithm. 

However, only four case studies of missing signals were carried out without 

investigating all the possible scenarios. The results showed that the ability of DT to 

identify the impending loss of stability would significantly decrease when surrogates 

were used and it was suggested that more effective methods be explored.  

Following this, three off-the-shelf and commonly used ensemble methods for DT, 

including bagging, boosting and RF were investigated in order to deal with the 

missing measurements. A single DT with surrogate split was used as the benchmark. 

When evaluating their performance, all possible scenarios of missing PMU 

measurements were tested. A probabilistic classification error was calculated for each 

classification model according to the availability of PMU signals. The results showed 

that all three tested ensemble algorithms can significantly improve the robustness of 

DT decision making when dealing with the problem of missing PMU measurements, 

and, therefore, each of them can be used for these types of studies. Even though their 

performances are quite similar, the RF method was found to be slightly better than the 

other two.  

Finally, the issue of the limited number of PMUs installed in practical power systems 

was preliminarily discussed. Although the case study, in which only 4 PMUs were 

randomly installed in the test network, was very simple, it reveals the issues to be 



Chapter 7: Effect of Practical Issues Related to WAMS 
 

194 

addressed in future study to improve the accuracy of estimation with fewer PMUs. 
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8 Conclusions and Future 

Work 

8.1 Conclusions 

This thesis has developed a robust methodology for on-line identification of power 

system dynamic signature based on incoming system responses from PMUs in 

WAMS. Within the methodology, data mining techniques have been used to convert 

real-time monitoring data into transient stability of power systems and the pattern of 

system dynamic behaviour in the event of instability. 

The methodology is both important and relevant for system operators and controllers. 

The future power system may operate closer to its stability limit, and the changing 

types and patterns of load and generation are resulting in highly variable operating 

conditions. Corrective control and stabilisation is becoming a potentially viable 

option to enable safer system operation. Additionally, the number of WAMS projects 

and PMUs is rising, which will significantly improve the system situational 

awareness. The combination of all these factors means that it is of vital importance to 

exploit a new and efficient transient stability assessment tool in order to use real-time 
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PMU data to support decisions for corrective control actions. 

An overview of the state-of-the-art of transient stability assessment revealed that a 

series of methodologies have been used for both off-line and on-line preventive 

assessment. Several methods have been previously proposed for on-line corrective 

use, among which data mining was identified to be the most promising. The past 

research surrounding the data mining approach for on-line transient stability 

assessment using PMU measurements was therefore thoroughly reviewed. It was 

found out that Decision Tree (DT) is the most suitable technique for this application. 

The DT method has been implemented on the 16-machine, 68-bus NETS-NYPS test 

network. The idea was to train a DT model based on a database of off-line simulated 

contingencies, and use this model in real-time to convert PMU measurements into 

transient stability status after a fault is identified to be cleared. The database of 

contingences has been generated for the network with only three-phase faults of 

different lengths and at various locations. The training process was implemented 

using the CART algorithm, with generator rotor angles and speeds during the post-

fault period as predictors. After that, the sensitivity of the prediction accuracy of the 

model was investigated according to four types of uncertainties in the network, 

including fault duration and location, system operating point and pre-fault system 

topology. It was shown that the developed DT model is typically able to predict 

system post-fault behaviour with accuracy between 88% and 92% as fast as 0.25 s 

after the fault clearance and with accuracy between 90% and 99% about 1 s after the 

fault clearance. The accuracy of prediction is more sensitive to the uncertainty in the 

system operating point and pre-fault network topology, than to fault duration and 

fault location. The implementation demonstrated that DT is a useful tool for online 

assessment of system transient stability and hence applicable to corrective control 
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approaches. 

The review of past research revealed that a variety of, not very consistent, approaches 

has been used to assess the accuracy of data mining models for on-line prediction of 

transient stability. Frequently used ways of constructing test databases included 

selecting several individual representative contingencies, sampling one set of 

contingencies based on the distributions of all system uncertain factors or past 

experiences, and creating several sets of contingencies according to a list of 

uncertainties. The first original contribution of this thesis is a generic probabilistic 

framework for the assessment of the prediction accuracy of data mining models. This 

new framework performs an exhaustive search of possible contingencies in the testing 

process and weighs the accuracies according to the realistic probability distribution of 

uncertain system factors. The assessment results can not only inform the system 

operators and controllers of the confidence level of a data mining model in real-time, 

but also highlight the effect of different uncertainties on the accuracy of prediction. 

The implementation of this framework was also illustrated on the NETS-NYPS test 

network, using DT as the example of data mining technique. The performance of the 

DT model developed in this study was tested using a wide variety of disturbances with 

probabilistically modelled locations, durations, types of fault and the system loading 

levels. The accuracy of prediction is approximately 98.5% immediately following the 

fault clearance and can increase to almost 100% if the prediction is made 2.5 s after 

the fault clearance. 

Although great effectiveness has been shown in the past research for the binary 

classification methods to classify the transient status of post-fault real-time system 

into stable and unstable, very little work has been done to further predict the pattern 

of generator grouping in the event of instability. This grouping is of interest to the 
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system operators since it can assist better selection of corrective control actions, and 

inform decision making regarding the most effective controlled islanding scheme. 

The second original contribution of this thesis is a methodology for on-line 

identification of power system dynamic signature. The methodology is a two-stage 

scheme, which takes the traditional binary classification to identify system transient 

stability in the first stage, and establishes a novel method to identify the unstable 

system dynamic behaviour in the second stage using both clustering and multiclass 

classification. The application of Hierarchical Clustering to a database of unstable 

contingencies to pre-define the patterns of generator grouping is the third original 

contribution of this thesis. Different multiclass classification techniques, including 

DT, Ensemble DT and Multiclass Support Vector Machine, were evaluated for the 

on-line prediction in the event of instability. Boosted C5.0 was identified to be the 

most suitable for this application. This represents the fourth original contribution of 

this thesis.  

Implementation of the two-stage methodology on the NETS-NYPS test system 

showed that an overall prediction accuracy of over 99% was achieved in terms of 

transient stability status at 0.5 s after the fault clearance, using the DT trained by C5.0 

algorithm. Furthermore, with the best-performing Boosted C5.0 (compared to CART, 

C5.0, Random Forest and Multiclass SVM), over 91% of the correctly identified 

unstable contingencies were then successively classified, 0.5 s after the fault 

clearance, into the right pattern of generator dynamic behaviour, and about 88% into 

the right pattern of generator dynamic behaviour with the indicated unsynchronised 

generator groups. 

The final study in this thesis looked into the effect of practical issues related to 

WAMS on the data-driven methodologies developed for on-line prediction of system 



Chapter 8: Conclusions and Future Work 
 

199 

dynamic signature. Five categories of practical issues were discussed, including 

measurement error, communication noise, wide area signal delays, missing 

measurements, and limited number of PMUs. Although some of the investigations 

were preliminary, it was found out that the performance of the DT method on on-line 

transient stability prediction was degraded when adding a White Gaussian Noise to 

the original signals to model the presence of measurement error and communication 

noise. The decision made by the DT model would be delayed until the farthest signal 

reached the Monitoring and Control Centre. In addition, the surrogate split method 

included in the CART algorithm was identified as not good enough for dealing with 

missing signals. All of the three off-the-shelf ensemble methods, including bagging, 

boosting and Random Forest, could significantly improve the robustness of DT, 

although Random Forest performed slightly better than the other two. Finally, a 

simple case study in which the number of PMUs installed in the test system is limited 

revealed that this issue has a significant effect on the data mining methods. 

8.2 Future Work 

The work presented within this thesis has fulfilled all of the research aims which were 

initially defined. Nevertheless, there are a number of areas where this research could 

be extended in order to further develop the ideas and methodologies which have been 

established. 

 The data mining approach presented in this thesis requires a large database of 

contingency. To generate this database, both pre-fault system operating 

conditions and the disturbance are sampled uniformly or randomly according 

to their probability distribution. The original review of past research revealed 

some efficient sampling approaches used for the generation of training 
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database for on-line stability assessment in preventive mode. It would be 

desirable to identify or develop some of the existing or new efficient sampling 

techniques which can be applied in the training process of both the binary and 

multiclass classification for on-line identification of power system dynamic 

signature. These techniques can help to maximise the information content in 

the database whilst minimise the computing requirements. 

 Two approaches of constructing the training database from the post-fault 

system parameters have been found in the review of past research. The first 

approach treats a single data point as an individual object in the training set, 

and is applied in this thesis in Chapter 4, Chapter 5, Section 7.2, and Section 

7.4.1. The second approach, on the other hand, treats cumulative data points in 

one contingency as one object, and is used in Chapter 6, Section 7.4.2, and 

Section 7.5. These two approaches should be compared to each other, by 

using the same training database on the test network and the same DT 

algorithm to build two models, and by using the same testing database to 

evaluate their relative performance (including both accuracy and speed of 

decision making, robustness to system uncertainties, and advantages and 

disadvantages in practical power system implementation). A study like this 

may be able to suggest a better way of training to the system operators. 

 Multiclass classification has been proposed in this thesis to predict the pattern 

of generator grouping in the event of instability. The result on the test network 

was not as good as that of transient stability status prediction.  As well as the 

natural increasing difficulty in the task of multiclass classification, the highly 

unbalanced training data were also responsible for making the conventional 

classifiers less effective. Potential solutions, such as changing the training 
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data distribution and modifying existing learning algorithms, should be 

investigated to deal with the unbalance problem in multiclass classification, so 

that the accuracy of predicting the pattern of generator grouping can be further 

improved. 

 Throughout this thesis, the developed methodology for on-line identification 

of power system dynamic signature has been implemented on a system in 

which the power sources are all synchronous generations. However, a 

growing number of conventional controlled power plants is being replaced by 

stochastic and intermittent renewable generation sources such as wind and 

solar, resulting in more uncertainties in operating conditions. It is, therefore, 

of vital importance to investigate the impact of non-conventional generations 

on the dynamic behaviour of the system, and in turn the data mining approach 

proposed in this thesis for identifying system dynamic signature. 

 Apart from generation, other conditions such as changing load types and 

patterns, and system topology will also contribute to the increasing level of 

uncertainty. Since the target of this thesis is to identify the system dynamic 

signature in real-time, it may not be feasible to train a data mining model 

which is able to deal with contingencies under the combination of all these 

uncertain conditions. It would be desirable to cluster the various operating 

conditions of a power system within a period of time (for instance a year) into 

a finite number of patterns. Such work could allow a set of data mining 

models to be pre-trained off-line, so that the most appropriate one can be 

selected in real-time based on a short-term forecast of system operating 

conditions.  

 The preliminary case study in this thesis has shown that a limited number of 
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PMUs have a significant effect on the data mining methods. In practice, such 

an issue is very likely to occur due to the design and implementation of 

WAMS. Further and thorough investigation on this may reveal the level of 

information content that the signal from each generator has, provide a 

minimum number of PMUs required for the data mining methods to achieve a 

certain level of accuracy, and suggest the optimal locations for PMU 

installation from the transient stability assessment point of view. 

 Furthermore, in the two-stage methodology that has been proposed in this 

thesis for on-line identification of power system dynamic signature, a binary 

classifier is used to predict the transient stability status and a multiclass 

classifier is used to predict the generator grouping when the system loses 

stability. The method could be extended to predict the generators dynamic 

behaviour when the system remains stable. Such information can determine 

the level of stability and help the selection of appropriate damping controls. 

Similar to the generator grouping in the event of instability, patterns of 

generator coherency could also be pre-defined off-line through some 

clustering techniques. Another multiclass classifier could be trained for stable 

cases and used in parallel with the one for unstable cases in real-time 

application.    

 A visualisation tool to communicate the power system dynamic signature 

identified in real-time to the system operators could also be developed. A 

user-friendly graphical interface could be designed to facilitate the 

visualisation and to gain a clear understanding of system transient stability 

and dynamic behaviour. 

 Finally, the future work following this thesis should integrate the 
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methodologies developed here with other strands of research which have been 

undertaken in the Self* Network Operation and Control (SNOC) stream of the 

Grand Challenge Autonomic Power Systems (APS) Project funded by the 

Engineering and Physical Sciences Research Council (EPSRC). A promising 

approach is to use the pattern of generator dynamic behaviour in the event of 

transient instability as one of the criteria to define the “dynamic zones of 

control”.   
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Appendix A: Network Data 

This appendix provides the data required in order to perform dynamic studies on the 

NETS-NYPS test network used throughout this thesis. A system base of 100 MVA is 

used. Full system details, generator and exciter parameters are adopted from [127] 

with PSS settings for G9 sourced from [115]. 

A.1 Line Impedances 

The line impedance data for the network is presented in Table A-1, including 

transformer off-nominal turns ratio (ONR) where applicable. 

Table A-1: Line data for the NETS-NYPS test network. 

From 
Bus 

To 
Bus R(pu) X(pu) B(pu) ONR From 

Bus 
To 
Bus R(pu) X(pu) B(pu) ONR 

2 53 0 0.0181 0 1.025 33 34 0.0011 0.0157 0.202 – 

6 54 0 0.025 0 1.07 35 34 0.0001 0.0074 0 0.946 

10 55 0 0.02 0 1.07 34 36 0.0033 0.0111 1.45 – 

19 56 0.0007 0.0142 0 1.07 9 36 0.0022 0.0196 0.34 – 

20 57 0.0009 0.018 0 1.009 9 36 0.0022 0.0196 0.34 – 

22 58 0 0.0143 0 1.025 16 37 0.0007 0.0089 0.1342 – 

23 59 0.0005 0.0272 0 1 31 38 0.0011 0.0147 0.247 – 

25 60 0.0006 0.0232 0 1.025 33 38 0.0036 0.0444 0.693 – 

29 61 0.0008 0.0156 0 1.025 41 40 0.006 0.084 3.15 – 
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From 
Bus 

To 
Bus R(pu) X(pu) B(pu) ONR From 

Bus 
To 
Bus R(pu) X(pu) B(pu) ONR 

31 62 0 0.026 0 1.04 48 40 0.002 0.022 1.28 – 

32 63 0 0.013 0 1.04 42 41 0.004 0.06 2.25 – 

36 64 0 0.0075 0 1.04 18 42 0.004 0.06 2.25 – 

17 65 0 0.0033 0 1.04 17 43 0.0005 0.0276 0 – 

41 66 0 0.0015 0 1 39 44 0 0.0411 0 – 

42 67 0 0.0015 0 1 43 44 0.0001 0.0011 0 – 

18 68 0 0.003 0 1 35 45 0.0007 0.0175 1.39 – 

36 17 0.0005 0.0045 0.32 – 39 45 0 0.0839 0 – 

49 18 0.0076 0.1141 1.16 – 44 45 0.0025 0.073 0 – 

16 19 0.0016 0.0195 0.304 – 38 46 0.0022 0.0284 0.43 – 

19 20 0.0007 0.0138 0 1.06 1 47 0.0013 0.0188 1.31 – 

16 21 0.0008 0.0135 0.2548 – 47 48 0.0025 0.0268 0.4 – 

21 22 0.0008 0.014 0.2565 – 47 48 0.0025 0.0268 0.4 – 

22 23 0.0006 0.0096 0.1846 – 46 49 0.0018 0.0274 0.27 – 

23 24 0.0022 0.035 0.361 – 45 51 0.0004 0.0105 0.72 – 

16 24 0.0003 0.0059 0.068 – 50 51 0.0009 0.0221 1.62 – 

2 25 0.007 0.0086 0.146 – 37 52 0.0007 0.0082 0.1319 – 

25 26 0.0032 0.0323 0.531 – 3 52 0.0011 0.0133 0.2138 – 

37 27 0.0013 0.0173 0.3216 – 1 2 0.0035 0.0411 0.6987 – 

26 27 0.0014 0.0147 0.2396 – 2 3 0.0013 0.0151 0.2572 – 

26 28 0.0043 0.0474 0.7802 – 3 4 0.0013 0.0213 0.2214 – 

26 29 0.0057 0.0625 1.029 – 4 5 0.0008 0.0128 0.1342 – 

28 29 0.0014 0.0151 0.249 – 5 6 0.0002 0.0026 0.0434 – 

1 30 0.0008 0.0074 0.48 – 6 7 0.0006 0.0092 0.113 – 

9 30 0.0019 0.0183 0.29 – 5 8 0.0008 0.0112 0.1476 – 

9 30 0.0019 0.0183 0.29 – 7 8 0.0004 0.0046 0.078 – 

30 31 0.0013 0.0187 0.333 – 8 9 0.0023 0.0363 0.3804 – 

1 31 0.0016 0.0163 0.25 – 6 11 0.0007 0.0082 0.1389 – 

30 32 0.0024 0.0288 0.488 – 10 11 0.0004 0.0043 0.0729 – 

32 33 0.0008 0.0099 0.168 – 12 11 0.0016 0.0435 0 1.06 

4 14 0.0008 0.0129 0.1382 – 10 13 0.0004 0.0043 0.0729 – 

13 14 0.0009 0.0101 0.1723 – 12 13 0.0016 0.0435 0 1.06 

14 15 0.0018 0.0217 0.366 – 1 27 0.032 0.32 0.41 – 

15 16 0.0009 0.0094 0.171 – 50 18 0.0012 0.0288 2.06 – 
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A.2 Standard Power Flow Data 

The data required to complete standard power flow is included in Table A-2. Bus 65 

is the slack. 

Table A-2: Standard power flow data for the NETS-NYPS test network. 

Bus V (pu)   (  ) GP  
(MW) 

LP
(MW)  

LQ
(MVar)  

Bus V (pu)   (  ) GP  
(MW) 

LP  
(MW) 

LQ  
(MVar) 

1 – – – 252.7 118.56 44 – – – 267.55 4.84 

3 – – – 322 2 45 – – – 208 21 

4 – – – 200 73.6 46 – – – 150.7 28.5 

7 – – – 234 84 47 – – – 203.12 32.59 

8 – – – 208.8 70.8 48 – – – 241.2 2.2 

9 – – – 104 125 49 – – – 164 29 

12 – – – 9 88 50 – – – 100 -147 

15 – – – 320 153 51 – – – 337 -122 

16 – – – 329 32 52 – – – 158 30 

17 – – – 6000 300 53 1.045 – 250 – – 

18 – – – 2470 123 54 0.98 – 545 – – 

20 – – – 680 103 55 0.983 – 650 – – 

21 – – – 274 115 56 0.997 – 632 – – 

23 – – – 248 85 57 1.011 – 505 – – 

24 – – – 309 -92 58 1.05 – 700 – – 

25 – – – 224 47 59 1.063 – 560 – – 

26 – – – 139 17 60 1.03 – 540 – – 

27 – – – 281 76 61 1.025 – 800 – – 

28 – – – 206 28 62 1.01 – 500 – – 

29 – – – 284 27 63 1 – 1000 – – 

33 – – – 112 0 64 1.0156 – 1350 – – 

36 – – – 102 -19.46 65 1.011 0 – – – 

39 – – – 267 12.6 66 1 – 1785 – – 

40 – – – 65.63 23.53 67 1 – 1000 – – 

41 – – – 1000 250 68 1 – 4000 – – 

42 – – – 1150 250       
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A.3 Optimal Power Flow Data 

From Chapter 5 to 7, an optimal power flow solution is incorporated within the test 

system. The optimisation minimises the total cost of generation for the given loading 

scenario, where each generator is subject to the standard cost function (A.1). 

2
0 1 2e eCost c c P c P    $/hour (A.1) 

The coefficient values for each generator are given in Table A-3 and taken from [2]. 

Also included in the table are the constraints on active and reactive power for each 

generating unit. Furthermore, all bus voltages are constrained to between 0.9 and 1.1 

p.u.. The thermal constraints of transmission lines are not considered.    

Table A-3: Standard power flow data for the NETS-NYPS test network. 

Generator 0c  1c  2c  
maxP  

(MW) 
minP  

(MW) 

maxQ  
(MVar) 

minQ  
(MVar) 

G1 0 6.9 0.0193 450 20 148.5 -148.5 

G2 0 3.7 0.0111 745 80 245.85 -245.85 

G3 0 2.8 0.0104 850 40 280.5 -280.5 

G4 0 4.7 0.0088 832 40 274.56 -274.56 

G5 0 2.8 0.0128 705 50 232.65 -232.65 

G6 0 3.7 0.0094 700 45 297 -297 

G7 0 4.8 0.0099 760 50 250.8 -250.8 

G8 0 3.6 0.0113 740 75 244.2 -244.2 

G9 0 3.7 0.0071 1000 70 330 -330 

G10 0 3.9 0.0090 700 35 231 -231 

G11 0 4.0 0.0050 1200 60 396 -396 

G12 0 2.9 0.0040 1550 80 511.5 -511.5 

G13 0 2.5 0.0019 3213 40 1060.29 -1060.29 

G14 0 3.3 0.0033 1985 20 655.05 -655.05 

G15 0 3.8 0.0050 1200 20 396 -396 

G16 0 9.5 0.0014 4200 50 1386 -1386 
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A.4 Generator Dynamic Data 

The generator dynamic data is given in Table A-4 and Table A-5, scaled to the given 

machine base. 

Table A-4: Generator dynamic data for the NETS-NYPS test network (1). 

Gen Bus Rating  
(MVA) lkX  (pu) dX  (pu) '

dX  (pu) ''
dX  (pu) '

0dT  (s) ''
0dT  (s) 

G1 53 100 0.0125 0.1 0.031 0.025 10.2 0.05 

G2 54 100 0.035 0.295 0.0697 0.05 6.56 0.05 

G3 55 100 0.0304 0.2495 0.0531 0.045 5.7 0.05 

G4 56 100 0.0295 0.262 0.0436 0.035 5.69 0.05 

G5 57 100 0.027 0.33 0.066 0.05 5.4 0.05 

G6 58 100 0.0224 0.254 0.05 0.04 7.3 0.05 

G7 59 100 0.0322 0.295 0.049 0.04 5.66 0.05 

G8 60 100 0.028 0.29 0.057 0.045 6.7 0.05 

G9 61 100 0.0298 0.2106 0.057 0.045 4.79 0.05 

G10 62 100 0.0199 0.169 0.0457 0.04 9.37 0.05 

G11 63 100 0.0103 0.128 0.018 0.012 4.1 0.05 

G12 64 100 0.022 0.101 0.031 0.025 7.4 0.05 

G13 65 200 0.003 0.0296 0.0055 0.004 5.9 0.05 

G14 66 100 0.0017 0.018 0.00285 0.0023 4.1 0.05 

G15 67 100 0.0017 0.018 0.00285 0.0023 4.1 0.05 

G16 68 200 0.0041 0.0356 0.0071 0.0055 7.8 0.05 

 

Table A-5: Generator dynamic data for the NETS-NYPS test network (2). 

Gen Bus Rating  
(MVA) qX  (pu) '

qX  (pu) ''
qX  (pu) '

q0T  (s) ''
q0T  (s) H (s) D 

G1 53 100 0.069 0.028 0.025 1.5 0.035 42 4 

G2 54 100 0.282 0.06 0.05 1.5 0.035 30.2 9.75 

G3 55 100 0.237 0.05 0.045 1.5 0.035 35.8 10 

G4 56 100 0.258 0.04 0.035 1.5 0.035 28.6 10 

G5 57 100 0.31 0.06 0.05 0.44 0.035 26 3 

G6 58 100 0.241 0.045 0.04 0.4 0.035 34.8 10 

G7 59 100 0.292 0.045 0.04 1.5 0.035 26.4 8 

G8 60 100 0.28 0.05 0.045 0.41 0.035 24.3 9 
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Gen Bus Rating  
(MVA) qX  (pu) '

qX  (pu) ''
qX  (pu) '

q0T  (s) ''
q0T  (s) H (s) D 

G9 61 100 0.205 0.05 0.045 1.96 0.035 34.5 14 

G10 62 100 0.115 0.045 0.04 1.5 0.035 31 5.56 

G11 63 100 0.123 0.015 0.012 1.5 0.035 28.2 13.6 

G12 64 100 0.095 0.028 0.025 1.5 0.035 92.3 13.5 

G13 65 200 0.0286 0.005 0.004 1.5 0.035 248 33 

G14 66 100 0.0173 0.0025 0.0023 1.5 0.035 300 100 

G15 67 100 0.0173 0.0025 0.0023 1.5 0.035 300 100 

G16 68 200 0.0334 0.006 0.0055 1.5 0.035 225 50 

 

Generators G1-G8 all use type DC1A exciters, with the following parameters: 

0.01RT  , 40ex
AK  , 0.02ex

AT  , min 10exE   , max 10exE   , 0.785ex
ET  , 1ex

EK  , 

0.07ex
EA  , 0.91ex

EB  . 

Generator G9 uses a type ST1A exciter, with the following parameters: 

0.01RT  , 200ex
AK  , min 5fdE   , max 5fdE  . 

Generator G9 is also equipped with a PSS with the following settings: 

10PSS
WT  , 1 0.05PSST  , 2 0.01PSST  , 3 0.05PSST  , 4 0.02PSST  , 10PSSK  , 

min 0.5PSSE   , max 0.5PSSE  . 
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