
 Supporting End-User Service Composition: A Systematic Review of Current
Activities and Tools

Feifei Hang, Liping Zhao
School of Computer Science

The University of Manchester
Manchester, UK

{hangf, lzhao}@cs.man.ac.uk

Abstract—This paper presents a systematic literature review of
end-user service composition. It reviews current activities
performed by end users, and tools and approaches that enable
them to compose and develop service systems from Web
Services. The paper also highlights some key open research
issues for the future.

Keywords –Systematic literature review, end user, end-user
service composition, end-user development, end-user
programming, end-user computing, service composition
platform.

I. INTRODUCTION
End-user service composition (EUSC) refers to activities

and tools that allow end users – people who are not
professional software developers – to compose service
systems from Web Services without significant knowledge
of a programming language. Armed with EUSC tools, end
users can also create, modify or extend Web Services.

 EUSC is an instance of end-user development (EUD)
[2], which has been an active research topic within the field
of computer science and human-computer interaction. Most
cited examples of EUD include spreadsheet programming,
scripting languages and programming by example1. The
main aim of EUD is to bring programming closer to the
needs of end users. EUD is also called end-user
programming (EUP), end-user computing (EUC) and end-
user software engineering (EUSE) [5].

In recent years, EUSC tools have begun to emerge. For
example, AMICO:CALC [8] provides tools for end users to
compose primitive services in a spreadsheet manner [8],
whereas Hypermash [13] offers a heterogeneous service
composition platform to allow end users to compose their
own ad-hoc services from both SOAP and RESTful services.
Easy SOA [15] enables end users to rapidly create prototypes
of composite services, whereas Co-Taverna [17] and
Confucius [19] provide collaborative workbenches to
support the collaboration between end users.

While EUSC will continue to be an important part of
service systems development, a systematic study of current
activities and tools is still missing. We believe that such a
study is imperative as it will not only provide a detailed
picture of current activities and tools in this area, but also
identify some key research issues for future development.

1 http://en.wikipedia.org/wiki/End-user_development

The present paper thus aims to make a contribution to such a
study.

The remaining paper has been organized as follows.
Section II defines our study method, research questions,
search strategy, and literature selection. Section III presents
our literature review whereas Section IV analyzes the results.
Finally Section V highlights some key open research issues
for the future.

II. SYSTEMATIC REVIEW OF EUSC

A. Method
We have adopted a systematic literature review (SLR) to

our study of current activities and tools of EUSC. A SLR is a
literature review approach that “synthesizes existing work in
a manner that is fair and seen to be fair [21]”. In comparison
with conventional expert literature reviews, SLRs have the
following characteristics:

• SLRs start by defining a review protocol that
specifies the research question being addressed and
the methods that will be used to perform the review.

• SLRs are based on a defined search strategy that aims
to detect as much of the relevant literature as possible.

• SLRs document their search strategy so that readers
can assess their rigor and the completeness and
repeatability of the process.

• SLRs require explicit including and exclusion criteria
to assess each potential primary study.

There are many reasons for undertaking a SLR. The most
common reasons are [21]:

• To summarize the existing evidence concerning a
treatment or technology.

• To identify any gaps in current research in order to
suggest areas for further investigation.

• To provide a framework/background in order to
appropriately position new research activities.

There are different processes for conducting a SLR. Our
process derives from “Guidelines for Performing Systematic
Literature Reviews in Software Engineering [21]” and
consists of the following main steps:

1. Define the research questions.
2. Define the search strategy.
3. Select the literature.
4. Review the literature to identify current activities

and tools for EUSC.
5. Answer the research questions.

2015 IEEE International Conference on Web Services

978-1-4673-7272-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICWS.2015.70

479

B. Research Questions
Specifying the research questions is the most important

part of SLRs as they drive the entire systematic review
methodology [21]. Our SLR is guided by the following three
research questions:

1. What service composition platforms have been
proposed over the past decade?

2. What EUSC activities are supported by these
platforms?

3. What approaches and tools are used to enable these
EUSC activities?

C. Search Strategy
The aim of a SLR is to find as many primary studies

relating to the research questions as possible using an
unbiased search strategy [21]. The search strategy should
define the search terms, search scopes, and resources to be
searched.

Our search strategy was defined as follows:
Search Scope:
• Proceedings of five top international conferences on

service systems: IEEE International Conference on
Web Services (ICWS 2004 – ICWS 2013). IEEE
International Conference on Services Computing
(SCC 2004 – SCC 2013). European Conference on
Web Services (ECOWS 2003 – ECOWS 2011).
International Conference on Service Oriented
Computing (ICSOC 2003 - ICSOC 2013).
International Conference on World Wide Web
(WWW 2003 – WWW 2013).

• IEEE Transactions on Services Computing (TSC
2008 – TSC 2014).

Search Resources:
• IEEE Xplore Digital Library (for ICWS, SCC,

ECOWS);
• IEEE Computer Society Digital Library (for TSC);
• Springer Link (for ICSOC, ICWS-Europe 2003, and

ECOWS 2004);

• ACM Digital Library (for WWW, and ICSOC 2004);
Search Terms:
• “Proceedings of IEEE International Conference on

Web Services, 2007”, “Proceedings of IEEE
International Conference on Web Services, 2008”,
etc.

D. Literature Selection
Based on the search strategy, we located these

proceedings and journal articles. We then applied the
following inclusion and exclusion criteria to filter out
irrelevant papers and select relevant ones:

1. Papers focusing on service composition environments
and platforms were included, whereas papers
concentrating on single service composition enabling
technology, such as automatic composition
algorithms, were excluded.

2. Long papers listed under, for example, “Research
Track”, “Application Track”, “Industrial Track”, and
“Experience Track” were included.

3. For the short papers listed under “Work in Progress
Track”, “Poster Track”, and “Demonstration Track”,
the ones providing sufficient details of their proposed
systems to be analyzed, e.g. [25], were included,
whereas the ones providing insufficient details of
their works to be analyzed, e.g. [26], were excluded.

4. Literature review or survey papers were excluded as
our focus was on the primary studies.

5. Preface and postface articles were excluded.

We performed this filtering process on the references

hosted in the aforementioned digital libraries. We then
downloaded the citations of all the relevant papers and
imported them into an EndNote library. Duplicates were
discarded automatically. In total, 47 papers have been
downloaded. The overview of our search results is
summarized in Table I. For space consideration, all the

TABLE I. SEARCH RESULTS OF THE SYSTEMATIC LITERATURE REVIEW

480

resource locations (except TSC’s) in Table I are shortened by
using Google URL Shortener2.

III. LITERATURE REVIEW: CURRENT EUSC ACTIVITIES
AND TOOLS

We have organized our studies into five categories,
according to the types of activity they describe. These
categories are service composition, service design, service
reuse, service testing, and service debugging. This
classification is in line with the traditional software
engineering lifecycle [5] and the highly-cited SOA model
[28]. This section presents our review of these activities,
their associated approaches and tools. .

A. Service Composition
This activity concerns creating new composite services

by composing existing primitive services, data or processes
to accomplish an end user’s task.

According to our study, service composition is supported
by two main approaches, namely static and dynamic service
composition. These approaches and their associated tools are
described as follows.

1) Static Service Composition. In static service
composition, the primitive services, composition logics, and
data and control flows are manually selected and designed
by users. The composite services at runtime will strictly
follow the working procedures and configurations that being
specified at design time.

The most adopted approach to supporting static service
composition is to allow end users define their composite
service in the manner of drawing workflow diagrams. For
example, in WSCE [1], end users can define the BPEL
process diagram of their composite service with drag and
drop tool. In Triana [3], users can use the graphical workflow
component to design workflows at a conceptual level.
Similarly, in HyperMash [13], Baya [24], graphical
workbenches are provided to users to draw the workflow
diagrams.

This “workflow diagram” approach has also been
extensively used in scientific domain. For example, Kepler
[4], Co-Taverna [17], Confucius [19], and VIEW [12] all
provide graphical workflow editor to users to help them
define their scientific workflows.

As another popular approach to support static service
composition, spreadsheet-based service composition has
also attracted significant research efforts. For example,
AMICO:CALC [8], Mashroom [27], MashSheet [30],
DataSheets [31], and the platform proposed by Kongdenfha
et al. [29] all allow users to compose services in a
spreadsheet manner.

In Easy SOA [15], Synthy IDE [32] and DoCoSOC [33],
a wizard- and form-based approach has been utilized to help
users define their composite service by providing the key
information, such as locations of each primitive services, the
invocation orders of each services, and the output format of
the runtime execution result, to the systems.

2 https://goo.gl/

In addition, some platforms such as iMashup [35] and the
one developed by Xiang and Madey [34] provide users
WYSIWYG editors to allow them instantly inspect on the
final look and feel of their composite services.

2) Dynamic Service Composition. Dynamic service
composition composes an application autonomously when a
user queries for an application. Comparing with static
service composition, dynamic service composition has the
potential to realize flexible and adaptable applications by
properly selecting and combining components based on the
user request and context.

Instead of expecting users to manually write semantic
service composition documents, providing users with high-
level graphical language to easily define their desired
composite services has been used as one of the approaches
supporting dynamic service composition. For example, in
VINCA [36], a high-level graphical editor is developed to
allow end users define their services at business-level. In
Flow Editor [38], a graphical editor is built to help users
describe their ideal composite services in a flow-chart
manner, whereas the graphical Reo Coordination Language
is adopted to define composite services in the platform
produced by Saifipoor et al. [37].

Similarly, a visualization approach is applied in the
visualizer component of the system proposed by Rao et al.
[39] to represent the user-defined composition logic
graphically.

A wizard-based approach is utilized by the SMS system
[40], and MARIO [41] to enable users to incrementally
refine their composition requests.

Moreover, SeGSeC [42] supports dynamic service
composition by providing natural language processing
ability to analyze users requests written in natural language
documents.

B. Service Design
In EUSC, this activity concerns designing services

according to some needs of end users. According to our
study, this activity involves design process support and
design by example, described as follows.

1) Design Process. Design process concerns how
requirements or design ideas are translated into design
specifications and then implementation.

In the domain of service composition, some have
proposed to support design processes by constraining what
can be designed to a particular domain. For example, by
applying BPEL, WSCE [1] provides end users a visual editor
to create composite service with BPEL constraints, whereas
the Public-oriented Healthcare Information Services
Platform (PHISP) [44] adopts UML activity diagram as a
manner to constraining how a composite service can be
defined. Similarly, METERO-S inherits the domain
constraints of BPEL4WS in its Abstract Process Designer
[43]. The SMS system adopts GEM (Guidelines Element
Model) and CPGA (Clinical Practice Guideline Architecture)
standards as pragmatic constraints for service selection [40].
Easy SOA uses “cards”, a set of predefined domain template,
to constrain what can be assembled into a particular

481

composite service [15]. Flow Editor constrains user
behaviors by automatically determining if two primitive
services can be composed together [38].

Moreover, other platforms, such as AMICO:CALC [8],
MashSheet [30], DataSheets [31], and the mashup platform
proposed by Kongdenfha et al. [29], leverage the power of
spreadsheet systems to constrain what services and data
processing procedures can be composed together by using
the predefined spreadsheet formulas. Also, the “WireIt”
approach3 has been utilized in DISC [22] and SoCo [23] to
provide domain constraints.

An alternative approach to support design processes is to
tolerate a design to be partially or imprecisely stated. For
example, Xiang and Madey [34] proposed a system that
allows end users to provide only input and the goal to be
achieved, and system will then attempt to automatically
create a composite service for the end users. Saifipoor et al.
[37] developed a service composition framework based on
Reo coordination language to allow the primitive services
and their coordination processes to be known explicitly only
until run time. Also, Riabov et al. [41] and Shiaa et al. [45]
built service composition platforms to allow users to
incrementally refine their goals when creating composite
services.

In addition, design processes can also be supported by
asynchronous or synchronous collaborations between users.
Triana [3], DoCoSOC [33], HyperMash [13], Co-Taverna
[17], and Confucius [19] are all built to enable multiple users
to work either synchronously or asynchronously on a same
mashup project. It is important to understand that both
asynchronous and synchronous collaborations should be
explicitly assisted by the system as a function/feature, which
means the collaboration achieved by, for example, making a
copy of a project in an USB disk and then handing in it to
another person does not count.

2) Design by Example. To better support users to
produce their specifications, the approach of “programming
by example” has been used in the existing service
composition platforms to support design adaptation. For
example, HyperMash [13], Coins [9], Mashroom [27], and
e-BioFlow [14] can record the composition logics and
configurations of a composite service defined by an end user
and then automatically retrieve and reapply these logics and
configurations in other composite services that have
similarities to the existing one. Additionally, this feature is
also witnessed in SOA4ALL Composer [20], and Baya [24].

C. Service Reuse
This activity involves compositing new services by reuse

of existing services. It refers to either a form of composition,
such as “gluing” together existing primitive services, or
modifications, such as changing some configurations of
existing composite services to achieve a new goal. We have

3 WireIt is an open-source JavaScript library, to create full-web graph
editors for dataflow applications, visual programming languages, graphical
modeling, or graph editors. Available at: http://neyric.github.io/wireit/docs/

identified three common approaches for service reuse,
described as follows.

1) Reusing Services. The study of students prototyping
user interface [47] showed that even if end users are able to
find reusable abstractions in the form of, for example,
primitive services, they may still have difficulty using them.

To address this issue, one solution is to simply modify the
configuration of an existing composite service, customizing it
for a particular purpose. For example, the Ad-hoc Editor of
e-BioFlow [14] can help end users to find new tasks (i.e.
either primitive services or data processing procedures) to
extend or modify existing composite services to satisfy new
requirements and goals. The ontology-based yellow page
registry of IRIS [46] can help users to modify composite
services by reusing “mediator” components.

Meanwhile, a lot of efforts have also been put on a
template-based approach to support service reusing. With
helps of template, end users can easily identify the
modifiable parts of their works, and then modify them to
meet their requirements. For example, in METERO-S [43],
the service templates allow users to either bind to a known
Web service or specify a semantic description of the Web
service for their purposes. In AMICO:CALC [8], a group of
services and their configurations can be abstracted as a
“middleware” (i.e. a template) to be reused and modified in
other mashup projects. Also, each Application Model Editor
tool generated by DoCoSOC [33] is essentially a domain-
specific template to be modified by users.

Similarly, this template-based supporting approach has
also been adopted in SCE [7], ServFace [48], SOA4ALL
Composer [20], and Baya [24].

2) Sharing and Distributing Services. In addition to
reusing existing services, some service composition
platforms also help end users to share and distribute their
works.

In Triana [3] and Synthy IDE [32], users can package and
share their whole workflows as primitive services to be
composed with other services. Kepler [4] also allows users to
deploy their scientific workflows as primitive services in
other applications for compute-intensive tasks.

As suggested by Mackay [51], some programming efforts
made by end users becomes quite long-lived, even though it
is common for end users to view their ad-hoc application as
“throw away”. Therefore, some systems start to provide
users the feature of supporting unplanned sharing of their
works. For example, the social-network based service
recommendation component of SoCo [23] helps users
distribute their mashups even implicitly, whereas all the
user-created mashup patterns in Baya [24] will be potentially
retrieved and reused by others through its recommendation
server. Additionally, all the public mashup scripts are also
being distributed among users in both HyperMash [13] and
Mashroom [27].

3) Providing Right Service Composition Abstraction for
End Users. Another well-known and wide-applied approach
to facilitate the reuse by end users is to choose the right
abstractions for their problem domains.

482

Since service composition is essentially about to reuse
existing services to achieve users’ goals, a large number of
service composition platforms provide an appropriate level
of abstractions of problem domains to help users to reuse
existing services. For example, by utilizing a process-
oriented language, VINCA [36] can visually capture users’
needs at a high abstraction level. Similarly, the natural
language processing component of SeGSeC [42] allows
users to only issue their service composition requests in
natural language without worrying about the technical details
of their composite services. The “card” concept introduced
by Easy SOA [15] provides a high-level domain abstraction
to users and hides the low-level implementation details of
service composition technologies from users.

The approach to providing decent domain abstractions
has also been widely adopted in logic-, constraint-, and
semantic-driven platforms. For instance, Rao et al. [39]
developed a translator component in their system to translate
external (high-level) DAML-S specifications of Web
services into internal (low-level) LL axioms. METERO-S
[43] utilizes a constraint analyzer to dynamically select
services from service repository for users. WSMX [49]
allows users to only specify the high-level goals of their
composite services by using Web Service Modeling
Ontology (WSMO).

D. Service Testing
This activity concerns identifying the failures and bugs of

the composite services. According to our study, exisiting
service composition platforms support end-user testing
through the following four approaches:

1) Immediate Feedback. Claimed by Panko [54, 55] and
Hendry and Green [56], end users are notoriously
overconfident about the correctness of their works. To
address this issue, a widely adopted solution in service
composition platforms is to immediate feedback about the
values of a workflow returns. For example, in the SMS
system [40], Triana [3], METERO-S [43], Synthy IDE [32],
and AMICO:CALC [8], users are able to review the
immediate feedbacks of their composite services with the
help of GUIs when defining the corresponding workflows.
Similarly, Web2Exchange [16], iMashup [35], Baya [24],
and the automated service composition approach proposed
by Liu et al. [11] also provide immediate feedback
mechanisms to help users to get more objective and accurate
level of confidence.

2) Maximizing Test Coverage. Research on testing tools
for end users has focused on testing approaches that are
integrated with users’ work and are incremental in their
feedback. The most notable and mature approach is the
“What You See Is What You Test” (WYSIWYT)
methodology to track and graphically represent test
coverage for end users. However, according to our study,
WSCE [1] is the only service composition platform
providing WYSIWYT support by generating “pseudo Web
services” for testing.

3) Checking Against Design Specification. Another
approach to test and verify composite services is by
checking runtime statuses and execution results of
composite services against predefined specifications.

In WSCE [1], “inspectors” are used to check runtime
execution results of composite services against the user-
defined specifications written in low-level source code. In
Astro [6] and VIEW [12], service monitors are applied to
monitor the violation of the monitored properties of
composite services.

Other platforms, such as WSMX [49], COLQUIDE [50],
SCE [7], SCENE [57], Synthy IDE [32], and the graph-based
service composition platform proposed by Shiaa et al. [45],
also allow users to define detailed specifications of their
composite services, and help users to check the states of their
services against the predefined rules.

4) Visualization. Another way that being utilized to
analyze the correctness of a composite service is to visualize
its behavior. According to our study, iMashup [35] is the
only platform providing visualization support to users. It
visualizes the behavior of a composite service in the form of
workflow diagram to help users detect design issues.

E. Debugging
Whereas service testing detects the presence of errors,

debugging is the process of locating and removing errors.
Yet, debugging is the least supported EUSC activity in all
the platforms that we reviewed. To the best of our
knowledge, HyperMash [13] and WSMX [49] are the only
two platforms that help users to debug their works by
providing change suggestions.

 Table II summarizes the EUSC activities, their
associated approaches and tools.

IV. ANSWERING RESEARCH QUESTIONS

A. What service composition platforms have been proposed
over the past decade?
According to our study, 47 service composition platforms

have been proposed or built to support EUSC since 2003. A
complete list of these platforms is summarized in Table II.

Figure 1 shows that only 1 service composition platform
was proposed in 2003. In 2004, the number of proposed
platforms dramatically increased to 9, and became the
highest through out the entire decade. The second and third
peeks were witnessed in 2008 and 2010, which have 7 and 6
papers published, respectively.

 Figure 1. The number of the proposed EUSC platforms

per year.

483

B. What EUSC activities are supported by these platforms?

As shown in Figure 2, 41 out of 47 platforms have been
proposed to support service composition, and it makes
service composition being the most supported EUSC
activities. As the second most supported activity, service
reuse is supported by 39 out of 47 platforms, whereas service
design is assisted by 33 platforms. There are also 18
platforms aiming at helping users to test their services,
whereas only 2 platforms concern the debugging activity of
end users.

TABLE II. EUSC ACTIVITIES, APPROACHES, TOOLS, AND SERVICE COMPOSITION PLATFORMS

Activities Approaches Tools Platforms / Citations

 Service
Composition

Static Service
Composition

Workflow Diagram Editor

Yu, et al. [1], Majithia, et al. [3], Altintas, et al. [4], Trainotti, et al. [6], Braem, et al.
[7], Grechanik, et al. [9], Carlson, et al. [10], Liu, et al. [11], Lin, et al. [12], Wassink,
et al. [14], Srinivasmurthy, et al. [16], Namoun, et al. [18], Mehandjiev, et al. [20],
Zahoor, et al. [22], Zhang [17], Maaradji, et al. [23], Roy Chowdhury, et al. [24],
Imran, et al. [25], Zhang [19], Hang and Zhao [13]

Spreadsheet Obrenovic and Gasevic [8], Wang, et al. [27], Kongdenfha, et al. [29], Hoang, et al.
[30], Lemos, et al. [31]

Wizard / Form Yamaizumi, et al. [15], Chafle, et al. [32], Marin, and Lalanda [33]
WYSIWYG Editor Xiang and Madey [34], Liu, et al. [35]

Dynamic Service
Composition

High-level Graphical
Language Editor Han, et al. [36], Saifipoor, et al. [37], Pi, et al. [38]

Visualizer Rao, et al. [39]
Wizard Lee, et al. [40], Riabov, et al. [41]
Natural Language
Processor Fujii and Suda [42]

Service Design
Design Process

Constraint-driven
Environment

Yu, et al. [1], Lee, et al. [40], Aggarwal, et al. [43], Yamaziyumi, et al. [15], Obrenovic
and Gasevic [8], Kongdenfha, et al. [29], Hoang, et al. [30], Zahoor, et al. [22],
Maaradji, et al. [23], Wang, et al. [44], Pi, et al. [38], Lemos, et al. [31] , Hang and
Zhao [13]

Automatic Specification
Reasoning Component Xiang and Madey [34]

Incremental Refining
Component Saifipoor, et al. [37], Riahov, et al. [41], Shiaa, et al. [45]

Collaboration Enabling
Component

Majithia, et al. [3], Marin and Lalanda [33], Zhang [17], Zhang [19] , Hang and Zhao
[13]

Design by
Example

Programming-by-Example
Recorder

Grechanik and Conroy [9], Wang, et al. [27], Wassink, et al. [14], Mehandjiev [20],
Roy Chowdhury, et al. [24] , Hang and Zhao [13]

Service Reuse

Reusing Services

Service Discovery
Component & Service
Matchmaker

Radetzki, et al. [46], Wassink, et al. [14], Roy Chowdhury, et al. [24] , Hang and Zhao
[13]

Service Template Aggarwal, et al. [43], Braem, et al. [7], Marin and Lalanda [33], Obrenovic and
Gasevic [8], Namoun, et al. [18], Mehandjiev, et al. [20]

Sharing &
Distributing
Services

Composite Service
Packaging/Publishing
Component

Majithia, et al. [3], Altintas, et al.[4], Chafle, et al.[32], Hang and Zhao [13]

Composite Service
Retriever

Altintas, et al. [4], Wang, et al.[27], Maaradji, et al. [23], Roy Chowdhury, et al. [24] ,
Hang and Zhao [13]

Providing Right
Service
Composition
Abstraction for
End Users

Decent Service
Composition Abstraction

Han, et al. [36], Fujii and Suda [42], Rao, et al. [39], Aggarwal, et al. [43], Trainotti, et
al. [6], Haller, et al. [49], Vargas-Solar and Peñalva [50], Yamaizumi, et al. [15],
Chafle, et al. [32], Marin and Lalanda [33], Riabov, et al. [41], Carlson, et al. [10], Liu,
et al. [11], Shiaa, et al. [45], Obrenovic and Gasevic [8], Wang, et al. [27],
Kongdenfha, et al. [29], Srinivasmurthy, et al. [16], Hoang, et al. [30], Zahoor, et al.
[22], Zhang [17], Mei, et al. [52], Zhao, et al. [53], Wang, et al. [44], Liu, et al. [35],
Imran, et al. [25], Pi, et al. [38], Lemos, et al. [31], Zhang [19], Hang and Zhao [13]

Service Testing

Immediate
Feedback Immediate Feedback

Lee, et al. [40], Majithia, et al. [3], Aggarwal, et al. [43], Chafle, et al. [32], Liu, et al.
[11], Obrenovic and Gasevic [8], Srinivasmurthy, et al. [16], Liu, et al. [35], Roy
Chowdhury, et al. [24]

Maximizing Test
Coverage WYSIWYT Component Yu, et al. [1]

Checking
Against Design
Specifications

Specification Editor &
Runtime Monitor

Yu, et al. [1], Trainotti, et al. [6], Haller, et al. [49], Vargas-Solar and Peñalva [50],
Braem, et al. [7], Colombo, et al. [57], Chafle, et al. [32], Lin, et al. [12], Shiaa, et al.
[45], Hang and Zhao [13]

Visualization Service Specification
Visualizer Liu, et al. [11]

Debugging Change
Suggestions

Change Suggestion
Provider Haller, et al. [49] , Hang and Zhao [13]

 Figure 2. The five EUSC activities and the number of the
proposed service composition platforms that support these

activities.

484

C. What approaches and tools are used to enable these
EUSC activities?
As shown in Table II, there are 12 approaches in total

and 23 corresponding tools used to support the five EUSC
activities. For service composition, workflow diagram
editors are the most popular tool for end users, and have been
adopted in 20 platforms. Constraint-driven environments (13
out of 47) are the most adopted tools to support the service
design activity, whereas providing service composition
abstraction (30 out of 47) is the main concern for supporting
service reuse. For service testing, most platforms (10 out of
47) choose to use runtime monitors to check the execution
status of composite services against their corresponding
specifications. For debugging, the both reviewed platforms
support this activity by providing end users with change
suggestions.

IV. OPEN RESEARCH ISSUES
Looking forward, we have identified the following open

research issues for the future:
• Development of EUSC benchmarks. First and

foremost, we believe it is essential to develop
benchmarks for objective comparisons and
evaluation of end-user service composition
platforms.

• Provision of EUSC front-end. For dynamic service
composition platforms, instead of writing composite
request manually, more end user-friendly tools need
to be developed to help end users specifying
composition requests.

• Support for EUSC debugging. According to our
literature review, more research efforts need to be
made to assist end users debugging their composite
services.

To conclude, this paper has achieved its aim by
presenting a systematic literature review of end-user service
composition. It has reviewed 5 current activities performed
by end users, 23 tools and 12 approaches that enable end
users to compose and develop service systems from Web
Services. The paper has also highlighted some key open
research issues for the future.

REFERENCES
[1] X. Yu, L. Zhang, Y. Li, and Y. Chen, "WSCE: a flexible Web service

composition environment," in Web Services, 2004. Proceedings.
IEEE International Conference on, 2004, pp. 428-435.

[2] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, End-user
development: An emerging paradigm: Springer, 2006.

[3] S. Majithia, M. Shields, I. Taylor, and I. Wang, "Triana: A graphical
web service composition and execution toolkit," in Web Services,
2004. Proceedings. IEEE International Conference on, 2004, pp. 514-
521.

[4] I. Altintas, E. Jaeger, K. Lin, B. Ludaescher, and A. Memon, "A web
service composition and deployment framework for scientific
workflows," in 2013 IEEE 20th International Conference on Web
Services, 2004, pp. 814-814.

[5] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M.
Erwig, et al., "The state of the art in end-user software engineering,"
ACM Computing Surveys (CSUR), vol. 43, p. 21, 2011.

[6] M. Trainotti, M. Pistore, G. Calabrese, G. Zacco, G. Lucchese, F.
Barbon, et al., "Astro: Supporting composition and execution of web
services," in Service-Oriented Computing-ICSOC 2005, ed: Springer,
2005, pp. 495-501.

[7] M. Braem, N. Joncheere, W. Vanderperren, R. Van Der Straeten, and
V. Jonckers, "Guiding service composition in a visual service creation
environment," in Web Services, 2006. ECOWS'06. 4th European
Conference on, 2006, pp. 13-22.

[8] Z. Obrenovic and D. Gasevic, "End-User Service Computing:
Spreadsheets as a Service Composition Tool," IEEE Transactions on
Services Computing, vol. 1, pp. 229-242, 2008.

[9] M. Grechanik and K. M. Conroy, "Composing integrated systems
using gui-based applications and web services," in Services
Computing, 2007. SCC 2007. IEEE International Conference on,
2007, pp. 68-75.

[10] M. Carlson, A. H. Ngu, R. Podorozhny, and L. Zeng, "Automatic
Mash Up of Composite Applications," in Service-Oriented
Computing – ICSOC 2008. vol. 5364, A. Bouguettaya, I. Krueger,
and T. Margaria, Eds., ed: Springer Berlin Heidelberg, 2008, pp. 317-
330.

[11] X. Liu, G. Huang, and H. Mei, "A user-oriented approach to
automated service composition," in Web Services, 2008. ICWS'08.
IEEE International Conference on, 2008, pp. 773-776.

[12] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, et al., "Service-
oriented architecture for VIEW: a visual scientific workflow
management system," in Services Computing, 2008. SCC'08. IEEE
International Conference on, 2008, pp. 335-342.

[13] F. Hang and L. Zhao, "HyperMash: A Heterogeneous Service
Composition Approach for Better Support of the End Users,"
presented at the Web Services (ICWS), 2013 IEEE 20th International
Conference on, Santa Clara, CA, USA, 2013.

[14] I. Wassink, M. Ooms, and P. van der Vet, "Designing workflows on
the fly using e-BioFlow," in Service-Oriented Computing, ed:
Springer, 2009, pp. 470-484.

[15] T. Yamaizumi, T. Sakairi, M. Wakao, H. Shinomi, and S. Adams,
"Easy soa: Rapid prototyping environment withweb services for end
users," in Web Services, 2006. ICWS'06. International Conference
on, 2006, pp. 931-932.

[16] V. Srinivasmurthy, S. Manvi, R. Gullapalli, D. Sathyamurthy, N.
Reddy, H. Dattatreya, et al., "Web2exchange: A model-based service
transformation and integration environment," in Services Computing,
2009. SCC'09. IEEE International Conference on, 2009, pp. 324-331.

[17] J. Zhang, "Co-Taverna: a tool supporting collaborative scientific
workflows," in Services Computing (SCC), 2010 IEEE International
Conference on, 2010, pp. 41-48.

[18] A. Namoun, T. Nestler, and A. De Angeli, "Service composition for
non-programmers: Prospects, problems, and design
recommendations," in Web Services (ECOWS), 2010 IEEE 8th
European Conference on, 2010, pp. 123-130.

[19] J. Zhang, D. Kuc, and S. Lu, "Confucius: a scientific collaboration
system using collaborative scientific workflows," in Web Services
(ICWS), 2010 IEEE International Conference on, 2010, pp. 575-583.

[20] N. Mehandjiev, F. Lecue, U. Wajid, and A. Namoun, "Assisted
Service Composition for End Users," presented at the IEEE 8th
European Conference on Web Services (ECOWS), 2010.

[21] Keele Staffs, "Guidelines for performing systematic literature reviews
in software engineering," Technical report, EBSE Technical Report
EBSE-2007-012007.

[22] E. Zahoor, O. Perrin, and C. Godart, "Disc: A declarative framework
for self-healing web services composition," in Web Services (ICWS),
2010 IEEE International Conference on, 2010, pp. 25-33.

[23] A. Maaradji, H. Hacid, R. Skraba, A. Lateef, J. Daigremont, and N.
Crespi, "Social-Based Web Services Discovery and Composition for
Step-by-Step Mashup Completion," in Web Services (ICWS), 2011
IEEE International Conference on, 2011, pp. 700-701.

[24] S. Roy Chowdhury, C. Rodríguez, F. Daniel, and F. Casati, "Baya:
assisted mashup development as a service," in Proceedings of the 21st

485

international conference companion on World Wide Web, 2012, pp.
409-412.

[25] M. Imran, F. Kling, S. Soi, F. Daniel, F. Casati, and M. Marchese,
"ResEval mash: a mashup tool for advanced research evaluation," in
Proceedings of the 21st international conference companion on World
Wide Web, 2012, pp. 361-364.

[26] C. Cappiello, M. Matera, M. Picozzi, A. Caio, and M. T. Guevara,
"MobiMash: end user development for mobile mashups," in
Proceedings of the 21st international conference companion on World
Wide Web, 2012, pp. 473-474.

[27] G. Wang, S. Yang, and Y. Han, "Mashroom: End-User Mashup
Programming using Nested Tables," presented at the Proceedings of
the 18th international conference on World wide web, Madrid, Spain,
2009.

[28] M. P. Papazoglou and W.-J. van den Heuvel, "Service-Oriented
Computing: State-of-the-Art and Open Research Issues," IEEE
Computer. v40 i11, 2003.

[29] W. Kongdenfha, B. Benatallah, J. Vayssière, R. Saint-Paul, and F.
Casati, "Rapid development of spreadsheet-based web mashups," in
Proceedings of the 18th international conference on World wide web,
2009, pp. 851-860.

[30] D. D. Hoang, H.-Y. Paik, and A. H. Ngu, "Spreadsheet as a generic
purpose mashup development environment," in Service-Oriented
Computing, ed: Springer, 2010, pp. 273-287.

[31] A. L. Lemos, M. C. Barukh, and B. Benatallah, "DataSheets: A
Spreadsheet-Based Data-Flow Language," in Service-Oriented
Computing, ed: Springer, 2013, pp. 616-623.

[32] G. Chafle, G. Das, K. Dasgupta, A. Kumar, S. Mittal, S. Mukherjea,
et al., "An integrated development environment for web service
composition," in Web Services, 2007. ICWS 2007. IEEE
International Conference on, 2007, pp. 839-847.

[33] C. Marin and P. Lalanda, "DoCoSOC- Domain Configurable Service-
Oriented Computing," in Services Computing, 2007. SCC 2007.
IEEE International Conference on, 2007, pp. 52-59.

[34] X. Xiang and G. Madey, "A semantic web services enabled web
portal architecture," in Web Services, 2004. Proceedings. IEEE
International Conference on, 2004, pp. 834-835.

[35] X. Liu, Q. Zhao, G. Huang, H. Mei, and T. Teng, "Composing data-
driven service mashups with tag-based semantic annotations," in Web
Services (ICWS), 2011 IEEE International Conference on, 2011, pp.
243-250.

[36] Y. Han, H. Geng, H. Li, J. Xiong, G. Li, B. Holtkamp, et al.,
"VINCA–A visual and personalized business-level composition
language for chaining web-based services," in Service-Oriented
Computing-ICSOC 2003, ed: Springer, 2003, pp. 165-177.

[37] S. Saifipoor, B. T. Ladani, and N. Nematbakhsh, "A Dynamic
Reconfigurable Web Service Composition Framework Using Reo
Coordination Language," in Web Services, 2007. ECOWS'07. Fifth
European Conference on, 2007, pp. 203-212.

[38] B. Pi, G. Zou, C. Zhong, J. Zhang, H. Yu, and A. Matsuo, "Flow
Editor: Semantic Web Service Composition Tool," in Services
Computing (SCC), 2012 IEEE Ninth International Conference on,
2012, pp. 666-667.

[39] J. Rao, P. Kungas, and M. Matskin, "Logic-based Web services
composition: from service description to process model," in Web
Services, 2004. Proceedings. IEEE International Conference on,
2004, pp. 446-453.

[40] Y. Lee, C. Patel, S. A. Chun, and J. Geller, "Towards intelligent Web
services for automating medical service composition," in Web
Services, 2004. Proceedings. IEEE International Conference on,
2004, pp. 384-391.

[41] A. V. Riabov, E. Boillet, M. D. Feblowitz, Z. Liu, and A.
Ranganathan, "Wishful search: interactive composition of data
mashups," in Proceedings of the 17th international conference on
World Wide Web, 2008, pp. 775-784.

[42] K. Fujii and T. Suda, "Dynamic service composition using semantic
information," in Proceedings of the 2nd international conference on
Service oriented computing, 2004, pp. 39-48.

[43] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, "Constraint driven
web service composition in METEOR-S," in Services Computing,
2004.(SCC 2004). Proceedings. 2004 IEEE International Conference
on, 2004, pp. 23-30.

[44] P. Wang, Z. Ding, C. Jiang, and M. Zhou, "Web service composition
techniques in a health care service platform," in Web Services
(ICWS), 2011 IEEE International Conference on, 2011, pp. 355-362.

[45] M. M. Shiaa, J. O. Fladmark, and B. Thiell, "An incremental graph-
based approach to automatic service composition," in Services
Computing, 2008. SCC'08. IEEE International Conference on, 2008,
pp. 397-404.

[46] U. Radetzki and A. B. Cremers, "Iris: A framework for mediator-
based composition of service-oriented software," in Web Services,
2004. Proceedings. IEEE International Conference on, 2004, pp. 752-
756.

[47] A. J. Ko and B. A. Myers, "Designing the whyline: a debugging
interface for asking questions about program behavior," in
Proceedings of the SIGCHI conference on Human factors in
computing systems, 2004, pp. 151-158.

[48] A. Namoun, T. Nestler, and A. De Angeli, "Service Composition for
Non-programmers: Prospects, Problems, and Design
Recommendations," presented at the IEEE European Conference on
Web Services (ECOWS), 2010.

[49] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler, "Wsmx-a
semantic service-oriented architecture," in Web Services, 2005.
ICWS 2005. Proceedings. 2005 IEEE International Conference on,
2005, pp. 321-328.

[50] G. Vargas-Solar and P. L. Peñalva, "Building WEB services portals:
implementation experiences," in Services Computing, 2005 IEEE
International Conference on, 2005, pp. 217-223.

[51] W. E. Mackay, "Patterns of sharing customizable software," in
Proceedings of the 1990 ACM conference on Computer-supported
cooperative work, 1990, pp. 209-221.

[52] L. Mei, Y. Wang, Q. Li, J. Wang, and Z. Zhu, "A Service-Oriented
Framework for Hybrid Immersive Web Applications," in Web
Services (ICWS), 2011 IEEE International Conference on, 2011, pp.
556-563.

[53] Z. Zhao, S. Bhattarai, and N. Crespi, "An event-based functionality
integration framework," in Web Services (ICWS), 2011 IEEE
International Conference on, 2011, pp. 720-721.

[54] R. R. Panko, "What we know about spreadsheet errors," Journal of
Organizational and End User Computing (JOEUC), vol. 10, pp. 15-
21, 1998.

[55] R. R. Panko, "Spreadsheet errors: What we know. what we think we
can do," arXiv preprint arXiv:0802.3457, 2008.

[56] D. G. Hendry and T. R. Green, "Creating, comprehending and
explaining spreadsheets: a cognitive interpretation of what
discretionary users think of the spreadsheet model," International
Journal of Human-Computer Studies, vol. 40, pp. 1033-1065, 1994.

[57] M. Colombo, E. Di Nitto, and M. Mauri, "Scene: A service
composition execution environment supporting dynamic changes
disciplined through rules," in Service-Oriented Computing–ICSOC
2006, ed: Springer, 2006, pp. 191-202.

486

