
A Pattern-Based Code Transformation Approach for Cloud Application Migration

Zhengong Cai1, Liping Zhao2, Xinyu Wang3, Xiaohu Yang3, Juntao Qin1, Keting Yin1

1 Software College, Zhejiang

University, Ningbo China

{caizg, 21451063,

yinkt}@cst.zju.edu.cn

2 School of Computer Science, The

University of Manchester,

Manchester UK

liping.zhao@machester.ac.uk

3College of Computer Science,

Zhejiang University, Hangzhou

China

{wangxinyu, yangxh}@zju.edu.cn

Abstract—To support the migration of software applications to

the cloud environment, cloud venders have proposed different

migration methodologies and guidelines. Yet, most of them

require human intervention, involving manually performing

repetitive tasks. This paper proposes a pattern-based

transformation approach for cloud application migration. The

approach automatically modifies the source code of an

application before the migration, to make it cloud-ready, and

then transforms the source code to the target code in the cloud

environment. The approach is supported by three key elements

(patterns, rules and templates) and a process that

systematically applies these elements. First, a pattern matching

engine based on a regular expression processing technique is

used to identify the parts of the source code that require

modification and to extract the essential tokens from the

source code for code transformation. Next, transformation

rules are invoked to change the source code into the target

code using a template, designed according to the target cloud

environment. The proposed approach has been demonstrated

on 19 open-source projects, by migrating them to Amazon Web

Services.

Keywords- Cloud computing; cloud migration; pattern-based

code transformation; transformation rule; AWS

I. INTRODUCTION

Cloud computing has become a dominating force in the
IT industry, due to its higher scalability, greater reliability
and lower cost. In recent years, businesses, including both
startup companies and traditional industries, have begun to
move their in-house data centers and software applications to
the cloud. Cloud migration, as this trend has been called, has
become an important IT strategy of most companies.

Yet, one critical issue facing cloud migration is that
cloud storage (database and file) access and security services
are different from those of traditional systems. Consequently,
applications migrated to the cloud platform cannot directly
use these basic cloud services. Furthermore, due to
incompatible storage and file structures, migrated
applications cannot take the full advantage of cloud
computing features, such as dynamic scalability. To solve
these problems, cloud computing venders have suggested
some techniques for transforming source code [10]. So far,
however, most of these techniques are manual operations and
repetitive, making cloud migration both time-consuming and
error-prone.

To support code transformation and architecture
transformation, technologies and methodologies have also
begun to emerge [10], [11], [14], such as transformation
decision making processes [13], transformation
methodologies [5], transformation methods [8], and
supporting toolkits [15]. Yet, most of these developments
aim to help manual transformation. While open source
transformation tools like stratego/xt [18] are available for
automated code transformation, they are not reliable. There
are also commercial solutions and tools [19], but they offer
customized solutions, rather than general transformation
methods or tools.

This paper proposes a pattern-based code transformation
approach for cloud migration to perform the repetitive
transformation tasks of storage access and security services.
This approach consists of a process that iteratively
transforms the source code into the target cloud code. The
process uses a set of code patterns to identify the database
access, file access and security services in the source code
and then applies a set of templates to change these services
into their corresponding cloud services. The transformation
process is driven by a set of transformation rules. The
proposed approach has been used to migrate 19 open source
projects to the Amazon Web Services (AWS) cloud.

The remaining paper is organized as follows. Section II
introduces the proposed approach and describes its detailed
processing steps. Section III demonstrates this approach
through 19 open-source projects. Then Section IV discusses
related work on transformation solutions and tools, and
finally, Section V concludes the paper.

II. THE PROPOSED APPROACH

A. Overall Process

As described above, the proposed approach takes the
source code of an application as input and applies an iterative
process to transform the code into the cloud compatible code.
Each process iteration consists of four main steps: scan code,
locate source code to transform, design templates according
to the target environment, and execute transformation rules.
The scanning step can be executed manually or by existing
scanning tools. In the second step, a pattern matching
method is used to locate the right source code to transform,
and to extract some essential tokens that should not be
changed during the transformation. Then the templates for
the target code are designed according to the target platforms.

Finally, the transformation rules are designed and executed
to transform the located source code with designed templates.
Figure 1 illustrates this overall process whereas the detailed
process steps are presented in the following subsections.

This is an iterative process from step 2 to step 4. For each
iterative process, a transformation pattern is applied, and the
following steps are executed with relevant templates and
rules. The transformation is complete when all the
transformation patterns are applied.

To illustrate this process, a running source code example
is given, as Figure 2 shows. This is a Java source code for
database access using hibernate, which is an object-relation
mapping framework in java. Since the hibernate Dao is
designed for local database access, the database access code
should be changed to use this service. In the source code,
MyItem is a class defining a business object. The database
operations are insert, update and delete. Migrating this
source code to the cloud means that the cloud storage should
be used. In this running example, the AWS DynamoDB is
used as the target storage services.

Figure 2. A running example: Migrating the database access source

code to the cloud environment.

B. Step 1: Code Scanning

This step selects and annotates the specific blocks of

code from the source code for transformation. It can be

performed manually or by using third-party tools. The code

scanning is performed only once to identify what the code is

for. Annotation begins with “//” and will therefore not affect

the compilation of the source code, as Figure 3 shows. The

annotation can be used as an index for locating source code

to transform or for further semantic analysis.

The input to the scanning steps are source code and a lot

of code features describing what code to locate. The features

can be key identifiers, token sequences or a syntax tree. The

code satisfying these features would be located and

annotated.

Figure 3. Annotated source code

C. Step 2: Pattern Matching

This step matches the annotated code with predefined
patterns. Based on these patterns, some code information can
be extracted and transformed into the target code. A pattern
in our approach is a recurring code segment that needs to be
transformed for cloud migration.

We have used an extended regular expression to express
our patterns. The extended regular expression has similar
syntax with the regular expression, but it differs from the
regular expression in two ways. First, the extended regular
expression is token-based. Thus the granularity of pattern
matching is a token rather than a character. The second
difference is the semantic context. The extended regular
expression has a special syntax to represent the context, e.g.
“{}” as beginning and end of a code block in Java. In the
matching results, the “(“ and “)” should appear in pair. It
avoids the incomplete code block. In Table I, the syntax of
proposed patterns are listed. “$x” is used to extract a token

Figure 1. The proposed pattern-based transformation approach

Figure 1. A pattern-based code transformation approach for cloud migration.

from the matched code, and “$x(#..#)” is used to assign the
matched code block to the variable x.

To do the pattern matching, the engineers can define a
pattern using the pattern syntax. The pattern can be general,
or domain-specific if it is too difficult to design general

pattern. A pattern should be started with “（#” and ended

with “#）”. If the engineers want to extract some tokens for

further processing, “$x” can be used to assign the matched
code to the variable x.

TABLE I. PATTERN SYNTAX LIST

Pattern Syntax Description

(# the start of pattern matching

#) the end of pattern matching

$ match any token

? match zero or one of the preceding
token

* match zero or more of the
preceding token

+ match one or more of the preceding
token

||| inclusive OR relationship

&&& inclusive AND relationship

$x extract a matched token and assign
it to variable x

$x(# … #) extract a token sequence matched

the pattern in “(#...#)” and assign it

to x

A pattern example is given in Figure 4. The pattern,

which is called “hibernateDao”, is used to match the part of
the source code that performs database access with hibernate.
In Figure 4, Line 2 matches the class definition of a data
access object. Lines 3, 4 and 5 match the operations insert,
update and delete methods. “$*” matches any tokens.
“$className”, “$object” and “$insert” / “$update” /
“$delete” are to extract the source elements that would be
filled into target templates.

For the same function, different programmers may write
different source code. It is nearly impossible to use a general
pattern to match all the source code for the same function.
Thus, we do not try to design a general pattern for all cases.
Instead, we have designed some domain-specific patterns
that can match a subset of the cases for code implementation
of storage and security. The patterns have been applied to
transform over ten open source java projects.

Figure 4. The pattern “hibernateDao” for matching database access

oprations.

D. Step 3: Template Design

After locating the source code, a template-based method
is proposed to generate the target code from the source code.
For each target environment, the programming languages,
design styles and programming interfaces are different. A
template can help the engineers to control the styles of target
source code.

The template is composed of variable and invariable
elements. The invariable elements are the code text that will
appear in the target code. The variable elements will be
replaced by the inputs of the templates. As in Figure 5, this is
a target code template for database access of AWS
DynamoDB. In the example, the import statements are used
as invariable elements, since the target code introduces new
types that are not in source code. The “${..}” is for the
variable elements which will be filled with the extracted
elements from source code during the pattern matching
phase. Besides the single elements, a collection of variables
or the user-defined methods can also be used in the template.

Figure 5. The DynamoDB example for data access

E. Step 4: Code Transformation

Step 4.1 Design Transformation Rules

Transformation rules are designed by migration
engineers to design a user-defined transformation strategy.
The transformation rule is composed of a set of code
operation commands, including “match”, “replace”, “insert”,
“delete”, ”copy”, etc. The syntax of the commands is listed
in Table III. These commands are the minimum unit of code
transformation logic. In each transformation rule, a match
command is invoked to locate the source code to modify.
Then, another operation command is invoked to transform
the located source code to target code by referring template.
The details of the commands are:

 Match: the command is to locate the source code to
modify, where“PATTERN” is the pattern name to
refer. The parameter on “ANNOTATION” means

only match the code with given “ANNOTATION”.
The “ANNOTATION” is added at code scanning step.

 Replace: the parameter“MATCH|VAR” means the
whole matched code or only the VAR part (e.g. $x) in
the pattern will be replaced by the target code. The
use_template means generating the target code with
the following template.

 Insert: insert the target code into the given position.
The parameter “into” is for the target file to insert.
“before | after” is to give the exact location to insert.
“once | each” means the command is executed once
or for each matched code.

 Delete: delete the matched code. The parameter is
similar as that of insert command.

 Extract: extract the selected code as a new method.
The method name is provided with “method_name”.
The referred but not defined variables will be as the
method parameters, and the modified variables will
be packaged as the return object.

 Move: move the matched code to a new position, as
absolute value or indirect value. The indirect value is
determined by another pattern matching.

 Copy: similar as Move, except for keeping the
original source code.

 Create: create a new file with “filename” and put into
a given directory using “to_dir”. The file can follow a
template using “use_template” with a set of
parameters through “key=>value”.

 Import: import a pattern before referring it.

TABLE II. TRANSFORMATION COMMAND SYNTAX

Command Description

Match
match “PATTERN” [do
 on “ANNOTATION”

end]

Replace

replace “MATCH|VAR ” do

 use_template “TEMPLATE” [{“KEY”=>”VALUE”}]
end

Insert

insert [once|each] do

 into “SOUCECODE”
 before|after [first|last|each], “PATTERN” ,”VAR”

 use_template “TEMPLATE”

end

Delete delete “MATCH|VAR”

Extract

extract_method “MATCH|VAR” [do

 method_name “METHODNAME”

end]

Move
move “MATCH|VAR” [once|each] do
 before|after [first|last|each] , “PATTERN” , “VAR”

end

Copy
copy “MATCH|VAR” [once|each] do
 before|after [first|last|each] , “PATTERN” , “VAR”

end

Create

create do

 filename “FILENAME”
 to_dir “DIR”

 use_template “TEMPLATE”[,{“KEY”=>”VALUE”}]
parameters ({ {“KEY”=>”VALUE”} })

End

Import import “PATTERN”

Figure 6 is an example of the transformation rule for
hibernate DAO to Amazon DynamoDB, using the template
in Figure 5. The import statement is to load the predefined
pattern. The token “MATCH” means all the matched code
should be modified. “use_template” means the operation will
use a template to generate target code, and “replace” means
the matched code will be replaced by the generated target
code. The rule is invoked in the transformation program by
“execute rulename”.

Figure 6. Transformation rule for hibernateDAO to DynamoDB

Step 4.2 Execute Transformation

The transformation rules can be executed in single or
batch mode. A domain-specific language (DSL) is designed
using a programming language named Ruby to run the
transformation rules. In a DSL file, one or more rules are
invoked to execute transformation. Also, a DSL script file
can import another script file to integrate more
transformation rules. In this way, the transformation rules
and script can be reused. The advantages of DSL-based
scripts include:
 Programmable. With internal DSL design, the DSL

script can be programmed flexible. No external parser is
needed, neither too much learning efforts.

 Reusable. The transformation rules and scripts can be
reused for changing similar code appearing in different
projects or modules.

 Hierarchical layers. The transformation strategy is in
three layers: command, rule and script. The higher layer
is composed of lower layer.
After executing the transformation rules, the results of

Figure 1 is shown in Figure 7.
If the transformation results is accepted by the engineers,

the transformed code will be committed to source code
repository. Usually, manual edit is inevitable to modify the
transformed code for syntax or semantics. After each
transformation circle, the new pattern is applied for locating
code to transform. When all the predefined patterns are
applied, the transformation with our approach completes. For
other code that needs to transform, manual transformation
should be done or new patterns should be proposed to restart
the transformation process.

F. Tool Support
We developed a transformation tool for validating the

proposed approach. The system is composed of three critical
modules, including analysis module, transformation module
and interaction module. The analysis module is to locate the
source code to transform, the transformation module is to do
the transformation and the interaction module is to process
the engineers’ inputs.

The source code in change is managed with a code
repository, where the code version is recorded after each
iterative process. If the engineers want to cancel some
modification, the configuration management can help to
rollback to previous version. The input code features,
patterns, transformation rules & scripts and code templates
are adjusted and extended during the transformation process.
Some machine learning algorithms may be applied to
improve the input.

III. EXPERIMENTS AND EVALUATION

A. Experiment Setting

We have collected 19 open source Java projects from the
Internet as examples to demonstrate our approach, as in
Table III. All these projects contain the code with storage or
security services. All these projects have to be transformed
when migrating to cloud according to existing analysis tools
like [20]. For our experiments, we have collected the
relevant data that record the migration of these projects onto
the cloud: (1) the number of changes made to the database
and file access operations, (2) the number of changes made
to the security operations and (3) the number of hours
required to make these changes manually. The projects cover
a diverse range, from Java web projects to plugins to tools,
etc. Although these projects serve different purposes, they all
have storage and security services. Figure 8 summarizes
these 19 projects.

TABLE III. THE 19 JAVA PROJECTS USED TO DEMONSTRATE OUR

APPROACH

Java Project Location

appassembler-
maven-plugin

http://mojo.codehaus.org/appassembler/appassembl
er-maven-plugin/

Cbe http://sourceforge.net/projects/cbe/

Freecs http://freecs.sourceforge.net/

Freemarker http://freemarker.org/

hd1-financeocr https://bitbucket.org/hd1/financeocr

Jactiverecord http://git.oschina.net/redraiment/jactiverecord

Jcvsweb http://www.jcvs.org/

jetbrick-templat http://git.oschina.net/sub/jetbrick-template

jfinal_91zcm http://git.oschina.net/jianggege/jfinal_91zcm

JForum http://jforum.net/

Jobo http://www.matuschek.net/jobo/

Jportlet http://jportlet.sourceforge.net/download.html

Jspider http://j-spider.sourceforge.net/quick/download.html

maven-dotnet-

plugin

https://bitbucket.org/grozeille/maven-

dotnet/src/fdbf13460f71f1a63feb9ef6291f1f1062de
0e12/maven/?at=default

netty-4.0.19 http://netty.io/downloads.html

Pooka http://www.suberic.net/pooka/

QuickServer https://github.com/QuickServerLab/QuickServer-

Main/releases/tag/v2.0.0

Toughradius http://git.oschina.net/jamiesun/toughradius

webit-script http://git.oschina.net/zqq90/webit-script

We then applied our approach to transform each of these

projects into a cloud environment. Amazon cloud has been
chosen as our target cloud environment due to its maturity.
PaaSLane [20] was used to perform the code scanning step.
It detects the JDBC (Java DataBase Connection) related code,
file access using java.File, and security related scenarios
including session management, network protocol, encryption,
etc.

B. Experiment Results Evaluation

All the detected warnings were modified manually by

the students in our research group. And then we applied our

approaches to execute the transformation. The

transformation efforts comparison is given in Figure 9. The

efforts of using our approach includes developing patterns,

rules and templates. Compared with manual transformation,

our approach reduces 60-90% cost. The efforts can be

reduced further, if there are already some transformation

patterns, rules and templates that can be reused.

C. Analysis and Discussion

The experiment results show that our proposed approach
can greatly improve the transformation efforts for migrating
software applications on cloud. Our approach has three
advantages:

Figure 7. The transformed DynamoDB code

Figure 8. The no. of change warnings for DB, file and security

 The repetitive transformation tasks can be processed
using a general pattern and related rules.

 This is an iterative process. Only one or one type of
transformation task is executed. Since it is nearly
impossible to automatically transform a complete
application, some manual review or edits are
inevitable after executing each transformation.

 The experiments focused on the database access, file
access and security warning. But the approach can be
applied to variety of source code including code for
business logic, if the patterns can be defined.

However, the experiments also meet the following
potential threats that may block the experiment results.

 The transformation cases. The selected projects may
not cover all the kinds of code implementation. There
may exist some scenarios that is not easy to design
general pattern. For generality, all the projects were
downloaded from internet.

 Define a general pattern for all cases or define several
patterns where each pattern for some cases. In the
experiment, we try to define a general pattern. But it
may not be a good way for other scenarios like code
for business services, because the business in
different files may have more or less difference.
Defining a pattern for only a case is not acceptable
either since the aim of this approach is for repetitive
transformation tasks.

 How to evaluate the manual efforts and do the
comparison. For the experiment cases, the students in
our group are separately arranged to analyze and
modify the cases. The students doing manual
modifications are different from those developing the
transformation rules. In this way, both of them need

comprehension time, which is more similar as the
actual transformation environment.

The above analysis shows that our approach can not only
be used to analyze the claimed three kinds of warning, but
also some other scenarios. It can be easily used and
evaluated with iterative process. The transformation efforts
are shifted from modifying the source code manually to
defining patterns, transformation rules and templates. The
developing efforts can be refined by introducing the machine
learning for pattern recovery.

IV. RELATED WORK

This section discusses closely related work on the cloud
migration process, methods and supporting tools.

A. Migration Process

Many researchers have proposed their processes to
migrate software systems to cloud. Lv et al [1] proposed a
rapid cloud migration solution (RCMS) to improve the
migration process and quality. Rabetski et al [2] migrated a
document comparison system to the cloud. Based on the
MODAClouds (MOdel-Driven Approach for design and
execution of applications on multiple Clouds) EU project,
Gunka et al [3] introduced an evolutionary approach for
cloud migration. Rowe et al [4] introduced a migration
process for the text-mining application. They proposed the
benchmark for execution time that could be used to
determine whether migration is meaningful. Zhao et al [10]
divided the existing migration methods into three strategies,
and compared the similarities and divergences among them.
Cretella et al [11] proposed an overview of the migration
approaches based on cloud patterns. However, all the
processes aimed to migrate the whole applications onto
cloud at once or focused on some transformation phases.

Figure 9. The efforts comparison of manual and our approach for the 19 projects

B. Cloud Migration Methods

Peddigari et al [5] proposed a unified cloud migration
framework to drive the application development on cloud.
The researchers claimed that the framework and factory
based approaches can be treated as a systematic approach to
migrate applications to cloud platform in a sustainable
manner. The factory approach is composed of variety of
teams to do and evaluate the migration. However, it also
needs plenty of efforts for processing repetitive tasks.

Cardoso et al [6] presented and summarized several
frameworks of real migration cases. They claimed a six steps
framework – workload definition, workload suitability
analysis, definition of alternatives, TCO (Total Cost
Ownership) calculation, definition of criteria, and multi-
criteria method application. Wang et al [7] claimed a
paradigm based on BPR (Business Process Reengineering)
and gBPR (Green BPR) to make the enterprises can be
transformed successfully. Additionally, Nicolas et al [8]
proposed a novel framework to help medium-sized
enterprises (SMEs) to master migration related impediments.
But all these frameworks or methods have little consideration
on the efforts of the repetitive tasks.

Venugopal et al [9] presented a methodology to smoothly
migrate a web service based enterprise application to the
multicore cloud. It is to improve the performance of
applications due to the context switch of multiple threads.
This method is put forward to encourage the mass migrations
of enterprise applications to the cloud. The approach is for
specific target platforms and performance goals.

Ward et al [12] presented a framework Darwin that could
be used to accomplish workload migration. Their framework
was developed to accelerate heterogeneous source/target
migrations to standard virtualized environments such as

Linux/Linux or Windows/Linux. Furthermore, they
succeeded to migration workload for research strategy
management system application from physical to virtual in
research compute cloud by using Darwin. The framework is
exciting, but it considers little on the fine-granularity
transformation to utilize cloud characteristics.

C. Cloud Migration Tools

Khajeh-Hosseini et al [17] proposed two tools to support
decision making during the Cloud migration. One is a
modeling tool that can estimate the cost of using public IaaS
(Infrastructure as a Service) clouds. The other is a
spreadsheet that outlines the benefits and risks of using IaaS
clouds. The tools have been applied in the migration of a
digital library, a searching engine and a R&D division of a
media corporation. They claimed the tools can help decision-
makers to model their computational resource usage patterns,
as well as the benefits and risks of the cloud migration.
Andrikopolos et al [13] looked into the different prices of
different cloud service providers. They focused on designing
and developing a migration decision support system that can
address the issues of vender selection and cost calculation.
Their system can match the most qualified cloud service
provider according to user-provided requirements. There
tools focus on helping engineers to do the migration decision,
not for the transformation.

Khajeh-Hosseini et al [15] investigated and discussed the
benefits and risks in the enterprises use cloud computing by
involving a fieldwork at an IT solutions company who was
migrating their systems to cloud. They point out that cloud
computing is a significantly cheaper compared to purchasing
system infrastructure. Also it can potentially eliminate a lot
of related issues because there is no physical infrastructure to
maintain. They also develop a collection of tools called the

Cloud Adoption Toolkit to help migrating their application
to cloud. But the toolkit is also for decision making for
adoption of cloud migration.

Meng et al from the NEC Laboratories China proposed a
new Application Migration Solution (AMS) to migrate
legacy applications to web applications efficiently [16]. The
core technology of AMS is GUI recognition and
reconstruction technology. AMS can recognize and extract
the GUI information of legacy applications to generate
HTML templates. Then AMS fills HTML templates with
user action description data to generate the final webpage.
AMS has been validated with several business level legacy
applications and it has delightful results. However, it focused
on the GUI reconstruction and considered little on the
service layers.

Stratego/XT [18] provides a rule-based transformation
strategy and tool to transform source code for refactoring and
translation. The tool uses ast-like (Abstract Syntax Tree)
pattern matching iteratively to locate source code. The
solution has been implemented as Eclipse plugins. When
designing a transformation, the rules and strategies should be
designed as well as the code patterns. Also, it considers little
of code context, so it’s difficult to execute transformation
with code semantics. Besides, some commercial venders like
Semantic Design [19] claims on user-specific transformation
solutions. They claim that there are many successful cases on
code translation. However, for the code transformation, they
only provide customized services without general solutions
or tools.

V. CONCLUSIONS

Cloud migration has become an important research topic,
as more and more enterprise applications are migrating to
cloud platforms and services. One common migration task is
to modify the source code and most of the transformation
solutions perform this tasks manually. This paper proposed a
pattern-based transformation approach. In this approach, the
scanning techniques are used to locate source code for
transformation, pattern matching is used to locate the source
code, templates are used to generate target code, and the
transformation rules are designed for flexible programmable
transformation. A software tool is developed to support this
approach. According to the experimental results of migrating
19 Java projects to AWS, the proposed approach can save
60%-90% efforts for performing the repetitive tasks of
modifying the storage and security related code. These tasks
are commonly performed in most of software applications.

One limitation of our approach is that it needs to develop
a large number of patterns and templates for different
situations before performing the migration. Once enough
patterns and templates have been designed, the existing
patterns and templates can be reused. So the development
efforts can be reduced further with these reusable patterns.

REFERENCES

[1] H. Lv, and J. Liu, “RCMS:Rapid Cloud Migration Solution,” Proc.
Symp. on Computational Intelligence and Design (ISCID’ 13), Vol. 1,
Oct. 2013, pp. 426-429.

[2] P. Rabetski, and G. Schneider, (2013). “Migration of an On-Premise
Application to the Cloud:Experience Report,” Service-Oriented and
Cloud Computing, Springer Berlin Heidelberg, 2013, pp. 227-241.

[3] A. Gunka, S. Seycek, and H. Kühn. “Moving an application to the
cloud: an evolutionary approach,” Proc. workshop on Multi-cloud
applications and federated clouds, 2013, pp. 35-42.

[4] F. Rowe, J. Brinkley, and N. Tabrizi. “Migrating Existing
Applications to the Cloud,” Proc. In Cloud Computing and Big Data
(CloudCom-Asia), 2013 International Conference, Dec. 2013, pp. 68-
77.

[5] B. P. Peddigari. “Unified Cloud Migration Framework — Using
factory based approach,” Proc. Annual IEEE in India Conference
(INDICON’11), Dec. 2011, pp. 1-5.

[6] A. Cardoso, F. Moreira, and P. Simões. “A Survey of Cloud
Computing Migration Issues and Frameworks,” In New Perspectives
in Information Systems and Technologies, Volume 1, Springer
International Publishing, 2014, pp. 161-170.

[7] H. I. Wang, and C. Hsu. “The paradigm framework of cloud
migration based on BPR and gBPR,” Proc. Conf. on Awareness
Science and Technology and Ubi-Media Computing (iCAST-
UMEDIA’13), Nov. 2013, pp. 460-465.

[8] N. Nussbaumer, and X. Liu, (2013, July). “Cloud Migration for SMEs
in a Service Oriented Approach,” Proc. Conf. on Computer Software
and Applications Conference Workshops (COMPSACW’13), Jul.
2013, pp. 457-462.

[9] S. Venugopal, S. Desikan, and K. Ganesan. “Effective migration of
enterprise applications in multicore cloud,” Proc. Conf. on Utility and
Cloud Computing (UCC’11), Dec. 2011, pp. 463-468.

[10] J. F. Zhao, and J. T. Zhou. “Strategies and methods for cloud
migration,” International Journal of Automation and Computing, vol.
11, no. 2, 2014, pp. 143-152.

[11] G. Cretella, and B. Di Martino. “An Overview of Approaches for the
Migration of Applications to the Cloud,” In Smart Organizations and
Smart Artifacts, Springer International Publishing, 2014, pp.67-75.

[12] C. Ward, N. Aravamudan, K. Bhattacharya, K. Cheng, R. Filepp, R.
Kearney, and C. C. Young. “Workload migration into clouds
challenges, experiences, opportunities,” Proc. Conf. on Cloud
Computing (CLOUD’10), Jun. 2010, pp. 164-171.

[13] V. Andrikopoulos, Z. Song, and F. Leymann. “Supporting the
migration of applications to the cloud through a decision support
system,” Proc. Conf. on Cloud Computing (CLOUD’13), Jun. 2013,
pp. 565-572.

[14] M. A. Chauhan, and M. A. Babar, (2011, July). “Migrating service-
oriented system to cloud computing: An experience report,” Proc.
Conf. on Cloud Computing (CLOUD’11), Jul. 2011, pp. 404-411.

[15] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville. “Cloud
migration: A case study of migrating an enterprise IT system to IaaS,”
Proc. Conf. on Cloud Computing (CLOUD’ 10), Jul. 2010, pp. 450-
457.

[16] X. Meng, J. Shi, X. Liu, H. Liu, and L. Wang, (2011, July). “Legacy
application migration to cloud,” Prof. Conf. on Cloud Computing
(CLOUD’11), Jul. 2011, pp. 750-751.

[17] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, & P. Teregowda.
“Decision support tools for cloud migration in the enterprise,” Prof.
Conf. on Cloud Computing (CLOUD’11), Jul. 2011, pp. 541-548.

[18] Stategoxt, http://strategoxt.org/Stratego/WebHome

[19] SemanticsDesign,
http://www.semanticdesigns.com/Products/DMS/DMSToolkit.html

[20] PaaSLane, http://www.paaslane.com/

http://strategoxt.org/Stratego/WebHome
http://www.semanticdesigns.com/Products/DMS/DMSToolkit.html

