
Fully automatic cephalometric evaluation using
Random Forest regression-voting

Claudia Lindner and Tim F. Cootes

Centre for Imaging Sciences, University of Manchester, UK

Abstract. Cephalometric analysis is commonly used as a standard tool
for orthodontic diagnosis and treatment planning. The identification of
cephalometric landmarks on images of the skull allows the quantification
and classification of anatomical abnormalities. In clinical practice, the land-
marks are placed manually which is time-consuming and subjective. This
work investigates the application of Random Forest regression-voting to
fully automatically detect cephalometric landmarks, and to use the iden-
tified positions for automatic cephalometric evaluation. Validation exper-
iments on two sets of 150 images show that we achieve an average mean
error of 1.6mm - 1.7mm and a successful detection rate of 75% - 85% for a
2mm precision range, and that the accuracy of our automatic cephalomet-
ric evaluation is 77% - 79%. This work shows great promise for application
to computer-assisted cephalometric treatment and surgery planning.

1 Introduction

Cephalometric radiography is commonly used as a standard tool in orthodontic
diagnosis and treatment planning as well as in corrective and plastic surgery plan-
ning. Cephalometric evaluation is based on a number of image landmarks on the
skull and surrounding soft tissue, which are used for quantitative analysis to as-
sess severity and difficulty of orthodontic cases or to trace facial growth. Figure 1
shows the cephalometric image landmarks used in this work.

Traditionally, these landmarks are placed manually by experienced doctors.
This is very time-consuming, taking several minutes for an experienced doctor,
and results are inconsistent. To overcome these limitations in clinical practice
as well as in the research setting, attempts have been made to automate the
landmark annotation procedure [6, 7, 13]. However, due to overlaying structures
and inhomogeneous intensity values in radiographic images as well as anatomical
differences across subjects, fully automatic landmark detection in cephalograms is
challenging. A precision range of 2mm is accepted in the field to evaluate whether
a landmark has been detected successfully. A number of outcomes have been
reported for this range (e. g. [6] 73%, [7] 61%, [13] 71%) but results are difficult
to compare due to the different datasets and landmarks used.

Recently, significant advances in automatically detecting landmarks (i. e. anno-
tating objects) in radiographic images have been made by using machine learning
approaches [2, 4, 8, 9]. Some of the most robust and accurate results based on
shape model matching have been achieved by using Random Forests (RFs) [1] to
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L1 sella
L2 nasion
L3 orbitale
L4 porion
L5 subspinale
L6 supramentale
L7 pogonion
L8 menton
L9 gnathion
L10 gonion
L11 lower incisal incision
L12 upper incisal incision
L13 upper lip
L14 lower lip
L15 subnasale
L16 soft tissue pogonion
L17 posterior nasal spine
L18 anterior nasal spine
L19 articulate

Fig. 1. Cephalogram annotation example showing the 19 landmarks used in this work.

vote for the positions of each individual landmark and then to use a statistical
shape model to regularise the votes across all landmarks. In [9], we presented
a fully automatic landmark detection system (FALDS) based on RF regression-
voting in the Constrained Local Model framework to annotate the proximal femur
in pelvic radiographs. Here, we investigate the performance of this approach to
detect cephalometric landmarks. To be able to compare the performance of our
approach to other methodologies, we apply our FALDS as part of the ISBI 2015
Grand Challenge in automatic Detection and Analysis for Diagnosis in Cephalo-
metric X-ray Images [12] which aims at automatically detecting cephalometric
landmarks and using their positions for automatic cephalometric evaluation of
anatomical abnormalities to assist clinical diagnosis.

We show that our FALDS achieves a successful detection rate of up to 85% for
the 2mm precision range and an average cephalometric evaluation classification
accuracy of up to 79%, performing sufficiently well for computer-assisted planning.

2 Methods

We explore the performance of RF regression-voting in the Constrained Local
Model framework (RFRV-CLM) [8] to detect the 19 landmarks as shown in Fig-
ure 1 on new unseen images. In the RFRV-CLM approach, a RF is trained for
each landmark to learn to predict the likely position of that landmark. During
detection, a statistical shape model [3] is matched to the predictions over all land-
mark positions to ensure consistency across the set. We apply RFRV-CLM as
part of a FALDS [9]: We use our own implementation of Hough Forests [5] to
estimate the position, orientation and scale of the object in the image, and use
this to initialise the RFRV-CLM landmark detection. The output of the FALDS
can then be used for automatic cephalometric evaluation by using the identified
landmark positions to calculate a set of dental parameters.
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2.1 RF regression-voting in the Constrained Local Model framework

Recent work has shown that one of the most effective approaches to detect a set
of landmark positions on an object of interest is to train RFs to vote for the
likely position of each landmark, then to find the shape model parameters which
optimise the total votes over all landmark positions (see [8, 9] for full details):

Training: We train the RF regressors (one for every landmark) from a set
of images, each of which is annotated with landmarks x on the object of interest.
The region of the image that captures all landmarks of the object is re-sampled
into a standardised reference frame. For every landmark in x, we sample patches
of size wpatch (width = height) and extract features fi(x) at a set of random
displacements di from the true position in the reference frame. Displacements are
drawn from a flat distribution in the range [−dmax ,+dmax ]. We train a regressor
R(f(x)) to predict the most likely position of the landmark relative to x. Each
tree leaf stores the mean offset and the standard deviation of the displacements
of all training samples that arrived at that leaf. We use Haar features [11] as they
have been found to be effective for a range of applications and can be calculated
efficiently from integral images.

A statistical shape model is trained based on landmarks x in the set of images
by applying principal component analysis to the aligned shapes [3]. This yields a
linear model of shape variation which represents the position of each landmark l
using xl = Tθ(x̄l + Plb + rl) where x̄l is the mean position of the landmark in a
suitable reference frame, Pl is a set of modes of variation, b are the shape model
parameters, rl allows small deviations from the model, and Tθ applies a global
transformation (e. g. similarity) with parameters θ.

Landmark detection: Given an initial estimate of the pose of the object,
the region of interest of the image is re-sampled into the reference frame. We
then search an area around each estimated landmark position in the range of
[dsearch ,+dsearch ] and extract the relevant feature values at every position.
These will be used for the RF regressor to vote for the best position in an accumu-
lator array where every tree will cast independent votes to make predictions on the
position of the landmark. The forest prediction is then computed by combining
all tree predictions, yielding a 2D histogram of votes V l for each landmark l.

Based on the 2D histograms V l from the RF regressors, we aim to combine
the votes in all histograms given the learned shape constraints via maximising

Q({b, θ}) = Σ n
l=1V l(Tθ(x̄l + Plb + rl)). (1)

We apply the technique described in [8] to solve this optimisation problem.

2.2 Automatic cephalometric evaluation

The 19 landmarks in Figure 1 allow calculation of a number of dental parameters
that are used in cephalometric evaluation to classify types of anatomical abnor-
malities. Table 1 summarises the parameters used in this work. A Python script
to automatically calculate the parameters and classify subjects based on a set of
19 landmark positions was provided by the challenge organisers.
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Table 1. Overview of dental parameters used in the cephalometric evaluation.

ANB1 SNB2 SNA3 ODI4 APDI5 FHI6 FMA7 MW8

C1 3.2-5.7◦ 74.6-78.7◦ 79.4-83.2◦ 68.4-80.5◦ 77.6-85.2◦ 0.65-0.75 26.8-31.4◦ 2-4.5mm

C2 >5.7◦ <74.6◦ >83.2◦ >80.5◦ <77.6◦ >0.75 >31.4◦ =0mm

C3 <3.2◦ >78.7◦ <79.4◦ <68.4◦ >85.2◦ <0.65 <26.8◦ <0mm

C4 – – – – – – – >4.5mm
1 ANB: angle between point A (L5), nasion (L2) and point B (L6).
2 SNB: angle between sella (L1), nasion (L2) and point B (L6).
3 SNA: angle between sella (L1), nasion (L2) and point A (L5).
4 Overbite depth indicator (ODI): sum of the angle between the lines from L5 to L6 and from L8 to

L10 and the angle between the lines from L3 to L4 and from L17 to L18.
5 Anteroposterior dysplasia indicator: sum of the angle between the lines from L3 to L4 and from

L2 to L7, the angle between the lines from L2 to L7 and from L5 to L6 and the angle between the
lines from L3 to L4 and from L17 to L18.

6 Facial height index: ratio of the posterior face height (distance from L1 to L10) to the anterior face
height (distance from L2 to L8).

7 Frankfurt mandibular angle: angle between the lines from sella (L1) to nasion (L2) and from
gonion (L10) to gnathion (L9).

8 Modified Wits appraisal: ((xL12 − xL11)/ |xL12 − xL11 |)‖xL12 − xL11‖.

3 Datasets

The challenge organisers provided two datasets: (a) A training dataset consisting
of 150 images as well as ground truth annotations for 19 landmarks as in Figure 1
and ground truth classifications for the dental parameters listed in Table 1 for each
image; we will refer to this as the Train1 dataset. (b) A testing dataset consisting
of 150 images without ground truth annotations or classifications; we will refer to
this as the Test1 dataset. All images were lateral cephalograms acquired from 400
subjects (age range: 6 - 60 years) with Soredex CRANEX c©Excel Ceph machine
(Tuusula, Finland) and Soredex SorCom software (3.1.5, version 2.0).

The resolution of all images was 1935×2400 pixels with a pixel spacing of 0.1mm.
The ground truth annotations were the average of two sets of manual annotations
for each training image, annotated by two experienced medical doctors. Table 2
shows the intra- and inter-observer variability of the ground truth annotations.

Table 2. Intra- and inter-observer errors of manual ground truth annotations for the
training dataset: Mean radial error ± standard deviation in mm (as defined in Section 4).

Intra-observer variability Inter-observer variability

Doctor1 Doctor2 Doctor1 vs Doctor2
1.73 ± 1.35 0.90 ± 0.89 1.38 ± 1.55

4 Experiments and evaluation

We conducted a series of experiments to evaluate the performance of the RFRV-
CLM approach for automatic cephalometric analysis. Cross-validation experiments
on the Train1 dataset were used to optimise the parameters for the detection
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of cephalometric landmarks. The fully automatically detected landmark positions
were then used to analyse their ability for automatic classification of anatomical ab-
normalities. We applied the optimised FALDS to the Test1 dataset and report the
landmark detection and classification results provided by the challenge organisers.

All annotation results are reported as the mean radial error (MRE, in mm),
obtained after rounding all landmark positions to the nearest whole pixel position
and defined by MRE = (Σ n

i=1R i)/n with n being the number of images and
R = ‖xLm

− xLa
‖ for manually and automatically marked landmarks Lm and

La , respectively. We also report the successful detection rate (SDR, in %) which
gives the percentage of landmarks detected within a certain precision range z ∈
{2.0mm, 2.5mm, 3.0mm, 4.0mm}: SDR = #{i : (R i ≤ z)}/n × 100 for i ≤
1 ≤ n. For evaluation of the automatically obtained cephalometric classification
results, we report the successful classification rate (SCR, in %) which gives the
percentage of accurately classified images per dental parameter: SCR = #{i :
Cmi

= Cai
}/n × 100 with manually and automatically obtained classification

types Cmi
and Cai

, respectively, and i ≤ 1 ≤ n.

4.1 Parameter optimisation via cross-validation experiments

In [10], it was shown that the RFRV-CLM approach generalises well across ap-
plication areas. To investigate whether structure specific improvements can be
achieved, we conducted a series of two-fold cross-validation experiments to opti-
mise the parameters for cephalometric landmark detection. Here, we summarise
the results. All cross-validation experiments were conducted on the Train1 dataset
by randomly splitting the dataset into two disjoint sets of 75 images each, training
on one set and testing on the other and then doing the same with the datasets
switched. Results reported are the average of the two runs.
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Fig. 2. Fully automatic landmark detection results
comparing the parameters suggested in [9] to the
optimised parameters proposed in this work.

We train a FALDS follow-
ing a coarse-to-fine approach
(10+1 search iterations) and us-
ing the baseline parameters as
suggested in [9]. We found that
we can improve upon results
using previously reported pa-
rameters by making the follow-
ing changes for the second-stage,
fine model: increase the patch
size wpatch from 20 to 30, in-
crease the sampling range dmax
from 15 to 30 and halve the
search range dsearch . Increas-
ing the parameters even further
did not lead to any improvements. Figure 2 gives the results. These show that our
FALDS was able to detect all landmarks across all 150 images with an average
MRE of 1.6mm (±0.4mm standard deviation), and successful detection rates of
85%/98%/100% for the 2.0mm/2.5mm/3.0mm precision ranges, respectively.
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4.2 Landmark detection results on the Test1 dataset

We used the optimised parameters to train a FALDS using all 150 images from
the Train1 dataset for training, and applied the system to the 150 images in the
Test1 dataset. The average runtime of our system to detect all 19 landmarks
was less than 5s per image. Table 3 shows the landmark detection results. We also
experimented with adding auxiliary landmarks to improve the landmark detection
performance but did not find this to make a significant difference. When adding
10 additional landmarks along the jawline between landmarks L8 and L19 we
achieved the following average MRE and SDR (2.0/2.5/3.0/4.0mm) values on the
Test1 dataset: 1.67±1.48mm, 73.68% /80.21%/ 85.19%/ 91.47%.

Table 3. Landmark detection results on the Test1 dataset: Mean radial error (MRE
± standard deviation) and successful detection rates (SDR) for 2.0mm, 2.5mm, 3.0mm
and 4.0mm precision ranges.

Landmark MRE (mm)
SDR (%)

2.0mm 2.5mm 3.0mm 4.0mm

sella (L1) 0.75 ± 0.95 97.33 97.33 97.33 98.00

nasion (L2) 1.71 ± 2.01 71.33 76.00 77.33 90.00

orbitale (L3) 1.73 ± 1.34 66.67 77.33 85.33 94.00

porion (L4) 3.05 ± 2.74 52.67 58.00 62.00 67.33

subspinale (L5) 2.31 ± 1.60 54.00 62.00 73.33 86.00

supramentale (L6) 1.61 ± 1.45 70.00 82.00 86.67 91.33

pogonion (L7) 1.07 ± 0.84 85.33 92.67 96.00 100.00

menton (L8) 1.02 ± 0.82 91.33 96.67 98.00 99.33

gnathion (L9) 0.83 ± 0.68 92.67 98.00 98.00 99.33

gonion (L10) 4.58 ± 3.12 23.33 28.67 36.00 48.00

lower incisal incision (L11) 0.92 ± 1.10 89.33 90.67 96.00 96.67

upper incisal incision (L12) 0.61 ± 0.90 97.33 98.00 98.00 99.33

upper lip (L13) 1.33 ± 3.90 90.67 94.00 98.67 98.67

lower lip (L14) 0.93 ± 0.91 92.67 98.00 98.00 99.33

subnasale (L15) 1.14 ± 1.02 86.00 90.00 93.33 97.33

soft tissue pogonion (L16) 2.22 ± 1.91 52.67 60.67 76.67 88.67

posterior nasal spine (L17) 1.01 ± 0.81 90.00 92.67 98.00 99.33

anterior nasal spine (L18) 1.84 ± 1.99 70.00 78.67 81.33 86.67

articulate (L19) 3.14 ± 3.31 50.67 54.00 56.67 64.67

AVERAGE 1.67 ± 1.65 74.95 80.28 84.56 89.68

The results show that the average MRE over all images and landmarks on
the Test1 dataset is very similar to the results we obtained in our two-fold cross-
validation experiments. However, for the Test1 dataset, the standard deviation for
the error values is significantly higher and the obtained successful detection rates
for the various precision ranges are lower. This suggests that Test1 might be a more
“challenging” dataset or that the shape and appearance variation experienced in
the Test1 dataset is not well represented in the Train1 dataset. An alternative
explanation for these deviations in performance would be an inconsistency in the
manual annotations between the Train1 and Test1 datasets.
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Landmark L10 has a significantly lower detection rate than all other land-
marks. A likely reason for this is that the left and right mandibular halves are not
always well aligned in cephalograms which only provide a 2D projection of a 3D
shape (see Figure 1 for examples). Qualitative analysis suggests that our FALDS
sometimes annotates the “wrong” edge causing high error values if both mandibu-
lar halves appear far apart in an image. We believe that the performance on L10
could be improved upon by training the system on a larger representative dataset.

4.3 Cephalometric classification results

The automatically detected landmark positions can be used to calculate dental
parameters for cephalometric evaluation as in Table 1. The successful classifica-
tion rates (SCR) of comparing the classifications obtained from the automatically
detected landmark positions with the ground truth classifications are shown in
Table 4. We report the results for the classifications obtained from both the land-
mark detections for the cross-validation experiments on the Train1 dataset and
the landmark detections on the Test1 dataset. The results show consistent high
accuracy (on average 79%/77% for Train1/Test1) in the automatic evaluation of
cephalometric abnormalities. We would like to point out that this is a rather chal-
lenging classification task considering the small ranges for the different classes.
For example, the three classes for ANB are separated by less than 3◦ .

Table 4. Successful classification rates (SCR) for eight dental parameters.

SCR (%)

ANB SNB SNA ODI APDI FHI FMA MW

Train1* 76.0 91.3 70.0 74.0 76.0 82.7 82.0 82.0

Test1 71.3 83.3 60.0 80.0 83.3 77.3 81.3 85.3
* These are two-fold cross-validation results based on randomly splitting the Train1 dataset into

two disjoint subsets of equal size.

5 Discussion and conclusions

We have investigated the performance of RFRV-CLM as part of a FALDS [9] for
the automatic detection of cephalometric landmarks and subsequent automatic
cephalometric evaluation. We optimised the FALDS parameters to account for
the isolated landmark positions in cephalograms, and show that the improved
system achieves a successful landmark detection rate of 75% to 85% for the 2mm
precision range when detecting 19 landmarks in two datasets of 150 images each –
in less than 5s per image. On the ISBI 2015 Grand Challenge [12] Test1 dataset,
this is an improvement from 73% to 75% when compared to the best performance
of a similar ISBI 2014 Grand Challenge [6], though the results are not directly
comparable as the training and testing datasets have been increased. We have
also shown that the automatically detected landmarks can be used for automatic
cephalometric evaluation, achieving a classification accuracy of 77% to 79%.
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Comparing our landmark detection results with the intra- and inter-observer
errors of the manual ground truth annotations as shown in Table 2 reveals that
our fully automatic approach achieves a similar performance as the manual an-
notations. The performance of our FALDS is likely to improve if more accurate
ground truth annotations were available. Moreover, we would like to point out
that the datasets used in this work included subjects with an age range from
6 to 60 years which introduces significant variation in shape and appearance of
the skull. We believe that the performance of our cephalometric FALDS could be
further improved if more representative training data was available.

Given its high accuracy and low runtime, our FALDS shows great promise for
application to computer-assisted cephalometric treatment and surgery planning.
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